Science.gov

Sample records for af gene cluster

  1. Supervised clustering of genes

    PubMed Central

    Dettling, Marcel; Bühlmann, Peter

    2002-01-01

    Background We focus on microarray data where experiments monitor gene expression in different tissues and where each experiment is equipped with an additional response variable such as a cancer type. Although the number of measured genes is in the thousands, it is assumed that only a few marker components of gene subsets determine the type of a tissue. Here we present a new method for finding such groups of genes by directly incorporating the response variables into the grouping process, yielding a supervised clustering algorithm for genes. Results An empirical study on eight publicly available microarray datasets shows that our algorithm identifies gene clusters with excellent predictive potential, often superior to classification with state-of-the-art methods based on single genes. Permutation tests and bootstrapping provide evidence that the output is reasonably stable and more than a noise artifact. Conclusions In contrast to other methods such as hierarchical clustering, our algorithm identifies several gene clusters whose expression levels clearly distinguish the different tissue types. The identification of such gene clusters is potentially useful for medical diagnostics and may at the same time reveal insights into functional genomics. PMID:12537558

  2. Identification and characterization of the afsR homologue regulatory gene from Streptomyces peucetius ATCC 27952.

    PubMed

    Parajuli, Niranjan; Viet, Hung Trinh; Ishida, Kenji; Tong, Hang Thi; Lee, Hei Chan; Liou, Kwangkyoung; Sohng, Jae Kyung

    2005-01-01

    We have isolated an afsR homologue, called afsR-p, through genome analysis of Streptomyces peucetius ATCC 27952. AfsR-p shares 60% sequence identity with AfsR from Streptomyces coelicolor A3 (2). afsR-p was expressed under the control of the ermE* promoter in its hosts S. peucetius, Streptomyces lividans TK 24, Streptomyces clavuligerus and Streptomyces griseus. We observed overproduction of doxorubicin (4-fold) in S. peucetius, gamma-actinorhodin (2.6-fold) in S. lividans, clavulanic acid (1.5-fold) in S. clavuligerus and streptomycin (slight) in S. griseus. Overproduction was due to expression of the gene in these strains as compared to the wild-type strains harboring the vector only. Comparative study of the expression of afsR-p revealed that regulatory networking in Streptomyces is not uniform. We speculate that phosphorylated AfsR-p becomes bound to the promoter region of afsS. The latter activates other regulatory genes, including pathway regulatory genes, and induces the production of secondary metabolites including antibiotics. We identified specific conserved amino acids and exploited them for the isolation of the partial sequence of the afsR homologue from S. clavuligerus and Streptomyces achromogens (rubradirin producer). Such findings provide additional evidence for the presence of a serine/threonine and tyrosine kinase-dependent global regulatory network in Streptomyces.

  3. Identification and characterization of the afsR homologue regulatory gene from Streptomyces peucetius ATCC 27952.

    PubMed

    Parajuli, Niranjan; Viet, Hung Trinh; Ishida, Kenji; Tong, Hang Thi; Lee, Hei Chan; Liou, Kwangkyoung; Sohng, Jae Kyung

    2005-01-01

    We have isolated an afsR homologue, called afsR-p, through genome analysis of Streptomyces peucetius ATCC 27952. AfsR-p shares 60% sequence identity with AfsR from Streptomyces coelicolor A3 (2). afsR-p was expressed under the control of the ermE* promoter in its hosts S. peucetius, Streptomyces lividans TK 24, Streptomyces clavuligerus and Streptomyces griseus. We observed overproduction of doxorubicin (4-fold) in S. peucetius, gamma-actinorhodin (2.6-fold) in S. lividans, clavulanic acid (1.5-fold) in S. clavuligerus and streptomycin (slight) in S. griseus. Overproduction was due to expression of the gene in these strains as compared to the wild-type strains harboring the vector only. Comparative study of the expression of afsR-p revealed that regulatory networking in Streptomyces is not uniform. We speculate that phosphorylated AfsR-p becomes bound to the promoter region of afsS. The latter activates other regulatory genes, including pathway regulatory genes, and induces the production of secondary metabolites including antibiotics. We identified specific conserved amino acids and exploited them for the isolation of the partial sequence of the afsR homologue from S. clavuligerus and Streptomyces achromogens (rubradirin producer). Such findings provide additional evidence for the presence of a serine/threonine and tyrosine kinase-dependent global regulatory network in Streptomyces. PMID:15921897

  4. Persistence drives gene clustering in bacterial genomes

    PubMed Central

    Fang, Gang; Rocha, Eduardo PC; Danchin, Antoine

    2008-01-01

    Background Gene clustering plays an important role in the organization of the bacterial chromosome and several mechanisms have been proposed to explain its extent. However, the controversies raised about the validity of each of these mechanisms remind us that the cause of this gene organization remains an open question. Models proposed to explain clustering did not take into account the function of the gene products nor the likely presence or absence of a given gene in a genome. However, genomes harbor two very different categories of genes: those genes present in a majority of organisms – persistent genes – and those present in very few organisms – rare genes. Results We show that two classes of genes are significantly clustered in bacterial genomes: the highly persistent and the rare genes. The clustering of rare genes is readily explained by the selfish operon theory. Yet, genes persistently present in bacterial genomes are also clustered and we try to understand why. We propose a model accounting specifically for such clustering, and show that indispensability in a genome with frequent gene deletion and insertion leads to the transient clustering of these genes. The model describes how clusters are created via the gene flux that continuously introduces new genes while deleting others. We then test if known selective processes, such as co-transcription, physical interaction or functional neighborhood, account for the stabilization of these clusters. Conclusion We show that the strong selective pressure acting on the function of persistent genes, in a permanent state of flux of genes in bacterial genomes, maintaining their size fairly constant, that drives persistent genes clustering. A further selective stabilization process might contribute to maintaining the clustering. PMID:18179692

  5. Biological cluster evaluation for gene function prediction.

    PubMed

    Klie, Sebastian; Nikoloski, Zoran; Selbig, Joachim

    2014-06-01

    Recent advances in high-throughput omics techniques render it possible to decode the function of genes by using the "guilt-by-association" principle on biologically meaningful clusters of gene expression data. However, the existing frameworks for biological evaluation of gene clusters are hindered by two bottleneck issues: (1) the choice for the number of clusters, and (2) the external measures which do not take in consideration the structure of the analyzed data and the ontology of the existing biological knowledge. Here, we address the identified bottlenecks by developing a novel framework that allows not only for biological evaluation of gene expression clusters based on existing structured knowledge, but also for prediction of putative gene functions. The proposed framework facilitates propagation of statistical significance at each of the following steps: (1) estimating the number of clusters, (2) evaluating the clusters in terms of novel external structural measures, (3) selecting an optimal clustering algorithm, and (4) predicting gene functions. The framework also includes a method for evaluation of gene clusters based on the structure of the employed ontology. Moreover, our method for obtaining a probabilistic range for the number of clusters is demonstrated valid on synthetic data and available gene expression profiles from Saccharomyces cerevisiae. Finally, we propose a network-based approach for gene function prediction which relies on the clustering of optimal score and the employed ontology. Our approach effectively predicts gene function on the Saccharomyces cerevisiae data set and is also employed to obtain putative gene functions for an Arabidopsis thaliana data set.

  6. POU2AF1 Functions in the Human Airway Epithelium To Regulate Expression of Host Defense Genes.

    PubMed

    Zhou, Haixia; Brekman, Angelika; Zuo, Wu-Lin; Ou, Xuemei; Shaykhiev, Renat; Agosto-Perez, Francisco J; Wang, Rui; Walters, Matthew S; Salit, Jacqueline; Strulovici-Barel, Yael; Staudt, Michelle R; Kaner, Robert J; Mezey, Jason G; Crystal, Ronald G; Wang, Guoqing

    2016-04-01

    In the process of seeking novel lung host defense regulators by analyzing genome-wide RNA sequence data from normal human airway epithelium, we detected expression of POU domain class 2-associating factor 1 (POU2AF1), a known transcription cofactor previously thought to be expressed only in lymphocytes. Lymphocyte contamination of human airway epithelial samples obtained by bronchoscopy and brushing was excluded by immunohistochemistry staining, the observation of upregulation of POU2AF1 in purified airway basal stem/progenitor cells undergoing differentiation, and analysis of differentiating single basal cell clones. Lentivirus-mediated upregulation of POU2AF1 in airway basal cells induced upregulation of host defense genes, including MX1, IFIT3, IFITM, and known POU2AF1 downstream genes HLA-DRA, ID2, ID3, IL6, and BCL6. Interestingly, expression of these genes paralleled changes of POU2AF1 expression during airway epithelium differentiation in vitro, suggesting POU2AF1 helps to maintain a host defense tone even in pathogen-free condition. Cigarette smoke, a known risk factor for airway infection, suppressed POU2AF1 expression both in vivo in humans and in vitro in human airway epithelial cultures, accompanied by deregulation of POU2AF1 downstream genes. Finally, enhancing POU2AF1 expression in human airway epithelium attenuated the suppression of host defense genes by smoking. Together, these findings suggest a novel function of POU2AF1 as a potential regulator of host defense genes in the human airway epithelium. PMID:26927796

  7. POU2AF1 Functions in the Human Airway Epithelium To Regulate Expression of Host Defense Genes.

    PubMed

    Zhou, Haixia; Brekman, Angelika; Zuo, Wu-Lin; Ou, Xuemei; Shaykhiev, Renat; Agosto-Perez, Francisco J; Wang, Rui; Walters, Matthew S; Salit, Jacqueline; Strulovici-Barel, Yael; Staudt, Michelle R; Kaner, Robert J; Mezey, Jason G; Crystal, Ronald G; Wang, Guoqing

    2016-04-01

    In the process of seeking novel lung host defense regulators by analyzing genome-wide RNA sequence data from normal human airway epithelium, we detected expression of POU domain class 2-associating factor 1 (POU2AF1), a known transcription cofactor previously thought to be expressed only in lymphocytes. Lymphocyte contamination of human airway epithelial samples obtained by bronchoscopy and brushing was excluded by immunohistochemistry staining, the observation of upregulation of POU2AF1 in purified airway basal stem/progenitor cells undergoing differentiation, and analysis of differentiating single basal cell clones. Lentivirus-mediated upregulation of POU2AF1 in airway basal cells induced upregulation of host defense genes, including MX1, IFIT3, IFITM, and known POU2AF1 downstream genes HLA-DRA, ID2, ID3, IL6, and BCL6. Interestingly, expression of these genes paralleled changes of POU2AF1 expression during airway epithelium differentiation in vitro, suggesting POU2AF1 helps to maintain a host defense tone even in pathogen-free condition. Cigarette smoke, a known risk factor for airway infection, suppressed POU2AF1 expression both in vivo in humans and in vitro in human airway epithelial cultures, accompanied by deregulation of POU2AF1 downstream genes. Finally, enhancing POU2AF1 expression in human airway epithelium attenuated the suppression of host defense genes by smoking. Together, these findings suggest a novel function of POU2AF1 as a potential regulator of host defense genes in the human airway epithelium.

  8. Clustering of High Throughput Gene Expression Data

    PubMed Central

    Pirim, Harun; Ekşioğlu, Burak; Perkins, Andy; Yüceer, Çetin

    2012-01-01

    High throughput biological data need to be processed, analyzed, and interpreted to address problems in life sciences. Bioinformatics, computational biology, and systems biology deal with biological problems using computational methods. Clustering is one of the methods used to gain insight into biological processes, particularly at the genomics level. Clearly, clustering can be used in many areas of biological data analysis. However, this paper presents a review of the current clustering algorithms designed especially for analyzing gene expression data. It is also intended to introduce one of the main problems in bioinformatics - clustering gene expression data - to the operations research community. PMID:23144527

  9. Clustering of gene ontology terms in genomes.

    PubMed

    Tiirikka, Timo; Siermala, Markku; Vihinen, Mauno

    2014-10-25

    Although protein coding genes occupy only a small fraction of genomes in higher species, they are not randomly distributed within or between chromosomes. Clustering of genes with related function(s) and/or characteristics has been evident at several different levels. To study how common the clustering of functionally related genes is and what kind of functions the end products of these genes are involved, we collected gene ontology (GO) terms for complete genomes and developed a method to detect previously undefined gene clustering. Exhaustive analysis was performed for seven widely studied species ranging from human to Escherichia coli. To overcome problems related to varying gene lengths and densities, a novel method was developed and a fixed number of genes were analyzed irrespective of the genome span covered. Statistically very significant GO term clustering was apparent in all the investigated genomes. The analysis window, which ranged from 5 to 50 consecutive genes, revealed extensive GO term clusters for genes with widely varying functions. Here, the most interesting and significant results are discussed and the complete dataset for each analyzed species is available at the GOme database at http://bioinf.uta.fi/GOme. The results indicated that clusters of genes with related functions are very common, not only in bacteria, in which operons are frequent, but also in all the studied species irrespective of how complex they are. There are some differences between species but in all of them GO term clusters are common and of widely differing sizes. The presented method can be applied to analyze any genome or part of a genome for which descriptive features are available, and thus is not restricted to ontology terms. This method can also be applied to investigate gene and protein expression patterns. The results pave a way for further studies of mechanisms that shape genome structure and evolutionary forces related to them. PMID:24995610

  10. Chicken rRNA Gene Cluster Structure

    PubMed Central

    Dyomin, Alexander G.; Koshel, Elena I.; Kiselev, Artem M.; Saifitdinova, Alsu F.; Galkina, Svetlana A.; Fukagawa, Tatsuo; Kostareva, Anna A.

    2016-01-01

    Ribosomal RNA (rRNA) genes, whose activity results in nucleolus formation, constitute an extremely important part of genome. Despite the extensive exploration into avian genomes, no complete description of avian rRNA gene primary structure has been offered so far. We publish a complete chicken rRNA gene cluster sequence here, including 5’ETS (1836 bp), 18S rRNA gene (1823 bp), ITS1 (2530 bp), 5.8S rRNA gene (157 bp), ITS2 (733 bp), 28S rRNA gene (4441 bp) and 3’ETS (343 bp). The rRNA gene cluster sequence of 11863 bp was assembled from raw reads and deposited to GenBank under KT445934 accession number. The assembly was validated through in situ fluorescent hybridization analysis on chicken metaphase chromosomes using computed and synthesized specific probes, as well as through the reference assembly against de novo assembled rRNA gene cluster sequence using sequenced fragments of BAC-clone containing chicken NOR (nucleolus organizer region). The results have confirmed the chicken rRNA gene cluster validity. PMID:27299357

  11. Cloning and characterization of two duplicated interleukin-17A/F2 genes in common carp (Cyprinus carpio L.): Transcripts expression and bioactivity of recombinant IL-17A/F2.

    PubMed

    Li, Hongxia; Yu, Juhua; Li, Jianlin; Tang, Yongkai; Yu, Fan; Zhou, Jie; Yu, Wenjuan

    2016-04-01

    Interleukin-17 (IL-17) plays an important role in inflammation and host defense in mammals. In this study, we identified two duplicated IL-17A/F2 genes in the common carp (Cyprinus carpio) (ccIL-17A/F2a and ccIL-17A/F2b), putative encoded proteins contain 140 amino acids (aa) with conserved IL-17 family motifs. Expression analysis revealed high constitutive expression of ccIL-17A/F2s in mucosal tissues, including gill, skin and intestine, their expression could be induced by Aeromonas hydrophila, suggesting a potential role in mucosal immunity. Recombinant ccIL-17A/F2a protein (rccIL-17A/F2a) produced in Escherichia coli could induce the expression of proinflammatory cytokines (IL-1β) and the antimicrobial peptides S100A1, S100A10a and S100A10b in the primary kidney in a dose- and time-dependent manner. Above findings suggest that ccIL-17A/F2 plays an important role in both proinflammatory and innate immunity. Two duplicated ccIL-17A/F2s showed different expression level with ccIL-17A/F2a higher than b, comparison of two 5' regulatory regions indicated the length from anticipated promoter to transcriptional start site (TSS) and putative transcription factor binding site (TFBS) were different. Promoter activity of ccIL-17A/F2a was 2.5 times of ccIL-17A/F2b which consistent with expression results of two genes. These suggest mutations in 5'regulatory region contributed to the differentiation of duplicated genes. To our knowledge, this is the first report to analyze 5'regulatory region of piscine IL-17 family genes. PMID:26921542

  12. AF-DHNN: Fuzzy Clustering and Inference-Based Node Fault Diagnosis Method for Fire Detection

    PubMed Central

    Jin, Shan; Cui, Wen; Jin, Zhigang; Wang, Ying

    2015-01-01

    Wireless Sensor Networks (WSNs) have been utilized for node fault diagnosis in the fire detection field since the 1990s. However, the traditional methods have some problems, including complicated system structures, intensive computation needs, unsteady data detection and local minimum values. In this paper, a new diagnosis mechanism for WSN nodes is proposed, which is based on fuzzy theory and an Adaptive Fuzzy Discrete Hopfield Neural Network (AF-DHNN). First, the original status of each sensor over time is obtained with two features. One is the root mean square of the filtered signal (FRMS), the other is the normalized summation of the positive amplitudes of the difference spectrum between the measured signal and the healthy one (NSDS). Secondly, distributed fuzzy inference is introduced. The evident abnormal nodes’ status is pre-alarmed to save time. Thirdly, according to the dimensions of the diagnostic data, an adaptive diagnostic status system is established with a Fuzzy C-Means Algorithm (FCMA) and Sorting and Classification Algorithm to reducing the complexity of the fault determination. Fourthly, a Discrete Hopfield Neural Network (DHNN) with iterations is improved with the optimization of the sensors’ detected status information and standard diagnostic levels, with which the associative memory is achieved, and the search efficiency is improved. The experimental results show that the AF-DHNN method can diagnose abnormal WSN node faults promptly and effectively, which improves the WSN reliability. PMID:26193280

  13. AfAP2-1, An Age-Dependent Gene of Aechmea fasciata, Responds to Exogenous Ethylene Treatment

    PubMed Central

    Lei, Ming; Li, Zhi-Ying; Wang, Jia-Bin; Fu, Yun-Liu; Ao, Meng-Fei; Xu, Li

    2016-01-01

    The Bromeliaceae family is one of the most morphologically diverse families with a pantropical distribution. To schedule an appropriate flowering time for bromeliads, ethylene is commonly used to initiate flower development in adult plants. However, the mechanism by which ethylene induces flowering in adult bromeliads remains unknown. Here, we identified an APETALA2 (AP2)-like gene, AfAP2-1, in Aechmea fasciata. AfAP2-1 contains two AP2 domains and is a nuclear-localized protein. It functions as a transcriptional activator, and the activation domain is located in the C-terminal region. The expression level of AfAP2-1 is higher in juvenile plants than in adult plants, and the AfAP2-1 transcript level was rapidly and transiently reduced in plants treated with exogenous ethylene. Overexpression of AfAP2-1 in Arabidopsis thaliana results in an extremely delayed flowering phenotype. These results suggested that AfAP2-1 responds to ethylene and is a putative age-dependent flowering regulator in A. fasciata. PMID:26927090

  14. AfAP2-1, An Age-Dependent Gene of Aechmea fasciata, Responds to Exogenous Ethylene Treatment.

    PubMed

    Lei, Ming; Li, Zhi-Ying; Wang, Jia-Bin; Fu, Yun-Liu; Ao, Meng-Fei; Xu, Li

    2016-01-01

    The Bromeliaceae family is one of the most morphologically diverse families with a pantropical distribution. To schedule an appropriate flowering time for bromeliads, ethylene is commonly used to initiate flower development in adult plants. However, the mechanism by which ethylene induces flowering in adult bromeliads remains unknown. Here, we identified an APETALA2 (AP2)-like gene, AfAP2-1, in Aechmea fasciata. AfAP2-1 contains two AP2 domains and is a nuclear-localized protein. It functions as a transcriptional activator, and the activation domain is located in the C-terminal region. The expression level of AfAP2-1 is higher in juvenile plants than in adult plants, and the AfAP2-1 transcript level was rapidly and transiently reduced in plants treated with exogenous ethylene. Overexpression of AfAP2-1 in Arabidopsis thaliana results in an extremely delayed flowering phenotype. These results suggested that AfAP2-1 responds to ethylene and is a putative age-dependent flowering regulator in A. fasciata. PMID:26927090

  15. Clustering Genes of Common Evolutionary History

    PubMed Central

    Gori, Kevin; Suchan, Tomasz; Alvarez, Nadir; Goldman, Nick; Dessimoz, Christophe

    2016-01-01

    Phylogenetic inference can potentially result in a more accurate tree using data from multiple loci. However, if the loci are incongruent—due to events such as incomplete lineage sorting or horizontal gene transfer—it can be misleading to infer a single tree. To address this, many previous contributions have taken a mechanistic approach, by modeling specific processes. Alternatively, one can cluster loci without assuming how these incongruencies might arise. Such “process-agnostic” approaches typically infer a tree for each locus and cluster these. There are, however, many possible combinations of tree distance and clustering methods; their comparative performance in the context of tree incongruence is largely unknown. Furthermore, because standard model selection criteria such as AIC cannot be applied to problems with a variable number of topologies, the issue of inferring the optimal number of clusters is poorly understood. Here, we perform a large-scale simulation study of phylogenetic distances and clustering methods to infer loci of common evolutionary history. We observe that the best-performing combinations are distances accounting for branch lengths followed by spectral clustering or Ward’s method. We also introduce two statistical tests to infer the optimal number of clusters and show that they strongly outperform the silhouette criterion, a general-purpose heuristic. We illustrate the usefulness of the approach by 1) identifying errors in a previous phylogenetic analysis of yeast species and 2) identifying topological incongruence among newly sequenced loci of the globeflower fly genus Chiastocheta. We release treeCl, a new program to cluster genes of common evolutionary history (http://git.io/treeCl). PMID:26893301

  16. Clustering Genes of Common Evolutionary History.

    PubMed

    Gori, Kevin; Suchan, Tomasz; Alvarez, Nadir; Goldman, Nick; Dessimoz, Christophe

    2016-06-01

    Phylogenetic inference can potentially result in a more accurate tree using data from multiple loci. However, if the loci are incongruent-due to events such as incomplete lineage sorting or horizontal gene transfer-it can be misleading to infer a single tree. To address this, many previous contributions have taken a mechanistic approach, by modeling specific processes. Alternatively, one can cluster loci without assuming how these incongruencies might arise. Such "process-agnostic" approaches typically infer a tree for each locus and cluster these. There are, however, many possible combinations of tree distance and clustering methods; their comparative performance in the context of tree incongruence is largely unknown. Furthermore, because standard model selection criteria such as AIC cannot be applied to problems with a variable number of topologies, the issue of inferring the optimal number of clusters is poorly understood. Here, we perform a large-scale simulation study of phylogenetic distances and clustering methods to infer loci of common evolutionary history. We observe that the best-performing combinations are distances accounting for branch lengths followed by spectral clustering or Ward's method. We also introduce two statistical tests to infer the optimal number of clusters and show that they strongly outperform the silhouette criterion, a general-purpose heuristic. We illustrate the usefulness of the approach by 1) identifying errors in a previous phylogenetic analysis of yeast species and 2) identifying topological incongruence among newly sequenced loci of the globeflower fly genus Chiastocheta We release treeCl, a new program to cluster genes of common evolutionary history (http://git.io/treeCl). PMID:26893301

  17. Human PSENEN and U2AF1L4 genes are concertedly regulated by a genuine bidirectional promoter.

    PubMed

    Didych, D A; Shamsutdinov, M F; Smirnov, N A; Akopov, S B; Monastyrskaya, G S; Uspenskaya, N Y; Nikolaev, L G; Sverdlov, E D

    2013-02-15

    Head-to-head genes with a short distance between their transcription start sites may constitute up to 10% of all genes in the genomes of various species. It was hypothesized that this intergenic space may represent bidirectional promoters which are able to initiate transcription of both genes, but the true bidirectionality was proved only for a few of them. We present experimental evidence that, according to several criteria, a 269 bp region located between the PSENEN and U2AF1L4 human genes is a genuine bidirectional promoter regulating a concerted divergent transcription of these genes. Concerted transcription of PSENEN and U2AF1L4 can be necessary for regulation of T-cell activity. PMID:23246698

  18. Combined clustering models for the analysis of gene expression

    SciTech Connect

    Angelova, M. Ellman, J.

    2010-02-15

    Clustering has become one of the fundamental tools for analyzing gene expression and producing gene classifications. Clustering models enable finding patterns of similarity in order to understand gene function, gene regulation, cellular processes and sub-types of cells. The clustering results however have to be combined with sequence data or knowledge about gene functionality in order to make biologically meaningful conclusions. In this work, we explore a new model that integrates gene expression with sequence or text information.

  19. Alteration of the SETBP1 Gene and Splicing Pathway Genes SF3B1, U2AF1, and SRSF2 in Childhood Acute Myeloid Leukemia

    PubMed Central

    Choi, Hyun-Woo; Kim, Hye-Ran; Baek, Hee-Jo; Kook, Hoon; Cho, Duck; Shin, Jong-Hee; Suh, Soon-Pal; Ryang, Dong-Wook

    2015-01-01

    Background Recurrent somatic SET-binding protein 1 (SETBP1) and splicing pathway gene mutations have recently been found in atypical chronic myeloid leukemia and other hematologic malignancies. These mutations have been comprehensively analyzed in adult AML, but not in childhood AML. We investigated possible alteration of the SETBP1, splicing factor 3B subunit 1 (SF3B1), U2 small nuclear RNA auxiliary factor 1 (U2AF1), and serine/arginine-rich splicing factor 2 (SRSF2) genes in childhood AML. Methods Cytogenetic and molecular analyses were performed to reveal chromosomal and genetic alterations. Sequence alterations in the SETBP1, SF3B1, U2AF1, and SRSF2 genes were examined by using direct sequencing in a cohort of 53 childhood AML patients. Results Childhood AML patients did not harbor any recurrent SETBP1 gene mutations, although our study did identify a synonymous mutation in one patient. None of the previously reported aberrations in the mutational hotspot of SF3B1, U2AF1, and SRSF2 were identified in any of the 53 patients. Conclusions Alterations of the SETBP1 gene or SF3B1, U2AF1, and SRSF2 genes are not common genetic events in childhood AML, implying that the mutations are unlikely to exert a driver effect in myeloid leukemogenesis during childhood. PMID:25553291

  20. Functional Gene Group Summarization by Clustering MEDLINE Abstract Sentences

    PubMed Central

    Yang, Jianji; Cohen, Aaron M.; Hersh, William R.

    2006-01-01

    Tools to automatically summarize functional gene group information from the biomedical literature will help genomics researchers both better interpret gene expression data and understand biological pathways. In this study, we built a system that takes in a set of genes and MEDLINE records and outputs clusters of genes along with summaries of each cluster by sentence extraction from MEDLINE abstracts. Our preliminary use-case evaluation shows that this approach can identify gene clusters similar to manually generated groupings. PMID:17238770

  1. Microarray gene cluster identification and annotation through cluster ensemble and EM-based informative textual summarization.

    PubMed

    Hu, Xiaohua; Park, E K; Zhang, Xiaodan

    2009-09-01

    Generating high-quality gene clusters and identifying the underlying biological mechanism of the gene clusters are the important goals of clustering gene expression analysis. To get high-quality cluster results, most of the current approaches rely on choosing the best cluster algorithm, in which the design biases and assumptions meet the underlying distribution of the dataset. There are two issues for this approach: 1) usually, the underlying data distribution of the gene expression datasets is unknown and 2) there are so many clustering algorithms available and it is very challenging to choose the proper one. To provide a textual summary of the gene clusters, the most explored approach is the extractive approach that essentially builds upon techniques borrowed from the information retrieval, in which the objective is to provide terms to be used for query expansion, and not to act as a stand-alone summary for the entire document sets. Another drawback is that the clustering quality and cluster interpretation are treated as two isolated research problems and are studied separately. In this paper, we design and develop a unified system Gene Expression Miner to address these challenging issues in a principled and general manner by integrating cluster ensemble, text clustering, and multidocument summarization and provide an environment for comprehensive gene expression data analysis. We present a novel cluster ensemble approach to generate high-quality gene cluster. In our text summarization module, given a gene cluster, our expectation-maximization based algorithm can automatically identify subtopics and extract most probable terms for each topic. Then, the extracted top k topical terms from each subtopic are combined to form the biological explanation of each gene cluster. Experimental results demonstrate that our system can obtain high-quality clusters and provide informative key terms for the gene clusters.

  2. Evolution of Hox gene clusters in deuterostomes.

    PubMed

    Pascual-Anaya, Juan; D'Aniello, Salvatore; Kuratani, Shigeru; Garcia-Fernàndez, Jordi

    2013-01-01

    Hox genes, with their similar roles in animals as evolutionarily distant as humans and flies, have fascinated biologists since their discovery nearly 30 years ago. During the last two decades, reports on Hox genes from a still growing number of eumetazoan species have increased our knowledge on the Hox gene contents of a wide range of animal groups. In this review, we summarize the current Hox inventory among deuterostomes, not only in the well-known teleosts and tetrapods, but also in the earlier vertebrate and invertebrate groups. We draw an updated picture of the ancestral repertoires of the different lineages, a sort of "genome Hox bar-code" for most clades. This scenario allows us to infer differential gene or cluster losses and gains that occurred during deuterostome evolution, which might be causally linked to the morphological changes that led to these widely diverse animal taxa. Finally, we focus on the challenging family of posterior Hox genes, which probably originated through independent tandem duplication events at the origin of each of the ambulacrarian, cephalochordate and vertebrate/urochordate lineages.

  3. Evolution of Hox gene clusters in deuterostomes

    PubMed Central

    2013-01-01

    Hox genes, with their similar roles in animals as evolutionarily distant as humans and flies, have fascinated biologists since their discovery nearly 30 years ago. During the last two decades, reports on Hox genes from a still growing number of eumetazoan species have increased our knowledge on the Hox gene contents of a wide range of animal groups. In this review, we summarize the current Hox inventory among deuterostomes, not only in the well-known teleosts and tetrapods, but also in the earlier vertebrate and invertebrate groups. We draw an updated picture of the ancestral repertoires of the different lineages, a sort of “genome Hox bar-code” for most clades. This scenario allows us to infer differential gene or cluster losses and gains that occurred during deuterostome evolution, which might be causally linked to the morphological changes that led to these widely diverse animal taxa. Finally, we focus on the challenging family of posterior Hox genes, which probably originated through independent tandem duplication events at the origin of each of the ambulacrarian, cephalochordate and vertebrate/urochordate lineages. PMID:23819519

  4. The rise of operon-like gene clusters in plants.

    PubMed

    Boycheva, Svetlana; Daviet, Laurent; Wolfender, Jean-Luc; Fitzpatrick, Teresa B

    2014-07-01

    Gene clusters are common features of prokaryotic genomes also present in eukaryotes. Most clustered genes known are involved in the biosynthesis of secondary metabolites. Although horizontal gene transfer is a primary source of prokaryotic gene cluster (operon) formation and has been reported to occur in eukaryotes, the predominant source of cluster formation in eukaryotes appears to arise de novo or through gene duplication followed by neo- and sub-functionalization or translocation. Here we aim to provide an overview of the current knowledge and open questions related to plant gene cluster functioning, assembly, and regulation. We also present potential research approaches and point out the benefits of a better understanding of gene clusters in plants for both fundamental and applied plant science.

  5. Streptomyces coelicolor as an expression host for heterologous gene clusters.

    PubMed

    Gomez-Escribano, Juan Pablo; Bibb, Mervyn J

    2012-01-01

    The expression of a gene or a set of genes from one organism in a different species is known as "heterologous expression." In actinomycetes, prolific producers of natural products, heterologous gene expression has been used to confirm the clustering of secondary metabolite biosynthetic genes, to analyze natural product biosynthesis, to produce variants of natural products by genetic engineering, and to discover new compounds by screening genomic libraries. Recent advances in DNA sequencing have enabled the rapid and affordable sequencing of actinomycete genomes and revealed a large number of secondary metabolite gene clusters with no known products. Heterologous expression of these cryptic gene clusters combined with comparative metabolic profiling provides an important means to identify potentially novel compounds. In this chapter, the methods and strategies used to heterologously express actinomycete gene clusters, including the techniques used for cloning secondary metabolite gene clusters, the Streptomyces hosts used for their expression, and the techniques employed to analyze their products by metabolic profiling, are described.

  6. afsR is a pleiotropic but conditionally required regulatory gene for antibiotic production in Streptomyces coelicolor A3(2).

    PubMed

    Floriano, B; Bibb, M

    1996-07-01

    The N-terminal region of AfsR, a putative pleiotropic regulatory protein for antibiotic production in Streptomyces coelicolor A3(2), is homologous to RedD and Actil-ORF4, pathway-specific regulatory proteins required for the production of the antibiotics undecylprodigiosin (Red) and actinorhodin (Act), respectively. The recent identification of afsS, which lies immediately 3' of afsR and which stimulates antibiotic production when cloned at high copy number, questioned whether afsR was a pleiotropic regulatory gene. In this study we demonstrate that multiple copies of afsR can stimulate both Act and Red production and that, despite its homology, it cannot substitute for the pathway-specific regulatory genes. Moreover, an in-frame deletion that removed most of the afsR coding sequence resulted in loss of Act and Red production, and a marked reduction in the synthesis of the calcium-dependent antibiotic (CDA), but only under some (non-permissive) nutritional conditions. Although additional copies of afsR resulted in elevated levels of the actII-ORF4 and redD transcripts, transcription of the pathway-specific regulatory genes under non-permissive conditions was unaffected by deletion of afsR. While afsR may operate independently of the pathway-specific regulatory proteins to influence antibiotic production, the activity of ActII-ORF4 and of RedD under non-permissive conditions could depend on interaction with, or modification by, AfsR.

  7. Genetic characteristics of vancomycin resistance gene cluster in Enterococcus spp.

    PubMed

    Chunhui, Chen; Xiaogang, Xu

    2015-05-01

    Vancomycin resistant enterococci has become an important nosocomial pathogen since it is discovered in late 1980s. The products, encoded by vancomycin resistant gene cluster in enterococci, catalyze the synthesis of peptidoglycan precursors with low affinity with glycopeptide antibiotics including vancomycin and teicoplanin and lead to resistance. These vancomycin resistant gene clusters are classified into nine types according to their gene sequences and organization, or D-Ala:D-Lac (VanA, VanB, VanD and VanM) and D-Ala:D-Ser (VanC, VanE, VanG, VanL and VanN) ligase gene clusters based on the differences of their encoded ligases. Moreover, these gene clusters are characterized by their different resistance levels and infection models. In this review, we summarize the classification, gene organization and infection model of vancomycin resistant gene cluster in Enterococcus spp.

  8. A Nomadic Subtelomeric Disease Resistance Gene Cluster in Common Bean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The B4 resistance (R)-gene cluster, located in subtelomeric region of chromosome 4, is one of the largest clusters known in common bean (Phaseolus vulgaris, Pv). We sequenced 650 kb spanning this locus and annotated 97 genes, 26 of which correspond to Coiled-coil-Nucleotide-Binding-Site-Leucine-Rich...

  9. Estimating the number of clusters via system evolution for cluster analysis of gene expression data.

    PubMed

    Wang, Kaijun; Zheng, Jie; Zhang, Junying; Dong, Jiyang

    2009-09-01

    The estimation of the number of clusters (NC) is one of crucial problems in the cluster analysis of gene expression data. Most approaches available give their answers without the intuitive information about separable degrees between clusters. However, this information is useful for understanding cluster structures. To provide this information, we propose system evolution (SE) method to estimate NC based on partitioning around medoids (PAM) clustering algorithm. SE analyzes cluster structures of a dataset from the viewpoint of a pseudothermodynamics system. The system will go to its stable equilibrium state, at which the optimal NC is found, via its partitioning process and merging process. The experimental results on simulated and real gene expression data demonstrate that the SE works well on the data with well-separated clusters and the one with slightly overlapping clusters. PMID:19527960

  10. Super-paramagnetic clustering of yeast gene expression profiles

    NASA Astrophysics Data System (ADS)

    Getz, G.; Levine, E.; Domany, E.; Zhang, M. Q.

    2000-04-01

    High-density DNA arrays, used to monitor gene expression at a genomic scale, have produced vast amounts of information which require the development of efficient computational methods to analyze them. The important first step is to extract the fundamental patterns of gene expression inherent in the data. This paper describes the application of a novel clustering algorithm, super-paramagnetic clustering (SPC) to analysis of gene expression profiles that were generated recently during a study of the yeast cell cycle. SPC was used to organize genes into biologically relevant clusters that are suggestive for their co-regulation. Some of the advantages of SPC are its robustness against noise and initialization, a clear signature of cluster formation and splitting, and an unsupervised self-organized determination of the number of clusters at each resolution. Our analysis revealed interesting correlated behavior of several groups of genes which has not been previously identified.

  11. GE-Miner: integration of cluster ensemble and text mining for comprehensive gene expression analysis.

    PubMed

    Hu, Xiaohua

    2006-01-01

    Generating high quality gene clusters and identifying the underlying biological mechanism of the gene clusters are the important goals of clustering gene expression analysis. Based on this consideration, we design and develop a unified system Gene Expression Miner (GE-Miner) by integrating cluster ensemble, text clustering and multidocument summarisation and provide an environment for comprehensive gene expression data analysis. Experimental results demonstrate that our systems can obtain high quality clusters and provide concise and informative textual summary for the gene clusters.

  12. Gene expression data clustering using a multiobjective symmetry based clustering technique.

    PubMed

    Saha, Sriparna; Ekbal, Asif; Gupta, Kshitija; Bandyopadhyay, Sanghamitra

    2013-11-01

    The invention of microarrays has rapidly changed the state of biological and biomedical research. Clustering algorithms play an important role in clustering microarray data sets where identifying groups of co-expressed genes are a very difficult task. Here we have posed the problem of clustering the microarray data as a multiobjective clustering problem. A new symmetry based fuzzy clustering technique is developed to solve this problem. The effectiveness of the proposed technique is demonstrated on five publicly available benchmark data sets. Results are compared with some widely used microarray clustering techniques. Statistical and biological significance tests have also been carried out. PMID:24209942

  13. Remodelling of a homeobox gene cluster by multiple independent gene reunions in Drosophila.

    PubMed

    Chan, Carolus; Jayasekera, Suvini; Kao, Bryant; Páramo, Moisés; von Grotthuss, Marcin; Ranz, José M

    2015-01-01

    Genome clustering of homeobox genes is often thought to reflect arrangements of tandem gene duplicates maintained by advantageous coordinated gene regulation. Here we analyse the chromosomal organization of the NK homeobox genes, presumed to be part of a single cluster in the Bilaterian ancestor, across 20 arthropods. We find that the ProtoNK cluster was extensively fragmented in some lineages, showing that NK clustering in Drosophila species does not reflect selectively maintained gene arrangements. More importantly, the arrangement of NK and neighbouring genes across the phylogeny supports that, in two instances within the Drosophila genus, some cluster remnants became reunited via large-scale chromosomal rearrangements. Simulated scenarios of chromosome evolution indicate that these reunion events are unlikely unless the genome neighbourhoods harbouring the participating genes tend to colocalize in the nucleus. Our results underscore how mechanisms other than tandem gene duplication can result in paralogous gene clustering during genome evolution. PMID:25739651

  14. Prokaryotic Gene Clusters: A Rich Toolbox for Synthetic Biology

    PubMed Central

    Fischbach, Michael; Voigt, Christopher A.

    2014-01-01

    Bacteria construct elaborate nanostructures, obtain nutrients and energy from diverse sources, synthesize complex molecules, and implement signal processing to react to their environment. These complex phenotypes require the coordinated action of multiple genes, which are often encoded in a contiguous region of the genome, referred to as a gene cluster. Gene clusters sometimes contain all of the genes necessary and sufficient for a particular function. As an evolutionary mechanism, gene clusters facilitate the horizontal transfer of the complete function between species. Here, we review recent work on a number of clusters whose functions are relevant to biotechnology. Engineering these clusters has been hindered by their regulatory complexity, the need to balance the expression of many genes, and a lack of tools to design and manipulate DNA at this scale. Advances in synthetic biology will enable the large-scale bottom-up engineering of the clusters to optimize their functions, wake up cryptic clusters, or to transfer them between organisms. Understanding and manipulating gene clusters will move towards an era of genome engineering, where multiple functions can be “mixed-and-matched” to create a designer organism. PMID:21154668

  15. Recommending pathway genes using a compendium of clustering solutions.

    PubMed

    Ng, David M; Woehrmann, Marcos H; Stuart, Joshua M

    2007-01-01

    A common approach for identifying pathways from gene expression data is to cluster the genes without using prior information about a pathway, which often identifies only the dominant coexpression groups. Recommender systems are well-suited for using the known genes of a pathway to identify the appropriate experiments for predicting new members. However, existing systems, such as the GeneRecommender, ignore how genes naturally group together within specific experiments. We present a collaborative filtering approach which uses the pattern of how genes cluster together in different experiments to recommend new genes in a pathway. Clusters are first identified within a single experiment series. Informative clusters, in which the user-supplied query genes appear together, are identified. New genes that cluster with the known genes, in a significant fraction of the informative clusters, are recommended. We implemented a prototype of our system and measured its performance on hundreds of pathways. We find that our method performs as well as an established approach while significantly increasing the speed and scalability of searching large datasets. [Supplemental material is available online at sysbio.soe.ucsc.edu/cluegene/psb07.

  16. Bioinformatics Prediction of Polyketide Synthase Gene Clusters from Mycosphaerella fijiensis.

    PubMed

    Noar, Roslyn D; Daub, Margaret E

    2016-01-01

    Mycosphaerella fijiensis, causal agent of black Sigatoka disease of banana, is a Dothideomycete fungus closely related to fungi that produce polyketides important for plant pathogenicity. We utilized the M. fijiensis genome sequence to predict PKS genes and their gene clusters and make bioinformatics predictions about the types of compounds produced by these clusters. Eight PKS gene clusters were identified in the M. fijiensis genome, placing M. fijiensis into the 23rd percentile for the number of PKS genes compared to other Dothideomycetes. Analysis of the PKS domains identified three of the PKS enzymes as non-reducing and two as highly reducing. Gene clusters contained types of genes frequently found in PKS clusters including genes encoding transporters, oxidoreductases, methyltransferases, and non-ribosomal peptide synthases. Phylogenetic analysis identified a putative PKS cluster encoding melanin biosynthesis. None of the other clusters were closely aligned with genes encoding known polyketides, however three of the PKS genes fell into clades with clusters encoding alternapyrone, fumonisin, and solanapyrone produced by Alternaria and Fusarium species. A search for homologs among available genomic sequences from 103 Dothideomycetes identified close homologs (>80% similarity) for six of the PKS sequences. One of the PKS sequences was not similar (< 60% similarity) to sequences in any of the 103 genomes, suggesting that it encodes a unique compound. Comparison of the M. fijiensis PKS sequences with those of two other banana pathogens, M. musicola and M. eumusae, showed that these two species have close homologs to five of the M. fijiensis PKS sequences, but three others were not found in either species. RT-PCR and RNA-Seq analysis showed that the melanin PKS cluster was down-regulated in infected banana as compared to growth in culture. Three other clusters, however were strongly upregulated during disease development in banana, suggesting that they may encode

  17. Bioinformatics Prediction of Polyketide Synthase Gene Clusters from Mycosphaerella fijiensis

    PubMed Central

    Noar, Roslyn D.; Daub, Margaret E.

    2016-01-01

    Mycosphaerella fijiensis, causal agent of black Sigatoka disease of banana, is a Dothideomycete fungus closely related to fungi that produce polyketides important for plant pathogenicity. We utilized the M. fijiensis genome sequence to predict PKS genes and their gene clusters and make bioinformatics predictions about the types of compounds produced by these clusters. Eight PKS gene clusters were identified in the M. fijiensis genome, placing M. fijiensis into the 23rd percentile for the number of PKS genes compared to other Dothideomycetes. Analysis of the PKS domains identified three of the PKS enzymes as non-reducing and two as highly reducing. Gene clusters contained types of genes frequently found in PKS clusters including genes encoding transporters, oxidoreductases, methyltransferases, and non-ribosomal peptide synthases. Phylogenetic analysis identified a putative PKS cluster encoding melanin biosynthesis. None of the other clusters were closely aligned with genes encoding known polyketides, however three of the PKS genes fell into clades with clusters encoding alternapyrone, fumonisin, and solanapyrone produced by Alternaria and Fusarium species. A search for homologs among available genomic sequences from 103 Dothideomycetes identified close homologs (>80% similarity) for six of the PKS sequences. One of the PKS sequences was not similar (< 60% similarity) to sequences in any of the 103 genomes, suggesting that it encodes a unique compound. Comparison of the M. fijiensis PKS sequences with those of two other banana pathogens, M. musicola and M. eumusae, showed that these two species have close homologs to five of the M. fijiensis PKS sequences, but three others were not found in either species. RT-PCR and RNA-Seq analysis showed that the melanin PKS cluster was down-regulated in infected banana as compared to growth in culture. Three other clusters, however were strongly upregulated during disease development in banana, suggesting that they may encode

  18. Sesterterpene ophiobolin biosynthesis involving multiple gene clusters in Aspergillus ustus

    PubMed Central

    Chai, Hangzhen; Yin, Ru; Liu, Yongfeng; Meng, Huiying; Zhou, Xianqiang; Zhou, Guolin; Bi, Xupeng; Yang, Xue; Zhu, Tonghan; Zhu, Weiming; Deng, Zixin; Hong, Kui

    2016-01-01

    Terpenoids are the most diverse and abundant natural products among which sesterterpenes account for less than 2%, with very few reports on their biosynthesis. Ophiobolins are tricyclic 5–8–5 ring sesterterpenes with potential pharmaceutical application. Aspergillus ustus 094102 from mangrove rizhosphere produces ophiobolin and other terpenes. We obtained five gene cluster knockout mutants, with altered ophiobolin yield using genome sequencing and in silico analysis, combined with in vivo genetic manipulation. Involvement of the five gene clusters in ophiobolin synthesis was confirmed by investigation of the five key terpene synthesis relevant enzymes in each gene cluster, either by gene deletion and complementation or in vitro verification of protein function. The results demonstrate that ophiobolin skeleton biosynthesis involves five gene clusters, which are responsible for C15, C20, C25, and C30 terpenoid biosynthesis. PMID:27273151

  19. Prodigiosin biosynthesis gene cluster in the roseophilin producer Streptomyces griseoviridis.

    PubMed

    Kawasaki, Takashi; Sakurai, Fumi; Nagatsuka, Shun-ya; Hayakawa, Yoichi

    2009-05-01

    Streptomyces griseoviridis 2464-S5 produces prodigiosin R1, a tripyrrole antibiotic, and roseophilin, a structurally related compound containing two pyrrole and one furan rings. A gene cluster for the biosynthesis of a prodigiosin was identified in S. griseoviridis. The cluster consisted of 24 open reading frames, including 21 genes (rphD-rphZ) homologous to prodigiosin biosynthesis genes in the red cluster in Streptomyces coelicolor A3(2). The expression of rphN in S. coelicolor lacking redN restored the production of prodigiosin.

  20. Genomic analyses of bacterial porin-cytochrome gene clusters

    DOE PAGES

    Shi, Liang; Fredrickson, James K.; Zachara, John M.

    2014-11-26

    In this study, the porin-cytochrome (Pcc) protein complex is responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III) by the dissimilatory metal-reducing bacterium Geobacter sulfurreducens PCA. The identified and characterized Pcc complex of G. sulfurreducens PCA consists of a porin-like outer-membrane protein, a periplasmic 8-heme c type cytochrome (c-Cyt) and an outer-membrane 12-heme c-Cyt, and the genes encoding the Pcc proteins are clustered in the same regions of genome (i.e., the pcc gene clusters) of G. sulfurreducens PCA. A survey of additionally microbial genomes has identified the pcc gene clusters in all sequenced Geobacter spp. and other bacteriamore » from six different phyla, including Anaeromyxobacter dehalogenans 2CP-1, A. dehalogenans 2CP-C, Anaeromyxobacter sp. K, Candidatus Kuenenia stuttgartiensis, Denitrovibrio acetiphilus DSM 12809, Desulfurispirillum indicum S5, Desulfurivibrio alkaliphilus AHT2, Desulfurobacterium thermolithotrophum DSM 11699, Desulfuromonas acetoxidans DSM 684, Ignavibacterium album JCM 16511, and Thermovibrio ammonificans HB-1. The numbers of genes in the pcc gene clusters vary, ranging from two to nine. Similar to the metal-reducing (Mtr) gene clusters of other Fe(III)-reducing bacteria, such as Shewanella spp., additional genes that encode putative c-Cyts with predicted cellular localizations at the cytoplasmic membrane, periplasm and outer membrane often associate with the pcc gene clusters. This suggests that the Pcc-associated c-Cyts may be part of the pathways for extracellular electron transfer reactions. The presence of pcc gene clusters in the microorganisms that do not reduce solid-phase Fe(III) and Mn(IV) oxides, such as D. alkaliphilus AHT2 and I. album JCM 16511, also suggests that some of the pcc gene clusters may be involved in extracellular electron transfer reactions with the substrates other than Fe(III) and Mn(IV) oxides.« less

  1. Relevant and significant supervised gene clusters for microarray cancer classification.

    PubMed

    Maji, Pradipta; Das, Chandra

    2012-06-01

    An important application of microarray data in functional genomics is to classify samples according to their gene expression profiles such as to classify cancer versus normal samples or to classify different types or subtypes of cancer. One of the major tasks with gene expression data is to find co-regulated gene groups whose collective expression is strongly associated with sample categories. In this regard, a gene clustering algorithm is proposed to group genes from microarray data. It directly incorporates the information of sample categories in the grouping process for finding groups of co-regulated genes with strong association to the sample categories, yielding a supervised gene clustering algorithm. The average expression of the genes from each cluster acts as its representative. Some significant representatives are taken to form the reduced feature set to build the classifiers for cancer classification. The mutual information is used to compute both gene-gene redundancy and gene-class relevance. The performance of the proposed method, along with a comparison with existing methods, is studied on six cancer microarray data sets using the predictive accuracy of naive Bayes classifier, K-nearest neighbor rule, and support vector machine. An important finding is that the proposed algorithm is shown to be effective for identifying biologically significant gene clusters with excellent predictive capability. PMID:22552589

  2. Hox gene clusters in the Indonesian coelacanth, Latimeria menadoensis.

    PubMed

    Koh, Esther G L; Lam, Kevin; Christoffels, Alan; Erdmann, Mark V; Brenner, Sydney; Venkatesh, Byrappa

    2003-02-01

    The Hox genes encode transcription factors that play a key role in specifying body plans of metazoans. They are organized into clusters that contain up to 13 paralogue group members. The complex morphology of vertebrates has been attributed to the duplication of Hox clusters during vertebrate evolution. In contrast to the single Hox cluster in the amphioxus (Branchiostoma floridae), an invertebrate-chordate, mammals have four clusters containing 39 Hox genes. Ray-finned fishes (Actinopterygii) such as zebrafish and fugu possess more than four Hox clusters. The coelacanth occupies a basal phylogenetic position among lobe-finned fishes (Sarcopterygii), which gave rise to the tetrapod lineage. The lobe fins of sarcopterygians are considered to be the evolutionary precursors of tetrapod limbs. Thus, the characterization of Hox genes in the coelacanth should provide insights into the origin of tetrapod limbs. We have cloned the complete second exon of 33 Hox genes from the Indonesian coelacanth, Latimeria menadoensis, by extensive PCR survey and genome walking. Phylogenetic analysis shows that 32 of these genes have orthologs in the four mammalian HOX clusters, including three genes (HoxA6, D1, and D8) that are absent in ray-finned fishes. The remaining coelacanth gene is an ortholog of hoxc1 found in zebrafish but absent in mammals. Our results suggest that coelacanths have four Hox clusters bearing a gene complement more similar to mammals than to ray-finned fishes, but with an additional gene, HoxC1, which has been lost during the evolution of mammals from lobe-finned fishes.

  3. Supporting Treatment decision making to Optimise the Prevention of STROKE in Atrial Fibrillation: The STOP STROKE in AF study. Protocol for a cluster randomised controlled trial

    PubMed Central

    2012-01-01

    Background Suboptimal uptake of anticoagulation for stroke prevention in atrial fibrillation has persisted for over 20 years, despite high-level evidence demonstrating its effectiveness in reducing the risk of fatal and disabling stroke. Methods The STOP STROKE in AF study is a national, cluster randomised controlled trial designed to improve the uptake of anticoagulation in primary care. General practitioners from around Australia enrolling in this ‘distance education’ program are mailed written educational materials, followed by an academic detailing session delivered via telephone by a medical peer, during which participants discuss patient de-identified cases. General practitioners are then randomised to receive written specialist feedback about the patient de-identified cases either before or after completing a three-month posttest audit. Specialist feedback is designed to provide participants with support and confidence to prescribe anticoagulation. The primary outcome is the proportion of patients with atrial fibrillation receiving oral anticoagulation at the time of the posttest audit. Discussion The STOP STROKE in AF study aims to evaluate a feasible intervention via distance education to prevent avoidable stroke due to atrial fibrillation. It provides a systematic test of augmenting academic detailing with expert feedback about patient management. Trial registration Australian Clinical Trials Registry Registration Number: ACTRN12611000076976. PMID:22770423

  4. SMART: Unique Splitting-While-Merging Framework for Gene Clustering

    PubMed Central

    Fa, Rui; Roberts, David J.; Nandi, Asoke K.

    2014-01-01

    Successful clustering algorithms are highly dependent on parameter settings. The clustering performance degrades significantly unless parameters are properly set, and yet, it is difficult to set these parameters a priori. To address this issue, in this paper, we propose a unique splitting-while-merging clustering framework, named “splitting merging awareness tactics” (SMART), which does not require any a priori knowledge of either the number of clusters or even the possible range of this number. Unlike existing self-splitting algorithms, which over-cluster the dataset to a large number of clusters and then merge some similar clusters, our framework has the ability to split and merge clusters automatically during the process and produces the the most reliable clustering results, by intrinsically integrating many clustering techniques and tasks. The SMART framework is implemented with two distinct clustering paradigms in two algorithms: competitive learning and finite mixture model. Nevertheless, within the proposed SMART framework, many other algorithms can be derived for different clustering paradigms. The minimum message length algorithm is integrated into the framework as the clustering selection criterion. The usefulness of the SMART framework and its algorithms is tested in demonstration datasets and simulated gene expression datasets. Moreover, two real microarray gene expression datasets are studied using this approach. Based on the performance of many metrics, all numerical results show that SMART is superior to compared existing self-splitting algorithms and traditional algorithms. Three main properties of the proposed SMART framework are summarized as: (1) needing no parameters dependent on the respective dataset or a priori knowledge about the datasets, (2) extendible to many different applications, (3) offering superior performance compared with counterpart algorithms. PMID:24714159

  5. Examining emergence of functional gene clustering in a simulated evolution.

    PubMed

    Yerushalmi, Uri; Teicher, Mina

    2007-10-01

    Recent research suggests that rather than being random, gene order may be coupled with gene functionality. These findings may be explained by mechanisms that require physical proximity such as co-expression and co-regulation. Alternatively, they may be due to evolutionary-dynamics forces, as expressed in genetic drift or linkage disequilibrium. This paper proposes a biologically plausible model for evolutionary development. Using the model, which includes natural selection and the development of gene networks and cellular organisms, the co-evolution of recombination rate and gene functionality is examined. The results presented here are compatible with previous biological findings showing that functionally related genes are clustered. These results imply that evolutionary pressure in a complex environment is sufficient for the emergence of gene order that is coupled with functionality. They shed further light on the mechanisms that may cause such gene clusters.

  6. Functional optimization of gene clusters by combinatorial design and assembly.

    PubMed

    Smanski, Michael J; Bhatia, Swapnil; Zhao, Dehua; Park, YongJin; B A Woodruff, Lauren; Giannoukos, Georgia; Ciulla, Dawn; Busby, Michele; Calderon, Johnathan; Nicol, Robert; Gordon, D Benjamin; Densmore, Douglas; Voigt, Christopher A

    2014-12-01

    Large microbial gene clusters encode useful functions, including energy utilization and natural product biosynthesis, but genetic manipulation of such systems is slow, difficult and complicated by complex regulation. We exploit the modularity of a refactored Klebsiella oxytoca nitrogen fixation (nif) gene cluster (16 genes, 103 parts) to build genetic permutations that could not be achieved by starting from the wild-type cluster. Constraint-based combinatorial design and DNA assembly are used to build libraries of radically different cluster architectures by varying part choice, gene order, gene orientation and operon occupancy. We construct 84 variants of the nifUSVWZM operon, 145 variants of the nifHDKY operon, 155 variants of the nifHDKYENJ operon and 122 variants of the complete 16-gene pathway. The performance and behavior of these variants are characterized by nitrogenase assay and strand-specific RNA sequencing (RNA-seq), and the results are incorporated into subsequent design cycles. We have produced a fully synthetic cluster that recovers 57% of wild-type activity. Our approach allows the performance of genetic parts to be quantified simultaneously in hundreds of genetic contexts. This parallelized design-build-test-learn cycle, which can access previously unattainable regions of genetic space, should provide a useful, fast tool for genetic optimization and hypothesis testing.

  7. Characterization of the largest effector gene cluster of Ustilago maydis.

    PubMed

    Brefort, Thomas; Tanaka, Shigeyuki; Neidig, Nina; Doehlemann, Gunther; Vincon, Volker; Kahmann, Regine

    2014-07-01

    In the genome of the biotrophic plant pathogen Ustilago maydis, many of the genes coding for secreted protein effectors modulating virulence are arranged in gene clusters. The vast majority of these genes encode novel proteins whose expression is coupled to plant colonization. The largest of these gene clusters, cluster 19A, encodes 24 secreted effectors. Deletion of the entire cluster results in severe attenuation of virulence. Here we present the functional analysis of this genomic region. We show that a 19A deletion mutant behaves like an endophyte, i.e. is still able to colonize plants and complete the infection cycle. However, tumors, the most conspicuous symptoms of maize smut disease, are only rarely formed and fungal biomass in infected tissue is significantly reduced. The generation and analysis of strains carrying sub-deletions identified several genes significantly contributing to tumor formation after seedling infection. Another of the effectors could be linked specifically to anthocyanin induction in the infected tissue. As the individual contributions of these genes to tumor formation were small, we studied the response of maize plants to the whole cluster mutant as well as to several individual mutants by array analysis. This revealed distinct plant responses, demonstrating that the respective effectors have discrete plant targets. We propose that the analysis of plant responses to effector mutant strains that lack a strong virulence phenotype may be a general way to visualize differences in effector function.

  8. Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage.

    PubMed

    Dai, Zhimin; Guo, Xue; Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community.

  9. Identification of Nitrogen-Fixing Genes and Gene Clusters from Metagenomic Library of Acid Mine Drainage

    PubMed Central

    Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community. PMID:24498417

  10. Inferring the evolutionary history of gene clusters from phylogenetic and gene order data.

    PubMed

    Lajoie, Mathieu; Bertrand, Denis; El-Mabrouk, Nadia

    2010-04-01

    Gene duplication is frequent within gene clusters and plays a fundamental role in evolution by providing a source of new genetic material upon which natural selection can act. Although classical phylogenetic inference methods provide some insight into the evolutionary history of a gene cluster, they are not sufficient alone to differentiate single- from multiple gene duplication events and to answer other questions regarding the nature and size of evolutionary events. In this paper, we present an algorithm allowing to infer a set of optimal evolutionary histories for a gene cluster in a single species, according to a general cost model involving variable length duplications (in tandem or inverted), deletions, and inversions. We applied our algorithm to the human olfactory receptor and protocadherin gene clusters, showing that the duplication size distribution differs significantly between the two gene families. The algorithm is available through a web interface at http://www-lbit.iro.umontreal.ca/DILTAG/.

  11. Evolution of the Leucine Gene Cluster in Buchnera aphidicola: Insights from Chromosomal Versions of the Cluster

    PubMed Central

    Sabater-Muñoz, Beatriz; van Ham, Roeland C. H. J.; Moya, Andrés; Silva, Francisco J.; Latorre, Amparo

    2004-01-01

    In Buchnera aphidicola strains associated with the aphid subfamilies Thelaxinae, Lachninae, Pterocommatinae, and Aphidinae, the four leucine genes (leuA, -B, -C, and -D) are located on a plasmid. However, these genes are located on the main chromosome in B. aphidicola strains associated with the subfamilies Pemphiginae and Chaitophorinae. The sequence of the chromosomal fragment containing the leucine cluster and flanking genes has different positions in the chromosome in B. aphidicola strains associated with three tribes of the subfamily Pemphiginae and one tribe of the subfamily Chaitophorinae. Due to the extreme gene order conservation of the B. aphidicola genomes, the variability in the position of the leucine cluster in the chromosome may be interpreted as resulting from independent insertions from an ancestral plasmid-borne leucine gene. These findings do not support a chromosomal origin for the leucine genes in the ancestral B. aphidicola and do support a back transfer evolutionary scenario from a plasmid to the main chromosome. PMID:15090505

  12. Genomic analyses of bacterial porin-cytochrome gene clusters

    SciTech Connect

    Shi, Liang; Fredrickson, James K.; Zachara, John M.

    2014-11-26

    In this study, the porin-cytochrome (Pcc) protein complex is responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III) by the dissimilatory metal-reducing bacterium Geobacter sulfurreducens PCA. The identified and characterized Pcc complex of G. sulfurreducens PCA consists of a porin-like outer-membrane protein, a periplasmic 8-heme c type cytochrome (c-Cyt) and an outer-membrane 12-heme c-Cyt, and the genes encoding the Pcc proteins are clustered in the same regions of genome (i.e., the pcc gene clusters) of G. sulfurreducens PCA. A survey of additionally microbial genomes has identified the pcc gene clusters in all sequenced Geobacter spp. and other bacteria from six different phyla, including Anaeromyxobacter dehalogenans 2CP-1, A. dehalogenans 2CP-C, Anaeromyxobacter sp. K, Candidatus Kuenenia stuttgartiensis, Denitrovibrio acetiphilus DSM 12809, Desulfurispirillum indicum S5, Desulfurivibrio alkaliphilus AHT2, Desulfurobacterium thermolithotrophum DSM 11699, Desulfuromonas acetoxidans DSM 684, Ignavibacterium album JCM 16511, and Thermovibrio ammonificans HB-1. The numbers of genes in the pcc gene clusters vary, ranging from two to nine. Similar to the metal-reducing (Mtr) gene clusters of other Fe(III)-reducing bacteria, such as Shewanella spp., additional genes that encode putative c-Cyts with predicted cellular localizations at the cytoplasmic membrane, periplasm and outer membrane often associate with the pcc gene clusters. This suggests that the Pcc-associated c-Cyts may be part of the pathways for extracellular electron transfer reactions. The presence of pcc gene clusters in the microorganisms that do not reduce solid-phase Fe(III) and Mn(IV) oxides, such as D. alkaliphilus AHT2 and I. album JCM 16511, also suggests that some of the pcc gene clusters may be involved in extracellular

  13. Identification of the Scopularide Biosynthetic Gene Cluster in Scopulariopsis brevicaulis

    PubMed Central

    Lukassen, Mie Bech; Saei, Wagma; Sondergaard, Teis Esben; Tamminen, Anu; Kumar, Abhishek; Kempken, Frank; Wiebe, Marilyn G.; Sørensen, Jens Laurids

    2015-01-01

    Scopularide A is a promising potent anticancer lipopeptide isolated from a marine derived Scopulariopsis brevicaulis strain. The compound consists of a reduced carbon chain (3-hydroxy-methyldecanoyl) attached to five amino acids (glycine, l-valine, d-leucine, l-alanine, and l-phenylalanine). Using the newly sequenced S. brevicaulis genome we were able to identify the putative biosynthetic gene cluster using genetic information from the structurally related emericellamide A from Aspergillus nidulans and W493-B from Fusarium pseudograminearum. The scopularide A gene cluster includes a nonribosomal peptide synthetase (NRPS1), a polyketide synthase (PKS2), a CoA ligase, an acyltransferase, and a transcription factor. Homologous recombination was low in S. brevicaulis so the local transcription factor was integrated randomly under a constitutive promoter, which led to a three to four-fold increase in scopularide A production. This indirectly verifies the identity of the proposed biosynthetic gene cluster. PMID:26184239

  14. Phage cluster relationships identified through single gene analysis

    PubMed Central

    2013-01-01

    Background Phylogenetic comparison of bacteriophages requires whole genome approaches such as dotplot analysis, genome pairwise maps, and gene content analysis. Currently mycobacteriophages, a highly studied phage group, are categorized into related clusters based on the comparative analysis of whole genome sequences. With the recent explosion of phage isolation, a simple method for phage cluster prediction would facilitate analysis of crude or complex samples without whole genome isolation and sequencing. The hypothesis of this study was that mycobacteriophage-cluster prediction is possible using comparison of a single, ubiquitous, semi-conserved gene. Tape Measure Protein (TMP) was selected to test the hypothesis because it is typically the longest gene in mycobacteriophage genomes and because regions within the TMP gene are conserved. Results A single gene, TMP, identified the known Mycobacteriophage clusters and subclusters using a Gepard dotplot comparison or a phylogenetic tree constructed from global alignment and maximum likelihood comparisons. Gepard analysis of 247 mycobacteriophage TMP sequences appropriately recovered 98.8% of the subcluster assignments that were made by whole-genome comparison. Subcluster-specific primers within TMP allow for PCR determination of the mycobacteriophage subcluster from DNA samples. Using the single-gene comparison approach for siphovirus coliphages, phage groupings by TMP comparison reflected relationships observed in a whole genome dotplot comparison and confirm the potential utility of this approach to another widely studied group of phages. Conclusions TMP sequence comparison and PCR results support the hypothesis that a single gene can be used for distinguishing phage cluster and subcluster assignments. TMP single-gene analysis can quickly and accurately aid in mycobacteriophage classification. PMID:23777341

  15. MLL-AF9 Expression in Hematopoietic Stem Cells Drives a Highly Invasive AML Expressing EMT-Related Genes Linked to Poor Outcome.

    PubMed

    Stavropoulou, Vaia; Kaspar, Susanne; Brault, Laurent; Sanders, Mathijs A; Juge, Sabine; Morettini, Stefano; Tzankov, Alexandar; Iacovino, Michelina; Lau, I-Jun; Milne, Thomas A; Royo, Hélène; Kyba, Michael; Valk, Peter J M; Peters, Antoine H F M; Schwaller, Juerg

    2016-07-11

    To address the impact of cellular origin on acute myeloid leukemia (AML), we generated an inducible transgenic mouse model for MLL-AF9-driven leukemia. MLL-AF9 expression in long-term hematopoietic stem cells (LT-HSC) in vitro resulted in dispersed clonogenic growth and expression of genes involved in migration and invasion. In vivo, 20% LT-HSC-derived AML were particularly aggressive with extensive tissue infiltration, chemoresistance, and expressed genes related to epithelial-mesenchymal transition (EMT) in solid cancers. Knockdown of the EMT regulator ZEB1 significantly reduced leukemic blast invasion. By classifying mouse and human leukemias according to Evi1/EVI1 and Erg/ERG expression, reflecting aggressiveness and cell of origin, and performing comparative transcriptomics, we identified several EMT-related genes that were significantly associated with poor overall survival of AML patients. PMID:27344946

  16. RUNX1 Is a Key Target in t(4;11) Leukemias that Contributes to Gene Activation through an AF4-MLL Complex Interaction

    PubMed Central

    Wilkinson, Adam C.; Ballabio, Erica; Geng, Huimin; North, Phillip; Tapia, Marta; Kerry, Jon; Biswas, Debabrata; Roeder, Robert G.; Allis, C. David; Melnick, Ari; de Bruijn, Marella F.T.R.; Milne, Thomas A.

    2013-01-01

    Summary The Mixed Lineage Leukemia (MLL) protein is an important epigenetic regulator required for the maintenance of gene activation during development. MLL chromosomal translocations produce novel fusion proteins that cause aggressive leukemias in humans. Individual MLL fusion proteins have distinct leukemic phenotypes even when expressed in the same cell type, but how this distinction is delineated on a molecular level is poorly understood. Here, we highlight a unique molecular mechanism whereby the RUNX1 gene is directly activated by MLL-AF4 and the RUNX1 protein interacts with the product of the reciprocal AF4-MLL translocation. These results support a mechanism of transformation whereby two oncogenic fusion proteins cooperate by activating a target gene and then modulating the function of its downstream product. PMID:23352661

  17. DNA Methylation Is Linked to Deacetylation of Histone H3, but Not H4, on the Imprinted Genes Snrpn and U2af1-rs1

    PubMed Central

    Gregory, Richard I.; Randall, Tamzin E.; Johnson, Colin A.; Khosla, Sanjeev; Hatada, Izuho; O'Neill, Laura P.; Turner, Bryan M.; Feil, Robert

    2001-01-01

    The relationship between DNA methylation and histone acetylation at the imprinted mouse genes U2af1-rs1 and Snrpn is explored by chromatin immunoprecipitation (ChIP) and resolution of parental alleles using single-strand conformational polymorphisms. The U2af1-rs1 gene lies within a differentially methylated region (DMR), while Snrpn has a 5′ DMR (DMR1) with sequences homologous to the imprinting control center of the Prader-Willi/Angelman region. For both DMR1 of Snrpn and the 5′ untranslated region (5′-UTR) and 3′-UTR of U2af1-rs1, the methylated and nonexpressed maternal allele was underacetylated, relative to the paternal allele, at all H3 lysines tested (K14, K9, and K18). For H4, underacetylation of the maternal allele was exclusively (U2af1-rs1) or predominantly (Snrpn) at lysine 5. Essentially the same patterns of differential acetylation were found in embryonic stem (ES) cells, embryo fibroblasts, and adult liver from F1 mice and in ES cells from mice that were dipaternal or dimaternal for U2af1-rs1. In contrast, in a region within Snrpn that has biallelic methylation in the cells and tissues analyzed, the paternal (expressed) allele showed relatively increased acetylation of H4 but not of H3. The methyl-CpG-binding-domain (MBD) protein MeCP2 was found, by ChIP, to be associated exclusively with the maternal U2af1-rs1 allele. To ask whether DNA methylation is associated with histone deacetylation, we produced mice with transgene-induced methylation at the paternal allele of U2af1-rs1. In these mice, H3 was underacetylated across both the parental U2af1-rs1 alleles whereas H4 acetylation was unaltered. Collectively, these data are consistent with the hypothesis that CpG methylation leads to deacetylation of histone H3, but not H4, through a process that involves selective binding of MBD proteins. PMID:11463825

  18. Inactive allele-specific methylation and chromatin structure of the imprinted gene U2af1-rs1 on mouse chromosome 11

    SciTech Connect

    Shibata, Hideo; Yoshino, Kiyoshi; Kamiya, Mamoru

    1996-07-01

    The imprinted U2Af1-rs1 gene that maps to mouse chromosome 11 is predominately expressed from the paternal allele. We examined the methylation of genomic sequences in and around the U2af1-rs1 locus to establish the extent of sequence modifications that accompanied the silencing of the maternal allele. The analysis of HapII or HhaI sites showed that the silent maternal allele was hypermethylated in a block of CpG sequences that covered more than 10 kb. By comparison, the expressed paternal allele was unmethylated from a CpG island upstream of the transcribed region through 2 kb. An analysis of DNaseI hypersensitivity of a putative promoter of U2af1-rs1 showed an open chromatin conformation only on the unmethylated, expressed paternal allele. These results suggest that allele-specific hypermethylation covering the gene and its upstream CpG island plays a role in maternal allele repression of U2af1-rs1, which is reflected in altered chromatin conformation of DNaseI hypersensitive sites. 9 refs., 2 figs.

  19. Identification of caerulomycin A gene cluster implicates a tailoring amidohydrolase.

    PubMed

    Zhu, Yiguang; Fu, Peng; Lin, Qinheng; Zhang, Guangtao; Zhang, Haibo; Li, Sumei; Ju, Jianhua; Zhu, Weiming; Zhang, Changsheng

    2012-06-01

    The biosynthetic gene cluster for caerulomycin A (1) was cloned and characterized from the marine actinomycete Actinoalloteichus cyanogriseus WH1-2216-6, which revealed an unusual hybrid polyketide synthase (PKS)/nonribosomal peptide synthetase (NRPS) system. The crmL disruption mutant accumulated caerulomycin L (2) with an extended L-leucine at C-7, implicating an amidohydrolase activity for CrmL. The leucine-removing activity was confirmed for crude CrmL enzymes. Heterologous expression of the 1 gene cluster led to 1 production in Streptomyces coelicolor.

  20. Differentiation of AFS cells derived from the EGFP gene transgenic porcine fetuses.

    PubMed

    Zheng, Yue-Mao; Dang, Yong-Hui; Xu, Yong-Ping; Sai, Wu-Jia-Fu; An, Zhi-Xing

    2011-08-01

    We have obtained the EGFP (enhanced green fluorescence protein) gene transgenic porcine fetuses before. The aims of this study were (i) to determine whether stem cells could be isolated from amniotic fluid of the transgenic porcine fetuses, and (ii) to determine if these stem cells could express EGFP and differentiate in vitro. The results demonstrated that stem cells could be isolated from amniotic fluid of the EGFP gene transgenic porcine fetuses and could express EGFP and differentiate in vitro. Undifferentiated AFSs (amniotic fluid-derived stem cells) expressed POU5F1, THY1 and SOX2, while the following differentiation cells expressed markers for chondrogenic (COL2A1), osteogenic (osteocalcin and osteonectin) and neurogenic cells such as astrocyte (GFAP), oligodendrocyte (GALC) and neuron (NF, ENO2 and MAP).

