Science.gov

Sample records for aesculap ag tuttlingen

  1. Minimally Invasive Cardiac Surgery Using a 3D High-Definition Endoscopic System.

    PubMed

    Ruttkay, Tamas; Götte, Julia; Walle, Ulrike; Doll, Nicolas

    2015-01-01

    We describe a minimally invasive heart surgery application of the EinsteinVision 2.0 3D high-definition endoscopic system (Aesculap AG, Tuttlingen, Germany) in an 81-year-old man with severe tricuspid valve insufficiency. Fourteen years ago, he underwent a Ross procedure followed by a DDD pacemaker implantation 4 years later for tachy-brady-syndrome. His biventricular function was normal. We recommended minimally invasive tricuspid valve repair. The application of the aformentioned endoscopic system was simple, and the impressive 3D depth view offered an easy and precise manipulation through a minimal thoracotomy incision, avoiding the need for a rib spreading retractor.

  2. Navigated TKA After Osteotomy Versus Primary Navigated TKA: A Matched-Pair Analysis.

    PubMed

    Fröhlich, Vanessa; Johandl, Sabrina; De Zwart, Peter; Stöckle, Ulrich; Ochs, Björn Gunnar

    2016-05-01

    This article presents clinical and radiological outcome analysis of navigated total knee arthroplasty (TKA) following osteotomy compared with primary navigated TKA implantation. The study group (29 legs) received navigated TKA (Columbus with deep-dish, cruciate-retaining inlay, Aesculap AG, Tuttlingen, Germany) following distal femoral (6 legs) or high tibial (23 legs) osteotomy, and the control group (29 legs) received a primary navigated TKA. All patients were examined clinically and radiologically in a retrospective matched-pair analysis. Both groups showed comparable clinical scores (Oxford Knee Score, Tegner and Lysholm scores, and Knee Society Score). Radiological evaluations offered no relevant differences. The study group showed a significant mediolateral ligamentous instability (3 legs ≤5°, 1 leg 6°-9°, 25 legs ≥10° mediolateral deviation) compared with the control group (14 legs ≤5°, 9 legs 6°-9°, 6 legs >10°; P<.001). Significantly higher mediolateral ligamentous instability was seen in otherwise comparable clinical and radiological results in patients with navigated TKA implantation following osteotomy, compared with primary TKA. [Orthopedics; 2016. 39(3):S77-S82.].

  3. AGS experiments - 1994, 1995, 1996

    SciTech Connect

    Depken, J.C.

    1997-01-01

    This report contains the following information on the Brookhaven AGS Accelerator complex: FY 1996 AGS schedule as run; FY 1997 AGS schedule (working copy); AGS beams 1997; AGS experimental area FY 1994 physics program; AGS experimental area FY 1995 physics program; AGS experimental area FY 1996 physics program; AGS experimental area FY 1997 physics program (in progress); a listing of experiments by number; two-phage summaries of each experiment begin here, also ordered by number; listing of publications of AGS experiments begins here; and listing of AGS experimenters begins here.

  4. AgRISTARS

    NASA Technical Reports Server (NTRS)

    1984-01-01

    An introduction to the overall AgRISTARS program, a general statement on progress, and separate summaries of the activities of each project, with emphasis on the technical highlights are presented. Organizational and management information on AgRISTARS is included in the appendices, as is a complete bibliography of publication and reports.

  5. AGS experiments: 1993 - 1994 - 1995

    SciTech Connect

    Depken, J.C.

    1996-04-01

    This report contains: FY 1995 AGS Schedule as Run; FY 1996-97 AGE Schedule (working copy); AGS Beams 1995; AGS Experimental Area FY 1993 Physics Program; AGS Experimental Area FY 1994 Physics Program; AGS Experimental Area FY 1995 Physics Program; AGS Experimental Area FY 1996 Physics Program (In progress); A listing of experiments by number; Two-page summaries of each experiment begin here, also ordered by number; Listing of publications of AGS experiments begins here; and Listing of AGS experimenters begins here. This is the twelfth edition.

  6. @AuAg nanostructures

    NASA Astrophysics Data System (ADS)

    Singh, Rina; Soni, R. K.

    2014-09-01

    Bimetallic and trimetallic nanoparticles have attracted significant attention in recent times due to their enhanced electrochemical and catalytic properties compared to monometallic nanoparticles. The numerical calculations using Mie theory has been carried out for three-layered metal nanoshell dielectric-metal-metal (DMM) system consisting of a particle with a dielectric core (Al@Al2O3), a middle metal Ag (Au) layer and an outer metal Au (Ag) shell. The results have been interpreted using plasmon hybridization theory. We have also prepared Al@Al2O3@Ag@Au and Al@Al2O3@AgAu triple-layered core-shell or alloy nanostructure by two-step laser ablation method and compared with calculated results. The synthesis involves temporal separations of Al, Ag, and Au deposition for step-by-step formation of triple-layered core-shell structure. To form Al@Ag nanoparticles, we ablated silver for 40 min in aluminium nanoparticle colloidal solution. As aluminium oxidizes easily in water to form alumina, the resulting structure is core-shell Al@Al2O3. The Al@Al2O3 particle acts as a seed for the incoming energetic silver particles for multilayered Al@Al2O3@Ag nanoparticles is formed. The silver target was then replaced by gold target and ablation was carried out for different ablation time using different laser energy for generation of Al@Al2O3@Ag@Au core-shell or Al@Al2O3@AgAu alloy. The formation of core-shell and alloy nanostructure was confirmed by UV-visible spectroscopy. The absorption spectra show shift in plasmon resonance peak of silver to gold in the range 400-520 nm with increasing ablation time suggesting formation of Ag-Au alloy in the presence of alumina particles in the solution.

  7. AgSTAR Partners

    EPA Pesticide Factsheets

    AgSTAR’s Partner Program builds stronger relationships with state and non-governmental stakeholders to support all phases of anaerobic digester projects: planning, deployment, and long-term success.

  8. Ag-Al-Ca

    NASA Astrophysics Data System (ADS)

    Carow-Watamura, U.; Louzguine, D. V.; Takeuchi, A.

    This document is part of Part 1 http://dx.doi.org/10.1007/97.etType="URL"/> 'Systems from Ag-Al-Ca to Au-Pd-Si' of Subvolume B 'Physical Properties of Ternary Amorphous Alloys' of Volume 37 'Phase Diagrams and Physical Properties of Nonequilibrium Alloys' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains the Chapter 'Ag-Al-Ca' with the content:

  9. Heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalyst with enhanced photocatalytic activity and stability under visible light

    NASA Astrophysics Data System (ADS)

    Wang, Wan-Sheng; Du, Hong; Wang, Rui-Xia; Wen, Tao; Xu, An-Wu

    2013-03-01

    A heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalyst was prepared by a rational in situ ion exchange reaction between Ag3PO4 micro-cubes and Br- in aqueous solution followed by photoreduction. The photocatalytic activities of obtained photocatalysts were measured by the degradation of methyl orange (MO) and methylene blue (MB) under visible light irradiation (λ >= 400 nm). Compared to AgBr/Ag, Ag3PO4/AgBr heterocrystals and pure Ag3PO4 crystals, the heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalysts exhibit much higher photocatalytic activity and stability. This enhanced photocatalytic activity suggests that the synergetic effects of the heterostructured Ag3PO4/AgBr/Ag and the strong SPR of Ag NPs on the surface result in the high efficiencies of the photocatalytic activity and the improved stability. With the assistance of Ag3PO4/AgBr/Ag heterostructures, only 8 min and 12 min are taken to completely decompose MO and MB molecules under visible-light irradiation, respectively. Furthermore, the photodegradation rate does not show an obvious decrease during ten successive cycles, indicating that our heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalysts are extremely stable under visible-light irradiation.A heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalyst was prepared by a rational in situ ion exchange reaction between Ag3PO4 micro-cubes and Br- in aqueous solution followed by photoreduction. The photocatalytic activities of obtained photocatalysts were measured by the degradation of methyl orange (MO) and methylene blue (MB) under visible light irradiation (λ >= 400 nm). Compared to AgBr/Ag, Ag3PO4/AgBr heterocrystals and pure Ag3PO4 crystals, the heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalysts exhibit much higher photocatalytic activity and stability. This enhanced photocatalytic activity suggests that the synergetic effects of the heterostructured Ag3PO4/AgBr/Ag and the strong SPR of Ag NPs on the surface result in the high

  10. Assembly force and taper angle difference influence the relative motion at the stem-neck interface of bi-modular hip prostheses.

    PubMed

    Haschke, Henning; Jauch-Matt, Sabrina Y; Sellenschloh, Kay; Huber, Gerd; Morlock, Michael M

    2016-07-01

    Bi-modular hip arthroplasty prostheses allow adaptation to the individual patient anatomy and the combination of different materials but introduce an additional interface, which was related lately to current clinical issues. Relative motion at the additional taper interface might increase the overall risk of fretting, corrosion, metallic debris and early failure. The aim of this study was to investigate whether the assembly force influences the relative motion and seating behaviour at the stem-neck interface of a bi-modular hip prosthesis (Metha(®); Aesculap AG, Tuttlingen, Germany) and whether this relation is influenced by the taper angle difference between male and female taper angles. Neck adapters made of titanium (Ti6Al4V) and CoCr (CoCr29Mo) were assembled with a titanium stem using varying assembly forces and mechanically loaded. A contactless eddy current measurement system was used to record the relative motion between prosthesis stem and neck adapter. Higher relative motion was observed for Ti neck adapters compared to the CoCr ones (p < 0.001). Higher assembly forces caused increased seating distances (p < 0.001) and led to significantly reduced relative motion (p = 0.019). Independent of neck material type, prostheses with larger taper angle difference between male and female taper angles exhibited decreased relative motion (p < 0.001). Surgeons should carefully use assembly forces above 4 kN to decrease the amount of relative motion within the taper interface. Maximum assembly forces, however, should be limited to prevent periprosthetic fractures. Manufacturers should optimize taper angle differences to increase the resistance against relative motion.

  11. The History of GalaFLEX P4HB Scaffold

    PubMed Central

    Williams, Simon F.; Martin, David P.; Moses, Arikha C.

    2016-01-01

    The GalaFLEX Scaffold (Galatea Surgical, Inc., Lexington, MA) for plastic and reconstructive surgery belongs to a new generation of products for soft tissue reinforcement made from poly-4-hydroxybutyrate (P4HB). Other members of this new family of products include MonoMax Suture (Aesculap AG, Tuttlingen, Germany) for soft tissue approximation, BioFiber Scaffold (Tornier, Inc., Edina, MN) for tendon repair, and Phasix Mesh (C.R. Bard, Inc., Murray Hill, NJ) for hernia repair. Each of these fully resorbable products provides prolonged strength retention, typically 50% to 70% strength retention at 12 weeks, and facilitates remodeling in vivo to provide a strong, lasting repair. P4HB belongs to a naturally occurring class of biopolymers and fibers made from it are uniquely strong, flexible, and biocompatible. GalaFLEX Scaffold is comprised of high-strength, resorbable P4HB monofilament fibers. It is a knitted macroporous scaffold intended to elevate, reinforce, and repair soft tissue. The scaffold acts as a lattice for new tissue growth, which is rapidly vascularized and becomes fully integrated with adjacent tissue as the fibers resorb. In this review, we describe the development of P4HB, its production, properties, safety, and biocompatibility of devices made from P4HB. Early clinical results and current clinical applications of products made from P4HB are also discussed. The results of post-market clinical studies evaluating the GalaFLEX Scaffold in rhytidectomy and cosmetic breast surgery demonstrate that the scaffold can reinforce lifted soft tissue, resulting in persistent surgical results in the face and neck at one year, and provide lower pole stability after breast lift at one year. PMID:27697885

  12. AGS experiments -- 1991, 1992, 1993. Tenth edition

    SciTech Connect

    Depken, J.C.

    1994-04-01

    This report contains: (1) FY 1993 AGS schedule as run; (2) FY 1994--95 AGS schedule; (3) AGS experiments {ge} FY 1993 (as of 30 March 1994); (4) AGS beams 1993; (5) AGS experimental area FY 1991 physics program; (6) AGS experimental area FY 1992 physics program; (7) AGS experimental area FY 1993 physics program; (8) AGS experimental area FY 1994 physics program (planned); (9) a listing of experiments by number; (10) two-page summaries of each experiment; (11) listing of publications of AGS experiments; and (12) listing of AGS experiments.

  13. AGS experiments -- 1995, 1996 and 1997

    SciTech Connect

    Depken, J.C.; Presti, P.L.

    1997-12-01

    This report contains (1) FY 1995 AGS schedule as run; (2) FY 1996 AGS schedule as run; (3) FY 1997 AGS schedule as run; (4) FY 1998--1999 AGS schedule (proposed); (5) AGS beams 1997; (6) AGS experimental area FY 1995 physics program; (7) AGS experimental area FY 1996 physics program; (8) AGS experimental area FY 1997 physics program; (9) AGS experimental area FY 1998--1999 physics program (proposed); (10) a listing of experiments by number; (11) two-page summaries of each experiment, in order by number; and (12) listing of publications of AGS experiments.

  14. Preparation and antibacterial activities of Ag/Ag+/Ag3+ nanoparticle composites made by pomegranate (Punica granatum) rind extract

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Ren, Yan-yu; Wang, Tao; Wang, Chuang

    Nano-silver and its composite materials are widely used in medicine, food and other industries due to their strong conductivity, size effect and other special performances. So far, more microbial researches have been applied, but a plant method is rarely reported. In order to open up a new way to prepare AgNP composites, pomegranate peel extract was used in this work to reduce Ag+ to prepare Ag/Ag+/Ag3+ nanoparticle composites. UV-Vis was employed to detect and track the reduction of Ag+ and the forming process of AgNPs. The composition, structure and size of the crystal were analyzed by XRD and TEM. Results showed that, under mild conditions, pomegranate peel extract reacted with dilute AgNO3 solution to produce Ag/Ag+/Ag3+ nanoparticle composites. At pH = 8 and 10 mmol/L of AgNO3 concentration, the size of the achieved composites ranged between 15 and 35 nm with spherical shapes and good crystallinity. The bactericidal experiment indicated that the prepared Ag/Ag+/Ag3+ nanoparticles had strong antibacterial activity against gram positive bacteria and gram negative bacteria. FTIR analysis revealed that biological macromolecules with groups of sbnd NH2, sbnd OH, and others were distributed on the surface of the newly synthesized Ag/Ag+/Ag3+ nanoparticles. This provided a useful clue to further study the AgNP biosynthesis mechanism.

  15. Ag/AgCl reference electrode in thionyl chloride electrolytes

    NASA Astrophysics Data System (ADS)

    Delnick, F. M.; Cieslak, W. R.

    1985-07-01

    Thionyl chloride is the active cathode and electrolyte solvent in Li/SOCl2 primary battery systems. To evaluate charge-transfer reactions in this solvent system, a reference electrode is required. This report describes the fabrication and characterization of Ag/AgCl microreference electrodes that can be used in SOCl2 battery electrolytes.

  16. Ag-Air Service

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Econ, Inc.'s agricultural aerial application, "ag-air," involves more than 10,000 aircraft spreading insecticides, herbicides, fertilizer, seed and other materials over millions of acres of farmland. Difficult for an operator to estimate costs accurately and decide what to charge or which airplane can handle which assignment most efficiently. Computerized service was designed to improve business efficiency in choice of aircraft and determination of charge rates based on realistic operating cost data. Each subscriber fills out a detailed form which pertains to his needs and then receives a custom-tailored computer printout best suited to his particular business mix.

  17. Construction of Ag/AgCl nanostructures from Ag nanoparticles as high-performance visible-light photocatalysts

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Liu, Dongzhi; Wang, Tianyang; Li, Wei; Hu, Wenping; Zhou, Xueqin

    2016-11-01

    A combined strategy of in situ oxidation and assembly is developed to prepare Ag/AgCl nanospheres and nanocubes from Ag nanoparticles under room temperature. It is a new facile way to fabricate Ag/AgCl with small sizes and defined morphologies. Ag/AgCl nanospheres with an average size of 80 nm were achieved without any surfactants, while Ag/AgCl nanocubes with a mean edge length of 150 nm were obtained by introduction of N-dodecyl- N, N-dimethyl-2-ammonio-acetate. The possible formation mechanism involves the self-assembly of AgCl nanoparticles, Ostwald ripening and photoreduction of Ag+ into Ag0 by the room light. The as-prepared Ag/AgCl nanospheres and nanocubes exhibit excellent photocatalytic activity and stability toward degradation of organic pollutants under visible-light irradiation. It is demonstrated that Ag/AgCl nanocubes display enhanced photocatalytic activity in comparison with Ag/AgCl nanospheres due to the more efficient charge transfer. This work may pave an avenue to construct various functional materials via the assembly strategy using nanoparticles as versatile building blocks.

  18. Communication: Structure, formation, and equilibration of ensembles of Ag-S complexes on an Ag surface

    SciTech Connect

    Russell, Selena M.; Kim, Yousoo; Liu, Da-Jiang; Evans, J. W.; Thiel, P. A.

    2013-02-15

    We have utilized conditions of very low temperature (4.7 K) and very low sulfur coverage to isolate and identify Ag-S complexes that exist on the Ag(111) surface. The experimental conditions are such that the complexes form at temperatures above the temperature of observation. These complexes can be regarded as polymeric chains of varying length, with an Ag4S pyramid at the core of each monomeric unit. Steps may catalyze the formation of the chains and this mechanism may be reflected in the chain length distribution.

  19. AGS Experiments: 1989, 1990, 1991

    SciTech Connect

    Depken, J.C.

    1992-02-01

    This report contains: Experimental areas layout; table of beam parameters and fluxes; experiment schedule as run''; proposed 1992 schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS Experiments begin here; and list of AGS Experimenters begins here.

  20. AGS Experiments: 1989, 1990, 1991

    SciTech Connect

    Depken, J.C.

    1992-02-01

    This report contains: Experimental areas layout; table of beam parameters and fluxes; experiment schedule ``as run``; proposed 1992 schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS Experiments begin here; and list of AGS Experimenters begins here.

  1. What Is Ag-Ed?

    ERIC Educational Resources Information Center

    Lindley, Judy

    Ag-Ed is an agricultural education project aimed at upper primary students, held in conjunction with the Toowoomba Show (similar to a county fair) in Queensland, Australia. The program achieves its purpose of helping children understand the impact and relevance that agriculture has on their everyday lives through two components, an Ag-Ed day and a…

  2. Plasmonic Ag2MoO4/AgBr/Ag composite: Excellent photocatalytic performance and possible photocatalytic mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Zhongliao; Zhang, Jinfeng; Lv, Jiali; Dai, Kai; Liang, Changhao

    2017-02-01

    Plasmonic Ag2MoO4/AgBr/Ag composite is fabricated by in-situ ion exchange and reduction methods at room temperature. The samples are characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance (DRS), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscope (SEM) and photoluminescence (PL) measurements. The results show that butterfly-like Ag2MoO4 nanosheets served as the precursor, and Ag2MoO4/AgBr/Ag is formed in phase transformation with MoO42- displaced by Br-. The ternary Ag2MoO4/AgBr/Ag composite photocatalysts show greatly enhanced photocatalytic activity in photodegrading methylene blue (MB) under visible light irradiation compared with AgBr and Ag2MoO4. The pseudo-first-order rate constant kapp of Ag2MoO4/AgBr/Ag is 0.602 min-1, which is 11.6 and 18.3 times as high as that of AgBr and Ag2MoO4, respectively. Meanwhile, the efficiency of degradation still kept 90% after ten times cyclic experiments. Eventually, possible photocatalytic mechanism was proposed.

  3. AgH, Ag/sub 2/, and AgO revisited: Basis set extensions

    SciTech Connect

    Martin, R.L.

    1987-05-01

    An extended basis set has been developed for Ag which significantly improves the agreement between theoretical and experimental spectroscopic parameters for AgH, AgO, and Ag/sub 2/. The major improvement comes about as a result of the improved treatment of electron correlation in the Ag d shell upon the introduction of f functions. Their inclusion produces very slight differences at the SCF level, but significant reductions in r/sub e/ and increases in ..omega../sub e/ and D/sub e/ in the Mo-dash-barller--Plesset perturbation theory expansion. At the MP4(SDTQ) level, typical results are 0.02 A too long for r/sub e/, 4% too low for ..omega../sub e/, and 10 kcal too small for D/sub e/. From a pragmatic standpoint, MP2 give results very similar to this at a much reduced level of effort.

  4. THE AGS ELECTROSTATIC SEPTUM.

    SciTech Connect

    HOCK,J.RUSSO,T.GLEN,J.BROWN,K.

    2003-05-12

    The previous slow beam extraction electro static septum in the AGS was designed in 1981. Research documented at the Fermi Laboratory was used as the base line for this design. The septum consisted of a ground plane of .002 inch diameter wire tungsten-rhenium alloy (75%W 25%Re) with a hollow welded titanium cathode assembly. The vacuum chamber is stationary and the septum is moved with a pair of high vacuum linear feed throughs. After years of beam time, the frequency of failures increased. The vacuum system design was poor by today's standards and resulted in long pump down times after repairs. The failures ranged from broken septum wires to a twisted cathode. In addition to the failures, the mechanical drive system had too much backlash, making the operating position difficult to repeat. The new septum needed to address all of these issues in order to become a more reliable septum.

  5. The AGS-Booster lattice

    SciTech Connect

    Lee, Y.Y.; Barton, D.S.; Claus, J.; Cottingham, J.G.; Courant, E.D.; Danby, G.T.; Dell, G.F.; Forsyth, E.B.; Gupta, R.C.; Kats, J.

    1987-01-01

    The AGS Booster has three objectives. They are to increase the space charge limit of the AGS, to increase the intensity of the polarized proton beam by accumulating many linac pulses (since the intensity is limited by the polarized ion source), and to reaccelerate heavy ions from the BNL Tandem Van de Graaff before injection into the AGS. The machine is capable of accelerating protons at 7.5 Hertz from 200 MeV to 1.5 GeV or to lower final energies at faster repetition rates. The machine will also be able to accelerate heavy ions from as low as 1 MeV/nucleon to a magnetic rigidity as high as 17.6 Tesla-meters with a one second repetition rate. As an accumulator for polarized protons, the Booster should be able to store the protons at 200 MeV for several seconds. We expect that the Booster will increase the AGS proton intensity by a factor of four, polarized proton intensity by a factor of twenty to thirty, and will also enable the AGS to accelerate all species of heavy ions (at present the AGS heavy ion program is limited to the elements lighter than sulfur because it can only accelerate fully stripped ions). The construction project started in FY 1985 and is expected to be completed in 1989. The purpose of this paper is to provide a future reference for the AGS Booster lattice.

  6. Spin dynamics simulations at AGS

    SciTech Connect

    Huang, H.; MacKay, W.W.; Meot, F.; Roser, T.

    2010-05-23

    To preserve proton polarization through acceleration, it is important to have a correct model of the process. It has been known that with the insertion of the two helical partial Siberian snakes in the Alternating Gradient Synchrotron (AGS), the MAD model of AGS can not deal with a field map with offset orbit. The stepwise ray-tracing code Zgoubi provides a tool to represent the real electromagnetic fields in the modeling of the optics and spin dynamics for the AGS. Numerical experiments of resonance crossing, including spin dynamics in presence of the snakes and Q-jump, have been performed in AGS lattice models, using Zgoubi. This contribution reports on various results so obtained.

  7. Ag-Pd-Si (009)

    NASA Astrophysics Data System (ADS)

    Carow-Watamura, U.; Louzguine, D. V.; Takeuchi, A.

    This document is part of Part 1 http://dx.doi.org/10.1007/97.etType="URL"/> 'Systems from Ag-Al-Ca to Au-Pd-Si' of Subvolume B 'Physical Properties of Ternary Amorphous Alloys' of Volume 37 'Phase Diagrams and Physical Properties of Nonequilibrium Alloys' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains the Chapter 'Ag-Pd-Si (009)' with the content:

  8. Facile synthesis, structure, and properties of Ag2S/Ag heteronanostructure

    NASA Astrophysics Data System (ADS)

    Sadovnikov, S. I.; Gusev, A. I.

    2016-09-01

    Ag2S/Ag heteronanostructure has been produced by a simple one-stage chemical deposition from aqueous solutions of silver nitrate, sodium sulfide, and sodium citrate with the use of monochromatic light irradiation. For simultaneous synthesis of Ag2S and Ag nanoparticles, deposition has been performed from reaction mixtures with reduced sodium sulfide concentration. The size of Ag2S and Ag nanoparticles is 45-50 and 15-20 nm, respectively. It is established that in the contact layer between silver sulfide and silver, nonconducting α-Ag2S acanthite transforms into superionic β-Ag2S argentite under the action of external electric field. The scheme of the operation of a resistive switch based on an Ag2S/Ag heteronanostructure is proposed. The UV-Vis optical absorption spectra of colloidal solutions of Ag2S/Ag heteronanostructures have been studied.

  9. Enhanced photocatalytic activity of Ag-TiO2/Ag heterogeneous films

    NASA Astrophysics Data System (ADS)

    Liang, Ying; Wang, ShaoHua; Guo, PengFeng

    2015-11-01

    Ag-deposited TiO2 and Ag (Ag-TiO2/Ag) films coated on glass substrates were prepared using a simple sol-gel and dip-coating method. The Ag chemical state was investigated through X-ray diffractometry and X-ray photoelectron spectroscopy. Results showed that the Ag mainly exists in metallic state in the Ag-TiO2 film. Ag-TiO2/Ag exhibits higher photocatalytic activity than individual Ag-TiO2 and TiO2/Ag films. This enhanced photocatalytic activity was attributed to high surface plasmon resonance effects and separation rates of photoinduced electron-hole pairs of Ag nanoparticles. Results were verified by photoluminescence and UV-Vis spectroscopy.

  10. Study of the oxygen transport through Ag (110), Ag (poly), and Ag 2.0 Zr

    NASA Technical Reports Server (NTRS)

    Outlaw, R. A.; Wu, D.; Davidson, M. R.; Hoflund, Gar B.

    1992-01-01

    The transport of oxygen through high-purity membranes of Ag (110), Ag (poly), Ag (nano), and Ag 2.0 Zr has been studied by an ultrahigh vacuum permeation method over the temperature range of 400-800 C. The data show that there are substantial deviations from ordinary diffusion-controlled transport. A surface limitation has been confirmed by glow-discharge studies where the upstream O2 supply has been partially converted to atoms, which, for the same temperature and pressure, gave rise to over an order of magnitude increase in transport flux. Further, the addition of 2.0 wt percent Zr to the Ag has provided increased dissociative adsorption rates, which, in turn, increased the transport flux by a factor of 2. It was also observed that below a temperature of 630 C, the diffusivity exhibits an increase in activation energy of over 4 kcal/mol, which has been attributed to trapping of the atomic oxygen and/or kinetic barriers at the surface and subsurface of the vacuum interface. Above 630 C, the activation barrier decreases to the accepted value of about 11 kcal/mol for Ag (poly), consistent with zero concentration at the vacuum interface.

  11. Effect of Ag Templates on the Formation of Au-Ag Hollow/Core-Shell Nanostructures.

    PubMed

    Tsai, Chi-Hang; Chen, Shih-Yun; Song, Jenn-Ming; Haruta, Mitsutaka; Kurata, Hiroki

    2015-12-01

    Au-Ag alloy nanostructures with various shapes were synthesized using a successive reduction method in this study. By means of galvanic replacement, twined Ag nanoparticles (NPs) and single-crystalline Ag nanowires (NWs) were adopted as templates, respectively, and alloyed with the same amount of Au(+) ions. High angle annular dark field-scanning TEM (HAADF-STEM) images observed from different rotation angles confirm that Ag NPs turned into AuAg alloy rings with an Au/Ag ratio of 1. The shifts of surface plasmon resonance and chemical composition reveal the evolution of the alloy ring formation. On the other hand, single-crystalline Ag NWs became Ag@AuAg core-shell wires instead of hollow nanostructure through a process of galvanic replacement. It is proposed that in addition to the ratio of Ag templates and Au ion additives, the twin boundaries of the Ag templates were the dominating factor causing hollow alloy nanostructures.

  12. Probing the rupture of a Ag atomic junction in a Ag-Au mixed electrode

    NASA Astrophysics Data System (ADS)

    Kim, Taekyeong

    2015-09-01

    We probed that the atomic junction in Ag part ruptures during stretching of atomic sized contacts of Ag-Au mixed electrodes, resulting in Ag-Ag electrodes through a scanning tunneling microscope breaking junction (STM-BJ) technique. We observed that the conductance and tunneling decay constant for a series of amine-terminated oligophenyl molecular junctions are essentially the same for the Ag-Au mixed and the Ag-Ag electrodes. We also found the molecular plateau length and the evolution patterns with the Ag-Au mixed electrodes are similar to those with Ag-Ag electrodes rather than the Au-Au electrodes in the molecular junction elongation. This result is attributed to the smaller binding energy of Ag atoms compared to that of Au atoms, so the Ag junction part is more easily broken than that of Au part in stretching of Ag-Au mixed electrodes. Furthermore, we successfully observed that the rupture force of the atomic junction for the Ag-Au mixed electrodes was identical to that for the Ag-Ag electrodes and smaller than that for the Au-Au electrodes. This study may advance the understanding of the electrical and the mechanical properties in molecular devices with Ag and Au electrodes in future.

  13. AG Draconis - a symbiotic mystery

    NASA Astrophysics Data System (ADS)

    Galis, R.; Hric, L.; Smelcer, L.

    2015-02-01

    Symbiotic system AG Draconis regularly undergoes quiescent and active stages which consist of the series of individual outbursts. The period analysis of new and historical photometric data, as well as radial velocities, confirmed the presence of the two periods. The longer one (~550 d) is related to the orbital motion and the shorter one (~355 d) could be due to pulsation of the cool component of AG Dra. In addition, the active stages change distinctively, but the outbursts are repeated with periods from 359 - 375 d.

  14. Studies of induced radioactivity at the AGS

    SciTech Connect

    Brown, K.A.; Tanaka, M.

    1987-01-01

    With the goals of higher proton intensities, along with the many modes the AGS now runs and those being commissioned to run, we have begun detailed studies of the beam induced radioactivity in the AGS.

  15. Ag nanotubes and Ag/AgCl electrodes in nanoporous membranes.

    PubMed

    Davenport, Matthew; Healy, Ken; Siwy, Zuzanna S

    2011-04-15

    Miniaturization of the entire experimental setup is a key requirement for widespread application of nanodevices. For nanopore biosensing, integrating electrodes onto the nanopore membrane and controlling the pore length is important for reducing the complexity and improving the sensitivity of the system. Here we present a method to achieve these goals, which relies on electroless plating to produce Ag nanotubes in track-etched polymer nanopore templates. By plating from one side only, we create a conductive nanotube that does not span the full length of the pore, and thus can act as a nanoelectrode located inside the nanopore. To give optimal electrochemical behavior for sensing, we coat the Ag nanotube with a layer of AgCl. We characterize the behavior of this nanoelectrode by measuring its current-voltage response and find that, in most cases, the response is asymmetric. The plated nanopores have initial diameters between 100 and 300 nm, thus a range suitable for detection of viruses.

  16. Loading effect of Ag/AgO on the photocatalytic performance of ZnO rods

    NASA Astrophysics Data System (ADS)

    Samsuddin, Aida Fitri; Aziz, Siti Nor Qurratu Aini Abd; Pung, Swee-Yong

    2017-01-01

    The photocatalytic performance of ZnO rods in degradation of Rhodamine B dye under UV light was improved by 7.3% via deposition of Ag/AgO using 1.0 × 10-3 g mL-1 of silver nitrate solution. However, its photodegradation efficiency decreased with the increase in silver nitrate concentration which was used to prepare the Ag/AgO-ZnO rods. This result suggests that the loading of Ag/AgO on the surface of ZnO rods affected the photocatalytic performance differently. The scavenger study indicates that the main reactive species responsible for the degradation of Rhodamine B dye by Ag-/AgO-deposited ZnO rods were holes, followed by superoxide anion free radicals, hydroxyl free radicals and electrons. Based on these findings, a refined photodegradation mechanism of Rhodamine B by Ag/AgO-ZnO rods is proposed.

  17. AGS experiments: 1990, 1991, 1992. Ninth edition

    SciTech Connect

    Depken, J.C.

    1993-04-01

    This report contains a description of the following: AGS Experimental Area - High Energy Physics FY 1993 and Heavy Ion Physics FY 1993; Table of Beam Parameters and Fluxes; Experiment Schedule ``as run``; Proposed 1993 Schedule; A listing of experiments by number; Two-page summaries of each experiment begin here, also ordered by number; Publications of AGS Experiments; and List of AGS Experimenters.

  18. Activation properties of Ag+-ion conduction in bulk amorphous AgI: estimation from extrapolation of the AgI composition dependence in AgI Ag2O P2O5 glasses

    NASA Astrophysics Data System (ADS)

    Hanaya, M.; Hatate, A.; Oguni, M.

    2003-06-01

    AgI-based fast-ion conducting glasses with very high AgI compositions from the (AgI)x(AgPO3)1-x, (AgI)x(Ag2PO3.5)1-x, and (AgI)x(Ag3PO4)1-x systems were prepared successfully by using a rapid-press quenching and a twin-roller quenching method. The ac dielectric measurements showed common relaxation properties of Ag+-ion conduction in the glasses independently of the species of the glass network formers of AgPO3, Ag2PO3.5, and Ag3PO4, and the activation energies, Δɛa, for Ag+-ion conduction were observed to converge upon the same magnitude of ~26 kJ mol-1 at the AgI composition limit of x = 1. This indicates the formation of amorphous AgI regions in the glasses, and the value of Δɛa = 26 +/- 1 kJ mol-1 estimated at x = 1 was concluded to correspond to that for bulk amorphous AgI which has never been obtained experimentally.

  19. AGS 20th anniversary celebration

    SciTech Connect

    Baggett, N.V.

    1980-05-22

    On May 22, 1980, a symposium was held at Brookhaven to celebrate the 20th birthday of the AGS, to recall its beginnings, and to review major discoveries that have been made with its beams. The talks at the symposium are recorded in this volume.

  20. AGS experiments, 1988, 1989, 1990

    SciTech Connect

    Depken, J.C.

    1991-04-01

    This report contains: experimental areas layout; table of beam parameters and fluxes; experiment schedule as run''; experiment long range schedule; a listing of experiments by number; two-page summaries of each experiment begin here, also ordered by number; publications of AGS experiments; and list of experimenters.

  1. AGS experiments: 1985, 1986, 1987

    SciTech Connect

    Depken, J.C.

    1987-01-01

    This report contains: Experimental areas layout, table of beam parameters and fluxes, experiment schedule ''as run,'' experiment long range schedule, a listing of experiments by number, two-page summaries of each experiment, also ordered by number, and publications of AGS experiments, 1982-1987.

  2. Antibacterial activity and reusability of CNT-Ag and GO-Ag nanocomposites

    NASA Astrophysics Data System (ADS)

    Kim, Ji Dang; Yun, Hyosuk; Kim, Gwui Cheol; Lee, Chul Won; Choi, Hyun Chul

    2013-10-01

    A facile approach to the synthesis of novel CNT-Ag and GO-Ag antibacterial materials, in which thiol groups are utilized as linkers to secure silver (Ag) nanoparticles to the CNT and GO surfaces without agglomeration, is reported. The resulting CNT-Ag and GO-Ag samples were characterized by performing TEM, XRD, Auger, XPS, and Raman measurements, which revealed that in these antibacterial materials size-similar and quasi-spherical Ag nanoparticles are anchored to the CNT and GO surfaces. The Ag nanoparticles in CNT-Ag and GO-Ag have narrow size distributions with average diameters of 2.6 and 3.5 nm respectively. The antibacterial activities of CNT-Ag and GO-Ag against Escherichia coli were assessed with the paper-disk diffusion method and by determining the minimal inhibitory concentrations (MICs). CNT-Ag was found to have higher antibacterial activity than the reference Ag colloid. Moreover, both CNT-Ag and GO-Ag retain more than 50% of their original antibacterial activities after 20 washes with detergent, which indicates their potential as antibacterial materials for laboratory and medical purposes.

  3. Comparative Study of Antimicrobial Activity of AgBr and Ag Nanoparticles (NPs)

    PubMed Central

    Suchomel, Petr; Kvitek, Libor; Panacek, Ales; Prucek, Robert; Hrbac, Jan; Vecerova, Renata; Zboril, Radek

    2015-01-01

    The diverse mechanism of antimicrobial activity of Ag and AgBr nanoparticles against gram-positive and gram-negative bacteria and also against several strains of candida was explored in this study. The AgBr nanoparticles (NPs) were prepared by simple precipitation of silver nitrate by potassium bromide in the presence of stabilizing polymers. The used polymers (PEG, PVP, PVA, and HEC) influence significantly the size of the prepared AgBr NPs dependently on the mode of interaction of polymer with Ag+ ions. Small NPs (diameter of about 60–70 nm) were formed in the presence of the polymer with low interaction as are PEG and HEC, the polymers which interact with Ag+ strongly produce nearly two times bigger NPs (120–130 nm). The prepared AgBr NPs were transformed to Ag NPs by the reduction using NaBH4. The sizes of the produced Ag NPs followed the same trends – the smallest NPs were produced in the presence of PEG and HEC polymers. Prepared AgBr and Ag NPs dispersions were tested for their biological activity. The obtained results of antimicrobial activity of AgBr and Ag NPs are discussed in terms of possible mechanism of the action of these NPs against tested microbial strains. The AgBr NPs are more effective against gram-negative bacteria and tested yeast strains while Ag NPs show the best antibacterial action against gram-positive bacteria strains. PMID:25781988

  4. Characterization of spark plasma sintered Ag nanopowders.

    PubMed

    Fu, Y Q; Shearwood, C; Xu, B; Yu, L G; Khor, K A

    2010-03-19

    The low temperature sintering behaviour of nanocrystalline Ag powder (with an average size of 70 nm) was characterized. Using spark plasma sintering (SPS), the Ag nanopowders can be successfully sintered at low pressure for only 5 min without external heating, and the sintering density increases and porosity decreases significantly with increase in the sintering temperature. Nanoindentation has been used to characterize the SPS sintered Ag samples. The mechanisms of the low sintering temperature behaviour of the nano-Ag powder and the nanoscale mechanical performance have been discussed. Compression tests were also used to characterize the mechanical properties of the sintered Ag sample with a maximum strain up to 15%.

  5. Synergistic effect of interfacial lattice Ag(+) and Ag(0) clusters in enhancing the photocatalytic performance of TiO2.

    PubMed

    Xu, Liming; Zhang, Dandan; Ming, Lufei; Jiao, Yanchao; Chen, Feng

    2014-09-28

    An interfacial lattice Ag(+) doped on TiO2 (Ag(+)/TiO2) was prepared by eluting Ag(0) clusters from a hydrothermally prepared Ag(0)/Ag(+)/TiO2 composite. An Ag(+)/TiO2@Ag(0) composite photocatalyst was subsequently obtained via a secondary Ag(0) clusters loading process to the Ag(+)/TiO2. The photocatalytic activity of Ag(+)/TiO2@Ag(0) was greatly improved compared to Ag(0)/Ag(+)/TiO2 and Ag(+)/TiO2. X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) testing verified that Ag(+) ions occur as an interfacial lattice Ag(+) species in the composites. The enhancement effect of the interfacial lattice Ag(+) species is exhibited by the newly-formed Ag(+)/TiO2@Ag(0) as the interfacial lattice Ag(+) is fully exposed but not overlapped with the re-loaded Ag(0) clusters. The interfacial lattice Ag(+) ions and Ag(0) clusters are both responsible for the photocatalytic performance improvement of the catalyst, in either the photocatalytic degradation of methyl orange or photocurrent measurement.

  6. Enhancing the ag precipitation by surface mechanical attrition treatment on Cu-Ag alloys

    NASA Astrophysics Data System (ADS)

    Liu, Jiabin; Zhang, Lehao; Liu, Jingjing; Huang, Liuyi; Gu, Hao; Fang, Youtong; Meng, Liang; Zhang, Jian

    2016-09-01

    The influence of surface mechanical attrition treatment (SMAT) on Ag precipitation in Cu-Ag alloys was investigated. Cu-6 wt% Ag was melt, cold rolled and solution treated to be Cu-Ag solid solution, which was either aged at 250 and 350 °C for 24 h directly or SMAT-ed before aging. Ag precipitates were hard be found in the directly aged Cu-Ag sample while they were observed clearly in the SMAT-ed counterpart at 250 °C. The Ag precipitates formed in the surface layer by SMAT are much coarser than those in the un-SMAT-ed sample. It is obvious that the precipitating behavior of Ag was promoted significantly by SMAT approach. A large number of defects were generated by SMAT and they were acting as fast atomic diffusion channels that facilitated the atomic diffusion of Ag.

  7. Polymorphism of LiAg

    NASA Astrophysics Data System (ADS)

    Pavlyuk, V. V.; Dmytriv, G. S.; Tarasiuk, I. I.; Chumak, I. V.; Pauly, H.; Ehrenberg, H.

    2010-02-01

    A phase transition from the cubic CsCl-type structure (Pm-3m space group) into a tetragonal UPb-type structure (I4 1/amd) is observed for the LiAg binary compound at ambient conditions. The crystal structure of the tetragonal modification of the LiAg binary compound was solved by direct methods in SHELXS on the base of structure factors which were extracted from a powder diffraction pattern and refined by SHELXL and the Rietveld method ( a = 3.9605(1), c = 8.2825(2) Å, Bragg R-factor = 4.81, Rf-factor = 4.87). Elevated temperatures and/or a small Li-excess versus the equimolar composition favour the cubic structure whereas ambient and lower temperatures and/or a small Li-deficiency stabilize the tetragonal structure. This reconstructive transition is reversible but proceeds slowly.

  8. Capacitive deionization of seawater effected by nano Ag and Ag@C on graphene.

    PubMed

    Cai, P-F; Su, C-J; Chang, W-T; Chang, F-C; Peng, C-Y; Sun, I-W; Wei, Y-L; Jou, C-J; Wang, H Paul

    2014-08-30

    Drinking water shortage has become worse in recent decades. A new capacitive deionization (CDI) method for increasing water supplies through the effective desalination of seawater has been developed. Silver as nano Ag and Ag@C which was prepared by carbonization of the Ag(+)-β-cyclodextrin complex at 573 K for 30 min can add the antimicrobial function into the CDI process. The Ag@C and Ag nanoparticles dispersed on reduced graphene oxide (Ag@C/rGO and nano Ag/rGO) were used as the CDI electrodes. The nano Ag/rGO and Ag@C/rGO electrodes can reduce the charging resistant, and enhance the electrosorption capability. Better CDI efficiencies with the nano Ag/rGO and Ag@C/rGO electrodes can therefore be obtained. When reversed the voltage, the electrodes can be recovered up to 90% within 5 min. This work presents the feasibility for the nano Ag and Ag@C on rGO electrodes applied in CDI process to produce drinking water from seawater or saline water.

  9. Facile synthesis of S-Ag nanocomposites and Ag2S short nanorods by the interaction of sulfur with AgNO3 in PEG400

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Li; Xie, Xin-Yuan; Liang, Ming; Xie, Shu-Ming; Chen, Jie-Mei; Zheng, Wen-Jie

    2016-06-01

    A facile, eco-friendly and inexpensive method to prepare Ag2S short nanorods and S-Ag nanocomposites using sublimed sulfur, AgNO3, PVP and PEG400 was studied. According to x-ray diffraction and scanning electron microscopy of the Ag2S, the products are highly crystalline and pure Ag2S nanorods with diameters of 70-160 nm and lengths of 200-360 nm. X-ray diffraction of the S-Ag nanocomposites shows that we obtained cubic Ag and S nanoparticles. Transmission electron microscopy shows that the molar ratio of PVP to Ag+ plays an important role in controlling the size and morphology of the S-Ag nanocomposites. When the molar ratio of PVP to Ag+ was 10:1, smaller sizes, better dispersibility and narrower distribution of S-Ag nanocomposites with diameters of 10-40 nm were obtained. The formation mechanism of the S-Ag nanocomposites was studied by designing a series of experiments using ultraviolet-visible measurement, and it was found that S nanoparticles are produced first and act as seed crystals; then Ag+ becomes Ag nanocrystals on the surfaces of the S nanoparticles by the reduction of PVP. PEG400 acts as a catalyzer, accelerating the reaction rate, and protects the S-Ag nanocomposites from reacting to produce Ag2S. The antimicrobial experiments show that the S-Ag nanocomposites have greater antimicrobial activity on Staphylococcus aureus, Aspergillus niger and blue mold than Ag nanoparticles.

  10. Biportal neuroendoscopic microsurgical approaches to the subarachnoid cisterns. A cadaver study.

    PubMed

    Fries, G; Reisch, R

    1996-12-01

    A preclinical cadaver study was performed to develop the technique of biportal neuroendoscopic dissection in the subarachnoid space of the basal cisterns and to test the feasibility, utility, and safety of this new technique. In 23 fresh post-mortem adult human cadavers and 2 formalin-fixed adult human head specimen a total of 33 biportal endomicrosurgical dissections into and within the basal cisterns were carried out. Following suction of cerebrospinal fluid from the subarachnoid space 0 degree-, 30 degrees-, and 70 degrees-lens-scopes (Aesculap AG, Tuttlingen, Germany) with outer diameters of 4.2 mm and trochars with outer diameters of 5 to 6.5 mm were introduced into the surgical field. 6 different endoscopic routes to the basal cisterns and a total of 10 different combinations of these approaches for biportal endoneurosurgery could be described, but it was found that not all of them were useful and safe. The transventricular approach to the prepontine cisterns through the foramen of Monro and the floor of the third ventricle, biportally combined with a subfrontal or a subtemporal approach, turned out to be not safe enough as it was accompanied by traumatization of the fornix at the interventricular foramen and of the hypothalamus at the level of the tuber cinereum due to relaxation and caudal shift of the brain following suction of cerebrospinal fluid to clear the basal cisterns for the subfrontal or subtemporal approaches. Useful and safe endomicrosurgical approaches to the basal cisterns were: 1st subfrontal, either epidural or intradural, 2nd subtemporal, either anterior or posterior, and 3rd frontal interhemispheric. Various biportal combinations of these approaches are estimated to be feasible, useful, and safe enough to be performed during microsurgical procedures in the operating room. The biportal endomicrosurgical strategy allows for effective and safe dissections within the subarachnoid spaces of the basal cisterns. The tip of the microinstruments as

  11. AgI/Ag{sub 3}PO{sub 4} hybrids with highly efficient visible-light driven photocatalytic activity

    SciTech Connect

    Katsumata, Hideyuki; Hayashi, Takahiro; Taniguchi, Masanao; Suzuki, Tohru; Kaneco, Satoshi

    2015-03-15

    Highlights: • AgI/Ag{sub 3}PO{sub 4} hybrid was prepared via an in situ anion-exchange method. • AgI/Ag{sub 3}PO{sub 4} displays the excellent photocatalytic activity under visible light. • AgI/Ag{sub 3}PO{sub 4} readily transforms to be Ag@AgI/Ag{sub 3}PO{sub 4} system. • h{sup +} and O{sub 2}{sup ·−} play the major role in the AO 7 decolorization over AgI/Ag{sub 3}PO{sub 4}. • The activity enhancement is ascribed to a Z-scheme system composed of Ag{sub 3}PO{sub 4}, Ag and AgI. - Abstract: Highly efficient visible-light-driven AgI/Ag{sub 3}PO{sub 4} hybrid photocatalysts with different mole ratios of AgI were prepared via an in situ anion-exchange method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) technique. Under visible light irradiation (>420 nm), the AgI/Ag{sub 3}PO{sub 4} photocatalysts displayed the higher photocatalytic activity than pure Ag{sub 3}PO{sub 4} and AgI for the decolorization of acid orange 7 (AO 7). Among the hybrid photocatalysts, AgI/Ag{sub 3}PO{sub 4} with 80% of AgI exhibited the highest photocatalytic activity for the decolorization of AO 7. X-ray photoelectron spectroscopy (XPS) results revealed that AgI/Ag{sub 3}PO{sub 4} readily transformed to be Ag@AgI/Ag{sub 3}PO{sub 4} system while the photocatalytic activity of AgI/Ag{sub 3}PO{sub 4} remained after 5 recycling runs. In addition, the quenching effects of different scavengers displayed that the reactive h{sup +} and O{sub 2}{sup ·−} play the major role in the AO 7 decolorization. The photocatalytic activity enhancement of AgI/Ag{sub 3}PO{sub 4} hybrids can be ascribed to the efficient separation of electron–hole pairs through a Z-scheme system composed of Ag{sub 3}PO{sub 4}, Ag and AgI, in which Ag nanoparticles act as the charge separation center.

  12. The cardiovascular response to the AGS

    NASA Technical Reports Server (NTRS)

    Cardus, David; Mctaggart, Wesley G.

    1993-01-01

    This paper reports the preliminary results of experiments on human subjects conducted to study the cardiovascular response to various g-levels and exposure times using an artificial gravity simulator (AGS). The AGS is a short arm centrifuge consisting of a turntable, a traction system, a platform and four beds. Data collection hardware is part of the communication system. The AGS provides a steep acceleration gradient in subjects in the supine position.

  13. Multiple Partial Siberian Snakes in the AGS

    NASA Astrophysics Data System (ADS)

    Takano, J.; Ahrens, L. A.; Bai, M.; Brown, K.; Courant, E. D.; Gardner, C. J.; Glenn, J. W.; Hattori, T.; Huang, H.; Lin, F.; Luccio, A. U.; MacKay, W. W.; Okamura, M.; Roser, T.; Tepikian, S.; Tsoupas, N.; Yip, K.; Zelenski, A.; Zeno, K.

    2007-06-01

    Polarized protons are accelerated up to 24.3 GeV in the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL). To accelerate the beam with preserving the polarization, two different types of helical dipole partial Siberian snake have been installed to the AGS. One is a superconducting magnet (Cold Snake, CSNK), and the other is a normal conducting one (Warm Snake, WSNK). With these snake magnets, the polarization at the AGS extraction achieved 65%. However, the AGS has spin mismatches at the injection and extraction. This description shows calculated results to have better spin matching with using two or three snakes.

  14. Multiple Partial Siberian Snakes in the AGS

    SciTech Connect

    Takano, J.; Ahrens, L. A.; Bai, M.; Brown, K.; Courant, E. D.; Gardner, C. J.; Glenn, J. W.; Huang, H.; Luccio, A. U.; MacKay, W. W.; Okamura, M.; Roser, T.; Tepikian, S.; Tsoupas, N.; Yip, K.; Zelenski, A.; Zeno, K.; Hattori, T.; Lin, F.

    2007-06-13

    Polarized protons are accelerated up to 24.3 GeV in the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL). To accelerate the beam with preserving the polarization, two different types of helical dipole partial Siberian snake have been installed to the AGS. One is a superconducting magnet (Cold Snake, CSNK), and the other is a normal conducting one (Warm Snake, WSNK). With these snake magnets, the polarization at the AGS extraction achieved 65%. However, the AGS has spin mismatches at the injection and extraction. This description shows calculated results to have better spin matching with using two or three snakes.

  15. Transformation from Ag@Ag3PO4 to Ag@Ag2SO4 hybrid at room temperature: preparation and its visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Wei, Ting; Gao, Shanmin; Wang, Qingyao; Xu, Hui; Wang, Zeyan; Huang, Baibiao; Dai, Ying

    2017-02-01

    In the present study, Ag/Ag2SO4 hybrid photocatalysts were obtained via a facile redox-precipitation reaction approach by using Ag@Ag3PO4 nanocomposite as the precursor and KMnO4 as the oxidant. Multiple techniques, such as X-ray diffraction pattern (XRD), transmission electron microscope (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS) and Brunauer-Emmett-Teller (BET), photocurrent and electrochemical impedance spectroscopy (EIS), were applied to investigate the structures, morphologies, optical, and electronic properties of as-prepared samples. The photocatalytic activities were evaluated by photodegradation of organic rhodamine B (RhB) and methyl orange (MO) under visible light irradiation. It was found that pure Ag2SO4 can partially transform into metallic Ag during the photocatalytic degradation of organic pollutants, but the Ag/Ag2SO4 hybrids can maintain its structure stability and show enhanced visible light photocatalytic activity because of the surface plasma resonance effect of the metallic Ag.

  16. Toxicokinetics of Ag in the terrestrial isopod Porcellionides pruinosus exposed to Ag NPs and AgNO₃ via soil and food.

    PubMed

    Tourinho, Paula S; van Gestel, Cornelis A M; Morgan, A John; Kille, Peter; Svendsen, Claus; Jurkschat, Kerstin; Mosselmans, J Fred W; Soares, Amadeu M V M; Loureiro, Susana

    2016-03-01

    Silver nanoparticles (Ag NPs) have been used in numerous consumer products and may enter the soil through the land application of biosolids. However, little is known about the relationship between Ag NP exposure and their bioavailability for soil organisms. This study aims at comparing the uptake and elimination kinetics of Ag upon exposures to different Ag forms (NPs and ionic Ag (as AgNO3)) in the isopod Porcellionides pruinosus. Isopods were exposed to contaminated Lufa 2.2 soil or alder leaves as food. Uptake and elimination rate constants for soil exposure did not significantly differ between Ag NPs and ionic Ag at 30 and 60 mg Ag/kg. For dietary exposure, the uptake rate constant was up to 5 times higher for Ag NPs than for AgNO3, but this was related to feeding activity and exposure concentrations, while no difference in the elimination rate constants was found. When comparing both routes, dietary exposure resulted in lower Ag uptake rate constants but elimination rate constants did not differ. A fast Ag uptake was observed from both routes and most of the Ag taken up seemed not to be eliminated. Synchrotron X-ray fluorescence showed Ag in the S-cells of the hepatopancreas, thus supporting the observations from the kinetic experiment (i.e. low elimination). In addition, our results show that isopods have an extremely high Ag accumulation capacity, suggesting the presence of an efficient Ag storage compartment.

  17. Single step electrochemical synthesis of hydrophilic/hydrophobic Ag5 and Ag6 blue luminescent clusters.

    PubMed

    Santiago González, Beatriz; Blanco, M C; López-Quintela, M Arturo

    2012-12-21

    Well-defined Ag(5) and Ag(6) dodecanethiol/tetrabutyl ammonium-protected clusters were prepared by a one-pot electrochemical method. Ag clusters show bright and photostable emissions. The presence of a dual capping renders the silver clusters soluble in both organic and aqueous solvents.

  18. Synthesis of Cu-Ag@Ag particles using hyperbranched polyester as template

    NASA Astrophysics Data System (ADS)

    Han, Wen-Song

    2015-07-01

    In this manuscript, the third-generation hyperbranched polyester was synthesized with 2, 2-dimethylol propionic acid as AB2 monomer and pentaerythrite as core molecule by using step by step polymerization process at first. Then, the Cu-Ag particles were prepared by co-reduction of silver nitrate and copper nitrate with ascorbic acid in the aqueous solution using hyperbranched polyester as template. Finally, the Cu-Ag@Ag particles were prepared by coating silver on the surface of Cu-Ag particles by reduction of silver nitrate. The synthesized hyperbranched polyester and Cu-Ag@Ag particles were characterized by Fourier transform infrared (FT-IR) spectroscopy, UV-vis spectra, x-ray diffraction, Laser light scattering, thermogravimetric analysis (TGA) and SEM. UV-vis spectra results showed that the Cu-Ag@Ag particles had a strong absorption band at around 420 nm. Laser light scattering and SEM studies confirmed that the most frequent particle sizes of Cu-Ag@Ag particles were 1.2 um. TGA results indicated that the Cu-Ag@Ag particles had good thermal stability. [Figure not available: see fulltext.

  19. An Au/AgBr-Ag heterostructure plasmonic photocatalyst with enhanced catalytic activity under visible light.

    PubMed

    Purbia, Rahul; Paria, Santanu

    2017-01-17

    This study reports an easy synthesis protocol of a novel bimetallic silver halide (Au/AgBr-Ag) plasmonic heterostructure as a visible light induced photocatalyst. In this process, first CTAB capped Au NPs were coated with AgBr, and then Ag nanoparticles were formed on the surface of AgBr by photoreduction, while exposing to daylight at room temperature. The presence of Au and Ag improves the visible absorption ability of NPs and avoids charge recombination of the semiconductor AgBr during photoexcitation, which in turn enhances 16 and 8.9 fold the photocatalytic efficiency of Rhodamine B dye degradation under visible light irradiation compared to that of pure AgBr and AgBr/Ag, respectively. The recycling tests of the photocatalyst show only ∼8.7% decrease in efficiency after the 5(th) cycle of reuse without changing the morphology. During the photocatalytic process, active superoxide radicals (O2˙(-)) play a major role, proved through scavenger trapping and photoluminescence experiments. The presence of two plasmonic metals (Au and Ag) in the heterostructure helps to improve visible light absorption as well as avoid charge recombination of the semiconductor AgBr to act as a better photocatalyst. Since this heteronanostructure can be easily synthesized by a one-step method, this study could provide a new approach for the development of efficient bimetallic/semiconductor halide plasmonic photocatalysts with enhanced visible absorption and better charge separation.

  20. Highly efficient visible light plasmonic photocatalyst Ag@Ag(Br,I).

    PubMed

    Wang, Peng; Huang, Baibiao; Zhang, Qianqian; Zhang, Xiaoyang; Qin, Xiaoyan; Dai, Ying; Zhan, Jie; Yu, Jiaoxian; Liu, Haixia; Lou, Zaizhu

    2010-09-03

    The new plasmonic photocatalyst Ag@Ag(Br,I) was synthesized by the ion-exchange process between the silver bromide and potassium iodide, then by reducing some Ag(+) ions in the surface region of Ag(Br,I) particles to Ag(0) species. Ag nanoparticles are formed from Ag(Br,I) by the light-induced chemical reduction reaction. The Ag@Ag(Br,I) particles have irregular shapes with their sizes varying from 83 nm to 1 mum. The as-grown plasmonic photocatalyst shows strong absorption in the visible light region because of the plasmon resonance of Ag nanoparticles. The ability of this compound to reduce Cr(VI) under visible light was compared with those of other reference photocatalyst. The plasmonic photocatalyst is shown to be highly efficient under visible light. The stability of the photocatalyst was examined by X-ray diffraction and X-ray photoelectron spectroscopy. The XRD pattern and XPS spectra prove the stability of the plasmonic photocatalyst Ag@Ag(Br,I).

  1. Negligible shift of 3Ag- potential in longer-chain carotenoids as revealed by a single persistent peak of 3Ag-→1Ag- stimulated emission followed by 3Ag-←1Ag- transient-absorption

    NASA Astrophysics Data System (ADS)

    Li, Chunyong; Miki, Takeshi; Kakitani, Yoshinori; Koyama, Yasushi; Nagae, Hiroyoshi

    2007-12-01

    Upon excitation of lycopene, anhydrorhodovibrin or spirilloxanthin to the 1Bu+(0) state, stimulated emission followed by transient-absorption was observed as a single peak with the 3Ag-(0) energy that had been determined by measurement of resonance-Raman excitation profiles. This observation was explained in terms of negligible shift of the 3Ag- potential, in reference to the 1Ag- potential, where only the 3Ag-(υ)→1Ag-(υ) emission and the 3Ag-(υ)←1Ag-(υ) absorption become allowed during the vibrational relaxation of υ = 2 → 1 → 0, starting from the 3Ag-(2) level generated by diabatic internal conversion from the 1Bu+(0) level, in anhydrorhodovibrin, for example.

  2. Half-life determination for 108Ag and 110Ag

    NASA Astrophysics Data System (ADS)

    Zahn, Guilherme S.; Genezini, Frederico A.

    2014-11-01

    In this work, the half-life of the short-lived silver radionuclides 108Ag and 110Ag were measured by following the activity of samples after they were irradiated in the IEA-R1 reactor. The results were then fitted using a non-paralizable dead time correction to the regular exponential decay and the individual half-life values obtained were then analyzed using both the Normalized Residuals and the Rajeval techniques, in order to reach the most exact and precise final values. To check the validity of dead-time correction, a second correction method was also employed by means of counting a long-lived 60Co radioactive source together with the samples as a livetime chronometer. The final half-live values obtained using both dead-time correction methods were in good agreement, showing that the correction was properly assessed. The results obtained are partially compatible with the literature values, but with a lower uncertainty, and allow a discussion on the last ENSDF compilations' values.

  3. Progress with the AGS Booster

    SciTech Connect

    Weng, W.T.

    1988-01-01

    Rare K-decay, neutrino and heavy ion physics demands that a rapid- cycling high vacuum and high intensity Booster be built for the AGS at Brookhaven. For each mode of operation there are corresponding accelerator physics and design issues needing special attention. Problems pertinent to any single mode of operation have been encountered and solved before, but putting high intensity proton requirements and high vacuum heavy ion requirements into one machine demands careful design considerations and decisions. The lattice design and magnet characteristics will be briefly reviewed. Major design issues will be discussed and design choices explained. Finally, the construction status and schedule will be presented. 6 refs., 6 figs.

  4. Visible light driven photocatalysis and antibacterial activity of AgVO{sub 3} and Ag/AgVO{sub 3} nanowires

    SciTech Connect

    Singh, Anamika; Dutta, Dimple P.; Ballal, A.; Tyagi, A.K.; Fulekar, M.H.

    2014-03-01

    Graphical abstract: - Highlights: • Ag/AgVO{sub 3} and pure AgVO{sub 3} nanowires synthesized by sonochemical process. • Characterization done using XRD, SEM, TEM, EDX and BET analysis. • Visible light degradation of RhB by Ag/AgVO{sub 3} within 45 min. • Antibacterial activity of Ag/AgVO{sub 3} demonstrated. - Abstract: Ag/AgVO{sub 3} nanowires and AgVO{sub 3} nanorods were synthesized in aqueous media via a facile sonochemical route. The as-synthesized products were characterized by X-ray diffraction, Brunauer–Emmett–Teller surface area analysis, scanning electron microscopy together with an energy dispersion X-ray spectrum analysis, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy. The results revealed that inert atmosphere promotes the formation of Ag/AgVO{sub 3} nanowires. The photocatalytic studies revealed that the Ag/AgVO{sub 3} nanowires exhibited complete photocatalytic degradation of Rhodamine B within 45 min under visible light irradiation. The antibacterial activity of Ag/AgVO{sub 3} nanowires was tested against Escherechia coli and Bacillus subtilis. The minimum growth inhibitory concentration value was found to be 50 and 10 folds lower than for the antibiotic ciprofloxacin for E. coli and B. subtilis, respectively. The antibacterial properties of the β-AgVO{sub 3} nanorods prove that in case of the Ag dispersed Ag/AgVO{sub 3} nanowires, the enhanced antibacterial action is also due to contribution from the AgVO{sub 3} support.

  5. Effects of soil and dietary exposures to Ag nanoparticles and AgNO₃ in the terrestrial isopod Porcellionides pruinosus.

    PubMed

    Tourinho, Paula S; van Gestel, Cornelis A M; Jurkschat, Kerstin; Soares, Amadeu M V M; Loureiro, Susana

    2015-10-01

    The effects of Ag-NPs and AgNO3 on the isopod Porcellionides pruinosus were determined upon soil and dietary exposures. Isopods avoided Ag in soil, with EC50 values of ∼16.0 and 14.0 mg Ag/kg for Ag-NPs and AgNO3, respectively. Feeding inhibition tests in soil showed EC50s for effects on consumption ratio of 127 and 56.7 mg Ag/kg, respectively. Although similar EC50s for effects on biomass were observed for nanoparticulate and ionic Ag (114 and 120 mg Ag/kg dry soil, respectively), at higher concentrations greater biomass loss was found for AgNO3. Upon dietary exposure, AgNO3 was more toxic, with EC50 for effects on biomass change being >1500 and 233 mg Ag/kg for Ag-NPs and AgNO3, respectively. The difference in toxicity between Ag-NPs and AgNO3 could not be explained from Ag body concentrations. This suggests that the relation between toxicity and bioavailability of Ag-NPs differs from that of ionic Ag in soils.

  6. Photocatalytic oxidation removal of Hg0 using ternary Ag/AgI-Ag2CO3 hybrids in wet scrubbing process under fluorescent light

    NASA Astrophysics Data System (ADS)

    Zhang, Anchao; Zhang, Lixiang; Chen, Xiaozhuan; Zhu, Qifeng; Liu, Zhichao; Xiang, Jun

    2017-01-01

    A series of ternary Ag/AgI-Ag2CO3 photocatalysts synthesized using a facile coprecipitation method were employed to investigate their performances of Hg0 removal in a wet scrubbing reactor. The hybrids were characterized by N2 adsorption-desorption, XRD, SEM-EDS, HRTEM, XPS, DRS and ESR. The photocatalytic activities of Hg0 removal were evaluated under fluorescent light. The results showed that AgI content, fluorescent light irradiation, reaction temperature all showed significant influences on Hg0 removal. NO exhibited significant effect on Hg0 removal in comparison to SO2. Among these ternary Ag/AgI-Ag2CO3 hybrids, Ag/AgI(0.1)-Ag2CO3 showed the highest Hg0 removal efficiency, which could be ascribed to the effective separation of photogenerated electron-hole pairs between AgI and Ag2CO3 and the surface plasmon resonance (SPR) effect in the visible region by metallic silver nanoparticles (Ag0 NPs). The trapping studies of reactive radicals showed that the superoxide radicals (rad O2-) may play a key role in Hg0 removal under fluorescent light. According to the experimental and characterization results, a possible photocatalytic oxidation mechanism for enhanced Hg0 removal over Ag/AgI(0.1)-Ag2CO3 hybrid under fluorescent light was proposed.

  7. AgRISTARS documents tracking list report

    NASA Technical Reports Server (NTRS)

    Hawkins, J. L.

    1983-01-01

    A quarterly listing of documents issued and placed in the AgRISTARS tracking system is provided. The technical publications are arranged by type of documents. The reference AgRISTARS document number, title and date of publication, the issuing organization, and the National Technical Information Service reference number is given.

  8. The AGS synchrotron with four helical magnets

    SciTech Connect

    Tsoupas N.; Huang, H.; Roser, T.; MacKay, W.W.; Trbojevic, D.

    2012-05-20

    The idea of using two partial helical magnets was applied successfully to the AGS synchrotron to preserve the proton beam polarization. In this paper we explore in details the idea of using four helical magnets placed symmetrically in the AGS ring. The placement of four helical magnets in the AGS ring provides many advantages over the present setup of the AGS which uses two partial helical magnets. First, the symmetric placement of the four helical magnets allows for a better control of the AGS optics with reduced values of the beta functions especially near beam injection, second, the vertical spin direction during beam injection and extraction is closer to vertical, and third, it provides for a larger 'spin tune gap', which allows the vertical and horizontal tunes to be placed, and prevent the horizontal and vertical intrinsic spin resonances of the AGS to occur during the acceleration cycle. Although the same spin gap can be obtained with a single or two partial helices, the required high field strength of a single helix makes its use impractical, and that of the double helix rather difficult. In this paper we will provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and compare these results with the present setup of the AGS that uses two partial helical magnets.

  9. AgPO2F2 and Ag9(PO2F2)14: the first Ag(i) and Ag(i)/Ag(ii) difluorophosphates with complex crystal structures.

    PubMed

    Malinowski, Przemysław J; Kurzydłowski, Dominik; Grochala, Wojciech

    2015-12-07

    The reaction of AgF2 with P2O3F4 yields a mixed valence Ag(I)/Ag(II) difluorophosphate salt with AgAg(PO2F2)14 stoichiometry - the first Ag(ii)-PO2F2 system known. This highly moisture sensitive brown solid is thermally stable up to 120 °C, which points at further feasible extension of the chemistry of Ag(ii)-PO2F2 systems. The crystal structure shows a very complex bonding pattern, comprising of polymeric Ag(PO2F2)14(4-) anions and two types of Ag(I) cations. One particular Ag(II) site present in the crystal structure of Ag9(PO2F2)14 is the first known example of square pyramidal penta-coordinated Ag(ii) in an oxo-ligand environment. Ag(i)PO2F2 - the product of the thermal decomposition of Ag9(PO2F2)14 - has also been characterized by thermal analysis, IR spectroscopy and X-ray powder diffraction. It has a complicated crystal structure as well, which consists of infinite 1D [Ag(I)O4/2] chains which are linked to more complex 3D structures via OPO bridges. The PO2F2(-) anions bind to cations in both compounds as bidentate oxo-ligands. The terminal F atoms tend to point inside the van der Waals cavities in the crystal structure of both compounds. All important structural details of both title compounds were corroborated by DFT calculations.

  10. Ligand and counterion control of Ag(I) architectures: assembly of a {Ag8} ring cluster mediated by hydrophobic and Ag...Ag interactions.

    PubMed

    Fielden, John; Long, De-liang; Slawin, Alexandra M Z; Kögerler, Paul; Cronin, Leroy

    2007-10-29

    A strategy combining ligand design and counterion variation has been used to investigate the assembly of silver(I) complexes. As a result, dinuclear, octanuclear, and polymeric silver(I) species have been synthesized by complexation of the rigid aliphatic amino ligands cis-3,5-diamino-trans-hydroxycyclohexane (DAHC), cis-3,5-diamino-trans-methoxycyclohexane (DAMC), and cis-3,5-diamino-trans-tert-butyldimethylsilylanyloxycyclohexane (DATC) with silver(I) triflate, nitrate, and perchlorate. The compositions of these aggregates, established by X-ray crystallography and elemental analysis, are [{Ag(DAHC)}2](CF3SO3)2 (1), [{Ag(DAMC)}2](CF3SO3)2 (2), [{Ag(DAMC)}2](NO3)2 (3), [{Ag(DATC)}6{Ag(DAHC)}2](NO3)8 (4), and [{Ag(DATC}n](NO3)n (5), where the DAHC present in 4 is formed by in situ hydrolysis of the acid labile silyl ether group. The type of aggregate formed depends both upon the noncoordinating O-substituent of the ligand and the (also noncoordinating) counterion, with the normal preference of the ligand topology for forming Ag2L2 structures being broken by introduction of the bulky, lipophilic O-tert-butyldimethylsilyl (TBDMS) group. Of particular note is the octanuclear silver ring structure 4, which is isolated only when both the O-TBDMS group and the nitrate counteranion are present and is formed from four Ag2L2 dimers connected by Ag...Ag and hydrogen-bonding interactions. Diffusion rate measurement of this {Ag8} complex by 1H NMR (DOSY) indicates dissociation in CD3OD and CD3CN, showing that this supramolecular ring structure is formed upon crystallization, and establishing a qualitative limit to the strength of Ag...Ag interactions in solution. When solutions of the {Ag8} cluster in methanol are kept for several days though, a new UV-vis absorption is observed at around 430 nm, consistent with the formation of silver nanoparticles.

  11. Fluorescent DNA-bound Ag nanoclusters

    NASA Astrophysics Data System (ADS)

    O'Neill, Patrick; Velazquez, Lourdes; Weirich, Kim; Fygenson, Deborah

    2009-03-01

    Few-atom fluorescent Ag nanoclusters self-assemble on short, synthetic DNA strands, and exhibit sequence and structure dependent fluorescence ranging from the blue to the near infrared. Here we report UV excitation as a ubiquitous feature of these emitters. Each emitter thus has two excitation peaks: a visible peak which is cluster-dependent, and a UV peak which has the same wavelength for all DNA-bound Ag clusters. This UV peak corresponds to resonant absorbance by the DNA bases, and produces the same emission spectra as visible excitation, suggesting energy transfer from the DNA bases to the Ag cluster. We make use of this UV excitation to image the emitters in unstained polyacrylamide gels, and show that electrophoresis can be used to create a pure solution of green DNA:Ag11 clusters from an inhomogeneous red solution of DNA:Ag>12 clusters.

  12. Direct electrospinning of Ag/polyvinylpyrrolidone nanocables

    NASA Astrophysics Data System (ADS)

    Song, Jie; Chen, Menglin; Olesen, Mikkel Buster; Wang, Chenxuan; Havelund, Rasmus; Li, Qiang; Xie, Erqing; Yang, Rong; Bøggild, Peter; Wang, Chen; Besenbacher, Flemming; Dong, Mingdong

    2011-12-01

    Core-sheath silver nanowire/polyvinylpyrrolidone (AgNW/PVP) nanocables have been fabricated via an efficient single-spinneret electrospinning method. The core-sheath structure is revealed by combining several characterization methods. A possible formation mechanism of the AgNW/PVP nanocable involving a strong stretching during the electrospinning process is proposed. Further, electrical measurements were performed on AgNW/PVP nanocables as well as bare AgNWs, which indicated the nanocables became insulating due to the isolation of highly conductive AgNWs by insulating PVP sheath. Therefore, the described fabrication method holds potential for the fabrication of low-cost metal/polymer composite materials for nanoelectronic applications in general.

  13. Antibacterial biodegradable Mg-Ag alloys.

    PubMed

    Tie, D; Feyerabend, F; Müller, W D; Schade, R; Liefeith, K; Kainer, K U; Willumeit, R

    2013-06-16

    The use of magnesium alloys as degradable metals for biomedical applications is a topic of ongoing research and the demand for multifunctional materials is increasing. Hence, binary Mg-Ag alloys were designed as implant materials to combine the favourable properties of magnesium with the well-known antibacterial property of silver. In this study, three Mg-Ag alloys, Mg2Ag, Mg4Ag and Mg6Ag that contain 1.87 %, 3.82 % and 6.00 % silver by weight, respectively, were cast and processed with solution (T4) and aging (T6) heat treatment. The metallurgical analysis and phase identification showed that all alloys contained Mg4Ag as the dominant β phase. After heat treatment, the mechanical properties of all Mg-Ag alloys were significantly improved and the corrosion rate was also significantly reduced, due to presence of silver. Mg(OH)₂ and MgO present the main magnesium corrosion products, while AgCl was found as the corresponding primary silver corrosion product. Immersion tests, under cell culture conditions, demonstrated that the silver content did not significantly shift the pH and magnesium ion release. In vitro tests, with both primary osteoblasts and cell lines (MG63, RAW 264.7), revealed that Mg-Ag alloys show negligible cytotoxicity and sound cytocompatibility. Antibacterial assays, performed in a dynamic bioreactor system, proved that the alloys reduce the viability of two common pathogenic bacteria, Staphylococcus aureus (DSMZ 20231) and Staphylococcus epidermidis (DSMZ 3269), and the results showed that the killing rate of the alloys against tested bacteria exceeded 90%. In summary, biodegradable Mg-Ag alloys are cytocompatible materials with adjustable mechanical and corrosion properties and show promising antibacterial activity, which indicates their potential as antibacterial biodegradable implant materials.

