Sample records for af2 clonal complex

  1. AF4 and AF4N protein complexes: recruitment of P-TEFb kinase, their interactome and potential functions

    PubMed Central

    Scholz, Bastian; Kowarz, Eric; Rössler, Tanja; Ahmad, Khalil; Steinhilber, Dieter; Marschalek, Rolf

    2015-01-01

    AF4/AFF1 and AF5/AFF4 are the molecular backbone to assemble “super-elongation complexes” (SECs) that have two main functions: (1) control of transcriptional elongation by recruiting the positive transcription elongation factor b (P-TEFb = CyclinT1/CDK9) that is usually stored in inhibitory 7SK RNPs; (2) binding of different histone methyltransferases, like DOT1L, NSD1 and CARM1. This way, transcribed genes obtain specific histone signatures (e.g. H3K79me2/3, H3K36me2) to generate a transcriptional memory system. Here we addressed several questions: how is P-TEFb recruited into SEC, how is the AF4 interactome composed, and what is the function of the naturally occuring AF4N protein variant which exhibits only the first 360 amino acids of the AF4 full-length protein. Noteworthy, shorter protein variants are a specific feature of all AFF protein family members. Here, we demonstrate that full-length AF4 and AF4N are both catalyzing the transition of P-TEFb from 7SK RNP to their N-terminal domain. We have also mapped the protein-protein interaction network within both complexes. In addition, we have first evidence that the AF4N protein also recruits TFIIH and the tumor suppressor MEN1. This indicate that AF4N may have additional functions in transcriptional initiation and in MEN1-dependend transcriptional processes. PMID:26171280

  2. Revealing hidden clonal complexity in Mycobacterium tuberculosis infection by qualitative and quantitative improvement of sampling.

    PubMed

    Pérez-Lago, L; Palacios, J J; Herranz, M; Ruiz Serrano, M J; Bouza, E; García-de-Viedma, D

    2015-02-01

    The analysis of microevolution events, its functional relevance and impact on molecular epidemiology strategies, constitutes one of the most challenging aspects of the study of clonal complexity in infection by Mycobacterium tuberculosis. In this study, we retrospectively evaluated whether two improved sampling schemes could provide access to the clonal complexity that is undetected by the current standards (analysis of one isolate from one sputum). We evaluated in 48 patients the analysis by mycobacterial interspersed repetitive unit-variable number tandem repeat of M. tuberculosis isolates cultured from bronchial aspirate (BAS) or bronchoalveolar lavage (BAL) and, in another 16 cases, the analysis of a higher number of isolates from independent sputum samples. Analysis of the isolates from BAS/BAL specimens revealed clonal complexity in a very high proportion of cases (5/48); in most of these cases, complexity was not detected when the isolates from sputum samples were analysed. Systematic analysis of isolates from multiple sputum samples also improved the detection of clonal complexity. We found coexisting clonal variants in two of 16 cases that would have gone undetected in the analysis of the isolate from a single sputum specimen. Our results suggest that analysis of isolates from BAS/BAL specimens is highly efficient for recording the true clonal composition of M. tuberculosis in the lungs. When these samples are not available, we recommend increasing the number of isolates from independent sputum specimens, because they might not harbour the same pool of bacteria. Our data suggest that the degree of clonal complexity in tuberculosis has been underestimated because of the deficiencies inherent in a simplified procedure. Copyright © 2014 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  3. Clonal evolution revealed by whole genome sequencing in a case of primary myelofibrosis transformed to secondary acute myeloid leukemia.

    PubMed

    Engle, E K; Fisher, D A C; Miller, C A; McLellan, M D; Fulton, R S; Moore, D M; Wilson, R K; Ley, T J; Oh, S T

    2015-04-01

    Clonal architecture in myeloproliferative neoplasms (MPNs) is poorly understood. Here we report genomic analyses of a patient with primary myelofibrosis (PMF) transformed to secondary acute myeloid leukemia (sAML). Whole genome sequencing (WGS) was performed on PMF and sAML diagnosis samples, with skin included as a germline surrogate. Deep sequencing validation was performed on the WGS samples and an additional sample obtained during sAML remission/relapsed PMF. Clustering analysis of 649 validated somatic single-nucleotide variants revealed four distinct clonal groups, each including putative driver mutations. The first group (including JAK2 and U2AF1), representing the founding clone, included mutations with high frequency at all three disease stages. The second clonal group (including MYB) was present only in PMF, suggesting the presence of a clone that was dispensable for transformation. The third group (including ASXL1) contained mutations with low frequency in PMF and high frequency in subsequent samples, indicating evolution of the dominant clone with disease progression. The fourth clonal group (including IDH1 and RUNX1) was acquired at sAML transformation and was predominantly absent at sAML remission/relapsed PMF. Taken together, these findings illustrate the complex clonal dynamics associated with disease evolution in MPNs and sAML.

  4. Characterization of Ocular Methicillin-Resistant Staphylococcus epidermidis Isolates Belonging Predominantly to Clonal Complex 2 Subcluster II

    PubMed Central

    Hofling-Lima, Ana Luisa; Pignatari, Antonio C. C.

    2014-01-01

    Staphylococcus epidermidis is an abundant member of the microbiota of the human skin and wet mucosa, which is commonly associated with sight-threatening infections in eyes with predisposing factors. Ocular S. epidermidis has become notorious because of its capability to form biofilms on different ocular devices and due to the evolving rates of antimicrobial resistance. In this study, the molecular epidemiology of 30 ocular methicillin-resistant S. epidermidis (MRSE) isolates was assessed using multilocus sequence typing (MLST). Antimicrobial resistance, accessory gene-regulator and staphylococcal cassette chromosome mec (SCCmec) types, biofilm formation, and the occurrence of biofilm-associated genes were correlated with MLST clonal complexes. Sequence types (STs) frequently found in the hospital setting were rarely found in our collection. Overall, 12 different STs were detected with a predominance of ST59 (30%), ST5 and ST6 (13.3% each). Most of the isolates (93.3%) belonged to the clonal complex 2 (CC2) and grouped mainly within subcluster CC2-II (92.9%). Isolates grouped within this subcluster were frequently biofilm producers (92.3%) with a higher occurrence of the aap (84.5%) and bhp (46.1%) genes compared to icaA (19.2%). SCCmec type IV (53.8%) was predominant within CC2-II strains, while 38.4% were nontypeable. In addition, CC2-II strains were frequently multidrug resistant (80.7%) and demonstrated to be particularly resistant to ciprofloxacin (80.8%), ofloxacin (77%), azithromycin (61.5%), and gentamicin (57.7%). Our findings demonstrate the predominance of a particular MRSE cluster causing ocular infections, which was associated with high rates of antimicrobial resistance and particularly the carriage of biofilm-related genes coding for proteinaceous factors implicated in biofilm accumulation. PMID:24523473

  5. Clonality analysis of lymphoid proliferations using the BIOMED-2 clonality assays: a single institution experience

    PubMed Central

    Kokovic, Ira; Novakovic, Barbara Jezersek; Cerkovnik, Petra; Novakovic, Srdjan

    2014-01-01

    Background Clonality determination in patients with lymphoproliferative disorders can improve the final diagnosis. The aim of our study was to evaluate the applicative value of standardized BIOMED-2 gene clonality assay protocols for the analysis of clonality of lymphocytes in a group of different lymphoid proliferations. Materials and methods. With this purpose, 121 specimens from 91 patients with suspected lymphoproliferations submitted for routine diagnostics from January to December 2011 were retrospectively analyzed. According to the final diagnosis, our series comprised 32 cases of B-cell lymphomas, 38 cases of non-Hodgkin’s T-cell lymphomas and 51 cases of reactive lymphoid proliferations. Clonality testing was performed using the BIOMED-2 clonality assays. Results The determined sensitivity of the TCR assay was 91.9%, while the sensitivity of the IGH assay was 74.2%. The determined specificity of the IGH assay was 73.3% in the group of lymphomas and 87.2% in the group of reactive lesions. The determined specificity of the TCR assay was 62.5% in the group of lymphomas and 54.3% in the group of reactive lesions. Conclusions In the present study, we confirmed the utility of standardized BIOMED-2 clonality assays for the detection of clonality in a routine diagnostical setting of non-Hodgkin’s lymphomas. Reactions for the detection of the complete IGH rearrangements and reactions for the detection of the TCR rearrangements are a good choice for clonality testing of a wide range of lymphoid proliferations and specimen types while the reactions for the detection of incomplete IGH rearrangements have not shown any additional diagnostic value. PMID:24991205

  6. U2AF1 mutations alter splice site recognition in hematological malignancies.

    PubMed

    Ilagan, Janine O; Ramakrishnan, Aravind; Hayes, Brian; Murphy, Michele E; Zebari, Ahmad S; Bradley, Philip; Bradley, Robert K

    2015-01-01

    Whole-exome sequencing studies have identified common mutations affecting genes encoding components of the RNA splicing machinery in hematological malignancies. Here, we sought to determine how mutations affecting the 3' splice site recognition factor U2AF1 alter its normal role in RNA splicing. We find that U2AF1 mutations influence the similarity of splicing programs in leukemias, but do not give rise to widespread splicing failure. U2AF1 mutations cause differential splicing of hundreds of genes, affecting biological pathways such as DNA methylation (DNMT3B), X chromosome inactivation (H2AFY), the DNA damage response (ATR, FANCA), and apoptosis (CASP8). We show that U2AF1 mutations alter the preferred 3' splice site motif in patients, in cell culture, and in vitro. Mutations affecting the first and second zinc fingers give rise to different alterations in splice site preference and largely distinct downstream splicing programs. These allele-specific effects are consistent with a computationally predicted model of U2AF1 in complex with RNA. Our findings suggest that U2AF1 mutations contribute to pathogenesis by causing quantitative changes in splicing that affect diverse cellular pathways, and give insight into the normal function of U2AF1's zinc finger domains. © 2015 Ilagan et al.; Published by Cold Spring Harbor Laboratory Press.

  7. CLONAL EVOLUTION IN CANCER

    PubMed Central

    Greaves, Mel; Maley, Carlo C.

    2012-01-01

    Cancers evolve by a reiterative process of clonal expansion, genetic diversification and clonal selection within the adaptive landscapes of tissue ecosystems. The dynamics are complex with highly variable patterns of genetic diversity and resultant clonal architecture. Therapeutic intervention may decimate cancer clones, and erode their habitats, but inadvertently provides potent selective pressure for the expansion of resistant variants. The inherently Darwinian character of cancer lies at the heart of therapeutic failure but perhaps also holds the key to more effective control. PMID:22258609

  8. AF-GEOSpace Version 2.1 Release

    NASA Astrophysics Data System (ADS)

    Hilmer, R. V.; Ginet, G. P.; Hall, T.; Holeman, E.; Madden, D.; Perry, K. L.; Tautz, M.; Roth, C.

    2006-05-01

    AF-GEOSpace Version 2.1 is a graphics-intensive software program with space environment models and applications developed recently by the Space Weather Center of Excellence at AFRL. A review of new and planned AF-GEOSpace capabilities will be given. The software addresses a wide range of physical domains and addresses such topics as solar disturbance propagation, geomagnetic field and radiation belt configurations, auroral particle precipitation, and ionospheric scintillation. Building on the success of previous releases, AF-GEOSpace has become a platform for the rapid prototyping of automated operational and simulation space weather visualization products and helps with a variety of tasks, including: orbit specification for radiation hazard avoidance; satellite design assessment and post-event anomaly analysis; solar disturbance effects forecasting; determination of link outage regions for active ionospheric conditions; satellite magnetic conjugate studies, scientific model validation and comparison, physics research, and education. Previously, Version 2.0 provided a simplified graphical user interface, improved science and application modules, significantly enhanced graphical performance, common input data archive sets, and 1-D, 2-D, and 3- D visualization tools for all models. Dynamic capabilities permit multiple environments to be generated at user- specified time intervals while animation tools enable the display of satellite orbits and environment data together as a function of time. Building on the Version 2.0 software architecture, AF-GEOSpace Version 2.1 includes a host of new modules providing, for example, plasma sheet charged particle fluxes, neutral atmosphere densities, 3-D cosmic ray cutoff maps, low-altitude trapped proton belt flux specification, DMSP particle data displays, satellite magnetic field footprint mapping determination, and meteor sky maps and shower/storm fluxes with spacecraft impact probabilities. AF-GEOSpace Version 2.1 was

  9. Topological ferrimagnetic behaviours of coordination polymers containing manganese(II) chains with mixed azide and carboxylate bridges and alternating F/AF/AF'/AF'/AF interactions.

    PubMed

    Wang, Yan-Qin; Liu, Hou-Ting; Qi, Yan; Gao, En-Qing

    2014-08-21

    Two Mn(ii) complexes with azide and a new zwitterionic tetracarboxylate ligand 1,2,4,5-tetrakis(4-carboxylatopyridinium-1-methylene)benzene (L(1)), {[Mn5(L(1))2(N3)8(OH)2]·12H2O}n () and {[Mn5(L(1))2(N3)8(H2O)2](ClO4)2·6H2O}n (), have been synthesized and characterized crystallographically and magnetically. and contain similar alternating chains constructed by azide and carboxylate bridges. The independent sets of bridges alternate in an ABCCB sequence between adjacent Mn(ii) ions: (EO-N3)2 double bridges (EO = end-on) (denoted as A), [(EO-N3)(OCO)2] triple bridges (denoted as B) and [(EO-N3)(OCO)] double bridges (denoted as C). The alternating chains are interlinked into 2D coordination networks by the tetrapyridinium spacers. Magnetic studies demonstrate that the magnetic coupling through the double EO azide bridges is ferromagnetic and that through mixed azide/carboxylate bridges is antiferromagnetic. The unprecedented F/AF/AF'/AF'/AF coupling sequence along the chain dictates an uncompensated ground spin state (S = 5/2 per Mn5 unit) and leads to one-dimensional topological ferrimagnetism, which features a minimum in the χT versus T plot.

  10. AF-GEOSPACE Version 2.1

    NASA Astrophysics Data System (ADS)

    Hilmer, R. V.; Ginet, G. P.; Hall, T.; Holeman, E.; Madden, D.; Tautz, M.; Roth, C.

    2004-05-01

    AF-GEOSpace is a graphics-intensive software program with space environment models and applications developed and distributed by the Space Weather Center of Excellence at AFRL. A review of current (Version 2.0) and planned (Version 2.1) AF-GEOSpace capabilities will be given. A wide range of physical domains is represented enabling the software to address such things as solar disturbance propagation, radiation belt configuration, and ionospheric auroral particle precipitation and scintillation. The software is currently being used to aid with the design, operation, and simulation of a wide variety of communications, navigation, and surveillance systems. Building on the success of previous releases, AF-GEOSpace has become a platform for the rapid prototyping of automated operational and simulation space weather visualization products and helps with a variety of tasks, including: orbit specification for radiation hazard avoidance; satellite design assessment and post-event anomaly analysis; solar disturbance effects forecasting; frequency and antenna management for radar and HF communications; determination of link outage regions for active ionospheric conditions; scientific model validation and comparison, physics research, and education. Version 2.0 provided a simplified graphical user interface, improved science and application modules, and significantly enhanced graphical performance. Common input data archive sets, application modules, and 1-D, 2-D, and 3-D visualization tools are provided to all models. Dynamic capabilities permit multiple environments to be generated at user-specified time intervals while animation tools enable displays such as satellite orbits and environment data together as a function of time. Building on the existing Version 2.0 software architecture, AF-GEOSpace Version 2.1 is currently under development and will include a host of new modules to provide, for example, geosynchronous charged particle fluxes, neutral atmosphere densities

  11. Wild-Type U2AF1 Antagonizes the Splicing Program Characteristic of U2AF1-Mutant Tumors and Is Required for Cell Survival

    PubMed Central

    Fei, Dennis Liang; Motowski, Hayley; Chatrikhi, Rakesh; Gao, Shaojian; Kielkopf, Clara L.; Varmus, Harold

    2016-01-01

    We have asked how the common S34F mutation in the splicing factor U2AF1 regulates alternative splicing in lung cancer, and why wild-type U2AF1 is retained in cancers with this mutation. A human lung epithelial cell line was genetically modified so that U2AF1S34F is expressed from one of the two endogenous U2AF1 loci. By altering levels of mutant or wild-type U2AF1 in this cell line and by analyzing published data on human lung adenocarcinomas, we show that S34F-associated changes in alternative splicing are proportional to the ratio of S34F:wild-type gene products and not to absolute levels of either the mutant or wild-type factor. Preferential recognition of specific 3′ splice sites in S34F-expressing cells is largely explained by differential in vitro RNA-binding affinities of mutant versus wild-type U2AF1 for those same 3′ splice sites. Finally, we show that lung adenocarcinoma cell lines bearing U2AF1 mutations do not require the mutant protein for growth in vitro or in vivo. In contrast, wild-type U2AF1 is required for survival, regardless of whether cells carry the U2AF1S34F allele. Our results provide mechanistic explanations of the magnitude of splicing changes observed in U2AF1-mutant cells and why tumors harboring U2AF1 mutations always retain an expressed copy of the wild-type allele. PMID:27776121

  12. ASXL1/EZH2 mutations promote clonal expansion of neoplastic HSC and impair erythropoiesis in PMF.

    PubMed

    Triviai, Ioanna; Zeschke, Silke; Rentel, Jan; Spanakis, Marios; Scherer, Theo; Gabdoulline, Razif; Panagiota, Victoria; Thol, Felicitas; Heuser, Michael; Stocking, Carol; Kröger, Nicolaus

    2018-06-15

    Primary myelofibrosis (PMF) is a hematopoietic stem cell (HSC) disease, characterized by aberrant differentiation of all myeloid lineages and profound disruption of the bone marrow niche. PMF samples carry several mutations, but their cell origin and hierarchy in regulating the different waves of clonal and aberrant myeloproliferation from the prime HSC compartment is poorly understood. Genotyping of >2000 colonies from CD133+HSC and progenitors from PMF patients confirmed the complex genetic heterogeneity within the neoplastic population. Notably, mutations in chromatin regulators ASXL1 and/or EZH2 were identified as the first genetic lesions, preceding both JAK2-V617F and CALR mutations, and are thus drivers of clonal myelopoiesis in a PMF subset. HSC from PMF patients with double ASXL1/EZH2 mutations exhibited significantly higher engraftment in immunodeficient mice than those from patients without histone modifier mutations. EZH2 mutations correlate with aberrant erythropoiesis in PMF patients, exemplified by impaired maturation and cell cycle arrest of erythroid progenitors. These data underscore the importance of post-transcriptional modifiers of histones in neoplastic stem cells, whose clonal growth sustains aberrant myelopoiesis and expansion of pre-leukemic clones in PMF.