  1. IGSA: Individual Gene Sets Analysis, including Enrichment and Clustering

    PubMed Central

    Liu, Lei; Ma, Hongzhe; Yang, Jingbo; Xie, Hongbo; Liu, Bo; Jin, Qing

    2016-01-01

    Analysis of gene sets has been widely applied in various high-throughput biological studies. One weakness in the traditional methods is that they neglect the heterogeneity of genes expressions in samples which may lead to the omission of some specific and important gene sets. It is also difficult for them to reflect the severities of disease and provide expression profiles of gene sets for individuals. We developed an application software called IGSA that leverages a powerful analytical capacity in gene sets enrichment and samples clustering. IGSA calculates gene sets expression scores for each sample and takes an accumulating clustering strategy to let the samples gather into the set according to the progress of disease from mild to severe. We focus on gastric, pancreatic and ovarian cancer data sets for the performance of IGSA. We also compared the results of IGSA in KEGG pathways enrichment with David, GSEA, SPIA, ssGSEA and analyzed the results of IGSA clustering and different similarity measurement methods. Notably, IGSA is proved to be more sensitive and specific in finding significant pathways, and can indicate related changes in pathways with the severity of disease. In addition, IGSA provides with significant gene sets profile for each sample. PMID:27764138

  2. The use of gene clusters to infer functional coupling.

    SciTech Connect

    Overbeek, R.; Fonstein, M.; D'Souza, M.; Pusch, G. D.; Mathematics and Computer Science; Integrated Genomics; Univ. of Chicago

    1999-03-01

    Previously, we presented evidence that it is possible to predict functional coupling between genes based on conservation of gene clusters between genomes. With the rapid increase in the availability of prokaryotic sequence data, it has become possible to verify and apply the technique. In this paper, we extend our characterization of the parameters that determine the utility of the approach, and we generalize the approach in a way that supports detection of common classes of functionally coupled genes (e.g., transport and signal transduction clusters). Now that the analysis includes over 30 complete or nearly complete genomes, it has become clear that this approach will play a significant role in supporting efforts to assign functionality to the remaining uncharacterized genes in sequenced genomes.

  3. The Use of Gene Clusters to Infer Functional Coupling

    NASA Astrophysics Data System (ADS)

    Overbeek, Ross; Fonstein, Michael; D'Souza, Mark; Pusch, Gordon D.; Maltsev, Natalia

    1999-03-01

    Previously, we presented evidence that it is possible to predict functional coupling between genes based on conservation of gene clusters between genomes. With the rapid increase in the availability of prokaryotic sequence data, it has become possible to verify and apply the technique. In this paper, we extend our characterization of the parameters that determine the utility of the approach, and we generalize the approach in a way that supports detection of common classes of functionally coupled genes (e.g., transport and signal transduction clusters). Now that the analysis includes over 30 complete or nearly complete genomes, it has become clear that this approach will play a significant role in supporting efforts to assign functionality to the remaining uncharacterized genes in sequenced genomes.

  4. Quantitative Methylation Analysis of the PCDHB Gene Cluster.

    PubMed

    Banelli, Barbara; Romani, Massimo

    2015-01-01

    Long Range Epigenetic Silencing (LRES) is a repressed chromatin state of large chromosomal regions caused by DNA hypermethylation and histone modifications and is commonly observed in cancer. At 5q31 a LRES region of 800 kb includes three multi-gene clusters (PCDHA@, PCDHB@, and PCDHG@, respectively). Multiple experimental evidences have led to consider the PCDHB cluster as a DNA methylation marker of aggressiveness in neuroblastoma, second most common solid tumor in childhood. Because of its potential involvement not only in neuroblastoma but also in other malignancies, an easy and fast assay to screen the DNA methylation content of the PCDHB cluster might be useful for the precise stratification of the patients into risk groups and hence for choosing the most appropriate therapeutic protocol. Accordingly, we have developed a simple and cost-effective Pyrosequencing(®) assay to evaluate the methylation level of 17 genes in the protocadherin B cluster (PCDHB@). The rationale behind this Pyrosequencing assay can in principle be applied to analyze the DNA methylation level of any gene cluster with high homologies for screening purposes. PMID:26103900

  5. The Fusarium graminearum Genome Reveals More Secondary Metabolite Gene Clusters and Hints of Horizontal Gene Transfer

    PubMed Central

    Wong, Philip; Münsterkötter, Martin; Mewes, Hans-Werner; Schmeitzl, Clemens; Varga, Elisabeth; Berthiller, Franz; Adam, Gerhard; Güldener, Ulrich

    2014-01-01

    Fungal secondary metabolite biosynthesis genes are of major interest due to the pharmacological properties of their products (like mycotoxins and antibiotics). The genome of the plant pathogenic fungus Fusarium graminearum codes for a large number of candidate enzymes involved in secondary metabolite biosynthesis. However, the chemical nature of most enzymatic products of proteins encoded by putative secondary metabolism biosynthetic genes is largely unknown. Based on our analysis we present 67 gene clusters with significant enrichment of predicted secondary metabolism related enzymatic functions. 20 gene clusters with unknown metabolites exhibit strong gene expression correlation in planta and presumably play a role in virulence. Furthermore, the identification of conserved and over-represented putative transcription factor binding sites serves as additional evidence for cluster co-regulation. Orthologous cluster search provided insight into the evolution of secondary metabolism clusters. Some clusters are characteristic for the Fusarium phylum while others show evidence of horizontal gene transfer as orthologs can be found in representatives of the Botrytis or Cochliobolus lineage. The presented candidate clusters provide valuable targets for experimental examination. PMID:25333987

  6. Cloning and Heterologous Expression of the Grecocycline Biosynthetic Gene Cluster

    PubMed Central

    Bilyk, Oksana; Sekurova, Olga N.; Zotchev, Sergey B.; Luzhetskyy, Andriy

    2016-01-01

    Transformation-associated recombination (TAR) in yeast is a rapid and inexpensive method for cloning and assembly of large DNA fragments, which relies on natural homologous recombination. Two vectors, based on p15a and F-factor replicons that can be maintained in yeast, E. coli and streptomycetes have been constructed. These vectors have been successfully employed for assembly of the grecocycline biosynthetic gene cluster from Streptomyces sp. Acta 1362. Fragments of the cluster were obtained by PCR and transformed together with the “capture” vector into the yeast cells, yielding a construct carrying the entire gene cluster. The obtained construct was heterologously expressed in S. albus J1074, yielding several grecocycline congeners. Grecocyclines have unique structural moieties such as a dissacharide side chain, an additional amino sugar at the C-5 position and a thiol group. Enzymes from this pathway may be used for the derivatization of known active angucyclines in order to improve their desired biological properties. PMID:27410036

  7. Cloning and Heterologous Expression of the Grecocycline Biosynthetic Gene Cluster.

    PubMed

    Bilyk, Oksana; Sekurova, Olga N; Zotchev, Sergey B; Luzhetskyy, Andriy

    2016-01-01

    Transformation-associated recombination (TAR) in yeast is a rapid and inexpensive method for cloning and assembly of large DNA fragments, which relies on natural homologous recombination. Two vectors, based on p15a and F-factor replicons that can be maintained in yeast, E. coli and streptomycetes have been constructed. These vectors have been successfully employed for assembly of the grecocycline biosynthetic gene cluster from Streptomyces sp. Acta 1362. Fragments of the cluster were obtained by PCR and transformed together with the "capture" vector into the yeast cells, yielding a construct carrying the entire gene cluster. The obtained construct was heterologously expressed in S. albus J1074, yielding several grecocycline congeners. Grecocyclines have unique structural moieties such as a dissacharide side chain, an additional amino sugar at the C-5 position and a thiol group. Enzymes from this pathway may be used for the derivatization of known active angucyclines in order to improve their desired biological properties. PMID:27410036

  8. Duplications of hox gene clusters and the emergence of vertebrates.

    PubMed

    Soshnikova, Natalia; Dewaele, Romain; Janvier, Philippe; Krumlauf, Robb; Duboule, Denis

    2013-06-15

    The vertebrate body plan is characterized by an increased complexity relative to that of all other chordates and large-scale gene amplifications have been associated with key morphological innovations leading to their remarkable evolutionary success. Here, we use compound full Hox clusters deletions to investigate how Hox genes duplications may have contributed to the emergence of vertebrate-specific innovations. We show that the combined deletion of HoxA and HoxB leads to an atavistic heart phenotype, suggesting that the ancestral HoxA/B cluster was co-opted to help in diversifying the complex organ in vertebrates. Other phenotypic effects observed seem to illustrate the resurgence of ancestral (plesiomorphic) features. This indicates that the duplications of Hox clusters were associated with the recruitment or formation of novel cis-regulatory controls, which were key to the evolution of many vertebrate features and hence to the evolutionary radiation of this group.

  9. From Green to Red: Horizontal Gene Transfer of the Phycoerythrin Gene Cluster between Planktothrix Strains

    PubMed Central

    Sogge, Hanne; Rounge, Trine Ballestad; Nederbragt, Alexander J.; Lagesen, Karin; Glöckner, Gernot; Hayes, Paul K.; Rohrlack, Thomas

    2013-01-01

    Horizontal gene transfer is common in cyanobacteria, and transfer of large gene clusters may lead to acquisition of new functions and conceivably niche adaption. In the present study, we demonstrate that horizontal gene transfer between closely related Planktothrix strains can explain the production of the same oligopeptide isoforms by strains of different colors. Comparison of the genomes of eight Planktothrix strains revealed that strains producing the same oligopeptide isoforms are closely related, regardless of color. We have investigated genes involved in the synthesis of the photosynthetic pigments phycocyanin and phycoerythrin, which are responsible for green and red appearance, respectively. Sequence comparisons suggest the transfer of a functional phycoerythrin gene cluster generating a red phenotype in a strain that is otherwise more closely related to green strains. Our data show that the insertion of a DNA fragment containing the 19.7-kb phycoerythrin gene cluster has been facilitated by homologous recombination, also replacing a region of the phycocyanin operon. These findings demonstrate that large DNA fragments spanning entire functional gene clusters can be effectively transferred between closely related cyanobacterial strains and result in a changed phenotype. Further, the results shed new light on the discussion of the role of horizontal gene transfer in the sporadic distribution of large gene clusters in cyanobacteria, as well as the appearance of red and green strains. PMID:23995927

  10. Comparative Genomics of Natural Killer Cell Receptor Gene Clusters

    PubMed Central

    Kelley, James; Walter, Lutz; Trowsdale, John

    2005-01-01

    Many receptors on natural killer (NK) cells recognize major histocompatibility complex class I molecules in order to monitor unhealthy tissues, such as cells infected with viruses, and some tumors. Genes encoding families of NK receptors and related sequences are organized into two main clusters in humans: the natural killer complex on Chromosome 12p13.1, which encodes C-type lectin molecules, and the leukocyte receptor complex on Chromosome 19q13.4, which encodes immunoglobulin superfamily molecules. The composition of these gene clusters differs markedly between closely related species, providing evidence for rapid, lineage-specific expansions or contractions of sets of loci. The choice of NK receptor genes is polarized in the two species most studied, mouse and human. In mouse, the C-type lectin-related Ly49 gene family predominates. Conversely, the single Ly49 sequence is a pseudogene in humans, and the immunoglobulin superfamily KIR gene family is extensive. These different gene sets encode proteins that are comparable in function and genetic diversity, even though they have undergone species-specific expansions. Understanding the biological significance of this curious situation may be aided by studying which NK receptor genes are used in other vertebrates, especially in relation to species-specific differences in genes for major histocompatibility complex class I molecules. PMID:16132082

  11. The evolution of small gene clusters: evidence for an independent origin of the maltase gene cluster in Drosophila virilis and Drosophila melanogaster.

    PubMed

    Vieira, C P; Vieira, J; Hartl, D L

    1997-10-01

    We analyzed a 5,770-bp genomic region of Drosophila virilis that contains a cluster of two maltase genes showing sequence similarity with genes in a cluster of three maltase genes previously identified in Drosophila melanogaster. The D. virilis maltase genes are designated Mav1 and Mav2. In addition to being different in gene number, the cluster of genes in D. virilis differs dramatically in intron-exon structure from the maltase genes in D. melanogaster, the transcriptional orientation of the genes in the cluster also differs between the species. Our findings support a model in which the maltase gene cluster in D. virilis and D. melanogaster evolved independently. Furthermore, while in D. melanogaster the maltase gene cluster lies only 10 kb distant from the larval cuticle gene cluster, the maltase and larval cuticle gene clusters in D. virilis are located very far apart and on a different chromosome than that expected from the known chromosome arm homologies between D. virilis and D. melanogaster. A region of the genome containing the maltase and larval cuticle gene clusters appears to have been relocated between nonhomologous chromosomes.

  12. An alanine tRNA gene cluster from Nephila clavipes.

    PubMed

    Luciano, E; Candelas, G C

    1996-06-01

    We report the sequence of a 2.3-kb genomic DNA fragment from the orb-web spider, Nephila clavipes (Nc). The fragment contains four regions of high homology to tRNA(Ala). The members of this irregularly spaced cluster of genes are oriented in the same direction and have the same anticodon (GCA), but their sequence differs at several positions. Initiation and termination signals, as well as consensus intragenic promoter sequences characteristic of tRNA genes, have been identified in all genes. tRNA(Ala) are involved in the regulation of the fibroin synthesis in the large ampullate Nc glands.

  13. Evolutionary conservation of regulatory elements in vertebrate HOX gene clusters

    SciTech Connect

    Santini, Simona; Boore, Jeffrey L.; Meyer, Axel

    2003-12-31

    Due to their high degree of conservation, comparisons of DNA sequences among evolutionarily distantly-related genomes permit to identify functional regions in noncoding DNA. Hox genes are optimal candidate sequences for comparative genome analyses, because they are extremely conserved in vertebrates and occur in clusters. We aligned (Pipmaker) the nucleotide sequences of HoxA clusters of tilapia, pufferfish, striped bass, zebrafish, horn shark, human and mouse (over 500 million years of evolutionary distance). We identified several highly conserved intergenic sequences, likely to be important in gene regulation. Only a few of these putative regulatory elements have been previously described as being involved in the regulation of Hox genes, while several others are new elements that might have regulatory functions. The majority of these newly identified putative regulatory elements contain short fragments that are almost completely conserved and are identical to known binding sites for regulatory proteins (Transfac). The conserved intergenic regions located between the most rostrally expressed genes in the developing embryo are longer and better retained through evolution. We document that presumed regulatory sequences are retained differentially in either A or A clusters resulting from a genome duplication in the fish lineage. This observation supports both the hypothesis that the conserved elements are involved in gene regulation and the Duplication-Deletion-Complementation model.

  14. Coupled two-way clustering analysis of gene microarray data

    NASA Astrophysics Data System (ADS)

    Getz, Gad; Levine, Erel; Domany, Eytan

    2000-10-01

    We present a coupled two-way clustering approach to gene microarray data analysis. The main idea is to identify subsets of the genes and samples, such that when one of these is used to cluster the other, stable and significant partitions emerge. The search for such subsets is a computationally complex task. We present an algorithm, based on iterative clustering, that performs such a search. This analysis is especially suitable for gene microarray data, where the contributions of a variety of biological mechanisms to the gene expression levels are entangled in a large body of experimental data. The method was applied to two gene microarray data sets, on colon cancer and leukemia. By identifying relevant subsets of the data and focusing on them we were able to discover partitions and correlations that were masked and hidden when the full dataset was used in the analysis. Some of these partitions have clear biological interpretation; others can serve to identify possible directions for future research.

  15. High diversity of polyketide synthase genes and the melanin biosynthesis gene cluster in Penicillium marneffei.

    PubMed

    Woo, Patrick C Y; Tam, Emily W T; Chong, Ken T K; Cai, James J; Tung, Edward T K; Ngan, Antonio H Y; Lau, Susanna K P; Yuen, Kwok-Yung

    2010-09-01

    Despite the unique phenotypic properties and clinical importance of Penicillium marneffei, the polyketide synthase genes in its genome have never been characterized. Twenty-three putative polyketide synthase genes and two putative polyketide synthase nonribosomal peptide-synthase hybrid genes were identified in the P. marneffei genome, a diversity much higher than found in other pathogenic thermal dimorphic fungi, such as Histoplasma capsulatum (one polyketide synthase gene) and Coccidioides immitis (10 polyketide synthase genes). These genes were evenly distributed on the phylogenetic tree with polyketide synthase genes of Aspergillus and other fungi, indicating that the high diversity was not a result of lineage-specific gene expansion through recent gene duplication. The melanin-biosynthesis gene cluster had gene order and orientations identical to those in the Talaromyces stipitatus (a teleomorph of Penicillium emmonsii) genome. Phylogenetically, all six genes of the melanin-biosynthesis gene cluster in P. marneffei were also most closely related to those in T. stipitatus, with high bootstrap supports. The polyketide synthase gene of the melanin-biosynthesis gene cluster (alb1) in P. marneffei was knocked down, which was accompanied by loss of melanin pigment production and reduced ornamentation in conidia. The survival of mice challenged with the alb1 knockdown mutant was significantly better than those challenged with wild-type P. marneffei (P < 0.005). The sterilizing doses of hydrogen peroxide, leading to a 50% reduction in survival of conidia, were 11 min for wild-type P. marneffei and 6 min for the alb1 knockdown mutant of P. marneffei, implying that the melanin-biosynthesis gene cluster contributed to virulence through decreased susceptibility to killing by hydrogen peroxide. PMID:20718860

  16. Evolution of chemical diversity by coordinated gene swaps in type II polyketide gene clusters

    PubMed Central

    Hillenmeyer, Maureen E.; Vandova, Gergana A.; Berlew, Erin E.; Charkoudian, Louise K.

    2015-01-01

    Natural product biosynthetic pathways generate molecules of enormous structural complexity and exquisitely tuned biological activities. Studies of natural products have led to the discovery of many pharmaceutical agents, particularly antibiotics. Attempts to harness the catalytic prowess of biosynthetic enzyme systems, for both compound discovery and engineering, have been limited by a poor understanding of the evolution of the underlying gene clusters. We developed an approach to study the evolution of biosynthetic genes on a cluster-wide scale, integrating pairwise gene coevolution information with large-scale phylogenetic analysis. We used this method to infer the evolution of type II polyketide gene clusters, tracing the path of evolution from the single ancestor to those gene clusters surviving today. We identified 10 key gene types in these clusters, most of which were swapped in from existing cellular processes and subsequently specialized. The ancestral type II polyketide gene cluster likely comprised a core set of five genes, a roster that expanded and contracted throughout evolution. A key C24 ancestor diversified into major classes of longer and shorter chain length systems, from which a C20 ancestor gave rise to the majority of characterized type II polyketide antibiotics. Our findings reveal that (i) type II polyketide structure is predictable from its gene roster, (ii) only certain gene combinations are compatible, and (iii) gene swaps were likely a key to evolution of chemical diversity. The lessons learned about how natural selection drives polyketide chemical innovation can be applied to the rational design and guided discovery of chemicals with desired structures and properties. PMID:26499248

  17. Cluster of genes controlling proline degradation in Salmonella typhimurium.

    PubMed Central

    Ratzkin, B; Roth, J

    1978-01-01

    A cluster of genes essential for degradation of proline to glutamate (put) is located between the pyrC and pyrD loci at min 22 of the Salmonella chromosome. A series of 25 deletion mutants of this region have been isolated and used to construct a fine-structure map of the put genes. The map includes mutations affecting the proline degradative activities, proline oxidase and pyrroline-5-carboxylic dehydrogenase. Also included are mutations affecting the major proline permease and a regulatory mutation that affects both enzyme and permease production. The two enzymatic activities appear to be encoded by a single gene (putA). The regulatory mutation maps between the putA gene and the proline permease gene (putP). PMID:342507

  18. Identification of genes and gene clusters involved in mycotoxin synthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research methods to identify and characterize genes involved in mycotoxin biosynthetic pathways have evolved considerably over the years. Before whole genome sequences were available (e.g. pre-genomics), work focused primarily on chemistry, biosynthetic mutant strains and molecular analysis of sing...

  19. Transcription mediated insulation and interference direct gene cluster expression switches.

    PubMed

    Nguyen, Tania; Fischl, Harry; Howe, Françoise S; Woloszczuk, Ronja; Serra Barros, Ana; Xu, Zhenyu; Brown, David; Murray, Struan C; Haenni, Simon; Halstead, James M; O'Connor, Leigh; Shipkovenska, Gergana; Steinmetz, Lars M; Mellor, Jane

    2014-11-19

    In yeast, many tandemly arranged genes show peak expression in different phases of the metabolic cycle (YMC) or in different carbon sources, indicative of regulation by a bi-modal switch, but it is not clear how these switches are controlled. Using native elongating transcript analysis (NET-seq), we show that transcription itself is a component of bi-modal switches, facilitating reciprocal expression in gene clusters. HMS2, encoding a growth-regulated transcription factor, switches between sense- or antisense-dominant states that also coordinate up- and down-regulation of transcription at neighbouring genes. Engineering HMS2 reveals alternative mono-, di- or tri-cistronic and antisense transcription units (TUs), using different promoter and terminator combinations, that underlie state-switching. Promoters or terminators are excluded from functional TUs by read-through transcriptional interference, while antisense TUs insulate downstream genes from interference. We propose that the balance of transcriptional insulation and interference at gene clusters facilitates gene expression switches during intracellular and extracellular environmental change.

  20. Transcription mediated insulation and interference direct gene cluster expression switches

    PubMed Central

    Nguyen, Tania; Brown, David; Murray, Struan C; Haenni, Simon; Halstead, James M; O'Connor, Leigh; Shipkovenska, Gergana; Steinmetz, Lars M; Mellor, Jane

    2014-01-01

    In yeast, many tandemly arranged genes show peak expression in different phases of the metabolic cycle (YMC) or in different carbon sources, indicative of regulation by a bi-modal switch, but it is not clear how these switches are controlled. Using native elongating transcript analysis (NET-seq), we show that transcription itself is a component of bi-modal switches, facilitating reciprocal expression in gene clusters. HMS2, encoding a growth-regulated transcription factor, switches between sense- or antisense-dominant states that also coordinate up- and down-regulation of transcription at neighbouring genes. Engineering HMS2 reveals alternative mono-, di- or tri-cistronic and antisense transcription units (TUs), using different promoter and terminator combinations, that underlie state-switching. Promoters or terminators are excluded from functional TUs by read-through transcriptional interference, while antisense TUs insulate downstream genes from interference. We propose that the balance of transcriptional insulation and interference at gene clusters facilitates gene expression switches during intracellular and extracellular environmental change. DOI: http://dx.doi.org/10.7554/eLife.03635.001 PMID:25407679

  1. Reconstructing Histories of Complex Gene Clusters on a Phylogeny

    NASA Astrophysics Data System (ADS)

    Vinař, Tomáš; Brejová, Broňa; Song, Giltae; Siepel, Adam

    Clusters of genes that have evolved by repeated segmental duplication present difficult challenges throughout genomic analysis, from sequence assembly to functional analysis. These clusters are one of the major sources of evolutionary innovation, and they are linked to multiple diseases, including HIV and a variety of cancers. Understanding their evolutionary histories is a key to the application of comparative genomics methods in these regions of the genome. We propose a probabilistic model of gene cluster evolution on a phylogeny, and an MCMC algorithm for reconstruction of duplication histories from genomic sequences in multiple species. Several projects are underway to obtain high quality BAC-based assemblies of duplicated clusters in multiple species, and we anticipate use of our methods in their analysis. Supplementary materials are located at http://compbio.fmph.uniba.sk/suppl/09recombcg/

  2. Transcriptional analysis of exopolysaccharides biosynthesis gene clusters in Lactobacillus plantarum.

    PubMed

    Vastano, Valeria; Perrone, Filomena; Marasco, Rosangela; Sacco, Margherita; Muscariello, Lidia

    2016-04-01

    Exopolysaccharides (EPS) from lactic acid bacteria contribute to specific rheology and texture of fermented milk products and find applications also in non-dairy foods and in therapeutics. Recently, four clusters of genes (cps) associated with surface polysaccharide production have been identified in Lactobacillus plantarum WCFS1, a probiotic and food-associated lactobacillus. These clusters are involved in cell surface architecture and probably in release and/or exposure of immunomodulating bacterial molecules. Here we show a transcriptional analysis of these clusters. Indeed, RT-PCR experiments revealed that the cps loci are organized in five operons. Moreover, by reverse transcription-qPCR analysis performed on L. plantarum WCFS1 (wild type) and WCFS1-2 (ΔccpA), we demonstrated that expression of three cps clusters is under the control of the global regulator CcpA. These results, together with the identification of putative CcpA target sequences (catabolite responsive element CRE) in the regulatory region of four out of five transcriptional units, strongly suggest for the first time a role of the master regulator CcpA in EPS gene transcription among lactobacilli.

  3. Analysis of lamprey clustered Fox genes: insight into Fox gene evolution and expression in vertebrates.

    PubMed

    Wotton, Karl R; Shimeld, Sebastian M

    2011-12-01

    In the human genome, members of the FoxC, FoxF, FoxL1, and FoxQ1 gene families are found in two paralagous clusters. One cluster contains the genes FOXQ1, FOXF2, FOXC1 and the second consists of FOXF1, FOXC2, and FOXL1. In jawed vertebrates these genes are known to be expressed in different pharyngeal tissues and all, except FoxQ1, are involved in patterning the early embryonic mesoderm. We have previously traced the evolution of this cluster in the bony vertebrates, and the gene content is identical in the dogfish, a member of the most basally branching lineage of the jawed vertebrates. Here we extend these analyses to jawless vertebrates. Using genomic searches and molecular approaches we have identified homologues of these genes from lampreys. We identify two FoxC genes, two FoxF genes, two FoxQ1 genes and single FoxL1 gene. We examine the embryonic expression of one predominantly mesodermally expressed gene family, FoxC, and the endodermally expressed member of the cluster, FoxQ1. We identified FoxQ1 transcripts in the pharyngeal endoderm, while the two FoxC genes are differentially expressed in the pharyngeal mesenchyme and ectoderm. Furthermore we identify conserved expression of lamprey FoxC genes in the paraxial and intermediate mesoderms. We interpret our results through a chordate-wide comparison of expression patterns and discuss gene content in the context of theories on the evolution of the vertebrate genome.

  4. Metabolic diversification--independent assembly of operon-like gene clusters in different plants.

    PubMed

    Field, Ben; Osbourn, Anne E

    2008-04-25

    Operons are clusters of unrelated genes with related functions that are a feature of prokaryotic genomes. Here, we report on an operon-like gene cluster in the plant Arabidopsis thaliana that is required for triterpene synthesis (the thalianol pathway). The clustered genes are coexpressed, as in bacterial operons. However, despite the resemblance to a bacterial operon, this gene cluster has been assembled from plant genes by gene duplication, neofunctionalization, and genome reorganization, rather than by horizontal gene transfer from bacteria. Furthermore, recent assembly of operon-like gene clusters for triterpene synthesis has occurred independently in divergent plant lineages (Arabidopsis and oat). Thus, selection pressure may act during the formation of certain plant metabolic pathways to drive gene clustering.

  5. Metabolic diversification--independent assembly of operon-like gene clusters in different plants.

    PubMed

    Field, Ben; Osbourn, Anne E

    2008-04-25

    Operons are clusters of unrelated genes with related functions that are a feature of prokaryotic genomes. Here, we report on an operon-like gene cluster in the plant Arabidopsis thaliana that is required for triterpene synthesis (the thalianol pathway). The clustered genes are coexpressed, as in bacterial operons. However, despite the resemblance to a bacterial operon, this gene cluster has been assembled from plant genes by gene duplication, neofunctionalization, and genome reorganization, rather than by horizontal gene transfer from bacteria. Furthermore, recent assembly of operon-like gene clusters for triterpene synthesis has occurred independently in divergent plant lineages (Arabidopsis and oat). Thus, selection pressure may act during the formation of certain plant metabolic pathways to drive gene clustering. PMID:18356490

  6. Bacillus subtilis Gene Cluster Involved in Calcium Carbonate Biomineralization▿

    PubMed Central

    Barabesi, Chiara; Galizzi, Alessandro; Mastromei, Giorgio; Rossi, Mila; Tamburini, Elena; Perito, Brunella

    2007-01-01

    Calcium carbonate precipitation, a widespread phenomenon among bacteria, has been investigated due to its wide range of scientific and technological implications. Nevertheless, little is known of the molecular mechanisms by which bacteria foster calcium carbonate mineralization. In our laboratory, we are studying calcite formation by Bacillus subtilis, in order to identify genes involved in the biomineralization process. A previous screening of UV mutants and of more than one thousand mutants obtained from the European B. subtilis Functional Analysis project allowed us to isolate strains altered in the precipitation phenotype. Starting from these results, we focused our attention on a cluster of five genes (lcfA, ysiA, ysiB, etfB, and etfA) called the lcfA operon. By insertional mutagenesis, mutant strains carrying each of the five genes were produced. All of them, with the exception of the strain carrying the mutated lcfA operon, were unable to form calcite crystals. By placing transcription under IPTG (isopropyl-β-d-thiogalactopyranoside) control, the last gene, etfA, was identified as essential for the precipitation process. To verify cotranscription in the lcfA operon, reverse transcription-PCR experiments were performed and overlapping retrocotranscripts were found comprising three adjacent genes. The genes have putative functions linked to fatty acid metabolism. A link between calcium precipitation and fatty acid metabolism is suggested. PMID:17085570

  7. Using endophenotypes for pathway clusters to map complex disease genes.

    PubMed

    Pan, Wen-Harn; Lynn, Ke-Shiuan; Chen, Chun-Houh; Wu, Yi-Lin; Lin, Chung-Yen; Chang, Hsing-Yi

    2006-02-01

    Nature determines the complexity of disease etiology and the likelihood of revealing disease genes. While culprit genes for many monogenic diseases have been successfully unraveled, efforts to map major complex disease genes have not been as productive as hoped. The conceptual framework currently adopted to deal with the heterogeneous nature of complex diseases focuses on using homogeneous internal features of the disease phenotype for mapping. However, phenotypic homogeneity does not equal genotypic homogeneity. In this report, we advocate working with well-measured phenotypes portrayed by amounts of transcripts and activities of gene products or their metabolites, which are pertinent to relatively small pathway clusters. Reliable and controlled measures for oligogenic traits resulting from proper dissection efforts may enhance statistical power. The large amounts of information obtained on gene and protein expression from technological advances can add to the power of gene finding, particularly for diseases with unclear etiology. Data-mining tools for dimension reduction can assist biologists to reveal novel molecular endophenotypes. However, there are still hurdles to overcome, including high cost, relatively poor reproducibility and comparability among platforms, the cross-sectional nature of the information, and the accessibility of human tissues. Concerted efforts are required to carry out large-scale prospective studies that are integrated at the levels of phenotype characterization, high throughput experimental techniques, data analyses, and beyond.

  8. Discovery of a widely distributed toxin biosynthetic gene cluster

    PubMed Central

    Lee, Shaun W.; Mitchell, Douglas A.; Markley, Andrew L.; Hensler, Mary E.; Gonzalez, David; Wohlrab, Aaron; Dorrestein, Pieter C.; Nizet, Victor; Dixon, Jack E.

    2008-01-01

    Bacteriocins represent a large family of ribosomally produced peptide antibiotics. Here we describe the discovery of a widely conserved biosynthetic gene cluster for the synthesis of thiazole and oxazole heterocycles on ribosomally produced peptides. These clusters encode a toxin precursor and all necessary proteins for toxin maturation and export. Using the toxin precursor peptide and heterocycle-forming synthetase proteins from the human pathogen Streptococcus pyogenes, we demonstrate the in vitro reconstitution of streptolysin S activity. We provide evidence that the synthetase enzymes, as predicted from our bioinformatics analysis, introduce heterocycles onto precursor peptides, thereby providing molecular insight into the chemical structure of streptolysin S. Furthermore, our studies reveal that the synthetase exhibits relaxed substrate specificity and modifies toxin precursors from both related and distant species. Given our findings, it is likely that the discovery of similar peptidic toxins will rapidly expand to existing and emerging genomes. PMID:18375757

  9. Cloning and characterization of the biosynthetic gene cluster for kutznerides

    PubMed Central

    Fujimori, Danica Galonić; Hrvatin, Siniša; Neumann, Christopher S.; Strieker, Matthias; Marahiel, Mohamed A.; Walsh, Christopher T.

    2007-01-01

    Kutznerides, actinomycete-derived cyclic depsipetides, consist of six nonproteinogenic residues, including a highly oxygenated tricyclic hexahydropyrroloindole, a chlorinated piperazic acid, 2-(1-methylcyclopropyl)-glycine, a β-branched-hydroxy acid, and 3-hydroxy glutamic acid, for which biosynthetic logic has not been elucidated. Herein we describe the biosynthetic gene cluster for the kutzneride family, identified by degenerate primer PCR for halogenating enzymes postulated to be involved in biosyntheses of these unusual monomers. The 56-kb gene cluster encodes a series of six nonribosomal peptide synthetase (NRPS) modules distributed over three proteins and a variety of tailoring enzymes, including both mononuclear nonheme iron and two flavin-dependent halogenases, and an array of oxygen transfer catalysts. The sequence and organization of NRPS genes support incorporation of the unusual monomer units into the densely functionalized scaffold of kutznerides. Our work provides insight into the formation of this intriguing class of compounds and provides a foundation for elucidating the timing and mechanisms of their biosynthesis. PMID:17940045

  10. From hormones to secondary metabolism: the emergence of metabolic gene clusters in plants.

    PubMed

    Chu, Hoi Yee; Wegel, Eva; Osbourn, Anne

    2011-04-01

    Gene clusters for the synthesis of secondary metabolites are a common feature of microbial genomes. Well-known examples include clusters for the synthesis of antibiotics in actinomycetes, and also for the synthesis of antibiotics and toxins in filamentous fungi. Until recently it was thought that genes for plant metabolic pathways were not clustered, and this is certainly true in many cases; however, five plant secondary metabolic gene clusters have now been discovered, all of them implicated in synthesis of defence compounds. An obvious assumption might be that these eukaryotic gene clusters have arisen by horizontal gene transfer from microbes, but there is compelling evidence to indicate that this is not the case. This raises intriguing questions about how widespread such clusters are, what the significance of clustering is, why genes for some metabolic pathways are clustered and those for others are not, and how these clusters form. In answering these questions we may hope to learn more about mechanisms of genome plasticity and adaptive evolution in plants. It is noteworthy that for the five plant secondary metabolic gene clusters reported so far, the enzymes for the first committed steps all appear to have been recruited directly or indirectly from primary metabolic pathways involved in hormone synthesis. This may or may not turn out to be a common feature of plant secondary metabolic gene clusters as new clusters emerge.

  11. Molecular characterization of neurally expressing genes in the para sodium channel gene cluster of Drosophila

    SciTech Connect

    Hong, Chang-Sook; Ganetzky, B.

    1996-03-01

    To elucidate the mechanisms regulating expression of para, which encodes the major class of sodium channels in the Drosophila nervous system, we have tried to locate upstream cis-acting regulatory elements by mapping the transcriptional start site and analyzing the region immediately upstream of para in region 14D of the polytene chromosomes. From these studies, we have discovered that the region contains a cluster of neurally expressing genes. Here we report the molecular characterization of the genomic organization of the 14D region and the genes within this region, which are: calnexin (Cnx), actin related protein 14D (Arp14D), calcineurin A 14D (CnnA14D), and chromosome associated protein (Cap). The tight clustering of these genes, their neuronal expression patterns, and their potential functions related to expression, modulation, or regulation of sodium channels raise the possibility that these genes represent a functionally related group sharing some coordinate regulatory mechanism. 76 refs., 11 figs.

  12. Molecular Characterization of Neurally Expressing Genes in the Para Sodium Channel Gene Cluster of Drosophila

    PubMed Central

    Hong, C. S.; Ganetzky, B.

    1996-01-01

    To elucidate the mechanisms regulating expression of para, which encodes the major class of sodium channels in the Drosophila nervous system, we have tried to locate upstream cis-acting regulatory elements by mapping the transcriptional start site and analyzing the region immediately upstream of para in region 14D of the polytene chromosomes. From these studies, we have discovered that the region contains a cluster of neurally expressing genes. Here we report the molecular characterization of the genomic organization of the 14D region and the genes within this region, which are: calnexin (Cnx), actin related protein 14D (Arp14D), calcineurin A 14D (CnnA14D), and chromosome associated protein (Cap). The tight clustering of these genes, their neuronal expression patterns, and their potential functions related to expression, modulation, or regulation of sodium channels raise the possibility that these genes represent a functionally related group sharing some coordinate regulatory mechanism. PMID:8849894

  13. Distribution and Genetic Diversity of Bacteriocin Gene Clusters in Rumen Microbial Genomes

    PubMed Central

    Azevedo, Analice C.; Bento, Cláudia B. P.; Ruiz, Jeronimo C.; Queiroz, Marisa V.

    2015-01-01

    Some species of ruminal bacteria are known to produce antimicrobial peptides, but the screening procedures have mostly been based on in vitro assays using standardized methods. Recent sequencing efforts have made available the genome sequences of hundreds of ruminal microorganisms. In this work, we performed genome mining of the complete and partial genome sequences of 224 ruminal bacteria and 5 ruminal archaea to determine the distribution and diversity of bacteriocin gene clusters. A total of 46 bacteriocin gene clusters were identified in 33 strains of ruminal bacteria. Twenty gene clusters were related to lanthipeptide biosynthesis, while 11 gene clusters were associated with sactipeptide production, 7 gene clusters were associated with class II bacteriocin production, and 8 gene clusters were associated with class III bacteriocin production. The frequency of strains whose genomes encode putative antimicrobial peptide precursors was 14.4%. Clusters related to the production of sactipeptides were identified for the first time among ruminal bacteria. BLAST analysis indicated that the majority of the gene clusters (88%) encoding putative lanthipeptides contained all the essential genes required for lanthipeptide biosynthesis. Most strains of Streptococcus (66.6%) harbored complete lanthipeptide gene clusters, in addition to an open reading frame encoding a putative class II bacteriocin. Albusin B-like proteins were found in 100% of the Ruminococcus albus strains screened in this study. The in silico analysis provided evidence of novel biosynthetic gene clusters in bacterial species not previously related to bacteriocin production, suggesting that the rumen microbiota represents an underexplored source of antimicrobial peptides. PMID:26253660

  14. Distribution and Genetic Diversity of Bacteriocin Gene Clusters in Rumen Microbial Genomes.

    PubMed

    Azevedo, Analice C; Bento, Cláudia B P; Ruiz, Jeronimo C; Queiroz, Marisa V; Mantovani, Hilário C

    2015-10-01

    Some species of ruminal bacteria are known to produce antimicrobial peptides, but the screening procedures have mostly been based on in vitro assays using standardized methods. Recent sequencing efforts have made available the genome sequences of hundreds of ruminal microorganisms. In this work, we performed genome mining of the complete and partial genome sequences of 224 ruminal bacteria and 5 ruminal archaea to determine the distribution and diversity of bacteriocin gene clusters. A total of 46 bacteriocin gene clusters were identified in 33 strains of ruminal bacteria. Twenty gene clusters were related to lanthipeptide biosynthesis, while 11 gene clusters were associated with sactipeptide production, 7 gene clusters were associated with class II bacteriocin production, and 8 gene clusters were associated with class III bacteriocin production. The frequency of strains whose genomes encode putative antimicrobial peptide precursors was 14.4%. Clusters related to the production of sactipeptides were identified for the first time among ruminal bacteria. BLAST analysis indicated that the majority of the gene clusters (88%) encoding putative lanthipeptides contained all the essential genes required for lanthipeptide biosynthesis. Most strains of Streptococcus (66.6%) harbored complete lanthipeptide gene clusters, in addition to an open reading frame encoding a putative class II bacteriocin. Albusin B-like proteins were found in 100% of the Ruminococcus albus strains screened in this study. The in silico analysis provided evidence of novel biosynthetic gene clusters in bacterial species not previously related to bacteriocin production, suggesting that the rumen microbiota represents an underexplored source of antimicrobial peptides.

  15. Distribution and Genetic Diversity of Bacteriocin Gene Clusters in Rumen Microbial Genomes.

    PubMed

    Azevedo, Analice C; Bento, Cláudia B P; Ruiz, Jeronimo C; Queiroz, Marisa V; Mantovani, Hilário C

    2015-10-01

    Some species of ruminal bacteria are known to produce antimicrobial peptides, but the screening procedures have mostly been based on in vitro assays using standardized methods. Recent sequencing efforts have made available the genome sequences of hundreds of ruminal microorganisms. In this work, we performed genome mining of the complete and partial genome sequences of 224 ruminal bacteria and 5 ruminal archaea to determine the distribution and diversity of bacteriocin gene clusters. A total of 46 bacteriocin gene clusters were identified in 33 strains of ruminal bacteria. Twenty gene clusters were related to lanthipeptide biosynthesis, while 11 gene clusters were associated with sactipeptide production, 7 gene clusters were associated with class II bacteriocin production, and 8 gene clusters were associated with class III bacteriocin production. The frequency of strains whose genomes encode putative antimicrobial peptide precursors was 14.4%. Clusters related to the production of sactipeptides were identified for the first time among ruminal bacteria. BLAST analysis indicated that the majority of the gene clusters (88%) encoding putative lanthipeptides contained all the essential genes required for lanthipeptide biosynthesis. Most strains of Streptococcus (66.6%) harbored complete lanthipeptide gene clusters, in addition to an open reading frame encoding a putative class II bacteriocin. Albusin B-like proteins were found in 100% of the Ruminococcus albus strains screened in this study. The in silico analysis provided evidence of novel biosynthetic gene clusters in bacterial species not previously related to bacteriocin production, suggesting that the rumen microbiota represents an underexplored source of antimicrobial peptides. PMID:26253660

  16. Sequencing, characterization, and gene expression analysis of the histidine decarboxylase gene cluster of Morganella morganii.

    PubMed

    Ferrario, Chiara; Borgo, Francesca; de Las Rivas, Blanca; Muñoz, Rosario; Ricci, Giovanni; Fortina, Maria Grazia

    2014-03-01

    The histidine decarboxylase gene cluster of Morganella morganii DSM30146(T) was sequenced, and four open reading frames, named hdcT1, hdc, hdcT2, and hisRS were identified. Two putative histidine/histamine antiporters (hdcT1 and hdcT2) were located upstream and downstream the hdc gene, codifying a pyridoxal-P dependent histidine decarboxylase, and followed by hisRS gene encoding a histidyl-tRNA synthetase. This organization was comparable with the gene cluster of other known Gram negative bacteria, particularly with that of Klebsiella oxytoca. Recombinant Escherichia coli strains harboring plasmids carrying the M. morganii hdc gene were shown to overproduce histidine decarboxylase, after IPTG induction at 37 °C for 4 h. Quantitative RT-PCR experiments revealed the hdc and hisRS genes were highly induced under acidic and histidine-rich conditions. This work represents the first description and identification of the hdc-related genes in M. morganii. Results support the hypothesis that the histidine decarboxylation reaction in this prolific histamine producing species may play a role in acid survival. The knowledge of the role and the regulation of genes involved in histidine decarboxylation should improve the design of rational strategies to avoid toxic histamine production in foods.

  17. Hematopoietic stem cell transplantation for pediatric mature B-cell acute lymphoblastic leukemia with non-L3 morphology and MLL-AF9 gene fusion: three case reports and review of the literature.

    PubMed

    Sarashina, Takeo; Iwabuchi, Haruko; Miyagawa, Naoyuki; Sekimizu, Masahiro; Yokosuka, Tomoko; Fukuda, Kunio; Hamanoue, Satoshi; Iwasaki, Fuminori; Goto, Shoko; Shiomi, Masae; Imai, Chihaya; Goto, Hiroaki

    2016-07-01

    Mature B-cell acute lymphoblastic leukemia (B-ALL) is typically associated with French-American-British (FAB)-L3 morphology and MYC gene rearrangement. However, rare cases of mature B-ALL with non-L3 morphology and MLL-AF9 fusion have been reported, and such cases are characterized by a rapid and aggressive clinical course. We here report three such cases of pediatric mature B-ALL in female patients respectively aged 15 months, 4 years, and 4 months. Bone marrow smears at diagnosis showed FAB-L1 morphology in all patients. Immunophenotypically, they were positive for cluster of differentiation (CD)10, CD19, CD20 (or CD22), Human Leukocyte Antigen-DR, and surface immunoglobulin λ. No evidence of MYC rearrangement was detected in any of the cases by fluorescent in situ hybridization (FISH) analysis. However, MLL rearrangement was detected by FISH, and MLL-AF9 fusion was confirmed by reverse transcriptase-polymerase chain reaction. All patients achieved complete remission after conventional chemotherapy and subsequently underwent hematopoietic stem cell transplantation as high-risk ALL; patient 3 for infantile ALL with MLL rearrangement and the others for ALL with MLL rearrangement and hyperleukocytosis (white blood cell count at diagnosis >50 × 10(9)/L). At the latest follow-up for each case (12-98 months post-transplantation), complete remission was maintained. Moreover, we discuss the clinical, genetic, and immunophenotypic features of this rare disease. PMID:27084248

  18. Gravitation field algorithm and its application in gene cluster

    PubMed Central

    2010-01-01

    Background Searching optima is one of the most challenging tasks in clustering genes from available experimental data or given functions. SA, GA, PSO and other similar efficient global optimization methods are used by biotechnologists. All these algorithms are based on the imitation of natural phenomena. Results This paper proposes a novel searching optimization algorithm called Gravitation Field Algorithm (GFA) which is derived from the famous astronomy theory Solar Nebular Disk Model (SNDM) of planetary formation. GFA simulates the Gravitation field and outperforms GA and SA in some multimodal functions optimization problem. And GFA also can be used in the forms of unimodal functions. GFA clusters the dataset well from the Gene Expression Omnibus. Conclusions The mathematical proof demonstrates that GFA could be convergent in the global optimum by probability 1 in three conditions for one independent variable mass functions. In addition to these results, the fundamental optimization concept in this paper is used to analyze how SA and GA affect the global search and the inherent defects in SA and GA. Some results and source code (in Matlab) are publicly available at http://ccst.jlu.edu.cn/CSBG/GFA. PMID:20854683

  19. Arrangement of the Clostridium baratii F7 Toxin Gene Cluster with Identification of a σ Factor That Recognizes the Botulinum Toxin Gene Cluster Promoters

    SciTech Connect

    Dover, Nir; Barash, Jason R.; Burke, Julianne N.; Hill, Karen K.; Detter, John C.; Arnon, Stephen S.

    2014-05-22

    Botulinum neurotoxin (BoNT) is the most poisonous substances known and its eight toxin types (A to H) are distinguished by the inability of polyclonal antibodies that neutralize one toxin type to neutralize any of the other seven toxin types. Infant botulism, an intestinal toxemia orphan disease, is the most common form of human botulism in the United States. It results from swallowed spores of Clostridium botulinum (or rarely, neurotoxigenic Clostridium butyricum or Clostridium baratii) that germinate and temporarily colonize the lumen of the large intestine, where, as vegetative cells, they produce botulinum toxin. Botulinum neurotoxin is encoded by the bont gene that is part of a toxin gene cluster that includes several accessory genes. In this paper, we sequenced for the first time the complete botulinum neurotoxin gene cluster of nonproteolytic C. baratii type F7. Like the type E and the nonproteolytic type F6 botulinum toxin gene clusters, the C. baratii type F7 had an orfX toxin gene cluster that lacked the regulatory botR gene which is found in proteolytic C. botulinum strains and codes for an alternative σ factor. In the absence of botR, we identified a putative alternative regulatory gene located upstream of the C. baratii type F7 toxin gene cluster. This putative regulatory gene codes for a predicted σ factor that contains DNA-binding-domain homologues to the DNA-binding domains both of BotR and of other members of the TcdR-related group 5 of the σ70 family that are involved in the regulation of toxin gene expression in clostridia. We showed that this TcdR-related protein in association with RNA polymerase core enzyme specifically binds to the C. baratii type F7 botulinum toxin gene cluster promoters. Finally, this TcdR-related protein may therefore be involved in regulating the expression of the genes of the botulinum toxin gene cluster in neurotoxigenic C. baratii.

  20. Arrangement of the Clostridium baratii F7 toxin gene cluster with identification of a σ factor that recognizes the botulinum toxin gene cluster promoters.

    PubMed

    Dover, Nir; Barash, Jason R; Burke, Julianne N; Hill, Karen K; Detter, John C; Arnon, Stephen S

    2014-01-01

    Botulinum neurotoxin (BoNT) is the most poisonous substances known and its eight toxin types (A to H) are distinguished by the inability of polyclonal antibodies that neutralize one toxin type to neutralize any of the other seven toxin types. Infant botulism, an intestinal toxemia orphan disease, is the most common form of human botulism in the United States. It results from swallowed spores of Clostridium botulinum (or rarely, neurotoxigenic Clostridium butyricum or Clostridium baratii) that germinate and temporarily colonize the lumen of the large intestine, where, as vegetative cells, they produce botulinum toxin. Botulinum neurotoxin is encoded by the bont gene that is part of a toxin gene cluster that includes several accessory genes. We sequenced for the first time the complete botulinum neurotoxin gene cluster of nonproteolytic C. baratii type F7. Like the type E and the nonproteolytic type F6 botulinum toxin gene clusters, the C. baratii type F7 had an orfX toxin gene cluster that lacked the regulatory botR gene which is found in proteolytic C. botulinum strains and codes for an alternative σ factor. In the absence of botR, we identified a putative alternative regulatory gene located upstream of the C. baratii type F7 toxin gene cluster. This putative regulatory gene codes for a predicted σ factor that contains DNA-binding-domain homologues to the DNA-binding domains both of BotR and of other members of the TcdR-related group 5 of the σ70 family that are involved in the regulation of toxin gene expression in clostridia. We showed that this TcdR-related protein in association with RNA polymerase core enzyme specifically binds to the C. baratii type F7 botulinum toxin gene cluster promoters. This TcdR-related protein may therefore be involved in regulating the expression of the genes of the botulinum toxin gene cluster in neurotoxigenic C. baratii.

  1. Parallel evolutionary events in the haptoglobin gene clusters of rhesus monkey and human

    SciTech Connect

    Erickson, L.M.; Maeda, N.

    1994-08-01

    Parallel occurrences of evolutionary events in the haptoglobin gene clusters of rhesus monkeys and humans were studied. We found six different haplotypes among 11 individuals from two rhesus monkey families. The six haplotypes include two types of haptoglobin gene clusters: one type with a single gene and the other with two genes. DNA sequence analysis indicates that the one-gene and the two-gene clusters were both formed by unequal homologous crossovers between two genes of an ancestral three-gene cluster, near exon 5, the longest exon of the gene. This exon is also the location where a separate unequal homologous crossover occured in the human lineage, forming the human two-gene haptoglobin gene cluster from an ancestral three-gene cluster. The occurrence of independent homologous unequal crossovers in rhesus monkey and in human within the same region of DNA suggests that the evolutionary history of the haptoglobin gene cluster in primates is the consequence of frequent homologous pairings facilitated by the longest and most conserved exon of the gene. 27 refs., 7 figs., 1 tab.

  2. Functional dissection of an enhancer-like element located within the second intron of the human U2AF1L4 gene.

    PubMed

    Didych, D A; Smirnov, N A; Kotova, E S; Akopov, S B; Nikolaev, L G; Sverdlov, E D

    2011-08-01

    A detailed functional and evolutionary analysis of an enhancer element of the human genome (enhancer 12) located in the second intron of the U2AF1L4 gene, which we identified earlier, is presented. Overlapping fragments of the studied genome region were analyzed for enhancer activity, and the site responsible for the activity of this element was identified using transient transfections of HeLa cells. Comparison of the enhancer 12 sequence with orthologous sequences from seven primate species revealed the existence of evolutionarily conserved sequences within this element. One of the identified conservative regions is likely responsible for the enhancer activity and is able to specifically interact in vitro with proteins of HeLa cell nuclear extract. The ability of orthologous primate sequences to compete with enhancer 12 for binding with HeLa cell nuclear extract proteins and to enhance the activity of the reporter gene in transient transfection of HeLa cells is demonstrated. PMID:22022969

  3. The gene for human U2 snRNP auxiliary factor small 35-kDa subunit (U2AF1) maps to the progressive myoclonus epilepsy (EPM1) critical region on chromosome 21q22.3

    SciTech Connect

    Lalioti, M.D.; Rossier, C.; Antonarakis, S.E.

    1996-04-15

    We used targeted exon trapping to clone portions of genes from human chromosome 21q22.3. One trapped sequence showed complete homology with the cDNA of human U2AF{sup 35} (M96982; HGM-approved nomenclature U2AF1), which encodes for the small 35-kDa subunit of the U2 snRNP auxiliary factor. Using the U2AF1 cDNA as a probe, we mapped this gene to cosmid Q15D2, a P1, and YAC 350F7 of the Chumakov et al. contig, close to the cystathionine-{beta}-synthase gene (CBS) on 21q22.3. This localization was confirmed by PCR using oligonucleotides from the 3{prime} UTR and by FISH. As U2AF1 associated with a number of different factors during mRNA splicing, overexpression in trisomy 21 individuals could contribute to some Down syndrome phenotypes by interfering with the splicing process. Furthermore, because this gene maps in the critical region for the progressive myoclonus epilepsy I locus (EPM1), mutation analysis will be carried out in patients to evaluate the potential role of U2AF1 as a candidate for EPM1. 24 refs., 1 fig.

  4. Recurrent adenylation domain replacement in the microcystin synthetase gene cluster

    PubMed Central

    Fewer, David P; Rouhiainen, Leo; Jokela, Jouni; Wahlsten, Matti; Laakso, Kati; Wang, Hao; Sivonen, Kaarina

    2007-01-01

    Background Microcystins are small cyclic heptapeptide toxins produced by a range of distantly related cyanobacteria. Microcystins are synthesized on large NRPS-PKS enzyme complexes. Many structural variants of microcystins are produced simulatenously. A recombination event between the first module of mcyB (mcyB1) and mcyC in the microcystin synthetase gene cluster is linked to the simultaneous production of microcystin variants in strains of the genus Microcystis. Results Here we undertook a phylogenetic study to investigate the order and timing of recombination between the mcyB1 and mcyC genes in a diverse selection of microcystin producing cyanobacteria. Our results provide support for complex evolutionary processes taking place at the mcyB1 and mcyC adenylation domains which recognize and activate the amino acids found at X and Z positions. We find evidence for recent recombination between mcyB1 and mcyC in strains of the genera Anabaena, Microcystis, and Hapalosiphon. We also find clear evidence for independent adenylation domain conversion of mcyB1 by unrelated peptide synthetase modules in strains of the genera Nostoc and Microcystis. The recombination events replace only the adenylation domain in each case and the condensation domains of mcyB1 and mcyC are not transferred together with the adenylation domain. Our findings demonstrate that the mcyB1 and mcyC adenylation domains are recombination hotspots in the microcystin synthetase gene cluster. Conclusion Recombination is thought to be one of the main mechanisms driving the diversification of NRPSs. However, there is very little information on how recombination takes place in nature. This study demonstrates that functional peptide synthetases are created in nature through transfer of adenylation domains without the concomitant transfer of condensation domains. PMID:17908306

  5. A Hybrid Distance Measure for Clustering Expressed Sequence Tags Originating from the Same Gene Family

    PubMed Central

    Ng, Keng-Hoong; Ho, Chin-Kuan; Phon-Amnuaisuk, Somnuk

    2012-01-01

    Background Clustering is a key step in the processing of Expressed Sequence Tags (ESTs). The primary goal of clustering is to put ESTs from the same transcript of a single gene into a unique cluster. Recent EST clustering algorithms mostly adopt the alignment-free distance measures, where they tend to yield acceptable clustering accuracies with reasonable computational time. Despite the fact that these clustering methods work satisfactorily on a majority of the EST datasets, they have a common weakness. They are prone to deliver unsatisfactory clustering results when dealing with ESTs from the genes derived from the same family. The root cause is the distance measures applied on them are not sensitive enough to separate these closely related genes. Methodology/Principal Findings We propose a hybrid distance measure that combines the global and local features extracted from ESTs, with the aim to address the clustering problem faced by ESTs derived from the same gene family. The clustering process is implemented using the DBSCAN algorithm. We test the hybrid distance measure on the ten EST datasets, and the clustering results are compared with the two alignment-free EST clustering tools, i.e. wcd and PEACE. The clustering results indicate that the proposed hybrid distance measure performs relatively better (in terms of clustering accuracy) than both EST clustering tools. Conclusions/Significance The clustering results provide support for the effectiveness of the proposed hybrid distance measure in solving the clustering problem for ESTs that originate from the same gene family. The improvement of clustering accuracies on the experimental datasets has supported the claim that the sensitivity of the hybrid distance measure is sufficient to solve the clustering problem. PMID:23071763

  6. Predicted Roles of the Uncharacterized Clustered Genes in Aflatoxin Biosynthesis

    PubMed Central

    Ehrlich, Kenneth C.

    2009-01-01

    Biosynthesis of the toxic and carcinogenic aflatoxins (AFs) requires the activity of more than 27 enzymes. The roles in biosynthesis of newly described enzymes are discussed in this review. We suggest that HypC catalyzes the oxidation of norsolorinic acid anthrone; AvfA (AflI), the ring-closure step in formation of hydroxyversicolorone; HypB, the second oxidation step in conversion of O-methylsterigmatocystin to AF; and HypE and NorA (AflE), the final two steps in AFB1 formation. HypD, an integral membrane protein, affects fungal development and lowers AF production while AflJ (AflS), has a partial methyltransferase domain that may be important in its function as a transcriptional co-activator. PMID:22069531

  7. Mutational and Phylogenetic Analyses of the Mycobacterial mbt Gene Cluster ▿§

    PubMed Central

    Chavadi, Sivagami Sundaram; Stirrett, Karen L.; Edupuganti, Uthamaphani R.; Vergnolle, Olivia; Sadhanandan, Gigani; Marchiano, Emily; Martin, Che; Qiu, Wei-Gang; Soll, Clifford E.; Quadri, Luis E. N.

    2011-01-01

    The mycobactin siderophore system is present in many Mycobacterium species, including M. tuberculosis and other clinically relevant mycobacteria. This siderophore system is believed to be utilized by both pathogenic and nonpathogenic mycobacteria for iron acquisition in both in vivo and ex vivo iron-limiting environments, respectively. Several M. tuberculosis genes located in a so-called mbt gene cluster have been predicted to be required for the biosynthesis of the core scaffold of mycobactin based on sequence analysis. A systematic and controlled mutational analysis probing the hypothesized essential nature of each of these genes for mycobactin production has been lacking. The degree of conservation of mbt gene cluster orthologs remains to be investigated as well. In this study, we sought to conclusively establish whether each of nine mbt genes was required for mycobactin production and to examine the conservation of gene clusters orthologous to the M. tuberculosis mbt gene cluster in other bacteria. We report a systematic mutational analysis of the mbt gene cluster ortholog found in Mycobacterium smegmatis. This mutational analysis demonstrates that eight of the nine mbt genes investigated are essential for mycobactin production. Our genome mining and phylogenetic analyses reveal the presence of orthologous mbt gene clusters in several bacterial species. These gene clusters display significant organizational differences originating from an intricate evolutionary path that might have included horizontal gene transfers. Altogether, the findings reported herein advance our understanding of the genetic requirements for the biosynthesis of an important mycobacterial secondary metabolite with relevance to virulence. PMID:21873494

  8. A Special Local Clustering Algorithm for Identifying the Genes Associated With Alzheimer’s Disease

    PubMed Central

    Pang, Chao-Yang; Hu, Wei; Hu, Ben-Qiong; Shi, Ying; Vanderburg, Charles R.; Rogers, Jack T.

    2010-01-01

    Clustering is the grouping of similar objects into a class. Local clustering feature refers to the phenomenon whereby one group of data is separated from another, and the data from these different groups are clustered locally. A compact class is defined as one cluster in which all similar elements cluster tightly within the cluster. Herein, the essence of the local clustering feature, revealed by mathematical manipulation, results in a novel clustering algorithm termed as the special local clustering (SLC) algorithm that was used to process gene microarray data related to Alzheimer’s disease (AD). SLC algorithm was able to group together genes with similar expression patterns and identify significantly varied gene expression values as isolated points. If a gene belongs to a compact class in control data and appears as an isolated point in incipient, moderate and/or severe AD gene microarray data, this gene is possibly associated with AD. Application of a clustering algorithm in disease-associated gene identification such as in AD is rarely reported. PMID:20089478

  9. Translating biosynthetic gene clusters into fungal armor and weaponry

    PubMed Central

    Keller, Nancy P

    2015-01-01

    Filamentous fungi are renowned for the production of a diverse array of secondary metabolites (SMs) where the genetic material required for synthesis of a SM is typically arrayed in a biosynthetic gene cluster (BGC). These natural products are valued for their bioactive properties stemming from their functions in fungal biology, key among those protection from abiotic and biotic stress and establishment of a secure niche. The producing fungus must not only avoid self-harm from endogenous SMs but also deliver specific SMs at the right time to the right tissue requiring biochemical aid. This review highlights functions of BGCs beyond the enzymatic assembly of SMs, considering the timing and location of SM production and other proteins in the clusters that control SM activity. Specifically, self-protection is provided by both BGC-encoded mechanisms and non-BGC subcellular containment of toxic SM precursors; delivery and timing is orchestrated through cellular trafficking patterns and stress- and developmental-responsive transcriptional programs. PMID:26284674

  10. Deletion and Gene Expression Analyses Define the Paxilline Biosynthetic Gene Cluster in Penicillium paxilli

    PubMed Central

    Scott, Barry; Young, Carolyn A.; Saikia, Sanjay; McMillan, Lisa K.; Monahan, Brendon J.; Koulman, Albert; Astin, Jonathan; Eaton, Carla J.; Bryant, Andrea; Wrenn, Ruth E.; Finch, Sarah C.; Tapper, Brian A.; Parker, Emily J.; Jameson, Geoffrey B.

    2013-01-01

    The indole-diterpene paxilline is an abundant secondary metabolite synthesized by Penicillium paxilli. In total, 21 genes have been identified at the PAX locus of which six have been previously confirmed to have a functional role in paxilline biosynthesis. A combination of bioinformatics, gene expression and targeted gene replacement analyses were used to define the boundaries of the PAX gene cluster. Targeted gene replacement identified seven genes, paxG, paxA, paxM, paxB, paxC, paxP and paxQ that were all required for paxilline production, with one additional gene, paxD, required for regular prenylation of the indole ring post paxilline synthesis. The two putative transcription factors, PP104 and PP105, were not co-regulated with the pax genes and based on targeted gene replacement, including the double knockout, did not have a role in paxilline production. The relationship of indole dimethylallyl transferases involved in prenylation of indole-diterpenes such as paxilline or lolitrem B, can be found as two disparate clades, not supported by prenylation type (e.g., regular or reverse). This paper provides insight into the P. paxilli indole-diterpene locus and reviews the recent advances identified in paxilline biosynthesis. PMID:23949005

  11. The gsdf gene locus harbors evolutionary conserved and clustered genes preferentially expressed in fish previtellogenic oocytes.

    PubMed

    Gautier, Aude; Le Gac, Florence; Lareyre, Jean-Jacques

    2011-02-01

    display a different cellular localization compared to that of the gsdf gene indicating that the later gene is not co-regulated. Interestingly, our study identifies new clustered genes that are specifically expressed in previtellogenic oocytes (nup54, aff1, klhl8, sdad1).

  12. Identification and Functional Analysis of the Nocardithiocin Gene Cluster in Nocardia pseudobrasiliensis

    PubMed Central

    Sakai, Kanae; Komaki, Hisayuki; Gonoi, Tohru

    2015-01-01

    Nocardithiocin is a thiopeptide compound isolated from the opportunistic pathogen Nocardia pseudobrasiliensis. It shows a strong activity against acid-fast bacteria and is also active against rifampicin-resistant Mycobacterium tuberculosis. Here, we report the identification of the nocardithiocin gene cluster in N. pseudobrasiliensis IFM 0761 based on conserved thiopeptide biosynthesis gene sequence and the whole genome sequence. The predicted gene cluster was confirmed by gene disruption and complementation. As expected, strains containing the disrupted gene did not produce nocardithiocin while gene complementation restored nocardithiocin production in these strains. The predicted cluster was further analyzed using RNA-seq which showed that the nocardithiocin gene cluster contains 12 genes within a 15.2-kb region. This finding will promote the improvement of nocardithiocin productivity and its derivatives production. PMID:26588225

  13. Epigenetic regulation of the RHOX homeobox gene cluster and its association with human male infertility.

    PubMed

    Richardson, Marcy E; Bleiziffer, Andreas; Tüttelmann, Frank; Gromoll, Jörg; Wilkinson, Miles F

    2014-01-01

    The X-linked RHOX cluster encodes a set of homeobox genes that are selectively expressed in the reproductive tract. Members of the RHOX cluster regulate target genes important for spermatogenesis promote male fertility in mice. Studies show that demethylating agents strongly upregulate the expression of mouse Rhox genes, suggesting that they are regulated by DNA methylation. However, whether this extends to human RHOX genes, whether DNA methylation directly regulates RHOX gene transcription and how this relates to human male infertility are unknown. To address these issues, we first defined the promoter regions of human RHOX genes and performed gain- and loss-of-function experiments to determine whether human RHOX gene transcription is regulated by DNA methylation. Our results indicated that DNA methylation is necessary and sufficient to silence human RHOX gene expression. To determine whether RHOX cluster methylation associates with male infertility, we evaluated the methylation status of RHOX genes in sperm from a large cohort of infertility patients. Linear regression analysis revealed a strong association between RHOX gene cluster hypermethylation and three independent types of semen abnormalities. Hypermethylation was restricted specifically to the RHOX cluster; we did not observe it in genes immediately adjacent to it on the X chromosome. Our results strongly suggest that human RHOX homeobox genes are under an epigenetic control mechanism that is aberrantly regulated in infertility patients. We propose that hypermethylation of the RHOX gene cluster serves as a marker for idiopathic infertility and that it is a candidate to exert a causal role in male infertility.

  14. An Ergot Alkaloid Biosynthesis Gene and Clustered Hypothetical Genes from Aspergillus fumigatus†

    PubMed Central

    Coyle, Christine M.; Panaccione, Daniel G.

    2005-01-01

    The ergot alkaloids are a family of indole-derived mycotoxins with a variety of significant biological activities. Aspergillus fumigatus, a common airborne fungus and opportunistic human pathogen, and several fungi in the relatively distant taxon Clavicipitaceae (clavicipitaceous fungi) produce different sets of ergot alkaloids. The ergot alkaloids of these divergent fungi share a four-member ergoline ring but differ in the number, type, and position of the side chains. Several genes required for ergot alkaloid production are known in the clavicipitaceous fungi, and these genes are clustered in the genome of the ergot fungus Claviceps purpurea. We investigated whether the ergot alkaloids of A. fumigatus have a common biosynthetic and genetic origin with those of the clavicipitaceous fungi. A homolog of dmaW, the gene controlling the determinant step in the ergot alkaloid pathway of clavicipitaceous fungi, was identified in the A. fumigatus genome. Knockout of dmaW eliminated all known ergot alkaloids from A. fumigatus, and complementation of the mutation restored ergot alkaloid production. Clustered with dmaW in the A. fumigatus genome are sequences corresponding to five genes previously proposed to encode steps in the ergot alkaloid pathway of C. purpurea, as well as additional sequences whose deduced protein products are consistent with their involvement in the ergot alkaloid pathway. The corresponding genes have similarities in their nucleotide sequences, but the orientations and positions within the cluster of several of these genes differ. The data indicate that the ergot alkaloid biosynthetic capabilities in A. fumigatus and the clavicipitaceous fungi had a common origin. PMID:15933009

  15. Activation and Characterization of a Cryptic Polycyclic Tetramate Macrolactam Biosynthetic Gene Cluster

    PubMed Central

    Luo, Yunzi; Huang, Hua; Liang, Jing; Wang, Meng; Lu, Lu; Shao, Zengyi; Cobb, Ryan E.; Zhao, Huimin

    2014-01-01

    Polycyclic tetramate macrolactams (PTMs) are a widely distributed class of natural products with important biological activities. However, many of them have not been characterized. Here we apply a plug and play synthetic biology strategy to activate a cryptic PTM biosynthetic gene cluster SGR810-815 from Streptomyces griseus and discover three potential PTMs. This gene cluster is highly conserved in phylogenetically diverse bacterial strains and contains an unusual hybrid polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) which resembles iterative PKSs known in fungi. To further characterize this gene cluster, we use the same synthetic biology approach to create a series of gene deletion constructs and elucidate the biosynthetic steps for the formation of the polycyclic system. The strategy we employ bypasses the traditional laborious processes to elicit gene cluster expression and should be generally applicable to many other silent or cryptic gene clusters for discovery and characterization of new natural products. PMID:24305602

  16. High presence/absence gene variability in defense-related gene clusters of Cucumis melo

    PubMed Central

    2013-01-01

    Background Changes in the copy number of DNA sequences are one of the main mechanisms generating genome variability in eukaryotes. These changes are often related to phenotypic effects such as genetic disorders or novel pathogen resistance. The increasing availability of genome sequences through the application of next-generation massive sequencing technologies has allowed the study of genomic polymorphisms at both the interspecific and intraspecific levels, thus helping to understand how species adapt to changing environments through genome variability. Results Data on gene presence/absence variation (PAV) in melon was obtained by resequencing a cultivated accession and an old-relative melon variety, and using previously obtained resequencing data from three other melon cultivars, among them DHL92, on which the current draft melon genome sequence is based. A total of 1,697 PAV events were detected, involving 4.4% of the predicted melon gene complement. In all, an average 1.5% of genes were absent from each analyzed cultivar as compared to the DHL92 reference genome. The most populated functional category among the 304 PAV genes of known function was that of stress response proteins (30% of all classified PAVs). Our results suggest that genes from multi-copy families are five times more likely to be affected by PAV than singleton genes. Also, the chance of genes present in the genome in tandem arrays being affected by PAV is double that of isolated genes, with PAV genes tending to be in longer clusters. The highest concentration of PAV events detected in the melon genome was found in a 1.1 Mb region of linkage group V, which also shows the highest density of melon stress-response genes. In particular, this region contains the longest continuous gene-containing PAV sequence so far identified in melon. Conclusions The first genome-wide report of PAV variation among several melon cultivars is presented here. Multi-copy and clustered genes, especially those with

  17. Phenotype-based clustering of glycosylation-related genes by RNAi-mediated gene silencing.

    PubMed

    Yamamoto-Hino, Miki; Yoshida, Hideki; Ichimiya, Tomomi; Sakamura, Sho; Maeda, Megumi; Kimura, Yoshinobu; Sasaki, Norihiko; Aoki-Kinoshita, Kiyoko F; Kinoshita-Toyoda, Akiko; Toyoda, Hidenao; Ueda, Ryu; Nishihara, Shoko; Goto, Satoshi

    2015-06-01

    Glycan structures are synthesized by a series of reactions conducted by glycosylation-related (GR) proteins such as glycosyltransferases, glycan-modifying enzymes, and nucleotide-sugar transporters. For example, the common core region of glycosaminoglycans (GAGs) is sequentially synthesized by peptide-O-xylosyltransferase, β1,4-galactosyltransferase I, β1,3-galactosyltransferase II, and β1,3-glucuronyltransferase. This raises the possibility that functional impairment of GR proteins involved in synthesis of the same glycan might result in the same phenotypic abnormality. To examine this possibility, comprehensive silencing of genes encoding GR and proteoglycan core proteins was conducted in Drosophila. Drosophila GR candidate genes (125) were classified into five functional groups for synthesis of GAGs, N-linked, O-linked, Notch-related, and unknown glycans. Spatiotemporally regulated silencing caused a range of malformed phenotypes that fell into three types: extra veins, thick veins, and depigmentation. The clustered phenotypes reflected the biosynthetic pathways of GAGs, Fringe-dependent glycan on Notch, and glycans placed at or near nonreducing ends (herein termed terminal domains of glycans). Based on the phenotypic clustering, CG33145 was predicted to be involved in formation of terminal domains. Our further analysis showed that CG33145 exhibited galactosyltransferase activity in synthesis of terminal N-linked glycans. Phenotypic clustering, therefore, has potential for the functional prediction of novel GR genes. PMID:25940448

  18. Phenotype-based clustering of glycosylation-related genes by RNAi-mediated gene silencing

    PubMed Central

    Yamamoto-Hino, Miki; Yoshida, Hideki; Ichimiya, Tomomi; Sakamura, Sho; Maeda, Megumi; Kimura, Yoshinobu; Sasaki, Norihiko; Aoki-Kinoshita, Kiyoko F; Kinoshita-Toyoda, Akiko; Toyoda, Hidenao; Ueda, Ryu; Nishihara, Shoko; Goto, Satoshi

    2015-01-01

    Glycan structures are synthesized by a series of reactions conducted by glycosylation-related (GR) proteins such as glycosyltransferases, glycan-modifying enzymes, and nucleotide-sugar transporters. For example, the common core region of glycosaminoglycans (GAGs) is sequentially synthesized by peptide-O-xylosyltransferase, β1,4-galactosyltransferase I, β1,3-galactosyltransferase II, and β1,3-glucuronyltransferase. This raises the possibility that functional impairment of GR proteins involved in synthesis of the same glycan might result in the same phenotypic abnormality. To examine this possibility, comprehensive silencing of genes encoding GR and proteoglycan core proteins was conducted in Drosophila. Drosophila GR candidate genes (125) were classified into five functional groups for synthesis of GAGs, N-linked, O-linked, Notch-related, and unknown glycans. Spatiotemporally regulated silencing caused a range of malformed phenotypes that fell into three types: extra veins, thick veins, and depigmentation. The clustered phenotypes reflected the biosynthetic pathways of GAGs, Fringe-dependent glycan on Notch, and glycans placed at or near nonreducing ends (herein termed terminal domains of glycans). Based on the phenotypic clustering, CG33145 was predicted to be involved in formation of terminal domains. Our further analysis showed that CG33145 exhibited galactosyltransferase activity in synthesis of terminal N-linked glycans. Phenotypic clustering, therefore, has potential for the functional prediction of novel GR genes. PMID:25940448

  19. A tripartite clustering analysis on microRNA, gene and disease model.

    PubMed

    Shen, Chengcheng; Liu, Ying

    2012-02-01

    Alteration of gene expression in response to regulatory molecules or mutations could lead to different diseases. MicroRNAs (miRNAs) have been discovered to be involved in regulation of gene expression and a wide variety of diseases. In a tripartite biological network of human miRNAs, their predicted target genes and the diseases caused by altered expressions of these genes, valuable knowledge about the pathogenicity of miRNAs, involved genes and related disease classes can be revealed by co-clustering miRNAs, target genes and diseases simultaneously. Tripartite co-clustering can lead to more informative results than traditional co-clustering with only two kinds of members and pass the hidden relational information along the relation chain by considering multi-type members. Here we report a spectral co-clustering algorithm for k-partite graph to find clusters with heterogeneous members. We use the method to explore the potential relationships among miRNAs, genes and diseases. The clusters obtained from the algorithm have significantly higher density than randomly selected clusters, which means members in the same cluster are more likely to have common connections. Results also show that miRNAs in the same family based on the hairpin sequences tend to belong to the same cluster. We also validate the clustering results by checking the correlation of enriched gene functions and disease classes in the same cluster. Finally, widely studied miR-17-92 and its paralogs are analyzed as a case study to reveal that genes and diseases co-clustered with the miRNAs are in accordance with current research findings. PMID:22809308

  20. A tripartite clustering analysis on microRNA, gene and disease model.

    PubMed

    Shen, Chengcheng; Liu, Ying

    2012-02-01

    Alteration of gene expression in response to regulatory molecules or mutations could lead to different diseases. MicroRNAs (miRNAs) have been discovered to be involved in regulation of gene expression and a wide variety of diseases. In a tripartite biological network of human miRNAs, their predicted target genes and the diseases caused by altered expressions of these genes, valuable knowledge about the pathogenicity of miRNAs, involved genes and related disease classes can be revealed by co-clustering miRNAs, target genes and diseases simultaneously. Tripartite co-clustering can lead to more informative results than traditional co-clustering with only two kinds of members and pass the hidden relational information along the relation chain by considering multi-type members. Here we report a spectral co-clustering algorithm for k-partite graph to find clusters with heterogeneous members. We use the method to explore the potential relationships among miRNAs, genes and diseases. The clusters obtained from the algorithm have significantly higher density than randomly selected clusters, which means members in the same cluster are more likely to have common connections. Results also show that miRNAs in the same family based on the hairpin sequences tend to belong to the same cluster. We also validate the clustering results by checking the correlation of enriched gene functions and disease classes in the same cluster. Finally, widely studied miR-17-92 and its paralogs are analyzed as a case study to reveal that genes and diseases co-clustered with the miRNAs are in accordance with current research findings.