  14. Photo- and thermo-chemical transformation of AgCl and Ag2S in environmental matrices and its implication.

    PubMed

    Yin, Yongguang; Xu, Wei; Tan, Zhiqiang; Li, Yanbin; Wang, Weidong; Guo, Xiaoru; Yu, Sujuan; Liu, Jingfu; Jiang, Guibin

    2017-01-01

    AgCl and Ag2S prevalently exist in the environment as minerals and/or the chlorination and sulfidation products of ionic silver and elemental silver nanoparticles (AgNPs). In this work, we investigated the chemical transformation of AgCl and Ag2S under simulated sunlight (in water) and incineration (in sludge and simulated municipal solid waste, SMSW). In the presence of natural organic matter, AgCl in river water was observed to be transformed into AgNPs under simulated sunlight, while photo-reduction of Ag2S could not take place under the same experimental conditions. During the course of incineration, pure Ag2S was transformed into elemental silver while AgCl remained stable; however, both Ag2S in sludge and AgCl in SMSW can be transformed to elemental silver under incineration, evident by the results of X-ray absorption spectroscopy and scanning electron microscopy measurements. Incineration temperature played an important role in the transformation of Ag2S and AgCl into elemental silver. These results suggest that chemical transformations of Ag2S and AgCl into elemental silver could be a possible source of naturally occurring or unintentionally produced AgNPs, affecting the fate, transport, bioavailability and toxicity of silver. Therefore, it is necessary to include the contributions of this transformation process when assessing the risk of ionic silver/AgNPs and the utilization and management of incineration residues.

  15. Formation of AgGaS2 nano-pyramids from Ag2S nanospheres through intermediate Ag2S-AgGaS2 heterostructures and AgGaS2 sensitized Mn2+ emission.

    PubMed

    Huang, Feng; Zhou, Jiangcong; Xu, Ju; Wang, Yuansheng

    2014-02-21

    A one-pot solution synthesis of monodisperse AgGaS2 nanocrystals with uniform pyramid-like shape is realized for the first time, in which an interesting phase and shape evolution from monodisperse Ag2S nanospheres to pure AgGaS2 nano-pyramids through an intermediate stage of Ag2S-AgGaS2 heterostructures, is revealed. Evidently, upon introducing Mn(2+) ions into the reaction system, they are incorporated into AgGaS2 nano-pyramids which act as efficient sensitization matrixes for the red emission of Mn(2+) d-d transition under blue excitation. Benefiting from their non-toxicity and facile fabrication, Mn:AgGaS2 nanocrystals may find potential applications in some fields such as blue chip excited LEDs and bio-labeling.

  16. AgS2O6CF3: the first trifluoromethylsulfonylsulfate(VI).

    PubMed

    Malinowski, Przemysław J; Derzsi, Mariana; Grochala, Wojciech

    2013-08-07

    We describe the synthetic route towards a novel class of salts, trifluoromethylsulfonylsulfates, as exemplified by the silver(I) derivative (AgS2O6CF3). Formation proceeds via direct reaction between a triflate precursor, AgSO3CF3, and SO3. The title compound crystallizes in the P2(1)/c unit cell with a = 5.15746(14) Å, b = 25.8563(9) Å, c = 5.53970(14) Å and β = 101.1749(19)°. The structure is layered with the puckered [AgS2O6] 2D sheets; the terminal CF3 groups are separated by the van der Waals gap, as seen also for related metal triflates. The compound is very fragile thermally and it decomposes endothermally to AgSO3CF3 with concomitant evolution of SO3 even at 65 °C or upon grinding in an agate mortar; thus it may serve as a solid store of--otherwise volatile and corrosive--SO3. The IR and Raman spectra of AgS2O6CF3 have been tentatively assigned based on similarities to those of related Ag2S2O7 and AgSO3CF3 and phonon calculations. Synthesis and properties of KS2O6CF3 are also briefly described.

  17. On the measurement of /sup 107/Ag//sup 109/Ag ratios in meteorites

    SciTech Connect

    Kutschera, W.; Faestermann, T.; Gillitzer, A.; Fortuna, G.

    1986-01-01

    The detection of stable Ag isotopes in meteorites at the ppB level was attempted in an AMS experiment using the Munich MP tandem accelerator in conjunction with a time-of-flight detection system. The sensitivity of detecting Ag at this level was established by observing a counting rate of 17 ions of /sup 107/Ag per sec from a Au sample, which had been spiked with the radioisotope /sup 105/Ag (T/sub 1/2/ = 41 d) at a concentration of 1.0 ppB. A blank Ta sample gave no /sup 105/Ag counts in 13 min, which corresponds to a detection limit of 7.5 x 10/sup -5/ ppB. Although this sensitivity was clearly sufficient to perform /sup 107/Ag and /sup 109/Ag measurements in the desired concentration range, experiments with these isotopes were hampered by a currently irreducable background of stable Ag in the ppM range, possibly originating from the ion source itself. Indications of extraordinarily high Ag concentrations, far above this background, were observed in some of the investigated meteorites, but conclusions on their actual existence must await a better understanding of the origin of the general Ag background. 10 refs., 4 figs., 3 tabs.

  18. Study of antibacterial activity of Ag and Ag2CO3 nanoparticles stabilized over montmorillonite

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Pourahmad, A.; Mehdipour Moghaddam, M. J.; Sadeghi, A.

    2015-02-01

    Silver carbonate and silver nanoparticles (NPs) over of stabilizer montmorillonite (MMT) have been synthesized in aqueous and polyol solvent, respectively. Dispersions of silver nanoparticles have been prepared by the reduction of silver nitrate over of MMT in presence and absence of Na2CO3 compound in ethylene glycol. It was observed that montmorillonite was capable of stabilizing formed Ag nanoparticles through the reduction of Ag+ ions in ethylene glycol. Na2CO3 was used as carbonate source in synthesis of Ag2CO3 NPs in water solvent and also for controlling of Ag nanoparticles size in ethylene glycol medium. The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (DRS). The TEM images showed that Ag NPs size in presence Na2CO3 salts was smaller than without that. The results indicated intercalation of Ag and Ag2CO3 nanoparticles into the montmorillonite clay layers. The diffuse reflectance spectra exhibited a strong surface plasmon resonance (SPR) adsorption peak in the visible region, resulting from Ag nanoparticles. The antibacterial testing results showed that the Ag2CO3-MMT nanocomposite exhibited an antibacterial activity higher than Ag-MMT sample against Escherichia coli.

  19. Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates

    NASA Astrophysics Data System (ADS)

    Chen, Deliang; Li, Tao; Chen, Qianqian; Gao, Jiabing; Fan, Bingbing; Li, Jian; Li, Xinjian; Zhang, Rui; Sun, Jing; Gao, Lian

    2012-08-01

    The hierarchical photocatalysts of Ag/AgCl@plate-WO3 have been synthesized by anchoring Ag/AgCl nanocrystals on the surfaces of single-crystalline WO3 nanoplates that were obtained via an intercalation and topochemical approach. The heterogeneous precipitation process of the PVP-Ag+-WO3 suspensions with a Cl- solution added drop-wise was developed to synthesize AgCl@WO3 composites, which were then photoreduced to form Ag/AgCl@WO3 nanostructures in situ. WO3 nanocrystals with various shapes (i.e., nanoplates, nanorods, and nanoparticles) were used as the substrates to synthesize Ag/AgCl@WO3 photocatalysts, and the effects of the WO3 contents and photoreduction times on their visible-light-driven photocatalytic performance were investigated. The techniques of TEM, SEM, XPS, EDS, XRD, N2 adsorption-desorption and UV-vis DR spectra were used to characterize the compositions, phases and microstructures of the samples. The RhB aqueous solutions were used as the model system to estimate the photocatalytic performance of the as-obtained Ag/AgCl@WO3 nanostructures under visible light (λ >= 420 nm) and sunlight. The results indicated that the hierarchical Ag/AgCl@plate-WO3 photocatalyst has a higher photodegradation rate than Ag/AgCl, AgCl, AgCl@WO3 and TiO2 (P25). The contents and morphologies of the WO3 substrates in the Ag/AgCl@plate-WO3 photocatalysts have important effects on their photocatalytic performance. The related mechanisms for the enhancement in visible-light-driven photodegradation of RhB molecules were analyzed.The hierarchical photocatalysts of Ag/AgCl@plate-WO3 have been synthesized by anchoring Ag/AgCl nanocrystals on the surfaces of single-crystalline WO3 nanoplates that were obtained via an intercalation and topochemical approach. The heterogeneous precipitation process of the PVP-Ag+-WO3 suspensions with a Cl- solution added drop-wise was developed to synthesize AgCl@WO3 composites, which were then photoreduced to form Ag/AgCl@WO3 nanostructures in

  20. The AGS with four helical magnets

    SciTech Connect

    Tsoupas, N.; Huang, H.; MacKay, W.W.; Roser, T.; Trbojevic, D.

    2010-02-25

    The idea of using multiple partial helical magnets was applied successfully to the AGS synchrotron, to preserve the proton beam polarization. In this paper we explore in details the idea of using four helical magnets placed symmetrically in the AGS ring. This modification provides many advantages over the present setup of the AGS that uses two partial helical magnets. First, it provides a larger 'spin tune gap' for the placement of the vertical betatron tune of the AGS during acceleration, second, the vertical spin direction during the beam injection and extraction is closer to vertical, third, the symmetric placement of the snakes allows for a better control of the AGS optics, and for reduced values of the beta and eta functions, especially near injection, fourth, the optical properties of the helical magnets also favor the placement of the horizontal betatron tune in the 'spin tune gap', thus eliminating the horizontal spin resonances. In this paper we provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and we compare these results with the present setup of the AGS that uses two partial helical magnets.

  1. Ion-exchange synthesis of Ag/Ag2S/Ag3CuS2 ternary hollow microspheres with efficient visible-light photocatalytic activity.

    PubMed

    Xing, Chaosheng; Zhang, Yuan; Wu, Zhudong; Jiang, Deli; Chen, Min

    2014-02-21

    Ternary Ag/Ag2S/Ag3CuS2 hollow microspheres were synthesized via an in situ ion-exchange method using Cu7S4 hollow submicrospheres as the template. The as-obtained Ag/Ag2S/Ag3CuS2 composite exhibited a well-defined uniform hollow microsphere morphology with an average diameter of about 1.3 μm. The photocatalytic property of the as-prepared Ag/Ag2S/Ag3CuS2 hollow microsphere composite was investigated by the decomposition of methyl orange (MO) under visible light irradiation (λ > 420 nm). It was shown that the photocatalytic activity of the Ag/Ag2S/Ag3CuS2 hollow microsphere was higher than those of Ag/Ag2S, Cu2O, Cu7S4 and P25 for the photodegradation of MO under visible light irradiation. Radical scavenger experiments demonstrated that superoxide radicals and holes were the main reactive species for MO degradation.

  2. Agent planning in AgScala

    NASA Astrophysics Data System (ADS)

    Tošić, Saša; Mitrović, Dejan; Ivanović, Mirjana

    2013-10-01

    Agent-oriented programming languages are designed to simplify the development of software agents, especially those that exhibit complex, intelligent behavior. This paper presents recent improvements of AgScala, an agent-oriented programming language based on Scala. AgScala includes declarative constructs for managing beliefs, actions and goals of intelligent agents. Combined with object-oriented and functional programming paradigms offered by Scala, it aims to be an efficient framework for developing both purely reactive, and more complex, deliberate agents. Instead of the Prolog back-end used initially, the new version of AgScala relies on Agent Planning Package, a more advanced system for automated planning and reasoning.

  3. SPIN MATCHING FROM AGS TO RHIC.

    SciTech Connect

    MACKAY,W.W.; TSOUPAS,N.

    2002-11-06

    With a partial Siberian snake in the AGS and transport lines with interspersed horizontal and vertical bends, the incoming spin direction at the injection points of both the collider rings is not likely to match the ideal vertical stable spin direction of RHIC which has two full helical Siberian snakes per ring. In this paper we examine the matching of a polarized beam transferred from the AGS into RHIC. The present 5% partial solenoidal snake as well as a proposed 20% superconducting helical are considered for the AGS. Solutions with retuned snakes in RHIC to better match the incoming beam have been found.

  4. Ozone decomposition on Ag/SiO2 and Ag/clinoptilolite catalysts at ambient temperature.

    PubMed

    Nikolov, Penko; Genov, Krassimir; Konova, Petya; Milenova, Katya; Batakliev, Todor; Georgiev, Vladimir; Kumar, Narendra; Sarker, Dipak K; Pishev, Dimitar; Rakovsky, Slavcho

    2010-12-15

    Silver modified zeolite (Bulgarian natural clinoptilolite) and Ag/silica catalysts were synthesized by ion exchange and incipient wet impregnation method respectively and characterized by different techniques. DC arc-AES was used for Ag detection. XRD spectra show that Ag is loaded over the surface of the SiO(2) sample and that after the ion-exchange process the HEU type structure of clinoptilolite is retained. UV-VIS (specific reflection at 310 nm) and IR (band at 695 cm(-1)) spectroscopy analysis proved that silver is loaded as a T-atom into zeolite channels as Ag(+), instead of Na(+), Ca(2+), or K(+) ions, existing in the natural clinoptilolite form. The samples Ag/SiO(2) and Ag-clinoptilolite were tested as catalysts for decomposition of gas phase ozone. Very high catalytic activity (up to 99%) was observed and at the same time the catalysts remained active over time at room temperature.

  5. Control and performance of the AGS and AGS Booster Main Magnet Power Supplies

    SciTech Connect

    Reece, R.K.; Casella, R.; Culwick, B.; Geller, J.; Marneris, I.; Sandberg, J.; Soukas, A.; Zhang, S.Y.

    1993-01-01

    Techniques for precision control of the main magnet power supplies for the AGS and AGS Booster synchrotron will be discussed. Both synchrotrons are designed to operate in a Pulse-to-Pulse Modulation (PPM) environment with a Supercycle Generator defining and distributing global timing events for the AGS Facility. Details of modelling, real-time feedback and feedforward systems, generation and distribution of real time field data, operational parameters and an overview of performance for both machines are included.

  6. Control and performance of the AGS and AGS Booster Main Magnet Power Supplies

    SciTech Connect

    Reece, R.K.; Casella, R.; Culwick, B.; Geller, J.; Marneris, I.; Sandberg, J.; Soukas, A.; Zhang, S.Y.

    1993-06-01

    Techniques for precision control of the main magnet power supplies for the AGS and AGS Booster synchrotron will be discussed. Both synchrotrons are designed to operate in a Pulse-to-Pulse Modulation (PPM) environment with a Supercycle Generator defining and distributing global timing events for the AGS Facility. Details of modelling, real-time feedback and feedforward systems, generation and distribution of real time field data, operational parameters and an overview of performance for both machines are included.

  7. Effects of Ag on the Kirkendall void formation of Sn-xAg/Cu solder joints

    NASA Astrophysics Data System (ADS)

    Kim, Sunghwan; Yu, Jin

    2010-10-01

    Binary Sn-Ag solders with varying amounts of Ag (0.5, 2.0, and 3.5 wt %) were reacted with Cu under bump metallurgy (UBM) which was electroplated with bis-sodium sulfopropyl-disulfide additive, and the characteristics of Kirkendall void formation at the solder joints were investigated. The results indicate that the propensity to form Kirkendall voids at the solder joint decreased with the Ag content. Subsequent Auger electron spectroscopy analyses showed that Ag dissolved in the Cu UBM reduced the segregation of S to the Cu3Sn/Cu interface, which suppressed the nucleation of Kirkendall voids at the interface.

  8. Nanoporous Ag prepared from the melt-spun Cu-Ag alloys

    NASA Astrophysics Data System (ADS)

    Li, Guijing; Song, Xiaoping; Sun, Zhanbo; Yang, Shengchun; Ding, Bingjun; Yang, Sen; Yang, Zhimao; Wang, Fei

    2011-07-01

    Nanoporous Ag ribbons with different morphology and porosity were achieved by the electrochemical corrosion of the melt-spun Cu-Ag alloys. The Cu-rich phase in the alloys was removed, resulting in the formation of the nanopores distributed across the whole ribbon. It is found that the structures, morphology and porosity of the nanoporous Ag ribbons were dependent on the microstructures of the parent alloys. The most of ligaments presented a rod-like shape due to the formation of pseudoeutectic microstructure in the melt-spun Cu 55Ag 45 and Cu 70Ag 30 alloys. For nanoporous Ag prepared from Cu 85Ag 15 alloys, the ligaments were camber-like because of the appearance of the divorced microstructures. Especially, a novel bamboo-grove-like structure could be observed at the cross-section of the nanoporous Ag ribbons. The experiment reveals that nanoporous Ag ribbons exhibited excellent enhancement of surface-enhanced Raman scattering (SERS) effect, but a slight difference existed due to the discrepancy of their morphology.

  9. Lesson 3: Attorney General (AG) Certification

    EPA Pesticide Factsheets

    The AG Certification is a letter confirming legal authority to implement the electronic reporting covered by the application and enforce the affected programs using the electronic documents received under those programs.

  10. AgRISTARS documents tracking list report

    NASA Technical Reports Server (NTRS)

    Hawkins, J. L.

    1982-01-01

    A quarterly listing of those documents and related publications that have been issued and placed in the AgRISTARS tracking system is presented. The Tracking List Report provides a catalog, by project, of technical publications arranged by type of document and gives the reference AgRISTARS document numbers, title and date of publication, the issuing organization, and the National Technical Information Service reference number.

  11. BNL AGS - a context for kaon factories

    SciTech Connect

    Littenberg, L.S.

    1983-05-01

    Figure 1 shows the Brookhaven site with the AGS-CBA complex highlighted. In this photograph the AGS is dwarfed by CBA and indeed during the past few years future plans for particle physics at BNL have been dominated by this enormous project. However, very recently interest in future physics use of the AGS has undergone a strong revival. Indeed, since the beginning of this year, two projects for augmenting the AGS have been proposed. Such projects could keep the AGS viable as a research machine for many years to come. In general such schemes will also improve the performance and increase the versatility of the CBA, and so are doubly valuable. It should be kept in mind that in spite of the fact the AGS has been perhaps the most fruitful machine in the history of high energy physics, its full capacities have never been exploited. Even without improvements at least one generation of rare K decay experiments beyond those currently launched seems feasible. Beyond that a major effort at any of the experiments discussed above could take it to the point where it would be limited by intrinsic physics background. To pursue a full program of physics at this level one would want to increase the intensity of the AGS as described. A ten-fold increase in K flux would remove such experiments from the category of all-out technological assaults and render them manageable by reasonably small groups of physicists. In addition, certain other, cleaner experiments, e.g., K/sub L//sup 0/ ..-->.. e/sup +/e/sup -/ or e/sup +/e/sup -/..pi../sup 0/, could be pushed to limits unobtainable at the present AGS. The increased flux would also be welcomed by the neutrino and hypernuclear physics programs. Even experiments which do not at present require higher fluxes would benefit through the availability of purer beams and cleaner conditions.

  12. 20% PARTIAL SIBERIAN SNAKE IN THE AGS.

    SciTech Connect

    Huang, H; Bai, M; Brown, K A; Glenn, W; Luccio, A U; Mackay, W W; Montag, C; Ptitsyn, V; Roser, T; Tsoupas, N; Zeno, K; Ranjbar, V; Spinka, H; Underwood, D

    2002-11-06

    An 11.4% partial Siberian snake was used to successfully accelerate polarized proton through a strong intrinsic depolarizing spin resonance in the AGS. No noticeable depolarization was observed. This opens up the possibility of using a 20% to 30% partial Siberian snake in the AGS to overcome all weak and strong depolarizing spin resonances. Some design and operation issues of the new partial Siberian snake are discussed.

  13. AGS polarized proton operation in run 8.

    SciTech Connect

    Huang,H.; Ahrens, L.; Bai, M.; Brown, K.A.; Gardner, C.; Glenn, J.W.; Lin, F.; Luccio, A.U.; MacKay, W.W.; Roser, T.; Tepikian, S.; Tsoupas, N.; Yip, K.; Zeno, K.

    2008-06-23

    Dual partial snake scheme has been used for the Brookhaven AGS (Alternating Gradient Synchrotron) polarized proton operation for several years. It has provided polarized proton beams with 1.5 x 10{sup 11} intensity and 65% polarization for RHIC spin program. There is still residual polarization loss. Several schemes such as putting horizontal tune into the spin tune gap, and injection-on-the-fly were tested in the AGS to mitigate the loss. This paper presents the experiment results and analysis.

  14. Dealloying-driven synthesis and characterization of AgCl/Ag/TiO2 nanocomposites with enhanced photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Wang, Tongyang; Wang, Yan; Zhao, Zhengfeng; Zhang, Lanxiang; Huang, Shifeng

    2017-03-01

    The combination of dealloying with acid treatment was used to fabricate mesoporous anatase TiO2 with high specific surface area of 233 m2/g. Using anatase TiO2 as a matrix, a photoreduction strategy was developed to synthesize AgCl/Ag/TiO2 nanocomposites with different Ti/Ag molar ratios. The morphology and properties of AgCl/Ag/TiO2 nanocomposites were investigated by X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy. The AgCl/Ag/TiO2 nanocomposites showed an enhanced photocatalytic activity for the degradation of methyl orange solution under visible light irradiation. The optimum Ti/Ag molar ratio in the AgCl/Ag/TiO2 nanocomposites was shown to be 6:1, which was attributed to its high specific surface area of 207 m2/g and the surface plasmon resonance effect.

  15. A visible-light-driven core-shell like Ag2S@Ag2CO3 composite photocatalyst with high performance in pollutants degradation.

    PubMed

    Yu, Changlin; Wei, Longfu; Zhou, Wanqin; Dionysiou, Dionysios D; Zhu, Lihua; Shu, Qing; Liu, Hong

    2016-08-01

    A series of Ag2S-Ag2CO3 (4%, 8%, 16%, 32% and 40% Ag2S), Ag2CO3@Ag2S (32%Ag2S) and Ag2S@Ag2CO3 (32%Ag2S) composite photocatalysts were fabricated by coprecipitation or successive precipitation reaction. The obtained catalysts were analyzed by N2 physical adsorption, powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, UV-vis diffuse reflectance spectroscopy and photocurrent test. Under visible light irradiation, the influences of Ag2S content and core-shell property on photocatalytic activity and stability were evaluated in studies focused on the degradation of methyl orange (MO) dye, phenol, and bisphenol A. Results showed that excellent photocatalytic performance was obtained over Ag2S/Ag2CO3 composite photocatalysts with respect to Ag2S and Ag2CO3. With optimal content of Ag2S (32 wt%), the Ag2S-Ag2CO3 showed the highest photocatalytic degradation efficiency. Moreover, the structured property of Ag2S/Ag2CO3 greatly influenced the activity. Compared with Ag2S-Ag2CO3 and Ag2CO3@Ag2S, core-shell like Ag2S@Ag2CO3 demonstrated the highest activity and stability. The main reason for the boosting of photocatalytic performance was due to the formation of Ag2S/Ag2CO3 well contacted interface and unique electron structures. Ag2S/Ag2CO3 interface could significantly increase the separation efficiency of the photo-generated electrons (e(-)) and holes (h(+)), and production of OH radicals. More importantly, the low solubility of Ag2S shell could effectively protect the core of Ag2CO3, which further guarantees the stability of Ag2CO3.

  16. High Visible Photoelectrochemical Activity of Ag Nanoparticle-Sandwiched CdS/Ag/ZnO Nanorods.

    PubMed

    Yang, Xu; Li, Hui; Zhang, Wu; Sun, Mingxuan; Li, Lequn; Xu, Ning; Wu, Jiada; Sun, Jian

    2017-01-11

    We report on the sensitizing of CdS-coated ZnO (CdS/ZnO) nanorods (NRs) by Ag nanoparticles (NPs) embedded between the CdS coating and the ZnO nanorod and the improved optical and photoelectrochemical properties of the Ag NP-sandwiched nanostructure CdS/Ag/ZnO NRs. The CdS/Ag/ZnO NRs were fabricated by growing Ag NPs on hydrothermally grown ZnO NRs and subsequently depositing CdS coatings followed by subsequent N2 annealing. The structure of the fabricated CdS/Ag/ZnO NRs was characterized by field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman backscattering, revealing that the ZnO NRs and the CdS coatings are both structured with hexagonal wurtzite and the Ag NPs contact well with ZnO and CdS. Optical properties were evaluated by measuring optical absorption and photoluminescence, showing that the Ag NPs behave well as sensitizers for optical property improvement and the CdS/Ag/ZnO NRs exhibit better photoresponse in a wide spectral region than CdS/ZnO because of plasmon-enhanced absorption due to the embedment of Ag NPs. The Ag NPs also serve as electron relays from CdS to ZnO, facilitating electron transfer from the CdS coatings to the ZnO NRs. The excellent photoresponse and efficient electron transfer make the CdS/Ag/ZnO NRs highly photoelectrochemically active. The CdS/Ag/ZnO NRs fabricated on indium-tin oxide present much better photoelectrochemical performance as photoanodes working in the visible region than CdS/ZnO NRs without Ag NPs. Under visible illumination, a maximum optical-to-chemical conversion efficiency of 3.13% is obtained for CdS/Ag/ZnO NR photoanodes against 1.35% for CdS/ZnO NR photoanodes.

  17. Electron and Phonon Dynamics in Hexagonal Pd Nanosheets and Ag/Pd/Ag Sandwich Nanoplates.

    PubMed

    Wang, Li; Sagaguchi, Takuya; Okuhata, Tomoki; Tsuboi, Motohiro; Tamai, Naoto

    2017-02-28

    Pd and its hybrid nanostructures have attracted considerable attention over the past decade, with both catalytic and plasmonic properties. The electron and phonon properties directly govern conversion efficiencies in applications such as energy collectors and photocatalysts. We report the dynamic processes of electron-phonon coupling and coherent acoustic phonon vibration in hexagonal Pd nanosheets and Ag/Pd/Ag sandwich nanoplates using transient absorption spectroscopy. The electron-phonon coupling constant of Pd nanosheets, GPd-nanosheet (8.7 × 10(17) W/(m(3)·K)) is larger than that of the bulk GPd (5.0 × 10(17) W/(m(3)·K)). The effective coupling constant Geff of Ag/Pd/Ag nanoplates decreases with increasing Ag shell thickness, finally approaching the bulk GAg. The variation of Geff is explained in terms of reduced density of states near Fermi level of Pd nanosheets with 1.8 nm ultrathin thickness. Coherent acoustic phonon vibration in Pd nanosheets is assigned to a fundamental breathing mode, similar to the vibration of benzene. The period increases with increasing Ag shell thickness. For Ag/Pd/Ag nanoplates with 20 nm thick Ag shells, the vibrational mode is ascribed to a quasi-extensional mode. The results show that the modes of the coherent acoustic phonon vibration transform with the geometric variation of Pd nanosheets and Ag/Pd/Ag nanoplates. Our results represent an understanding of quantum-confinement related electron dynamics and bulk-like phonon kinetics in the ultrathin Pd nanosheets and their hybrid nanostructures.

  18. An Ab Initio Study of the Low-Lying Doublet States of AgO and AgS

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.

    1990-01-01

    Spectroscopic constants (D(sub o), r(sub e), mu(sub e), T(sub e)) are determined for the doublet states of AgO and AgS below approx. = 30000/cm. Large valence basis sets are employed in conjunction with relativistic effective core potentials (RECPs). Electron correlation is included using the modified coupled-pair functional (MCPF) and multireference configuration interaction (MRCI) methods. The A(sup 2)Sigma(sup +) - X(sup 2)Pi band system is found to occur in the near infrared (approx. = 9000/cm) and to be relatively weak with a radiative lifetime of 900 microns for A(sup 2)Sigma(sup +) (upsilon = 0). The weakly bound C(sup 2)Pi state (our notation), the upper state of the blue system, is found to require high levels of theoretical treatment to determine a quantitatively accurate potential. The red system is assigned as a transition from the C(sup 2)Pi state to the previously unobserved A(sup 2)Sigma(sup +) state. Several additional transitions are identified that should be detectable experimentally. A more limited study is performed for the vertical excitation spectrum of AgS. In addition, a detailed all-electron study of the X(sup 2)Pi and A(sup 2)Sigma(sup +) states of AgO is carried out using large atomic natural orbital (ANO) basis sets. Our best calculated D(sub o) value for AgO is significantly less than the experimental value, which suggests that there may be some systematic error in the experimental determination.

  19. Strongly visible-light responsive plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles for reduction of CO2 to methanol

    NASA Astrophysics Data System (ADS)

    An, Changhua; Wang, Jizhuang; Jiang, Wen; Zhang, Meiyu; Ming, Xijuan; Wang, Shutao; Zhang, Qinhui

    2012-08-01

    Plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles have been synthesized by a facile and versatile glycerol-mediated solution route. The as-prepared AgX:Ag nanoparticles exhibit regular shapes, i.e., cube-tetrapod-like AgCl:Ag nanoparticles and AgBr:Ag nanoplates. Compared with the pristine AgX, AgX:Ag nanocomposites display stronger absorption in the visible region due to the surface plasmon resonance of silver nanoparticles. The calculation of bandgaps and band positions indicates the as-achieved AgX:Ag nanoparticles can be used as a class of potential photocatalyst for the reduction of CO2. For example, reduction of CO2 under visible light irradiation with the assistance of the anisotropic AgX:Ag nanoparticles yields as much as 100 μmol methanol in the products. Furthermore, the AgX:Ag nanoparticles can maintain its structure and activity after 3 runs of reactions. Therefore, the present route opens an avenue to acquire plasmonic photocatalysts for conversion of CO2 into useful organic compounds.Plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles have been synthesized by a facile and versatile glycerol-mediated solution route. The as-prepared AgX:Ag nanoparticles exhibit regular shapes, i.e., cube-tetrapod-like AgCl:Ag nanoparticles and AgBr:Ag nanoplates. Compared with the pristine AgX, AgX:Ag nanocomposites display stronger absorption in the visible region due to the surface plasmon resonance of silver nanoparticles. The calculation of bandgaps and band positions indicates the as-achieved AgX:Ag nanoparticles can be used as a class of potential photocatalyst for the reduction of CO2. For example, reduction of CO2 under visible light irradiation with the assistance of the anisotropic AgX:Ag nanoparticles yields as much as 100 μmol methanol in the products. Furthermore, the AgX:Ag nanoparticles can maintain its structure and activity after 3 runs of reactions. Therefore, the present route opens an avenue to acquire plasmonic photocatalysts for conversion of CO2

  20. Calibration of qualitative HBsAg assay results for quantitative HBsAg monitoring.

    PubMed

    Gunning, Hans; Adachi, Dena; Tang, Julian W

    2014-10-01

    Evidence is accumulating that quantitative hepatitis B surface antigen monitoring may be useful in managing patients with chronic HBV infection on certain treatment regimens. Based on these results with the Abbott Architect qualitative and quantitative HBsAg assays, it seems feasible to convert qualitative to quantitative HBsAg values for this purpose.

  1. Ultra-Fast Synthesis for Ag2Se and CuAgSe Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    DUAN, H. Z.; LI, Y. L.; ZHAO, K. P.; QIU, P. F.; SHI, X.; CHEN, L. D.

    2016-10-01

    Ag2Se and CuAgSe have been recently reported as promising thermoelectric materials at room temperature. The traditional melting-annealing-sintering processes are used to grow Ag2Se and CuAgSe materials with the disadvantages of high costs of energy and time. In this work, phase-pure polycrystalline Ag2Se and CuAgSe compounds were synthesized from raw elemental powders directly by manual mixing followed by spark plasma sintering (MM-SPS) in a few minutes. The influence of SPS heating rate on the phase composition, microstructure, and thermoelectric properties, including Seebeck coefficient, electrical conductivity, and thermal conductivity, were investigated. The zTs of 0.8 at 390 K and 0.6 at 450 K are obtained for Ag2Se and CuAgSe, respectively, which is comparable with the values in the materials prepared by the traditional method. Furthermore, this ultrafast sample synthesis can significantly save material synthesis time and thus has the obvious advantage for large-scale production.

  2. Facile synthesis of sunlight-driven AgCI:Ag plasmonic nanophotocatalyst.

    SciTech Connect

    An, C.; Peng, S.; Sun, Y.; Center for Nanoscale Materials; Univ. of Illinois

    2010-06-18

    Highly efficient plasmonic photocatalysts of AgCl:Ag hybrid nanoparticles are successfully synthesized via a one-pot synthetic approach involving a precipitation reaction followed by polyol reduction. The as-synthesized nanoparticles exhibit high catalytic performance under visible light and sunlight for decomposing organics, such as methylene blue.

  3. Beet Juice-Induced Green Fabrication of Plasmonic AgCl/Ag Nanoparticles

    EPA Science Inventory

    A simple, green, and fast approach (complete within 5 min) was explored for the fabrication of hybrid AgCl/Ag plasmonic nanoparticles under microwave (MW) irradiation. In this method, beet juice served as a reducing reagent, which is an abundant sugar-rich agricultural produce. I...

  4. Ag on Si(111) from basic science to application

    SciTech Connect

    Belianinov, Aleksey

    2012-01-01

    In our work we revisit Ag and Au adsorbates on Si(111)-7x7, as well as experiment with a ternary system of Pentacene, Ag and Si(111). Of particular interest to us is the Si(111)-(√3x√3)R30°}–Ag (Ag-Si-√3 hereafter). In this thesis I systematically explore effects of Ag deposition on the Ag-Si-√3 at different temperatures, film thicknesses and deposition fluxes. The generated insight of the Ag system on the Si(111) is then applied to generate novel methods of nanostructuring and nanowire growth. I then extend our expertise to the Au system on the Ag-Si(111) to gain insight into Au-Si eutectic silicide formation. Finally we explore behavior and growth modes of an organic molecule on the Ag-Si interface.

  5. Morphology and mechanical properties of nanocrystalline Cu/Ag alloy

    NASA Astrophysics Data System (ADS)

    Li, Ao; Szlufarska, Izabela

    2017-04-01

    Hybrid Monte Carlo (MC)/molecular dynamics (MD) simulations are conducted to study the microstructures of nanocrystalline (nc) Cu/Ag alloys with various Ag concentrations. When the Ag concentration is below 50 Ag atoms/nm!, an increase in Ag concentration leads to a gradual growth of monolayer grain boundary (GB) complexions into nanolayer complexions. Above the concentration of 50 Ag atoms/nm!, wetting layers with a bulk crystalline phase are observed. The effects of Ag on mechanical properties and deformation mechanisms of nc Cu/Ag alloys are investigated in MD simulations of uniaxial tension. GB sliding resistance is found to first increase and then decrease with an increase in Ag concentration. Surprisingly, we also find that the dislocation density decreases monotonically with an increase in Ag concentration, which suggests that the grain interiors are softened by the introduction of Ag dopants at GBs. In addition, there is a critical Ag concentration that maximizes flow stress of nc Cu/Ag alloys. The flow stress, GB sliding resistance, and the intragranular dislocation densities become less sensitive to Ag dopants when the grain diameter increases from 5nm to 40nm.

  6. Observation of nonvolatile resistive memory switching characteristics in Ag/graphene-oxide/Ag devices.

    PubMed

    Venugopal, Gunasekaran; Kim, Sang-Jae

    2012-11-01

    In this paper, we report highly stable and bipolar resistive switching effects of Ag/Graphene oxide thinfilm/Ag devices. The graphene-oxide (GO) thinfilms were prepared on Ag/SiO2/Si substrates by spin-coating technique. The Ag/GO/Ag devices showed a steady and bipolar resistive switching characteristic. The resistance switching from low resistance state (LRS) and high resistance state (HRS) with the resistance ratio of HRS to LRS of about 10 which was attained at a voltage bias of 0.1 V. Based on the filamentary conduction model, the dominant conduction mechanism of switching effect was well explained. Our results show GO can be a promising candidate for future development of nonvolatile memory devices.

  7. Noble-metal Ag nanoparticle chains: annealing Ag/Bi superlattice nanowires in vacuum

    NASA Astrophysics Data System (ADS)

    Xu, Shao Hui; Fei, Guang Tao; You, Qiao; Gao, Xu Dong; Huo, Peng Cheng; De Zhang, Li

    2016-09-01

    One-dimensional noble-metal Ag nanoparticle chains have been prepared by electrodepositing Ag/Bi superlattice nanowires in a porous anodic alumina oxide (AAO) template and following an annealing process in vacuum. It is found that Bi, as a sacrificial metal, can be removed completely after annealing at 450 °C with a vacuum degree of 10-5 Torr. The regulation of particle size, shape and interparticle spacing of Ag NP chains has been realized by adjusting the segment length of the Ag/Bi superlattice nanowires and the annealing condition. With an extension of the annealing time, it is observed that Ag particles display the transform trend from ellipsoid to sphere. Our findings could inspire further investigation on the design and fabrication of metal nanoparticle chains.

  8. Noble-metal Ag nanoparticle chains: annealing Ag/Bi superlattice nanowires in vacuum.

    PubMed

    Xu, Shao Hui; Fei, Guang Tao; You, Qiao; Gao, Xu Dong; Huo, Peng Cheng; De Zhang, Li

    2016-09-16

    One-dimensional noble-metal Ag nanoparticle chains have been prepared by electrodepositing Ag/Bi superlattice nanowires in a porous anodic alumina oxide (AAO) template and following an annealing process in vacuum. It is found that Bi, as a sacrificial metal, can be removed completely after annealing at 450 °C with a vacuum degree of 10(-5) Torr. The regulation of particle size, shape and interparticle spacing of Ag NP chains has been realized by adjusting the segment length of the Ag/Bi superlattice nanowires and the annealing condition. With an extension of the annealing time, it is observed that Ag particles display the transform trend from ellipsoid to sphere. Our findings could inspire further investigation on the design and fabrication of metal nanoparticle chains.

  9. Facile synthesis of AgCl/polydopamine/Ag nanoparticles with in-situ laser improving Raman scattering effect

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Zhang, Wenqi; Wang, Lin; Wang, Feng; Yang, Haifeng

    2017-01-01

    We reported a simple and fast method to prepare a composite material of polydopamine (PDA) adlayer covered cubic AgCl core, which was inlaid with Ag nanoparticles (NPs), shortly named as AgCl/PDA/AgNPs. The resultant AgCl/PDA/AgNPs could be employed as surface-enhanced Raman scattering (SERS) substrate for in-situ detection and the SERS activity could be further greatly improved due to the production of more AgNPs upon laser irradiation. With 4-mercaptopyridine (4-Mpy) as the probe molecule, the enhancement factor could reach 107. Additionally, such SERS substrate shows good reproducibility with relative standard deviation of 7.32% and long term stability (after storage for 100 days under ambient condition, SERS intensity decay is less than 25%). In-situ elevating SERS activity of AgCl/PDA/AgNPs induced by laser may be beneficial to sensitive analysis in practical fields.

  10. Spin coating of Ag nanoparticles: Effect of reduction

    SciTech Connect

    Ansari, A. A. Sartale, S. D.

    2014-04-24

    A surfactant free method for the growth of Ag nanoparticles on glass substrate by spin coating of Ag ions solution followed by chemical reduction in aqueous hydrazine hydrate (HyH) solution has been presented. Appearance of surface plasmon resonance confirms the formation of Ag nanoparticles. Morphology and absorbance spectra of Ag nanoparticles films are used to examine effect of hydrazine concentration on the growth of Ag nanoparticles. SEM images show uniformly distributed Ag nanoparticles. Rate constant was found to be dependent on HyH concentration as a consequence influence particle size.

  11. Synthesis, characterization and antimycobacterial activity of Ag(I)-aspartame, Ag(I)-saccharin and Ag(I)-cyclamate complexes.

    PubMed

    Cavicchioli, Maurício; Leite, Clarice Q F; Sato, Daisy N; Massabni, Antonio C

    2007-10-01

    The present work describes the synthesis and antimycobacterial activity of three Ag(I)-complexes with the sweeteners aspartame, saccharin, and cyclamate as ligands, with the aim of finding new candidate substances for fighting tuberculosis and other mycobacterial infections. The minimal inhibitory concentration of these three complexes was investigated in order to determine their in-vitro antimycobacterial activity against Mycobacterium tuberculosis, Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium malmoense, and Mycobacterium kansasii. The MIC values were determined using the Microplate Alamar Blue Assay. The best MIC values found for the complexes were 9.75 microM for Ag(I)-aspartame against M. kansasii and 15.7 microM for Ag(I)-cyclamate against M. tuberculosis.

  12. Template synthesis of Ag/AgCl microrods and their efficient visible light-driven photocatalytic performance

    SciTech Connect

    Chen, Hua; Xiao, Liang; Huang, Jianhua

    2014-09-15

    Highlights: • Preparation ofAg/AgCl microrods by reaction of Ag{sub 2}WO{sub 4} microrods with NaCl solution. • Generation of metallic Ag is induced by the ambient light in the synthesis process. • Ag/AgCl shows excellent visible light-driven photodegradation of organic dyes. - Abstract: Ag/AgCl microrods, aggregated by nanoparticles with a diameter ranging from 100 nm to 2 μm, were prepared by an ion-exchange reaction at 80 °C between Ag{sub 2}WO{sub 4} template and NaCl solution. The existence of metallic Ag species was confirmed by XRD, DRS and XPS measurements. Ag/AgCl microrods showed excellent photocatalytic activity for the degradation of rhodamine B and methylene blue under visible light irradiation. The degradation rate constants of rhodamine B and methylene blue are 0.176 and 0.114 min{sup −1}, respectively. The cycling photodegradation experiments suggest that Ag/AgCl microds could be employed as stable plasmonic photocatalysts for the degradation of organic dyes under visible light irradiation.

  13. BiPO4 photocatalyst employing synergistic action of Ag/Ag3PO4 nanostructure and graphene nanosheets

    NASA Astrophysics Data System (ADS)

    Mohaghegh, N.; Rahimi, E.

    2016-06-01

    Graphene-supported BiPO4/Ag/Ag3PO4 photocatalyst has been fabricated by simple hydrothermal and impregnation reaction. In BiPO4/Ag/Ag3PO4 based on Reduced Graphene Oxide (RGO), this network renders numerous pathways for rapid mass transport, strong adsorption and multireflection of incident light; meanwhile, the interface between BiPO4/Ag/Ag3PO4 and RGO increases the active sites and electron transfer rate. BiPO4/Ag/Ag3PO4 based on RGO noticeably exhibited high photocatalytic activity than that of BiPO4/Ag/Ag3PO4 and P25 under visible light irradiation for cationic dye (Rhodamine B), anionic dye (methyl orange) and 4-chlorophenol (4-CP) as a neutral pollutant, which are usually difficult to be degraded over the other catalysts. This enhanced photocatalytic activity of Graphene-supported BiPO4/Ag/Ag3PO4 for all pollutants could be mainly ascribed to the reinforced charge transfer from BiPO4/Ag/Ag3PO4 to RGO, which suppresses the recombination of electron/hole pairs. Besides that, this photocatalyst can be used repetitively with a high photocatalytic activity and no apparent loss of activity occurs. The results reveal that the RGO nanosheets work as a photocatalyst promoter during the photocatalytic reaction, leading to an improved photocatalytic activity.

  14. Preparation of Ag2O/Ag2CO3/MWNTs composite photocatalysts for enhancement of ciprofloxacin degradation

    NASA Astrophysics Data System (ADS)

    Wang, Huiqin; Li, Jinze; Huo, Pengwei; Yan, Yongsheng; Guan, Qingfeng

    2016-03-01

    The Ag2O/Ag2CO3/multi-walled carbon nanotube (MWNTs) composite photocatalysts were prepared by calcination of the obtained precipitate. The structures and morphology of as-prepared composite photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy, X-ray photoelectron spectroscopy (XPS). The Ag2O/Ag2CO3/MWNTs composite photocatalysts exhibit higher degradation rate of ciprofloxacin (CIP) than the pure Ag2CO3, Ag2O/Ag2CO3 and Ag2CO3/MWNTs under visible light irradiation. The amount of loaded Ag2CO3 onto MWNTs and calcined time for Ag2CO3/MWNTs were systematically investigated, and the optimal amount of loaded Ag2CO3 and calcined time of Ag2CO3/MWNTs are 150 wt% and 10 min, respectively. The highest photocatalytic degradation rate of CIP could reach 76% under optimal conditions. The active species trapping experiments were also analyzed, the results show that the holes are main contributor for the degradation processes of CIP, furthermore the electrons, rad O2- and rad OH are also crucially influenced the photocatalytic degradation processes of CIP. The possible photocatalytic processes of CIP with Ag2O/Ag2CO3/MWNTs composite photocatalyst are also proposed.

  15. Mussel-inspired green synthesis of polydopamine-Ag-AgCl composites with efficient visible-light-driven photocatalytic activity.

    PubMed

    Cai, Aijun; Wang, Xiuping; Guo, Aiying; Chang, Yongfang

    2016-09-01

    Polydopamine-Ag-AgCl composites (PDA-Ag-AgCl) were synthesized using a mussel-inspired method at room temperature, where PDA acts as a reducing agent to obtain the noble Ag nanoparticles from a precursor. The morphologies and structures of the as-prepared PDA-Ag-AgCl were characterized by several techniques including field emission scanning electron microscopy (FESEM), transmission electron microscopy (SEM), Raman spectra, and X-Ray photoelectron spectrum (XPS). The morphological observation depicts formation of nanoparticles with various micrometer size diameters and surface XPS analysis shows presence of various elements including Ag, N, Cl, and O. The enhanced absorbance of the PDA-Ag-AgCl particles in the visible light region is confirmed through UV-Vis diffuse reflectance spectra (DRS), and the charge transfer is demonstrated by photoluminescence (PL) and photocurrent response. The synthesized PDA-Ag-AgCl composites could be used as visible-light-driven photocatalysts for the degradation of Rhodamine B. The elevated photocatalytic activity is ascribed to the effective charge transfer from plasmon-excited Ag to AgCl that can improve the efficiency of the charge separation during the photocatalytic reaction. Furthermore, differences in the photocatalytic performance among the different PDA-Ag-AgCl composites are noticed that could be attributed to the Brunauer-Emmett-Teller (BET) specific surface area, which benefits to capture the visible light efficiently. The PDA-Ag-AgCl exhibits excellent stability without a significant loss in activity after 5cycles. The proposed method is low-cost and environmentally friendly, hence a promising new way to fabricate plasmon photocatalysts.

  16. Effect of cysteine and humic acids on bioavailability of Ag from Ag nanoparticles to a freshwater snail

    USGS Publications Warehouse

    Luoma, Samuel N.; Tasha Stoiber,; Croteau, Marie-Noele; Isabelle Romer,; Ruth Merrifeild,; Lead, Jamie

    2016-01-01

    Metal-based engineered nanoparticles (NPs) will undergo transformations that will affect their bioavailability, toxicity and ecological risk when released to the environment, including interactions with dissolved organic material. The purpose of this paper is to determine how interactions with two different types of organic material affect the bioavailability of silver nanoparticles (AgNPs). Silver uptake rates by the pond snail Lymnaea stagnalis were determined after exposure to 25 nmol l-1 of Ag as PVP AgNPs, PEG AgNPs or AgNO3, in the presence of either Suwannee River humic acid or cysteine, a high-affinity thiol-rich organic ligand. Total uptake rate of Ag from the two NPs was either increased or not strongly affected in the presence of 1 – 10 mg 1-1 humic acid. Humic substances contain relatively few strong ligands for Ag explaining their limited effects on Ag uptake rate. In contrast, Ag uptake rate was substantially reduced by cysteine. Three components of uptake from the AgNPs were quantified in the presence of cysteine using a biodynamic modeling approach: uptake of dissolved Ag released by the AgNPs, uptake of a polymer or large (>3kD) Ag-cysteine complex and uptake of the nanoparticle itself. Addition of 1:1 Ag:cysteine reduced concentrations of dissolved Ag, which contributed to, but did not fully explain the reductions in uptake. A bioavailable Ag-cysteine complex (> 3kD) appeared to be the dominant avenue of uptake from both PVP AgNPs and PEG AgNPs in the presence of cysteine. Quantifying the different avenues of uptake sets the stage for studies to assess toxicity unique to NPs.

  17. One-pot synthesis of ternary Ag₂CO₃/Ag/AgCl photocatalyst in natural geothermal water with enhanced photocatalytic activity under visible light irradiation.

    PubMed

    Yao, Xiaxi; Liu, Xiaoheng

    2014-09-15

    Geothermal water is a clean, cheap and renewable resource and it is widely distributed all over the world. In this work, ternary Ag2CO3/Ag/AgCl photocatalyst has been successfully synthesized via a one-pot precipitation method in natural geothermal water at room temperature, wherein the geothermal water serves as the source of chlorine and carbonate. The results suggest that the Ag/AgCl nanoparticles are anchored on the surface of Ag2CO3 and Ag2CO3/Ag/AgCl composite shows strong absorption ability in the visible light region. The evaluation of the photocatalytic activity indicates that the as-synthesized Ag2CO3/Ag/AgCl photocatalyst exhibits higher photocatalytic performance for the degradation of methylene blue (MB) aqueous solution under visible light irradiation than one-component (Ag2CO3), two-component (Ag/AgCl, Ag2CO3/AgCl) and the mechanical mixture of Ag2CO3 and Ag/AgCl. The trapping experiments confirmed that holes (h(+)) and (•)O2(-) were the two main active species in the photocatalytic process. Finally, a possible Z-scheme photocatalytic mechanism of the charge transfer was proposed for the enhanced photocatalytic performance. This work may open up new insights into the application of cheap geothermal water resources in the word and provide new opportunities for facile fabrication of Ag/AgCl-based photocatalysts.

  18. Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis.

    PubMed

    Zheng, Yuanhui; Zheng, Lirong; Zhan, Yingying; Lin, Xingyi; Zheng, Qi; Wei, Kemei

    2007-08-20

    A high yield of the dimer-type heterostructure of Ag/ZnO nanocrystals with different Ag contents is successfully prepared through a simple solvothermal method in the absence of surfactants. The samples are characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, UV-vis spectroscopy, and IR spectroscopy. The results show that all samples are composed of metallic Ag and ZnO; Ag nanoparticles locate on the surface of ZnO nanorods; the binding energy of Ag 3d(5/2) for the Ag/ZnO sample with a Ag content of 5.0 atom % shifts remarkably to the lower binding energy compared with the corresponding value of pure metallic Ag because of the interaction between Ag and ZnO nanocrystals; the concentration of oxygen vacancy for the as-synthesized samples varies with the increasing Ag content, and the Ag/ZnO sample with a Ag content of 5.0 atom % has the largest density of oxygen vacancy. In addition, the relationship between their structure and photocatalytic property is investigated in detail. It is found that the photocatalytic property is closely related to its structure, such as heterostructure, oxygen defect, and crystallinity. The presence of metallic Ag nanoparticles and oxygen vacancy on the surface of ZnO nanorods promotes the separation of photogenerated electron-hole pairs and thus enhances the photocatalytic activity.

  19. 3D [Ag-Mg] polyanionic frameworks in the La 4Ag 10Mg 3 and La 4Ag 10.3Mg 12 new ternary compounds

    NASA Astrophysics Data System (ADS)

    Solokha, Pavlo; De Negri, Serena; Pavlyuk, Volodymyr; Eck, Bernhard; Dronskowski, Richard; Saccone, Adriana

    2010-12-01

    The crystal structures of two new ternary phases, La 4Ag 10Mg 3 and La 4Ag 10.3Mg 12, were refined from X-ray single crystal diffraction data. La 4Ag 10Mg 3 crystallizes in the Ca 4Au 10In 3 structure type, an ordered variant of the binary Zr 7Ni 10 compound: orthorhombic, Cmce, oS68, a=14.173(5), b=10.266(3), c=10.354(3) Å, Z=4, w R2=0.0826, 676 F2 values, 50 variables. La 4Ag 10.3Mg 12 represents a new structure type: orthorhombic, Cmmm, oS116-10.32, a=9.6130(3), b=24.9663(8), c=9.6333(2) Å, Z=4, w R2=0.0403, 1185 F2 values, 101 variables. The structural analysis of both compounds, highlighting a significant contraction of the Ag-Mg distances, suggests the existence of three-dimensional [Ag-Mg] networks hosting La atoms. LMTO calculations applied to La 4Ag 10Mg 3 indicate that the strongest bonds occur for Ag-Ag and Ag-Mg interactions, and confirm the presence of a 3D ∞[Ag 10Mg 3] δ- polyanionic framework balanced by positively charged La atoms.

  20. Bipolar Ag-Zn battery

    NASA Technical Reports Server (NTRS)

    Giltner, L. John

    1994-01-01

    The silver-zinc (AgZn) battery system has been unique in its ability to safely satisfy high power demand applications with low mass and volume. However, a new generation of defense, aerospace, and commercial applications will impose even higher power demands. These new power demands can be satisfied by the development of a bipolar battery design. In this configuration the power consuming, interelectrode current conductors are eliminated while the current is then conducted via the large cross-section electrode substrate. Negative and positive active materials are applied to opposite sides of a solid silver foil substrate. In addition to reducing the weight and volume required for a specified power level, the output voltage performance is also improved as follows. Reduced weight through: elimination of the plastic cell container; elimination of plate leads and intercell connector; and elimination of internal plate current collector. Increased voltage through: elimination of resistance of current collector; elimination of resistance of plate lead; and elimination of resistance of intercell connector. EPI worked previously on development of a secondary bipolar silver zinc battery. This development demonstrated the electrical capability of the system and manufacturing techniques. One difficulty with this development was mechanical problems with the seals. However, recent improvements in plastics and adhesives should eliminate the major problem of maintaining a seal around the periphery of the bipolar module. The seal problem is not as significant for a primary battery application or for a requirement for only a few discharge cycles. A second difficulty encountered was with activation (introducing electrolyte into the cell) and with venting gas from the cell without loss of electrolyte. During previous work, the following projections for energy density were made from test data for a high power system which demonstrated in excess of 50 discharge/charge cycles. Projected

  1. Bipolar Ag-Zn battery

    NASA Astrophysics Data System (ADS)

    Giltner, L. John

    1994-02-01

    The silver-zinc (AgZn) battery system has been unique in its ability to safely satisfy high power demand applications with low mass and volume. However, a new generation of defense, aerospace, and commercial applications will impose even higher power demands. These new power demands can be satisfied by the development of a bipolar battery design. In this configuration the power consuming, interelectrode current conductors are eliminated while the current is then conducted via the large cross-section electrode substrate. Negative and positive active materials are applied to opposite sides of a solid silver foil substrate. In addition to reducing the weight and volume required for a specified power level, the output voltage performance is also improved as follows. Reduced weight through: elimination of the plastic cell container; elimination of plate leads and intercell connector; and elimination of internal plate current collector. Increased voltage through: elimination of resistance of current collector; elimination of resistance of plate lead; and elimination of resistance of intercell connector. EPI worked previously on development of a secondary bipolar silver zinc battery. This development demonstrated the electrical capability of the system and manufacturing techniques. One difficulty with this development was mechanical problems with the seals. However, recent improvements in plastics and adhesives should eliminate the major problem of maintaining a seal around the periphery of the bipolar module. The seal problem is not as significant for a primary battery application or for a requirement for only a few discharge cycles. A second difficulty encountered was with activation (introducing electrolyte into the cell) and with venting gas from the cell without loss of electrolyte. During previous work, the following projections for energy density were made from test data for a high power system which demonstrated in excess of 50 discharge/charge cycles. Projected

  2. Spectrophotometry of the shell around AG Carinae

    NASA Technical Reports Server (NTRS)

    Mitra, P. Mila; Dufour, Reginald J.

    1990-01-01

    Spatially-resolved long-slit spectrophotometry are presented for two regions of the shell nebula around the P-Cygni variable star AG Carinae. The spectra cover the 3700-6800 A wavelength range. Emission-line diagnostics are used to derive extinction, electron temperatures, and densities for various positions in the nebula. The chemical abundances and ionization structure are calculated and compared with other types of planetary nebulae and shells around other luminous stars. It is found that the N/O and N/S ratios of Ag Car are high compared to solar neighborhood ISM values. The O/H depletion found for the AG Car shell approaches that found in the condensations of the Eta Car system.

  3. Enhanced chemiluminescence of the luminol-AgNO3 system by Ag nanoparticles.

    PubMed

    Li, Shifeng; Sun, Huimin; Wang, Dong; Hong, Jianguo; Tao, Shanjun; Yu, Haiyin; Wang, Xiuhua; Wei, Xianwen

    2012-01-01

    The oxidation reaction of luminol with AgNO(3) can produce chemiluminescence (CL) in the presence of silver nanoparticles (NPs) in alkaline solution. Based on the studies of UV-vis absorption spectra, photoluminescence (PL) spectra and CL spectra, a CL enhancement mechanism is proposed. The CL emission spectrum of the luminol-AgNO(3)-Ag NPs system indicated that the luminophore was still 3-aminophthalate. On injection of silver nanoparticles into the mixture of luminol and AgNO(3), they catalysed the reduction of AgNO(3) by luminol. The product luminol radicals reacted with the dissolved oxygen, to produce a strong CL emission. As a result, the CL intensity was substantially increased. Moreover, the influences of 18 amino acids, e.g. cystine, tyrosine and asparagine, and 25 organic compounds, including gallic acid, tannic acid and hydroquinone, on the luminol-AgNO(3)-Ag NPs CL system were studied by a flow-injection procedure, which led to an effective method for detecting these compounds.

  4. Ag/FeCo/Ag core/shell/shell magnetic nanoparticles with plasmonic imaging capability.

    PubMed

    Takahashi, Mari; Mohan, Priyank; Nakade, Akiko; Higashimine, Koichi; Mott, Derrick; Hamada, Tsutomu; Matsumura, Kazuaki; Taguchi, Tomohiko; Maenosono, Shinya

    2015-02-24

    Magnetic nanoparticles (NPs) have been used to separate various species such as bacteria, cells, and proteins. In this study, we synthesized Ag/FeCo/Ag core/shell/shell NPs designed for magnetic separation of subcellular components like intracellular vesicles. A benefit of these NPs is that their silver metal content allows plasmon scattering to be used as a tool to observe detection by the NPs easily and semipermanently. Therefore, these NPs are considered a potential alternative to existing fluorescent probes like dye molecules and colloidal quantum dots. In addition, the Ag core inside the NPs suppresses the oxidation of FeCo because of electron transfer from the Ag core to the FeCo shell, even though FeCo is typically susceptible to oxidation. The surfaces of the Ag/FeCo/Ag NPs were functionalized with ε-poly-L-lysine-based hydrophilic polymers to make them water-soluble and biocompatible. The imaging capability of the polymer-functionalized NPs induced by plasmon scattering from the Ag core was investigated. The response of the NPs to a magnetic field using liposomes as platforms and applying a magnetic field during observation by confocal laser scanning microscopy was assessed. The results of the magnetophoresis experiments of liposomes allowed us to calculate the magnetic force to which each liposome was subjected.

  5. The axisymmetric stellar wind of AG Carinae

    NASA Technical Reports Server (NTRS)

    Schulte-Ladbeck, Regina E.; Clayton, Geoffrey C.; Hillier, D. John; Harries, Tim J.; Howarth, Ian D.

    1994-01-01

    We present optical linear spectropolarimetry of the Luminous Blue Variable AG Carinae obtained after a recent visual brightness increase. The absence of He II lambda 4686 emission, together with the weakening of the He I spectrum and the appearance of Fe lines in the region around 5300 A, confirm that AG Car has started a new excursion across the HR diagram. The H alpha line profile exhibits very extended line wings that are polarized differently in both amount and position angle from either the continuum or the line core. The polarization changes across H alpha, together with variable continuum polarization, indicate the presence of intrinsic polarization. Coexistence of the line-wing polarization with extended flux-line wings evidences that both are formed by electron scattering in a dense wind. The position angle rotates across the line profiles, in a way that presently available models suggest is due to rotation and expansion of the scattering material. AG Car displays very large variations of its linear polarization with time, Delta P approximately 1.2%, indicating significant variations in envelope opacity. We find that the polarization varies along a preferred position angle of approximately 145 deg (with a scatter of +/- 10 deg) which we interpret as a symmetry axis of the stellar wind (with an ambiguity of 90 deg). This position angle is co-aligned with the major axis of the AG Car ring nebula and perpendicular to the AG Car jet. Our observations thus suggest that the axisymmetric geometry seen in the resolved circumstellar environment at various distances already exists within a few stellar radii of AG Car. From the H alpha polarization profile we deduce an interstellar polarization of Q = 0.31%, U = -1.15% at H alpha. The inferred interstellar polarization implies that the intrinsic polarization is not always of the same sign. This indicates either significant temporal changes in the envelope geometry, or it may arise from effects of multiple scattering

  6. Siberian Snake solenoid for the AGS

    SciTech Connect

    Ratner, L. G.

    1991-01-01

    Recent experiments at the Indiana University Cyclotron Facility (IUCF) have demonstrated that Siberian Snakes'' can be used to preserve the polarization of an accelerated polarized beam in a circular accelerator. Retrofitting full snakes into accelerators such as the Alternating Gradient Synchrotron (AGS) at Brookhaven is almost impossible due to space limitations, but a partial snake that can correct depolarization due to imperfection resonances with 1/20 to 1/30 of a full strength snake seems to present a viable option. We describe such a device for the AGS and give the design criteria in terms of simplicity of accelerator operation and level of achievable polarization. 2 refs., 5 figs., 1 tab.

  7. Facile synthesis of novel Ag/AgI/BiOI composites with highly enhanced visible light photocatalytic performances

    SciTech Connect

    Cao, Jing; Zhao, Yijie; Lin, Haili; Xu, Benyan; Chen, Shifu

    2013-10-15

    Novel Ag/AgI/BiOI composites were controllably synthesized via a facile ion-exchange followed by photoreduction strategy by using hierarchical BiOI microflower as substrate. The as-prepared Ag/AgI/BiOI composites were studied by X-ray powder diffractometer (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) surface area analyzer and UV–vis diffuse reflectance spectroscopy (DRS). Under visible light (λ>420 nm), Ag/AgI/BiOI displayed highly enhanced photocatalytic activities for degradation of methyl orange (MO) compared to the pure hierarchical BiOI, which was mainly ascribed to the highly efficient separation of electrons and holes through the closely contacted interfaces in the Ag/AgI/BiOI ternary system. - Graphical abstract: Ag/AgI/BiOI displayed excellent photocatalytic activities for methyl orange degradation under visible light, which was mainly ascribed to the highly efficient separation of electrons and holes through Z-scheme pathway. Display Omitted - Highlights: • Novel Ag/AgI/BiOI composites were successfully synthesized. • Ag/AgI/BiOI displayed higher visible light activities than those of pure BiOI and AgI. • ·O{sub 2}{sup −} and h{sup +}, especially ·O{sub 2}{sup −}, dominated the photodegradation process of MO. • A Z-scheme pattern was adopted for Ag/AgI/BiOI activity enhancement.

  8. Ag@AgHPW as a plasmonic catalyst for visible-light photocatalytic degradation of environmentally harmful organic pollutants

    SciTech Connect

    Zhou, Wenhui; Cao, Minhua Li, Na; Su, Shuangyue; Zhao, Xinyu; Wang, Jiangqiang; Li, Xianghua; Hu, Changwen

    2013-06-01

    Graphical abstract: Ag@Ag{sub x}H{sub 3−x}PW12O40 (Ag@AgHPW) nanoparticles (NPs), a new visible-light driven plasmonic photocatalyst, are prepared by a green photoreduction strategy without the addition of any surfactant, which show a high activity and stability for the degradation of methyl blue (MB) under visible light irradiation. - Highlights: • A new visible-light driven photocatalyst Ag@Ag{sub x}H{sub 3−x}PW{sub 12}O{sub 40} was designed. • The photocatalyst shows a high activity for the degradation of methyl blue. • The high activity can be ascribed to the synergy of photoexcited AgHPW and Ag. - Abstract: Ag@Ag{sub x}H{sub 3−x}PW{sub 12}O{sub 40} (Ag@AgHPW) nanoparticles (NPs), a new visible-light driven plasmonic photocatalyst, are prepared by a green photoreduction strategy without the addition of any surfactant. They show strong absorption in the visible region because of the localized surface plasmon resonance (LSPR) of Ag NPs. This plasmonic photocatalyst shows a high activity and stability for the degradation of methyl blue (MB) under visible light irradiation, which could be attributed to the highly synergy of photoexcited Ag{sub x}H{sub 3−x}PW{sub 12}O{sub 40} (AgHPW) and plasmon-excited Ag NPs and the confinement effects at interfaces between polyoxometalates (POMs) and silver. POM anions have redox ability and high photocatalytic activity, whereas Ag NPs could effectively accelerate the separation of electrons and holes, both of which contribute to their high activity.

  9. Ag Nanowire Based Transparent Conductor for CIGS PV

    SciTech Connect

    Woods, L. M.; Wolk, J.; Smith, M.; Davande, H.; Ribelin, R. M.; Perkins, C. L.

    2011-01-01

    Coated silver nanowires (AgNW) have been considered as a replacement for transparent conducting oxides (TCOs) in CIGS based photovoltaic devices. The advantages of AgNW over TCOs are discussed, and optical and electrical characteristics of AgNWs on glass are presented. Similarly fabricated AgNWs with varying sheet resistance on CIGS devices were tested against ITO transparent conductor controls. The CIGS was produced using a roll-to-roll technique on a flexible polymer substrate. Variations in the ZnO layer resistivity that are adjacent to the AgNW layer in the CIGS device were also tested. Device results indicate similar Jsc, but a reduced FF for cells made with the AgNWs, and Voc dependence on the resistivity of the coated AgNW and ZnO window layers. FF and Voc losses associated with the use of AgNWs are discussed.

  10. Hierarchical Ag mesostructures for single particle SERS substrate

    NASA Astrophysics Data System (ADS)

    Xu, Minwei; Zhang, Yin

    2017-01-01

    Hierarchical Ag mesostructures with highly rough surface morphology have been synthesized at room temperature through a simple seed-mediated approach. Electron microscopy characterizations indicate that the obtained Ag mesostructures exhibit a textured surface morphology with the flower-like architecture. Moreover, the particle size can be tailored easily in the range of 250-500 nm. For the growth process of the hierarchical Ag mesostructures, it is believed that the self-assembly mechanism is more reasonable rather than the epitaxial overgrowth of Ag seed. The oriented attachment of nanoparticles is revealed during the formation of Ag mesostructures. Single particle surface enhanced Raman spectra (sp-SERS) of crystal violet adsorbed on the hierarchical Ag mesostructures were measured. Results reveal that the hierarchical Ag mesostructures can be highly sensitive sp-SERS substrates with good reproducibility. The average enhancement factors for individual Ag mesostructures are estimated to be about 106.

  11. Effect of Ag+ and PO43- ratios on the microstructure and photocatalytic activity of Ag3PO4

    NASA Astrophysics Data System (ADS)

    Qin, Jiaqian; Zhang, Xinyu; Yang, Chengwu; Song, Aijun; Zhang, Bing; Rajendran, Saravanan; Ma, Mingzhen; Liu, Riping

    2016-09-01

    In this work, the catalyst silver phosphate (Ag3PO4) with different initial ratios of Ag+ and PO43- in aqueous solution was synthesized by a simple precipitation method from AgNO3 and NH4H2PO4 which were used as the precursor. After that, the prepared samples were characterized by different techniques such as field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), UV-visible diffuse reflectance spectroscopy (UV-DRS) and decomposition evolution of rhodamine B (RhB) solution. The results indicate that the initial ratios of Ag+/PO43- in aqueous solution can modify the morphology and also it can significantly affect the photocatalytic performance. During photocatalytic process, the rich Ag+ ion Ag3PO4 can form the surface plasmon resonance (SPR) of Ag nanoparticles, which inhibit the reduction of Ag3PO4 resulting in higher photocatalytic activity and stability.

  12. The electron paramagnetic resonance spectrum of Ag2 3

    NASA Astrophysics Data System (ADS)

    van der Pol, A.; Reijersen, E. J.; de Boer, E.; Wasowicz, T.; Michalik, J.

    A highly resolved EPR spectrum of the silver trimer 109Ag2+3, present in 109Ag1-NaA zeolite, has been measured. The spectrum is characterized by an axially symmetric spin Hamiltonian having and for each of the 109Ag nuclei tMPH0037_images.

  13. AGS experiments -- 1996, 1997, 1998, 1999. Fifteenth edition

    SciTech Connect

    Lo Presti, P.

    1999-03-01

    This report is a compilation of two-page summaries for AGS experiments for FY 1996, FY 1997, FY 1998, FY 1999. The bulk of the experiments are for high energy physics and nuclear physics programs. Also included are the run schedules for the AGS for each of those years and a listing of publications of AGS experiments for 1982--1999.

  14. Development of a Rhizoctonia solani AG1-IB Specific Gene Model Enables Comparative Genome Analyses between Phytopathogenic R. solani AG1-IA, AG1-IB, AG3 and AG8 Isolates.

    PubMed

    Wibberg, Daniel; Rupp, Oliver; Blom, Jochen; Jelonek, Lukas; Kröber, Magdalena; Verwaaijen, Bart; Goesmann, Alexander; Albaum, Stefan; Grosch, Rita; Pühler, Alfred; Schlüter, Andreas

    2015-01-01

    Rhizoctonia solani, a soil-born plant pathogenic basidiomycetous fungus, affects various economically important agricultural and horticultural crops. The draft genome sequence for the R. solani AG1-IB isolate 7/3/14 as well as a corresponding transcriptome dataset (Expressed Sequence Tags--ESTs) were established previously. Development of a specific R. solani AG1-IB gene model based on GMAP transcript mapping within the eukaryotic gene prediction platform AUGUSTUS allowed detection of new genes and provided insights into the gene structure of this fungus. In total, 12,616 genes were recognized in the genome of the AG1-IB isolate. Analysis of predicted genes by means of different bioinformatics tools revealed new genes whose products potentially are involved in degradation of plant cell wall components, melanin formation and synthesis of secondary metabolites. Comparative genome analyses between members of different R. solani anastomosis groups, namely AG1-IA, AG3 and AG8 and the newly annotated R. solani AG1-IB genome were performed within the comparative genomics platform EDGAR. It appeared that only 21 to 28% of all genes encoded in the draft genomes of the different strains were identified as core genes. Based on Average Nucleotide Identity (ANI) and Average Amino-acid Identity (AAI) analyses, considerable sequence differences between isolates representing different anastomosis groups were identified. However, R. solani isolates form a distinct cluster in relation to other fungi of the phylum Basidiomycota. The isolate representing AG1-IB encodes significant more genes featuring predictable functions in secondary metabolite production compared to other completely sequenced R. solani strains. The newly established R. solani AG1-IB 7/3/14 gene layout now provides a reliable basis for post-genomics studies.

  15. Antibacterial Ag/a-C nanocomposite coatings: The influence of nano-galvanic a-C and Ag couples on Ag ionization rates

    NASA Astrophysics Data System (ADS)

    Manninen, N. K.; Calderon, S.; Carvalho, I.; Henriques, M.; Cavaleiro, A.; Carvalho, S.

    2016-07-01

    Biofilm formation has been pointed as a major concern in different industrial applications, namely on biomedical implants and surgical instruments, which has prompted the development of new strategies for production of efficient antimicrobial surfaces. In this work, nano-galvanic couples were created to enhance the antibacterial properties of silver, by embedding it into amorphous carbon (a-C) matrix. The developed Ag/a-C nanocomposite coatings, deposited by magnetron sputtering, revealed an outstanding antibacterial activity against Staphylococcus epidermidis, promoting a total reduction in biofilm formation with no bacteria counts in all dilution. The open circuit potential (OCP) tests in 0.9% NaCl confirmed that a-C shows a positive OCP value, in contrast to Ag coating, thus enhancing the ionization of biocidal Ag+ due to the nano-galvanic couple activation. This result was confirmed by the inductively coupled plasma-optical emission spectroscopy (ICP-OES), which revealed a higher Ag ionization rate in the nanocomposite coating in comparison with the Ag coating. The surface of Ag/a-C and Ag coatings immersed in 0.9% NaCl were monitored by scanning electron microscopy (SEM) over a period of 24 h, being found that the Ag ionization determined by ICP-OES was accompanied by an Ag nanoparticles coalescence and agglomeration in Ag/a-C coating.

  16. Water repellent Ag/Ag2O@bamboo cellulose fiber membrane as bioinspired cargo carriers.

    PubMed

    Wang, Yaru; Zhang, Ximu; Zhang, Xiaofang; Zhao, Jiangqi; Zhang, Wei; Lu, Canhui

    2015-11-20

    Water striders can walk on water. To mimic this function, a porous membrane consisted of bamboo cellulose fiber was hybridized with Ag/Ag2O nanoparticles through a facile in situ method to produce water repellent and well-ventilated materials. Herein, we report the sole surface roughness created by Ag/Ag2O nanoparticles could render the membrane a water contact angle (CA) of 140±3.0°. When floating on water, the hybrid membrane was able to support a heavy load more than 10 times the weight of the membrane itself. Additionally, this membrane demonstrated capabilities for oil sampling under water or oil/water separation and strong antibacterial activity against Escherichia coli. Thus we foresee that this novel hybrid membrane can be potentially utilized as drag-reducing, gas permeable and antibiotic substrates for constructing miniature aquatic devices.