  13. Identification of U2AF(35)-dependent exons by RNA-Seq reveals a link between 3′ splice-site organization and activity of U2AF-related proteins

    PubMed Central

    Kralovicova, Jana; Knut, Marcin; Cross, Nicholas C. P.; Vorechovsky, Igor

    2015-01-01

    The auxiliary factor of U2 small nuclear RNA (U2AF) is a heterodimer consisting of 65- and 35-kD proteins that bind the polypyrimidine tract (PPT) and AG dinucleotides at the 3′ splice site (3′ss). The gene encoding U2AF35 (U2AF1) is alternatively spliced, giving rise to two isoforms U2AF35a and U2AF35b. Here, we knocked down U2AF35 and each isoform and characterized transcriptomes of HEK293 cells with varying U2AF35/U2AF65 and U2AF35a/b ratios. Depletion of both isoforms preferentially modified alternative RNA processing events without widespread failure to recognize 3′ss or constitutive exons. Over a third of differentially used exons were terminal, resulting largely from the use of known alternative polyadenylation (APA) sites. Intronic APA sites activated in depleted cultures were mostly proximal whereas tandem 3′UTR APA was biased toward distal sites. Exons upregulated in depleted cells were preceded by longer AG exclusion zones and PPTs than downregulated or control exons and were largely activated by PUF60 and repressed by CAPERα. The U2AF(35) repression and activation was associated with a significant interchange in the average probabilities to form single-stranded RNA in the optimal PPT and branch site locations and sequences further upstream. Although most differentially used exons were responsive to both U2AF subunits and their inclusion correlated with U2AF levels, a small number of transcripts exhibited distinct responses to U2AF35a and U2AF35b, supporting the existence of isoform-specific interactions. These results provide new insights into function of U2AF and U2AF35 in alternative RNA processing. PMID:25779042

  14. The splicing factor U2AF65 stabilizes TRF1 protein by inhibiting its ubiquitin-dependent proteolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jeonghee; Chung, In Kwon, E-mail: topoviro@yonsei.ac.kr

    Highlights: •Identification of U2AF65 as a novel TRF1-interacting protein. •U2AF65 stabilizes TRF1 protein by inhibiting its ubiquitin-dependent proteolysis. •U2AF65 interferes with the interaction between TRF1 and Fbx4. •U2AF65 represents a new route for modulating TRF1 function at telomeres. -- Abstract: The human telomeric protein TRF1 is a component of the six-subunit protein complex shelterin, which provides telomere protection by organizing the telomere into a high-order structure. TRF1 functions as a negative regulator of telomere length by controlling the access of telomerase to telomeres. Thus, the cellular abundance of TRF1 at telomeres should be maintained and tightly regulated to ensure propermore » telomere function. Here, we identify U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor 65 (U2AF65), an essential pre-mRNA splicing factor, as a novel TRF1-interacting protein. U2AF65 interacts with TRF1 in vitro and in vivo and is capable of stabilizing TRF1 protein by inhibiting its ubiquitin-dependent proteolysis. We also found that U2AF65 interferes with the interaction between TRF1 and Fbx4, an E3 ubiquitin ligase for TRF1. Depletion of endogenous U2AF65 expression by short interfering RNA (siRNA) reduced the stability of endogenous TRF1 whereas overexpression of U2AF65 significantly extended the half-life of TRF1. These findings demonstrate that U2AF65 plays a critical role in regulating the level of TRF1 through physical interaction and ubiquitin-mediated proteolysis. Hence, U2AF65 represents a new route for modulating TRF1 function at telomeres.« less

  15. Defining Clonal Color in Fluorescent Multi-Clonal Tracking

    PubMed Central

    Wu, Juwell W.; Turcotte, Raphaël; Alt, Clemens; Runnels, Judith M.; Tsao, Hensin; Lin, Charles P.

    2016-01-01

    Clonal heterogeneity and selection underpin many biological processes including development and tumor progression. Combinatorial fluorescent protein expression in germline cells has proven its utility for tracking the formation and regeneration of different organ systems. Such cell populations encoded by combinatorial fluorescent proteins are also attractive tools for understanding clonal expansion and clonal competition in cancer. However, the assignment of clonal identity requires an analytical framework in which clonal markings can be parameterized and validated. Here we present a systematic and quantitative method for RGB analysis of fluorescent melanoma cancer clones. We then demonstrate refined clonal trackability of melanoma cells using this scheme. PMID:27073117

  16. Recognition of the 3′ splice site RNA by the U2AF heterodimer involves a dynamic population shift

    PubMed Central

    Voith von Voithenberg, Lena; Sánchez-Rico, Carolina; Kang, Hyun-Seo; Madl, Tobias; Zanier, Katia; Barth, Anders; Warner, Lisa R.; Sattler, Michael; Lamb, Don C.

    2016-01-01

    An essential early step in the assembly of human spliceosomes onto pre-mRNA involves the recognition of regulatory RNA cis elements in the 3′ splice site by the U2 auxiliary factor (U2AF). The large (U2AF65) and small (U2AF35) subunits of the U2AF heterodimer contact the polypyrimidine tract (Py-tract) and the AG-dinucleotide, respectively. The tandem RNA recognition motif domains (RRM1,2) of U2AF65 adopt closed/inactive and open/active conformations in the free form and when bound to bona fide Py-tract RNA ligands. To investigate the molecular mechanism and dynamics of 3′ splice site recognition by U2AF65 and the role of U2AF35 in the U2AF heterodimer, we have combined single-pair FRET and NMR experiments. In the absence of RNA, the RRM1,2 domain arrangement is highly dynamic on a submillisecond time scale, switching between closed and open conformations. The addition of Py-tract RNA ligands with increasing binding affinity (strength) gradually shifts the equilibrium toward an open conformation. Notably, the protein–RNA complex is rigid in the presence of a strong Py-tract but exhibits internal motion with weak Py-tracts. Surprisingly, the presence of U2AF35, whose UHM domain interacts with U2AF65 RRM1, increases the population of the open arrangement of U2AF65 RRM1,2 in the absence and presence of a weak Py-tract. These data indicate that the U2AF heterodimer promotes spliceosome assembly by a dynamic population shift toward the open conformation of U2AF65 to facilitate the recognition of weak Py-tracts at the 3′ splice site. The structure and RNA binding of the heterodimer was unaffected by cancer-linked myelodysplastic syndrome mutants. PMID:27799531

  17. Diagnostic Utility of a Clonality Test for Lymphoproliferative Diseases in Koreans Using the BIOMED-2 PCR Assay

    PubMed Central

    Kim, Young; Choi, Yoo Duk; Choi, Chan

    2013-01-01

    Background A clonality test for immunoglobulin (IG) and T cell receptor (TCR) is a useful adjunctive method for the diagnosis of lymphoproliferative diseases (LPDs). Recently, the BIOMED-2 multiplex polymerase chain reaction (PCR) assay has been established as a standard method for assessing the clonality of LPDs. We tested clonality in LPDs in Koreans using the BIOMED-2 multiplex PCR and compared the results with those obtained in European, Taiwanese, and Thai participants. We also evaluated the usefulness of the test as an ancillary method for diagnosing LPDs. Methods Two hundred and nineteen specimens embedded in paraffin, including 78 B cell lymphomas, 80 T cell lymphomas and 61 cases of reactive lymphadenitis, were used for the clonality test. Results Mature B cell malignancies showed 95.7% clonality for IG, 2.9% co-existing clonality, and 4.3% polyclonality. Mature T cell malignancies exhibited 83.8% clonality for TCR, 8.1% co-existing clonality, and 16.2% polyclonality. Reactive lymphadenitis showed 93.4% polyclonality for IG and TCR. The majority of our results were similar to those obtained in Europeans. However, the clonality for IGK of B cell malignancies and TCRG of T cell malignancies was lower in Koreans than Europeans. Conclusions The BIOMED-2 multiplex PCR assay was a useful adjunctive method for diagnosing LPDs. PMID:24255634

  18. Complex Transcriptional Control of the Antibiotic Regulator afsS in Streptomyces: PhoP and AfsR Are Overlapping, Competitive Activators▿

    PubMed Central

    Santos-Beneit, Fernando; Rodríguez-García, Antonio; Martín, Juan F.

    2011-01-01

    The afsS gene of several Streptomyces species encodes a small sigma factor-like protein that acts as an activator of several pathway-specific regulatory genes (e.g., actII-ORF4 and redD in Streptomyces coelicolor). The two pleiotropic regulators AfsR and PhoP bind to overlapping sequences in the −35 region of the afsS promoter and control its expression. Using mutated afsS promoters containing specific point mutations in the AfsR and PhoP binding sequences, we proved that the overlapping recognition sequences for AfsR and PhoP are displaced by 1 nucleotide. Different nucleotide positions are important for binding of AfsR or PhoP, as shown by electrophoretic mobility shift assays and by reporter studies using the luxAB gene coupled to the different promoters. Mutant promoter M5 (with a nucleotide change at position 5 of the consensus box) binds AfsR but not PhoP with high affinity (named “superAfsR”). Expression of the afsS gene from this promoter led to overproduction of actinorhodin. Mutant promoter M16 binds PhoP with extremely high affinity (“superPhoP”). Studies with ΔafsR and ΔphoP mutants (lacking AfsR and PhoP, respectively) showed that both global regulators are competitive transcriptional activators of afsS. AfsR has greater influence on expression of afsS than PhoP, as shown by reverse transcriptase PCR (RT-PCR) and promoter reporter (luciferase) studies. These two high-level regulators appear to integrate different nutritional signals (particularly phosphate limitation sensed by PhoR), S-adenosylmethionine, and other still unknown environmental signals (leading to AfsR phosphorylation) for the AfsS-mediated control of biosynthesis of secondary metabolites. PMID:21378195

  19. Clonal Structure and Characterization of Staphylococcus aureus Strains from Invasive Infections in Paediatric Patients from South Poland: Association between Age, spa Types, Clonal Complexes, and Genetic Markers

    PubMed Central

    Ilczyszyn, Weronika M.; Sabat, Artur J.; Akkerboom, Viktoria; Szkarlat, Anna; Klepacka, Joanna; Sowa-Sierant, Iwona; Wasik, Barbara; Kosecka-Strojek, Maja; Buda, Aneta; Miedzobrodzki, Jacek; Friedrich, Alexander W.

    2016-01-01

    The aim of current study was to examine clonal structure and genetic profile of invasive Staphylococcus aureus isolates recovered from infants and children treated at the Jagiellonian University Children’s Hospital of Krakow, Poland. The 107 invasive S. aureus isolates, collected between February 2012 and August 2014, were analysed retrospectively. Antimicrobial susceptibility testing, spa typing and DNA microarray analysis were performed to determine clonal distribution, diversity and gene content in regard to patients characteristics. In total, 107 isolates were recovered from 88 patients with clinical symptoms of invasive bacterial infection. The final set of 92 non-duplicate samples included 38 MRSA isolates. Additionally, a set of 54 S. aureus isolates collected during epidemiological screening was genotyped and analysed. There were 72 healthcare-associated (HCA) and 20 community-onset (CO) infection events caused by 33 and 5 MRSA isolates, respectively. The majority of isolates were affiliated with the major European clonal complexes CC5 (t003, spa-CC 002), CC45 (spa-CC 015), CC7 or CC15 (t084, t091, spa-CC 084). Two epidemic clones (CC5-MRSA-II or CC45-MRSA-IV) dominated among MRSA isolates, while MSSA population contained 15 different CCs. The epidemiological screening isolates belonged to similar genetic lineages as those collected from invasive infection cases. The HCA infection events, spa types t003, t2642 or CC5 were significantly associated with infections occurring in neonates and children under 5 years of age. Moreover, carriage of several genetic markers, including erm(A), sea (N315), egc-cluster, chp was significantly higher in isolates obtained from children in this age group. The spa types t091 and t008 were underrepresented among patients aged 5 years or younger, whereas spa type t008, CC8 and presence of splE was associated with infection in children aged 10 years or older. The HCA-MRSA strains were most frequently found in children under 5

  20. The Activation-Induced Assembly of an RNA/Protein Interactome Centered on the Splicing Factor U2AF2 Regulates Gene Expression in Human CD4 T Cells.

    PubMed

    Whisenant, Thomas C; Peralta, Eigen R; Aarreberg, Lauren D; Gao, Nina J; Head, Steven R; Ordoukhanian, Phillip; Williamson, Jamie R; Salomon, Daniel R

    2015-01-01

    Activation of CD4 T cells is a reaction to challenges such as microbial pathogens, cancer and toxins that defines adaptive immune responses. The roles of T cell receptor crosslinking, intracellular signaling, and transcription factor activation are well described, but the importance of post-transcriptional regulation by RNA-binding proteins (RBPs) has not been considered in depth. We describe a new model expanding and activating primary human CD4 T cells and applied this to characterizing activation-induced assembly of splicing factors centered on U2AF2. We immunoprecipitated U2AF2 to identify what mRNA transcripts were bound as a function of activation by TCR crosslinking and costimulation. In parallel, mass spectrometry revealed the proteins incorporated into the U2AF2-centered RNA/protein interactome. Molecules that retained interaction with the U2AF2 complex after RNAse treatment were designated as "central" interactome members (CIMs). Mass spectrometry also identified a second class of activation-induced proteins, "peripheral" interactome members (PIMs), that bound to the same transcripts but were not in physical association with U2AF2 or its partners. siRNA knockdown of two CIMs and two PIMs caused changes in activation marker expression, cytokine secretion, and gene expression that were unique to each protein and mapped to pathways associated with key aspects of T cell activation. While knocking down the PIM, SYNCRIP, impacts a limited but immunologically important set of U2AF2-bound transcripts, knockdown of U2AF1 significantly impairs assembly of the majority of protein and mRNA components in the activation-induced interactome. These results demonstrated that CIMs and PIMs, either directly or indirectly through RNA, assembled into activation-induced U2AF2 complexes and play roles in post-transcriptional regulation of genes related to cytokine secretion. These data suggest an additional layer of regulation mediated by the activation-induced assembly of RNA

  1. The Activation-Induced Assembly of an RNA/Protein Interactome Centered on the Splicing Factor U2AF2 Regulates Gene Expression in Human CD4 T Cells

    PubMed Central

    Aarreberg, Lauren D.; Gao, Nina J.; Head, Steven R.; Ordoukhanian, Phillip; Williamson, Jamie R.; Salomon, Daniel R.

    2015-01-01

    Activation of CD4 T cells is a reaction to challenges such as microbial pathogens, cancer and toxins that defines adaptive immune responses. The roles of T cell receptor crosslinking, intracellular signaling, and transcription factor activation are well described, but the importance of post-transcriptional regulation by RNA-binding proteins (RBPs) has not been considered in depth. We describe a new model expanding and activating primary human CD4 T cells and applied this to characterizing activation-induced assembly of splicing factors centered on U2AF2. We immunoprecipitated U2AF2 to identify what mRNA transcripts were bound as a function of activation by TCR crosslinking and costimulation. In parallel, mass spectrometry revealed the proteins incorporated into the U2AF2-centered RNA/protein interactome. Molecules that retained interaction with the U2AF2 complex after RNAse treatment were designated as “central” interactome members (CIMs). Mass spectrometry also identified a second class of activation-induced proteins, “peripheral” interactome members (PIMs), that bound to the same transcripts but were not in physical association with U2AF2 or its partners. siRNA knockdown of two CIMs and two PIMs caused changes in activation marker expression, cytokine secretion, and gene expression that were unique to each protein and mapped to pathways associated with key aspects of T cell activation. While knocking down the PIM, SYNCRIP, impacts a limited but immunologically important set of U2AF2-bound transcripts, knockdown of U2AF1 significantly impairs assembly of the majority of protein and mRNA components in the activation-induced interactome. These results demonstrated that CIMs and PIMs, either directly or indirectly through RNA, assembled into activation-induced U2AF2 complexes and play roles in post-transcriptional regulation of genes related to cytokine secretion. These data suggest an additional layer of regulation mediated by the activation-induced assembly

  2. Cloning and characterization of two duplicated interleukin-17A/F2 genes in common carp (Cyprinus carpio L.): Transcripts expression and bioactivity of recombinant IL-17A/F2.

    PubMed

    Li, Hongxia; Yu, Juhua; Li, Jianlin; Tang, Yongkai; Yu, Fan; Zhou, Jie; Yu, Wenjuan

    2016-04-01

    Interleukin-17 (IL-17) plays an important role in inflammation and host defense in mammals. In this study, we identified two duplicated IL-17A/F2 genes in the common carp (Cyprinus carpio) (ccIL-17A/F2a and ccIL-17A/F2b), putative encoded proteins contain 140 amino acids (aa) with conserved IL-17 family motifs. Expression analysis revealed high constitutive expression of ccIL-17A/F2s in mucosal tissues, including gill, skin and intestine, their expression could be induced by Aeromonas hydrophila, suggesting a potential role in mucosal immunity. Recombinant ccIL-17A/F2a protein (rccIL-17A/F2a) produced in Escherichia coli could induce the expression of proinflammatory cytokines (IL-1β) and the antimicrobial peptides S100A1, S100A10a and S100A10b in the primary kidney in a dose- and time-dependent manner. Above findings suggest that ccIL-17A/F2 plays an important role in both proinflammatory and innate immunity. Two duplicated ccIL-17A/F2s showed different expression level with ccIL-17A/F2a higher than b, comparison of two 5' regulatory regions indicated the length from anticipated promoter to transcriptional start site (TSS) and putative transcription factor binding site (TFBS) were different. Promoter activity of ccIL-17A/F2a was 2.5 times of ccIL-17A/F2b which consistent with expression results of two genes. These suggest mutations in 5'regulatory region contributed to the differentiation of duplicated genes. To our knowledge, this is the first report to analyze 5'regulatory region of piscine IL-17 family genes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The Role of U2AF1 Mutations in the Pathogenesis of Myelodysplastic Syndromes

    DTIC Science & Technology

    2015-10-01

    mutation, U2AF1(S34F), on hematopoiesis and pre-mRNA splicing in vivo, we created doxycycline-inducible U2AF1(WT) and U2AF1(S34F) transgenic mice...U2AF1(S34F) versus U2AF1(WT). Together, these results suggest that mutant U2AF1 expression contributes to the altered hematopoiesis and pre-mRNA...Spliceosome, Mouse Model, Hematopoiesis , RNA-seq, U2AF1 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME

  4. Epigenetic Memory as a Basis for Intelligent Behavior in Clonal Plants.

    PubMed

    Latzel, Vít; Rendina González, Alejandra P; Rosenthal, Jonathan

    2016-01-01

    Environmentally induced epigenetic change enables plants to remember past environmental interactions. If this memory capability is exploited to prepare plants for future challenges, it can provide a basis for highly sophisticated behavior, considered intelligent by some. Against the backdrop of an overview of plant intelligence, we hypothesize: (1) that the capability of plants to engage in such intelligent behavior increases with the additional level of complexity afforded by clonality, and; (2) that more faithful inheritance of epigenetic information in clonal plants, in conjunction with information exchange and coordination between connected ramets, is likely to enable especially advanced intelligent behavior in this group. We therefore further hypothesize that this behavior provides ecological and evolutionary advantages to clonal plants, possibly explaining, at least in part, their widespread success. Finally, we suggest avenues of inquiry to enable assessing intelligent behavior and the role of epigenetic memory in clonal species.

  5. NetF-producing Clostridium perfringens: Clonality and plasmid pathogenicity loci analysis.

    PubMed

    Mehdizadeh Gohari, Iman; Kropinski, Andrew M; Weese, Scott J; Whitehead, Ashley E; Parreira, Valeria R; Boerlin, Patrick; Prescott, John F

    2017-04-01

    Clostridium perfringens is an important cause of foal necrotizing enteritis and canine acute hemorrhagic diarrhea. A major virulence determinant of the strains associated with these diseases appears to be a beta-sheet pore-forming toxin, NetF, encoded within a pathogenicity locus (NetF locus) on a large tcp-conjugative plasmid. Strains producing NetF also produce the putative toxin NetE, encoded within the same pathogenicity locus, as well as CPE enterotoxin and CPB2 on a second plasmid, and sometimes the putative toxin NetG within a pathogenicity locus (NetG locus) on another separate large conjugative plasmid. Previous genome sequences of two netF-positive C. perfringens showed that they both shared three similar plasmids, including the NetF/NetE and CPE/CPB2 toxins-encoding plasmids mentioned above and a putative bacteriocin-encoding plasmid. The main purpose of this study was to determine whether all NetF-producing strains share this common plasmid profile and whether their distinct NetF and CPE pathogenicity loci are conserved. To answer this question, 15 equine and 15 canine netF-positive isolates of C. perfringens were sequenced using Illumina Hiseq2000 technology. In addition, the clonal relationships among the NetF-producing strains were evaluated by core genome multilocus sequence typing (cgMLST). The data obtained showed that all NetF-producing strains have a common plasmid profile and that the defined pathogenicity loci on the plasmids are conserved in all these strains. cgMLST analysis showed that the NetF-producing C. perfringens strains belong to two distinct clonal complexes. The pNetG plasmid was absent from isolates of one of the clonal complexes, and there were minor but consistent differences in the NetF/NetE and CPE/CPB2 plasmids between the two clonal complexes. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Phenotypic plasticity and specialization in clonal versus non-clonal plants: A data synthesis

    NASA Astrophysics Data System (ADS)

    Fazlioglu, Fatih; Bonser, Stephen P.