  1. Conservation of Hox gene clusters in the self-fertilizing fish Kryptolebias marmoratus (Cyprinodontiformes; Rivulidae).

    PubMed

    Kim, B-M; Lee, B-Y; Lee, J-H; Rhee, J-S; Lee, J-S

    2016-03-01

    In this study, whole Hox gene clusters in the self-fertilizing mangrove killifish Kryptolebias marmoratus (Cyprinodontiformes; Rivulidae), a unique hermaphroditic vertebrate in which both sex organs are functional at the same time, were identified from whole genome and transcriptome sequences. The aim was to increase the understanding of the evolutionary status of conservation of this Hox gene cluster across fish species. PMID:26822496

  2. Identification and analysis of a highly conserved chemotaxis gene cluster in Shewanella species.

    SciTech Connect

    Li, J.; Romine, Margaret F.; Ward, M.

    2007-08-01

    A conserved cluster of chemotaxis genes was identified from the genome sequences of fifteen Shewanella species. An in-frame deletion of the cheA-3 gene, which is located in this cluster, was created in S. oneidensis MR-1 and the gene shown to be essential for chemotactic responses to anaerobic electron acceptors. The CheA-3 protein showed strong similarity to Vibrio cholerae CheA-2 and P. aeruginosa CheA-1, two proteins that are also essential for chemotaxis. The genes encoding these proteins were shown to be located in chemotaxis gene clusters closely related to the cheA-3-containing cluster in Shewanella species. The results of this study suggest that a combination of gene neighborhood and homology analyses may be used to predict which cheA genes are essential for chemotaxis in groups of closely related microorganisms.

  3. A phylogenomic gene cluster resource: The phylogeneticallyinferred groups (PhlGs) database

    SciTech Connect

    Dehal, Paramvir S.; Boore, Jeffrey L.

    2005-08-25

    We present here the PhIGs database, a phylogenomic resource for sequenced genomes. Although many methods exist for clustering gene families, very few attempt to create truly orthologous clusters sharing descent from a single ancestral gene across a range of evolutionary depths. Although these non-phylogenetic gene family clusters have been used broadly for gene annotation, errors are known to be introduced by the artifactual association of slowly evolving paralogs and lack of annotation for those more rapidly evolving. A full phylogenetic framework is necessary for accurate inference of function and for many studies that address pattern and mechanism of the evolution of the genome. The automated generation of evolutionary gene clusters, creation of gene trees, determination of orthology and paralogy relationships, and the correlation of this information with gene annotations, expression information, and genomic context is an important resource to the scientific community.

  4. GENE DUPLICATION, MODULARITY AND ADAPTATION IN THE EVOLUTION OF THE AFLATOXIN GENE CLUSTER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biosynthesis of aflatoxin (AF) involves over 20 enzymatic reactions in a complex polyketide pathway that converts acetate and malonate to the intermediates sterigmatocystin (ST) and O-methylsterigmatocysin (OMST), the respective penultimate and ultimate precursors of AF. Although these precurso...

  5. Base J represses genes at the end of polycistronic gene clusters in Leishmania major by promoting RNAP II termination.

    PubMed

    Reynolds, David L; Hofmeister, Brigitte T; Cliffe, Laura; Siegel, T Nicolai; Anderson, Britta A; Beverley, Stephen M; Schmitz, Robert J; Sabatini, Robert

    2016-08-01

    The genomes of kinetoplastids are organized into polycistronic gene clusters that are flanked by the modified DNA base J. Previous work has established a role of base J in promoting RNA polymerase II termination in Leishmania spp. where the loss of J leads to termination defects and transcription into adjacent gene clusters. It remains unclear whether these termination defects affect gene expression and whether read through transcription is detrimental to cell growth, thus explaining the essential nature of J. We now demonstrate that reduction of base J at specific sites within polycistronic gene clusters in L. major leads to read through transcription and increased expression of downstream genes in the cluster. Interestingly, subsequent transcription into the opposing polycistronic gene cluster does not lead to downregulation of sense mRNAs. These findings indicate a conserved role for J regulating transcription termination and expression of genes within polycistronic gene clusters in trypanosomatids. In contrast to the expectations often attributed to opposing transcription, the essential nature of J in Leishmania spp. is related to its role in gene repression rather than preventing transcriptional interference resulting from read through and dual strand transcription.

  6. Base J represses genes at the end of polycistronic gene clusters in Leishmania major by promoting RNAP II termination

    PubMed Central

    Reynolds, David L.; Hofmeister, Brigitte T.; Cliffe, Laura; Siegel, T. Nicolai; Anderson, Britta A.; Beverley, Stephen M.; Schmitz, Robert J.; Sabatini, Robert

    2016-01-01

    Summary The genomes of kinetoplastids are organized into polycistronic gene clusters that are flanked by the modified DNA base J. Previous work has established a role of base J in promoting RNA polymerase II termination in Leishmania spp. where the loss of J leads to termination defects and transcription into adjacent gene clusters. It remains unclear whether these termination defects affect gene expression and whether read through transcription is detrimental to cell growth, thus explaining the essential nature of J. We now demonstrate that reduction of base J at specific sites within polycistronic gene clusters in L. major leads to read through transcription and increased expression of downstream genes in the cluster. Interestingly, subsequent transcription into the opposing polycistronic gene cluster does not lead to downregulation of sense mRNAs. These findings indicate a conserved role for J regulating transcription termination and expression of genes within polycistronic gene clusters in trypanosomatids. In contrast to the expectations often attributed to opposing transcription, the essential nature of J in Leishmania spp. is related to its role in gene repression rather than preventing transcriptional interference resulting from read through and dual strand transcription. PMID:27125778

  7. The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters.

    PubMed

    Gross, Harald; Stockwell, Virginia O; Henkels, Marcella D; Nowak-Thompson, Brian; Loper, Joyce E; Gerwick, William H

    2007-01-01

    With the increasing number of genomes sequenced and available in the public domain, a large number of orphan gene clusters, for which the encoded natural product is unknown, have been identified. These orphan gene clusters represent a tremendous source of novel and possibly bioactive compounds. Here, we describe a "genomisotopic approach," which employs a combination of genomic sequence analysis and isotope-guided fractionation to identify unknown compounds synthesized from orphan gene clusters containing nonribosomal peptide synthetases. Analysis of the Pseudomonas fluorescens Pf-5 genome led to the identification of an orphan gene cluster predicted to code for the biosynthesis of a lipopeptide natural product. Application of the genomisotopic approach to isolate the product of this gene cluster resulted in the discovery of orfamide A, founder of a group of bioactive cyclic lipopeptides.

  8. Identification and Characterization of a Novel Diterpene Gene Cluster in Aspergillus nidulans

    PubMed Central

    Bromann, Kirsi; Toivari, Mervi; Viljanen, Kaarina; Vuoristo, Anu; Ruohonen, Laura; Nakari-Setälä, Tiina

    2012-01-01

    Fungal secondary metabolites are a rich source of medically useful compounds due to their pharmaceutical and toxic properties. Sequencing of fungal genomes has revealed numerous secondary metabolite gene clusters, yet products of many of these biosynthetic pathways are unknown since the expression of the clustered genes usually remains silent in normal laboratory conditions. Therefore, to discover new metabolites, it is important to find ways to induce the expression of genes in these otherwise silent biosynthetic clusters. We discovered a novel secondary metabolite in Aspergillus nidulans by predicting a biosynthetic gene cluster with genomic mining. A Zn(II)2Cys6–type transcription factor, PbcR, was identified, and its role as a pathway-specific activator for the predicted gene cluster was demonstrated. Overexpression of pbcR upregulated the transcription of seven genes in the identified cluster and led to the production of a diterpene compound, which was characterized with GC/MS as ent-pimara-8(14),15-diene. A change in morphology was also observed in the strains overexpressing pbcR. The activation of a cryptic gene cluster by overexpression of its putative Zn(II)2Cys6–type transcription factor led to discovery of a novel secondary metabolite in Aspergillus nidulans. Quantitative real-time PCR and DNA array analysis allowed us to predict the borders of the biosynthetic gene cluster. Furthermore, we identified a novel fungal pimaradiene cyclase gene as well as genes encoding 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase and a geranylgeranyl pyrophosphate (GGPP) synthase. None of these genes have been previously implicated in the biosynthesis of terpenes in Aspergillus nidulans. These results identify the first Aspergillus nidulans diterpene gene cluster and suggest a biosynthetic pathway for ent-pimara-8(14),15-diene. PMID:22506079

  9. Identification and characterization of a novel diterpene gene cluster in Aspergillus nidulans.

    PubMed

    Bromann, Kirsi; Toivari, Mervi; Viljanen, Kaarina; Vuoristo, Anu; Ruohonen, Laura; Nakari-Setälä, Tiina

    2012-01-01

    Fungal secondary metabolites are a rich source of medically useful compounds due to their pharmaceutical and toxic properties. Sequencing of fungal genomes has revealed numerous secondary metabolite gene clusters, yet products of many of these biosynthetic pathways are unknown since the expression of the clustered genes usually remains silent in normal laboratory conditions. Therefore, to discover new metabolites, it is important to find ways to induce the expression of genes in these otherwise silent biosynthetic clusters. We discovered a novel secondary metabolite in Aspergillus nidulans by predicting a biosynthetic gene cluster with genomic mining. A Zn(II)(2)Cys(6)-type transcription factor, PbcR, was identified, and its role as a pathway-specific activator for the predicted gene cluster was demonstrated. Overexpression of pbcR upregulated the transcription of seven genes in the identified cluster and led to the production of a diterpene compound, which was characterized with GC/MS as ent-pimara-8(14),15-diene. A change in morphology was also observed in the strains overexpressing pbcR. The activation of a cryptic gene cluster by overexpression of its putative Zn(II)(2)Cys(6)-type transcription factor led to discovery of a novel secondary metabolite in Aspergillus nidulans. Quantitative real-time PCR and DNA array analysis allowed us to predict the borders of the biosynthetic gene cluster. Furthermore, we identified a novel fungal pimaradiene cyclase gene as well as genes encoding 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase and a geranylgeranyl pyrophosphate (GGPP) synthase. None of these genes have been previously implicated in the biosynthesis of terpenes in Aspergillus nidulans. These results identify the first Aspergillus nidulans diterpene gene cluster and suggest a biosynthetic pathway for ent-pimara-8(14),15-diene.

  10. Identifying Subspace Gene Clusters from Microarray Data Using Low-Rank Representation

    PubMed Central

    Cui, Yan; Zheng, Chun-Hou; Yang, Jian

    2013-01-01

    Identifying subspace gene clusters from the gene expression data is useful for discovering novel functional gene interactions. In this paper, we propose to use low-rank representation (LRR) to identify the subspace gene clusters from microarray data. LRR seeks the lowest-rank representation among all the candidates that can represent the genes as linear combinations of the bases in the dataset. The clusters can be extracted based on the block diagonal representation matrix obtained using LRR, and they can well capture the intrinsic patterns of genes with similar functions. Meanwhile, the parameter of LRR can balance the effect of noise so that the method is capable of extracting useful information from the data with high level of background noise. Compared with traditional methods, our approach can identify genes with similar functions yet without similar expression profiles. Also, it could assign one gene into different clusters. Moreover, our method is robust to the noise and can identify more biologically relevant gene clusters. When applied to three public datasets, the results show that the LRR based method is superior to existing methods for identifying subspace gene clusters. PMID:23527177

  11. Arrangement of the Clostridium baratii F7 Toxin Gene Cluster with Identification of a σ Factor That Recognizes the Botulinum Toxin Gene Cluster Promoters

    DOE PAGES

    Dover, Nir; Barash, Jason R.; Burke, Julianne N.; Hill, Karen K.; Detter, John C.; Arnon, Stephen S.

    2014-05-22

    Botulinum neurotoxin (BoNT) is the most poisonous substances known and its eight toxin types (A to H) are distinguished by the inability of polyclonal antibodies that neutralize one toxin type to neutralize any of the other seven toxin types. Infant botulism, an intestinal toxemia orphan disease, is the most common form of human botulism in the United States. It results from swallowed spores of Clostridium botulinum (or rarely, neurotoxigenic Clostridium butyricum or Clostridium baratii) that germinate and temporarily colonize the lumen of the large intestine, where, as vegetative cells, they produce botulinum toxin. Botulinum neurotoxin is encoded by the bontmore » gene that is part of a toxin gene cluster that includes several accessory genes. In this paper, we sequenced for the first time the complete botulinum neurotoxin gene cluster of nonproteolytic C. baratii type F7. Like the type E and the nonproteolytic type F6 botulinum toxin gene clusters, the C. baratii type F7 had an orfX toxin gene cluster that lacked the regulatory botR gene which is found in proteolytic C. botulinum strains and codes for an alternative σ factor. In the absence of botR, we identified a putative alternative regulatory gene located upstream of the C. baratii type F7 toxin gene cluster. This putative regulatory gene codes for a predicted σ factor that contains DNA-binding-domain homologues to the DNA-binding domains both of BotR and of other members of the TcdR-related group 5 of the σ70 family that are involved in the regulation of toxin gene expression in clostridia. We showed that this TcdR-related protein in association with RNA polymerase core enzyme specifically binds to the C. baratii type F7 botulinum toxin gene cluster promoters. Finally, this TcdR-related protein may therefore be involved in regulating the expression of the genes of the botulinum toxin gene cluster in neurotoxigenic C. baratii.« less

  12. A recently transferred cluster of bacterial genes in Trichomonas vaginalis - lateral gene transfer and the fate of acquired genes

    PubMed Central

    2014-01-01

    Background Lateral Gene Transfer (LGT) has recently gained recognition as an important contributor to some eukaryote proteomes, but the mechanisms of acquisition and fixation in eukaryotic genomes are still uncertain. A previously defined norm for LGTs in microbial eukaryotes states that the majority are genes involved in metabolism, the LGTs are typically localized one by one, surrounded by vertically inherited genes on the chromosome, and phylogenetics shows that a broad collection of bacterial lineages have contributed to the transferome. Results A unique 34 kbp long fragment with 27 clustered genes (TvLF) of prokaryote origin was identified in the sequenced genome of the protozoan parasite Trichomonas vaginalis. Using a PCR based approach we confirmed the presence of the orthologous fragment in four additional T. vaginalis strains. Detailed sequence analyses unambiguously suggest that TvLF is the result of one single, recent LGT event. The proposed donor is a close relative to the firmicute bacterium Peptoniphilus harei. High nucleotide sequence similarity between T. vaginalis strains, as well as to P. harei, and the absence of homologs in other Trichomonas species, suggests that the transfer event took place after the radiation of the genus Trichomonas. Some genes have undergone pseudogenization and degradation, indicating that they may not be retained in the future. Functional annotations reveal that genes involved in informational processes are particularly prone to degradation. Conclusions We conclude that, although the majority of eukaryote LGTs are single gene occurrences, they may be acquired in clusters of several genes that are subsequently cleansed of evolutionarily less advantageous genes. PMID:24898731

  13. Phylogenetic analysis of Japanese encephalitis virus: envelope gene based analysis reveals a fifth genotype, geographic clustering, and multiple introductions of the virus into the Indian subcontinent.

    PubMed

    Uchil, P D; Satchidanandam, V

    2001-09-01

    We report the analysis of the complete nucleotide sequence for the Indian isolate (P20778; Genbank Accession number AF080251) of Japanese encephalitis virus (JEV). The phylogenetic tree topology obtained using thirteen complete genome sequences of JEV was reproduced with the envelope, NS1, NS3, and NS5 genes and revealed extensive divergence between the two Indian strains included. A more exhaustive analysis of JEV evolution using 107 envelope sequences available for isolates from different geographic locations worldwide revealed five distinct genotypes of JEV, displaying a minimum nucleotide divergence of 7% with high bootstrap support values. The tree also revealed overall clustering of strains based on geographic location, as well as multiple introductions of JEV into the Indian subcontinent. Nonsynonymous nucleotide divergence rates of the envelope gene estimated that the ancestor common to all JEV genotypes arose within the last three hundred years.

  14. Clustering of Drosophila melanogaster Immune Genes in Interplay with Recombination Rate

    PubMed Central

    Wegner, K. Mathias

    2008-01-01

    Background Gene order in eukaryotic chromosomes is not random and has been linked to coordination of gene expression, chromatin structure and also recombination rate. The evolution of recombination rate is especially relevant for genes involved in immunity because host-parasite co-evolution could select for increased recombination rate (Red Queen hypothesis). To identify patterns left by the intimate interaction between hosts and parasites, I analysed the genomic parameters of the immune genes from 24 gene families/groups of Drosophila melanogaster. Principal Findings Immune genes that directly interact with the pathogen (i.e. recognition and effector genes) clustered in regions of higher recombination rates. Out of these, clustered effector genes were transcribed fastest indicating that transcriptional control might be one major cause for cluster formation. The relative position of clusters to each other, on the other hand, cannot be explained by transcriptional control per se. Drosophila immune genes that show epistatic interactions can be found at an average distance of 15.44±2.98 cM, which is considerably closer than genes that do not interact (30.64±1.95 cM). Conclusions Epistatically interacting genes rarely belong to the same cluster, which supports recent models of optimal recombination rates between interacting genes in antagonistic host-parasite co-evolution. These patterns suggest that formation of local clusters might be a result of transcriptional control, but that in the condensed genome of D. melanogaster relative position of these clusters may be a result of selection for optimal rather than maximal recombination rates between these clusters. PMID:18665272

  15. Applying Robust Directional Similarity based Clustering approach RDSC to classification of gene expression data.

    PubMed

    Li, H X; Wang, Shitong; Xiu, Yu

    2006-06-01

    Despite the fact that the classification of gene expression data from a cDNA microarrays has been extensively studied, nowadays a robust clustering method, which can estimate an appropriate number of clusters and be insensitive to its initialization has not yet been developed. In this work, a novel Robust Clustering approach, RDSC, based on the new Directional Similarity measure is presented. This new approach RDSC, which integrates the Directional Similarity based Clustering Algorithm, DSC, with the Agglomerative Hierarchical Clustering Algorithm, AHC, exhibits its robustness to initialization and its capability to determine the appropriate number of clusters reasonably. RDSC has been successfully employed to both artificial and benchmarking gene expression datasets. Our experimental results demonstrate its distinctive superiority over the conventional method Kmeans and the two typical directional clustering algorithms SPKmeans and moVMF.

  16. High-throughput platform for the discovery of elicitors of silent bacterial gene clusters.

    PubMed

    Seyedsayamdost, Mohammad R

    2014-05-20

    Over the past decade, bacterial genome sequences have revealed an immense reservoir of biosynthetic gene clusters, sets of contiguous genes that have the potential to produce drugs or drug-like molecules. However, the majority of these gene clusters appear to be inactive for unknown reasons prompting terms such as "cryptic" or "silent" to describe them. Because natural products have been a major source of therapeutic molecules, methods that rationally activate these silent clusters would have a profound impact on drug discovery. Herein, a new strategy is outlined for awakening silent gene clusters using small molecule elicitors. In this method, a genetic reporter construct affords a facile read-out for activation of the silent cluster of interest, while high-throughput screening of small molecule libraries provides potential inducers. This approach was applied to two cryptic gene clusters in the pathogenic model Burkholderia thailandensis. The results not only demonstrate a prominent activation of these two clusters, but also reveal that the majority of elicitors are themselves antibiotics, most in common clinical use. Antibiotics, which kill B. thailandensis at high concentrations, act as inducers of secondary metabolism at low concentrations. One of these antibiotics, trimethoprim, served as a global activator of secondary metabolism by inducing at least five biosynthetic pathways. Further application of this strategy promises to uncover the regulatory networks that activate silent gene clusters while at the same time providing access to the vast array of cryptic molecules found in bacteria.

  17. Sphingolipids regulate telomere clustering by affecting the transcription of genes involved in telomere homeostasis.

    PubMed

    Ikeda, Atsuko; Muneoka, Tetsuya; Murakami, Suguru; Hirota, Ayaka; Yabuki, Yukari; Karashima, Takefumi; Nakazono, Kota; Tsuruno, Masahiro; Pichler, Harald; Shirahige, Katsuhiko; Kodama, Yukiko; Shimamoto, Toshi; Mizuta, Keiko; Funato, Kouichi

    2015-07-15

    In eukaryotic organisms, including mammals, nematodes and yeasts, the ends of chromosomes, telomeres are clustered at the nuclear periphery. Telomere clustering is assumed to be functionally important because proper organization of chromosomes is necessary for proper genome function and stability. However, the mechanisms and physiological roles of telomere clustering remain poorly understood. In this study, we demonstrate a role for sphingolipids in telomere clustering in the budding yeast Saccharomyces cerevisiae. Because abnormal sphingolipid metabolism causes downregulation of expression levels of genes involved in telomere organization, sphingolipids appear to control telomere clustering at the transcriptional level. In addition, the data presented here provide evidence that telomere clustering is required to protect chromosome ends from DNA-damage checkpoint signaling. As sphingolipids are found in all eukaryotes, we speculate that sphingolipid-based regulation of telomere clustering and the protective role of telomere clusters in maintaining genome stability might be conserved in eukaryotes.

  18. Birth of Four Chimeric Plastid Gene Clusters in Japanese Umbrella Pine.

    PubMed

    Hsu, Chih-Yao; Wu, Chung-Shien; Chaw, Shu-Miaw

    2016-01-01

    Many genes in the plastid genomes (plastomes) of plants are organized as gene clusters, in which genes are co-transcribed, resembling bacterial operons. These plastid operons are highly conserved, even among conifers, whose plastomes are highly rearranged relative to other seed plants. We have determined the complete plastome sequence of Sciadopitys verticillata (Japanese umbrella pine), the sole member of Sciadopityaceae. The Sciadopitys plastome is characterized by extensive inversions, pseudogenization of four tRNA genes after tandem duplications, and a unique pair of 370-bp inverted repeats involved in the formation of isomeric plastomes. We showed that plastomic inversions in Sciadopitys have led to shuffling of the remote conserved operons, resulting in the birth of four chimeric gene clusters. Our data also demonstrated that the relocated genes can be co-transcribed in these chimeric gene clusters. The plastome of Sciadopitys advances our current understanding of how the conifer plastomes have evolved toward increased diversity and complexity. PMID:27269365

  19. Birth of Four Chimeric Plastid Gene Clusters in Japanese Umbrella Pine

    PubMed Central

    Hsu, Chih-Yao; Wu, Chung-Shien; Chaw, Shu-Miaw

    2016-01-01

    Many genes in the plastid genomes (plastomes) of plants are organized as gene clusters, in which genes are co-transcribed, resembling bacterial operons. These plastid operons are highly conserved, even among conifers, whose plastomes are highly rearranged relative to other seed plants. We have determined the complete plastome sequence of Sciadopitys verticillata (Japanese umbrella pine), the sole member of Sciadopityaceae. The Sciadopitys plastome is characterized by extensive inversions, pseudogenization of four tRNA genes after tandem duplications, and a unique pair of 370-bp inverted repeats involved in the formation of isomeric plastomes. We showed that plastomic inversions in Sciadopitys have led to shuffling of the remote conserved operons, resulting in the birth of four chimeric gene clusters. Our data also demonstrated that the relocated genes can be co-transcribed in these chimeric gene clusters. The plastome of Sciadopitys advances our current understanding of how the conifer plastomes have evolved toward increased diversity and complexity. PMID:27269365

  20. Transcriptome Analysis of Aspergillus flavus Reveals veA-Dependent Regulation of Secondary Metabolite Gene Clusters, Including the Novel Aflavarin Cluster

    PubMed Central

    Cary, J. W.; Han, Z.; Yin, Y.; Lohmar, J. M.; Shantappa, S.; Harris-Coward, P. Y.; Mack, B.; Ehrlich, K. C.; Wei, Q.; Arroyo-Manzanares, N.; Uka, V.; Vanhaecke, L.; Bhatnagar, D.; Yu, J.; Nierman, W. C.; Johns, M. A.; Sorensen, D.; Shen, H.; De Saeger, S.; Diana Di Mavungu, J.

    2015-01-01

    The global regulatory veA gene governs development and secondary metabolism in numerous fungal species, including Aspergillus flavus. This is especially relevant since A. flavus infects crops of agricultural importance worldwide, contaminating them with potent mycotoxins. The most well-known are aflatoxins, which are cytotoxic and carcinogenic polyketide compounds. The production of aflatoxins and the expression of genes implicated in the production of these mycotoxins are veA dependent. The genes responsible for the synthesis of aflatoxins are clustered, a signature common for genes involved in fungal secondary metabolism. Studies of the A. flavus genome revealed many gene clusters possibly connected to the synthesis of secondary metabolites. Many of these metabolites are still unknown, or the association between a known metabolite and a particular gene cluster has not yet been established. In the present transcriptome study, we show that veA is necessary for the expression of a large number of genes. Twenty-eight out of the predicted 56 secondary metabolite gene clusters include at least one gene that is differentially expressed depending on presence or absence of veA. One of the clusters under the influence of veA is cluster 39. The absence of veA results in a downregulation of the five genes found within this cluster. Interestingly, our results indicate that the cluster is expressed mainly in sclerotia. Chemical analysis of sclerotial extracts revealed that cluster 39 is responsible for the production of aflavarin. PMID:26209694

  1. A Cluster of Genes Involved in Polysaccharide Biosynthesis from Enterococcus faecalis OG1RF

    PubMed Central

    Xu, Yi; Murray, Barbara E.; Weinstock, George M.

    1998-01-01

    Our previous work identified a cosmid clone containing a 43-kb insert from Enterococcus faecalis OG1RF that produced a nonprotein antigen in Escherichia coli. In the present work, we studied this clone in detail. Periodate treatment of lysates of the clone confirmed that the antigen was carbohydrate in nature. Analysis of DNA sequences and transposon insertion mutants suggested that the insert contained a multicistronic gene cluster. Database comparison showed that the cluster contained genes similar to genes involved in the biosynthesis of dTDP-rhamnose, glycosyltransferases, and ABC transporters involved in the export of sugar polymers from both gram-positive and gram-negative organisms. Insertions in several genes within the cluster abolished the immunoreactivity of the clone. This is the first report on a gene cluster of E. faecalis involved in the biosynthesis of an antigenic polysaccharide. PMID:9712783

  2. The clustering of functionally related genes contributes to CNV-mediated disease

    PubMed Central

    Andrews, Tallulah; Honti, Frantisek; Pfundt, Rolph; de Leeuw, Nicole; Hehir-Kwa, Jayne; Vulto-van Silfhout, Anneke; de Vries, Bert; Webber, Caleb

    2015-01-01

    Clusters of functionally related genes can be disrupted by a single copy number variant (CNV). We demonstrate that the simultaneous disruption of multiple functionally related genes is a frequent and significant characteristic of de novo CNVs in patients with developmental disorders (P = 1 × 10−3). Using three different functional networks, we identified unexpectedly large numbers of functionally related genes within de novo CNVs from two large independent cohorts of individuals with developmental disorders. The presence of multiple functionally related genes was a significant predictor of a CNV's pathogenicity when compared to CNVs from apparently healthy individuals and a better predictor than the presence of known disease or haploinsufficient genes for larger CNVs. The functionally related genes found in the de novo CNVs belonged to 70% of all clusters of functionally related genes found across the genome. De novo CNVs were more likely to affect functional clusters and affect them to a greater extent than benign CNVs (P = 6 × 10−4). Furthermore, such clusters of functionally related genes are phenotypically informative: Different patients possessing CNVs that affect the same cluster of functionally related genes exhibit more similar phenotypes than expected (P < 0.05). The spanning of multiple functionally similar genes by single CNVs contributes substantially to how these variants exert their pathogenic effects. PMID:25887030

  3. Comparative and genetic analyses of the putative Vibrio cholerae lipopolysaccharide core oligosaccharide biosynthesis (wav) gene cluster.

    PubMed

    Nesper, Jutta; Kraiss, Anita; Schild, Stefan; Blass, Julia; Klose, Karl E; Bockemühl, Jochen; Reidl, Joachim

    2002-05-01

    We identified five different putative wav gene cluster types, which are responsible for the synthesis of the core oligosaccharide (OS) region of Vibrio cholerae lipopolysaccharide. Preliminary evidence that the genes encoded by this cluster are involved in core OS biosynthesis came from analysis of the recently released O1 El Tor V. cholerae genome sequence and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of O1 El Tor mutant strains defective in three genes (waaF, waaL, and wavB). Investigations of 38 different V. cholerae strains by Southern blotting, PCR, and sequencing analyses showed that the O1 El Tor wav gene cluster type is prevalent among clinical isolates of different serogroups associated with cholera and environmental O1 strains. In contrast, we found differences in the wav gene contents of 19 unrelated non-O1, non-O139 environmental and human isolates not associated with cholera. These strains contained four new wav gene cluster types that differ from each other in distinct gene loci, providing evidence for horizontal transfer of wav genes and for limited structural diversity of the core OS among V. cholerae isolates. Our results show genetic diversity in the core OS biosynthesis gene cluster and predominance of the type 1 wav gene locus in strains associated with clinical cholera, suggesting that a specific core OS structure could contribute to V. cholerae virulence.

  4. Comparative and Genetic Analyses of the Putative Vibrio cholerae Lipopolysaccharide Core Oligosaccharide Biosynthesis (wav) Gene Cluster

    PubMed Central

    Nesper, Jutta; Kraiß, Anita; Schild, Stefan; Blaβ, Julia; Klose, Karl E.; Bockemühl, Jochen; Reidl, Joachim

    2002-01-01

    We identified five different putative wav gene cluster types, which are responsible for the synthesis of the core oligosaccharide (OS) region of Vibrio cholerae lipopolysaccharide. Preliminary evidence that the genes encoded by this cluster are involved in core OS biosynthesis came from analysis of the recently released O1 El Tor V. cholerae genome sequence and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of O1 El Tor mutant strains defective in three genes (waaF, waaL, and wavB). Investigations of 38 different V. cholerae strains by Southern blotting, PCR, and sequencing analyses showed that the O1 El Tor wav gene cluster type is prevalent among clinical isolates of different serogroups associated with cholera and environmental O1 strains. In contrast, we found differences in the wav gene contents of 19 unrelated non-O1, non-O139 environmental and human isolates not associated with cholera. These strains contained four new wav gene cluster types that differ from each other in distinct gene loci, providing evidence for horizontal transfer of wav genes and for limited structural diversity of the core OS among V. cholerae isolates. Our results show genetic diversity in the core OS biosynthesis gene cluster and predominance of the type 1 wav gene locus in strains associated with clinical cholera, suggesting that a specific core OS structure could contribute to V. cholerae virulence. PMID:11953379

  5. Isolation and Characterization of the Gibberellin Biosynthetic Gene Cluster in Sphaceloma manihoticola▿ †

    PubMed Central

    Bömke, Christiane; Rojas, Maria Cecilia; Gong, Fan; Hedden, Peter; Tudzynski, Bettina

    2008-01-01

    Gibberellins (GAs) are tetracyclic diterpenoid phytohormones that were first identified as secondary metabolites of the fungus Fusarium fujikuroi (teleomorph, Gibberella fujikuroi). GAs were also found in the cassava pathogen Sphaceloma manihoticola, but the spectrum of GAs differed from that in F. fujikuroi. In contrast to F. fujikuroi, the GA biosynthetic pathway has not been studied in detail in S. manihoticola, and none of the GA biosynthetic genes have been cloned from the species. Here, we present the identification of the GA biosynthetic gene cluster from S. manihoticola consisting of five genes encoding a bifunctional ent-copalyl/ent-kaurene synthase (CPS/KS), a pathway-specific geranylgeranyl diphosphate synthase (GGS2), and three cytochrome P450 monooxygenases. The functions of all of the genes were analyzed either by a gene replacement approach or by complementing the corresponding F. fujikuroi mutants. The cluster organization and gene functions are similar to those in F. fujikuroi. However, the two border genes in the Fusarium cluster encoding the GA4 desaturase (DES) and the 13-hydroxylase (P450-3) are absent in the S. manihoticola GA gene cluster, consistent with the spectrum of GAs produced by this fungus. The close similarity between the two GA gene clusters, the identical gene functions, and the conserved intron positions suggest a common evolutionary origin despite the distant relatedness of the two fungi. PMID:18567680

  6. Identification of gene-gene and gene-environment interactions within the fibrinogen gene cluster for fibrinogen levels in three ethnically diverse populations.

    PubMed

    Jeff, Janina M; Brown-Gentry, Kristin; Crawford, Dana C

    2015-01-01

    Elevated levels of plasma fibrinogen are associated with clot formation in the absence of inflammation or injury and is a biomarker for arterial clotting, the leading cause of cardiovascular disease. Fibrinogen levels are heritable with >50% attributed to genetic factors, however little is known about possible genetic modifiers that might explain the missing heritability. The fibrinogen gene cluster is comprised of three genes (FGA, FGB, and FGG) that make up the fibrinogen polypeptide essential for fibrinogen production in the blood. Given the known interaction with these genes, we tested 25 variants in the fibrinogen gene cluster for gene x gene and gene x environment interactions in 620 non-Hispanic blacks, 1,385 non-Hispanic whites, and 664 Mexican Americans from a cross-sectional dataset enriched with environmental data, the Third National Health and Nutrition Examination Survey (NHANES III). Using a multiplicative approach, we added cross product terms (gene x gene or gene x environment) to a linear regression model and declared significance at p < 0.05. We identified 19 unique gene x gene and 13 unique gene x environment interactions that impact fibrinogen levels in at least one population at p < 0.05. Over 90% of the gene x gene interactions identified include a variant in the rate-limiting gene, FGB that is essential for the formation of the fibrinogen polypeptide. We also detected gene x environment interactions with fibrinogen variants and sex, smoking, and body mass index. These findings highlight the potential for the discovery of genetic modifiers for complex phenotypes in multiple populations and give a better understanding of the interaction between genes and/or the environment for fibrinogen levels. The need for more powerful and robust methods to identify genetic modifiers is still warranted. PMID:25592583

  7. IDENTIFICATION OF GENE-GENE AND GENE-ENVIRONMENT INTERACTIONS WITHIN THE FIBRINOGEN GENE CLUSTER FOR FIBRINOGEN LEVELS IN THREE ETHNICALLY DIVERSE POPULATIONS

    PubMed Central

    Jeff, Janina M.; Brown-Gentry, Kristin; Crawford, Dana C.

    2014-01-01

    Elevated levels of plasma fibrinogen are associated with clot formation in the absence of inflammation or injury and is a biomarker for arterial clotting, the leading cause of cardiovascular disease. Fibrinogen levels are heritable with >50% attributed to genetic factors, however little is known about possible genetic modifiers that might explain the missing heritability. The fibrinogen gene cluster is comprised of three genes (FGA, FGB, and FGG) that make up the fibrinogen polypeptide essential for fibrinogen production in the blood. Given the known interaction with these genes, we tested 25 variants in the fibrinogen gene cluster for gene × gene and gene × environment interactions in 620 non-Hispanic blacks, 1,385 non-Hispanic whites, and 664 Mexican Americans from a cross-sectional dataset enriched with environmental data, the Third National Health and Nutrition Examination Survey (NHANES III). Using a multiplicative approach, we added cross product terms (gene × gene or gene × environment) to a linear regression model and declared significance at p < 0.05. We identified 19 unique gene × gene and 13 unique gene × environment interactions that impact fibrinogen levels in at least one population at p <0.05. Over 90% of the gene × gene interactions identified include a variant in the rate-limiting gene, FGB that is essential for the formation of the fibrinogen polypeptide. We also detected gene × environment interactions with fibrinogen variants and sex, smoking, and body mass index. These findings highlight the potential for the discovery of genetic modifiers for complex phenotypes in multiple populations and give a better understanding of the interaction between genes and/or the environment for fibrinogen levels. The need for more powerful and robust methods to identify genetic modifiers is still warranted. PMID:25592583

  8. Identification of gene-gene and gene-environment interactions within the fibrinogen gene cluster for fibrinogen levels in three ethnically diverse populations.

    PubMed

    Jeff, Janina M; Brown-Gentry, Kristin; Crawford, Dana C

    2015-01-01

    Elevated levels of plasma fibrinogen are associated with clot formation in the absence of inflammation or injury and is a biomarker for arterial clotting, the leading cause of cardiovascular disease. Fibrinogen levels are heritable with >50% attributed to genetic factors, however little is known about possible genetic modifiers that might explain the missing heritability. The fibrinogen gene cluster is comprised of three genes (FGA, FGB, and FGG) that make up the fibrinogen polypeptide essential for fibrinogen production in the blood. Given the known interaction with these genes, we tested 25 variants in the fibrinogen gene cluster for gene x gene and gene x environment interactions in 620 non-Hispanic blacks, 1,385 non-Hispanic whites, and 664 Mexican Americans from a cross-sectional dataset enriched with environmental data, the Third National Health and Nutrition Examination Survey (NHANES III). Using a multiplicative approach, we added cross product terms (gene x gene or gene x environment) to a linear regression model and declared significance at p < 0.05. We identified 19 unique gene x gene and 13 unique gene x environment interactions that impact fibrinogen levels in at least one population at p < 0.05. Over 90% of the gene x gene interactions identified include a variant in the rate-limiting gene, FGB that is essential for the formation of the fibrinogen polypeptide. We also detected gene x environment interactions with fibrinogen variants and sex, smoking, and body mass index. These findings highlight the potential for the discovery of genetic modifiers for complex phenotypes in multiple populations and give a better understanding of the interaction between genes and/or the environment for fibrinogen levels. The need for more powerful and robust methods to identify genetic modifiers is still warranted.

  9. Hox gene clusters of early vertebrates: do they serve as reliable markers for genome evolution?

    PubMed

    Kuraku, Shigehiro

    2011-06-01

    Hox genes, responsible for regional specification along the anteroposterior axis in embryogenesis, are found as clusters in most eumetazoan genomes sequenced to date. Invertebrates possess a single Hox gene cluster with some exceptions of secondary cluster breakages, while osteichthyans (bony vertebrates) have multiple Hox clusters. In tetrapods, four Hox clusters, derived from the so-called two-round whole genome duplications (2R-WGDs), are observed. Overall, the number of Hox gene clusters has been regarded as a reliable marker of ploidy levels in animal genomes. In fact, this scheme also fits the situations in teleost fishes that experienced an additional WGD. In this review, I focus on cyclostomes and cartilaginous fishes as lineages that would fill the gap between invertebrates and osteichthyans. A recent study highlighted a possible loss of the HoxC cluster in the galeomorph shark lineage, while other aspects of cartilaginous fish Hox clusters usually mark their conserved nature. In contrast, existing resources suggest that the cyclostomes exhibit a different mode of Hox cluster organization. For this group of species, whose genomes could have differently responded to the 2R-WGDs from jawed vertebrates, therefore the number of Hox clusters may not serve as a good indicator of their ploidy level. PMID:21802046

  10. Cloning and Heterologous Expression of the Thioviridamide Biosynthesis Gene Cluster from Streptomyces olivoviridis

    PubMed Central

    Izawa, Masumi; Kawasaki, Takashi

    2013-01-01

    Thioviridamide is a unique peptide antibiotic containing five thioamide bonds from Streptomyces olivoviridis. Draft genome sequencing revealed a gene (the tvaA gene) encoding the thioviridamide precursor peptide. The thioviridamide biosynthesis gene cluster was identified by heterologous production of thioviridamide in Streptomyces lividans. PMID:23995943

  11. Leveraging long sequencing reads to investigate R-gene clustering and variation in sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Host-pathogen interactions are of prime importance to modern agriculture. Plants utilize various types of resistance genes to mitigate pathogen damage. Identification of the specific gene responsible for a specific resistance can be difficult due to duplication and clustering within R-gene families....

  12. Prediction of operon-like gene clusters in the Arabidopsis thaliana genome based on co-expression analysis of neighboring genes.

    PubMed

    Wada, Masayoshi; Takahashi, Hiroki; Altaf-Ul-Amin, Md; Nakamura, Kensuke; Hirai, Masami Y; Ohta, Daisaku; Kanaya, Shigehiko

    2012-07-15

    Operon-like arrangements of genes occur in eukaryotes ranging from yeasts and filamentous fungi to nematodes, plants, and mammals. In plants, several examples of operon-like gene clusters involved in metabolic pathways have recently been characterized, e.g. the cyclic hydroxamic acid pathways in maize, the avenacin biosynthesis gene clusters in oat, the thalianol pathway in Arabidopsis thaliana, and the diterpenoid momilactone cluster in rice. Such operon-like gene clusters are defined by their co-regulation or neighboring positions within immediate vicinity of chromosomal regions. A comprehensive analysis of the expression of neighboring genes therefore accounts a crucial step to reveal the complete set of operon-like gene clusters within a genome. Genome-wide prediction of operon-like gene clusters should contribute to functional annotation efforts and provide novel insight into evolutionary aspects acquiring certain biological functions as well. We predicted co-expressed gene clusters by comparing the Pearson correlation coefficient of neighboring genes and randomly selected gene pairs, based on a statistical method that takes false discovery rate (FDR) into consideration for 1469 microarray gene expression datasets of A. thaliana. We estimated that A. thaliana contains 100 operon-like gene clusters in total. We predicted 34 statistically significant gene clusters consisting of 3 to 22 genes each, based on a stringent FDR threshold of 0.1. Functional relationships among genes in individual clusters were estimated by sequence similarity and functional annotation of genes. Duplicated gene pairs (determined based on BLAST with a cutoff of E<10(-5)) are included in 27 clusters. Five clusters are associated with metabolism, containing P450 genes restricted to the Brassica family and predicted to be involved in secondary metabolism. Operon-like clusters tend to include genes encoding bio-machinery associated with ribosomes, the ubiquitin/proteasome system, secondary

  13. Influence of microarrays experiments missing values on the stability of gene groups by hierarchical clustering

    PubMed Central

    de Brevern, Alexandre G; Hazout, Serge; Malpertuy, Alain

    2004-01-01

    Background Microarray technologies produced large amount of data. The hierarchical clustering is commonly used to identify clusters of co-expressed genes. However, microarray datasets often contain missing values (MVs) representing a major drawback for the use of the clustering methods. Usually the MVs are not treated, or replaced by zero or estimated by the k-Nearest Neighbor (kNN) approach. The topic of the paper is to study the stability of gene clusters, defined by various hierarchical clustering algorithms, of microarrays experiments including or not MVs. Results In this study, we show that the MVs have important effects on the stability of the gene clusters. Moreover, the magnitude of the gene misallocations is depending on the aggregation algorithm. The most appropriate aggregation methods (e.g. complete-linkage and Ward) are highly sensitive to MVs, and surprisingly, for a very tiny proportion of MVs (e.g. 1%). In most of the case, the MVs must be replaced by expected values. The MVs replacement by the kNN approach clearly improves the identification of co-expressed gene clusters. Nevertheless, we observe that kNN approach is less suitable for the extreme values of gene expression. Conclusion The presence of MVs (even at a low rate) is a major factor of gene cluster instability. In addition, the impact depends on the hierarchical clustering algorithm used. Some methods should be used carefully. Nevertheless, the kNN approach constitutes one efficient method for restoring the missing expression gene values, with a low error level. Our study highlights the need of statistical treatments in microarray data to avoid misinterpretation. PMID:15324460

  14. Degradation of AF1Q by chaperone-mediated autophagy

    SciTech Connect

    Li, Peng; Ji, Min; Lu, Fei; Zhang, Jingru; Li, Huanjie; Cui, Taixing; Li Wang, Xing; Tang, Dongqi; Ji, Chunyan

    2014-09-10

    AF1Q, a mixed lineage leukemia gene fusion partner, is identified as a poor prognostic biomarker for pediatric acute myeloid leukemia (AML), adult AML with normal cytogenetic and adult myelodysplastic syndrome. AF1Q is highly regulated during hematopoietic progenitor differentiation and development but its regulatory mechanism has not been defined clearly. In the present study, we used pharmacological and genetic approaches to influence chaperone-mediated autophagy (CMA) and explored the degradation mechanism of AF1Q. Pharmacological inhibitors of lysosomal degradation, such as chloroquine, increased AF1Q levels, whereas activators of CMA, including 6-aminonicotinamide and nutrient starvation, decreased AF1Q levels. AF1Q interacts with HSPA8 and LAMP-2A, which are core components of the CMA machinery. Knockdown of HSPA8 or LAMP-2A increased AF1Q protein levels, whereas overexpression showed the opposite effect. Using an amino acid deletion AF1Q mutation plasmid, we identified that AF1Q had a KFERQ-like motif which was recognized by HSPA8 for CMA-dependent proteolysis. In conclusion, we demonstrate for the first time that AF1Q can be degraded in lysosomes by CMA. - Highlights: • Chaperone-mediated autophagy (CMA) is involved in the degradation of AF1Q. • Macroautophagy does not contribute to the AF1Q degradation. • AF1Q has a KFERQ-like motif that is recognized by CMA core components.

  15. The t(10;11)(p13;q14) in the U937 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3 clathrin assembly protein family.

    PubMed Central

    Dreyling, M H; Martinez-Climent, J A; Zheng, M; Mao, J; Rowley, J D; Bohlander, S K

    1996-01-01

    The translocation t(10;11)(p13;q14) is a recurring chromosomal abnormality that has been observed in patients with acute lymphoblastic leukemia as well as acute myeloid leukemia. We have recently reported that the monocytic cell line U937 has a t(10;11)(p13;q14) translocation. Using a combination of positional cloning and candidate gene approach, we cloned the breakpoint and were able to show that AF10 is fused to a novel gene that we named CALM (Clathrin Assembly Lymphoid Myeloid leukemia gene) located at 11q14. AF10, a putative transcription factor, had recently been cloned as one of the fusion partners of MLL. CALM has a very high homology in its N-terminal third to the murine ap-3 gene which is one of the clathrin assembly proteins. The N-terminal region of ap-3 has been shown to bind to clathrin and to have a high-affinity binding site for phosphoinositols. The identification of the CALM/AF10 fusion gene in the widely used U937 cell line will contribute to our understanding of the malignant phenotype of this line. Images Fig. 1 Fig. 3 PMID:8643484

  16. A gene cluster for amylovoran synthesis in Erwinia amylovora: characterization and relationship to cps genes in Erwinia stewartii.

    PubMed

    Bernhard, F; Coplin, D L; Geider, K

    1993-05-01

    A large ams gene cluster required for production of the acidic extracellular polysaccharide (EPS) amylovoran by the fire blight pathogen Erwinia amylovora was cloned. Tn5 mutagenesis and gene replacement were used to construct chromosomal ams mutants. Five complementation groups, essential for amylovoran synthesis and virulence in E. amylovora, were identified and designated ams A-E. The ams gene cluster is about 7 kb in size and functionally equivalent to the cps gene cluster involved in EPS synthesis by the related pathogen Erwinia stewartii. Mucoidy and virulence were restored to E. stewartii mutants in four cps complementation groups by the cloned E. amylovora ams genes. Conversely, the E. stewartii cps gene cluster was able to complement mutations in E. amylovora ams genes. Correspondence was found between the amsA-E complementation groups and the cpsB-D region, but the arrangement of the genes appears to be different. EPS production and virulence were also restored to E. amylovora amsE and E. stewartii cpsD mutants by clones containing the Rhizobium meliloti exo A gene.

  17. Epigenetic regulation of the RHOX homeobox gene cluster and its association with human male infertility

    PubMed Central

    Richardson, Marcy E.; Bleiziffer, Andreas; Tüttelmann, Frank; Gromoll, Jörg; Wilkinson, Miles F.

    2014-01-01

    The X-linked RHOX cluster encodes a set of homeobox genes that are selectively expressed in the reproductive tract. Members of the RHOX cluster regulate target genes important for spermatogenesis promote male fertility in mice. Studies show that demethylating agents strongly upregulate the expression of mouse Rhox genes, suggesting that they are regulated by DNA methylation. However, whether this extends to human RHOX genes, whether DNA methylation directly regulates RHOX gene transcription and how this relates to human male infertility are unknown. To address these issues, we first defined the promoter regions of human RHOX genes and performed gain- and loss-of-function experiments to determine whether human RHOX gene transcription is regulated by DNA methylation. Our results indicated that DNA methylation is necessary and sufficient to silence human RHOX gene expression. To determine whether RHOX cluster methylation associates with male infertility, we evaluated the methylation status of RHOX genes in sperm from a large cohort of infertility patients. Linear regression analysis revealed a strong association between RHOX gene cluster hypermethylation and three independent types of semen abnormalities. Hypermethylation was restricted specifically to the RHOX cluster; we did not observe it in genes immediately adjacent to it on the X chromosome. Our results strongly suggest that human RHOX homeobox genes are under an epigenetic control mechanism that is aberrantly regulated in infertility patients. We propose that hypermethylation of the RHOX gene cluster serves as a marker for idiopathic infertility and that it is a candidate to exert a causal role in male infertility. PMID:23943794

  18. A cross-species bi-clustering approach to identifying conserved co-regulated genes

    PubMed Central

    Sun, Jiangwen; Jiang, Zongliang; Tian, Xiuchun; Bi, Jinbo

    2016-01-01

    Motivation: A growing number of studies have explored the process of pre-implantation embryonic development of multiple mammalian species. However, the conservation and variation among different species in their developmental programming are poorly defined due to the lack of effective computational methods for detecting co-regularized genes that are conserved across species. The most sophisticated method to date for identifying conserved co-regulated genes is a two-step approach. This approach first identifies gene clusters for each species by a cluster analysis of gene expression data, and subsequently computes the overlaps of clusters identified from different species to reveal common subgroups. This approach is ineffective to deal with the noise in the expression data introduced by the complicated procedures in quantifying gene expression. Furthermore, due to the sequential nature of the approach, the gene clusters identified in the first step may have little overlap among different species in the second step, thus difficult to detect conserved co-regulated genes. Results: We propose a cross-species bi-clustering approach which first denoises the gene expression data of each species into a data matrix. The rows of the data matrices of different species represent the same set of genes that are characterized by their expression patterns over the developmental stages of each species as columns. A novel bi-clustering method is then developed to cluster genes into subgroups by a joint sparse rank-one factorization of all the data matrices. This method decomposes a data matrix into a product of a column vector and a row vector where the column vector is a consistent indicator across the matrices (species) to identify the same gene cluster and the row vector specifies for each species the developmental stages that the clustered genes co-regulate. Efficient optimization algorithm has been developed with convergence analysis. This approach was first validated on

  19. The Activation-Induced Assembly of an RNA/Protein Interactome Centered on the Splicing Factor U2AF2 Regulates Gene Expression in Human CD4 T Cells.

    PubMed

    Whisenant, Thomas C; Peralta, Eigen R; Aarreberg, Lauren D; Gao, Nina J; Head, Steven R; Ordoukhanian, Phillip; Williamson, Jamie R; Salomon, Daniel R

    2015-01-01

    Activation of CD4 T cells is a reaction to challenges such as microbial pathogens, cancer and toxins that defines adaptive immune responses. The roles of T cell receptor crosslinking, intracellular signaling, and transcription factor activation are well described, but the importance of post-transcriptional regulation by RNA-binding proteins (RBPs) has not been considered in depth. We describe a new model expanding and activating primary human CD4 T cells and applied this to characterizing activation-induced assembly of splicing factors centered on U2AF2. We immunoprecipitated U2AF2 to identify what mRNA transcripts were bound as a function of activation by TCR crosslinking and costimulation. In parallel, mass spectrometry revealed the proteins incorporated into the U2AF2-centered RNA/protein interactome. Molecules that retained interaction with the U2AF2 complex after RNAse treatment were designated as "central" interactome members (CIMs). Mass spectrometry also identified a second class of activation-induced proteins, "peripheral" interactome members (PIMs), that bound to the same transcripts but were not in physical association with U2AF2 or its partners. siRNA knockdown of two CIMs and two PIMs caused changes in activation marker expression, cytokine secretion, and gene expression that were unique to each protein and mapped to pathways associated with key aspects of T cell activation. While knocking down the PIM, SYNCRIP, impacts a limited but immunologically important set of U2AF2-bound transcripts, knockdown of U2AF1 significantly impairs assembly of the majority of protein and mRNA components in the activation-induced interactome. These results demonstrated that CIMs and PIMs, either directly or indirectly through RNA, assembled into activation-induced U2AF2 complexes and play roles in post-transcriptional regulation of genes related to cytokine secretion. These data suggest an additional layer of regulation mediated by the activation-induced assembly of RNA

  20. The Activation-Induced Assembly of an RNA/Protein Interactome Centered on the Splicing Factor U2AF2 Regulates Gene Expression in Human CD4 T Cells

    PubMed Central

    Aarreberg, Lauren D.; Gao, Nina J.; Head, Steven R.; Ordoukhanian, Phillip; Williamson, Jamie R.; Salomon, Daniel R.

    2015-01-01

    Activation of CD4 T cells is a reaction to challenges such as microbial pathogens, cancer and toxins that defines adaptive immune responses. The roles of T cell receptor crosslinking, intracellular signaling, and transcription factor activation are well described, but the importance of post-transcriptional regulation by RNA-binding proteins (RBPs) has not been considered in depth. We describe a new model expanding and activating primary human CD4 T cells and applied this to characterizing activation-induced assembly of splicing factors centered on U2AF2. We immunoprecipitated U2AF2 to identify what mRNA transcripts were bound as a function of activation by TCR crosslinking and costimulation. In parallel, mass spectrometry revealed the proteins incorporated into the U2AF2-centered RNA/protein interactome. Molecules that retained interaction with the U2AF2 complex after RNAse treatment were designated as “central” interactome members (CIMs). Mass spectrometry also identified a second class of activation-induced proteins, “peripheral” interactome members (PIMs), that bound to the same transcripts but were not in physical association with U2AF2 or its partners. siRNA knockdown of two CIMs and two PIMs caused changes in activation marker expression, cytokine secretion, and gene expression that were unique to each protein and mapped to pathways associated with key aspects of T cell activation. While knocking down the PIM, SYNCRIP, impacts a limited but immunologically important set of U2AF2-bound transcripts, knockdown of U2AF1 significantly impairs assembly of the majority of protein and mRNA components in the activation-induced interactome. These results demonstrated that CIMs and PIMs, either directly or indirectly through RNA, assembled into activation-induced U2AF2 complexes and play roles in post-transcriptional regulation of genes related to cytokine secretion. These data suggest an additional layer of regulation mediated by the activation-induced assembly

  1. An adaptive strategy for single- and multi-cluster gene assignment.

    PubMed

    Garg, Sanjeev; Hansen, Marc F; Rowe, David W; Achenie, Luke E K

    2003-01-01

    Strict assignment of genes to one class, dimensionality reduction, a priori specification of the number of classes, the need for a training set, nonunique solution, and complex learning mechanisms are some of the inadequacies of current clustering algorithms. Existing algorithms cluster genes on the basis of high positive correlations between their expression patterns. However, genes with strong negative correlations can also have similar functions and are most likely to have a role in the same pathways. To address some of these issues, we propose the adaptive centroid algorithm (ACA), which employs an analysis of variance (ANOVA)-based performance criterion. The ACA also uses Euclidian distances, the center-of-mass principle for heterogeneously distributed mass elements, and the given data set to give unique solutions. The proposed approach involves three stages. In the first stage a two-way ANOVA of the gene expression matrix is performed. The two factors in the ANOVA are gene expression and experimental condition. The residual mean squared error (MSE) from the ANOVA is used as a performance criterion in the ACA. Finally, correlated clusters are found based on the Pearson correlation coefficients. To validate the proposed approach, a two-way ANOVA is again performed on the discovered clusters. The results from this last step indicate that MSEs of the clusters are significantly lower compared to that of the fibroblast-serum gene expression matrix. The ACA is employed in this study for single- as well as multi-cluster gene assignments.

  2. Identification of Nocobactin NA Biosynthetic Gene Clusters in Nocardia farcinica▿ §

    PubMed Central

    Hoshino, Yasutaka; Chiba, Kazuhiro; Ishino, Keiko; Fukai, Toshio; Igarashi, Yasuhiro; Yazawa, Katsukiyo; Mikami, Yuzuru; Ishikawa, Jun

    2011-01-01

    We identified the biosynthetic gene clusters of the siderophore nocobactin NA. The nbt clusters, which were discovered as genes highly homologous to the mycobactin biosynthesis genes by the genomic sequencing of Nocardia farcinica IFM 10152, consist of 10 genes separately located at two genomic regions. The gene organization of the nbt clusters and the predicted functions of the nbt genes, particularly the cyclization and epimerization domains, were in good agreement with the chemical structure of nocobactin NA. Disruptions of the nbtA and nbtE genes, respectively, reduced and abolished the productivity of nocobactin NA. The heterologous expression of the nbtS gene revealed that this gene encoded a salicylate synthase. These results indicate that the nbt clusters are responsible for the biosynthesis of nocobactin NA. We also found putative IdeR-binding sequences upstream of the nbtA, -G, -H, -S, and -T genes, whose expression was more than 10-fold higher in the low-iron condition than in the high-iron condition. These results suggest that nbt genes are regulated coordinately by IdeR protein in an iron-dependent manner. The ΔnbtE mutant was found to be impaired in cytotoxicity against J774A.1 cells, suggesting that nocobactin NA production is required for virulence of N. farcinica. PMID:21097631

  3. The nonribosomal peptide and polyketide synthetic gene clusters in two strains of entomopathogenic fungi in Cordyceps.

    PubMed

    Wang, Wen-Jing; Vogel, Heiko; Yao, Yi-Jian; Ping, Liyan

    2012-11-01

    Species of Cordyceps Fr. are entomopathogenic fungi that parasitize the larvae or pupae of lepidopteran insects. The secondary metabolites, nonribosomal peptides and polyketides are well-known mediators of pathogenesis. The biosynthetic gene clusters of these compounds in two fungal strains (1630 and DSM 1153) formerly known as Cordyceps militaris were screened using polymerase chain reaction with degenerate primers. Two nonribosomal peptide synthetase genes, one polyketide synthetase gene and one hybrid gene cluster were identified, and certain characteristics of the structures of their potential products were predicted. All four genes were actively expressed under laboratory conditions but at markedly different levels. The gene clusters from the two fungal strains were structurally and functionally unrelated, suggesting different evolutionary origins and physiological functions. Phylogenetic and biochemical analyses confirmed that the two fungal strains are not conspecific as currently assigned. PMID:22889355

  4. Identification of a recent recombination event within the human beta-globin gene cluster.

    PubMed Central

    Gerhard, D S; Kidd, K K; Kidd, J R; Egeland, J A; Housman, D E

    1984-01-01

    In a detailed study of inheritance of DNA sequence polymorphism in a large reference pedigree, an individual was identified with an apparent genetic recombination event within the human beta-globin gene cluster. Analysis of the haplotypes of relevant individuals within this pedigree suggested that the meiotic crossing-over event is likely to have occurred within a 19.8-kilobase-pair region of the beta-globin gene cluster. Analysis of other DNA markers closely linked to the beta-globin gene cluster--segment 12 of chromosome 11 (D11S12) and loci for insulin, the cellular oncogene c-Ha-ras, and preproparathyroid hormone--confirmed that a crossover event must have occurred within the region of chromosome 11 between D11S12 and the beta-globin gene cluster. It is suggested that the event observed has occurred within a DNA region compatible with recombinational "hot spots" suggested by population studies. PMID:6096866

  5. Neuronal plasticity after spinal cord injury: identification of a gene cluster driving neurite outgrowth.

    PubMed

    Di Giovanni, Simone; Faden, Alan I; Yakovlev, Alexander; Duke-Cohan, Jonathan S; Finn, Tom; Thouin, Melissa; Knoblach, Susan; De Biase, Andrea; Bregman, Barbara S; Hoffman, Eric P

    2005-01-01

    Functional recovery after spinal cord injury (SCI) may result in part from axon outgrowth and related plasticity through coordinated changes at the molecular level. We employed microarray analysis to identify a subset of genes the expression patterns of which were temporally coregulated and correlated to functional recovery after SCI. Steady-state mRNA levels of this synchronously regulated gene cluster were depressed in both ventral and dorsal horn neurons within 24 h after injury, followed by strong re-induction during the following 2 wk, which paralleled functional recovery. The identified cluster includes neuritin, attractin, microtubule-associated protein 1a, and myelin oligodendrocyte protein genes. Transcriptional and protein regulation of this novel gene cluster was also evaluated in spinal cord tissue and in single neurons and was shown to play a role in axonal plasticity. Finally, in vitro transfection experiments in primary dorsal root ganglion cells showed that cluster members act synergistically to drive neurite outgrowth. PMID:15522907

  6. Characterization of the fumonisin B2 biosynthetic gene cluster in Aspergillus niger and A. awamori.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus niger and A. awamori strains isolated from grapes cultivated in Mediterranean basin were examined for fumonisin B2 (FB2) production and presence/absence of sequences within the fumonisin biosynthetic gene (fum) cluster. Presence of 13 regions in the fum cluster was evaluated by PCR assay...

  7. Clusters of antibiotic resistance genes enriched together stay together in swine agriculture

    DOE PAGES

    Johnson, Timothy A.; Stedtfeld, Robert D.; Wang, Qiong; Cole, James R.; Hashsham, Syed A.; Looft, Torey; Zhu, Yong -Guan; Tiedje, James M.

    2016-04-12

    Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundancemore » of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk.Agricultural antibiotic use results in clusters of cooccurring resistance genes that together confer resistance to multiple antibiotics. The use of a single antibiotic could select for an entire suite of resistance

  8. The Biosynthetic Gene Cluster of Zorbamycin, a Member of the Bleomycin Family of Antitumor Antibiotics, from Streptomyces flavoviridis ATCC 21892

    PubMed Central

    Galm, Ute; Wendt-Pienkowski, Evelyn; Wang, Liyan; George, Nicholas P.; Oh, Tae-Jin; Yi, Fan; Tao, Meifeng; Coughlin, Jane M.; Shen, Ben

    2011-01-01

    The biosynthetic gene cluster for the glycopeptide-derived antitumor antibiotic zorbamycin (ZBM) was cloned by screening a cosmid library of Streptomyces flavoviridis ATCC 21892. Sequence analysis revealed 40 ORFs belonging to the ZBM biosynthetic gene cluster. However, only 23 and 22 ORFs showed striking similarities to the biosynthetic gene clusters for the bleomycins (BLMs) and tallysomycins (TLMs), respectively; the remaining ORFs do not show significant homology to ORFs from the related BLM and TLM clusters. The ZBM gene cluster consists of 16 nonribosomal peptide synthetase (NRPS) genes encoding eight complete NRPS modules, three incomplete didomain NRPS modules, and eight freestanding single NRPS domains or associated enzymes, a polyketide synthase (PKS) gene encoding one PKS module, six sugar biosynthesis genes, as well as genes encoding other biosynthesis and resistance proteins. A genetic system using Escherichia coli-Streptomyces flavoviridis intergeneric conjugation was developed to enable ZBM gene cluster boundary determinations and biosynthetic pathway manipulations. PMID:19081934

  9. Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data

    SciTech Connect

    Data Analysis and Visualization and the Department of Computer Science, University of California, Davis, One Shields Avenue, Davis CA 95616, USA,; nternational Research Training Group ``Visualization of Large and Unstructured Data Sets,'' University of Kaiserslautern, Germany; Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA; Genomics Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA; Life Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA,; Computer Science Division,University of California, Berkeley, CA, USA,; Computer Science Department, University of California, Irvine, CA, USA,; All authors are with the Berkeley Drosophila Transcription Network Project, Lawrence Berkeley National Laboratory,; Rubel, Oliver; Weber, Gunther H.; Huang, Min-Yu; Bethel, E. Wes; Biggin, Mark D.; Fowlkes, Charless C.; Hendriks, Cris L. Luengo; Keranen, Soile V. E.; Eisen, Michael B.; Knowles, David W.; Malik, Jitendra; Hagen, Hans; Hamann, Bernd

    2008-05-12

    The recent development of methods for extracting precise measurements of spatial gene expression patterns from three-dimensional (3D) image data opens the way for new analyses of the complex gene regulatory networks controlling animal development. We present an integrated visualization and analysis framework that supports user-guided data clustering to aid exploration of these new complex datasets. The interplay of data visualization and clustering-based data classification leads to improved visualization and enables a more detailed analysis than previously possible. We discuss (i) integration of data clustering and visualization into one framework; (ii) application of data clustering to 3D gene expression data; (iii) evaluation of the number of clusters k in the context of 3D gene expression clustering; and (iv) improvement of overall analysis quality via dedicated post-processing of clustering results based on visualization. We discuss the use of this framework to objectively define spatial pattern boundaries and temporal profiles of genes and to analyze how mRNA patterns are controlled by their regulatory transcription factors.

  10. Regulation of transcription of cell division genes in the Escherichia coli dcw cluster.

    PubMed

    Vicente, M; Gomez, M J; Ayala, J A

    1998-04-01

    The Escherichia coli dcw cluster contains cell division genes, such as the phylogenetically ubiquitous ftsZ, and genes involved in peptidoglycan synthesis. Transcription in the cluster proceeds in the same direction as the progress of the replication fork along the chromosome. Regulation is exerted at the transcriptional and post-transcriptional levels. The absence of transcriptional termination signals may, in principle, allow extension of the transcripts initiated at the up-stream promoter (mraZ1p) even to the furthest down-stream gene (envA). Complementation tests suggest that they extend into ftsW in the central part of the cluster. In addition, the cluster contains other promoters individually regulated by cis- and trans-acting signals. Dissociation of the expression of the ftsZ gene, located after ftsQ and A near the 3' end of the cluster, from its natural regulatory signals leads to an alteration in the physiology of cell division. The complexities observed in the regulation of gene expression in the cluster may then have an important biological role. Among them, LexA-binding SOS boxes have been found at the 5' end of the cluster, preceding promoters which direct the expression of ftsI (coding for PBP3, the penicillin-binding protein involved in septum formation). A gearbox promoter, ftsQ1p, forms part of the signals regulating the transcription of ftsQ, A and Z. It is an inversely growth-dependent mechanism driven by RNA polymerase containing sigma s, the factor involved in the expression of stationary phase-specific genes. Although the dcw cluster is conserved to a different extent in a variety of bacteria, the regulation of gene expression, the presence or absence of individual genes, and even the essentiality of some of them, show variations in the phylogenetic scale which may reflect adaptation to specific life cycles.

  11. A Stationary Wavelet Entropy-Based Clustering Approach Accurately Predicts Gene Expression

    PubMed Central

    Nguyen, Nha; Vo, An; Choi, Inchan

    2015-01-01

    Abstract Studying epigenetic landscapes is important to understand the condition for gene regulation. Clustering is a useful approach to study epigenetic landscapes by grouping genes based on their epigenetic conditions. However, classical clustering approaches that often use a representative value of the signals in a fixed-sized window do not fully use the information written in the epigenetic landscapes. Clustering approaches to maximize the information of the epigenetic signals are necessary for better understanding gene regulatory environments. For effective clustering of multidimensional epigenetic signals, we developed a method called Dewer, which uses the entropy of stationary wavelet of epigenetic signals inside enriched regions for gene clustering. Interestingly, the gene expression levels were highly correlated with the entropy levels of epigenetic signals. Dewer separates genes better than a window-based approach in the assessment using gene expression and achieved a correlation coefficient above 0.9 without using any training procedure. Our results show that the changes of the epigenetic signals are useful to study gene regulation. PMID:25383910

  12. Yeast homologous recombination-based promoter engineering for the activation of silent natural product biosynthetic gene clusters.

    PubMed

    Montiel, Daniel; Kang, Hahk-Soo; Chang, Fang-Yuan; Charlop-Powers, Zachary; Brady, Sean F

    2015-07-21

    Large-scale sequencing of prokaryotic (meta)genomic DNA suggests that most bacterial natural product gene clusters are not expressed under common laboratory culture conditions. Silent gene clusters represent a promising resource for natural product discovery and the development of a new generation of therapeutics. Unfortunately, the characterization of molecules encoded by these clusters is hampered owing to our inability to express these gene clusters in the laboratory. To address this bottleneck, we have developed a promoter-engineering platform to transcriptionally activate silent gene clusters in a model heterologous host. Our approach uses yeast homologous recombination, an auxotrophy complementation-based yeast selection system and sequence orthogonal promoter cassettes to exchange all native promoters in silent gene clusters with constitutively active promoters. As part of this platform, we constructed and validated a set of bidirectional promoter cassettes consisting of orthogonal promoter sequences, Streptomyces ribosome binding sites, and yeast selectable marker genes. Using these tools we demonstrate the ability to simultaneously insert multiple promoter cassettes into a gene cluster, thereby expediting the reengineering process. We apply this method to model active and silent gene clusters (rebeccamycin and tetarimycin) and to the silent, cryptic pseudogene-containing, environmental DNA-derived Lzr gene cluster. Complete promoter refactoring and targeted gene exchange in this "dead" cluster led to the discovery of potent indolotryptoline antiproliferative agents, lazarimides A and B. This potentially scalable and cost-effective promoter reengineering platform should streamline the discovery of natural products from silent natural product biosynthetic gene clusters. PMID:26150486

  13. Yeast homologous recombination-based promoter engineering for the activation of silent natural product biosynthetic gene clusters.

    PubMed

    Montiel, Daniel; Kang, Hahk-Soo; Chang, Fang-Yuan; Charlop-Powers, Zachary; Brady, Sean F

    2015-07-21

    Large-scale sequencing of prokaryotic (meta)genomic DNA suggests that most bacterial natural product gene clusters are not expressed under common laboratory culture conditions. Silent gene clusters represent a promising resource for natural product discovery and the development of a new generation of therapeutics. Unfortunately, the characterization of molecules encoded by these clusters is hampered owing to our inability to express these gene clusters in the laboratory. To address this bottleneck, we have developed a promoter-engineering platform to transcriptionally activate silent gene clusters in a model heterologous host. Our approach uses yeast homologous recombination, an auxotrophy complementation-based yeast selection system and sequence orthogonal promoter cassettes to exchange all native promoters in silent gene clusters with constitutively active promoters. As part of this platform, we constructed and validated a set of bidirectional promoter cassettes consisting of orthogonal promoter sequences, Streptomyces ribosome binding sites, and yeast selectable marker genes. Using these tools we demonstrate the ability to simultaneously insert multiple promoter cassettes into a gene cluster, thereby expediting the reengineering process. We apply this method to model active and silent gene clusters (rebeccamycin and tetarimycin) and to the silent, cryptic pseudogene-containing, environmental DNA-derived Lzr gene cluster. Complete promoter refactoring and targeted gene exchange in this "dead" cluster led to the discovery of potent indolotryptoline antiproliferative agents, lazarimides A and B. This potentially scalable and cost-effective promoter reengineering platform should streamline the discovery of natural products from silent natural product biosynthetic gene clusters.

  14. Yeast homologous recombination-based promoter engineering for the activation of silent natural product biosynthetic gene clusters

    PubMed Central

    Montiel, Daniel; Kang, Hahk-Soo; Chang, Fang-Yuan; Charlop-Powers, Zachary; Brady, Sean F.

    2015-01-01

    Large-scale sequencing of prokaryotic (meta)genomic DNA suggests that most bacterial natural product gene clusters are not expressed under common laboratory culture conditions. Silent gene clusters represent a promising resource for natural product discovery and the development of a new generation of therapeutics. Unfortunately, the characterization of molecules encoded by these clusters is hampered owing to our inability to express these gene clusters in the laboratory. To address this bottleneck, we have developed a promoter-engineering platform to transcriptionally activate silent gene clusters in a model heterologous host. Our approach uses yeast homologous recombination, an auxotrophy complementation-based yeast selection system and sequence orthogonal promoter cassettes to exchange all native promoters in silent gene clusters with constitutively active promoters. As part of this platform, we constructed and validated a set of bidirectional promoter cassettes consisting of orthogonal promoter sequences, Streptomyces ribosome binding sites, and yeast selectable marker genes. Using these tools we demonstrate the ability to simultaneously insert multiple promoter cassettes into a gene cluster, thereby expediting the reengineering process. We apply this method to model active and silent gene clusters (rebeccamycin and tetarimycin) and to the silent, cryptic pseudogene-containing, environmental DNA-derived Lzr gene cluster. Complete promoter refactoring and targeted gene exchange in this “dead” cluster led to the discovery of potent indolotryptoline antiproliferative agents, lazarimides A and B. This potentially scalable and cost-effective promoter reengineering platform should streamline the discovery of natural products from silent natural product biosynthetic gene clusters. PMID:26150486

  15. The naphthalene catabolic (nag) genes of Polaromonas naphthalenivorans CJ2: Evolutionary implications for two gene clusters and novel regulatory control

    SciTech Connect

    Jeon, C.O.; Park, M.; Ro, H.S.; Park, W.; Madsen, E.L.