  17. Selectivity control of photosensitivity of Ag-GaP and Ag- AlGaN structures

    NASA Astrophysics Data System (ADS)

    Lamkin, I. A.; Tarasov, S. A.; Solomonov, A. V.; Andreev, M. Y.; Kurin, S. Yu

    2015-12-01

    Design, growth and studies of photosensitive structures based on Ag-GaP and Ag- AlxGa1-xN contacts are reported. Methods for structure selectivity control, which allow changing the sensitivity spectrum half-width in a range of 11-210 nm were worked out. By varying the metal layer thickness, a set of Ag-GaP short-wavelength photodetectors (PD) was fabricated. The set includes PDs from broadband (spectrum half-width Δλ=210 nm, sensitivity SI = 0,19 A/W) to visible-blind (Δλ=15 nm, SI = 0,034 A/W). The use of Ag-AlxGa1-xN structures provided increased sensitivity (SI = 0,071 A/W) and Δλ reduced to 11 nm due to special selection of solid solution composition.

  18. Communication: Kinetics of chemical ordering in Ag-Au and Ag-Ni nanoalloys

    NASA Astrophysics Data System (ADS)

    Calvo, F.; Fortunelli, A.; Negreiros, F.; Wales, D. J.

    2013-09-01

    The energy landscape and kinetics of medium-sized Ag-Au and Ag-Ni nanoalloy particles are explored via a discrete path sampling approach, focusing on rearrangements connecting regions differing in chemical order. The highly miscible Ag27Au28 supports a large number of nearly degenerate icosahedral homotops. The transformation from reverse core-shell to core-shell involves large displacements away from the icosahedron through elementary steps corresponding to surface diffusion and vacancy formation. The immiscible Ag42Ni13 naturally forms an asymmetric core-shell structure, and about 10 eV is required to extrude the nickel core to the surface. The corresponding transformation occurs via a long and smooth sequence of surface displacements. For both systems the rearrangement kinetics exhibit Arrhenius behavior. These results are discussed in the light of experimental observations.

  19. High Resolution PDF Measurements on Ag Nanoparticles

    SciTech Connect

    Rocha, Tulio C. R.; Martin, Chris; Kycia, Stefan; Zanchet, Daniela

    2009-01-29

    The quantitative analysis of structural defects in Ag nanoparticles was addressed in this work. We performed atomic scale structural characterization by a combination of x-ray diffraction (XRD) using the Pair Distribution Function analysis (PDF) and High Resolution Transmission Electron Microscopy (HRTEM). The XRD measurements were performed using an innovative instrumentation setup to provide high resolution PDF patterns.

  20. Accuracy Assessment for AG500, Electromagnetic Articulograph

    ERIC Educational Resources Information Center

    Yunusova, Yana; Green, Jordan R.; Mefferd, Antje

    2009-01-01

    Purpose: The goal of this article was to evaluate the accuracy and reliability of the AG500 (Carstens Medizinelectronik, Lenglern, Germany), an electromagnetic device developed recently to register articulatory movements in three dimensions. This technology seems to have unprecedented capabilities to provide rich information about time-varying…

  1. Energy loss of 107Ag, 109Ag, and 150Sm in Ni and Au

    NASA Astrophysics Data System (ADS)

    Ribas, R. V.; Seale, W. A.; Roney, W. A.; Szanto, E. M.

    1980-04-01

    The stopping pow´er of 107Ag, 109Ag, and 150Sm in nickel and gold was measured as a preliminary test of a new technique for measuring energy loss based on the γ-ray Doppler shift. The analysis of the data was based on the theories of Lindhard, Scharff, and Schiott for nuclear and electronic stopping. The results are compared with the semiempirical predictions of Northcliffe and Schilling and the Lindhard-Scharff-Schiott theory.

  2. A dry method to synthesize dendritic Ag2Se nanostructures utilizing CdSe quantum dots and Ag thin films

    NASA Astrophysics Data System (ADS)

    Hu, Lian; Zhang, Bingpo; Xu, Tianning; Li, Ruifeng; Wu, Huizhen

    2015-01-01

    Dendritic Ag2Se nanostructures are synthesized in a dry environment by UV irradiating the hybrids composed of CdSe quantum dots (QDs) and silver (Ag). UV irradiation on CdSe QDs induces a photooxidation effect on the QD surface and leads to the formation of SeO2 components. Then SeO2 reacts with the Ag atoms in either Ag film or QD layer to produce the Ag2Se. The growth mechanism of Ag2Se dendrites on solid Ag films is explored and explained by a diffusion limited aggregation model in which the QD layer provides enough freedom for Ag2Se motion. Since the oxidation of the CdSe QDs is the critical step for the Ag2Se dendrites formation this dry chemical interaction between QDs and Ag film can be applied in the study of the QD surface chemical properties. With this dry synthesis method, the Ag2Se dendrites can also be facilely formed at the designed area on Ag substrates.

  3. A dry method to synthesize dendritic Ag2Se nanostructures utilizing CdSe quantum dots and Ag thin films.

    PubMed

    Hu, Lian; Zhang, Bingpo; Xu, Tianning; Li, Ruifeng; Wu, Huizhen

    2015-01-09

    Dendritic Ag2Se nanostructures are synthesized in a dry environment by UV irradiating the hybrids composed of CdSe quantum dots (QDs) and silver (Ag). UV irradiation on CdSe QDs induces a photooxidation effect on the QD surface and leads to the formation of SeO2 components. Then SeO2 reacts with the Ag atoms in either Ag film or QD layer to produce the Ag2Se. The growth mechanism of Ag2Se dendrites on solid Ag films is explored and explained by a diffusion limited aggregation model in which the QD layer provides enough freedom for Ag2Se motion. Since the oxidation of the CdSe QDs is the critical step for the Ag2Se dendrites formation this dry chemical interaction between QDs and Ag film can be applied in the study of the QD surface chemical properties. With this dry synthesis method, the Ag2Se dendrites can also be facilely formed at the designed area on Ag substrates.

  4. New insight into daylight photocatalysis of AgBr@Ag: synergistic effect between semiconductor photocatalysis and plasmonic photocatalysis.

    PubMed

    Jiang, Jing; Li, Hao; Zhang, Lizhi

    2012-05-14

    Noble metal nanoparticles (NPs) are often used as electron scavengers in conventional semiconductor photocatalysis to suppress electron-hole (e(-)-h(+) ) recombination and promote interfacial charge transfer, and thus enhance photocatalytic activity of semiconductors. In this contribution, it is demonstrated that noble metal NPs such as Ag NPs function as visible-light harvesting and electron-generating centers during the daylight photocatalysis of AgBr@Ag. Novel Ag plasmonic photocatalysis could cooperate with the conventional AgBr semiconductor photocatalysis to enhance the overall daylight activity of AgBr@Ag greatly because of an interesting synergistic effect. After a systematic investigation of the daylight photocatalysis mechanism of AgBr@Ag, the synergistic effect was attributed to surface plasmon resonance induced local electric field enhancement on Ag, which can accelerate the generation of e(-)-h(+) pairs in AgBr, so that more electrons are produced in the conduction band of AgBr under daylight irradiation. This study provides new insight into the photocatalytic mechanism of noble metal/semiconductor systems as well as the design and fabrication of novel plasmonic photocatalysts.

  5. Advances of Ag, Cu, and Ag-Cu alloy nanoparticles synthesized via chemical reduction route

    NASA Astrophysics Data System (ADS)

    Tan, Kim Seah; Cheong, Kuan Yew

    2013-04-01

    Silver (Ag) and copper (Cu) nanoparticles have shown great potential in variety applications due to their excellent electrical and thermal properties resulting high demand in the market. Decreasing in size to nanometer scale has shown distinct improvement in these inherent properties due to larger surface-to-volume ratio. Ag and Cu nanoparticles are also shown higher surface reactivity, and therefore being used to improve interfacial and catalytic process. Their melting points have also dramatically decreased compared with bulk and thus can be processed at relatively low temperature. Besides, regularly alloying Ag into Cu to create Ag-Cu alloy nanoparticles could be used to improve fast oxidizing property of Cu nanoparticles. There are varieties methods have been reported on the synthesis of Ag, Cu, and Ag-Cu alloy nanoparticles. This review aims to cover chemical reduction means for synthesis of those nanoparticles. Advances of this technique utilizing different reagents namely metal salt precursors, reducing agents, and stabilizers, as well as their effects on respective nanoparticles have been systematically reviewed. Other parameters such as pH and temperature that have been considered as an important factor influencing the quality of those nanoparticles have also been reviewed thoroughly.

  6. A comparative study about electronic structures at rubrene/Ag and Ag/rubrene interfaces

    SciTech Connect

    Sinha, Sumona Mukherjee, M.

    2015-10-15

    The contact between the electrode and the organic semiconductor is one of the most crucial factors in determining the organic device performance. The development and production technology of different organic devices require the understanding of different types of metal/organic semiconducting thin film interfaces. Comparisons about the electronic structures at Rubrene/Ag and Ag/Rubrene interfaces have been studied using photoemission spectroscopy. The Ag on rubrene interfaces is found to show more interesting and complex natures than its counterpart. The vacuum level (VL) was shifted about 0.51 eV from push back effect for deposition of 5 Å rubrene onto Ag film whereas the electronic features of silver was only suppressed and no energy shift was resulted. While the deposition of 5 Å Ag onto rubrene film leads to the diffusion of the Ag atoms, as a cluster with quantum size effect, inside the film. Angle dependent XPS measurement indicates that diffused metal clusters were present at entire probed depth of the film. Moreover these clusters dope the uppermost surface of the rubrene film which consequences a shift of the electronic states of thick organic film towards higher binding energy. The VL was found to shift about 0.31 eV toward higher binding energy whereas the shift was around 0.21 eV for the electronic states of rubrene layer.

  7. Ag induced electromagnetic interference shielding of Ag-graphite/PVDF flexible nanocomposites thinfilms

    SciTech Connect

    Kumaran, R.; Alagar, M.; Dinesh Kumar, S.; Subramanian, V.; Dinakaran, K.

    2015-09-14

    We report Ag nanoparticle induced Electromagnetic Interference (EMI) shielding in a flexible composite films of Ag nanoparticles incorporated graphite/poly-vinylidene difluoride (PVDF). PVDF nanocomposite thin-films were synthesized by intercalating Ag in Graphite (GIC) followed by dispersing GIC in PVDF. The X-ray diffraction analysis and the high-resolution transmission electron microscope clearly dictate the microstructure of silver nanoparticles in graphite intercalated composite of PVDF matrix. The conductivity values of nanocomposites are increased upto 2.5 times when compared to neat PVDF having a value of 2.70 S/cm at 1 MHz. The presence of Ag broadly enhanced the dielectric constant and lowers the dielectric loss of PVDF matrix proportional to Ag content. The EMI shielding effectiveness of the composites is 29.1 dB at 12.4 GHz for the sample having 5 wt. % Ag and 10 wt. % graphite in PVDF.

  8. The Effect of Ag and Ag+N Ion Implantation on Cell Attachment Properties

    SciTech Connect

    Urkac, Emel Sokullu; Oztarhan, Ahmet; Gurhan, Ismet Deliloglu; Iz, Sultan Gulce; Tihminlioglu, Funda; Oks, Efim; Nikolaev, Alexey; Ila, Daryush

    2009-03-10

    Implanted biomedical prosthetic devices are intended to perform safely, reliably and effectively in the human body thus the materials used for orthopedic devices should have good biocompatibility. Ultra High Molecular Weight Poly Ethylene (UHMWPE) has been commonly used for total hip joint replacement because of its very good properties. In this work, UHMWPE samples were Ag and Ag+N ion implanted by using the Metal-Vapor Vacuum Arc (MEVVA) ion implantation technique. Samples were implanted with a fluency of 1017 ion/cm2 and extraction voltage of 30 kV. Rutherford Backscattering Spectrometry (RBS) was used for surface studies. RBS showed the presence of Ag and N on the surface. Cell attachment properties investigated with model cell lines (L929 mouse fibroblasts) to demonstrate that the effect of Ag and Ag+N ion implantation can favorably influence the surface of UHMWPE for biomedical applications. Scanning electron microscopy (SEM) was used to demonstrate the cell attachment on the surface. Study has shown that Ag+N ion implantation represents more effective cell attachment properties on the UHMWPE surfaces.

  9. Preparation of Ag@Ag₃PO₄@ZnO ternary heterostructures for photocatalytic studies.

    PubMed

    Jin, Chao; Liu, Guanglei; Zu, Lianhai; Qin, Yao; Yang, Jinhu

    2015-09-01

    In this article, we report a novel Ag@Ag3PO4@ZnO ternary heterostructures synthesized through a three-step approach. Firstly, single-crystalline Ag nanorods are fabricated and served as the templates for subsequent Ag3PO4 deposition. Secondly, Ag3PO4 crystals are grown around Ag core nanorods through a solution co-precipitation process, leading to the Ag@Ag3PO4 binary heterostructures. Finally, ZnO nanorod arrays on the surface of the Ag@Ag3PO4 heterostructures are realized via a seeded growth strategy, forming the typical Ag@Ag3PO4@ZnO ternary heterostructures. The photodegradation of rhodamine B under ultraviolet-visible light irradiation indicates that the Ag@Ag3PO4@ZnO ternary heterostructures exhibit much higher activities than pure Ag3PO4 and binary heterostructures of Ag@Ag3PO4. The higher photocatalytic activity of the Ag@Ag3PO4@ZnO composites may be attributed to the effective photogenerated charge separation at heterointerfaces of Ag/Ag3PO4 and Ag3PO4/ZnO, and the rapid electron transport along one-dimensional Ag and ZnO nanorods.

  10. Enhanced thermal stability of Ag nanorods through capping

    SciTech Connect

    Bachenheimer, Lou; Elliott, Paul; Stagon, Stephen; Huang, Hanchen

    2014-11-24

    Ag nanorods may serve as sensors in the detection of trace amounts of chemical agents, even single molecules, through surface enhanced Raman spectroscopy (SERS). However, thermal coarsening of Ag nanorods near room temperature limits their applications. This letter proposes the use of a thin oxide capping layer to enhance the thermal stability of Ag nanorods beyond 100 °C. Using electron microscopy characterization and SERS tests, the authors show that the proposed method is effective in stabilizing both morphology and sensitivity of Ag nanorods. The results of this work extend the applicability of Ag nanorods as chemical sensors to higher temperatures.

  11. Investigating the properties of infrared PCFs based on AgCl-AgBr, AgBr-TlI, AgCl-AgBr-AgI(TlI) crystals theoretically and experimentally

    NASA Astrophysics Data System (ADS)

    Korsakov, A. S.; Zhukova, L. V.; Vrublevsky, D. S.; Korsakova, E. A.

    2014-12-01

    For operating at the CO2 laser wavelength (10.6 μm), we manufactured single- and double-layered infrared (IR) fibers, as well as those with an enlarged mode field diameter, obtained via extrusion from Ag(Cl) x Br1 - x (0 < x < 1), Ag1 - x Tl x Br1 - x I x (0 < x ≤ 0.08), Ag1 - x Tl x Cl y I z Br1 - y - z (0.003 ≤ x ≤ 0.040; 0.066 ≤ y ≤ 0.246; 0.004 ≤ z ≤ 0.048) crystals. We calculated their fundamental characteristics at 10.6 μm and conducted computer simulation of their structure and mode field beforehand. Optical and mechanical characteristics of IR crystals and fibers, such as transmission range, refractive indices, and durability, were also determined, with the dependence of varying monadic thallium iodide content on them being shown as well. In particular, we demonstrated that the increase of thallium iodide content in the initial silver chloride bromide widens the transparency range to 40 μm and improves the rupture strength up to 200 MPa, which is due to the decrease in average fiber grain size up to 95 nm—nanocrystalline size. Using a CCD camera for the far field investigation at 10.6 μm, we showed the single mode of the fibers obtained.

  12. Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles: part 2-toxicity and Ag speciation.

    PubMed

    Bone, Audrey J; Colman, Benjamin P; Gondikas, Andreas P; Newton, Kim M; Harrold, Katherine H; Cory, Rose M; Unrine, Jason M; Klaine, Stephen J; Matson, Cole W; Di Giulio, Richard T

    2012-07-03

    To study the effects of complex environmental media on silver nanoparticle (AgNP) toxicity, AgNPs were added to microcosms with freshwater sediments and two species of aquatic plants (Potamogeton diversifolius and Egeria densa), followed by toxicity testing with microcosm surface water. Microcosms were designed with four environmental matrices in order to determine the contribution of each environmental compartment to changes in toxicity: water only (W), water + sediment (WS), water + plants (WP), and water + plants + sediment (WPS). Silver treatments included AgNPs with two different coatings, gum arabic (GA-AgNPs) or polyvinylpyrollidone (PVP-AgNPs), as well as AgNO(3). Water samples taken from the microcosms at 24 h postdosing were used in acute toxicity tests with two standard model organisms, early life stage zebrafish (Danio rerio) and Daphnia magna. Speciation of Ag in these samples was analyzed using Ag L3-edge X-ray absorption near edge spectroscopy (XANES). Silver speciation patterns for the nanoparticle treatments varied significantly by coating type. While PVP-AgNPs were quite stable and resisted transformation across all matrices (>92.4% Ag(0)), GA-AgNP speciation patterns suggest significantly higher transformation rates, especially in treatments with plants (<69.2% and <58.8% Ag(0) in WP and WPS, respectively) and moderately increased transformation with sediments (<85.6% Ag(0)). Additionally, the presence of plants in the microcosms (with and without sediments) reduced both the concentration of Ag in the water column and toxicity for all Ag treatments. Reductions in toxicity may have been related to decreased water column concentrations as well as changes in the surface chemistry of the particles induced by organic substances released from the plants.

  13. Ag@Ag8W4O16 nanoroasted rice beads with photocatalytic, antibacterial and anticancer activity.

    PubMed

    Selvamani, Muthamizh; Krishnamoorthy, Giribabu; Ramadoss, Manigandan; Sivakumar, Praveen Kumar; Settu, Munusamy; Ranganathan, Suresh; Vengidusamy, Narayanan

    2016-03-01

    Increasing resistance of pathogens and cancer cell line towards antibiotics and anticancer agents has caused serious health problems in the past decades. Due to these problems in recent years, researchers have tried to combine nanotechnology with material science to have intrinsic antimicrobial and anticancer activity. The metals and metal oxides were investigated with respect to their antimicrobial and anticancer effects towards bacteria and cancer cell line. In the present work metal@metal tungstate (Ag@Ag8W4O16 nanoroasted rice beads) is investigated for antibacterial activity against Escherichia coli and Staphylococcus aureus using Mueller-Hinton broth and the anticancer activity against B16F10 cell line was studied. Silver decorated silver tungstate (Ag@Ag8W4O16) was synthesized by the microwave irradiation method using Cetyl Trimethyl Ammonium Bromide (CTAB). Ag@Ag8W4O16 was characterized by using various spectroscopic techniques. The phase and crystalline nature were analyzed by using XRD. The morphological analysis was carried out using Field Emission Scanning Electron Microscopy (FE-SEM), and High Resolution Transmission Electron Microscopy (HR-TEM). Further, Fourier Transform Infrared Spectroscopy (FT-IR) and Raman spectral analysis were carried out in order to ascertain the presence of functional groups in Ag@Ag8W4O16. The optical property was investigated using Diffuse Reflectance Ultraviolet-Visible Spectroscopy (DRS-UV-Vis) and the band gap was found to be 3.08eV. Surface area of the synthesized Ag@Ag8W4O16 wasanalyzed by BET analysis and Ag@Ag8W4O16 was utilized for the degradation of organic dyes methylene blue and rhodamine B. The morphology of the Ag@Ag8W4O16 resembles roasted rice beads with breath and length in nm range. The oxidation state of tungsten (W) and silver (Ag) was investigated using X-ray photoelectron spectroscopy (XPS).

  14. Nanojoining of crossed Ag nanowires: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Cui, Jianlei; Wang, Xuewen; Barayavuga, Theogene; Mei, Xuesong; Wang, Wenjun; He, Xiaoqiao

    2016-07-01

    Ag nanowires are considered to be the promising candidates for future electronic circuit owing to the excellent electrical and thermal properties, with the miniaturization of electronics devices into nanometer scale. Though interconnect technology between Ag nanowires (Ag NWs) is essential for nanofunctional devices, it lacks sufficient experimental data. Besides, the determination of Ag NW interconnection configuration is experimentally difficult to do for lacking the sufficient investigation of atomic configuration evolution during nanojoining process. So the nanojoining between the crossed Ag NWs with the same diameter of 2 nm and different lengths was performed by molecular dynamics simulation to explain the unclear nanojoining mechanism based on thermal effect. As the simulation results present, when the nanojoining temperature is relatively high, though the Ag NWs are connected with the interpenetration effect of Ag atoms at the crossed nanojunction area, the nanostructures of Ag NWs have been seriously deformed with shorter length and larger diameter, showing relatively more obvious melting characteristics based on the chaotic atomic structures. If the temperature is reduced to 300 K as cold welding, the crossed Ag NWs can be partially contacted with the partial mixture of Ag atoms, and the interstices always exist between the Si surface and the upper Ag nanowire. In addition, the obvious dislocation phenomenon will appear and evolve as time goes on. Consequently, the dominant mechanism was revealed for providing a fundamental understanding of how `hot' and `cold' welding technology affects the atomic contact configuration, respectively.

  15. A novel hexanuclear silver(I) cluster containing a regular Ag6 ring with short Ag-Ag distances and an argentophilic interaction.

    PubMed

    Barreiro, Elena; Casas, José S; Couce, María D; Laguna, Antonio; López-de-Luzuriaga, José M; Monge, Miguel; Sánchez, Agustin; Sordo, José; Vázquez López, Ezequiel M

    2013-04-28

    The hexanuclear complex [HQ][Ag(p-mpspa)] (H2-p-mpspa = 3-(4-methoxyphenyl)-2-sulfanylpropenoic acid) was prepared by reacting the precursor [Ag(H-p-mpspa)] with diisopropylamine (Q). The complex was characterized by spectroscopic techniques and the structure was solved by a single crystal X-ray diffraction study. The crystal contains hydrogen-bonded diisopropylammonium cations and [Ag6(p-mpspa)6](6-) anions that are based on a regular Ag6 ring with each S-donor atom of the sulfanylcarboxylate ligand bridging two Ag atoms. The Ag-Ag bond distances, 2.8036(6) Å, are very short and suggest a closed shell d(10)···d(10) argentophilic interaction. To analyze the relative role of this interaction and that of the S-bridging atom the anionic [Ag6(p-mpspa)6](6-) moiety has been studied theoretically at the Hartree-Fock (HF) and 2(nd) order Møller-Plesset perturbation theory (MP2) levels on a very simple [Ag6(SH)6] A model system. A large model system [Ag6(p-mpspa)6](6-)B has also been studied by applying the ONIOM (QM/MM) approach using HF/UFF and MP2/UFF combinations as levels of theory. The six experimentally observed Ag(I)···Ag(I) supported interactions are reproduced when dispersion-type interactions are considered in the theory levels MP2 and ONIOM MP2/UFF for models A and B, respectively. The use of HF and ONIOM HF/UFF levels led to a similar hexanuclear structure but displayed a large hexagonal disposition without argentophilic contacts for both models A and B. The steric hindrance exerted by the ligands did not preclude the formation of argentophilic interactions, as observed experimentally.

  16. RRR and thermal conductivity of Ag and Ag-0.2 wt.%Mg alloy in Ag/Bi-2212 wires

    NASA Astrophysics Data System (ADS)

    Li, P.; Ye, L.; Jiang, J.; Shen, T.

    2015-12-01

    Residual resistivity ratio (RRR) and thermal conductivity of metal matrix in metal/superconductor composite wires are important parameters for designing superconducting magnets. However, the resistivity of silver in reacted Ag/Bi-2212 wires has yet to be determined over temperature range from 4.2 K to 80 K because Bi-2212 filaments have a critical transition temperature Tc of ∼ 80 K, and because it is unknown whether the RRR of Ag/Bi-2212 degrades with Cu diffusing from Bi-2212 filaments into silver sheathes at elevated temperatures and to what degree it varies with heat treatment. We measured the resistivity of stand-alone Ag and AgMg (Ag-0.2 wt.% Mg) wires as well as the resistivity of Ag and Ag-0.2 wt.% Mg in Ag/Bi- 2212 round wires reacted in 1 bar oxygen at 890 °C for 1, 8, 24 and 48 hours and quickly cooled to room temperature. The heat treatment was designed to reduce the critical current Ic of Bi- 2212 wires to nearly zero while allowing Cu loss to fully manifest itself. We determined that pure silver exhibits a RRR of ∼ 220 while the oxide-dispersion strengthened Ag-Mg exhibits a RRR of ∼ 5 in stand-alone samples. A surprising result is that the RRR of silver in the composite round wires doesn't degrade with extended time at 890 °C for up to 48 hours. This surprising result may be explained by our observation that the Cu that diffuses into silver tends to form Cu2O precipitates in oxidizing atmosphere, instead of forming Ag-Cu solution alloy. We also measured the thermal conductivity and the magneto-resistivity of pure Ag and Ag-0.2 wt. % Mg from 4.2 K to 300 K in magnetic fields up to 14.8 T and summarized them using a Kohler plot.

  17. Interfacial Reactions in Sn-Ag/Co Couples

    NASA Astrophysics Data System (ADS)

    Chen, Sinn-wen; Chen, Tung-Kai; Chang, Jui-shen; Hsu, Chia-ming; Chen, Wei-An

    2014-02-01

    Sn-Ag alloys are important solders, and Co and Co alloys are investigated as barrier layers. Interfacial reactions in Sn-Ag/Co couples were examined in this study for Ag contents of 1.0 wt.%, 2.0 wt.%, and 3.5 wt.% and reaction temperatures of 250°C, 200°C, and 150°C. Only CoSn3 formed in Sn-Ag/Co couples reacted at 250°C, but both CoSn3 and Ag3Sn formed in couples reacted at 200°C and 150°C. The reaction layer was 100 μm thick in Sn-3.5 wt.%Ag/Co couples reacted at 200°C for 110 h. The reaction rates were lower if Ag was added, but remained very fast compared with those for Ni and Ni-based substrates.

  18. Photo-catalytic activity of Plasmonic Ag@AgCl nanoparticles (synthesized via a green route) for the effective degradation of Victoria Blue B from aqueous phase.

    PubMed

    Devi, Th Babita; Begum, Shamima; Ahmaruzzaman, M

    2016-07-01

    This study reports a green process for the fabrication of Ag@AgCl (silver@silver chloride) nanoparticles by using Aquilaria agallocha (AA) leaves juice without using any external reagents. The effect of various reaction parameters, such as reaction temperature, reaction time and concentration of Aquilaria agallocha leaves juice in the formation of nanoparticles have also been investigated. From the FTIR spectra of leaves juice and phytochemicals test, it was found that flavonoids present in the leaves are responsible for the reduction of Ag(+) ions to Ag(0) species and leads to the formation of Ag@AgCl NPs. The synthesized Ag@AgCl NPs were utilized for the removal of toxic and hazardous dyes, such as Victoria Blue B from aqueous phase. Approximately, 99.46% degradation of Victoria Blue B dye were observed with Ag@AgCl NPs. Furthermore, the photocatalytic activity of the Ag@AgCl nanoparticles was unchanged after 5cycles of operation.

  19. New frontiers in water purification: highly stable amphopolycarboxyglycinate-stabilized Ag-AgCl nanocomposite and its newly discovered potential

    NASA Astrophysics Data System (ADS)

    Krutyakov, Yurii A.; Zherebin, Pavel M.; Kudrinskiy, Alexey A.; Zubavichus, Yan V.; Presniakov, Mikhail Yu; Yapryntsev, Alexey D.; Karabtseva, Anastasia V.; Mikhaylov, Dmitry M.; Lisichkin, Georgii V.

    2016-09-01

    A simple synthetic procedure for high-stable dispersions of porous composite Ag/AgCl nanoparticles stabilized with amphoteric surfactant sodium tallow amphopolycarboxyglycinate has been proposed for the first time. The prepared samples were characterized by UV-vis spectroscopy, x-ray powder diffraction (XRD), x-ray photoelectron spectroscopy, small area electron diffraction (SAED), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and electron probe micro-analysis. In addition, measurements (carried out at the Kurchatov synchrotron radiation source stations) of the Ag K-edge extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge structure (XANES) spectra and XRD of the prepared nanoparticles have been performed. The obtained results suggest that small-sized Ag clusters are homogeneously distributed in the mass of the AgCl nanoparticle (~80 nm) formed during the synthesis. The Ag/AgCl dispersion demonstrates photocatalytic activity (with respect to methyl orange) and high bactericidal activity against E. coli. This activity is superior to the activity of both Ag and AgCl nanoparticles stabilized by the same surfactant. Thus, porous composite Ag/AgCl nanoparticles can be used as a multifunctional agent that is able to remove both pollutants and bacterium from water.

  20. Sequestration of Ag(I) from aqueous solution as Ag(0) nanostructures by nanoscale zero valent iron (nZVI)

    NASA Astrophysics Data System (ADS)

    Zhang, Yalei; Yan, Jing; Dai, Chaomeng; Li, Yuting; Zhu, Yan; Zhou, Xuefei

    2015-11-01

    This study investigates the application of nanoparticle zero valent iron (nZVI) to sequester Ag(I) as Ag(0) nanostructures from aqueous solution. Batch experiments were performed with nZVI exposed to aqueous Ag(I) to investigate the effects of environmental parameters, including nZVI dose, temperature and pH. High temperature facilitates Ag(I) sequestration, and the rate constants are determined to be 0.02, 0.12, and 0.31 mg L/m2 at 30, 50, and 60 °C, respectively. Ag(I) sequestration was adversely affected by adding nitric acid to the solution due to significant acid washing, decreasing the available nZVI active sites. Characterization techniques including TEM, XRD, and HR-XPS revealed that nZVI is oxidized to lepidocrocite and magnetite/maghemite and confirmed the formation of nanocrystalline silver. HR-XPS analysis indicated that Ag2O forms rapidly as an intermediate due to Ag(I) adsorption onto the FeOOH layer. The Ag(0) nanostructures that are formed are fractal, spherical, and dendritic or rod-like, respectively, in morphology by FE-TEM images at different Ag/Fe mass ratios. A general reaction model for the interaction Ag(I) with nZVI is proposed. Our results suggest that nZVI is effective for Ag(I) removal.

  1. Plasmonic Ag@AgCl nanotubes fabricated from copper nanowires as high-performance visible light photocatalyst.

    PubMed

    Sun, Lei; Zhang, Ruizhong; Wang, Yuan; Chen, Wei

    2014-09-10

    In this paper, plasmonic photocatalyst Ag@AgCl nanotubes were prepared by a cost-efficient and template-based method and their photocatalytic properties were studied. In the synthesis, copper nanowires were first synthesized and Ag nanotubes were then obtained through the galvanic reaction between copper and Ag ions. The formation of Ag@AgCl nanotubes was finally achieved by in situ oxidation reaction upon the addition of FeCl3. The crystal structure of the product was characterized by X-ray powder diffraction. The morphology and composition of the composite were studied by scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy measurements. All the structure characterizations showed that the tubulate product was produced by the synthetic processes. By using the obtained product as photocatalyst, the photodegradation of methyl orange (MO) was investigated under visible light. The experimental results showed that the as-prepared Ag@AgCl nanotubes exhibit excellent photocatalytic performance and high stability. Under visible light irradiation, more than 92.58% of the MO dye has been decomposed in 10 min on the product with a 1:1 ratio of Fe/Ag. On the basis of the proposed mechanism, the improved photocatalytic activities of the Ag@AgCl hybrids can be ascribed to the enhanced surface area for dye molecule adsorption, enhanced visible light absorbance, and the efficient charge separation of the hybrid nanostructures.

  2. Mechanisms of Toxicity of Ag Nanoparticles in Comparison to Bulk and Ionic Ag on Mussel Hemocytes and Gill Cells.

    PubMed

    Katsumiti, Alberto; Gilliland, Douglas; Arostegui, Inmaculada; Cajaraville, Miren P

    2015-01-01

    Silver nanoparticles (Ag NPs) are increasingly used in many products and are expected to end up in the aquatic environment. Mussels have been proposed as marine model species to evaluate NP toxicity in vitro. The objective of this work was to assess the mechanisms of toxicity of Ag NPs on mussel hemocytes and gill cells, in comparison to ionic and bulk Ag. Firstly, cytotoxicity of commercial and maltose stabilized Ag NPs was screened in parallel with the ionic and bulk forms at a wide range of concentrations in isolated mussel cells using cell viability assays. Toxicity of maltose alone was also tested. LC50 values were calculated and the most toxic Ag NPs tested were selected for a second step where sublethal concentrations of each Ag form were tested using a wide array of mechanistic tests in both cell types. Maltose-stabilized Ag NPs showed size-dependent cytotoxicity, smaller (20 nm) NPs being more toxic than larger (40 and 100 nm) NPs. Maltose alone provoked minor effects on cell viability. Ionic Ag was the most cytotoxic Ag form tested whereas bulk Ag showed similar cytotoxicity to the commercial Ag NPs. Main mechanisms of action of Ag NPs involved oxidative stress and genotoxicity in the two cell types, activation of lysosomal AcP activity, disruption of actin cytoskeleton and stimulation of phagocytosis in hemocytes and increase of MXR transport activity and inhibition of Na-K-ATPase in gill cells. Similar effects were observed after exposure to ionic and bulk Ag in the two cell types, although generally effects were more marked for the ionic form. In conclusion, results suggest that most observed responses were due at least in part to dissolved Ag.

  3. Mechanisms of Toxicity of Ag Nanoparticles in Comparison to Bulk and Ionic Ag on Mussel Hemocytes and Gill Cells

    PubMed Central

    Katsumiti, Alberto; Gilliland, Douglas; Arostegui, Inmaculada; Cajaraville, Miren P.

    2015-01-01

    Silver nanoparticles (Ag NPs) are increasingly used in many products and are expected to end up in the aquatic environment. Mussels have been proposed as marine model species to evaluate NP toxicity in vitro. The objective of this work was to assess the mechanisms of toxicity of Ag NPs on mussel hemocytes and gill cells, in comparison to ionic and bulk Ag. Firstly, cytotoxicity of commercial and maltose stabilized Ag NPs was screened in parallel with the ionic and bulk forms at a wide range of concentrations in isolated mussel cells using cell viability assays. Toxicity of maltose alone was also tested. LC50 values were calculated and the most toxic Ag NPs tested were selected for a second step where sublethal concentrations of each Ag form were tested using a wide array of mechanistic tests in both cell types. Maltose-stabilized Ag NPs showed size-dependent cytotoxicity, smaller (20 nm) NPs being more toxic than larger (40 and 100 nm) NPs. Maltose alone provoked minor effects on cell viability. Ionic Ag was the most cytotoxic Ag form tested whereas bulk Ag showed similar cytotoxicity to the commercial Ag NPs. Main mechanisms of action of Ag NPs involved oxidative stress and genotoxicity in the two cell types, activation of lysosomal AcP activity, disruption of actin cytoskeleton and stimulation of phagocytosis in hemocytes and increase of MXR transport activity and inhibition of Na-K-ATPase in gill cells. Similar effects were observed after exposure to ionic and bulk Ag in the two cell types, although generally effects were more marked for the ionic form. In conclusion, results suggest that most observed responses were due at least in part to dissolved Ag. PMID:26061169

  4. A variable Ag-Cr-Oxalate channel lattice: [M(x)Ag(0.5)(-)(x)(H(2)O)(3)]@[Ag(2.5)Cr(C(2)O(4))(3)], M = K, Cs, Ag.

    PubMed

    Dean, Philip A W; Craig, Don; Dance, Ian; Russell, Vanessa; Scudder, Marcia

    2004-01-26

    Reaction of aqueous AgNO(3) with aqueous M(3)[Cr(ox)(3)] in >or=3:1 molar ratio causes the rapid growth of large, cherry-black, light-stable crystals which are not Ag(3)[Cr(ox)(3)], but [M(0.5)(H(2)O)(3)]@[Ag(2.5)Cr(ox)(3)] (ox(2)(-) = oxalate, C(2)O(4)(2)(-); M = Na, K, Cs, Ag, or mixtures of Ag and a group 1 element). The structure of these crystals contains an invariant channeled framework, with composition [[Ag(2.5)Cr(ox)(3)](-)(0.5)]( infinity ), constructed with [Cr(ox)(3)] coordination units linked by Ag atoms through centrosymmetric [Cr-O(2)C(2)O(2)-Ag](2) double bridges. The framework composition [Ag(2.5)Cr(ox)(3)](-)(0.5) occurs because one Ag is located on a 2-fold axis. Within the channels there is a well-defined and ordered set of six water molecules, strongly hydrogen bonded to each other and some of the oxalate O atoms. This invariant channel plus water structure accommodates group 1 cations, and/or Ag cations, in different locations and in variable proportions, but always coordinated by channel water and some oxalate O atoms. The general formulation of these crystals is therefore [M(x)Ag(0.5-x)(H(2)O)(3)]@[Ag(2.5)Cr(ox)(3)]. Five different crystals with this structure are reported, with compositions 1 Ag(0.5)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 2 Cs(0.19)Ag(0.31)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 3 K(0.28)Ag(0.22)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 4 Cs(0.41)Ag(0.09)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), and 5 Cs(0.43)Ag(0.07) [Ag(2.5)Cr(ox)(3)](H(2)O)(3). All crystallize in space group C2/c, with a approximately 18.4, b approximately 14.6, c approximately 12.3 A, beta approximately 113 degrees. Pure Ag(3)[Cr(ox)(3)](H(2)O)(3), which has the same crystal structure (1), was obtained from water by treating Li(3)[Cr(ox)(3)] with excess AgNO(3). Complete dehydration of all of these compounds occurs between 30 and 100 degrees C, with loss of diffraction, but rehydration by exposure to H(2)O(g) at ambient temperature leads to recovery of the original diffraction pattern. In single

  5. PERFORMANCE OF THE AGS TRANSITION JUMP SYSTEM.

    SciTech Connect

    AHRENS,L.A.; BRENNAN,J.M.; GLENN,J.W.; ROSER,T.; VAN ASSELT,W.K.

    1999-03-29

    The transition jump system has been indispensable to the high intensity proton operation of the AGS complex. Nevertheless, transition crossing remains one of the major hurdles as the accelerator complex intensity is pushed upward. To enhance the performance of the system ''quadrupole pumping'' in the Booster is used to minimize the necessary longitudinal dilution of the beam on the AGS injection porch. During the transition jump sextupole correctors at strategic locations are pulsed to minimize the effects of the chromatic non-linearity of the jump system. The available instrumentation for diagnosing the performance of the system will be described, along with installed hardware to counter the non-linear effects of the transition jump system.

  6. Stability of magic planar Ag clusters

    NASA Astrophysics Data System (ADS)

    Chiu, Y. P.; Ou, Y. S.; Chang, Y. R.; Wei, C. M.; Chang, C. S.; Tsong, Tien T.

    2007-03-01

    The spontaneous assembly of atoms and molecules in a system has attracted many research interests and created numerous potential applications. Utilizing the periodic pattern found on the Pb quantum islands, which are grown on the Si(111) surface, we have recently discovered that self-organized Ag planar clusters formed on these templates exhibit enhanced stability at some particular sizes [1]. Existence of the magic atom numbers in these clusters is mainly attributed to the electronic confinement effect. Here, we further explore the strength of these magic clusters subject to the temperature rise and oxygen exposure. Detailed calculations based on ab initio density functional theory have also been performed. The results help establish the relation between the physical and chemical stability of a magic Ag cluster and its size and shape. Ref:[1] Ya-Ping Chiu, Li-Wei Huang, Ching-Ming Wei, Chia-Seng Chang, and Tien-Tzou Tsong, Phys. Rev. Lett. 97, 165504 (2006).

  7. Spots on AG Virginis - Paradigm or panacea?

    NASA Astrophysics Data System (ADS)

    Bell, S. A.; Rainger, P. P.; Hilditch, R. W.

    1990-12-01

    New photometric and spectroscopic observations of the eclipsing binary AG Vir are presented. Medium-resolution spectroscopy has allowed the measurement of velocities for the secondary component for the first time. The V light curve shows many of the features seen in previous studies of this system. A full analysis of the spectroscopic and photometric data has been made which suggests that the system is either in a marginal state of conatact or a deep-contact configuration depending on the type of spot model invoked. AG Vir constitutes an excellent example of the expected manifestations of spot activity on a light curve. It also demonstrates the ease with which the spot phenomenon can be invoked to explain the appearance of a light curve and to provide conflicting results. This study shows the necessity of a more thorough investigation of this system using Doppler-imaging techniques and simultaneous infrared and optical photometry.

  8. Ag-bridged Ag2O nanowire network/TiO2 nanotube array p-n heterojunction as a highly efficient and stable visible light photocatalyst.

    PubMed

    Liu, Chengbin; Cao, Chenghao; Luo, Xubiao; Luo, Shenglian

    2015-03-21

    A unique Ag-bridged Ag2O nanowire network/TiO2 nanotube array p-n heterojunction (Ag-Ag2O/TiO2 NT) was fabricated by simple electrochemical method. Ag nanoparticles were firstly electrochemically deposited onto the surface of TiO2 NT and then were partly oxidized to Ag2O nanowires while the rest of Ag mother nanoparticles were located at the junctions of Ag2O nanowire network. The Ag-Ag2O/TiO2 NT heterostructure exhibited strong visible-light response, effective separation of photogenerated carriers, and high adsorption capacity. The integration of Ag-Ag2O self-stability structure and p-n heterojunction permitted high and stable photocatalytic activity of Ag-Ag2O/TiO2 NT heterostructure photocatalyst. Under 140-min visible light irradiation, the photocatalytic removal efficiency of both dye acid orange 7 (AO7) and industrial chemical p-nitrophenol (PNP) over Ag-Ag2O/TiO2 NT reached nearly 100% much higher than 17% for AO7 or 13% for PNP over bare TiO2 NT. After 5 successive cycles under 600-min simulated solar light irradiation, Ag-Ag2O/TiO2 NT remained highly stable photocatalytic activity.

  9. A partial snake for the AGS

    SciTech Connect

    Ratner, L.G.

    1990-01-01

    Based on snake experiments at the Indian University Cyclotron Facility and computer simulations at Brookhaven National Laboratory, as well as the conclusions of a BNL mini-workshop, we feel that a partial Siberian snake is a practical device for the AGS. It is anticipated that such a device could reduce the polarized beam tune-up time from 2--3 weeks to 2--3 days.

  10. New beam instrumentation in the AGS Booster

    SciTech Connect

    Witkover, R.L.

    1991-01-01

    The AGS Booster was designed to accelerate beams from 2{times}10{sup 10} polarized protons to 1.5{times}10{sup 13} protons and heavy ions through Au{sup +33}. The range of beam parameters and the high vacuum, and radiation environment presented challenges for the beam instrumentation. Some interesting beam monitors in the Booster and transport lines, will be described. Where available, results will be presented. 21 refs., 7 figs.

  11. Electrochemical detection of aqueous Ag+ based on Ag+-assisted ligation reaction

    NASA Astrophysics Data System (ADS)

    Miao, Peng; Han, Kun; Wang, Bidou; Luo, Gangyin; Wang, Peng; Chen, Mingli; Tang, Yuguo

    2015-03-01

    In this work, a novel strategy to fabricate a highly sensitive and selective biosensor for the detection of Ag+ is proposed. Two DNA probes are designed and modified on a gold electrode surface by gold-sulfur chemistry and hybridization. In the presence of Ag+, cytosine-Ag+-cytosine composite forms and facilitates the ligation event on the electrode surface, which can block the release of electrochemical signals labeled on one of the two DNA probes during denaturation process. Ag+ can be sensitively detected with the detection limit of 0.1 nM, which is much lower than the toxicity level defined by U.S. Environmental Protection Agency. This biosensor can easily distinguish Ag+ from other interfering ions and the performances in real water samples are also satisfactory. Moreover, the two DNA probes are designed to contain the recognition sequences of a nicking endonuclease, and the ligated DNA can thus be cleaved at the original site. Therefore, the electrode can be regenerated, which allows the biosensor to be reused for additional tests.

  12. Electrochemical detection of aqueous Ag+ based on Ag+-assisted ligation reaction.

    PubMed

    Miao, Peng; Han, Kun; Wang, Bidou; Luo, Gangyin; Wang, Peng; Chen, Mingli; Tang, Yuguo

    2015-03-17

    In this work, a novel strategy to fabricate a highly sensitive and selective biosensor for the detection of Ag(+) is proposed. Two DNA probes are designed and modified on a gold electrode surface by gold-sulfur chemistry and hybridization. In the presence of Ag(+), cytosine-Ag(+)-cytosine composite forms and facilitates the ligation event on the electrode surface, which can block the release of electrochemical signals labeled on one of the two DNA probes during denaturation process. Ag(+) can be sensitively detected with the detection limit of 0.1 nM, which is much lower than the toxicity level defined by U.S. Environmental Protection Agency. This biosensor can easily distinguish Ag(+) from other interfering ions and the performances in real water samples are also satisfactory. Moreover, the two DNA probes are designed to contain the recognition sequences of a nicking endonuclease, and the ligated DNA can thus be cleaved at the original site. Therefore, the electrode can be regenerated, which allows the biosensor to be reused for additional tests.

  13. Plasmon resonances of Ag(001) and Ag(111) studied by power density absorption and photoyield

    NASA Astrophysics Data System (ADS)

    Raseev, Georges

    2013-09-01

    This paper models the surface and bulk plasmon resonances in photoabsorption and photoelectron spectra (PES) of the Ag(001) and the Ag(111) surfaces in the region of 2.8-10 eV excited with a p or transverse magnetic linearly polarized laser incident at 45°. Using the recently developed vector potential from electron density-coupled integro-differential equations (VPED-CIDE, [1,2]) model, we calculate the electron escaping probability from the power density absorption, Feibelman's parameter d⊥, the reflectance and the Fermi PE cross section. In the PES experiment the work function is lowered from 4.5 to 2.8 eV by adsorption of sodium. In our model, this lowering is introduced by adding a phenomenological term to the DFT-LDA model potential of Chulkov et al. [3]. For both Ag(001) and Ag(111), the calculated observables display two plasmon resonances, the multipole surface at 3.70 eV and the bulk at 3.90 eV, in fair agreement with the experimental PES of Barman et al. [4,5] and the reflectance. Except for the Fermi PE cross section of Ag(001) which does not display the multipole surface plasmon resonance at 3.70 eV. This poor result is probably due to a poor calculation of the conduction band wave functions obtained from the Schrödinger equation using the modified DFT-LDA model potential of Chulkov et al.

  14. Isomorphism and solid solutions among Ag- and Au-selenides

    NASA Astrophysics Data System (ADS)

    Palyanova, Galina A.; Seryotkin, Yurii V.; Kokh, Konstantin A.; Bakakin, Vladimir V.

    2016-09-01

    Au-Ag selenides were synthesized by heating stoichiometric mixtures of elementary substances of initial compositions Ag2-xAuxSe with a step of x=0.25 (0≤x≤2) to 1050 °C and annealing at 500 °C. Scanning electron microscopy, optical microscopy, electron microprobe analysis and X-ray powder diffraction methods have been applied to study synthesized samples. Results of studies of synthesized products revealed the existence of three solid solutions with limited isomorphism Ag↔Au: naumannite Ag2Se - Ag1.94Au0.06Se, fischesserite Ag3AuSe2 - Ag3.2Au0.8Se2 and gold selenide AuSe - Au0.94Ag0.06Se. Solid solutions and AgAuSe phases were added to the phase diagram of Ag-Au-Se system. Crystal-chemical interpretation of Ag-Au isomorphism in selenides was made on the basis of structural features of fischesserite, naumannite, and AuSe.

  15. HBcrAg Identifies Patients Failing to Achieve HBeAg Seroconversion Treated with Pegylated Interferon Alfa-2b

    PubMed Central

    Ma, Hui; Yang, Rui-Feng; Li, Xiao-He; Jin, Qian; Wei, Lai

    2016-01-01

    Background: We aimed to evaluate the usefulness of serum hepatitis B virus core-related antigens (HBcrAg) for predicting hepatitis B e antigen (HBeAg) seroconversion in HBeAg-positive chronic hepatitis B patients treated with conventional interferon (IFN) alfa-2b or pegylated IFN. Methods: Fifty-eight patients were enrolled: 29 for the training group and 29 for the validating group. HBcrAg was measured at baseline, week 12, end of the treatment, and 12- and 24-week follow-ups. Sixteen patients in the training group were enrolled in the long-term follow-up (LTFU), during which time the dynamics of the HBcrAg was monitored. Results: The serum HBcrAg level gradually declined during treatment among the HBeAg seroconversion patients of the training group (from baseline, week 12, end of the treatment, 12-week follow-up to 24-week follow-up were 110,245 kU/ml, 3760 kU/ml, 7410 kU/ml, 715 kU/ml, 200 kU/ml, respectively). HBcrAg <19,565 kU/ml at week 24, HBcrAg <34,225 kU/ml at 12-week follow-up, and HBcrAg decrease ≥0.565 log10 kU/ml from the baseline to the end of treatment (EOT) had negative predictive values (NPVs) of 100% for HBeAg seroconversion at the end of follow-up, whereas the positive predictive values (PPVs) were 30.77%, 26.67%, and 25.00%, respectively. The patients with HBeAg seroconversion at the end of 24-week follow-up remained in seroconversion during the LTFU, during which time their serum HBcrAg levels steadily declined or even became undetectable, ranging from 0 to 2.1 kU/ml. Conclusions: Effective antiviral treatment can decrease HBcrAg levels in the serum. The NPVs of HBcrAg for predicting HBeAg seroconversion at 24-week follow-up was 100%, but the PPVs were not satisfactory (all <31%). The serum HBcrAg levels of the patients with HBeAg seroconversion at the end of the 24-week follow-up steadily declined or even became undetectable during the LTFU. PMID:27625094

  16. Heterojunction double dumb-bell Ag2Te-Te-Ag2Te nanowires

    NASA Astrophysics Data System (ADS)

    Som, Anirban; Pradeep, T.

    2012-07-01

    Growth of isolated axial heterojunction nanowires by a solution phase growth process is reported. The dumb-bell shaped nanowires contain two silver telluride sections at the extremes joined by a tellurium section. Reaction of silver nitrate with tellurium NWs in aqueous solution at a molar ratio of 1 : 1 leads to the formation of amorphous partially silver reacted Te NWs. Low temperature (75 °C) solution phase annealing of these silver deficient NWs results in phase segregation producing crystalline Ag2Te and Te phases with clear phase boundaries along the wire axis. Structural characterization of these dumb-bell shaped NWs was performed with different microscopic and spectroscopic tools. Solution phase silver concentration over the course of annealing indicated leaching of silver into the solution during the formation of biphasic NWs. Similar Ag : Te ratios were observed in both partially silver reacted Te NWs and phase segregated Ag2Te-Te-Ag2Te NWs and this was attributed to redeposition of leached silver on the amorphous NW tips which eventually resulted in complete phase segregation. Successful integration of different chemical components in single NWs is expected to open up new application possibilities as physical and chemical properties of the heterostructure can be exploited.Growth of isolated axial heterojunction nanowires by a solution phase growth process is reported. The dumb-bell shaped nanowires contain two silver telluride sections at the extremes joined by a tellurium section. Reaction of silver nitrate with tellurium NWs in aqueous solution at a molar ratio of 1 : 1 leads to the formation of amorphous partially silver reacted Te NWs. Low temperature (75 °C) solution phase annealing of these silver deficient NWs results in phase segregation producing crystalline Ag2Te and Te phases with clear phase boundaries along the wire axis. Structural characterization of these dumb-bell shaped NWs was performed with different microscopic and spectroscopic

  17. SPIN TRANSPORT FROM AGS TO RHIC WTIH TWO PARTIAL SNAKES IN AGS.

    SciTech Connect

    MACKAY, W.W.; LUCCIO, A.U.; TSOUPAS, N.; TAKANO, J.

    2006-06-23

    The stable spin direction in the RHIC rings is vertical. With one or two partial helical Siberian snakes in the AGS, the stable spin direction at extraction is not vertical. Interleaved vertical and horizontal bends in the transport line between AGS and the RHIC rings also tend to tip the spin away from the vertical. In order to maximize polarization in RHIC, we examined several options to improve the matching of the stable spin direction during beam transfer from the AGS to each of the RHIC rings. While the matching is not perfect, the most economical method appears to be a lowering of the injection energy by one unit of G{gamma} from 46.5 to 45.5.

  18. Formation of surface oxides and Ag2O thin films with atomic oxygen on Ag(111)

    NASA Astrophysics Data System (ADS)

    Derouin, Jonathan; Farber, Rachael G.; Heslop, Stacy L.; Killelea, Daniel R.

    2015-11-01

    The nature of the oxygen species adsorbed to silver surfaces is a key component of the heterogeneously catalyzed epoxidation of ethylene and partial oxidation of methanol over silver catalysts. We report the formation of two different silver-oxygen species depending on the flux and energy of incident gas-phase oxygen atoms on an Ag(111) surface. A combination of surface science techniques was used to characterize the oxidized surfaces. Atomic oxygen was generated with an Ir filament; lower temperatures created surface oxides previously reported. When O was deposited with a higher filament temperature, the surface became highly corrugated, little subsurface oxygen was observed, and thin layers of Ag2O were likely formed. These results show that the energy and flux of oxygen are important parameters in the chemical identity and abundance of oxygen on silver surfaces and suggest that formation of the Ag2O thin film hinders formation of subsurface oxygen.

  19. Plasmon-assisted site-selective growth of Ag nanotriangles and Ag-Cu2O hybrids.

    PubMed

    Xie, Ying; Ma, Liang; Cheng, Zi-Qiang; Yang, Da-Jie; Zhou, Li; Hao, Zhong-Hua; Wang, Qu-Quan

    2017-03-21

    We report a plasmon-assisted growth of metal and semiconductor onto the tips of Ag nanotriangles (AgNTs) under light irradiation. The site-selective growth of Ag onto AgNTs are firstly demonstrated on the copper grids and amine-coated glass slides. As the irradiation time increases, microscopic images indicate that AgNTs gradually touch with each other and finally "weld" tip-to-tip together into the branched chains. Meanwhile, the redshift of plasmon band is observed in the extinction spectra, which agrees well the growth at the tips of AgNTs and the decrease of the gaps between the adjacent nanotriangles. We also synthesize AgNT-Cu2O nanocomposites by using a photochemical method and find that the Cu2O nanoparticles preferably grow on the tips of AgNTs. The site-selective growth of Ag and Cu2O is interpreted by the local field concentration at the tips of AgNTs induced by surface plasmon resonance under light excitation.

  20. Plasmon-assisted site-selective growth of Ag nanotriangles and Ag-Cu2O hybrids

    NASA Astrophysics Data System (ADS)

    Xie, Ying; Ma, Liang; Cheng, Zi-Qiang; Yang, Da-Jie; Zhou, Li; Hao, Zhong-Hua; Wang, Qu-Quan

    2017-03-01

    We report a plasmon-assisted growth of metal and semiconductor onto the tips of Ag nanotriangles (AgNTs) under light irradiation. The site-selective growth of Ag onto AgNTs are firstly demonstrated on the copper grids and amine-coated glass slides. As the irradiation time increases, microscopic images indicate that AgNTs gradually touch with each other and finally “weld” tip-to-tip together into the branched chains. Meanwhile, the redshift of plasmon band is observed in the extinction spectra, which agrees well the growth at the tips of AgNTs and the decrease of the gaps between the adjacent nanotriangles. We also synthesize AgNT-Cu2O nanocomposites by using a photochemical method and find that the Cu2O nanoparticles preferably grow on the tips of AgNTs. The site-selective growth of Ag and Cu2O is interpreted by the local field concentration at the tips of AgNTs induced by surface plasmon resonance under light excitation.

  1. Conversion of Ag nanowires to AgCI nanowires decorated with Au nanoparticles and their photocatalytic activity.

    SciTech Connect

    Sun, Y.; Center for Nanoscale Materials

    2010-02-11

    A two-step approach has been developed to synthesize AgCl nanowires decorated with Au nanoparticles by using Ag nanowires as chemical templates. In the first step, the Ag nanowires are oxidized with FeCl{sub 3} followed by a simultaneous precipitation reaction between Ag{sup +} and Cl{sup -} ions at room temperature, resulting in conversion of the Ag nanowires to AgCl nanowires as well as reduction of Fe{sup 3+} to Fe{sup 2+} ions. In the second step, the Fe{sup 2+} ions generated in the first step reduce Au precursors (e.g., NaAuCl{sub 4}) to deposit Au nanoparticles on the surfaces of the AgCl nanowires, resulting in the formation of AgCl:Au composite nanowires. Because of strong surface plasmon resonance and chemical inertness of Au nanoparticles, the as-synthesized AgCl:Au nanowires exhibit enhanced absorption coefficient in the visible region and enhanced chemical stability to prevent them from degradation and aggregation. These unique properties enable the AgCl:Au nanowires to be used as a class of promising plasmonic photocatalysts driven by visible light. Preliminary results demonstrate these composite nanowires can efficiently decompose organics, such as methylene blue molecules, under illumination of white light.

  2. A new HBsAg screening assay designed for sensitive detection of HBsAg subtypes and variants.

    PubMed

    van Roosmalen, M H; de Jong, J J; Haenen, W; Jacobs, T; Couwenberg, F; Ahlers-de Boer, G J C M; Hellings, J A

    2006-01-01

    The design of a new HBsAg screening assay, the Hepanostika HBsAg Ultra is based on the use of monoclonal antibodies raised against native wild-type HBsAg and reactive with HBsAg in which the common 'a'-determinant is modified by site-directed mutagenesis of four of the cysteine moieties. The design was checked using the same cysteine variants and samples from patients known to be infected with HBsAg variants. The results found were compared with other state-of-the-art commercial screening assays. The design of the Hepanostika HBsAg Ultra enabled detection of all variant HBsAg-positive samples in contrast to the other commercial assays. An additional 980 samples were tested to assess the specificity and sensitivity of the Hepanostika HBsAg Ultra. Screening of presumed negative serum and plasma samples resulted in a specificity of 100%. This makes the Hepanostika HBsAg Ultra the first screening assay with a design able to detect HBsAg variants with high sensitivity and specificity.

  3. Plasmon-assisted site-selective growth of Ag nanotriangles and Ag-Cu2O hybrids

    PubMed Central

    Xie, Ying; Ma, Liang; Cheng, Zi-Qiang; Yang, Da-Jie; Zhou, Li; Hao, Zhong-Hua; Wang, Qu-Quan

    2017-01-01

    We report a plasmon-assisted growth of metal and semiconductor onto the tips of Ag nanotriangles (AgNTs) under light irradiation. The site-selective growth of Ag onto AgNTs are firstly demonstrated on the copper grids and amine-coated glass slides. As the irradiation time increases, microscopic images indicate that AgNTs gradually touch with each other and finally “weld” tip-to-tip together into the branched chains. Meanwhile, the redshift of plasmon band is observed in the extinction spectra, which agrees well the growth at the tips of AgNTs and the decrease of the gaps between the adjacent nanotriangles. We also synthesize AgNT-Cu2O nanocomposites by using a photochemical method and find that the Cu2O nanoparticles preferably grow on the tips of AgNTs. The site-selective growth of Ag and Cu2O is interpreted by the local field concentration at the tips of AgNTs induced by surface plasmon resonance under light excitation. PMID:28322264

  4. Highly selective and quantitative colorimetric detection of mercury(II) ions by carrageenan-functionalized Ag/AgCl nanoparticles.

    PubMed

    Narayanan, Kannan Badri; Han, Sung Soo

    2017-03-15

    The natural algal polysaccharide carrageenan was used for the greener synthesis of silver/silver chloride nanoparticles (Carr-Ag/AgCl NPs) without any toxic chemicals. We report the robust, highly selective, and sensitive colorimetric sensing of Hg(2+) ions using Carr-Ag/AgCl NPs without any further surface modification. The dark-brown color of a solution of Carr-Ag/AgCl NPs turned to white in a concentration-dependent manner with the addition of Hg(2+) ions, confirming the interaction of Carr-Ag/AgCl NPs with Hg(2+) ions. The plot of the extinction ratio of absorbance at 350nm to 450nm (A350/A450) for Carr-Ag/AgCl NPs against the concentration of [Hg(2+)] ions was linear, and the calibration curve was A350/A450=1.05254+0.00318×CHg with a lower detection limit of 1μM. This portable and cost-effective method for mercury(II) ion sensing is widely applicable in on-field qualitative and quantitative measurements of [Hg(2+)] ions in environmental or biological samples.

  5. Synthesis of biocompatible AuAgS/Ag2S nanoclusters and their applications in photocatalysis and mercury detection

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Chen, Shenna; Zhang, Lingyang; Huang, Haowen; Liu, Fengping; Liu, Xuanyong

    2014-12-01

    In this paper, a facile approach for preparation of AuAgS/Ag2S nanoclusters was developed. The unique AuAgS/Ag2S nanoclusters capped with biomolecules exhibit interesting excellent optical and catalytic properties. The fluorescent AuAgS/Ag2S nanoclusters show tunable luminescence depending on the nanocluster size. The apoptosis assay demonstrated that the AuAgS/Ag2S nanoclusters showed low cytotoxicity and good biocompatibility. Therefore, the nanoclusters can be used not only as a probe for labeling cells but also for their photocatalytic activity for photodegradation of organic dye. Moreover, a highly selective and sensitive assay for detection of mercury including Hg2+ and undissociated mercury complexes was developed based on the quenching fluorescent AuAgS/Ag2S nanoclusters, which provides a promising approach for determining various forms of Hg in the mercury-based compounds in environment. These unique nanoclusters may have potential applications in biological labeling, sensing mercury, and photodegradation of various organic pollutants in waste water.

  6. Insights into the adsorption and energy transfer of Ag clusters on the AgCl(100) surface.

    PubMed

    Ma, Xiangchao; Dai, Ying; Guo, Meng; Zhu, Yingtao; Huang, Baibiao

    2013-06-14

    It is fundamental to uncover the real adsorption properties of Ag clusters on an AgCl surface and the energy transfer mechanisms at the interface to understand the highly active photocatalytic performance and the stability of the plasmonic photocatalyst Ag@AgCl. Based on density functional theory calculations we provide valuable insights into the binding nature of Ag clusters on AgCl surface, where the binding between Ag atoms in the cluster and on the surface plays a decisive role in determining the most stable adsorption configurations. Our results demonstrate that there is energy transfer from the plasmonic metals to substrate. The hot holes excited by the decay of surface plasmon resonance on the metals can diffuse into the Cl ions in the outermost two layers of the surface producing highly oxidative Cl atoms. The dipole-dipole interaction between the plasmonic metal clusters and substrate Cl ions can also generate electron-hole pairs in the surface layers. It is deduced that the positively charged nature of adsorbed clusters acting as electron trapping centers and reduction sites plays a crucial role in keeping the stability of the Ag@AgCl system during the photocatalytic process. Finally, the validity of the cluster adsorption model for energy transfer is verified with respect to the nucleation and aggregation process of Ag atoms on the AgCl surface and a detailed description of the formation and evolution of Ag nanoparticles on an AgCl surface is provided. The present study may be helpful for understanding and designing this novel plasmonic photocatalyst and can be useful for investigating other relevant photocatalysts as well.

  7. Ag surface diffusion and out-of-bulk segregation in CrN-Ag nano-composite coatings.

    PubMed

    Incerti, L; Rota, A; Ballestrazzi, A; Gualtieri, E; Valeri, S

    2011-10-01

    CrN-Ag nanocomposite coatings are deposited on Si(100) wafers and 20MnCr5 steel disks in a mixed Ar+N2 atmosphere by reactive magnetron sputtering. Structure, composition and morphology were investigated by Scanning Electron Microscopy (SEM), Auger Electron Spectroscopy (AES), X-ray Photoemission Spectroscopy (XPS), X-ray Diffraction (XRD) and Focused Ion Beam (FIB) cross sectional analysis. The as deposited film matrix is mainly composed by CrN phase (78%), but a relevant part (28%) is composed by Cr2N. Ag agglomerates in the CrN matrix forming elongated grains 200-400 nm wide and 50-100 nm high, which extends on the top of CrN columns. At the surface Ag aggregates into two different structures: large tetrahedral crystalline clusters, with typical dimension ranging from 200 to 500 nm, and smaller Ag nanoparticles with diameter of 15-25 nm. The annealing in N2 atmosphere up to 500 degrees C does not affect size and distribution of the Ag grains in the sub-surface region, while it induces a size increase of the bigger Ag clusters on the surface, mainly related to Ag surface diffusion and clusters coalescence. Annealing at higher temperature leads to an evident Ag out-of-bulk segregation, generating Ag depleted voids in the near-surface region, and further increasing of the Ag clusters size at the surface. Tribological tests on as deposited CrN-Ag film reveal a coefficient of friction against a steel ball reduced with respect to CrN film, probably related to the presence of Ag which acts as solid lubricant, but the coating is removed after a very short sliding distance. The poor mechanical properties of the realized Ag-based coatings are confirmed by lower hardness and Young modulus values with respect to pure CrN.

  8. Fabrication and photoconductivity of macroscopically long coaxial structured Ag/Ag2S nanowires with different core-to-shell thickness ratios.

    PubMed

    Sun, Jia-Lin; Zhu, Jia-Lin; Zhao, Xingchen; Bao, Yang

    2011-01-21

    Macroscopically long core/shell structured Ag/Ag(2)S coaxial nanowires and Ag(2)S nanowires have been fabricated using the solid-state ionics method for Ag nanowires, combined with a subsequent gas-solid reaction, and characterized at different spatial scales. The photoconductive properties of such samples are investigated by performing transport measurements with 532 nm laser illumination ON/OFF cycles under different bias. A significant change in the photoconductivity from negative to positive has been observed in the coaxial structured Ag/Ag(2)S nanowires when the Ag(2)S layer thickness increases to a certain level. Such behaviors are ascribed to two photoconductive mechanisms in the Ag core and the Ag(2)S shell, respectively. These results indicate a promising approach to fabricate nanoscale photoswitches with different dark resistances and photoinduced currents based on the Ag/Ag(2)S coaxial nanowires for various optoelectronic applications.

  9. Fabrication and photoconductivity of macroscopically long coaxial structured Ag/Ag2S nanowires with different core-to-shell thickness ratios

    NASA Astrophysics Data System (ADS)

    Sun, Jia-Lin; Zhu, Jia-Lin; Zhao, Xingchen; Bao, Yang

    2011-01-01

    Macroscopically long core/shell structured Ag/Ag2S coaxial nanowires and Ag2S nanowires have been fabricated using the solid-state ionics method for Ag nanowires, combined with a subsequent gas-solid reaction, and characterized at different spatial scales. The photoconductive properties of such samples are investigated by performing transport measurements with 532 nm laser illumination ON/OFF cycles under different bias. A significant change in the photoconductivity from negative to positive has been observed in the coaxial structured Ag/Ag2S nanowires when the Ag2S layer thickness increases to a certain level. Such behaviors are ascribed to two photoconductive mechanisms in the Ag core and the Ag2S shell, respectively. These results indicate a promising approach to fabricate nanoscale photoswitches with different dark resistances and photoinduced currents based on the Ag/Ag2S coaxial nanowires for various optoelectronic applications.

  10. Double dumbbell shaped AgNi alloy by pulsed electrodeposition

    SciTech Connect

    Dhanapal, K.; Vasumathi, M.; Santhi, Kalavathy; Narayanan, V. Stephen, A.

    2014-01-28

    Silver-Nickel is the well-known thermally immiscible system that makes them quite complex for the formation of alloy. This kind of alloy can be attained from electrodeposition method. In the present work, AgNi alloy was synthesized by pulsed electrodeposition in a single bath two electrode system with the use of anodic alumina membrane. The prepared AgNi alloy and pure Ag were characterized with X-ray Diffraction (XRD) for structural confirmation, Scanning Electron Microscopy (SEM) for morphological, and magnetic properties by Vibrating Sample Magnetometer, respectively. The X-ray Diffraction study shows the formation of cubic structure for pure Ag. SEM analysis reveals the double dumbbell morphology for AgNi alloy and spherically agglomeration for pure silver. Hysteresis behaviour from VSM measurement indicates that the AgNi alloy have good ferro-magnetic properties.

  11. Synthesis and Functions of Ag2S Nanostructures

    NASA Astrophysics Data System (ADS)

    Cui, Chunyan; Li, Xiaoru; Liu, Jixian; Hou, Yongchao; Zhao, Yuqing; Zhong, Guocheng

    2015-11-01

    The paper presents a review about synthesis and applications of Ag2S nanostructures. As the modern photoelectric and biological materials, Ag2S nanomaterials are potentially useful for both structure and function purposes. Ag2S is a direction narrow band gap semiconductor with special properties. Ag2S nanostructures have been widely researched in chemistry and biochemistry fields because of their unusual optical, electrical, and mechanical properties. It can also be used in many fields, such as photovoltaic cells and infrared detector. In the past few years, Ag2S nanostructures have been synthesized by various methods. The article mainly discusses the four types of preparation methods. Moreover, this article shows a detailed review on the new properties, fabrication, and applications of Ag2S nanocrystals.

  12. Oxidative Stress Mechanisms Caused by Ag Nanoparticles (NM300K) are Different from Those of AgNO3: Effects in the Soil Invertebrate Enchytraeus crypticus

    PubMed Central

    Ribeiro, Maria J.; Maria, Vera L.; Scott-Fordsmand, Janeck J.; Amorim, Mónica J. B.

    2015-01-01

    The mechanisms of toxicity of Ag nanoparticles (NPs) are unclear, in particular in the terrestrial environment. In this study the effects of AgNP (AgNM300K) were assessed in terms of oxidative stress in the soil worm Enchytraeus crypticus, using a range of biochemical markers [catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR), total glutathione (TG), metallothionein (MT), lipid peroxidation (LPO)]. E. crypticus were exposed during 3 and 7 days (d) to the reproduction EC20, EC50 and EC80 levels of both AgNP and AgNO3. AgNO3 induced oxidative stress earlier (3 d) than AgNP (7 d), both leading to LPO despite the activation of the anti-redox system. MT increased only for AgNP. The Correspondence Analysis showed a clear separation between AgNO3 and AgNP, with e.g., CAT being the main descriptor for AgNP for 7 d. LPO, GST and GPx were for both 3 and 7 d associated with AgNO3, whereas MT and TG were associated with AgNP. These results may reflect a delay in the effects of AgNP compared to AgNO3 due to the slower release of Ag+ ions from the AgNP, although this does not fully explain the observed differences, i.e., we can conclude that there is a nanoparticle effect. PMID:26287225

  13. Strongly visible-light responsive plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles for reduction of CO2 to methanol.

    PubMed

    An, Changhua; Wang, Jizhuang; Jiang, Wen; Zhang, Meiyu; Ming, Xijuan; Wang, Shutao; Zhang, Qinhui

    2012-09-21

    Plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles have been synthesized by a facile and versatile glycerol-mediated solution route. The as-prepared AgX:Ag nanoparticles exhibit regular shapes, i.e., cube-tetrapod-like AgCl:Ag nanoparticles and AgBr:Ag nanoplates. Compared with the pristine AgX, AgX:Ag nanocomposites display stronger absorption in the visible region due to the surface plasmon resonance of silver nanoparticles. The calculation of bandgaps and band positions indicates the as-achieved AgX:Ag nanoparticles can be used as a class of potential photocatalyst for the reduction of CO(2). For example, reduction of CO(2) under visible light irradiation with the assistance of the anisotropic AgX:Ag nanoparticles yields as much as 100 μmol methanol in the products. Furthermore, the AgX:Ag nanoparticles can maintain its structure and activity after 3 runs of reactions. Therefore, the present route opens an avenue to acquire plasmonic photocatalysts for conversion of CO(2) into useful organic compounds.

  14. Rare and forbidden kaon decays at the AGS

    SciTech Connect

    Kettell, S.

    1997-12-09

    An overview of the Rare Kaon Decay program at the AGS is presented, with particular emphasis on the three major experiments currently running and analyzing data. A brief overview of earlier kaon decay experiments and of the AGs performance improvements is also provided. This review concludes with a discussion of proposed and developing experiments planned to run in the year 2000 and beyond (AGS-2000).

  15. The synthesis, activity, stability and the charge transfer identification of Ag:AgBr/γ-Al2O3 photocatalyst for organic pollutant decomposition in water

    NASA Astrophysics Data System (ADS)

    Huang, Shan; Si, Zhichun; Weng, Duan

    2015-12-01

    Highly stable Ag:AgBr/γ-Al2O3 photo-catalyst was obtained by dispersing AgBr sol on hollow γ-Al2O3 microsphere. Metallic Ag nanoparticles were in situ generated on AgBr crystals by a photo-reduction method. The activity of catalyst was characterized by MO and phenol decomposition. The light irradiation response, the life times of the photo-induced charges, and the charge separation and transition were determined by the UV-vis diffuse reflection spectra, open circuit voltage decay spectra and transient photocurrent responses. The as-prepared Ag:AgBr/γ-Al2O3 catalyst can response to visible light irradiation. Charge separation was clarified to correlate with electrons transferring from Ag to AgBr surface and the consequent reaction with ads-O2 to generate rad O2- species. It was found that the rad O2- rather than rad OH played a dominant role in the photocatalytic oxidation of MO and phenol in water. However, the electrons trended to transfer from AgBr to Ag intrinsically without light irradiation. Therefore, the electron transfer between Ag and AgBr reaching the dynamic equilibrium was the key factor for obtaining a high stable Ag/AgBr catalyst which can be obtained by optimizing the Ag:AgBr ratio. Loading amount of Ag:AgBr on γ-Al2O3 was optimized to 30 wt.% and the metallic Ag content was stabilized at 9 wt.% of Ag:AgBr catalyst.