    2016-11-01

    Reproductive strategies can be associated with ecological specialization and generalization. Clonal plants produce lineages adapted to the maternal habitat that can lead to specialization. However, clonal plants frequently display high phenotypic plasticity (e.g. clonal foraging for resources), factors linked to ecological generalization. Alternately, sexual reproduction can be associated with generalization via increasing genetic variation or specialization through rapid adaptive evolution. Moreover, specializing to high or low quality habitats can determine how phenotypic plasticity is expressed in plants. The specialization hypothesis predicts that specialization to good environments results in high performance trait plasticity and specialization to bad environments results in low performance trait plasticity. The interplay between reproductive strategies, phenotypic plasticity, and ecological specialization is important for understanding how plants adapt to variable environments. However, we currently have a poor understanding of these relationships. In this study, we addressed following questions: 1) Is there a relationship between phenotypic plasticity, specialization, and reproductive strategies in plants? 2) Do good habitat specialists express greater performance trait plasticity than bad habitat specialists? We searched the literature for studies examining plasticity for performance traits and functional traits in clonal and non-clonal plant species from different habitat types. We found that non-clonal (obligate sexual) plants expressed greater performance trait plasticity and functional trait plasticity than clonal plants. That is, non-clonal plants exhibited a specialist strategy where they perform well only in a limited range of habitats. Clonal plants expressed less performance loss across habitats and a more generalist strategy. In addition, specialization to good habitats did not result in greater performance trait plasticity. This result was

  7. Vibrio parahaemolyticus isolates from southeastern Chinese coast are genetically diverse with circulation of clonal complex 3 strains since 2002.

    PubMed

    Yu, Ying; Hu, Weizhao; Wu, Beibei; Zhang, Peipei; Chen, Jianshun; Wang, Shuna; Fang, Weihuan

    2011-11-01

    Multilocus sequence typing (MLST) was used to examine the clonal relationship and genetic diversity of 71 Vibrio parahaemolyticus isolates from clinical and seafood-related sources in southeastern Chinese coast between 2002 and 2009. The tested isolates fell into 61 sequence types (STs). Of 17 clinical isolates, 7 belonged to ST3 of the pandemic clonal complex 3, with 3 strains isolated in 2002. Although there was no apparent clonal relationship found between clinical strains and those from seafood-related sources positive with pathogenic markers, there were clonal relationships between clinical strains from this study and those from environmental sources in other parts of China. Phylogenetic analysis showed that strains of 112 STs (61 STs from this study and 51 retrieved from PUBMLST database covering different continents) could be divided into four branches. The vast majority of our isolates and those from other countries were genetically diverse and clustered into two major branches of mixed distribution (of geographic origins and sample sources), whereas five STs representing six isolates split as two minor branches because of divergence of their recA genes, which had 80%-82% nucleotide identity to typical V. parahaemolyticus strains and 73.3%-76.9% identity to the CDS24 of a Vibrio sp. plasmid p23023, indicating that the recA gene might have recombined by lateral gene transfer. This was further supported by a high ratio of recombination to mutation (3.038) for recA. In conclusion, MLST with fully extractable database is a powerful system for analysis of clonal relationship for strains of a particular region in a national or global scale as well as between clinical and environmental or food-related strains.

  8. Cooperation of MLL/AF10(OM-LZ) with PTPN11 activating mutation induced monocytic leukemia with a shorter latency in a mouse bone marrow transplantation model.

    PubMed

    Fu, Jen-Fen; Liang, Sung-Tzu; Huang, Ying-Jung; Liang, Kung-Hao; Yen, Tzung-Hai; Liang, Der-Cherng; Shih, Lee-Yung

    2017-03-01

    PTPN11 mutation, a RAS signaling pathway mutation, is associated with MLL translocations in acute leukemia. A girl with MLL/AF10 AML was found to carry PTPN11 G503A . To study the impact of PTPN11 G503A cooperating with MLL/AF10 on leukemogenesis, we established a retroviral transduction/transplantation mouse model. Compared to the MLL/AF10(OM-LZ) leukemia cells harboring PTPN11 wt , the cells harboring PTPN11 G503A were hypersensitive to GM-CSF and IL3, and more resistant to death upon treatment with daunorubicin but sensitive to cytarabine. The cells harboring PTPN11 G503A autonomously differentiated into macrophages (1.8%) in the medium containing IL3. Further studies showed that the cells had an elevated (∼2.9-fold) Csf1 transcription level and secreted more (∼4.5-fold) M-CSF to the medium which can stimulate monocyte/macrophage differentiation of BM cells. Mice transplanted with the cells harboring PTPN11 G503A had a higher concentration of M-CSF in plasma. When mixed with the MLL/AF10(OM-LZ) leukemia cells harboring PTPN11 wt , the cells harboring PTPN11 G503A had an increased competitive engraftment and clonal expansion in the BM and spleen of recipient mice, although no competitive growth advantage was observed in the in vitro co-culturing assays. The mice transplanted with the MLL/AF10(OM-LZ) cells harboring PTPN11 wt developed myelomonocytic leukemia, while those transplanted with the cells harboring PTPN11 G503A -induced monocytic leukemia in a shorter latency. Our results demonstrated that addition of PTPN11 G503A to MLL/AF10 affected cell proliferation, chemo-resistance, differentiation, in vivo BM recruitment/clonal expansion and accelerated disease progression. © 2016 UICC.

  9. Clonality Testing in Veterinary Medicine: A Review With Diagnostic Guidelines.

    PubMed

    Keller, S M; Vernau, W; Moore, P F

    2016-07-01

    The accurate distinction of reactive and neoplastic lymphoid proliferations can present challenges. Given the different prognoses and treatment strategies, a correct diagnosis is crucial. Molecular clonality assays assess rearranged lymphocyte antigen receptor gene diversity and can help differentiate reactive from neoplastic lymphoid proliferations. Molecular clonality assays are commonly used to assess atypical, mixed, or mature lymphoid proliferations; small tissue fragments that lack architecture; and fluid samples. In addition, clonality testing can be utilized to track neoplastic clones over time or across anatomic sites. Molecular clonality assays are not stand-alone tests but useful adjuncts that follow clinical, morphologic, and immunophenotypic assessment. Even though clonality testing provides valuable information in a variety of situations, the complexities and pitfalls of this method, as well as its dependency on the experience of the interpreter, are often understated. In addition, a lack of standardized terminology, laboratory practices, and interpretational guidelines hinders the reproducibility of clonality testing across laboratories in veterinary medicine. The objectives of this review are twofold. First, the review is intended to familiarize the diagnostic pathologist or interested clinician with the concepts, potential pitfalls, and limitations of clonality testing. Second, the review strives to provide a basis for future harmonization of clonality testing in veterinary medicine by providing diagnostic guidelines. © The Author(s) 2016.

  10. Clonal Integration Enhances the Performance of a Clonal Plant Species under Soil Alkalinity Stress

    PubMed Central

    Sun, Juanjuan; Chen, Jishan; Zhang, Yingjun

    2015-01-01

    Clonal plants have been shown to successfully survive in stressful environments, including salinity stress, drought and depleted nutrients through clonal integration between original and subsequent ramets. However, relatively little is known about whether clonal integration can enhance the performance of clonal plants under alkalinity stress. We investigated the effect of clonal integration on the performance of a typical rhizomatous clonal plant, Leymus chinensis, using a factorial experimental design with four levels of alkalinity and two levels of rhizome connection treatments, connected (allowing integration) and severed (preventing integration). Clonal integration was estimated by comparing physiological and biomass features between the rhizome-connected and rhizome-severed treatments. We found that rhizome-connected treatment increased the biomass, height and leaf water potential of subsequent ramets at highly alkalinity treatments but did not affect them at low alkalinity treatments. However, rhizome-connected treatment decreased the root biomass of subsequent ramets and did not influence the photosynthetic rates of subsequent ramets. The biomass of original ramets was reduced by rhizome-connected treatment at the highest alkalinity level. These results suggest that clonal integration can increase the performance of clonal plants under alkalinity stress. Rhizome-connected plants showed dramatically increased survival of buds with negative effects on root weight, indicating that clonal integration influenced the resource allocation pattern of clonal plants. A cost-benefit analysis based on biomass measures showed that original and subsequent ramets significantly benefited from clonal integration in highly alkalinity stress, indicating that clonal integration is an important adaptive strategy by which clonal plants could survive in local alkalinity soil. PMID:25790352

  11. Gene Loss and Lineage-Specific Restriction-Modification Systems Associated with Niche Differentiation in the Campylobacter jejuni Sequence Type 403 Clonal Complex

    PubMed Central

    Morley, Laura; McNally, Alan; Paszkiewicz, Konrad; Corander, Jukka; Méric, Guillaume; Sheppard, Samuel K.; Blom, Jochen

    2015-01-01

    Campylobacter jejuni is a highly diverse species of bacteria commonly associated with infectious intestinal disease of humans and zoonotic carriage in poultry, cattle, pigs, and other animals. The species contains a large number of distinct clonal complexes that vary from host generalist lineages commonly found in poultry, livestock, and human disease cases to host-adapted specialized lineages primarily associated with livestock or poultry. Here, we present novel data on the ST403 clonal complex of C. jejuni, a lineage that has not been reported in avian hosts. Our data show that the lineage exhibits a distinctive pattern of intralineage recombination that is accompanied by the presence of lineage-specific restriction-modification systems. Furthermore, we show that the ST403 complex has undergone gene decay at a number of loci. Our data provide a putative link between the lack of association with avian hosts of C. jejuni ST403 and both gene gain and gene loss through nonsense mutations in coding sequences of genes, resulting in pseudogene formation. PMID:25795671

  12. The clonal origin and clonal evolution of epithelial tumours

    PubMed Central

    Garcia, Sergio Britto; Novelli, Marco; Wright, Nicholas A

    2000-01-01

    While the origin of tumours, whether from one cell or many, has been a source of fascination for experimental oncologists for some time, in recent years there has been a veritable explosion of information about the clonal architecture of tumours and their antecedents, stimulated, in the main, by the ready accessibility of new molecular techniques. While most of these new results have apparently confirmed the monoclonal origin of human epithelial (and other) tumours, there are a significant number of studies in which this conclusion just cannot be made. Moreover, analysis of many articles show that the potential impact of such considerations as patch size and clonal evolution on determinations of clonality have largely been ignored, with the result that a number of these studies are confounded. However, the clonal architecture of preneoplastic lesions provide some interesting insights — many lesions which might have been hitherto regarded as hyperplasias are apparently clonal in derivation. If this is indeed true, it calls into some question our hopeful corollary that a monoclonal origin presages a neoplastic habitus. Finally, it is clear, for many reasons, that methods of analysis which involve the disaggregation of tissues, albeit microdissected, are far from ideal and we should be putting more effort into techniques where the clonal architecture of normal tissues, preneoplastic and preinvasive lesions and their derivative tumours can be directly visualized in situ. PMID:10762440

  13. Clonality, virulence and antimicrobial resistance of enteroaggregative Escherichia coli from Mirzapur, Bangladesh

    PubMed Central

    Chattaway, Marie Anne; Day, Michaela; Mtwale, Julia; White, Emma; Rogers, James; Day, Martin; Powell, David; Ahmad, Marwa; Harris, Ross; Talukder, Kaisar Ali; Wain, John; Jenkins, Claire; Cravioto, Alejandro

    2017-01-01

    Purpose This study investigates the virulence and antimicrobial resistance in association with common clonal complexes (CCs) of enteroaggregative Escherichia coli (EAEC) isolated from Bangladesh. The aim was to determine whether specific CCs were more likely to be associated with putative virulence genes and/or antimicrobial resistance. Methodology The presence of 15 virulence genes (by PCR) and susceptibility to 18 antibiotics were determined for 151 EAEC isolated from cases and controls during an intestinal infectious disease study carried out between 2007–2011 in the rural setting of Mirzapur, Bangladesh (Kotloff KL, Blackwelder WC, Nasrin D, Nataro JP, Farag TH et al. Clin Infect Dis 2012;55:S232–S245). These data were then analysed in the context of previously determined serotypes and clonal complexes defined by multi-locus sequence typing. Results Overall there was no association between the presence of virulence or antimicrobial resistance genes in isolates of EAEC from cases versus controls. However, when stratified by clonal complex (CC) one CC associated with cases harboured more virulence factors (CC40) and one CC harboured more resistance genes (CC38) than the average. There was no direct link between the virulence gene content and antibiotic resistance. Strains within a single CC had variable virulence and resistance gene content indicating independent and multiple gene acquisitions over time. Conclusion In Bangladesh, there are multiple clonal complexes of EAEC harbouring a variety of virulence and resistance genes. The emergence of two of the most successful clones appeared to be linked to either increased virulence (CC40) or antimicrobial resistance (CC38), but increased resistance and virulence were not found in the same clonal complexes. PMID:28945190

  14. Clonality, virulence and antimicrobial resistance of enteroaggregative Escherichia coli from Mirzapur, Bangladesh.

    PubMed

    Chattaway, Marie Anne; Day, Michaela; Mtwale, Julia; White, Emma; Rogers, James; Day, Martin; Powell, David; Ahmad, Marwa; Harris, Ross; Talukder, Kaisar Ali; Wain, John; Jenkins, Claire; Cravioto, Alejandro

    2017-10-01

    This study investigates the virulence and antimicrobial resistance in association with common clonal complexes (CCs) of enteroaggregative Escherichia coli (EAEC) isolated from Bangladesh. The aim was to determine whether specific CCs were more likely to be associated with putative virulence genes and/or antimicrobial resistance. The presence of 15 virulence genes (by PCR) and susceptibility to 18 antibiotics were determined for 151 EAEC isolated from cases and controls during an intestinal infectious disease study carried out between 2007-2011 in the rural setting of Mirzapur, Bangladesh (Kotloff KL, Blackwelder WC, Nasrin D, Nataro JP, Farag TH et al.Clin Infect Dis 2012;55:S232-S245). These data were then analysed in the context of previously determined serotypes and clonal complexes defined by multi-locus sequence typing. Overall there was no association between the presence of virulence or antimicrobial resistance genes in isolates of EAEC from cases versus controls. However, when stratified by clonal complex (CC) one CC associated with cases harboured more virulence factors (CC40) and one CC harboured more resistance genes (CC38) than the average. There was no direct link between the virulence gene content and antibiotic resistance. Strains within a single CC had variable virulence and resistance gene content indicating independent and multiple gene acquisitions over time. In Bangladesh, there are multiple clonal complexes of EAEC harbouring a variety of virulence and resistance genes. The emergence of two of the most successful clones appeared to be linked to either increased virulence (CC40) or antimicrobial resistance (CC38), but increased resistance and virulence were not found in the same clonal complexes.

  15. Major globally disseminated clonal complexes of antimicrobial resistant enterococci associated with infections in cancer patients in Brazil.

    PubMed

    Santos, Barbara A; Oliveira, Jéssica S; Cardoso, Nayara T; Barbosa, André V; Superti, Silvana V; Teixeira, Lúcia M; Neves, Felipe P G

    2017-11-01

    Cancer and hematological malignancies constitute major comorbidities in enterococcal infections, but little is known about the characteristics of enterococci affecting cancer patients. The aim of this study was to characterize 132 enterococcal clinical isolates obtained from cancer patients attending a Cancer Reference Center in Brazil between April 2013 and March 2014. Susceptibility to 17 antimicrobial agents was assessed by disk diffusion method. Resistance and virulence genes were investigated by PCR. Multilocus sequence typing (MLST) was performed for selected Enterococcus faecalis and Enterococcus faecium isolates. The predominant species was E. faecalis (108 isolates), followed by E. faecium (18), Enterococcus gallinarum (3), Enterococcus avium (2) and Enterococcus durans (1). Multidrug-resistant (MDR) isolates made up 44.7%, but all isolates were susceptible to fosfomycin, linezolid and glycopeptides. The most prevalent genes associated with erythromycin- and tetracycline-non susceptible isolates were erm(B) (47/71; 66.2%) and tet(M) (24/68; 35.3%), respectively. High-level resistance (HLR) to gentamicin was found in 22 (16.7%) isolates and 13 (59.1%) of them carried the aac(6')-Ie-aph(2″)-Ia gene. HLR to streptomycin was detected in 34 (25.8%) isolates, of which 15 (44.1%) isolates had the ant(6')-Ia gene. The most common virulence genes were gelE (48.9%), esp (30.5%) and asa1 (29.8%). MLST performed for 26 E. faecalis isolates revealed 18 different sequence-types (STs), with seven corresponding to novel STs (625, 626, 627, 628, 629, 630, and 635). On the other hand, nine of 10 E. faecium isolates analyzed by MLST belonged to a single clonal complex, comprised of mostly ST412, which emerged worldwide after mid-2000s, but also two novel STs (963 and 964). We detected major globally disseminated E. faecalis and E. faecium clonal complexes along with novel closely related STs, indicating the fitness and continuous evolution of these hospital

  16. Dissemination of the ST-103 clonal complex serogroup C meningococci in Salvador, Brazil.

    PubMed

    Cordeiro, Soraia Machado; Cardoso, Cristiane Wanderley; de Araújo, Lorena Galvão; Ribeiro, Luis Eduardo; Azevedo, Jailton; Silva, Rita de Cassia Vilasboas; Dos Reis, Mitermayer Galvão; Ko, Albert Icksang; Reis, Joice Neves

    2018-01-01

    Invasive meningococcal disease (IMD) is a major public health problem worldwide. An epidemic of serogroup C (NmC) IMD occurred in 2010 in the city of Salvador. In this study, we describe the antigenic and genetic characterization of meningococcal isolates collected from meningitis cases in Salvador from 2001 to 2012. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were performed for the analysis of IMD isolates. A total of 733 cases were identified, and the serogroup was determined for 391 (53.0%) of these. Most cases were caused by NmC (53%) or B (47%). The most prevalent strains were B:4,7:P1.19,15 (32.9%; 129/391) and C:23:P1.14-6 (28.6%; 112/391). Based on PFGE/MLST analysis, 71.3% (77/108 PFGE-tested isolates) clustered as two clones of sequence type ST-3779 and ST-3780, both belonging to the ST-103 clonal complex. ST-3779 has been detected in Salvador since 1996 and together with ST-3780 became predominant after 2005. There was a predominance of C:23:P1.14-6, ST-3779/3780 in Salvador during the period of 2007-2012, establishing a major clonal lineage, which remained in the community for a long time; this has serious implications for public health, particularly in terms of prevention and control strategies of IMD. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  17. Activation function 2 (AF2) of estrogen receptor-α is required for the atheroprotective action of estradiol but not to accelerate endothelial healing

    PubMed Central

    Billon-Galés, Audrey; Krust, Andrée; Fontaine, Coralie; Abot, Anne; Flouriot, Gilles; Toutain, Céline; Berges, Hortense; Gadeau, Alain-Pierre; Lenfant, Françoise; Gourdy, Pierre; Chambon, Pierre; Arnal, Jean-François

    2011-01-01

    17β-Estradiol (E2) regulates estrogen receptor-α (ERα) target gene transcription through the two independent activation functions (AFs), AF1 and AF2, located in the N-terminal and ligand binding domain of ERα, respectively. We previously reported that ERα is required for the E2 atheroprotective action as well as for its accelerative action on endothelial healing, but its AF1 function is dispensable. Here, we investigated the role of ERαAF2 in these two major beneficial actions of E2 by electively targeting ERαAF2 (named ERαAF20). Our results prove four points. (i) Compared with WT ERα, the ability of ERαAF20 to stimulate the C3 complement or the estrogen response element-thymidine kinase promoter in two cell lines was dramatically decreased, confirming the importance of AF2 in the E2-induced transcriptional activity of ERα. (ii) The uterotrophic action of E2 was totally absent in ERαAF20 mice, showing the crucial role of ERαAF2 in E2-induced uterus hyperplasia. (iii) ERαAF2 was dispensable for the accelerative action of E2 on endothelial healing, underlining the functionality of ERαAF20 in vivo. (iv) Finally, the atheroprotective effect of E2 was abrogated in ERαAF20 LDL-r−/− mice. Thus, whereas ERαAF1 and ERαAF2 are both required for the uterotrophic action of E2, we show that only ERαAF2 is necessary for its atheroprotective effect. PMID:21788522

  18. ClonEvol: clonal ordering and visualization in cancer sequencing.

    PubMed

    Dang, H X; White, B S; Foltz, S M; Miller, C A; Luo, J; Fields, R C; Maher, C A

    2017-12-01

    Reconstruction of clonal evolution is critical for understanding tumor progression and implementing personalized therapies. This is often done by clustering somatic variants based on their cellular prevalence estimated via bulk tumor sequencing of multiple samples. The clusters, consisting of the clonal marker variants, are then ordered based on their estimated cellular prevalence to reconstruct clonal evolution trees, a process referred to as 'clonal ordering'. However, cellular prevalence estimate is confounded by statistical variability and errors in sequencing/data analysis, and therefore inhibits accurate reconstruction of the clonal evolution. This problem is further complicated by intra- and inter-tumor heterogeneity. Furthermore, the field lacks a comprehensive visualization tool to facilitate the interpretation of complex clonal relationships. To address these challenges we developed ClonEvol, a unified software tool for clonal ordering, visualization, and interpretation. ClonEvol uses a bootstrap resampling technique to estimate the cellular fraction of the clones and probabilistically models the clonal ordering constraints to account for statistical variability. The bootstrapping allows identification of the sample founding- and sub-clones, thus enabling interpretation of clonal seeding. ClonEvol automates the generation of multiple widely used visualizations for reconstructing and interpreting clonal evolution. ClonEvol outperformed three of the state of the art tools (LICHeE, Canopy and PhyloWGS) for clonal evolution inference, showing more robust error tolerance and producing more accurate trees in a simulation. Building upon multiple recent publications that utilized ClonEvol to study metastasis and drug resistance in solid cancers, here we show that ClonEvol rediscovered relapsed subclones in two published acute myeloid leukemia patients. Furthermore, we demonstrated that through noninvasive monitoring ClonEvol recapitulated the emerging subclones

  19. International trends in clinical characteristics and oral anticoagulation treatment for patients with atrial fibrillation: Results from the GARFIELD-AF, ORBIT-AF I, and ORBIT-AF II registries.