    2006-02-15

    Polaromonas naphthalenivorans CJ2, found to be responsible for the degradation of naphthalene in situ at a coal tar waste-contaminated site, is able to grow on mineral salts agar media with naphthalene as the sole carbon source. Beginning from a 484-bp nagAc-like region, we used a genome walking strategy to sequence genes encoding the entire naphthalene degradation pathway and additional flanking regions. We found that the naphthalene catabolic genes in P. naphthalenivorans CJ2 were divided into one large and one small gene cluster, separated by an unknown distance. The large gene cluster is bounded by a LysR-type regulator (nagR). The small cluster is bounded by a MarR-type regulator (nagR2). The catabolic genes of P. naphthalenivorans CJ2 were homologous to many of those of Ralstonia U2, which uses the gentisate pathway to convert naphthalene to central metabolites. However, three open reading frames (nagY, nagM, and nagN), present in Ralstonia U2, were absent. Also, P. naphthalenivorans carries two copies of gentisate dioxygenase (nagI) with 77.4% DNA sequence identity to one another and 82% amino acid identity to their homologue in Ralstonia sp. strain U2. Investigation of the operons using reverse transcription PCR showed that each cluster was controlled independently by its respective promoter. Insertional inactivation and lacZ reporter assays showed that nagR2 is a negative regulator and that expression of the small cluster is not induced by naphthalene, salicylate, or gentisate. Association of two putative Azoarcus-related transposases with the large cluster and one Azoarcus-related putative salicylate 5-hydroxylase gene (ORF2) in the small cluster suggests that mobile genetic elements were likely involved in creating the novel arrangement of catabolic and regulatory genes in P. naphthalenivorans.

  16. Unusual Gene Order and Organization of the Sea Urchin Hox Cluster

    SciTech Connect

    Cameron, R A; Rowen, L; Nesbitt, R; Bloom, S; Rast, J P; Berney, K; Arenas-Mena, C; Martinez, P; Lucas, S; Richardson, P M; Davidson, E H; Peterson, K J; Hood, L

    2005-10-11

    The highly consistent gene order and axial colinear expression patterns found in vertebrate hox gene clusters are less well conserved across the rest of bilaterians. We report the first deuterostome instance of an intact hox cluster with a unique gene order where the paralog groups are not expressed in a sequential manner. The finished sequence from BAC clones from the genome of the sea urchin, Strongylocentrotus purpuratus, reveals a gene order wherein the anterior genes (Hox1, Hox2 and Hox3) lie nearest the posterior genes in the cluster such that the most 3 gene is Hox5. (The gene order is : 5-Hox1, 2, 3, 11/13c, 11/13b, 11/13a, 9/10, 8, 7, 6, 5 - 3). The finished sequence result is corroborated by restriction mapping evidence and BAC-end scaffold analyses. Comparisons with a putative ancestral deuterostome Hox gene cluster suggest that the rearrangements leading to the sea urchin gene order were many and complex.

  17. Unusual Gene Order and Organization of the Sea Urchin HoxCluster

    SciTech Connect

    Richardson, Paul M.; Lucas, Susan; Cameron, R. Andrew; Rowen,Lee; Nesbitt, Ryan; Bloom, Scott; Rast, Jonathan P.; Berney, Kevin; Arenas-Mena, Cesar; Martinez, Pedro; Davidson, Eric H.; Peterson, KevinJ.; Hood, Leroy

    2005-05-10

    The highly consistent gene order and axial colinear expression patterns found in vertebrate hox gene clusters are less well conserved across the rest of bilaterians. We report the first deuterostome instance of an intact hox cluster with a unique gene order where the paralog groups are not expressed in a sequential manner. The finished sequence from BAC clones from the genome of the sea urchin, Strongylocentrotus purpuratus, reveals a gene order wherein the anterior genes (Hox1, Hox2 and Hox3) lie nearest the posterior genes in the cluster such that the most 3' gene is Hox5. (The gene order is : 5'-Hox1,2, 3, 11/13c, 11/13b, '11/13a, 9/10, 8, 7, 6, 5 - 3)'. The finished sequence result is corroborated by restriction mapping evidence and BAC-end scaffold analyses. Comparisons with a putative ancestral deuterostome Hox gene cluster suggest that the rearrangements leading to the sea urchin gene order were many and complex.

  18. Visualization of mappings between the gene ontology and cluster trees

    NASA Astrophysics Data System (ADS)

    Jusufi, Ilir; Kerren, Andreas; Aleksakhin, Vladyslav; Schreiber, Falk

    2012-01-01

    Ontologies and hierarchical clustering are both important tools in biology and medicine to study high-throughput data such as transcriptomics and metabolomics data. Enrichment of ontology terms in the data is used to identify statistically overrepresented ontology terms, giving insight into relevant biological processes or functional modules. Hierarchical clustering is a standard method to analyze and visualize data to find relatively homogeneous clusters of experimental data points. Both methods support the analysis of the same data set, but are usually considered independently. However, often a combined view is desired: visualizing a large data set in the context of an ontology under consideration of a clustering of the data. This paper proposes a new visualization method for this task.

  19. Nanoscale spatial organization of the HoxD gene cluster in distinct transcriptional states.

    PubMed

    Fabre, Pierre J; Benke, Alexander; Joye, Elisabeth; Nguyen Huynh, Thi Hanh; Manley, Suliana; Duboule, Denis

    2015-11-10

    Chromatin condensation plays an important role in the regulation of gene expression. Recently, it was shown that the transcriptional activation of Hoxd genes during vertebrate digit development involves modifications in 3D interactions within and around the HoxD gene cluster. This reorganization follows a global transition from one set of regulatory contacts to another, between two topologically associating domains (TADs) located on either side of the HoxD locus. Here, we use 3D DNA FISH to assess the spatial organization of chromatin at and around the HoxD gene cluster and report that although the two TADs are tightly associated, they appear as spatially distinct units. We measured the relative position of genes within the cluster and found that they segregate over long distances, suggesting that a physical elongation of the HoxD cluster can occur. We analyzed this possibility by super-resolution imaging (STORM) and found that tissues with distinct transcriptional activity exhibit differing degrees of elongation. We also observed that the morphological change of the HoxD cluster in developing digits is associated with its position at the boundary between the two TADs. Such variations in the fine-scale architecture of the gene cluster suggest causal links among its spatial configuration, transcriptional activation, and the flanking chromatin context. PMID:26504220

  20. Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters.

    PubMed

    Gomez-Escribano, Juan Pablo; Bibb, Mervyn J

    2011-03-01

    We have constructed derivatives of Streptomyces coelicolor M145 as hosts for the heterologous expression of secondary metabolite gene clusters. To remove potentially competitive sinks of carbon and nitrogen, and to provide a host devoid of antibiotic activity, we deleted four endogenous secondary metabolite gene clusters from S. coelicolor M145--those for actinorhodin, prodiginine, CPK and CDA biosynthesis. We then introduced point mutations into rpoB and rpsL to pleiotropically increase the level of secondary metabolite production. Introduction of the native actinorhodin gene cluster and of gene clusters for the heterologous production of chloramphenicol and congocidine revealed dramatic increases in antibiotic production compared with the parental strain. In addition to lacking antibacterial activity, the engineered strains possess relatively simple extracellular metabolite profiles. When combined with liquid chromatography and mass spectrometry, we believe that these genetically engineered strains will markedly facilitate the discovery of new compounds by heterologous expression of cloned gene clusters, particularly the numerous cryptic secondary metabolic gene clusters that are prevalent within actinomycete genome sequences.

  1. The gene cluster of aureocyclicin 4185: the first cyclic bacteriocin of Staphylococcus aureus.

    PubMed

    Potter, Amina; Ceotto, Hilana; Coelho, Marcus Lívio Varella; Guimarães, Allan J; Bastos, Maria do Carmo de Freire

    2014-05-01

    Staphylococcus aureus 4185 was previously shown to produce at least two bacteriocins. One of them is encoded by pRJ101. To detect the bacteriocin-encoding gene cluster, an ~9160 kb region of pRJ101 was sequenced. In silico analyses identified 10 genes (aclX, aclB, aclI, aclT, aclC, aclD, aclA, aclF, aclG and aclH) that might be involved in the production of a novel cyclic bacteriocin named aureocyclicin 4185. The organization of these genes was quite similar to that of the gene cluster responsible for carnocyclin A production and immunity. Four putative proteins encoded by these genes (AclT, AclC, AclD and AclA) also exhibited similarity to proteins encoded by cyclic bacteriocin gene clusters. Mutants derived from insertion of Tn917-lac into aclC, aclF, aclH and aclX were affected in bacteriocin production and growth. AclX is a 205 aa putative protein not encoded by the gene clusters of other cyclic bacteriocins. AclX exhibits 50 % similarity to a permease and has five putative membrane-spanning domains. Transcription analyses suggested that aclX is part of the aureocyclicin 4185 gene cluster, encoding a protein required for bacteriocin production. The aclA gene is the structural gene of aureocyclicin 4185, which shows 65 % similarity to garvicin ML. AclA is proposed to be cleaved off, generating a mature peptide with a predicted Mr of 5607 Da (60 aa). By homology modelling, AclA presents four α-helices, like carnocyclin A. AclA could not be found at detectable levels in the culture supernatant of a strain carrying only pRJ101. To our knowledge, this is the first report of a cyclic bacteriocin gene cluster in the genus Staphylococcus. PMID:24574434

  2. Characterization of two acetyltransferase genes in the pyripyropene biosynthetic gene cluster from Penicillium coprobium

    PubMed Central

    Hu, Jie; Furutani, Ayako; Yamamoto, Kentaro; Oyama, Kazuhiko; Mitomi, Masaaki; Anzai, Hiroyuki

    2014-01-01

    Pyripyropenes potently and selectively inhibit acyl-CoA:cholesterol acyltransferase 2 (ACAT-2). Among multiple isomers of pyripyropene (A to R), pyripyropene A (PyA) has insecticidal properties in addition to its growth inhibition properties against human umbilical vein endothelial cells. Based on the predicted biosynthetic gene cluster of pyripyropene A, two genes (ppb8 and ppb9) encoding two acetyltransferases (ATs) were separately isolated and introduced into the model fungus Aspergillus oryzae, using the protoplast–polyethylene glycol method. The bioconversion of certain predicted intermediates in the transformants revealed the manner by which acetylation occurred in the biosynthetic pathway by the products expressed by these two genes (AT-1 and AT-2). The acetylated products detected by high-performance liquid chromatography (HPLC) in the extracts from AT-1 and AT-2 transformant clones were not present in the extract from the transformant clone with an empty vector. The HLPC charts of each bioconversion study exhibited high peaks at 12, 10.5 and 9 min, respectively. Further ultraviolet absorption and mass spectrometry analyses identified the products as PyE, PyO and PyA, respectively. AT-1 acetylated the C-1 of deacetyl-pyripyropene E (deAc-PyE), while AT-2 played an active role in acetylating the C-11 of 11-deAc-PyO and C-7 of deAc-PyA at two different steps of the biosynthetic pathway. PMID:26019565

  3. Evidence that a secondary metabolic biosynthetic gene cluster has grown by gene relocation during evolution of the filamentous fungus Fusarium.

    PubMed

    Proctor, Robert H; McCormick, Susan P; Alexander, Nancy J; Desjardins, Anne E

    2009-12-01

    Trichothecenes are terpene-derived secondary metabolites produced by multiple genera of filamentous fungi, including many plant pathogenic species of Fusarium. These metabolites are of interest because they are toxic to animals and plants and can contribute to pathogenesis of Fusarium on some crop species. Fusarium graminearum and F. sporotrichioides have trichothecene biosynthetic genes (TRI) at three loci: a 12-gene TRI cluster and two smaller TRI loci that consist of one or two genes. Here, comparisons of additional Fusarium species have provided evidence that TRI loci have a complex evolutionary history that has included loss, non-functionalization and rearrangement of genes as well as trans-species polymorphism. The results also indicate that the TRI cluster has expanded in some species by relocation of two genes into it from the smaller loci. Thus, evolutionary forces have driven consolidation of TRI genes into fewer loci in some fusaria but have maintained three distinct TRI loci in others. PMID:19843228

  4. Partial mixture model for tight clustering of gene expression time-course

    PubMed Central

    Yuan, Yinyin; Li, Chang-Tsun; Wilson, Roland

    2008-01-01

    Background Tight clustering arose recently from a desire to obtain tighter and potentially more informative clusters in gene expression studies. Scattered genes with relatively loose correlations should be excluded from the clusters. However, in the literature there is little work dedicated to this area of research. On the other hand, there has been extensive use of maximum likelihood techniques for model parameter estimation. By contrast, the minimum distance estimator has been largely ignored. Results In this paper we show the inherent robustness of the minimum distance estimator that makes it a powerful tool for parameter estimation in model-based time-course clustering. To apply minimum distance estimation, a partial mixture model that can naturally incorporate replicate information and allow scattered genes is formulated. We provide experimental results of simulated data fitting, where the minimum distance estimator demonstrates superior performance to the maximum likelihood estimator. Both biological and statistical validations are conducted on a simulated dataset and two real gene expression datasets. Our proposed partial regression clustering algorithm scores top in Gene Ontology driven evaluation, in comparison with four other popular clustering algorithms. Conclusion For the first time partial mixture model is successfully extended to time-course data analysis. The robustness of our partial regression clustering algorithm proves the suitability of the combination of both partial mixture model and minimum distance estimator in this field. We show that tight clustering not only is capable to generate more profound understanding of the dataset under study well in accordance to established biological knowledge, but also presents interesting new hypotheses during interpretation of clustering results. In particular, we provide biological evidences that scattered genes can be relevant and are interesting subjects for study, in contrast to prevailing opinion

  5. Organization, structure and evolution of the CYP2 gene cluster on human chromosome 19.

    PubMed

    Hoffman, S M; Nelson, D R; Keeney, D S

    2001-11-01

    The cytochrome P450 superfamily of mixed-function oxygenases has been extensively studied due to its many critical metabolic roles, and also because it is a fascinating example of gene family evolution. The cluster of genes on human chromosome 19 from the CYP2A, 2B, and 2F subfamilies has been previously described as having a complex organization and many pseudogenes. We describe the discovery of genes from three more CYP2 subfamilies inside the cluster, and assemble a complete map of the region. We comprehensively review the organization, structure, and expression of genes from all six subfamilies. A general hypothesis for the evolution of this complex gene cluster is also presented.

  6. Selenate reductase activity in Escherichia coli requires Isc iron-sulfur cluster biosynthesis genes.

    PubMed

    Yee, Nathan; Choi, Jessica; Porter, Abigail W; Carey, Sean; Rauschenbach, Ines; Harel, Arye

    2014-12-01

    The selenate reductase in Escherichia coli is a multi-subunit enzyme predicted to bind Fe-S clusters. In this study, we examined the iron-sulfur cluster biosynthesis genes that are required for selenate reductase activity. Mutants devoid of either the iscU or hscB gene in the Isc iron-sulfur cluster biosynthesis pathway lost the ability to reduce selenate. Genetic complementation by the wild-type sequences restored selenate reductase activity. The results indicate the Isc biosynthetic system plays a key role in selenate reductase Fe-S cofactor assembly and is essential for enzyme activity.

  7. Identification of two gene clusters involved in cyclohexanone oxidation in Brevibacterium epidermidis strain HCU.

    PubMed

    Brzostowicz, P C; Blasko, M S; Rouvière, P E

    2002-05-01

    Brevibacterium epidermidis HCU can grow on cyclic ketones and alcohols as a sole carbon source. We have previously reported the identification of two cyclohexanone-induced Bayer-Villiger monooxygenase genes by mRNA differential display. Using the related technique of Out-PCR, we have amplified large DNA fragments flanking the two monooxygenase genes. Two large gene clusters were sequenced. Several ORFs in each gene cluster encoded proteins homologous to cyclohexanol and cyclohexanone oxidation enzymes from Acinetobacter. However, the structure of these two gene clusters differs significantly from that of Acinetobacter, where the complete pathway has been described. To assess activity of these genes, they were cloned and expressed in Escherichia coli. In vivo and in vitro assays enabled us to assign functions to the expressed ORFs. These ORFs included a cyclohexanol dehydrogenase, two different epsilon-caprolactone hydrolases and two 6-hydroxyhexanoate dehydrogenases belonging to different enzyme families. Because this environmental isolate is difficult to manipulate, we cannot determine at this time which cluster is involved in the degradation of cyclohexanone under physiological conditions. However, the original differential display experiments and some of the experiments reported here suggest the involvement of both gene clusters in the oxidation of cyclic ketones.

  8. Two Horizontally Transferred Xenobiotic Resistance Gene Clusters Associated with Detoxification of Benzoxazolinones by Fusarium Species

    PubMed Central

    Glenn, Anthony E.; Davis, C. Britton; Gao, Minglu; Gold, Scott E.; Mitchell, Trevor R.; Proctor, Robert H.; Stewart, Jane E.; Snook, Maurice E.

    2016-01-01

    Microbes encounter a broad spectrum of antimicrobial compounds in their environments and often possess metabolic strategies to detoxify such xenobiotics. We have previously shown that Fusarium verticillioides, a fungal pathogen of maize known for its production of fumonisin mycotoxins, possesses two unlinked loci, FDB1 and FDB2, necessary for detoxification of antimicrobial compounds produced by maize, including the γ-lactam 2-benzoxazolinone (BOA). In support of these earlier studies, microarray analysis of F. verticillioides exposed to BOA identified the induction of multiple genes at FDB1 and FDB2, indicating the loci consist of gene clusters. One of the FDB1 cluster genes encoded a protein having domain homology to the metallo-β-lactamase (MBL) superfamily. Deletion of this gene (MBL1) rendered F. verticillioides incapable of metabolizing BOA and thus unable to grow on BOA-amended media. Deletion of other FDB1 cluster genes, in particular AMD1 and DLH1, did not affect BOA degradation. Phylogenetic analyses and topology testing of the FDB1 and FDB2 cluster genes suggested two horizontal transfer events among fungi, one being transfer of FDB1 from Fusarium to Colletotrichum, and the second being transfer of the FDB2 cluster from Fusarium to Aspergillus. Together, the results suggest that plant-derived xenobiotics have exerted evolutionary pressure on these fungi, leading to horizontal transfer of genes that enhance fitness or virulence. PMID:26808652

  9. Two Horizontally Transferred Xenobiotic Resistance Gene Clusters Associated with Detoxification of Benzoxazolinones by Fusarium Species.

    PubMed

    Glenn, Anthony E; Davis, C Britton; Gao, Minglu; Gold, Scott E; Mitchell, Trevor R; Proctor, Robert H; Stewart, Jane E; Snook, Maurice E

    2016-01-01

    Microbes encounter a broad spectrum of antimicrobial compounds in their environments and often possess metabolic strategies to detoxify such xenobiotics. We have previously shown that Fusarium verticillioides, a fungal pathogen of maize known for its production of fumonisin mycotoxins, possesses two unlinked loci, FDB1 and FDB2, necessary for detoxification of antimicrobial compounds produced by maize, including the γ-lactam 2-benzoxazolinone (BOA). In support of these earlier studies, microarray analysis of F. verticillioides exposed to BOA identified the induction of multiple genes at FDB1 and FDB2, indicating the loci consist of gene clusters. One of the FDB1 cluster genes encoded a protein having domain homology to the metallo-β-lactamase (MBL) superfamily. Deletion of this gene (MBL1) rendered F. verticillioides incapable of metabolizing BOA and thus unable to grow on BOA-amended media. Deletion of other FDB1 cluster genes, in particular AMD1 and DLH1, did not affect BOA degradation. Phylogenetic analyses and topology testing of the FDB1 and FDB2 cluster genes suggested two horizontal transfer events among fungi, one being transfer of FDB1 from Fusarium to Colletotrichum, and the second being transfer of the FDB2 cluster from Fusarium to Aspergillus. Together, the results suggest that plant-derived xenobiotics have exerted evolutionary pressure on these fungi, leading to horizontal transfer of genes that enhance fitness or virulence.

  10. Two Horizontally Transferred Xenobiotic Resistance Gene Clusters Associated with Detoxification of Benzoxazolinones by Fusarium Species.

    PubMed

    Glenn, Anthony E; Davis, C Britton; Gao, Minglu; Gold, Scott E; Mitchell, Trevor R; Proctor, Robert H; Stewart, Jane E; Snook, Maurice E

    2016-01-01

    Microbes encounter a broad spectrum of antimicrobial compounds in their environments and often possess metabolic strategies to detoxify such xenobiotics. We have previously shown that Fusarium verticillioides, a fungal pathogen of maize known for its production of fumonisin mycotoxins, possesses two unlinked loci, FDB1 and FDB2, necessary for detoxification of antimicrobial compounds produced by maize, including the γ-lactam 2-benzoxazolinone (BOA). In support of these earlier studies, microarray analysis of F. verticillioides exposed to BOA identified the induction of multiple genes at FDB1 and FDB2, indicating the loci consist of gene clusters. One of the FDB1 cluster genes encoded a protein having domain homology to the metallo-β-lactamase (MBL) superfamily. Deletion of this gene (MBL1) rendered F. verticillioides incapable of metabolizing BOA and thus unable to grow on BOA-amended media. Deletion of other FDB1 cluster genes, in particular AMD1 and DLH1, did not affect BOA degradation. Phylogenetic analyses and topology testing of the FDB1 and FDB2 cluster genes suggested two horizontal transfer events among fungi, one being transfer of FDB1 from Fusarium to Colletotrichum, and the second being transfer of the FDB2 cluster from Fusarium to Aspergillus. Together, the results suggest that plant-derived xenobiotics have exerted evolutionary pressure on these fungi, leading to horizontal transfer of genes that enhance fitness or virulence. PMID:26808652

  11. Revealing gene clusters associated with the development of cholangiocarcinoma, based on a time series analysis.

    PubMed

    Wu, Jianyu; Xiao, Zhifu; Zhao, Xiulei; Wu, Xiangsong

    2015-05-01

    Cholangiocarcinoma (CC) is a rapidly lethal malignancy and currently is considered to be incurable. Biomarkers related to the development of CC remain unclear. The present study aimed to identify differentially expressed genes (DEGs) between normal tissue and intrahepatic CC, as well as specific gene expression patterns that changed together with the development of CC. By using a two‑way analysis of variance test, the biomarkers that could distinguish between normal tissue and intrahepatic CC dissected from different days were identified. A k‑means cluster method was used to identify gene clusters associated with the development of CC according to their changing expression pattern. Functional enrichment analysis was used to infer the function of each of the gene sets. A time series analysis was constructed to reveal gene signatures that were associated with the development of CC based on gene expression profile changes. Genes related to CC were shown to be involved in 'mitochondrion' and 'focal adhesion'. Three interesting gene groups were identified by the k‑means cluster method. Gene clusters with a unique expression pattern are related with the development of CC. The data of this study will facilitate novel discoveries regarding the genetic study of CC by further work.

  12. Histone gene number and organisation in Xenopus: Xenopus borealis has a homogeneous major cluster.

    PubMed Central

    Turner, P C; Woodland, H R

    1983-01-01

    Using a Xenopus laevis H4 cDNA clone as a probe we have determined that the numbers of H4 histone genes in Xenopus laevis and Xenopus borealis are approximately the same. These numbers are dependent on the hybridization stringency and we measure about 90 H4 genes per haploid genome after a 60 degrees C wash in 3 X SSC. Using histone probes from both Xenopus and sea urchin we have studied the genomic organization of histone genes in these two species. In all of the X.borealis individuals analyzed about 70% of the histone genes were present in a very homogeneous major cluster. These genes are present in the order H1, H2B, H2A, H4 and H3, and the minimum length of the repeated unit is 16kb. In contrast, the histone gene clusters in X.laevis showed considerable sequence variation. However two major cluster types with different gene orders seem to be present in most individuals. The differences in histone gene organization seen in species of Xenopus suggest that even in closely related vertebrates the major histone gene clusters are quite fluid structures in evolutionary terms. Images PMID:6298735

  13. The Local Maximum Clustering Method and Its Application in Microarray Gene Expression Data Analysis

    NASA Astrophysics Data System (ADS)

    Wu, Xiongwu; Chen, Yidong; Brooks, Bernard R.; Su, Yan A.

    2004-12-01

    An unsupervised data clustering method, called the local maximum clustering (LMC) method, is proposed for identifying clusters in experiment data sets based on research interest. A magnitude property is defined according to research purposes, and data sets are clustered around each local maximum of the magnitude property. By properly defining a magnitude property, this method can overcome many difficulties in microarray data clustering such as reduced projection in similarities, noises, and arbitrary gene distribution. To critically evaluate the performance of this clustering method in comparison with other methods, we designed three model data sets with known cluster distributions and applied the LMC method as well as the hierarchic clustering method, the[InlineEquation not available: see fulltext.]-mean clustering method, and the self-organized map method to these model data sets. The results show that the LMC method produces the most accurate clustering results. As an example of application, we applied the method to cluster the leukemia samples reported in the microarray study of Golub et al. (1999).

  14. Wide Distribution of O157-Antigen Biosynthesis Gene Clusters in Escherichia coli

    PubMed Central

    Seto, Kazuko; Ooka, Tadasuke; Ogura, Yoshitoshi; Hayashi, Tetsuya; Osawa, Kayo; Osawa, Ro

    2011-01-01

    Most Escherichia coli O157-serogroup strains are classified as enterohemorrhagic E. coli (EHEC), which is known as an important food-borne pathogen for humans. They usually produce Shiga toxin (Stx) 1 and/or Stx2, and express H7-flagella antigen (or nonmotile). However, O157 strains that do not produce Stxs and express H antigens different from H7 are sometimes isolated from clinical and other sources. Multilocus sequence analysis revealed that these 21 O157:non-H7 strains tested in this study belong to multiple evolutionary lineages different from that of EHEC O157:H7 strains, suggesting a wide distribution of the gene set encoding the O157-antigen biosynthesis in multiple lineages. To gain insight into the gene organization and the sequence similarity of the O157-antigen biosynthesis gene clusters, we conducted genomic comparisons of the chromosomal regions (about 59 kb in each strain) covering the O-antigen gene cluster and its flanking regions between six O157:H7/non-H7 strains. Gene organization of the O157-antigen gene cluster was identical among O157:H7/non-H7 strains, but was divided into two distinct types at the nucleotide sequence level. Interestingly, distribution of the two types did not clearly follow the evolutionary lineages of the strains, suggesting that horizontal gene transfer of both types of O157-antigen gene clusters has occurred independently among E. coli strains. Additionally, detailed sequence comparison revealed that some positions of the repetitive extragenic palindromic (REP) sequences in the regions flanking the O-antigen gene clusters were coincident with possible recombination points. From these results, we conclude that the horizontal transfer of the O157-antigen gene clusters induced the emergence of multiple O157 lineages within E. coli and speculate that REP sequences may involve one of the driving forces for exchange and evolution of O-antigen loci. PMID:21876740

  15. Automatic Summarization of Mouse Gene Information by Clustering and Sentence Extraction from MEDLINE Abstracts

    PubMed Central

    Yang, Jianji; Cohen, Aaron M.; Hersh, William

    2007-01-01

    Tools to automatically summarize gene information from the literature have the potential to help genomics researchers better interpret gene expression data and investigate biological pathways. The task of finding information on sets of genes is common for genomic researchers, and PubMed is still the first choice because the most recent and original information can only be found in the unstructured, free text biomedical literature. However, finding information on a set of genes by manually searching and scanning the literature is a time-consuming and daunting task for scientists. We built and evaluated a query-based automatic summarizer of information on mouse genes studied in microarray experiments. The system clusters a set of genes by MeSH, GO and free text features and presents summaries for each gene by ranked sentences extracted from MEDLINE abstracts. Evaluation showed that the system seems to provide meaningful clusters and informative sentences are ranked higher by the algorithm. PMID:18693953

  16. Biosilica formation in spicules of the sponge Suberites domuncula: synchronous expression of a gene cluster.

    PubMed

    Schröder, Heinz C; Perovic-Ottstadt, Sanja; Grebenjuk, Vladislav A; Engel, Sylvia; Müller, Isabel M; Müller, Werner E G

    2005-06-01

    The formation of spicules is a complicated morphogenetic process in sponges (phylum Porifera). The primmorph system was used to demonstrate that in the demosponge Suberites domuncula the synthesis of the siliceous spicules starts intracellularly and is dependent on the concentration of silicic acid. To understand spicule formation, a cluster of genes was isolated. In the center of this cluster is the silicatein gene, which codes for the enzyme that synthesizes spicules. This gene is flanked by an ankyrin repeat gene at one side and by a tumor necrosis factor receptor-associated factor and a protein kinase gene at the other side. All genes are strongly expressed in primmorphs and intact animals after exposure to silicic acid, and this expression is restricted to those areas where the spicule formation starts or where spicules are maintained in the animals. Our observations suggest that in S. domuncula a coordinated expression of physically linked genes is essential for the synthesis of the major skeletal elements.

  17. Clustering of time-course gene expression profiles using normal mixture models with autoregressive random effects

    PubMed Central

    2012-01-01

    Background Time-course gene expression data such as yeast cell cycle data may be periodically expressed. To cluster such data, currently used Fourier series approximations of periodic gene expressions have been found not to be sufficiently adequate to model the complexity of the time-course data, partly due to their ignoring the dependence between the expression measurements over time and the correlation among gene expression profiles. We further investigate the advantages and limitations of available models in the literature and propose a new mixture model with autoregressive random effects of the first order for the clustering of time-course gene-expression profiles. Some simulations and real examples are given to demonstrate the usefulness of the proposed models. Results We illustrate the applicability of our new model using synthetic and real time-course datasets. We show that our model outperforms existing models to provide more reliable and robust clustering of time-course data. Our model provides superior results when genetic profiles are correlated. It also gives comparable results when the correlation between the gene profiles is weak. In the applications to real time-course data, relevant clusters of coregulated genes are obtained, which are supported by gene-function annotation databases. Conclusions Our new model under our extension of the EMMIX-WIRE procedure is more reliable and robust for clustering time-course data because it adopts a random effects model that allows for the correlation among observations at different time points. It postulates gene-specific random effects with an autocorrelation variance structure that models coregulation within the clusters. The developed R package is flexible in its specification of the random effects through user-input parameters that enables improved modelling and consequent clustering of time-course data. PMID:23151154

  18. The Fumagillin Gene Cluster, an Example of Hundreds of Genes under veA Control in Aspergillus fumigatus

    PubMed Central

    Dhingra, Sourabh; Lind, Abigail L.; Lin, Hsiao-Ching; Tang, Yi; Rokas, Antonis; Calvo, Ana M.

    2013-01-01

    Aspergillus fumigatus is the causative agent of invasive aspergillosis, leading to infection-related mortality in immunocompromised patients. We previously showed that the conserved and unique-to-fungi veA gene affects different cell processes such as morphological development, gliotoxin biosynthesis and protease activity, suggesting a global regulatory effect on the genome of this medically relevant fungus. In this study, RNA sequencing analysis revealed that veA controls the expression of hundreds of genes in A. fumigatus, including those comprising more than a dozen known secondary metabolite gene clusters. Chemical analysis confirmed that veA controls the synthesis of other secondary metabolites in this organism in addition to gliotoxin. Among the secondary metabolite gene clusters regulated by veA is the elusive but recently identified gene cluster responsible for the biosynthesis of fumagillin, a meroterpenoid known for its anti-angiogenic activity by binding to human methionine aminopeptidase 2. The fumagillin gene cluster contains a veA-dependent regulatory gene, fumR (Afu8g00420), encoding a putative C6 type transcription factor. Deletion of fumR results in silencing of the gene cluster and elimination of fumagillin biosynthesis. We found expression of fumR to also be dependent on laeA, a gene encoding another component of the fungal velvet complex. The results in this study argue that veA is a global regulator of secondary metabolism in A. fumigatus, and that veA may be a conduit via which chemical development is coupled to morphological development and other cellular processes. PMID:24116213

  19. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters

    PubMed Central

    Cimermancic, Peter; Medema, Marnix H.; Claesen, Jan; Kurita, Kenji; Wieland Brown, Laura C.; Mavrommatis, Konstantinos; Pati, Amrita; Godfrey, Paul A.; Koehrsen, Michael; Clardy, Jon; Birren, Bruce W.; Takano, Eriko; Sali, Andrej; Linington, Roger G.; Fischbach, Michael A.

    2014-01-01

    Summary Although biosynthetic gene clusters (BGCs) have been discovered for hundreds of bacterial metabolites, our knowledge of their diversity remains limited. Here, we used a novel algorithm to systematically identify BGCs in the extensive extant microbial sequencing data. Network analysis of the predicted BGCs revealed large gene cluster families, the vast majority uncharacterized. We experimentally characterized the most prominent family, consisting of two subfamilies of hundreds of BGCs distributed throughout the Proteobacteria; their products are aryl polyenes, lipids with an aryl head group conjugated to a polyene tail. We identified a distant relationship to a third subfamily of aryl polyene BGCs, and together the three subfamilies represent the largest known family of biosynthetic gene clusters, with more than 1,000 members. Although these clusters are widely divergent in sequence, their small molecule products are remarkably conserved, indicating for the first time the important roles these compounds play in Gram-negative cell biology. PMID:25036635

  20. Selfish Operons: Horizontal Transfer May Drive the Evolution of Gene Clusters

    PubMed Central

    Lawrence, J. G.; Roth, J. R.

    1996-01-01

    A model is presented whereby the formation of gene clusters in bacteria is mediated by transfer of DNA within and among taxa. Bacterial operons are typically composed of genes whose products contribute to a single function. If this function is subject to weak selection or to long periods with no selection, the contributing genes may accumulate mutations and be lost by genetic drift. From a cell's perspective, once several genes are lost, the function can be restored only if all missing genes were acquired simultaneously by lateral transfer. The probability of transfer of multiple genes increases when genes are physically proximate. From a gene's perspective, horizontal transfer provides a way to escape evolutionary loss by allowing colonization of organisms lacking the encoded functions. Since organisms bearing clustered genes are more likely to act as successful donors, clustered genes would spread among bacterial genomes. The physical proximity of genes may be considered a selfish property of the operon since it affects the probability of successful horizontal transfer but may provide no physiological benefit to the host. This process predicts a mosaic structure of modern genomes in which ancestral chromosomal material is interspersed with novel, horizontally transferred operons providing peripheral metabolic functions. PMID:8844169

  1. Shared Gene Structures and Clusters of Mutually Exclusive Spliced Exons within the Metazoan Muscle Myosin Heavy Chain Genes

    PubMed Central

    Kollmar, Martin; Hatje, Klas

    2014-01-01

    Multicellular animals possess two to three different types of muscle tissues. Striated muscles have considerable ultrastructural similarity and contain a core set of proteins including the muscle myosin heavy chain (Mhc) protein. The ATPase activity of this myosin motor protein largely dictates muscle performance at the molecular level. Two different solutions to adjusting myosin properties to different muscle subtypes have been identified so far: Vertebrates and nematodes contain many independent differentially expressed Mhc genes while arthropods have single Mhc genes with clusters of mutually exclusive spliced exons (MXEs). The availability of hundreds of metazoan genomes now allowed us to study whether the ancient bilateria already contained MXEs, how MXE complexity subsequently evolved, and whether additional scenarios to control contractile properties in different muscles could be proposed, By reconstructing the Mhc genes from 116 metazoans we showed that all intron positions within the motor domain coding regions are conserved in all bilateria analysed. The last common ancestor of the bilateria already contained a cluster of MXEs coding for part of the loop-2 actin-binding sequence. Subsequently the protostomes and later the arthropods gained many further clusters while MXEs got completely lost independently in several branches (vertebrates and nematodes) and species (for example the annelid Helobdella robusta and the salmon louse Lepeophtheirus salmonis). Several bilateria have been found to encode multiple Mhc genes that might all or in part contain clusters of MXEs. Notable examples are a cluster of six tandemly arrayed Mhc genes, of which two contain MXEs, in the owl limpet Lottia gigantea and four Mhc genes with three encoding MXEs in the predatory mite Metaseiulus occidentalis. Our analysis showed that similar solutions to provide different myosin isoforms (multiple genes or clusters of MXEs or both) have independently been developed several times

  2. Genomics-driven discovery of the pneumocandin biosynthetic gene cluster in the fungus Glarea lozoyensis

    PubMed Central

    2013-01-01

    Background The antifungal therapy caspofungin is a semi-synthetic derivative of pneumocandin B0, a lipohexapeptide produced by the fungus Glarea lozoyensis, and was the first member of the echinocandin class approved for human therapy. The nonribosomal peptide synthetase (NRPS)-polyketide synthases (PKS) gene cluster responsible for pneumocandin biosynthesis from G. lozoyensis has not been elucidated to date. In this study, we report the elucidation of the pneumocandin biosynthetic gene cluster by whole genome sequencing of the G. lozoyensis wild-type strain ATCC 20868. Results The pneumocandin biosynthetic gene cluster contains a NRPS (GLNRPS4) and a PKS (GLPKS4) arranged in tandem, two cytochrome P450 monooxygenases, seven other modifying enzymes, and genes for L-homotyrosine biosynthesis, a component of the peptide core. Thus, the pneumocandin biosynthetic gene cluster is significantly more autonomous and organized than that of the recently characterized echinocandin B gene cluster. Disruption mutants of GLNRPS4 and GLPKS4 no longer produced the pneumocandins (A0 and B0), and the Δglnrps4 and Δglpks4 mutants lost antifungal activity against the human pathogenic fungus Candida albicans. In addition to pneumocandins, the G. lozoyensis genome encodes a rich repertoire of natural product-encoding genes including 24 PKSs, six NRPSs, five PKS-NRPS hybrids, two dimethylallyl tryptophan synthases, and 14 terpene synthases. Conclusions Characterization of the gene cluster provides a blueprint for engineering new pneumocandin derivatives with improved pharmacological properties. Whole genome estimation of the secondary metabolite-encoding genes from G. lozoyensis provides yet another example of the huge potential for drug discovery from natural products from the fungal kingdom. PMID:23688303

  3. Degeneration of aflatoxin gene cluster in Aspergillus flavus from Africa and North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus is the primary causal agent of food and feed contamination with the toxic fungal metabolites aflatoxins. Aflatoxin-producing potential of A. flavus is known to vary among isolates. The genes involved in aflatoxin biosynthesis are clustered together and the order of genes within th...

  4. Identification of the Herboxidiene Biosynthetic Gene Cluster in Streptomyces chromofuscus ATCC 49982

    PubMed Central

    Shao, Lei; Zi, Jiachen; Zeng, Jia

    2012-01-01

    The 53-kb biosynthetic gene cluster for the novel anticholesterol natural product herboxidiene was identified in Streptomyces chromofuscus ATCC 49982 by genome sequencing and gene inactivation. In addition to herboxidiene, a biosynthetic intermediate, 18-deoxy-herboxidiene, was also isolated from the fermentation broth of S. chromofuscus ATCC 49982 as a minor metabolite. PMID:22247174

  5. Degeneration of aflatoxin gene clusters in Aspergillus flavus from Africa and North America.

    PubMed

    Adhikari, Bishwo N; Bandyopadhyay, Ranajit; Cotty, Peter J

    2016-12-01

    Aspergillus flavus is the most common causal agent of aflatoxin contamination of food and feed. However, aflatoxin-producing potential varies widely among A. flavus genotypes with many producing no aflatoxins. Some non-aflatoxigenic genotypes are used as biocontrol agents to prevent contamination. Aflatoxin biosynthesis genes are tightly clustered in a highly conserved order. Gene deletions and presence of single nucleotide polymorphisms (SNPs) in aflatoxin biosynthesis genes are often associated with A. flavus inability to produce aflatoxins. In order to identify mechanisms of non-aflatoxigenicity in non-aflatoxigenic genotypes of value in aflatoxin biocontrol, complete cluster sequences of 35 A. flavus genotypes from Africa and North America were analyzed. Inability of some genotypes to produce aflatoxin resulted from deletion of biosynthesis genes. In other genotypes, non-aflatoxigenicity originated from SNP formation. The process of degeneration differed across the gene cluster; genes involved in early biosynthesis stages were more likely to be deleted while genes involved in later stages displayed high frequencies of SNPs. Comparative analyses of aflatoxin gene clusters provides insight into the diversity of mechanisms of non-aflatoxigenicity in A. flavus genotypes used as biological control agents. The sequences provide resources for both diagnosis of non-aflatoxigenicity and monitoring of biocontrol genotypes during biopesticide manufacture and in the environment. PMID:27576895

  6. Phage p1-derived artificial chromosomes facilitate heterologous expression of the FK506 gene cluster.

    PubMed

    Jones, Adam C; Gust, Bertolt; Kulik, Andreas; Heide, Lutz; Buttner, Mark J; Bibb, Mervyn J

    2013-01-01

    We describe a procedure for the conjugative transfer of phage P1-derived Artificial Chromosome (PAC) library clones containing large natural product gene clusters (≥70 kilobases) to Streptomyces coelicolor strains that have been engineered for improved heterologous production of natural products. This approach is demonstrated using the gene cluster for FK506 (tacrolimus), a clinically important immunosuppressant of high commercial value. The entire 83.5 kb FK506 gene cluster from Streptomyces tsukubaensis NRRL 18488 present in one 130 kb PAC clone was introduced into four different S. coelicolor derivatives and all produced FK506 and smaller amounts of the related compound FK520. FK506 yields were increased by approximately five-fold (from 1.2 mg L(-1) to 5.5 mg L(-1)) in S. coelicolor M1146 containing the FK506 PAC upon over-expression of the FK506 LuxR regulatory gene fkbN. The PAC-based gene cluster conjugation methodology described here provides a tractable means to evaluate and manipulate FK506 biosynthesis and is readily applicable to other large gene clusters encoding natural products of interest to medicine, agriculture and biotechnology.

  7. Structural variation of the ribosomal gene cluster within the class Insecta

    SciTech Connect

    Mukha, D.V.; Sidorenko, A.P.; Lazebnaya, I.V.

    1995-09-01

    General estimation of ribosomal DNA variation within the class Insecta is presented. It is shown that, using blot-hybridization, one can detect differences in the structure of the ribosomal gene cluster not only between genera within an order, but also between species within a genera, including sibling species. Structure of the ribosomal gene cluster of the Coccinellidae family (ladybirds) is analyzed. It is shown that cloned highly conservative regions of ribosomal DNA of Tetrahymena pyriformis can be used as probes for analyzing ribosomal genes in insects. 24 refs., 4 figs.

  8. Heterologous Expression of Fluostatin Gene Cluster Leads to a Bioactive Heterodimer.

    PubMed

    Yang, Chunfang; Huang, Chunshuai; Zhang, Wenjun; Zhu, Yiguang; Zhang, Changsheng

    2015-11-01

    The biosynthesis gene cluster (fls) for atypical angucycline fluostatins was identified from the marine derived Micromonospora rosaria SCSIO N160 and was confirmed by gene knockouts and the biochemical characterization of a bifunctional oxygenase FlsO2. The absolute configuration of the key biosynthetic intermediate prejadomycin was determined for the first time by Cu Kα X-ray analysis. Heterologous expression of the intact fls-gene cluster in Streptomyces coelicolor YF11 in the presence of 3% sea salts led to the isolation of two new compounds: fluostatin L (1) and difluostatin A (2). Difluostatin A (2), an unusual heterodimer, exhibited antibacterial activities.

  9. A putative greigite-type magnetosome gene cluster from the candidate phylum Latescibacteria.

    PubMed

    Lin, Wei; Pan, Yongxin

    2015-04-01

    The intracellular biomineralization of magnetite and/or greigite magnetosomes in magnetotactic bacteria (MTB) is strictly controlled by a group of conserved genes, termed magnetosome genes, which are organized as clusters (or islands) in MTB genomes. So far, all reported MTB are affiliated within the Proteobacteria phylum, the Nitrospirae phylum and the candidate division OP3. Here, we report the discovery of a putative magnetosome gene cluster structure from the draft genome of an uncultivated bacterium belonging to the candidate phylum Latescibacteria (formerly candidate division WS3) recently recovered by Rinke and colleagues, which contains 10 genes with homology to magnetosome mam genes of magnetotactic Proteobacteria and Nitrospirae. Moreover, these genes are phylogenetically closely related to greigite-type magnetosome genes that were only found from the Deltaproteobacteria MTB before, suggesting that the greigite genes may originate earlier than previously imagined. These findings indicate that some members of Latescibacteria may be capable of forming greigite magnetosomes, and thus may play previously unrecognized roles in environmental iron and sulfur cycles. The conserved genomic structure of magnetosome gene cluster in Latescibacteria phylum supports the hypothesis of horizontal transfer of these genes among distantly related bacterial groups in nature.

  10. Co-clustering phenome–genome for phenotype classification and disease gene discovery

    PubMed Central

    Hwang, TaeHyun; Atluri, Gowtham; Xie, MaoQiang; Dey, Sanjoy; Hong, Changjin; Kumar, Vipin; Kuang, Rui

    2012-01-01

    Understanding the categorization of human diseases is critical for reliably identifying disease causal genes. Recently, genome-wide studies of abnormal chromosomal locations related to diseases have mapped >2000 phenotype–gene relations, which provide valuable information for classifying diseases and identifying candidate genes as drug targets. In this article, a regularized non-negative matrix tri-factorization (R-NMTF) algorithm is introduced to co-cluster phenotypes and genes, and simultaneously detect associations between the detected phenotype clusters and gene clusters. The R-NMTF algorithm factorizes the phenotype–gene association matrix under the prior knowledge from phenotype similarity network and protein–protein interaction network, supervised by the label information from known disease classes and biological pathways. In the experiments on disease phenotype–gene associations in OMIM and KEGG disease pathways, R-NMTF significantly improved the classification of disease phenotypes and disease pathway genes compared with support vector machines and Label Propagation in cross-validation on the annotated phenotypes and genes. The newly predicted phenotypes in each disease class are highly consistent with human phenotype ontology annotations. The roles of the new member genes in the disease pathways are examined and validated in the protein–protein interaction subnetworks. Extensive literature review also confirmed many new members of the disease classes and pathways as well as the predicted associations between disease phenotype classes and pathways. PMID:22735708

  11. Structure and gene cluster of the O-antigen of Escherichia coli O137.

    PubMed

    Perepelov, Andrei V; Guo, Xi; Senchenkova, Sof'ya N; Li, Yayue; Shashkov, Alexander S; Liu, Bin; Knirel, Yuriy A

    2016-03-01

    The O-polysaccharide (O-antigen) was isolated from the lipopolysaccharide of Escherichia coli O137 and studied by sugar analysis and NMR spectroscopy. The following structure of the branched tetrasaccharide repeating unit was established: Formula: see text] Both structure and gene cluster of the E. coli O137 polysaccharide are related to those of the E. coli K40 polysaccharide (Amor et al., 1999), which lacks the side-chain glucosylation but contains serine that is amide-linked to GlcA. Functions of genes in the O137-antigen gene cluster were assigned by a comparison with those in K40 and sequences in the available databases. Particularly, predicted glycosyltransferases encoded in the gene cluster were assigned to the formation of three glycosidic linkages in the O-polysaccharide repeating unit.

  12. Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production

    NASA Astrophysics Data System (ADS)

    Bailey, Andy M.; Alberti, Fabrizio; Kilaru, Sreedhar; Collins, Catherine M.; de Mattos-Shipley, Kate; Hartley, Amanda J.; Hayes, Patrick; Griffin, Alison; Lazarus, Colin M.; Cox, Russell J.; Willis, Christine L.; O’Dwyer, Karen; Spence, David W.; Foster, Gary D.

    2016-05-01

    Semi-synthetic derivatives of the tricyclic diterpene antibiotic pleuromutilin from the basidiomycete Clitopilus passeckerianus are important in combatting bacterial infections in human and veterinary medicine. These compounds belong to the only new class of antibiotics for human applications, with novel mode of action and lack of cross-resistance, representing a class with great potential. Basidiomycete fungi, being dikaryotic, are not generally amenable to strain improvement. We report identification of the seven-gene pleuromutilin gene cluster and verify that using various targeted approaches aimed at increasing antibiotic production in C. passeckerianus, no improvement in yield was achieved. The seven-gene pleuromutilin cluster was reconstructed within Aspergillus oryzae giving production of pleuromutilin in an ascomycete, with a significant increase (2106%) in production. This is the first gene cluster from a basidiomycete to be successfully expressed in an ascomycete, and paves the way for the exploitation of a metabolically rich but traditionally overlooked group of fungi.

  13. Microbisporicin gene cluster reveals unusual features of lantibiotic biosynthesis in actinomycetes

    PubMed Central

    Foulston, Lucy C.; Bibb, Mervyn J.

    2010-01-01

    Lantibiotics are ribosomally synthesized, posttranslationally modified peptide antibiotics. The biosynthetic gene cluster for microbisporicin, a potent lantibiotic produced by the actinomycete Microbispora corallina containing chlorinated tryptophan and dihydroxyproline residues, was identified by genome scanning and isolated from an M. corallina cosmid library. Heterologous expression in Nonomuraea sp. ATCC 39727 confirmed that all of the genes required for microbisporicin biosynthesis were present in the cluster. Deletion, in M. corallina, of the gene (mibA) predicted to encode the prepropeptide abolished microbisporicin production. Further deletion analysis revealed insights into the biosynthesis of this unusual and potentially clinically useful lantibiotic, shedding light on mechanisms of regulation and self-resistance. In particular, we report an example of the involvement of a tryptophan halogenase in the modification of a ribosomally synthesized peptide and the pathway-specific regulation of an antibiotic biosynthetic gene cluster by an extracytoplasmic function σ factor–anti-σ factor complex. PMID:20628010

  14. Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production

    PubMed Central

    Bailey, Andy M.; Alberti, Fabrizio; Kilaru, Sreedhar; Collins, Catherine M.; de Mattos-Shipley, Kate; Hartley, Amanda J.; Hayes, Patrick; Griffin, Alison; Lazarus, Colin M.; Cox, Russell J.; Willis, Christine L.; O’Dwyer, Karen; Spence, David W.; Foster, Gary D.

    2016-01-01

    Semi-synthetic derivatives of the tricyclic diterpene antibiotic pleuromutilin from the basidiomycete Clitopilus passeckerianus are important in combatting bacterial infections in human and veterinary medicine. These compounds belong to the only new class of antibiotics for human applications, with novel mode of action and lack of cross-resistance, representing a class with great potential. Basidiomycete fungi, being dikaryotic, are not generally amenable to strain improvement. We report identification of the seven-gene pleuromutilin gene cluster and verify that using various targeted approaches aimed at increasing antibiotic production in C. passeckerianus, no improvement in yield was achieved. The seven-gene pleuromutilin cluster was reconstructed within Aspergillus oryzae giving production of pleuromutilin in an ascomycete, with a significant increase (2106%) in production. This is the first gene cluster from a basidiomycete to be successfully expressed in an ascomycete, and paves the way for the exploitation of a metabolically rich but traditionally overlooked group of fungi. PMID:27143514

  15. Microbisporicin gene cluster reveals unusual features of lantibiotic biosynthesis in actinomycetes.

    PubMed

    Foulston, Lucy C; Bibb, Mervyn J

    2010-07-27

    Lantibiotics are ribosomally synthesized, posttranslationally modified peptide antibiotics. The biosynthetic gene cluster for microbisporicin, a potent lantibiotic produced by the actinomycete Microbispora corallina containing chlorinated tryptophan and dihydroxyproline residues, was identified by genome scanning and isolated from an M. corallina cosmid library. Heterologous expression in Nonomuraea sp. ATCC 39727 confirmed that all of the genes required for microbisporicin biosynthesis were present in the cluster. Deletion, in M. corallina, of the gene (mibA) predicted to encode the prepropeptide abolished microbisporicin production. Further deletion analysis revealed insights into the biosynthesis of this unusual and potentially clinically useful lantibiotic, shedding light on mechanisms of regulation and self-resistance. In particular, we report an example of the involvement of a tryptophan halogenase in the modification of a ribosomally synthesized peptide and the pathway-specific regulation of an antibiotic biosynthetic gene cluster by an extracytoplasmic function sigma factor-anti-sigma factor complex.

  16. Paradigm of Tunable Clustering Using Binarization of Consensus Partition Matrices (Bi-CoPaM) for Gene Discovery

    PubMed Central

    Abu-Jamous, Basel; Fa, Rui; Roberts, David J.; Nandi, Asoke K.

    2013-01-01

    Clustering analysis has a growing role in the study of co-expressed genes for gene discovery. Conventional binary and fuzzy clustering do not embrace the biological reality that some genes may be irrelevant for a problem and not be assigned to a cluster, while other genes may participate in several biological functions and should simultaneously belong to multiple clusters. Also, these algorithms cannot generate tight clusters that focus on their cores or wide clusters that overlap and contain all possibly relevant genes. In this paper, a new clustering paradigm is proposed. In this paradigm, all three eventualities of a gene being exclusively assigned to a single cluster, being assigned to multiple clusters, and being not assigned to any cluster are possible. These possibilities are realised through the primary novelty of the introduction of tunable binarization techniques. Results from multiple clustering experiments are aggregated to generate one fuzzy consensus partition matrix (CoPaM), which is then binarized to obtain the final binary partitions. This is referred to as Binarization of Consensus Partition Matrices (Bi-CoPaM). The method has been tested with a set of synthetic datasets and a set of five real yeast cell-cycle datasets. The results demonstrate its validity in generating relevant tight, wide, and complementary clusters that can meet requirements of different gene discovery studies. PMID:23409186

  17. Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture

    PubMed Central

    Johnson, Timothy A.; Stedtfeld, Robert D.; Wang, Qiong; Cole, James R.; Hashsham, Syed A.; Looft, Torey; Zhu, Yong-Guan

    2016-01-01

    ABSTRACT   Antibiotic resistance is a worldwide health risk, but the influence of animal agriculture on the genetic context and enrichment of individual antibiotic resistance alleles remains unclear. Using quantitative PCR followed by amplicon sequencing, we quantified and sequenced 44 genes related to antibiotic resistance, mobile genetic elements, and bacterial phylogeny in microbiomes from U.S. laboratory swine and from swine farms from three Chinese regions. We identified highly abundant resistance clusters: groups of resistance and mobile genetic element alleles that cooccur. For example, the abundance of genes conferring resistance to six classes of antibiotics together with class 1 integrase and the abundance of IS6100-type transposons in three Chinese regions are directly correlated. These resistance cluster genes likely colocalize in microbial genomes in the farms. Resistance cluster alleles were dramatically enriched (up to 1 to 10% as abundant as 16S rRNA) and indicate that multidrug-resistant bacteria are likely the norm rather than an exception in these communities. This enrichment largely occurred independently of phylogenetic composition; thus, resistance clusters are likely present in many bacterial taxa. Furthermore, resistance clusters contain resistance genes that confer resistance to antibiotics independently of their particular use on the farms. Selection for these clusters is likely due to the use of only a subset of the broad range of chemicals to which the clusters confer resistance. The scale of animal agriculture and its wastes, the enrichment and horizontal gene transfer potential of the clusters, and the vicinity of large human populations suggest that managing this resistance reservoir is important for minimizing human risk. PMID:27073098

  18. Unbiased Functional Clustering of Gene Variants with a Phenotypic-Linkage Network

    PubMed Central

    Honti, Frantisek; Meader, Stephen; Webber, Caleb

    2014-01-01

    Groupwise functional analysis of gene variants is becoming standard in next-generation sequencing studies. As the function of many genes is unknown and their classification to pathways is scant, functional associations between genes are often inferred from large-scale omics data. Such data types—including protein–protein interactions and gene co-expression networks—are used to examine the interrelations of the implicated genes. Statistical significance is assessed by comparing the interconnectedness of the mutated genes with that of random gene sets. However, interconnectedness can be affected by confounding bias, potentially resulting in false positive findings. We show that genes implicated through de novo sequence variants are biased in their coding-sequence length and longer genes tend to cluster together, which leads to exaggerated p-values in functional studies; we present here an integrative method that addresses these bias. To discern molecular pathways relevant to complex disease, we have inferred functional associations between human genes from diverse data types and assessed them with a novel phenotype-based method. Examining the functional association between de novo gene variants, we control for the heretofore unexplored confounding bias in coding-sequence length. We test different data types and networks and find that the disease-associated genes cluster more significantly in an integrated phenotypic-linkage network than in other gene networks. We present a tool of superior power to identify functional associations among genes mutated in the same disease even after accounting for significant sequencing study bias and demonstrate the suitability of this method to functionally cluster variant genes underlying polygenic disorders. PMID:25166029

  19. A Genomics Based Discovery of Secondary Metabolite Biosynthetic Gene Clusters in Aspergillus ustus

    PubMed Central

    Pi, Borui; Yu, Dongliang; Dai, Fangwei; Song, Xiaoming; Zhu, Congyi; Li, Hongye; Yu, Yunsong

    2015-01-01

    Secondary metabolites (SMs) produced by Aspergillus have been extensively studied for their crucial roles in human health, medicine and industrial production. However, the resulting information is almost exclusively derived from a few model organisms, including A. nidulans and A. fumigatus, but little is known about rare pathogens. In this study, we performed a genomics based discovery of SM biosynthetic gene clusters in Aspergillus ustus, a rare human pathogen. A total of 52 gene clusters were identified in the draft genome of A. ustus 3.3904, such as the sterigmatocystin biosynthesis pathway that was commonly found in Aspergillus species. In addition, several SM biosynthetic gene clusters were firstly identified in Aspergillus that were possibly acquired by horizontal gene transfer, including the vrt cluster that is responsible for viridicatumtoxin production. Comparative genomics revealed that A. ustus shared the largest number of SM biosynthetic gene clusters with A. nidulans, but much fewer with other Aspergilli like A. niger and A. oryzae. These findings would help to understand the diversity and evolution of SM biosynthesis pathways in genus Aspergillus, and we hope they will also promote the development of fungal identification methodology in clinic. PMID:25706180

  20. Genetic analysis of chromosomal mutations in the polysialic acid gene cluster of Escherichia coli K1.

    PubMed Central

    Vimr, E R; Aaronson, W; Silver, R P

    1989-01-01

    The kps gene cluster of Escherichia coli K1 encodes functions for sialic acid synthesis, activation, polymerization, and possibly translocation of polymer to the cell surface. The size and complexity of this membrane polysaccharide biosynthetic cluster have hindered genetic mapping and functional descriptions of the kps genes. To begin a detailed investigation of the polysialic acid synthetic mechanism, acapsular mutants were characterized to determine their probable defects in polymer synthesis. The mutants were tested for complementation with kps fragments subcloned from two separately isolated, functionally intact kps gene clusters. Complementation was assayed by immunological and biochemical methods and by sensitivity to the K1-specific bacteriophage K1F. The kps cluster consisted of a central 5.8-kilobase region that contained at least two genes coding for sialic acid synthetic enzymes, a gene encoding the sialic acid-activating enzyme, and a gene encoding the sialic acid polymerase. This biosynthetic region is flanked on one side by an approximately 2.8-kilobase region that contains a potential regulatory locus and at least one structural gene for a polypeptide that appears to function in polysialic acid assembly. Flanking the biosynthetic region on the opposite side is a 6- to 8.4-kilobase region that codes for at least three proteins which may also function in polymer assembly and possibly in translocating polymer to the outer cell surface. Results of transduction crosses supported these conclusions and indicated that some of the kps genes flanking the central biosynthetic region may not function directly in transporting polymer to the cell surface. The results also demonstrate that the map position and probable function of most of the kps cluster genes have been identified. Images PMID:2644224

  1. Molecular cloning and identification of the laspartomycin biosynthetic gene cluster from Streptomyces viridochromogenes

    PubMed Central

    Wang, Yang; Chen, Ying; Shen, Qirong; Yin, Xihou

    2011-01-01

    The biosynthetic gene cluster for laspartomycins, a family of 11 amino acid peptide antibiotics, has been cloned and sequenced from Streptomyces viridochromogenes ATCC 29814. Annotation of a segment of 88912 bp of S. viridochromogenes genomic sequence revealed the putative las cluster and its flanking regions which harbor 43 open reading frames. The lpm cluster, which spans approximately 60 kb, consists of 21 open reading frames. Those include four NRPS genes (lpmA/orf18, lpmB/orf25, lpmC/orf26 and lpmD/orf27), four genes (orfs 21, 22, 24 and 29) involved in the lipid tail biosynthesis and attachment, four regulatory genes (orfs 13, 19, 32 and 33) and three putative exporters or self-resistance genes (orfs 14, 20 and 30). In addition, the gene involved in the biosynthesis of the nonproteinogenic amino acid Pip was also identified in the lpm cluster while the genes necessary for the biosynthesis of the rare residue diaminopropionic acid (Dap) were found to reside elsewhere on the chromosome. Interestingly, the dabA, dabB and dabC genes predicted to code for the biosynthesis of the unusual amino acid diaminobutyric acid (Dab) are organized into the lpm cluster even though the Dab residue was not found in the laspartomycins. Disruption of the NRPS lpmC gene completely abolished laspartomycin production in the corresponding mutant strain. These findings will allow molecular engineering and combinatorial biosynthesis approaches to expand the structural diversity of the amphomycin-group peptide antibiotics including the laspartomycins and friulimicins. PMID:21640802

  2. The Eucalyptus grandis NBS-LRR Gene Family: Physical Clustering and Expression Hotspots

    PubMed Central

    Christie, Nanette; Tobias, Peri A.; Naidoo, Sanushka; Külheim, Carsten

    2016-01-01

    Eucalyptus grandis is a commercially important hardwood species and is known to be susceptible to a number of pests and pathogens. Determining mechanisms of defense is therefore a research priority. The published genome for E. grandis has aided the identification of one important class of resistance (R) genes that incorporate nucleotide binding sites and leucine-rich repeat domains (NBS-LRR). Using an iterative search process we identified NBS-LRR gene models within the E. grandis genome. We characterized the gene models and identified their genomic arrangement. The gene expression patterns were examined in E. grandis clones, challenged with a fungal pathogen (Chrysoporthe austroafricana) and insect pest (Leptocybe invasa). One thousand two hundred and fifteen putative NBS-LRR coding sequences were located which aligned into two large classes, Toll or interleukin-1 receptor (TIR) and coiled-coil (CC) based on NB-ARC domains. NBS-LRR gene-rich regions were identified with 76% organized in clusters of three or more genes. A further 272 putative incomplete resistance genes were also identified. We determined that E. grandis has a higher ratio of TIR to CC classed genes compared to other woody plant species as well as a smaller percentage of single NBS-LRR genes. Transcriptome profiles indicated expression hotspots, within physical clusters, including expression of many incomplete genes. The clustering of putative NBS-LRR genes correlates with differential expression responses in resistant and susceptible plants indicating functional relevance for the physical arrangement of this gene family. This analysis of the repertoire and expression of E. grandis putative NBS-LRR genes provides an important resource for the identification of novel and functional R-genes; a key objective for strategies to enhance resilience. PMID:26793216

  3. Regulation of Three Nitrogenase Gene Clusters in the Cyanobacterium Anabaena variabilis ATCC 29413

    PubMed Central

    Thiel, Teresa; Pratte, Brenda S.

    2014-01-01

    The filamentous cyanobacterium Anabaena variabilis ATCC 29413 fixes nitrogen under aerobic conditions in specialized cells called heterocysts that form in response to an environmental deficiency in combined nitrogen. Nitrogen fixation is mediated by the enzyme nitrogenase, which is very sensitive to oxygen. Heterocysts are microxic cells that allow nitrogenase to function in a filament comprised primarily of vegetative cells that produce oxygen by photosynthesis. A. variabilis is unique among well-characterized cyanobacteria in that it has three nitrogenase gene clusters that encode different nitrogenases, which function under different environmental conditions. The nif1 genes encode a Mo-nitrogenase that functions only in heterocysts, even in filaments grown anaerobically. The nif2 genes encode a different Mo-nitrogenase that functions in vegetative cells, but only in filaments grown under anoxic conditions. An alternative V-nitrogenase is encoded by vnf genes that are expressed only in heterocysts in an environment that is deficient in Mo. Thus, these three nitrogenases are expressed differentially in response to environmental conditions. The entire nif1 gene cluster, comprising at least 15 genes, is primarily under the control of the promoter for the first gene, nifB1. Transcriptional control of many of the downstream nif1 genes occurs by a combination of weak promoters within the coding regions of some downstream genes and by RNA processing, which is associated with increased transcript stability. The vnf genes show a similar pattern of transcriptional and post-transcriptional control of expression suggesting that the complex pattern of regulation of the nif1 cluster is conserved in other cyanobacterial nitrogenase gene clusters. PMID:25513762

  4. Sequencing and mapping hemoglobin gene clusters in the australian model dasyurid marsupial sminthopsis macroura

    SciTech Connect

    De Leo, A.A.; Wheeler, D.; Lefevre, C.; Cheng, Jan-Fang; Hope, R.; Kuliwaba, J.; Nicholas, K.R.; Westermanc, M.; Graves, J.A.M.

    2004-07-26

    Comparing globin genes and their flanking sequences across many species has allowed globin gene evolution to be reconstructed in great detail. Marsupial globin sequences have proved to be of exceptional significance. A previous finding of a beta-like omega gene in the alpha cluster in the tammar wallaby suggested that the alpha and beta cluster evolved via genome duplication and loss rather than tandem duplication. To confirm and extend this important finding we isolated and sequenced BACs containing the alpha and beta loci from the distantly related Australian marsupial Sminthopsis macroura. We report that the alpha gene lies in the same BAC as the beta-like omega gene, implying that the alpha-omega juxtaposition is likely to be conserved in all marsupials. The LUC7L gene was found 3' of the S. macroura alpha locus, a gene order shared with humans but not mouse, chicken or fugu. Sequencing a BAC contig that contained the S. macroura beta globin and epsilon globin loci showed that the globin cluster is flanked by olfactory genes, demonstrating a gene arrangement conserved for over 180 MY. Analysis of the region 5' to the S. macroura epsilon globin gene revealed a region similar to the eutherian LCR, containing sequences and potential transcription factor binding sites with homology to eutherian hypersensitive sites 1 to 5. FISH mapping of BACs containing S. macroura alpha and beta globin genes located the beta globin cluster on chromosome 3q and the alpha locus close to the centromere on 1q, resolving contradictory map locations obtained by previous radioactive in situ hybridization.

  5. MLL-AF6 fusion oncogene sequesters AF6 into the nucleus to trigger RAS activation in myeloid leukemia.

    PubMed

    Manara, Elena; Baron, Emma; Tregnago, Claudia; Aveic, Sanja; Bisio, Valeria; Bresolin, Silvia; Masetti, Riccardo; Locatelli, Franco; Basso, Giuseppe; Pigazzi, Martina

    2014-07-10

    A rare location, t(6;11)(q27;q23) (MLL-AF6), is associated with poor outcome in childhood acute myeloid leukemia (AML). The described mechanism by which MLL-AF6, through constitutive self-association and in cooperation with DOT-1L, activates aberrant gene expression does not explain the biological differences existing between t(6;11)-rearranged and other MLL-positive patients nor their different clinical outcome. Here, we show that AF6 is expressed in the cytoplasm of healthy bone marrow cells and controls rat sarcoma viral oncogene (RAS)-guanosine triphosphate (GTP) levels. By contrast, in MLL-AF6-rearranged cells, AF6 is found localized in the nucleus, leading to aberrant activation of RAS and of its downstream targets. Silencing MLL-AF6, we restored AF6 localization in the cytoplasm, thus mediating significant reduction of RAS-GTP levels and of cell clonogenic potential. The rescue of RAS-GTP levels after MLL-AF6 and AF6 co-silencing confirmed that MLL-AF6 oncoprotein potentiates the activity of the RAS pathway through retention of AF6 within the nucleus. Exposure of MLL-AF6-rearranged AML blasts to tipifarnib, a RAS inhibitor, leads to cell autophagy and apoptosis, thus supporting RAS targeting as a novel potential therapeutic strategy in patients carrying t(6;11). Altogether, these data point to a novel role of the MLL-AF6 chimera and show that its gene partner, AF6, is crucial in AML development.

  6. Functional Gene Networks: R/Bioc package to generate and analyse gene networks derived from functional enrichment and clustering

    PubMed Central

    Aibar, Sara; Fontanillo, Celia; Droste, Conrad; De Las Rivas, Javier

    2015-01-01

    Summary: Functional Gene Networks (FGNet) is an R/Bioconductor package that generates gene networks derived from the results of functional enrichment analysis (FEA) and annotation clustering. The sets of genes enriched with specific biological terms (obtained from a FEA platform) are transformed into a network by establishing links between genes based on common functional annotations and common clusters. The network provides a new view of FEA results revealing gene modules with similar functions and genes that are related to multiple functions. In addition to building the functional network, FGNet analyses the similarity between the groups of genes and provides a distance heatmap and a bipartite network of functionally overlapping genes. The application includes an interface to directly perform FEA queries using different external tools: DAVID, GeneTerm Linker, TopGO or GAGE; and a graphical interface to facilitate the use. Availability and implementation: FGNet is available in Bioconductor, including a tutorial. URL: http://bioconductor.org/packages/release/bioc/html/FGNet.html Contact: jrivas@usal.es Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25600944

  7. Sequencing and Transcriptional Analysis of the Biosynthesis Gene Cluster of Abscisic Acid-Producing Botrytis cinerea

    PubMed Central

    Gong, Tao; Shu, Dan; Yang, Jie; Ding, Zhong-Tao; Tan, Hong

    2014-01-01

    Botrytis cinerea is a model species with great importance as a pathogen of plants and has become used for biotechnological production of ABA. The ABA cluster of B. cinerea is composed of an open reading frame without significant similarities (bcaba3), followed by the genes (bcaba1 and bcaba2) encoding P450 monooxygenases and a gene probably coding for a short-chain dehydrogenase/reductase (bcaba4). In B. cinerea ATCC58025, targeted inactivation of the genes in the cluster suggested at least three genes responsible for the hydroxylation at carbon atom C-1' and C-4' or oxidation at C-4' of ABA. Our group has identified an ABA-overproducing strain, B. cinerea TB-3-H8. To differentiate TB-3-H8 from other B. cinerea strains with the functional ABA cluster, the DNA sequence of the 12.11-kb region containing the cluster of B. cinerea TB-3-H8 was determined. Full-length cDNAs were also isolated for bcaba1, bcaba2, bcaba3 and bcaba4 from B. cinerea TB-3-H8. Sequence comparison of the four genes and their flanking regions respectively derived from B. cinerea TB-3-H8, B05.10 and T4 revealed that major variations were located in intergenic sequences. In B. cinerea TB-3-H8, the expression profiles of the four function genes under ABA high-yield conditions were also analyzed by real-time PCR. PMID:25268614

  8. Breaking the Silence: Protein Stabilization Uncovers Silenced Biosynthetic Gene Clusters in the Fungus Aspergillus nidulans

    PubMed Central

    Gerke, Jennifer; Bayram, Özgür; Feussner, Kirstin; Landesfeind, Manuel; Shelest, Ekaterina; Feussner, Ivo

    2012-01-01

    The genomes of filamentous fungi comprise numerous putative gene clusters coding for the biosynthesis of chemically and structurally diverse secondary metabolites (SMs), which are rarely expressed under laboratory conditions. Previous approaches to activate these genes were based primarily on artificially targeting the cellular protein synthesis apparatus. Here, we applied an alternative approach of genetically impairing the protein degradation apparatus of the model fungus Aspergillus nidulans by deleting the conserved eukaryotic csnE/CSN5 deneddylase subunit of the COP9 signalosome. This defect in protein degradation results in the activation of a previously silenced gene cluster comprising a polyketide synthase gene producing the antibiotic 2,4-dihydroxy-3-methyl-6-(2-oxopropyl)benzaldehyde (DHMBA). The csnE/CSN5 gene is highly conserved in fungi, and therefore, the deletion is a feasible approach for the identification of new SMs. PMID:23001671

  9. Cloning and characterization of the goadsporin biosynthetic gene cluster from Streptomyces sp. TP-A0584.

    PubMed

    Onaka, Hiroyasu; Nakaho, Mizuho; Hayashi, Keiko; Igarashi, Yasuhiro; Furumai, Tamotsu

    2005-12-01

    The biosynthetic gene cluster of goadsporin, a polypeptide antibiotic containing thiazole and oxazole rings, was cloned from Streptomyces sp. TP-A0584. The cluster contains a structural gene, godA, and nine god (goadsporin) genes involved in post-translational modification, immunity and transcriptional regulation. Although the gene organization is similar to typical bacteriocin biosynthetic gene clusters, each goadsporin biosynthetic gene shows low homology to these genes. Goadsporin biosynthesis is initiated by the translation of godA, and the subsequent cyclization, dehydration and acetylation are probably catalysed by godD, godE, godF, godG and godH gene products. godI shows high similarity to the 54 kDa subunit of the signal recognition particle and plays an important role in goadsporin immunity. Furthermore, four goadsporin analogues were produced by site-directed mutagenesis of godA, suggesting that this biosynthesis machinery is used for the heterocyclization of peptides. PMID:16339937

  10. Form gene clustering method about pan-ethnic-group products based on emotional semantic

    NASA Astrophysics Data System (ADS)

    Chen, Dengkai; Ding, Jingjing; Gao, Minzhuo; Ma, Danping; Liu, Donghui

    2016-09-01

    The use of pan-ethnic-group products form knowledge primarily depends on a designer's subjective experience without user participation. The majority of studies primarily focus on the detection of the perceptual demands of consumers from the target product category. A pan-ethnic-group products form gene clustering method based on emotional semantic is constructed. Consumers' perceptual images of the pan-ethnic-group products are obtained by means of product form gene extraction and coding and computer aided product form clustering technology. A case of form gene clustering about the typical pan-ethnic-group products is investigated which indicates that the method is feasible. This paper opens up a new direction for the future development of product form design which improves the agility of product design process in the era of Industry 4.0.