  16. The development of nontoxic Ag-based brazing alloys

    SciTech Connect

    Timmins, P.F. )

    1994-09-01

    An experimental investigation wad conducted to produce nontoxic, Cd-free brazing alloys that possessed similar melting ranges and mechanical properties to those alloys within the Ag-Cu-Zn-Cd system. The investigation consisted of phase equilibria, Zn equivalence, thermal analysis, extrusion, wire drawing and mechanical testing of alloys based in the Ag-Cu-Zn system. Thermal analysis of these new alloys yielded liquidus temperatures in the range 680 to 775 C (1256--1427 F) and solidus temperatures in the range 625 to 675 C (1157--1247 F). These values compared favorably to the Ag-Cu-Zn-Cd alloys, which have liquidus and solidus temperatures in the ranges of 640 to 710 C (1184--1310 F) and 610 to 620 C (1130--1148 F), respectively, for Ag contents in the 20 to 50 wt-% range. Tensile tests revealed the ultimate tensile strengths of the as-cast Ag-Cu-Zn-Sn alloys to be higher than the toxic Cd-containing alloys of higher Ag content and higher than the ternary Ag-Cu-Zn alloys. For example, the alloy at 35Ag-34Cu-30Zn-1Sn exhibited an as-cast tensile strength of 47.6 kg/mm[sup 2] (67.7 ksi) compared to the alloy at 50Ag-15Cu-16Zn-19Cd with an as-cast tensile strength of 45.7 kg/mm[sup 2] (65 ksi).

  17. AG Pegasi - now a classical symbiotic star in outburst?

    NASA Astrophysics Data System (ADS)

    Tomov, T. V.; Stoyanov, K. A.; Zamanov, R. K.

    2016-11-01

    Optical spectroscopy study of the recent AG Pegasi (AG Peg) outburst observed during the second half of 2015 is presented. Considerable variations of the intensity and the shape of the spectral features as well as the changes of the hot component parameters, caused by the outburst, are discussed and certain similarities between the outburst of AG Peg and the outburst of a classical symbiotic stars are shown. It seems that after the end of the symbiotic nova phase, AG Peg became a member of the classical symbiotic stars group.

  18. Molecular dynamics study of nanojoining between axially positioned Ag nanowires

    NASA Astrophysics Data System (ADS)

    Cui, Jianlei; Theogene, Barayavuga; Wang, Xuewen; Mei, Xuesong; Wang, Wenjun; Wang, Kedian

    2016-08-01

    The miniaturization of electronics devices into nanometer scale is indispensable for next-generation semiconductor technology. Ag nanowires (Ag NWs) are considered to be the promising candidates for future electronic circuit owing to the excellent electrical and thermal properties. The nanojoining of axially positioned Ag NWs was performed by molecular dynamics simulation. Through the detailed atomic evolution during the nanojoining, the results indicate that the temperature and the distance between Ag NWs in axial direction have a great impact on nanojoining effect. When the nanojoining temperature is relatively high, the atoms are disordered and the atomic queues become to distort with strong thermodynamic properties and weak effect of metal bonds. At the relatively low temperature, the Ag NWs can be well connected with good junction quality and their own morphology, which is similar to the cold welding without fusion, while the distance between Ag NWs should be controlled for interaction and diffusion of interfacial atoms at nanowires head. When the Ag NWs are placed on Si and SiO2 substrate, because the atomic species and lattice structure of substrate material can differently affect the motions of Ag atoms through the interactive force between the atoms, the nanojoining quality of Ag NWs on Si substrate is better than that on the SiO2 substrate. So, for getting effective and reliable nanojoining without nanosolders and other materials, the temperature, distance and substrate surface should be reasonably controlled and selected, providing helpful theoretical guidance for experiment and application of nanojoining.

  19. Phytotoxicity of Ag nanoparticles prepared by biogenic and chemical methods

    NASA Astrophysics Data System (ADS)

    Choudhury, Rupasree; Majumder, Manna; Roy, Dijendra Nath; Basumallick, Srijita; Misra, Tarun Kumar

    2016-06-01

    Silver nanoparticles (Ag NPs) are now widely used as antibacterial and antifungal materials in different consumer products. We report here the preparation of Ag NPs by neem leaves extract ( Azadirachta) reduction and trisodium citrate-sodium borohydride reduction methods, and study of their phytotoxicity. The nanoparticles were characterized by UV-Vis spectroscopy, FTIR, and atomic force microscopy (AFM) techniques. Both neem-coated and citrate-coated Ag NPs exhibit surface plasmon around 400 nm, and their average sizes measured by AFM are about 100 and 20 nm, respectively. Antibacterial and antifungal activities of these nanomaterials have been studied by simple pea seed germination and disk diffusion methods. It has been observed from the growth of root and shoot, citrate-coated Ag NPs significantly affect seedling growth, but neem-coated Ag NPs exhibit somehow mild toxicity toward germination process due to the nutrient supplements from neem. On the other hand, antifungal activity of neem-coated Ag NPs has been found much higher than that of citrate-coated Ag NPs due to the combined effects of antifungal activity of neem and Ag NPs. Present research primarily indicates a possible application of neem-coated Ag NPs as a potential fungicide.

  20. RHIC FY15 pp Run RHIC and AGS polarization analysis

    SciTech Connect

    Huang, H.; Adams, P.

    2016-02-20

    The polarization information is important for the spin physics program in Relativistic Heavy Ion Collider (RHIC). There are discrepancies between AGS and RHIC polarization measurements. First, the face value of AGS polarization is higher than RHIC ones in general. Second, the measured polarization profile (described by the profile ratio R) is stronger in AGS than in RHIC. This note analyzes the polarization data from FY15 pp run period. The results show that the differences between AGS and RHIC polarization measurements are reasonable, but the R value difference is puzzling. The difference between blue and yellow ring is worth of spin simulation to explain.

  1. Low temperature sintering of Ag nanoparticles for flexible electronics packaging

    NASA Astrophysics Data System (ADS)

    Hu, A.; Guo, J. Y.; Alarifi, H.; Patane, G.; Zhou, Y.; Compagnini, G.; Xu, C. X.

    2010-10-01

    We achieve robust bonding of Cu wires to Cu pads on polyimide with silver nanopaste cured at 373 K. The paste is prepared by simply condensing Ag nanoparticle (NP) solution via centrifuging. The bonding is formed by solid state sintering of Ag NPs through neck growth and direct metallic bonding between clean Ag-Cu interfaces. Both experiment and Monte Carlo simulation confirm that the melting point of joint clusters increases during sintering. This creates improved bonds for use at an elevated operating temperature using Ag NPs.

  2. Cu-Ag sulfides as indicators of pre-porphyritic epithermal Au-Ag deposits in Northeastern Russia

    NASA Astrophysics Data System (ADS)

    Savva, N. E.; Sidorov, A. A.; Volkov, A. V.

    2016-08-01

    Au-Ag mineralization of the Olcha and Teploe epithermal deposits underwent thermal metamorphism due to porphyritic intrusions. The presence of Bi-bearing galena and matildite in the ores (Teploe), Cu-Te-bearing naumannite (Olcha), the occurrence of middle- and high-temperature facies of metasomatic rocks (epidote and actinolite), and temperature formation conditions are related, firstly, to the influence of granitoids on the ore process, which supplied not only Cu and Mo, but also Bi, Te, and, secondly, to the heating of host rocks containing pre-porphyritic epithermal Au-Ag mineralization. The abundance of Cu-Ag sulfides and Cu-acanthite resulted from the enrichment of later mineral phases in Cu and Ag under the substance redistribution with the formation of Ag-acanthite ores. The data considered in the paper are of practical importance for regional forecasting of metallogenic constructions, exploration, and evaluation of the epithermal Au-Ag deposits.

  3. Mechanical properties of dental Ti-Ag alloys with 22.5, 25, 27.5, and 30 mass% Ag.

    PubMed

    Takahashi, Masatoshi; Kikuchi, Masafumi; Takada, Yukyo

    2015-01-01

    The mechanical properties -tensile strength, yield strength, elongation after fracture, Vickers hardness, and Young's modulus-and the phases of Ti-Ag alloys were investigated, as prepared with 22.5, 25, 27.5, and 30 mass% Ag. The tensile strength, yield strength, hardness, and Young's modulus of the alloys increase with their Ag content up to 25 mass%, but their breaking elongation decreases. These changes in the mechanical properties are attributed to solid-solution strengthening of the α-titanium phase, to Ti2Ag precipitation, and to the formation of eutectic structures composed of α+Ti2Ag. The addition of Ag, at 25 mass% in particular, improves the mechanical properties of these alloys, making them suitable for high strength dental prostheses, such as implantretained superstructures and narrow-diameter implants.

  4. Plasmonic enhancements of photocatalytic activity of Pt/n-Si/Ag photodiodes using Au/Ag core/shell nanorods.

    PubMed

    Qu, Yongquan; Cheng, Rui; Su, Qiao; Duan, Xiangfeng

    2011-10-26

    We report the plasmonic enhancement of the photocatalytic properties of Pt/n-Si/Ag photodiode photocatalysts using Au/Ag core/shell nanorods. We show that Au/Ag core/shell nanorods can be synthesized with tunable plasmon resonance frequencies and then conjugated onto Pt/n-Si/Ag photodiodes using well-defined chemistry. Photocatalytic studies showed that the conjugation with Au/Ag core/shell nanorods can significantly enhance the photocatalytic activity by more than a factor of 3. Spectral dependence studies further revealed that the photocatalytic enhancement is strongly correlated with the plasmonic absorption spectra of the Au/Ag core/shell nanorods, unambiguously demonstrating the plasmonic enhancement effect.

  5. Desorption of Ag from Grain Boundaries in Ag Film on Br and H-Passivated Si(111) Surfaces

    SciTech Connect

    Roy, Anupam; Batabyal, R.; Mahato, J. C.; Dev, B. N.; Sundaravel, B.

    2011-07-15

    Growth of Ag film on Br- and H-passivated Si(111) surfaces was examined by Rutherford backscattering spectrometry (RBS), scanning electron microscopy (SEM) and photoemission electron microscopy (PEEM) techniques. The phenomenon of thermal grooving was observed after annealing at higher temperatures. Hierarchical desorption of Ag from the grain boundaries produce a fractal structure of Ag-depleted regions. Hierarchical desorption may be used for nanopatterning of the layer.

  6. Plasmon-assisted degradation of methylene blue with Ag/AgCl/montmorillonite nanocomposite under visible light.

    PubMed

    Sohrabnezhad, Sh; Zanjanchi, M A; Razavi, M

    2014-09-15

    Metal-semiconductor compounds, such as Ag/AgX (X=Cl, Br, I), enable visible light absorption and separation of photogenerated electron-hole through surface plasmon resonance (SPR) effect. However, the electron-hole generated and separated by light are vulnerable in Ag/AgX phase because of the occurrence of secondary recombined. In order to more effectively utilize the SPR photocatalytic effect, nanoparticles are located in a matrix. In this article, Ag/AgCl nanoparticles were synthesized in montmorillonite (MMT) matrix using dispersion method and light irradiation. The structure, composition and optical properties of such material were investigated by transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (UV-Vis DRS), X-ray diffraction (XRD) and FTIR. Powder X-ray diffraction showed intercalation of Ag/AgCl nanoparticles into the clay layers. The as-prepared plasmonic photocatalyst exhibited an enhanced and stable photoactivity for the degradation of methylene blue (MB) under visible light. The high activity was attributed to the surface plasmon resonance (SPR) exhibited by Ag nanoparticles on the surface of AgCl. The detection of reactive species by radical scavengers displays that O2- and OH- are the main reactive species for the degradation of MB under visible light irradiation. The studies showed that 20 min illumination under visible light can complete degradation of methylene blue (MB), and indicate a high stability of photocatalytic degradation. The mechanism of separation of the photo-generated electrons and holes at the Ag/AgCl-MMT nanocomposite was discussed.

  7. Component conversion from pure Au nanorods to multiblock Ag-Au-Ag nanorods assisted by Pt nanoframe templates

    NASA Astrophysics Data System (ADS)

    Lee, Sangji; Jang, Hee-Jeong; Jang, Ho Young; Kim, Seong Kyu; Park, Sungho

    2016-06-01

    We developed a new method for synthesizing multiblock Ag-Au-Ag nanorods using Pt nanoframes that had been deposited on the edges of Au nanorod seeds. As a function of Au etching time, the length of the Au nanorod decreased symmetrically starting from the two ends, leading to the formation of empty inner space at the ends. Subsequent reduction of Ag ions could be selectively performed in the inner space confined by Pt nanoframes and the resulting Ag-Au-Ag nanorods exhibited characteristic LSPR modes originating from each block component (in a transverse direction) and SPR coupling (in a longitudinal direction). The high quality of the resulting multiblock nanorods enabled observation of the longitudinal quadrupole mode that was induced by Ag-Au SPR coupling in a long axis. The mode exhibited high sensitivity in accordance with the change in the surrounding media, demonstrating great potential for sensor applications.We developed a new method for synthesizing multiblock Ag-Au-Ag nanorods using Pt nanoframes that had been deposited on the edges of Au nanorod seeds. As a function of Au etching time, the length of the Au nanorod decreased symmetrically starting from the two ends, leading to the formation of empty inner space at the ends. Subsequent reduction of Ag ions could be selectively performed in the inner space confined by Pt nanoframes and the resulting Ag-Au-Ag nanorods exhibited characteristic LSPR modes originating from each block component (in a transverse direction) and SPR coupling (in a longitudinal direction). The high quality of the resulting multiblock nanorods enabled observation of the longitudinal quadrupole mode that was induced by Ag-Au SPR coupling in a long axis. The mode exhibited high sensitivity in accordance with the change in the surrounding media, demonstrating great potential for sensor applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03484e

  8. METAL MEDIA FILTERS, AG-1 SECTION FI

    SciTech Connect

    Adamson, D.

    2012-05-23

    One application of metal media filters is in various nuclear air cleaning processes including applications for protecting workers, the public and the environment from hazardous and radioactive particles. To support this application the development of the ASME AG-1 FI Standard on Metal Media has been under way for more than ten years. Development of the proposed section has required resolving several difficult issues associated with operating conditions (media velocity, pressure drop, etc.), qualification testing, and quality acceptance testing. Performance characteristics of metal media are dramatically different than the glass fiber media with respect to parameters like differential pressures, operating temperatures, media strength, etc. These differences make existing data for a glass fiber media inadequate for qualifying a metal media filter for AG-1. In the past much work has been conducted on metal media filters at facilities such as Lawrence Livermore National Laboratory (LLNL) and Savannah River National Laboratory (SRNL) to qualify the media as High Efficiency Particulate Air (HEPA) Filters. Particle retention testing has been conducted at Oak Ridge Filter Test Facility and at Air Techniques International (ATI) to prove that the metal media meets or exceeds the 99.97% particle retention required for a HEPA Filter. Even with his testing, data was lacking to complete an AG-1 FI Standard on metal media. With funding secured by Mississippi State University (MSU) from National Nuclear Security Administration (NNSA), a research test stand is being designed and fabricated at MSU's Institute for Clean Energy Technology (ICET) Facility to obtain qualification data on metal media. This in turn will support required data needed for the FI Standard. The paper will discuss in detail how the test stand at MSU will obtain the necessary data to complete the FI Standard.

  9. Ab initio study of edge smoothing, atom attraction, and downward funneling in Ag/Ag(100)

    NASA Astrophysics Data System (ADS)

    Shim, Yunsic; Amar, Jacques G.

    2011-06-01

    The results of density-functional theory (DFT) calculations of the energy barriers for three low-barrier relaxation processes in Ag/Ag(100) growth—edge-zipping, atom attraction, and downward funneling—are presented and compared with embedded atom method (EAM) calculations. In general, we find good agreement between the DFT values for these processes and the values assumed in recent simulations of low-temperature Ag/Ag(100) growth [Shim and Amar, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.81.045416 81, 045416 (2010)]. We also find reasonable agreement between our DFT results and the results of EAM calculations, although in a few specific cases there is a noticeable disagreement. In order to investigate the effects of long-range interactions, we have also carried out additional calculations for more complex configurations. While our EAM results indicate that long-range interactions such as “pinning” can significantly enhance the energy barriers for edge-zipping and atom attraction, these effects can be significantly weaker in our DFT calculations due to the redistribution of the electron density.

  10. Fabrication of antimicrobial bacterial cellulose-Ag/AgCl nanocomposite using bacteria as versatile biofactory

    NASA Astrophysics Data System (ADS)

    Liu, Chuang; Yang, Dong; Wang, Yuangui; Shi, Jiafu; Jiang, Zhongyi

    2012-08-01

    In nature, a number of nanocomposites are formed through biomineralization-relevant processes under mild conditions. In the present study, a total "biologic" route to fabricate nanocomposite is reported. Non-pathogenic bacteria, Gluconacetobacter xylinum, was utilized as a versatile biofactory, which produced biopolymer bacterial cellulose (BC) and induced the formation of Ag/AgCl nanoparticles, yielding BC-Ag/AgCl nanocomposite. Scanning electron microscopy revealed that nanoparticles with average size of 17.4 nm were randomly embedded into the BC network; transmission electron microscopy and X-ray diffraction confirmed that the nanoparticles were mixtures of face-centered cubic silver and silver chloride nanoparticles. Moreover, the content of silver in the BC nanocomposite is around 0.05 wt%, determined by atomic absorption spectrometry and X-ray photoelectron spectroscopy analysis. The entire process of nanocomposite fabrication was conducted at ambient environment without utilizing toxic agents or producing hazardous products, which is not only environmentally friendly but also with less chances to generate harmful products to human bodies as biomedical materials. The resultant nanocomposite displayed the desirable activity in inhibiting bacterial growth of both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli microorganisms on agar plate and in liquid culture, indicating the potential of the material as antimicrobial wound dressing materials. This work demonstrated the feasibility of using microorganism to fabricate nanocomposite, especially for biomedical materials.

  11. Ag@AgI, core@shell structure in agarose matrix as hybrid: synthesis, characterization, and antimicrobial activity.

    PubMed

    Ghosh, Somnath; Saraswathi, A; Indi, S S; Hoti, S L; Vasan, H N

    2012-06-05

    A novel in situ core@shell structure consisting of nanoparticles of Ag (Ag Nps) and AgI in agarose matrix (Ag@AgI/agarose) has been synthesized as a hybrid, in order to have an efficient antibacterial agent for repetitive usage with no toxicity. The synthesized core@shell structure is very well characterized by XRD, UV-visible, photoluminescence, and TEM. A detailed antibacterial studies including repetitive cycles are carried out on Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria in saline water, both in dark and on exposure to visible light. The hybrid could be recycled for the antibacterial activity and is nontoxic toward human cervical cancer cells (HeLa cells). The water insoluble Ag@AgI in agarose matrix forms a good coating on quartz, having good mechanical strength. EPR and TEM studies are carried out on the Ag@AgI/agarose and the bacteria, respectively, to elucidate a possible mechanism for killing of the bacteria.

  12. Growth and evaluation of AgGaS2 and AgGaSe2 for infrared nonlinear applications

    NASA Technical Reports Server (NTRS)

    Byer, R. L.; Feigelson, R. S.

    1986-01-01

    Significant advances were made in the growth technology of silver thiogallate (AgGaS2) and silver selenogallate (AgGaSe2). High efficiency harmonic generation of carbon dioxide laser radiation and tunable infrared parametric oscillation were demonstrated using these materials. Nonliner frequency conversion in the infrared was limited by the optical properties and the size of the available nonlinear materials. The development of these materials has reduced some of the limitations and generated wide interest. The continued development and application of AgGaS2 and AgGaSe2 now appears assured.

  13. In situ growth of Ag nanoparticles on α-Ag2WO4 under electron irradiation: probing the physical principles

    NASA Astrophysics Data System (ADS)

    San-Miguel, Miguel A.; da Silva, Edison Z.; Zannetti, Sonia M.; Cilense, Mario; Fabbro, Maria T.; Gracia, Lourdes; Andrés, Juan; Longo, Elson

    2016-06-01

    Exploiting the plasmonic behavior of Ag nanoparticles grown on α-Ag2WO4 is a widely employed strategy to produce efficient photocatalysts, ozone sensors, and bactericides. However, a description of the atomic and electronic structure of the semiconductor sites irradiated by electrons is still not available. Such a description is of great importance to understand the mechanisms underlying these physical processes and to improve the design of silver nanoparticles to enhance their activities. Motivated by this, we studied the growth of silver nanoparticles to investigate this novel class of phenomena using both transmission electron microscopy and field emission scanning electron microscopy. A theoretical framework based on density functional theory calculations (DFT), together with experimental analysis and measurements, were developed to examine the changes in the local geometrical and electronic structure of the materials. The physical principles for the formation of Ag nanoparticles on α-Ag2WO4 by electron beam irradiation are described. Quantum mechanical calculations based on DFT show that the (001) of α-Ag2WO4 displays Ag atoms with different coordination numbers. Some of them are able to diffuse out of the surface with a very low energy barrier (less than 0.1 eV), thus, initiating the growth of metallic Ag nanostructures and leaving Ag vacancies in the bulk material. These processes increase the structural disorder of α-Ag2WO4 as well as its electrical resistance as observed in the experimental measurements.

  14. Theoretical modeling of optical properties of Ag8 and Ag14 silver clusters embedded in an LTA sodalite zeolite cavity.

    PubMed

    Cuong, Ngo Tuan; Nguyen, Hue Minh Thi; Nguyen, Minh Tho

    2013-10-07

    Optical properties of silver Ag(n) nanoclusters are demonstrated to be dependent on their size, structure and charge state. It is found that when being contained in the sodalite cavity of LTA zeolite the tetradecanuclear hexacation silver cluster Ag14(6+) is stable. Its lower-lying states and optical spectrum are theoretically determined using the quantum chemical TD-DFT method. Its ground state possesses an outer-shell electron configuration of A1g(2)T2g(6) mimicking the s(2)p(6) valence of noble gas atoms. These frontier orbitals are constructed from 5s,5p(Ag)-AOs with contributions from framework oxygen atoms. Light absorption of Ag14(6+) embedded in the sodalite cage which is characterized by strong peaks centered at 331 and 476 nm (transitions 5s,p(Ag) → 5s,p(Ag)) leads to much longer wavelength emission. The sodalite cage, as a container, stabilizes the central Ag14(6+) cluster by electrostatic attraction. The absorption spectrum of the isovalent neutral Ag8 cluster embedded inside the same sodalite cavity is also simulated using TD-DFT and CASPT2 methods. This absorption spectrum which is similar to that of the Ag14(6+) cluster has two absorption bands in the near UV and visible regions.

  15. Micro-PIXE study of Ag in digestive glands of a nano-Ag fed arthropod ( Porcellio scaber, Isopoda, Crustacea)

    NASA Astrophysics Data System (ADS)

    Tkalec, Živa Pipan; Drobne, Damjana; Vogel-Mikuš, Katarina; Pongrac, Paula; Regvar, Marjana; Štrus, Jasna; Pelicon, Primož; Vavpetič, Primož; Grlj, Nataša; Remškar, Maja

    2011-10-01

    Micro-proton induced X-ray emission (micro-PIXE) method was applied to study the micro-localization of silver (Ag) in digestive glands of a terrestrial arthropod (Porcellio scaber) after feeding on silver nanoparticles (nano-Ag) dosed food. The aim of our work was to assess whether feeding on nano-Ag results in the assimilation of silver (Ag) in digestive gland cells. To study micro-localization and elemental distribution of Ag, the animals were fed on food dosed with nanoparticles for 14 days under controlled laboratory conditions. At the end of the feeding exposure, the animals were dissected and digestive glands prepared for micro-PIXE analyses and TEM investigation. The results obtained by micro-PIXE documented high amounts of Ag inside S-cells of the digestive gland epithelium; however, TEM investigation did not show particle aggregates inside digestive gland cells. Also no adverse effect on feeding behavior was recorded what is a measure of toxic effects. We explain the presence of Ag inside the cells as a result of the assimilation of dissoluted Ag ions from ingested nano-Ag particles. Assimilation of excessive amounts of ingested metal ions in S-cells is a well known metal detoxification mechanism in isopods. We discuss the advantages of using micro-PIXE for the micro-localization of elements in biological tissue in studies of interactions between nanoparticles and biological systems.

  16. Effect of Ag nanoparticles deposition on photocatalytic activity of Ag{sub 2}SO{sub 3}

    SciTech Connect

    Zhang, Xuan Wang, Qi; Hu, Jin-Wen; Zou, Lan-Hua; You, Jia-Wen

    2016-03-15

    Highlights: • Ag{sub 2}SO{sub 3} was developed as novel photocatalyst. • The effect of Ag nanoparticles deposition on photocatalytic activity was investigated. • The activation and deactivation mechanism was proposed. - Abstract: A novel photocatalyst Ag{sub 2}SO{sub 3} was prepared and the effect of Ag nanoparticles, photo-deposited on the surface of Ag{sub 2}SO{sub 3}, on its photocatalytic activity was investigated. The as-prepared photocatalyst was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV–vis diffuse reflection spectroscopy (DRS). The photocatalytic activity was evaluated by photo-degradation of rhodamine B dye under UV light irradiation. It was found that the photocatalytic activity of Ag{sub 2}SO{sub 3} was initially enhanced with deposition of Ag nanoparticles, but subsequently declined with Ag nanoparticles overloaded. The possible mechanism was proposed based on experimental results. These findings may contribute to developing novel photocatalysts and understanding of fundamentals of Ag-based photocatalytic materials.

  17. Comparison of antibacterial activities of Ag@TiO2 and Ag@SiO2 core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Dhanalekshmi, K. I.; Meena, K. S.

    2014-07-01

    Core-shell type Ag@TiO2 nanoparticles were prepared by one pot simultaneous reduction of AgNO3 and hydrolysis of Ti (IV) isopropoxide and Ag@SiO2 core-shell nanoparticles were prepared by Stober's method. They were characterized by absorption, XRD, and HR-TEM techniques. XRD patterns show the presence of anatase form of TiO2 and amorphous form of SiO2 and the noble metal (Ag). High resolution transmission electron microscopy measurements revealed that their size is below 50 nm. The antibacterial properties of Ag@TiO2 and Ag@SiO2 core-shell nanoparticles against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were examined by the agar diffusion method. As a result E. coli and S. aureus were shown to be substantially inhibited by Ag@TiO2 and Ag@SiO2 core-shell nanoparticles. These results demonstrated that TiO2 and SiO2 supported on the surface of Ag NPs without aggregation was proved to have enhanced antibacterial activity.

  18. Synthesis and characterization of novel plasmonic Ag/AgX-CNTs (X = Cl, Br, I) nanocomposite photocatalysts and synergetic degradation of organic pollutant under visible light.

    PubMed

    Shi, Huixian; Chen, Jiangyao; Li, Guiying; Nie, Xin; Zhao, Huijun; Wong, Po-Keung; An, Taicheng

    2013-08-14

    A series of novel well-defined Ag/AgX (X = Cl, Br, I) loaded carbon nanotubes (CNTs) composite photocatalysts (Ag/AgX-CNTs) were fabricated for the first time via a facile ultrasonic assistant deposition-precipitation method at the room temperature (25 ± 1 °C). X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen adsorption-desorption analysis, scanning electron microscopy, and ultraviolet-visible light absorption spectra analysis were used to characterize the structure, morphology, and optical properties of the as-prepared photocatalysts. Results confirmed the existence of the direct interfacial contact between Ag/AgX nanoparticles and CNTs, and Ag/AgX-CNTs nanocomposites exhibit superior absorbance in the visible light (VL) region owing to the surface plasmon resonance (SPR) of Ag nanoparticles. The fabricated composite photocatalysts were employed to remove 2,4,6-tribromophenol (TBP) in aqueous phase. A remarkably enhanced VL photocatalytic degradation efficiency of Ag/AgX-CNTs nanocomposites was observed when compared to that of pure AgX or CNTs. The photocatalytic activity enhancement of Ag/AgX-CNTs was due to the effective electron transfer from photoexcited AgX and plasmon-excited Ag(0) nanoparticles to CNTs. This can effectively decrease the recombination of electron-hole pairs, lead to a prolonged lifetime of the photoholes that promotes the degradation efficiency.

  19. Deflection Missions for Asteroid 2011 AG5

    NASA Technical Reports Server (NTRS)

    Grebow, Daniel; Landau, Damon; Bhaskaran, Shyam; Chodas, Paul; Chesley, Steven; Yeomans, Don; Petropoulos, Anastassios; Sims, Jon

    2012-01-01

    The recently discovered asteroid 2011 AG5 currently has a 1-in-500 chance of impacting Earth in 2040. In this paper, we discuss the potential of future observations of the asteroid and their effects on the asteroid's orbital uncertainty. Various kinetic impactor mission scenarios, relying on both conventional chemical as well as solar-electric propulsion, are presented for deflecting the course of the asteroid safely away from Earth. The times for the missions range from pre-keyhole passage (pre-2023), and up to five years prior to the 2040 Earth close approach. We also include a brief discussion on terminal guidance, and contingency options for mission planning.

  20. Analysis of the symbiotic star AG Pegasi

    NASA Technical Reports Server (NTRS)

    Keyes, C. D.; Plavec, M. J.

    1981-01-01

    High and low dispersion IUE data are analyzed in conjunction with coincident ground based spectrophotometric scans and supplementary infrared photometry of the symbiotic object AG Pegasi. The IUE observations yield an improved value of E(B-V) = 0.12. The two stellar components are easily recognized in the spectra. The cool component may be an M1.7 III star and the hot component appears to have T (sub eff) of approximately 30000 K. The emission lines observed in the ultraviolet indicate two or three distince emitting regions. Nebular component ultraviolet intercombination lines suggest an electron density of several times 10 billion/cu cm.

  1. Modelling of the AGS using Zgoubi - Status

    SciTech Connect

    Meot F.; Ahrens, L.; Dutheil, Y.; Glenn, J.; Huang, H.; Roser, T.; Schoefer, V.; Tsoupas, N.

    2012-05-20

    This paper summarizes the progress achieved so far, and discusses various outcomes, regarding the development of a model of the Alternating Gradient Synchrotron at the RHIC collider. The model, based on stepwise ray-tracing methods, includes beam and polarization dynamics. This is an on-going work, and a follow-on of code developments and particle and spin dynamics simulations that have been subject to earlier publications at IPAC and PAC [1, 2, 3]. A companion paper [4] gives additional informations, regarding the use of the measured magnetic field maps of the AGS main magnets.

  2. Fluorescence switch for silver ion detection utilizing dimerization of DNA-Ag nanoclusters.

    PubMed

    Lee, Jihyun; Park, Juhee; Hee Lee, Hong; Park, Hansoo; Kim, Hugh I; Kim, Won Jong

    2015-06-15

    A fluorescence switch that consists of DNA-templated silver nanoclusters (DNA-AgNCs) triggered by silver ion (Ag(+)) is developed to detect Ag(+). The mechanism of the fluorescence switching of DNA-AgNCs is investigated by fluorescence spectroscopy, circular dichroism spectroscopy, DNA hybridization assay and mass spectrometry. Ag(+) induces a dimeric structure of Cyt12-AgNCs by forming a bridge between two Cyt12-AgNCs, where Cyt12 is cytosine 12-mer; this dimer formation causes the fluorescence change of Cyt12-AgNCs from red to green. Using this Ag(+)-triggered fluorescence switch, we successfully detected Ag(+) at concentrations as low as 10nM. Furthermore, we quantitatively detected the Ag(+) in the Silmazin(®), which is dermatological burn ointment having silver sulfadiazine. Ag(+) detection using this fluorescence switch has high selectivity and sensitivity, and short response time, and can be used successfully even in the presence of other metal ions.

  3. Structural Characterization of the Ag/ybco Interface

    NASA Astrophysics Data System (ADS)

    Tidjani, Mohammed Elkhamis

    1990-01-01

    The present research is intended to characterize the interface microstructure and long term stability of the deposited silver metal in contact to the superconducting oxide YBa_2Cu_3O _{rm 7-x} (YBCO). High resolution transmission electron microscopy (HRTEM) observations of the interfacial regions reveal that Ag contacts to YBCO occurred without any intermediate phase formation at the interface. The Ag metal exhibits a preferred orientation relationship with YBCO, in which the densely packed planes and directions of the metal are parallel to those of the superconductor. The formation of (111) interfaces and facets during deposition indicates that these planes are associated with the lowest interfacial energy. The as-deposited Ag film exhibits a granular morphology, and the Ag grains are often twinned along the (111) plane while the surface of YBCO is mostly rough and structurally unstable. Annealing of the Ag/YBCO interface resulted in outdiffusion of yttrium and oxygen at regions where the surface of YBCO was rough. This diffusion, however, did not result in the formation of continuous layers at the Ag/YBCO interface but only to growth of Ag_2 Y and Ag_2O inclusions. Thus it is believed that the stability of the Ag/YBCO depends on the quality of the surface of YBCO, especially its structure. Treatment of the surface of YBCO by ion-bombardment yielded flat surfaces but damaged a layer of about 30A. Such a cleaning process improved the quality of the deposited Ag since the Ag grains were larger and contained low defects concentration. The same orientation relationships between Ag and YBCO were observed after cleaning the surface of YBCO which implied that the destruction of the structure at the surface is only partial. Deposition of Ag in the same chamber where YBCO was initially grown, to minimize the contamination of the surface of YBCO, also was not effective in enhancing the structure of the Ag/YBCO interface. The roughness of the surface of YBCO did not decrease

  4. The role of reduction extent of graphene oxide in the photocatalytic performance of Ag/AgX (X = Cl, Br)/rGO composites and the pseudo-second-order kinetics reaction nature of the Ag/AgBr system.

    PubMed

    Gao, Weiyin; Ran, Chenxin; Wang, Minqiang; Li, Le; Sun, Zhongwang; Yao, Xi

    2016-07-21

    Although reduced graphene oxide (rGO)-based photocatalyst composites have been intensively developed during the past few years, the influence of reduction extent of rGO on the photocatalytic performance of the rGO-based composite has virtually not been investigated due to some technical limitations, such as the poor water dispersibility of rGO and low reduction selectivity of the hydrothermal method, which make it difficult to control the reduction extent of rGO in these composites. Herein, we used a facile room-temperature method to synthesize Ag/AgX (X = Cl, Br)/rGO photocatalyst composites as a model to study the effect of reduction extent of rGO on the photocatalytic performance of the photocatalyst. It was found that the photocatalytic activities of both Ag/AgCl/PrGO and Ag/AgBr/PrGO systems had an optimized threshold of the reduction extent of photoreduced GO (PrGO). More importantly, due to the different conductive band values of AgCl and AgBr, the optimized thresholds in the two systems were at different PrGO reduction extents, based on which we proposed that the favorable energy band matching between AgX and PrGO in the two systems played a crucial role in obtaining high photocatalysis performance. Besides, the photocatalytic reaction of the Ag/AgBr based system was confirmed to be a pseudo-second-order kinetics reaction rather than pseudo-first-order kinetics reaction. The new insights presented in this work provided useful information on the design and development of a more sophisticated photocatalyst, and can also be applied to many other applications.

  5. Ag/AgBr/g-C{sub 3}N{sub 4}: A highly efficient and stable composite photocatalyst for degradation of organic contaminants under visible light

    SciTech Connect

    Cao, Jing; Zhao, Yijie; Lin, Haili; Xu, Benyan; Chen, Shifu

    2013-10-15

    Graphical abstract: Ag/AgBr/g-C{sub 3}N{sub 4} composite photocatalysts displayed excellent photocatalytic activities on the degradation of methyl orange (MO) under visible light. The improved photocatalytic performance and stability of Ag/AgBr/g-C{sub 3}N{sub 4} originated from the synergetic effects of AgBr/g-C{sub 3}N{sub 4} interface and metallic Ag nanoparticles. ·O{sub 2}−, one of the reactive species, was responsible for the photodegradation of MO compared to H+ and ·OH. - Highlights: • Novel Ag/AgBr/g-C{sub 3}N{sub 4} composite photocatalyst was reported. • Ag/AgBr/g-C{sub 3}N{sub 4} had novel energy band combination between AgBr and g-C{sub 3}N{sub 4}. • Synergetic effects of AgBr/g-C{sub 3}N{sub 4} interface and metallic Ag nanoparticles. • Electron trapping role of metallic Ag dominated the stability of Ag/AgBr/g-C{sub 3}N{sub 4}. - Abstract: Novel Ag/AgBr/g-C{sub 3}N{sub 4} composite photocatalysts were constructed via deposition–precipitation method and extensively characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and UV–vis diffuse reflectance spectroscopy (DRS). Under visible light (λ > 420 nm), Ag/AgBr/g-C{sub 3}N{sub 4} composite photocatalysts displayed much higher photocatalytic activities than those of Ag/AgBr and g-C{sub 3}N{sub 4} for degradation of methyl orange (MO). 50% Ag/AgBr/g-C{sub 3}N{sub 4} presented the best photocatalytic performance, which was mainly attributed to the synergistic effects of AgBr/g-C{sub 3}N{sub 4} interface and the in situ metallic Ag nanoparticles for efficiently separating electron–hole pairs. Furthermore, Ag/AgBr/g-C{sub 3}N{sub 4} remained good photocatalytic activity through 5 times of cycle experiments. Additionally, the radical scavengers experiment indicated that ·O{sub 2}{sup −} was the main reactive species for the MO degradation under visible light.

  6. Molecular structure of (AgPO3)1-x (AgI)x glasses

    NASA Astrophysics Data System (ADS)

    Novita, D.

    2005-03-01

    Melt-quenched AgPO3 glasses were synthesized by dry ( Ag3PO4 + P2O5, prep. 1) and wet (NH4H2PO4 + AgNO3, prep. 2) routes. Glass transitions were examined in MDSC at a scan rate of 3^oC/min. Prep. 1 samples display bimodal glass transition temperatures, with Tg^low = 220^oC and Tg^high = 238^oC and with the Tg^low endotherm higher in strength than the Tg^high one. In contrast, prep. 2 samples show a single Tg = 203^oC that is significantly lower in temperature. These results are consistent with the notion that prep. 2 probably yields samples with bonded water while prep 1 gives pure AgPO3 glasses that are intrinsically phase separated. The nature of the two phases in the latter is less obvious at present, but we note that upon alloying AgI, the additive selectively bonds in the Tg^low phase at low x (<0.20) with Tg^low steadily decreasing, and with the Tg^high phase remaining largely unaffected. At higher x (>0.20) a major structural reorganization occurs, and we observe the opening of a reversibility window in the 0.22 < x < 0.37 range. As in the chalcogenides, we identify the window with the intermediate phase with glasses at x < 0.20 stressed-rigid, while those at x > 0.37 as floppy. A percolation threshold for electrical conduction occurs^1 near x ˜ 0.3 and falls in the reversibility window as expected. 1. M. Mangion and G.P. Johari, Phys. Rev. B36, 8845 (1987) Supported by NSF grant DMR 04-56472

  7. RRR and thermal conductivity of Ag and Ag0.2wt%Mg alloy in Ag/Bi-2212 wires

    SciTech Connect

    Li, Pei; Ye, L.; Jiang. J., Jiang. J.; Shen, T.

    2015-08-19

    The residual resistivity ratio (RRR) and thermal conductivity of metal matrix in metal/superconductor composite wires are important parameters for designing superconducting magnets. However, the resistivity of silver in reacted Ag/Bi-2212 wires has yet to be determined over temperature range from 4.2 K to 80 K because Bi-2212 filaments have a critical transition temperature Tc of ~ 80 K, and because it is unknown whether the RRR of Ag/Bi-2212 degrades with Cu diffusing from Bi-2212 filaments into silver sheathes at elevated temperatures and to what degree it varies with heat treatment. We measured the resistivity of stand-alone Ag and AgMg (Ag-0.2wt%Mg) wires as well as the resistivity of Ag and Ag- 0.2wt%Mg in the state-of-the-art Ag/Bi-2212 round wires reacted in 1 bar oxygen at 890 °C for 1, 8, 24 and 48 hours and quickly cooled to room temperature. The heat treatment was designed to reduce the critical current Ic of Bi-2212 wires to nearly zero while allowing Cu loss to fully manifest itself. We determined that pure silver exhibits a RRR of ~ 220 while the oxide-dispersion strengthened AgMg exhibits a RRR of ~ 5 in stand-alone samples. A surprising result is that the RRR of silver in the composite round wires doesn’t degrade with extended time at 890 °C for up to 48 hours. This surprising result may be explained by our observation that the Cu that diffuses into the silver tends to form Cu2O precipitates in oxidizing atmosphere, instead of forming Ag-Cu solution alloy. We also measured the thermal conductivity and the magneto-resistivity of pure Ag and Ag-0.2 wt%Mg from 4.2 K to 300 K in magnetic fields up to 14.8 T and summarized them using a Kohler plot.

  8. Microwave-assisted solvothermal synthesis of flower-like Ag/AgBr/BiOBr microspheres and their high efficient photocatalytic degradation for p-nitrophenol

    SciTech Connect

    Li, Tingting; Luo, Shenglian; Yang, Lixia

    2013-10-15

    Flower-like Ag/AgBr/BiOBr microspheres were successfully fabricated by the approach of microwave-assisted solvothermal and in situ photo-assisted reduction. A reactive ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C{sub 16}mim]Br) was employed as Br source in the presence of surfactant polyvinylpyrrolidone (PVP). The photocatalytic activity of Ag/AgBr/BiOBr towards the decomposition of p-nitrophenol under visible light irradiation was evaluated. The results indicated that Ag/AgBr/BiOBr showed enhanced photocatalytic activity towards p-nitrophenol, comparing with P25, BiOBr and Ag/AgBr. More than 96% of p-nitrophenol was decomposed in 3.5 h under visible-light irradation. The excellent photocatalytic activity of flower-like Ag/AgBr/BiOBr microspheres can be attributed to the large specific surface area, strong visible-light absorption, suitable energy band structure and surface plasmon resonance effect of Ag nanoparticles. The possible photocatalytic mechanism was proposed based on the active species test and band gap structure analysis. - Graphical abstract: The photocatalytic reaction mechanisms of the as-prepared Ag/AgBr/BiOBr. Display Omitted - Highlights: • Successful synthesis of flower-like Ag/AgBr/BiOBr microspheres. • The Ag/AgBr/BiOBr showed much higher photocatalytic activity towards p-nitrophenol as compared to BiOBr and Ag/AgBr. • The reasons for the excellent photocatalytic activity are the large specific surface area, strong visible-light absorption and surface plasmon resonance effect of Ag nanoparticles. • The O{sub 2}·{sup −}, Br{sup 0} and photogenerated h{sup +} play key roles in the photocatalytic degradation process.

  9. Increased intensity performance of the Brookhaven AGS

    SciTech Connect

    Raka, E.; Ahrens, L.; Frey, W.; Gill, E.; Glenn, J.W.; Sanders, R.; Weng, W.

    1985-05-01

    With the advent of H/sup -/ injection into the Brookhaven AGS, circulating beams of up to 3 x 10/sup 13/ protons at 200 MeV have been obtained. Rf capture of 2.2 x 10/sup 13/ and acceleration of 1.73 x 10/sup 13/ up to the transition energy (approx. = 8 GeV) and 1.64 x 10/sup 13/ to full energy (approx. = 29 GeV) has been achieved. This represents a 50% increase over the best performance obtained with H/sup +/ injection. The increase in circulation beam current is obtained without filling the horizontal aperture. This allows the rf capture process to utilize a larger longitudinal phase space area (approx. = 1 eV sec/bunch vs less than or equal to 0.6 eV sec with H/sup +/ operation). The resulting reduction in relative longitudinal density partially offsets the increase in space charge effects at higher currents. In order to make the capture process independent of injected beam current, a dynamic beam loading compensation loop was installed on the AGS rf system. This is the only addition to the synchrotron itself that was required to reach the new intensity records. A discussion of injection, the rf capture process, and space charge effects is presented. 9 refs., 5 figs.

  10. Thermal Diffusion Dynamic Behavior of Two-Dimensional Ag-SMALL Clusters on Ag(1 1 1) Surface

    NASA Astrophysics Data System (ADS)

    Zakirur-Rehman; Hayat, Sardar Sikandar

    2015-07-01

    In this paper, the thermal diffusion behavior of small two-dimensional Ag-islands on Ag(1 1 1) surface has been explored using molecular dynamics (MD) simulations. The approach is based on semi-empirical potentials. The key microscopic processes responsible for the diffusion of Ag1-5 adislands on Ag(1 1 1) surface are identified. The hopping and zigzag concerted motion along with rotation are observed for Ag one-atom to three-atom islands while single-atom and multi-atom processes are revealed for Ag four-atom and five-atom islands, during the diffusion on Ag(1 1 1) surface. The same increasing/decreasing trend in the diffusion coefficient and effective energy barrier is observed in both the self learning kinetic Monte Carlo (SLKMC) and MD calculations, for the temperature range of 300-700 K. An increase in the value of effective energy barrier is noticed with corresponding increase in the number of atoms in Ag-adislands. A reasonable linear fit is observed for the diffusion coefficient for studied temperatures (300, 500 and 700 K). For the observed diffusion mechanisms, our findings are in good agreement with ab initio density-functional theory (DFT) calculations for Al/Al(1 1 1) while the energy barrier values are in same range as the experimental values for Cu/Ag(1 1 1) and the theoretical values using ab initio DFT supplemented with embedded-atom method for Ag/Ag(1 1 1).

  11. Quantification of HBsAg: basic virology for clinical practice.

    PubMed

    Lee, Jung Min; Ahn, Sang Hoon

    2011-01-21

    Hepatitis B surface antigen (HBsAg) is produced and secreted through a complex mechanism that is still not fully understood. In clinical fields, HBsAg has long served as a qualitative diagnostic marker for hepatitis B virus infection. Notably, advances have been made in the development of quantitative HBsAg assays, which have allowed viral replication monitoring, and there is an opportunity to make maximal use of quantitative HBsAg to elucidate its role in clinical fields. Yet, it needs to be underscored that a further understanding of HBsAg, not only from clinical point of view but also from a virologic point of view, would enable us to deepen our insights, so that we could more widely expand and apply its utility. It is also important to be familiar with HBsAg variants and their clinical consequences in terms of immune escape mutants, issues resulting from overlap with corresponding mutation in the P gene, and detection problems for the HBsAg variants. In this article, we review current concepts and issues on the quantification of HBsAg titers with respect to their biologic nature, method principles, and clinically relevant topics.

  12. AGS vertical beta function measurements for Run 15

    SciTech Connect

    Harper, C.; Ahrens, L.; Huang, H.; Schoefer, V.

    2016-10-07

    One key parameter for running the AGS efficiently is by maintaining a low emittance. To measure emittance, one needs to measure the beta function throughout the cycle. This can be done by measuring the beta function at the ionization profile monitors (IPM) in the AGS. This tech note delves into the motivation, the measurement, and some strides that were made throughout Run15.

  13. EMU Ag-Zn battery wet-life extension test

    NASA Astrophysics Data System (ADS)

    Bragg, Bobby J.; Wooten, Claude M.

    1992-02-01

    The Extravehicular Mobility Unit (EMU) silver/zinc (Ag/Zn) battery is an 11 cell battery of approximately 30 AH. The Ag/Zn battery is comprised of two 4-cell monoblocks and one 3-cell monoblock. A discussion of a wet-life extension test performed on the battery is given in viewgraph form.

  14. Transport of engineered silver (Ag) nanoparticles through partially fractured sandstones

    NASA Astrophysics Data System (ADS)

    Neukum, Christoph; Braun, Anika; Azzam, Rafig

    2014-08-01

    Transport behavior and fate of engineered silver nanoparticles (AgNP) in the subsurface is of major interest concerning soil and groundwater protection in order to avoid groundwater contamination of vital resources. Sandstone aquifers are important groundwater resources which are frequently used for public water supply in many regions of the world. The objective of this study is to get a better understanding of AgNP transport behavior in partially fractured sandstones. We executed AgNP transport studies on partially fissured sandstone drilling cores in laboratory experiments. The AgNP concentration and AgNP size in the effluent were analyzed using flow field-flow fractionation mainly. We employed inverse mathematical models on the measured AgNP breakthrough curves to identify and quantify relevant transport processes. Physicochemical filtration, time-dependent blocking due to filling of favorable attachment sites and colloid-facilitated transport were identified as the major processes for AgNP mobility. Physicochemical filtration was found to depend on solute chemistry, mineralogy, pore size distribution and probably on physical and chemical heterogeneity. Compared to AgNP transport in undisturbed sandstone matrix reported in the literature, their mobility in partially fissured sandstone is enhanced probably due to larger void spaces and higher hydraulic conductivity.

  15. HBsAg sT123N mutation induces stronger antibody responses to HBsAg and HBcAg and accelerates in vivo HBsAg clearance.

    PubMed

    Li, Songxia; Zhao, Kaitao; Liu, Shuhui; Wu, Chunchen; Yao, Yongxuan; Cao, Liang; Hu, Xue; Zhou, Yuan; Wang, Yun; Pei, Rongjuan; Lu, Mengji; Chen, Xinwen

    2015-12-02

    Immune escape mutants with mutations in the hepatitis B surface antigen (HBsAg) major hydrophilic region (MHR) often emerge in association with diagnostic failure or breakthrough of HBV infection in patients with anti-HBs antibodies. Some mutants harboring substitutions to Asn in HBsAg MHR may have an additional potential N-glycosylation site. We have previously showed that sT123N substitution could generate additional N-glycosylated forms of HBsAg. In the present study, 1.3-fold-overlength HBV genomes containing the sT123N substitution were digested from the pHBV1.3-sT123N construct and subcloned into the pAAV vector to generate pAAV1.3-sT123N for hydrodynamic injection (HI) in mice. Viral expression and replication were phenotypically characterized by transient transfection. The results demonstrated that sT123N substitution impaired virion secretion, resulting in intracellular retention of HBcAg. Using the HBV HI mouse model, we found that mice mounted significantly stronger antibody responses to HBsAg and HBcAg, which accelerated HBsAg clearance. Thus, additional N-glycosylation generated by amino acid substitutions in HBsAg MHR may significantly modulate specific host immune responses and influence HBV infection in vivo. Our results help further the understanding of the role of immune escape mutants with N-linked glycosylation in the biology of HBV infection.

  16. EMU Ag-Zn battery wet-life extension test

    NASA Technical Reports Server (NTRS)

    Bragg, Bobby J.; Wooten, Claude M.

    1992-01-01

    The Extravehicular Mobility Unit (EMU) silver/zinc (Ag/Zn) battery is an 11 cell battery of approximately 30 AH. The Ag/Zn battery is comprised of two 4-cell monoblocks and one 3-cell monoblock. A discussion of a wet-life extension test performed on the battery is given in viewgraph form.

  17. Fabrication of graphene oxide enwrapped Z-scheme Ag2SO3/AgBr nanoparticles with enhanced visible-light photocatalysis

    NASA Astrophysics Data System (ADS)

    Wan, Yujuan; Liang, Chunyan; Xia, Yue; Huang, Wei; Li, Zelin

    2017-02-01

    A novel graphene oxide (GO) enwrapped Ag2SO3/AgBr (GO/Ag2SO3/AgBr) composite was fabricated through a facile solution approach via electrostatic interaction and precipitation transformation reaction for the first time. The results of XRD, Raman, SEM, TEM and XPS confirmed the structure, morphology and composition of the GO/Ag2SO3/AgBr composite very well. The Ag2SO3/AgBr nanoparticles were found to be encapsulated by GO sheets. The photocatalytic activity of the composite was investigated by the degradation of methyl orange (MO), rhodamine B (RhB) and methylene blue (MB) in water under visible light. The incorporation of GO sheets not only significantly enhanced the photocatalytic activity but also improved the reusability of Ag2SO3/AgBr nanoparticles. The photocatalytic ability of GO/Ag2SO3/AgBr can be maintained at a high level for 4 times cycle experiments. The trapping experiments confirmed that holes and superoxide ion radicals were the main active species responsible for the degradation reaction. A plasmonic Z-scheme photocatalytic mechanism was proposed to illustrate the possible transferred and separated behavior of electron-hole pairs among Ag, Ag2SO3, AgBr and GO quaternary system under visible light irradiation.

  18. Embedment of nano-sized Ag layer into Ag-doped In2O3 films for use as highly transparent and conductive anode in organic solar cells

    NASA Astrophysics Data System (ADS)

    Cho, Da-Young; Na, Seok-In; Chung, Kwun-Bum; Kim, Han-Ki

    2015-08-01

    By inserting a nano-sized Ag layer between bottom Ag-doped In2O3 (AIO) and a top AIO layer, we were able to control the sheet resistance and optical transmittance of AIO films for application in organic solar cells (OSCs) as a transparent electrode. To optimize the AIO/Ag/AIO multilayer, we investigated the electrical, optical, structural and morphological properties of the AIO/Ag/AIO multilayer as a function of Ag interlayer thickness with a constant bottom and top AIO thickness of 35 nm. The optimized AIO/Ag/AIO multilayer showed a much lower resistivity of 3.988 × 10-5 Ω cm and a higher optical transmittance of 84.79% than the values (4.625 × 10-4 Ω cm and 78.36%) of the single AIO film, due to the high conductivity of the metallic Ag layer and the antireflection effect of the symmetric AIO/Ag/AIO structure. In addition, we investigated the performances of OSCs with AIO/Ag/AIO electrodes as a function of Ag interlayer thickness to determine the optimal Ag thickness to produce a high power conversion efficiency (PCE) of the OSCs. Based on the PCE of the OSCs, we correlated the performance of the OSCs with the Ag interlayer thickness in the AIO/Ag/AIO multilayer and suggested a possible mechanism to explain the dependency of PCE on Ag thickness in AIO/Ag/AIO multilayer electrodes.

  19. A Simple Method for the Preparation of TiO2 /Ag-AgCl@Polypyrrole Composite and Its Enhanced Visible-Light Photocatalytic Activity.

    PubMed

    Yao, Tongjie; Shi, Lei; Wang, Hao; Wang, Fangxiao; Wu, Jie; Zhang, Xiao; Sun, Jianmin; Cui, Tieyu

    2016-01-01

    A novel and facile method was developed to prepare a visible-light driven TiO2 /Ag-AgCl@polypyrrole (PPy) photocatalyst with Ag-AgCl nanoparticles supported on TiO2 nanofibers and covered by a thin PPy shell. During the synthesis, the PPy shell and Ag-AgCl nanoparticles were prepared simultaneously onto TiO2 nanofibers, which simplified the preparation procedure. In addition, because Ag-AgCl aggregates were fabricated via partly etching the Ag nanoparticles, their size was well controlled at the nanoscale, which was beneficial for improvement of the contact surface area. Compared with reference photocatalysts, the TiO2 /Ag-AgCl@PPy composite exhibited an enhanced photodegradation activity towards rhodamine B under visible-light irradiation. The superior photocatalytic property originated from synergistic effects between TiO2 nanofibers, Ag-AgCl nanoparticles and the PPy shell. Furthermore, the TiO2 /Ag-AgCl@PPy composite could be easily separated and recycled without obvious reduction in activity.

  20. Surface-enhanced Raman spectroscopy for DNA detection by the self-assembly of Ag nanoparticles onto Ag nanoparticle-graphene oxide nanocomposites.

    PubMed

    Lin, Tsung-Wu; Wu, Hong-Yi; Tasi, Ting-Ti; Lai, Ying-Huang; Shen, Hsin-Hui

    2015-07-28

    A novel surface-enhanced Raman scattering (SERS) sensing system which operates by the self-assembly of Ag nanoparticles (AgNPs) onto the nanocomposite of AgNPs and graphene oxide (AgNP-GO) in the presence of two complementary DNAs has been developed. In this system, AgNP-GO serves as a SERS-active substrate. The AgNPs with the modification of non-fluorescent 4-mercaptobenzoic acid (4-MBA) act as highly efficient Raman probes for DNA hybridization. When probe DNAs on AgNP-GO are complementary to target DNAs on AgNPs functionalized with 4-MBA, the DNA hybridization occurring directs the self-assembly of AgNPs onto AgNP-GO, leading to the creation of SERS hot spots. Due to the fact that partial 4-MBA molecules are located in the region of the hot spots, their SERS signals are greatly enhanced, indicating successful DNA hybridization. It is noteworthy that the size of AgNPs contributes significantly to the enhancement of SERS activity. The detection limit of the target DNAs at the pM level can be achieved through the self-assembly of large sized AgNPs onto AgNP-GO. More importantly, the AgNP-AgNP-GO system shows reproducible SERS signals in proportion to the logarithm of the target DNA concentrations spanning from 10(-6) to 10(-12) M and the excellent capability for multiplex DNA detection.

  1. Ferromagnetic resonance of ultrathin Co /Ag superlattices on Si(111)

    NASA Astrophysics Data System (ADS)

    Kakazei, G. N.; Martin, P. P.; Ruiz, A.; Varela, M.; Alonso, M.; Paz, E.; Palomares, F. J.; Cebollada, F.; Rubinger, R. M.; Carmo, M. C.; Sobolev, N. A.

    2008-04-01

    Ferromagnetic resonance (FMR) is used to probe the magnetic properties of Co /Ag superlattices (SLs) with ultrathin Co layers (2-6Å). Different series of 5×[Ag/Co] multilayers have been grown by molecular beam epitaxy on Si(111) substrates, monitoring the growth by reflection high energy electron diffraction. Cross-section transmission electron microscopy confirms the growth of local areas with the designed SL periodicity, a sharp compositional modulation, well defined Ag-Co interfaces, and a perfect fcc (111) stacking. FMR spectra have been recorded at various polar angles in the 0°-90° range. A single and extremely broad resonance peak is observed in all cases. While SLs with Ag layers thinner than 10Å exhibit similar values of the perpendicular anisotropy, a clear reduction is observed for samples with Ag layers about 14Å thick. Possible causes for this change are discussed.

  2. Luminescence sensitization of Tb(3+)-DNA complexes by Ag().

    PubMed

    Xu, Lijun; Zhou, Lu; Chen, Xing; Shen, Xiaoqiang; Wang, Jine; Zhang, Jianye; Pei, Renjun

    2017-03-03

    Terbium ions (Tb(3+)) with unique photophysical properties have been utilized to develop biosensors with low background and high sensitivity. In this study, the Ag(+)-sensitized luminescence of Tb(3+)-DNA complexes was uncovered. The luminescence of Tb(3+)-DNA complexes could be enhanced by more than 30 times in the presence of Ag(+), when Tb(3+) was bound with poly(G) and poly(T) whereas not with other homopolymers. This research confirmed that the sensitization resulted from the interaction of Ag(+) with certain bases involved in DNA, not just with the reported certain G-quadruplex sequence. The coordination of Ag(+) to guanine and thymine bases was expected to increase their rigidities, form Tb(3+)-DNA-Ag(+) ternary structures, and thus enhance energy transfer from guanine and thymine to Tb(3+). These findings benefit the development of sensitive luminescence probes for various nucleic acids-related targets.

  3. MULTIPLE SINGLE BUNCH EXTRACTION TO THE AGS SWITCHYARD.

    SciTech Connect

    BROWN,K.A.; AHRENS,L.; GASSNER,D.; GLENN,J.W.; ROSER,T.; SMITH,G.; TSOUPAS,N.; VAN ASSELT,W.; ZENO,K.

    2001-06-18

    In this report we will describe the multiple single bunch extraction system as utilized to deliver beams to the Brookhaven's Alternating Gradient Synchrotron (AGS) switchyard area. We will describe modifications of the AGS switchyard, necessary to allow it to accept bunched beam, and results of the first commissioning of this system. The AGS Switchyard has for many years been used to simultaneously deliver (unbunched) resonant extracted beam to a set of fixed target experiments. In order to accommodate new fixed target experiments which require bunched beams, a method of sending the bunched beams to the AGS Switchyard was required. In addition, by using the AGS switchyard instead of the upstream section of the Brookhaven's Relativistic Heavy Ion Collider (RHIC) injection line the accelerators can be reconfigured quickly and efficiently for filling RHIC. We will present results of the commissioning of this system, which was done in January 2001.

  4. Spin relaxation characteristics in Ag nanowire covered with various oxides

    NASA Astrophysics Data System (ADS)

    Karube, S.; Idzuchi, H.; Kondou, K.; Fukuma, Y.; Otani, Y.

    2015-09-01

    We have studied spin relaxation characteristics in a Ag nanowire covered with various oxide layers of Bi2O3, Al2O3, HfO2, MgO, or AgOx by using non-local spin valve structures. The spin-flip probability, a ratio of momentum relaxation time to spin relaxation time at 10 K, exhibits a gradual increase with an atomic number of the oxide constituent elements, Mg, Al, Ag, and Hf. Surprisingly, the Bi2O3 capping was found to increase the probability by an order of magnitude compared with other oxide layers. This finding suggests the presence of an additional spin relaxation mechanism such as Rashba effect at the Ag/Bi2O3 interface, which cannot be explained by the simple Elliott-Yafet mechanism via phonon, impurity, and surface scatterings. The Ag/Bi2O3 interface may provide functionality as a spin to charge interconversion layer.

  5. Asymmetry-induced resistive switching in Ag-Ag2S-Ag memristors enabling a simplified atomic-scale memory design

    NASA Astrophysics Data System (ADS)

    Gubicza, Agnes; Manrique, Dávid Zs.; Pósa, László; Lambert, Colin J.; Mihály, György; Csontos, Miklós; Halbritter, András

    2016-08-01

    Prevailing models of resistive switching arising from electrochemical formation of conducting filaments across solid state ionic conductors commonly attribute the observed polarity of the voltage-biased switching to the sequence of the active and inert electrodes confining the resistive switching memory cell. Here we demonstrate stable switching behaviour in metallic Ag-Ag2S-Ag nanojunctions at room temperature exhibiting similar characteristics. Our experimental results and numerical simulations reveal that the polarity of the switchings is solely determined by the geometrical asymmetry of the electrode surfaces. By the lithographical design of a proof of principle device we demonstrate the merits of simplified fabrication of atomic-scale, robust planar Ag2S memory cells.

  6. Asymmetry-induced resistive switching in Ag-Ag2S-Ag memristors enabling a simplified atomic-scale memory design

    PubMed Central

    Gubicza, Agnes; Manrique, Dávid Zs.; Pósa, László; Lambert, Colin J.; Mihály, György; Csontos, Miklós; Halbritter, András

    2016-01-01

    Prevailing models of resistive switching arising from electrochemical formation of conducting filaments across solid state ionic conductors commonly attribute the observed polarity of the voltage-biased switching to the sequence of the active and inert electrodes confining the resistive switching memory cell. Here we demonstrate stable switching behaviour in metallic Ag-Ag2S-Ag nanojunctions at room temperature exhibiting similar characteristics. Our experimental results and numerical simulations reveal that the polarity of the switchings is solely determined by the geometrical asymmetry of the electrode surfaces. By the lithographical design of a proof of principle device we demonstrate the merits of simplified fabrication of atomic-scale, robust planar Ag2S memory cells. PMID:27488426

  7. MO degradation by Ag-Ag2O/g-C3N4 composites under visible-light irradation.

    PubMed

    Wang, Xin; Yan, Jia; Ji, Haiyan; Chen, Zhigang; Xu, Yuanguo; Huang, Liying; Zhang, Qi; Song, Yanhua; Xu, Hui; Li, Huaming

    2016-01-01

    The paper demonstrated the synthesis of Ag-Ag2O/g-C3N4 nanoparticles via a simple liquid phase synthesis path and a facile calcination method. The synthesized Ag-Ag2O/g-C3N4 composites were well characterized by various analytical techniques, such as X-ray diffraction, Fourier transform infrared (FT-IR), X-ray photoemission spectroscopy, transmission electron microscopy, scanning electron microscopy, high resolution transmission electron microscopy, the UV-Vis diffuse-reflectance spectra and transient photocurrent. From the structure and surface characterization, it indicated that Ag-Ag2O/g-C3N4 composites were formed by an effective covering of g-C3N4 with Ag-Ag2O. The results revealed that the 50 wt% nanoparticle had a great effection on the degradation of the methyl orange (MO), which was almost 7.5 times as high as that of g-C3N4. Based on the experimental results, the possible photocatalytic mechanism with photogenerated holes as the main active species was presented.

  8. Discrete and Polymeric, Mono- and Dinuclear Silver Complexes of a Macrocyclic Tetraoxime Ligand with AgI–AgI Interactions

    PubMed Central

    Tashiro, Shohei; Tanihira, Jun-ichiro; Yamada, Mihoko; Shionoya, Mitsuhiko

    2013-01-01

    Macrocyclic compounds that can bind cationic species efficiently and selectively with their cyclic cavities have great potential as excellent chemosensors for metal ions. Recently, we have developed a tetraoxime-type tetraazamacrocyclic ligand 1 formed through a facile one-pot cyclization reaction. Aiming to explore and bring out the potential of the tetraoxime macrocycle 1 as a chelating sensor, we report herein the preparation of several kinds of silver complexes of 1 and their unique coordination structures determined by single-crystal X-ray diffraction analyses. As a result, the formation of two kinds of discrete structures, monomeric complexes [Ag(1)X] (X = counter anions) and a dimeric complex [Ag2(1)2]X2, and two kinds of polymeric structures from a mononuclear complex, [Ag(1)]nXn, and from a dinuclear complex, [Ag2(1)X2]n, was demonstrated. In the resulting complexes, the structurally flexible macrocyclic ligand 1 was found to provide several different coordination modes. Notably, in some silver complexes of 1, AgI–AgI interactions were observed with different AgI–AgI distances which depend on the kind of counter anions and the chemical composition. PMID:23645105

  9. Recyclable and visible light sensitive Ag-AgBr/TiO2: Surface adsorption and photodegradation of MO

    NASA Astrophysics Data System (ADS)

    Liu, Xinxin; Zhang, Dong; Guo, Biao; Qu, Yue; Tian, Ge; Yue, Huijuan; Feng, Shouhua

    2015-10-01

    A range of highly efficient nanoheterojunction structured Ag-AgBr/TiO2 photocatalysts have been synthesized by CTAB-assisted method and characterized by X-ray diffraction (XRD), focused ion beam scanning electron microscopy (FIB-SEM), energy-dispersive spectroscopy (EDS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL). The results demonstrated that Ag-AgBr nanoparticles were successfully deposited on the surface of anatase TiO2 hierarchical spheres. The remarkable adsorptive removal of methyl orange (MO) by the uncalcined samples was investigated before evaluating its photocatalytic ability. All the calcined three-component catalysts possessed excellent photocatalytic activities for degrading MO under visible light, in which, 162.4% Ag-AgBr/TiO2 exhibited highest efficiency. The greatly enhanced activity can be attributed to the well combination of surface plasmons photocatalyst Ag-AgBr and TiO2, which can simultaneously inhibit the photo-generated electrons and holes recombination. The nanoheterojunctions architecture catalyst also showed high stability even after five consecutive cycles. Meanwhile, the possible mechanism and interpretation of the photocatalytic process were also proposed.

  10. Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers prepared by atmospheric plasma treatment and electrospinning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers were prepared by atmospheric plasma treatment and electrospinning. Atmospheric helium plasma treatment was first used to reduce the silver nitrate precursor in pre-electrospinning solutions into metallic silver nanoparticles, foll...

  11. Transmission enhancement of THz pulse through Ag2O-Ag layer detected by THz-TDS

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Li, Wang

    2008-12-01

    We used terahertz time-domain spectroscopy (THz-TDS) to probe the enhancement transmission of Ag2O-Ag compound. Using a 500μm- GaAs substrate attaching to the sample, the evanescent wave is coupled to the far field. And the transmitted amplitude is enhanced, corresponding to the frequent shift and spectra broadening.

  12. 78 FR 13931 - Designation of Iyad ag Ghali, Also Known as Iyad ag Ghaly, as a Specially Designated Global...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF STATE Designation of Iyad ag Ghali, Also Known as Iyad ag Ghaly, as a Specially Designated Global Terrorist Pursuant to Section 1(b) of Executive Order 13224, as Amended Acting under the authority of and in accordance with section 1(b) of Executive Order 13224...

  13. Construction of Ag/AgCl Reference Electrode from Used Felt-Tipped Pen Barrel for Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Inamdar, Shaukatali N.; Bhat, Mohsin A.; Haram, Santosh K.

    2009-01-01

    A reference electrode is one of the prerequisites of electrochemical investigations. Many electrodes are commercially available but are expensive and prone to accidental breakage by students. Here we report a simple, easy-to-fabricate, inexpensive, reliable, unbreakable, and reproducible Ag/AgCl reference electrode. The empty barrel of a…

  14. Screening different Brassica spp. germplasm for resistance to Rhizoctonia solani AG-2-1 and AG-8

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poor stands of canola seedlings in Pacific Northwest (PNW) have been associated with Rhizoctonia solani AG-2-1 and AG-8. A total of eighty five genotypes of Brassica napus, B. rapa, B. carinata, B. juncea and Sinapsis alba were evaluated in the growth chamber for their resistance to both R. solani A...

  15. Nano Ag@AgBr surface-sensitized Bi2WO6 photocatalyst: oil-in-water synthesis and enhanced photocatalytic degradation

    NASA Astrophysics Data System (ADS)

    Lin, Shuanglong; Liu, Li; Hu, Jinshan; Liang, Yinghua; Cui, Wenquan

    2015-01-01

    Nano Ag@AgBr decorated on the surface of flower-like Bi2WO6 (hereafter designated Ag@AgBr/Bi2WO6) were prepared via a facile oil-in-water self-assembly method. The photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DRS), etc. The characterization results indicated that nano Ag@AgBr was observed to be evenly dispersed on the surface of Bi2WO6, and was approximately 20 nm in size. Ag@AgBr/Bi2WO6 composites exhibited excellent UV-vis absorption, due to quantum dimension effect of Ag@AgBr, the surface plasmonic resonance (SPR) of Ag nanoparticles and the special flower-like structure of Bi2WO6. The photoelectrochemical measurement verified that the suitable band potential of Ag@AgBr and Bi2WO6 and the existence of metal Ag resulted in the high efficiency in charge separation of the composite. The photocatalytic activities of the Ag@AgBr/Bi2WO6 samples were examined under visible-light irradiation for the degradation of methylene blue (MB). The composite presented excellent photocatalytic activity due to the synergetic effect of Bi2WO6, AgBr, and Ag nanoparticles. The Ag@AgBr(20 wt.%)/Bi2WO6 sample exhibited the best photocatalytic activity, degrading 95.03% MB after irradiation for 2 h, which was respectively 1.29 times and 1.28 times higher than that of Ag@AgBr and Bi2WO6 photocatalyst. Meanwhile, phenol and salicylic acid were degraded to further prove the degradation ability of Ag@AgBr/Bi2WO6. Additionally, studies performed using radical scavengers indicated that O2-•, •OH and Br0 acted as the main reactive species. Based on above, a photocatalytic mechanism for organics degradation over Ag@AgBr/Bi2WO6 was proposed.

  16. Synthesis and photocatalytic performance of an efficient Ag@AgBr/K{sub 2}Ti{sub 4}O{sub 9} composite photocatalyst under visible light

    SciTech Connect

    Liang, Yinghua; Lin, Shuanglong; Liu, Li; Hu, Jinshan; Cui, Wenquan

    2014-08-15

    Highlights: • The plasmatic Ag@AgBr sensitized K{sub 2}Ti{sub 4}O{sub 9} composite photocatalysts. • Ag@AgBr greatly increased visible light absorption for K{sub 2}Ti{sub 4}O{sub 9}. • The plamonic photocatalysts exhibited enhanced activity for the degradation of RhB. - Abstract: Ag@AgBr nanoparticle-sensitized K{sub 2}Ti{sub 4}O{sub 9} composite photocatalysts (Ag@AgBr/K{sub 2}Ti{sub 4}O{sub 9}) were prepared by a facile precipitation–photoreduction method. The photocatalytic activities of the Ag@AgBr/K{sub 2}Ti{sub 4}O{sub 9} nanocomposites were evaluated for photocatalytic degradation of (RhB) under visible light irradiation. The composites exhibited excellent visible light absorption, which was attributable to the surface plasmon effect of Ag nanoparticles. The Ag@AgBr was uniformly scattered on the surface of K{sub 2}Ti{sub 4}O{sub 9} and possessed sizes in the range of 20–50 nm. The loading amount of Ag@AgBr was also studied, and was found to influence the absorption spectra of the resulting composites. Approximately 95.9% of RhB was degraded by Ag@AgBr (20 wt.%)/K{sub 2}Ti{sub 4}O{sub 9} after irradiation for 1 h. The stability of the material was also investigated by performing consecutive runs. Additionally, studies performed using radical scavengers indicated that ·O{sub 2}{sup −} and Br{sup 0} acted as the main reactive species. Based on the experimental results, a photocatalytic mechanism for organics degradation over Ag@AgBr/K{sub 2}Ti{sub 4}O{sub 9} photocatalysts was proposed.

  17. Fabrication and characterization of extended arrays of Ag{sub 2}S/Ag nanodot resistive switches

    SciTech Connect

    Wang Daoai; Liu Lifeng; Kim, Yunseok; Pantel, Daniel; Hesse, Dietrich; Alexe, Marin; Huang Zhipeng

    2011-06-13

    Well-ordered Ag{sub 2}S/Ag nanodot arrays with a density of >60 Gbit/in.{sup 2} have been fabricated by sputtering Ag on a silicon substrate using ultrathin porous anodic aluminum oxide membranes as shadow masks, followed by sulfurization treatment at room temperature. The morphology, microstructure, and electrical properties of the as-prepared nanodots were characterized by scanning electron microscopy, x-ray diffractometry, transmission electron microscopy, and conductive atomic force microscopy, respectively. Well-defined resistive switching behavior was observed in these nanodots, and the ON/OFF ratio was found to be higher than 10{sup 2}. The Ag{sub 2}S/Ag nanodot arrays hold substantial promise for use as ultrahigh density nonvolatile memory devices.