    PubMed

    Steinberg, Benjamin A; Gao, Haiyan; Shrader, Peter; Pieper, Karen; Thomas, Laine; Camm, A John; Ezekowitz, Michael D; Fonarow, Gregg C; Gersh, Bernard J; Goldhaber, Samuel; Haas, Sylvia; Hacke, Werner; Kowey, Peter R; Ansell, Jack; Mahaffey, Kenneth W; Naccarelli, Gerald; Reiffel, James A; Turpie, Alexander; Verheugt, Freek; Piccini, Jonathan P; Kakkar, Ajay; Peterson, Eric D; Fox, Keith A A

    2017-12-01

    Atrial fibrillation (AF) is the most common cardiac arrhythmia in the world. We aimed to provide comprehensive data on international patterns of AF stroke prevention treatment. Demographics, comorbidities, and stroke risk of the patients in the GARFIELD-AF (n=51,270), ORBIT-AF I (n=10,132), and ORBIT-AF II (n=11,602) registries were compared (overall N=73,004 from 35 countries). Stroke prevention therapies were assessed among patients with new-onset AF (≤6 weeks). Patients from GARFIELD-AF were less likely to be white (63% vs 89% for ORBIT-AF I and 86% for ORBIT-AF II) or have coronary artery disease (19% vs 36% and 27%), but had similar stroke risk (85% CHA 2 DS 2 -VASc ≥2 vs 91% and 85%) and lower bleeding risk (11% with HAS-BLED ≥3 vs 24% and 15%). Oral anticoagulant use was 46% and 57% for patients with a CHA 2 DS 2 -VASc=0 and 69% and 87% for CHA 2 DS 2 -VASc ≥2 in GARFIELD-AF and ORBIT-AF II, respectively, but with substantial geographic heterogeneity in use of oral anticoagulant (range: 31%-93% [GARFIELD-AF] and 66%-100% [ORBIT-AF II]). Among patients with new-onset AF, non-vitamin K antagonist oral anticoagulant use increased over time to 43% in 2016 for GARFIELD-AF and 71% for ORBIT-AF II, whereas use of antiplatelet monotherapy decreased from 36% to 17% (GARFIELD-AF) and 18% to 8% (ORBIT-AF I and II). Among new-onset AF patients, non-vitamin K antagonist oral anticoagulant use has increased and antiplatelet monotherapy has decreased. However, anticoagulation is used frequently in low-risk patients and inconsistently in those at high risk of stroke. Significant geographic variability in anticoagulation persists and represents an opportunity for improvement. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice.

    PubMed

    Fuster, José J; MacLauchlan, Susan; Zuriaga, María A; Polackal, Maya N; Ostriker, Allison C; Chakraborty, Raja; Wu, Chia-Ling; Sano, Soichi; Muralidharan, Sujatha; Rius, Cristina; Vuong, Jacqueline; Jacob, Sophia; Muralidhar, Varsha; Robertson, Avril A B; Cooper, Matthew A; Andrés, Vicente; Hirschi, Karen K; Martin, Kathleen A; Walsh, Kenneth

    2017-02-24

    Human aging is associated with an increased frequency of somatic mutations in hematopoietic cells. Several of these recurrent mutations, including those in the gene encoding the epigenetic modifier enzyme TET2, promote expansion of the mutant blood cells. This clonal hematopoiesis correlates with an increased risk of atherosclerotic cardiovascular disease. We studied the effects of the expansion of Tet2 -mutant cells in atherosclerosis-prone, low-density lipoprotein receptor-deficient ( Ldlr -/- ) mice. We found that partial bone marrow reconstitution with TET2-deficient cells was sufficient for their clonal expansion and led to a marked increase in atherosclerotic plaque size. TET2-deficient macrophages exhibited an increase in NLRP3 inflammasome-mediated interleukin-1β secretion. An NLRP3 inhibitor showed greater atheroprotective activity in chimeric mice reconstituted with TET2-deficient cells than in nonchimeric mice. These results support the hypothesis that somatic TET2 mutations in blood cells play a causal role in atherosclerosis. Copyright © 2017, American Association for the Advancement of Science.

  1. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice

    PubMed Central

    Fuster, José J.; MacLauchlan, Susan; Zuriaga, María A.; Polackal, Maya N.; Ostriker, Allison C.; Chakraborty, Raja; Wu, Chia-Ling; Sano, Soichi; Muralidharan, Sujatha; Rius, Cristina; Vuong, Jacqueline; Jacob, Sophia; Muralidhar, Varsha; Robertson, Avril A. B.; Cooper, Matthew A.; Andrés, Vicente; Hirschi, Karen K.; Martin, Kathleen A.; Walsh, Kenneth

    2017-01-01

    Human aging is associated with an increased frequency of somatic mutations in hematopoietic cells. Several of these recurrent mutations, including those in the gene encoding the epigenetic modifier enzyme TET2, promote expansion of the mutant blood cells. This clonal hematopoiesis correlates with an increased risk of atherosclerotic cardiovascular disease. We studied the effects of the expansion of Tet2-mutant cells in atherosclerosis-prone, low-density lipoprotein receptor–deficient (Ldlr−/−) mice. We found that partial bone marrow reconstitution with TET2-deficient cells was sufficient for their clonal expansion and led to a marked increase in atherosclerotic plaque size. TET2-deficient macrophages exhibited an increase in NLRP3 inflammasome–mediated interleukin-1β secretion. An NLRP3 inhibitor showed greater atheroprotective activity in chimeric mice reconstituted with TET2-deficient cells than in nonchimeric mice. These results support the hypothesis that somatic TET2 mutations in blood cells play a causal role in atherosclerosis. PMID:28104796

  2. Assignment of Streptococcus agalactiae isolates to clonal complexes using a small set of single nucleotide polymorphisms.

    PubMed

    Honsa, Erin; Fricke, Thomas; Stephens, Alex J; Ko, Danny; Kong, Fanrong; Gilbert, Gwendolyn L; Huygens, Flavia; Giffard, Philip M

    2008-08-19

    Streptococcus agalactiae (Group B Streptococcus (GBS)) is an important human pathogen, particularly of newborns. Emerging evidence for a relationship between genotype and virulence has accentuated the need for efficient and well-defined typing methods. The objective of this study was to develop a single nucleotide polymorphism (SNP) based method for assigning GBS isolates to multilocus sequence typing (MLST)-defined clonal complexes. It was found that a SNP set derived from the MLST database on the basis of maximization of Simpsons Index of Diversity provided poor resolution and did not define groups concordant with the population structure as defined by eBURST analysis of the MLST database. This was interpreted as being a consequence of low diversity and high frequency horizontal gene transfer. Accordingly, a different approach to SNP identification was developed. This entailed use of the "Not-N" bioinformatic algorithm that identifies SNPs diagnostic for groups of known sequence variants, together with an empirical process of SNP testing. This yielded a four member SNP set that divides GBS into 10 groups that are concordant with the population structure. A fifth SNP was identified that increased the sensitivity for the clinically significant clonal complex 17 to 100%. Kinetic PCR methods for the interrogation of these SNPs were developed, and used to genotype 116 well characterized isolates. A five SNP method for dividing GBS into biologically valid groups has been developed. These SNPs are ideal for high throughput surveillance activities, and combining with more rapidly evolving loci when additional resolution is required.

  3. Assignment of Streptococcus agalactiae isolates to clonal complexes using a small set of single nucleotide polymorphisms

    PubMed Central

    Honsa, Erin; Fricke, Thomas; Stephens, Alex J; Ko, Danny; Kong, Fanrong; Gilbert, Gwendolyn L; Huygens, Flavia; Giffard, Philip M

    2008-01-01

    Background Streptococcus agalactiae (Group B Streptococcus (GBS)) is an important human pathogen, particularly of newborns. Emerging evidence for a relationship between genotype and virulence has accentuated the need for efficient and well-defined typing methods. The objective of this study was to develop a single nucleotide polymorphism (SNP) based method for assigning GBS isolates to multilocus sequence typing (MLST)-defined clonal complexes. Results It was found that a SNP set derived from the MLST database on the basis of maximisation of Simpsons Index of Diversity provided poor resolution and did not define groups concordant with the population structure as defined by eBURST analysis of the MLST database. This was interpreted as being a consequence of low diversity and high frequency horizontal gene transfer. Accordingly, a different approach to SNP identification was developed. This entailed use of the "Not-N" bioinformatic algorithm that identifies SNPs diagnostic for groups of known sequence variants, together with an empirical process of SNP testing. This yielded a four member SNP set that divides GBS into 10 groups that are concordant with the population structure. A fifth SNP was identified that increased the sensitivity for the clinically significant clonal complex 17 to 100%. Kinetic PCR methods for the interrogation of these SNPs were developed, and used to genotype 116 well characterized isolates. Conclusion A five SNP method for dividing GBS into biologically valid groups has been developed. These SNPs are ideal for high throughput surveillance activities, and combining with more rapidly evolving loci when additional resolution is required. PMID:18710585

  4. Multiplexing clonality: combining RGB marking and genetic barcoding

    PubMed Central

    Cornils, Kerstin; Thielecke, Lars; Hüser, Svenja; Forgber, Michael; Thomaschewski, Michael; Kleist, Nadja; Hussein, Kais; Riecken, Kristoffer; Volz, Tassilo; Gerdes, Sebastian; Glauche, Ingmar; Dahl, Andreas; Dandri, Maura; Roeder, Ingo; Fehse, Boris

    2014-01-01

    RGB marking and DNA barcoding are two cutting-edge technologies in the field of clonal cell marking. To combine the virtues of both approaches, we equipped LeGO vectors encoding red, green or blue fluorescent proteins with complex DNA barcodes carrying color-specific signatures. For these vectors, we generated highly complex plasmid libraries that were used for the production of barcoded lentiviral vector particles. In proof-of-principle experiments, we used barcoded vectors for RGB marking of cell lines and primary murine hepatocytes. We applied single-cell polymerase chain reaction to decipher barcode signatures of individual RGB-marked cells expressing defined color hues. This enabled us to prove clonal identity of cells with one and the same RGB color. Also, we made use of barcoded vectors to investigate clonal development of leukemia induced by ectopic oncogene expression in murine hematopoietic cells. In conclusion, by combining RGB marking and DNA barcoding, we have established a novel technique for the unambiguous genetic marking of individual cells in the context of normal regeneration as well as malignant outgrowth. Moreover, the introduction of color-specific signatures in barcodes will facilitate studies on the impact of different variables (e.g. vector type, transgenes, culture conditions) in the context of competitive repopulation studies. PMID:24476916

  5. Left atrial structure and function in atrial fibrillation: ENGAGE AF-TIMI 48

    PubMed Central

    Gupta, Deepak K.; Shah, Amil M.; Giugliano, Robert P.; Ruff, Christian T.; Antman, Elliott M.; Grip, Laura T.; Deenadayalu, Naveen; Hoffman, Elaine; Patel, Indravadan; Shi, Minggao; Mercuri, Michele; Mitrovic, Veselin; Braunwald, Eugene; Solomon, Scott D.

    2014-01-01

    Aims The complex relationship between left atrial (LA) structure and function, electrical burden of atrial fibrillation (AF) and stroke risk is not well understood. We aimed to describe LA structure and function in AF. Methods and results Left atrial structure and function was assessed in 971 subjects enrolled in the echocardiographic substudy of ENGAGE AF-TIMI 48. Left atrial size, emptying fraction (LAEF), and contractile function were compared across AF types (paroxysmal, persistent, or permanent) and CHADS2 scores as an estimate of stroke risk. The majority of AF patients (55%) had both LA enlargement and reduced LAEF, with an inverse relationship between LA size and LAEF (R = −0.57, P < 0.001). With an increasing electrical burden of AF and higher CHADS2 scores, LA size increased and LAEF declined. Moreover, 19% of AF subjects had impaired LAEF despite normal LA size, and LA contractile dysfunction was present even among the subset of AF subjects in sinus rhythm at the time of echocardiography. Conclusions In a contemporary AF population, LA structure and function were increasingly abnormal with a greater electrical burden of AF and higher stroke risk estimated by the CHADS2 score. Moreover, LA dysfunction was present despite normal LA size and sinus rhythm, suggesting that the assessment of LA function may add important incremental information in the evaluation of AF patients. Clinical Trial Registration: http://www.clinicaltrials.gov; ID = NCT00781391. PMID:24302269

  6. Punctuated Copy Number Evolution and Clonal Stasis in Triple-Negative Breast Cancer

    PubMed Central

    Gao, Ruli; Davis, Alexander; McDonald, Thomas O.; Sei, Emi; Shi, Xiuqing; Wang, Yong; Tsai, Pei-Ching; Casasent, Anna; Waters, Jill; Zhang, Hong; Meric-Bernstam, Funda; Michor, Franziska; Navin, Nicholas E.

    2016-01-01

    Aneuploidy is a hallmark of breast cancer; however, our knowledge of how these complex genomic rearrangements evolve during tumorigenesis is limited. In this study we developed a highly multiplexed single-nucleus-sequencing method to investigate copy number evolution in triple-negative breast cancer patients. We sequenced 1000 single cells from 12 patients and identified 1–3 major clonal subpopulations in each tumor that shared a common evolutionary lineage. We also identified a minor subpopulation of non-clonal cells that were classified as: 1) metastable, 2) pseudo-diploid, or 3) chromazemic. Phylogenetic analysis and mathematical modeling suggest that these data are unlikely to be explained by the gradual accumulation of copy number events over time. In contrast, our data challenge the paradigm of gradual evolution, showing that the majority of copy number aberrations are acquired at the earliest stages of tumor evolution, in short punctuated bursts, followed by stable clonal expansions that form the tumor mass. PMID:27526321

  7. Clonal growth: invasion or stability? A comparative study of clonal architecture and diversity in native and introduced lineages of Phragmites australis (Poaceae).

    PubMed

    Douhovnikoff, Vladimir; Hazelton, Eric L G

    2014-09-01

    • The characteristics of clonal growth that are advantageous in invasive plants can also result in native plants' ability to resist invasion. In Maine, we compared the clonal architecture and diversity of an invasive lineage (introduced Phragmites) and a noninvasive lineage (native Phragmites) present in much of North America. This study is the first on stand-scale diversity using a sample size and systematic spatial-sampling scheme adequate for characterizing clonal structure in Phragmites. Our questions included: (1) Does the structure and extent of clonal growth suggest that the potential for clonal growth contributes to the invasiveness of the introduced lineage? (2) Is clonal growth common in the native lineage, acting as a possible source of ecological resistance and resilience?• Microsatellite markers were used to measure clonal sizes, architecture, and diversity within each lineage in stands within four marshes in Maine.• Clonal diversity measures indicated that clonal growth was significantly greater in stands of the native lineage than in the introduced. While lineage was a consistent predictor of clonal diversity relative ranking, the marsh location was a much stronger predictor of the absolute range of these values.• Our results indicate an important role for clonal growth in the space consolidation of native Phragmites and could explain why the introduced lineage, with stronger competitive traits, has not replaced the native where they co-occur. These results with regard to clone size, size distributions, singleton occurrence, and clonal architecture provide some evidence for stand development that follows a genotypic initial floristics model. © 2014 Botanical Society of America, Inc.

  8. Clonal spread and accumulation of β-lactam resistance determinants in Enterobacter aerogenes and Enterobacter cloacae complex isolates from infection and colonization in patients at a public hospital in Recife, Pernambuco, Brazil.

    PubMed

    Cabral, Adriane Borges; Maciel, Maria Amélia Vieira; Barros, Josineide Ferreira; Antunes, Marcelo Maranhão; Barbosa de Castro, Célia Maria Machado; Lopes, Ana Catarina Souza

    2017-01-01

    Enterobacter aerogenes and Enterobacter cloacae complex are the two species of this genus most involved in healthcare-associated infections that are ESBL and carbapenemase producers. This study characterized, phenotypically and genotypically, 51 isolates of E. aerogenes and E. cloacae complex originating from infection or colonization in patients admitted to a public hospital in Recife, Pernambuco, Brazil, by antimicrobial susceptibility profile, analysis of β-lactamase genes (blaTEM, blaSHV, blaCTX-M, blaKPC, blaVIM, blaIMP and blaSPM), PCR and DNA sequencing, plasmid profile and ERIC-PCR. In both species, the genes blaTEM, blaCTX-M and blaKPC were detected. The DNA sequencing confirmed the variants blaTEM-1, blaCTX-M-15 and blaKPC-2 in isolates. More than one gene conferring resistance in the isolates, including the detection of the three previously cited genes in strains isolated from infection sites, was observed. The detection of blaCTX-M was more frequent in isolates from infection sites than from colonization. The gene blaKPC predominated in E. cloacae complex isolates obtained from infections; however, in E. aerogenes isolates, it predominated in samples obtained from colonization. A clonal relationship among all of E. aerogenes isolates was detected by ERIC-PCR. The majority of E. cloacae complex isolates presented the same ERIC-PCR pattern. Despite the clonal relation presented by the isolates using ERIC-PCR, different plasmid and resistance profiles and several resistance genes were observed. The clonal dissemination and the accumulation of β-lactam resistance determinants presented by the isolates demonstrated the ability of E. aerogenes and E. cloacae complex, obtained from colonization and infection, to acquire and maintain different resistance genes.

  9. Simultaneous adsorption of Cu2+ and Acid fuchsin (AF) from aqueous solutions by CMC/bentonite composite.

    PubMed

    Gong, Ning; Liu, Yanping; Huang, Ruihua

    2018-04-21

    Carboxymethyl-chitosan (CMC)/bentonite composite was prepared by the method of membrane-forming, and characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) techniques. The simultaneous adsorption of Cu 2+ and Acid fuchsin (AF) applying CMC/bentonite composite as an adsorbent in single or binary systems was investigated. The adsorption study was conducted systematically by varying the ratio of CMC to bentonite, adsorbent dosage, initial pH value, initial Cu 2+ (or AF) concentration, contact time and the interaction of two components in binary solutions. The results showed that the presence of Cu 2+ hindered the adsorption of AF, while the presence of AF almost had no influence on the adsorption of Cu 2+ in binary systems. The adsorption data of Cu 2+ and AF were both suitable for Langmuir isotherm model, and the maximum adsorption capacities of CMC/bentonite composite, according to the Langmuir isotherm model were 81.4 mg/g for Cu 2+ and 253.2 mg/g for AF at 298 K. The pseudo-second-order model could better describe the adsorption process of Cu 2+ and AF. Thermodynamic constant values illustrated that the adsorption of Cu 2+ was endothermic, while the adsorption process of AF was exothermic. Copyright © 2018. Published by Elsevier B.V.