  11. Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii.

    PubMed

    Jacobson, M R; Brigle, K E; Bennett, L T; Setterquist, R A; Wilson, M S; Cash, V L; Beynon, J; Newton, W E; Dean, D R

    1989-02-01

    Determination of a 28,793-base-pair DNA sequence of a region from the Azotobacter vinelandii genome that includes and flanks the nitrogenase structural gene region was completed. This information was used to revise the previously proposed organization of the major nif cluster. The major nif cluster from A. vinelandii encodes 15 nif-specific genes whose products bear significant structural identity to the corresponding nif-specific gene products from Klebsiella pneumoniae. These genes include nifH, nifD, nifK, nifT, nifY, nifE, nifN, nifX, nifU, nifS, nifV, nifW, nifZ, nifM, and nifF. Although there are significant spatial differences, the identified A. vinelandii nif-specific genes have the same sequential arrangement as the corresponding nif-specific genes from K. pneumoniae. Twelve other potential genes whose expression could be subject to nif-specific regulation were also found interspersed among the identified nif-specific genes. These potential genes do not encode products that are structurally related to the identified nif-specific gene products. Eleven potential nif-specific promoters were identified within the major nif cluster, and nine of these are preceded by an appropriate upstream activator sequence. A + T-rich regions were identified between 8 of the 11 proposed nif promoter sequences and their upstream activator sequences. Site-directed deletion-and-insertion mutagenesis was used to establish a genetic map of the major nif cluster.

  12. Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii.

    PubMed Central

    Jacobson, M R; Brigle, K E; Bennett, L T; Setterquist, R A; Wilson, M S; Cash, V L; Beynon, J; Newton, W E; Dean, D R

    1989-01-01

    Determination of a 28,793-base-pair DNA sequence of a region from the Azotobacter vinelandii genome that includes and flanks the nitrogenase structural gene region was completed. This information was used to revise the previously proposed organization of the major nif cluster. The major nif cluster from A. vinelandii encodes 15 nif-specific genes whose products bear significant structural identity to the corresponding nif-specific gene products from Klebsiella pneumoniae. These genes include nifH, nifD, nifK, nifT, nifY, nifE, nifN, nifX, nifU, nifS, nifV, nifW, nifZ, nifM, and nifF. Although there are significant spatial differences, the identified A. vinelandii nif-specific genes have the same sequential arrangement as the corresponding nif-specific genes from K. pneumoniae. Twelve other potential genes whose expression could be subject to nif-specific regulation were also found interspersed among the identified nif-specific genes. These potential genes do not encode products that are structurally related to the identified nif-specific gene products. Eleven potential nif-specific promoters were identified within the major nif cluster, and nine of these are preceded by an appropriate upstream activator sequence. A + T-rich regions were identified between 8 of the 11 proposed nif promoter sequences and their upstream activator sequences. Site-directed deletion-and-insertion mutagenesis was used to establish a genetic map of the major nif cluster. PMID:2644218

  13. Contributions of vertical descent, horizontal transfer and gene loss to the distribution of mycotoxin biosynthetic gene clusters in Fusarium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Fusarium produces a diverse array of mycotoxins and other secondary metabolites, but individual species contribute to only a small fraction of this diversity. Here, we employed comparative genomic and phylogenetic analyses to investigate the distribution and evolution of gene clusters resp...

  14. Complex Transcriptional Control of the Antibiotic Regulator afsS in Streptomyces: PhoP and AfsR Are Overlapping, Competitive Activators▿

    PubMed Central

    Santos-Beneit, Fernando; Rodríguez-García, Antonio; Martín, Juan F.

    2011-01-01

    The afsS gene of several Streptomyces species encodes a small sigma factor-like protein that acts as an activator of several pathway-specific regulatory genes (e.g., actII-ORF4 and redD in Streptomyces coelicolor). The two pleiotropic regulators AfsR and PhoP bind to overlapping sequences in the −35 region of the afsS promoter and control its expression. Using mutated afsS promoters containing specific point mutations in the AfsR and PhoP binding sequences, we proved that the overlapping recognition sequences for AfsR and PhoP are displaced by 1 nucleotide. Different nucleotide positions are important for binding of AfsR or PhoP, as shown by electrophoretic mobility shift assays and by reporter studies using the luxAB gene coupled to the different promoters. Mutant promoter M5 (with a nucleotide change at position 5 of the consensus box) binds AfsR but not PhoP with high affinity (named “superAfsR”). Expression of the afsS gene from this promoter led to overproduction of actinorhodin. Mutant promoter M16 binds PhoP with extremely high affinity (“superPhoP”). Studies with ΔafsR and ΔphoP mutants (lacking AfsR and PhoP, respectively) showed that both global regulators are competitive transcriptional activators of afsS. AfsR has greater influence on expression of afsS than PhoP, as shown by reverse transcriptase PCR (RT-PCR) and promoter reporter (luciferase) studies. These two high-level regulators appear to integrate different nutritional signals (particularly phosphate limitation sensed by PhoR), S-adenosylmethionine, and other still unknown environmental signals (leading to AfsR phosphorylation) for the AfsS-mediated control of biosynthesis of secondary metabolites. PMID:21378195

  15. Complex transcriptional control of the antibiotic regulator afsS in Streptomyces: PhoP and AfsR are overlapping, competitive activators.

    PubMed

    Santos-Beneit, Fernando; Rodríguez-García, Antonio; Martín, Juan F

    2011-05-01

    The afsS gene of several Streptomyces species encodes a small sigma factor-like protein that acts as an activator of several pathway-specific regulatory genes (e.g., actII-ORF4 and redD in Streptomyces coelicolor). The two pleiotropic regulators AfsR and PhoP bind to overlapping sequences in the -35 region of the afsS promoter and control its expression. Using mutated afsS promoters containing specific point mutations in the AfsR and PhoP binding sequences, we proved that the overlapping recognition sequences for AfsR and PhoP are displaced by 1 nucleotide. Different nucleotide positions are important for binding of AfsR or PhoP, as shown by electrophoretic mobility shift assays and by reporter studies using the luxAB gene coupled to the different promoters. Mutant promoter M5 (with a nucleotide change at position 5 of the consensus box) binds AfsR but not PhoP with high affinity (named "superAfsR"). Expression of the afsS gene from this promoter led to overproduction of actinorhodin. Mutant promoter M16 binds PhoP with extremely high affinity ("superPhoP"). Studies with ΔafsR and ΔphoP mutants (lacking AfsR and PhoP, respectively) showed that both global regulators are competitive transcriptional activators of afsS. AfsR has greater influence on expression of afsS than PhoP, as shown by reverse transcriptase PCR (RT-PCR) and promoter reporter (luciferase) studies. These two high-level regulators appear to integrate different nutritional signals (particularly phosphate limitation sensed by PhoR), S-adenosylmethionine, and other still unknown environmental signals (leading to AfsR phosphorylation) for the AfsS-mediated control of biosynthesis of secondary metabolites.

  16. Delineation of metabolic gene clusters in plant genomes by chromatin signatures

    PubMed Central

    Yu, Nan; Nützmann, Hans-Wilhelm; MacDonald, James T.; Moore, Ben; Field, Ben; Berriri, Souha; Trick, Martin; Rosser, Susan J.; Kumar, S. Vinod; Freemont, Paul S.; Osbourn, Anne

    2016-01-01

    Plants are a tremendous source of diverse chemicals, including many natural product-derived drugs. It has recently become apparent that the genes for the biosynthesis of numerous different types of plant natural products are organized as metabolic gene clusters, thereby unveiling a highly unusual form of plant genome architecture and offering novel avenues for discovery and exploitation of plant specialized metabolism. Here we show that these clustered pathways are characterized by distinct chromatin signatures of histone 3 lysine trimethylation (H3K27me3) and histone 2 variant H2A.Z, associated with cluster repression and activation, respectively, and represent discrete windows of co-regulation in the genome. We further demonstrate that knowledge of these chromatin signatures along with chromatin mutants can be used to mine genomes for cluster discovery. The roles of H3K27me3 and H2A.Z in repression and activation of single genes in plants are well known. However, our discovery of highly localized operon-like co-regulated regions of chromatin modification is unprecedented in plants. Our findings raise intriguing parallels with groups of physically linked multi-gene complexes in animals and with clustered pathways for specialized metabolism in filamentous fungi. PMID:26895889

  17. Delineation of metabolic gene clusters in plant genomes by chromatin signatures.

    PubMed

    Yu, Nan; Nützmann, Hans-Wilhelm; MacDonald, James T; Moore, Ben; Field, Ben; Berriri, Souha; Trick, Martin; Rosser, Susan J; Kumar, S Vinod; Freemont, Paul S; Osbourn, Anne

    2016-03-18

    Plants are a tremendous source of diverse chemicals, including many natural product-derived drugs. It has recently become apparent that the genes for the biosynthesis of numerous different types of plant natural products are organized as metabolic gene clusters, thereby unveiling a highly unusual form of plant genome architecture and offering novel avenues for discovery and exploitation of plant specialized metabolism. Here we show that these clustered pathways are characterized by distinct chromatin signatures of histone 3 lysine trimethylation (H3K27me3) and histone 2 variant H2A.Z, associated with cluster repression and activation, respectively, and represent discrete windows of co-regulation in the genome. We further demonstrate that knowledge of these chromatin signatures along with chromatin mutants can be used to mine genomes for cluster discovery. The roles of H3K27me3 and H2A.Z in repression and activation of single genes in plants are well known. However, our discovery of highly localized operon-like co-regulated regions of chromatin modification is unprecedented in plants. Our findings raise intriguing parallels with groups of physically linked multi-gene complexes in animals and with clustered pathways for specialized metabolism in filamentous fungi. PMID:26895889

  18. ToppCluster: a multiple gene list feature analyzer for comparative enrichment clustering and network-based dissection of biological systems.

    PubMed

    Kaimal, Vivek; Bardes, Eric E; Tabar, Scott C; Jegga, Anil G; Aronow, Bruce J

    2010-07-01

    ToppCluster is a web server application that leverages a powerful enrichment analysis and underlying data environment for comparative analyses of multiple gene lists. It generates heatmaps or connectivity networks that reveal functional features shared or specific to multiple gene lists. ToppCluster uses hypergeometric tests to obtain list-specific feature enrichment P-values for currently 17 categories of annotations of human-ortholog genes, and provides user-selectable cutoffs and multiple testing correction methods to control false discovery. Each nameable gene list represents a column input to a resulting matrix whose rows are overrepresented features, and individual cells per-list P-values and corresponding genes per feature. ToppCluster provides users with choices of tabular outputs, hierarchical clustering and heatmap generation, or the ability to interactively select features from the functional enrichment matrix to be transformed into XGMML or GEXF network format documents for use in Cytoscape or Gephi applications, respectively. Here, as example, we demonstrate the ability of ToppCluster to enable identification of list-specific phenotypic and regulatory element features (both cis-elements and 3'UTR microRNA binding sites) among tissue-specific gene lists. ToppCluster's functionalities enable the identification of specialized biological functions and regulatory networks and systems biology-based dissection of biological states. ToppCluster can be accessed freely at http://toppcluster.cchmc.org.

  19. Birth, death and horizontal transfer of the fumonisin biosynthetic gene cluster during the evolutionary diversification of Fusarium.

    PubMed

    Proctor, Robert H; Van Hove, François; Susca, Antonia; Stea, Gaetano; Busman, Mark; van der Lee, Theo; Waalwijk, Cees; Moretti, Antonio; Ward, Todd J

    2013-10-01

    Fumonisins are a family of carcinogenic secondary metabolites produced by members of the Fusarium fujikuroi species complex (FFSC) and rare strains of Fusarium oxysporum. In Fusarium, fumonisin biosynthetic genes (FUM) are clustered, and the cluster is uniform in gene organization. Here, sequence analyses indicated that the cluster exists in five different genomic contexts, defining five cluster types. In FUM gene genealogies, evolutionary relationships between fusaria with different cluster types were largely incongruent with species relationships inferred from primary-metabolism (PM) gene genealogies, and FUM cluster types are not trans-specific. In addition, synonymous site divergence analyses indicated that three FUM cluster types predate diversification of FFSC. The data are not consistent with balancing selection or interspecific hybridization, but they are consistent with two competing hypotheses: (i) multiple horizontal transfers of the cluster from unknown donors to FFSC recipients and (ii) cluster duplication and loss (birth and death). Furthermore, low levels of FUM gene divergence in F. bulbicola, an FFSC species, and F. oxysporum provide evidence for horizontal transfer of the cluster from the former, or a closely related species, to the latter. Thus, uniform gene organization within the FUM cluster belies a complex evolutionary history that has not always paralleled the evolution of Fusarium.

  20. Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae

    PubMed Central

    2013-01-01

    Background Secondary metabolite production, a hallmark of filamentous fungi, is an expanding area of research for the Aspergilli. These compounds are potent chemicals, ranging from deadly toxins to therapeutic antibiotics to potential anti-cancer drugs. The genome sequences for multiple Aspergilli have been determined, and provide a wealth of predictive information about secondary metabolite production. Sequence analysis and gene overexpression strategies have enabled the discovery of novel secondary metabolites and the genes involved in their biosynthesis. The Aspergillus Genome Database (AspGD) provides a central repository for gene annotation and protein information for Aspergillus species. These annotations include Gene Ontology (GO) terms, phenotype data, gene names and descriptions and they are crucial for interpreting both small- and large-scale data and for aiding in the design of new experiments that further Aspergillus research. Results We have manually curated Biological Process GO annotations for all genes in AspGD with recorded functions in secondary metabolite production, adding new GO terms that specifically describe each secondary metabolite. We then leveraged these new annotations to predict roles in secondary metabolism for genes lacking experimental characterization. As a starting point for manually annotating Aspergillus secondary metabolite gene clusters, we used antiSMASH (antibiotics and Secondary Metabolite Analysis SHell) and SMURF (Secondary Metabolite Unknown Regions Finder) algorithms to identify potential clusters in A. nidulans, A. fumigatus, A. niger and A. oryzae, which we subsequently refined through manual curation. Conclusions This set of 266 manually curated secondary metabolite gene clusters will facilitate the investigation of novel Aspergillus secondary metabolites. PMID:23617571

  1. Arrangements of alpha-globin gene cluster in Taiwan.

    PubMed

    Peng, H W; Choo, K B; Ho, C H; Yen, M S; Liung, W Y; Lin, C K; Yang, Z L; Ng, H T; Ching, K N; Han, S H

    1989-01-01

    In a gene mapping study on 217 newborn babies in Taiwan with alpha- and zeta-globin probes, we have observed 4 cases (1.84%) of alpha-thalassemia-2 heterozygotes (zeta zeta-alpha/zeta zeta alpha alpha) without increased levels of hemoglobin (Hb) Bart's in the cord blood. Eleven subjects (5.07%) were found to have the South East Asian alpha-thalassemia-1 haplotype (zeta zeta--SEA/zeta zeta alpha alpha) with increased Hb Bart's levels ranging from 2.2 to 9%. One case, with Hb Bart's level of 14% in the cord blood, was found to have the genotype of zeta zeta--SEA/zeta zeta alpha alpha T (0.46%). Four heterozygotes (1.84%) were found with the triple alpha gene anti-rightward arrangement (zeta zeta alpha alpha alpha 3.7/zeta zeta alpha alpha). Twenty-one heterozygotes (9.68%) were found to have the triple zeta-globin gene arrangement (zeta zeta zeta alpha alpha/zeta zeta alpha alpha). A new triple zeta-globin gene variant with a BamHI polymorphism was also observed in this study.

  2. microRNAs in the Same Clusters Evolve to Coordinately Regulate Functionally Related Genes.

    PubMed

    Wang, Yirong; Luo, Junjie; Zhang, Hong; Lu, Jian

    2016-09-01

    MicroRNAs (miRNAs) are endogenously expressed small noncoding RNAs. The genomic locations of animal miRNAs are significantly clustered in discrete loci. We found duplication and de novo formation were important mechanisms to create miRNA clusters and the clustered miRNAs tend to be evolutionarily conserved. We proposed a "functional co-adaptation" model to explain how clustering helps newly emerged miRNAs survive and develop functions. We presented evidence that abundance of miRNAs in the same clusters were highly correlated and those miRNAs exerted cooperative repressive effects on target genes in human tissues. By transfecting miRNAs into human and fly cells and extensively profiling the transcriptome alteration with deep-sequencing, we further demonstrated the functional co-adaptation between new and old miRNAs in the miR-17-92 cluster. Our population genomic analysis suggest that positive Darwinian selection might be the driving force underlying the formation and evolution of miRNA clustering. Our model provided novel insights into mechanisms and evolutionary significance of miRNA clustering. PMID:27189568

  3. microRNAs in the Same Clusters Evolve to Coordinately Regulate Functionally Related Genes

    PubMed Central

    Wang, Yirong; Luo, Junjie; Zhang, Hong; Lu, Jian

    2016-01-01

    MicroRNAs (miRNAs) are endogenously expressed small noncoding RNAs. The genomic locations of animal miRNAs are significantly clustered in discrete loci. We found duplication and de novo formation were important mechanisms to create miRNA clusters and the clustered miRNAs tend to be evolutionarily conserved. We proposed a “functional co-adaptation” model to explain how clustering helps newly emerged miRNAs survive and develop functions. We presented evidence that abundance of miRNAs in the same clusters were highly correlated and those miRNAs exerted cooperative repressive effects on target genes in human tissues. By transfecting miRNAs into human and fly cells and extensively profiling the transcriptome alteration with deep-sequencing, we further demonstrated the functional co-adaptation between new and old miRNAs in the miR-17–92 cluster. Our population genomic analysis suggest that positive Darwinian selection might be the driving force underlying the formation and evolution of miRNA clustering. Our model provided novel insights into mechanisms and evolutionary significance of miRNA clustering. PMID:27189568

  4. Recombination and spontaneous mutation at the major cluster of resistance genes in lettuce (Lactuca sativa).

    PubMed Central

    Chin, D B; Arroyo-Garcia, R; Ochoa, O E; Kesseli, R V; Lavelle, D O; Michelmore, R W

    2001-01-01

    Two sets of overlapping experiments were conducted to examine recombination and spontaneous mutation events within clusters of resistance genes in lettuce. Multiple generations were screened for recombinants using PCR-based markers flanking Dm3. The Dm3 region is not highly recombinagenic, exhibiting a recombination frequency 18-fold lower than the genome average. Recombinants were identified only rarely within the cluster of Dm3 homologs and no crossovers within genes were detected. Three populations were screened for spontaneous mutations in downy mildew resistance. Sixteen Dm mutants were identified corresponding to spontaneous mutation rates of 10(-3) to 10(-4) per generation for Dm1, Dm3, and Dm7. All mutants carried single locus, recessive mutations at the corresponding Dm locus. Eleven of the 12 Dm3 mutations were associated with large chromosome deletions. When recombination could be analyzed, deletion events were associated with exchange of flanking markers, consistent with unequal crossing over; however, although the number of Dm3 paralogs was changed, no novel chimeric genes were detected. One mutant was the result of a gene conversion event between Dm3 and a closely related homolog, generating a novel chimeric gene. In two families, spontaneous deletions were correlated with elevated levels of recombination. Therefore, the short-term evolution of the major cluster of resistance genes in lettuce involves several genetic mechanisms including unequal crossing over and gene conversion. PMID:11157000

  5. DNase I hypersensitive sites within the inducible qa gene cluster of Neurospora crassa.

    PubMed Central

    Baum, J A; Giles, N H

    1986-01-01

    DNase I hypersensitive regions were mapped within the 17.3-kilobase qa (quinic acid) gene cluster of Neurospora crassa. The 5'-flanking regions of the five qa structural genes and the two qa regulatory genes each contain DNase I hypersensitive sites under noninducing conditions and generally exhibit increases in DNase I cleavage upon induction of transcription with quinic acid. The two large intergenic regions of the qa gene cluster appear to be similarly organized with respect to the positions of constitutive and inducible DNase I hypersensitive sites. Inducible hypersensitive sites on the 5' side of one qa gene, qa-x, appear to be differentially regulated. Employing these and previously published data, we have identified a conserved sequence element that may mediate the activator function of the qa-1F regulatory gene. Variants of the 16-base-pair consensus sequence are consistently found within DNase I-protected regions adjacent to inducible DNase I hypersensitive sites within the gene cluster. Images PMID:2944110

  6. Copy Number Variants in the Kallikrein Gene Cluster

    PubMed Central

    Lindahl, Pernilla; Säll, Torbjörn; Bjartell, Anders; Johansson, Anna M.; Lilja, Hans; Halldén, Christer

    2013-01-01

    The kallikrein gene family (KLK1-KLK15) is the largest contiguous group of protease genes within the human genome and is associated with both risk and outcome of cancer and other diseases. We searched for copy number variants in all KLK genes using quantitative PCR analysis and analysis of inheritance patterns of single nucleotide polymorphisms. Two deletions were identified: one 2235-bp deletion in KLK9 present in 1.2% of alleles, and one 3394-bp deletion in KLK15 present in 4.0% of alleles. Each deletion eliminated one complete exon and created out-of-frame coding that eliminated the catalytic triad of the resulting truncated gene product, which therefore likely is a non-functional protein. Deletion breakpoints identified by DNA sequencing located the KLK9 deletion breakpoint to a long interspersed element (LINE) repeated sequence, while the deletion in KLK15 is located in a single copy sequence. To search for an association between each deletion and risk of prostate cancer (PC), we analyzed a cohort of 667 biopsied men (266 PC cases and 401 men with no evidence of PC at biopsy) using short deletion-specific PCR assays. There was no association between evidence of PC in this cohort and the presence of either gene deletion. Haplotyping revealed a single origin of each deletion, with most recent common ancestor estimates of 3000-8000 and 6000-14 000 years for the deletions in KLK9 and KLK15, respectively. The presence of the deletions on the same haplotypes in 1000 Genomes data of both European and African populations indicate an early origin of both deletions. The old age in combination with homozygous presence of loss-of-function variants suggests that some kallikrein-related peptidases have non-essential functions. PMID:23894413

  7. Intact cluster and chordate-like expression of ParaHox genes in a sea star

    PubMed Central

    2013-01-01

    Background The ParaHox genes are thought to be major players in patterning the gut of several bilaterian taxa. Though this is a fundamental role that these transcription factors play, their activities are not limited to the endoderm and extend to both ectodermal and mesodermal tissues. Three genes compose the ParaHox group: Gsx, Xlox and Cdx. In some taxa (mostly chordates but to some degree also in protostomes) the three genes are arranged into a genomic cluster, in a similar fashion to what has been shown for the better-known Hox genes. Sea urchins possess the full complement of ParaHox genes but they are all dispersed throughout the genome, an arrangement that, perhaps, represented the primitive condition for all echinoderms. In order to understand the evolutionary history of this group of genes we cloned and characterized all ParaHox genes, studied their expression patterns and identified their genomic loci in a member of an earlier branching group of echinoderms, the asteroid Patiria miniata. Results We identified the three ParaHox orthologs in the genome of P. miniata. While one of them, PmGsx is provided as maternal message, with no zygotic activation afterwards, the other two, PmLox and PmCdx are expressed during embryogenesis, within restricted domains of both endoderm and ectoderm. Screening of a Patiria bacterial artificial chromosome (BAC) library led to the identification of a clone containing the three genes. The transcriptional directions of PmGsx and PmLox are opposed to that of the PmCdx gene within the cluster. Conclusions The identification of P. miniata ParaHox genes has revealed the fact that these genes are clustered in the genome, in contrast to what has been reported for echinoids. Since the presence of an intact cluster, or at least a partial cluster, has been reported in chordates and polychaetes respectively, it becomes clear that within echinoderms, sea urchins have modified the original bilaterian arrangement. Moreover, the sea star

  8. Hybrid coexpression link similarity graph clustering for mining biological modules from multiple gene expression datasets

    PubMed Central

    2014-01-01

    Background Advances in genomic technologies have enabled the accumulation of vast amount of genomic data, including gene expression data for multiple species under various biological and environmental conditions. Integration of these gene expression datasets is a promising strategy to alleviate the challenges of protein functional annotation and biological module discovery based on a single gene expression data, which suffers from spurious coexpression. Results We propose a joint mining algorithm that constructs a weighted hybrid similarity graph whose nodes are the coexpression links. The weight of an edge between two coexpression links in this hybrid graph is a linear combination of the topological similarities and co-appearance similarities of the corresponding two coexpression links. Clustering the weighted hybrid similarity graph yields recurrent coexpression link clusters (modules). Experimental results on Human gene expression datasets show that the reported modules are functionally homogeneous as evident by their enrichment with biological process GO terms and KEGG pathways. PMID:25221624

  9. Identification of a gene cluster associated with triclosan catabolism.

    PubMed

    Kagle, Jeanne M; Paxson, Clayton; Johnstone, Precious; Hay, Anthony G

    2015-06-01

    Aerobic degradation of bis-aryl ethers like the antimicrobial triclosan typically proceeds through oxygenase-dependent catabolic pathways. Although several studies have reported on bacteria capable of degrading triclosan aerobically, there are no reports describing the genes responsible for this process. In this study, a gene encoding the large subunit of a putative triclosan oxygenase, designated tcsA was identified in a triclosan-degrading fosmid clone from a DNA library of Sphingomonas sp. RD1. Consistent with tcsA's similarity to two-part dioxygenases, a putative FMN-dependent ferredoxin reductase, designated tcsB was found immediately downstream of tcsA. Both tcsAB were found in the midst of a putative chlorocatechol degradation operon. We show that RD1 produces hydroxytriclosan and chlorocatechols during triclosan degradation and that tcsA is induced by triclosan. This is the first study to report on the genetics of triclosan degradation.

  10. Teaching Gene Technology in an Outreach Lab: Students' Assigned Cognitive Load Clusters and the Clusters' Relationships to Learner Characteristics, Laboratory Variables, and Cognitive Achievement

    ERIC Educational Resources Information Center

    Scharfenberg, Franz-Josef; Bogner, Franz X.

    2013-01-01

    This study classified students into different cognitive load (CL) groups by means of cluster analysis based on their experienced CL in a gene technology outreach lab which has instructionally been designed with regard to CL theory. The relationships of the identified student CL clusters to learner characteristics, laboratory variables, and…

  11. Diversity and depth-specific distribution of SAR11 cluster rRNA genes from marine planktonic bacteria.

    PubMed Central

    Field, K G; Gordon, D; Wright, T; Rappé, M; Urback, E; Vergin, K; Giovannoni, S J

    1997-01-01

    Small-subunit (SSU) ribosomal DNA (rDNA) gene clusters are phylogenetically related sets of SSU rRNA genes, commonly encountered in genes amplified from natural populations. Genetic variability in gene clusters could result from artifacts (polymerase error or PCR chimera formation), microevolution (variation among rrn copies within strains), or macroevolution (genetic divergence correlated with long-term evolutionary divergence). To better understand gene clusters this study assessed genetic diversity and distribution of a single environmental SSU rDNA gene cluster, the SAR11 cluster. SAR11 cluster genes, from an uncultured group of the alpha subclass of the class Proteobacteria, have been recovered from coastal and midoceanic waters of the North Atlantic and Pacific. We cloned and bidirectionally sequenced 23 new SAR11 cluster 16S rRNA genes, from 80 and 250 m in the Sargasso Sea and from surface coastal waters of the Atlantic and Pacific, and analyzed them with previously published sequences. Two SAR11 genes were obviously PCR chimeras, but the biological (nonchimeric) origins of most subgroups within the cluster were confirmed by independent recovery from separate gene libraries. Using group-specific oligonucleotide probes, we analyzed depth profiles of nucleic acids, targeting both amplified rDNAs and bulk RNAs. Two subgroups within the SAR11 cluster showed different highly depth-specific distributions. We conclude that some of the genetic diversity within the SAR11 gene cluster represents macroevolutionary divergence correlated with niche specialization. Furthermore, we demonstrate the utility for marine microbial ecology of oligonucleotide probes based on gene sequences amplified from natural populations and show that a detailed knowledge of sequence variability may be needed to effectively design these probes. PMID:8979340

  12. Diversity and depth-specific distribution of SAR11 cluster rRNA genes from marine planktonic bacteria

    SciTech Connect

    Field, K.G.; Gordon, D.; Wright, T.

    1997-01-01

    Small-subunit (SSU) ribosomal DNA (rDNA) gene clusters are phylogenetically related sets of SSU rRNA genes, commonly encountered in genes amplified from natural populations. Genetic variability in gene clusters could result form artifacts (polymerase error or PCR chimera formation), microevolution (variation among rrn copies within strains), or macroevolution (genetic divergence correlated with long-term evolutionary divergence). To better understand gene clusters, this study assessed genetic diversity and distribution of a single environmental SSU rDNA gene cluster, the SAR11 cluster. SAR11 cluster genes, from an uncultured group of the {alpha} subclass of the class Proteobacteria, have been recovered from coastal and midoceanic waters of the North Atlantic and Pacific. We cloned and bidirectionally sequenced 23 new SAR11 cluster 16S rRNA genes, from 80 and 250 m im the Sargasso Sea and from surface coastal waters of the Atlantic and Pacific, and analyzed them with previously published sequences. Two SAR11 genes were obviously PCR chimeras, but the biological (nonchimeric) origins of most subgroups within the cluster were confirmed by independent recovery from separate gene libraries. Using group-specific oligonucleotide probes, we analyzed depth profiles of nucleic acids, targeting both amplified rDNAs and bulk RNAs. Two subgroups within the SAR11 cluster showed different highly depth-specific distributions. We conclude that some of the genetic diversity within the SAR11 gene cluster represents macroevolutionary divergence correlated with niche specialization. Furthermore, we demonstrate the utility for marine microbial ecology of oligonucleotide probes based on gene sequences amplified from natural populations and show that a detailed knowledge of sequence variability may be needed to effectively design these probes. 48 refs., 7 figs., 3 tabs.

  13. The Magea gene cluster regulates male germ cell apoptosis without affecting the fertility in mice.

    PubMed

    Hou, Siyuan; Xian, Li; Shi, Peiliang; Li, Chaojun; Lin, Zhaoyu; Gao, Xiang

    2016-01-01

    While apoptosis is essential for male germ cell development, improper activation of apoptosis in the testis can affect spermatogenesis and cause reproduction defects. Members of the MAGE-A (melanoma antigen family A) gene family are frequently clustered in mammalian genomes and are exclusively expressed in the testes of normal animals but abnormally activated in a wide variety of cancers. We investigated the potential roles of these genes in spermatogenesis by generating a mouse model with a 210-kb genomic deletion encompassing six members of the Magea gene cluster (Magea1, Magea2, Magea3, Magea5, Magea6 and Magea8). Male mice carrying the deletion displayed smaller testes from 2 months old with a marked increase in apoptotic germ cells in the first wave of spermatogenesis. Furthermore, we found that Magea genes prevented stress-induced spermatogenic apoptosis after N-ethyl-N-nitrosourea (ENU) treatment during the adult stage. Mechanistically, deletion of the Magea gene cluster resulted in a dramatic increase in apoptotic germ cells, predominantly spermatocytes, with activation of p53 and induction of Bax in the testes. These observations demonstrate that the Magea genes are crucial in maintaining normal testicular size and protecting germ cells from excessive apoptosis under genotoxic stress. PMID:27226137

  14. The Magea gene cluster regulates male germ cell apoptosis without affecting the fertility in mice

    PubMed Central

    Hou, Siyuan; Xian, Li; Shi, Peiliang; Li, Chaojun; Lin, Zhaoyu; Gao, Xiang

    2016-01-01

    While apoptosis is essential for male germ cell development, improper activation of apoptosis in the testis can affect spermatogenesis and cause reproduction defects. Members of the MAGE-A (melanoma antigen family A) gene family are frequently clustered in mammalian genomes and are exclusively expressed in the testes of normal animals but abnormally activated in a wide variety of cancers. We investigated the potential roles of these genes in spermatogenesis by generating a mouse model with a 210-kb genomic deletion encompassing six members of the Magea gene cluster (Magea1, Magea2, Magea3, Magea5, Magea6 and Magea8). Male mice carrying the deletion displayed smaller testes from 2 months old with a marked increase in apoptotic germ cells in the first wave of spermatogenesis. Furthermore, we found that Magea genes prevented stress-induced spermatogenic apoptosis after N-ethyl-N-nitrosourea (ENU) treatment during the adult stage. Mechanistically, deletion of the Magea gene cluster resulted in a dramatic increase in apoptotic germ cells, predominantly spermatocytes, with activation of p53 and induction of Bax in the testes. These observations demonstrate that the Magea genes are crucial in maintaining normal testicular size and protecting germ cells from excessive apoptosis under genotoxic stress. PMID:27226137

  15. Rotation of photoreceptor clusters in the developing Drosophila eye requires the nemo gene.

    PubMed

    Choi, K W; Benzer, S

    1994-07-15

    The Drosophila eye consists of a reiterative hexagonal array of photoreceptor cell clusters, the ommatidia. During normal morphogenesis, the clusters in the dorsal or ventral halves of the disc rotate 90 degrees in opposite directions, forming mirror images across a dorsoventral equator. In the mutant nemo (nmo), there is an initial turning of approximately 45 degrees, but further rotation is blocked. Genetic mosaic analysis indicates that the nmo gene acts upon each cluster as a whole; normal nmo function in one or more photoreceptor cells appears to be sufficient to induce full rotation. The nmo gene sequence encodes a serine/threonine protein kinase homolog, suggesting that the kinase is required to initiate the second step of rotation. In another mutant, roulette, excessive rotation through varying angles occurs in many ommatidia. This defect is suppressed by nmo, indicating that nmo acts upstream in a rotation-regulating pathway.

  16. TreeParser-Aided Klee Diagrams Display Taxonomic Clusters in DNA Barcode and Nuclear Gene Datasets

    PubMed Central

    Stoeckle, Mark Y.; Coffran, Cameron

    2013-01-01

    Indicator vector analysis of a nucleotide sequence alignment generates a compact heat map, called a Klee diagram, with potential insight into clustering patterns in evolution. However, so far this approach has examined only mitochondrial cytochrome c oxidase I (COI) DNA barcode sequences. To further explore, we developed TreeParser, a freely-available web-based program that sorts a sequence alignment according to a phylogenetic tree generated from the dataset. We applied TreeParser to nuclear gene and COI barcode alignments from birds and butterflies. Distinct blocks in the resulting Klee diagrams corresponded to species and higher-level taxonomic divisions in both groups, and this enabled graphic comparison of phylogenetic information in nuclear and mitochondrial genes. Our results demonstrate TreeParser-aided Klee diagrams objectively display taxonomic clusters in nucleotide sequence alignments. This approach may help establish taxonomy in poorly studied groups and investigate higher-level clustering which appears widespread but not well understood. PMID:24022383

  17. TreeParser-aided Klee diagrams display taxonomic clusters in DNA barcode and nuclear gene datasets.

    PubMed

    Stoeckle, Mark Y; Coffran, Cameron

    2013-01-01

    Indicator vector analysis of a nucleotide sequence alignment generates a compact heat map, called a Klee diagram, with potential insight into clustering patterns in evolution. However, so far this approach has examined only mitochondrial cytochrome c oxidase I (COI) DNA barcode sequences. To further explore, we developed TreeParser, a freely-available web-based program that sorts a sequence alignment according to a phylogenetic tree generated from the dataset. We applied TreeParser to nuclear gene and COI barcode alignments from birds and butterflies. Distinct blocks in the resulting Klee diagrams corresponded to species and higher-level taxonomic divisions in both groups, and this enabled graphic comparison of phylogenetic information in nuclear and mitochondrial genes. Our results demonstrate TreeParser-aided Klee diagrams objectively display taxonomic clusters in nucleotide sequence alignments. This approach may help establish taxonomy in poorly studied groups and investigate higher-level clustering which appears widespread but not well understood.

  18. Identification of the Viridicatumtoxin and Griseofulvin Gene Clusters from Penicillium aethiopicum

    PubMed Central

    Chooi, Yit-Heng; Cacho, Ralph; Tang, Yi

    2010-01-01

    SUMMARY Penicillium aethiopicum produces two structurally interesting and biologically active polyketides: the tetracycline-like viridicatumtoxin 1 and the classic antifungal agent griseofulvin 2. Here, we report the concurrent discovery of the two corresponding biosynthetic gene clusters (vrt and gsf) by 454 shotgun sequencing. Gene deletions confirmed two nonreducing PKSs (NRPKS), vrtA and gsfA, are required for the biosynthesis of 1 and 2, respectively. Both PKSs share similar domain architectures and lack a C-terminal thioesterase domain. We identified gsfI as the chlorinase involved in the biosynthesis of 2, as deletion of gsfI resulted in the accumulation of decholorogriseofulvin 3. Comparative analysis with the P. chrysogenum genome revealed that both clusters are embedded within conserved syntenic regions of P. aethiopicum chromosomes. Discovery of the vrt and gsf clusters provided the basis for genetic and biochemical studies of the pathways. PMID:20534346

  19. Regulation of alkyl-dihydrothiazole-carboxylates (ATCs) by iron and the pyochelin gene cluster in Pseudomonas aeruginosa.

    PubMed

    Vinayavekhin, Nawaporn; Saghatelian, Alan

    2009-08-21

    Using the pyochelin (pch) gene cluster as an example, we demonstrate the utility of untargeted metabolomics in the discovery and characterization of secondary metabolites regulated by biosynthetic gene clusters. Comparison of the extracellular metabolomes of pch gene cluster mutants to the wild-type Pseudomonas aeruginosa (strain PA 14) identified 198 ions regulated by the pch genes. In addition to known metabolites, we characterized the structure of a pair of novel metabolites regulated by the pch gene cluster as 2-alkyl-4,5-dihydrothiazole-4-carboxylates (ATCs), using a combination of mass spectrometry, chemical synthesis, and stable isotope labeling. Subsequent assays revealed that ATCs bind iron and are regulated by iron levels in the media in a similar fashion as other metabolites associated with the pch gene cluster. Further genetic complementation and overexpression analyses of the pch genes revealed ATC production to be dependent on the pchE gene in the pch gene cluster. Overall, these studies highlight the ability of untargeted metabolomics to reveal regulatory connections between gene clusters and secondary metabolites, including novel metabolites. PMID:19621937

  20. Resolving misassembled cattle immune gene clusters with hierarchical, long read sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal health is a critical component of productivity; however, current genomic selection genotyping tools have a paucity of genetic markers within key immune gene clusters (IGC) involved in the cattle innate and adaptive immune systems. With diseases such as Bovine Tuberculosis and Johne’s disease ...

  1. Expanded Natural Product Diversity Revealed by Analysis of Lanthipeptide-Like Gene Clusters in Actinobacteria

    PubMed Central

    Zhang, Qi; Doroghazi, James R.; Zhao, Xiling; Walker, Mark C.

    2015-01-01

    Lanthionine-containing peptides (lanthipeptides) are a rapidly growing family of polycyclic peptide natural products belonging to the large class of ribosomally synthesized and posttranslationally modified peptides (RiPPs). Lanthipeptides are widely distributed in taxonomically distant species, and their currently known biosynthetic systems and biological activities are diverse. Building on the recent natural product gene cluster family (GCF) project, we report here large-scale analysis of lanthipeptide-like biosynthetic gene clusters from Actinobacteria. Our analysis suggests that lanthipeptide biosynthetic pathways, and by extrapolation the natural products themselves, are much more diverse than currently appreciated and contain many different posttranslational modifications. Furthermore, lanthionine synthetases are much more diverse in sequence and domain topology than currently characterized systems, and they are used by the biosynthetic machineries for natural products other than lanthipeptides. The gene cluster families described here significantly expand the chemical diversity and biosynthetic repertoire of lanthionine-related natural products. Biosynthesis of these novel natural products likely involves unusual and unprecedented biochemistries, as illustrated by several examples discussed in this study. In addition, class IV lanthipeptide gene clusters are shown not to be silent, setting the stage to investigate their biological activities. PMID:25888176

  2. Characterization of the complete zwittermicin A biosynthesis gene cluster from Bacillus cereus.

    PubMed

    Kevany, Brian M; Rasko, David A; Thomas, Michael G

    2009-02-01

    Bacillus cereus UW85 produces the linear aminopolyol antibiotic zwittermicin A (ZmA). This antibiotic has diverse biological activities, such as suppression of disease in plants caused by protists, inhibition of fungal and bacterial growth, and amplification of the insecticidal activity of the toxin protein from Bacillus thuringiensis. ZmA has an unusual chemical structure that includes a d amino acid and ethanolamine and glycolyl moieties, as well as having an unusual terminal amide that is generated from the modification of the nonproteinogenic amino acid beta-ureidoalanine. The diverse biological activities and unusual structure of ZmA have stimulated our efforts to understand how this antibiotic is biosynthesized. Here, we present the identification of the complete ZmA biosynthesis gene cluster from B. cereus UW85. A nearly identical gene cluster is identified on a plasmid from B. cereus AH1134, and we show that this strain is also capable of producing ZmA. Bioinformatics and biochemical analyses of the ZmA biosynthesis enzymes strongly suggest that ZmA is initially biosynthesized as part of a larger metabolite that is processed twice, resulting in the formation of ZmA and two additional metabolites. Additionally, we propose that the biosynthesis gene cluster for the production of the amino sugar kanosamine is contained within the ZmA biosynthesis gene cluster in B. cereus UW85.

  3. Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes.

    PubMed

    Thomas, Brian C; Pedersen, Brent; Freeling, Michael

    2006-07-01

    Approximately 90% of Arabidopsis' unique gene content is found in syntenic blocks that were formed during the most recent whole-genome duplication. Within these blocks, 28.6% of the genes have a retained pair; the remaining genes have been lost from one of the homeologs. We create a minimized genome by condensing local duplications to one gene, removing transposons, and including only genes within blocks defined by retained pairs. We use a moving average of retained and non-retained genes to find clusters of retention and then identify the types of genes that appear in clusters at frequencies above expectations. Significant clusters of retention exist for almost all chromosomal segments. Detailed alignments show that, for 85% of the genome, one homeolog was preferentially (1.6x) targeted for fractionation. This homeolog fractionation bias suggests an epigenetic mechanism. We find that islands of retention contain "connected genes," those genes predicted-by the gene balance hypothesis-to be resistant to removal because the products they encode interact with other products in a dose-sensitive manner, creating a web of dependency. Gene families that are overrepresented in clusters include those encoding components of the proteasome/protein modification complexes, signal transduction machinery, ribosomes, and transcription factor complexes. Gene pair fractionation following polyploidy or segmental duplication leaves a genome enriched for "connected" genes. These clusters of duplicate genes may help explain the evolutionary origin of coregulated chromosomal regions and new functional modules. PMID:16760422

  4. Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes.

    PubMed

    Thomas, Brian C; Pedersen, Brent; Freeling, Michael

    2006-07-01

    Approximately 90% of Arabidopsis' unique gene content is found in syntenic blocks that were formed during the most recent whole-genome duplication. Within these blocks, 28.6% of the genes have a retained pair; the remaining genes have been lost from one of the homeologs. We create a minimized genome by condensing local duplications to one gene, removing transposons, and including only genes within blocks defined by retained pairs. We use a moving average of retained and non-retained genes to find clusters of retention and then identify the types of genes that appear in clusters at frequencies above expectations. Significant clusters of retention exist for almost all chromosomal segments. Detailed alignments show that, for 85% of the genome, one homeolog was preferentially (1.6x) targeted for fractionation. This homeolog fractionation bias suggests an epigenetic mechanism. We find that islands of retention contain "connected genes," those genes predicted-by the gene balance hypothesis-to be resistant to removal because the products they encode interact with other products in a dose-sensitive manner, creating a web of dependency. Gene families that are overrepresented in clusters include those encoding components of the proteasome/protein modification complexes, signal transduction machinery, ribosomes, and transcription factor complexes. Gene pair fractionation following polyploidy or segmental duplication leaves a genome enriched for "connected" genes. These clusters of duplicate genes may help explain the evolutionary origin of coregulated chromosomal regions and new functional modules.

  5. Organization of the qa Gene Cluster in NEUROSPORA CRASSA: Direction of Transcription of the qa-3 Gene

    PubMed Central

    Strøman, Per; Reinert, William; Case, Mary E.; Giles, Norman H.

    1979-01-01

    In Neurospora crassa, the enzyme quinate (shikimate) dehydrogenase catalyzes the first reaction in the inducible quinic acid catabolic pathway and is encoded in the qa-3 gene of the qa cluster. In this cluster, the order of genes has been established as qa-1 qa-3 qa-4 qa-2. Amino-terminal sequences have been determined for purified quinate dehydrogenase from wild type and from UV-induced revertants in two different qa-3 mutants. These two mutants (M16 and M45) map at opposite ends of the qa-3 locus. In addition, mapping data (Case et al. 1978) indicate that the end of the qa-3 gene specified by M45 is closer to the adjacent qa-1 gene than is the end specified by the M16 mutant site. In one of the revertants (R45 from qa-3 mutant M45), the aminoterminal sequence for the first ten amino acids is identical to that of wild type. The other revertant (R1 from qa-3 mutant M16) differs from wild type at the amino-terminal end by a single altered residue at position three in the sequence. The observed change involves the substitution of an isoleucine in M16-R1 for a proline in wild type. This substitution requires a two-nucleotide change in the corresponding wild-type codon.——The combined genetic and biochemical data indicate that the qa-3 mutants M16 and M45 carry amino acid substitutions near the amino-terminal and carboxyl-terminal ends of the quinate dehydrogenase enzyme, respectively. On this basis we conclude that transcription of the qa-3 gene proceeds from the end specified by the M16 mutant site in the direction of the qa-1 gene. It appears probable that transcription is initiated from a promoter site within the qa cluster, possibly immediately adjacent to the qa-3 gene. PMID:159203

  6. Clusters of genes encoding fructan biosynthesizing enzymes in wheat and barley.

    PubMed

    Huynh, Bao-Lam; Mather, Diane E; Schreiber, Andreas W; Toubia, John; Baumann, Ute; Shoaei, Zahra; Stein, Nils; Ariyadasa, Ruvini; Stangoulis, James C R; Edwards, James; Shirley, Neil; Langridge, Peter; Fleury, Delphine

    2012-10-01

    Fructans are soluble carbohydrates with health benefits and possible roles in plant adaptation. Fructan biosynthetic genes were isolated using comparative genomics and physical mapping followed by BAC sequencing in barley. Genes encoding sucrose:sucrose 1-fructosyltransferase (1-SST), fructan:fructan 1-fructosyltransferase (1-FFT) and sucrose:fructan 6-fructosyltransferase (6-SFT) were clustered together with multiple copies of vacuolar invertase genes and a transposable element on two barley BAC. Intron-exon structures of the genes were similar. Phylogenetic analysis of the fructosyltransferases and invertases in the Poaceae showed that the fructan biosynthetic genes may have evolved from vacuolar invertases. Quantitative real-time PCR was performed using leaf RNA extracted from three wheat cultivars grown under different conditions. The 1-SST, 1-FFT and 6-SFT genes had correlated expression patterns in our wheat experiment and in existing barley transcriptome database. Single nucleotide polymorphism (SNP) markers were developed and successfully mapped to a major QTL region affecting wheat grain fructan accumulation in two independent wheat populations. The alleles controlling high- and low- fructan in parental lines were also found to be associated in fructan production in a diverse set of 128 wheat lines. To the authors' knowledge, this is the first report on the mapping and sequencing of a fructan biosynthetic gene cluster and in particular, the isolation of a novel 1-FFT gene from barley.

  7. Clusters of genes encoding fructan biosynthesizing enzymes in wheat and barley.

    PubMed

    Huynh, Bao-Lam; Mather, Diane E; Schreiber, Andreas W; Toubia, John; Baumann, Ute; Shoaei, Zahra; Stein, Nils; Ariyadasa, Ruvini; Stangoulis, James C R; Edwards, James; Shirley, Neil; Langridge, Peter; Fleury, Delphine

    2012-10-01

    Fructans are soluble carbohydrates with health benefits and possible roles in plant adaptation. Fructan biosynthetic genes were isolated using comparative genomics and physical mapping followed by BAC sequencing in barley. Genes encoding sucrose:sucrose 1-fructosyltransferase (1-SST), fructan:fructan 1-fructosyltransferase (1-FFT) and sucrose:fructan 6-fructosyltransferase (6-SFT) were clustered together with multiple copies of vacuolar invertase genes and a transposable element on two barley BAC. Intron-exon structures of the genes were similar. Phylogenetic analysis of the fructosyltransferases and invertases in the Poaceae showed that the fructan biosynthetic genes may have evolved from vacuolar invertases. Quantitative real-time PCR was performed using leaf RNA extracted from three wheat cultivars grown under different conditions. The 1-SST, 1-FFT and 6-SFT genes had correlated expression patterns in our wheat experiment and in existing barley transcriptome database. Single nucleotide polymorphism (SNP) markers were developed and successfully mapped to a major QTL region affecting wheat grain fructan accumulation in two independent wheat populations. The alleles controlling high- and low- fructan in parental lines were also found to be associated in fructan production in a diverse set of 128 wheat lines. To the authors' knowledge, this is the first report on the mapping and sequencing of a fructan biosynthetic gene cluster and in particular, the isolation of a novel 1-FFT gene from barley. PMID:22864927

  8. Clustered Transcription Factor Genes Regulate Nicotine Biosynthesis in Tobacco[W][OA

    PubMed Central

    Shoji, Tsubasa; Kajikawa, Masataka; Hashimoto, Takashi

    2010-01-01

    Tobacco (Nicotiana tabacum) synthesizes nicotine and related pyridine alkaloids in the root, and their synthesis increases upon herbivory on the leaf via a jasmonate-mediated signaling cascade. Regulatory NIC loci that positively regulate nicotine biosynthesis have been genetically identified, and their mutant alleles have been used to breed low-nicotine tobacco varieties. Here, we report that the NIC2 locus, originally called locus B, comprises clustered transcription factor genes of an ethylene response factor (ERF) subfamily; in the nic2 mutant, at least seven ERF genes are deleted altogether. Overexpression, suppression, and dominant repression experiments using transgenic tobacco roots showed both functional redundancy and divergence among the NIC2-locus ERF genes. These transcription factors recognized a GCC-box element in the promoter of a nicotine pathway gene and specifically activated all known structural genes in the pathway. The NIC2-locus ERF genes are expressed in the root and upregulated by jasmonate with kinetics that are distinct among the members. Thus, gene duplication events generated a cluster of highly homologous transcription factor genes with transcriptional and functional diversity. The NIC2-locus ERFs are close homologs of ORCA3, a jasmonate-responsive transcriptional activator of indole alkaloid biosynthesis in Catharanthus roseus, indicating that the NIC2/ORCA3 ERF subfamily was recruited independently to regulate jasmonate-inducible secondary metabolism in distinct plant lineages. PMID:20959558

  9. Biosynthetic Gene Cluster for Surugamide A Encompasses an Unrelated Decapeptide, Surugamide F.

    PubMed

    Ninomiya, Akihiro; Katsuyama, Yohei; Kuranaga, Takefumi; Miyazaki, Masayuki; Nogi, Yuichi; Okada, Shigeru; Wakimoto, Toshiyuki; Ohnishi, Yasuo; Matsunaga, Shigeki; Takada, Kentaro

    2016-09-15

    Genome mining is a powerful method for finding novel secondary metabolites. In our study on the biosynthetic gene cluster for the cyclic octapeptides surugamides A-E (inhibitors of cathepsin B), we found a putative gene cluster consisting of four successive non-ribosomal peptide synthetase (NRPS) genes, surA, surB, surC, and surD. Prediction of amino acid sequence based on the NRPSs and gene inactivation revealed that surugamides A-E are produced by two NRPS genes, surA and surD, which were separated by two NRPS genes, surB and surC. The latter genes are responsible for the biosynthesis of an unrelated peptide, surugamide F. The pattern of intercalation observed in the sur genes is unprecedented. The structure of surugamide F, a linear decapeptide containing one 3-amino-2-methylpropionic acid (AMPA) residue, was determined by spectroscopic methods and was confirmed by solid-phase peptide synthesis. PMID:27443244

  10. Complete Genome Sequence of the Filamentous Fungus Aspergillus westerdijkiae Reveals the Putative Biosynthetic Gene Cluster of Ochratoxin A

    PubMed Central

    Chakrabortti, Alolika; Li, Jinming

    2016-01-01

    Ochratoxin A (OTA) is a common mycotoxin that contaminates food and agricultural products. Sequencing of the complete genome of Aspergillus westerdijkiae, a major producer of OTA, reveals more than 50 biosynthetic gene clusters, including a putative OTA biosynthetic gene cluster that encodes a dozen of enzymes, transporters, and regulatory proteins. PMID:27635003

  11. Complete Genome Sequence of the Filamentous Fungus Aspergillus westerdijkiae Reveals the Putative Biosynthetic Gene Cluster of Ochratoxin A.

    PubMed

    Chakrabortti, Alolika; Li, Jinming; Liang, Zhao-Xun

    2016-01-01

    Ochratoxin A (OTA) is a common mycotoxin that contaminates food and agricultural products. Sequencing of the complete genome of Aspergillus westerdijkiae, a major producer of OTA, reveals more than 50 biosynthetic gene clusters, including a putative OTA biosynthetic gene cluster that encodes a dozen of enzymes, transporters, and regulatory proteins. PMID:27635003

  12. Clustering of two genes putatively involved in cyanate detoxification evolved recently and independently in multiple fungal lineages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungi that have the enzymes cyanase and carbonic anhydrase show a limited capacity to detoxify cyanate, a fungicide employed by both plants and humans. Here, we describe a novel two-gene cluster that comprises duplicated cyanase and carbonic anhydrase copies, which we name the CCA gene cluster, trac...

  13. Cloning and Analysis of the Planosporicin Lantibiotic Biosynthetic Gene Cluster of Planomonospora alba

    PubMed Central

    Sherwood, Emma J.; Hesketh, Andrew R.

    2013-01-01

    The increasing prevalence of antibiotic resistance in bacterial pathogens has renewed focus on natural products with antimicrobial properties. Lantibiotics are ribosomally synthesized peptide antibiotics that are posttranslationally modified to introduce (methyl)lanthionine bridges. Actinomycetes are renowned for their ability to produce a large variety of antibiotics, many with clinical applications, but are known to make only a few lantibiotics. One such compound is planosporicin produced by Planomonospora alba, which inhibits cell wall biosynthesis in Gram-positive pathogens. Planosporicin is a type AI lantibiotic structurally similar to those which bind lipid II, the immediate precursor for cell wall biosynthesis. The gene cluster responsible for planosporicin biosynthesis was identified by genome mining and subsequently isolated from a P. alba cosmid library. A minimal cluster of 15 genes sufficient for planosporicin production was defined by heterologous expression in Nonomuraea sp. strain ATCC 39727, while deletion of the gene encoding the precursor peptide from P. alba, which abolished planosporicin production, was also used to confirm the identity of the gene cluster. Deletion of genes encoding likely biosynthetic enzymes identified through bioinformatic analysis revealed that they, too, are essential for planosporicin production in the native host. Reverse transcription-PCR (RT-PCR) analysis indicated that the planosporicin gene cluster is transcribed in three operons. Expression of one of these, pspEF, which encodes an ABC transporter, in Streptomyces coelicolor A3(2) conferred some degree of planosporicin resistance on the heterologous host. The inability to delete these genes from P. alba suggests that they play an essential role in immunity in the natural producer. PMID:23475977

  14. Cloning and analysis of the planosporicin lantibiotic biosynthetic gene cluster of Planomonospora alba.

    PubMed

    Sherwood, Emma J; Hesketh, Andrew R; Bibb, Mervyn J

    2013-05-01

    The increasing prevalence of antibiotic resistance in bacterial pathogens has renewed focus on natural products with antimicrobial properties. Lantibiotics are ribosomally synthesized peptide antibiotics that are posttranslationally modified to introduce (methyl)lanthionine bridges. Actinomycetes are renowned for their ability to produce a large variety of antibiotics, many with clinical applications, but are known to make only a few lantibiotics. One such compound is planosporicin produced by Planomonospora alba, which inhibits cell wall biosynthesis in Gram-positive pathogens. Planosporicin is a type AI lantibiotic structurally similar to those which bind lipid II, the immediate precursor for cell wall biosynthesis. The gene cluster responsible for planosporicin biosynthesis was identified by genome mining and subsequently isolated from a P. alba cosmid library. A minimal cluster of 15 genes sufficient for planosporicin production was defined by heterologous expression in Nonomuraea sp. strain ATCC 39727, while deletion of the gene encoding the precursor peptide from P. alba, which abolished planosporicin production, was also used to confirm the identity of the gene cluster. Deletion of genes encoding likely biosynthetic enzymes identified through bioinformatic analysis revealed that they, too, are essential for planosporicin production in the native host. Reverse transcription-PCR (RT-PCR) analysis indicated that the planosporicin gene cluster is transcribed in three operons. Expression of one of these, pspEF, which encodes an ABC transporter, in Streptomyces coelicolor A3(2) conferred some degree of planosporicin resistance on the heterologous host. The inability to delete these genes from P. alba suggests that they play an essential role in immunity in the natural producer.

  15. Identification and analysis of the paulomycin biosynthetic gene cluster and titer improvement of the paulomycins in Streptomyces paulus NRRL 8115.

    PubMed

    Li, Jine; Xie, Zhoujie; Wang, Min; Ai, Guomin; Chen, Yihua

    2015-01-01

    The paulomycins are a group of glycosylated compounds featuring a unique paulic acid moiety. To locate their biosynthetic gene clusters, the genomes of two paulomycin producers, Streptomyces paulus NRRL 8115 and Streptomyces sp. YN86, were sequenced. The paulomycin biosynthetic gene clusters were defined by comparative analyses of the two genomes together with the genome of the third paulomycin producer Streptomyces albus J1074. Subsequently, the identity of the paulomycin biosynthetic gene cluster was confirmed by inactivation of two genes involved in biosynthesis of the paulomycose branched chain (pau11) and the ring A moiety (pau18) in Streptomyces paulus NRRL 8115. After determining the gene cluster boundaries, a convergent biosynthetic model was proposed for paulomycin based on the deduced functions of the pau genes. Finally, a paulomycin high-producing strain was constructed by expressing an activator-encoding gene (pau13) in S. paulus, setting the stage for future investigations. PMID:25822496

  16. Web-type evolution of rhodococcus gene clusters associated with utilization of naphthalene.

    PubMed

    Kulakov, Leonid A; Chen, Shenchang; Allen, Christopher C R; Larkin, Michael J

    2005-04-01

    Clusters of genes which include determinants for the catalytic subunits of naphthalene dioxygenase (narAa and narAb) were analyzed in naphthalene-degrading Rhodococcus strains. We demonstrated (i) that in the region analyzed homologous gene clusters are separated from each other by nonhomologous DNA, (ii) that there are various degrees of homology between related genes, and (iii) that nar genes are located on plasmids in strains NCIMB12038 and P400 and on a chromosome in P200. These observations suggest that genetic exchange and reshuffling of genetic modules, as well as vertical descent of the genetic information, were the main routes in the evolution of naphthalene degradation in Rhodococcus. These conclusions were supported by studies of transcription patterns in the region analyzed. It was found that the nar region is not organized into a single operon but there are several transcription units which differ in the strains investigated. The narA and narB genes were found to be transcribed as a single unit in all strains analyzed, and their transcription was induced by naphthalene. The putative aldolase gene (narC) was found on the same transcript only in strains P200 and P400. In NCIMB12038 transcription of two more gene clusters was induced by growth on naphthalene. Transcription start sites for narA and narB were found to be different in all of the strains studied. Putative regulatory genes (narR1 and narR2) were transcribed as a single mRNA in naphthalene-induced cells. At the same time, a number of the genes known to be essential for naphthalene catabolism in gram-negative bacteria were not found in the region analyzed.

  17. Clustering of multiallele DNA markers near the Huntington's disease gene.

    PubMed

    MacDonald, M E; Cheng, S V; Zimmer, M; Haines, J L; Poustka, A; Allitto, B; Smith, B; Whaley, W L; Romano, D M; Jagadeesh, J

    1989-09-01

    Five highly informative multiallele restriction fragment length polymorphisms (RFLPs) of value for preclinical diagnosis of Huntington's disease (HD) have been genetically characterized. One RFLP was uncovered by expansion of the D4S43 locus while three others are at D4S111 and D4S115, loci defined by NotI-linking clones. The final marker, D4S125, represents a recently discovered VNTR locus. All four loci map closer to the HD gene and to the telomere than D4S10, the original linked marker for HD. In combination with two multiallele RFLPs previously identified for D4S43 and another linked locus, D4S95, these five new multiallele markers will dramatically improve the speed and accuracy of predictive testing in HD, and increase its applicability by maximizing the chances of an informative test for anyone with appropriate family structure.

  18. The Yersinia kristensenii O11 O-antigen gene cluster was acquired by lateral gene transfer and incorporated at a novel chromosomal locus.

    PubMed

    Cunneen, Monica M; Reeves, Peter R

    2007-06-01

    We have sequenced the O-antigen gene clusters for the Escherichia coli O98 and Yersinia kristensenii O11 O antigens. The basic structures of these O antigens are identical, and the sequence data indicate that Y. kristensenii O11 gained its O-antigen gene cluster by lateral gene transfer (LGT). Escherichia coli O98 has a typical O-antigen gene cluster between galF and gnd as is usual in E. coli. However, the O-antigen gene cluster of Y. kristensenii O11 is not located at the traditional Yersinia O-antigen gene cluster locus, between hemH and gsk, but at a novel chromosomal locus between aroA and cmk where it is flanked by remnant galF and gnd genes that indicate the probable source of the gene cluster. Phylogenetic analysis indicated that the source was not E. coli itself but a species in the Escherichia, Salmonella, and Klebsiella group of genera. Although other O-antigen studies imply LGT on the basis of the hypervariability of the loci and GC content, this report also identifies a potential donor and provides evidence for the mechanism involved. Remnant insertion sequence (IS) sequences flank the galF and gnd remnants and suggest that LGT of the gene cluster was IS mediated.

  19. Classification and Clustering on Microarray Data for Gene Functional Prediction Using R.

    PubMed

    López-Kleine, Liliana; Kleine, Liliana López; Montaño, Rosa; Torres-Avilés, Francisco

    2016-01-01

    Gene expression data (microarrays and RNA-sequencing data) as well as other kinds of genomic data can be extracted from publicly available genomic data. Here, we explain how to apply multivariate cluster and classification methods on gene expression data. These methods have become very popular and are implemented in freely available software in order to predict the participation of gene products in a specific functional category of interest. Taking into account the availability of data and of these methods, every biological study should apply them in order to obtain knowledge on the organism studied and functional category of interest. A special emphasis is made on the nonlinear kernel classification methods. PMID:25762300

  20. GIP2, a Putative Transcription Factor That Regulates the Aurofusarin Biosynthetic Gene Cluster in Gibberella zeae

    PubMed Central

    Kim, Jung-Eun; Jin, Jianming; Kim, Hun; Kim, Jin-Cheol; Yun, Sung-Hwan; Lee, Yin-Won

    2006-01-01

    Gibberella zeae (anamorph: Fusarium graminearum) is an important pathogen of maize, wheat, and rice. Colonies of G. zeae produce yellow-to-tan mycelia with the white-to-carmine red margins. In this study, we focused on nine putative open reading frames (ORFs) closely linked to PKS12 and GIP1, which are required for aurofusarin biosynthesis in G. zeae. Among them is an ORF designated GIP2 (for Gibberella zeae pigment gene 2), which encodes a putative protein of 398 amino acids that carries a Zn(II)2Cys6 binuclear cluster DNA-binding domain commonly found in transcription factors of yeasts and filamentous fungi. Targeted gene deletion and complementation analyses confirmed that GIP2 is required for aurofusarin biosynthesis. Expression of GIP2 in carrot medium correlated with aurofusarin production by G. zeae and was restricted to vegetative mycelia. Inactivation of the 10 contiguous genes in the ΔGIP2 strain delineates an aurofusarin biosynthetic gene cluster. Overexpression of GIP2 in both the ΔGIP2 and the wild-type strains increases aurofusarin production and reduces mycelial growth. Thus, GIP2 is a putative positive regulator of the aurofusarin biosynthetic gene cluster, and aurofusarin production is negatively correlated with vegetative growth by G. zeae. PMID:16461721

  1. Strategies to regulate transcription factor–mediated gene positioning and interchromosomal clustering at the nuclear periphery

    PubMed Central

    Randise-Hinchliff, Carlo; Coukos, Robert; Sood, Varun; Sumner, Michael Chas; Zdraljevic, Stefan; Meldi Sholl, Lauren; Garvey Brickner, Donna; Ahmed, Sara; Watchmaker, Lauren

    2016-01-01

    In budding yeast, targeting of active genes to the nuclear pore complex (NPC) and interchromosomal clustering is mediated by transcription factor (TF) binding sites in the gene promoters. For example, the binding sites for the TFs Put3, Ste12, and Gcn4 are necessary and sufficient to promote positioning at the nuclear periphery and interchromosomal clustering. However, in all three cases, gene positioning and interchromosomal clustering are regulated. Under uninducing conditions, local recruitment of the Rpd3(L) histone deacetylase by transcriptional repressors blocks Put3 DNA binding. This is a general function of yeast repressors: 16 of 21 repressors blocked Put3-mediated subnuclear positioning; 11 of these required Rpd3. In contrast, Ste12-mediated gene positioning is regulated independently of DNA binding by mitogen-activated protein kinase phosphorylation of the Dig2 inhibitor, and Gcn4-dependent targeting is up-regulated by increasing Gcn4 protein levels. These different regulatory strategies provide either qualitative switch-like control or quantitative control of gene positioning over different time scales. PMID:26953353

  2. Next-generation sequencing approach for connecting secondary metabolites to biosynthetic gene clusters in fungi

    PubMed Central

    Cacho, Ralph A.; Tang, Yi; Chooi, Yit-Heng

    2015-01-01

    Genomics has revolutionized the research on fungal secondary metabolite (SM) biosynthesis. To elucidate the molecular and enzymatic mechanisms underlying the biosynthesis of a specific SM compound, the important first step is often to find the genes that responsible for its synthesis. The accessibility to fungal genome sequences allows the bypass of the cumbersome traditional library construction and screening approach. The advance in next-generation sequencing (NGS) technologies have further improved the speed and reduced the cost of microbial genome sequencing in the past few years, which has accelerated the research in this field. Here, we will present an example work flow for identifying the gene cluster encoding the biosynthesis of SMs of interest using an NGS approach. We will also review the different strategies that can be employed to pinpoint the targeted gene clusters rapidly by giving several examples stemming from our work. PMID:25642215

  3. Comprehensive curation and analysis of fungal biosynthetic gene clusters of published natural products.

    PubMed

    Li, Yong Fuga; Tsai, Kathleen J S; Harvey, Colin J B; Li, James Jian; Ary, Beatrice E; Berlew, Erin E; Boehman, Brenna L; Findley, David M; Friant, Alexandra G; Gardner, Christopher A; Gould, Michael P; Ha, Jae H; Lilley, Brenna K; McKinstry, Emily L; Nawal, Saadia; Parry, Robert C; Rothchild, Kristina W; Silbert, Samantha D; Tentilucci, Michael D; Thurston, Alana M; Wai, Rebecca B; Yoon, Yongjin; Aiyar, Raeka S; Medema, Marnix H; Hillenmeyer, Maureen E; Charkoudian, Louise K

    2016-04-01

    Microorganisms produce a wide range of natural products (NPs) with clinically and agriculturally relevant biological activities. In bacteria and fungi, genes encoding successive steps in a biosynthetic pathway tend to be clustered on the chromosome as biosynthetic gene clusters (BGCs). Historically, "activity-guided" approaches to NP discovery have focused on bioactivity screening of NPs produced by culturable microbes. In contrast, recent "genome mining" approaches first identify candidate BGCs, express these biosynthetic genes using synthetic biology methods, and finally test for the production of NPs. Fungal genome mining efforts and the exploration of novel sequence and NP space are limited, however, by the lack of a comprehensive catalog of BGCs encoding experimentally-validated products. In this study, we generated a comprehensive reference set of fungal NPs whose biosynthetic gene clusters are described in the published literature. To generate this dataset, we first identified NCBI records that included both a peer-reviewed article and an associated nucleotide record. We filtered these records by text and homology criteria to identify putative NP-related articles and BGCs. Next, we manually curated the resulting articles, chemical structures, and protein sequences. The resulting catalog contains 197 unique NP compounds covering several major classes of fungal NPs, including polyketides, non-ribosomal peptides, terpenoids, and alkaloids. The distribution of articles published per compound shows a bias toward the study of certain popular compounds, such as the aflatoxins. Phylogenetic analysis of biosynthetic genes suggests that much chemical and enzymatic diversity remains to be discovered in fungi. Our catalog was incorporated into the recently launched Minimum Information about Biosynthetic Gene cluster (MIBiG) repository to create the largest known set of fungal BGCs and associated NPs, a resource that we anticipate will guide future genome mining and

  4. Identification, isolation, and analysis of a gene cluster involved in iron acquisition by Pseudomonas mendocina ymp

    PubMed Central

    Awaya, Jonathan D.

    2013-01-01

    Microbial acquisition of iron from natural sources in aerobic environments is a little-studied process that may lead to mineral instability and trace metal mobilization. Pseudomonas mendocina ymp was isolated from the Yucca Mountain Site for long-term nuclear waste storage. Its ability to solubilize a variety of Fe-containing minerals under aerobic conditions has been previously investigated but its molecular and genetic potential remained uncharacterized. Here, we have shown that the organism produces a hydroxamate and not a catecholate-based siderophore that is synthesized via non-ribosomal peptide synthetases. Gene clustering patterns observed in other Pseudomonads suggested that hybridizing multiple probes to the same library could allow for the identification of one or more clusters of syntenic siderophore-associated genes. Using this approach, two independent clusters were identified. An unfinished draft genome sequence of P. mendocina ymp indicated that these mapped to two independent contigs. The sequenced clusters were investigated informatically and shown to contain respectively a potentially complete set of genes responsible for siderophore biosynthesis, uptake, and regulation, and an incomplete set of genes with low individual homology to siderophore-associated genes. A mutation in the cluster’s pvdA homolog (pmhA) resulted in a siderophore-null phenotype, which could be reversed by complementation. The organism likely produces one siderophore with possibly different isoforms and a peptide backbone structure containing seven residues (predicted sequence: Acyl-Asp-Dab-Ser-fOHOrn-Ser-fOHorn). A similar approach could be applied for discovery of Fe− and siderophore-associated genes in unsequenced or poorly annotated organisms. PMID:18058194

  5. A Telomeric Cluster of Antimony Resistance Genes on Chromosome 34 of Leishmania infantum.

    PubMed

    Tejera Nevado, Paloma; Bifeld, Eugenia; Höhn, Katharina; Clos, Joachim

    2016-09-01

    The mechanisms underlying the drug resistance of Leishmania spp. are manifold and not completely identified. Apart from the highly conserved multidrug resistance gene family known from higher eukaryotes, Leishmania spp. also possess genus-specific resistance marker genes. One of them, ARM58, was first identified in Leishmania braziliensis using a functional cloning approach, and its domain structure was characterized in L. infantum Here we report that L. infantum ARM58 is part of a gene cluster at the telomeric end of chromosome 34 also comprising the neighboring genes ARM56 and HSP23. We show that overexpression of all three genes can confer antimony resistance to intracellular amastigotes. Upon overexpression in L. donovani, ARM58 and ARM56 are secreted via exosomes, suggesting a scavenger/secretion mechanism of action. Using a combination of functional cloning and next-generation sequencing, we found that the gene cluster was selected only under antimonyl tartrate challenge and weakly under Cu(2+) challenge but not under sodium arsenite, Cd(2+), or miltefosine challenge. The selective advantage is less pronounced in intracellular amastigotes treated with the sodium stibogluconate, possibly due to the known macrophage-stimulatory activity of this drug, against which these resistance markers may not be active. Our data point to the specificity of these three genes for antimony resistance. PMID:27324767

  6. Discovery of five conserved beta -defensin gene clusters using a computational search strategy.

    PubMed

    Schutte, Brian C; Mitros, Joseph P; Bartlett, Jennifer A; Walters, Jesse D; Jia, Hong Peng; Welsh, Michael J; Casavant, Thomas L; McCray, Paul B

    2002-02-19

    The innate immune system includes antimicrobial peptides that protect multicellular organisms from a diverse spectrum of microorganisms. beta-Defensins comprise one important family of mammalian antimicrobial peptides. The annotation of the human genome fails to reveal the expected diversity, and a recent query of the draft sequence with the blast search engine found only one new beta-defensin gene (DEFB3). To define better the beta-defensin gene family, we adopted a genomics approach that uses hmmer, a computational search tool based on hidden Markov models, in combination with blast. This strategy identified 28 new human and 43 new mouse beta-defensin genes in five syntenic chromosomal regions. Within each syntenic cluster, the gene sequences and organization were similar, suggesting each cluster pair arose from a common ancestor and was retained because of conserved functions. Preliminary analysis indicates that at least 26 of the predicted genes are transcribed. These results demonstrate the value of a genomewide search strategy to identify genes with conserved structural motifs. Discovery of these genes represents a new starting point for exploring the role of beta-defensins in innate immunity.

  7. Dynamic and physical clustering of gene expression during epidermal barrier formation in differentiating keratinocytes.