  18. The Antimicrobial Properties of Silver Nanoparticles in Bacillus subtilis Are Mediated by Released Ag+ Ions

    PubMed Central

    Hsueh, Yi-Huang; Lin, Kuen-Song; Ke, Wan-Ju; Hsieh, Chien-Te; Chiang, Chao-Lung; Tzou, Dong-Ying; Liu, Shih-Tung

    2015-01-01

    The superior antimicrobial properties of silver nanoparticles (Ag NPs) are well-documented, but the exact mechanisms underlying Ag-NP microbial toxicity remain the subject of intense debate. Here, we show that Ag-NP concentrations as low as 10 ppm exert significant toxicity against Bacillus subtilis, a beneficial bacterium ubiquitous in the soil. Growth arrest and chromosomal DNA degradation were observed, and flow cytometric quantification of propidium iodide (PI) staining also revealed that Ag-NP concentrations of 25 ppm and above increased membrane permeability. RedoxSensor content analysis and Phag-GFP expression analysis further indicated that reductase activity and cytosolic protein expression decreased in B. subtilis cells treated with 10–50 ppm of Ag NPs. We conducted X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses to directly clarify the valence and fine structure of Ag atoms in B. subtilis cells placed in contact with Ag NPs. The results confirmed the Ag species in Ag NP-treated B. subtilis cells as Ag2O, indicating that Ag-NP toxicity is likely mediated by released Ag+ ions from Ag NPs, which penetrate bacterial cells and are subsequently oxidized intracellularly to Ag2O. These findings provide conclusive evidence for the role of Ag+ ions in Ag-NP microbial toxicity, and suggest that the impact of inappropriately disposed Ag NPs to soil and water ecosystems may warrant further investigation. PMID:26669836

  19. Rotational spectrum of the AgS radical in the X2Πi state

    NASA Astrophysics Data System (ADS)

    Okabayashi, Toshiaki; Oya, Atsushi; Yamamoto, Takuya; Mizuguchi, Den-ichiro; Tanimoto, Mitsutoshi

    2016-11-01

    The rotational spectrum of the AgS radical in the X2Πi state was observed using a source-modulation microwave spectrometer. This radical was generated in a free-space cell by a DC glow discharge under Ar-diluted H2S. Silver atoms were supplied by sputtering from silver sheets placed on the inner surface of the stainless steel cathode. Rotational transitions from J = 7.5 - 6.5 to 39.5 - 38.5 were measured in the 58-310 GHz region. Rotational, centrifugal distortion, and several fine- and hyperfine-structure constants were determined by least-squares analysis. Other spectroscopic parameters such as the dissociation energy, vibrational wavenumber, and equilibrium bond length were also derived from the determined molecular constants. In addition, some electronic properties were estimated from the fine- and hyperfine-structure constants.

  20. Optical absorption spectra and structures of Ag{6/+} and Ag{8/+}

    NASA Astrophysics Data System (ADS)

    Shayeghi, A.; Götz, D. A.; Johnston, R. L.; Schäfer, R.

    2015-06-01

    This work presents optical photodissociation spectra of the Ag{6/+} and the Ag{8/+} clusters in the photon energy range ħω = 1.9-4.4 eV. Experimental spectra are interpreted by means of range separated TDDFT using the LC- ωPBEh and HSE06 functionals, where putative global minimum structures are obtained by the new pool-based Birmingham Cluster Genetic Algorithm, coupled with density functional theory. Structural assignment is facilitated by additionally taking data from previous ion mobility experiments into account. Both functionals reproduce the measured spectra very well, whereas HSE06 shows an almost quantitative agreement, questioning the importance of Hartree-Fock exchange in the long-range part of the range separated functional.

  1. In situ scanning tunneling microscopy investigation of sulfur oxidative underpotential deposition on Ag(100) and Ag(110).

    PubMed

    Lastraioli, E; Loglio, F; Cavallini, M; Simeone, F C; Innocenti, M; Carlà, F; Foresti, M L

    2010-11-16

    Underpotential (UPD) deposition of sulfur from Na(2)S solution in 0.1 M NaOH was studied on Ag(100) and Ag(110) using in situ scanning tunneling microscopy (STM). The cyclic voltammogram on Ag(100) presents two broad peaks, whereas three partial overlapping peaks and a sharper one are observed on Ag(110). STM measurements carried out during the whole UPD process show that progressively more compact structures are formed as the applied potential is scanned toward more positive potentials. More precisely, p(2×2), c(2×6), and c(2×2) were found on Ag(100) at E = -1.25, -1.0, and -0.9 V, respectively. Less definite conclusions can be drawn for the structures of S overlayers on Ag(110). However, the experimental findings are consistent with an incomplete p(2×1) at potentials preceding the sharp peak, and with a c(2×2) structure at E = -0.9 V vs Ag/AgCl, KCl(sat). The coverage values calculated on the basis of the hypothesized structures have been compared with the values obtained from chronocoulometric measurements at the most positive potentials investigated. Thus, the experimental coverage θ = 0.5 coincides with the coverage calculated for the c(2×2) structure found on Ag(110) at E = -0.9 V by STM, whereas the experimental coverage θ = 0.42 suggests that a mixture of structures c(2×6) and c(2×2) is formed on Ag(100).

  2. Thermoelectric Generators from AgBiTe and AgSbTe Thin Films Modified by High-Energy Beam

    NASA Astrophysics Data System (ADS)

    Budak, S.; Guner, S.; Muntele, C.; Ila, D.

    2015-06-01

    The ternary chalcogenides AgBiTe2 and AgSbTe2 belong to the family of semiconductors with disordered NaCl cubic structure in which Ag and Sb occupy metal sublattices. Both compounds are very interesting due to their thermoelectric properties. We have grown single-layer AgBiTe and AgSbTe thin films on silicon (Si) and fused silica (Suprasil) substrates using electron beam deposition. High-energy (MeV) Si-ion bombardment was performed on the thin-film samples at five different fluences between 5 × 1013 ions/cm2 and 7 × 1015 ions/cm2. We have measured the thermoelectric efficiency (figure of merit, ZT) of the fabricated thermoelectric devices by measuring the cross-plane thermal conductivity using the third-harmonic (3 ω) method, the cross-plane Seebeck coefficient, and the in-plane electrical conductivity using the van der Pauw method before and after MeV Si-ion bombardment. Rutherford backscattering spectrometry and the Rutherford Universal Manipulation Program (RUMP) simulation package were used to analyze the elemental composition and thickness of the deposited materials on the substrates. The RUMP simulation gave thicknesses for the AgBiTe and AgSbTe thin films of 270 nm and 188 nm, respectively. The figure of merit for AgBiTe started to decrease from the value of 0.37 for the virgin sample after bombardment. We saw similar decreasing behavior for the AgSbTe thin-film system. The figure of merit for AgSbTe started to decrease from the value of 0.88 for the virgin sample after bombardment. MeV Si-ion bombardment caused changes in the thermoelectric properties of the thin films.

  3. Incoherent Ag islands growth on Ni(100)

    NASA Astrophysics Data System (ADS)

    Marie, J. B.; Braems, I.; Bellec, A.; Chacon, C.; Creuze, J.; Girard, Y.; Gueddani, S.; Lagoute, J.; Repain, V.; Rousset, S.

    2017-02-01

    Growth of two-dimensional superstructure and island morphologies of silver atoms evaporated on a nickel (100) surface are studied by scanning tunneling microscopy. Near-equilibrium islands form at moderate annealing temperature (lower than 500 K) and present two kinds of morphologies. While they share a common monolayer c(2×8) superstructure, two distinct populations of islands coexist: rounded islands grown on the surface and spindle-shaped islands grown inside the Ni surface. The latter present a clear saturation of their density with increasing coverage. These shapes are mostly dominated by boundary energies as confirmed by a simple two-dimensional Wulff model whose parameters are derived using molecular statics simulations. Further annealing to 700 K leads to long Ag strips decorating the Ni step edges.

  4. Ag-Composites with Antimicrobial Properties

    NASA Astrophysics Data System (ADS)

    Zampino, D.; Ferreri, T.; Puglisi, C.; Mancuso, M.; Zaccone, R.; Scaffaro, R.

    2008-08-01

    Polymer composites with antimicrobial properties were prepared by mixing plasticised poly(vinyl chloride) (PVC) pellets with silver nanoparticles and silver zeolite in the amount of 8 wt% and 10 wt%, respectively. Thermal and mechanical properties of PVC composites were obtained by tensile and calorimetric (TGA and DSC) measurements. Rheological characterization was also performed by a parallel plates rheometer. The results indicate that the thermal and mechanical properties of PVC composites were not affected by the presence of both silver additives, with respect to the pure plasticised PVC. The antibacterial activity of PVC composites was examined on Escherichia coli and Staphylococcus epidermidis in Trypticase Soy Broth and in Trypticase Soy Agar for the direct inhibition. PVC composite with Ag-zeolite exhibited antibacterial activity against S. epidermidis and E. coli in culture broth and direct inhibition in agar plate (inhibition zone: 2-4 mm), for more than 7 days. PVC composites containing silver nanoparticles showed very low antimicrobial activity.

  5. Mobil AG scores with massive frac

    SciTech Connect

    Bleakley, W.B.

    1984-01-01

    Mobil Oil AG, West Germany, added 20 bcf of natural gas to the field reserves and improved well productivity five-fold through a massive fracture of the Mainsand section of the Upper Rotliegendes formation in Soehlingen field. The frac job was the largest ever in Europe and is felt to be the world's largest in terms of sintered bauxite used. The fracture treatment also showed that it is possible to put 9,000 lb/min of bauxite into a hydraulically formed fracture. This is believed to be a record rate for this high-strength proppant. Mobil engineers feel, however, that Ottawa sand could probably be used, and they may try it if another opportunity presents itself.

  6. Surface spin polarization induced ferromagnetic Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Shih, Po-Hsun; Li, Wen-Hsien; Wu, Sheng Yun

    2016-05-01

    We report on the observation of ferromagnetic spin polarized moments in 4.5 nm Ag nanoparticles. Both ferromagnetic and diamagnetic responses to an applied magnetic field were detected. The spin polarized moments shown under non-linear thermoinduced magnetization appeared on the surface atoms, rather than on all the atoms in particles. The saturation magnetization departed substantially from the Bloch T3/2-law, showing the existence of magnetic anisotropy. The Heisenberg ferromagnetic spin wave model for Ha-aligned moments was then employed to identify the magnetic anisotropic energy gap of ~0.12 meV. Our results may be understood by assuming the surface magnetism model, in which the surface atoms give rise to polarized moments while the core atoms produce diamagnetic responses.

  7. Synthesis of AG@AgCl Core-Shell Structure Nanowires and Its Photocatalytic Oxidation of Arsenic (III) Under Visible Light.

    PubMed

    Qin, Yanyan; Cui, Yanping; Tian, Zhen; Wu, Yangling; Li, Yilian

    2017-12-01

    Ag@AgCl core-shell nanowires were synthesized by oxidation of Ag nanowires with moderate FeCl3, which exhibited excellent photocatalytic activity for As(III) oxidation under visible light. It was proved that the photocatalytic oxidation efficiency was significantly dependent on the mole ratio of Ag:AgCl. The oxidation rate of As(III) over Ag@AgCl core-shell nanowires first increased with the decrease of Ag(0) percentage, up until the optimized synthesis mole ratio of Ag nanowires:FeCl3 was 2.32:2.20, with 0.023 mg L(-1) min(-1) As(III) oxidation rate; subsequently, the oxidation rate dropped with the further decrease of Ag(0) percentage. Effects of the pH, ionic strength, and concentration of humic acid on Ag@AgCl photocatalytic ability were also studied. Trapping experiments using radical scavengers confirmed that h(+) and ·O2(-) acted as the main active species during the visible-light-driven photocatalytic process for As(III) oxidation. The recycling experiments validated that Ag@AgCl core-shell nanowires were a kind of efficient and stable photocatalyst for As(III) oxidation under visible-light irradiation.

  8. The A2Σ+-XΠi electronic transition of AgS

    NASA Astrophysics Data System (ADS)

    Gupta, Varun; Mazzotti, Fabio J.; Rice, Corey A.; Nagarajan, Ramya; Maier, John P.

    2013-04-01

    The near-infrared electronic transition of silver monosulfide, AgS was measured for the first time using mass-resolved 1+1' resonance enhanced ionization spectroscopy in the 10 000-11 000 cm-1 region. The observed vibronic bands were analysed to obtain ωe″=331.6(2) cm and ωexe″=1.3(1) cm for the ground state, and Te=10528.3(2) cm, ωe'=318.4(1) cm, ωexe'=1.4(1) cm for the excited state of 107Ag32 S. The transitions are assigned to the A2Σ+-X2Πi system based on the rotational analysis of the Ω″=3/2 spin-orbit component of the 0-0 and 1-0 vibronic bands. The rotational constants for the X2Π state were determined to be B″=0.13126(16) cm , D″=5.5(17)×10-7 cmand A″=-477(8) cm .

  9. β decay of neutron-rich 118Ag and 120Ag isotopes

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Rinta-Antila, S.; Dendooven, P.; Huikari, J.; Jokinen, A.; Kolhinen, V. S.; Lhersonneau, G.; Nieminen, A.; Nummela, S.; Penttilä, H.; Peräjärvi, K.; Szerypo, J.; Wang, J. C.; Äystö, J.

    2003-06-01

    β decays of on-line mass-separated neutron-rich 118Ag and 120Ag isotopes have been studied by using β-γ and γ-γ coincidence spectroscopy. Extended decay schemes to the 118,120Cd daughter nuclei have been constructed. The three-phonon quintuplet in 118Cd is completed by including a new level at 2023.0 keV, which is tentatively assigned the spin and parity of 2+4. The intruder band in 118Cd is proposed up to the 4+ level at 2322.4 keV. The measured β-decay half-life for the high-spin isomer of 120Ag is 0.40±0.03 s. Candidates for the three-phonon states, as well as the lowest members of the intruder band in 120Cd, are also presented. These data support the coexistence of quadrupole anharmonic vibration and proton particle-hole intruder excitations in 118,120Cd.

  10. Rf beam control for the AGS Booster

    SciTech Connect

    Brennan, J.M.

    1994-09-26

    RF beam control systems for hadron synchrotrons have evolved over the past three decades into an essentially standard design. The key difference between hadron and lepton machines is the absence of radiation damping and existence of significant frequency variation in the case of hadrons. Although the motion of the hadron in the potential well of the rf wave is inherently stable it is not strongly damped. Damping must be provided by electronic feedback through the accelerating system. This feedback is typically called the phase loop. The technology of the rf beam control system for the AGS Booster synchrotron is described. First, the overall philosophy of the design is explained in terms of a conventional servo system that regulates the beam horizontal position in the vacuum chamber. The concept of beam transfer functions is fundamental to the mathematics of the design process and is reviewed. The beam transfer functions required for this design are derived from first principles. An overview of the beam signal pick-ups and high level rf equipment is given. The major subsystems, the frequency program, the heterodyne system, and beam feedback loops, are described in detail. Beyond accelerating the beam, the rf system must also synchronize the bunches in the Booster to the buckets in the AGS before transfer. The technical challenge in this process is heightened by the need to accomplish synchronization while the frequency is still changing. Details of the synchronization system are given. This report is intended to serve two purposes. One is to document the hardware and performance of the systems that have been built. The other is to serve as a tutorial vehicle from which the non-expert can not only learn the details of this system but also learn the principles of beam control that have led to the particular design choices made.

  11. Enzyme immobilization on Ag nanoparticles/polyaniline nanocomposites.

    PubMed

    Crespilho, Frank N; Iost, Rodrigo M; Travain, Silmar A; Oliveira, Osvaldo N; Zucolotto, Valtencir

    2009-06-15

    We show a simple strategy to obtain an efficient enzymatic bioelectrochemical device, in which urease was immobilized on electroactive nanostructured membranes (ENMs) made with polyaniline and silver nanoparticles (AgNP) stabilized in polyvinyl alcohol (PAni/PVA-AgNP). Fabrication of the modified electrodes comprised the chemical deposition of polyaniline followed by drop-coating of PVA-AgNP and urease, resulting in a final ITO/PAni/PVA-AgNP/urease electrode configuration. For comparison, the electrochemical performance of ITO/PAni/urease electrodes (without Ag nanoparticles) was also studied. The performance of the modified electrodes toward urea hydrolysis was investigated via amperometric measurements, revealing a fast increase in cathodic current with a well-defined peak upon addition of urea to the electrolytic solution. The cathodic currents for the ITO/PAni/PVA-AgNP/urease electrodes were significantly higher than for the ITO/PAni/urease electrodes. The friendly environment provided by the ITO/PAni/PVA-AgNP electrode to the immobilized enzyme promoted efficient catalytic conversion of urea into ammonium and bicarbonate ions. Using the Michaelis-Menten kinetics equation, a K(M)(app) of 2.7 mmol L(-1) was obtained, indicating that the electrode architecture employed may be advantageous for fabrication of enzymatic devices with improved biocatalytic properties.

  12. Nanosilver on nanostructured silica: Antibacterial activity and Ag surface area

    PubMed Central

    Sotiriou, Georgios A.; Teleki, Alexandra; Camenzind, Adrian; Krumeich, Frank; Meyer, Andreas; Panke, Sven; Pratsinis, Sotiris E.

    2013-01-01

    Nanosilver is one of the first nanomaterials to be closely monitored by regulatory agencies worldwide motivating research to better understand the relationship between Ag characteristics and antibacterial activity. Nanosilver immobilized on nanostructured silica facilitates such investigations as the SiO2 support hinders the growth of nanosilver during its synthesis and, most importantly, its flocculation in bacterial suspensions. Here, such composite Ag/silica nanoparticles were made by flame spray pyrolysis of appropriate solutions of Ag-acetate or Ag-nitrate and hexamethyldisiloxane or tetraethylorthosilicate in ethanol, propanol, diethylene glucolmonobutyl ether, acetonitrile or ethylhexanoic acid. The effect of solution composition on nanosilver characteristics and antibacterial activity against the Gram negative Escherichia coli was investigated by monitoring their recombinantly synthesized green fluorescent protein. Suspensions with identical Ag mass concentration exhibited drastically different antibacterial activity pointing out that the nanosilver surface area concentration rather than its mass or molar or number concentration determine best its antibacterial activity. Nanosilver made from Ag-acetate showed a unimodal size distribution, while that made from inexpensive Ag-nitrate exhibited a bimodal one. Regardless of precursor composition or nanosilver size distribution, the antibacterial activity of nanosilver was correlated best with its surface area concentration in solution. PMID:23730198

  13. Prognostic potential of AgNORs in oral submucous fibrosis

    PubMed Central

    Murgod, Sanjay; Channabasaviah, Girish Hemadal; Shivamurthy, Dyamenahalli Malleshappa; Ashok, Lingappa; Krishnappa, Savita Jangal

    2016-01-01

    Aim and Objective: The role of prognosis cannot be stressed enough, especially when it comes to potentially malignant lesions. The argyrophilic nucleolar organizer regions (AgNORs), which is simple and cost-effective has been used in diagnostic and prognostic pathologies. This study seeks to identify the nucleolar organizer regions (NORs) in oral submucous fibrosis (OSMF), to correlate the AgNOR count with the histologic grade of OSMF, and to evaluate the prognostic potential of AgNOR. Materials and Methods: The sample size consisted of archival paraffin blocks of 35 cases of varying grades of OSMF and 10 cases of squamous cell carcinoma. Normal mucosa samples served as controls for the study. AgNOR staining in accordance with the method of Smith and Crocker was performed and Student's t-test was used for statistical analysis. Results: The results showed an increase in AgNOR counts with corresponding grades of OSMF, the count being least in normal mucosa and also an increase in AgNOR count with corresponding decrease in differentiation of oral squamous cell carcinoma. Conclusion: AgNOR staining is a rapid and inexpensive procedure representing cellular proliferation that can be used to assess the nature of the lesion and therefore, the prognosis. PMID:27114958

  14. Nanosilver on nanostructured silica: Antibacterial activity and Ag surface area.

    PubMed

    Sotiriou, Georgios A; Teleki, Alexandra; Camenzind, Adrian; Krumeich, Frank; Meyer, Andreas; Panke, Sven; Pratsinis, Sotiris E

    2011-06-01

    Nanosilver is one of the first nanomaterials to be closely monitored by regulatory agencies worldwide motivating research to better understand the relationship between Ag characteristics and antibacterial activity. Nanosilver immobilized on nanostructured silica facilitates such investigations as the SiO2 support hinders the growth of nanosilver during its synthesis and, most importantly, its flocculation in bacterial suspensions. Here, such composite Ag/silica nanoparticles were made by flame spray pyrolysis of appropriate solutions of Ag-acetate or Ag-nitrate and hexamethyldisiloxane or tetraethylorthosilicate in ethanol, propanol, diethylene glucolmonobutyl ether, acetonitrile or ethylhexanoic acid. The effect of solution composition on nanosilver characteristics and antibacterial activity against the Gram negative Escherichia coli was investigated by monitoring their recombinantly synthesized green fluorescent protein. Suspensions with identical Ag mass concentration exhibited drastically different antibacterial activity pointing out that the nanosilver surface area concentration rather than its mass or molar or number concentration determine best its antibacterial activity. Nanosilver made from Ag-acetate showed a unimodal size distribution, while that made from inexpensive Ag-nitrate exhibited a bimodal one. Regardless of precursor composition or nanosilver size distribution, the antibacterial activity of nanosilver was correlated best with its surface area concentration in solution.

  15. The Visible-Light Photocatalytic Activity and Antibacterial Performance of Ag/AgBr/TiO2 Immobilized on Activated Carbon.

    PubMed

    Yang, Lu; Ye, Fangyun; Liu, Peng; Wang, Fazhou

    2016-11-01

    Visible-light-driven Ag/AgBr/TiO2 /activated carbon (AC) composite was prepared by solgel method coupled with photoreduction method. For comparison, TiO2 , TiO2 /AC, and Ag/AgBr/TiO2 were also synthesized. Their characteristics were analyzed by XRD, SEM-EDS, TG-DSC and UV-vis techniques. Photocatalytic activity and antibacterial performance under visible-light irradiation were investigated by ICP-AES, ATR-FT-IR and spectrophotometry methods using methylene blue and Escherichia coli as target systems, respectively. The results showed that Ag/AgBr was successfully deposited on anatase TiO2 /AC surface, and exhibited a distinct light absorption in the visible region. Ag/AgBr/TiO2 /AC displayed excellent antibacterial performance both in dark and under visible-light illumination. The growth of E. coli cell was inhibited in the presence of Ag/AgBr/TiO2 /AC in dark. Moreover, upon visible-light illumination, a significant damage of cell membrane was noticed. Ag/AgBr/TiO2 /AC was also shown higher photocatalytic efficiency for methylene blue degradation than those of TiO2 , TiO2 /AC, and Ag/AgBr/TiO2 . This is attributed to the synergetic effect between AC and Ag/AgBr/TiO2 , of which AC acts as the role of increasing reaction areas, continuous enriching, and transferring the adsorbed MB molecules to the surface of supported photocatalysts, and the Ag/AgBr/TiO2 acts as a highly active photocatalyst for degrading MB molecules under visible-light irradiation.

  16. Cyclic voltammetry and near edge X-ray absorption fine structure spectroscopy at the Ag L3-edge on electrochemical halogenation of Ag layers on Au(111)

    NASA Astrophysics Data System (ADS)

    Endo, Osamu; Nakamura, Masashi

    2011-05-01

    One to three layers of Ag grown on a Au(111) electrode were studied by cyclic voltammetry in chloride and bromide solutions and by ex-situ near-edge X-ray absorption fine structure spectroscopy at the Ag L3-edge (Ag L3-NEXAFS). The one and two layers obtained by underpotential deposition exhibited reduced intensity at the absorption edge in the Ag L3-NEXAFS spectra, which suggests the gain of d-electrons in these layers. The cyclic voltammograms and the Ag L3-NEXAFS spectra indicate that the second and third layers of Ag halogenated at positive potentials, whereas the first layer remained in metallic form.

  17. The structure of molten AgCl, AgI and their eutectic mixture as studied by molecular dynamics simulations of polarizable ion model potentials.

    PubMed

    Alcaraz, Olga; Bitrián, Vicente; Trullàs, Joaquim

    2011-01-07

    The structure of molten AgCl, AgI, and their eutectic mixture Ag(Cl(0.43)I(0.57)) is studied by means of molecular dynamics simulations of polarizable ion model potentials. The corresponding static coherent structure factors reproduce quite well the available neutron scattering data. The qualitative behavior of the simulated partial structure factors and radial distribution functions for molten AgCl and AgI is that predicted by the reverse Monte Carlo modeling of the experimental data. The AgI results are also in qualitative agreement with those calculated from ab initio molecular dynamics.

  18. AgCo3PO4(HPO4)2.

    PubMed

    Guesmi, Abderrahmen; Driss, Ahmed

    2002-01-01

    The structure of the hydrothermally synthesized compound AgCo3PO4(HPO4)2, silver tricobalt phosphate bis(hydrogen phosphate), consists of edge-sharing CoO6 chains linked together by the phosphate groups and hydrogen bonds. The three-dimensional framework delimits two types of tunnels which accommodate Ag+ cations and OH groups. The title compound is isostructural with the compounds AM3H2(XO4)3 (A = Na or Ag, M = Co or Mn, and X = P or As) of the alluaudite structure type.

  19. Outburst activity of the symbiiotic binary AG Dra

    NASA Astrophysics Data System (ADS)

    Gális, R.; Hric, L.; Leedjärv, L.; Merc, J.

    2016-03-01

    The outburst activity of the symbiotic system AG Dra has been studied using extensive spectroscopic observational material. High luminosity and temperature of the hot component of AG Dra indicate that quasi-steady thermonuclear shell burning takes place on the surface of the white dwarf. The major (cool) outbursts at the beginning of active phases might occur due to enhanced thermonuclear burning triggered by disk instability. Smaller scale hot outbursts might be explained by the accretion disc instability model like in dwarf novae. We discovered significant similarities in photometric and spectroscopic behaviour of AG Dra and prototypical symbiotic star Z And.

  20. Quasi four-level Tm:LuAG laser

    NASA Technical Reports Server (NTRS)

    Jani, Mahendra G. (Inventor); Barnes, Norman P. (Inventor); Hutcheson, Ralph L. (Inventor); Rodriguez, Waldo J. (Inventor)

    1997-01-01

    A quasi four-level solid-state laser is provided. A laser crystal is disposed in a laser cavity. The laser crystal has a LuAG-based host material doped to a final concentration between about 2% and about 7% thulium (Tm) ions. For the more heavily doped final concentrations, the LuAG-based host material is a LuAG seed crystal doped with a small concentration of Tm ions. Laser diode arrays are disposed transversely to the laser crystal for energizing the Tm ions.

  1. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys.

    PubMed

    Chen, Mian; Zhang, Erlin; Zhang, Lan

    2016-05-01

    In this research, Ag element was selected as an antibacterial agent to develop an antibacterial Ti-Ag alloy by a powder metallurgy. The microstructure, phase constitution, mechanical properties, corrosion resistance and antibacterial properties of the Ti-Ag sintered alloys have been systematically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), compressive test, electrochemical measurements and antibacterial test. The effects of the Ag powder size and the Ag content on the antibacterial property and mechanical property as well as the anticorrosion property have been investigated. The microstructure results have shown that Ti-Ag phase, residual pure Ag and Ti were the mainly phases in Ti-Ag(S75) sintered alloy while Ti2Ag was synthesized in Ti-Ag(S10) sintered alloy. The mechanical test indicated that Ti-Ag sintered alloy showed a much higher hardness and the compressive yield strength than cp-Ti but the mechanical properties were slightly reduced with the increase of Ag content. Electrochemical results showed that Ag powder size had a significant effect on the corrosion resistance of Ti-Ag sintered alloy. Ag content increased the corrosion resistance in a dose dependent way under a homogeneous microstructure. Antibacterial tests have demonstrated that antibacterial Ti-Ag alloy was successfully prepared. It was also shown that the Ag powder particle size and the Ag content influenced the antibacterial activity seriously. The reduction in the Ag powder size was benefit to the improvement in the antibacterial property and the Ag content has to be at least 3wt.% in order to obtain a strong and stable antibacterial activity against Staphylococcus aureus bacteria. The bacterial mechanism was thought to be related to the Ti2Ag and its distribution.

  2. Facile synthesis of Ag@Au core-sheath nanowires with greatly improved stability against oxidation.

    PubMed

    Yang, Miaoxin; Hood, Zachary D; Yang, Xuan; Chi, Miaofang; Xia, Younan

    2017-02-07

    We report a facile synthesis of Ag@Au core-sheath nanowires through the conformal deposition of Au atoms onto the surface of pre-synthesized Ag nanowires. The resulting Ag@Au nanowires showed morphology and optical properties almost identical to the pristine Ag nanowires, but with greatly improved stability under different corrosive environments.

  3. Effects of reducing agents on the synthesis of Ag/rGO nanocomposites

    NASA Astrophysics Data System (ADS)

    Li, Yaya; Song, Qiong; Fan, Bingbing; Zhang, Rui

    2017-01-01

    A facile and rapid microwave-assisted green route has been used for the formation of Ag nanoparticles (AgNPs) and the reduction of graphene oxide (GO) simultaneously with five different reducing agents, sodium hydroxide (NaOH), potassium hydroxide (KOH), sodium citrate, urea and ascorbic acid. The experimental results show that the structural properties and phase of Ag/reduced graphene oxide (Ag/rGO) nanocomposites are connected with reducing agent. AgNPs can be uniformly and compactly anchored on reduced GO (rGO) surface in the microwave field for 2 min by the assist of NaOH or KOH as reducing agent. The OH‑ can not only accelerate the ionization of acidic functional groups but also act as the nucleophile for Ag+. By addition of sodium citrate and urea, the GO sample remains its original structure, and Ag+ tends to form Ag2CO3, which then decomposes into Ag2O. While in the urea solution, Ag2O turns into [Ag(NH3)2]+ ions with abundant urea, then [Ag(NH3)2]+ ions are reduced to Ag0 by electrons, which leads to both Ag and Ag2O phase coexisting in the urea treated samples. In addition, it can be found that NaOH shows the best results in terms of the crystallinity and purity of Ag grains anchored on rGO surface.

  4. Ag Nanoparticles (Ag NM300K) in the Terrestrial Environment: Effects at Population and Cellular Level in Folsomia candida (Collembola)

    PubMed Central

    Mendes, Luís André; Maria, Vera L.; Scott-Fordsmand, Janeck J.; Amorim, Mónica J. B.

    2015-01-01

    The effects of nanomaterials have been primarily assessed based on standard ecotoxicity guidelines. However, by adapting alternative measures the information gained could be enhanced considerably, e.g., studies should focus on more mechanistic approaches. Here, the environmental risk posed by the presence of silver nanoparticles (Ag NM300K) in soil was investigated, anchoring population and cellular level effects, i.e., survival, reproduction (28 days) and oxidative stress markers (0, 2, 4, 6, 10 days). The standard species Folsomia candida was used. Measured markers included catalase (CAT), glutathione reductase (GR), glutathione S-transferase (GST), total glutathione (TG), metallothionein (MT) and lipid peroxidation (LPO). Results showed that AgNO3 was more toxic than AgNPs at the population level: reproduction EC20 and EC50 was ca. 2 and 4 times lower, respectively. At the cellular level Correspondence Analysis showed a clear separation between AgNO3 and AgNP throughout time. Results showed differences in the mechanisms, indicating a combined effect of released Ag+ (MT and GST) and of AgNPs (CAT, GR, TG, LPO). Hence, clear advantages from mechanistic approaches are shown, but also that time is of importance when measuring such responses. PMID:26473892

  5. Visible light driven Ag/Ag3PO4/AC photocatalyst with highly enhanced photodegradation of tetracycline antibiotics

    NASA Astrophysics Data System (ADS)

    Wang, Huiqin; Ye, Zhefei; Liu, Chun; Li, Jinze; Zhou, Mingjun; Guan, Qingfeng; Lv, Peng; Huo, Pengwei; Yan, Yongsheng

    2015-10-01

    Ag/Ag3PO4/active carbon (AC) composite photocatalysts were successfully synthesized using the simple deposition and photoinduced methods. The structures, morphology and photocatalytic properties of as-prepared photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy, X-ray photoelectron spectroscopy (XPS). The Ag/Ag3PO4/AC composite photocatalysts exhibited a conspicuously improved photocatalytic performance for tetracycline (TC) degradation. The optimal conditions of loaded dosage and photoinduced time were investigated, and the results showed that the photoinduced time played an important role in prepared processes, and also that for the loaded dosage of Ag3PO4. The DRS analysis showed that the composite photocatalysts exhibited strong absorption ability in the visible light range. The radicals trap experiments demonstrated that there were multiple active species during the degrading process of TC. The possible mechanism of improved photocatalytic activity of Ag-Ag3PO4/AC composite was also proposed.

  6. Preparation of AgBr Nanoparticles in Microemulsions Via Reaction of AgNO3 with CTAB Counterion

    NASA Astrophysics Data System (ADS)

    Husein, Maen M.; Rodil, Eva; Vera, Juan H.

    2007-10-01

    Nanoparticles of AgBr were prepared by precipitating AgBr in the water pools of microemulsions consisting of CTAB, n-butanol, isooctane and water. An aqueous solution of AgNO3 added to the microemulsion was the source of Ag+ ions. The formation of AgBr nanoparticles in microemulsions through direct reaction with the surfactant counterion is a novel approach aimed at decreasing the role of intermicellar nucleation on nanoparticle formation for rapid reactions. The availability of the surfactant counterion in every reverse micelle and the rapidity of the reaction with the counterion trigger nucleation within individual reverse micelles. The effect of the following variables on the particle size and size distribution was investigated: the surfactant and cosurfactant concentrations, moles of AgNO3 added, and water to surfactant mole ratio, R. High concentration of the surfactant or cosurfactant, or high water content of the microemulsion favored intermicellar nucleation and resulted in the formation of large particles with broad size distribution, while high amounts of AgNO3 favored nucleation within individual micelles and resulted in small nanoparticles with narrow size distribution. A blue shift in the UV absorption threshold corresponding to a decrease in the particle size was generally observed. Notably, the variation of the absorption peak size with the nanoparticle size was opposite to those reported by us in previous studies using different surfactants.

  7. Work Function Reduction by BaO: Growth of Crystalline Barium Oxide on Ag(001) and Ag(111) Surfaces

    SciTech Connect

    Droubay, Timothy C.; Kong, Lingmei; Chambers, Scott A.; Hess, Wayne P.

    2015-02-01

    Ultrathin films of barium oxide were grown on Ag(001) and Ag(111) using the evaporation of Ba metal in an O2 atmosphere by molecular beam epitaxy. Ultraviolet photoemission spectroscopy reveals that films consisting of predominantly BaO or BaO2 result in Ag(001) work function reductions of 1.74 eV and 0.64 eV, respectively. On the Ag(001) surface, Ba oxide growth is initiated by two-dimensional nucleation of epitaxial BaO, followed by a transition to three-dimensional dual-phase nucleation of epitaxial BaO and BaO2. Three-dimensional islands of primarily BaO2(111) nucleate epitaxially on the Ag(111) substrate leaving large patches of Ag uncovered. We find no indication of chemical reaction or charge transfer between the films and the Ag substrates. These data suggest that the origin of the observed work function reduction is largely due to a combination of BaO surface relaxation and an electrostatic compressive effect.

  8. One-step synthesis of Ag/AgCl/GO composite: A photocatalyst of extraordinary photoactivity and stability.

    PubMed

    Liu, Lin; Deng, Jiatao; Niu, Tongjun; Zheng, Gang; Zhang, Pei; Jin, Yong; Jiao, Zhifeng; Sun, Xiaosong

    2017-05-01

    Recently, the photocatalytic applications of silver chloride have been paid closed attention for the excellent ability to photodegrade organic pollutants. Comparing with other catalysts, the silver chloride presents outstanding photocatalytic activity. However, it also suffers from the poor photocatalytic stability. This very paper is focusing on the one-step wet chemical process of preparing Ag/AgCl/GO photocatalyst with high photocatalytic activity and stability. The detailed characterizations were particularly carried out in order to investigate the photo-catalytic activity and stability. Meanwhile the morphology, chemical composition as well as crystalline structure were investigated. It is found that the as-prepared Ag/AgCl/GO composite exhibited an ultrahigh photocatalytic activity and stability in the process of photodegrading RhB. The unique catalytic activity has been discussed based on the SPR effect in Ag nanoparticles on AgCl surface and the separation of photo-generated electron-hole pairs, the primary benefit of the stability owes a great deal to GO which can capture the photo-generated electrons in case they reduce Ag(+) ion or recombine the excited holes.

  9. Silver bioaccumulation dynamics in a freshwater invertebrate after aqueous and dietary exposures to nanosized and ionic Ag

    USGS Publications Warehouse

    le Croteau, Marie-Noe; Misra, Superb K.; Luoma, Samuel N.; Valsami-Jones, Eugenia

    2011-01-01

    We compared silver (Ag) bioavailability and toxicity to a freshwater gastropod after exposure to ionic silver (Ag+) and to Ag nanoparticles (Ag NPs) capped with citrate or with humic acid. Silver form, exposure route, and capping agent influence Ag bioaccumulation dynamics in Lymnaea stagnalis. Snails efficiently accumulated Ag from all forms after either aqueous or dietary exposure. For both exposure routes, uptake rates were faster for Ag+ than for Ag NPs. Snails efficiently assimilated Ag from Ag NPs mixed with diatoms (assimilation efficiency (AE) ranged from 49 to 58%) and from diatoms pre-exposed to Ag+ (AE of 73%). In the diet, Ag NPs damaged digestion. Snails ate less and inefficiently processed the ingested food, which adversely impacted their growth. Loss rates of Ag were faster after waterborne exposure to Ag NPs than after exposure to dissolved Ag+. Once Ag was taken up from diet, whether from Ag+ or Ag NPs, Ag was lost extremely slowly. Large Ag body concentrations are thus expected in L. stagnalis after dietborne exposures, especially to citrate-capped Ag NPs. Ingestion of Ag associated with particulate materials appears as the most important vector of uptake. Nanosilver exposure from food might trigger important environmental risks.

  10. Diffusion and solid state reactions in Fe/Ag/Pt and FePt/Ag thin-film systems

    NASA Astrophysics Data System (ADS)

    Katona, G. L.; Safonova, N. Y.; Ganss, F.; Mitin, D.; Vladymyrskyi, I. A.; Sidorenko, S. I.; Makogon, Iu N.; Beddies, G.; Albrecht, M.; Beke, D. L.

    2015-05-01

    Depth profiles of tri-layered Fe(15 nm)/Ag(10 nm)/Pt(15 nm)/SiO2(100 nm)/Si(1 0 0) and bi-layered Fe50Pt50(15 nm)/Ag(7.5 nm)/SiO2(100 nm)/Si(1 0 0) thin films after different heat treatments were investigated by secondary neutral mass spectrometry. Isotherm annealing of the tri-layered samples was carried out between 245 and 390 °C up to several hours, while isochrone thermal annealing was performed between 600 and 900 °C for 30 s. Composition profiles, obtained after isotherm heat treatment, show that initially there was a strong intermixing between Ag and Pt, resulting most likely in the formation of an AgxPt1-x reaction layer. Furthermore, the intermixing process was much faster in the Ag layer accompanied by the segregation of Ag to the substrate/Pt interface. Later on the Pt, which diffused through the Ag layer, started to penetrate into the Fe grain boundaries. This process led to the formation of the FePt reaction product. At the same time as the Pt diffused into the Fe layer, reducing the amount of Pt in the AgxPt1-x layer, the Ag appeared to ‘move’ towards the substrate. Finally, an almost fully homogeneous FePt alloy layer formed with some FePt present in the grain boundaries of the remaining Ag. This behavior was compared to both types of samples subjected to isochrone thermal annealing. High temperature treatments resulted in similar results and eventually in the formation of a homogeneous L10 ordered FePt alloy with randomly distributed Ag in the grain boundaries and at the free surface.

  11. Pd effect on reliability of Ag bonding wires in microelectronic devices in high-humidity environments

    NASA Astrophysics Data System (ADS)

    Cho, Jong-Soo; Yoo, Kyung-Ah; Moon, Jeong-Tak; Son, Seoung-Bum; Lee, Se-Hee; Oh, Kyu Hwan

    2012-10-01

    We investigated the effect of Pd concentration in Pd-doped Ag wires on the humidity reliability and interfacial corrosion characteristics between Ag wire and Al metallization. Additionally, we confirmed no corrosion problem between Ag wire and noble metal (Pd, Au) metallization, even after a pressure cooker test (PCT). The chemical composition of the tested Ag wires was pure Ag, Ag-1wt% Pd and Ag-3wt% Pd. These wires were bonded to Al and noble metal (Au, Pd) metallization using a thermo-sonic bonder. The interfaces were characterized by focused ion beam (FIB), high resolution transmission electron microscope (HRTEM) and energy dispersive X-ray spectroscopy (EDS). The interface corrosion of Pd doped Ag wires was significantly reduced as the Pd concentration in the Ag wires increased. Furthermore, the Ag wires on the noble metal (Au, Pd) metallization exhibited stable reliability during the PCT.

  12. Thermodynamic properties of the intermediate phases of the Ag-Sb-Se system

    NASA Astrophysics Data System (ADS)

    Moroz, M. V.; Prokhorenko, M. V.

    2014-05-01

    The emf (ɛ) dependence of C|Ag|AgI|glass Ag2GeS3| D|C galvanic elements on temperature is studied in the range of 470 to 575 K (C represents current electrodes, D denotes equilibrium three-phase alloys of individual Ag-Sb-Se systems, and AgI|glass Ag2GeS3 is a bilayer membrane with purely ionic (Ag+) electroconductivity). Analytical equations ɛ = ɛ( T) are used to calculate the thermodynamic functions of saturated solid solutions of the AgSbSe2, Sb2Se3, and Ag2Se phases of the Ag-Sb-Se system in the standard state.

  13. The Ratio of 2-AG to Its Isomer 1-AG as an Intrinsic Fine Tuning Mechanism of CB1 Receptor Activation

    PubMed Central

    Dócs, Klaudia; Mészár, Zoltán; Gonda, Sándor; Kiss-Szikszai, Attila; Holló, Krisztina; Antal, Miklós; Hegyi, Zoltán

    2017-01-01

    Endocannabinoids are pleiotropic lipid messengers that play pro-homeostatic role in cellular physiology by strongly influencing intracellular Ca2+ concentration through the activation of cannabinoid receptors. One of the best-known endocannabinoid ‘2-AG’ is chemically unstable in aqueous solutions, thus its molecular rearrangement, resulting in the formation of 1-AG, may influence 2-AG-mediated signaling depending on the relative concentration and potency of the two isomers. To predict whether this molecular rearrangement may be relevant in physiological processes and in experiments with 2-AG, here we studied if isomerization of 2-AG has an impact on 2-AG-induced, CB1-mediated Ca2+ signaling in vitro. We found that the isomerization-dependent drop in effective 2-AG concentration caused only a weak diminution of Ca2+ signaling in CB1 transfected COS7 cells. We also found that 1-AG induces Ca2+ transients through the activation of CB1, but its working concentration is threefold higher than that of 2-AG. Decreasing the concentration of 2-AG in parallel to the prevention of 1-AG formation by rapid preparation of 2-AG solutions, caused a significant diminution of Ca2+ signals. However, various mixtures of the two isomers in a fix total concentration – mimicking the process of isomerization over time – attenuated the drop in 2-AG potency, resulting in a minor decrease in CB1 mediated Ca2+ transients. Our results indicate that release of 2-AG into aqueous medium is accompanied by its isomerization, resulting in a drop of 2-AG concentration and simultaneous formation of the similarly bioactive isomer 1-AG. Thus, the relative concentration of the two isomers with different potency and efficacy may influence CB1 activation and the consequent biological responses. In addition, our results suggest that 1-AG may play role in stabilizing the strength of cannabinoid signal in case of prolonged 2-AG dependent cannabinoid mechanisms. PMID:28265242

  14. Synergistic photocatalytic inactivation mechanisms of bacteria by graphene sheets grafted plasmonic AgAgX (X = Cl, Br, I) composite photocatalyst under visible light irradiation.

    PubMed

    Xia, Dehua; An, Taicheng; Li, Guiying; Wang, Wanjun; Zhao, Huijun; Wong, Po Keung

    2016-08-01

    By coupling graphene sheet and plasmonic photocatalysis technologies, a series of AgAgX/RGOs (X = Cl, Br, I; RGO = reduced graphene oxide) composites were prepared and found to be efficient antimicrobial agents for water disinfection upon visible light. Attributed to the efficient charge transfer by RGO sheets, the optimum AgAgBr/0.5% RGO could completely inactivate 2 × 10(7) cfu mL(-1) of Escherichia coli within 8 min, much faster than bare AgAgBr within 35 min. The synergistic antimicrobial mechanism of AgAgBr/0.5% RGO was studied by Ag(+) ions release evaluation, radical scavengers study, and radical determination. The enhanced photocatalytic activity of irradiated AgAgBr/0.5% RGO originated from the synergistic activities of its three components including Ag, AgBr and RGO, and the proposed mechanisms contained enhanced attraction by RGO followed by two pathways: primary oxidative stress caused by plasma induced reactive species like H2O2 and bactericidal effect of released Ag(+) ions. Furthermore, characterization of E. coli cells using SEM, fluorescent microscopy, and cytoplasmic substance leakage illustrated that VL irradiated AgAgBr/0.5% RGO could not only cause metabolic dysfunction but also destroy the cell envelope and biomolecular, while irradiated Ag(+) ions play a differential bactericidal action with a limited metabolic injury and no cell-membrane damage. The present work provides an efficient water disinfection technology and also opens a new idea in studying the antimicrobial mechanism of plasmonic photocatalyst.

  15. Investigation of Ag-TiO2 Interfacial Reaction of Highly Stable Ag Nanowire Transparent Conductive Film with Conformal TiO2 Coating by Atomic Layer Deposition.

    PubMed

    Yeh, Ming-Hua; Chen, Po-Hsun; Yang, Yi-Ching; Chen, Guan-Hong; Chen, Hsueh-Shih

    2017-03-29

    The atomic layer deposition (ALD) technique is applied to coat Ag nanowires (NWs) with a highly uniform and conformal TiO2 layer to improve the stability and sustainability of Ag NW transparent conductive films (TCFs) at high temperatures. The TiO2 layer can be directly deposited on Ag NWs with a surface polyvinylpyrrolidone (PVP) coat that acts a bed for TiO2 seeding in the ALD process. The ALD TiO2 layer significantly enhances the thermal stability at least 100 fold when aged between 200-400 °C and also provides an extra function of violet-blue light filtration for Ag NW TCFs. Investigation into the interaction between TiO2 and Ag reveals that the conformal TiO2 shell could effectively prevent Ag from 1D-to-3D ripening. However, Ag could penetrate the conformal TiO2 shell and form nanocrystals on the TiO2 shell surface when it is aged at 400 °C. According to experimental data and thermodynamic evaluation, the Ag penetration leads to an interlayer composed of mixed Ag-Ag2O-amorphous carbon phases and TiO2-x at the Ag-TiO2 interface, which is thought to be caused by extremely high vapor pressure of Ag at the Ag-TiO2 interface at a higher temperature (e.g., 400 °C).

  16. Fabrication of Z-scheme plasmonic photocatalyst Ag@AgBr/g-C₃N₄ with enhanced visible-light photocatalytic activity.

    PubMed

    Yang, Yuxin; Guo, Wan; Guo, Yingna; Zhao, Yahui; Yuan, Xing; Guo, Yihang

    2014-04-30

    A series of Ag@AgBr grafted graphitic carbon nitride (Ag@AgBr/g-C3N4) plasmonic photocatalysts are fabricated through photoreducing AgBr/g-C3N4 hybrids prepared by deposition-precipitation method. The phase and chemical structures, electronic and optical properties as well as morphologies of Ag@AgBr/g-C3N4 heterostructures are well-characterized. Subsequently, the photocatalytic activity of Ag@AgBr/g-C3N4 is evaluated by the degradation of methyl orange (MO) and rhodamin B (RB) under visible-light irradiation. The enhanced photocatalytic activity of Ag@AgBr/g-C3N4 compared with g-C3N4 and Ag@AgBr is obtained and explained in terms of the efficient visible-light utilization efficiency as well as the construction of Z-scheme, which keeps photogenerated electrons and holes with high reduction and oxidation capability, evidenced by photoelectrochemical tests and free radical and hole scavenging experiments. Based on the intermediates identified in the reaction system, the photocatalytic degradation pathway of MO is put forward.

  17. Degradation of microcystin-LR by highly efficient AgBr/Ag3PO4/TiO2 heterojunction photocatalyst under simulated solar light irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Utsumi, Motoo; Yang, Yingnan; Li, Dawei; Zhao, Yingxin; Zhang, Zhenya; Feng, Chuanping; Sugiura, Norio; Cheng, Jay Jiayang

    2015-01-01

    A novel photocatalyst AgBr/Ag3PO4/TiO2 was developed by a simple facile in situ deposition method and used for degradation of mirocystin-LR. TiO2 (P25) as a cost effective chemical was used to improve the stability of AgBr/Ag3PO4 under simulated solar light irradiation. The photocatalytic activity tests for this heterojunction were conducted under simulated solar light irradiation using methyl orange as targeted pollutant. The results indicated that the optimal Ag to Ti molar ratio for the photocatalytic activity of the resulting heterojunction AgBr/Ag3PO4/TiO2 was 1.5 (named as 1.5 BrPTi), which possessed higher photocatalytic capacity than AgBr/Ag3PO4. The 1.5 BrPTi heterojunction was also more stable than AgBr/Ag3PO4 in photocatalysis. This highly efficient and relatively stable photocatalyst was further tested for degradation of the hepatotoxin microcystin-LR (MC-LR). The results suggested that MC-LR was much more easily degraded by 1.5 BrPTi than by AgBr/Ag3PO4. The quenching effects of different scavengers proved that reactive h+ and •OH played important roles for MC-LR degradation.

  18. Influence of the surface properties on bactericidal and fungicidal activity of magnetron sputtered Ti-Ag and Nb-Ag thin films.

    PubMed

    Wojcieszak, D; Mazur, M; Kaczmarek, D; Mazur, P; Szponar, B; Domaradzki, J; Kepinski, L

    2016-05-01

    In this study the comparative investigations of structural, surface and bactericidal properties of Ti-Ag and Nb-Ag thin films have been carried out. Ti-Ag and Nb-Ag coatings were deposited on silicon and fused silica substrates by magnetron co-sputtering method using innovative multi-target apparatus. The physicochemical properties of prepared thin films were examined with the aid of X-ray diffraction, grazing incidence X-ray diffraction, scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy methods. Moreover, the wettability of the surface was determined. It was found that both, Ti-Ag and Nb-Ag thin films were nanocrystalline. In the case of Ag-Ti film presence of AgTi3 and Ag phases was identified, while in the structure of Nb-Ag only silver occurred in a crystal form. In both cases the average size of crystallites was ca. 11 nm. Moreover, according to scanning electron microscopy and atomic force microscopy investigations the surface of Nb-Ag thin films was covered with Ag-agglomerates, while Ti-Ag surface was smooth and devoid of silver particles. Studies of biological activity of deposited coatings in contact with Bacillus subtilis, Pseudomonas aeruginosa, Enterococcus hirae, Klebisiella pneumoniae, Escherichia coli, Staphylococcus aureus and Candida albicans were performed. It was found that prepared coatings were bactericidal and fungicidal even in a short term-contact, i.e. after 2 h.

  19. Global optimization of bimetallic cluster structures. I. Size-mismatched Ag-Cu, Ag-Ni, and Au-Cu systems.

    PubMed

    Rapallo, Arnaldo; Rossi, Giulia; Ferrando, Riccardo; Fortunelli, Alessandro; Curley, Benjamin C; Lloyd, Lesley D; Tarbuck, Gary M; Johnston, Roy L

    2005-05-15

    A genetic algorithm approach is applied to the optimization of the potential energy of a wide range of binary metallic nanoclusters, Ag-Cu, Ag-Ni, Au-Cu, Ag-Pd, Ag-Au, and Pd-Pt, modeled by a semiempirical potential. The aim of this work is to single out the driving forces that make different structural motifs the most favorable at different sizes and chemical compositions. Paper I is devoted to the analysis of size-mismatched systems, namely, Ag-Cu, Ag-Ni, and Au-Cu clusters. In Ag-Cu and Ag-Ni clusters, the large size mismatch and the tendency of Ag to segregate at the surface of Cu and Ni lead to the location of core-shell polyicosahedral minimum structures. Particularly stable polyicosahedral clusters are located at size N = 34 (at the composition with 27 Ag atoms) and N = 38 (at the composition with 32 and 30 Ag atoms). In Ag-Ni clusters, Ag32Ni13 is also shown to be a good energetic configuration. For Au-Cu clusters, these core-shell polyicosahedra are less common, because size mismatch is not reinforced by a strong tendency to segregation of Au at the surface of Cu, and Au atoms are not well accommodated upon the strained polyicosahedral surface.

  20. Synthesis and characterization of cube-like Ag@AgCl-doped TiO2/fly ash cenospheres with enhanced visible-light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Liu, Shaomin; Zhu, Jinglin; Yang, Qing; Xu, Pengpeng; Ge, Jianhua; Guo, Xuetao

    2016-03-01

    A cube-like Ag@AgCl-doped TiO2/fly ash cenosphere composite (denoted Ag@AgCl-TiO2/fly ash cenospheres) was successfully synthesized via a two-step approach. The as-prepared catalysts were characterized by scanning electron microscopy, X-ray diffraction, diffuse reflectance ultraviolet-visible spectroscopy, Brunauer-Emmett-Teller, and X-ray photoelectron spectroscopy. The photocatalytic experiment showed that the rhodamine B degradation rate with Ag@AgCl-TiO2/fly ash cenospheres was 1.56 and 1.33 times higher than that with AgCl-TiO2/fly ash cenospheres and Ag@AgCl, respectively. The degradation ratio of rhodamine B with Ag@AgCl-TiO2/fly ash cenospheres was nearly 100% within 120 min under visible light. Analysis of active species indicated that radO2- and h+ dominated the reaction, and radOH participated in the photocatalytic reactions as an active species. A mechanism for the photocatalytic degradation by the Ag@AgCl-TiO2/fly-ash cenospheres was also proposed based on the experimental results.

  1. In situ ion exchange synthesis of strongly coupled Ag@AgCl/g-C₃N₄ porous nanosheets as plasmonic photocatalyst for highly efficient visible-light photocatalysis.

    PubMed

    Zhang, Shouwei; Li, Jiaxing; Wang, Xiangke; Huang, Yongshun; Zeng, Meiyi; Xu, Jinzhang

    2014-12-24

    A novel efficient Ag@AgCl/g-C3N4 plasmonic photocatalyst was synthesized by a rational in situ ion exchange approach between exfoliated g-C3N4 nanosheets with porous 2D morphology and AgNO3. The as-prepared Ag@AgCl-9/g-C3N4 plasmonic photocatalyst exhibited excellent photocatalytic performance under visible light irradiation for rhodamine B degradation with a rate constant of 0.1954 min(-1), which is ∼41.6 and ∼16.8 times higher than those of the g-C3N4 (∼0.0047 min(-1)) and Ag/AgCl (∼0.0116 min(-1)), respectively. The degradation of methylene blue, methyl orange, and colorless phenol further confirmed the broad spectrum photocatalytic degradation abilities of Ag@AgCl-9/g-C3N4. These results suggested that an integration of the synergetic effect of suitable size plasmonic Ag@AgCl and strong coupling effect between the Ag@AgCl nanoparticles and the exfoliated porous g-C3N4 nanosheets was superior for visible-light-responsive and fast separation of photogenerated electron-hole pairs, thus significantly improving the photocatalytic efficiency. This work may provide a novel concept for the rational design of stable and high performance g-C3N4-based plasmonic photocatalysts for unique photochemical reaction.

  2. Speciation and Lability of Ag-, AgCl- and Ag2S-Nanoparticles in Soil Determined by X-ray Absorption Spectroscopy and Diffusive Gradients in Thin Films

    EPA Science Inventory

    Long-term speciation and lability of silver (Ag-), silver chloride (AgCl-) and silver sulfide nanoparticles (Ag2S-NPs) in soil were studied by X-ray absorption spectroscopy (XAS), and newly developed "nano" Diffusive Gradients in Thin Films (DGT) devices. These nano-D...

  3. Lifetime measurements and magnetic rotation in 107Ag

    NASA Astrophysics Data System (ADS)

    Yao, S. H.; Ma, H. L.; Zhu, L. H.; Wu, X. G.; He, C. Y.; Zheng, Y.; Zhang, B.; Li, G. S.; Li, C. B.; Hu, S. P.; Cao, X. P.; Yu, B. B.; Xu, C.; Cheng, Y. Y.

    2014-01-01

    The excited states in 107Ag were populated through the heavy-ion fusion evaporation reaction 100Mo (11B, 4n) 107Ag at a beam energy of 46 MeV. Lifetimes of high-spin states in 107Ag have been measured through the Doppler shift attenuation method. The deduced B (M1) values, gradually decreasing with increasing spin, clearly demonstrate that both the yrast positive-parity band and the yrast negative-parity band in 107Ag are magnetic rotation bands. Furthermore, experimental deduced B (M1) values for the yrast positive-parity band are compared with the predictions of the particle rotor model. The approximate agreement between theoretical calculations and experimental results further confirms the mechanism of magnetic rotation for the yrast positive-parity band. In addition, a systematic investigation shows the evolution of the magnetic rotation mechanism in the A ≈110 mass region.

  4. Synthesis and characterization of Ag-polymer nanocomposites.

    PubMed

    Mishra, Y K; Mohapatra, S; Chakravadhanula, V S K; Lalla, N P; Zaporojtchenko, V; Avasthi, D K; Faupel, F

    2010-04-01

    We report the synthesis of Ag nanoparticles in polyethylene terephthalate (PET) matrix using atom beam co-sputtering. Metal filling factor was evaluated by Rutherford backscattering spectrometry. Microstructural evolutions of the nanocomposites films were investigated by transmission electron microscopy, which confirmed the formation of irregular shaped Ag nanoparticles. The X-ray photoelectron spectroscopy measurements of the sputter deposited PET film and co-sputtered deposited Ag-PET as well as PET bulk foil (from Goodfellows) were performed to study chemical composition of the nanocomposite films. The optical properties of these nanocomposites were studied by light absorption/transmission, which revealed a narrow transmission of UV light approximately 320 nm and a broad surface plasmon resonance absorption extending up to infrared region (approximately 2400 nm). Swift heavy ion irradiation of Ag-PET nanocomposite resulted in narrowing the full width at half maximum of transmission band.

  5. Metal enhanced fluorescence of Ag-nanoshell dimer

    NASA Astrophysics Data System (ADS)

    Liaw, Jiunn-Woei; Chen, Huang-Chih; Chen, Bae-Renn; Kuo, Mao-Kuen

    2014-04-01

    The plasmon modes of Ag-nanoshell dimer on metal enhanced fluorescence (MEF) are studied theoretically. The amplified excitation rate of a dimer (two identical Ag nanoshells) illuminated by a plane wave for exciting a molecule located at the gap center is calculated. Subsequently, the apparent quantum yield of the emission of the excited molecule affected by the dimer is investigated. The multiple multipole method is used for the both simulations. Finally, the enhancement factor of the dimer on the overall photoluminescence of the molecule in terms of the two parameters is evaluated. Our results show that Ag-nanoshell dimer is a dual-band photoluminescence enhancer for MEF at the bonding dipole and quadrupole modes. The former is broadband, and the latter narrowband. Both bands depend on the gap size. Moreover, the average enhancement factor of Ag-nanoshell dimer for MEF with a Stokes shift is discussed.

  6. Synthesis, characterization and SERS activity of Au-Ag nanorods.

    PubMed

    Philip, Daizy; Gopchandran, K G; Unni, C; Nissamudeen, K M

    2008-09-01

    The formation mechanism and morphology of Au-Ag bimetallic colloidal nanoparticles depend on the composition. Ag coated Au colloidal nanoparticles have been prepared by deposition of Ag through chemical reduction on performed Au colloid. The composition of the Au100-x-Agx particles was varied from x=0 to 50. The obtained colloids were characterized by UV-vis spectroscopy and transmission electron microscopy (TEM). The Au80-Ag20 colloid consists of alloy nanorods with dimension of 25nm x 100nm. The activity of these nanorods in surface enhanced Raman spectroscopy (SERS) was checked by using sodium salicylate as an adsorbate probe. Intense SERS bands are observed indicating its usefulness as a SERS substrate in near infrared (NIR) laser excitation.

  7. Dislocation interactions with characteristic interfaces in AgCu eutectic

    NASA Astrophysics Data System (ADS)

    Eftink, Benjamin P.

    In the AgCu eutectic alloy, the observation of deformation twinning in Cu proposed to be induced by direct transmission of deformation twinning partial dislocations in Ag highlights the question of how interfaces in bi-phase materials respond to deformation. AgCu eutectic alloy was produced by both directional solidification and cast water-quenching. Control over processing variables enabled the synthesis of Ag/Cu eutectic with three predominant interface types: ones with a cube-on-cube orientation relationship with {111} Ag||{111}Cu interface habit planes, twin orientation relationship with {111}Ag||{111}Cu interface habit planes, and twin orientation relationship with near {313}Ag||{ 112}Cu interface habit planes. How dislocations interacted with each of the interfaces was determined using in situ and ex situ TEM straining experiments. It was determined that how strain transfers across Ag/Cu interfaces is consistent with criteria of strain transfer across grain boundaries in single phase materials. Specifically, the magnitude of the Burgers vector of the residual dislocation, |bres |, left in the interface should be small. This criterion was determining enough to drive Cu to twin under conditions where otherwise it would not. When transmission of a dislocation would result in a high |bres|, which is common for most slip systems encountering an incoherent twin interface, the interfaces were observed to block the dislocations. It was found that the increased effectiveness of the incoherent twin interfaces to block dislocations compared to the cube-on-cube interfaces resulted in an increased in the yield strength of the material. Interfaces with the cube-on-cube orientation relationship and mutual {111} interface plane between Ag and Cu results in transfer of twinning defects from Ag into Cu. This was found at length scales in the tens of nano-meters to the micron range. Twinning in both phases was observed after both split-Hopkinson pressure bar ex situ straining

  8. Silver delafossite nitride, AgTaN{sub 2}?

    SciTech Connect

    Miura, Akira; Lowe, Michael; Leonard, Brian M.; Subban, Chinmayee V.; Masubuchi, Yuji; Kikkawa, Shinichi; Dronskowski, Richard; Hennig, Richard G.; Abruna, Hector D.; DiSalvo, Francis J.

    2011-01-15

    A new silver nitride, AgTaN{sub 2}, was synthesized from NaTaN{sub 2} by a cation-exchange reaction, using a AgNO{sub 3}-NH{sub 4}NO{sub 3} flux at 175 {sup o}C. Its crystal structure type is delafossite (R3-bar m) with hexagonal lattice parameters of a=3.141(3) A, c=18.81(2) A, in which silver is linearly coordinated to nitrogen. Energy dispersive X-ray analysis and combustion nitrogen/oxygen analysis gave a composition with atomic ratios of Ag:Ta:N:O as 1.0:1.2(1):2.1(1):0.77(4), which is somewhat Ta rich and indicates some oxide formation. The X-ray photoelectron spectroscopy analysis showed a Ta- and O-rich surface and transmission electron microscope observation exhibited aggregates of ca. 4-5 nm-sized particles on the surface, which are probably related to the composition deviation from a AgTaN{sub 2}. The lattice parameters of stoichiometric AgTaN{sub 2} calculated by density functional theory agree with the experimental ones, but the possibility of some oxygen incorporation and/or silver deficiency is not precluded. -- Graphical abstract: A delafossite silver nitride, AgTaN{sub 2}, was synthesized from NaTaN{sub 2} by a cation-exchange reaction using a AgNO{sub 3}-NH{sub 4}NO{sub 3} flux. It contains N-Ag-N linear bonding. Display Omitted

  9. Outburst Activity of the Symbiotic System AG Dra

    NASA Astrophysics Data System (ADS)

    Gális, R.; Hric, L.; Leedjärv, L.; Kundra, E.

    2015-07-01

    AG Dra is one of the best studied symbiotic systems. A period analysis of new and historical photometric data, as well as radial velocities, confirmed the presence of the two periods — about 550 days, caused by orbital motion, and around 350 days, related to pulsations of the cool component of AG Dra. In addition, the active stages change distinctively, but the outbursts recur with periods from 359 to 375 days.

  10. The Booster to AGS beam transfer fast kicker systems

    SciTech Connect

    Zhang, W.; Bunicci, J.; Soukas, A.V.; Zhang, S.Y.

    1992-08-01

    The Brookhaven AGS Booster has a very successful commissioning period in June 1991. The third phase of that commissioning was a beam extraction test. The Booster extraction fast kicker (F3) deflected a 1.2 GeV proton beam from the Booster circulating orbit into the extraction septum aperture, partially down the extraction line to a temporary beam stop. Now, the Booster is committed to the AGS operations program for both heavy ion and proton beams. Thus, the Booster extraction and the corresponding AGS injection systems must operate routinely up to a pulse repetition frequency of 7.5 Hertz, and up to a beam energy of 1.5 Gev. The injection fast kicker is located in the A5 section of the AGS ring and is used to deflect the proton or heavy ion beam into its final AGS closed orbit. A distinctive feature of the AGS injection fast kicker modulators is the tail-bitting function required for proton beam injection. This enables the system to produce a fast current fall time to go along with the high current pulse amplitude with a fast rise time. The AGS injection fast kicker system has three pulse modulators, and each modulator consists of two thyratrons. The main PFN thyratrons switch on the current, and the tail bitting thyratrons are used to force the magnet current to decrease rapidly. Two digital pulse delay generators are used to align the main thyratrons and the tail bitting thyratrons respectively. The system has been tested and installed. The final commissioning of the Booster to AGS beam transfer line and injection is currently being undertaken. In this article, the system design, realization techniques and performance data will be presented.

  11. POLARIZED PROTON ACCELERATION AT THE BROOKHAVEN AGS - AN UPDATE.

    SciTech Connect

    HUANG,H.; AHRENS,L.; ALESSI,J.; BAI,M.; BEEBE-WANG,J.; BROWN,K.A.; GLENN,W.; LUCCIO,A.U.; MACKAY,W.W.; MONTAG,C.; PTITSYN,V.; ROSER,T.; TSOUPAS,N.; ZELENSKI,A.; ZENO,K.; CADMAN,B.; SPINKA,H.; UNDERWOOD,D.; RANJBAR,V.

    2002-06-02

    The RHIC spin design goal assumes 2 x 10{sup 11} proton/bunch with 70% polarization. As the injector to RHIC, polarized protons have been accelerated at the AGS for years to increase the polarization transmission efficiency. Several novel techniques have been applied in the AGS to overcome the intrinsic and imperfection resonances. The present level of accelerator performance is discussed. Progress on understanding the beam polarization behavior is presented. The outlook and future plan are also discussed.

  12. Polarized proton acceleration program at the AGS and RHIC

    SciTech Connect

    Lee, Y.Y.

    1995-06-01

    Presented is an overview of the program for acceleration of polarized protons in the AGS and their injection into the RHIC collider. The problem of depolarizing resonances in strong focusing circulator accelerators is discussed. The intrinsic resonances are jumped over by the fast tune jump, and a partial Siberian Snake is used to compensate for over forty imperfection resonances in the AGS. Two sets of full Siberian Snake and spin rotators will be employed in RHIC.

  13. Radiochemical synthesis of 105gAg-labelled silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Ichedef, C.; Simonelli, F.; Holzwarth, U.; Bagaria, J. Piella; Puntes, V. F.; Cotogno, G.; Gilliland, D.; Gibson, N.

    2013-11-01

    A method for synthesis of radiolabelled silver nanoparticles is reported. The method is based on proton activation of silver metal powder, enriched in 107Ag, with a 30.7 MeV proton beam. At this proton energy 105gAg is efficiently created, mainly via the 107Ag(p,3n)105Cd → 105gAg reaction. 105gAg has a half-life of 41.29 days and emits easily detectable gamma radiation on decay to 105Pd. This makes it very useful as a tracing radionuclide for experiments over several weeks or months. Following activation and a period to allow short-lived radionuclides to decay, the powder was dissolved in concentrated nitric acid in order to form silver nitrate (AgNO3), which was used to synthesise radiolabelled silver nanoparticles via the process of sodium borohydride reduction. For comparison, non-radioactive silver nanoparticles were synthesised using commercially supplied AgNO3 in order to check if the use of irradiated Ag powder as a starting material would alter in any way the final nanoparticle characteristics. Both nanoparticle types were characterised using dynamic light scattering, zeta-potential and X-ray diffraction measurements, while additionally the non-radioactive samples were analysed by transmission electron microscopy and UV-Vis spectrometry. A hydrodynamic diameter of about 16 nm was determined for both radiolabelled and non-radioactive nanoparticles, while the electron microscopy on the non-radioactive samples indicated that the physical size of the metal NPs was (7.3 ± 1.4) nm.

  14. Melting curve of metals Cu, Ag and Au under pressure

    NASA Astrophysics Data System (ADS)

    Tam, Pham Dinh; Hoc, Nguyen Quang; Tinh, Bui Duc; Tan, Pham Duy

    2016-01-01

    In this paper, the dependence of the melting temperature of metals Cu, Ag and Au under pressure in the interval from 0 kbar to 40 kbar is studied by the statistical moment method (SMM). This dependence has the form of near linearity and the calculated slopes of melting curve are 3.9 for Cu, 5.7 for Ag and 6 for Au. These results are in good agreement with the experimental data.

  15. Enhanced Noble Gas Adsorption in Ag@MOF-74Ni

    SciTech Connect

    Liu, Jian; Strachan, Denis M.; Thallapally, Praveen K.

    2014-01-14

    Various amounts of Ag nanoparticles were successfully deposited in porous MOF-74Ni (or Ni/DOBDC) with an auto-reduction method. An optimized silver-loaded MOF-74Ni was shown to have an improved Xe adsorption capacity (15% more) at STP compared to the MOF without silver nanoparticles. The silver-loaded sample also has a higher Xe/Kr selectivity. These results are explained by the stronger interactions between polarizable Xe molecules and the well-dispersed Ag nanoparticles.

  16. Spectroscopic and lasing properties of Ho:Tm:LuAG

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; Filer, Elizabeth D.; Naranjo, Felipe L.; Rodriguez, Waldo J.; Kokta, Milan R.

    1993-01-01

    Ho:Tm:LuAG has been grown, examined spectroscopically, and lased at 2.1 microns. Ho:Tm:LuAG was selected for this experimental investigation when quantum-mechanical modeling predicted that it would be a good laser material for Ho laser operation on one of the 5I7 to 5I8 transitions. Lasing was achieved at 2.100 microns, one of the three wavelengths predicted to be most probable for laser action.

  17. Hepatocellular carcinoma HBsAg positive in pregnancy.

    PubMed

    Gonçalves, C S; Pereira, F E; de Vargas, P R; Ferreira, L S

    1984-01-01

    The authors present a case of hepatocellular carcinoma diagnosed in a pregnant woman (four months pregnancy). The clinical evolution was complicated because of a severe hypoglicemia and the patient died 12 weeks after admission. The fetus died before a tentative of surgical delivery. The patient was HBsAg positive and five out of eight sons (inclusively the fetus), were HBsAg positive. There was not indication that the pregnancy had enhanced the tumor evolution.

  18. Coverage induced structural transformations of tetracene on Ag(110).

    PubMed

    Takasugi, Kazushiro; Yokoyama, Takashi

    2016-03-14

    Self-assembly of tetracene on an anisotropic surface of Ag(110) has been investigated using scanning tunneling microscopy and low-energy electron diffraction. We observe multistage structural transformations of the self-assembled tetracene on Ag(110) as a function of molecular coverages, which are accompanied by the changes in molecular orientations. They are analyzed by a balance between multiple molecule-molecule and anisotropic substrate-molecule interactions.

  19. Phase-dependent corrosion of titanium-to-stainless steel joints brazed by Ag-Cu eutectic alloy filler and Ag interlayer

    NASA Astrophysics Data System (ADS)

    Lee, M. K.; Park, J. J.; Lee, J. G.; Rhee, C. K.

    2013-08-01

    The electrochemical corrosion properties of Ti-STS dissimilar joints brazed by a 72Ag-28Cu alloy filler and an Ag interlayer were studied in a 3.5% NaCl solution using potentiodynamic polarization and ac impedance spectroscopy. For a joint with a layered structure of Ti(base)/TiAg/Ag solid solution/Ag-Cu eutectic/STS(base), galvanic corrosion mostly occurred in the TiAg phase with a severe material loss, indicating that the TiAg layer acted as an anode in the galvanic couple in the layered joint. The Ag-rich solid solution layer was also corroded to a certain extent, but the corrosion in this layer was dominated by the selective pitting corrosion of the eutectic Cu-rich phase. With an increase in the brazing temperature, the Cu-rich phases disappeared owing to the enhanced isothermal solidification effect, leading to an improvement of the corrosion resistance.

  20. The isotopic composition and concentration of Ag in iron meteorites and the origin of exotic silver

    NASA Technical Reports Server (NTRS)

    Kaiser, T.; Wasserburg, G. J.

    1983-01-01

    The isotopic composition of Ag and the concentration of Ag and Pd in Canyon Diablo (IA), Grant (IIIB), Santa Clara, Tlacotepec and Warburton Range (IVB), Pinon and Deep Springs (anom) were analyzed. Troilite from Santa Clara and from Grant was also studied. With the exception of IA, all the meteorites were enriched in Ag-107 by about 2%-212% and the ratio of Ag-107/Ag-109 in the metal phase was found to be greater than the terrestrial value. Ag of anomalous isotopic composition was found to be common in all IVB and anomalous meteorites. A correlation of Ag-107/Ag-109 with Pd/Ag was established except for the iron meteorite of Santa Clara. The excess Ag-107 is thought to result from the decay of Pd-107. The Grant data appear to represent a Pd-107-Ag-107 isochron and indicate that the cooling rate at elevated temperatures was rapid enough to preserve the isotopic differences between metal and troilite. The data suggest that Ag in Santa Clara is made up of almost pure Ag-107 produced from Pd-107 decay and Ag-109 produced by nuclear reactions with only a small amount of 'normal' Ag. This indicates an intense energetic particle bombardment history in the early solar system which occurred after the formation of small planetary bodies.