  10. Clonal architecture of secondary acute myeloid leukemia defined by single-cell sequencing.

    PubMed

    Hughes, Andrew E O; Magrini, Vincent; Demeter, Ryan; Miller, Christopher A; Fulton, Robert; Fulton, Lucinda L; Eades, William C; Elliott, Kevin; Heath, Sharon; Westervelt, Peter; Ding, Li; Conrad, Donald F; White, Brian S; Shao, Jin; Link, Daniel C; DiPersio, John F; Mardis, Elaine R; Wilson, Richard K; Ley, Timothy J; Walter, Matthew J; Graubert, Timothy A

    2014-07-01

    Next-generation sequencing has been used to infer the clonality of heterogeneous tumor samples. These analyses yield specific predictions-the population frequency of individual clones, their genetic composition, and their evolutionary relationships-which we set out to test by sequencing individual cells from three subjects diagnosed with secondary acute myeloid leukemia, each of whom had been previously characterized by whole genome sequencing of unfractionated tumor samples. Single-cell mutation profiling strongly supported the clonal architecture implied by the analysis of bulk material. In addition, it resolved the clonal assignment of single nucleotide variants that had been initially ambiguous and identified areas of previously unappreciated complexity. Accordingly, we find that many of the key assumptions underlying the analysis of tumor clonality by deep sequencing of unfractionated material are valid. Furthermore, we illustrate a single-cell sequencing strategy for interrogating the clonal relationships among known variants that is cost-effective, scalable, and adaptable to the analysis of both hematopoietic and solid tumors, or any heterogeneous population of cells.

  11. Complete and Draft Genome Sequences of Nine Lactobacillus sakei Strains Selected from the Three Known Phylogenetic Lineages and Their Main Clonal Complexes.

    PubMed

    Loux, Valentin; Coeuret, Gwendoline; Zagorec, Monique; Champomier Vergès, Marie-Christine; Chaillou, Stéphane

    2018-04-19

    We present here the complete and draft genome sequences of nine Lactobacillus sakei strains, selected from the entire range of clonal complexes from the three known lineages of the species. The strains were chosen to provide a wide view of pangenomic and plasmidic diversity for this important foodborne species. Copyright © 2018 Loux et al.

  12. CD82 suppresses CD44 alternative splicing-dependent melanoma metastasis by mediating U2AF2 ubiquitination and degradation

    PubMed Central

    Fu, Ailing; Zhu, Huifeng; Ren, Qiao; Wang, Bochu; Xu, Xingran; Bai, Huiyuan; Dong, Cheng

    2016-01-01

    Melanoma is one of the most lethal forms of skin cancer due to its early metastatic spread. The variant form of CD44 (CD44v), a cell surface glycoprotein, is highly expressed on metastatic melanoma. The mechanisms of regulation of CD44 alternative splicing in melanoma and its pathogenic contributions are so far poorly understood. Here, we investigated the expression level of CD44 in a large set of melanocytic lesions at different stages. We found that the expression of CD44v8-10 and a splicing factor, U2AF2, is significantly increased during melanoma progression, while CD82/KAI1, a tetraspanin family of tumor suppressor, is reduced in metastatic melanoma. CD44v8-10 and U2AF2 expressions which are negatively correlated with CD82 levels are dramatically elevated in primary melanoma compared with dysplastic nevi and further increased in metastatic melanoma. We also showed that patients with higher CD44v8-10 and U2AF2 expression levels tended to have shorter survival. By using both in vivo and in vitro assays, we demonstrated that CD82 inhibits the production of CD44v8-10 on melanoma. Mechanistically, U2AF2 is a downstream target of CD82 and in malignant melanoma facilitates CD44v8-10 alternative splicing. U2AF2-mediated CD44 isoform switch is required for melanoma migration in vitro and lung and liver metastasis in vivo. Notably, overexpression of CD82 suppresses U2AF2 activity by inducing U2AF2 ubiquitination. In addition, our data suggested that enhancement of melanoma migration by U2AF2-dependent CD44v8-10 splicing is mediated by Src/FAK/RhoA activation and formation of stress fibers as well as CD44-E-selectin binding reinforcement. These findings uncovered a hitherto unappreciated function of CD82 in severing the linkage between U2AF2-mediated CD44 alternative splicing and cancer aggressiveness, with potential prognostic and therapeutic implications in melanoma. PMID:27041584

  13. Lentiviral and targeted cellular barcoding reveals ongoing clonal dynamics of cell lines in vitro and in vivo

    PubMed Central

    2014-01-01

    Background Cell lines are often regarded as clonal, even though this simplifies what is known about mutagenesis, transformation and other processes that destabilize them over time. Monitoring these clonal dynamics is important for multiple areas of biomedical research, including stem cell and cancer biology. Tracking the contributions of individual cells to large populations, however, has been constrained by limitations in sensitivity and complexity. Results We utilize cellular barcoding methods to simultaneously track the clonal contributions of tens of thousands of cells. We demonstrate that even with optimal culturing conditions, common cell lines including HeLa, K562 and HEK-293 T exhibit ongoing clonal dynamics. Starting a population with a single clone diminishes but does not eradicate this phenomenon. Next, we compare lentiviral and zinc-finger nuclease barcode insertion approaches, finding that the zinc-finger nuclease protocol surprisingly results in reduced clonal diversity. We also document the expected reduction in clonal complexity when cells are challenged with genotoxic stress. Finally, we demonstrate that xenografts maintain clonal diversity to a greater extent than in vitro culturing of the human non-small-cell lung cancer cell line HCC827. Conclusions We demonstrate the feasibility of tracking and quantifying the clonal dynamics of entire cell populations within multiple cultured cell lines. Our results suggest that cell heterogeneity should be considered in the design and interpretation of in vitro culture experiments. Aside from clonal cell lines, we propose that cellular barcoding could prove valuable in modeling the clonal behavior of heterogeneous cell populations over time, including tumor populations treated with chemotherapeutic agents. PMID:24886633

  14. Low strain, long life creep fatigue of AF2-1DA and INCO 718

    NASA Technical Reports Server (NTRS)

    Thakker, A. B.; Cowles, B. A.

    1983-01-01

    Two aircraft turbine disk alloys, GATORIZED AF2-DA and INCO 718 were evaluated for their low strain long life creep-fatigue behavior. Static (tensile and creep rupture) and cyclic properties of both alloys were characterized. The cntrolled strain LCF tests were conducted at 760 C (1400 F) and 649 C (1200 F) for AF2-1DA and INCO 718, respectively. Hold times were varied for tensile, compressive and tensile/compressive strain dwell (relaxation) tests. Stress (creep) hold behavior of AF2-1DA was also evaluated. Generally, INCO 718 exhibited more pronounced reduction in cyclic life due to hold than AF2-1DA. The percent reduction in life for both alloys for strain dwell tests was greater at low strain ranges (longer life regime). Changing hold time from 0 to 0.5, 2.0 and 15.0 min. resulted in corresponding reductions in life. The continuous cycle and cyclic/dwell initiation failure mechanism was predominantly transgranular for AF2-1DA and intergranular for INCO 718.

  15. AfAP2-1, An Age-Dependent Gene of Aechmea fasciata, Responds to Exogenous Ethylene Treatment

    PubMed Central

    Lei, Ming; Li, Zhi-Ying; Wang, Jia-Bin; Fu, Yun-Liu; Ao, Meng-Fei; Xu, Li

    2016-01-01

    The Bromeliaceae family is one of the most morphologically diverse families with a pantropical distribution. To schedule an appropriate flowering time for bromeliads, ethylene is commonly used to initiate flower development in adult plants. However, the mechanism by which ethylene induces flowering in adult bromeliads remains unknown. Here, we identified an APETALA2 (AP2)-like gene, AfAP2-1, in Aechmea fasciata. AfAP2-1 contains two AP2 domains and is a nuclear-localized protein. It functions as a transcriptional activator, and the activation domain is located in the C-terminal region. The expression level of AfAP2-1 is higher in juvenile plants than in adult plants, and the AfAP2-1 transcript level was rapidly and transiently reduced in plants treated with exogenous ethylene. Overexpression of AfAP2-1 in Arabidopsis thaliana results in an extremely delayed flowering phenotype. These results suggested that AfAP2-1 responds to ethylene and is a putative age-dependent flowering regulator in A. fasciata. PMID:26927090

  16. Clonal development and organization of the adult Drosophila central brain.

    PubMed

    Yu, Hung-Hsiang; Awasaki, Takeshi; Schroeder, Mark David; Long, Fuhui; Yang, Jacob S; He, Yisheng; Ding, Peng; Kao, Jui-Chun; Wu, Gloria Yueh-Yi; Peng, Hanchuan; Myers, Gene; Lee, Tzumin

    2013-04-22

    The insect brain can be divided into neuropils that are formed by neurites of both local and remote origin. The complexity of the interconnections obscures how these neuropils are established and interconnected through development. The Drosophila central brain develops from a fixed number of neuroblasts (NBs) that deposit neurons in regional clusters. By determining individual NB clones and pursuing their projections into specific neuropils, we unravel the regional development of the brain neural network. Exhaustive clonal analysis revealed 95 stereotyped neuronal lineages with characteristic cell-body locations and neurite trajectories. Most clones show complex projection patterns, but despite the complexity, neighboring clones often coinnervate the same local neuropil or neuropils and further target a restricted set of distant neuropils. These observations argue for regional clonal development of both neuropils and neuropil connectivity throughout the Drosophila central brain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Biological and Clinical Implications of Clonal Heterogeneity and Clonal Evolution in Multiple Myeloma.

    PubMed

    Bianchi, Giada; Ghobrial, Irene M

    Clonal heterogeneity and clonal evolution have emerged as critical concepts in the field of oncology over the past four decades, largely thanks to the implementation of novel technologies such as comparative genomic hybridization, whole genome/exome sequencing and epigenetic analysis. Along with the identification of cancer stem cells in the majority of neoplasia, the recognition of intertumor and intratumor variability has provided a novel perspective to understand the mechanisms behind tumor evolution and its implication in terms of treatment failure and cancer relapse or recurrence. First hypothesized over two decades ago, clonal heterogeneity and clonal evolution have been confirmed in multiple myeloma (MM), an incurable cancer of plasma cells, almost universally preceded by a pre-malignant conditioned named monoclonal gammopathy of undetermined significance (MGUS). The genetic events and molecular mechanisms underlying such evolution have been difficult to dissect. Moreover, while a role for the bone marrow microenvironment in supporting MM cell survival, proliferation and drug-resistance has been well established, whether it is directly involved in driving evolution from MGUS to MM is at present unclear. We present in this review a historical excursus on the concepts of clonal heterogeneity and clonal evolution in MM with a special emphasis on their role in the progression from MGUS to MM; the contribution of the microenvironment; and the clinical implications in terms of resistance to treatment and disease relapse/recurrence.

  18. Biological and Clinical Implications of Clonal Heterogeneity and Clonal Evolution in Multiple Myeloma

    PubMed Central

    Bianchi, Giada; Ghobrial, Irene M.

    2015-01-01

    Clonal heterogeneity and clonal evolution have emerged as critical concepts in the field of oncology over the past four decades, largely thanks to the implementation of novel technologies such as comparative genomic hybridization, whole genome/exome sequencing and epigenetic analysis. Along with the identification of cancer stem cells in the majority of neoplasia, the recognition of intertumor and intratumor variability has provided a novel perspective to understand the mechanisms behind tumor evolution and its implication in terms of treatment failure and cancer relapse or recurrence. First hypothesized over two decades ago, clonal heterogeneity and clonal evolution have been confirmed in multiple myeloma (MM), an incurable cancer of plasma cells, almost universally preceded by a pre-malignant conditioned named monoclonal gammopathy of undetermined significance (MGUS). The genetic events and molecular mechanisms underlying such evolution have been difficult to dissect. Moreover, while a role for the bone marrow microenvironment in supporting MM cell survival, proliferation and drug-resistance has been well established, whether it is directly involved in driving evolution from MGUS to MM is at present unclear. We present in this review a historical excursus on the concepts of clonal heterogeneity and clonal evolution in MM with a special emphasis on their role in the progression from MGUS to MM; the contribution of the microenvironment; and the clinical implications in terms of resistance to treatment and disease relapse/recurrence. PMID:25705146

  19. Presence and mechanisms of acquired antimicrobial resistance in Belgian Brachyspira hyodysenteriae isolates belonging to different clonal complexes.

    PubMed

    Mahu, M; Pasmans, F; Vranckx, K; De Pauw, N; Vande Maele, L; Vyt, Philip; Vandersmissen, Tamara; Martel, A; Haesebrouck, F; Boyen, F

    2017-08-01

    Swine dysentery (SD) is an economically important disease for which antimicrobial treatment still occupies an important place to control outbreaks. However, acquired antimicrobial resistance is increasingly observed in Brachyspira hyodysenteriae. In this study, the Minimal Inhibitory Concentrations (MIC) of six antimicrobial compounds for 30 recent Belgian B. hyodysenteriae isolates were determined using a broth microdilution method. In addition, relevant regions of the 16S rRNA, 23S rRNA and the L3 protein encoding genes were sequenced to reveal mutations associated with acquired resistance. Finally, a phylogeny was reconstructed using minimal spanning tree analysis of multi locus sequence typing of the isolates. For lincomycin, doxycycline, tylosin and tylvalosin, at least 70% of the isolates did not belong to the wild-type population and were considered to have acquired resistance. For valnemulin and tiamulin, this was over 50%. In all isolates with acquired resistance to doxycycline, the G1058C mutation was present in their 16S rRNA gene. All isolates showing acquired resistance to lincomycin and both macrolides displayed the A2058T mutation in their 23S rRNA gene. Other mutations in this gene and the N148S mutation in the L3 protein were present in both wild-type isolates and isolates considered to have acquired resistance. Multi locus sequence analysis revealed a previously undescribed clonal complex, with 4 novel sequence types in which the majority of isolates showed acquired resistance to all tested antimicrobial products. In conclusion, acquired antimicrobial resistance is widespread among Belgian B. hyodysenteriae isolates. The emergence of multi-resistant clonal complexes can pose a threat to swine industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Detection of clonal aberrations by cytogenetic analysis after different culture methods and by FISH in 129 patients with Chronic Lymphocytic Leukemia.

    PubMed

    Jenderny, Jutta; Goldmann, Claudia; Thede, Rebekka; Ebrecht, Monika; Korioth, Frank

    2014-01-01

    There are only a few cytogenetic analysis (CA) studies that directly compare the novel cultivation technique using immunostimulatory CpG-oligonucleotide DSP30/interleukin-2 (DSP30/IL2) with other culture methods. Therefore, parallel cultures of peripheral blood of 129 chronic lymphocytic leukemia (CLL) patients were set up in unstimulated cultures, in the presence of pokeweed medium (PWM), and with DSP30/IL2. Furthermore, CA results were compared with data obtained by FISH. Clonal aberrations were observed by CA in 6% of the cases in unstimulated cultures, in 27% of the cases with PWM, and in 40% of the cases with DSP30/IL2. Some clonal aberrations were detected by CA only with one culture method. Using 3 different culture methods, clonal aberrations were detected in 41% of the cases by CA and in 71% of the cases by FISH. Altogether, 78% of the cases exhibited clonal aberrations discovered by CA and FISH. Also, CA detected clonal aberrations not targeted by FISH in 7% of the cases, and FISH identified clonal aberrations not detected by CA in 36% of the cases. Our study demonstrates that the combined use of CA with different culture methods together with FISH increases our knowledge of the genetic complexity and heterogeneity in CLL pathogenesis. © 2014 S. Karger AG, Basel.

  1. STBC AF relay for unmanned aircraft system

    NASA Astrophysics Data System (ADS)

    Adachi, Fumiyuki; Miyazaki, Hiroyuki; Endo, Chikara

    2015-01-01

    If a large scale disaster similar to the Great East Japan Earthquake 2011 happens, some areas may be isolated from the communications network. Recently, unmanned aircraft system (UAS) based wireless relay communication has been attracting much attention since it is able to quickly re-establish the connection between isolated areas and the network. However, the channel between ground station (GS) and unmanned aircraft (UA) is unreliable due to UA's swing motion and as consequence, the relay communication quality degrades. In this paper, we introduce space-time block coded (STBC) amplify-and-forward (AF) relay for UAS based wireless relay communication to improve relay communication quality. A group of UAs forms single frequency network (SFN) to perform STBC-AF cooperative relay. In STBC-AF relay, only conjugate operation, block exchange and amplifying are required at UAs. Therefore, STBC-AF relay improves the relay communication quality while alleviating the complexity problem at UAs. It is shown by computer simulation that STBC-AF relay can achieve better throughput performance than conventional AF relay.

  2. Mycobacterium bovis in Burkina Faso: epidemiologic and genetic links between human and cattle isolates.

    PubMed

    Sanou, Adama; Tarnagda, Zekiba; Kanyala, Estelle; Zingué, Dezemon; Nouctara, Moumini; Ganamé, Zakaria; Combary, Adjima; Hien, Hervé; Dembele, Mathurin; Kabore, Antoinette; Meda, Nicolas; Van de Perre, Philippe; Neveu, Dorine; Bañuls, Anne Laure; Godreuil, Sylvain

    2014-10-01

    In sub-Saharan Africa, bovine tuberculosis (bTB) is a potential hazard for animals and humans health. The goal of this study was to improve our understanding of bTB epidemiology in Burkina Faso and especially Mycobacterium bovis transmission within and between the bovine and human populations. Twenty six M. bovis strains were isolated from 101 cattle carcasses with suspected bTB lesions during routine meat inspections at the Bobo Dioulasso and Ouagadougou slaughterhouses. In addition, 7 M. bovis strains were isolated from 576 patients with pulmonary tuberculosis. Spoligotyping, RDAf1 deletion and MIRU-VNTR typing were used for strains genotyping. The isolation of M. bovis strains was confirmed by spoligotyping and 12 spoligotype signatures were detected. Together, the spoligotyping and MIRU-VNTR data allowed grouping the 33 M. bovis isolates in seven clusters including isolates exclusively from cattle (5) or humans (1) or from both (1). Moreover, these data (genetic analyses and phenetic tree) showed that the M. bovis isolates belonged to the African 1 (Af1) clonal complex (81.8%) and the putative African 5 (Af5) clonal complex (18.2%), in agreement with the results of RDAf1 deletion typing. This is the first detailed molecular characterization of M. bovis strains from humans and cattle in Burkina Faso. The distribution of the two Af1 and putative Af5 clonal complexes is comparable to what has been reported in neighbouring countries. Furthermore, the strain genetic profiles suggest that M. bovis circulates across the borders and that the Burkina Faso strains originate from different countries, but have a country-specific evolution. The genetic characterization suggests that, currently, M. bovis transmission occurs mainly between cattle, occasionally between cattle and humans and potentially between humans. This study emphasizes the bTB risk in cattle but also in humans and the difficulty to set up proper disease control strategies in Burkina Faso.

  3. Co-colonization of vanA and vanB Enterococcus faecium of clonal complex 17 in a patient with bacteremia due to vanA E. faecium.

    PubMed

    Seol, Chang Ahn; Park, Jeong Su; Sung, Heungsup; Kim, Mi-Na

    2014-06-01

    A 53-year-old Vietnamese man with liver cirrhosis was transferred from a Vietnamese hospital to our tertiary care hospital in Korea in order to undergo a liver transplantation. Bacteremia due to vanA Enterococcus faecium was diagnosed, and stool surveillance cultures for vancomycin-resistant enterococci (VRE) were positive for both vanA and vanB E. faecium. Pulsed-field gel electrophoresis analysis revealed that the 2 vanA VRE isolates from the blood and stool were clonal, but the vanB VRE was unrelated to the vanA VRE. vanA and vanB VRE were ST64 and ST18, single-allele variations of clonal complex 17, respectively. This is the first case report of vanA VRE bacteremia in a Vietnamese patient and demonstrates the reemergence of vanB VRE since a single outbreak occurred 15years ago in Korea. The reemergence of vanB VRE emphasizes the importance of VRE genotyping to prevent the spread of new VRE strains. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Effect of clonal integration on nitrogen cycling in rhizosphere of rhizomatous clonal plant, Phyllostachys bissetii, under heterogeneous light.