    PubMed

    Taylor, Jennifer M; Street, Teresa L; Hao, Lizhong; Copley, Richard; Taylor, Martin S; Hayden, Patrick J; Stolper, Gina; Mott, Richard; Hein, Jotun; Moffatt, Miriam F; Cookson, William O C M

    2009-01-01

    The mammalian epidermis is a continually renewing structure that provides the interface between the organism and an innately hostile environment. The keratinocyte is its principal cell. Keratinocyte proteins form a physical epithelial barrier, protect against microbial damage, and prepare immune responses to danger. Epithelial immunity is disordered in many common diseases and disordered epithelial differentiation underlies many cancers. In order to identify the genes that mediate epithelial development we used a tissue model of the skin derived from primary human keratinocytes. We measured global gene expression in triplicate at five times over the ten days that the keratinocytes took to fully differentiate. We identified 1282 gene transcripts that significantly changed during differentiation (false discovery rate <0.01%). We robustly grouped these transcripts by K-means clustering into modules with distinct temporal expression patterns, shared regulatory motifs, and biological functions. We found a striking cluster of late expressed genes that form the structural and innate immune defences of the epithelial barrier. Gene Ontology analyses showed that undifferentiated keratinocytes were characterised by genes for motility and the adaptive immune response. We systematically identified calcium-binding genes, which may operate with the epidermal calcium gradient to control keratinocyte division during skin repair. The results provide multiple novel insights into keratinocyte biology, in particular providing a comprehensive list of known and previously unrecognised major components of the epidermal barrier. The findings provide a reference for subsequent understanding of how the barrier functions in health and disease. PMID:19888454

  8. Genetic Characterization of the Klebsiella pneumoniae waa Gene Cluster, Involved in Core Lipopolysaccharide Biosynthesis

    PubMed Central

    Regué, Miguel; Climent, Núria; Abitiu, Nihal; Coderch, Núria; Merino, Susana; Izquierdo, Luis; Altarriba, Maria; Tomás, Juan M.

    2001-01-01

    A recombinant cosmid containing genes involved in Klebsiella pneumoniae C3 core lipopolysaccharide biosynthesis was identified by its ability to confer bacteriocin 28b resistance to Escherichia coli K-12. The recombinant cosmid contains 12 genes, the whole waa gene cluster, flanked by kbl and coaD genes, as was found in E. coli K-12. PCR amplification analysis showed that this cluster is conserved in representative K. pneumoniae strains. Partial nucleotide sequence determination showed that the same genes and gene order are found in K. pneumoniae subsp. ozaenae, for which the core chemical structure is known. Complementation analysis of known waa mutants from E. coli K-12 and/or Salmonella enterica led to the identification of genes involved in biosynthesis of the inner core backbone that are shared by these three members of the Enterobacteriaceae. K. pneumoniae orf10 mutants showed a two-log-fold reduction in a mice virulence assay and a strong decrease in capsule amount. Analysis of a constructed K. pneumoniae waaE deletion mutant suggests that the WaaE protein is involved in the transfer of the branch β-d-Glc to the O-4 position of l-glycero-d-manno-heptose I, a feature shared by K. pneumoniae, Proteus mirabilis, and Yersinia enterocolitica. PMID:11371519

  9. Sequencing and Analysis of the Biosynthetic Gene Cluster of the Lipopeptide Antibiotic Friulimicin in Actinoplanes friuliensis▿

    PubMed Central

    Müller, C.; Nolden, S.; Gebhardt, P.; Heinzelmann, E.; Lange, C.; Puk, O.; Welzel, K.; Wohlleben, W.; Schwartz, D.

    2007-01-01

    Actinoplanes friuliensis produces the lipopeptide antibiotic friulimicin, which is a cyclic peptide with one exocyclic amino acid linked to a branched-chain fatty acid acyl residue. The structural relationship to daptomycin and the excellent antibacterial performance of friulimicin make the antibiotic an attractive drug candidate. The complete friulimicin biosynthetic gene cluster of 24 open reading frames from A. friuliensis was sequenced and analyzed. In addition to genes for regulation, self-resistance, and transport, the cluster contains genes encoding peptide synthetases, proteins involved in the synthesis and linkage of the fatty acid component of the antibiotic, and proteins involved in the synthesis of the nonproteinogenic amino acids pipecolinic acid, methylaspartic acid, and 2,3-diaminobutyric acid. By using heterologous gene expression in Escherichia coli, we provide biochemical evidence for the stereoselective synthesis of l-pipecolinic acid by the deduced protein of the lysine cyclodeaminase gene pip. Furthermore, we show the involvement of the dabA and dabB genes in the biosynthesis of 2,3-diaminobutyric acid by gene inactivation and subsequent feeding experiments. PMID:17220414

  10. Visualizing the HoxD Gene Cluster at the Nanoscale Level.

    PubMed

    Fabre, Pierre J; Benke, Alexander; Manley, Suliana; Duboule, Denis

    2015-01-01

    Transcription of HoxD cluster genes in limbs is coordinated by two topologically associating domains (TADs), neighboring the cluster and containing various enhancers. Here, we use a combination of microscopy approaches and chromosome conformation capture to assess the structural changes occurring in this global architecture in various functional states. We observed that despite their spatial juxtaposition, the TADs are consistently kept as distinct three-dimensional units. Hox genes located at their boundary can show significant spatial segregation over long distances, suggesting that physical elongation of the HoxD cluster occurs. The use of superresolution imaging (STORM [stochastic optical reconstruction microscopy]) revealed that the gene cluster can be in an either compact or elongated shape. The latter configuration is observed in transcriptionally active tissue and in embryonic stem cells, consistent with chromosome conformation capture results. Such morphological changes at HoxD in developing digits seem to be associated with its position at the boundary between two TADs and support the idea that chromatin dynamics is important in the establishment of transcriptional activity. PMID:26767994

  11. Sequencing and transcriptional analysis of the biosynthesis gene cluster of putrescine-producing Lactococcus lactis.

    PubMed

    Ladero, Victor; Rattray, Fergal P; Mayo, Baltasar; Martín, María Cruz; Fernández, María; Alvarez, Miguel A

    2011-09-01

    Lactococcus lactis is a prokaryotic microorganism with great importance as a culture starter and has become the model species among the lactic acid bacteria. The long and safe history of use of L. lactis in dairy fermentations has resulted in the classification of this species as GRAS (General Regarded As Safe) or QPS (Qualified Presumption of Safety). However, our group has identified several strains of L. lactis subsp. lactis and L. lactis subsp. cremoris that are able to produce putrescine from agmatine via the agmatine deiminase (AGDI) pathway. Putrescine is a biogenic amine that confers undesirable flavor characteristics and may even have toxic effects. The AGDI cluster of L. lactis is composed of a putative regulatory gene, aguR, followed by the genes (aguB, aguD, aguA, and aguC) encoding the catabolic enzymes. These genes are transcribed as an operon that is induced in the presence of agmatine. In some strains, an insertion (IS) element interrupts the transcription of the cluster, which results in a non-putrescine-producing phenotype. Based on this knowledge, a PCR-based test was developed in order to differentiate nonproducing L. lactis strains from those with a functional AGDI cluster. The analysis of the AGDI cluster and their flanking regions revealed that the capacity to produce putrescine via the AGDI pathway could be a specific characteristic that was lost during the adaptation to the milk environment by a process of reductive genome evolution.

  12. Amplification of the entire kanamycin biosynthetic gene cluster during empirical strain improvement of Streptomyces kanamyceticus.

    PubMed

    Yanai, Koji; Murakami, Takeshi; Bibb, Mervyn

    2006-06-20

    Streptomyces kanamyceticus 12-6 is a derivative of the wild-type strain developed for industrial kanamycin (Km) production. Southern analysis and DNA sequencing revealed amplification of a large genomic segment including the entire Km biosynthetic gene cluster in the chromosome of strain 12-6. At 145 kb, the amplifiable unit of DNA (AUD) is the largest AUD reported in Streptomyces. Striking repetitive DNA sequences belonging to the clustered regularly interspaced short palindromic repeats family were found in the AUD and may play a role in its amplification. Strain 12-6 contains a mixture of different chromosomes with varying numbers of AUDs, sometimes exceeding 36 copies and producing an amplified region >5.7 Mb. The level of Km production depended on the copy number of the Km biosynthetic gene cluster, suggesting that DNA amplification occurred during strain improvement as a consequence of selection for increased Km resistance. Amplification of DNA segments including entire antibiotic biosynthetic gene clusters might be a common mechanism leading to increased antibiotic production in industrial strains.

  13. Localization of the {alpha}7 integrin gene (ITGA7) on human chromosome 12q13: Clustering of integrin and Hox genes implies parallel evolution of these gene families

    SciTech Connect

    Wang, W.; Wu, W.; Kaufman, S.J.

    1995-04-10

    Expression of the {alpha}7 integrin gene (ITGA7) is developmentally regulated during the formation of skeletal muscle. Increased levels of expression and production of isoforms containing different cytoplasmic and extracellular domains accompany myogenesis. To determine whether a single or multiple {alpha}7 gene(s) underlie the structural diversity in this alpha chain that accompanies development, we have examined the rat and human genomes by Southern blotting and in situ hybridization. Our results demonstrate that there is only one {alpha}7 gene in both the rat and the human genomes. In the human, ITGA7 is present on chromosome 12q13. Phylogenetic analysis of the integrin alpha chain sequences suggests that the early integrin genes evolved in two pathways to form the I-integrins and the non-I-integrins. The I-integrin alpha chains contain an additional sequence of approximately 180 amino acids and arose as a result of an early insertion into the non-I-gene. The I-chain subfamily further evolved by duplications within the same chromosome. The non-I-integrin alpha chain genes are localized in clusters on chromosomes 2, 12, and 17, and this closely coincides with the localization of the human homeobox gene clusters. Non-I-integrin alpha chain genes appear to have evolved in parallel and in proximity to the Hox clusters. Thus, the Hox genes that underlie the design of body structure and the Integrin genes that underlie informed cell-cell and cell-matrix interactions appear to have evolved in parallel and coordinate fashions. 52 refs., 5 figs., 2 tabs.

  14. DDX6 transfers P-TEFb kinase to the AF4/AF4N (AFF1) super elongation complex

    PubMed Central

    Mück, Fabian; Bracharz, Silvia; Marschalek, Rolf

    2016-01-01

    AF4/AFF1 and AF5/AFF4 are both backbones for the assembly of “super elongation complexes” (SECs) that exert 2 distinct functions after the recruitment of P-TEFb from the 7SK snRNP: (1) initiation and elongation of RNA polymerase II gene transcription, and (2) modification of transcribed gene regions by distinct histone methylation patterns. In this study we aimed to investigate one of the initial steps, namely how P-TEFb is transferred from 7SK snRNPs to the SECs. In particular, we were interested in the role of DDX6 that we have recently identified as part of the AF4 complex. DDX6 is an evolutionarily conserved member of the DEAD-box RNA helicase family that is known to control miRNA and mRNA biology (translation, storage and degradation). Overexpressed DDX6 is associated with different cancer types and with c-Myc protein overexpression. We could demonstrate that DDX6 binds to 7SK snRNA and causes the release and transfer of P-TEFb to the AF4/AF4N SEC. DDX6 also binds stably to AF4 and AF4N as demonstrated by GST pull-down and co-immunoprecipitation experiments. As a consequence, overexpression of either AF4/AF4N or DDX6 resulted in a strong increase of mRNA production (5-6 fold), while their simultaneous expression increased the cellular mRNA production by 11-fold. Conversely, the corresponding knockdown of DDX6 decreased mRNA production by 70%. In conclusion, AF4/AF4N and DDX6 represent key molecules for the elongation process of gene transcription and a model will be proposed for the hand-over process of P-TEFb to SECs. PMID:27679741

  15. DDX6 transfers P-TEFb kinase to the AF4/AF4N (AFF1) super elongation complex.

    PubMed

    Mück, Fabian; Bracharz, Silvia; Marschalek, Rolf

    2016-01-01

    AF4/AFF1 and AF5/AFF4 are both backbones for the assembly of "super elongation complexes" (SECs) that exert 2 distinct functions after the recruitment of P-TEFb from the 7SK snRNP: (1) initiation and elongation of RNA polymerase II gene transcription, and (2) modification of transcribed gene regions by distinct histone methylation patterns. In this study we aimed to investigate one of the initial steps, namely how P-TEFb is transferred from 7SK snRNPs to the SECs. In particular, we were interested in the role of DDX6 that we have recently identified as part of the AF4 complex. DDX6 is an evolutionarily conserved member of the DEAD-box RNA helicase family that is known to control miRNA and mRNA biology (translation, storage and degradation). Overexpressed DDX6 is associated with different cancer types and with c-Myc protein overexpression. We could demonstrate that DDX6 binds to 7SK snRNA and causes the release and transfer of P-TEFb to the AF4/AF4N SEC. DDX6 also binds stably to AF4 and AF4N as demonstrated by GST pull-down and co-immunoprecipitation experiments. As a consequence, overexpression of either AF4/AF4N or DDX6 resulted in a strong increase of mRNA production (5-6 fold), while their simultaneous expression increased the cellular mRNA production by 11-fold. Conversely, the corresponding knockdown of DDX6 decreased mRNA production by 70%. In conclusion, AF4/AF4N and DDX6 represent key molecules for the elongation process of gene transcription and a model will be proposed for the hand-over process of P-TEFb to SECs. PMID:27679741

  16. DDX6 transfers P-TEFb kinase to the AF4/AF4N (AFF1) super elongation complex

    PubMed Central

    Mück, Fabian; Bracharz, Silvia; Marschalek, Rolf

    2016-01-01

    AF4/AFF1 and AF5/AFF4 are both backbones for the assembly of “super elongation complexes” (SECs) that exert 2 distinct functions after the recruitment of P-TEFb from the 7SK snRNP: (1) initiation and elongation of RNA polymerase II gene transcription, and (2) modification of transcribed gene regions by distinct histone methylation patterns. In this study we aimed to investigate one of the initial steps, namely how P-TEFb is transferred from 7SK snRNPs to the SECs. In particular, we were interested in the role of DDX6 that we have recently identified as part of the AF4 complex. DDX6 is an evolutionarily conserved member of the DEAD-box RNA helicase family that is known to control miRNA and mRNA biology (translation, storage and degradation). Overexpressed DDX6 is associated with different cancer types and with c-Myc protein overexpression. We could demonstrate that DDX6 binds to 7SK snRNA and causes the release and transfer of P-TEFb to the AF4/AF4N SEC. DDX6 also binds stably to AF4 and AF4N as demonstrated by GST pull-down and co-immunoprecipitation experiments. As a consequence, overexpression of either AF4/AF4N or DDX6 resulted in a strong increase of mRNA production (5-6 fold), while their simultaneous expression increased the cellular mRNA production by 11-fold. Conversely, the corresponding knockdown of DDX6 decreased mRNA production by 70%. In conclusion, AF4/AF4N and DDX6 represent key molecules for the elongation process of gene transcription and a model will be proposed for the hand-over process of P-TEFb to SECs.

  17. A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine.

    PubMed

    Winzer, Thilo; Gazda, Valeria; He, Zhesi; Kaminski, Filip; Kern, Marcelo; Larson, Tony R; Li, Yi; Meade, Fergus; Teodor, Roxana; Vaistij, Fabián E; Walker, Carol; Bowser, Tim A; Graham, Ian A

    2012-06-29

    Noscapine is an antitumor alkaloid from opium poppy that binds tubulin, arrests metaphase, and induces apoptosis in dividing human cells. Elucidation of the biosynthetic pathway will enable improvement in the commercial production of noscapine and related bioactive molecules. Transcriptomic analysis revealed the exclusive expression of 10 genes encoding five distinct enzyme classes in a high noscapine-producing poppy variety, HN1. Analysis of an F(2) mapping population indicated that these genes are tightly linked in HN1, and bacterial artificial chromosome sequencing confirmed that they exist as a complex gene cluster for plant alkaloids. Virus-induced gene silencing resulted in accumulation of pathway intermediates, allowing gene function to be linked to noscapine synthesis and a novel biosynthetic pathway to be proposed.

  18. Random Monoallelic Expression of Three Genes Clustered within 60 kb of Mouse t Complex Genomic DNA

    PubMed Central

    Sano, Yuri; Shimada, Tokihiko; Nakashima, Hiroshi; Nicholson, Rhonda H.; Eliason, James F.; Kocarek, Thomas A.; Ko, Minoru S.H.

    2001-01-01

    Mammals achieve gene dosage control by (1) random X-chromosome inactivation in females, (2) parental origin-specific imprinting of selected autosomal genes, and (3) random autosomal inactivation. Genes belonging to the third category of epigenetic phenomenon are just now emerging, with only six identified so far. Here we report three additional genes, Nubp2, Igfals, and Jsap1, that show 50%-methylated CpG sites by Southern blot analyses and primarily monoallelic expression in single-cell allele-specific RT-PCR analysis of bone marrow stromal cells and hepatocytes. Furthermore, we show that, in contrast to X inactivation, alleles can switch between active and inactive states during the formation of daughter cells. These three genes are the first in their category to exist as a tight cluster, in the proximal region of mouse chromosome 17, providing a thus far unique example of a region of autosomal random monoallelic expression. PMID:11691847

  19. Conservation of the pyrrolnitrin biosynthetic gene cluster among six pyrrolnitrin-producing strains.

    PubMed

    Hammer, P E; Burd, W; Hill, D S; Ligon, J M; van Pée, K

    1999-11-01

    The prnABCD gene cluster from Pseudomonas fluorescens encodes the biosynthetic pathway for pyrrolnitrin, a secondary metabolite derived from tryptophan which has strong anti-fungal activity. We used the prn genes from P. fluorescens strain BL915 as a probe to clone and sequence homologous genes from three other Pseudomonas strains, Burkholderia cepacia and Myxococcus fulvus. With the exception of the prnA gene from M. fulvus59% similar among the strains, indicating that the biochemical pathway for pyrrolnitrin biosynthesis is highly conserved. The prnA gene from M. fulvus is about 45% similar to prnA from the other strains and contains regions which are highly conserved among all six strains.

  20. Structure and gene cluster of the o-antigen of Escherichia coli o96.

    PubMed

    Guo, Xi; Senchenkova, Sof'ya N; Shashkov, Alexander S; Perepelov, Andrei V; Liu, Bin; Knirel, Yuriy A

    2016-02-01

    Mild acid degradation of the lipopolysaccharide of Escherichia coli O96 afforded a mixture of two polysaccharides. The following structure of the pentasaccharide repeating unit of the major polymer was established by sugar analysis, Smith degradation, and (1)H and (13)C NMR spectroscopy: [Formula: see text]. The O-antigen gene cluster of E. coli O96 between conserved galF and gnd genes was found to be consistent with this structure, and hence, the major polysaccharide represents the O96-antigen. The O96-antigen structure and gene cluster are similar to those of E. coli O170, and two proteins encoded in the gene clusters of both bacteria were putatively assigned a function of galactofuranosyltransferases. The minor polymer has the same structure as a peptidoglycan-related polysaccharide reported earlier in Providencia alcalifeciens O45 and several other O-serogoups of this species (Ovchinnikova OG, Liu B, Kocharova NA, Shashkov AS, Kondakova AN, Siwinska M, Feng L, Rozalski A, Wang L, Knirel YA. Biochemistry (Moscow) 2012;77:609-15) → 4)-β-D-GlcpNAc-(1 → 4)-β-D-GlcpNAc3(Rlac-lAla)-(1 → where Rlac-lAla indicates (R)-1-[(S)-1-carboxyethylaminocarbonyl]ethyl.

  1. The hydroxyectoine gene cluster of the non-halophilic acidophile Acidiphilium cryptum.

    PubMed

    Moritz, Katharina D; Amendt, Birgit; Witt, Elisabeth M H J; Galinski, Erwin A

    2015-01-01

    Acidiphilium cryptum is an acidophilic, heterotrophic α-Proteobacterium which thrives in acidic, metal-rich environments (e.g. acid mine drainage). Recently, an ectABCDask gene cluster for biosynthesis of the compatible solutes ectoine and hydroxyectoine was detected in the genome sequence of A. cryptum JF-5. We were able to demonstrate that the type strain A. cryptum DSM 2389(T) is capable of synthesizing the compatible solute hydroxyectoine in response to moderate osmotic stress caused by sodium chloride and aluminium sulphate, respectively. Furthermore, we used the A. cryptum JF-5 sequence to amplify the ectABCDask gene cluster from strain DSM 2389(T) and achieved heterologous expression of the gene cluster in Escherichia coli. Hence, we could for the first time prove metabolic functionality of the genes responsible for hydroxyectoine biosynthesis in the acidophile A. cryptum. In addition, we present information on specific enzyme activity of A. cryptum DSM 2389(T) ectoine synthase (EctC) in vitro. In contrast to EctCs from halophilic microorganisms, the A. cryptum enzyme exhibits a higher isoelectric point, thus a lower acidity, and has maximum specific activity in the absence of sodium chloride.

  2. Identification and Engineering of the Cytochalasin Gene Cluster from Aspergillus clavatus NRRL 1

    PubMed Central

    Qiao, Kangjian; Chooi, Yit-Heng; Tang, Yi

    2012-01-01

    Cytochalasins are a group of fungal secondary metabolites with diverse structures and bioactivities, including cytochalasin E produced by Aspergillus clavatus, which is a potent anti-angiogenic agent. Here, we report the identification and characterization of the cytochalasin gene cluster from A. clavatus NRRL 1. As a producer of cytochalasin E and K, the genome of A. clavatus was analyzed and the ~30 kb ccs gene cluster was identified based on the presence of a polyketide synthase-nonribosomal peptide synthetases (PKS-NRPS) and a putative Baeyer-Villiger monooxygenase (BVMO). Deletion of the central PKS-NRPS gene, ccsA, abolished the production of cytochalasin E and K, confirming the association between the natural products and the gene cluster. Based on bioinformatic analysis, a putative biosynthetic pathway is proposed. Furthermore, overexpression of the pathway specific regulator ccsR elevated the titer of cytochalasin E from 25 mg/L to 175 mg/L. Our results not only shed light on the biosynthesis of cytochalasins, but also provided genetic tools for increasing and engineering the production. PMID:21983160

  3. Molecular analysis of SCARECROW genes expressed in white lupin cluster roots.

    PubMed

    Sbabou, Laila; Bucciarelli, Bruna; Miller, Susan; Liu, Junqi; Berhada, Fatiha; Filali-Maltouf, Abdelkarim; Allan, Deborah; Vance, Carroll

    2010-03-01

    The Scarecrow (SCR) transcription factor plays a crucial role in root cell radial patterning and is required for maintenance of the quiescent centre and differentiation of the endodermis. In response to phosphorus (P) deficiency, white lupin (Lupinus albus L.) root surface area increases some 50-fold to 70-fold due to the development of cluster (proteoid) roots. Previously it was reported that SCR-like expressed sequence tags (ESTs) were expressed during early cluster root development. Here the cloning of two white lupin SCR genes, LaSCR1 and LaSCR2, is reported. The predicted amino acid sequences of both LaSCR gene products are highly similar to AtSCR and contain C-terminal conserved GRAS family domains. LaSCR1 and LaSCR2 transcript accumulation localized to the endodermis of both normal and cluster roots as shown by in situ hybridization and gene promoter::reporter staining. Transcript analysis as evaluated by quantitative real-time-PCR (qRT-PCR) and RNA gel hybridization indicated that the two LaSCR genes are expressed predominantly in roots. Expression of LaSCR genes was not directly responsive to the P status of the plant but was a function of cluster root development. Suppression of LaSCR1 in transformed roots of lupin and Medicago via RNAi (RNA interference) delivered through Agrobacterium rhizogenes resulted in decreased root numbers, reflecting the potential role of LaSCR1 in maintaining root growth in these species. The results suggest that the functional orthologues of AtSCR have been characterized.

  4. A Large Gene Cluster Encoding Several Magnetosome Proteins Is Conserved in Different Species of Magnetotactic Bacteria

    PubMed Central

    Grünberg, Karen; Wawer, Cathrin; Tebo, Bradley M.; Schüler, Dirk

    2001-01-01

    In magnetotactic bacteria, a number of specific proteins are associated with the magnetosome membrane (MM) and may have a crucial role in magnetite biomineralization. We have cloned and sequenced the genes of several of these polypeptides in the magnetotactic bacterium Magnetospirillum gryphiswaldense that could be assigned to two different genomic regions. Except for mamA, none of these genes have been previously reported to be related to magnetosome formation. Homologous genes were found in the genome sequences of M. magnetotacticum and magnetic coccus strain MC-1. The MM proteins identified display homology to tetratricopeptide repeat proteins (MamA), cation diffusion facilitators (MamB), and HtrA-like serine proteases (MamE) or bear no similarity to known proteins (MamC and MamD). A major gene cluster containing several magnetosome genes (including mamA and mamB) was found to be conserved in all three of the strains investigated. The mamAB cluster also contains additional genes that have no known homologs in any nonmagnetic organism, suggesting a specific role in magnetosome formation. PMID:11571158

  5. Spatial expression of Hox cluster genes in the ontogeny of a sea urchin

    NASA Technical Reports Server (NTRS)

    Arenas-Mena, C.; Cameron, A. R.; Davidson, E. H.

    2000-01-01

    The Hox cluster of the sea urchin Strongylocentrous purpuratus contains ten genes in a 500 kb span of the genome. Only two of these genes are expressed during embryogenesis, while all of eight genes tested are expressed during development of the adult body plan in the larval stage. We report the spatial expression during larval development of the five 'posterior' genes of the cluster: SpHox7, SpHox8, SpHox9/10, SpHox11/13a and SpHox11/13b. The five genes exhibit a dynamic, largely mesodermal program of expression. Only SpHox7 displays extensive expression within the pentameral rudiment itself. A spatially sequential and colinear arrangement of expression domains is found in the somatocoels, the paired posterior mesodermal structures that will become the adult perivisceral coeloms. No such sequential expression pattern is observed in endodermal, epidermal or neural tissues of either the larva or the presumptive juvenile sea urchin. The spatial expression patterns of the Hox genes illuminate the evolutionary process by which the pentameral echinoderm body plan emerged from a bilateral ancestor.

  6. Conserved gene clusters in bacterial genomes provide further support for the primacy of RNA

    NASA Technical Reports Server (NTRS)

    Siefert, J. L.; Martin, K. A.; Abdi, F.; Widger, W. R.; Fox, G. E.

    1997-01-01

    Five complete bacterial genome sequences have been released to the scientific community. These include four (eu)Bacteria, Haemophilus influenzae, Mycoplasma genitalium, M. pneumoniae, and Synechocystis PCC 6803, as well as one Archaeon, Methanococcus jannaschii. Features of organization shared by these genomes are likely to have arisen very early in the history of the bacteria and thus can be expected to provide further insight into the nature of early ancestors. Results of a genome comparison of these five organisms confirm earlier observations that gene order is remarkably unpreserved. There are, nevertheless, at least 16 clusters of two or more genes whose order remains the same among the four (eu)Bacteria and these are presumed to reflect conserved elements of coordinated gene expression that require gene proximity. Eight of these gene orders are essentially conserved in the Archaea as well. Many of these clusters are known to be regulated by RNA-level mechanisms in Escherichia coli, which supports the earlier suggestion that this type of regulation of gene expression may have arisen very early. We conclude that although the last common ancestor may have had a DNA genome, it likely was preceded by progenotes with an RNA genome.

  7. Analysis of the human alpha-globin gene cluster in transgenic mice.

    PubMed Central

    Sharpe, J A; Wells, D J; Whitelaw, E; Vyas, P; Higgs, D R; Wood, W G

    1993-01-01

    A 350-bp segment of DNA associated with an erythroid-specific DNase I-hypersensitive site (HS-40), upstream of the alpha-globin gene cluster, has been identified as the major tissue-specific regulator of the alpha-globin genes. However, this element does not direct copy number-dependent or developmentally stable expression of the human genes in transgenic mice. To determine whether additional upstream hypersensitive sites could provide more complete regulation of alpha gene expression we have studied 17 lines of transgenic mice bearing various DNA fragments containing HSs -33, -10, -8, and -4, in addition to HS -40. Position-independent, high-level expression of the human zeta- and alpha-globin genes was consistently observed in embryonic erythroid cells. However, the additional HSs did not confer copy-number dependence, alter the level of expression, or prevent the variable down-regulation of expression in adults. These results suggest that the region upstream of the human alpha-globin genes is not equivalent to that upstream of the beta locus and that although the two clusters are coordinately expressed, there may be differences in their regulation. Images Fig. 2 Fig. 4 Fig. 6 PMID:8248238

  8. Identification of novel mureidomycin analogues via rational activation of a cryptic gene cluster in Streptomyces roseosporus NRRL 15998

    PubMed Central

    Jiang, Lingjuan; Wang, Lu; Zhang, Jihui; Liu, Hao; Hong, Bin; Tan, Huarong; Niu, Guoqing

    2015-01-01

    Antimicrobial agents are urgently needed to tackle the growing threat of antibiotic-resistant pathogens. An important source of new antimicrobials is the large repertoire of cryptic gene clusters embedded in microbial genomes. Genome mining revealed a napsamycin/mureidomycin biosynthetic gene cluster in the chromosome of Streptomyces roseosporus NRRL 15998. The cryptic gene cluster was activated by constitutive expression of a foreign activator gene ssaA from sansanmycin biosynthetic gene cluster of Streptomyces sp. strain SS. Expression of the gene cluster was verified by RT-PCR analysis of key biosynthetic genes. The activated metabolites demonstrated potent inhibitory activity against the highly refractory pathogen Pseudomonas aeruginosa, and characterization of the metabolites led to the discovery of eight acetylated mureidomycin analogues. To our surprise, constitutive expression of the native activator gene SSGG_02995, a ssaA homologue in S. roseosporus NRRL 15998, has no beneficial effect on mureidomycin stimulation. This study provides a new way to activate cryptic gene cluster for the acquisition of novel antibiotics and will accelerate the exploitation of prodigious natural products in Streptomyces. PMID:26370924

  9. Versatile Cosmid Vectors for the Isolation, Expression, and Rescue of Gene Sequences: Studies with the Human α -globin Gene Cluster

    NASA Astrophysics Data System (ADS)

    Lau, Yun-Fai; Kan, Yuet Wai

    1983-09-01

    We have developed a series of cosmids that can be used as vectors for genomic recombinant DNA library preparations, as expression vectors in mammalian cells for both transient and stable transformations, and as shuttle vectors between bacteria and mammalian cells. These cosmids were constructed by inserting one of the SV2-derived selectable gene markers-SV2-gpt, SV2-DHFR, and SV2-neo-in cosmid pJB8. High efficiency of genomic cloning was obtained with these cosmids and the size of the inserts was 30-42 kilobases. We isolated recombinant cosmids containing the human α -globin gene cluster from these genomic libraries. The simian virus 40 DNA in these selectable gene markers provides the origin of replication and enhancer sequences necessary for replication in permissive cells such as COS 7 cells and thereby allows transient expression of α -globin genes in these cells. These cosmids and their recombinants could also be stably transformed into mammalian cells by using the respective selection systems. Both of the adult α -globin genes were more actively expressed than the embryonic zeta -globin genes in these transformed cell lines. Because of the presence of the cohesive ends of the Charon 4A phage in the cosmids, the transforming DNA sequences could readily be rescued from these stably transformed cells into bacteria by in vitro packaging of total cellular DNA. Thus, these cosmid vectors are potentially useful for direct isolation of structural genes.

  10. Onto-CC: a web server for identifying Gene Ontology conceptual clusters.

    PubMed

    Romero-Zaliz, R; Del Val, C; Cobb, J P; Zwir, I

    2008-07-01

    The Gene Ontology (GO) vocabulary has been extensively explored to analyze the functions of coexpressed genes. However, despite its extended use in Biology and Medical Sciences, there are still high levels of uncertainty about which ontology (i.e. Molecular Process, Cellular Component or Molecular Function) should be used, and at which level of specificity. Moreover, the GO database can contain incomplete information resulting from human annotations, or highly influenced by the available knowledge about a specific branch in an ontology. In spite of these drawbacks, there is a trend to ignore these problems and even use GO terms to conduct searches of gene expression profiles (i.e. expression + GO) instead of more cautious approaches that just consider them as an independent source of validation (i.e. expression versus GO). Consequently, propagating the uncertainty and producing biased analysis of the required gene grouping hypotheses. We proposed a web tool, Onto-CC, as an automatic method specially suited for independent explanation/validation of gene grouping hypotheses (e.g. coexpressed genes) based on GO clusters (i.e. expression versus GO). Onto-CC approach reduces the uncertainty of the queries by identifying optimal conceptual clusters that combine terms from different ontologies simultaneously, as well as terms defined at different levels of specificity in the GO hierarchy. To do so, we implemented the EMO-CC methodology to find clusters in structural databases [GO Directed acyclic Graph (DAG) tree], inspired on Conceptual Clustering algorithms. This approach allows the management of optimal cluster sets as potential parallel hypotheses, guided by multiobjective/multimodal optimization techniques. Therefore, we can generate alternative and, still, optimal explanations of queries that can provide new insights for a given problem. Onto-CC has been successfully used to test different medical and biological hypotheses including the explanation and prediction of

  11. Onto-CC: a web server for identifying Gene Ontology conceptual clusters

    PubMed Central

    Romero-Zaliz, R.; del Val, C.; Cobb, J. P.; Zwir, I.

    2008-01-01

    The Gene Ontology (GO) vocabulary has been extensively explored to analyze the functions of coexpressed genes. However, despite its extended use in Biology and Medical Sciences, there are still high levels of uncertainty about which ontology (i.e. Molecular Process, Cellular Component or Molecular Function) should be used, and at which level of specificity. Moreover, the GO database can contain incomplete information resulting from human annotations, or highly influenced by the available knowledge about a specific branch in an ontology. In spite of these drawbacks, there is a trend to ignore these problems and even use GO terms to conduct searches of gene expression profiles (i.e. expression + GO) instead of more cautious approaches that just consider them as an independent source of validation (i.e. expression versus GO). Consequently, propagating the uncertainty and producing biased analysis of the required gene grouping hypotheses. We proposed a web tool, Onto-CC, as an automatic method specially suited for independent explanation/validation of gene grouping hypotheses (e.g. coexpressed genes) based on GO clusters (i.e. expression versus GO). Onto-CC approach reduces the uncertainty of the queries by identifying optimal conceptual clusters that combine terms from different ontologies simultaneously, as well as terms defined at different levels of specificity in the GO hierarchy. To do so, we implemented the EMO-CC methodology to find clusters in structural databases [GO Directed acyclic Graph (DAG) tree], inspired on Conceptual Clustering algorithms. This approach allows the management of optimal cluster sets as potential parallel hypotheses, guided by multiobjective/multimodal optimization techniques. Therefore, we can generate alternative and, still, optimal explanations of queries that can provide new insights for a given problem. Onto-CC has been successfully used to test different medical and biological hypotheses including the explanation and prediction of

  12. Cluster Analysis of Tumor Suppressor Genes in Canine Leukocytes Identifies Activation State

    PubMed Central

    Daly, Julie-Anne; Mortlock, Sally-Anne; Taylor, Rosanne M.; Williamson, Peter

    2015-01-01

    Cells of the immune system undergo activation and subsequent proliferation in the normal course of an immune response. Infrequently, the molecular and cellular events that underlie the mechanisms of proliferation are dysregulated and may lead to oncogenesis, leading to tumor formation. The most common forms of immunological cancers are lymphomas, which in dogs account for 8%–20% of all cancers, affecting up to 1.2% of the dog population. Key genes involved in negatively regulating proliferation of lymphocytes include a group classified as tumor suppressor genes (TSGs). These genes are also known to be associated with progression of lymphoma in humans, mice, and dogs and are potential candidates for pathological grading and diagnosis. The aim of the present study was to analyze TSG profiles in stimulated leukocytes from dogs to identify genes that discriminate an activated phenotype. A total of 554 TSGs and three gene set collections were analyzed from microarray data. Cluster analysis of three subsets of genes discriminated between stimulated and unstimulated cells. These included 20 most upregulated and downregulated TSGs, TSG in hallmark gene sets significantly enriched in active cells, and a selection of candidate TSGs, p15 (CDKN2B), p18 (CDKN2C), p19 (CDKN1A), p21 (CDKN2A), p27 (CDKN1B), and p53 (TP53) in the third set. Analysis of two subsets suggested that these genes or a subset of these genes may be used as a specialized PCR set for additional analysis. PMID:27478369

  13. Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes.

    PubMed

    van Beilen, J B; Panke, S; Lucchini, S; Franchini, A G; Röthlisberger, M; Witholt, B

    2001-06-01

    The Pseudomonas putida GPo1 (commonly known as Pseudomonas oleovorans GPo1) alkBFGHJKL and alkST gene clusters, which encode proteins involved in the conversion of n-alkanes to fatty acids, are located end to end on the OCT plasmid, separated by 9.7 kb of DNA. This DNA segment encodes, amongst others, a methyl-accepting transducer protein (AlkN) that may be involved in chemotaxis to alkanes. In P. putida P1, the alkBFGHJKL and alkST gene clusters are flanked by almost identical copies of the insertion sequence ISPpu4, constituting a class 1 transposon. Other insertion sequences flank and interrupt the alk genes in both strains. Apart from the coding regions of the GPo1 and P1 alk genes (80-92% sequence identity), only the alkB and alkS promoter regions are conserved. Competition experiments suggest that highly conserved inverted repeats in the alkB and alkS promoter regions bind ALKS: PMID:11390693

  14. The small MbtH-like protein encoded by an internal gene of the balhimycin biosynthetic gene cluster is not required for glycopeptide production.

    PubMed

    Stegmann, Efthimia; Rausch, Christian; Stockert, Sigrid; Burkert, Daniel; Wohlleben, Wolfgang

    2006-09-01

    The balhimycin biosynthetic gene cluster of the glycopeptide producer Amycolatopsis balhimycina includes a gene (orf1) with unknown function. orf1 shows high similarity to the mbtH gene from Mycobacterium tuberculosis. In almost all nonribosomal peptide synthetase (NRPS) biosynthetic gene clusters, we could identify a small mbtH-like gene whose function in peptide biosynthesis is not known. The mbtH-like gene is always colocalized with the NRPS genes; however, it does not have a specific position in the gene cluster. In all glycopeptide biosynthetic gene clusters the orf1-like gene is always located downstream of the gene encoding the last module of the NRPS. We inactivated the orf1 gene in A. balhimycina by generating a deletion mutant. The balhimycin production is not affected in the orf1-deletion mutant and is indistinguishable from that of the wild type. For the first time, we show that the inactivation of an mbtH-like gene does not impair the biosynthesis of a nonribosomal peptide.

  15. cmdABCDEF, a cluster of genes encoding membrane proteins for differentiation and antibiotic production in Streptomyces coelicolor A3(2)

    PubMed Central

    2009-01-01

    Background Streptomyces coelicolor is the most studied Streptomyces species and an excellent model for studying differentiation and antibiotic production. To date, many genes have been identified to be required for its differentiation (e.g. bld genes for aerial growth and whi genes for sporulation) and antibiotics production (including actII-orf4, redD, cdaR as pathway-specific regulatory genes and afsR, absA1/A2 as pleiotropic regulatory genes). Results A gene cluster containing six genes (SCO4126-4131) was proved to be co-transcribed in S. coelicolor. Deletions of cmdABCDEF (SCO4126-4131) displayed defective sporulation including formation of aberrant branches, and abnormalities in chromosome segregation and spore septation. Disruption mutants of apparently orthologous genes of S. lividans and S. avermitilis also showed defective sporulation, implying that the role of these genes is similar among Streptomyces. Transcription of cmdB, and therefore presumably of the whole operon, was regulated developmentally. Five of the encoded proteins (CmdA, C, D, E, F) were predicted membrane proteins. The other, CmdB, a predicted ATP/GTP-binding protein with an ABC-transporter-ATPase domain shown here to be essential for its function, was also located on the cell membrane. These results indicate that CmdABCDEF proteins mainly affect Streptomyces differentiation at an early stage of aerial hyphae formation, and suggest that these proteins may form a complex on cell membrane for proper segregation of chromosomes. In addition, deletions of cmdABCDEF also revealed over-production of blue-pigmented actinorhodin (Act) via activation of transcription of the pathway-specific regulatory gene actII-orf4 of actinorhodin biosynthesis. Conclusion In this study, six co-transcribed genes cmdABCDEF were identified by their effects on differentiation and antibiotic production in Streptomyces coelicolor A3(2). These six membrane-located proteins are possibly assembled into a complex to

  16. [Expression of SM30 (A-F) Genes Encoding Spicule Matrix Proteins in Intact and Damaged Sea Urchin Strongylocentrotus intermedius (A. Agassiz, 1863) at the Six-Arm Pluteus].

    PubMed

    Sharmankina, V V; Kiselev, K V

    2016-03-01

    In this study we investigated expression of the SM30(A-F) gene family encoding Strongylocentrotus intermedius spicule matrix proteins during the normal and regenerative pluteus II stage (three pairs of arms). We found that SiSM30A and SiSM30B genes are expressed at high levels in the normal pluteus II sea urchin. SiSM30A is expression was also significantly upregulated in the reparative pluteus II stage 3 hours after damage. Conversely, SiSM30B was downregulated during the reparative pluteus II stage. Our findings reveal a substantial similarity between the activity of SiSM30A and SiSM30B activity in the processes of regenerative growth during the pluteus II stage and during normal development at the prism stage in Strongylocentrotus purpuratus. On the basis of our findings, we propose that normal developmental mechanisms corresponding to the preceding developmental stage are reactivated during pluteus regeneration.

  17. Identification and expression of an uncharacterized Ly-6 gene cluster in zebrafish Danio rerio.

    PubMed

    Guo, Quanyang; Ji, Dongrui; Wang, Man; Zhang, Shicui; Li, Hongyan

    2015-09-01

    The Ly-6/uPAR/CD59/neurotoxin superfamily (Ly-6SF) identified in most metazoan has been shown to play important roles in different biological processes including immunity, cellular adhesion, and cell signaling. Members of this superfamily contain one or more conserved domains known as Ly-6/uPAR (LU) domain, which harbors 8 or 10 conserved cysteine residues forming 4-5 disulfide bonds. In this study, we reported the identification of a novel zebrafish Ly-6 gene cluster on chromosome 21, which consists of seven genes ly21.1, ly21.2, ly21.3, ly21.4, ly21.5, ly21.6, and ly21.7 and their spatiotemporal expression pattern during development. All the seven genes possess features typical of the Ly-6/neurotoxin superfamily, and phylogenetic analysis shows that these genes form a single cluster branching form other members of Ly-6 family, suggesting that the seven genes evolved by an event of intra-chromosome gene duplication. However, deduced Ly21.1-7 proteins share little homology with Ly-6 family proteins from other species, no orthologs are identified in vertebrates, including teleosts, hinting that ly21.1-7 genes are evolutionarily a novel addition to zebrafish. Expression analyses show that maternal mRNAs of ly21.1-7 genes are detected during early developmental stages, but later in development, they exhibit tissue-specific expression. Except for ly21.2 which is expressed in the skin ionocytes, all the remaining six genes are mainly expressed in the developing brain.

  18. AF4 and AF4N protein complexes: recruitment of P-TEFb kinase, their interactome and potential functions

    PubMed Central

    Scholz, Bastian; Kowarz, Eric; Rössler, Tanja; Ahmad, Khalil; Steinhilber, Dieter; Marschalek, Rolf

    2015-01-01

    AF4/AFF1 and AF5/AFF4 are the molecular backbone to assemble “super-elongation complexes” (SECs) that have two main functions: (1) control of transcriptional elongation by recruiting the positive transcription elongation factor b (P-TEFb = CyclinT1/CDK9) that is usually stored in inhibitory 7SK RNPs; (2) binding of different histone methyltransferases, like DOT1L, NSD1 and CARM1. This way, transcribed genes obtain specific histone signatures (e.g. H3K79me2/3, H3K36me2) to generate a transcriptional memory system. Here we addressed several questions: how is P-TEFb recruited into SEC, how is the AF4 interactome composed, and what is the function of the naturally occuring AF4N protein variant which exhibits only the first 360 amino acids of the AF4 full-length protein. Noteworthy, shorter protein variants are a specific feature of all AFF protein family members. Here, we demonstrate that full-length AF4 and AF4N are both catalyzing the transition of P-TEFb from 7SK RNP to their N-terminal domain. We have also mapped the protein-protein interaction network within both complexes. In addition, we have first evidence that the AF4N protein also recruits TFIIH and the tumor suppressor MEN1. This indicate that AF4N may have additional functions in transcriptional initiation and in MEN1-dependend transcriptional processes. PMID:26171280

  19. The phn Genes of Burkholderia sp. Strain RP007 Constitute a Divergent Gene Cluster for Polycyclic Aromatic Hydrocarbon Catabolism

    PubMed Central

    Laurie, Andrew D.; Lloyd-Jones, Gareth

    1999-01-01

    Cloning and molecular ecological studies have underestimated the diversity of polycyclic aromatic hydrocarbon (PAH) catabolic genes by emphasizing classical nah-like (nah, ndo, pah, and dox) sequences. Here we report the description of a divergent set of PAH catabolic genes, the phn genes, which although isofunctional to the classical nah-like genes, show very low homology. This phn locus, which contains nine open reading frames (ORFs), was isolated on an 11.5-kb HindIII fragment from phenanthrene-degrading Burkholderia sp. strain RP007. The phn genes are significantly different in sequence and gene order from previously characterized genes for PAH degradation. They are transcribed by RP007 when grown at the expense of either naphthalene or phenanthrene, while in Escherichia coli the recombinant phn enzymes have been shown to be capable of oxidizing both naphthalene and phenanthrene to predicted metabolites. The locus encodes iron sulfur protein α and β subunits of a PAH initial dioxygenase but lacks the ferredoxin and reductase components. The dihydrodiol dehydrogenase of the RP007 pathway, PhnB, shows greater similarity to analogous dehydrogenases from described biphenyl pathways than to those characterized from naphthalene/phenanthrene pathways. An unusual extradiol dioxygenase, PhnC, shows no similarity to other extradiol dioxygenases for naphthalene or biphenyl oxidation but is the first member of the recently proposed class III extradiol dioxygenases that is specific for polycyclic arene diols. Upstream of the phn catabolic genes are two putative regulatory genes, phnR and phnS. Sequence homology suggests that phnS is a LysR-type transcriptional activator and that phnR, which is divergently transcribed with respect to phnSFECDAcAdB, is a member of the ς54-dependent family of positive transcriptional regulators. Reverse transcriptase PCR experiments suggest that this gene cluster is coordinately expressed and is under regulatory control which may involve

  20. Regulatory Feedback Loop of Two phz Gene Clusters through 5′-Untranslated Regions in Pseudomonas sp. M18

    PubMed Central

    Li, Yaqian; Du, Xilin; Lu, Zhi John; Wu, Daqiang; Zhao, Yilei; Ren, Bin; Huang, Jiaofang; Huang, Xianqing; Xu, Yuhong; Xu, Yuquan

    2011-01-01

    Background Phenazines are important compounds produced by pseudomonads and other bacteria. Two phz gene clusters called phzA1-G1 and phzA2-G2, respectively, were found in the genome of Pseudomonas sp. M18, an effective biocontrol agent, which is highly homologous to the opportunistic human pathogen P. aeruginosa PAO1, however little is known about the correlation between the expressions of two phz gene clusters. Methodology/Principal Findings Two chromosomal insertion inactivated mutants for the two gene clusters were constructed respectively and the correlation between the expressions of two phz gene clusters was investigated in strain M18. Phenazine-1-carboxylic acid (PCA) molecules produced from phzA2-G2 gene cluster are able to auto-regulate expression itself and activate the expression of phzA1-G1 gene cluster in a circulated amplification pattern. However, the post-transcriptional expression of phzA1-G1 transcript was blocked principally through 5′-untranslated region (UTR). In contrast, the phzA2-G2 gene cluster was transcribed to a lesser extent and translated efficiently and was negatively regulated by the GacA signal transduction pathway, mainly at a post-transcriptional level. Conclusions/Significance A single molecule, PCA, produced in different quantities by the two phz gene clusters acted as the functional mediator and the two phz gene clusters developed a specific regulatory mechanism which acts through 5′-UTR to transfer a single, but complex bacterial signaling event in Pseudomonas sp. strain M18. PMID:21559370

  1. Comparison of expression of secondary metabolite biosynthesis cluster genes in Aspergillus flavus, A. parasiticus, and A. oryzae.

    PubMed

    Ehrlich, Kenneth C; Mack, Brian M

    2014-06-01

    Fifty six secondary metabolite biosynthesis gene clusters are predicted to be in the Aspergillus flavus genome. In spite of this, the biosyntheses of only seven metabolites, including the aflatoxins, kojic acid, cyclopiazonic acid and aflatrem, have been assigned to a particular gene cluster. We used RNA-seq to compare expression of secondary metabolite genes in gene clusters for the closely related fungi A. parasiticus, A. oryzae, and A. flavus S and L sclerotial morphotypes. The data help to refine the identification of probable functional gene clusters within these species. Our results suggest that A. flavus, a prevalent contaminant of maize, cottonseed, peanuts and tree nuts, is capable of producing metabolites which, besides aflatoxin, could be an underappreciated contributor to its toxicity. PMID:24960201

  2. Comparison of Expression of Secondary Metabolite Biosynthesis Cluster Genes in Aspergillus flavus, A. parasiticus, and A. oryzae

    PubMed Central

    Ehrlich, Kenneth C.; Mack, Brian M.

    2014-01-01

    Fifty six secondary metabolite biosynthesis gene clusters are predicted to be in the Aspergillus flavus genome. In spite of this, the biosyntheses of only seven metabolites, including the aflatoxins, kojic acid, cyclopiazonic acid and aflatrem, have been assigned to a particular gene cluster. We used RNA-seq to compare expression of secondary metabolite genes in gene clusters for the closely related fungi A. parasiticus, A. oryzae, and A. flavus S and L sclerotial morphotypes. The data help to refine the identification of probable functional gene clusters within these species. Our results suggest that A. flavus, a prevalent contaminant of maize, cottonseed, peanuts and tree nuts, is capable of producing metabolites which, besides aflatoxin, could be an underappreciated contributor to its toxicity. PMID:24960201

  3. Comparison of expression of secondary metabolite biosynthesis cluster genes in Aspergillus flavus, A. parasiticus, and A. oryzae.

    PubMed

    Ehrlich, Kenneth C; Mack, Brian M

    2014-06-23

    Fifty six secondary metabolite biosynthesis gene clusters are predicted to be in the Aspergillus flavus genome. In spite of this, the biosyntheses of only seven metabolites, including the aflatoxins, kojic acid, cyclopiazonic acid and aflatrem, have been assigned to a particular gene cluster. We used RNA-seq to compare expression of secondary metabolite genes in gene clusters for the closely related fungi A. parasiticus, A. oryzae, and A. flavus S and L sclerotial morphotypes. The data help to refine the identification of probable functional gene clusters within these species. Our results suggest that A. flavus, a prevalent contaminant of maize, cottonseed, peanuts and tree nuts, is capable of producing metabolites which, besides aflatoxin, could be an underappreciated contributor to its toxicity.

  4. Hierarchical Clustering of Breast Cancer Methylomes Revealed Differentially Methylated and Expressed Breast Cancer Genes

    PubMed Central

    Lin, I-Hsuan; Chen, Dow-Tien; Chang, Yi-Feng; Lee, Yu-Ling; Su, Chia-Hsin; Cheng, Ching; Tsai, Yi-Chien; Ng, Swee-Chuan; Chen, Hsiao-Tan; Lee, Mei-Chen; Chen, Hong-Wei; Suen, Shih-Hui; Chen, Yu-Cheng; Liu, Tze-Tze; Chang, Chuan-Hsiung; Hsu, Ming-Ta

    2015-01-01

    Oncogenic transformation of normal cells often involves epigenetic alterations, including histone modification and DNA methylation. We conducted whole-genome bisulfite sequencing to determine the DNA methylomes of normal breast, fibroadenoma, invasive ductal carcinomas and MCF7. The emergence, disappearance, expansion and contraction of kilobase-sized hypomethylated regions (HMRs) and the hypomethylation of the megabase-sized partially methylated domains (PMDs) are the major forms of methylation changes observed in breast tumor samples. Hierarchical clustering of HMR revealed tumor-specific hypermethylated clusters and differential methylated enhancers specific to normal or breast cancer cell lines. Joint analysis of gene expression and DNA methylation data of normal breast and breast cancer cells identified differentially methylated and expressed genes associated with breast and/or ovarian cancers in cancer-specific HMR clusters. Furthermore, aberrant patterns of X-chromosome inactivation (XCI) was found in breast cancer cell lines as well as breast tumor samples in the TCGA BRCA (breast invasive carcinoma) dataset. They were characterized with differentially hypermethylated XIST promoter, reduced expression of XIST, and over-expression of hypomethylated X-linked genes. High expressions of these genes were significantly associated with lower survival rates in breast cancer patients. Comprehensive analysis of the normal and breast tumor methylomes suggests selective targeting of DNA methylation changes during breast cancer progression. The weak causal relationship between DNA methylation and gene expression observed in this study is evident of more complex role of DNA methylation in the regulation of gene expression in human epigenetics that deserves further investigation. PMID:25706888

  5. Identification and characterization of a dense cluster of placenta-specific cysteine peptidase genes and related genes on mouse chromosome 13.

    PubMed

    Deussing, Jan; Kouadio, Martin; Rehman, Salima; Werber, Ingrid; Schwinde, Anne; Peters, Christoph

    2002-02-01

    Genes encoding novel murine cysteine peptidases of the papain family C1A and related genes were cloned and mapped to mouse chromosome 13, colocalizing with the previously assigned cathepsin J gene. We constructed a <460-kb phage artificial chromosome (PAC) contig and characterized a dense cluster comprising eight C1A cysteine peptidase genes, cathepsins J, M, Q, R, -1, -2, -3, and -6; three pseudogenes of cathepsins M, -1, and -2; and four genes encoding putative cysteine peptidase inhibitors related to the proregion of C1A peptidases (trophoblast-specific proteins alpha and beta and cytotoxic T-lymphocyte-associated proteins 2alpha and -beta). Because of sequence homologies of 61.9-72.0% between cathepsin J and the other seven putative cysteine peptidases of the cluster, these peptidases are classified as "cathepsin J-like". The absence of cathepsin J-like peptidases and related genes from the human genome suggests that the cathepsin J cluster arose by partial and complete gene duplication events after the divergence of primate and rodent lineages. The expression of cathepsin J-like peptidases and related genes in the cluster is restricted to the placenta only. Clustered genes are induced at specific time points, and their expression increases toward the end of gestation. The specific expression pattern and high expression level suggest an essential role of cathepsin J-like peptidases and related genes in formation and development of the murine placenta.

  6. A system for the targeted amplification of bacterial gene clusters multiplies antibiotic yield in Streptomyces coelicolor.

    PubMed

    Murakami, Takeshi; Burian, Jan; Yanai, Koji; Bibb, Mervyn J; Thompson, Charles J

    2011-09-20

    Gene clusters found in bacterial species classified as Streptomyces encode the majority of known antibiotics as well as many pharmaceutically active compounds. A site-specific recombination system similar to those that mediate plasmid conjugation was engineered to catalyze tandem amplification of one of these gene clusters in a heterologous Streptomyces species. Three genetic elements were known to be required for DNA amplification in S. kanamyceticus: the oriT-like recombination sites RsA and RsB, and ZouA, a site-specific relaxase similar to TraA proteins that catalyze plasmid transfer. We inserted RsA and RsB sequences into the S. coelicolor genome flanking a cluster of 22 genes (act) responsible for biosynthesis of the polyketide antibiotic actinorhodin. Recombination between RsA and RsB generated zouA-dependent DNA amplification resulting in 4-12 tandem copies of the act gene cluster averaging nine repeats per genome. This resulted in a 20-fold increase in actinorhodin production compared with the parental strain. To determine whether the recombination event required taxon-specific genetic effectors or generalized bacterial recombination (recA), it was also analyzed in the heterologous host Escherichia coli. zouA was expressed under the control of an inducible promoter in wild-type and recA mutant strains. A plasmid was constructed with recombination sites RsA and RsB bordering a drug resistance marker. Induction of zouA expression generated hybrid RsB/RsA sites, evidence of site-specific recombination that occurred independently of recA. ZouA-mediated DNA amplification promises to be a valuable tool for increasing the activities of commercially important biosynthetic, degradative, and photosynthetic pathways in a wide variety of organisms.

  7. A system for the targeted amplification of bacterial gene clusters multiplies antibiotic yield in Streptomyces coelicolor

    PubMed Central

    Murakami, Takeshi; Burian, Jan; Yanai, Koji; Bibb, Mervyn J.; Thompson, Charles J.

    2011-01-01

    Gene clusters found in bacterial species classified as Streptomyces encode the majority of known antibiotics as well as many pharmaceutically active compounds. A site-specific recombination system similar to those that mediate plasmid conjugation was engineered to catalyze tandem amplification of one of these gene clusters in a heterologous Streptomyces species. Three genetic elements were known to be required for DNA amplification in S. kanamyceticus: the oriT-like recombination sites RsA and RsB, and ZouA, a site-specific relaxase similar to TraA proteins that catalyze plasmid transfer. We inserted RsA and RsB sequences into the S. coelicolor genome flanking a cluster of 22 genes (act) responsible for biosynthesis of the polyketide antibiotic actinorhodin. Recombination between RsA and RsB generated zouA-dependent DNA amplification resulting in 4–12 tandem copies of the act gene cluster averaging nine repeats per genome. This resulted in a 20-fold increase in actinorhodin production compared with the parental strain. To determine whether the recombination event required taxon-specific genetic effectors or generalized bacterial recombination (recA), it was also analyzed in the heterologous host Escherichia coli. zouA was expressed under the control of an inducible promoter in wild-type and recA mutant strains. A plasmid was constructed with recombination sites RsA and RsB bordering a drug resistance marker. Induction of zouA expression generated hybrid RsB/RsA sites, evidence of site-specific recombination that occurred independently of recA. ZouA-mediated DNA amplification promises to be a valuable tool for increasing the activities of commercially important biosynthetic, degradative, and photosynthetic pathways in a wide variety of organisms. PMID:21903924

  8. Identification and characterization of the carbapenem MM 4550 and its gene cluster in Streptomyces argenteolus ATCC 11009

    PubMed Central

    Li, Rongfeng; Lloyd, Evan P.; Moshos, Kristos A.

    2014-01-01

    Nearly 50 naturally-occurring carbapenem β-lactam antibiotics, most produced by Streptomyces, have been identified. The structural diversity of these compounds is limited to variance of the C-2 and C-6 side chains as well as the stereochemistry at C-5/C-6. These structural motifs are of interest both for their antibiotic effects and their biosynthesis. While the thienamycin gene cluster is the only active gene cluster publically available in this group, more comparative information is needed to understand the genetic basis of these structural differences. We report here the identification of MM 4550, a member of the olivanic acids, as the major carbapenem produced by S. argenteolus ATCC 11009. Its gene cluster was also identified by degenerate PCR and targeted gene inactivation. Sequence analysis revealed that genes encoding the biosynthesis of the bicyclic core and the C-6 and C-2 side chains are well conserved in the MM 4550 and thienamycin gene clusters. Three new genes, cmmSu, cmm17 and cmmPah were found in the new cluster and their putative functions in the sulfonation and epimerization of MM 4550 are proposed. Gene inactivation showed that, in addition to cmmI, two new genes, cmm22/23, encode a two-component response system thought to regulate the production of MM 4550. Overexpression of cmmI, cmm22 and cmm23 promoted MM 4550 production in an engineered strain. Finally, the involvement and putative roles of all genes in the MM 4550 cluster are proposed based on the results of bioinformatics analysis, gene inactivation, and analysis of disruption mutants. Overall, the differences between the thienamycin and MM 4550 gene clusters are reflected in characteristic structural elements and provide new insights into the biosynthesis of the complex carbapenems. PMID:24420617

  9. Comparative analysis of a conserved zinc finger gene cluster on human chromosome 19q and mouse chromosome 7

    SciTech Connect

    Shannon, M.; Mucenski, M.L.; Stubbs, L.

    1996-04-01

    Several lines of evidence now suggest that many of the zinc-finger-containing (ZNF) genes in the human genome are arranged in clusters. However, little is known about the structure or function of the clusters or about their conservation throughout evolution. Here, we report the analysis of a conserved ZNF gene cluster located in human chromosome 19q13.2 and mouse chromosome 7. Our results indicate that the human cluster consists of at least 10 related Kruppel-associated box (KRAB)-containing ZNF genes organized in tandem over a distance of 350-450 kb. Two cDNA clones representing genes in the murine cluster have been studied in detail. The KRAB A domains of these genes are nearly identical and are highly similar to human 19q13.2-derived KRAB sequences, but DNA-binding ZNF domains and other portions of the genes differ considerably. The two murine genes display distinct expression patterns, but are coexpressed in some adult tissues. These studies pave the way for a systematic analysis of the evolution of structure and function of genes within the numerous clustered ZNF families located on human chromosome 19 and elsewhere in the human and mouse genomes. 32 refs., 7 figs.

  10. Structure and gene cluster of the O-antigen of Escherichia coli O140.

    PubMed

    Perepelov, Andrei V; Wang, Quan; Senchenkova, Sof'ya N; Mei, Zhu; Shashkov, Alexander S; Wang, Lei; Knirel, Yuriy A

    2015-06-26

    An acidic O-polysaccharide (O-antigen) was isolated from the lipopolysaccharide of Escherichia coli O140 and studied by sugar analysis along with 1D and 2D (1)H and (13)C NMR spectroscopy. The following structure of the branched hexasaccharide repeating unit was established: [Formula: see text]. The O-antigen gene cluster of E. coli O140 was sequenced. The gene functions were tentatively assigned by a comparison with sequences in the available databases and found to be in full agreement with the E. coli O140 polysaccharide structure.

  11. Structure and gene cluster of the O-antigen of Escherichia coli O68.

    PubMed

    Jiang, Lingyan; Perepelov, Andrei V; Filatov, Andrei V; Liu, Bin; Shashkov, Alexander S; Senchenkova, Sof'ya N; Wang, Lei; Knirel, Yuriy A

    2014-10-01

    The O-polysaccharide (O-antigen) of Escherichia coli O68 was studied by sugar analysis, partial solvolysis with anhydrous trifluoroacetic acid, and 1D and 2D (1)H and (13)C NMR spectroscopies. The following structure of the branched heptasaccharide repeating unit was established: [structure: see text]. The O-antigen gene cluster of E. coli O68 was sequenced. The gene functions were tentatively assigned by comparison with sequences in the available databases and found to be in full agreement with the O-antigen structure.

  12. Structure and gene cluster of the O-antigen of Escherichia coli O43.

    PubMed

    Perepelov, Andrei V; Guo, Xi; Filatov, Andrei V; Liu, Bin; Knirel, Yuriy A

    2015-10-30

    The O-polysaccharide (O-antigen) of Escherichia coli O43 was isolated from the lipopolysaccharide and studied by chemical methods, including sugar analyses, Smith degradation, and solvolysis with anhydrous trifluoroacetic acid, along with (1)H and (13)C NMR spectroscopy. The following structure of the pentasaccharide repeating unit of the O-polysaccharide was established: [Formula: see text] Functions of genes in the O-antigen gene cluster of E. coli O43 were assigned by a comparison with sequences in the available databases and found to be in agreement with the O-polysaccharide structure.

  13. Localization of glucose-dependent insulinotropic polypeptide (GIP) to a gene cluster on chromosome 17q

    SciTech Connect

    Lewis, T.B.; Saenz, M.; O'Connell, P.; Leach, R.J. )

    1994-02-01

    Glucose-dependent insulinotropic polypeptide (GIP) has been regionally localized to a gene cluster on human chromosome 17q. Genetic mapping through CEPH reference families demonstrated that GIP was tightly linked to NME1 and PPY and fully linked to HOXB6 and NGFR. High-resolution radiation hybrid mapping resolved the gene order as cen-PPY-HOXB6-NGFR-GIP-NME1-tel. GIP maps distal to NGFR with an estimated distance of 250 kb. 12 refs., 1 fig., 1 fig.

  14. Biostatistical analysis of gene microarrays reveals diverse expression clusters between macaque subspecies in brain SIV infection.

    PubMed

    Kneitz, S; Meisner, F; Sopper, S; Kaiser, F; Grünblatt, E; Scheller, C; Riederer, P; ter Meulen, V; Koutsilieri, E

    2007-01-01

    In this study we investigated differences in the gene expression profiling of the brains of rhesus macaques that were uninfected or infected with SIV in the asymptomatic stage or AIDS. The main aim was to use biostatistical methods to classify brain gene expression following SIV infection, without consideration of the biological significance of the individual genes. We also used data from animals treated with different pharmacological substances such as dopaminergic drugs, N-methyl-D-aspartate (NMDA) antagonists or antioxidants during the early stage of infection as these animals exhibited an accelerated or attenuated neuropsychiatric disease progression. We found macaque subspecies to be a more important factor for disease classification based on gene expression profiling than clinical symptoms or neuropathological findings. It is noteworthy that SIV-infected pharmacologically-treated. Chinese animals clustered near uninfected animals independent on the outcome of the treatment, whereas untreated SIV infected animals were clustered in a separate subtree. It is clear from this study that NeuroAIDS is a diverse disease entity and that SIV brain genes can be differentially regulated, depending on the disease type as well as changed dependent on the monkey subspecies.

  15. Patterning in time and space: HoxB cluster gene expression in the developing chick embryo.

    PubMed

    Gouveia, Analuce; Marcelino, Hugo M; Gonçalves, Lisa; Palmeirim, Isabel; Andrade, Raquel P

    2015-01-01

    The developing embryo is a paradigmatic model to study molecular mechanisms of time control in Biology. Hox genes are key players in the specification of tissue identity during embryo development and their expression is under strict temporal regulation. However, the molecular mechanisms underlying timely Hox activation in the early embryo remain unknown. This is hindered by the lack of a rigorous temporal framework of sequential Hox expression within a single cluster. Herein, a thorough characterization of HoxB cluster gene expression was performed over time and space in the early chick embryo. Clear temporal collinearity of HoxB cluster gene expression activation was observed. Spatial collinearity of HoxB expression was evidenced in different stages of development and in multiple tissues. Using embryo explant cultures we showed that HoxB2 is cyclically expressed in the rostral presomitic mesoderm with the same periodicity as somite formation, suggesting a link between timely tissue specification and somite formation. We foresee that the molecular framework herein provided will facilitate experimental approaches aimed at identifying the regulatory mechanisms underlying Hox expression in Time and Space.

  16. Deciphering Tuberactinomycin Biosynthesis: Isolation, Sequencing, and Annotation of the Viomycin Biosynthetic Gene Cluster

    PubMed Central

    Thomas, Michael G.; Chan, Yolande A.; Ozanick, Sarah G.

    2003-01-01

    The tuberactinomycin antibiotics are essential components in the drug arsenal against Mycobacterium tuberculosis infections and are specifically used for the treatment of multidrug-resistant tuberculosis. These antibiotics are also being investigated for their targeting of the catalytic RNAs involved in viral replication and for the treatment of bacterial infections caused by methicillin-resistant Staphylococcus aureus strains and vancomycin-resistant enterococci. We report on the isolation, sequencing, and annotation of the biosynthetic gene cluster for one member of this antibiotic family, viomycin, from Streptomyces sp. strain ATCC 11861. This is the first gene cluster for a member of the tuberactinomycin family of antibiotics sequenced, and the information gained can be extrapolated to all members of this family. The gene cluster covers 36.3 kb of DNA and encodes 20 open reading frames that we propose are involved in the biosynthesis, regulation, export, and activation of viomycin, in addition to self-resistance to the antibiotic. These results enable us to predict the metabolic logic of tuberactinomycin production and begin steps toward the combinatorial biosynthesis of these antibiotics to complement existing chemical modification techniques to produce novel tuberactinomycin derivatives. PMID:12936980

  17. Chromatin boundary elements organize genomic architecture and developmental gene regulation in Drosophila Hox clusters.

    PubMed

    Ma, Zhibo; Li, Mo; Roy, Sharmila; Liu, Kevin J; Romine, Matthew L; Lane, Derrick C; Patel, Sapna K; Cai, Haini N

    2016-08-26

    The three-dimensional (3D) organization of the eukaryotic genome is critical for its proper function. Evidence suggests that extensive chromatin loops form the building blocks of the genomic architecture, separating genes and gene clusters into distinct functional domains. These loops are anchored in part by a special type of DNA elements called chromatin boundary elements (CBEs). CBEs were originally found to insulate neighboring genes by blocking influences of transcriptional enhancers or the spread of silent chromatin. However, recent results show that chromatin loops can also play a positive role in gene regulation by looping out intervening DNA and "delivering" remote enhancers to gene promoters. In addition, studies from human and model organisms indicate that the configuration of chromatin loops, many of which are tethered by CBEs, is dynamically regulated during cell differentiation. In particular, a recent work by Li et al has shown that the SF1 boundary, located in the Drosophila Hox cluster, regulates local genes by tethering different subsets of chromatin loops: One subset enclose a neighboring gene ftz, limiting its access by the surrounding Scr enhancers and restrict the spread of repressive histones during early embryogenesis; and the other loops subdivide the Scr regulatory region into independent domains of enhancer accessibility. The enhancer-blocking activity of these CBE elements varies greatly in strength and tissue distribution. Further, tandem pairing of SF1 and SF2 facilitate the bypass of distal enhancers in transgenic flies, providing a mechanism for endogenous enhancers to circumvent genomic interruptions resulting from chromosomal rearrangement. This study demonstrates how a network of chromatin boundaries, centrally organized by SF1, can remodel the 3D genome to facilitate gene regulation during development. PMID:27621770

  18. The complete coenzyme B12 biosynthesis gene cluster of Lactobacillus reuteri CRL1098.

    PubMed

    Santos, Filipe; Vera, Jose L; van der Heijden, René; Valdez, Graciela; de Vos, Willem M; Sesma, Fernando; Hugenholtz, Jeroen

    2008-01-01

    The coenzyme B(12) production pathway in Lactobacillus reuteri has been deduced using a combination of genetic, biochemical and bioinformatics approaches. The coenzyme B(12) gene cluster of Lb. reuteri CRL1098 has the unique feature of clustering together the cbi, cob and hem genes. It consists of 29 ORFs encoding the complete enzymic machinery necessary for de novo biosynthesis. Transcriptional analysis showed it to be expressed as two tandem transcripts of approximately 22 and 4 kb, carrying cobD, cbiABCDETFGHJ, cobA/hemD, cbiKLMNQOP, sirA, hemACBL, and cobUSC, hemD, cobT, respectively. Both transcripts appear to be similarly regulated, and under the conditions assayed are induced in the late-exponential growth phase. Evidence for a regulatory mechanism of negative feedback inhibition by vitamin B(12) itself was observed. Comparative genomics analysis of the coding sequences showed them to be most similar to those coding for the anaerobic coenzyme B(12) pathways previously characterized in a few representatives of the genera Listeria and Salmonella. This contrasts with the trusted species phylogeny and suggests horizontal gene transfer of the B(12) biosynthesis genes. G+C content and codon adaptation index analysis is suggestive that the postulated transfer of these genes was not a recent event. Additional comparative genomics and transcriptional analysis of the sequences acquired during this study suggests a functional link between coenzyme B(12) biosynthesis and reuterin production, which might be implicated in Lb. reuteri's success in colonizing the gastrointestinal tract. This information on gene organization, gene transcription and gene acquisition is relevant for the development of (fermented) foods and probiotics enriched in B(12). PMID:18174128

  19. Chromatin boundary elements organize genomic architecture and developmental gene regulation in Drosophila Hox clusters

    PubMed Central

    Ma, Zhibo; Li, Mo; Roy, Sharmila; Liu, Kevin J; Romine, Matthew L; Lane, Derrick C; Patel, Sapna K; Cai, Haini N

    2016-01-01

    The three-dimensional (3D) organization of the eukaryotic genome is critical for its proper function. Evidence suggests that extensive chromatin loops form the building blocks of the genomic architecture, separating genes and gene clusters into distinct functional domains. These loops are anchored in part by a special type of DNA elements called chromatin boundary elements (CBEs). CBEs were originally found to insulate neighboring genes by blocking influences of transcriptional enhancers or the spread of silent chromatin. However, recent results show that chromatin loops can also play a positive role in gene regulation by looping out intervening DNA and “delivering” remote enhancers to gene promoters. In addition, studies from human and model organisms indicate that the configuration of chromatin loops, many of which are tethered by CBEs, is dynamically regulated during cell differentiation. In particular, a recent work by Li et al has shown that the SF1 boundary, located in the Drosophila Hox cluster, regulates local genes by tethering different subsets of chromatin loops: One subset enclose a neighboring gene ftz, limiting its access by the surrounding Scr enhancers and restrict the spread of repressive histones during early embryogenesis; and the other loops subdivide the Scr regulatory region into independent domains of enhancer accessibility. The enhancer-blocking activity of these CBE elements varies greatly in strength and tissue distribution. Further, tandem pairing of SF1 and SF2 facilitate the bypass of distal enhancers in transgenic flies, providing a mechanism for endogenous enhancers to circumvent genomic interruptions resulting from chromosomal rearrangement. This study demonstrates how a network of chromatin boundaries, centrally organized by SF1, can remodel the 3D genome to facilitate gene regulation during development.

  20. Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis.