  1. Adsorption, vibration and diffusion of oxygen on Ag(110)

    NASA Astrophysics Data System (ADS)

    Rawal, Takat; Hong, Sampyo; Pulkkinen, Aki; Alatalo, Matti; Rahman, Talat

    2015-03-01

    We have performed density functional theory calculations for the adsorption, vibration and diffusion of oxygen on Ag(110). At low coverage, O2 adsorbs at the four-fold hollow (FFH) with the molecular axis aligned along the [ 1 1 0 ] direction. The dissociation of O2 is easier along the [001] direction than along the [ 1 1 0 ] direction. For O2 species in FFH aligned along the [001] the O-O intra-molecular stretching mode is coupled with the substrate vibration and thus its dissociation can be induced by surface phonon. In addition, O diffusion barrier from FFH to next FFH along the [ 1 1 0 ] is small (0.07 eV only) but is by far larger (0.4 eV) along [001]. On the other hand, O species in the short-bride (SB) site prefers to diffuse along the [001] (to FFH) rather than along the [ 1 1 0 ] direction (to next SB). Finally, the preference of atomic oxygen to form O-Ag-O complex on Ag(110) is responsible for disordering of the surface by means of substantial lateral and vertical displacements of Ag atoms in the topmost layer. In fact, such disordering phase of Ag(110) may act as a precursor of the reconstructed phase of Ag(110). Work supported in part by NSF under Grant CHE-1310327.

  2. Origin of metallicity in atomic Ag wires on Si(557)

    NASA Astrophysics Data System (ADS)

    Krieg, U.; Lichtenstein, T.; Brand, C.; Tegenkamp, C.; Pfnür, H.

    2015-04-01

    We investigated the metallicity of Ag-\\sqrt{3} ordered atomic wires close to one monolayer (ML) coverage, which are formed on Si(557) via self assembly. For this purpose we combined high resolution electron energy loss spectroscopy with tunneling microscopy. By extending the excess Ag coverage up to 0.6 ML on samples annealed at high temperatures where partial desorption occurs, we demonstrate that one-dimensional metallicity in the Ag-\\sqrt{3}× \\sqrt{3} R30° ordered atomic wires on the (111) mini-terraces originates only from Ag atoms in excess of (local) monolayer coverage, which are adsorbed and localized at the highly stepped parts of the Si(557) surface. Thus these Ag atoms act as extrinsic dopants on the atomic scale, causing coverage dependent subband filling and increasing localization as a function of doping concentration. The second layer lattice gas as well as Ag islands on the (111) terraces turn out not to be relevant as dopants. We simulated the peculiar saturation behavior within a modified lattice gas model and give evidence that the preparation dependent saturation of doping is due to changes of average terrace size and step morphology induced by high temperature treatment.

  3. Quantifying the origin of released Ag+ ions from nanosilver.

    PubMed

    Sotiriou, Georgios A; Meyer, Andreas; Knijnenburg, Jesper T N; Panke, Sven; Pratsinis, Sotiris E

    2012-11-13

    Nanosilver is most attractive for its bactericidal properties in modern textiles, food packaging, and biomedical applications. Concerns, however, about released Ag(+) ions during dispersion of nanosilver in liquids have limited its broad use. Here, nanosilver supported on nanostructured silica is made with closely controlled Ag size both by dry (flame aerosol) and by wet chemistry (impregnation) processes without any surface functionalization that could interfere with its ion release. It is characterized by electron microscopy, atomic absorption spectroscopy, and X-ray diffraction, and its Ag(+) ion release in deionized water is monitored electrochemically. The dispersion method of nanosilver in solutions affects its dissolution rate but not the final Ag(+) ion concentration. By systematically comparing nanosilver size distributions to their equilibrium Ag(+) ion concentrations, it is revealed that the latter correspond precisely to dissolution of one to two surface silver oxide monolayers, depending on particle diameter. When, however, the nanosilver is selectively conditioned by either washing or H(2) reduction, the oxide layers are removed, drastically minimizing Ag(+) ion leaching and its antibacterial activity against E. coli . That way the bactericidal activity of nanosilver is confined to contact with its surface rather than to rampant ions. This leads to silver nanoparticles with antibacterial properties that are essential for medical tools and hospital applications.

  4. Nanocomposite Ag-LSM solid oxide fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Sholklapper, Tal Z.; Radmilovic, Velimir; Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    Advances in infiltration technology have enabled the creation of innovative electrode architectures that are key to highly effective SOFC anodes and cathodes. In this work, an Ag-infiltrated electrode has been created using a pre-sintered porous scandia-stabilized zirconia (SSZ) electrode backbone. The well-sintered SSZ provides a highly connected ion-conducting pathway throughout the electrode, while the nanometer thickness of the Ag particle layer minimizes the oxygen transport resistance that otherwise limits reaction rates in typical Ag composite electrodes. The new Ag composite electrode had minimal activation polarization by 750 °C. The infiltration technology has allowed for incorporation of additional nanoscale electrocatalysts. Here, an Ag-LSM (strontium-doped lanthanum manganate) composite was produced, that takes advantage of each component catalyst and demonstrates a further enhanced effectiveness of the cathode Ag metal catalyst, producing relatively stable cell power densities of 316 mW cm -2 at 0.7 V (and 467 mW cm -2 peak power at ∼0.4 V) for over 500 h.

  5. β - Ag2Te: A topological insulator with strong anisotropy

    NASA Astrophysics Data System (ADS)

    Wang, Lan; Sulaev, Azat; Ren, Peng; Xia, Bin; Lin, Qinghua; Yu, Ting; Qiu, Caiyu; Zhang, Shuang-Yuan; Han, Ming-Yong; Li, Zhipeng; Zhu, Wei Guang; Wu, Qingyu; Feng, Yuan Ping; Shen, Lei; Shen, Shun-Qing

    2013-03-01

    We present evidence of topological surface states in β-Ag2Te through first-principles calculations, periodic quantum interference effect and ambipolar electric field effect in single crystalline nanoribbon. Our first-principles calculations show that β-Ag2Te is a topological insulator with a gapless Dirac cone with strong anisotropy. To experimentally probe the topological surface state, we synthesized high quality β-Ag2Te nanoribbons and performed electron transport measurements. The coexistence of pronounced Aharonov-Bohm oscillations and weak Altshuler-Aronov-Spivak oscillations clearly demonstrates coherent electron transport around the perimeter of β-Ag2Te nanoribbon and therefore the existence of topological surface states, which is further supported by the ambipolar electric field effect for devices fabricated by β-Ag2Te nanoribbons. The experimentally confirmed topological surface states and the theoretically predicted isotropic Dirac cone of β-Ag2Te suggest that the material may be a promising material for fundamental study and future spintronic devices. RCA-08/018 (Singapore), MOE2010-T2-2-059 (Singapore), HKU705150P (Hong Kong), NTU-SUG M4080513

  6. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract

    NASA Astrophysics Data System (ADS)

    Philip, Daizy

    2009-07-01

    Integration of green chemistry principles to nanotechnology is one of the key issues in nanoscience research. There is growing need to develop environmentally benign metal nanoparticle synthesis process that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on extracellular synthesis method for the preparation of Au, Ag and Au-Ag nanoparticles in water, using the extract of Volvariella volvacea, a naturally occurring edible mushroom, as reducing and protecting agents. Gold nanoparticles of different sizes (20-150 nm) and shapes from triangular nanoprisms to nearly spherical and hexagonal are obtained by this novel method. The size and shape of gold nanoparticles are also found to depend on temperature of the extract. The silver nanoparticles are spherical with size ˜15 nm. There is increased productivity of nanoparticles as shown by sharp and intense surface plasmon resonance bands for the nanoparticles prepared using an excess of the extract. The Au-Ag nanoparticles prepared by co-reduction has only one plasmon band due to alloying of the constituents. All the synthesized nanoparticles are found to be photoluminescent and are highly crystalline as shown by SAED and XRD patterns with fcc phase oriented along the (1 1 1) plane. FTIR measurements were carried out to identify the possible biomolecules responsible for capping and efficient stabilization of the nanoparticles. It is found that Au nanoparticles are bound to proteins through free amino groups and silver nanoparticles through the carboxylate group of the amino acid residues. The position and intensity of the emission band is found to depend on composition of the nanoparticles indicating the possible use in therapeutic applications.

  7. Integrated mRNA and micro RNA profiling reveals epigenetic mechanism of differential sensitivity of Jurkat T cells to AgNPs and Ag ions.

    PubMed

    Eom, Hyun-Jeong; Chatterjee, Nivedita; Lee, Jeongsoo; Choi, Jinhee

    2014-08-17

    In our previous in vitro study of the toxicity on silver nanoparticles (AgNPs), we observed a dramatically higher sensitivity of Jurkat T cells to AgNPs than to Ag ions, and DNA damage and apoptosis were found to be involved in that toxicity. In this study, to understand underlying mechanism of different sensitivity of Jurket T cells to AgNPs and Ag ions, mRNA microarray and micro RNA microarray were concomitantly conducted on AgNPs and Ag ions exposed Jurkat T cells. Surprisingly only a small number of genes were differentially expressed by exposure to each of the silver (15 altered mRNA by AgNPs exposure, whereas 4 altered mRNA by Ag ions exposure, as determined 1.5-fold change as the cut-off value). miRNA microarray revealed that the expression of 63 miRNAs was altered by AgNPs exposure, whereas that of 32 miRNAs was altered by Ag ions exposure. An integrated analysis of mRNA and miRNA expression revealed that the expression of hsa-miR-219-5p, was negatively correlated with the expression of metallothionein 1F (MT1F) and tribbles homolog 3 (TRIB3), in cells exposed to AgNPs; whereas, the expression of hsa-miR-654-3p was negatively correlated with the expression of mRNA, endonuclease G-like 1 (EDGL1) in cells exposed to Ag ions. Network analysis were further conducted on mRNA-miRNA pairs, which revealed that miR-219-5p-MT1F and -TRIB3 pairs by AgNPs are being involved in various cellular processes, such as, oxidative stress, cell cycle and apoptosis, whereas, miR-654-3p and ENDOGL1 pair by Ag ions generated a much simpler network. The putative target genes of AgNPs-induced miR-504, miR-33 and miR-302 identified by Tarbase 6.0 are also found to be involved in DNA damage and apoptosis. These results collectively suggest that distinct epigenetic regulation may be an underlying mechanism of different sensitivity of Jurkat T cells to AgNPs and Ag ion. Further identification of putative target genes of DE miRNA by AgNPs and Ag ions may provide additional clues for the

  8. A novel P/Ag/Ag2O/Ag3PO4/TiO2 composite film for water purification and antibacterial application under solar light irradiation.

    PubMed

    Zhu, Qi; Hu, Xiaohong; Stanislaus, Mishma S; Zhang, Nan; Xiao, Ruida; Liu, Na; Yang, Yingnan

    2017-01-15

    TiO2-based thin films have been intensively studied in recent years to develop efficient photocatalyst films to degrade refractory organics and inactivate bacteria for wastewater treatment. In the present work, P/Ag/Ag2O/Ag3PO4/TiO2 composite films on the inner-surface of glass tube were successfully prepared via sol-gel approach. P/Ag/Ag2O/Ag3PO4/TiO2 composite films with 3 coating layers, synthesized at 400°C for 2h, showed the optimal photocatalytic performance for rhodamine B (Rh B) degradation. The results indicated that degradation ratio of Rh B by P/Ag/Ag2O/Ag3PO4/TiO2 composite film reached 99.9% after 60min under simulated solar light, while just 67.9% of Rh B was degraded by pure TiO2 film. Moreover, repeatability experiments indicated that even after five recycling runs, the photodegradation ratio of Rh B over composite film maintained at 99.9%, demonstrating its high stability. Photocatalytic inactivation of E. coli with initial concentration of 10(7)CFU/mL also showed around 100% of sterilization ratio under simulated solar light irradiation in 5min by the composite film. The radical trapping experiments implied that the major active species of P/Ag/Ag2O/Ag3PO4/TiO2 composite films were photo-generated holes and O2(-) radicals. The proposed photocatalytic mechanism shows that the transfer of photo-induced electrons and holes may reduce the recombination efficiency of electron-hole pairs and potential photodecomposition of composite film, resulting in enhanced photocatalytic ability of P/Ag/Ag2O/Ag3PO4/TiO2 composite films.

  9. Antibacterial performance of Ag nanoparticles and AgGO nanocomposites prepared via rapid microwave-assisted synthesis method

    NASA Astrophysics Data System (ADS)

    Chook, Soon Wei; Chia, Chin Hua; Zakaria, Sarani; Ayob, Mohd Khan; Chee, Kah Leong; Huang, Nay Ming; Neoh, Hui Min; Lim, Hong Ngee; Jamal, Rahman; Rahman, Raha Mohd Fadhil Raja Abdul

    2012-09-01

    Silver nanoparticles and silver-graphene oxide nanocomposites were fabricated using a rapid and green microwave irradiation synthesis method. Silver nanoparticles with narrow size distribution were formed under microwave irradiation for both samples. The silver nanoparticles were distributed randomly on the surface of graphene oxide. The Fourier transform infrared and thermogravimetry analysis results showed that the graphene oxide for the AgNP-graphene oxide (AgGO) sample was partially reduced during the in situ synthesis of silver nanoparticles. Both silver nanoparticles and AgGO nanocomposites exhibited stronger antibacterial properties against Gram-negative bacteria ( Salmonella typhi and Escherichia coli) than against Gram-positive bacteria ( Staphyloccocus aureus and Staphyloccocus epidermidis). The AgGO nanocomposites consisting of approximately 40 wt.% silver can achieve antibacterial performance comparable to that of neat silver nanoparticles.

  10. ZnWO4 nanorods decorated with Ag/AgBr nanoparticles as highly efficient visible-light-responsive photocatalyst for dye AR18 photodegradation

    NASA Astrophysics Data System (ADS)

    Li, Kebin; Xue, Jie; Zhang, Yanhui; Wei, Hong; Liu, Yalan; Dong, Chengxing

    2014-11-01

    A novel Ag-AgBr/ZnWO4 nanorod heterostructure composite was prepared via a facile deposition-precipitation method with ZnWO4 nanorods as the substrate, and characterized by XRD, SEM-EDX, TEM, XPS, and DRS to confirm its structure, morphology, composition, and optical property. The composite was used as a photocatalyst to destroy azo dye Acid Red 18 (AR18) under visible light irradiation. The effects of catalyst composition, solution pH, catalyst loading, and initial dye concentration on photocatalytic degradation rate and efficiency were examined. It was revealed that the photocatalytic activity of Ag-AgBr/ZnWO4 nanojunction system was higher than that of the single ZnWO4 or Ag-AgBr for AR18 degradation under visible light irradiation. The optimal content of Ag-AgBr in Ag-AgBr/ZnWO4 composite was 0.58:1 of Ag/W molar ratio using in the catalyst preparation. Acid pH and decreasing dye initial concentration were favorable to AR18 photodegradation, but the catalyst loading had an optimal value. The catalyst was stable and recyclable, after five successive cycles the photoactivity was fully maintained and the XRD patterns of AgBr displayed no evident change. Photoluminescence spectra revealed the enhanced photocatalytic activity and stability were closely related to the efficient separation of photogenerated carriers in Ag-AgBr/ZnWO4 nanojunction system. Superoxide radicals and holes were found to be main active species for AR18 photodegradation. Finally, the possible mechanism for AR18 degradation over Ag-AgBr/ZnWO4 nanorods under visible light irradiation was proposed as well.

  11. STM-assisted manipulation of Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Radojkovic, P.; Schwartzkopff, M.; Gabriel, T.; Hartmann, E.

    We report scanning tunneling microscope (STM) investigations of inert-gas-evaporated Ag nanoparticles deposited on atomically flat, H-terminated Si(111) surfaces, to which they weakly stick. For the present purpose, nanoparticles having an average size of 3 nm are fabricated and the particle coverage on the substrate fluctuates between one and three monolayers. The weakly coupling particle network can repeatedly be imaged with the STM without inadvertently manipulating the fundamental building blocks. When the STM is operated in the field-emission regime and the tunnel current is kept between 50 pA and 39 μA, the temperature of the nanoparticles rises, thus stimulating local manipulation processes. Depending on the power density dissipated in the particles, we distinguish between a local sintering process leading to the formation of narrow necks to the nearest neighbors, while the original granular nature of the particle layer is maintained, and a complete fusion. In the latter case, stable nanometer-scale structures are fabricated which strongly interconnect with the underlying substrate. In combining nanoparticle-inherent properties with existing theory, we roughly estimate the temperature rise of the nanoparticles and confirm the possibility of particle liquefaction for the highest power densities generated.

  12. 2005 AG20/20 Annual Review

    NASA Technical Reports Server (NTRS)

    Ross, Kenton W.; McKellip, Rodney D.

    2005-01-01

    Topics covered include: Implementation and Validation of Sensor-Based Site-Specific Crop Management; Enhanced Management of Agricultural Perennial Systems (EMAPS) Using GIS and Remote Sensing; Validation and Application of Geospatial Information for Early Identification of Stress in Wheat; Adapting and Validating Precision Technologies for Cotton Production in the Mid-Southern United States - 2004 Progress Report; Development of a System to Automatically Geo-Rectify Images; Economics of Precision Agriculture Technologies in Cotton Production-AG 2020 Prescription Farming Automation Algorithms; Field Testing a Sensor-Based Applicator for Nitrogen and Phosphorus Application; Early Detection of Citrus Diseases Using Machine Vision and DGPS; Remote Sensing of Citrus Tree Stress Levels and Factors; Spectral-based Nitrogen Sensing for Citrus; Characterization of Tree Canopies; In-field Sensing of Shallow Water Tables and Hydromorphic Soils with an Electromagnetic Induction Profiler; Maintaining the Competitiveness of Tree Fruit Production Through Precision Agriculture; Modeling and Visualizing Terrain and Remote Sensing Data for Research and Education in Precision Agriculture; Thematic Soil Mapping and Crop-Based Strategies for Site-Specific Management; and Crop-Based Strategies for Site-Specific Management.

  13. Phase diagrams of the Tb-Ag-In and Dy-Ag-In systems at 870 K

    SciTech Connect

    Demchyna, M.; Belan, B.; Manyako, M.; Pietraszko, A.; Kalychak, Ya.

    2012-08-15

    The phase equilibria of Tb-Ag-In and Dy-Ag-In ternary systems have been studied at 870 K in the whole concentration range by means of X-ray powder, single crystal X-ray diffraction and EDX analyses. Isothermal sections of Tb-Ag-In and Dy-Ag-In phase diagrams at this temperature have been constructed. Both systems are characterized by formation of three ternary compounds: REAg{sub 3}In{sub 3} (YbAg{sub 2}In{sub 4}-type, space group Im-3), REAg{sub 2}In (MnCu{sub 2}Al-type, space group Fm-3m) and RE{sub 2}AgIn{sub 3} (CaIn{sub 2}-type, space group P6{sub 3}/mmc) RE=Tb, Dy. Homogeneity ranges of the ternary phases with CaIn{sub 2} structure type lies from 35 to 60 at% of In for Tb-containing phase and from 39 to 50 at% of In for Dy-containing phase. The existence of solid solutions based on REAg (CsCl-type, space group Pm-3m) binary compounds up to 30 at% of In and REIn{sub 3} (AuCu{sub 3}-type, space group Pm-3 m) binary compounds up to 5 at% of Ag has been found. - Graphical Abstract: Phase relations in the ternary systems Tb-Ag-In and Dy-Ag-In have been established for the isothermal section at T=870 K based on X-ray powder and single crystal diffraction analyses. The existence of three ternary compounds in each system were observed. Highlights: Black-Right-Pointing-Pointer Isothermal section of Tb-Ag-In system at T=870 K was constructed. Black-Right-Pointing-Pointer Isothermal section of Dy-Ag-In system at T=870 K was constructed. Black-Right-Pointing-Pointer Three ternary compounds and two solid solutions in each system were detected.

  14. The structural conversion from α-AgVO3 to β-AgVO3: Ag nanoparticle decorated nanowires with application as cathode materials for Li-ion batteries.

    PubMed

    McNulty, David; Ramasse, Quentin; O'Dwyer, Colm

    2016-09-15

    The majority of electrode materials in batteries and related electrochemical energy storage devices are fashioned into slurries via the addition of a conductive additive and a binder. However, aggregation of smaller diameter nanoparticles in current generation electrode compositions can result in non-homogeneous active materials. Inconsistent slurry formulation may lead to inconsistent electrical conductivity throughout the material, local variations in electrochemical response, and the overall cell performance. Here we demonstrate the hydrothermal preparation of Ag nanoparticle (NP) decorated α-AgVO3 nanowires (NWs) and their conversion to tunnel structured β-AgVO3 NWs by annealing to form a uniform blend of intercalation materials that are well connected electrically. The synthesis of nanostructures with chemically bound conductive nanoparticles is an elegant means to overcome the intrinsic issues associated with electrode slurry production, as wire-to-wire conductive pathways are formed within the overall electrode active mass of NWs. The conversion from α-AgVO3 to β-AgVO3 is explained in detail through a comprehensive structural characterization. Meticulous EELS analysis of β-AgVO3 NWs offers insight into the true β-AgVO3 structure and how the annealing process facilitates a higher surface coverage of Ag NPs directly from ionic Ag content within the α-AgVO3 NWs. Variations in vanadium oxidation state across the surface of the nanowires indicate that the β-AgVO3 NWs have a core-shell oxidation state structure, and that the vanadium oxidation state under the Ag NP confirms a chemically bound NP from reduction of diffused ionic silver from the α-AgVO3 NWs core material. Electrochemical comparison of α-AgVO3 and β-AgVO3 NWs confirms that β-AgVO3 offers improved electrochemical performance. An ex situ structural characterization of β-AgVO3 NWs after the first galvanostatic discharge and charge offers new insight into the Li(+) reaction mechanism for β-Ag

  15. Beam focusing from double subwavelength slits surrounded by Ag/SiO2/Ag tri-layer gratings

    NASA Astrophysics Data System (ADS)

    Su, Wei; Zhou, Chong; Zheng, Gaige; Li, Xiangyin

    2016-12-01

    A silver(Ag)/SiO2/Ag tri-layer grating structure with double slits for beam focusing has been proposed. Compared with the metal/dielectric double-layer grating-based structure, the focusing efficiency of our proposed structure can be greatly enhanced. Numerical simulations using the finite-different time-domain (FDTD) method verify that the focal length and deflection angle can be controlled by adjusting the refractive indexes of dielectric mediums in the two slits.

  16. Exploration of complex multilayer film growth morphologies: STM analysis and predictive atomistic modeling for Ag on Ag(111)

    SciTech Connect

    Li, Maozhi; Chung, P.W.; Cox, E.; Jenks, C.J.; Thiel, P.A.; Evans, J.W.

    2008-01-03

    Scanning tunneling microscopy studies are integrated with development of a realistic atomistic model to both characterize and elucidate the complex mounded morphologies formed by deposition of Ag on Ag(111) at 150 and 180 K. Threefold symmetric lateral shapes of islands and mounds are shown to reflect the influence of a nonuniform step edge barrier inhibiting interlayer transport. Modeling of structure at the mound peaks leads to a sensitive estimate of the magnitude of this large barrier.

  17. Highly Active Carbon Supported Pd-Ag Nanofacets Catalysts for Hydrogen Production from HCOOH.

    PubMed

    Wang, Wenhui; He, Ting; Liu, Xuehua; He, Weina; Cong, Hengjiang; Shen, Yangbin; Yan, Liuming; Zhang, Xuetong; Zhang, Jinping; Zhou, Xiaochun

    2016-08-17

    Hydrogen is regarded as a future sustainable and clean energy carrier. Formic acid is a safe and sustainable hydrogen storage medium with many advantages, including high hydrogen content, nontoxicity, and low cost. In this work, a series of highly active catalysts for hydrogen production from formic acid are successfully synthesized by controllably depositing Pd onto Ag nanoplates with different Ag nanofacets, such as Ag{111}, Ag{100}, and the nanofacet on hexagonal close packing Ag crystal (Ag{hcp}). Then, the Pd-Ag nanoplate catalysts are supported on Vulcan XC-72 carbon black to prevent the aggregation of the catalysts. The research reveals that the high activity is attributed to the formation of Pd-Ag alloy nanofacets, such as Pd-Ag{111}, Pd-Ag{100}, and Pd-Ag{hcp}. The activity order of these Pd-decorated Ag nanofacets is Pd-Ag{hcp} > Pd-Ag{111} > Pd-Ag{100}. Particularly, the activity of Pd-Ag{hcp} is up to an extremely high value, i.e., TOF{hcp} = 19 000 ± 1630 h(-1) at 90 °C (lower limit value), which is more than 800 times higher than our previous quasi-spherical Pd-Ag alloy nanocatalyst. The initial activity of Pd-Ag{hcp} even reaches (3.13 ± 0.19) × 10(6) h(-1) at 90 °C. This research not only presents highly active catalysts for hydrogen generation but also shows that the facet on the hcp Ag crystal can act as a potentially highly active catalyst.

  18. Ultrasonic-assisted preparation of plasmonic ZnO/Ag/Ag2WO4 nanocomposites with high visible-light photocatalytic performance for degradation of organic pollutants.

    PubMed

    Pirhashemi, Mahsa; Habibi-Yangjeh, Aziz

    2017-04-01

    In this work, plasmonic ternary ZnO/Ag/Ag2WO4 nanocomposites as efficient visible-light-driven photocatalysts prepared by a facile ultrasonic-irradiation method. The as-prepared samples were characterized by XRD, SEM, TEM, EDX, XPS, UV-vis DRS, FT-IR, and PL techniques. The photocatalytic performance of the prepared ZnO/Ag/Ag2WO4 nanocomposites were evaluated by photodegradations of rhodamine B, methylene blue, methyl orange, and fuchsine under visible-light irradiation. The optimal nanocomposite with 15wt% of Ag/Ag2WO4 to ZnO showed the highest photocatalytic activity for RhB degradation, which is about 95 and 19 times higher than those of the Ag/Ag2WO4 and ZnO samples, respectively. The highly enhanced activity of the ZnO/Ag/Ag2WO4 (15%) nanocomposite was attributed to the surface plasmon resonance effect of metallic silver and the formation of heterojunctions between the counterparts, which effectively suppresses recombination of the photogenerated charge carriers. Lastly, the plasmon-enhanced photocatalytic mechanism associated with the ZnO/Ag/Ag2WO4 nanocomposites was discussed.

  19. Effect of thermal annealing on the microstructures and photocatalytic performance of silver orthophosphate: The synergistic mechanism of Ag vacancies and metallic Ag

    NASA Astrophysics Data System (ADS)

    Yan, Tingjiang; Guan, Wenfei; Xiao, Ying; Tian, Jun; Qiao, Zheng; Zhai, Huishan; Li, Wenjuan; You, Jinmao

    2017-01-01

    In this work, a simple thermal annealing route has been developed to improve the photocatalytic performance of silver orthophosphate (Ag3PO4) photocatalyst toward organic pollutants degradation under visible light irradiation. The experimental results indicated that thermal treatment of Ag3PO4 led to an obvious lattice shift towards right and significantly narrowed band gap energies due to the formation of Ag vacancies and metallic Ag during Ag3PO4 decomposition. These structural variations notably affected the photocatalytic performance of Ag3PO4 photocatalysts. The activity of the annealed samples was found to be significantly enhanced toward the degradation of MO dye. The highest activity was observed over the sample annealed at 400 °C, which exceeded that of pristine Ag3PO4 by a factor of about 21 times. By means of photoluminescence spectroscopy and photoelectrochemical measurements, we propose that the enormous enhancement in activity was mainly attributed to the efficient separation of photogenerated electrons and holes driven by the synergistic effect of Ag vacancies and metallic Ag. The strong interaction between annealed particles also inhibited the dissolution of Ag+ from Ag3PO4 into aqueous solution, contributing to an improved photocatalytic stability. The strategy presented here provides an ideal platform for the design of other highly efficient and stable Ag-based photocatalysts for broad applications in the field of photocatalysis.

  20. Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition

    NASA Astrophysics Data System (ADS)

    Leng, Jian; Yu, Zhinong; Xue, Wei; Zhang, Ting; Jiang, Yurong; Zhang, Jie; Zhang, Dongpu

    2010-10-01

    The structural, optical, and electrical characteristics of zinc sulfide (ZnS)/Ag/ZnS (ZAZ) multilayer films prepared by ion beam assisted deposition on k9 glass have been investigated as a function of Ag layer thickness. The characteristics of ZAZ multilayer are significantly improved up insertion of optimal Ag thickness between ZnS layers. The results show that due to bombardment of Ar ion beam, distinct Ag islands evolve into continuous Ag films at a thin Ag thickness of about 4 nm. The thinner Ag film as a thickness of 2 nm leads to high sheet resistance and low transmittance for the interface scattering induced by the Ag islands or noncontinuous films; and when the Ag thickness is over 4 nm, the ZAZ multilayer exhibits a remarkably reduced sheet resistance between 7-80 Ω/sq for the increase in carrier concentration and mobility of Ag layer, and a high transmittance over 90% for the interference phenomena of multilayers and low absorption and surface scattering of Ag layer. The ZAZ multilayer with 14 nm Ag film has a figure of merit up to 6.32×10-2 Ω-1, an average transmittance over 92% and a sheet resistance of 7.1 Ω/sq. The results suggest that ZAZ film has better optoelectrical properties than conditional indium tin oxide single layer.

  1. Plasmon-induced photodegradation of toxic pollutants with Ag-AgI/Al2O3 under visible-light irradiation.

    PubMed

    Hu, Chun; Peng, Tianwei; Hu, Xuexiang; Nie, Yulun; Zhou, Xuefeng; Qu, Jiuhui; He, Hong

    2010-01-20

    A plasmonic photocatalyst Ag-AgI supported on mesoporous alumina (Ag-AgI/Al(2)O(3)) was prepared by deposition-precipitation and photoreduction methods. The catalyst showed high and stable photocatalytic activity for the degradation and mineralization of toxic persistent organic pollutants, as demonstrated with 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP), and trichlorophenol (TCP) under visible light or simulated solar light irradiation. On the basis of electron spin resonance, cyclic voltammetry analyses under a variety of experimental conditions, two electron transfer processes were verified from the excited Ag NPs to AgI and from 2-CP to the Ag NPs, and the main active species of O(2)(*-) and excited h(+) on Ag NPs were involved in the photoreaction system of Ag-AgI/Al(2)O(3). A plasmon-induced photocatalytic mechanism was proposed. Accordingly, the plasmon-induced electron transfer processes elucidated the photostability of Ag-AgI/Al(2)O(3). This finding indicates that the high photosensitivity of noble metal NPs due to surface plasmon resonance could be applied toward the development of new plasmonic visible-light-sensitive photocatalysts and photovoltaic fuel cells.

  2. Calculation of thermodynamic functions of saturated solid solution of AgIn2Te3I compound in the Ag-In-Te-I system

    NASA Astrophysics Data System (ADS)

    Moroz, Mykola; Prokhorenko, Sergiy; Prokhorenko, Myroslava; Reshetnyak, Oleksandr

    2016-12-01

    Triangulation of Ag-In-Te-I system in the vicinity of AgIn2Te3I compound was investigated by X-ray diffraction and differential thermal analysis methods. The spatial position of the phase region AgIn2Te3I-InTe-Ag2Te-AgI regarding the figurative point of silver was used in order to write the equation of virtual potential-forming reaction. Potential-forming reaction was performed in electrochemical cell (ECC) of the type (-) C | Ag | Ag3GeS3I(Br) glass | D | C (+) where C are inert (graphite) electrodes; Ag and D are the electrodes of the ECC; D represents the alloy of four-phase region; Ag3GeS3I glass is a membrane with purely ionic Ag+ conductivity). Linear dependence of the EMF of cell on temperature in the range of 440-480 K was used to calculate the standard thermodynamic functions of saturated solid solution of AgIn2Te3I compound in Ag-In-Te-I system.

  3. Catalytic synthesis of matchstick-like Ag2Se-ZnSe hetero-nanorods using Ag2S nanocrystals as seeds

    NASA Astrophysics Data System (ADS)

    Fan, Weiling; Yu, Huan; Lu, Chunhua; Wang, Lin; Long, Lingliang; Wu, Yanjun; Wang, Junli

    2015-04-01

    In nanowire catalytic growth, the catalyst particles usually remain at the tip of as-grown nanowires, which can be utilized to prepare matchstick-like heterostructures at the nanoscale. Based on this feature and a solution-phase catalytic growth route, we herein report the synthesis of Ag2Se-ZnSe matchstick-like hetero-nanorods, consisting of Ag2Se head and ZnSe rod-like stem. Three different kinds of silver sources, including Ag(0), Ag2S, and Ag2Se, are selected as initial seeds for growing ZnSe crystalline nanowire/rods. By comparison with the case of Ag(0) or Ag2Se, the use of Ag2S nanoparticles, which alter the chemical composition of catalytic particles and convert to Ag2Se catalyst after adding Se precursor (SeO2), is highly effective for the formation of uniform Ag2Se-ZnSe hetero-nanorods. The reason for this result may be attributed to a synergistic effect between the size of catalyst particles and the chemical conversion of Ag2S to Ag2Se.

  4. Preparation, characterization and photocatalytic activity of visible-light-driven plasmonic Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposites

    SciTech Connect

    Li, Xiaojuan Tang, Duanlian; Tang, Fan; Zhu, Yunyan; He, Changfa; Liu, Minghua Lin, Chunxiang; Liu, Yifan

    2014-08-15

    Highlights: • A plasmonic Ag/AgBr/ZnFe{sub 2}O{sub 4} photocatalyst has been successfully synthesized. • Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposites exhibit high visible light photocatalytic activity. • Ag/AgBr/ZnFe{sub 2}O{sub 4} photocatalyst is stable and magnetically separable. - Abstract: A visible-light-driven plasmonic Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposite has been successfully synthesized via a deposition–precipitation and photoreduction through a novel one-pot process. X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy were employed to investigate the crystal structure, chemical composition, morphology, and optical properties of the as-prepared nanocomposites. The photocatalytic activities of the nanocomposites were evaluated by photodegradation of Rhodamine B (RhB) and phenol under visible light. The results demonstrated that the obtained Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposites exhibited higher photocatalytic activity as compared to pure ZnFe{sub 2}O{sub 4}. In addition, the sample photoreduced for 20 min and calcined at 500 °C achieved the highest photocatalytic activity. Furthermore, the Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposite has high stability under visible light irradiation and could be conveniently separated by using an external magnetic field.

  5. Selective degradation of chemical bonds: from single-source molecular precursors to metallic Ag and semiconducting Ag2S nanocrystals via instant thermal activation.

    PubMed

    Tang, Qun; Yoon, Seok Min; Yang, Hyun Jin; Lee, Yoonmi; Song, Hyun Jae; Byon, Hye Ryung; Choi, Hee Cheul

    2006-03-14

    Selective formation of metallic Ag and semiconducting Ag(2)S nanocrystals has been achieved via a modified hot-injection process from a single-source precursor molecule, Ag(SCOPh), which can potentially generate both [Ag] and [AgS] fragments simultaneously. When the precursor molecules are injected into a preheated reaction system at 160 degrees C, spherical Ag(2)S nanocrystals are directly obtained even without a molecular activator, such as alkylamines. Mixtures of Ag and Ag(2)S or pure metallic Ag nanocrystals are obtained if the precursor molecules are injected at lower than 160 degrees C or room temperature. These results are attributed to the direct transfer of thermal energies to precursor molecules, which are enough to dissociate S-C as well as Ag-S bonds simultaneously. Detailed characterizations about the produced nanocrystals have been performed using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), as well as energy-dispersive X-ray (EDX) spectrum.

  6. Effect of Ag nanoparticle concentration on the electrical and ferroelectric properties of Ag/P(VDF-TrFE) composite films

    DOE PAGES

    Paik, Haemin; Choi, Yoon -Young; Hong, Seungbum; ...

    2015-09-04

    We investigated the effect of the Ag nanoparticles on the ferroelectric and piezoelectric properties of Ag/poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) composite films. We found that the remanent polarization and direct piezoelectric coefficient increased up to 12.14 μC/cm2 and 20.23 pC/N when the Ag concentration increased up to 0.005 volume percent (v%) and decreased down to 9.38 μC/cm2 and 13.45 pC/N when it increased up to 0.01 v%. Further increase in Ag concentration resulted in precipitation of Ag phase and significant leakage current that hindered any meaningful measurement of the ferroelectric and piezoelectric properties. 46% increase of the remanent polarization value and 27% increasemore » of the direct piezoelectric coefficient were observed in the film with the 0.005 v% of the Ag nanoparticles added without significant changes to the crystalline structure confirmed by both X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) experiments. The enhancements of both the ferroelectric and piezoelectric properties are attributed to the increase in the effective electric field induced by the reduction in the effective volume of P(VDF-TrFE) that results in more aligned dipoles.« less

  7. Localised Ag(+) vibrations at the origin of ultralow thermal conductivity in layered thermoelectric AgCrSe2.

    PubMed

    Damay, F; Petit, S; Rols, S; Braendlein, M; Daou, R; Elkaïm, E; Fauth, F; Gascoin, F; Martin, C; Maignan, A

    2016-03-22

    In materials science, the substructure approach consists in imagining complex materials in which a particular property is associated with a distinct structural feature, so as to combine different chosen physical characteristics, which otherwise have little chance to coexist. Applied to thermoelectric materials, it has been used to achieve simultaneously phonon-glass and electron-crystal properties. Mostly studied for its superionic conductivity, AgCrSe2 is a naturally layered compound, which achieves very low thermal conductivity, ~0.4 W.K(-1).m(-1) at RT (room temperature), and is considered a promising thermoelectric. The Cr atoms of the [CrSe2]∞ layer bear a spin S = 3/2, which orders below TN = 55 K. Here we report low temperature inelastic neutron scattering experiments on AgCrSe2, alongside the magnetic field evolution of its thermal and electrical transport. We observe a very low frequency mode at 3 meV, ascribed to large anharmonic displacements of the Ag(+) ions in the [Ag]∞ layer, and 2D magnetic fluctuations up to 3 TN in the chromium layer. The low thermal conductivity of AgCrSe2 is attributed to acoustic phonon scattering by a regular lattice of Ag(+) oscillating in quasi-2D potential wells. These findings highlight a new way to achieve localised phonon modes in a perfectly crystalline solid.

  8. Ag/AgCl electrodes in the EEG/fMRI method in 3T MRI scanner

    NASA Astrophysics Data System (ADS)

    Akay, Cengiz; Kepceoğlu, Abdullah

    2013-10-01

    This study focuses on the comparison of two different types of EEG electrodes (the first B10-S-150 Ag/AgCl sintered ring electrode with 1, 5 mm touch proof safety socket and 150 cm heavy-duty lead wire and the second, B12-LS-100 Ag/AgCl sintered FE-electrode with 100 cm light-duty lead wire and 1, 5 mm touch proof safety socket with 5 kΩ resistor near sensor) used in the EEG/fMRI method in 3T MRI scanner. We compared these electrodes by their specific absorption rate (SAR) simulation values and the temperature change calculated by PRF method. The experimental setup of the study is described as follows: a phantom is prepared and the electrodes are placed on it. Then, a simulation for SAR values is realized. The temperature change is calculated by MR thermometer. As a result of this study, Ag/AgCl pin electrode is better to be use in EEG/fMRI; because the measured temperature change is expected to be low.

  9. Egg White Templated Synthesis of Ag and Au@Ag Alloy Microspheres for Surface-Enhanced Raman Spectroscopy Research.

    PubMed

    Li, Min; Zhang, Ying; Wang, Xiansong; Cui, Daxiang

    2016-01-01

    Herein, we report the green synthesis of Ag and Au@Ag microspheres by using the aqueous extracts of the egg white as well as their application as substrates for surface-enhanced Raman spectroscopy (SERS) detection. Both microspheres are prepared via the green synthesis method (room temperature, in aqueous solution and a benign reducer). The as-prepared urchin-like Ag microspheres have an average diameter of 600-800 nm, which is made up of some nanopricks with an average length of 10-40 nm. Meanwhile, the Au@Ag architectures prepared by galvanic replacement keep nearly similar size, which is also composed of some compact nanoparticles with an average diameter of about 10-40 nm. These products are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electronic microscopy (TEM), and Fourier transform infrared spectrophotometer (FTIR). The study on SERS activities is also carried out for both microspheres. It is found that Au@Ag microspheres possess much higher SERS activity than Ag microspheres. Our work may shed light on the design and synthesis of self-assembled 3D micro/nano-architectures for the use of SERS, catalysis, biosensors, nanomedicine, etc.

  10. Response properties of AgCl and AgBr under an external static electric field: A density functional study

    NASA Astrophysics Data System (ADS)

    Praveen, C. S.; Kokalj, A.; Rérat, M.; Valant, M.

    2012-10-01

    Density functional theory has been applied to investigate the effect of electric field on the electronic properties of AgCl and AgBr crystals using a static electric field perturbation. A reduction in the band gap value and widening of the band widths are observed with increase in the macroscopic field value indicating a considerable red shift in the absorption spectrum of AgCl and AgBr in the presence of an external electric field. Further, dielectric properties and lattice vibrations at the gamma point are calculated with three different functionals using the CPKS and the Berry phase approach as implemented in CRYSTAL09 code. Finally, the breakdown strength of AgCl and AgBr crystal is evaluated using Callen's equation. In contrast to the case of alkali halides, it is found that the inclusion of the numerically calculated effective mass ratio into the Callen's equation considerably improves the agreement between the calculated dielectric strength and the available experimental datum.

  11. Effect of Ag nanoparticle concentration on the electrical and ferroelectric properties of Ag/P(VDF-TrFE) composite films

    SciTech Connect

    Paik, Haemin; Choi, Yoon -Young; Hong, Seungbum; No, Kwangsoo

    2015-09-04

    We investigated the effect of the Ag nanoparticles on the ferroelectric and piezoelectric properties of Ag/poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) composite films. We found that the remanent polarization and direct piezoelectric coefficient increased up to 12.14 μC/cm2 and 20.23 pC/N when the Ag concentration increased up to 0.005 volume percent (v%) and decreased down to 9.38 μC/cm2 and 13.45 pC/N when it increased up to 0.01 v%. Further increase in Ag concentration resulted in precipitation of Ag phase and significant leakage current that hindered any meaningful measurement of the ferroelectric and piezoelectric properties. 46% increase of the remanent polarization value and 27% increase of the direct piezoelectric coefficient were observed in the film with the 0.005 v% of the Ag nanoparticles added without significant changes to the crystalline structure confirmed by both X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) experiments. The enhancements of both the ferroelectric and piezoelectric properties are attributed to the increase in the effective electric field induced by the reduction in the effective volume of P(VDF-TrFE) that results in more aligned dipoles.

  12. Localised Ag+ vibrations at the origin of ultralow thermal conductivity in layered thermoelectric AgCrSe2

    PubMed Central

    Damay, F.; Petit, S.; Rols, S.; Braendlein, M.; Daou, R.; Elkaïm, E.; Fauth, F.; Gascoin, F.; Martin, C.; Maignan, A.

    2016-01-01

    In materials science, the substructure approach consists in imagining complex materials in which a particular property is associated with a distinct structural feature, so as to combine different chosen physical characteristics, which otherwise have little chance to coexist. Applied to thermoelectric materials, it has been used to achieve simultaneously phonon-glass and electron-crystal properties. Mostly studied for its superionic conductivity, AgCrSe2 is a naturally layered compound, which achieves very low thermal conductivity, ~0.4 W.K−1.m−1 at RT (room temperature), and is considered a promising thermoelectric. The Cr atoms of the [CrSe2]∞ layer bear a spin S = 3/2, which orders below TN = 55 K. Here we report low temperature inelastic neutron scattering experiments on AgCrSe2, alongside the magnetic field evolution of its thermal and electrical transport. We observe a very low frequency mode at 3 meV, ascribed to large anharmonic displacements of the Ag+ ions in the [Ag]∞ layer, and 2D magnetic fluctuations up to 3 TN in the chromium layer. The low thermal conductivity of AgCrSe2 is attributed to acoustic phonon scattering by a regular lattice of Ag+ oscillating in quasi-2D potential wells. These findings highlight a new way to achieve localised phonon modes in a perfectly crystalline solid. PMID:27000414

  13. EDDY CURRENT EFFECT OF THE BNL-AGS VACUUM CHAMBER ON THE OPTICS OF THE BNL-AGS SYNCHROTRON.

    SciTech Connect

    TSOUPAS,N.; AHRENS,L.; BROWN,K.A.; GLENN,J.W.; GARDNER,K.

    1999-03-29

    During the acceleration cycle of the AGS synchrotron, eddy currents are generated within the walls of the vacuum chambers of the AGS main magnets. The vacuum chambers have elliptical cross section, are made of inconel material with a wall thickness of 2 mm and are placed within the gap of the combined-function main magnets of the AGS synchrotron. The generation of the eddy currents in the walls of the vacuum chambers, creates various magnetic multipoles, which affect the optics of the AGS machine. In this report these magnetic multipoles are calculated for various time interval starting at the acceleration cycle, where the magnetic field of the main magnet is {approx}0.1 T, and ending before the beam extraction process, where the magnetic field of the main magnet is almost constant at {approx}1.1 T. The calculations show that the magnetic multipoles generated by the eddy-currents affect the optics of the AGS synchrotron during the acceleration cycle and in particular at low magnetic fields of the main magnet. Their effect is too weak to affect the optics of the AGS machine during beam extraction at the nominal energies.

  14. Guided ion beam and theoretical studies of the reaction of Ag{sup +} with CS{sub 2}: Gas-phase thermochemistry of AgS{sup +} and AgCS{sup +} and insight into spin-forbidden reactions

    SciTech Connect

    Armentrout, P. B.; Kretzschmar, Ilona

    2010-01-14

    The gas-phase reactivity of the atomic transition metal cation, Ag{sup +}, with CS{sub 2} is investigated using guided-ion beam mass spectrometry. Endothermic reactions forming AgS{sup +} and AgCS{sup +} are observed but are quite inefficient. This observation is largely attributed to the stability of the closed shell Ag{sup +}({sup 1}S,4d{sup 10}) ground state, but is also influenced by the fact that the reactions producing ground state AgS{sup +} and AgCS{sup +} products are both spin forbidden. Analysis of the kinetic energy dependence of the cross sections for formation of these two products yields the 0 K bond energies of D{sub 0}(Ag{sup +}-S)=1.40{+-}0.12 eV and D{sub 0}(Ag{sup +}-CS)=1.98{+-}0.14 eV. Quantum chemical calculations are used to investigate the electronic structure of the two product ions as well as the potential energy surfaces for reaction. The primary mechanism involves oxidative addition of a CS bond to the metal cation followed by simple Ag-S or Ag-CS bond cleavage. Crossing points between the singlet and triplet surfaces are located near the transition states for bond activation. Comparison with analogous work on other late second-row transition metal cations indicates that the location of the crossing points bears directly on the efficiency of these spin-forbidden processes.

  15. Application of a Newly Developed High-Sensitivity HBsAg Chemiluminescent Enzyme Immunoassay for Hepatitis B Patients with HBsAg Seroclearance

    PubMed Central

    Shinkai, Noboru; Matsuura, Kentaro; Sugauchi, Fuminaka; Watanabe, Tsunamasa; Murakami, Shuko; Iio, Etsuko; Ogawa, Shintaro; Nojiri, Shunsuke; Joh, Takashi

    2013-01-01

    We modified and automated a highly sensitive chemiluminescent enzyme immunoassay (CLEIA) for surface antigen (HBsAg) detection using a combination of monoclonal antibodies, each for a specific epitope of HBsAg, and by improving an earlier conjugation technique. Of 471 hepatitis B virus (HBV) carriers seen in our hospital between 2009 and 2012, 26 were HBsAg seronegative as determined by the Abbott Architect assay. The Lumipulse HBsAg-HQ assay was used to recheck those 26 patients who demonstrated seroclearance by the Abbott Architect assay. The performance of the Lumipulse HBsAg-HQ assay was compared with that of a quantitative HBsAg detection system (Abbott Architect) and the Roche Cobas TaqMan HBV DNA assay (CTM) (lower limit of detection, 2.1 log copies/ml) using blood serum samples from patients who were determined to be HBsAg seronegative by the Abbott Architect assay. Ten patients had spontaneous HBsAg loss. Of 8 patients treated with nucleotide analogues (NAs), two were HBsAg seronegative after stopping lamivudine therapy and 6 were HBsAg seronegative during entecavir therapy. Eight acute hepatitis B (AH) patients became HBsAg seronegative. Of the 26 patients, 16 were HBsAg positive by the Lumipulse HBsAg-HQ assay but negative by the Abbott Architect assay. The differences between the two assays in terms of detectable HBsAg persisted over the long term in the spontaneous loss group (median, 10 months), the NA-treated group (2.5 months), and the AH group (0.5 months). In 9 patients, the Lumipulse HBsAg-HQ assay detected HBsAg when HBV DNA was negative by the CTM assay. HBsAg was also detected by the Lumipulse HBsAg-HQ assay in 4 patients with an anti-HBs concentration of >10 mIU/ml, 3 of whom had no HBsAg escape mutations. The automatic, highly sensitive HBsAg CLEIA Lumipulse HBsAg-HQ is a convenient and precise assay for HBV monitoring. PMID:23946517

  16. Half-life determination for {sup 108}Ag and {sup 110}Ag

    SciTech Connect

    Zahn, Guilherme S.; Genezini, Frederico A.

    2014-11-11

    In this work, the half-life of the short-lived silver radionuclides {sup 108}Ag and {sup 110}Ag were measured by following the activity of samples after they were irradiated in the IEA-R1 reactor. The results were then fitted using a non-paralizable dead time correction to the regular exponential decay and the individual half-life values obtained were then analyzed using both the Normalized Residuals and the Rajeval techniques, in order to reach the most exact and precise final values. To check the validity of dead-time correction, a second correction method was also employed by means of counting a long-lived {sup 60}Co radioactive source together with the samples as a livetime chronometer. The final half-live values obtained using both dead-time correction methods were in good agreement, showing that the correction was properly assessed. The results obtained are partially compatible with the literature values, but with a lower uncertainty, and allow a discussion on the last ENSDF compilations' values.

  17. Electron density contour smoothening for epitaxial Ag islands on Ag(100)

    NASA Astrophysics Data System (ADS)

    Bedrossian, Peter; Poelsema, Bene; Rosenfeld, Georg; Jorritsma, Louis C.; Lipkin, Nuphar N.; Comsa, George

    1995-07-01

    Rocking curves acquired with thermal energy He-atom scattering indicate that for small 2D Ag islands grown on Ag(100) at 200 K, the apparent step height normal to the surface is reduced by about 0.6 Å compared to the step height calculated on the basis of bulk separation. For higher growth temperatures this effect is not observed. SPA-LEED measurements indicate that this behavior cannot be explained with a corresponding relaxation of island atoms. Rather, it may be attributed to a smoothening of the electronic corrugation (Smoluchowski effect), which is probed by the He atoms and which can be expected to occur for small and/or closely spaced islands. The dependence on the growth temperature indicates that this effect is, indeed, related to the size and proximity of the islands, being most pronounced for closely spaced islands consisting of a few tens of atoms only. These findings suggest that the difference between the morphology of the electron density contours, probed by methods which are sensitive to the density of valence electrons, such as atom scattering or scanning tunneling microscopy, and the morphology at the atomic core level is significant for small metal structures on metal surfaces.

  18. Interface between C60 and Ag on nanostructured plasmonic Ag gratings: A SERS study

    NASA Astrophysics Data System (ADS)

    Khosroabadi, Akram A.; Matz, Dallas L.; Gangopadhyay, Palash; Pemberton, Jeanne E.; Norwood, Robert A.

    2013-09-01

    Nanostructured electrodes and interfaces can enhance light absorption in organic solar cells due to efficient light harvesting. Ultrathin films of an active layer (C60) deposited on nanostructured grating electrodes show more absorption as a result of increased light trapping. Plasmonic nanostructured electrodes with various geometries and dimensions have been fabricated on printed polyacrylonitrile (PAN) and subsequently characterized. Surface enhanced Raman scattering (SERS) measurements show significant signal enhancement (over two orders of magnitude) on nanostructured samples when compared to planar Ag substrates due to local electromagnetic field enhancement. Furthermore, conversion of PAN to graphitic carbon is evidenced in SERS spectra. The surface area was determined using underpotential deposition (UPD) of thallium and agrees with the geometric surface area calculated from SEM images. The FDTD simulated electric field distribution inside the samples confirms the experimental results. A 60 fold increase in the electric field results in three to four orders of magnitude enhancement in the SERS signal depending on the dimensions of the pillars and gratings. Further study of the interaction between a top organic layer (C60) and the Ag electrode will help us to understand the nanoscale charge transfer rate critical to optimization and design of efficient organic solar cells.

  19. Stability and its mechanism in Ag/CoOx/Ag interface-type resistive switching device

    NASA Astrophysics Data System (ADS)

    Fu, Jianbo; Hua, Muxin; Ding, Shilei; Chen, Xuegang; Wu, Rui; Liu, Shunquan; Han, Jingzhi; Wang, Changsheng; Du, Honglin; Yang, Yingchang; Yang, Jinbo

    2016-10-01

    Stability is an important issue for the application of resistive switching (RS) devices. In this work, the endurance and retention properties of Ag/CoOx/Ag interface-type RS device were investigated. This device exhibits rectifying I–V curve, multilevel storage states and retention decay behavior, which are all related to the Schottky barrier at the interface. The device can switch for thousands of cycles without endurance failure and shows narrow resistance distributions with relatively low fluctuation. However, both the high and low resistance states spontaneously decay to an intermediate resistance state during the retention test. This retention decay phenomenon is due to the short lifetime τ (τ = 0.5 s) of the metastable pinning effect caused by the interface states. The data analysis indicated that the pinning effect is dependent on the depth and density of the interface state energy levels, which determine the retention stability and the switching ratio, respectively. This suggests that an appropriate interface structure can improve the stability of the interface-type RS device

  20. Stability and its mechanism in Ag/CoOx/Ag interface-type resistive switching device

    PubMed Central

    Fu, Jianbo; Hua, Muxin; Ding, Shilei; Chen, Xuegang; Wu, Rui; Liu, Shunquan; Han, Jingzhi; Wang, Changsheng; Du, Honglin; Yang, Yingchang; Yang, Jinbo

    2016-01-01

    Stability is an important issue for the application of resistive switching (RS) devices. In this work, the endurance and retention properties of Ag/CoOx/Ag interface-type RS device were investigated. This device exhibits rectifying I–V curve, multilevel storage states and retention decay behavior, which are all related to the Schottky barrier at the interface. The device can switch for thousands of cycles without endurance failure and shows narrow resistance distributions with relatively low fluctuation. However, both the high and low resistance states spontaneously decay to an intermediate resistance state during the retention test. This retention decay phenomenon is due to the short lifetime τ (τ = 0.5 s) of the metastable pinning effect caused by the interface states. The data analysis indicated that the pinning effect is dependent on the depth and density of the interface state energy levels, which determine the retention stability and the switching ratio, respectively. This suggests that an appropriate interface structure can improve the stability of the interface-type RS device PMID:27759116

  1. Resistance of Ag-silicene-Ag junctions: A combined nonequilibrium Green's function and Boltzmann transport study

    NASA Astrophysics Data System (ADS)

    Wang, Yun-Peng; Fry, J. N.; Cheng, Hai-Ping

    2013-09-01

    For several years the electronic structure properties of the two-dimensional system silicene have been studied extensively. Electron transport across metal-silicene junctions, however, remains relatively unexplored. To address this issue, we developed and implemented a theoretical framework that utilizes the tight-binding Fisher-Lee relation to span nonequilibrium Green's function (NEGF) techniques, the scattering method, and semiclassical Boltzmann transport theory. Within this hybrid quantum-classical, two-scale framework, we calculated transmission and reflection coefficients of monolayer and bilayer Ag-silicene-Ag junctions using the NEGF method in conjunction with density functional theory; derived and calculated the group velocities; and computed resistance using the semiclassical Boltzmann equation. We found that resistances of these junctions are ˜0.08fΩm2 for monolayer silicene junctions and ˜0.3fΩm2 for bilayer ones; factors of ˜8 and ˜2, respectively, smaller than Sharvin resistances estimated via the Landauer formalism.

  2. Aniline chlorination by in situ formed Ag-Cl complexes under simulated solar light irradiation.

    PubMed

    Hu, Xuefeng; Wang, Xiaowen; Dong, Liuliu; Chang, Fei; Luo, Yongming

    2015-01-01

    Ag speciation in a chloride medium was dependent upon the Cl/Ag ratio after releasing into surface water. In this study, the photoreaction of in situ formed Ag-Cl species and their effects on aniline photochlorination were systematically investigated. Our results suggested that formation of chloroaniline was strongly relevant to the Cl/Ag ratio and could be interpreted using the thermodynamically expected speciation of Ag in the presence of Cl-. AgCl was the main species responsible for the photochlorination of aniline. Both photoinduced hole and •OH drove the oxidation of Cl- to radical •Cl, which promoted the chlorination of aniline. Ag0 formation was observed from the surface plasmon resonance absorption during AgCl photoreaction. This study revealed that Ag+ released into Cl--containing water may result in the formation of chlorinated intermediates of organic compounds under solar light irradiation.

  3. Corrosion behavior of Ti-Ag alloys used in dentistry in lactic acid solution

    NASA Astrophysics Data System (ADS)

    Takahashi, Masatoshi; Kikuchi, Masafumi; Takada, Yukyo

    2011-02-01

    The purpose of this study was to evaluate the corrosion resistance of experimental Ti-Ag alloys used as dental materials. An elution test and a rest-potential measurement of alloys with 5-30 mass.% Ag were performed in a 1 % lactic acid solution. The amount of Ti ions released from the α phase of the Ti-Ag alloys decreased as the Ag concentration increased. TiAg present in the alloys dissolved preferentially, but Ti2Ag did not. The rest potentials of the Ti-Ag alloys were significantly higher than that of pure titanium. The elution test and the rest-potential measurement revealed that the Ti-Ag alloys, which formed a single α-titanium structure or contained a titanium and Ti2Ag, had excellent corrosion resistance that was comparable or superior to that of pure titanium.

  4. SERS detection and antibacterial activity from uniform incorporation of Ag nanoparticles with aligned Si nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Yun; Hsu, Li-Jen; Hsiao, Po-Hsuan; Yu, Chang-Tze Ricky

    2015-11-01

    We present a facile, reliable and controllable two-steps electroless deposition for uniformly decorating the silver (Ag) nanoparticles (NPs) on the highly aspect ratio of silicon (Si) nanowire arrays. Different from the direct Ag-loading process, which is normally challenged by the non-uniform coating of Ag, the formation of Ag NPs using such innovative electroless process is no longer to be limited at top nanowire surfaces solely; instead, each Ag+/Si interface can initiate the galvanic reduction of Ag+ ions, thus resulting in the uniform formation of Ag NPs on the entire Si nanowire arrays. In addition, systematic explorations of surface-enhanced Raman scattering (SERS) capability as well as antibacterial activity of the Ag/Si-incorporated nanostructures were performed, and the optimized Ag loadings on Si nanowire-based substrates along with the kinetic investigations were further revealed, which may benefit their practical applications in sensing, medical and biological needs.

  5. Reversible emission evolution from Ag activated zeolite Na-A upon dehydration/hydration

    SciTech Connect

    Lin, Hui E-mail: fujii@eedept.kobe-u.ac.jp; Imakita, Kenji; Fujii, Minoru E-mail: fujii@eedept.kobe-u.ac.jp

    2014-11-24

    Reversible emission evolution of thermally treated Ag activated zeolite Na-A upon dehydration/hydration in vacuum/water vapor was observed. The phenomenon was observed even for the sample with low Ag{sup +}-Na{sup +} exchanging (8.3%), indicating that the emission from Ag activated zeolites may not come from Ag clusters while from the surrounding coordinated Ag{sup +} ions or Ag{sup 0} atoms. It was disclosed that the characteristic yellow-green emission at ∼560 ± 15 nm is strongly associated with the coordinating water molecules to the Ag{sup +} ions or Ag{sup 0} atoms, which is clear evidence for that the efficient emission from Ag activated zeolites may not originate from the quantum confinement effect.

  6. Self-organization of uniform Ag nano-clusters on Sb-terminated Si(100) surface

    NASA Astrophysics Data System (ADS)

    Park, Kang-Ho; Ha, Jeong Sook; Yun, Wan Soo; Lee, El-Hang

    1998-10-01

    Nanometer sized Ag clusters were found to be uniformly formed in the initial stage of Ag growth on Sb-terminated Si(100) surfaces. Due to the saturation of Si dangling bonds by Sb adatoms, Ag clusters were grown on the Sb-terminated Si(100) surface without a Ag wetting layer. We found that the diameters and heights of Ag clusters were confined to a nanometer scale, and the size distribution was quite uniform compared to Ag growth on Sb-terminated Si(111). Those features are considered to result from the separation of Ag clusters by coherently aligned voids in the underlying Sb-terminated Si(100) surface. Tunneling spectroscopy measurements showed that the local conduction properties of Ag clusters gradually changed from semiconducting to metallic as Ag coverage increased.

  7. The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae

    PubMed Central

    Zhou, Kaijun; Hu, Yi; Zhang, Luqing; Yang, Kun; Lin, Daohui

    2016-01-01

    Exopolymeric substances (EPS) have an important role in bioaccumulation and toxicity of nanoparticles (NPs) to algae, which warrants specific studies. The interaction of EPS with citrate and polyvinyl pyrrolidone (PVP) coated AgNPs (C-AgNPs and P-AgNPs, respectively) and its roles in bioaccumulation and toxicity of the AgNPs to Chlorella pyrenoidosa were investigated. The amino and aromatic carboxylic groups in the EPS were involved in the EPS-AgNP interactions. Compared with Ag+, C-AgNPs had comparable total bioaccumulation but greater absorption by intact algae with EPS; P-AgNPs had the smallest total bioaccumulation and were mainly adsorbed on algal surfaces. With EPS removed, the total bioaccumulations and surface adsorptions for the three Ag species decreased but the cell internalizations increased; the 96 h half growth inhibition concentrations decreased, indicating EPS alleviated the algal toxicity of Ag. The cell-internalized but not the adsorbed AgNPs could contribute to the nanotoxicity. The EPS could bind both AgNPs and Ag+, and thus inhibited the cell internalization and the nanotoxicity. However, the EPS-bound Ag on the cell surfaces would migrate along with the algae and be biologically amplified in the aquatic food chains, presenting ecological risks. These results are helpful for understanding the fate and ecological effects of NPs. PMID:27615743

  8. The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae

    NASA Astrophysics Data System (ADS)

    Zhou, Kaijun; Hu, Yi; Zhang, Luqing; Yang, Kun; Lin, Daohui

    2016-09-01

    Exopolymeric substances (EPS) have an important role in bioaccumulation and toxicity of nanoparticles (NPs) to algae, which warrants specific studies. The interaction of EPS with citrate and polyvinyl pyrrolidone (PVP) coated AgNPs (C-AgNPs and P-AgNPs, respectively) and its roles in bioaccumulation and toxicity of the AgNPs to Chlorella pyrenoidosa were investigated. The amino and aromatic carboxylic groups in the EPS were involved in the EPS-AgNP interactions. Compared with Ag+, C-AgNPs had comparable total bioaccumulation but greater absorption by intact algae with EPS; P-AgNPs had the smallest total bioaccumulation and were mainly adsorbed on algal surfaces. With EPS removed, the total bioaccumulations and surface adsorptions for the three Ag species decreased but the cell internalizations increased; the 96 h half growth inhibition concentrations decreased, indicating EPS alleviated the algal toxicity of Ag. The cell-internalized but not the adsorbed AgNPs could contribute to the nanotoxicity. The EPS could bind both AgNPs and Ag+, and thus inhibited the cell internalization and the nanotoxicity. However, the EPS-bound Ag on the cell surfaces would migrate along with the algae and be biologically amplified in the aquatic food chains, presenting ecological risks. These results are helpful for understanding the fate and ecological effects of NPs.

  9. The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae.

    PubMed

    Zhou, Kaijun; Hu, Yi; Zhang, Luqing; Yang, Kun; Lin, Daohui

    2016-09-12

    Exopolymeric substances (EPS) have an important role in bioaccumulation and toxicity of nanoparticles (NPs) to algae, which warrants specific studies. The interaction of EPS with citrate and polyvinyl pyrrolidone (PVP) coated AgNPs (C-AgNPs and P-AgNPs, respectively) and its roles in bioaccumulation and toxicity of the AgNPs to Chlorella pyrenoidosa were investigated. The amino and aromatic carboxylic groups in the EPS were involved in the EPS-AgNP interactions. Compared with Ag(+), C-AgNPs had comparable total bioaccumulation but greater absorption by intact algae with EPS; P-AgNPs had the smallest total bioaccumulation and were mainly adsorbed on algal surfaces. With EPS removed, the total bioaccumulations and surface adsorptions for the three Ag species decreased but the cell internalizations increased; the 96 h half growth inhibition concentrations decreased, indicating EPS alleviated the algal toxicity of Ag. The cell-internalized but not the adsorbed AgNPs could contribute to the nanotoxicity. The EPS could bind both AgNPs and Ag(+), and thus inhibited the cell internalization and the nanotoxicity. However, the EPS-bound Ag on the cell surfaces would migrate along with the algae and be biologically amplified in the aquatic food chains, presenting ecological risks. These results are helpful for understanding the fate and ecological effects of NPs.

  10. Study on antibacterial activity of chemically synthesized PANI-Ag-Au nanocomposite

    NASA Astrophysics Data System (ADS)

    Boomi, Pandi; Prabu, Halliah Gurumallesh; Manisankar, Paramasivam; Ravikumar, Sundaram

    2014-05-01

    Pristine polyaniline (PANI), PANI-Ag, PANI-Au and PANI-Ag-Au nanocomposites have been successfully synthesized by chemical oxidative polymerization method using aniline as monomer, ammonium persulphate as oxidant and metal (Ag, Au and Ag-Au) colloids. UV-Vis analysis exhibited surface Plasmon resonances of Ag, Au, Ag-Au nanoparticles. FT-IR spectra revealed the shift in peak position of N-H stretching. X-ray diffraction (XRD) results confirm the presence of Ag, Au and Au-Ag nanoparticles. HR-TEM images show nanosizes of Ag, Au, Ag-Au and the incorporation of such nanoparticles into the PANI matrix. Pristine PANI, PANI-Ag, PANI-Au and PANI-Ag-Au nanocomposites were tested for antibacterial activity by agar well diffusion method. PANI-Ag-Au nanocomposite exhibited higher antibacterial activity against both gram-positive [Streptococcus sp. (MTCC 890), Staphylococcus sp. (MTCC 96)] and gram-negative bacteria [Escherichia coli (MTCC 1671) and Klebsiella sp. (MTCC 7407)] when compared with PANI-Ag nanocomposite, PANI-Au nanocomposite and pristine PANI. The novelty of this study is the polymer-bimetal synthesis and its antibacterial potential.

  11. Adsorption and visible light-driven photocatalytic degradation of Rhodamine B in aqueous solutions by Ag@AgBr/SBA-15

    NASA Astrophysics Data System (ADS)

    Hu, Longxing; Yuan, Hang; Zou, Lianpei; Chen, Feiyan; Hu, Xing

    2015-11-01

    A novel composite, Ag@AgBr/SBA-15, was successfully synthesized by dispersion of AgBr on mesoporous silica SBA-15, characterized by several techniques, such as XRD, N2 adsorption-desorption, SEM & EDS, UV-vis spectrum and XPS, and utilized for visible light photocatalytic degradation of dye Rhodamine B (RhB) in aqueous solutions. The results showed that for the various AgBr loadings in the composites, RhB photocatalytic degradation efficiency arrived at the maximum of 77% at 50% loading, or with 50Ag@AgBr/SBA-15. Under the combined mode, the RhB removal reached 88% at 0.3 g/L of 50Ag@AgBr/SBA-15 dosage, 20 mg L-1 of initial RhB concentration, 4.28 of unadjusted initial pH and 20 °C. The RhB photocatalytic degradation followed well with the second-order kinetics, and the increase of the 50Ag@AgBr/SBA-15 dosage, the decrease of the initial RhB concentration and the optimal initial solution pH would be favorable to RhB photocatalytic degradation. The quenching tests demonstrated that the RhB photocatalytic degradation was mainly attributed to the generation of active species such as O2-,bigdot OH and h+. Moreover, the adsorption characteristics of 50Ag@AgBr/SBA-15 were investigated, with its pHpzc of 6.21 acquired and the conclusion that the RhB adsorption isotherm well followed Langmuir model drawn. Additionally, photocatalyst 50Ag@AgBr/SBA-15 can be effectively regenerated with the H2O2 solutions under visible light irradiation, and reused for up to five runs for the degradation of RhB in the presence of visible light, with RhB removal more than 75% and Ag+ leaching undetected for each run.

  12. Uptake pathway for Ag bioaccumulation in three benthic invertebrates exposed to contaminated sediments

    USGS Publications Warehouse

    Yoo, H.; Lee, J.-S.; Lee, B.-G.; Lee, I.T.; Schlekat, C.E.; Koh, C.-H.; Luoma, S.N.

    2004-01-01

    We exposed 3 benthic invertebrates, the clam Macoma balthica, the polychaete Neanthes arenaceodentata and the amphipod Leptocheirus plumulosus, to Ag-contaminated sediments to evaluate the relative importance of various uptake routes (sediments, porewater or overlying water, and supplementary food) for Ag bioaccumulation. Silver bioaccumulation was evaluated at 4 levels of sediment Ag (0.1, 0,3, 1,2 and 3.3 ??mol Ag g-1) and 2 levels of acid-volatile sulfide (AVS), <0.5 or ???40 ??mol g-1, and compared among food treatments with or without Ag contamination, or with different food rations. L. plumulosus were incubated for 35 d in the Ag-contaminated sediments after 3 mo of Ag-sediment equilibration, and M. balthica and N. arenaceodentata for 19 d after 5 mo equilibration. Ag bioaccumulation in the 3 organisms was significantly correlated with 1N HCl-extractable Ag concentrations (Ag-SEM: simultaneously extracted Ag with AVS) in sediments. The Ag concentrations in porewater and overlying water were greatest in the sediments with least AVS, consistent with previous studies. Nevertheless, the amphipod and clam exposed to oxic sediments (<0.5 ??mol AVS g-1) accumulated amounts of Ag similar to those accumulated by organisms exposed to anoxic sediments (???40 ??mol AVS g-1), when Ag-SEM levels were comparable. The dissolved Ag source was important for bioaccumulation in the polychaete N. arenaceodentata. Amphipods fed Ag-contaminated food contained ???1.8-fold more tissue Ag concentrations than those fed uncontaminated food. As suggested in kinetic (DYMBAM) modeling studies, ingestion of contaminated sediments and food were the principle routes of Ag bioaccumulation by the benthic invertebrates during chronic exposure, but the relative importance of each uptake route differed among species.

  13. Photochemically controlled electrochemical deposition and dissolution of Ag0 nanoclusters on au electrode surfaces.

    PubMed

    Riskin, Michael; Katz, Eugenii; Gutkin, Vitaly; Willner, Itamar

    2006-12-05

    A photoisomerizable thiolated nitrospiropyran SP, (1a), monolayer is assembled on a Au electrode by the primary deposition of thiolated nitromerocyanine isomer 1b as a monolayer on the electrode, followed by the irradiation of the surface with visible light, lambda > 475 nm. The surface coverage of nitrospiropyran units (1a) on the electrode is 2 x 10-10 mole cm-2. Irradiation of the electrode with UV light, 320 nm < lambda < 360 nm, results in the nitromerocyanine, MR, monolayer on the electrode that binds Ag+ ions to the phenolate units. The Ag+ ions associated with the MR monolayer undergo cyclic reduction to surface-confined Ag0 nanoclusters, and reoxidation and dissolution of the Ag0 nanoclusters to Ag+ ions associated with the monolayer are demonstrated. The electron-transfer rate constants for the reduction of Ag+ to Ag0 and for the dissolution of Ag0 were determined by chronoamperometry and correspond to ketred = 12.7 s-1 and ketox = 10.5 s-1, respectively. The nanoclustering rate was characterized by surface plasmon resonance measurements, and it proceeds on a time scale of 10 min. The size of the Ag0 nanoclusters is in the range of 2 to 20 nm. The electrochemically induced reduction of the MR-Ag+ monolayer to the MR-Ag0 surface and the reoxidation of the MR-Ag0 surface control the hydrophilic-hydrophobic properties of the surface. The advancing contact angle of the MR-Ag0-functionalized surface is 59 degrees , and the contact angle of the MR-Ag+-monolayer-functionalized surface is 74 degrees . Photoisomerization of the Ag0-MR surface to the Ag0-SP state, followed by the oxidation of the Ag0 nanoclusters, results in the dissolution of the Ag+ ions into the electrolyte solution.

  14. Performance of the new AGS RFQ preinjector

    SciTech Connect

    Alessi, J.G.; Brennan, J.M.; Brodowski, J.; Brown, H.N.; Kponou, A.; LoDestro, V.; Montemurro, P.; Prelec, K.; Witkover, R.; Gough, R.; Staples, J.