    PubMed

    Li, Yang; Chen, Jing-Song; Xue, Ge; Peng, Yuanying; Song, Hui-Xing

    2018-07-01

    Clonal integration plays an important role in clonal plant adapting to heterogeneous habitats. It was postulated that clonal integration could exhibit positive effects on nitrogen cycling in the rhizosphere of clonal plant subjected to heterogeneous light conditions. An in-situ experiment was conducted using clonal fragments of Phyllostachys bissetii with two successive ramets. Shading treatments were applied to offspring or mother ramets, respectively, whereas counterparts were treated to full sunlight. Rhizomes between two successive ramets were either severed or connected. Extracellular enzyme activities and nitrogen turnover were measured, as well as soil properties. Abundance of functional genes (archaeal or bacterial amoA, nifH) in the rhizosphere of shaded, offspring or mother ramets were determined using quantitative polymerase chain reaction. Carbon or nitrogen availabilities were significantly influenced by clonal integration in the rhizosphere of shaded ramets. Clonal integration significantly increased extracellular enzyme activities and abundance of functional genes in the rhizosphere of shaded ramets. When rhizomes were connected, higher nitrogen turnover (nitrogen mineralization or nitrification rates) was exhibited in the rhizosphere of shaded offspring ramets. However, nitrogen turnover was significantly decreased by clonal integration in the rhizosphere of shaded mother ramets. Path analysis indicated that nitrogen turnover in the rhizosphere of shaded, offspring or mother ramets were primarily driven by the response of soil microorganisms to dissolved organic carbon or nitrogen. This unique in-situ experiment provided insights into the mechanism of nutrient recycling mediated by clonal integration. It was suggested that effects of clonal integration on the rhizosphere microbial processes were dependent on direction of photosynthates transport in clonal plant subjected to heterogeneous light conditions. Copyright © 2018 Elsevier B.V. All rights

  5. Consequences of clonality for sexual fitness: Clonal expansion enhances fitness under spatially restricted dispersal.

    PubMed

    Van Drunen, Wendy E; van Kleunen, Mark; Dorken, Marcel E

    2015-07-21

    Clonality is a pervasive feature of sessile organisms, but this form of asexual reproduction is thought to interfere with sexual fitness via the movement of gametes among the modules that comprise the clone. This within-clone movement of gametes is expected to reduce sexual fitness via mate limitation of male reproductive success and, in some cases, via the production of highly inbred (i.e., self-fertilized) offspring. However, clonality also results in the spatial expansion of the genetic individual (i.e., genet), and this should decrease distances gametes and sexually produced offspring must travel to avoid competing with other gametes and offspring from the same clone. The extent to which any negative effects of clonality on mating success might be offset by the positive effects of spatial expansion is poorly understood. Here, we develop spatially explicit models in which fitness was determined by the success of genets through their male and female sex functions. Our results indicate that clonality serves to increase sexual fitness when it is associated with the outward expansion of the genet. Our models further reveal that the main fitness benefit of clonal expansion might occur through the dispersal of offspring over a wider area compared with nonclonal phenotypes. We conclude that, instead of interfering with sexual reproduction, clonal expansion should often serve to enhance sexual fitness.

  6. Evolutionary perspectives on clonal reproduction in vertebrate animals

    PubMed Central

    Avise, John C.

    2015-01-01

    A synopsis is provided of different expressions of whole-animal vertebrate clonality (asexual organismal-level reproduction), both in the laboratory and in nature. For vertebrate taxa, such clonal phenomena include the following: human-mediated cloning via artificial nuclear transfer; intergenerational clonality in nature via parthenogenesis and gynogenesis; intergenerational hemiclonality via hybridogenesis and kleptogenesis; intragenerational clonality via polyembryony; and what in effect qualifies as clonal replication via self-fertilization and intense inbreeding by simultaneous hermaphrodites. Each of these clonal or quasi-clonal mechanisms is described, and its evolutionary genetic ramifications are addressed. By affording an atypical vantage on standard vertebrate reproduction, clonality offers fresh perspectives on the evolutionary and ecological significance of recombination-derived genetic variety. PMID:26195735

  7. Association of the type of 5q loss with complex karyotype, clonal evolution, TP53 mutation status, and prognosis in acute myeloid leukemia and myelodysplastic syndrome.

    PubMed

    Volkert, Sarah; Kohlmann, Alexander; Schnittger, Susanne; Kern, Wolfgang; Haferlach, Torsten; Haferlach, Claudia

    2014-05-01

    We analyzed 1,200 patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) harboring a 5q deletion in order to clarify whether the type of 5q loss is associated with other biological markers and prognosis. We investigated all patients by chromosome banding analysis, FISH with a probe for EGR1 (5q31) and, if necessary, to resolve complex karyotypes with 24-color-FISH. Moreover, 420 patients were analyzed for mutations in the TP53 gene. The patient cohort was subdivided based on type of 5q loss: Patients with interstitial deletions and patients with 5q loss due to unbalanced rearrangements or monosomy 5. Loss of the long arm of chromosome 5 due to an unbalanced rearrangement occurred more often in AML (286/627; 45.6%) than MDS (188/573; 32.8%; P < 0.001). In both entities, patients with 5q loss due to unbalanced translocations showed complex karyotypes more frequently (MDS: 179/188; 95.2% vs. 124/385; 32.2%; P < 0.001; AML: 274/286; 95.8% vs. 256/341; 75.1%; P < 0.001). Moreover, in MDS unbalanced 5q translocations were associated with clonal evolution (109/188; 58.0% vs. 124/385; 32.2%; P < 0.001), mutation of TP53 (64/67; 95.5% vs. 40/120; 40.0%; P < 0.001), and shorter survival (15.3 months vs. not reached; P < 0.001). In MDS, complex karyotype was an independent adverse prognostic factor (HR = 5.34; P = 0.032), whereas in AML presence of TP53 mutations was the strongest adverse prognostic factor (HR = 2.21; P = 0.026). In conclusion, in AML and MDS, loss of the long arm of chromosome 5 due to unbalanced translocations is associated with complex karyotype and in MDS, moreover, with clonal evolution, mutations in the TP53 gene and adverse prognosis. Copyright © 2014 Wiley Periodicals, Inc.

  8. Ecological Consequences of Clonal Integration in Plants

    PubMed Central

    Liu, Fenghong; Liu, Jian; Dong, Ming

    2016-01-01

    Clonal plants are widespread throughout the plant kingdom and dominate in diverse habitats. Spatiotemporal heterogeneity of environment is pervasive at multiple scales, even at scales relevant to individual plants. Clonal integration refers to resource translocation and information communication among the ramets of clonal plants. Due to clonal integration, clonal plant species possess a series of peculiar attributes: plasticity in response to local and non-local conditions, labor division with organ specialization for acquiring locally abundant resources, foraging behavior by selective placement of ramets in resource-rich microhabitats, and avoidance of intraclonal competition. Clonal integration has very profound ecological consequences for clonal plants. It allows them to efficiently cope with environmental heterogeneity, by alleviating local resource shortages, buffering environmental stresses and disturbances, influencing competitive ability, increasing invasiveness, and altering species composition and invasibility at the community level. In this paper, we present a comprehensive review of research on the ecological consequences of plant clonal integration based on a large body of literature. We also attempt to propose perspectives for future research. PMID:27446093

  9. The RNA Methyltransferase Complex of WTAP, METTL3, and METTL14 Regulates Mitotic Clonal Expansion in Adipogenesis.

    PubMed

    Kobayashi, Masatoshi; Ohsugi, Mitsuru; Sasako, Takayoshi; Awazawa, Motoharu; Umehara, Toshihiro; Iwane, Aya; Kobayashi, Naoki; Okazaki, Yukiko; Kubota, Naoto; Suzuki, Ryo; Waki, Hironori; Horiuchi, Keiko; Hamakubo, Takao; Kodama, Tatsuhiko; Aoe, Seiichiro; Tobe, Kazuyuki; Kadowaki, Takashi; Ueki, Kohjiro

    2018-06-04

    Adipocyte differentiation is regulated by various mechanisms, of which the mitotic clonal expansion (MCE) is a key step. Although this process is known to be regulated by the cell cycle modulators, the precise mechanism remains unclear. N 6 -methyladenosine (m 6 A) post-transcriptional RNA modification, whose methylation and demethylation is performed by respective enzymal molecules, has recently been suggested to be involved in the regulation of adipogenesis. Here, we show that an RNA N 6 -adenosine methyltransferase complex consisting of Wilms' tumor 1-associating protein (WTAP), methyltransferase like (METTL) 3 and METTL14 positively control adipogenesis, by promoting cell cycle transition in MCE during adipogenesis. WTAP, coupled with METTL3 and METTL14, is increased and distributed in nucleus by the induction of adipogenesis dependently on RNA in vitro Knockdown of each of these three proteins leads to cell cycle arrest and impaired adipogenesis associated with suppression of Cyclin A2 upregulation during MCE, whose knockdown also impairs adipogenesis. Consistently, Wtap heterozygous knockout mice are protected from diet-induced obesity with smaller size and number of adipocytes, leading to improved insulin sensitivity. These data provide a mechanism for adipogenesis through WTAP-METTL3-METTL14 complex and a potential strategy for treatment of obesity and associated disorders. Copyright © 2018 Kobayashi et al.

  10. A novel artificial immune clonal selection classification and rule mining with swarm learning model

    NASA Astrophysics Data System (ADS)

    Al-Sheshtawi, Khaled A.; Abdul-Kader, Hatem M.; Elsisi, Ashraf B.

    2013-06-01

    Metaheuristic optimisation algorithms have become popular choice for solving complex problems. By integrating Artificial Immune clonal selection algorithm (CSA) and particle swarm optimisation (PSO) algorithm, a novel hybrid Clonal Selection Classification and Rule Mining with Swarm Learning Algorithm (CS2) is proposed. The main goal of the approach is to exploit and explore the parallel computation merit of Clonal Selection and the speed and self-organisation merits of Particle Swarm by sharing information between clonal selection population and particle swarm. Hence, we employed the advantages of PSO to improve the mutation mechanism of the artificial immune CSA and to mine classification rules within datasets. Consequently, our proposed algorithm required less training time and memory cells in comparison to other AIS algorithms. In this paper, classification rule mining has been modelled as a miltiobjective optimisation problem with predictive accuracy. The multiobjective approach is intended to allow the PSO algorithm to return an approximation to the accuracy and comprehensibility border, containing solutions that are spread across the border. We compared our proposed algorithm classification accuracy CS2 with five commonly used CSAs, namely: AIRS1, AIRS2, AIRS-Parallel, CLONALG, and CSCA using eight benchmark datasets. We also compared our proposed algorithm classification accuracy CS2 with other five methods, namely: Naïve Bayes, SVM, MLP, CART, and RFB. The results show that the proposed algorithm is comparable to the 10 studied algorithms. As a result, the hybridisation, built of CSA and PSO, can develop respective merit, compensate opponent defect, and make search-optimal effect and speed better.

  11. An invasive clonal plant benefits from clonal integration more than a co-occurring native plant in nutrient-patchy and competitive environments.

    PubMed

    You, Wenhua; Fan, Shufeng; Yu, Dan; Xie, Dong; Liu, Chunhua

    2014-01-01

    Many notorious invasive plants are clonal, however, little is known about the different roles of clonal integration effects between invasive and native plants. Here, we hypothesize that clonal integration affect growth, photosynthetic performance, biomass allocation and thus competitive ability of invasive and native clonal plants, and invasive clonal plants benefit from clonal integration more than co-occurring native plants in heterogeneous habitats. To test these hypotheses, two stoloniferous clonal plants, Alternanthera philoxeroides (invasive), Jussiaea repens (native) were studied in China. The apical parts of both species were grown either with or without neighboring vegetation and the basal parts without competitors were in nutrient- rich or -poor habitats, with stolon connections were either severed or kept intact. Competition significantly reduced growth and photosynthetic performance of the apical ramets in both species, but not the biomass of neighboring vegetation. Without competition, clonal integration greatly improved the growth and photosynthetic performance of both species, especially when the basal parts were in nutrient-rich habitats. When grown with neighboring vegetation, growth of J. repens and photosynthetic performance of both species were significantly enhanced by clonal integration with the basal parts in both nutrient-rich and -poor habitats, while growth and relative neighbor effect (RNE) of A. philoxeroides were greatly improved by clonal integration only when the basal parts were in nutrient-rich habitats. Moreover, clonal integration increased A. philoxeroides's biomass allocation to roots without competition, but decreased it with competition, especially when the basal ramets were in nutrient-rich sections. Effects of clonal integration on biomass allocation of J. repens was similar to that of A. philoxeroides but with less significance. These results supported our hypothesis that invasive clonal plants A. philoxeroides benefits

  12. An Invasive Clonal Plant Benefits from Clonal Integration More than a Co-Occurring Native Plant in Nutrient-Patchy and Competitive Environments

    PubMed Central

    You, Wenhua; Fan, Shufeng; Yu, Dan; Xie, Dong; Liu, Chunhua

    2014-01-01

    Many notorious invasive plants are clonal, however, little is known about the different roles of clonal integration effects between invasive and native plants. Here, we hypothesize that clonal integration affect growth, photosynthetic performance, biomass allocation and thus competitive ability of invasive and native clonal plants, and invasive clonal plants benefit from clonal integration more than co-occurring native plants in heterogeneous habitats. To test these hypotheses, two stoloniferous clonal plants, Alternanthera philoxeroides (invasive), Jussiaea repens (native) were studied in China. The apical parts of both species were grown either with or without neighboring vegetation and the basal parts without competitors were in nutrient- rich or -poor habitats, with stolon connections were either severed or kept intact. Competition significantly reduced growth and photosynthetic performance of the apical ramets in both species, but not the biomass of neighboring vegetation. Without competition, clonal integration greatly improved the growth and photosynthetic performance of both species, especially when the basal parts were in nutrient-rich habitats. When grown with neighboring vegetation, growth of J. repens and photosynthetic performance of both species were significantly enhanced by clonal integration with the basal parts in both nutrient-rich and -poor habitats, while growth and relative neighbor effect (RNE) of A. philoxeroides were greatly improved by clonal integration only when the basal parts were in nutrient-rich habitats. Moreover, clonal integration increased A. philoxeroides's biomass allocation to roots without competition, but decreased it with competition, especially when the basal ramets were in nutrient-rich sections. Effects of clonal integration on biomass allocation of J. repens was similar to that of A. philoxeroides but with less significance. These results supported our hypothesis that invasive clonal plants A. philoxeroides benefits

  13. Teleost Fish Mount Complex Clonal IgM and IgT Responses in Spleen upon Systemic Viral Infection

    PubMed Central

    Castro, Rosario; Jouneau, Luc; Pham, Hang-Phuong; Bouchez, Olivier; Giudicelli, Véronique; Lefranc, Marie-Paule; Quillet, Edwige; Benmansour, Abdenour; Cazals, Frédéric; Six, Adrien; Fillatreau, Simon; Sunyer, Oriol; Boudinot, Pierre

    2013-01-01

    Upon infection, B-lymphocytes expressing antibodies specific for the intruding pathogen develop clonal responses triggered by pathogen recognition via the B-cell receptor. The constant region of antibodies produced by such responding clones dictates their functional properties. In teleost fish, the clonal structure of B-cell responses and the respective contribution of the three isotypes IgM, IgD and IgT remain unknown. The expression of IgM and IgT are mutually exclusive, leading to the existence of two B-cell subsets expressing either both IgM and IgD or only IgT. Here, we undertook a comprehensive analysis of the variable heavy chain (VH) domain repertoires of the IgM, IgD and IgT in spleen of homozygous isogenic rainbow trout (Onchorhynchus mykiss) before, and after challenge with a rhabdovirus, the Viral Hemorrhagic Septicemia Virus (VHSV), using CDR3-length spectratyping and pyrosequencing of immunoglobulin (Ig) transcripts. In healthy fish, we observed distinct repertoires for IgM, IgD and IgT, respectively, with a few amplified μ and τ junctions, suggesting the presence of IgM- and IgT-secreting cells in the spleen. In infected animals, we detected complex and highly diverse IgM responses involving all VH subgroups, and dominated by a few large public and private clones. A lower number of robust clonal responses involving only a few VH were detected for the mucosal IgT, indicating that both IgM+ and IgT+ spleen B cells responded to systemic infection but at different degrees. In contrast, the IgD response to the infection was faint. Although fish IgD and IgT present different structural features and evolutionary origin compared to mammalian IgD and IgA, respectively, their implication in the B-cell response evokes these mouse and human counterparts. Thus, it appears that the general properties of antibody responses were already in place in common ancestors of fish and mammals, and were globally conserved during evolution with possible functional

  14. Clonal growth and plant species abundance

    PubMed Central

    Herben, Tomáš; Nováková, Zuzana; Klimešová, Jitka

    2014-01-01

    Background and Aims Both regional and local plant abundances are driven by species' dispersal capacities and their abilities to exploit new habitats and persist there. These processes are affected by clonal growth, which is difficult to evaluate and compare across large numbers of species. This study assessed the influence of clonal reproduction on local and regional abundances of a large set of species and compared the predictive power of morphologically defined traits of clonal growth with data on actual clonal growth from a botanical garden. The role of clonal growth was compared with the effects of seed reproduction, habitat requirements and growth, proxied both by LHS (leaf–height–seed) traits and by actual performance in the botanical garden. Methods Morphological parameters of clonal growth, actual clonal reproduction in the garden and LHS traits (leaf-specific area – height – seed mass) were used as predictors of species abundance, both regional (number of species records in the Czech Republic) and local (mean species cover in vegetation records) for 836 perennial herbaceous species. Species differences in habitat requirements were accounted for by classifying the dataset by habitat type and also by using Ellenberg indicator values as covariates. Key Results After habitat differences were accounted for, clonal growth parameters explained an important part of variation in species abundance, both at regional and at local levels. At both levels, both greater vegetative growth in cultivation and greater lateral expansion trait values were correlated with higher abundance. Seed reproduction had weaker effects, being positive at the regional level and negative at the local level. Conclusions Morphologically defined traits are predictive of species abundance, and it is concluded that simultaneous investigation of several such traits can help develop hypotheses on specific processes (e.g. avoidance of self-competition, support of offspring) potentially

  15. Serogroup and Clonal Characterization of Czech Invasive Neisseria meningitidis Strains Isolated from 1971 to 2015

    PubMed Central

    Jandova, Zuzana; Musilek, Martin; Vackova, Zuzana; Kozakova, Jana; Krizova, Pavla

    2016-01-01

    Background This study presents antigenic and genetic characteristics of Neisseria meningitidis strains recovered from invasive meningococcal disease (IMD) in the Czech Republic in 1971–2015. Material and Methods A total of 1970 isolates from IMD, referred to the National Reference Laboratory for Meningococcal Infections in 1971–2015, were studied. All isolates were identified and characterized by conventional biochemical and serological tests. Most isolates (82.5%) were characterized by multilocus sequence typing method. Results In the study period 1971–2015, the leading serogroup was B (52.4%), most often assigned to clonal complexes cc32, cc41/44, cc18, and cc269. A significant percentage of strains were of serogroup C (41.4%), with high clonal homogeneity due to hyperinvasive complex cc11, which played an important role in IMD in the Czech Republic in the mid-1990s. Serogroup Y isolates, mostly assigned to cc23, and isolates of clonally homogeneous serogroup W have also been recovered more often over the last years. Conclusion The incidence of IMD and distribution of serogroups and clonal complexes of N. meningitidis in the Czech Republic varied over time, as can be seen from the long-term monitoring, including molecular surveillance data. Data from the conventional and molecular IMD surveillance are helpful in refining the antimeningococcal vaccination strategy in the Czech Republic. PMID:27936105

  16. Multilocus sequence type system for the plant pathogen Xylella fastidiosa and relative contributions of recombination and point mutation to clonal diversity.