    PubMed Central

    de Ruyter, P G; Kuipers, O P; Beerthuyzen, M M; van Alen-Boerrigter, I; de Vos, W M

    1996-01-01

    The promoters in the nisin gene cluster nisABTCIPRKFEG of Lactococcus lactis were characterized by primer extension and transcriptional fusions to the Escherichia coli promoterless beta-glucuronidase gene (gusA). Three promoters preceding the nisA, nisR, and nisF genes, which all give rise to gusA expression in the nisin-producing strain L. lactis NZ9700, were identified. The transcriptional autoregulation of nisA by signal transduction involving the sensor histidine kinase NisK and the response regulator NisR has been demonstrated previously (0. P. Kuipers, M. M. Beerthuyzen, P. G. G. A. de Ruyter, E. J. Luesink, and W. M. de Vos, J. Biol. Chem. 270: 27299-27304, 1995), and therefore the possible nisin-dependent expression of gusA under control of the nisR and nisF promoters was also investigated. The nisR promoter was shown to direct nisin-independent gusA expression in L. lactis MG 1363, which is a nisin-transposon- and plasmid-free strain. L. lactis NZ9800, which does not produce nisin because of a deletion in the nisA gene, containing the nisF-gusA fusion plasmid, gave rise to beta-glucuronidase production only after induction by nisin. A similar regulation was found in L. lactis NZ3900, which contains a single copy of the nisR and nisK genes but no other genes of the nisin gene cluster. In contrast, when the nisK gene was disrupted, no beta-glucuronidase activity directed by the nisF promoter could be detected even after induction with nisin. These results show that, like the nisA promoter, the nisF promoter is nisin inducible. The nisF and nisA promoter sequences have significant similarities and contain a conserved region that could be important for transcriptional control. PMID:8655538

  1. Chromatin boundary elements organize genomic architecture and developmental gene regulation in Drosophila Hox clusters

    PubMed Central

    Ma, Zhibo; Li, Mo; Roy, Sharmila; Liu, Kevin J; Romine, Matthew L; Lane, Derrick C; Patel, Sapna K; Cai, Haini N

    2016-01-01

    The three-dimensional (3D) organization of the eukaryotic genome is critical for its proper function. Evidence suggests that extensive chromatin loops form the building blocks of the genomic architecture, separating genes and gene clusters into distinct functional domains. These loops are anchored in part by a special type of DNA elements called chromatin boundary elements (CBEs). CBEs were originally found to insulate neighboring genes by blocking influences of transcriptional enhancers or the spread of silent chromatin. However, recent results show that chromatin loops can also play a positive role in gene regulation by looping out intervening DNA and “delivering” remote enhancers to gene promoters. In addition, studies from human and model organisms indicate that the configuration of chromatin loops, many of which are tethered by CBEs, is dynamically regulated during cell differentiation. In particular, a recent work by Li et al has shown that the SF1 boundary, located in the Drosophila Hox cluster, regulates local genes by tethering different subsets of chromatin loops: One subset enclose a neighboring gene ftz, limiting its access by the surrounding Scr enhancers and restrict the spread of repressive histones during early embryogenesis; and the other loops subdivide the Scr regulatory region into independent domains of enhancer accessibility. The enhancer-blocking activity of these CBE elements varies greatly in strength and tissue distribution. Further, tandem pairing of SF1 and SF2 facilitate the bypass of distal enhancers in transgenic flies, providing a mechanism for endogenous enhancers to circumvent genomic interruptions resulting from chromosomal rearrangement. This study demonstrates how a network of chromatin boundaries, centrally organized by SF1, can remodel the 3D genome to facilitate gene regulation during development. PMID:27621770

  2. Early response of gene clusters is associated with mouse lung resistance or sensitivity to cigarette smoke.

    PubMed

    Cavarra, Eleonora; Fardin, Paolo; Fineschi, Silvia; Ricciardi, Annamaria; De Cunto, Giovanna; Sallustio, Fabio; Zorzetto, Michele; Luisetti, Maurizio; Pfeffer, Ulrich; Lungarella, Giuseppe; Varesio, Luigi

    2009-03-01

    We have investigated the effects of cigarette smoke exposure in three different strains of mice. DBA/2 and C57BL/6J are susceptible to smoke and develop different lung changes in response to chronic exposure, whereas ICR mice are resistant to smoke and do not develop emphysema. The present study was carried out to determine early changes in the gene expression profile of mice exposed to cigarette smoke with either a susceptible or resistant phenotype. The three strains of mice were exposed to smoke from three cigarettes per day, 5 days/wk, for 4 wk. Microarray analysis was carried out on total RNA extracted from the lung using the Affymetrix platform. Cigarette smoke modulates several clusters of genes (i.e., proemphysematous, acute phase response, and cell adhesion) in smoke-sensitive DBA/2 or C57BL/6J strains, but the same genes are not altered by smoke in ICR resistant mice. Only a few genes were commonly modulated by smoke in the three strains of mice. This pattern of gene expression suggests that the response to smoke is strain-dependent and may involve different molecular signaling pathways. Real-time quantitative PCR was used to verify the pattern of modulation of selected genes and their potential biological relevance. We conclude that gene expression response to smoke is highly dependent on the mouse genetic background. We speculate that the definition of gene clusters associated, to various degrees, with mouse susceptibility or resistance to smoke may be instrumental in defining the molecular basis of the individual response to smoke-induced lung injury in humans.

  3. Interplay between pathway-specific and global regulation of the fumonisin gene cluster in the rice pathogen Fusarium fujikuroi.

    PubMed

    Rösler, Sarah M; Sieber, Christian M K; Humpf, Hans-Ulrich; Tudzynski, Bettina

    2016-07-01

    The rice pathogenic fungus Fusarium fujikuroi is known to produce a large variety of secondary metabolites. Besides the gibberellins, causing the bakanae effect in infected rice seedlings, the fungus produces several mycotoxins and pigments. Among the 47 putative secondary metabolite gene clusters identified in the genome of F. fujikuroi, the fumonisin gene cluster (FUM) shows very high homology to the FUM cluster of the main fumonisin producer Fusarium verticillioides, a pathogen of maize. Despite the high level of cluster gene conservation, total fumonisin FB1 and FB2 levels (FBx) produced by F. fujikuroi were only 1-10 % compared to F. verticillioides under inducing conditions. Nitrogen repression was found to be relevant for wild-type strains of both species. However, addition of germinated maize kernels activated the FBx production only in F. verticillioides, reflecting the different host specificity of both wild-type strains. Over-expression of the pathway-specific transcription factor Fum21 in F. fujikuroi strongly activated the FUM cluster genes leading to 1000-fold elevated FBx levels. To gain further insights into the nitrogen metabolite repression of FBx biosynthesis, we studied the impact of the global nitrogen regulators AreA and AreB and demonstrated that both GATA-type transcription factors are essential for full activation of the FUM gene cluster. Loss of one of them obstructs the pathway-specific transcription factor Fum21 to fully activate expression of FUM cluster genes.

  4. Effect of floral cluster pruning on anthocyanin levels and anthocyanain-related gene expression in ‘Houman’ grape

    PubMed Central

    Zhang, Lei; Xu, Yan-shuai; Jia, Yue; Wang, Ji-yuan; Yuan, Yue; Yu, Yang; Tao, Jian-min

    2016-01-01

    Lateral floral clusters were removed from the main axis of the floral clusters of ‘Houman’ grape plants, leaving only 3–5-cm-long region of flowers at the end of the central axis. The floral clusters were pruned at 7 days prior to flowering. The effect of the pruning on fruit quality was assessed by determining the composition and levels of anthocyanins in the fruit and anthocyanin-related gene expression. Results indicated that floral cluster pruning significantly improved the quality of the fruit by increasing berry size, fruit weight and the total content of soluble solids. Floral cluster pruning also decreased the level of titratable acidity. Sixteen different anthocyanins were detected in fruit of the pruned clusters, while only 15 were detected in fruit from unpruned clusters. The level of anthocyanins was also significantly higher in fruit of the pruned clusters than in the unpruned clusters. Anthocyanin-related gene expression was also significantly upregulated to a higher level in fruit from pruned floral clusters as compared with unpruned clusters. The upregulation was closely associated with increases in anthocyanin biosynthesis. PMID:27555920

  5. Effect of floral cluster pruning on anthocyanin levels and anthocyanain-related gene expression in 'Houman' grape.

    PubMed

    Zhang, Lei; Xu, Yan-Shuai; Jia, Yue; Wang, Ji-Yuan; Yuan, Yue; Yu, Yang; Tao, Jian-Min

    2016-01-01

    Lateral floral clusters were removed from the main axis of the floral clusters of 'Houman' grape plants, leaving only 3-5-cm-long region of flowers at the end of the central axis. The floral clusters were pruned at 7 days prior to flowering. The effect of the pruning on fruit quality was assessed by determining the composition and levels of anthocyanins in the fruit and anthocyanin-related gene expression. Results indicated that floral cluster pruning significantly improved the quality of the fruit by increasing berry size, fruit weight and the total content of soluble solids. Floral cluster pruning also decreased the level of titratable acidity. Sixteen different anthocyanins were detected in fruit of the pruned clusters, while only 15 were detected in fruit from unpruned clusters. The level of anthocyanins was also significantly higher in fruit of the pruned clusters than in the unpruned clusters. Anthocyanin-related gene expression was also significantly upregulated to a higher level in fruit from pruned floral clusters as compared with unpruned clusters. The upregulation was closely associated with increases in anthocyanin biosynthesis. PMID:27555920

  6. The Lineage-Specific Evolution of Aquaporin Gene Clusters Facilitated Tetrapod Terrestrial Adaptation

    PubMed Central

    Finn, Roderick Nigel; Chauvigné, François; Hlidberg, Jón Baldur; Cutler, Christopher P.; Cerdà, Joan

    2014-01-01

    A major physiological barrier for aquatic organisms adapting to terrestrial life is dessication in the aerial environment. This barrier was nevertheless overcome by the Devonian ancestors of extant Tetrapoda, but the origin of specific molecular mechanisms that solved this water problem remains largely unknown. Here we show that an ancient aquaporin gene cluster evolved specifically in the sarcopterygian lineage, and subsequently diverged into paralogous forms of AQP2, -5, or -6 to mediate water conservation in extant Tetrapoda. To determine the origin of these apomorphic genomic traits, we combined aquaporin sequencing from jawless and jawed vertebrates with broad taxon assembly of >2,000 transcripts amongst 131 deuterostome genomes and developed a model based upon Bayesian inference that traces their convergent roots to stem subfamilies in basal Metazoa and Prokaryota. This approach uncovered an unexpected diversity of aquaporins in every lineage investigated, and revealed that the vertebrate superfamily consists of 17 classes of aquaporins (Aqp0 - Aqp16). The oldest orthologs associated with water conservation in modern Tetrapoda are traced to a cluster of three aqp2-like genes in Actinistia that likely arose >500 Ma through duplication of an aqp0-like gene present in a jawless ancestor. In sea lamprey, we show that aqp0 first arose in a protocluster comprised of a novel aqp14 paralog and a fused aqp01 gene. To corroborate these findings, we conducted phylogenetic analyses of five syntenic nuclear receptor subfamilies, which, together with observations of extensive genome rearrangements, support the coincident loss of ancestral aqp2-like orthologs in Actinopterygii. We thus conclude that the divergence of sarcopterygian-specific aquaporin gene clusters was permissive for the evolution of water conservation mechanisms that facilitated tetrapod terrestrial adaptation. PMID:25426855

  7. Beta S-gene-cluster haplotypes in sickle cell anemia: clinical implications.

    PubMed

    Powars, D R; Chan, L; Schroeder, W A

    1990-01-01

    Restriction endonuclease analysis was used to detect alpha-gene deletions and to determine the haplotypes in the DNA of the beta S-gene-cluster [Benin, Central African Republic (CAR), and Senegal] in 221 patients with sickle cell anemia (SS). The clinical expression of SS was modified by the beta S-gene-cluster polymorphisms and the alpha-gene status (alpha-thalassemia-2). The overall risk of soft tissue organ failure caused by the obliterative sickle vasculopathy (including stroke, renal failure, chronic lung disease with cor pulmonale, leg ulcers, and young adult death) was increased threefold in those with a CAR haplotype and was decreased in those with a Senegalese chromosome (p = 0.003). In the presence of a Senegalese haplotype, the patient's health is better, and with the CAR haplotype it is always worse. With the Benin, it is intermediate. Acute recurrent clinical events including hospitalized sickle cell crisis, bone infarction, and infection are decreased in frequency in those with a Senegalese haplotype. The risk of most acute events including acute chest syndrome is equivalent in those with Benin or CAR haplotypes. In the United States, alpha-thalassemia-2 is co-inherited randomly among the beta S-gene-cluster haplotypes. Acute events occurring during childhood are minimally effected by this co-inheritance. The risk of soft tissue organ failure is decreased. After the age of 20 years, painful episodes of the lumbar dorsal area are increased in patients who had alpha-thalassemia-2 in association with degenerative bone disease.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Alanylclavam Biosynthetic Genes Are Clustered Together with One Group of Clavulanic Acid Biosynthetic Genes in Streptomyces clavuligerus▿ §

    PubMed Central

    Zelyas, Nathan J.; Cai, Hui; Kwong, Thomas; Jensen, Susan E.

    2008-01-01

    Streptomyces clavuligerus produces at least five different clavam metabolites, including clavulanic acid and the methionine antimetabolite, alanylclavam. In vitro transposon mutagenesis was used to analyze a 13-kb region upstream of the known paralogue gene cluster. The paralogue cluster includes one group of clavulanic acid biosynthetic genes in S. clavuligerus. Twelve open reading frames (ORFs) were found in this area, and mutants were generated in each using either in vitro transposon or PCR-targeted mutagenesis. Mutants with defects in any of the genes orfA, orfB, orfC, or orfD were unable to produce alanylclavam but could produce all of the other clavams, including clavulanic acid. orfA encodes a predicted hydroxymethyltransferase, orfB encodes a YjgF/YER057c/UK114-family regulatory protein, orfC encodes an aminotransferase, and orfD encodes a dehydratase. All of these types of proteins are normally involved in amino acid metabolism. Mutants in orfC or orfD also accumulated a novel clavam metabolite instead of alanylclavam, and a complemented orfC mutant was able to produce trace amounts of alanylclavam while still producing the novel clavam. Mass spectrometric analyses, together with consideration of the enzymes involved in its production, led to tentative identification of the novel clavam as 8-OH-alanylclavam, an intermediate in the proposed alanylclavam biosynthetic pathway. PMID:18931110

  9. Clustering of Two Genes Putatively Involved in Cyanate Detoxification Evolved Recently and Independently in Multiple Fungal Lineages

    PubMed Central

    Elmore, M. Holly; McGary, Kriston L.; Wisecaver, Jennifer H.; Slot, Jason C.; Geiser, David M.; Sink, Stacy; O’Donnell, Kerry; Rokas, Antonis

    2015-01-01

    Fungi that have the enzymes cyanase and carbonic anhydrase show a limited capacity to detoxify cyanate, a fungicide employed by both plants and humans. Here, we describe a novel two-gene cluster that comprises duplicated cyanase and carbonic anhydrase copies, which we name the CCA gene cluster, trace its evolution across Ascomycetes, and examine the evolutionary dynamics of its spread among lineages of the Fusarium oxysporum species complex (hereafter referred to as the FOSC), a cosmopolitan clade of purportedly clonal vascular wilt plant pathogens. Phylogenetic analysis of fungal cyanase and carbonic anhydrase genes reveals that the CCA gene cluster arose independently at least twice and is now present in three lineages, namely Cochliobolus lunatus, Oidiodendron maius, and the FOSC. Genome-wide surveys within the FOSC indicate that the CCA gene cluster varies in copy number across isolates, is always located on accessory chromosomes, and is absent in FOSC’s closest relatives. Phylogenetic reconstruction of the CCA gene cluster in 163 FOSC strains from a wide variety of hosts suggests a recent history of rampant transfers between isolates. We hypothesize that the independent formation of the CCA gene cluster in different fungal lineages and its spread across FOSC strains may be associated with resistance to plant-produced cyanates or to use of cyanate fungicides in agriculture. PMID:25663439

  10. Clustering of two genes putatively involved in cyanate detoxification evolved recently and independently in multiple fungal lineages.

    PubMed

    Elmore, M Holly; McGary, Kriston L; Wisecaver, Jennifer H; Slot, Jason C; Geiser, David M; Sink, Stacy; O'Donnell, Kerry; Rokas, Antonis

    2015-03-01

    Fungi that have the enzymes cyanase and carbonic anhydrase show a limited capacity to detoxify cyanate, a fungicide employed by both plants and humans. Here, we describe a novel two-gene cluster that comprises duplicated cyanase and carbonic anhydrase copies, which we name the CCA gene cluster, trace its evolution across Ascomycetes, and examine the evolutionary dynamics of its spread among lineages of the Fusarium oxysporum species complex (hereafter referred to as the FOSC), a cosmopolitan clade of purportedly clonal vascular wilt plant pathogens. Phylogenetic analysis of fungal cyanase and carbonic anhydrase genes reveals that the CCA gene cluster arose independently at least twice and is now present in three lineages, namely Cochliobolus lunatus, Oidiodendron maius, and the FOSC. Genome-wide surveys within the FOSC indicate that the CCA gene cluster varies in copy number across isolates, is always located on accessory chromosomes, and is absent in FOSC's closest relatives. Phylogenetic reconstruction of the CCA gene cluster in 163 FOSC strains from a wide variety of hosts suggests a recent history of rampant transfers between isolates. We hypothesize that the independent formation of the CCA gene cluster in different fungal lineages and its spread across FOSC strains may be associated with resistance to plant-produced cyanates or to use of cyanate fungicides in agriculture.

  11. Overproduction of Ristomycin A by Activation of a Silent Gene Cluster in Amycolatopsis japonicum MG417-CF17

    PubMed Central

    Spohn, Marius; Kirchner, Norbert; Kulik, Andreas; Jochim, Angelika; Wolf, Felix; Muenzer, Patrick; Borst, Oliver; Gross, Harald; Wohlleben, Wolfgang

    2014-01-01

    The emergence of antibiotic-resistant pathogenic bacteria within the last decades is one reason for the urgent need for new antibacterial agents. A strategy to discover new anti-infective compounds is the evaluation of the genetic capacity of secondary metabolite producers and the activation of cryptic gene clusters (genome mining). One genus known for its potential to synthesize medically important products is Amycolatopsis. However, Amycolatopsis japonicum does not produce an antibiotic under standard laboratory conditions. In contrast to most Amycolatopsis strains, A. japonicum is genetically tractable with different methods. In order to activate a possible silent glycopeptide cluster, we introduced a gene encoding the transcriptional activator of balhimycin biosynthesis, the bbr gene from Amycolatopsis balhimycina (bbrAba), into A. japonicum. This resulted in the production of an antibiotically active compound. Following whole-genome sequencing of A. japonicum, 29 cryptic gene clusters were identified by genome mining. One of these gene clusters is a putative glycopeptide biosynthesis gene cluster. Using bioinformatic tools, ristomycin (syn. ristocetin), a type III glycopeptide, which has antibacterial activity and which is used for the diagnosis of von Willebrand disease and Bernard-Soulier syndrome, was deduced as a possible product of the gene cluster. Chemical analyses by high-performance liquid chromatography and mass spectrometry (HPLC-MS), tandem mass spectrometry (MS/MS), and nuclear magnetic resonance (NMR) spectroscopy confirmed the in silico prediction that the recombinant A. japonicum/pRM4-bbrAba synthesizes ristomycin A. PMID:25114137

  12. Localization and physical mapping of a plasmid-borne 23-kb nif gene cluster from Enterobacter agglomerans showing homology to the entire nif gene cluster of Klebsiella pneumoniae M5a1.

    PubMed

    Singh, M; Kreutzer, R; Acker, G; Klingmüller, W

    1988-01-01

    A physical and genetical map of the plasmid pEA3 indigenous to Enterobacter agglomerans is presented. pEA3 is a 111-kb large plasmid containing a 23-kb large cluster of nif genes which shows extensive homology (Southern hybridization and heteroduplex analysis) to the entire nif gene cluster of Klebsiella pneumoniae (Kp) M5a1. All the nif genes on pEA3 are organized in the same manner as in K. pneumoniae, except nifJ, which is located on the left end of pEA3 nif gene cluster (near nifQB). A BamHI restriction map of pEA3 and a detailed restriction map of the 23-kb nif region on pEA3 is also presented. The nif genes of pEA3 showed a low level of acetylene reduction in Escherichia coli, demonstrating that these genes are functional and contain the whole genetic information required to fix nitrogen. The origin of vegetative replication (OriV) of pEA3 was localized about 5.5 kb from the right end of the nif gene cluster. In addition to pEA3, large plasmids from four other strains of E. agglomerans showed homology to all the Kp nif genes tested, indicating that in diazotrophic strains of E. agglomerans nif genes are usually located on plasmids. In contrast, in most of the free-living, nitrogen-fixing bacteria the nif genes are on chromosome.

  13. Human ribosomal RNA gene cluster: Identification of the proximal end containing a novel tandem repeat sequence

    SciTech Connect

    Sakai, K.; Ohta, T.; Minoshima, S.

    1995-04-10

    Human ribosomal RNA genes (rDNA) are arranged as tandem repeat clusters on the short arms of five pairs of acrocentric chromosomes. We have demonstrated that a majority of the rDNA clusters are detected as 3-Mb DNA fragments when released from human genomic DNA by EcoRV digestion. This indicated the absence of the EcoRV restriction site within the rDNA clusters. We then screened for rDNA-positive cosmid clones using a chromosome 22-specific cosmid library that was constructed from MboI partial digests of the flow-sorted chromosomes. Three hundred twenty rDNA-positive clones negative for the previously reported distal flanking sequence (pACR1) were chosen and subjected to EcoRV digestion. Seven clones susceptible to EcoRV were further characterized as candidate clones that might have been derived from the junctions of the 3-Mb rDNA cluster. We identified one clone containing part of the rDNA unit sequence and a novel flanking sequence. Detailed analysis of this unique clone revealed that the coding region of the last rRNA gene located at the proximal end of the cluster is interrupted with a novel sequence of {approximately}147 bp that is tandemly repeated and is connected with an intervening 68-bp unique sequence. This junction sequence was readily amplified from chromosomes 21 and 15 as well as 22 using the polymerase chain reaction. Fluorescence in situ hybridization further indicated that the {approximately}147-bp sequence repeat is commonly distributed among all the acrocentric short arms. 23 refs., 5 figs.

  14. Organization, structure, and evolution of the nonadult rat beta-globin gene cluster.

    PubMed

    Satoh, H; Inokuchi, N; Nagae, Y; Okazaki, T

    1999-07-01

    The beta-globin gene cluster of Wistar rat was extensively cloned and the embryonic genes were mapped and sequenced. Four overlapping lambda Dash recombinant clones cover about 31 kb and contain four nonadult beta-globin genes, 5'-epsilon1-gamma1-gamma2-psigamma3-3'. The epsilon1 and gamma2 are active genes, since their protein products were detected in the fetal stage of the rat (Iwahara et al., J Biochem 119:360-366, 1996). The gamma1 locus might be a pseudogene, since the ATA box in the promoter region is mutated to GTA; however, no other defect is observed. The psigamma3 locus is a truncated pseudogene because a 19-base deletion, which causes a shift of the reading frame, is observed between the second nucleotide of the putative codon 68 and codon 76. A sequence comparison suggests that the psigamma3 might be produced by a gene conversion event of the proto-gamma-globin gene set. Possible histories of the evolution of rat nonadult beta-globin genes are discussed.

  15. Identification and Functional Analysis of the Mycophenolic Acid Gene Cluster of Penicillium roqueforti

    PubMed Central

    Del-Cid, Abdiel; Gil-Durán, Carlos; Vaca, Inmaculada; Rojas-Aedo, Juan F.; García-Rico, Ramón O.; Levicán, Gloria; Chávez, Renato

    2016-01-01

    The filamentous fungus Penicillium roqueforti is widely known as the ripening agent of blue-veined cheeses. Additionally, this fungus is able to produce several secondary metabolites, including the meroterpenoid compound mycophenolic acid (MPA). Cheeses ripened with P. roqueforti are usually contaminated with MPA. On the other hand, MPA is a commercially valuable immunosuppressant. However, to date the molecular basis of the production of MPA by P. roqueforti is still unknown. Using a bioinformatic approach, we have identified a genomic region of approximately 24.4 kbp containing a seven-gene cluster that may be involved in the MPA biosynthesis in P. roqueforti. Gene silencing of each of these seven genes (named mpaA, mpaB, mpaC, mpaDE, mpaF, mpaG and mpaH) resulted in dramatic reductions in MPA production, confirming that all of these genes are involved in the biosynthesis of the compound. Interestingly, the mpaF gene, originally described in P. brevicompactum as a MPA self-resistance gene, also exerts the same function in P. roqueforti, suggesting that this gene has a dual function in MPA metabolism. The knowledge of the biosynthetic pathway of MPA in P. roqueforti will be important for the future control of MPA contamination in cheeses and the improvement of MPA production for commercial purposes. PMID:26751579

  16. Gene clusters for beta-lactam antibiotics and control of their expression: why have clusters evolved, and from where did they originate?

    PubMed

    Liras, Paloma; Martín, Juan F

    2006-03-01

    While beta-lactam compounds were discovered in filamentous fungi, actinomycetes and gram-negative bacteria are also known to produce different types of beta-lactams. All beta-lactam compounds contain a four-membered beta-lactam ring. The structure of their second ring allows these compounds to be classified into penicillins, cephalosporins, clavams, carbapenens or monobactams. Most beta-lactams inhibits bacterial cell wall biosynthesis but others behave as beta-lactamase inhibitors (e.g., clavulanic acid) and even as antifungal agents (e.g., some clavams). Due to the nature of the second ring in beta-lactam molecules, the precursors and biosynthetic pathways of clavams, carbapenems and monobactams differ from those of penicillins and cephalosporins. These last two groups, including cephamycins and cephabacins, are formed from three precursor amino acids that are linked into the alpha-aminoadipyl-L-cysteinyl-D-valine tripeptide. The first two steps of their biosynthetic pathways are common. The intermediates of these pathways, the characteristics of the enzymes involved, the lack of introns in the genes and bioinformatic analysis suggest that all of them should have evolved from an ancestral gene cluster of bacterial origin, which was surely transferred horizontally in the soil from producer to non-producer microorganisms. The receptor strains acquired fragments of the original bacterial cluster and occasionally inserted new genes into the clusters, which once modified, acquired new functions and gave rise to the final compounds that we know. When the order of genes in the Streptomyces genome is analyzed, the antibiotic gene clusters are highlighted as gene islands in the genome. Nonetheless, the assemblage of the ancestral beta-lactam gene cluster remains a matter of speculation. PMID:16636985

  17. Cloning, sequencing, and functional analysis of the biosynthetic gene cluster of macrolactam antibiotic vicenistatin in Streptomyces halstedii.

    PubMed

    Ogasawara, Yasushi; Katayama, Kinya; Minami, Atsushi; Otsuka, Miyuki; Eguchi, Tadashi; Kakinuma, Katsumi

    2004-01-01

    Vicenistatin, an antitumor antibiotic isolated from Streptomyces halstedii, is a unique 20-membered macrocyclic lactam with a novel aminosugar vicenisamine. The vicenistatin biosynthetic gene cluster (vin) spanning approximately 64 kbp was cloned and sequenced. The cluster contains putative genes for the aglycon biosynthesis including four modular polyketide synthases (PKSs), glutamate mutase, acyl CoA-ligase, and AMP-ligase. Also found in the cluster are genes of NDP-hexose 4,6-dehydratase and aminotransferase for vicenisamine biosynthesis. For the functional confirmation of the cluster, a putative glycosyltransferase gene product, VinC, was heterologously expressed, and the vicenisamine transfer reaction to the aglycon was chemically proved. A unique feature of the vicenistatin PKS is that the loading module contains only an acyl carrier protein domain, in contrast to other known PKS-loading modules containing certain activation domains. Activation of the starter acyl group by separate polypeptides is postulated as well. PMID:15112997

  18. Generation of New Complestatin Analogues by Heterologous Expression of the Complestatin Biosynthetic Gene Cluster from Streptomyces chartreusis AN1542.

    PubMed

    Park, Ok-Kyung; Choi, Ha-Young; Kim, Geon-Woo; Kim, Won-Gon

    2016-09-15

    The heterologous expression of the biosynthetic gene cluster (BGC) of natural products enables the production of complex metabolites in a well-characterized host, and facilitates the generation of novel analogues by the manipulation of the genes. However, the BGCs of glycopeptides such as vancomycin, teicoplanin, and complestatin are usually too large to be directly cloned into a single cosmid. Here, we describe the heterologous expression of the complestatin BGC. The 54.5 kb cluster was fully reconstituted from two overlapping cosmids into one cosmid by λ-RED recombination-mediated assembly. Heterologous expression of the assembled gene cluster in Streptomyces lividans TK24 resulted in the production of complestatin. Deletion of cytochrome P450 monooxygenase genes (open reading frames 10 and 11) and heterologous expression of the modified clusters led to the production of two new monocyclic and linear derivatives, complestatins M55 and S56. PMID:27383040

  19. Transcription of histone gene cluster by differential core-promoter factors

    PubMed Central

    Isogai, Yoh; Keles, Sündüz; Prestel, Matthias; Hochheimer, Andreas; Tjian, Robert

    2007-01-01

    The 100 copies of tandemly arrayed Drosophila linker (H1) and core (H2A/B and H3/H4) histone gene cluster are coordinately regulated during the cell cycle. However, the molecular mechanisms that must allow differential transcription of linker versus core histones prevalent during development remain elusive. Here, we used fluorescence imaging, biochemistry, and genetics to show that TBP (TATA-box-binding protein)-related factor 2 (TRF2) selectively regulates the TATA-less Histone H1 gene promoter, while TBP/TFIID targets core histone transcription. Importantly, TRF2-depleted polytene chromosomes display severe chromosomal structural defects. This selective usage of TRF2 and TBP provides a novel mechanism to differentially direct transcription within the histone cluster. Moreover, genome-wide chromatin immunoprecipitation (ChIP)-on-chip analyses coupled with RNA interference (RNAi)-mediated functional studies revealed that TRF2 targets several classes of TATA-less promoters of >1000 genes including those driving transcription of essential chromatin organization and protein synthesis genes. Our studies establish that TRF2 promoter recognition complexes play a significantly more central role in governing metazoan transcription than previously appreciated. PMID:17978101

  20. Highly repetitive tRNA(Pro)-tRNA(His) gene cluster from Photobacterium phosphoreum.

    PubMed Central

    Giroux, S; Beaudet, J; Cedergren, R

    1988-01-01

    A DNA fragment comprising the four tRNA gene sequences of the Escherichia coli argT locus hybridized with two Sau3A-generated DNA fragments from the vibrio Photobacterium phosphoreum (ATCC 11040). Detailed sequence analysis of the longer fragment shows the following gene organization: 5'-promoter-tRNA(Pro)-tRNAPro-tRNA(Pro)-tRNA(His)-tRNA(Pro)-tRNA(Pro)- tRNA(His)-tRNA(Pro)-five pseudogenes derived from the upstream tRNAPro interspersed by putative Rho-independent terminators. This sequence demonstrates the presence of highly repetitive, tandem tRNA genes in a bacterial genome. Furthermore, a stretch of 304 nucleotides from this cluster was found virtually unchanged in the other (shorter) fragment which was previously sequenced. The two clusters together contain eight tRNA(Pro) pseudogenes and eight fully intact tRNA(Pro) genes, an unusually high number for a single eubacterial isoacceptor tRNA. These results show that the organization of some tRNA operons is highly variable in eubacteria. Images PMID:3056906

  1. The Human Paraoxonase Gene Cluster As a Target in the Treatment of Atherosclerosis

    PubMed Central

    She, Zhi-Gang; Chen, Hou-Zao; Yan, Yunfei; Li, Hongliang

    2012-01-01

    Abstract The paraoxonase (PON) gene cluster contains three adjacent gene members, PON1, PON2, and PON3. Originating from the same fungus lactonase precursor, all of the three PON genes share high sequence identity and a similar β propeller protein structure. PON1 and PON3 are primarily expressed in the liver and secreted into the serum upon expression, whereas PON2 is ubiquitously expressed and remains inside the cell. Each PON member has high catalytic activity toward corresponding artificial organophosphate, and all exhibit activities to lactones. Therefore, all three members of the family are regarded as lactonases. Under physiological conditions, they act to degrade metabolites of polyunsaturated fatty acids and homocysteine (Hcy) thiolactone, among other compounds. By detoxifying both oxidized low-density lipoprotein and Hcy thiolactone, PONs protect against atherosclerosis and coronary artery diseases, as has been illustrated by many types of in vitro and in vivo experimental evidence. Clinical observations focusing on gene polymorphisms also indicate that PON1, PON2, and PON3 are protective against coronary artery disease. Many other conditions, such as diabetes, metabolic syndrome, and aging, have been shown to relate to PONs. The abundance and/or activity of PONs can be regulated by lipoproteins and their metabolites, biological macromolecules, pharmacological treatments, dietary factors, and lifestyle. In conclusion, both previous results and ongoing studies provide evidence, making the PON cluster a prospective target for the treatment of atherosclerosis. Antioxid. Redox Signal. 16, 597–632. PMID:21867409

  2. Identification and molecular characterization of four new large deletions in the beta-globin gene cluster.

    PubMed

    Joly, Philippe; Lacan, Philippe; Garcia, Caroline; Couprie, Nicole; Francina, Alain

    2009-01-01

    Despite the fact that mutations in the human beta-globin gene cluster are essentially point mutations, a significant number of large deletions have also been described. We present here four new large deletions in the beta-globin gene cluster that have been identified on patients displaying an atypical hemoglobin phenotype (high HbF) at routine analysis. The first deletion, which spreads over 2.0 kb, removes the entire beta-globin gene, including its promoter, and is associated with a typical beta-thal minor phenotype. The three other deletions are larger (19.7 to 23.9 kb) and remove both the delta and beta-globin genes. Phenotypically, they look like an HPFH-deletion as they are associated with normal hematological parameters. The precise localization of their 5' and 3' breakpoints gives new insights about the differences between HPFH and (deltabeta)(0)-thalassemia at the molecular level. The importance of detection of these deletions in prenatal diagnosis and newborn screening of hemoglobinopathies is also discussed.

  3. Gene clusters for insecticidal loline alkaloids in the grass-endophytic fungus Neotyphodium uncinatum.

    PubMed

    Spiering, Martin J; Moon, Christina D; Wilkinson, Heather H; Schardl, Christopher L

    2005-03-01

    Loline alkaloids are produced by mutualistic fungi symbiotic with grasses, and they protect the host plants from insects. Here we identify in the fungal symbiont, Neotyphodium uncinatum, two homologous gene clusters (LOL-1 and LOL-2) associated with loline-alkaloid production. Nine genes were identified in a 25-kb region of LOL-1 and designated (in order) lolF-1, lolC-1, lolD-1, lolO-1, lolA-1, lolU-1, lolP-1, lolT-1, and lolE-1. LOL-2 contained the homologs lolC-2 through lolE-2 in the same order and orientation. Also identified was lolF-2, but its possible linkage with either cluster was undetermined. Most lol genes were regulated in N. uncinatum and N. coenophialum, and all were expressed concomitantly with loline-alkaloid biosynthesis. A lolC-2 RNA-interference (RNAi) construct was introduced into N. uncinatum, and in two independent transformants, RNAi significantly decreased lolC expression (P < 0.01) and loline-alkaloid accumulation in culture (P < 0.001) compared to vector-only controls, indicating involvement of lolC in biosynthesis of lolines. The predicted LolU protein has a DNA-binding site signature, and the relationships of other lol-gene products indicate that the pathway has evolved from various different primary and secondary biosynthesis pathways.

  4. Identification of the biosynthetic gene cluster for the pacidamycin group of peptidyl nucleoside antibiotics

    PubMed Central

    Zhang, Wenjun; Ostash, Bohdan; Walsh, Christopher T.

    2010-01-01

    Pacidamycins are a family of uridyl tetra/pentapeptide antibiotics that act on the translocase MraY to block bacterial cell wall assembly. To elucidate the biosynthetic logic of pacidamcyins, a putative gene cluster was identified by 454 shotgun genome sequencing of the producer Streptomyces coeruleorubidus NRRL 18370. The 31-kb gene cluster encodes 22 proteins (PacA-V), including highly dissociated nonribosomal peptide synthetase (NRPS) modules and a variety of tailoring enzymes. Gene deletions confirmed that two NRPSs, PacP and PacO, are required for the biosynthesis of pacidamycins. Heterologous expression and in vitro assays of PacL, PacO, and PacP established reversible formation of m-Tyr-AMP, l-Ala-AMP, and diaminopropionyl-AMP, respectively, consistent with the amino acids found in pacidamycin scaffolds. The unusual Ala4-Phe5 dipeptidyl ureido linkage was formed during in vitro assays containing purified PacL, PacJ, PacN, and PacO. Both the genetic and enzymatic studies validate identification of the biosynthetic genes for this subclass of uridyl peptide antibiotics and provide the basis for future mechanistic study of their biosynthesis. PMID:20826445

  5. Lesional gene expression profiling in cutaneous T-cell lymphoma reveals natural clusters associated with disease outcome

    PubMed Central

    Shin, Jessica; Monti, Stefano; Aires, Daniel J.; Duvic, Madeleine; Golub, Todd

    2007-01-01

    Cutaneous T-cell lymphoma (CTCL) is defined by infiltration of activated and malignant T cells in the skin. The clinical manifestations and prognosis in CTCL are highly variable. In this study, we hypothesized that gene expression analysis in lesional skin biopsies can improve understanding of the disease and its management. Based on 63 skin samples, we performed consensus clustering, revealing 3 patient clusters. Of these, 2 clusters tended to differentiate limited CTCL (stages IA and IB) from more extensive CTCL (stages IB and III). Stage IB patients appeared in both clusters, but those in the limited CTCL cluster were more responsive to treatment than those in the more extensive CTCL cluster. The third cluster was enriched in lymphocyte activation genes and was associated with a high proportion of tumor (stage IIB) lesions. Survival analysis revealed significant differences in event-free survival between clusters, with poorest survival seen in the activated lymphocyte cluster. Using supervised analysis, we further characterized genes significantly associated with lower-stage/treatment-responsive CTCL versus higher-stage/treatment-resistant CTCL. We conclude that transcriptional profiling of CTCL skin lesions reveals clinically relevant signatures, correlating with differences in survival and response to treatment. Additional prospective long-term studies to validate and refine these findings appear warranted. PMID:17638852

  6. The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation.

    PubMed

    Harris, Abigail K P; Williamson, Neil R; Slater, Holly; Cox, Anthony; Abbasi, Sophia; Foulds, Ian; Simonsen, Henrik T; Leeper, Finian J; Salmond, George P C

    2004-11-01

    The prodigiosin biosynthesis gene cluster (pig cluster) from two strains of Serratia (S. marcescens ATCC 274 and Serratia sp. ATCC 39006) has been cloned, sequenced and expressed in heterologous hosts. Sequence analysis of the respective pig clusters revealed 14 ORFs in S. marcescens ATCC 274 and 15 ORFs in Serratia sp. ATCC 39006. In each Serratia species, predicted gene products showed similarity to polyketide synthases (PKSs), non-ribosomal peptide synthases (NRPSs) and the Red proteins of Streptomyces coelicolor A3(2). Comparisons between the two Serratia pig clusters and the red cluster from Str. coelicolor A3(2) revealed some important differences. A modified scheme for the biosynthesis of prodigiosin, based on the pathway recently suggested for the synthesis of undecylprodigiosin, is proposed. The distribution of the pig cluster within several Serratia sp. isolates is demonstrated and the presence of cryptic clusters in some strains shown. The pig cluster of Serratia marcescens ATCC 274 is flanked by cueR and copA homologues and this configuration is demonstrated in several S. marcescens strains, whilst these genes are contiguous in strains lacking the pig cluster.

  7. Overproduction of Magnetosomes by Genomic Amplification of Biosynthesis-Related Gene Clusters in a Magnetotactic Bacterium

    PubMed Central

    Lohße, Anna; Kolinko, Isabel; Raschdorf, Oliver; Uebe, René; Borg, Sarah; Brachmann, Andreas; Plitzko, Jürgen M.; Müller, Rolf; Zhang, Youming

    2016-01-01

    ABSTRACT Magnetotactic bacteria biosynthesize specific organelles, the magnetosomes, which are membrane-enclosed crystals of a magnetic iron mineral that are aligned in a linear chain. The number and size of magnetosome particles have to be critically controlled to build a sensor sufficiently strong to ensure the efficient alignment of cells within Earth's weak magnetic field while at the same time minimizing the metabolic costs imposed by excessive magnetosome biosynthesis. Apart from their biological function, bacterial magnetosomes have gained considerable interest since they provide a highly useful model for prokaryotic organelle formation and represent biogenic magnetic nanoparticles with exceptional properties. However, potential applications have been hampered by the difficult cultivation of these fastidious bacteria and their poor yields of magnetosomes. In this study, we found that the size and number of magnetosomes within the cell are controlled by many different Mam and Mms proteins. We present a strategy for the overexpression of magnetosome biosynthesis genes in the alphaproteobacterium Magnetospirillum gryphiswaldense by chromosomal multiplication of individual and multiple magnetosome gene clusters via transposition. While stepwise amplification of the mms6 operon resulted in the formation of increasingly larger crystals (increase of ∼35%), the duplication of all major magnetosome operons (mamGFDC, mamAB, mms6, and mamXY, comprising 29 genes in total) yielded an overproducing strain in which magnetosome numbers were 2.2-fold increased. We demonstrate that the tuned expression of the mam and mms clusters provides a powerful strategy for the control of magnetosome size and number, thereby setting the stage for high-yield production of tailored magnetic nanoparticles by synthetic biology approaches. IMPORTANCE Before our study, it had remained unknown how the upper sizes and numbers of magnetosomes are genetically regulated, and overproduction of

  8. Comparison of loline alkaloid gene clusters across fungal endophytes: predicting the co-regulatory sequence motifs and the evolutionary history.

    PubMed

    Kutil, Brandi L; Greenwald, Charles; Liu, Gang; Spiering, Martin J; Schardl, Christopher L; Wilkinson, Heather H

    2007-10-01

    LOL, a fungal secondary metabolite gene cluster found in Epichloë and Neotyphodium species, is responsible for production of insecticidal loline alkaloids. To analyze the genetic architecture and to predict the evolutionary history of LOL, we compared five clusters from four fungal species (single clusters from Epichloë festucae, Neotyphodium sp. PauTG-1, Neotyphodium coenophialum, and two clusters we previously characterized in Neotyphodium uncinatum). Using PhyloCon to compare putative lol gene promoter regions, we have identified four motifs conserved across the lol genes in all five clusters. Each motif has significant similarity to known fungal transcription factor binding sites in the TRANSFAC database. Conservation of these motifs is further support for the hypothesis that the lol genes are co-regulated. Interestingly, the history of asexual Neotyphodium spp. includes multiple interspecific hybridization events. Comparing clusters from three Neotyphodium species and E. festucae allowed us to determine which Epichloë ancestors are the most likely contributors of LOL in these asexual species. For example, while no present day Epichloë typhina isolates are known to produce lolines, our data support the hypothesis that the E. typhina ancestor(s) of three asexual endophyte species contained a LOL gene cluster. Thus, these data support a model of evolution in which the polymorphism in loline alkaloid production phenotypes among endophyte species is likely due to the loss of the trait over time.

  9. The Glucuronic Acid Utilization Gene Cluster from Bacillus stearothermophilus T-6

    PubMed Central

    Shulami, Smadar; Gat, Orit; Sonenshein, Abraham L.; Shoham, Yuval

    1999-01-01

    A λ-EMBL3 genomic library of Bacillus stearothermophilus T-6 was screened for hemicellulolytic activities, and five independent clones exhibiting β-xylosidase activity were isolated. The clones overlap each other and together represent a 23.5-kb chromosomal segment. The segment contains a cluster of xylan utilization genes, which are organized in at least three transcriptional units. These include the gene for the extracellular xylanase, xylanase T-6; part of an operon coding for an intracellular xylanase and a β-xylosidase; and a putative 15.5-kb-long transcriptional unit, consisting of 12 genes involved in the utilization of α-d-glucuronic acid (GlcUA). The first four genes in the potential GlcUA operon (orf1, -2, -3, and -4) code for a putative sugar transport system with characteristic components of the binding-protein-dependent transport systems. The most likely natural substrate for this transport system is aldotetraouronic acid [2-O-α-(4-O-methyl-α-d-glucuronosyl)-xylotriose] (MeGlcUAXyl3). The following two genes code for an intracellular α-glucuronidase (aguA) and a β-xylosidase (xynB). Five more genes (kdgK, kdgA, uxaC, uxuA, and uxuB) encode proteins that are homologous to enzymes involved in galacturonate and glucuronate catabolism. The gene cluster also includes a potential regulatory gene, uxuR, the product of which resembles repressors of the GntR family. The apparent transcriptional start point of the cluster was determined by primer extension analysis and is located 349 bp from the initial ATG codon. The potential operator site is a perfect 12-bp inverted repeat located downstream from the promoter between nucleotides +170 and +181. Gel retardation assays indicated that UxuR binds specifically to this sequence and that this binding is efficiently prevented in vitro by MeGlcUAXyl3, the most likely molecular inducer. PMID:10368143

  10. An ensemble method for identifying regulatory circuits with special reference to the qa gene cluster of Neurospora crassa

    PubMed Central

    Battogtokh, D.; Asch, D. K.; Case, M. E.; Arnold, J.; Schüttler, H.-B.

    2002-01-01

    A chemical reaction network for the regulation of the quinic acid (qa) gene cluster of Neurospora crassa is proposed. An efficient Monte Carlo method for walking through the parameter space of possible chemical reaction networks is developed to identify an ensemble of deterministic kinetics models with rate constants consistent with RNA and protein profiling data. This method was successful in identifying a model ensemble fitting available RNA profiling data on the qa gene cluster. PMID:12477937

  11. A Hybrid NRPS-PKS Gene Cluster Related to the Bleomycin Family of Antitumor Antibiotics in Alteromonas macleodii Strains

    PubMed Central

    Mizuno, Carolina Megumi; Kimes, Nikole E.; López-Pérez, Mario; Ausó, Eva; Rodriguez-Valera, Francisco; Ghai, Rohit

    2013-01-01

    Although numerous marine bacteria are known to produce antibiotics via hybrid NRPS-PKS gene clusters, none have been previously described in an Alteromonas species. In this study, we describe in detail a novel hybrid NRPS-PKS cluster identified in the plasmid of the Alteromonasmacleodii strain AltDE1 and analyze its relatedness to other similar gene clusters in a sequence-based characterization. This is a mobile cluster, flanked by transposase-like genes, that has even been found inserted into the chromosome of some Alteromonasmacleodii strains. The cluster contains separate genes for NRPS and PKS activity. The sole PKS gene appears to carry a novel acyltransferase domain, quite divergent from those currently characterized. The predicted specificities of the adenylation domains of the NRPS genes suggest that the final compound has a backbone very similar to bleomycin related compounds. However, the lack of genes involved in sugar biosynthesis indicates that the final product is not a glycopeptide. Even in the absence of these genes, the presence of the cluster appears to confer complete or partial resistance to phleomycin, which may be attributed to a bleomycin-resistance-like protein identified within the cluster. This also suggests that the compound still shares significant structural similarity to bleomycin. Moreover, transcriptomic evidence indicates that the NRPS-PKS cluster is expressed. Such sequence-based approaches will be crucial to fully explore and analyze the diversity and potential of secondary metabolite production, especially from increasingly important sources like marine microbes. PMID:24069455

  12. Identification of a new diterpene biosynthetic gene cluster that produces O-methylkolavelool in Herpetosiphon aurantiacus.

    PubMed

    Nakano, Chiaki; Oshima, Misaki; Kurashima, Nodoka; Hoshino, Tsutomu

    2015-03-23

    Diterpenoids are usually found in plants and fungi, but are rare in bacteria. We have previously reported new diterpenes, named tuberculosinol and isotuberculosinol, which are generated from the Mycobacterium tuberculosis gene products Rv3377c and Rv3378c. No homologous gene was found at that time, but we recently found highly homologous proteins in the Herpetosiphon aurantiacus ATCC 23779 genome. Haur_2145 was a class II diterpene cyclase responsible for the conversion of geranylgeranyl diphosphate into kolavenyl diphosphate. Haur_2146, homologous to Rv3378c, synthesized (+)-kolavelool through the nucleophilic addition of a water molecule to the incipient cation formed after the diphosphate moiety was released. Haur_2147 afforded (+)-O-methylkolavelool from (+)-kolavelool, so this enzyme was an O-methyltransferase. This new diterpene was indeed detected in H. aurantiacus cells. This is the first report of the identification of a (+)-O-methylkolavelool biosynthetic gene cluster.

  13. Gene clusters for ribosomal proteins in the mitochondrial genome of a liverwort, Marchantia polymorpha.

    PubMed Central

    Takemura, M; Oda, K; Yamato, K; Ohta, E; Nakamura, Y; Nozato, N; Akashi, K; Ohyama, K

    1992-01-01

    We detected 16 genes for ribosomal proteins in the complete sequence of the mitochondrial DNA from a liverwort, Marchantia polymorpha. The genes formed two major clusters, rps12-rps7 and rps10-rpl2-rps19-rps3-rpl16-rpl5- rps14-rps8- rpl6-rps13-rps11-rps1, very similar in organization to Escherichia coli ribosomal protein operons (str and S10-spc-alpha operons, respectively). In contrast, rps2 and rps4 genes were located separately in the liverwort mitochondrial genome (the latter was part of the alpha operon in E. coli). Furthermore, several ribosomal proteins encoded by the liverwort mitochondrial genome differed substantially in size from their counterparts in E. coli and liverwort chloroplast. PMID:1620617

  14. Identification and Characterization of the Pyridomycin Biosynthetic Gene Cluster of Streptomyces pyridomyceticus NRRL B-2517*

    PubMed Central

    Huang, Tingting; Wang, Yemin; Yin, Jun; Du, Yanhua; Tao, Meifeng; Xu, Jing; Chen, Wenqing; Lin, Shuangjun; Deng, Zixin

    2011-01-01

    Pyridomycin is a structurally unique antimycobacterial cyclodepsipeptide containing rare 3-(3-pyridyl)-l-alanine and 2-hydroxy-3-methylpent-2-enoic acid moieties. The biosynthetic gene cluster for pyridomycin has been cloned and identified from Streptomyces pyridomyceticus NRRL B-2517. Sequence analysis of a 42.5-kb DNA region revealed 26 putative open reading frames, including two nonribosomal peptide synthetase (NRPS) genes and a polyketide synthase gene. A special feature is the presence of a polyketide synthase-type ketoreductase domain embedded in an NRPS. Furthermore, we showed that PyrA functioned as an NRPS adenylation domain that activates 3-hydroxypicolinic acid and transfers it to a discrete peptidyl carrier protein, PyrU, which functions as a loading module that initiates pyridomycin biosynthesis in vivo and in vitro. PyrA could also activate other aromatic acids, generating three pyridomycin analogues in vivo. PMID:21454714

  15. Gene Cluster Involved in the Biosynthesis of Griseobactin, a Catechol-Peptide Siderophore of Streptomyces sp. ATCC 700974▿

    PubMed Central

    Patzer, Silke I.; Braun, Volkmar

    2010-01-01

    The main siderophores produced by streptomycetes are desferrioxamines. Here we show that Streptomyces sp. ATCC 700974 and several Streptomyces griseus strains, in addition, synthesize a hitherto unknown siderophore with a catechol-peptide structure, named griseobactin. The production is repressed by iron. We sequenced a 26-kb DNA region comprising a siderophore biosynthetic gene cluster encoding proteins similar to DhbABCEFG, which are involved in the biosynthesis of 2,3-dihydroxybenzoate (DHBA) and in the incorporation of DHBA into siderophores via a nonribosomal peptide synthetase. Adjacent to the biosynthesis genes are genes that encode proteins for the secretion, uptake, and degradation of siderophores. To correlate the gene cluster with griseobactin synthesis, the dhb genes in ATCC 700974 were disrupted. The resulting mutants no longer synthesized DHBA and griseobactin; production of both was restored by complementation with the dhb genes. Heterologous expression of the dhb genes or of the entire griseobactin biosynthesis gene cluster in the catechol-negative strain Streptomyces lividans TK23 resulted in the synthesis and secretion of DHBA or griseobactin, respectively, suggesting that these genes are sufficient for DHBA and griseobactin biosynthesis. Griseobactin was purified and characterized; its structure is consistent with a cyclic and, to a lesser extent, linear form of the trimeric ester of 2,3-dihydroxybenzoyl-arginyl-threonine complexed with aluminum under iron-limiting conditions. This is the first report identifying the gene cluster for the biosynthesis of DHBA and a catechol siderophore in Streptomyces. PMID:19915026

  16. Loci of Mycobacterium avium ser2 gene cluster and their functions.

    PubMed Central

    Mills, J A; McNeil, M R; Belisle, J T; Jacobs, W R; Brennan, P J

    1994-01-01

    The highly antigenic glycopeptidolipids present on the surface of members of the Mycobacterium avium complex serve to distinguish these bacteria from all others and to define the various serovars that compose this complex. Previously, the genes responsible for the biosynthesis of the disaccharide hapten [2,3-di-O-methyl-alpha-L-fucopyranosyl-(1-->3)-alpha-L-rhamnopyranose] of serovar 2 of the M. avium complex were isolated, localized to a contiguous 22- to 27-kb fragment of the M. avium genome, and designated the ser2 gene cluster (J. T. Belisle, L. Pascopella, J. M. Inamine, P. J. Brennan, and W. R. Jacobs, Jr., J. Bacteriol. 173:6991-6997, 1991). In the present study, transposon saturation mutagenesis was used to map the specific genetic loci within the ser2 gene cluster required for expression of this disaccharide. Four essential loci, termed ser2A, -B, -C, and -D, constituting a total of 5.7 kb within the ser2 gene cluster, were defined. The ser2B and ser2D loci encode the methyltransferases required to methylate the fucose at the 3 and 2 positions, respectively. The rhamnosyltransferase was encoded by ser2A, whereas either ser2C or ser2D encoded the fucosyltransferase. The ser2C and ser2D loci are also apparently involved in the de novo synthesis of fucose. Isolation of the truncated versions of the hapten induced by the transposon insertions provides genetic evidence that the glycopeptidolipids of M. avium serovar 2 are synthesized by an initial transfer of the rhamnose unit to the peptide core followed by fucose and finally O methylation of the fucosyl unit. PMID:8050992

  17. Loci of Mycobacterium avium ser2 gene cluster and their functions.

    PubMed

    Mills, J A; McNeil, M R; Belisle, J T; Jacobs, W R; Brennan, P J

    1994-08-01

    The highly antigenic glycopeptidolipids present on the surface of members of the Mycobacterium avium complex serve to distinguish these bacteria from all others and to define the various serovars that compose this complex. Previously, the genes responsible for the biosynthesis of the disaccharide hapten [2,3-di-O-methyl-alpha-L-fucopyranosyl-(1-->3)-alpha-L-rhamnopyranose] of serovar 2 of the M. avium complex were isolated, localized to a contiguous 22- to 27-kb fragment of the M. avium genome, and designated the ser2 gene cluster (J. T. Belisle, L. Pascopella, J. M. Inamine, P. J. Brennan, and W. R. Jacobs, Jr., J. Bacteriol. 173:6991-6997, 1991). In the present study, transposon saturation mutagenesis was used to map the specific genetic loci within the ser2 gene cluster required for expression of this disaccharide. Four essential loci, termed ser2A, -B, -C, and -D, constituting a total of 5.7 kb within the ser2 gene cluster, were defined. The ser2B and ser2D loci encode the methyltransferases required to methylate the fucose at the 3 and 2 positions, respectively. The rhamnosyltransferase was encoded by ser2A, whereas either ser2C or ser2D encoded the fucosyltransferase. The ser2C and ser2D loci are also apparently involved in the de novo synthesis of fucose. Isolation of the truncated versions of the hapten induced by the transposon insertions provides genetic evidence that the glycopeptidolipids of M. avium serovar 2 are synthesized by an initial transfer of the rhamnose unit to the peptide core followed by fucose and finally O methylation of the fucosyl unit. PMID:8050992

  18. Functional analysis of the fsoC gene product of the F7(1) (fso) fimbrial gene cluster.

    PubMed

    Riegman, N; Acton, D; Sakkers, R; van Die, I; Hoekstra, W; Bergmans, H

    1990-01-01

    Contrary to what would be expected from data in the literature, mutations in the fsoC gene of the F7(1) (fso) P-fimbrial gene cluster do not completely block fimbrial biogenesis. fsoC mutants still express small amounts of fimbriae of normal length, which carry the non-adhesive minor subunit protein, FsoE, but lack the adhesin, FsoG. The FsoC protein operates at the same stage in fimbrial biogenesis as the FsoF and FsoG proteins. The data suggest that FsoC, FsoF and FsoG interact to form an initiation complex for fimbrial biogenesis.

  19. Identification of the Lomofungin Biosynthesis Gene Cluster and Associated Flavin-Dependent Monooxygenase Gene in Streptomyces lomondensis S015

    PubMed Central

    Zhang, Chunxiao; Sheng, Chaolan; Wang, Wei; Hu, Hongbo; Peng, Huasong; Zhang, Xuehong

    2015-01-01

    Streptomyces lomondensis S015 synthesizes the broad-spectrum phenazine antibiotic lomofungin. Whole genome sequencing of this strain revealed a genomic locus consisting of 23 open reading frames that includes the core phenazine biosynthesis gene cluster lphzGFEDCB. lomo10, encoding a putative flavin-dependent monooxygenase, was also identified in this locus. Inactivation of lomo10 by in-frame partial deletion resulted in the biosynthesis of a new phenazine metabolite, 1-carbomethoxy-6-formyl-4,9-dihydroxy-phenazine, along with the absence of lomofungin. This result suggests that lomo10 is responsible for the hydroxylation of lomofungin at its C-7 position. This is the first description of a phenazine hydroxylation gene in Streptomyces, and the results of this study lay the foundation for further investigation of phenazine metabolite biosynthesis in Streptomyces. PMID:26305803

  20. Diplotype Trend Regression Analysis of the ADH Gene Cluster and the ALDH2 Gene: Multiple Significant Associations with Alcohol Dependence

    PubMed Central

    Luo, Xingguang; Kranzler, Henry R.; Zuo, Lingjun; Wang, Shuang; Schork, Nicholas J.; Gelernter, Joel

    2006-01-01

    The set of alcohol-metabolizing enzymes has considerable genetic and functional complexity. The relationships between some alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) genes and alcohol dependence (AD) have long been studied in many populations, but not comprehensively. In the present study, we genotyped 16 markers within the ADH gene cluster (including the ADH1A, ADH1B, ADH1C, ADH5, ADH6, and ADH7 genes), 4 markers within the ALDH2 gene, and 38 unlinked ancestry-informative markers in a case-control sample of 801 individuals. Associations between markers and disease were analyzed by a Hardy-Weinberg equilibrium (HWE) test, a conventional case-control comparison, a structured association analysis, and a novel diplotype trend regression (DTR) analysis. Finally, the disease alleles were fine mapped by a Hardy-Weinberg disequilibrium (HWD) measure (J). All markers were found to be in HWE in controls, but some markers showed HWD in cases. Genotypes of many markers were associated with AD. DTR analysis showed that ADH5 genotypes and diplotypes of ADH1A, ADH1B, ADH7, and ALDH2 were associated with AD in European Americans and/or African Americans. The risk-influencing alleles were fine mapped from among the markers studied and were found to coincide with some well-known functional variants. We demonstrated that DTR was more powerful than many other conventional association methods. We also found that several ADH genes and the ALDH2 gene were susceptibility loci for AD, and the associations were best explained by several independent risk genes. PMID:16685648

  1. Karyotypic diversification in Mytilus mussels (Bivalvia: Mytilidae) inferred from chromosomal mapping of rRNA and histone gene clusters

    PubMed Central

    2014-01-01

    Background Mussels of the genus Mytilus present morphologically similar karyotypes that are presumably conserved. The absence of chromosome painting probes in bivalves makes difficult verifying this hypothesis. In this context, we comparatively mapped ribosomal RNA and histone gene families on the chromosomes of Mytilus edulis, M. galloprovincialis, M. trossulus and M. californianus by fluorescent in situ hybridization (FISH). Results Major rRNA, core and linker histone gene clusters mapped to different chromosome pairs in the four taxa. In contrast, minor rRNA gene clusters showed a different behavior. In all Mytilus two of the 5S rDNA clusters mapped to the same chromosome pair and one of them showed overlapping signals with those corresponding to one of the histone H1 gene clusters. The overlapping signals on mitotic chromosomes became a pattern of alternate 5S rRNA and linker histone gene signals on extended chromatin fibers. Additionally, M. trossulus showed minor and major rDNA clusters on the same chromosome pair. Conclusion The results obtained suggest that at least some of the chromosomes bearing these sequences are orthologous and that chromosomal mapping of rRNA and histone gene clusters could be a good tool to help deciphering some of the many unsolved questions in the systematic classification of Mytilidae. PMID:25023072

  2. eMBI: Boosting Gene Expression-based Clustering for Cancer Subtypes.

    PubMed

    Chang, Zheng; Wang, Zhenjia; Ashby, Cody; Zhou, Chuan; Li, Guojun; Zhang, Shuzhong; Huang, Xiuzhen

    2014-01-01

    Identifying clinically relevant subtypes of a cancer using gene expression data is a challenging and important problem in medicine, and is a necessary premise to provide specific and efficient treatments for patients of different subtypes. Matrix factorization provides a solution by finding checker-board patterns in the matrices of gene expression data. In the context of gene expression profiles of cancer patients, these checkerboard patterns correspond to genes that are up- or down-regulated in patients with particular cancer subtypes. Recently, a new matrix factorization framework for biclustering called Maximum Block Improvement (MBI) is proposed; however, it still suffers several problems when applied to cancer gene expression data analysis. In this study, we developed many effective strategies to improve MBI and designed a new program called enhanced MBI (eMBI), which is more effective and efficient to identify cancer subtypes. Our tests on several gene expression profiling datasets of cancer patients consistently indicate that eMBI achieves significant improvements in comparison with MBI, in terms of cancer subtype prediction accuracy, robustness, and running time. In addition, the performance of eMBI is much better than another widely used matrix factorization method called nonnegative matrix factorization (NMF) and the method of hierarchical clustering, which is often the first choice of clinical analysts in practice. PMID:25374455

  3. Tracking molecular evolution of photosynthesis by characterization of a major photosynthesis gene cluster from Heliobacillus mobilis

    PubMed Central

    Xiong, Jin; Inoue, Kazuhito; Bauer, Carl E.

    1998-01-01

    A DNA sequence has been obtained for a 35.6-kb genomic segment from Heliobacillus mobilis that contains a major cluster of photosynthesis genes. A total of 30 ORFs were identified, 20 of which encode enzymes for bacteriochlorophyll and carotenoid biosynthesis, reaction-center (RC) apoprotein, and cytochromes for cyclic electron transport. Donor side electron-transfer components to the RC include a putative RC-associated cytochrome c553 and a unique four-large-subunit cytochrome bc complex consisting of Rieske Fe-S protein (encoded by petC), cytochrome b6 (petB), subunit IV (petD), and a diheme cytochrome c (petX). Phylogenetic analysis of various photosynthesis gene products indicates a consistent grouping of oxygenic lineages that are distinct and descendent from anoxygenic lineages. In addition, H. mobilis was placed as the closest relative to cyanobacteria, which form a monophyletic origin to chloroplast-based photosynthetic lineages. The consensus of the photosynthesis gene trees also indicates that purple bacteria are the earliest emerging photosynthetic lineage. Our analysis also indicates that an ancient gene-duplication event giving rise to the paralogous bchI and bchD genes predates the divergence of all photosynthetic groups. In addition, our analysis of gene duplication of the photosystem I and photosystem II core polypeptides supports a “heterologous fusion model” for the origin and evolution of oxygenic photosynthesis. PMID:9843979

  4. Pathogen corruption and site-directed recombination at a plant disease resistance gene cluster.

    PubMed

    Nagy, Ervin D; Bennetzen, Jeffrey L

    2008-12-01

    The Pc locus of sorghum (Sorghum bicolor) determines dominant sensitivity to a host-selective toxin produced by the fungal pathogen Periconia circinata. The Pc region was cloned by a map-based approach and found to contain three tandemly repeated genes with the structures of nucleotide binding site-leucine-rich repeat (NBS-LRR) disease resistance genes. Thirteen independent Pc-to-pc mutations were analyzed, and each was found to remove all or part of the central gene of the threesome. Hence, this central gene is Pc. Most Pc-to-pc mutations were associated with unequal recombination. Eight recombination events were localized to different sites in a 560-bp region within the approximately 3.7-kb NBS-LRR genes. Because any unequal recombination located within the flanking NBS-LRR genes would have removed Pc, the clustering of cross-over events within a 560-bp segment indicates that a site-directed recombination process exists that specifically targets unequal events to generate LRR diversity in NBS-LRR loci.

  5. Regulation of a Novel Gene Cluster Involved in Secondary Metabolite Production in Streptomyces coelicolor▿ †

    PubMed Central

    Hindra; Pak, Patricia; Elliot, Marie A.

    2010-01-01

    Antibiotic biosynthesis in the streptomycetes is a complex and highly regulated process. Here, we provide evidence for the contribution of a novel genetic locus to antibiotic production in Streptomyces coelicolor. The overexpression of a gene cluster comprising four protein-encoding genes (abeABCD) and an antisense RNA-encoding gene (α-abeA) stimulated the production of the blue-pigmented metabolite actinorhodin on solid medium. Actinorhodin production also was enhanced by the overexpression of an adjacent gene (abeR) encoding a predicted Streptomyces antibiotic regulatory protein (SARP), while the deletion of this gene impaired actinorhodin production. We found the abe genes to be differentially regulated and controlled at multiple levels. Upstream of abeA was a promoter that directed the transcription of abeABCD at a low but constitutive level. The expression of abeBCD was, however, significantly upregulated at a time that coincided with the initiation of aerial development and the onset of secondary metabolism; this expression was activated by the binding of AbeR to four heptameric repeats upstream of a promoter within abeA. Expressed divergently to the abeBCD promoter was α-abeA, whose expression mirrored that of abeBCD but did not require activation by AbeR. Instead, α-abeA transcript levels were subject to negative control by the double-strand-specific RNase, RNase III. PMID:20675485

  6. Functional analysis of alcS, a gene of the alc cluster in Aspergillus nidulans.

    PubMed

    Flipphi, Michel; Robellet, Xavier; Dequier, Emmanuel; Leschelle, Xavier; Felenbok, Béatrice; Vélot, Christian

    2006-04-01

    The ethanol utilization pathway (alc system) of Aspergillus nidulans requires two structural genes, alcA and aldA, which encode the two enzymes (alcohol dehydrogenase and aldehyde dehydrogenase, respectively) allowing conversion of ethanol into acetate via acetyldehyde, and a regulatory gene, alcR, encoding the pathway-specific autoregulated transcriptional activator. The alcR and alcA genes are clustered with three other genes that are also positively regulated by alcR, although they are dispensable for growth on ethanol. In this study, we characterized alcS, the most abundantly transcribed of these three genes. alcS is strictly co-regulated with alcA, and encodes a 262-amino acid protein. Sequence comparison with protein databases detected a putative conserved domain that is characteristic of the novel GPR1/FUN34/YaaH membrane protein family. It was shown that the AlcS protein is located in the plasma membrane. Deletion or overexpression of alcS did not result in any obvious phenotype. In particular, AlcS does not appear to be essential for the transport of ethanol, acetaldehyde or acetate. Basic Local Alignment Search Tool analysis against the A. nidulans genome led to the identification of two novel ethanol- and ethylacetate-induced genes encoding other members of the GPR1/FUN34/YaaH family, AN5226 and AN8390.

  7. A bacteriocin gene cluster able to enhance plasmid maintenance in Lactococcus lactis

    PubMed Central

    2014-01-01

    Background Lactococcus lactis is widely used as a dairy starter and has been extensively studied. Based on the acquired knowledge on its physiology and metabolism, new applications have been envisaged and there is an increasing interest of using L. lactis as a cell factory. Plasmids constitute the main toolbox for L. lactis genetic engineering and most rely on antibiotic resistant markers for plasmid selection and maintenance. In this work, we have assessed the ability of the bacteriocin Lactococcin 972 (Lcn972) gene cluster to behave as a food-grade post-segregational killing system to stabilize recombinant plasmids in L. lactis in the absence of antibiotics. Lcn972 is a non-lantibiotic bacteriocin encoded by the 11-kbp plasmid pBL1 with a potent antimicrobial activity against Lactococcus. Results Attempts to clone the full lcn972 operon with its own promoter (P972), the structural gene lcn972 and the immunity genes orf2-orf3 in the unstable plasmid pIL252 failed and only plasmids with a mutated promoter were recovered. Alternatively, cloning under other constitutive promoters was approached and achieved, but bacteriocin production levels were lower than those provided by pBL1. Segregational stability studies revealed that the recombinant plasmids that yielded high bacteriocin titers were maintained for at least 200 generations without antibiotic selection. In the case of expression vectors such as pTRL1, the Lcn972 gene cluster also contributed to plasmid maintenance without compromising the production of the fluorescent mCherry protein. Furthermore, unstable Lcn972 recombinant plasmids became integrated into the chromosome through the activity of insertion sequences, supporting the notion that Lcn972 does apply a strong selective pressure against susceptible cells. Despite of it, the Lcn972 gene cluster was not enough to avoid the use of antibiotics to select plasmid-bearing cells right after transformation. Conclusions Inserting the Lcn972 cluster into

  8. Cloning and Characterization of a Gene Cluster for Hatomarubigin Biosynthesis in Streptomyces sp. Strain 2238-SVT4 ▿

    PubMed Central

    Kawasaki, Takashi; Hirashima, Reiko; Maruta, Tomoka; Sato, Haruka; Maeda, Ayumi; Yamada, Yuki; Takeda, Maho; Hayakawa, Yoichi

    2010-01-01

    Streptomyces sp. strain 2238-SVT4 produces hatomarubigins A, B, C, and D, which belong to the angucycline family. Among them, hatomarubigin D has a unique dimeric structure with a methylene linkage. PCR using aromatase and cyclase gene-specific primers identified the hrb gene cluster for angucycline biosynthesis in Streptomyces sp. 2238-SVT4. The cluster consisted of 30 open reading frames, including those for the minimal polyketide synthase, ketoreductase, aromatase, cyclase, O-methyltransferase, oxidoreductase, and oxygenase genes. Expression of a part of the gene cluster containing hrbR1 to hrbX in Streptomyces lividans TK23 resulted in the production of hatomarubigins A, B, and C. Hatomarubigin D was obtained from the conversion of hatomarubigin C by a purified enzyme encoded by hrbY, among the remaining genes. PMID:20453135

  9. Human HOXB cluster and the nerve growth factor receptor gene: Comparison with an orthologous chromosomal domain in mouse

    SciTech Connect

    Bentley, K.L.; Bradshaw, M.S.; Ruddle, F.H.

    1995-11-01

    The structural organization and nucleotide sequence similarity of mammalian Antennapedia-class homeobox genes support the view that the four homeobox clusters (HOXA, B,C, and D on human chromosomes 7, 17, 12 and 2, respectively) arose through a combination of gene duplication and divergence to form a cluster, followed by several cluster duplications. The duplication events that gave rise to the four clusters appear to have involved chromosomal domains extending well beyond the borders of the clusters in either direction. This evidence arises from the observation that many genes closely linked to the homeobox clusters on different chromosomes show sequence similarity. Here, we present a continuation of physical mapping studies to determine the extent and organization of the duplicated regions surrounding the four homeobox clusters in human. Southern blots prepared from pulsed-field gels of human DNA were probed with cloned segments of human HOXB genes and the nerve growth factor receptor (NGFR) gene on chromosome 17q21-q22. Restriction enzyme analysis revealed the close physical linkage of these genes within 100 kb. Two yeast artificial chromosomes (YACs), 220 and 380 kb in size, were isolated using oligonucleotide primers specific for NGFR. Both YACs contained the entire HOXB cluster. Restriction mapping of the clones indicated that the distance separating these loci could not be greater than 50 kb. This result confirms and extends previous information on the proximity of these genes as determined by genetic linkage analysis and closely parallels the orthologous loci in the mouse. 48 refs., 4 figs., 1 tab.

  10. CpG island evolution in the mammalian DHRS4 gene cluster and its role in the regulation of gene transcription.

    PubMed

    Su, Z; Liu, G; Song, X; Liang, B; Chang, X; Huang, D

    2016-01-01

    The dehydrogenase/reductase (SDR family) member 4 (DHRS4) gene is copied during mammalian evolution; therefore, while only one DHRS4 gene is expressed in the mouse genome, the gene cluster consists of two (DHRS4 and DHRS4L1) and three (DHRS4, DHRS4L2, and DHRS4L1) copies in chimpanzees and humans, respectively. In this study, we explored the possible regulatory mechanism of the DHRS4 gene cluster in mammalian evolution by analyzing the promoter sequence, methylation of CpG islands, and RNA expression of the DHRS4 gene cluster in mice, chimpanzees, and humans by bioinformatics prediction, bisulfite sequencing PCR, and real-time reverse transcriptase-PCR. The results indicated that the DHRS4 gene was actively expressed in the three model species. The RNA level of DHRS4L1 was much lower than those of DHRS4 and DHRS4L2, and expressed lower homologous sequence identity to DHRS4 and DHRS4L2. DHRS4L2, the latest evolutionary copy of the DHRS4 gene in mammals, received a high promoter prediction score, and was the only copy of the DHRS4 gene cluster presenting hypermethylated CpG islands in the promoter region. An analysis of the relationship between the promoter characteristics and RNA expression of the DHRS4 gene cluster indicated that the development of CpG islands, in addition to the promoter sequence, during mammalian evolution could modulate the dose compensatory regulation of the copy number-varied DHRS4 gene cluster. PMID:27323117

  11. Fine Genetic Mapping Localizes Cucumber Scab Resistance Gene Ccu into an R Gene Cluster

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The scab caused by Cladosporium cucumerinum, is an important disease of cucumber, Cucumis sativus. In this study, we conducted fine genetic mapping of the single dominant scab resistance gene, Ccu, with 148 F9 recombination inbreeding lines (RILs) and 1,944 F2 plants derived from the resistant cucum...