    1989-01-01

    In the fall of 1988, the 750 keV Cockcroft-Walton (C-W) preinjector for the AGS 200 MeV H/sup /minus// linac was replaced by an RFQ, in what has proved to be a very successful upgrade. The motivations for the upgrade included improved reliability, simpler maintenance, and the added convenience of having the ion source located at nearly ground potential. At the same time, the controls and instrumentation in the preinjector area were modernized. The linac has been operating full time with this RFQ preinjector since January 1, 1989, and the reliability has been excellent. The source, RFQ, and linac operate at a 5 Hz repetition rate, and the beam pulse width is approximately 450 ..mu..s. At this time, the H/sup /minus// current at 200 MeV is typically 23-25 mA, the same as previous operation with the C-W, although the capability is there to reach higher currents in the future. The layout of the new preinjector is shown in Figure 1. An important consideration in the layout of this line was the decision to leave the final 2.4 m section before the linac intact, so the optics of a second C-W injector line and polarized H/sup /minus// injection from another RFQ remained the same. The resulting line has a distance of almost 6 m from the RFQ to the linac, and there are three ''rebuncher'' cavities to maintain the bunching of the beam from the RFQ. The following sections will describe some details of the preinjector line, and then discuss the installation and performance.

  15. Layer-by-layer growth of Ag on Ag(111) induced by enhanced nucleation: A model study for surfactant-mediated growth

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Georg; Servaty, Roland; Teichert, Christian; Poelsema, Bene; Comsa, George

    1993-08-01

    It has been reported that the growth mode of Ag on Ag(111), which is usually multilayer (3D), changes to layer-by-layer (2D) growth if Sb is used as a surfactant. In a model study on the clean system Ag/Ag(111) (without any surfactant) we find that two-dimensional layers do grow, if the substrate is prepared with an anomalously high density of Ag nuclei. As an enhanced density of nuclei is also observed in the presence of Sb, this effect may explain the mechanism for surfactant-induced layer-by-layer growth.

  16. Highly dynamic PVP-coated silver nanoparticles in aquatic environments: chemical and morphology change induced by oxidation of Ag(0) and reduction of Ag(+).

    PubMed

    Yu, Su-Juan; Yin, Yong-Guang; Chao, Jing-Bo; Shen, Mo-Hai; Liu, Jing-Fu

    2014-01-01

    The fast growing and abundant use of silver nanoparticles (AgNPs) in commercial products alerts us to be cautious of their unknown health and environmental risks. Because of the inherent redox instability of silver, AgNPs are highly dynamic in the aquatic system, and the cycle of chemical oxidation of AgNPs to release Ag(+) and reconstitution to form AgNPs is expected to occur in aquatic environments. This study investigated how inevitable environmentally relevant factors like sunlight, dissolved organic matter (DOM), pH, Ca(2+)/Mg(2+), Cl(-), and S(2-) individually or in combination affect the chemical transformation of AgNPs. It was demonstrated that simulated sunlight induced the aggregation of AgNPs, causing particle fusion or self-assembly to form larger structures and aggregates. Meanwhile, AgNPs were significantly stabilized by DOM, indicating that AgNPs may exist as single particles and be suspended in natural water for a long time or delivered far distances. Dissolution (ion release) kinetics of AgNPs in sunlit DOM-rich water showed that dissolved Ag concentration increased gradually first and then suddenly decreased with external light irradiation, along with the regeneration of new tiny AgNPs. pH variation and addition of Ca(2+) and Mg(2+) within environmental levels did not affect the tendency, showing that this phenomenon was general in real aquatic systems. Given that a great number of studies have proven the toxicity of dissolved Ag (commonly regarded as the source of AgNP toxicity) to many aquatic organisms, our finding that the effect of DOM and sunlight on AgNP dissolution can regulate AgNP toxicity under these conditions is important. The fact that the release of Ag(+) and regeneration of AgNPs could both happen in sunlit DOM-rich water implies that previous results of toxicity studies gained by focusing on the original nature of AgNPs should be reconsidered and highlights the necessity to monitor the fate and toxicity of AgNPs under more

  17. Ag/g-C3N4 layered composites with enhanced visible light photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Chen, Lu; Man, Yuhong; Chen, Zhiqian; Zhang, Yongping

    2016-11-01

    The synthesized Ag/g-C3N4 composite is composed of Ag nanoparticles with size of about 4 nm and mesoporous g-C3N4 nanosheet with uniform thickness of about 1.06 nm. The photoinduced charge carrier separation of the Ag/g-C3N4 composites is closely related to the doping mass contents of the Ag nanoparticles. The as-prepared composite exhibits optimal photocatalytic performance at 5% Ag doping content. The enhanced photocatalytic performance can be ascribed to the good synergetic effect between the Ag nanoparticle and the mesoporous g-C3N4 nanosheet.

  18. The isotopic composition of AG in meteorites and the presence of Pd-107 in protoplanets

    NASA Astrophysics Data System (ADS)

    Chen, J. H.; Wasserburg, G. J.

    1990-06-01

    Results are presented on the isotopic composition of Ag and the concentrations of Pd and Ag in metal and sulfide phases in iron meteorites Gibeon, Derrick Peak, and Mundrabilla and in schereibersite in Derrick Peak. It was found that almost all iron meteorite samples with a ratio of Pd-108/Ag-109 greater than about 400 had an excess of Ag-107. The results, in conjunction with the data of Chen and Wasserburg (1983) on IIIA-IIIB meteorites, demonstrate the widespread occurrence of excess Ag-107 in diverse types of small early planetary bodies. The excess Ag-107 is believed to be produced by the decay of Pd-107.

  19. Replacement of oxide glass with metallic glass for Ag screen printing metallization on Si emitter

    NASA Astrophysics Data System (ADS)

    Kim, Se Yun; Jee, Sang Soo; Lim, Ka Ram; Kim, Won Tae; Kim, Do Hyang; Lee, Eun-Sung; Kim, Young Hwan; Lee, Sang Mock; Lee, Jun Ho; Eckert, Jürgen

    2011-05-01

    Cu-Zr-based metallic glass (MG) has been applied as a binding agent of Ag paste for front contact formation in Si solar cell by screen printing process. Use of electroconductive MG binder significantly improves the quality of the contact by the formation of highly dense 10-50 nm size Ag crystallites and the noncorrugation of the emitter surface with a very shallow Ag crystallite penetration depth of 10-30 nm. Nanoscale Ag crystallites form on the emitter surface by local Si-Cu-Ag eutectic melting, leading to the formation of pyramidal pits on the Si emitter surface, followed by precipitation of Ag crystallites during cooling.

  20. Evaluation of LIAISON® XL system for HBsAg, and anti-HCV and anti-HIV/Ag p24.

    PubMed

    De Paschale, Massimo; Manco, Maria Teresa; Belvisi, Luisa; Cagnin, Debora; Cerulli, Teresa; Paganini, Alessia; Arpino, Olivia; Cianflone, Annalisa; Agrappi, Carlo; Mirri, Paola; Clerici, Pierangelo

    2017-03-01

    The aim of this study was to compare the data obtained using the new LIAISON® XL chemiluminescence system to search for HBsAg, anti-HCV, and anti-HIV1-2/p24 Ag with those obtained using the VITROS system currently adopted by the Microbiology Unit of the Hospital of Legnano. Routine samples of patients who were referred by practitioners for the determination of HBsAg (1,000 samples) and/or anti-HCV (1,002 samples) and/or anti-HIV1-2 (995 samples) were simultaneously analyzed using both systems. The concordant positive and discordant samples were re-examined for confirmation by means of an HBsAg neutralization assay, anti-HCV immunoblot, or anti-HIV1-2 Western blot; HBV-DNA, or HCV-RNA or HIV-RNA was also sought in the discordant samples. Samples of patients known to be positive were tested (100 HBsAg positive, 100 anti-HCV positive, and 100 HIV 1-2 positive) as well throughout treatment, with viremia levels becoming undetectable after treatment. The HBsAg, anti-HCV, and anti-HIV1-2 concordance between the two systems in routine series was respectively 99.8%, 98.5% and 99.7%, and 100% for all markers in samples known positive. The various molecular biology and confirmatory tests of the discordant samples were all negative (except for one anti-HCV positive sample). Measure of Cohen's kappa coefficient for HBsAg, anti-HCV, and anti-HIV gave K values of respectively 0.992, 0.946, and 0.980. In conclusion, the performance of the LIAISON® XL system in the routine laboratory determination for all three markers was comparable with that of the VITROS system. J. Med. Virol. 89:489-496, 2017. © 2016 Wiley Periodicals, Inc.

  1. Influence of Ag contents on structure and tribological properties of TiSiN-Ag nanocomposite coatings on Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Dang, Chaoqun; Li, Jinlong; Wang, Yue; Yang, Yitao; Wang, Yongxin; Chen, Jianmin

    2017-02-01

    TiSiN-Ag nanocomposite coatings with different Ag contents were deposited on Ti-6Al-4V using reactive co-sputtering in multi-arc ion plating system. Influence of Ag contents on structure and tribological properties of TiSiN-Ag nanocomposite coatings was investigated. The TiSiN-Ag coatings were found to have unique nanocomposite structures composed of nanocrystallite and amorphous nc-TiN/nc-Ag/a-Si3N4. When the silver content was 1.4 at.%, the coating exhibited high hardness (36 GPa), but poor wear resistance. When the silver content was increased from 5.3 to 8.7 at.%, the coatings possessed homogeneous distribution and small variation in hardness. Although these coatings revealed obvious decrease in hardness, significantly reduced in the friction coefficient and possessed excellent tribological properties, besides, the coating with the Ag content of 5.3 at.% showed best wear resistance in artificial seawater and the coating (7.9 at.% Ag) revealed the best wear resistance in ambient air. However, with a further increased incorporation of Ag into the TiSiN-Ag coating (17.0 at.%) resulted in the formation of a large volume fraction of metallic silver, which caused a decrease both in hardness and wear resistance. The coating containing highest Ag concentration (21.0 at.%) exhibited low friction coefficient both in ambient air and artificial seawater, although possessing low hardness.

  2. One-pot synthesis of visible-light-driven Ag/Ag3PO4 photocatalyst immobilized on exfoliated montmorillonite by clay-mediated in situ reduction

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Zhang, Xiaoyuan; Wu, Jianning; Meng, Guihua; Guo, Xuhong; Liu, Zhiyong

    2016-11-01

    In order to find efficient photocatalytic materials and convenient preparation method, a well-designed Ag/Ag3PO4-OMMT (organically modified montmorillonite) plasmonic photocatalyst was synthesized via the "one-pot" process without any reducing species. Ag+ could be reduced by Si-OH moiety on the surface of OMMT. The resulting samples were thoroughly studied by using X-ray diffraction, X-ray photoelectron spectra, transmission electron microscopy, scanning electron microscope, energy-dispersive X-ray spectroscopy, UV-Vis diffuse reflectance spectra, and so on. The as-prepared Ag/Ag3PO4-OMMT photocatalyst exhibited efficient, stable photocatalytic activity and recyclability for the degradation of Rhodamine B (RhB) under visible light radiation ( λ > 420 nm). The optimum synergetic effect of Ag3PO4/OMMT was found at a weight ratio of 50 %. The degradation efficiency of RhB over Ag/Ag3PO4-OMMT (1:1) was about 92.9 %, and photocatalytic activity remained stable after three cycles. The results show that the designed photocatalyst is feasible and effective. The proposed photocatalysis mechanism is probably attributed to surface plasmon resonance of metallic Ag nanoparticles (NPs) and also attributed to negatively charged exfoliated montmorillonite. The Ag/Ag3PO4-OMMT composites showed highly visible light photocatalytic activity, which makes them promising nanomaterials for further applications in water treatment.

  3. Thermoelectric Properties of Ag-Doped Bi2(Se,Te)3 Compounds: Dual Electronic Nature of Ag-Related Lattice Defects.

    PubMed

    Lu, Meng-Pei; Liao, Chien-Neng; Huang, Jing-Yi; Hsu, Hung-Chang

    2015-08-03

    Effects of Ag doping and thermal annealing temperature on thermoelectric transport properties of Bi2(Se,Te)3 compounds are investigated. On the basis of the comprehensive analysis of carrier concentration, Hall mobility, and lattice parameter, we identified two Ag-related interstitial (Agi) and substitutional (AgBi) defects that modulate in different ways the thermoelectric properties of Ag-doped Bi2(Se,Te)3 compounds. When Ag content is less than 0.5 wt %, Agi plays an important role in stabilizing crystal structure and suppressing the formation of donor-like Te vacancy (VTe) defects, leading to the decrease in carrier concentration with increasing Ag content. For the heavily doped Bi2(Se,Te)3 compounds (>0.5 wt % Ag), the increasing concentration of AgBi is held responsible for the increase of electron concentration because formation of AgBi defects is accompanied by annihilation of hole carriers. The analysis of Seebeck coefficients and temperature-dependent electrical properties suggests that electrons in Ag-doped Bi2(Se,Te)3 compounds are subject to a mixed mode of impurity scattering and lattice scattering. A 10% enhancement of thermoelectric figure-of-merit at room temperature was achieved for 1 wt % Ag-doped Bi2(Se,Te)3 as compared to pristine Bi2(Se,Te)3.

  4. Ag2Mo3O10 Nanorods Decorated with Ag2S Nanoparticles: Visible-Light Photocatalytic Activity, Photostability, and Charge Transfer.

    PubMed

    Chen, Xianjie; Liu, Fenglin; Yan, Xiaodong; Yang, Yang; Chen, Qian; Wan, Juan; Tian, Lihong; Xia, Qinghua; Chen, Xiaobo

    2015-12-14

    Ag2Mo3O10 nanorods decorated with Ag2 S nanoparticles have been synthesized by an anion-exchange route. With thiourea as the sulfur source, sulfur ions replace [Mo3O10](2-) units of active sites on the surface of Ag2Mo3O10 nanorods, forming Ag2Mo3O10 nanorods decorated with Ag2S nanoparticles. This induces enhanced absorption in the visible-light region. Ag2 S nanoparticles decorate the surface of Ag2Mo3O10 nanorods uniformly with a suitable amount of thiourea. The Ag2S/Ag2Mo3O10 nanoheterostructure enhances the photocatalytic activity on the degradations of Rhodamine B and glyphosate under visible light. This enhancement is attributed to the improved absorption of visible light and effective separation of charge carriers in the nanoheterostructure. Meanwhile, the Ag2S/Ag2Mo3O10 nanoheterostructure displays good photocatalytic stability based on cyclic photocatalytic experiments.

  5. Facile formation of Ag{sub 2}WO{sub 4}/AgX (X = Cl, Br, I) hybrid nanorods with enhanced visible-light-driven photoelectrochemical properties

    SciTech Connect

    Li, Jingjing; Yu, Caiyun; Zheng, Changcheng; Etogo, Atangana; Xie, Yunlong; Zhong, Yijun; Hu, Yong

    2015-01-15

    Highlights: • Ag{sub 2}WO{sub 4}/AgX hybrid nanorods were prepared by a facile in-situ anion exchange reaction. • Ag{sub 2}WO{sub 4} nanorods and different X{sup −} ions were reacted in water at room temperature. • The hybrids possess significantly enhanced photoelectrochemical properties. • Ag{sub 2}WO{sub 4}/AgBr hybrids exhibit the highest photocatalytic activity among three samples. • The active species tests were also investigated to confirm photocatalytic mechanism. - Abstract: In this work, we demonstrated a general strategy for the preparation of a series of uniform Ag{sub 2}WO{sub 4}/AgX (X = Cl, Br, I) hybrid nanorods by a facile in-situ anion exchange reaction occurring at room temperature between pregrown Ag{sub 2}WO{sub 4} nanorods and different X{sup −} ions in water. Compared with Ag{sub 2}WO{sub 4} nanorods, further investigation has revealed that the as-prepared hybrid nanorods possess significantly enhanced photocurrent response and photocatalytic activity in degrading methyl orange (MO) under visible-light irradiation. In particular, the Ag{sub 2}WO{sub 4}/AgBr hybrid nanorods exhibit the highest photocatalytic activity among the three kinds of samples. The active species tests indicate that superoxide anion radicals and photogenerated holes are responsible for the enhanced photocatalytic performance.

  6. Fabrication, characterization and photocatalytic properties of Ag/AgI/BiOI heteronanostructures supported on rectorite via a cation-exchange method

    SciTech Connect

    Chen, Yunfang; Fang, Jianzhang; Lu, Shaoyou; Wu, Yan; Chen, Dazhi; Huang, Liyan; Xu, Weicheng; Zhu, Ximiao; Fang, Zhanqiang

    2015-04-15

    Highlights: • Ag/AgI/BiOI-rectorite was prepared by twice cation-exchange process. • Ag/AgI/BiOI-rectorite photocatalyst possessed SPR and adsorption capacity. • Ag/AgI/BiOI-rectorite exhibited highly photocatalytic activity. • Trapped holes and ·O{sub 2}{sup −} were formed active species in the photocatalytic system. - Abstract: In this work, a new plasmonic photocatalyst Ag/AgI/BiOI-rectorite was prepared via a cation exchange process. The photocatalyst had been characterized by X-ray powder diffraction (XRD), Raman spectra, nitrogen sorption (BET), field-emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic activity, which was evaluated by degradation of rhodamine B (RhB) and bisphenol A (BPA) under visible light irradiation, was enhanced significantly by loading Ag/AgI/BiOI nanoparticles onto rectorite. The photogenerated holes and superoxide radical (·O{sub 2}{sup −}) were both formed as active species for the photocatalytic reactions under visible light irradiation. The existence of metallic Ag particles, which possess the surface plasmon resonance effect, acted as an indispensable role in the photocatalytic reaction.

  7. Silver delafossite nitride, AgTaN 2?

    NASA Astrophysics Data System (ADS)

    Miura, Akira; Lowe, Michael; Leonard, Brian M.; Subban, Chinmayee V.; Masubuchi, Yuji; Kikkawa, Shinichi; Dronskowski, Richard; Hennig, Richard G.; Abruña, Héctor D.; DiSalvo, Francis J.

    2011-01-01

    A new silver nitride, AgTaN 2, was synthesized from NaTaN 2 by a cation-exchange reaction, using a AgNO 3-NH 4NO 3 flux at 175 °C. Its crystal structure type is delafossite (R3¯m) with hexagonal lattice parameters of a=3.141(3) Å, c=18.81(2) Å, in which silver is linearly coordinated to nitrogen. Energy dispersive X-ray analysis and combustion nitrogen/oxygen analysis gave a composition with atomic ratios of Ag:Ta:N:O as 1.0:1.2(1):2.1(1):0.77(4), which is somewhat Ta rich and indicates some oxide formation. The X-ray photoelectron spectroscopy analysis showed a Ta- and O-rich surface and transmission electron microscope observation exhibited aggregates of ca. 4-5 nm-sized particles on the surface, which are probably related to the composition deviation from a AgTaN 2. The lattice parameters of stoichiometric AgTaN 2 calculated by density functional theory agree with the experimental ones, but the possibility of some oxygen incorporation and/or silver deficiency is not precluded.

  8. A convenient phase transfer route for Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhao, Shi-Yong; Chen, Shen-Hao; Li, De-Gang; Yang, Xue-Geng; Ma, Hou-Yi

    2004-06-01

    Generally, phase transfer of metal nanoparticles between aqueous phase and organic phase need two reagents at last. One is stabilizer of nanoparticles, the other is phase-transfer agent (Chem. Lett. 21 (1992) 1527; J. Colloid Interface Sci. 161 (1993) 471; J. Phys. Chem B 101 (1997) 9876; Chem. Commun. (1997) 537; Langmuir 14 (1998) 602; J. Phys. Chem B 103 (1999) 7238; Chem. Mater. 13 (2001) 4692; Langmuir 17 (2001) 733; Langmuir 16 (2000) 9775; Langmuir 18 (2002) 3364; J. Am. Chem. Soc. 123 (2001) 11148). In this paper, Ag nanoparticle prepared by tannic acid reduction of AgNO 3 in aqueous medium were transferred to chloroform solution via a remarkably simple one-step route under the effect of phase-transfer inducer dimethyldioctadecylammonium chloride (DDAC), where no special stabilizer was required. Monolayer of Ag nanoparticles is obtained on carbon film by self-assembly using chloroform organosol. The effect of the inducer DDAC concentration is checked, and it was found that 5×10 -3 mol dm -3 of DDAC was the optimum concentration for phase transfer of Ag nanoparticles. The organosol, Ag nanoparticle self-assembled monolayer and phase transfer were characterized by UV-vis spectra, TEM, ED and TF-IR.

  9. Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films.

    PubMed

    Krishna, H; Sachan, R; Strader, J; Favazza, C; Khenner, M; Kalyanaraman, R

    2010-04-16

    We show here that the morphological pathway of spontaneous dewetting of ultrathin Ag films on SiO2 under nanosecond laser melting is dependent on film thickness. For films with thickness h of 2 nm < or = h < or = 9.5 nm, the morphology during the intermediate stages of dewetting consisted of bicontinuous structures. For films with 11.5 nm < or = h < or = 20 nm, the intermediate stages consisted of regularly sized holes. Measurement of the characteristic length scales for different stages of dewetting as a function of film thickness showed a systematic increase, which is consistent with the spinodal dewetting instability over the entire thickness range investigated. This change in morphology with thickness is consistent with observations made previously for polymer films (Sharma and Khanna 1998 Phys. Rev. Lett. 81 3463-6; Seemann et al 2001 J. Phys.: Condens. Matter 13 4925-38). Based on the behavior of free energy curvature that incorporates intermolecular forces, we have estimated the morphological transition thickness for the intermolecular forces for Ag on SiO2. The theory predictions agree well with observations for Ag. These results show that it is possible to form a variety of complex Ag nanomorphologies in a consistent manner, which could be useful in optical applications of Ag surfaces, such as in surface enhanced Raman sensing.

  10. Ag-graphene hybrid conductive ink for writing electronics

    NASA Astrophysics Data System (ADS)

    Xu, L. Y.; Yang, G. Y.; Jing, H. Y.; Wei, J.; Han, Y. D.

    2014-02-01

    With the aim of preparing a method for the writing of electronics on paper by the use of common commercial rollerball pens loaded with conductive ink, hybrid conductive ink composed of Ag nanoparticles (15 wt%) and graphene-Ag composite nanosheets (0.15 wt%) formed by depositing Ag nanoparticles (˜10 nm) onto graphene sheets was prepared for the first time. Owing to the electrical pathway effect of graphene and the decreased contact resistance of graphene junctions by depositing Ag nanoparticles (NPs) onto graphene sheets, the concentration of Ag NPs was significantly reduced while maintaining high conductivity at a curing temperature of 100 ° C. A typical resistivity value measured was 1.9 × 10-7 Ω m, which is 12 times the value for bulk silver. Even over thousands of bending cycles or rolling, the resistance values of writing tracks only increase slightly. The stability and flexibility of the writing circuits are good, demonstrating the promising future of this hybrid ink and direct writing method.

  11. Chestnut extract induces apoptosis in AGS human gastric cancer cells.

    PubMed

    Lee, Hyun Sook; Kim, Eun Ji; Kim, Sun Hyo

    2011-06-01

    In Korea, chestnut production is increasing each year, but consumption is far below production. We investigated the effect of chestnut extracts on antioxidant activity and anticancer effects. Ethanol extracts of raw chestnut (RCE) or chestnut powder (CPE) had dose-dependent superoxide scavenging activity. Viable numbers of MDA-MD-231 human breast cancer cells, DU145 human prostate cancer cells, and AGS human gastric cancer cells decreased by 18, 31, and 69%, respectively, following treatment with 200 µg/mL CPE for 24 hr. CPE at various concentrations (0-200 µg/mL) markedly decreased AGS cell viability and increased apoptotic cell death dose and time dependently. CPE increased the levels of cleaved caspase-8, -7, -3, and poly (ADP-ribose) polymerase in a dose-dependent manner but not cleaved caspase-9. CPE exerted no effects on Bcl-2 and Bax levels. The level of X-linked inhibitor of apoptosis protein decreased within a narrow range following CPE treatment. The levels of Trail, DR4, and Fas-L increased dose-dependently in CPE-treated AGS cells. These results show that CPE decreases growth and induces apoptosis in AGS gastric cancer cells and that activation of the death receptor pathway contributes to CPE-induced apoptosis in AGS cells. In conclusion, CPE had more of an effect on gastric cancer cells than breast or prostate cancer cells, suggesting that chestnuts would have a positive effect against gastric cancer.

  12. AgMIP Training in Multiple Crop Models and Tools

    NASA Technical Reports Server (NTRS)

    Boote, Kenneth J.; Porter, Cheryl H.; Hargreaves, John; Hoogenboom, Gerrit; Thornburn, Peter; Mutter, Carolyn

    2015-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) has the goal of using multiple crop models to evaluate climate impacts on agricultural production and food security in developed and developing countries. There are several major limitations that must be overcome to achieve this goal, including the need to train AgMIP regional research team (RRT) crop modelers to use models other than the ones they are currently familiar with, plus the need to harmonize and interconvert the disparate input file formats used for the various models. Two activities were followed to address these shortcomings among AgMIP RRTs to enable them to use multiple models to evaluate climate impacts on crop production and food security. We designed and conducted courses in which participants trained on two different sets of crop models, with emphasis on the model of least experience. In a second activity, the AgMIP IT group created templates for inputting data on soils, management, weather, and crops into AgMIP harmonized databases, and developed translation tools for converting the harmonized data into files that are ready for multiple crop model simulations. The strategies for creating and conducting the multi-model course and developing entry and translation tools are reviewed in this chapter.

  13. Spin relaxation characteristics in Ag nanowire covered with various oxides

    SciTech Connect

    Karube, S.; Idzuchi, H.; Otani, Y.; Kondou, K.; Fukuma, Y.

    2015-09-21

    We have studied spin relaxation characteristics in a Ag nanowire covered with various oxide layers of Bi{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, HfO{sub 2}, MgO, or AgO{sub x} by using non-local spin valve structures. The spin-flip probability, a ratio of momentum relaxation time to spin relaxation time at 10 K, exhibits a gradual increase with an atomic number of the oxide constituent elements, Mg, Al, Ag, and Hf. Surprisingly, the Bi{sub 2}O{sub 3} capping was found to increase the probability by an order of magnitude compared with other oxide layers. This finding suggests the presence of an additional spin relaxation mechanism such as Rashba effect at the Ag/Bi{sub 2}O{sub 3} interface, which cannot be explained by the simple Elliott-Yafet mechanism via phonon, impurity, and surface scatterings. The Ag/Bi{sub 2}O{sub 3} interface may provide functionality as a spin to charge interconversion layer.

  14. Contrasting antibody responses to intrasubtype superinfection with CRF02_AG.

    PubMed

    Courtney, Colleen R; Mayr, Luzia; Nanfack, Aubin J; Banin, Andrew N; Tuen, Michael; Pan, Ruimin; Jiang, Xunqing; Kong, Xiang-Peng; Kirkpatrick, Allison R; Bruno, Daniel; Martens, Craig A; Sykora, Lydia; Porcella, Stephen F; Redd, Andrew D; Quinn, Thomas C; Nyambi, Phillipe N; Dürr, Ralf

    2017-01-01

    HIV superinfection describes the sequential infection of an individual with two or more unrelated HIV strains. Intersubtype superinfection has been shown to cause a broader and more potent heterologous neutralizing antibody response when compared to singly infected controls, yet the effects of intrasubtype superinfection remain controversial. Longitudinal samples were analyzed phylogenetically for pol and env regions using Next-Generation Sequencing and envelope cloning. The impact of CRF02_AG intrasubtype superinfection was assessed for heterologous neutralization and antibody binding responses. We compared two cases of CRF02_AG intrasubtype superinfection that revealed complete replacement of the initial virus by superinfecting CRF02_AG variants with signs of recombination. NYU6564, who became superinfected at an early time point, exhibited greater changes in antibody binding profiles and generated a more potent neutralizing antibody response post-superinfection compared to NYU6501. In contrast, superinfection occurred at a later time point in NYU6501 with strains harboring significantly longer V1V2 regions with no observable changes in neutralization patterns. Here we show that CRF02_AG intrasubtype superinfection can induce a cross-subtype neutralizing antibody response, and our data suggest timing and/or superinfecting viral envelope characteristics as contributing factors. These results highlight differential outcomes in intrasubtype superinfection and provide the first insight into cases with CRF02_AG, the fourth most prevalent HIV-1 strain worldwide.

  15. Restructuring hollow Au-Ag nanostructures for improved SERS activity

    NASA Astrophysics Data System (ADS)

    Jiji, S. G.; Gopchandran, K. G.

    2016-10-01

    Hollow Au-Ag nanostructures with improved SERS performance were prepared by using a modified galvanic replacement reaction. The plasmon characteristics of the hollow structures are found to be highly sensitive to the volume of cathode, whether or not a co-reductant was used in the synthesis. It is found that the presence of a co-reductant viz., ascorbic acid (AA) during the reaction make the hollow structures capable to maintain its physical structure even after addition of excess cathode and also it transformes sacrificial templates into highly efficient hollow Au-Ag SERS substrates. In the galvanic replacement reaction conducted in presence of AA, where on one side the removal of Ag atoms make cavities to occur and on the other side a coating on the surface with Au and Ag atoms due to co-reduction take place simultaneously. Morphological observations indicated that it is possible to control the competition between these two mechanisms and to make Au-Ag hollow structures in tune with applications by optimizing the volume of cathode or AA. The SERS activity of these substrates were tested with crystal violet molecule as probe, using two different laser lines, 514 and 784.8 nm. In this report, the enhancement observed for hollow structures fabricated under optimum conditions are in the order of 106. SERS measurements have shown that for a specific volume of cathode, substrates fabricated in presence of AA are superior to the other type and also the increase in enhancement factor is ˜10 fold.

  16. Desorption of oxygen from alloyed Ag/Pt(111)

    SciTech Connect

    Jankowski, Maciej; Wormeester, Herbert Zandvliet, Harold J. W.; Poelsema, Bene

    2014-06-21

    We have investigated the interaction of oxygen with the Ag/Pt(111) surface alloy by thermal desorption spectroscopy (TDS). The surface alloy was formed during the deposition of sub-monolayer amounts of silver on Pt(111) at 800 K and subsequent cooling to 300 K. The low-temperature phase of the surface alloy is composed of nanometer-sized silver rich stripes, embedded within platinum-rich domains, which were characterized with spot profile analysis low energy electron diffraction. The TDS measurements show that oxygen adsorption is blocked on Ag sites: the saturation coverage of oxygen decreases with increasing Ag coverage. Also, the activation energy for desorption (E{sub des}) decreases with Ag coverage. The analysis of the desorption spectra from clean Pt(111) shows a linear decay of E{sub des} with oxygen coverage, which indicates repulsive interactions between the adsorbed oxygen atoms. In contrast, adsorption on alloyed Ag/Pt(111) leads to an attractive interaction between adsorbed oxygen atoms.

  17. Complexation and phase evolution at dimethylformamide-Ag(111) interfaces

    DOE PAGES

    Song, Wentao; Leung, Kevin; Shao, Qian; ...

    2016-09-15

    The interaction of solvent molecules with metallic surfaces impacts many interfacial chemical processes. We investigate the chemical and structure evolution that follows adsorption of the polar solvent dimethylformamide (DMF) on Ag(111). An Ag(DMF)2 coordination complex forms spontaneously by DMF etching of Ag(111), yielding mixed films of the complexes and DMF. Utilizing ultrahigh vacuum scanning tunneling microscopy (UHV-STM), in combination with X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) computations, we map monolayer phases from the 2-D gas regime, consisting of a binary mixture of DMF and Ag(DMF)2, through the saturation monolayer limit, in which these two chemical species phasemore » separate into ordered islands. Structural models for the near-square DMF phase and the chain-like Ag(DMF)2 phase are presented and supported by DFT computation. Interface evolution is summarized in a surface pressure-composition phase diagram, which allows structure prediction over arbitrary experimental conditions. In conclusion, this work reveals new surface coordination chemistry for an important electrolyte-electrode system, and illustrates how surface pressure can be used to tune monolayer phases.« less

  18. Complexation and phase evolution at dimethylformamide-Ag(111) interfaces

    SciTech Connect

    Song, Wentao; Leung, Kevin; Shao, Qian; Gaskell, Karen J.; Reutt-Robey, Janice E.

    2016-09-15

    The interaction of solvent molecules with metallic surfaces impacts many interfacial chemical processes. We investigate the chemical and structure evolution that follows adsorption of the polar solvent dimethylformamide (DMF) on Ag(111). An Ag(DMF)2 coordination complex forms spontaneously by DMF etching of Ag(111), yielding mixed films of the complexes and DMF. Utilizing ultrahigh vacuum scanning tunneling microscopy (UHV-STM), in combination with X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) computations, we map monolayer phases from the 2-D gas regime, consisting of a binary mixture of DMF and Ag(DMF)2, through the saturation monolayer limit, in which these two chemical species phase separate into ordered islands. Structural models for the near-square DMF phase and the chain-like Ag(DMF)2 phase are presented and supported by DFT computation. Interface evolution is summarized in a surface pressure-composition phase diagram, which allows structure prediction over arbitrary experimental conditions. In conclusion, this work reveals new surface coordination chemistry for an important electrolyte-electrode system, and illustrates how surface pressure can be used to tune monolayer phases.

  19. The AGS Ggamma Meter and Calibrating the Gauss Clock

    SciTech Connect

    Ahrens, Leif

    2014-03-31

    During AGS Polarized Proton acceleration periods, one output from the AGS Ggamma Meter, namely the energy (or Ggamma) calculated from the magnetic field in the AGS main magnets and the beam radius- both measured in particular instant, is used to figure out the times in the AGS magnet acceleration cycle when the beam passes through a particular set of depolarizing resonances. The resonance set occur whenever a particle’s Ggamma (energy*(G/m) becomes nearly equal to n*Qx (i.e. any integer multiplied by the horizontal betatron tune). This deliverable is why the machinery is referred to as the ''Ggamma Meter'' rather than the AGS energy meter. The Ggamma Meter takes as inputs a set of measurements of frequency (F(t)), radius (r(t)), and gauss clock counts (GCC(t)). The other energy (GgammaBr) assumes the field when the gauss clock starts counting is known. The change in field to time t is given by the measured accumulated gauss clock counts multiplied by the gauss clock calibration (gauss/GCC). In order to deal with experimental data, this calibration factor gets an added ad hoc complication, namely a correction dependent on the rate of change the counting rate. The Ggamma meter takes GCC(t) and together with the past history for this cycle calculates B(t).

  20. Pirquitasite, Ag2ZnSnS4

    PubMed Central

    Schumer, Benjamin N.; Downs, Robert T.; Domanik, Kenneth J.; Andrade, Marcelo B; Origlieri, Marcus J.

    2013-01-01

    Pirquitasite, ideally Ag2ZnSnS4 (disilver zinc tin tetra­sulfide), exhibits tetra­gonal symmetry and is a member of the stannite group that has the general formula A2BCX 4, with A = Ag, Cu; B = Zn, Cd, Fe, Cu, Hg; C = Sn, Ge, Sb, As; and X = S, Se. In this study, single-crystal X-ray diffraction data are used to determine the structure of pirquitasite from a twinned crystal from the type locality, the Pirquitas deposit, Jujuy Province, Argentina, with anisotropic displacement parameters for all atoms, and a measured composition of (Ag1.87Cu0.13)(Zn0.61Fe0.36Cd0.03)SnS4. One Ag atom is located on Wyckoff site Wyckoff 2a (symmetry -4..), the other Ag atom is statistically disordered with minor amounts of Cu and is located on 2c (-4..), the (Zn, Fe, Cd) site on 2d (-4..), Sn on 2b (-4..), and S on general site 8g. This is the first determination of the crystal structure of pirquitasite, and our data indicate that the space group of pirquitasite is I-4, rather than I-42m as previously suggested. The structure was refined under consideration of twinning by inversion [twin ratio of the components 0.91 (6):0.09 (6)]. PMID:23424398

  1. Contrasting antibody responses to intrasubtype superinfection with CRF02_AG

    PubMed Central

    Courtney, Colleen R.; Mayr, Luzia; Nanfack, Aubin J.; Banin, Andrew N.; Tuen, Michael; Pan, Ruimin; Jiang, Xunqing; Kong, Xiang-Peng; Kirkpatrick, Allison R.; Bruno, Daniel; Martens, Craig A.; Sykora, Lydia; Porcella, Stephen F.; Redd, Andrew D.; Quinn, Thomas C.; Dürr, Ralf

    2017-01-01

    HIV superinfection describes the sequential infection of an individual with two or more unrelated HIV strains. Intersubtype superinfection has been shown to cause a broader and more potent heterologous neutralizing antibody response when compared to singly infected controls, yet the effects of intrasubtype superinfection remain controversial. Longitudinal samples were analyzed phylogenetically for pol and env regions using Next-Generation Sequencing and envelope cloning. The impact of CRF02_AG intrasubtype superinfection was assessed for heterologous neutralization and antibody binding responses. We compared two cases of CRF02_AG intrasubtype superinfection that revealed complete replacement of the initial virus by superinfecting CRF02_AG variants with signs of recombination. NYU6564, who became superinfected at an early time point, exhibited greater changes in antibody binding profiles and generated a more potent neutralizing antibody response post-superinfection compared to NYU6501. In contrast, superinfection occurred at a later time point in NYU6501 with strains harboring significantly longer V1V2 regions with no observable changes in neutralization patterns. Here we show that CRF02_AG intrasubtype superinfection can induce a cross-subtype neutralizing antibody response, and our data suggest timing and/or superinfecting viral envelope characteristics as contributing factors. These results highlight differential outcomes in intrasubtype superinfection and provide the first insight into cases with CRF02_AG, the fourth most prevalent HIV-1 strain worldwide. PMID:28288209

  2. Surfactant-mediated layer-by-layer homoepitaxial growth of Cu/In/Cu(100) and Ag/Sb/Ag(111) systems: A theoretical study

    NASA Astrophysics Data System (ADS)

    Jiang, Ming; Zhao, Yu-Jun; Cao, Pei-Lin

    1998-04-01

    Two typical surfactant-mediated homoepitaxial metal systems, Cu/In/Cu(100) and Ag/Sb/Ag(111), are studied by using first-principles calculations and a kinetic Monte Carlo method. Our results confirm the validity of the model that Zhang and Lagally suggested for Cu/In/Cu(100) system. A repulsion model is proposed for the Ag/Sb/Ag(111) system where surface-substitutional Sb atoms repel diffusing Ag adatoms. The layer-by-layer growth for Ag/Sb/Ag(111) system is achieved with a repulsion model in kinetic Monte Carlo simulation. By comparing the two different growth models, the importance of the additional barrier ΔE and effectiveness of two ways of reducing ΔE are confirmed in determining film morphology.

  3. 3D [Ag-Mg] polyanionic frameworks in the La{sub 4}Ag{sub 10}Mg{sub 3} and La{sub 4}Ag{sub 10.3}Mg{sub 12} new ternary compounds

    SciTech Connect

    Solokha, Pavlo; De Negri, Serena; Pavlyuk, Volodymyr; Saccone, Adriana

    2010-12-15

    The crystal structures of two new ternary phases, La{sub 4}Ag{sub 10}Mg{sub 3} and La{sub 4}Ag{sub 10.3}Mg{sub 12}, were refined from X-ray single crystal diffraction data. La{sub 4}Ag{sub 10}Mg{sub 3} crystallizes in the Ca{sub 4}Au{sub 10}In{sub 3} structure type, an ordered variant of the binary Zr{sub 7}Ni{sub 10} compound: orthorhombic, Cmce, oS68, a=14.173(5), b=10.266(3), c=10.354(3) A, Z=4, wR{sub 2}=0.0826, 676 F{sup 2} values, 50 variables. La{sub 4}Ag{sub 10.3}Mg{sub 12} represents a new structure type: orthorhombic, Cmmm, oS116-10.32, a=9.6130(3), b=24.9663(8), c=9.6333(2) A, Z=4, wR{sub 2}=0.0403, 1185 F{sup 2} values, 101 variables. The structural analysis of both compounds, highlighting a significant contraction of the Ag-Mg distances, suggests the existence of three-dimensional [Ag-Mg] networks hosting La atoms. LMTO calculations applied to La{sub 4}Ag{sub 10}Mg{sub 3} indicate that the strongest bonds occur for Ag-Ag and Ag-Mg interactions, and confirm the presence of a 3D{sub {infinity}}[Ag{sub 10}Mg{sub 3}]{sup {delta}}{sup -} polyanionic framework balanced by positively charged La atoms. -- Graphical abstract: An independent fragment of the 3D [Ag-Mg] framework in La{sub 4}Ag{sub 10}Mg{sub 3} together with an ELF section (1/2 0 0 basal plane). Display Omitted

  4. AgBr and g-C3N4 co-modified Ag2CO3 photocatalyst: A novel multi-heterostructured photocatalyst with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Tang, Hua; Chang, Shufang; Tang, Guogang; Liang, Wei

    2017-01-01

    Novel and highly efficient visible-light-driven g-C3N4/Ag2CO3/AgBr multi-heterostructured photocatalysts are achieved from the surface modification of g-C3N4/Ag2CO3 with AgBr nanoparticles by a facile and efficient ion-exchange method. The as-prepared g-C3N4/Ag2CO3/AgBr photocatalysts were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), scaning electron microscopy (SEM) and UV-vis diffuse reflectance spectrometry (DRS). Compared with g-C3N4/Ag2CO3, g-C3N4/Ag2CO3/AgBr hybrids exhibit enhanced the degradation activity for typical RhB, MB, and MO dyes under visible light excitation (>420 nm). Photoluminescence (PL), photo-induced current and electrochemical impedance spectroscopy (EIS) results demonstrate the g-C3N4/Ag2CO3/AgBr heterojunctions can effectively suppress the recombination of the generated electron-hole pairs. The higher photocatalytical performance of g-C3N4/Ag2CO3/AgBr can be ascribed to the efficient separation of photogenerated electron-hole pairs due to the formation of multi-heterojunctions, in which the Ag nanoparticles acted as the charge transmission bridge. In addition, the possible transferred and separated behavior of electron-hole pairs and photocatalytic mechanisms based on the experimental results are also proposed in detail.

  5. Mechanism and experimental study on the photocatalytic performance of Ag/AgCl @ chiral TiO2 nanofibers photocatalyst: the impact of wastewater components.

    PubMed

    Wang, Dawei; Li, Yi; Li Puma, Gianluca; Wang, Chao; Wang, Peifang; Zhang, Wenlong; Wang, Qing

    2015-03-21

    The effect of the water matrix components of a secondary effluent of a urban wastewater treatment plant on the photocatalytic activity of Ag/AgCl @ chiral TiO2 nanofibers and the undergoing reaction mechanisms were investigated. These effects were evaluated through the water components-induced changes on the net rate of hydroxyl radical (˙OH) generation and modeled using a relative rate technique. Dissolved organic matter DOM (k=-2.8×10(8) M(-1) s(-1)) scavenged reactive oxygen species, Cl(-) (k=-5.3×10(8) M(-1) s(-1)) accelerated the transformation from Ag to AgCl (which is not photocatalytically active under visible-light irradiation), while Ca(2+) at concentrations higher than 50 mM (k=-1.3×10(9) M(-1) s(-1)) induced aggregation of Ag/AgCl and thus all of them revealed inhibitory effects. In contrast, NO3(-) (k=6.9×10(8) M(-1) s(-1)) and CO3(2-) (k=3.7×10(8) M(-1) s(-1)) improved the photocatalytic activity of Ag/AgCl slightly by improving the rate of HO˙ generation. Other ubiquitous secondary effluent components including SO4(2-) (k=3.9×10(5) M(-1) s(-1)), NH3(+) (k=3.5×10(5) M(-1) s(-1)) and Na(+) (k=2.6×10(4) M(-1) s(-1)) had negligible effects. 90% of 17-α-ethynylestradiol (EE2) spiked in the secondary effluent was removed within 12 min, while the structure and size of Ag/AgCl @ chiral TiO2 nanofibers remained stable. This work may be helpful not only to uncover the photocatalytic mechanism of Ag/AgCl based photocatalyst but also to elucidate the transformation and transportation of Ag and AgCl in natural water.

  6. Synthesis and characterization of Ag-containing calcium phosphates with various Ca/P ratios.

    PubMed

    Gokcekaya, Ozkan; Ueda, Kyosuke; Narushima, Takayuki; Ergun, Celaletdin

    2015-08-01

    Ag-containing calcium phosphate (CaP) powders were synthesized by a precipitation method using aqueous solutions of calcium nitrate, silver nitrate, and ammonium phosphate. The powders were sintered at temperatures ranging from 1173 to 1473 K. The charged atomic ratios of (Ca+Ag)/P and Ag/(Ca+Ag) in solution were varied from 1.33 to 1.67 and from 0 to 0.30, respectively. The Ag content in the as-precipitated CaP powders increased with the charged Ag/(Ca+Ag) atomic ratio in solution and was lower than the charged Ag/(Ca+Ag) value. The as-precipitated CaP powders consisted of hydroxyapatite (HA) as the main phase. Ag nanoparticles were observed on the as-precipitated HA particles under all conditions of Ag addition. After the sintering, HA, β-TCP (tricalcium phosphate), α-TCP, and β-CPP (calcium pyrophosphate) were mainly detected as CaPs on the basis of the Ca/P atomic ratio of the as-precipitated powders. The addition of Ag stabilized the β-TCP phase, and the distribution of Ag in β-TCP was homogeneous. A metallic Ag phase coexisted with HA. The solubility of Ag in HA was estimated to be 0.0019-0.0061 (Ag/(Ca+Ag)) atomic ratio, which was lower than that in β-TCP (higher than 0.0536) and higher than that of β-CPP (below the detection limit of analyses).

  7. Silver sulfide nanoparticles (Ag2S-NPs) are taken up by plants and are phytotoxic.

    PubMed

    Wang, Peng; Menzies, Neal W; Lombi, Enzo; Sekine, Ryo; Blamey, F Pax C; Hernandez-Soriano, Maria C; Cheng, Miaomiao; Kappen, Peter; Peijnenburg, Willie J G M; Tang, Caixian; Kopittke, Peter M

    2015-01-01

    Silver nanoparticles (NPs) are used in more consumer products than any other nanomaterial and their release into the environment is unavoidable. Of primary concern is the wastewater stream in which most silver NPs are transformed to silver sulfide NPs (Ag2S-NPs) before being applied to agricultural soils within biosolids. While Ag2S-NPs are assumed to be biologically inert, nothing is known of their effects on terrestrial plants. The phytotoxicity of Ag and its accumulation was examined in short-term (24 h) and longer-term (2-week) solution culture experiments with cowpea (Vigna unguiculata L. Walp.) and wheat (Triticum aestivum L.) exposed to Ag2S-NPs (0-20 mg Ag L(-1)), metallic Ag-NPs (0-1.6 mg Ag L(-1)), or ionic Ag (AgNO3; 0-0.086 mg Ag L(-1)). Although not inducing any effects during 24-h exposure, Ag2S-NPs reduced growth by up to 52% over a 2-week period. This toxicity did not result from their dissolution and release of toxic Ag(+) in the rooting medium, with soluble Ag concentrations remaining below 0.001 mg Ag L(-1). Rather, Ag accumulated as Ag2S in the root and shoot tissues when plants were exposed to Ag2S-NPs, consistent with their direct uptake. Importantly, this differed from the form of Ag present in tissues of plants exposed to AgNO3. For the first time, our findings have shown that Ag2S-NPs exert toxic effects through their direct accumulation in terrestrial plant tissues. These findings need to be considered to ensure high yield of food crops, and to avoid increasing Ag in the food chain.

  8. Synergistic bactericidal activity of Ag-TiO₂ nanoparticles in both light and dark conditions.

    PubMed

    Li, Minghua; Noriega-Trevino, Maria Eugenia; Nino-Martinez, Nereyda; Marambio-Jones, Catalina; Wang, Jinwen; Damoiseaux, Robert; Ruiz, Facundo; Hoek, Eric M V

    2011-10-15

    High-throughput screening was employed to evaluate bactericidal activities of hybrid Ag-TiO₂ nanoparticles comprising variations in TiO₂ crystalline phase, Ag content, and synthesis method. Hybrid Ag-TiO₂ nanoparticles were prepared by either wet-impregnation or UV photo deposition onto both Degussa P25 and DuPont R902 TiO₂ nanoparticles. The presence of Ag was confirmed by ICP, TEM, and XRD analysis. The size of Ag nanoparticles formed on anatase/rutile P25 TiO₂ nanoparticles was smaller than those formed on pure rutile R902. When activated by UV light, all hybrid Ag-TiO₂ nanoparticles exhibited stronger bactericidal activity than UV alone, Ag/UV, or UV/TiO₂. For experiments conducted in the dark, bactericidal activity of Ag-TiO₂ nanoparticles was greater than either bare TiO₂ (inert) or pure Ag nanoparticles, suggesting that the hybrid materials produced a synergistic antibacterial effect unrelated to photoactivity. Moreover, less Ag(+) dissolved from Ag-TiO₂ nanoparticles than from Ag nanoparticles, indicating the antibacterial activities of Ag-TiO₂ was not only caused by releasing of toxic metal ions. It is clear that nanotechnology can produce more effective bactericides; however, the challenge remains to identify practical ways to take advantage of these exciting new material properties.

  9. Thermal durability of AZO/Ag(Al)/AZO transparent conductive films

    NASA Astrophysics Data System (ADS)

    Sugimoto, Yukiko; Igarashi, Kanae; Shirasaki, Shinya; Kikuchi, Akihiko

    2016-04-01

    Effects of Al doping on surface morphology, sheet resistance, optical transmission spectra, and thermal durability of a thin Ag layer and AZO/Ag/AZO dielectric/metal/dielectric (DMD) transparent conductive films (TCFs) were investigated. The 1.7 at. % Al doping suppressed the initial island growth of a thin Ag layer and the plasmon resonant absorption dip in the optical transmission spectra. The threshold thickness of percolation conductivity was reduced from 9-10 (pure Al layer) to 5-6 nm (1.7 at. % Al-doped Ag layer). Al doping in the Ag layer improved the thermal durability of AZO/Ag/AZO-DMD TCFs. The threshold temperature for Ag void formation increased from 400 °C (DMD with pure Ag layer) to 600 °C (DMD with a 10.5 at. % Al-doped Ag layer). The optimum annealing temperature increased from 300 °C (DMD with a pure Ag layer) to 500 °C (DMD with a 10.5 at. % Al-doped Ag layer). Maximum figures of merit (FOM) were 0.5 × 10-2 and 1.1 × 10-2 Ω-1 for the DMD with a pure Ag layer and that with a 10.5 at. % Al-doped Ag layer, respectively.

  10. Bactericidal Mechanisms of Ag2O/TNBs under both Dark and Light Conditions

    NASA Astrophysics Data System (ADS)

    Jin, Yinjia; Dai, Zhaoyi; Liu, Fei; Kim, Hyunjung; Tong, Meiping; Hou, Yanglong

    2013-04-01

    Ag2O deposited titanium dioxides nanobelts (Ag2O/TNBs) were fabricated and used to investigate the toxic effects on aquatic microorganisms. The disinfection activities of Ag2O/TNBs on two representative bacterial strains: Gram-negative E. coli and Gram-positive B. subtilis, were examined under both dark and light conditions. Ag2O/TNBs exhibited stronger bactericidal activities than TNBs under both dark and light conditions. For both cell types, disinfection effects of Ag2O/TNBs were greater under light conditions relative to those under dark conditions. The bactericidal mechanisms of Ag2O/TNBs under both dark and light conditions were explored. Under dark conditions, neither Ag+ ions released from Ag2O/TNBs nor TNBs contributed to the bactericidal activities of Ag2O/TNBs. Under light conditions, both the released Ag+ions and TNBs yet were found to have contributions to the bactericidal effects of Ag2O/TNBs. Active species (H2O2, ?O2-, ande-) generated by Ag2O/TNBs played important roles in the disinfection processes under both dark and light conditions. Without the presence of active species, the direct contact of Ag2O/TNBs with bacterial cells had no bactericidal effect.

  11. BRAZING OF POROUS ALUMINA TO MONOLITHIC ALUMINA WITH Ag-CuO and Ag-V2O5 ALLOYS

    SciTech Connect

    Lamb, M. C.; Camardello, Sam J.; Meier, Alan; Weil, K. Scott; Hardy, John S.

    2005-01-31

    The feasibility of joining porous alumina (Al{sub 2}O{sub 3}) bodies to monolithic Al{sub 2}O{sub 3} using Ag-CuO and Ag-V{sub 2}O{sub 5} alloys via reactive air brazing (RAB) was examined for a nanoporous filter application. Brazing for these systems is complicated by the conflicting requirements of satisfactory wetting to fill the braze gap, while minimizing the infiltration of the porous body. By varying the firing time, temperature, and initial powder size, porous bodies with a range of pore microstructures were fabricated. The wettability was evaluated via sessile drop testing on monolithic substrates and porous body infiltration. Porous Al{sub 2}O{sub 3}/monolithic Al{sub 2}O{sub 3} brazed samples were fabricated, and the microstructures were evaluated. Both systems exhibited satisfactory wetting for brazing, but two unique types of brazing behavior were observed. In the Ag-CuO system, the braze alloy infiltrated a short distance into the porous body. For these systems, the microstructures indicated satisfactory filling of the brazed gap and a sound joint regardless of the processing conditions. The Ag-V{sub 2}O{sub 5} alloys brazed joints exhibited a strong dependence on the amount of V{sub 2}O{sub 5} available. For Ag-V{sub 2}O{sub 5} alloys with large V{sub 2}O{sub 5} additions, the braze alloy aggressively infiltrated the porous body and significantly depleted the Ag from the braze region resulting in poor bonding and large gaps within the joint. With small additions of V{sub 2}O{sub 5}, the Ag infiltrated the porous body until the V{sub 2}O{sub 5} was exhausted and the Ag remaining at the braze interlayer bonded with the Al{sub 2}O{sub 3}. Based on these results, the Ag-CuO alloys have the best potential for brazing porous Al{sub 2}O{sub 3} to monolithic Al{sub 2}O{sub 3}.

  12. Exploration of Horizontal Intrinsic Spin Resonances in the AGS

    NASA Astrophysics Data System (ADS)

    Lin, Fanglei; Lee, S. Y.; Ahrens, Leif A.; Bai, Mei; Brown, Kevin; Courant, Ernest D.; Glenn, Joseph W.; Huang, Haixin; Luccio, Alfredo; Mackay, William W.; Ptitsyn, Vadim; Roser, Thomas; Tepikian, Steven; Tsoupas, Nicholaos; Wood, Jeff; Yip, Yin; Okamura, Masahiro; Takano, Junpei

    2006-04-01

    Siberian snakes have been employed to overcome spin resonances during polarized proton acceleration. Considering limited space in the AGS, strong partial snakes that rotate the spin by less than 180 degrees can be used to avoid the spin imperfection and intrinsic resonances in low energy accelerators. However, the tilt of spin away from the vertical direction may become sensitive to horizontal betatron motion which can also cause spin depolarization. These resonances, called horizontal intrinsic spin resonances, have been observed in simulations. Preliminary measurements with beam were also carried out in AGS 2005 polarized proton run. During the AGS 2006 run, we plan to explore the details about the horizontal intrinsics resonances further. This paper describes the experimental methods and the latest results.

  13. Photoluminescence enhancement of quantum dots on Ag nanoneedles

    NASA Astrophysics Data System (ADS)

    Ahmed, Syed Rahin; Cha, Hee Ryoung; Park, Jung Youn; Park, Enoch Y.; Lee, Dongyun; Lee, Jaebeom

    2012-08-01

    Noble metal nanostructure allows us to tune optical and electrical properties, which has high utility for real-world application. We studied surface plasmon-induced emission of semiconductor quantum dots (QDs) on engineered metallic nanostructures. Highly passive organic ZnS-capped CdSe QDs were spin-coated on poly-(methyl methacrylate)-covered Ag films, which brought QDs near the metallic surface. We obtained the enhanced electromagnetic field and reduced fluorescence lifetimes from CdSe/ZnS QDs due to the strong coupling of emitter wave function with the Ag plasmon resonance. Observed changes include a six-fold increase in the fluorescence intensity and striking reduction in fluorescence lifetimes of CdSe/ZnS QDs on rough Ag nanoneedle compared to the case of smooth surfaces. The advantages of using those nanocomposites are expected for high-efficiency light-emitting diodes, platform fabrication of biological and environmental monitoring, and high-contrast imaging.

  14. Oxygen Reduction at Very Low Overpotential on Nanoporous Ag Catalysts

    SciTech Connect

    Zhou, Yang; Lu, Qi; Zhuang, Zhongbin; Hutchings, Gregory S.; Kattel, Shyam; Yan, Yushan; Chen, Jingguang G.; Xiao, John Q.; Jiao, Feng

    2015-05-07

    Here we report a monolithic nanoporous Ag (np-Ag) material, synthesized using the dealloying method, as high-performance catalysts for ORR in alkaline media. As shown in Scheme 1, when there is insufficient potential input, the O2 molecules are more likely to rebound off from a planar electrode surface (i.e. bulk polycrystalline metal, films made from nanoparticles or nanowires) before they could be reduced. In contrast, they are more likely to be trapped inside the monolithic nanoporous structure, contacting with catalytic surface for multiple time, which greatly enhances the chance for them to be fully reduced. As a result, the np-Ag catalyst is able to achieve an equivalent or better ORR performance than the state-of the-art Pt/C catalyst at low overpotentials, which is most desired in electrochemical energy applications for maximizing efficiency.

  15. Photoluminescence enhancement of quantum dots on Ag nanoneedles.

    PubMed

    Ahmed, Syed Rahin; Cha, Hee Ryoung; Park, Jung Youn; Park, Enoch Y; Lee, Dongyun; Lee, Jaebeom

    2012-08-07

    Noble metal nanostructure allows us to tune optical and electrical properties, which has high utility for real-world application. We studied surface plasmon-induced emission of semiconductor quantum dots (QDs) on engineered metallic nanostructures. Highly passive organic ZnS-capped CdSe QDs were spin-coated on poly-(methyl methacrylate)-covered Ag films, which brought QDs near the metallic surface. We obtained the enhanced electromagnetic field and reduced fluorescence lifetimes from CdSe/ZnS QDs due to the strong coupling of emitter wave function with the Ag plasmon resonance. Observed changes include a six-fold increase in the fluorescence intensity and striking reduction in fluorescence lifetimes of CdSe/ZnS QDs on rough Ag nanoneedle compared to the case of smooth surfaces. The advantages of using those nanocomposites are expected for high-efficiency light-emitting diodes, platform fabrication of biological and environmental monitoring, and high-contrast imaging.

  16. Sonochemical synthesis of Ag nanoclusters: electrogenerated chemiluminescence determination of dopamine.

    PubMed

    Liu, Tao; Zhang, Lichun; Song, Hongjie; Wang, Zhonghui; Lv, Yi

    2013-01-01

    We report a facile one-pot sonochemical approach to preparing highly water-soluble Ag nanoclusters (NCs) using bovine serum albumin as a stabilizing agent and reducing agent in aqueous solution. Intensive electrogenerated chemiluminescence (ECL) was observed from the as-prepared Ag (NCs) and successfully applied for the ECL detection of dopamine with high sensitivity and a wide detection range. A possible ECL mechanism is proposed for the preparation of Ag NCs. With this method, the dopamine concentration was determined in the range of 8.3 × 10(-9) to 8.3 × 10(-7) mol/L without the obvious interference of uric acid, ascorbic acid and some other neurotransmitters, such as serotonin, epinephrine and norepinephrine, and the detection limit was 9.2 × 10(-10) mol/L at a signal/noise ratio of 3.

  17. Simulations on the AGS horizontal tune jump mechanism

    SciTech Connect

    Lin,F.; Huang, H.; Luccio, A. U.; Roser, T.

    2009-05-04

    A new horizontal tune jump mechanism has been proposed to overcome the horizontal intrinsic resonances and preserve the polarization of the proton beam in the Alternating Gradient Synchrotron (AGS) during the energy ramp. An adiabatic change of the AGS lattice is needed to avoid the emittance growth in both horizontal and vertical planes, as the emittance growth can deteriorate the polarization of the proton beam. Two critical questions are necessary to be answered: how fast can the lattice be changed and how much emittance growth can be tolerated from both optics and polarization points of view? Preliminary simulations, using a realistic AGS lattice and acceleration rate, have been carried out to give a first glance of this mechanism. Results with different optics are presented in this paper.

  18. Rainbow radiating single-crystal Ag nanowire nanoantenna.

    PubMed

    Kang, Taejoon; Choi, Wonjun; Yoon, Ilsun; Lee, Hyoban; Seo, Min-Kyo; Park, Q-Han; Kim, Bongsoo

    2012-05-09

    Optical antennas interface an object with optical radiation and boost the absorption and emission of light by the objects through the antenna modes. It has been much desired to enhance both excitation and emission processes of the quantum emitters as well as to interface multiwavelength channels for many nano-optical applications. Here we report the experimental implementation of an optical antenna operating in the full visible range via surface plasmon currents induced in a defect-free single-crystalline Ag nanowire (NW). With its atomically flat surface, the long Ag NW reliably establishes multiple plasmonic resonances and produces a unique rainbow antenna radiation in the Fresnel region. Detailed antenna radiation properties, such as radiating near-field patterns and polarization states, were experimentally examined and precisely analyzed by numerical simulations and antenna theory. The multiresonant Ag NW nanoantenna will find superb applications in nano-optical spectroscopy, high-resolution nanoimaging, photovoltaics, and nonlinear signal conversion.

  19. Object-oriented programming techniques for the AGS Booster

    SciTech Connect

    Skelly, J.F.

    1991-12-31

    The applications software developed for the control system of the AGS Booster Project was written in the object-oriented language, C++. A the start of the Booster Project, the programming staff of the AGS Controls Section comprised some dozen programmer/analysts, all highly fluent in C but novices in C++. During the coarse of this project, nearly the entire staff converted to using C++ for a large fraction of their assignments. Over 100 C++ software modules are now available for Booster and general AGS use, of which a large fraction are broadly applicable tools. The transition from C to C++ from a managerial perspective is discussed and an overview is provided of the ways in which object classes have been applied in Booster software development.

  20. Object-oriented programming techniques for the AGS Booster

    SciTech Connect

    Skelly, J.F.

    1991-01-01

    The applications software developed for the control system of the AGS Booster Project was written in the object-oriented language, C++. A the start of the Booster Project, the programming staff of the AGS Controls Section comprised some dozen programmer/analysts, all highly fluent in C but novices in C++. During the coarse of this project, nearly the entire staff converted to using C++ for a large fraction of their assignments. Over 100 C++ software modules are now available for Booster and general AGS use, of which a large fraction are broadly applicable tools. The transition from C to C++ from a managerial perspective is discussed and an overview is provided of the ways in which object classes have been applied in Booster software development.

  1. Oxygen Reduction at Very Low Overpotential on Nanoporous Ag Catalysts

    DOE PAGES

    Zhou, Yang; Lu, Qi; Zhuang, Zhongbin; ...

    2015-05-07

    Here we report a monolithic nanoporous Ag (np-Ag) material, synthesized using the dealloying method, as high-performance catalysts for ORR in alkaline media. As shown in Scheme 1, when there is insufficient potential input, the O2 molecules are more likely to rebound off from a planar electrode surface (i.e. bulk polycrystalline metal, films made from nanoparticles or nanowires) before they could be reduced. In contrast, they are more likely to be trapped inside the monolithic nanoporous structure, contacting with catalytic surface for multiple time, which greatly enhances the chance for them to be fully reduced. As a result, the np-Ag catalystmore » is able to achieve an equivalent or better ORR performance than the state-of the-art Pt/C catalyst at low overpotentials, which is most desired in electrochemical energy applications for maximizing efficiency.« less

  2. The Catalytic Behaviour of NanoAg@montmorillonite Composite Materials

    NASA Astrophysics Data System (ADS)

    Karlíková, Martina; Kvítek, Libor; Prucek, Robert; Panáček, Aleš; Filip, Jan; Pechoušek, Jiří; Adegboyega, Nathaniel F.

    The preparation of nanoAg@montmorillonite composite materials and their catalytic activity is reported in this article. The nanoAg@montmorillonite composite materials were prepared by the adsorption of silver NPs, with an average size about 30 nm, from their aqueous dispersion onto two types of montmorillonite with different chemical composition. Silver NPs were prepared via modified Tollens process, which involves the reduction of [Ag(NH3)2]+ complex cation by maltose. The amount of silver NPs anchored onto the MMT surfaces was determined by UV-VIS spectroscopy; the decrease in absorbance of the dispersion after the adsorption was monitored. Prepared nanocomposite materials were subsequently characterized by means of transmission electron microscopy (TEM) and powder X-ray diffraction (XRD). The reduction of 4-nitrophenol by sodium borohydride was chosen to examine the catalytic properties of the synthesized silver nanocomposite materials.

  3. Optical nano-structuring in light-sensitive AgCl-Ag waveguide thin films: wavelength effect.

    PubMed

    Talebi, Razieh; Nahal, Arashmid; Bashouti, Muhammad Y; Christiansen, Silke H

    2014-12-15

    Irradiation of photosensitive thin films results in the nanostructures formation in the interaction area. Here, we investigate how the formation of nanostructures in photosensitive waveguide AgCl thin films, doped by Ag nanoparticles, can be customized by tuning the wavelength of the incident beam. We found, silver nanoparticles are pushed towards the interference pattern minima created by the interference of the incident beam with the excited TEn-modes of the AgCl-Ag waveguide. The interference pattern determines the grating constant of the resulting spontaneous periodic nanostructures. Also, our studies indicate a strong dependence of the shape and size distribution of the formed Ag nano-coalescences on the wavelength of the incident beam. It also influences on the surface coverage of the sample by the formed silver nanoparticles and on period of the self-organized nano-gratings. It is found, exposure time and intensity of the incident light are the most determinant parameters for the quality and finesse of our nanostructures. More intense incident light with shorter exposure time generates more regular nanostructures with smaller nano-coalescences and, produces gratings with higher diffraction efficiency. At constant intensity longer exposure time produces more complete nanostructures because of optical positive feedback. We observed exposure with longer wavelength produces finer gratings.

  4. Effect of Ag nanowire addition into nanoparticle paste on the conductivity of Ag patterns printed by gravure offset method.

    PubMed

    Ok, Ki-Hun; Lee, Chan-Jae; Kwak, Min-Gi; Choi, Duck-Kyun; Kim, Kwang-Seok; Jung, Seung-Boo; Kim, Jong-Woong

    2014-11-01

    This paper focuses on the effect of Ag nanowire addition into a commercial Ag nanopaste and the printability evaluation of the mixed paste by the gravure offset printing methodology. Ag nanowires were synthesized by a modified polyol method, and a small amount of them was added into a commercial metallic paste based on Ag nanoparticles of 50 nm in diameter. Two annealing temperatures were selected for comparison, and electrical conductivity was measured by four point probe method. As a result, the hybrid mixture could be printed by the gravure offset method for patterning fine lines up to 15 μm width with sharp edges and scarce spreading. The addition of the Ag nanowires was significantly efficient for enhancement of electrical conductivity of the printed lines annealed at a low temperature (150 degrees C), while the effect was somewhat diluted in case of high temperature annealing (200 degrees C). The experimental results were discussed with the conduction mechanism in the printed conductive circuits with a schematic description of the electron flows in the printed lines.

  5. Thermal Behavior of Ag Micro/Nano Wires Formed by Low-Temperature Sintering of Ag Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Zhong, Yinghui; Li, Dongxue; Wang, Pan; Cai, Yuwei; Duan, Zhiyong

    2015-12-01

    Ag nanoparticles of 30 nm size were deposited onto a Si substrate to form Ag microwires. The nanoparticles were transformed into continuous Ag wires with low-temperature heat treatment at temperatures not higher than 200°C. The morphology, electrical properties, and interface of the sintered Ag nanoparticle wires are described. It is shown that the neck between the nanoparticles begins to form at 150°C, and obvious metallization was found at 170°C. The changes of the crystal structure of the Ag wires at different sintering temperatures were analyzed by x-ray diffractometry. The grain boundary resistance decreased as the crystal grain size increased above 130 nm. The corresponding resistivity of the microstructure is close to that of the bulk. Through the comparison between the Mayadas-Shatzkes's model and experimental data, the range of the grain boundary reflection coefficient C at different temperatures is obtained. This research lays the foundation for the study of nanoimprint lithography with a pseudoplastic metal nanoparticle fluid.

  6. Inhibition of carbon monoxide on methanol oxidation over γ-alumina supported Ag, Pd and Ag Pd catalysts

    NASA Astrophysics Data System (ADS)

    Wang, Jin-an; Aguilar-Ríos, G.; Wang, Ren

    1999-05-01

    The activities of CH 3OH and CO oxidative reactions over the γ-alumina supported Ag, Pd and Ag-Pd catalysts were measured with the MR-GC method. The CO-temperature-programmed desorption (CO-TPD) and in situ IR techniques were used to characterize the CO adsorption behavior on the surface of the catalysts. The oxidative activity for CO to CO 2 increased in the following sequence: 5% Ag/γ-Al 2O 3<0.1% Pd/γ-Al 2O 3<5% Ag-0.1% Pd/γ-Al 2O 3. An inhibition action of CO to CH 3OH oxidation, that is dependent of the active components of the catalysts, was observed when CO was present in the methanol-fed stream. The results of IR and CO-TPD showed that the poor oxidative activity of CO over Ag catalyst was due to its low adsorption capacity on this catalyst. The very strong adsorption ability of CO on the Pd catalyst was responsible for the strong inhibition of CO to CH 3OH oxidation activity. The plausible mechanisms of CO strong inhibition behavior on methanol oxidation over the different catalysts are discussed in detail from the viewpoints of both electronic and geometric effects.

  7. Structural evolution of NiAg heterogeneous alloys upon annealing

    NASA Astrophysics Data System (ADS)

    Proux, O.; Mimault, J.; Revenant-Brizard, C.; Regnard, J. R.; Mevel, B.

    1999-01-01

    NiAg heterogeneous alloys were studied by x-ray diffraction and x-ray absorption spectroscopy at the Ni K-edge using a total electron yield detection. In the as-deposited 0953-8984/11/1/013/img8 alloys of 0.10 and 0.15 Ni atomic fraction, most of the Ni atoms are in substitutional sites in the Ag matrix. At higher Ni concentration, the Ni atoms outside the Ag-rich phase become numerous enough to group together in small clusters. An important disorder in the neighbourhood of Ni atoms is demonstrated. At low annealing temperature (up to 0953-8984/11/1/013/img9C), in 0953-8984/11/1/013/img10 and 0953-8984/11/1/013/img11, some Ni atoms are still present in substitutional sites in the Ag matrix and the small Ni particles are under strain. A very short-range order exists in this state. After a 0953-8984/11/1/013/img9C annealing, the Ni particles grow, and the Ag-rich phase remains in a steady structural state. After a higher annealing (0953-8984/11/1/013/img13C), the local Ni atomic environment becomes well ordered and typical of the pure Ni FCC phase. The Ag-rich crystallites are impoverished in Ni atoms and grow with elimination of defects. Ni grains are generally smaller than 1 nm for as-deposited alloys and reach several nanometres after a 0953-8984/11/1/013/img13C annealing for 10 min.

  8. Fabrication and characterization of Ag-clad Bi-2223 tapes.

    SciTech Connect

    Balachandran, U.

    1999-04-20

    The powder-in-tube (PIT) technique was used to fabricate multifilament (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub y} (Bi-2223) superconducting tapes. Transport current properties of these tapes were enhanced by increasing the packing density of the precursor powder and improving the mechanical deformation condition. A critical current (I{sub c}) of > 35 A in long lengths (> 200 m) tapes has been achieved. In measuring the dependence of critical current density on magnetic field and temperature for the optimally processed tapes, we found a J{sub c} of > 10{sup 4} A/cm{sup 2} at 20 K in magnetic fields up to 3 T and parallel to the c-axis, which is of interest for use in refrigerator-cooled magnets. I{sub c} declined exponentially when an external field was applied perpendicular to the tape surface at 77 K. Mechanical stability was tested for tapes sheathed with pure Ag and Ag-Mg alloy. Tapes made with pure Ag sheathing can withstand a tensile stress of {approx}20 MPa with no detrimental effect on I{sub c} values. Mechanical performance was improved by using Ag-Mg alloy sheathing: values of transport critical current began to decrease at the tensile stress of {approx} 100 MPa. Transport current measurements on tapes wound on a mandrel of 3.81 cm (1.5 in.) diameter at 30{degree} to the longitudinal axis, showed a reduction of {approx} 10% in I{sub c} values for pure Ag-sheathed tapes and 5% reduction in I{sub c} values for Ag-Mg sheathed tapes, compared with the I{sub c} values of as-coiled tapes.

  9. Spin pumping effects for Co/Ag films

    NASA Astrophysics Data System (ADS)

    Demirtas, S.; Parlak, M.

    2012-09-01

    Dynamic exchange coupling between two ferromagnetic cobalt (Co) thin films separated by a nonmagnetic silver (Ag) layer was investigated by means of ferromagnetic resonance (FMR) technique. Nonmagnetic Ag layer was sufficiently thick to suppress any magnetostatic coupling between the thin films of Co. Dynamical coupling is established via angular momentum exchange due to simultaneous precession of ferromagnets and as a result FMR linewidth narrows. We also confirmed the spin pumping theory's prediction on the thickness dependence of FMR linewidth such that the linewidth for thin film Co decreases exponentially as its thickness increases.

  10. Thermodynamic Properties of Liquid Ag-Au-Sn Alloys

    NASA Astrophysics Data System (ADS)

    Hindler, M.; Knott, S.; Mikula, A.

    2010-10-01

    The thermodynamic properties of liquid Ag-Au-Sn alloys were studied with an electromotive force (EMF) method using the eutectic mixture of KCl/LiCl as a liquid electrolyte. Activities of Sn in the liquid alloys were measured at three cross-sections with constant molar ratios of Ag:Au = 2:1, 1:1, and 1:2 with tin in the concentration range between 20 at.% and 90 at.% from the liquidus of the samples up to 1030 K. The integral Gibbs energies at 973 K and the integral enthalpies were calculated by Gibbs-Duhem integration.