    PubMed

    Scally, Mark; Schuenzel, Erin L; Stouthamer, Richard; Nunney, Leonard

    2005-12-01

    Multilocus sequence typing (MLST) identifies and groups bacterial strains based on DNA sequence data from (typically) seven housekeeping genes. MLST has also been employed to estimate the relative contributions of recombination and point mutation to clonal divergence. We applied MLST to the plant pathogen Xylella fastidiosa using an initial set of sequences for 10 loci (9.3 kb) of 25 strains from five different host plants, grapevine (PD strains), oleander (OLS strains), oak (OAK strains), almond (ALS strains), and peach (PP strains). An eBURST analysis identified six clonal complexes using the grouping criterion that each member must be identical to at least one other member at 7 or more of the 10 loci. These clonal complexes corresponded to previously identified phylogenetic clades; clonal complex 1 (CC1) (all PD strains plus two ALS strains) and CC2 (OLS strains) defined the X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. sandyi clades, while CC3 (ALS strains), CC4 (OAK strains), and CC5 (PP strains) were subclades of X. fastidiosa subsp. multiplex. CC6 (ALS strains) identified an X. fastidiosa subsp. multiplex-like group characterized by a high frequency of intersubspecific recombination. Compared to the recombination rate in other bacterial species, the recombination rate in X. fastidiosa is relatively low. Recombination between different alleles was estimated to give rise to 76% of the nucleotide changes and 31% of the allelic changes observed. The housekeeping loci holC, nuoL, leuA, gltT, cysG, petC, and lacF were chosen to form the basis of a public database for typing X. fastidiosa (www.mlst.net). These loci identified the same six clonal complexes using the strain grouping criterion of identity at five or more loci with at least one other member.

  17. Clonal evolution in myelodysplastic syndromes

    PubMed Central

    da Silva-Coelho, Pedro; Kroeze, Leonie I.; Yoshida, Kenichi; Koorenhof-Scheele, Theresia N.; Knops, Ruth; van de Locht, Louis T.; de Graaf, Aniek O.; Massop, Marion; Sandmann, Sarah; Dugas, Martin; Stevens-Kroef, Marian J.; Cermak, Jaroslav; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Miyano, Satoru; de Witte, Theo; Blijlevens, Nicole M. A.; Muus, Petra; Huls, Gerwin; van der Reijden, Bert A.; Ogawa, Seishi; Jansen, Joop H.

    2017-01-01

    Cancer development is a dynamic process during which the successive accumulation of mutations results in cells with increasingly malignant characteristics. Here, we show the clonal evolution pattern in myelodysplastic syndrome (MDS) patients receiving supportive care, with or without lenalidomide (follow-up 2.5–11 years). Whole-exome and targeted deep sequencing at multiple time points during the disease course reveals that both linear and branched evolutionary patterns occur with and without disease-modifying treatment. The application of disease-modifying therapy may create an evolutionary bottleneck after which more complex MDS, but also unrelated clones of haematopoietic cells, may emerge. In addition, subclones that acquired an additional mutation associated with treatment resistance (TP53) or disease progression (NRAS, KRAS) may be detected months before clinical changes become apparent. Monitoring the genetic landscape during the disease may help to guide treatment decisions. PMID:28429724

  18. Disturbance Is an Important Driver of Clonal Richness in Tropical Seagrasses

    PubMed Central

    McMahon, Kathryn M.; Evans, Richard D.; van Dijk, Kor-jent; Hernawan, Udhi; Kendrick, Gary A.; Lavery, Paul S.; Lowe, Ryan; Puotinen, Marji; Waycott, Michelle

    2017-01-01

    Clonality is common in many aquatic plant species, including seagrasses, where populations are maintained through a combination of asexual and sexual reproduction. One common measure used to describe the clonal structure of populations is clonal richness. Clonal richness is strongly dependent on the biological characteristics of the species, and how these interact with the environment but can also reflect evolutionary scale processes especially at the edge of species ranges. However, little is known about the spatial patterns and drivers of clonal richness in tropical seagrasses. This study assessed the spatial patterns of clonal richness in meadows of three tropical seagrass species, Thalassia hemprichii, Halodule uninervis, and Halophila ovalis, spanning a range of life-history strategies and spatial scales (2.5–4,711 km) in Indonesia and NW Australia. We further investigated the drivers of clonal richness using general additive mixed models for two of the species, H. uninervis and H. ovalis, over 8° latitude. No significant patterns were observed in clonal richness with latitude, yet disturbance combined with sea surface temperature strongly predicted spatial patterns of clonal richness. Sites with a high probability of cyclone disturbance had low clonal richness, whereas an intermediate probability of cyclone disturbance and the presence of dugong grazing combined with higher sea surface temperatures resulted in higher levels of clonal richness. We propose potential mechanisms for these patterns related to the recruitment and mortality rates of individuals as well as reproductive effort. Under a changing climate, increased severity of tropical cyclones and the decline in populations of mega-grazers have the potential to reduce clonal richness leading to less genetically diverse populations. PMID:29259609

  19. Complementary DNA cloning, sequence analysis, and tissue transcription profile of a novel U2AF2 gene from the Chinese Banna mini-pig inbred line.

    PubMed

    Wang, S Y; Huo, J L; Miao, Y W; Cheng, W M; Zeng, Y Z

    2013-04-02

    U2 small nuclear RNA auxiliary factor 2 (U2AF2) is an important gene for pre-messenger RNA splicing in higher eukaryotes. In this study, the Banna mini-pig inbred line (BMI) U2AF2 coding sequence (CDS) was cloned, sequenced, and characterized. The U2AF2 complete CDS was amplified using the reverse transcription-polymerase chain reaction (RT-PCR) technique based on the conserved sequence information of cattle and known highly homologous swine expressed sequence tags. This novel gene was deposited into the National Center for Biotechnology Information database (Accession No. JQ839267). Sequence analysis revealed that the BMI U2AF2 coding sequence consisted of 1416 bp and encoded 471 amino acids with a molecular weight of 53.12 kDa. The protein sequence has high sequence homology with U2AF65 of 6 species - Homo sapiens (100%), Equus caballus (100%), Canis lupus (100%), Macaca mulatta (99.8%), Bos taurus (74.4%), and Mus musculus (74.4%). The phylogenetic tree analysis revealed that BMI U2AF65 has a closer genetic relationship with B. taurus U2AF65 than with U2AF65 of E. caballus, C. lupus, M. mulatta, H. sapiens, and M. musculus. RT-PCR analysis showed that BMI U2AF2 was most highly expressed in the brain; moderately expressed in the spleen, lung, muscle, and skin; and weakly expressed in the liver, kidney, and ovary. Its expression was nearly silent in the spinal cord, nerve fiber, heart, stomach, pancreas, and intestine. Three microRNA target sites were predicted in the CDS of BMI U2AF2 messenger RNA. Our results establish a foundation for further insight into this swine gene.

  20. Clonal reproduction in fungi

    PubMed Central

    Taylor, John W.; Hann-Soden, Christopher; Branco, Sara; Sylvain, Iman; Ellison, Christopher E.

    2015-01-01

    Research over the past two decades shows that both recombination and clonality are likely to contribute to the reproduction of all fungi. This view of fungi is different from the historical and still commonly held view that a large fraction of fungi are exclusively clonal and that some fungi have been exclusively clonal for hundreds of millions of years. Here, we first will consider how these two historical views have changed. Then we will examine the impact on fungal research of the concept of restrained recombination [Tibayrenc M, Ayala FJ (2012) Proc Natl Acad Sci USA 109 (48):E3305–E3313]. Using animal and human pathogenic fungi, we examine extrinsic restraints on recombination associated with bottlenecks in genetic variation caused by geographic dispersal and extrinsic restraints caused by shifts in reproductive mode associated with either disease transmission or hybridization. Using species of the model yeast Saccharomyces and the model filamentous fungus Neurospora, we examine intrinsic restraints on recombination associated with mating systems that range from strictly clonal at one extreme to fully outbreeding at the other and those that lie between, including selfing and inbreeding. We also consider the effect of nomenclature on perception of reproductive mode and a means of comparing the relative impact of clonality and recombination on fungal populations. Last, we consider a recent hypothesis suggesting that fungi thought to have the most severe intrinsic constraints on recombination actually may have the fewest. PMID:26195774

  1. Clonal growth and plant species abundance.

    PubMed

    Herben, Tomáš; Nováková, Zuzana; Klimešová, Jitka

    2014-08-01

    Both regional and local plant abundances are driven by species' dispersal capacities and their abilities to exploit new habitats and persist there. These processes are affected by clonal growth, which is difficult to evaluate and compare across large numbers of species. This study assessed the influence of clonal reproduction on local and regional abundances of a large set of species and compared the predictive power of morphologically defined traits of clonal growth with data on actual clonal growth from a botanical garden. The role of clonal growth was compared with the effects of seed reproduction, habitat requirements and growth, proxied both by LHS (leaf-height-seed) traits and by actual performance in the botanical garden. Morphological parameters of clonal growth, actual clonal reproduction in the garden and LHS traits (leaf-specific area - height - seed mass) were used as predictors of species abundance, both regional (number of species records in the Czech Republic) and local (mean species cover in vegetation records) for 836 perennial herbaceous species. Species differences in habitat requirements were accounted for by classifying the dataset by habitat type and also by using Ellenberg indicator values as covariates. After habitat differences were accounted for, clonal growth parameters explained an important part of variation in species abundance, both at regional and at local levels. At both levels, both greater vegetative growth in cultivation and greater lateral expansion trait values were correlated with higher abundance. Seed reproduction had weaker effects, being positive at the regional level and negative at the local level. Morphologically defined traits are predictive of species abundance, and it is concluded that simultaneous investigation of several such traits can help develop hypotheses on specific processes (e.g. avoidance of self-competition, support of offspring) potentially underlying clonal growth effects on abundance. Garden

  2. Trinuclear Mn(II) complex with paramagnetic bridging 1,2,3-dithiazolyl ligands.

    PubMed

    Sullivan, David J; Clérac, Rodolphe; Jennings, Michael; Lough, Alan J; Preuss, Kathryn E

    2012-11-18

    The first metal coordination complex of a radical ligand based on the 1,2,3-dithiazolyl heterocycle is reported. 6,7-Dimethyl-1,4-dioxo-naphtho[2,3-d][1,2,3]dithiazolyl acts as a bridging ligand in the volatile trinuclear Mn(hfac)(2)-Rad-Mn(hfac)(2)-Rad-Mn(hfac)(2) complex (hfac = 1,1,1,5,5,5-hexafluoroacetylacetonato-). The Mn(II) and radical ligand spins are coupled anti-ferromagnetically (AF) resulting in an S(T) = 13/2 spin ground state.

  3. Clonal sets of a binary relation

    NASA Astrophysics Data System (ADS)

    Zedam, Lemnaouar; Pérez-Fernández, Raúl; Bouremel, Hassane; De Baets, Bernard

    2018-05-01

    In a recent paper, we have introduced the notion of clone relation of a given binary relation. Intuitively, two elements are said to be "clones" if they are related in the same way w.r.t. every other element. In this paper, we generalize this notion from pairs of elements to sets of elements of any cardinality, resulting in the introduction of clonal sets. We investigate the most important properties of clonal sets, paying particular attention to the introduction of the clonal closure operator, to the analysis of the (lattice) structure of the set of clonal sets and to a distance metric expressing how close two elements are to being clones.

  4. The clinical impact of livestock-associated methicillin-resistant Staphylococcus aureus of the clonal complex 398 for humans.

    PubMed

    Becker, Karsten; Ballhausen, Britta; Kahl, Barbara C; Köck, Robin

    2017-02-01

    In the past decade, livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) strains in particular of the clonal complex (CC) 398 have emerged in many parts of the world especially in areas with a high density of pig farming. In those regions, farmworkers and other individuals with professional contact to livestock are very frequently colonized with LA-MRSA. These persons are the presumably source for LA-MRSA transmission to household members and other parts of the human population. Altogether, colonization and/or infection of these individuals lead to the introduction of LA-MRSA into hospitals and other healthcare facilities. Since LA-MRSA CC398 have been found to be specifically adapted to their animal hosts in terms of the equipment with virulence factors, their pathogenicity to human patients is a matter of debate with first reports about clinical cases. Meanwhile, case reports, case series and few studies have demonstrated the capability of LA-MRSA to cause all types of infections attributed to S. aureus in general including fatal courses. Human infections observed comprise e.g. bacteremia, pneumonia, osteomyelitis, endocarditis and many manifestations of skin and soft tissue infections. However, inpatients affected by MRSA CC398 generally show different demographic (e.g. younger, shorter length of hospital stay) and clinical characteristics (e.g. less severe complications) which may explain or at least contribute to a lower disease burden of LA-MRSA compared to other MRSA clonal lineages. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Evolution of AF6-RAS association and its implications in mixed-lineage leukemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Matthew J.; Ottoni, Elizabeth; Ishiyama, Noboru

    Elucidation of activation mechanisms governing protein fusions is essential for therapeutic development. MLL undergoes rearrangement with numerous partners, including a recurrent translocation fusing the epigenetic regulator to a cytoplasmic RAS effector, AF6/afadin. We show here that AF6 employs a non-canonical, evolutionarily conserved α-helix to bind RAS, unique to AF6 and the classical RASSF effectors. Further, all patients with MLL-AF6 translocations express fusion proteins missing only this helix from AF6, resulting in exposure of hydrophobic residues that induce dimerization. We provide evidence that oligomerization is the dominant mechanism driving oncogenesis from rare MLL translocation partners and employ our mechanistic understanding ofmore » MLL-AF6 to examine how dimers induce leukemia. Proteomic data resolve association of dimerized MLL with gene expression modulators, and inhibiting dimerization disrupts formation of these complexes while completely abrogating leukemogenesis in mice. Oncogenic gene translocations are thus selected under pressure from protein structure/function, underscoring the complex nature of chromosomal rearrangements.« less

  6. Improved clonality detection in B-cell lymphoma using a semi-nested modification of the BIOMED-2 PCR assay for IGH rearrangement: A paraffin-embedded tissue study.

    PubMed

    Sakamoto, Yuma; Masaki, Ayako; Aoyama, Satsuki; Han, Shusen; Saida, Kosuke; Fujii, Kana; Takino, Hisashi; Murase, Takayuki; Iida, Shinsuke; Inagaki, Hiroshi

    2017-09-01

    The BIOMED-2 PCR protocol for targeting the IGH gene is widely employed for detecting clonality in B-cell malignancies. Unfortunately, the detection of clonality with this method is not very sensitive when paraffin sections are used as a DNA source. To increase the sensitivity, we devised a semi-nested modification of a JH consensus primer. The clonality detection rates of three assays were compared: the standard BIOMED-2, BIOMED-2 assay followed by BIOMED-2 re-amplification, and BIOMED-2 assay followed by semi-nested BIOMED-2. We tested more than 100 cases using paraffin-embedded tissues of various B-cell lymphomas, and found that the clonality detection rates with the above three assays were 63.9%, 79.6%, and 88.0%, respectively. While BIOMED-2 re-amplification was significantly more sensitive than the standard BIOMED-2, the semi-nested BIOMED-2 was significantly more sensitive than both the standard BIOMED-2 and BIOMED-2 re-amplification. An increase in sensitivity was observed in all lymphoma subtypes examined. In conclusion, tumor clonality may be detected in nearly 90% of B-cell lymphoma cases with semi-nested BIOMED-2. This ancillary assay may be useful when the standard BIOMED-2 fails to detect clonality in histopathologically suspected B-cell lymphomas. © 2017 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  7. Enforced Clonality Confers a Fitness Advantage

    PubMed Central

    Martínková, Jana; Klimešová, Jitka

    2016-01-01

    In largely clonal plants, splitting of a maternal plant into potentially independent plants (ramets) is usually spontaneous; however, such fragmentation also occurs in otherwise non-clonal species due to application of external force. This process might play an important yet largely overlooked role for otherwise non-clonal plants by providing a mechanism to regenerate after disturbance. Here, in a 5-year garden experiment on two short-lived, otherwise non-clonal species, Barbarea vulgaris and Barbarea stricta, we compared the fitness of plants fragmented by simulated disturbance (“enforced ramets”) both with plants that contemporaneously originate in seed and with individuals unscathed by the disturbance event. Because the ability to regrow from fragments is related to plant age and stored reserves, we compared the effects of disturbance applied during three different ontogenetic stages of the plants. In B. vulgaris, enforced ramet fitness was higher than the measured fitness values of both uninjured plants and plants established from seed after the disturbance. This advantage decreased with increasing plant age at the time of fragmentation. In B. stricta, enforced ramet fitness was lower than or similar to fitness of uninjured plants and plants grown from seed. Our results likely reflect the habitat preferences of the study species, as B. vulgaris occurs in anthropogenic, disturbed habitats where body fragmentation is more probable and enforced clonality thus more advantageous than in the more natural habitats preferred by B. stricta. Generalizing from our results, we see that increased fitness yielded by enforced clonality would confer an evolutionary advantage in the face of disturbance, especially in habitats where a seed bank has not been formed, e.g., during invasion or colonization. Our results thus imply that enforced clonality should be taken into account when studying population dynamics and life strategies of otherwise non-clonal species in disturbed

  8. Extensive clonal spread and extreme longevity in saw palmetto, a foundation clonal plant.

    PubMed

    Takahashi, Mizuki K; Horner, Liana M; Kubota, Toshiro; Keller, Nathan A; Abrahamson, Warren G

    2011-09-01

    The lack of effective tools has hampered out ability to assess the size, growth and ages of clonal plants. With Serenoa repens (saw palmetto) as a model, we introduce a novel analytical framework that integrates DNA fingerprinting and mathematical modelling to simulate growth and estimate ages of clonal plants. We also demonstrate the application of such life-history information of clonal plants to provide insight into management plans. Serenoa is an ecologically important foundation species in many Southeastern United States ecosystems; yet, many land managers consider Serenoa a troublesome invasive plant. Accordingly, management plans have been developed to reduce or eliminate Serenoa with little understanding of its life history. Using Amplified Fragment Length Polymorphisms, we genotyped 263 Serenoa and 134 Sabal etonia (a sympatric non-clonal palmetto) samples collected from a 20 × 20 m study plot in Florida scrub. Sabal samples were used to assign small field-unidentifiable palmettos to Serenoa or Sabal and also as a negative control for clone detection. We then mathematically modelled clonal networks to estimate genet ages. Our results suggest that Serenoa predominantly propagate via vegetative sprouts and 10,000-year-old genets may be common, while showing no evidence of clone formation by Sabal. The results of this and our previous studies suggest that: (i) Serenoa has been part of scrub associations for thousands of years, (ii) Serenoa invasion are unlikely and (ii) once Serenoa is eliminated from local communities, its restoration will be difficult. Reevaluation of the current management tools and plans is an urgent task. © 2011 Blackwell Publishing Ltd.

  9. Evolutionary blueprint for host- and niche-adaptation in Staphylococcus aureus clonal complex CC30

    PubMed Central

    McGavin, Martin J.; Arsic, Benjamin; Nickerson, Nicholas N.

    2012-01-01

    Staphylococcus aureus clonal complex CC30 has caused infectious epidemics for more than 60 years, and, therefore, provides a model system to evaluate how evolution has influenced the disease potential of closely related strains. In previous multiple genome comparisons, phylogenetic analyses established three major branches that evolved from a common ancestor. Clade 1, comprised of historic pandemic phage type 80/81 methicillin susceptible S. aureus (MSSA), and Clade 2 comprised of contemporary community acquired methicillin resistant S. aureus (CA-MRSA) were hyper-virulent in murine infection models. Conversely, Clade 3 strains comprised of contemporary hospital associated MRSA (HA-MRSA) and clinical MSSA exhibited attenuated virulence, due to common single nucleotide polymorphisms (SNP's) that abrogate production of α-hemolysin Hla, and interfere with signaling of the accessory gene regulator agr. We have now completed additional in silico genome comparisons of 15 additional CC30 genomes in the public domain, to assess the hypothesis that Clade 3 has evolved to favor niche adaptation. In addition to SNP's that influence agr and hla, other common traits of Clade 3 include tryptophan auxotrophy due to a di-nucleotide deletion within trpD, a premature stop codon within isdH encoding an immunogenic cell surface protein involved in iron acquisition, loss of a genomic toxin–antitoxin (TA) addiction module, acquisition of S. aureus pathogenicity islands SaPI4, and SaPI2 encoding toxic shock syndrome toxin tst, and increased copy number of insertion sequence ISSau2, which appears to target transcription terminators. Compared to other Clade 3 MSSA, S. aureus MN8, which is associated with Staphylococcal toxic shock syndrome, exhibited a unique ISSau2 insertion, and enhanced production of toxic shock syndrome toxin encoded by SaPI2. Cumulatively, our data support the notion that Clade 3 strains are following an evolutionary blueprint toward niche-adaptation. PMID:22919639

  10. The Role of U2AF1 Mutations in the Pathogenesis of Myelodysplastic Syndromes

    DTIC Science & Technology

    2016-12-01

    U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved for public release...ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR’S...induction, U2AF1(S34F) mice have reduced WBCs, increased hematopoietic stem /progenitor cells, and increased HSC cell cycling compared to U2AF1(WT) mice

  11. Retroviral insertional mutagenesis identifies Zeb2 activation as a novel leukemogenic collaborating event in CALM-AF10 transgenic mice.