  12. Genetic engineering and heterologous expression of the disorazol biosynthetic gene cluster via Red/ET recombineering

    PubMed Central

    Tu, Qiang; Herrmann, Jennifer; Hu, Shengbiao; Raju, Ritesh; Bian, Xiaoying; Zhang, Youming; Müller, Rolf

    2016-01-01

    Disorazol, a macrocyclic polykitide produced by the myxobacterium Sorangium cellulosum So ce12 and it is reported to have potential cytotoxic activity towards several cancer cell lines, including multi-drug resistant cells. The disorazol biosynthetic gene cluster (dis) from Sorangium cellulosum (So ce12) was identified by transposon mutagenesis and cloned in a bacterial artificial chromosome (BAC) library. The 58-kb dis core gene cluster was reconstituted from BACs via Red/ET recombineering and expressed in Myxococcus xanthus DK1622. For the first time ever, a myxobacterial trans-AT polyketide synthase has been expressed heterologously in this study. Expression in M. xanthus allowed us to optimize the yield of several biosynthetic products using promoter engineering. The insertion of an artificial synthetic promoter upstream of the disD gene encoding a discrete acyl transferase (AT), together with an oxidoreductase (Or), resulted in 7-fold increase in disorazol production. The successful reconstitution and expression of the genetic sequences encoding for these promising cytotoxic compounds will allow combinatorial biosynthesis to generate novel disorazol derivatives for further bioactivity evaluation. PMID:26875499

  13. Identifying driving gene clusters in complex diseases through critical transition theory

    NASA Astrophysics Data System (ADS)

    Wolanyk, Nathaniel; Wang, Xujing; Hessner, Martin; Gao, Shouguo; Chen, Ye; Jia, Shuang

    A novel approach of looking at the human body using critical transition theory has yielded positive results: clusters of genes that act in tandem to drive complex disease progression. This cluster of genes can be thought of as the first part of a large genetic force that pushes the body from a curable, but sick, point to an incurable diseased point through a catastrophic bifurcation. The data analyzed is time course microarray blood assay data of 7 high risk individuals for Type 1 Diabetes who progressed into a clinical onset, with an additional larger study requested to be presented at the conference. The normalized data is 25,000 genes strong, which were narrowed down based on statistical metrics, and finally a machine learning algorithm using critical transition metrics found the driving network. This approach was created to be repeatable across multiple complex diseases with only progression time course data needed so that it would be applicable to identifying when an individual is at risk of developing a complex disease. Thusly, preventative measures can be enacted, and in the longer term, offers a possible solution to prevent all Type 1 Diabetes.

  14. Characterization of the Biosynthetic Gene Cluster for Benzoxazole Antibiotics A33853 Reveals Unusual Assembly Logic.

    PubMed

    Lv, Meinan; Zhao, Junfeng; Deng, Zixin; Yu, Yi

    2015-10-22

    A33853, which shows excellent bioactivity against Leishmania, is a benzoxazole-family compound formed from two moieties of 3-hydroxyanthranilic acid and one 3-hydroxypicolinic acid. In this study, we have identified the gene cluster responsible for the biosynthesis of A33853 in Streptomyces sp. NRRL12068 through genome mining and heterologous expression. Bioinformatics analysis and functional characterization of the orfs contained in the gene cluster revealed that the biosynthesis of A33853 is directed by a group of unusual enzymes. In particular, BomK, annotated as a ketosynthase, was found to catalyze the amide bond formation between 3-hydroxypicolinic and 3-hydroxyanthranilic acid during the assembly of A33853. BomJ, a putative ATP-dependent coenzyme A ligase, and BomN, a putative amidohydrolase, were further proposed to be involved in the benzoxazole formation in A33853 according to gene deletion experiments. Finally, we have successfully utilized mutasynthesis to generate two analogs of A33853, which were reported previously to possess excellent anti-leishmanial activity.

  15. Characterization of tiacumicin B biosynthetic gene cluster affording diversified tiacumicin analogues and revealing a tailoring dihalogenase.

    PubMed

    Xiao, Yi; Li, Sumei; Niu, Siwen; Ma, Liang; Zhang, Guangtao; Zhang, Haibo; Zhang, Gaiyun; Ju, Jianhua; Zhang, Changsheng

    2011-02-01

    The RNA polymerase inhibitor tiacumicin B is currently undergoing phase III clinical trial for treatment of Clostridium difficile associated diarrhea with great promise. To understand the biosynthetic logic and to lay a foundation for generating structural analogues via pathway engineering, the tiacumicin B biosynthetic gene cluster was identified and characterized from the producer Dactylosporangium aurantiacum subsp. hamdenensis NRRL 18085. Sequence analysis of a 110,633 bp DNA region revealed the presence of 50 open reading frames (orfs). Functional investigations of 11 orfs by in vivo inactivation experiments, preliminarily outlined the boundaries of the tia-gene cluster and suggested that 31 orfs were putatively involved in tiacumicin B biosynthesis. Functions of a halogenase (TiaM), two glycosyltransferases (TiaG1 and TiaG2), a sugar C-methyltransferase (TiaS2), an acyltransferase (TiaS6), and two cytochrome P450s (TiaP1 and TiaP2) were elucidated by isolation and structural characterization of the metabolites from the corresponding gene-inactivation mutants. Accumulation of 18 tiacumicin B analogues from 7 mutants not only provided experimental evidence to confirm the proposed functions of individual biosynthetic enzymes, but also set an example of accessing microbial natural product diversity via genetic approach. More importantly, biochemical characterization of the FAD-dependent halogenase TiaM reveals a sequentially acting dihalogenation step tailoring tiacumicin B biosynthesis.

  16. Identification and characterization of the biosynthetic gene cluster of polyoxypeptin A, a potent apoptosis inducer

    PubMed Central

    2014-01-01

    Background Polyoxypeptin A was isolated from a culture broth of Streptomyces sp. MK498-98 F14, which has a potent apoptosis-inducing activity towards human pancreatic carcinoma AsPC-1 cells. Structurally, polyoxypeptin A is composed of a C15 acyl side chain and a nineteen-membered cyclodepsipeptide core that consists of six unusual nonproteinogenic amino acid residues (N-hydroxyvaline, 3-hydroxy-3-methylproline, 5-hydroxypiperazic acid, N-hydroxyalanine, piperazic acid, and 3-hydroxyleucine) at high oxidation states. Results A gene cluster containing 37 open reading frames (ORFs) has been sequenced and analyzed for the biosynthesis of polyoxypeptin A. We constructed 12 specific gene inactivation mutants, most of which abolished the production of polyoxypeptin A and only ΔplyM mutant accumulated a dehydroxylated analogue polyoxypeptin B. Based on bioinformatics analysis and genetic data, we proposed the biosynthetic pathway of polyoxypeptin A and biosynthetic models of six unusual amino acid building blocks and a PKS extender unit. Conclusions The identified gene cluster and proposed pathway for the biosynthesis of polyoxypeptin A will pave a way to understand the biosynthetic mechanism of the azinothricin family natural products and provide opportunities to apply combinatorial biosynthesis strategy to create more useful compounds. PMID:24506891

  17. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters.

    PubMed

    Weber, Tilmann; Blin, Kai; Duddela, Srikanth; Krug, Daniel; Kim, Hyun Uk; Bruccoleri, Robert; Lee, Sang Yup; Fischbach, Michael A; Müller, Rolf; Wohlleben, Wolfgang; Breitling, Rainer; Takano, Eriko; Medema, Marnix H

    2015-07-01

    Microbial secondary metabolism constitutes a rich source of antibiotics, chemotherapeutics, insecticides and other high-value chemicals. Genome mining of gene clusters that encode the biosynthetic pathways for these metabolites has become a key methodology for novel compound discovery. In 2011, we introduced antiSMASH, a web server and stand-alone tool for the automatic genomic identification and analysis of biosynthetic gene clusters, available at http://antismash.secondarymetabolites.org. Here, we present version 3.0 of antiSMASH, which has undergone major improvements. A full integration of the recently published ClusterFinder algorithm now allows using this probabilistic algorithm to detect putative gene clusters of unknown types. Also, a new dereplication variant of the ClusterBlast module now identifies similarities of identified clusters to any of 1172 clusters with known end products. At the enzyme level, active sites of key biosynthetic enzymes are now pinpointed through a curated pattern-matching procedure and Enzyme Commission numbers are assigned to functionally classify all enzyme-coding genes. Additionally, chemical structure prediction has been improved by incorporating polyketide reduction states. Finally, in order for users to be able to organize and analyze multiple antiSMASH outputs in a private setting, a new XML output module allows offline editing of antiSMASH annotations within the Geneious software.

  18. Aspects on evolution of fungal beta-lactam biosynthesis gene clusters and recruitment of trans-acting factors.

    PubMed

    Brakhage, Axel A; Thön, Marcel; Spröte, Petra; Scharf, Daniel H; Al-Abdallah, Qusai; Wolke, Sandra M; Hortschansky, Peter

    2009-01-01

    Penicillins and cephalosporins are beta-lactam antibiotics. The formation of hydrophobic penicillins has been reported in fungi only, notably Penicillium chrysogenum and Aspergillus (Emericella) nidulans, whereas the hydrophilic cephalosporins are produced by both fungi, e.g., Acremonium chrysogenum (cephalosporin C), and bacteria. The producing bacteria include Gram-negatives and Gram-positives, e.g., Streptomyces clavuligerus (cephamycin C) and Lysobacter lactamgenus (cephabacins), respectively. The evolutionary origin of beta-lactam biosynthesis genes has been the subject of discussion for many years, and two main hypotheses have been proposed: (i) horizontal gene transfer (HGT) from bacteria to fungi or (ii) vertical decent. There are strong arguments in favour of HGT, e.g., unlike most other fungal genes, beta-lactam biosynthesis genes are clustered and some of these genes lack introns. In contrast to S. clavuligerus, all regulators of fungal beta-lactam biosynthesis genes represent wide-domain regulators that are not part of the gene cluster. If bacterial regulators were co-transferred with the gene cluster from bacteria to fungi, most likely they would have been non-functional in eukaryotes and lost during evolution. Recently, the penicillin biosynthesis gene aatB was discovered, which is not part of the penicillin biosynthesis gene cluster and is even located on a different chromosome. The aatB gene is regulated by the same regulators AnCF and AnBH1 as the penicillin biosynthesis gene aatA (penDE). Data suggest that aatA and aatB are paralogues derived by duplication of a common ancestor gene. This data supports a model in which part of the beta-lactam biosynthesis gene cluster was transferred to some fungi, i.e., the acvA and ipnA gene without a regulatory gene. We propose that during the assembly of aatA and acvA-ipnA into a single gene cluster, recruitment of transcriptional regulators occurred along with acquisition of the duplicated aatA ancestor gene

  19. Molecular Characterization of Cronobacter Lipopolysaccharide O-Antigen Gene Clusters and Development of Serotype-Specific PCR Assays ▿

    PubMed Central

    Jarvis, K. G.; Grim, C. J.; Franco, A. A.; Gopinath, G.; Sathyamoorthy, V.; Hu, L.; Sadowski, J. A.; Lee, C. S.; Tall, B. D.

    2011-01-01

    Cronobacter (formerly Enterobacter sakazakii) is a recently defined genus consisting of six species, C. sakazakii, C. malonaticus, C. dublinensis, C. muytjensii, C. turicensis, and Cronobacter genomospecies 1. In this study, MboII restriction fragment length polymorphism (RFLP) patterns of O-antigen gene clusters, located between galF and gnd, were used to identify serotypes in Cronobacter spp. Seven O-antigen RFLP clusters were generated, including three C. sakazakii clusters, previously identified as serotypes O1, O2, and O3. The O-antigen regions of six strains with unique RFLP patterns, including two C. sakazakii strains, two C. malonaticus strains, one C. turicensis strain, and one C. muytjensii strain, revealed three O-antigen gene clusters shared among Cronobacter species. PCR assays were developed, targeting the wzx O-antigen polymerase gene, and used to screen 231 Cronobacter strains to determine the frequency of these newly identified serotypes. PMID:21531829

  20. The biosynthetic gene cluster for the macrolactone ring of the immunosuppressant FK506.

    PubMed

    Motamedi, H; Shafiee, A

    1998-09-15

    Biosynthesis of the macrolactone ring of FK506 involves 10 elongation cycles that mechanistically resemble the steps in fatty acid synthesis. Sequencing of a 40-kb DNA segment of the FK506 gene cluster from Streptomyces sp. MA6548 has revealed two additional polyketide synthases (PKS) genes fkbB and fkbC which lie upstream of fkbA, a PKS gene recently shown to be responsible for the last four condensation steps of the FK506 biosynthesis [Motamedi, H., Cai, S. J., Shafiee, A. & Elliston, K. O. (1997) Eur. J. Biochem. 244, 74-80]. fkbB and fkbC are contiguous and encode respectively, the first (790129 Da) and the second (374438 Da) components of the FK506 polyketide synthase, a complex of three multidomain polypeptides. The predicted domain structures of FkbB and FkbC are analogous to that of FkbA and comprise 30 fatty-acid-synthase(FAS)-like domains arranged in 6 modules. Each module performs a specific extension cycle in the assembly of the carbon skeleton of the FK506 macrolactone ring. The component activities for the initiation of the polyketide chain consisting of a dihydrocyclohexenylcarbonyl coenzyme A (CoA) synthetase and a dihydrocyclohexenylcarbonyl CoA reductase required for the formation of the dihydrocyclohexylcarbonyl CoA starter unit and an acyl-carrier-protein to which the starter unit is anchored and translocated to the appropriate site on the PKS multienzyme are located at the N-terminal region of the FkbB polypeptide. A third gene, fkbL, lies at one end of the cluster and encodes lysine cyclodeaminase which catalyzes alpha-deamination and cyclization of the lysine into pipecolate. A fourth gene fkbP located at the other end of the sequence reported here encodes a peptide synthetase required for the activation and incorporation of the pipecolate moiety into the completed acyl chain. Finally the cluster carries a gene, fkbO, whose product is presumed to carry out a post-polyketide oxidation step of the FK506 marocycle. PMID:9780228

  1. Genetic and functional characterization of the gene cluster specifying expression of Pseudomonas aeruginosa pili.

    PubMed Central

    Koga, T; Ishimoto, K; Lory, S

    1993-01-01

    The genetic organization of the gene cluster containing pilA, the structural gene for type IV pilin of Pseudomonas aeruginosa, as well as the accessory genes pilB, pilC, and pilD, has been studied. DNA sequences capable of initiating transcription when fused to a promoterless lacZ gene have been identified in the pilA-pilB and pilB-pilC intergenic regions. Unlike pilA, which requires rpoN (encoding the sigma 54 subunit of RNA polymerase) and products of two regulatory genes, pilS and pilR, expression of pilB, pilC, or pilD did not depend on any of these transcriptional regulators. Moreover, transcription of pilA from the tac promoter in an rpoN mutant background resulted in piliated bacteria, suggesting that the RpoN-based regulatory network is specific for pilA and does not control expression of any other genes necessary for formation of pili. Insertion of the omega fragment containing strong transcriptional terminators into pilB, pilC, and pilD failed to have a polar effect on expression of downstream genes, as determined by the ability of each cloned gene to complement, in trans, the corresponding insertionally inactivated chromosomal copy. Insertions into pilC, however, resulted in decreased synthesis of PilD as determined by quantitation of PilD enzymatic activity in processing prepilin in vitro and by immunoassay. This finding suggests that PilD may require PilC for its optimal stability or correct membrane localization. Images PMID:7681046

  2. Genomic organization and differential signature of positive selection in the alpha and beta globin gene clusters in two cetacean species.

    PubMed

    Nery, Mariana F; Arroyo, José Ignacio; Opazo, Juan C

    2013-01-01

    The hemoglobin of jawed vertebrates is a heterotetramer protein that contains two α- and two β-chains, which are encoded by members of α- and β-globin gene families. Given the hemoglobin role in mediating an adaptive response to chronic hypoxia, it is likely that this molecule may have experienced a selective pressure during the evolution of cetaceans, which have to deal with hypoxia tolerance during prolonged diving. This selective pressure could have generated a complex history of gene turnover in these clusters and/or changes in protein structure themselves. Accordingly, we aimed to characterize the genomic organization of α- and β-globin gene clusters in two cetacean species and to detect a possible role of positive selection on them using a phylogenetic framework. Maximum likelihood and Bayesian phylogeny reconstructions revealed that both cetacean species had retained a similar complement of putatively functional genes. For the α-globin gene cluster, the killer whale presents a complement of genes composed of HBZ, HBK, and two functional copies of HBA and HBQ genes, whereas the dolphin possesses HBZ, HBK, HBA and HBQ genes, and one HBA pseudogene. For the β-globin gene cluster, both species retained a complement of four genes, two early expressed genes-HBE and HBH-and two adult expressed genes-HBD and HBB. Our natural selection analysis detected two positively selected sites in the HBB gene (56 and 62) and four in HBA (15, 21, 49, 120). Interestingly, only the genes that are expressed during the adulthood showed the signature of positive selection. PMID:24259315

  3. Structure of the K2 capsule associated with the KL2 gene cluster of Acinetobacter baumannii.

    PubMed

    Kenyon, Johanna J; Marzaioli, Alberto M; Hall, Ruth M; De Castro, Cristina

    2014-06-01

    The repeat unit structure of the K2 capsule from an extensively antibiotic-resistant Acinetobacter baumannii global clone 2 (GC2) strain was determined. The oligosaccharide contains three simple sugars, d-glucopyranose, d-galatopyranose and N-acetyl-d-galactosamine, and the complex sugar, 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-manno-non-2-ulosonic acid (Pse5Ac7Ac or pseudaminic acid), which has not previously been reported in any A. baumannii capsule. The strain was found to carry all the genes required for the synthesis of the sugars and construction of the K2 structure. The linkages catalyzed by the initiating transferase, three glycosyltransferases and the Wzy polymerase were also predicted. Examination of publicly available A. baumannii genome sequences revealed that the same gene cluster, KL2, often occurs in extensively antibiotic-resistant GC2 isolates and in further strain types. The gene module responsible for the synthesis of pseudaminic acid was also detected in four other K loci. A related module including genes for an acylated relative of pseudaminic acid was also found in two new KL types. A polymerase chain reaction scheme was developed to detect all modules containing genes for sugars based on pseudaminic acid and to specifically detect KL2.

  4. Genome analysis of poplar LRR-RLP gene clusters reveals RISP, a defense-related gene coding a candidate endogenous peptide elicitor

    PubMed Central

    Petre, Benjamin; Hacquard, Stéphane; Duplessis, Sébastien; Rouhier, Nicolas

    2014-01-01

    In plants, cell-surface receptors control immunity and development through the recognition of extracellular ligands. Leucine-rich repeat receptor-like proteins (LRR-RLPs) constitute a large multigene family of cell-surface receptors. Although this family has been intensively studied, a limited number of ligands has been identified so far, mostly because methods used for their identification and characterization are complex and fastidious. In this study, we combined genome and transcriptome analyses to describe the LRR-RLP gene family in the model tree poplar (Populus trichocarpa). In total, 82 LRR-RLP genes have been identified in P. trichocarpa genome, among which 66 are organized in clusters of up to seven members. In these clusters, LRR-RLP genes are interspersed by orphan, poplar-specific genes encoding small proteins of unknown function (SPUFs). In particular, the nine largest clusters of LRR-RLP genes (47 LRR-RLPs) include 71 SPUF genes that account for 59% of the non-LRR-RLP gene content within these clusters. Forty-four LRR-RLP and 55 SPUF genes are expressed in poplar leaves, mostly at low levels, except for members of some clusters that show higher and sometimes coordinated expression levels. Notably, wounding of poplar leaves strongly induced the expression of a defense SPUF gene named Rust-Induced Secreted protein (RISP) that has been previously reported as a marker of poplar defense responses. Interestingly, we show that the RISP-associated LRR-RLP gene is highly expressed in poplar leaves and slightly induced by wounding. Both gene promoters share a highly conserved region of ~300 nucleotides. This led us to hypothesize that the corresponding pair of proteins could be involved in poplar immunity, possibly as a ligand/receptor couple. In conclusion, we speculate that some poplar SPUFs, such as RISP, represent candidate endogenous peptide ligands of the associated LRR-RLPs and we discuss how to investigate further this hypothesis. PMID:24734035

  5. A Novel Type Pathway-Specific Regulator and Dynamic Genome Environments of a Solanapyrone Biosynthesis Gene Cluster in the Fungus Ascochyta rabiei.

    PubMed

    Kim, Wonyong; Park, Jeong-Jin; Gang, David R; Peever, Tobin L; Chen, Weidong

    2015-11-01

    Secondary metabolite genes are often clustered together and situated in particular genomic regions, like the subtelomere, that can facilitate niche adaptation in fungi. Solanapyrones are toxic secondary metabolites produced by fungi occupying different ecological niches. Full-genome sequencing of the ascomycete Ascochyta rabiei revealed a solanapyrone biosynthesis gene cluster embedded in an AT-rich region proximal to a telomere end and surrounded by Tc1/Mariner-type transposable elements. The highly AT-rich environment of the solanapyrone cluster is likely the product of repeat-induced point mutations. Several secondary metabolism-related genes were found in the flanking regions of the solanapyrone cluster. Although the solanapyrone cluster appears to be resistant to repeat-induced point mutations, a P450 monooxygenase gene adjacent to the cluster has been degraded by such mutations. Among the six solanapyrone cluster genes (sol1 to sol6), sol4 encodes a novel type of Zn(II)2Cys6 zinc cluster transcription factor. Deletion of sol4 resulted in the complete loss of solanapyrone production but did not compromise growth, sporulation, or virulence. Gene expression studies with the sol4 deletion and sol4-overexpressing mutants delimited the boundaries of the solanapyrone gene cluster and revealed that sol4 is likely a specific regulator of solanapyrone biosynthesis and appears to be necessary and sufficient for induction of the solanapyrone cluster genes. Despite the dynamic surrounding genomic regions, the solanapyrone gene cluster has maintained its integrity, suggesting important roles of solanapyrones in fungal biology.

  6. A functional gene cluster for toxoflavin biosynthesis in the genome of the soil bacterium Pseudomonas protegens Pf-5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toxoflavin is a broad-spectrum toxin best known for its role in virulence of Burkholderia glumae, which causes panicle blight of rice. A gene cluster containing homologs of toxoflavin biosynthesis genes (toxA-E) of B. glumae is present in the genome of Pseudomonas protegens Pf-5, a biological contr...

  7. A Transgressive Segregation Factor (RKN2) in Gossypium barbadense for Nematode Resistance Clusters with Gene rkn1 in G. hirsutum.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Host plant resistance is an important strategy for managing root-knot nematode (Meloidogyne incognita) in cotton (Gossypium L.). Here we report evidence for enhanced resistance in interspecific crosses resulting from transgressive segregation of clustered gene loci. Recently, a major gene, rkn1, on ...

  8. A Zn(II)2Cys6 DNA binding protein regulates the sirodesmin PL biosynthetic gene cluster in Leptosphaeria maculans

    PubMed Central

    Fox, Ellen M.; Gardiner, Donald M.; Keller, Nancy P.; Howlett, Barbara J.

    2008-01-01

    A gene, sirZ, encoding a Zn(II)2Cys6 DNA binding protein is present in a cluster of genes responsible for the biosynthesis of the epipolythiodioxopiperazine (ETP) toxin, sirodesmin PL in the ascomycete plant pathogen, Leptosphaeria maculans. RNA-mediated silencing of sirZ gives rise to transformants that produce only residual amounts of sirodesmin PL and display a decrease in the transcription of several sirodesmin PL biosynthetic genes. This indicates that SirZ is a major regulator of this gene cluster. Proteins similar to SirZ are encoded in the gliotoxin biosynthetic gene cluster of Aspergillus fumigatus (gliZ) and in an ETP-like cluster in Penicillium lilacinoechinulatum (PlgliZ). Despite its high level of sequence similarity to gliZ, PlgliZ is unable to complement the gliotoxin-deficiency of a mutant of gliZ in A. fumigatus. Putative binding sites for these regulatory proteins in the promoters of genes in these clusters were predicted using bioinformatic analysis. These sites are similar to those commonly bound by other proteins with Zn(II)2Cys6 DNA binding domains. PMID:18023597

  9. Mutant U5A cells are complemented by an interferon-alpha beta receptor subunit generated by alternative processing of a new member of a cytokine receptor gene cluster.

    PubMed

    Lutfalla, G; Holland, S J; Cinato, E; Monneron, D; Reboul, J; Rogers, N C; Smith, J M; Stark, G R; Gardiner, K; Mogensen, K E

    1995-10-16

    The cellular receptor for the alpha/beta interferons contains at least two components that interact with interferon. The ifnar1 component is well characterized and a putative ifnar2 cDNA has recently been identified. We have cloned the gene for ifnar2 and show that it produces four different transcripts encoding three different polypeptides that are generated by exon skipping, alternative splicing and differential use of polyadenylation sites. One polypeptide is likely to be secreted and two are transmembrane proteins with identical extracellular and transmembrane domains but divergent cytoplasmic tails of 67 and 251 amino acids. A mutant cell line U5A, completely defective in IFN-alpha beta binding and response, has been isolated and characterized. Expression in U5A cells of the polypeptide with the long cytoplasmic domain reconstitutes a functional receptor that restores normal interferon binding, activation of the JAK/STAT signal transduction pathway, interferon-inducible gene expression and antiviral response. The IFNAR2 gene maps at 0.5 kb from the CRFB4 gene, establishing that together IFNAR2, CRFB4, IFNAR1 and AF1 form a cluster of class II cytokine receptor genes on human chromosome 21.

  10. Molecular Cloning and Heterologous Expression of the Dehydrophos Biosynthetic Gene Cluster

    PubMed Central

    Circello, Benjamin T.; Eliot, Andrew C.; Lee, Jin-Hee; van der Donk, Wilfred A.; Metcalf, William W.

    2010-01-01

    Summary Dehydrophos is a vinyl phosphonate tripeptide produced by Streptomyces luridus with demonstrated broad spectrum antibiotic activity. To identify genes necessary for biosynthesis of this unusual compound we screened a fosmid library of S. luridus for the presence of the phosphoenolpyruvate mutase gene, which is required for biosynthesis of most phosphonates. Integration of one such fosmid clone into the chromosome of Streptomyces lividans led to heterologous production of dehydrophos. Deletion analysis of this clone allowed identification of the minimal contiguous dehydrophos cluster, which contained 17 open reading frames (ORFs). Bioinformatic analyses of these ORFs are consistent with a proposed biosynthetic pathway that generates dehydrophos from phosphoenolpyruvate. The early steps of this pathway are supported by analysis of intermediates accumulated by blocked mutants and in vitro biochemical experiments. PMID:20416511

  11. Patterns of polarity in the Escherichia coli car AB gene cluster.

    PubMed Central

    Gigot, D; Crabeel, M; Feller, A; Charlier, D; Lissens, W; Glansdorff, N; Piérard, A

    1980-01-01

    The direction of transcription of the carAB gene cluster, which codes for Escherichia coli carbamoylphosphate synthase, was deduced from the effects of phage Mu-1 insertions in each of the two genes and from the results of ribonucleic acid-deoxyribonucleic acid hybridization experiments relating the quantity of car messenger ribonucleic acid to the location of various car mutations. The car locus appears to constitute an operon polarized from carA to carB. The levels of carA and carB products were determined in a large number of car mutants by using in vitro and in vivo complementation assays. The results obtained display strong anomalies, which are discussed in light of the conclusions described above. PMID:6162837

  12. Mutational analysis of the nor gene cluster which encodes nitric-oxide reductase from Paracoccus denitrificans.

    PubMed

    de Boer, A P; van der Oost, J; Reijnders, W N; Westerhoff, H V; Stouthamer, A H; van Spanning, R J

    1996-12-15

    The genes that encode the hc-type nitric-oxide reductase from Paracoccus denitrificans have been identified. They are part of a cluster of six genes (norCBQDEF) and are found near the gene cluster that encodes the cd1-type nitrite reductase, which was identified earlier [de Boer, A. P. N., Reijnders, W. N. M., Kuenen, J. G., Stouthamer, A. H. & van Spanning, R. J. M. (1994) Isolation, sequencing and mutational analysis of a gene cluster involved in nitrite reduction in Paracoccus denitrificans, Antonie Leeu wenhoek 66, 111-127]. norC and norB encode the cytochrome-c-containing subunit II and cytochrome b-containing subunit I of nitric-oxide reductase (NO reductase), respectively. norQ encodes a protein with an ATP-binding motif and has high similarity to NirQ from Pseudomonas stutzeri and Pseudomonas aeruginosa and CbbQ from Pseudomonas hydrogenothermophila. norE encodes a protein with five putative transmembrane alpha-helices and has similarity to CoxIII, the third subunit of the aa3-type cytochrome-c oxidases. norF encodes a small protein with two putative transmembrane alpha-helices. Mutagenesis of norC, norB, norQ and norD resulted in cells unable to grow anaerobically. Nitrite reductase and NO reductase (with succinate or ascorbate as substrates) and nitrous oxide reductase (with succinate as substrate) activities were not detected in these mutant strains. Nitrite extrusion was detected in the medium, indicating that nitrate reductase was active. The norQ and norD mutant strains retained about 16% and 23% of the wild-type level of NorC, respectively. The norE and norF mutant strains had specific growth rates and NorC contents similar to those of the wild-type strain, but had reduced NOR and NIR activities, indicating that their gene products are involved in regulation of enzyme activity. Mutant strains containing the norCBQDEF region on the broad-host-range vector pEG400 were able to grow anaerobically, although at a lower specific growth rate and with lower

  13. Characterization of the gene cluster for biosynthesis of macrocyclic trichothecenes in Myrothecium roridum.

    PubMed

    Trapp, S C; Hohn, T M; McCormick, S; Jarvis, B B

    1998-02-01

    Macrocyclic trichothecenes are toxic sesquiterpenoids that are produced by certain fungi and plants. The unique structural features of macrocyclic trichothecenes result in increased toxicity relative to other trichothecene structural types. Here we report the sequences and relative locations of the MRTRI5, MRTRI6, and MRTRI4 genes in the biosynthetic pathway for macrocyclic trichothecenes in Myrothecium roridum. The deduced sequences of the products of MRTRI5 and MRTRI4 display overall identities of 75 and 63%, respectively, with the corresponding proteins in Fusarium sporotrichioides. Based on sequence comparisons, MRTRI5 encodes the enzyme trichodiene synthase, which has been shown to catalyze the first step in the trichothecene pathways of Fusarium and Trichothecium species. MRTRI6 encodes a transcription factor (392 amino acids) required for pathway gene expression, and the predicted MRTRI4 product (533 amino acids) is a cytochrome P450 monooxygenase responsible for the initial oxygenation step in the pathway. The sizes of the predicted products of MRTRI5 and MRTRI4 show good agreement with their apparent counterparts in the Fusarium pathway; however, the protein specified by MRTRI6 is almost twice the size of its putative homolog in F. sporotrichioides. Only the C-terminal 124 residues of MRTRI6, containing the proposed Cys2His2 zinc finger motifs, show significant similarity (65% identity) to the TRI6 sequence in F. sporotrichioides. MRTRI4 can successfully complement a TRI4-mutant in F. sporotrichioides, although the resulting trichothecene profile differed from that observed in wild-type strains. Complemented mutants accumulated low levels of T-2 toxin, in addition to sambucinol, deoxysambucinol, and the pathway intermediates trichothecene and isotrichodiol. Mapping data indicate that the genes of the macrocyclic trichothecene pathway in M. roridum are clustered, but that their organization and orientation differ markedly from those of the trichothecene

  14. Transcriptional regulation of the cpr gene cluster in ortho-chlorophenol-respiring Desulfitobacterium dehalogenans.

    PubMed

    Smidt, H; van Leest, M; van der Oost, J; de Vos, W M

    2000-10-01

    To characterize the expression and possible regulation of reductive dehalogenation in halorespiring bacteria, a 11.5-kb genomic fragment containing the o-chlorophenol reductive dehalogenase-encoding cprBA genes of the gram-positive bacterium Desulfitobacterium dehalogenans was subjected to detailed molecular characterization. Sequence analysis revealed the presence of eight designated genes with the order cprTKZEBACD and with the same polarity except for cprT. The deduced cprC and cprK gene products belong to the NirI/NosR and CRP-FNR families of transcription regulatory proteins, respectively. CprD and CprE are predicted to be molecular chaperones of the GroEL type, whereas cprT may encode a homologue of the trigger factor folding catalysts. Northern blot analysis, reverse transcriptase PCR, and primer extension analysis were used to elucidate the transcriptional organization and regulation of the cpr gene cluster. Results indicated halorespiration-specific transcriptional induction of the monocistronic cprT gene and the biscistronic cprBA and cprZE genes. Occasional read-through at cprC gives rise to a tetracistronic cprBACD transcript. Transcription of cprBA was induced 15-fold upon addition of the o-chlorophenolic substrate 3-chloro-4-hydroxyphenylacetic acid within 30 min with concomitant induction of dehalogenation activity. Putative regulatory protein binding motifs that to some extent resemble the FNR box were identified in the cprT-cprK and cprK-cprZ intergenic regions and the promoter at cprB, suggesting a role for FNR-like CprK in the control of expression of the cprTKZEBACD genes. PMID:11004165

  15. The HOX-5 and surfeit gene clusters are linked in the proximal portion of mouse chromosome 2.

    PubMed

    Stubbs, L; Huxley, C; Hogan, B; Evans, T; Fried, M; Duboule, D; Lehrach, H

    1990-04-01

    Using an interspecies backcross, we have mapped the HOX-5 and surfeit (surf) gene clusters within the proximal portion of mouse chromosome 2. While the HOX-5 cluster of homeobox-containing genes has been localized to chromosome 2, bands C3-E1, by in situ hybridization, its more precise position relative to the genes and cloned markers of chromosome 2 was not known. Surfeit, a tight cluster of at least six highly conserved "housekeeping" genes, has not been previously mapped in mouse, but has been localized to human chromosome 9q, a region of the human genome with strong homology to proximal mouse chromosome 2. The data presented here place HOX-5 in the vicinity of the closely linked set of developmental mutations rachiterata, lethargic, and fidget and place surf close to the proto-oncogene Abl, near the centromere of chromosome 2.

  16. Role of a Microcin-C–like biosynthetic gene cluster in allelopathic interactions in marine Synechococcus

    PubMed Central

    Paz-Yepes, Javier; Brahamsha, Bianca; Palenik, Brian

    2013-01-01

    Competition between phytoplankton species for nutrients and light has been studied for many years, but allelopathic interactions between them have been more difficult to characterize. We used liquid and plate assays to determine whether these interactions occur between marine unicellular cyanobacteria of the genus Synechococcus. We have found a clear growth impairment of Synechococcus sp. CC9311 and Synechococcus sp. WH8102 when they are cultured in the presence of Synechococcus sp. CC9605. The genome of CC9605 contains a region showing homology to genes of the Escherichia coli Microcin C (McC) biosynthetic pathway. McC is a ribosome-synthesized peptide that inhibits translation in susceptible strains. We show that the CC9605 McC gene cluster is expressed and that three genes (mccD, mccA, and mccB) are further induced by coculture with CC9311. CC9605 was resistant to McC purified from E. coli, whereas strains CC9311 and WH8102 were sensitive. Cloning the CC9605 McC biosynthetic gene cluster into sensitive CC9311 led this strain to become resistant to both purified E. coli McC and Synechococcus sp. CC9605. A CC9605 mutant lacking mccA1, mccA2, and the N-terminal domain of mccB did not inhibit CC9311 growth, whereas the inhibition of WH8102 was reduced. Our results suggest that an McC-like molecule is involved in the allelopathic interactions with CC9605. PMID:23818639

  17. Role of a microcin-C-like biosynthetic gene cluster in allelopathic interactions in marine Synechococcus.

    PubMed

    Paz-Yepes, Javier; Brahamsha, Bianca; Palenik, Brian

    2013-07-16

    Competition between phytoplankton species for nutrients and light has been studied for many years, but allelopathic interactions between them have been more difficult to characterize. We used liquid and plate assays to determine whether these interactions occur between marine unicellular cyanobacteria of the genus Synechococcus. We have found a clear growth impairment of Synechococcus sp. CC9311 and Synechococcus sp. WH8102 when they are cultured in the presence of Synechococcus sp. CC9605. The genome of CC9605 contains a region showing homology to genes of the Escherichia coli Microcin C (McC) biosynthetic pathway. McC is a ribosome-synthesized peptide that inhibits translation in susceptible strains. We show that the CC9605 McC gene cluster is expressed and that three genes (mccD, mccA, and mccB) are further induced by coculture with CC9311. CC9605 was resistant to McC purified from E. coli, whereas strains CC9311 and WH8102 were sensitive. Cloning the CC9605 McC biosynthetic gene cluster into sensitive CC9311 led this strain to become resistant to both purified E. coli McC and Synechococcus sp. CC9605. A CC9605 mutant lacking mccA1, mccA2, and the N-terminal domain of mccB did not inhibit CC9311 growth, whereas the inhibition of WH8102 was reduced. Our results suggest that an McC-like molecule is involved in the allelopathic interactions with CC9605. PMID:23818639

  18. Characterization of two cytochrome P450 monooxygenase genes of the pyripyropene biosynthetic gene cluster from Penicillium coprobium.

    PubMed

    Hu, Jie; Okawa, Hiroto; Yamamoto, Kentaro; Oyama, Kazuhiko; Mitomi, Masaaki; Anzai, Hiroyuki

    2011-03-01

    Pyripyropenes are potent inhibitors of acyl-CoA:cholesterol acyltransferase, which were initially discovered to be produced by Aspergillus fumigatus. Recently, Penicillium coprobium PF1169 has also found to produce pyripyropene A (PyA), which exhibits insecticidal properties. Pyripyropenes are natural hybrid products of both terpenoid and polyketide origin. In our research, based on data generated using the Genome Sequencer FLX for P. coprobium PF1169, we predicted the biosynthetic gene cluster of PyA by blast analysis comparing with polyketide synthase and prenyltransferase of other species. By screening the genomic fosmid library, nine open reading frames (ppb1 to ppb9) related to the biosynthesis of PyA were deduced. Among them, two cytochrome P450 monooxygenase genes (ppb3 and ppb4) were separately introduced into the model fungus A. oryzae. Bioconversion of certain predicted intermediates in the transformants has elucidated the manner of hydroxylation in the biosynthetic pathway by the expressed products of these two genes (P450-1 and P450-2). That is, P450-1 exhibits monooxygenase activity and plays the hydroxylation role at C-11 of pyripyropene E. While P450-2 plays an active role in the hydroxylation of C-7 and C-13 of pyripyropene O. PMID:21224862

  19. Extended genetic effects of ADH cluster genes on the risk of alcohol dependence: from GWAS to replication.

    PubMed

    Park, Byung Lae; Kim, Jee Wook; Cheong, Hyun Sub; Kim, Lyoung Hyo; Lee, Boung Chul; Seo, Cheong Hoon; Kang, Tae-Cheon; Nam, Young-Woo; Kim, Goon-Bo; Shin, Hyoung Doo; Choi, Ihn-Geun

    2013-06-01

    Alcohol dependence (AD) is a multifactorial and polygenic disorder involving complex gene-to-gene and gene-to-environment interactions. Several genome-wide association studies have reported numerous risk factors for AD, but replication results following these studies have been controversial. To identify new candidate genes, the present study used GWAS and replication studies in a Korean cohort with AD. Genome-wide association analysis revealed that two chromosome regions on Chr. 4q22-q23 (ADH gene cluster, including ADH5, ADH4, ADH6, ADH1A, ADH1B, and ADH7) and Chr. 12q24 (ALDH2) showed multiple association signals for the risk of AD. To investigate detailed genetic effects of these ADH genes on AD, a follow-up study of the ADH gene cluster on 4q22-q23 was performed. A total of 90 SNPs, including ADH1B rs1229984 (H47R), were genotyped in an additional 975 Korean subjects. In case-control analysis, ADH1B rs1229984 (H47R) showed the most significant association with the risk of AD (p = 2.63 × 10(-21), OR = 2.35). Moreover, subsequent conditional analyses revealed that all positive associations of other ADH genes in the cluster disappeared, which suggested that ADH1B rs1229984 (H47R) might be the sole functional genetic marker across the ADH gene cluster. Our findings could provide additional information on the ADH gene cluster regarding the risk of AD, as well as a new and important insight into the genetic factors associated with AD.

  20. Regulatory elements required for the activation and repression of the protocadherin-alpha gene cluster.

    PubMed

    Kehayova, Polina; Monahan, Kevin; Chen, Weisheng; Maniatis, Tom

    2011-10-11

    The mouse protocadherin (Pcdh) -α, -β, and -γ gene clusters encode more than 50 protein isoforms, the combinatorial expression of which generates vast single-cell diversity in the brain. At present, the mechanisms by which this diversity is expressed are not understood. Here we show that two transcriptional enhancer elements, HS5-1 and HS7, play a critical role in Pcdhα gene expression in mice. We show that the HS5-1 element functions as an enhancer in neurons and a silencer in nonneuronal cells. The enhancer activity correlates with the binding of zinc finger DNA binding protein CTCF to the target promoters, and the silencer activity requires the binding of the REST/NRSF repressor complex in nonneuronal cells. Thus, the HS5-1 element functions as a neuron-specific enhancer and nonneuronal cell repressor. In contrast, the HS7 element functions as a Pcdhα cluster-wide transcription enhancer element. These studies reveal a complex organization of regulatory elements required for generating single cell Pcdh diversity. PMID:21949399

  1. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis.

    PubMed

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S; Qian, Pei-Yuan

    2015-03-24

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning "plug-and-play" approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  2. Bioactivity-guided genome mining reveals the lomaiviticin biosynthetic gene cluster in Salinispora tropica.

    PubMed

    Kersten, Roland D; Lane, Amy L; Nett, Markus; Richter, Taylor K S; Duggan, Brendan M; Dorrestein, Pieter C; Moore, Bradley S

    2013-05-27

    The use of genome sequences has become routine in guiding the discovery and identification of microbial natural products and their biosynthetic pathways. In silico prediction of molecular features, such as metabolic building blocks, physico-chemical properties or biological functions, from orphan gene clusters has opened up the characterization of many new chemo- and genotypes in genome mining approaches. Here, we guided our genome mining of two predicted enediyne pathways in Salinispora tropica CNB-440 by a DNA interference bioassay to isolate DNA-targeting enediyne polyketides. An organic extract of S. tropica showed DNA-interference activity that surprisingly was not abolished in genetic mutants of the targeted enediyne pathways, ST_pks1 and spo. Instead we showed that the product of the orphan type II polyketide synthase pathway, ST_pks2, is solely responsible for the DNA-interfering activity of the parent strain. Subsequent comparative metabolic profiling revealed the lomaiviticins, glycosylated diazofluorene polyketides, as the ST_pks2 products. This study marks the first report of the 59 open reading frame lomaiviticin gene cluster (lom) and supports the biochemical logic of their dimeric construction through a pathway related to the kinamycin monomer.

  3. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S.; Qian, Pei-Yuan

    2015-03-01

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning ``plug-and-play'' approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  4. Heterogeneous composition of key metabolic gene clusters in a vent mussel symbiont population

    PubMed Central

    Ikuta, Tetsuro; Takaki, Yoshihiro; Nagai, Yukiko; Shimamura, Shigeru; Tsuda, Miwako; Kawagucci, Shinsuke; Aoki, Yui; Inoue, Koji; Teruya, Morimi; Satou, Kazuhito; Teruya, Kuniko; Shimoji, Makiko; Tamotsu, Hinako; Hirano, Takashi; Maruyama, Tadashi; Yoshida, Takao

    2016-01-01

    Chemosynthetic symbiosis is one of the successful systems for adapting to a wide range of habitats including extreme environments, and the metabolic capabilities of symbionts enable host organisms to expand their habitat ranges. However, our understanding of the adaptive strategies that enable symbiotic organisms to expand their habitats is still fragmentary. Here, we report that a single-ribotype endosymbiont population in an individual of the host vent mussel, Bathymodiolus septemdierum has heterogeneous genomes with regard to the composition of key metabolic gene clusters for hydrogen oxidation and nitrate reduction. The host individual harbours heterogeneous symbiont subpopulations that either possess or lack the gene clusters encoding hydrogenase or nitrate reductase. The proportions of the different symbiont subpopulations in a host appeared to vary with the environment or with the host's development. Furthermore, the symbiont subpopulations were distributed in patches to form a mosaic pattern in the gill. Genomic heterogeneity in an endosymbiont population may enable differential utilization of diverse substrates and confer metabolic flexibility. Our findings open a new chapter in our understanding of how symbiotic organisms alter their metabolic capabilities and expand their range of habitats. PMID:26418631

  5. Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters

    PubMed Central

    Netzker, Tina; Fischer, Juliane; Weber, Jakob; Mattern, Derek J.; König, Claudia C.; Valiante, Vito; Schroeckh, Volker; Brakhage, Axel A.

    2015-01-01

    Microorganisms form diverse multispecies communities in various ecosystems. The high abundance of fungal and bacterial species in these consortia results in specific communication between the microorganisms. A key role in this communication is played by secondary metabolites (SMs), which are also called natural products. Recently, it was shown that interspecies “talk” between microorganisms represents a physiological trigger to activate silent gene clusters leading to the formation of novel SMs by the involved species. This review focuses on mixed microbial cultivation, mainly between bacteria and fungi, with a special emphasis on the induced formation of fungal SMs in co-cultures. In addition, the role of chromatin remodeling in the induction is examined, and methodical perspectives for the analysis of natural products are presented. As an example for an intermicrobial interaction elucidated at the molecular level, we discuss the specific interaction between the filamentous fungi Aspergillus nidulans and Aspergillus fumigatus with the soil bacterium Streptomyces rapamycinicus, which provides an excellent model system to enlighten molecular concepts behind regulatory mechanisms and will pave the way to a novel avenue of drug discovery through targeted activation of silent SM gene clusters through co-cultivations of microorganisms. PMID:25941517

  6. Externalizing Behaviors are associated with SNPs in the CHRNA5/CHRNA3/CHRNB4 gene cluster

    PubMed Central

    Stephens, Sarah H.; Hoft, Nicole R.; Schlaepfer, Isabel R.; Young, Susan E.; Corley, Robin C.; McQueen, Matthew B.; Hopfer, Christian; Crowley, Thomas; Stallings, Michael; Hewitt, John; Ehringer, Marissa A.

    2012-01-01

    There is strong evidence for shared genetic factors contributing to childhood externalizing disorders and substance abuse. Externalizing disorders often precede early substance experimentation, leading to the idea that individuals inherit a genetic vulnerability to generalized disinhibitory psychopathology. Genetic variation in the CHRNA5/CHRNA3/CHRNB4 gene cluster has been associated with early substance experimentation, nicotine dependence, and other drug behaviors. This study examines whether the CHRNA5/CHRNA3/CHRNB4 locus is correlated also with externalizing behaviors in three independent longitudinally assessed adolescent samples. We developed a common externalizing behavior phenotype from the available measures in the three samples, and tested for association with 10 SNPs in the gene cluster. Significant results were detected in two of the samples, including rs8040868, which remained significant after controlling for smoking quantity. These results expand on previous work focused mainly on drug behaviors, and support the hypothesis that variation in the CHRNA5/CHRNA3/CHRNB4 locus is associated with early externalizing behaviors. PMID:22042234

  7. Nonribosomal Peptide Synthase Gene Clusters for Lipopeptide Biosynthesis in Bacillus subtilis 916 and Their Phenotypic Functions

    PubMed Central

    Liu, Xuehui; Zhou, Huafei; Wang, Xiaoyu

    2014-01-01

    Bacillus cyclic lipopeptides (LPs) have been well studied for their phytopathogen-antagonistic activities. Recently, research has shown that these LPs also contribute to the phenotypic features of Bacillus strains, such as hemolytic activity, swarming motility, biofilm formation, and colony morphology. Bacillus subtilis 916 not only coproduces the three families of well-known LPs, i.e., surfactins, bacillomycin Ls (iturin family), and fengycins, but also produces a new family of LP called locillomycins. The genome of B. subtilis 916 contains four nonribosomal peptide synthase (NRPS) gene clusters, srf, bmy, fen, and loc, which are responsible for the biosynthesis of surfactins, bacillomycin Ls, fengycins, and locillomycins, respectively. By studying B. subtilis 916 mutants lacking production of one, two, or three LPs, we attempted to unveil the connections between LPs and phenotypic features. We demonstrated that bacillomycin Ls and fengycins contribute mainly to antifungal activity. Although surfactins have weak antifungal activity in vitro, the strain mutated in srfAA had significantly decreased antifungal activity. This may be due to the impaired productions of fengycins and bacillomycin Ls. We also found that the disruption of any LP gene cluster other than fen resulted in a change in colony morphology. While surfactins and bacillomycin Ls play very important roles in hemolytic activity, swarming motility, and biofilm formation, the fengycins and locillomycins had little influence on these phenotypic features. In conclusion, B. subtilis 916 coproduces four families of LPs which contribute to the phenotypic features of B. subtilis 916 in an intricate way. PMID:25362061

  8. Ribulose bisphosphate carboxylase activity and a Calvin cycle gene cluster in Sulfobacillus species.

    PubMed

    Caldwell, Paul E; MacLean, Martin R; Norris, Paul R

    2007-07-01

    The Calvin-Benson-Bassham (CBB) cycle has been extensively studied in proteobacteria, cyanobacteria, algae and plants, but hardly at all in Gram-positive bacteria. Some characteristics of ribulose bisphosphate carboxylase/oxygenase (RuBisCO) and a cluster of potential CBB cycle genes in a Gram-positive bacterium are described in this study with two species of Sulfobacillus (Gram-positive, facultatively autotrophic, mineral sulfide-oxidizing acidophiles). In contrast to the Gram-negative, iron-oxidizing acidophile Acidithiobacillus ferrooxidans, Sulfobacillus thermosulfidooxidans grew poorly autotrophically unless the CO(2) concentration was enhanced over that in air. However, the RuBisCO of each organism showed similar affinities for CO(2) and for ribulose 1,5-bisphosphate, and similar apparent derepression of activity under CO(2) limitation. The red-type, form I RuBisCO of Sulfobacillus acidophilus was confirmed as closely related to that of the anoxygenic phototroph Oscillochloris trichoides. Eight genes potentially involved in the CBB cycle in S. acidophilus were clustered in the order cbbA, cbbP, cbbE, cbbL, cbbS, cbbX, cbbG and cbbT.

  9. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    PubMed Central

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S.; Qian, Pei-Yuan

    2015-01-01

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning “plug-and-play” approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus. PMID:25807046

  10. Comparative Genomics and Diversifying Selection of the Clustered Vertebrate Protocadherin Genes

    PubMed Central

    Wu, Qiang

    2005-01-01

    To explain the mechanism for specifying diverse neuronal connections in the brain, Sperry proposed that individual cells carry chemoaffinity tags on their surfaces. The enormous complexity of these connections requires a tremendous diversity of cell-surface proteins. A large number of neural transmembrane protocadherin (Pcdh) proteins is encoded by three closely linked human and mouse gene clusters (α, β, and γ). To gain insight into Pcdh evolution, I performed comprehensive comparative cDNA and genomic DNA analyses for the three clusters in the chimpanzee, rat, and zebrafish genomes. I found that there are species-specific duplications in vertebrate Pcdh genes and that additional diversity is generated through alternative splicing within the zebrafish “variable” and “constant” regions. Moreover, different codons (sites) in the mammalian Pcdh ectodomains (ECs) are under diversifying selection, with some under diversity-enhancing positive Darwinian selection and others, including calcium-binding sites, under strong purifying selection. Interestingly, almost all positively selected codon positions are located on the surface of ECs 2 and 3. These diversified residues likely play an important role in combinatorial interactions of Pcdh proteins, which could provide the staggering diversity required for neuronal connections in the brain. These results also suggest that adaptive selection is an additional evolutionary factor for increasing Pcdh diversity. PMID:15744052

  11. A tandemly-oriented late gene cluster within the vaccinia virus genome.

    PubMed

    Weinrich, S L; Hruby, D E

    1986-04-11

    The nucleotide sequence of a 5.1 kilobase-pair fragment from the central portion of the vaccinia virus genome has been determined. Within this region, five complete and two incomplete open reading frames (orfs) are tightly-clustered, tandemly-oriented, and read in the leftward direction. Late mRNA start sites for the five complete orfs and one incomplete orf were determined by S1 nuclease mapping. The two leftmost complete orfs correlated with late polypeptides of 65,000 and 32,000 molecular weight previously mapped to this region. When compared with each other and with sequences present in protein data banks, the five complete orfs showed no significant homology matches amongst themselves or any previously reported sequence. The six putative promoters were aligned with three previously sequenced late gene promoters. While all of the nine are A-T rich, the only apparent consensus sequence is TAA immediately preceeding the initiator ATG. Identification of this tandemly-oriented late gene cluster suggests local organization of the viral genome.

  12. [Analysis of the structure and expression of the cluster of Drosophila melanogaster genes DIP1, CG32500, CG32819, and CG14476 in the flamenco gene region].

    PubMed

    Potapova, M V; Nefedova, L N; Kim, A I

    2009-10-01

    The flamenco gene controlling transpositions of the gypsy retrovirus is localized in the 20A1-3 region, in which eight open reading frames organized in a cluster were discovered: DIP1, three repeats of CG32500 and CG32819, and CG14476. Analysis of the genes composing the cluster indicates that their transcription in Drosophila melanogaster is a stage-specific process. Comparison of the expression of these genes in the strains OreR, SS, and MS having the flamenco phenotype and in the strain 413 having the flamenco+ phenotype revealed differences only for the DIP1 gene, transcription of this gene being altered only in the OreR strain. Thus, mutant flamenco alleles are differently expressed in different strains. The structural organization of the flamenco gene region was studied in different Drosophila species: D. sechellia, D. simulans, D. mauritiana, D. yakuba, D. erecta, D. virilis, D. ananassae, D. grimshawi, and D. pseudoobscura. The genes of the cluster were found to be highly conserved in genomes of different species, but in none of them, except D. sechellia, the structural organization of the region repeats the structure of the D. melanogaster cluster. PMID:19947543

  13. Divergence and transcriptional analysis of the division cell wall (dcw) gene cluster in Neisseria spp.

    PubMed

    Snyder, Lori A S; Shafer, William M; Saunders, Nigel J

    2003-01-01

    Three of the 18 open reading frames in the division and cell wall synthesis cluster of the pathogenic Neisseria spp. are not present in the clusters of other bacterial species. The region containing two of these, dcaB and dcaC, displays interstrain and interspecies variability uncharacteristic of such clusters. 3' of dcaB is a Correia repeat enclosed element (CREE), which is only present in some strains. It has been suggested that this CREE is a transcriptional terminator, although we demonstrate otherwise. A gearbox-like promoter within this CREE is active in Escherichia coli but not in Neisseria meningitidis. There is an active promoter 5' of dcaC, although its sequence is not conserved. The presence of similarly located promoters has not been demonstrated in other species. In Neisseria lactamica, this promoter involves another dcw-associated CREE, the first demonstration of active promoter generation at the 5' end of this common intergenic, apparently mobile, element. Upstream of this promoter is an inverted pair of neisserial uptake signal sequences, which are commonly considered to be transcriptional terminators. It has been proposed to terminate transcription in this location, although we have demonstrated transcript extending through this uptake signal sequence. dcaC contains a 108 bp tandem repeat, which is present in different copy numbers in the neisserial strains examined. This investigation reveals extensive sequence variation, disputes the presence of transcriptional terminators and identifies active internal promoters in this normally highly conserved cluster of essential genes, and addresses the transcriptional activity of two common neisserial intergenic components.

  14. Nonblack patients with sickle cell disease have African. beta. sup s gene cluster haplotypes

    SciTech Connect

    Rogers, Z.R.; Powars, D.R.; Williams, W.D. ); Kinney, T.R. ); Schroeder, W.A. )

    1989-05-26

    Of 18 nonblack patients with sickle cell disease, 14 had sickle cell anemia, 2 had hemoglobin SC disease, and 2 had hemoglobin S-{beta}{sup o}-thalassemia. The {beta}{sup s} gene cluster haplotypes that were determined in 7 patients were of African origin and were identified as Central African Republic, Central African Republic minor II, Benin, and Senegal. The haplotype Central African Republic minor II was present on the {beta}{sup o}-thalassemia chromosome in 2 patients. None of 10 patients whose {alpha}-gene status was determined had {alpha}-thalassemia-2. These data strongly support the concept that the {beta}{sup s} gene on chromosome 11 of these individuals is of African origin and that the {alpha}-gene locus on chromosome 16 is of white or native American origin. The clinical severity of the disease in these nonblack patients is appropriate to their haplotype without {alpha}-thalassemia-2 and is comparable with that of black patients. All persons with congenital hemolytic anemia should be examined for the presence of sickle cell disease regardless of physical appearance or ethnic background.

  15. Type VI Secretion System-Associated Gene Clusters Contribute to Pathogenesis of Salmonella enterica Serovar Typhimurium

    PubMed Central

    Mulder, David T.; Cooper, Colin A.

    2012-01-01

    The enteropathogen Salmonella enterica serovar Typhimurium employs a suite of tightly regulated virulence factors within the intracellular compartment of phagocytic host cells resulting in systemic dissemination in mice. A type VI secretion system (T6SS) within Salmonella pathogenicity island 6 (SPI-6) has been implicated in this process; however, the regulatory inputs and the roles of noncore genes in this system are not well understood. Here we describe four clusters of noncore T6SS genes in SPI-6 based on a comparative relationship with the T6SS-3 of Burkholderia mallei and report that the disruption of these genes results in defects in intracellular replication and systemic dissemination in mice. In addition, we show that the expression of the SPI-6-encoded Hcp and VgrG orthologs is enhanced during late stages of macrophage infection. We identify six regions that are transcriptionally active during cell infections and that have regulatory contributions from the regulators of virulence SsrB, PhoP, and SlyA. We show that levels of protein expression are very weak under in vitro conditions and that expression is not enhanced upon the deletion of ssrB, phoP, slyA, qseC, ompR, or hfq, suggesting an unknown activating factor. These data suggest that the SPI-6 T6SS has been integrated into the Salmonella Typhimurium virulence network and customized for host-pathogen interactions through the action of noncore genes. PMID:22493086

  16. IscS from Archaeoglobus fulgidus has no desulfurase activity but may provide a cysteine ligand for [Fe2S2] cluster assembly.

    PubMed

    Pagnier, Adrien; Nicolet, Yvain; Fontecilla-Camps, Juan C

    2015-06-01

    Iron sulfur ([Fe-S]) clusters are essential prosthetic groups involved in fundamental cell processes such as gene expression regulation, electron transfer and Lewis acid base chemistry. Central components of their biogenesis are pyridoxal-5'-phosphate (PLP) dependent l-cysteine desulfurases, which provide the necessary S atoms for [Fe-S] cluster assembly. The archaeon Archaeoglobus fulgidus (Af) has two ORFs, which although annotated as l-cysteine desulfurases of the ISC type (IscS), lack the essential Lys residue (K199 in Af) that forms a Schiff base with PLP. We have previously determined the structure of an Af(IscU-D35A-IscS)2 complex heterologously expressed in Escherichia coli and found it to contain a [Fe2S2] cluster. In order to understand the origin of sulfide in that structure we have performed a series of functional tests using wild type and mutated forms of AfIscS. In addition, we have determined the crystal structure of an AfIscS-D199K mutant. From these studies we conclude that: i) AfIscS has no desulfurase activity; ii) in our in vitro [Fe2S2] cluster assembly experiments, sulfide ions are non-enzymatically generated by a mixture of iron, l-cysteine and PLP and iii) the physiological role of AfIscS may be to provide a cysteine ligand to the nascent cluster as observed in the [Fe2S2]-Af(IscU-D35A-IscS)2 complex. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.

  17. Physical linkage of the human growth hormone gene cluster and the skeletal muscle sodium channel {alpha}-subunit gene (SCN4A) on chromosome 17

    SciTech Connect

    Bennani-Baiti, I.M.; Jones, B.K.; Liebhaber, S.A.; Cooke, N.E.

    1995-10-10

    The human growth hormone (GH) locus, a cluster of five genes, spans 47 kb on chromosome 17q22-q24. The skeletal muscle sodium channel {alpha}-subunit locus (SCN4A), a 32.5-kb gene, has previously been mapped to 17q23.1-q25.3. We demonstrate that both the GH gene cluster and the SCN4A gene colocalize to a single 525-kb yeast artificial chromosome (YAC) containing DNA derived from human chromosome 17. Restriction maps of two cosmids encompassing the 5{prime} terminus of the GH locus and including up to 40 kb of 5{prime}-flanking sequences demonstrate a perfect 20-kb overlap with previously published maps of the SCN4A gene. A 720-bp DNA segment, encompassing sequences 32.3 to 31.6 kb 5{prime} to GH, was sequenced and found to be identical to exon 14 of SCN4A. These data demonstrate that the SCN4A gene and the entire GH gene cluster are contained within 100 kb on chromosome 17 and are separated by only 21.5 kb. Remarkably, this physical linkage between GH and SCN4A also reveals that multiple elements critical to tissue-specific transcriptional activation of the GH gene lie within the SCN4A gene. 48 refs., 5 figs.

  18. Eleven Densely Clustered Genes, Six of them Novel, in 176 kb of Mouse t-complex DNA

    PubMed Central

    Kargul, George J.; Nagaraja, Ramaiah; Shimada, Tokihiko; Grahovac, Marija J.; Lim, Meng K.; Nakashima, Hiroshi; Waeltz, Paul; Ma, Peter; Chen, Ellson; Schlessinger, David; Ko, Minoru S.H.

    2000-01-01

    Targeted sequencing of the mouse t-complex has started with a 176-kb, gene-rich BAC localized with six PCR-based markers in inversion 2/3 of the highly duplicated region. The sequence contains 11 genes recovered primarily as cDNAs from early embryonic collections, including Igfals (previously placed on chromosome 17), Nubp2 (a fully characterized gene), Jsap1 (a JNK-binding protein), Rsp29 (the mouse homologue of the rat gene), Ndk3 (a nucleoside diphosphate kinase), and six additional putative genes of unknown function. With 50% GC content, 75% of the DNA transcribed, and one gene/16.0 kb (on average), the region may qualify as one of the most gene-dense segments in the mouse genome and provides candidates for dosage-sensitive phenotypes and mouse embryonic lethals mapped to the vicinity. [The sequence data described in this paper have been submitted to the GenBank data library under accession no. AF220294.] PMID:10899141

  19. Structure, organization and expression of two clustered cuticle protein genes during the metamorphosis of an insect, Tenebrio molitor.

    PubMed

    Rondot, I; Quennedey, B; Delachambre, J

    1998-06-01

    A 4-kb DNA segment of Tenebrio molitor (Insecta, Coleoptera) genomic DNA containing two larval-pupal cuticular genes has been cloned and sequenced. These genes, transcribed in opposite directions, are related in DNA sequence and the proteins encoded are very similar. Each of them contains a single intron located inside the sequence encoding the signal peptide, and a conserved sequence at -200 bp from the mRNA start position. These similarities in sequence suggest that these genes have evolved by duplication followed by diversification and that they are members of a family of genes with a common ancestry. They are the first example of clustered genes in Tenebrio molitor.

  20. Degradation of Benzene by Pseudomonas veronii 1YdBTEX2 and 1YB2 Is Catalyzed by Enzymes Encoded in Distinct Catabolism Gene Clusters.

    PubMed

    de Lima-Morales, Daiana; Chaves-Moreno, Diego; Wos-Oxley, Melissa L; Jáuregui, Ruy; Vilchez-Vargas, Ramiro; Pieper, Dietmar H

    2015-10-16

    Pseudomonas veronii 1YdBTEX2, a benzene and toluene degrader, and Pseudomonas veronii 1YB2, a benzene degrader, have previously been shown to be key players in a benzene-contaminated site. These strains harbor unique catabolic pathways for the degradation of benzene comprising a gene cluster encoding an isopropylbenzene dioxygenase where genes encoding downstream enzymes were interrupted by stop codons. Extradiol dioxygenases were recruited from gene clusters comprising genes encoding a 2-hydroxymuconic semialdehyde dehydrogenase necessary for benzene degradation but typically absent from isopropylbenzene dioxygenase-encoding gene clusters. The benzene dihydrodiol dehydrogenase-encoding gene was not clustered with any other aromatic degradation genes, and the encoded protein was only distantly related to dehydrogenases of aromatic degradation pathways. The involvement of the different gene clusters in the degradation pathways was suggested by real-time quantitative reverse transcription PCR.

  1. Degradation of Benzene by Pseudomonas veronii 1YdBTEX2 and 1YB2 Is Catalyzed by Enzymes Encoded in Distinct Catabolism Gene Clusters

    PubMed Central

    de Lima-Morales, Daiana; Chaves-Moreno, Diego; Wos-Oxley, Melissa L.; Jáuregui, Ruy; Vilchez-Vargas, Ramiro

    2015-01-01

    Pseudomonas veronii 1YdBTEX2, a benzene and toluene degrader, and Pseudomonas veronii 1YB2, a benzene degrader, have previously been shown to be key players in a benzene-contaminated site. These strains harbor unique catabolic pathways for the degradation of benzene comprising a gene cluster encoding an isopropylbenzene dioxygenase where genes encoding downstream enzymes were interrupted by stop codons. Extradiol dioxygenases were recruited from gene clusters comprising genes encoding a 2-hydroxymuconic semialdehyde dehydrogenase necessary for benzene degradation but typically absent from isopropylbenzene dioxygenase-encoding gene clusters. The benzene dihydrodiol dehydrogenase-encoding gene was not clustered with any other aromatic degradation genes, and the encoded protein was only distantly related to dehydrogenases of aromatic degradation pathways. The involvement of the different gene clusters in the degradation pathways was suggested by real-time quantitative reverse transcription PCR. PMID:26475106

  2. ThioFinder: A Web-Based Tool for the Identification of Thiopeptide Gene Clusters in DNA Sequences

    PubMed Central

    He, Xinyi; Duan, Lian; Wu, Guojun; Bi, Dexi; Deng, Zixin; Liu, Wen; Ou, Hong-Yu

    2012-01-01

    Thiopeptides are a growing class of sulfur-rich, highly modified heterocyclic peptides that are mainly active against Gram-positive bacteria including various drug-resistant pathogens. Recent studies also reveal that many thiopeptides inhibit the proliferation of human cancer cells, further expanding their application potentials for clinical use. Thiopeptide biosynthesis shares a common paradigm, featuring a ribosomally synthesized precursor peptide and conserved posttranslational modifications, to afford a characteristic core system, but differs in tailoring to furnish individual members. Identification of new thiopeptide gene clusters, by taking advantage of increasing information of DNA sequences from bacteria, may facilitate new thiopeptide discovery and enrichment of the unique biosynthetic elements to produce novel drug leads by applying the principle of combinatorial biosynthesis. In this study, we have developed a web-based tool ThioFinder to rapidly identify thiopeptide biosynthetic gene cluster from DNA sequence using a profile Hidden Markov Model approach. Fifty-four new putative thiopeptide biosynthetic gene clusters were found in the sequenced bacterial genomes of previously unknown producing microorganisms. ThioFinder is fully supported by an open-access database ThioBase, which contains the sufficient information of the 99 known thiopeptides regarding the chemical structure, biological activity, producing organism, and biosynthetic gene (cluster) along with the associated genome if available. The ThioFinder website offers researchers a unique resource and great flexibility for sequence analysis of thiopeptide biosynthetic gene clusters. ThioFinder is freely available at http://db-mml.sjtu.edu.cn/ThioFinder/. PMID:23029291

  3. Interactions of Environmental Factors and APOA1-APOC3-APOA4-APOA5 Gene Cluster Gene Polymorphisms with Metabolic Syndrome

    PubMed Central

    Wu, Yanhua; Yu, Yaqin; Zhao, Tiancheng; Wang, Shibin; Fu, Yingli; Qi, Yue; Yang, Guang; Yao, Wenwang; Su, Yingying; Ma, Yue; Shi, Jieping; Jiang, Jing; Kou, Changgui

    2016-01-01

    Objective The present study investigated the prevalence and risk factors for Metabolic syndrome. We evaluated the association between single nucleotide polymorphisms (SNPs) in the apolipoprotein APOA1/C3/A4/A5 gene cluster and the MetS risk and analyzed the interactions of environmental factors and APOA1/C3/A4/A5 gene cluster polymorphisms with MetS. Methods A study on the prevalence and risk factors for MetS was conducted using data from a large cross-sectional survey representative of the population of Jilin Province situated in northeastern China. A total of 16,831 participations were randomly chosen by multistage stratified cluster sampling of residents aged from 18 to 79 years in all nine administrative areas of the province. Environmental factors associated with MetS were examined using univariate and multivariate logistic regression analyses based on the weighted sample data. A sub-sample of 1813 survey subjects who met the criteria for MetS patients and 2037 controls from this case-control study were used to evaluate the association between SNPs and MetS risk. Genomic DNA was extracted from peripheral blood lymphocytes, and SNP genotyping was determined by MALDI-TOF-MS. The associations between SNPs and MetS were examined using a case-control study design. The interactions of environmental factors and APOA1/C3/A4/A5 gene cluster polymorphisms with MetS were assessed using multivariate logistic regression analysis. Results The overall adjusted prevalence of MetS was 32.86% in Jilin province. The prevalence of MetS in men was 36.64%, which was significantly higher than the prevalence in women (29.66%). MetS was more common in urban areas (33.86%) than in rural areas (31.80%). The prevalence of MetS significantly increased with age (OR = 8.621, 95%CI = 6.594–11.272). Mental labor (OR = 1.098, 95%CI = 1.008–1.195), current smoking (OR = 1.259, 95%CI = 1.108–1.429), excess salt intake (OR = 1.252, 95%CI = 1.149–1.363), and a fruit and dairy intake less

  4. Mutant U2AF1 Expression Alters Hematopoiesis and Pre-mRNA Splicing In Vivo

    PubMed Central

    Shirai, Cara Lunn; Ley, James N.; White, Brian S.; Kim, Sanghyun; Tibbitts, Justin; Shao, Jin; Ndonwi, Matthew; Wadugu, Brian; Duncavage, Eric J.; Okeyo-Owuor, Theresa; Liu, Tuoen; Griffith, Malachi; McGrath, Sean; Magrini, Vincent; Fulton, Robert S.; Fronick, Catrina; O’Laughlin, Michelle; Graubert, Timothy A.; Walter, Matthew J.

    2015-01-01

    SUMMARY Heterozygous somatic mutations in the spliceosome gene U2AF1 occur in ~11% of patients with myelodysplastic syndromes (MDS), the most common adult myeloid malignancy. It is unclear how these mutations contribute to disease. We examined in vivo hematopoietic consequences of the most common U2AF1 mutation using a doxycycline-inducible transgenic mouse model. Mice expressing mutant U2AF1(S34F) display altered hematopoiesis and changes in pre-mRNA splicing in hematopoietic progenitor cells by whole transcriptome analysis (RNA-seq). Integration with human RNA-seq datasets determined that common mutant U2AF1-induced splicing alterations are enriched in RNA processing genes, ribosomal genes, and recurrently-mutated MDS and acute myeloid leukemia-associated genes. These findings support the hypothesis that mutant U2AF1 alters downstream gene isoform expression, thereby contributing to abnormal hematopoiesis in MDS patients. PMID:25965570

  5. Genomic insights into the evolution of hybrid isoprenoid biosynthetic gene clusters in the MAR4 marine streptomycete clade

    SciTech Connect

    Gallagher, Kelley A.; Jensen, Paul R.

    2015-11-17

    Background: Considerable advances have been made in our understanding of the molecular genetics of secondary metabolite biosynthesis. Coupled with increased access to genome sequence data, new insight can be gained into the diversity and distributions of secondary metabolite biosynthetic gene clusters and the evolutionary processes that generate them. Here we examine the distribution of gene clusters predicted to encode the biosynthesis of a structurally diverse class of molecules called hybrid isoprenoids (HIs) in the genus Streptomyces. These compounds are derived from a mixed biosynthetic origin that is characterized by the incorporation of a terpene moiety onto a variety of chemical scaffolds and include many potent antibiotic and cytotoxic agents. Results: One hundred and twenty Streptomyces genomes were searched for HI biosynthetic gene clusters using ABBA prenyltransferases (PTases) as queries. These enzymes are responsible for a key step in HI biosynthesis. The strains included 12 that belong to the ‘MAR4’ clade, a largely marine-derived lineage linked to the production of diverse HI secondary metabolites. We found ABBA PTase homologs in all of the MAR4 genomes, which averaged five copies per strain, compared with 21 % of the non-MAR4 genomes, which averaged one copy per strain. Phylogenetic analyses suggest that MAR4 PTase diversity has arisen by a combination of horizontal gene transfer and gene duplication. Furthermore, there is evidence that HI gene cluster diversity is generated by the horizontal exchange of orthologous PTases among clusters. Many putative HI gene clusters have not been linked to their secondary metabolic products, suggesting that MAR4 strains will yield additional new compounds in this structure class. Finally, we confirm that the mevalonate pathway is not always present in genomes that contain HI gene clusters and thus is not a reliable query for identifying strains with the potential to produce HI secondary metabolites. In

  6. Genomic insights into the evolution of hybrid isoprenoid biosynthetic gene clusters in the MAR4 marine streptomycete clade

    DOE PAGES

    Gallagher, Kelley A.; Jensen, Paul R.

    2015-11-17

    Background: Considerable advances have been made in our understanding of the molecular genetics of secondary metabolite biosynthesis. Coupled with increased access to genome sequence data, new insight can be gained into the diversity and distributions of secondary metabolite biosynthetic gene clusters and the evolutionary processes that generate them. Here we examine the distribution of gene clusters predicted to encode the biosynthesis of a structurally diverse class of molecules called hybrid isoprenoids (HIs) in the genus Streptomyces. These compounds are derived from a mixed biosynthetic origin that is characterized by the incorporation of a terpene moiety onto a variety of chemicalmore » scaffolds and include many potent antibiotic and cytotoxic agents. Results: One hundred and twenty Streptomyces genomes were searched for HI biosynthetic gene clusters using ABBA prenyltransferases (PTases) as queries. These enzymes are responsible for a key step in HI biosynthesis. The strains included 12 that belong to the ‘MAR4’ clade, a largely marine-derived lineage linked to the production of diverse HI secondary metabolites. We found ABBA PTase homologs in all of the MAR4 genomes, which averaged five copies per strain, compared with 21 % of the non-MAR4 genomes, which averaged one copy per strain. Phylogenetic analyses suggest that MAR4 PTase diversity has arisen by a combination of horizontal gene transfer and gene duplication. Furthermore, there is evidence that HI gene cluster diversity is generated by the horizontal exchange of orthologous PTases among clusters. Many putative HI gene clusters have not been linked to their secondary metabolic products, suggesting that MAR4 strains will yield additional new compounds in this structure class. Finally, we confirm that the mevalonate pathway is not always present in genomes that contain HI gene clusters and thus is not a reliable query for identifying strains with the potential to produce HI secondary metabolites