  11. Interfacial potential approach for Ag/Si(111) interface

    NASA Astrophysics Data System (ADS)

    Liu, Yong-Qiang; Song, Hong-Quan; Shen, Jiang

    2016-04-01

    By applying the Chen-Möbius inversion method, a concise formula is introduced to get the pair potentials of the Ag/Si(111) interface by inversion of the ab initio adhesive energies. The check shows that the inversed potentials are self-consistent. Then, by using the interfacial potentials obtained, we analyze the changes of the energy, stress and atomic structures, giving a detailed presentation of the fracture process about the Ag/Si(111) interface. Meanwhile, we know that there are three kinds of fracture mode. In this work, the fracture process is performed in mode II (shear).

  12. Dielectric function dependence on temperature for Au and Ag

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Jen; Lee, Meng-Chang; Wang, Chih-Ming

    2014-08-01

    The dielectric functions of Au and Ag are measured using a spectral ellipsometer. The temperature dependence parameters ωp, τ, and ɛ∞, in the Drude-Sommerfeld model have been studied. Furthermore, we provide an empirical function to describe the temperature dependence of the dielectric function for Au and Ag. The empirical function shows a good agreement with previous results. Through the empirical function, one can obtain the dielectric constant at arbitrary temperature and wavelength. This database is useful for the applications that use surface plasmon (SP) resonance at high temperatures, such as the plasmonic thermal emitter, SP-assisted thermal cancer treatment and so on.

  13. Fighting the Residual Polarization Loss in the AGS

    SciTech Connect

    Huang, H.; Ahrens, L. A.; Bai, M.; Brown, K.; Gardner, C.; Glenn, J. W.; Lin, F.; Luccio, A. U.; MacKay, W. W.; Roser, T.; Tepikian, S.; Tsoupas, N.; Yip, K.; Zelenski, A.; Zeno, K.

    2009-08-04

    A dual partial snake scheme has been used for AGS polarized proton operation for several years. It has provided polarized proton beams with 1.5x10{sup 11} protons per bunch and 65% polarization for the RHIC spin program. There is still residual polarization loss due to both snake resonances and horizontal resonances as shown in the data. Several schemes were tested or proposed in the AGS to mitigate the loss, such as putting horizontal tune into the spin tune gap, injection into a accelerating bucket, and tune jump across the horizontal resonances. This paper presents the experiment and simulation results and analyses.

  14. Physics of the AGS-to-RHIC transfer line commissioning

    SciTech Connect

    Satogata, T.; Ahrens, L.; Brennan, M.; Brown, K.; Clifford, T.; Connolly, R.; Dell, F.; Deng, D.P.; Hoff, L.; Kewisch, J.; MacKay, W.W.; Maldonado, G.; Martin, B.; Olsen, R.; Peggs, S.; Pilat, F.; Robinson, T.; Sathe, S.; Shea, D.; Shea, T.J.; Tanaka, M.; Thompson, P.; Tepikian, S.; Trahern, C.G.; Trbojevic, D.; Tsoupas, N.; Wei, J.; Witkover, R.; Zhou, P.

    1996-07-01

    This paper presents beam physics results from the fall 1995 AGS-to- RHIC (ATR) transfer line commissioning run with fully ionized gold nuclei. We first describe beam position monitors and transverse video profile monitors, instrumentation relevant to measurements performed during this commissioning. Measured and corrected beam trajectories demonstrate agreement with design optics to a few percent, including optical transfer functions and beamline dispersion. Digitized 2- dimensional video profile monitors were used to measure beam emittance, and beamline optics and AGS gold ion beam parameters are shown to be comparable to RHIC design requirements.

  15. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, I.E.; Yost, F.G.; Smith, J.F.; Miller, C.M.; Terpstra, R.L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217 C and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid ``mushy`` zone) relative to the eutectic melting temperature (e.g. up to 15 C above the eutectic melting temperature). 5 figs.

  16. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, Iver E.; Yost, Frederick G.; Smith, John F.; Miller, Chad M.; Terpstra, Robert L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217.degree. C. and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid "mushy" zone) relative to the eutectic melting temperature (e.g. up to 15.degree. C. above the eutectic melting temperature).

  17. Speedy fabrication of diameter-controlled Ag nanowires using glycerolunder microwave irradiation conditions

    EPA Science Inventory

    Diameter-controlled Ag nanowires were rapidly fabricated (1 min) using inexpensive, abundant, and environmentally-friendly glycerol as both reductant and solvent under non-stirred microwave irradiation conditions; no Ag particles were formed using conventional heating methods. Th...

  18. In vitro corrosion of dental Ag-based alloys in polyvinylpyrrolidone iodine solution.

    PubMed

    Ochi, Morio; Endo, Kazuhiko; Ohno, Hiroki; Takasusuki, Norio; Matsubara, Hideki; Maida, Takeo

    2005-09-01

    The corrosion and tarnish behaviors of three Ag-based alloys (Ag-Pd-Cu-Au alloy, Ag-In alloy, and Ag-Sn-Zn alloy) in polyvinylpyrrolidone iodine (povidone-iodine) solution were examined. The degree of tarnish was evaluated by visible-ray spectrocolorimetry. Corrosion potential measurements and analyses of corrosion products by X-ray diffractometry were carried out to elucidate the corrosion mechanism. The corrosion rate of the three Ag-based alloys in povidone-iodine solution at its practical concentration used as a gargle solution was so fast that the alloys tarnished within 10 seconds of immersion with the formation of AgI. Thermodynamic consideration and the results of surface analysis by X-ray diffractometry revealed that the main anodic and cathodic reactions were Ag + I(-)-->AgI + e- and I2 + 2e(-)-->2I- respectively.

  19. Silver nanoparticle-initiated chemiluminescence reaction of luminol-AgNO3 and its analytical application.

    PubMed

    Liu, Cui; Li, Baoxin

    2011-07-01

    Ag(+) has been regarded as an inert chemiluminescent oxidant. In this work, it was found that in the presence of silver nanoparticles (AgNPs), AgNO(3) could react with luminol to produce strong chemiluminescence (CL). The AgNPs with smaller size could initiate stronger CL emission. To investigate the CL mechanism of the AgNPs-luminol-AgNO(3) system, the UV-visible spectra and the CL spectrum of the CL system were obtained. The CL reaction mechanism involving catalysis was proposed. Compared with the reported nanoparticles-luminol-H(2)O(2) CL system, the AgNPs-luminol-AgNO(3) CL system has the advantages of low background and good stability. Moreover, the new CL system was used in immunoassay for IgG.

  20. Synthesis of Ag modified vanadium oxide nanotubes and their antibacterial properties

    SciTech Connect

    Li Jing; Zheng Lifang; Zhang Kaifeng; Feng Xiaoqiang; Su Zhongxing Ma Jiantai

    2008-10-02

    Vanadium oxide nanotubes (VO{sub x}-NTs) modified by highly dispersed Ag nanoparticles have been synthesized via a facile silver-mirror reaction. The crucial factors that affected the preparation of the Ag modified vanadium oxide nanotubes (Ag/VO{sub x}-NTs) have been also studied. The dispersion and structure of Ag nanoparticles in the obtained materials were characterized by transmission electron microscopy (TEM), electron diffraction (ED) and X-ray diffraction (XRD). The results showed the distribution and size of the formed Ag particles were greatly influenced by the concentration of AgNO{sub 3} solution. Typically, Ag nanoparticles were well dispersed on the VO{sub x}-NTs with the size range from 3 to 10 nm. The corresponding antibacterial tests demonstrated the as-synthesized Ag/VO{sub x}-NTs exhibited strong antibacterial activity against Escherichia coli (E. coli)

  1. Radiolytic formation of Ag clusters in aqueous polyvinyl alcohol solution and hydrogel matrix

    NASA Astrophysics Data System (ADS)

    Kumar, Manmohan; Varshney, Lalit; Francis, Sanju

    2005-05-01

    Ag+ ions, in aqueous polyvinyl alcohol (PVA) solution and in PVA hydrogel matrix have been gamma radiolytically reduced to produce Ag clusters. UV-visible absorption spectral characteristics of Ag clusters obtained under different gamma dose, Ag+ concentration, PVA concentration and crosslinking density of the gel used have been studied. The effect of Ag+ ions on the radiation crosslinking of the PVA chains, have also been investigated by viscosity measurements. The radiation-induced Ag+ ion reduction was followed by crosslinking of the PVA chains. PVA was found to be a very efficient stabilizer to prevent aggregation of Ag clusters. The clusters produced in the hydrogel matrix were expected to be smaller than the pore size (∼2-20 nm) of the gels used in the study. These Ag clusters were unable to reduce methyl viologen (MV2+) chloride and were stable in air.

  2. Tensile properties and thermal shock reliability of Sn-Ag-Cu solder joint with indium addition.

    PubMed

    Yu, A-Mi; Jang, Jae-Won; Lee, Jong-Hyun; Kim, Jun-Ki; Kim, Mok-Soon

    2012-04-01

    The thermal shock reliability and tensile properties of a newly developed quaternary Sn-1.2Ag-0.5Cu-0.4In (wt%) solder alloy were investigated and compared to those of ternary Sn-Ag-Cu based Pb-free solder alloys. It was revealed that the Sn-1.2Ag-0.5Cu-0.4In solder alloy shows better thermal shock reliability compared to the Sn-1.0Ag-0.5Cu and Sn-3.0Ag-0.5Cu solder alloys. The quaternary alloy has higher strength than Sn-1.0Ag-0.5Cu alloy, and higher elongation than Sn-3.0Ag-0.5Cu alloy. It was also revealed that the addition of indium promotes the formation of Ag3(Sn, In) phase in the solder joint during reflow process.

  3. Transparent Conductive AGZO/Ag/AGZO Multilayers on PET Substrate by Roll-to-Roll Sputtering.

    PubMed

    Kim, Taehoon; Park, Kwangwon; Kim, Jongsu

    2016-02-01

    Indium-free Al and Ga-codoped ZnO (AGZO) multilayer films with nanoscale Ag interlayer were deposited by dual target roll-to-roll RF for AGZO and DC sputtering systems for Ag at room temperature for a large scale. The thicknesses of AGZO/Ag/AGZO multilayer were optimized by changing the roll speed: 0.15/1.1/0.15 m/min for AGZO/Ag/AGZO multilayers, respectively. The optimum thicknesses of AGZO/Ag/AGZO multilayer are 9.21, 8.32 and 8.04 nm, respectively. Optimized AGZO/Ag/AGZO multilayer films showed an excellent transparency (84% at 550 nm) and a low sheet resistance (9.2 omega/sq.) on PET substrates for opto-electronic applications. The effects of nanoscale Ag interlayer on optical and electrical properties of AGZO/Ag/AGZO multilayer films were discussed.

  4. Antibacterial carboxymethyl cellulose/Ag nanocomposite hydrogels cross-linked with layered double hydroxides.

    PubMed

    Yadollahi, Mehdi; Namazi, Hassan; Aghazadeh, Mohammad

    2015-08-01

    This paper deals with the preparation of antibacterial nanocomposite hydrogels through the combination of carboxy methyl cellulose (CMC), layered double hydroxides (LDH), and silver nanoparticles (AgNPs). CMC-LDH hydrogels were prepared by intercalating CMC into different LDHs. Then, Ag/CMC-LDH nanocomposite hydrogels were prepared through in situ formation of AgNPs within the CMC-LDHs. XRD analysis confirmed the intercalating CMC into the LDH sheets and formation of intercalated structures, as well as formation of AgNPs within the CMC-LDHs. SEM and TEM micrographs indicated well distribution of AgNPs within the Ag/CMC-LDHs. The prepared hydrogels showed a pH sensitive swelling behavior. The Ag/CMC-LDH nanocomposite hydrogels have rather higher swelling in different aqueous solutions in comparison with CMC-LDHs. The antibacterial activity of CMC-LDHs increased considerably after formation of AgNPs and was stable for more than one month.

  5. Polyoxometalate-directed assembly of water-soluble AgCl nanocubes.

    PubMed

    Neyman, Alevtina; Wang, Yifeng; Sharet, Shelly; Varsano, Neta; Botar, Bogdan; Kögerler, Paul; Meshi, Louisa; Weinstock, Ira A

    2012-02-21

    "Out-of-pocket" association of Ag(+) to the tetradentate defect site of mono-vacant Keggin and Wells-Dawson polyoxometalate (POM) cluster-anions is used to direct the formation of water-soluble AgCl nanocubes.

  6. Ag@Ni core-shell nanowire network for robust transparent electrodes against oxidation and sulfurization.

    PubMed

    Eom, Hyeonjin; Lee, Jaemin; Pichitpajongkit, Aekachan; Amjadi, Morteza; Jeong, Jun-Ho; Lee, Eungsug; Lee, Jung-Yong; Park, Inkyu

    2014-10-29

    Silver nanowire (Ag NW) based transparent electrodes are inherently unstable to moist and chemically reactive environment. A remarkable stability improvement of the Ag NW network film against oxidizing and sulfurizing environment by local electrodeposition of Ni along Ag NWs is reported. The optical transmittance and electrical resistance of the Ni deposited Ag NW network film can be easily controlled by adjusting the morphology and thickness of the Ni shell layer. The electrical conductivity of the Ag NW network film is increased by the Ni coating via welding between Ag NWs as well as additional conductive area for the electron transport by electrodeposited Ni layer. Moreover, the chemical resistance of Ag NWs against oxidation and sulfurization can be dramatically enhanced by the Ni shell layer electrodeposited along the Ag NWs, which provides the physical barrier against chemical reaction and diffusion as well as the cathodic protection from galvanic corrosion.

  7. [Epidemiological characteristics of HBeAg reversion in chronic hepatitis B patients with HBeAg seroconversion in Jiangsu province, 2012-2014].

    PubMed

    Zhu, L G; Tian, H; Jiang, J; Song, C; Zou, Y; Xu, J F; Liu, H J; Peng, H; Hu, Z B; Zhu, F C; Shen, H B; Zhai, X J

    2017-01-10

    Objective: To understand characteristics and influencing factors of reversion of HBeAg in chronic hepatitis B patients with HBeAg sero-conversion, and provide epidemiological evidence for the regular management of chronic hepatitis B patients. Methods: From 2012 to 2014, a cohort study was conducted among the chronic hepatitis B patients with sero-conversion of HBeAg in Jiangsu province. Association between participants' demographics, ALT, HBV DNA and incidence of HBeAg reversion was analyzed by Cox regression model. HBV DNA changing trend between patients with HBeAg reversion and patients with persistent HBeAg sero-conversion was compared by repeated measure data variance analysis. Results: In 2012, there were 5 068 HBeAg seroconverted chronic hepatitis B patients aged (51.9 ± 12.8) years enrolled. By 2014, HBeAg had reversed in 121 cases with the rate of 1.3/100 person-years. The probability of HBeAg reversion decreased with the age of the patients. By Cox regression analysis, HBV DNA level was an important influencing factor for the progress of HBeAg reversion. The patients with HBV DNA≥200 000 IU/ml had a higher HBeAg reversion rate DNA (3.8/100 person-years) than those with HBV DNA <2 000 IU/ml (1.1 person-years) (HR=3.44, 95% CI: 1.91-6.20, P=0.000). Compared with the persistent HBeAg sero-conversion group, HBV DNA and ALT showed a more dramatic increase in the HBeAg reversion group (P=0.000). Conclusions: There was a certain HBeAg reversion rate in chronic hepatitis B patients with HBeAg sero-conversion. Younger chronic CHB patients with HBeAg sero-conversion and those with higher HBV DNA lever had higher HBeAg reversion rate. Following up and management of chronic CHB patients with HBeAg sero-conversion is important and helpful for the control of hepatitis B.

  8. Preparation of Ag deposited TiO2 (Ag/TiO2) composites and investigation on visible-light photocatalytic degradation activity in magnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Ma, C. H.; Wang, J.; Li, S. G.; Li, Y.

    2014-12-01

    In this study, Ag deposited TiO2 (Ag/TiO2) composites were prepared by three different methods (Ultraviolet Irradiation Deposition (UID), Vitamin C Reduction (VCR) and Sodium Borohydride Reduction (SBR)) for the visible-light photocatalytic degradation of organic dyes in magnetic field. And then the prepared Ag deposited TiO2 (Ag/TiO2) composites were characterized physically by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The visible-light photocatalytic activities of these three kinds of Ag deposited TiO2 (Ag/TiO2) composites were examined and compared through the degradation of several organic dyes under visible-light irradiation in magnetic field. In addition, some influence factors such as visible-light irradiation time, organic dye concentration, revolution speed, magnetic field intensity and organic dye kind on the visible-light photocatalytic activity of Ag deposited TiO2 (Ag/TiO2) composite were reviewed. The research results showed that the presence of magnetic field significantly enhanced the visible-light photocatalytic activity of Ag deposited TiO2 (Ag/TiO2) composites and then contributed to the degradation of organic dyes.

  9. A bio-inspired strategy for the interfacial assembly of graphene oxide with in situ generated Ag/AgCl: designing sustainable hybrid photocatalysts.

    PubMed

    Reddy, Thuniki Naveen; Begum, Gousia; Rana, Rohit Kumar

    2017-03-15

    Herein, we report a polyamine-mediated assembly to integrate graphene oxide (GO) sheets with Ag/AgCl to fabricate a hybrid nanocomposite (GO-Ag/AgCl) at nearly neutral pH and ambient temperature. Inspired by the role of polyamines in the excellent integration of components to generate hierarchical nanostructures in biominerals such as diatoms, we showed that our strategy enabled the fabrication of GO-semiconductor composites with a well-integrated structure. The polyamines not only facilitated the in situ generation of Ag/AgCl, but also simultaneously allowed their interaction with GO suitable for visible light active photocatalysis, as revealed by the detailed characterization of the synthesized materials. Consequently, the GO-Ag/AgCl exhibited nearly 5 times higher photocatalytic activity and better photostability than Ag/AgCl under visible light irradiation. The nanocomposite reached its highest activity at the graphene content of 4.16 wt%. Thus, the assembly process represented an effective way to design hybrid composites. Moreover, as a sustainable photocatalyst, it facilitates effective separation of the photogenerated charge carriers at the interface, thereby improving activity and stability.

  10. Accelerator mass spectrometry analysis of ultra-low-level (129)I in carrier-free AgI-AgCl sputter targets.

    PubMed

    Liu, Qi; Hou, Xiaolin; Zhou, Weijian; Fu, Yunchong

    2015-05-01

    Separation of carrier-free iodine from low-level iodine samples and accurate measurement of ultra-low-level (129)I in microgram iodine target are essential but a bottleneck in geology and environment research using naturally produced (129)I. This article presents a detection technique of accelerator mass spectrometry (AMS) for accurate determination of ultra-low-level (129)I in carrier-free AgI-AgCl sputter targets. Copper instead of aluminum was selected as the suitable sample holder material to avoid the reaction of AgI-AgCl powder with aluminum. Niobium powder was selected as thermally and electrically conductive matrix to be mixed with AgI-AgCl powder, in order to obtain and maintain a stable and high iodine ion current intensity, as well as less memory effect and low background level of (129)I. The most optimal ratio of the Nb matrix to the AgI-AgCl powder was found to be 5:1 by mass. The typical current of (127)I(5+) using AgI-AgCl targets with iodine content from 5 to 80 μg was measured to be 5 to 100 nA. Four-year AMS measurements of the (129)I/(127)I ratios in standards of low iodine content and the machine blanks showed a good repeatability and stability.

  11. Synthesis of Ag2O and Ag co-modified flower-like SnS2 composites with enhanced photocatalytic activity under solar light irradiation

    NASA Astrophysics Data System (ADS)

    Deng, Lu; Zhu, Zhenfeng; Liu, Liu; Liu, Hui

    2017-01-01

    Three-dimensional Ag2O and Ag co-modified flower-like SnS2 composites have been synthesized through a facile hydrothermal and photoreduction process. The physical and chemical properties of Ag2O and Ag co-modified flower-like SnS2 composites were carefully studied by using XRD, SEM, TEM, UV-vis diffuse reflectance spectra (DRS) and XPS. The photocatalytic activity of the as-prepared products was evaluated by photocatalytic decolorization of Rhodamine B (Rh B) aqueous solution at ambient temperature under solar light irradiation. The photocatalytic result shows that Ag2O and Ag co-modified flower-like SnS2 composites exhibit enhanced photocatalytic activity compared with that of pure SnS2. Three of the Ag2O and Ag co-modified flower-like SnS2 composites form the Z-scheme systems, because of their unique charge-carrier transfer process, the oxidation/reduction ability of photogenerated holes and electrons could be enhanced. Therefore, the new Ag2O and Ag co-modified flower-like SnS2 composites possess a favorable photocatalytic activity, and it can be a promising candidate for the solar energy conversion process.

  12. Electrochemical incineration of superchlorinated organic waste by using Ag(II) as oxidizing agent and formation kinetics of Ag(II)

    SciTech Connect

    Bringmann, J.; Ebert, K.; Galla, U.; Leffrang, U.; Schmieder, H.

    1995-12-31

    Rates of pure superchlorinated organic substances and an industrial transformer oil using Ag(II) and Co(III) as oxidizing agent have been determined. Ag(II) and Co(III) were generated in a divided electrochemical reactor containing Ag(I) or Co(II) in aqueous 7M HNO{sub 3} or 3.5M H{sub 2}SO{sub 4}. Best degradation results were obtained using Ag(II) in 7M HNO{sub 3}. AgCl precipitated during superchlorinated hydrocarbon destruction with Ag(II) is redissolved. This chloride is oxidized by an excess of Ag(II) to chlorate and finally to perchlorate. An investigation on the formation kinetics of Ag(II), Co(III), and Ce(IV) by means of a rotating disk electrode led to a quantitative determination of limiting current densities. As Ag(II) ions in aqueous media do not only oxidize organic substances, but also water, reaction rate constants of water oxidation by Ag(II) were determined at various temperatures.

  13. Robust Sierpiński triangle fractals on symmetry-mismatched Ag(100).

    PubMed

    Zhang, Xue; Li, Na; Liu, Liwei; Gu, Gaochen; Li, Chao; Tang, Hao; Peng, Lianmao; Hou, Shimin; Wang, Yongfeng

    2016-08-18

    Sierpiński triangle fractals were constructed on both Ag(111) and symmetry-mismatched fourfold Ag(100) surfaces through chemical reaction between H3PH molecules and Fe atoms under vacuum. Density functional theory calculations revealed that the fractals were stabilized by the strong coordination interaction between Fe and O atoms. In comparison, pure H3PH molecules formed fractals via moderately strong hydrogen bonds only on Ag(111), not on Ag(100).

  14. Photoluminescence Behaviour of Sm3+ Ions in presence of Ag Nanoparticles in Methanol

    NASA Astrophysics Data System (ADS)

    Dehingia, N.; Gogoi, P.; Boruah, A.; Kakoti, D.; Rajkonwar, N.; Dutta, P.

    2016-10-01

    In the present work, capped Ag NPs prepared by reduction of Ag (NO3)3 by Dimethyl Formamide is doped with Sm3+ in methanol and its photoluminescence behavior is studied. Significant modifications of the Sm3+ ions’ emission as well as quantum yield, were observed with the concentration of Ag NPs. Local field enhancement induced by neutral Ag NPs were found to be responsible for enhancement in efficiency of the Sm3+ ions.

  15. Diffusion of gold from the inner core to the surface of Ag(2)S nanocrystals.

    PubMed

    Yang, Jun; Ying, Jackie Y

    2010-02-24

    The diffusion of Au in Ag(2)S from the inner core to the surface of Ag(2)S was reported, and a new nanocomposite of core-shell Pt@Ag(2)S and Au nanoparticles has been derived through this diffusion phenomenon. Ostwald ripening was observed by transmission electron microscopy during the characterization of the nanocomposite. This elucidated the mechanism of formation of semiconductor-metal heterostructures as a consequence of Au diffusion in Ag(2)S nanocrystals.

  16. Two-step synthesis of Ag@GQD hybrid with enhanced photothermal effect and catalytic performance

    NASA Astrophysics Data System (ADS)

    Wu, Cong; Yuan, Yali; He, Qian; Song, Rui

    2016-12-01

    A novel Ag@GQD (graphene quantum dot) hybrid fabricated by a facile two-step strategy is presented: the GQDs are prepared by citrate acid and AgNO3 is reduced. Catalytic studies showed that the Ag@GQD hybrid exhibited excellent photothermal effect and catalytic performance for 4-nitrophenol (4-NP) reduction, suggesting that the GQDs enhanced the catalytic activity via a synergistic effect and the Ag NPs boosted the catalytic efficiency through SPR-mediated photothermal local heating.

  17. Mechanochemically synthesized Ag-based nanohybrids with unprecedented low toxicity in biomedical applications.

    PubMed

    Arancon, Rick A D; Balu, Alina M; Romero, Antonio A; Ojeda, Manuel; Gomez, Mercedes; Blanco, Jordi; Domingo, Jose L; Luque, Rafael

    2017-04-01

    A simple and innovative mechanochemical approach was employed to synthesize Ag-polysaccharide nanohybrid materials that were proved to exhibit remarkable surface properties and structures for biomedical applications. The synthesized Ag nanomaterials possessed an unprecedented low cytotoxicity against human cell lines A549 and SH-SY5Y as compared to similarly reported Ag nanomaterials due to the stability and low release of Ag(+) and high biocompatibility of the nanohybrids.

  18. Enhanced visible-light photocatalytic performances of Ag3PO4 surface-modified with small amounts of TiO2 and Ag

    NASA Astrophysics Data System (ADS)

    Wang, Desong; Li, Lei; Luo, Qingzhi; An, Jing; Li, Xueyan; Yin, Rong; Zhao, Mangmang

    2014-12-01

    A novel approach has been developed to prepare an efficient visible-light photocatalyst using Ag3PO4 and TiO2 sol as precursors. First, Ag3PO4 particles were dipped into TiO2 sol for 5 min and were filtered quickly. Second, Ag3PO4 particles adsorbing a small amount of TiO2 sol were aged for 24 h to form TiO2 gel on their surface. Finally, Ag3PO4 particles covered by TiO2 gel were calcined at 450 °C for 2 h to obtain the surface-modified Ag3PO4 sample. The surface-modified Ag3PO4 was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, UV-vis diffuse reflection spectroscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. The visible-light photocatalytic performances of the surface-modified Ag3PO4 were evaluated by the photodegradation of methyl orange or phenol solution. The results showed that the surface-modified Ag3PO4 exhibited much higher visible-light photocatalytic activity and stability than pure Ag3PO4. As the amount of TiO2 gel on the Ag3PO4 surface increased, the visible-light photocatalytic activity increased first and then decreased. The surface-modification of Ag3PO4 obviously decreased its solubility in water environment due to the protection of TiO2 and Ag nanocrystals on the surface. The visible-light photocatalytic mechanism of the surface-modified Ag3PO4 has been discussed.

  19. Dynamic viscosities of pure tin and Sn-Ag, Sn-Cu, and Sn-Ag-Cu eutectic melts

    NASA Astrophysics Data System (ADS)

    Rozhitsina, E. V.; Gruner, S.; Kaban, I.; Hoyer, W.; Sidorov, V. E.; Popel', P. S.

    2011-02-01

    The dynamic viscosities of the melts of pure tin and eutectic Sn-Ag, Sn-Cu, and Sn-Ag-Cu alloys are studied in heating followed by cooling, and the maximum heating temperature was 1200°C. An irreversible decrease in the viscosity is found in the temperature range 800-1000°C in the polytherms of all melts. This finding is related to the loss of a local order in a melt and can be used to develop temperature regimes for the production of lead-free solders.

  20. Submonolayer nucleation and growth and the initial stage of multilayer kinetic roughening during Ag/Ag (100) homoepitaxy

    SciTech Connect

    Zhang, C.

    1996-08-01

    A comprehensive Scanning Tunneling Microscopy (STM) study of submonolayer nucleation and growth of 2D islands in Ag/Ag(100) homoepitaxy for temperature between 295K and 370K is presented. The initial stages of multilayer kinetic roughening is also studied. Analysis of an appropriate model for metal (100) homoepitaxy, produces estimates of 350 meV for the terrace diffusion barrier, 400 meV for the adatom bond energy, and 25 meV for the additional Ehrlich-Schwoebel step-edge barrier.

  1. Implementation of new dry electrodes and comparison with conventional Ag/AgCl electrodes for whole body electrical bioimpedance application.

    PubMed

    Dassonville, Y; Barthod, C; Passard, M

    2015-01-01

    Reusable electrodes, when embedded into devices, can provide new ways of physiological measurements, and improve the usability and comfort of monitoring systems using whole body electrical bioimpedance in the areas of medical, nutrition and sports. However, good electrical and mechanical contacts between electrode and skin are very important, as it defines the quality of the signal, requiring generally the use of consumable. This paper introduces innovative dry electrodes and compares their electrical behavior with those of a traditional Ag/AgCl electrolytic one. Thanks to the campaigns of measurements involving Caucasian healthy volunteers, three designs of experiments are conducted to lead to choose the optimized set: material, supply, using conditions.

  2. Ag2S/g-C3N4 composite photocatalysts for efficient Pt-free hydrogen production. The co-catalyst function of Ag/Ag2S formed by simultaneous photodeposition.

    PubMed

    Jiang, Deli; Chen, Linlin; Xie, Jimin; Chen, Min

    2014-03-28

    Without Pt as cocatalyst, the photocatalytic hydrogen evolution activity of graphitic carbon nitride (g-C3N4) or even its composite is normally rather low (<1 μmol h(-1)). Exploring Pt-free cocatalysts to substitute precious Pt is of great importance in the photocatalytic field. In the present work, Ag2S-modified g-C3N4 (Ag2S/g-C3N4) composite photocatalysts were prepared via a simple precipitation method. The results demonstrated that the photocatalytic H2-production activity of g-C3N4 can be remarkably increased by the combination of Ag2S. The optimal Ag2S loading was found to be 5 wt%, giving a H2 production of 10 μmol h(-1), around 100 times that of pure g-C3N4. The enhanced photocatalytic activity can be mainly attributed to the effective charge transfer between g-C3N4 and Ag/Ag2S, of which the latter is formed by simultaneous photodeposition in the photocatalytic H2 evolution reaction and acts as an efficient co-catalyst for the g-C3N4. This work showed the possibility for utilization of Ag2S or Ag/Ag2S as a substitute for Pt in the photocatalytic production of H2 using g-C3N4.

  3. Characterization of the antiferromagnetism in Ag(pyz)2(S2O8) with a two-dimensional square lattice of Ag 2+ ions (Ag=silver, Pyz-pyrdzine, S2O8=sulfate)

    SciTech Connect

    Singleton, John; Mc Donald, R; Sengupta, P; Cox, S; Manson, J; Southerland, H; Warter, M; Stone, K; Stephens, P; Lancaster, T; Steele, A; Blundell, S; Baker, P; Pratt, F; Lee, C; Whangbo, M

    2009-01-01

    X-ray powder diffraction and magnetic susceptibility measurements show that Ag(pyz){sub 2}(S{sub 2}O{sub 8}) consists of 2D square nets of Ag{sup 2+} ions resulting from the corner-sharing of axially elongated AgN{sub 4}O{sub 2} octahedra and exhibits characteristic 2D antiferromagnetism. Nevertheless, {mu}{sup +}Sr measurements indicate that Ag(pyz){sub 2}(S{sub 2}O{sub 8}) undergoes 3D magnetic ordering below 7.8(3) K.

  4. Effects of Ag addition on FePt L1{sub 0} ordering transition: A direct observation of ordering transition and Ag segregation in FePtAg alloy films

    SciTech Connect

    Wang, Lei; Yu, Youxing; Gao, Tenghua

    2015-12-21

    FePt and (FePt){sub 91.2}Ag{sub 8.8} alloy films were deposited by magnetron sputtering. The average coercivity of (FePt){sub 91.2}Ag{sub 8.8} films reaches 8.51 × 10{sup 5} A/m, which is 0.63 × 10{sup 5} A/m higher than that of the corresponding FePt films. Ag addition effectively promotes the FePt L1{sub 0} ordering transition at a relatively low annealing temperature of 400 °C. The promotion mechanism was investigated by using in situ high-resolution transmission electron microscopy (HRTEM) and ex situ X-ray absorption fine structure (XAFS). The concurrence of ordering transition and Ag segregation in FePtAg alloy films was first observed by using in situ heating HRTEM. The time-resolved evolution reveals more details on the role of Ag addition in FePt low-temperature ordering. Ex situ XAFS results further confirm that Ag replaces Fe sites in the as-deposited films and segregates from FePt-Ag solid solution phase through annealing at elevated temperatures. The segregation of Ag atoms leaves vacancies in the grain. The vacancy formation is believed to accelerate the diffusion of Fe and Pt atoms, which is critical for the L1{sub 0} ordering transition.

  5. Near-infrared photoluminescent Ag2S quantum dots from a single source precursor.

    PubMed

    Du, Yaping; Xu, Bing; Fu, Tao; Cai, Miao; Li, Feng; Zhang, Yan; Wang, Qiangbin

    2010-02-10

    Monodisperse Ag(2)S quantum dots (QDs) were synthesized via pyrolysis of Ag(DDTC) in oleic acid, octadecylamine, and 1-octadecene. The uniform alkyl-capped Ag(2)S QDs with a size of 10.2 nm emit near-IR emission at 1058 nm under 785 nm excitation.

  6. Stabilizing subnanometer Ag(0) nanoclusters by thiolate and diphosphine ligands and their crystal structures

    NASA Astrophysics Data System (ADS)

    Yang, Huayan; Wang, Yu; Zheng, Nanfeng

    2013-03-01

    The combined use of thiolate and diphosphine as surface ligands helps to stabilize subnanometer Ag(0) nanoclusters, resulting in the successful crystallization of two Ag(0)-containing nanoclusters (Ag16 and Ag32) for X-ray single crystal analysis. Both clusters have core-shell structures with Ag86+ and Ag2212+ as their cores, which are not simply either fragments of face-centered cubic metals or their five-fold twinned counterparts. The clusters display UV-Vis absorption spectra consisting of molecule-like optical transitions.The combined use of thiolate and diphosphine as surface ligands helps to stabilize subnanometer Ag(0) nanoclusters, resulting in the successful crystallization of two Ag(0)-containing nanoclusters (Ag16 and Ag32) for X-ray single crystal analysis. Both clusters have core-shell structures with Ag86+ and Ag2212+ as their cores, which are not simply either fragments of face-centered cubic metals or their five-fold twinned counterparts. The clusters display UV-Vis absorption spectra consisting of molecule-like optical transitions. Electronic supplementary information (ESI) available: Experimental details, more pictures of the structure and XPS spectra of the clusters. CCDC 916463 and 916464. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c3nr34328f

  7. Nanostructured Ag surface fabricated by femtosecond laser for surface-enhanced Raman scattering.

    PubMed

    Chang, Han-Wei; Tsai, Yu-Chen; Cheng, Chung-Wei; Lin, Cen-Ying; Lin, Yen-Wen; Wu, Tzong-Ming

    2011-08-01

    Femtosecond laser was employed to fabricate nanostructured Ag surface for surface-enhanced Raman scattering (SERS) application. The prepared nanostructured Ag surface was characterized by field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The FESEM images demonstrate the formation of nanostructure-covered femtosecond laser-induced periodic surface structure, also termed as ripples, on the Ag surface. The AFM images indicate that the surface roughness of the produced nanostructured Ag substrate is larger than the untreated Ag substrate. The XRD and XPS of the nanostructured Ag surface fabricated by femtosecond laser show a face centered cubic phase of metallic Ag and no impurities of Ag oxide species. The application of the produced nanostructured Ag surface in SERS was investigated by using rhodamine 6G (R6G) as a reference chemical. The SERS intensity of R6G in aqueous solution at the prepared nanostructured Ag surface is 15 times greater than that of an untreated Ag substrate. The Raman intensities vary linearly with the concentrations of R6G in the range of 10(-8)-10(-4)M. The present methodology demonstrates that the nanostructured Ag surface fabricated by femtosecond laser is potential for qualification and quantification of low concentration molecules.

  8. Low-temperature photoluminescence behaviour of Ag decorated ZnO Nanorods

    NASA Astrophysics Data System (ADS)

    Amutha, A.; Amirthapandian, S.; Sundaravel, B.; Panigrahi, B. K.; Saravanan, K.; Thangadurai, P.

    2016-11-01

    The Ag nanoparticles decorated ZnO nanorods (Ag:ZnO) were prepared by irradiating the precursor solution with ultra-violet radiation for two irradiation times (6 and 17 h). Structural and microstructural studies were done by X-ray diffraction and transmission electron microscopy, respectively. Optical properties were studied by UV-Vis spectroscopy at room temperature (300 K) and photoluminescence (PL) spectroscopy at low-temperature in the temperature range from 5 to 300 K. The Ag:ZnO nanorods possessed the wurtzite structure of ZnO along with the cubic fcc phase of Ag nanoparticles. Average size of Ag nanoparticles in Ag:ZnO nanorods prepared with 6 and 17 h of UV irradiation time was 4 and 16 nm, respectively. The 4 nm Ag nanoparticles had played a crucial role for enhanced PL emission (in the UV region) in the Ag:ZnO nanorods at 60 K. In the case of 16 nm sized Ag nanoparticles, violet emission has been enhanced about 3.5 times compared to that of pure ZnO nanorods and 4 nm-Ag:ZnO nanorods at 5 K. Thermal activation energy of 4 nm-Ag:ZnO and 16 nm-Ag:ZnO nanorods was found to be 0.6 and 0.7 meV, respectively, at low temperature region (5 to 60 K).

  9. A novel synthesis route of Ag2S nanotubes by sulfidizing silver nanowires in ambient atmosphere.

    PubMed

    Fu, Xiaofeng; Zou, Huamin; Zhou, Li

    2010-09-01

    In this study, a 'two-step' strategy of synthesizing nanoparticles-assembled Ag,S nanotubes with a diameter of less than 100 nm is developed. At first, the silver nanowires with uniform length and diameter were synthesized by polyol reduction method using PVP as a capping agent. Then, the resulting silver nanowires were exposed to the ambient atmosphere of laboratory, gradually sulfidized by sulfur-containing molecules in air, and eventually transformed into nanoparticles-assembled Ag2S nanotubes. The morphologic changes during the sulfidation process from Ag nanowires to Ag2S nanotubes were investigated by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is revealed that Ag2S nanoparticles are initially formed on the surface of Ag nanowire by sulfidation, and subsequently linked together into Ag,S nanotube. Quantitative analyses of energy dispersive X-ray spectra (EDS) and high-resolution transmission electron microscopy (HRTEM) show that the as-synthesized products are monoclinic alpha-Ag2S nanotubes. In addition, there is strong evidence that the polyvinylpyrrolidone (PVP) plays an important role as a soft template in the formation of Ag2S nanotubes. A new absorption peak at 573 nm appears in the optical absorption spectra when the Ag2S nanotubes are formed.

  10. Isomeric yield ratios and excitation functions in α-induced reactions on 107,109Ag

    NASA Astrophysics Data System (ADS)

    Guin, R.; Saha, S. K.; Prakash, Satya; Uhl, M.

    1992-07-01

    Isomeric yield ratios for the reactions 107Ag(α,3n)108In, 107Ag(α,α3n)104Ag, 109Ag(α,2n)111In, and 109Ag(α,3n)110In are determined in the energy range of 20-63 MeV α particles. Excitation functions for the above reactions as well as for the 107Ag(α,2n)109In, 107Ag(α,α2n)105Ag, 109Ag(α,4n)109In, 109Ag(α,5n)108In, and 109Ag(α,α4n)105Ag reactions are also presented. Experimental excitation functions are compared with statistical model calculations taking into account precompound particle emission. Isomeric yield ratios are found to depend strongly on the root mean square orbital angular momentum in the entrance channel. A semiempirical method for the prediction of isomeric yield ratios failed to reproduce experimental data even for compoundlike reactions. Isomeric yield ratios were also calculated in the frame of a statistical model under consideration of angular momentum effects in the preequilibrium and the equilibrium stage. Overall agreement between the theory and the experiment for isomeric yield ratios was found to be satisfactory especially at low bombarding energy when compound nucleus reaction channel is dominant. The discrepancy observed at higher bombarding energies needs to be theoretically investigated in greater detail.

  11. Visible-light photoactive Ag-AgBr/α-Ag3VO4 nanostructures prepared in a water-soluble ionic liquid for degradation of wastewater

    NASA Astrophysics Data System (ADS)

    Padervand, Mohsen

    2016-11-01

    Ag-AgBr/α-Ag3VO4 photocatalysts, prepared by an ionic liquid-assisted precipitation method, were used as an efficient visible light-driven photocatalytic system for removal of wastewater and pathogenic bacteria from the aqueous medium. X-ray diffraction powder, diffuse reflectance spectroscopy, Fourier transform infrared, scanning electron microscopy, and nitrogen adsorption-desorption isotherm (BET) analysis methods were used to characterize the nanostructures. Photodegradation mechanism was investigated and the results showed that the prepared samples were too efficient for the degradation of Acid Blue 92 (AB92) azo dye, and E. coli cells under visible light. The photogenerated electron-hole pairs reacted with the species in the solution and produced super active radicals such as {{O}}{{{H}}^ \\cdot }, {{H}}{{{O}}^ \\cdot }_{{2}}, and {{{O}}^{ \\cdot - }}_{{2}} which are responsible for the degradation of the environmental pollutions. TEM images were used to clarify the antibacterial activity of the products. Finally, as a practical application of the prepared photocatalysts, their ability evaluated for degradation of a real wastewater sample which was provided from the textile industries.

  12. Electrochemical Migration of Fine-Pitch Nanopaste Ag Interconnects

    NASA Astrophysics Data System (ADS)

    Tsou, Chia-Hung; Liu, Kai-Ning; Lin, Heng-Tien; Ouyang, Fan-Yi

    2016-12-01

    With the development of intelligent electronic products, usage of fine-pitch interconnects has become mainstream in high performance electronic devices. Electrochemical migration (ECM) of interconnects would be a serious reliability problem under temperature, humidity and biased voltage environments. In this study, ECM behavior of nanopaste Ag interconnects with pitch size from 20 μm to 50 μm was evaluated by thermal humidity bias (THB) and water drop (WD) tests with deionized water through in situ leakage current-versus-time (CVT) curve. The results indicate that the failure time of ECM in fine-pitch samples occurs within few seconds under WD testing and it increases with increasing pitch size. The microstructure examination indicated that intensive dendrite formation of Ag through the whole interface was found to bridge the two electrodes. In the THB test, the CVT curve exhibited two stages, incubation and ramp-up; failure time of ECM was about 173.7 min. In addition, intensive dendrite formation was observed only at the protrusion of the Ag interconnects due to the concentration of the electric field at the protrusion of the Ag interconnects.

  13. Flexible Nonstick Replica Mold for Transfer Printing of Ag Ink.

    PubMed

    Lee, Bong Kuk; Yu, Han Young; Kim, Yarkyeon; Yoon, Yong Sun; Jang, Won Ik; Do, Lee-Mi; Park, Ji-Ho; Park, Jaehoon

    2016-03-01

    We report the fabrication of flexible replica molds for transfer printing of Ag ink on a rigid glass substrate. As mold precursors, acrylic mixtures were prepared from silsesquioxane-based materials, silicone acrylate, poly(propylene glycol) diacrylate, 3,3,4,4,5,5,6,6,7,7,8,8, 9,9,10,10,10-heptadecafluorodecyl methacrylate, and photoinitiator. By using these materials, the replica molds were fabricated from a silicon master onto a flexible substrate by means of UV-assisted molding process at room temperature. The wettability of Ag ink decreased with increase in the water contact angle of replica molds. On the other hand, the transfer rate of Ag ink onto adhesive-modified substrates increased with increase in the water contact angle of replica molds. Transferred patterns were found to be thermally stable on the photocurable adhesive layer, whereas Ag-ink patterns transferred on non-photocurable adhesives were distorted by thermal treatment. We believe that these characteristics of replica molds and adhesives offer a new strategy for the development of the transfer printing of solution-based ink materials.

  14. Water dissociation on Mn(1×1)/Ag(100)

    SciTech Connect

    Arble, Chris; Tong, Xiao; Giordano, Livia; Ferrari, Anna Maria; Newberg, John T.

    2016-08-19

    In this work we utilize experimental and simulation techniques to examine the molecular level interaction of water with a MnO(1×1) thin film deposited onto Ag(100). The formation of MnO(1×1)/Ag(100) was characterized by low energy electron diffraction and scanning tunneling microscopy. Density functional theory (DFT) shows MnO(1×1) is thermodynamically more stable than MnO(2×1) by –0.4 eV per MnO. Upon exposure to 2.5 Torr water vapor at room temperature, X-ray photoemission spectroscopy results show extensive surface hydroxylation attributed to reactivity at MnO(1×1) terrace sites. DFT calculations of a water monomer on MnO(1×1)/Ag(100) show the dissociated form is energetically more favorable than molecular adsorption, with a hydroxylation activation barrier 0.4 eV per H2O. Lastly, these results are discussed and contrasted with previous studies of MgO/Ag(100) which show a stark difference in behavior for water dissociation.

  15. Thermomechanical fatigue behavior of Sn-Ag solder joints

    NASA Astrophysics Data System (ADS)

    Choi, S.; Subramanian, K. N.; Lucas, J. P.; Bieler, T. R.

    2000-10-01

    Microstructural studies of thermomechanically fatigued actual electronic components consisting of metallized alumina substrate and tinned copper lead, soldered with Sn-Ag or 95.5Ag/4Ag/0.5Cu solder were carried out with an optical microscope and environmental scanning electron microscope (ESEM). Damage characterization was made on samples that underwent 250 and 1000 thermal shock cycles between -40°C and 125°C, with a 20 min hold time at each extreme. Surface roughening and grain boundary cracking were evident even in samples thermally cycled for 250 times. The cracks were found to originate on the free surface of the solder joint. With increased thermal cycles these cracks grew by grain boundary decohesion. The crack that will affect the integrity of the solder joint was found to originate from the free surface of the solder very near the alumina substrate and progress towards and continue along the solder region adjacent to the Ag3Sn intermetallic layer formed with the metallized alumina substrate. Re-examination of these thermally fatigued samples that were stored at room temperature after ten months revealed the effects of significant residual stress due to such thermal cycles. Such observations include enhanced surface relief effects delineating the grain boundaries and crack growth in regions inside the joint.

  16. A Tribute to My Ag Teacher: 2011 AAAE Distinguished Lecture

    ERIC Educational Resources Information Center

    Barrick, R. Kirby

    2012-01-01

    The author is a product of school-based agricultural education. In a way, this distinguished lecture could also be called a tribute to his high school ag teacher, John Stimpert. Mr. Stimpert was a true professional and an excellent teacher. He changed and he changed the program with the changing school and community. The more the author became…

  17. Ag-based semiconductor photocatalysts in environmental purification

    NASA Astrophysics Data System (ADS)

    Li, Jiade; Fang, Wen; Yu, Changlin; Zhou, Wanqin; zhu, Lihua; Xie, Yu

    2015-12-01

    Over the past decades, with the fast development of global industrial development, various organic pollutants discharged in water have become a major source of environmental pollution in waste fields. Photocatalysis, as green and environmentally friendly technology, has attracted much attention in pollutants degradation due to its efficient degradation rate. However, the practical application of traditional semiconductor photocatalysts, e.g. TiO2, ZnO, is limited by their weak visible light adsorption due to their wide band gaps. Nowadays, the study in photocatalysts focuses on new and narrow band gap semiconductors. Among them, Ag-based semiconductors as promising visible light-driven photocatalysts have aroused much interesting due to their strong visible light responsibility. Most of Ag-based semiconductors could exhibit high initial photocatalytic activity. But they easy suffer from poor stability because of photochemical corrosion. Design heterojunction, increasing specific surface area, enriching pore structure, regulating morphology, controlling crystal facets, and producing plasmonic effects were considered as the effective strategies to improve the photocatalytic performance of Ag-based photocatalyts. Moreover, combining the superior properties of carbon materials (e.g. carbon quantum dots, carbon nano-tube, carbon nanofibers, graphene) with Ag-based semiconductor could produce high efficient composite photocatalyts.

  18. Ag Data Commons: Adding Value to Open Agricultural Research Data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Public access to results of federally-funded research is a new mandate for large departments of the United States government. Public access to scholarly literature from U.S. investments is straightforward, with policies and systems like PubMed Central and PubAg (http://pubag.nal.usda.gov) already im...

  19. AgGaS2 infrared parametric oscillator

    NASA Technical Reports Server (NTRS)

    Fan, Y. X.; Eckardt, R. C.; Byer, R. L.; Route, R. K.; Feigelson, R. S.

    1984-01-01

    A report is presented of the first operation of an optical parametric oscillator in a chalcopyrite crystal, AgGaS2. Tuning from 1.4 to 4.0 microns is demonstrated for 1.06-micron Nd:yttrium aluminum garnet pumping. The potential tuning range extends to the 12-micron transparency limit of the crystal.

  20. Communication: UV photoionization of cytosine catalyzed by Ag{sup +}

    SciTech Connect

    Taccone, Martín I.; Berdakin, Matías; Pino, Gustavo A.; Féraud, Geraldine; Dedonder-Lardeux, Claude; Jouvet, Christophe

    2015-07-28

    The photo-induced damages of DNA in interaction with metal cations, which are found in various environments, still remain to be characterized. In this paper, we show how the complexation of a DNA base (cytosine (Cyt)) with a metal cation (Ag{sup +}) changes its electronic properties. By means of UV photofragment spectroscopy of cold ions, it was found that the photoexcitation of the CytAg{sup +} complex at low energy (315-282) nm efficiently leads to ionized cytosine (Cyt{sup +}) as the single product. This occurs through a charge transfer state in which an electron from the p orbital of Cyt is promoted to Ag{sup +}, as confirmed by ab initio calculations at the TD-DFT/B3LYP and RI-ADC(2) theory level using the SV(P) basis set. The low ionization energy of Cyt in the presence of Ag{sup +} could have important implications as point mutation of DNA upon sunlight exposition.

  1. The AgMIP Framework to Evaluate Agricultural Pathways

    NASA Technical Reports Server (NTRS)

    Ruane, Alex

    2015-01-01

    This talk will describe the community and research framework that AgMIP has built to enable evidence-based adaptation investment. We provide expertise on the ground and connect various disciplines in order to allow specific adaptations to be evaluated for their biophysical and socio-economic ramifications.

  2. Novel mitoviruses in Rhizoctonia solani AG-3PT infecting potato.

    PubMed

    Das, Subha; Falloon, Richard E; Stewart, Alison; Pitman, Andrew R

    2016-03-01

    Double-stranded RNA (dsRNA) elements are ubiquitous in Rhizoctonia solani. Total dsRNA was randomly amplified from a R. solani isolate (RS002) belonging to anastomosis group-3PT (AG-3PT), associated with black scurf in potato. Assembly of resulting cDNA sequences identified a nearly complete genome of a novel virus related to the genus Mitovirus (family Narnaviridae), herein named Rhizoctonia mitovirus 1 RS002 (RMV-1-RS002). The 2797 nucleotide partial genome of RMV-1-RS002 is A-U rich (59.06 %), and can be folded into stable stem-loop structures at 5' and 3' ends. Universal and mold mitochondrial codon usages revealed a large open reading frame in the genome, putatively encoding an 826 amino acid polypeptide, which has conserved motifs for mitoviral RNA-dependent RNA polymerase. The full length putative polypeptide shared 25.6 % sequence identity with the corresponding region of Tuber excavatum mitovirus (TeMV). The partial genome of a second mitovirus (proposed name Rhizoctonia mitovirus 2 RS002 (RMV-2-RS002)) was also amplified from RS002. A nearly identical copy of RMV-1-RS002 was detected in two additional AG-3PT isolates. These data indicate that multiple mitoviruses can exist in a single isolate of R. solani AG-3PT, and that mitoviruses such as RMV-1-RS002 are probably widespread in this pathogen. The roles of mitoviruses in the biology of R. solani AG-3PT remain unknown.

  3. ZnO/Ag nanowires composite film ultraviolet photoconductive detector

    NASA Astrophysics Data System (ADS)

    Guodong, Yan; Minqiang, Wang; Zhi, Yang

    2015-08-01

    ZnO/Ag nanowires (NWs) film ultraviolet (UV) detector was fabricated by a simple and low-cost solution-processed method. In order to prepare this device, Ag NWs network was first spin-coated on glass substrate as a transparent conducting electrode, then ZnO NWs arrays were grown vertically on the Ag NWs network based on the hydrothermal method. This UV detector exhibited an excellent detection performance with large on/off ratio and short response time. Several process and working parameters were particularly investigated to analyze the relationship between structure and performance, which include growth time of ZnO NWs array, spin speed of Ag NWs network and working temperature. This UV photoconductive detector is based on two kinds of one-dimension nanomaterials, and it was regarded as a compromise between high performance with large area, low voltage and low cost. Project supported by the National Natural Science Foundation of China (Nos. 61176056, 91323303, 91123019), the 111 Program (No. B14040), and the Open Projects from the Institute of Photonics and Photo-Technology, Provincial Key Laboratory of Photoelectronic Technology, Northwest University, China.

  4. Status of the Alternating Gradient Synchrotron (AGS) upgrade project

    SciTech Connect

    Sluyters, T.

    1988-01-01

    The upgrade of BNL's Alternating Gradient Synchrotron progresses parallel with the construction of the 1.5 GeV Booster with a view to completion of its major components in 1991. The initial goals of the upgrade program are: to prepare the AGS ring for acceleration of at least 5 /times/ 10/sup 13/ protons per pulse, to accelerate heavy ions up to gold, to accelerate polarized protons in the 10/sup 12/-10/sup 13/ intensity range, and to improve the reliability and flexibility of the present machine operation. Figure 1 shows the AGS complex as it will operate in 1991. There are several major systems in the AGS complex which have to be upgraded in order to accelerate the higher intensity beams and heavier ions. These systems are: the RFQ preinjector, the rf cavities, the vacuum, the transverse dampers, the correction magnets, extraction equipment, and the Siemens main magnet power supply. Additional major projects, which will keep the ring activation within /open quotes/acceptable/close quotes/ limits despite a four-fold increase in beam intensity, are a fast beam chopper, a gamma-transition jump system, and a high frequency dilution cavity. These last projects have received high priority because they benefit as well the present operation of the AGS.

  5. AGS experiments in nuclear/QCD physics at medium energies

    SciTech Connect

    Lo Presti, P.

    1998-07-01

    This report contains a diagram of the experimental setup for each experiment as well as giving a brief discussion of its purpose and list of collaborators for the experiment. Thirty-one experiments in the areas of nuclear physics and particle physics are covered. It concludes with a list of publications of the AGS experiments.

  6. Sonochemical green synthesis of Ag/graphene nanocomposite.

    PubMed

    Acar Bozkurt, Pınar

    2017-03-01

    Recently, the popularity for green chemistry and chemical process have increased. The approach must comprehensively be considered for these principles in the design of a synthesis method, chemical analysis, or chemical process. Utilization of nontoxic chemicals, environment friendly solvents, and renewable materials are some of the important issues in green synthesis methods. The importance of green synthesis arises in the production of Ag/graphene nanocomposites, due to their future potential applications in nanomedicine and materials engineering. Herein, a simple approach to synthesizing Ag/graphene nanocomposite using sodium citrate as the reducing agent by sonochemical method has been reported. The synthesized Ag/graphene nanocomposite was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and UV-Visible spectroscopy. The results showed that graphene oxide was successfully reduced to graphene and silver ions to silver nanoparticles with sodium citrate. Spherical Ag nanoparticles with a mean particle size of approximately 20nm on graphene sheets were synthesized sonochemically. The use of sodium citrate as an environment-friendly reducing agent provided green attributes whereas the use of sonochemical processes as the synthesis method provided economic attributes to this study. The results obtained demonstrate this method to be applicable to the synthesis of other metals on graphene sheets and may possibly find various forthcoming medicinal, industrial and technological applications.

  7. Lifetime measurement of excited states in /sup 105/Ag

    SciTech Connect

    Mittal, V.K.; Govil, I.M.

    1986-11-01

    The levels up to about 2.1 MeV in /sup 105/Ag were excited via /sup 105/Pd(p,n..gamma..) reaction. For the first time, lifetimes of energy levels at 1023, 1042, 1097, 1166, 1243, 1295, 1328, 1386, 1442, 1543, 1558, 1587, 1719, 1923, and 2081 keV have been measured using the Doppler shift attenuation technique.

  8. Controlled joining of Ag nanoparticles with femtosecond laser radiation

    NASA Astrophysics Data System (ADS)

    Huang, H.; Liu, L.; Peng, P.; Hu, A.; Duley, W. W.; Zhou, Y.

    2012-12-01

    We show that it is possible to tailor the gap separation and interface geometry between adjacent Ag nanoparticles (NPs) by controlling fluence when irradiating with pulses from a fs laser. Unirradiated samples extracted from aqueous solution consist of networks of Ag NPs coated with polyvinylpyrrolidone (PVP). At low laser fluence, bonding between NPs occurs via the formation of an intervening hydrogenated amorphous carbon (α-C:H) layer resulting from the laser-induced decomposition of PVP. This occurs when electrons are emitted at hot-spots created by the trapping of plasmons. The thickness of the α-C:H layer determines the minimum separation between NPs. Ag NPs with different contact geometries can be produced by irradiation of the networks in solution at fluences exceeding the threshold for the formation of α-C:H. At fluences between 200 and 380 μJ/cm2, the α-C:H interface layer is replaced with a metallic neck. Surface enhanced Raman scattering (SERS) has been used to quantify the electromagnetic field enhancement in joined NP samples. We find that Ag NPs bonded by α-C:H and exhibiting a narrow gap possess the highest SERS enhancement.

  9. Water dissociation on Mn(1×1)/Ag(100)

    DOE PAGES

    Arble, Chris; Tong, Xiao; Giordano, Livia; ...

    2016-08-19

    In this work we utilize experimental and simulation techniques to examine the molecular level interaction of water with a MnO(1×1) thin film deposited onto Ag(100). The formation of MnO(1×1)/Ag(100) was characterized by low energy electron diffraction and scanning tunneling microscopy. Density functional theory (DFT) shows MnO(1×1) is thermodynamically more stable than MnO(2×1) by –0.4 eV per MnO. Upon exposure to 2.5 Torr water vapor at room temperature, X-ray photoemission spectroscopy results show extensive surface hydroxylation attributed to reactivity at MnO(1×1) terrace sites. DFT calculations of a water monomer on MnO(1×1)/Ag(100) show the dissociated form is energetically more favorable than molecularmore » adsorption, with a hydroxylation activation barrier 0.4 eV per H2O. Lastly, these results are discussed and contrasted with previous studies of MgO/Ag(100) which show a stark difference in behavior for water dissociation.« less

  10. Exposure Medium: Key in Identifying Free Ag+ as the Exclusive Species of Silver Nanoparticles with Acute Toxicity to Daphnia magna

    PubMed Central

    Shen, Mo-Hai; Zhou, Xiao-Xia; Yang, Xiao-Ya; Chao, Jing-Bo; Liu, Rui; Liu, Jing-Fu

    2015-01-01

    It is still not very clear what roles the various Ag species play in the toxicity of silver nanoparticles (AgNPs). In this study, we found that traditional exposure media result in uncontrollable but consistent physicochemical transformation of AgNPs, causing artifacts in determination of median lethal concentration (LC50) and hindering the identification of Ag species responsible for the acute toxicity of AgNPs to Daphnia magna. This obstacle was overcome by using 8 h exposure in 0.1 mmol L−1 NaNO3 medium, in which we measured the 8-h LC50 of seven AgNPs with different sizes and coatings, and determined the concentrations of various Ag species. The LC50 as free Ag+ of the seven AgNPs (0.37–0.44 μg L−1) agreed very well with that of AgNO3 (0.40 μg L−1), and showed the lowest value compared to that as total Ag, total Ag+, and dissolved Ag, demonstrating free Ag+ is exclusively responsible for the acute toxicity of AgNPs to D. magna, while other Ag species in AgNPs have no contribution to the acute toxicity. Our results demonstrated the great importance of developing appropriate exposure media for evaluating risk of nanomaterials. PMID:25858866

  11. Exposure Medium: Key in Identifying Free Ag+ as the Exclusive Species of Silver Nanoparticles with Acute Toxicity to Daphnia magna

    NASA Astrophysics Data System (ADS)

    Shen, Mo-Hai; Zhou, Xiao-Xia; Yang, Xiao-Ya; Chao, Jing-Bo; Liu, Rui; Liu, Jing-Fu

    2015-04-01

    It is still not very clear what roles the various Ag species play in the toxicity of silver nanoparticles (AgNPs). In this study, we found that traditional exposure media result in uncontrollable but consistent physicochemical transformation of AgNPs, causing artifacts in determination of median lethal concentration (LC50) and hindering the identification of Ag species responsible for the acute toxicity of AgNPs to Daphnia magna. This obstacle was overcome by using 8 h exposure in 0.1 mmol L-1 NaNO3 medium, in which we measured the 8-h LC50 of seven AgNPs with different sizes and coatings, and determined the concentrations of various Ag species. The LC50 as free Ag+ of the seven AgNPs (0.37-0.44 μg L-1) agreed very well with that of AgNO3 (0.40 μg L-1), and showed the lowest value compared to that as total Ag, total Ag+, and dissolved Ag, demonstrating free Ag+ is exclusively responsible for the acute toxicity of AgNPs to D. magna, while other Ag species in AgNPs have no contribution to the acute toxicity. Our results demonstrated the great importance of developing appropriate exposure media for evaluating risk of nanomaterials.

  12. Ag/AgO Nanoparticles Grown via Time Dependent Double Mechanism in a 2D Layered Ni-PCP and Their Antibacterial Efficacy

    PubMed Central

    Agarwal, Rashmi A.; Gupta, Neeraj K.; Singh, Rajan; Nigam, Shivansh; Ateeq, Bushra

    2017-01-01

    A simple synthesis route for growth of Ag/AgO nanoparticles (NPs) in large quantitative yields with narrow size distribution from a functional, non-activated, Ni (II) based highly flexible porous coordination polymer (PCP) as a template has been demonstrated. This template is a stable storage media for the NPs larger than the pore diameters of the PCP. From EPR study it was concluded that NPs were synthesized via two mechanisms i.e. acid formation and the redox activity of the framework. Size range of Ag/AgO NPs is sensitive to choice of solvent and reaction time. Direct use of Ag/AgO@Ni-PCP shows influential growth inhibition towards Escherichia coli and the pathogen Salmonella typhimurium at extremely low concentrations. The pristine template shows no cytotoxic activity, even though it contains Ni nodes in the framework. PMID:28322256

  13. Ag/AgO Nanoparticles Grown via Time Dependent Double Mechanism in a 2D Layered Ni-PCP and Their Antibacterial Efficacy

    NASA Astrophysics Data System (ADS)

    Agarwal, Rashmi A.; Gupta, Neeraj K.; Singh, Rajan; Nigam, Shivansh; Ateeq, Bushra

    2017-03-01

    A simple synthesis route for growth of Ag/AgO nanoparticles (NPs) in large quantitative yields with narrow size distribution from a functional, non-activated, Ni (II) based highly flexible porous coordination polymer (PCP) as a template has been demonstrated. This template is a stable storage media for the NPs larger than the pore diameters of the PCP. From EPR study it was concluded that NPs were synthesized via two mechanisms i.e. acid formation and the redox activity of the framework. Size range of Ag/AgO NPs is sensitive to choice of solvent and reaction time. Direct use of Ag/AgO@Ni-PCP shows influential growth inhibition towards Escherichia coli and the pathogen Salmonella typhimurium at extremely low concentrations. The pristine template shows no cytotoxic activity, even though it contains Ni nodes in the framework.

  14. Enhanced positron trapping by Ag nanoclusters at low temperatures: A challenge of positron sensitivity to quantum dots

    NASA Astrophysics Data System (ADS)

    Zou, B.; Qi, N.; Liu, Z. W.; Chen, Z. Q.; Liu, H. Q.; Yi, D. Q.; Tang, Z.

    2017-03-01

    Microstructure evolution of three Al-Ag alloys with different Ag contents (1 wt. % Ag, 5 wt. % Ag, and 15 wt. % Ag) was studied by positron annihilation spectroscopy during the aging process. In situ measurements of the positron lifetime and Doppler broadening of annihilation radiation indicate the fast formation of Ag-rich clusters during natural aging of the alloys. The formation of Ag-rich clusters was further confirmed by coincidence Doppler broadening measurements. The Ag signal reflected by the Coincidence Doppler broadening spectrum increases with increasing Ag content and is further enhanced after subsequent artificial aging at 140 °C. This might be due to the increase in the size of Ag clusters. The temperature dependence of the Doppler broadening spectra between 10 K and 290 K was measured for the Al-Ag alloys after natural and artificial aging. Detrapping of positrons from Ag clusters with increasing temperature was observed for all the three Al-Ag alloys after natural aging and for the Al-1 wt. % Ag after artificial aging. This indicates that Ag clusters act as shallow positron trapping centers. The thermal detrapping of positrons becomes ambiguous with increasing Ag content in the alloy and is nearly invisible in the artificially aged Al-5 wt. % Ag and Al-15 wt. % Ag. The positron binding energy of the Ag cluster is roughly estimated to be about 18.8 meV and 50 meV in the Al-1 wt. % Ag sample after natural aging and artificial aging at 140 °C, respectively, which suggests that the confinement of positrons in the quantum-dot like state depends on the size or chemical composition of clusters. Theoretical calculations confirm positron trapping by Ag nanoclusters, and the confinement of positrons is enhanced with increasing Ag cluster size.

  15. Dependence of SERS enhancement on the chemical composition and structure of Ag/Au hybrid nanoparticles

    NASA Astrophysics Data System (ADS)

    Chaffin, Elise; O'Connor, Ryan T.; Barr, James; Huang, Xiaohua; Wang, Yongmei

    2016-08-01

    Noble metal nanoparticles (NPs) such as silver (Ag) and gold (Au) have unique plasmonic properties that give rise to surface enhanced Raman scattering (SERS). Generally, Ag NPs have much stronger plasmonic properties and, hence, provide stronger SERS signals than Au NPs. However, Ag NPs lack the chemical stability and biocompatibility of comparable Au NPs and typically exhibit the most intense plasmonic resonance at wavelengths much shorter than the optimal spectral region for many biomedical applications. To overcome these issues, various experimental efforts have been devoted to the synthesis of Ag/Au hybrid NPs for the purpose of SERS detections. However, a complete understanding on how the SERS enhancement depends on the chemical composition and structure of these nanoparticles has not been achieved. In this study, Mie theory and the discrete dipole approximation have been used to calculate the plasmonic spectra and near-field electromagnetic enhancements of Ag/Au hybrid NPs. In particular, we discuss how the electromagnetic enhancement depends on the mole fraction of Au in Ag/Au alloy NPs and how one may use extinction spectra to distinguish between Ag/Au alloyed NPs and Ag-Au core-shell NPs. We also show that for incident laser wavelengths between ˜410 nm and 520 nm, Ag/Au alloyed NPs provide better electromagnetic enhancement than pure Ag, pure Au, or Ag-Au core-shell structured NPs. Finally, we show that silica-core Ag/Au alloy shelled NPs provide even better performance than pure Ag/Au alloy or pure solid Ag and pure solid Au NPs. The theoretical results presented will be beneficial to the experimental efforts in optimizing the design of Ag/Au hybrid NPs for SERS-based detection methods.

  16. Anopheles gambiae Cadherin AgCad1 Binds the Cry4Ba Toxin of Bacillus thuringiensis israelensis and a Fragment of AgCad1 Synergizes Toxicity†

    PubMed Central

    Hua, Gang; Zhang, Rui; Abdullah, Mohd Amir F.; Adang, Michael J.

    2009-01-01

    A midgut cadherin AgCad1 cDNA was cloned from Anopheles gambiae larvae and analyzed for its possible role as a receptor for the Cry4Ba toxin of Bacillus thuringiensis strain israelensis. The AgCad1 cadherin encodes a putative 1735-residue protein organized into an extracellular region of 11 cadherin repeats (CR) and a membrane-proximal extracellular domain (MPED). AgCad1 mRNA was detected in midgut of larvae by polymerase chain reaction (PCR). The AgCad1 protein was localized, by immunochemistry of sectioned larvae, predominately to the microvilli in posterior midgut. The localization of Cry4Ba binding was determined by the same technique, and toxin bound microvilli in posterior midgut. The AgCad1 protein was present in brush border membrane fractions prepared from larvae, and Cry4Ba toxin bound the same-sized protein on blots of those fractions. The AgCad1 protein was expressed transiently in Drosophila melanogaster Schneider 2 (S2) cells. 125I-Cry4Ba toxin bound AgCad1 from S2 cells in a competitive manner. Cry4Ba bound to beads extracted 200 kDa AgCad1 and a 29 kDa fragment of AgCad1 from S2 cells. A peptide containing the AgCad1 region proximal to the cell (CR11-MPED) was expressed in Escherichia coli. Although Cry4Ba showed limited binding to CR11-MPED, the peptide synergized the toxicity of Cry4Ba to larvae. AgCad1 in the larval brush border is a binding protein for Cry4Ba toxin. On the basis of binding results and CR11-MPED synergism of Cry4Ba toxicity, AgCad1 is probably a Cry4Ba receptor. PMID:18407662

  17. Evaluation of Aquacel Ag for Autogenous Skin Donor Sites.

    PubMed

    Haith, Linwood R; Stair-Buchmann, Megan E; Ackerman, Bruce H; Herder, Diane; Reigart, Cynthia L; Stoering, Marla; Guilday, Robert E; Patton, Mary Lou; Ross, Kerry M

    2015-01-01

    An ongoing objective of burn research is to evaluate wound dressings and develop new treatments to expedite wound healing. This was a single-center, prospective, randomized, controlled study to evaluate the effectiveness of Aquacel Ag as a dressing for autogenous skin donor sites compared with Xeroform. We hypothesized that donor sites treated with Aquacel Ag would heal faster. Patients were considered for enrollment if they required skin grafting with two donor sites >100 cm at least 2 inches apart. Dressings were observed daily starting on post-op day #2 until discharge and then weekly in the outpatient burn clinic. Assessments evaluated pain, infection, and reapplication. Photographs were taken on post-op day #2, upon "90% re-epithelialization," and at post-op day #30-45. Scar assessments and blinded photographic reviews were completed to assess cosmetic healing. Twenty-nine patients completed the study. Re-epithelialization occurred faster with Xeroform (15.2 days vs. 17.6 days). Daily pain scores were higher with Xeroform (6.72 vs. 5.68) and Aquacel Ag needed to be replaced more often (1.72 times vs. 0.10 times). Three patients developed donor site infections with Aquacel Ag. Scar scores between the donor sites were not statistically significant. The blinded photo review concluded that Xeroform had a better cosmetic outcome (24 vs. 10%). Although patients complained of more pain with Xeroform, it demonstrated shorter healing times and better cosmetic outcomes. Aquacel Ag needed to be replaced more often and represented the only three donor site infections.

  18. Effects of TLC-Ag dressings on skin inflammation.

    PubMed

    Bisson, Jean-François; Hidalgo-Lucas, Sophie; Bouschbacher, Marielle; Thomassin, Laetitia

    2013-06-01

    The TLC-Ag dressings, a combination of technology lipido-colloid and silver salts, are used to promote healing in wounds with risks or signs of local infection, thanks to the antimicrobial properties of the silver salts. Nanocrystalline silver dressings containing nanocrystalline silver, also used to improve wound healing, present both antimicrobial and anti-inflammatory effects. The aim of this study was to investigate the anti-inflammatory effects of TLC-Ag dressings in a model of chronic skin inflammation induced by repeated application of 12-O-tetradecanoylphorbol-13-acetate to the skin of hairless mice, in comparison with TLC dressing, Silcryst nanocrystalline dressing, desonide cream 0.05%, a corticoid cream used as positive control, and gauze. Daily treatments of the mice began 7 days after the start of induction of chronic skin inflammation and lasted for 7 days. A macroscopic score was performed daily during the treatment period until the mice killing on day 15 and skin samples were taken for histopathological analysis. TLC-Ag reduced significantly the macroscopic score of chronic skin inflammation from day 10 in comparison with gauze and TLC dressing, similarly to Silcryst nanocrystalline dressing and desonide cream, which presented the best anti-inflammatory effects. No significant differences were observed between TLC dressing and gauze. TLC-Ag reduced significantly the microscopic score of chronic skin inflammation in comparison with TLC dressing and gauze, similarly to Silcryst nanocrystalline dressing but significantly less than desonide cream. These results demonstrate that TLC-Ag dressings present significant anti-inflammatory effects on chronic skin inflammation. They can improve wound healing, due to both the antimicrobial and anti-inflammatory properties.

  19. Accelerated CO2 transport on surface of AgO nanoparticles in ionic liquid BMIMBF4

    NASA Astrophysics Data System (ADS)

    Ji, Dahye; Kang, Yong Soo; Kang, Sang Wook

    2015-11-01

    The AgO nanoparticles were utilized for a CO2 separation membrane. The AgO nanoparticles were successfully generated in ionic liquid 1-butyl-3-methyl imidazolium tetrafluoroborate (BMIMBF4) by favorable interaction between the surface of particles and the counteranion of BMIMBF4. The generated AgO nanoparticles were confirmed by TEM, and the average size was 20 nm. Coordinative interactions of dissociated AgO particles with BMIM+BF4- were investigated by FT-Raman spectroscopy. When the ionic liquid BMIMBF4 containing AgO nanoparticles was utilized as a CO2 separation membrane, the separation performance was largely enhanced.

  20. Inheritance of Ag-stainability of the nucleolus organizer regions in domestic sheep, Ovis aries.

    PubMed

    Henderson, L M; Bruère, A N

    1980-01-01

    One of the nucleolus organizer regions of sheep is located on chromosome 25, which forms one arm of a Robertsonian translocation chromosome (t3). By mating sheep heterozygous and homozygous for the t3 chromosome, and with various Ag-staining frequencies and deposit sizes, the heritability of the Ag-stainability could be determined. The inheritance of Ag-stainability was studied in 54 sheep in five pedigree groups. It was shown that the Ag-staining of a NOR is a heritable property. Matings of animals heterozygous for Ag-stainability provided an estimate of recombination frequency of the short arm of t3.