    PubMed

    Caudell, David; Harper, David P; Novak, Rachel L; Pierce, Rachel M; Slape, Christopher; Wolff, Linda; Aplan, Peter D

    2010-02-11

    The t(10;11) translocation results in a CALM-AF10 fusion gene in a subset of leukemia patients. Expression of a CALM-AF10 transgene results in leukemia, with prolonged latency and incomplete penetrance, suggesting that additional events are necessary for leukemic transformation. CALM-AF10 mice infected with the MOL4070LTR retrovirus developed acute leukemia, and ligation-mediated polymerase chain reaction was used to identify retroviral insertions at 19 common insertion sites, including Zeb2, Nf1, Mn1, Evi1, Ift57, Mpl, Plag1, Kras, Erg, Vav1, and Gata1. A total of 26% (11 of 42) of the mice had retroviral integrations near Zeb2, a transcriptional corepressor leading to overexpression of the Zeb2-transcript. A total of 91% (10 of 11) of mice with Zeb2 insertions developed B-lineage acute lymphoblastic leukemia, suggesting that Zeb2 activation promotes the transformation of CALM-AF10 hematopoietic precursors toward B-lineage leukemias. More than half of the mice with Zeb2 integrations also had Nf1 integrations, suggesting cooperativity among CALM-AF10, Zeb2, and Ras pathway mutations. We searched for Nras, Kras, and Ptpn11 point mutations in the CALM-AF10 leukemic mice. Three mutations were identified, all of which occurred in mice with Zeb2 integrations, consistent with the hypothesis that Zeb2 and Ras pathway activation promotes B-lineage leukemic transformation in concert with CALM-AF10.

  12. Retroviral insertional mutagenesis identifies Zeb2 activation as a novel leukemogenic collaborating event in CALM-AF10 transgenic mice

    PubMed Central

    Caudell, David; Harper, David P.; Novak, Rachel L.; Pierce, Rachel M.; Slape, Christopher; Wolff, Linda

    2010-01-01

    The t(10;11) translocation results in a CALM-AF10 fusion gene in a subset of leukemia patients. Expression of a CALM-AF10 transgene results in leukemia, with prolonged latency and incomplete penetrance, suggesting that additional events are necessary for leukemic transformation. CALM-AF10 mice infected with the MOL4070LTR retrovirus developed acute leukemia, and ligation-mediated polymerase chain reaction was used to identify retroviral insertions at 19 common insertion sites, including Zeb2, Nf1, Mn1, Evi1, Ift57, Mpl, Plag1, Kras, Erg, Vav1, and Gata1. A total of 26% (11 of 42) of the mice had retroviral integrations near Zeb2, a transcriptional corepressor leading to overexpression of the Zeb2-transcript. A total of 91% (10 of 11) of mice with Zeb2 insertions developed B-lineage acute lymphoblastic leukemia, suggesting that Zeb2 activation promotes the transformation of CALM-AF10 hematopoietic precursors toward B-lineage leukemias. More than half of the mice with Zeb2 integrations also had Nf1 integrations, suggesting cooperativity among CALM-AF10, Zeb2, and Ras pathway mutations. We searched for Nras, Kras, and Ptpn11 point mutations in the CALM-AF10 leukemic mice. Three mutations were identified, all of which occurred in mice with Zeb2 integrations, consistent with the hypothesis that Zeb2 and Ras pathway activation promotes B-lineage leukemic transformation in concert with CALM-AF10. PMID:20007546

  13. Selective modulation of the androgen receptor AF2 domain rescues degeneration in spinal bulbar muscular atrophy.

    PubMed

    Badders, Nisha M; Korff, Ane; Miranda, Helen C; Vuppala, Pradeep K; Smith, Rebecca B; Winborn, Brett J; Quemin, Emmanuelle R; Sopher, Bryce L; Dearman, Jennifer; Messing, James; Kim, Nam Chul; Moore, Jennifer; Freibaum, Brian D; Kanagaraj, Anderson P; Fan, Baochang; Tillman, Heather; Chen, Ping-Chung; Wang, Yingzhe; Freeman, Burgess B; Li, Yimei; Kim, Hong Joo; La Spada, Albert R; Taylor, J Paul

    2018-05-01

    Spinal bulbar muscular atrophy (SBMA) is a motor neuron disease caused by toxic gain of function of the androgen receptor (AR). Previously, we found that co-regulator binding through the activation function-2 (AF2) domain of AR is essential for pathogenesis, suggesting that AF2 may be a potential drug target for selective modulation of toxic AR activity. We screened previously identified AF2 modulators for their ability to rescue toxicity in a Drosophila model of SBMA. We identified two compounds, tolfenamic acid (TA) and 1-[2-(4-methylphenoxy)ethyl]-2-[(2-phenoxyethyl)sulfanyl]-1H-benzimidazole (MEPB), as top candidates for rescuing lethality, locomotor function and neuromuscular junction defects in SBMA flies. Pharmacokinetic analyses in mice revealed a more favorable bioavailability and tissue retention of MEPB compared with TA in muscle, brain and spinal cord. In a preclinical trial in a new mouse model of SBMA, MEPB treatment yielded a dose-dependent rescue from loss of body weight, rotarod activity and grip strength. In addition, MEPB ameliorated neuronal loss, neurogenic atrophy and testicular atrophy, validating AF2 modulation as a potent androgen-sparing strategy for SBMA therapy.

  14. Natural and Chemotherapy-Induced Clonal Evolution of Tumors.

    PubMed

    Ibragimova, M K; Tsyganov, M M; Litviakov, N V

    2017-04-01

    Evolution and natural selection of tumoral clones in the process of transformation and the following carcinogenesis can be called natural clonal evolution. Its main driving factors are internal: genetic instability initiated by driver mutations and microenvironment, which enables selective pressure while forming the environment for cell transformation and their survival. We present our overview of contemporary research dealing with mechanisms of carcinogenesis in different localizations from precancerous pathologies to metastasis and relapse. It shows that natural clonal evolution establishes intratumoral heterogeneity and enables tumor progression. Tumors of monoclonal origin are of low-level intratumoral heterogeneity in the initial stages, and this increases with the size of the tumor. Tumors of polyclonal origin are of extremely high-level intratumoral heterogeneity in the initial stages and become more homogeneous when larger due to clonal expansion. In cases of chemotherapy-induced clonal evolution of a tumor, chemotherapy becomes the leading factor in treatment. The latest research shows that the impact of chemotherapy can radically increase the speed of clonal evolution and lead to new malignant and resistant clones that cause tumor metastasis. Another option of chemotherapy-induced clonal evolution is formation of a new dominant clone from a clone that was minor in the initial tumor and obtained free space due to elimination of sensitive clones by chemotherapy. As a result, in ~20% of cases, chemotherapy can stimulate metastasis and relapse of tumors due to clonal evolution. The conclusion of the overview formulates approaches to tumor treatment based on clonal evolution: in particular, precision therapy, prediction of metastasis stimulation in patients treated with chemotherapy, methods of genetic evaluation of chemotherapy efficiency and clonal-oriented treatment, and approaches to manipulating the clonal evolution of tumors are presented.

  15. Clonal evolution in hematologic malignancies and therapeutic implications

    PubMed Central

    Landau, Dan A.; Carter, Scott L.; Getz, Gad; Wu, Catherine J.

    2014-01-01

    The ability of cancer to evolve and adapt is a principal challenge to therapy in general, and to the paradigm of targeted therapy in particular. This ability is fueled by the co-existence of multiple, genetically heterogeneous subpopulations within the cancer cell population. Increasing evidence has supported the idea that these subpopulations are selected in a Darwinian fashion, by which the genetic landscape of the tumor is continuously reshaped. Massively parallel sequencing has enabled a recent surge in our ability to study this process, adding to previous efforts using cytogenetic methods and targeted sequencing. Altogether, these studies reveal the complex evolutionary trajectories occurring across individual hematological malignancies. They also suggest that while clonal evolution may contribute to resistance to therapy, treatment may also hasten the evolutionary process. New insights into this process challenge us to understand the impact of treatment on clonal evolution, and inspire the development of novel prognostic and therapeutic strategies. PMID:23979521

  16. Molecular analysis and distribution of multidrug-resistant Enterococcus faecium isolates belonging to clonal complex 17 in a tertiary care center in Mexico City

    PubMed Central

    2013-01-01

    Background Enterococcus faecium has recently emerged as a multidrug-resistant nosocomial pathogen involved in outbreaks worldwide. A high rate of resistance to different antibiotics has been associated with virulent clonal complex 17 isolates carrying the esp and hyl genes and the purK1 allele. Results Twelve clinical vancomycin-resistant Enterococcus faecium (VREF) isolates were obtained from pediatric patients at the Hospital Infantil de México Federico Gómez (HIMFG). Among these VREF isolates, 58.3% (7/12) were recovered from urine, while 41.7% (5/12) were recovered from the bloodstream. The VREF isolates showed a 100% rate of resistance to ampicillin, amoxicillin-clavulanate, ciprofloxacin, clindamycin, chloramphenicol, streptomycin, gentamicin, rifampicin, erythromycin and teicoplanin. In addition, 16.7% (2/12) of the isolates were resistant to linezolid, and 66.7% (8/12) were resistant to tetracycline and doxycycline. PCR analysis revealed the presence of the vanA gene in all 12 VREF isolates, esp in 83.3% (10/12) of the isolates and hyl in 50% (6/12) of the isolates. Phylogenetic analysis via molecular typing was performed using pulsed-field gel electrophoresis (PFGE) and demonstrated 44% similarity among the VREF isolates. MLST analysis identified four different sequence types (ST412, ST757, ST203 and ST612). Conclusion This study provides the first report of multidrug-resistant VREF isolates belonging to clonal complex 17 from a tertiary care center in Mexico City. Multidrug resistance and genetic determinants of virulence confer advantages among VREF in the colonization of their host. Therefore, the prevention and control of the spread of nosocomial infections caused by VREF is crucial for identifying new emergent subclones that could be challenging to treat in subsequent years. PMID:24330424

  17. Detection of clonal evolution in hematopoietic malignancies by combining comparative genomic hybridization and single nucleotide polymorphism arrays.

    PubMed

    Hartmann, Luise; Stephenson, Christine F; Verkamp, Stephanie R; Johnson, Krystal R; Burnworth, Bettina; Hammock, Kelle; Brodersen, Lisa Eidenschink; de Baca, Monica E; Wells, Denise A; Loken, Michael R; Zehentner, Barbara K

    2014-12-01

    Array comparative genomic hybridization (aCGH) has become a powerful tool for analyzing hematopoietic neoplasms and identifying genome-wide copy number changes in a single assay. aCGH also has superior resolution compared with fluorescence in situ hybridization (FISH) or conventional cytogenetics. Integration of single nucleotide polymorphism (SNP) probes with microarray analysis allows additional identification of acquired uniparental disomy, a copy neutral aberration with known potential to contribute to tumor pathogenesis. However, a limitation of microarray analysis has been the inability to detect clonal heterogeneity in a sample. This study comprised 16 samples (acute myeloid leukemia, myelodysplastic syndrome, chronic lymphocytic leukemia, plasma cell neoplasm) with complex cytogenetic features and evidence of clonal evolution. We used an integrated manual peak reassignment approach combining analysis of aCGH and SNP microarray data for characterization of subclonal abnormalities. We compared array findings with results obtained from conventional cytogenetic and FISH studies. Clonal heterogeneity was detected in 13 of 16 samples by microarray on the basis of log2 values. Use of the manual peak reassignment analysis approach improved resolution of the sample's clonal composition and genetic heterogeneity in 10 of 13 (77%) patients. Moreover, in 3 patients, clonal disease progression was revealed by array analysis that was not evident by cytogenetic or FISH studies. Genetic abnormalities originating from separate clonal subpopulations can be identified and further characterized by combining aCGH and SNP hybridization results from 1 integrated microarray chip by use of the manual peak reassignment technique. Its clinical utility in comparison to conventional cytogenetic or FISH studies is demonstrated. © 2014 American Association for Clinical Chemistry.

  18. “Epidemic Clones” of Listeria monocytogenes Are Widespread and Ancient Clonal Groups

    PubMed Central

    Cantinelli, Thomas; Chenal-Francisque, Viviane; Diancourt, Laure; Frezal, Lise; Leclercq, Alexandre; Wirth, Thierry

    2013-01-01

    The food-borne pathogen Listeria monocytogenes is genetically heterogeneous. Although some clonal groups have been implicated in multiple outbreaks, there is currently no consensus on how “epidemic clones” should be defined. The objectives of this work were to compare the patterns of sequence diversity on two sets of genes that have been widely used to define L. monocytogenes clonal groups: multilocus sequence typing (MLST) and multi-virulence-locus sequence typing (MvLST). Further, we evaluated the diversity within clonal groups by pulsed-field gel electrophoresis (PFGE). Based on 125 isolates of diverse temporal, geographical, and source origins, MLST and MvLST genes (i) had similar patterns of sequence polymorphisms, recombination, and selection, (ii) provided concordant phylogenetic clustering, and (iii) had similar discriminatory power, which was not improved when we combined both data sets. Inclusion of representative strains of previous outbreaks demonstrated the correspondence of epidemic clones with previously recognized MLST clonal complexes. PFGE analysis demonstrated heterogeneity within major clones, most of which were isolated decades before their involvement in outbreaks. We conclude that the “epidemic clone” denominations represent a redundant but largely incomplete nomenclature system for MLST-defined clones, which must be regarded as successful genetic groups that are widely distributed across time and space. PMID:24006010

  19. The Bcr Kinase Downregulates Ras Signaling by Phosphorylating AF-6 and Binding to Its PDZ Domain

    PubMed Central

    Radziwill, G.; Erdmann, R. A.; Margelisch, U.; Moelling, K.

    2003-01-01

    The protein kinase Bcr is a negative regulator of cell proliferation and oncogenic transformation. We identified Bcr as a ligand for the PDZ domain of the cell junction and Ras-interacting protein AF-6. The Bcr kinase phosphorylates AF-6, which subsequently allows efficient binding of Bcr to AF-6, showing that the Bcr kinase is a regulator of the PDZ domain-ligand interaction. Bcr and AF-6 colocalize in epithelial cells at the plasma membrane. In addition, Bcr, AF-6, and Ras form a trimeric complex. Bcr increases the affinity of AF-6 to Ras, and a mutant of AF-6 that lacks a specific phosphorylation site for Bcr shows a reduced binding to Ras. Wild-type Bcr, but not Bcr mutants defective in binding to AF-6, interferes with the Ras-dependent stimulation of the Raf/MEK/ERK pathway. Since AF-6 binds to Bcr via its PDZ domain and to Ras via its Ras-binding domain, we propose that AF-6 functions as a scaffold-like protein that links Bcr and Ras to cellular junctions. We suggest that this trimeric complex is involved in downregulation of Ras-mediated signaling at sites of cell-cell contact to maintain cells in a nonproliferating state. PMID:12808105

  20. The Changing Landscape for Stroke Prevention in AF: Findings From the GLORIA-AF Registry Phase 2.

    PubMed

    Huisman, Menno V; Rothman, Kenneth J; Paquette, Miney; Teutsch, Christine; Diener, Hans-Christoph; Dubner, Sergio J; Halperin, Jonathan L; Ma, Chang Sheng; Zint, Kristina; Elsaesser, Amelie; Bartels, Dorothee B; Lip, Gregory Y H

    2017-02-21

    GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non-vitamin K antagonist oral anticoagulant (NOAC), became available. This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase 1. During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients' baseline characteristics. Atrial fibrillation disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA 2 DS 2 -VASc [Congestive heart failure, Hypertension, Age ≥75 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score ≥2; 86.1%); 13.9% had moderate risk (CHA 2 DS 2 -VASc = 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N = 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and

  1. Multilocus Sequence Typing Analysis of Staphylococcus lugdunensis Implies a Clonal Population Structure

    PubMed Central

    Chassain, Benoît; Lemée, Ludovic; Didi, Jennifer; Thiberge, Jean-Michel; Brisse, Sylvain; Pons, Jean-Louis

    2012-01-01

    Staphylococcus lugdunensis is recognized as one of the major pathogenic species within the genus Staphylococcus, even though it belongs to the coagulase-negative group. A multilocus sequence typing (MLST) scheme was developed to study the genetic relationships and population structure of 87 S. lugdunensis isolates from various clinical and geographic sources by DNA sequence analysis of seven housekeeping genes (aroE, dat, ddl, gmk, ldh, recA, and yqiL). The number of alleles ranged from four (gmk and ldh) to nine (yqiL). Allelic profiles allowed the definition of 20 different sequence types (STs) and five clonal complexes. The 20 STs lacked correlation with geographic source. Isolates recovered from hematogenic infections (blood or osteoarticular isolates) or from skin and soft tissue infections did not cluster in separate lineages. Penicillin-resistant isolates clustered mainly in one clonal complex, unlike glycopeptide-tolerant isolates, which did not constitute a distinct subpopulation within S. lugdunensis. Phylogenies from the sequences of the seven individual housekeeping genes were congruent, indicating a predominantly mutational evolution of these genes. Quantitative analysis of the linkages between alleles from the seven loci revealed a significant linkage disequilibrium, thus confirming a clonal population structure for S. lugdunensis. This first MLST scheme for S. lugdunensis provides a new tool for investigating the macroepidemiology and phylogeny of this unusually virulent coagulase-negative Staphylococcus. PMID:22785196

  2. Aging, clonal hematopoiesis and preleukemia: not just bad luck?

    PubMed

    Shlush, Liran I; Zandi, Sasan; Itzkovitz, Shalev; Schuh, Andre C

    2015-11-01

    Chronological human aging is associated with a number of changes in the hematopoietic system, occurring at many levels from stem to mature cells, and the marrow microenvironment as well. This review will focus mainly on the aging of hematopoietic stem and progenitor cells (HSPCs), and on the associated increases in the incidence of hematological malignancies. HSPCs manifest reduced function and acquire molecular changes with chronological aging. Furthermore, while for many years it has been known that the human hematopoietic system becomes increasingly clonal with chronological aging (clonal hematopoiesis), only in the last few years has it become clear that clonal hematopoiesis may result from the accumulation of preleukemic mutations in HSPCs. Such mutations confer a selective advantage that leads to clonal hematopoiesis, and that may occasionally result in the development of leukemia, and define the existence of both preleukemic stem cells, and of 'preleukemia' as a clinical entity. While it is well appreciated that clonal hematopoiesis is very common in the elderly, several questions remain unanswered: why and how does clonal hematopoiesis develop? How is clonal hematopoiesis related to the age-related changes observed in the hematopoietic system? And why do only some individuals with clonal hematopoiesis develop leukemia?

  3. HIV genetic information and clonal growth

    Cancer.gov

    Based on an analysis of blood cells from five HIV-infected individuals, NCI researchers have identified more than 2,400 HIV DNA insertion sites. Analysis of these sites showed that there is extensive clonal expansion (growth) of HIV infected cells.

  4. Propagule Pressure, Habitat Conditions and Clonal Integration Influence the Establishment and Growth of an Invasive Clonal Plant, Alternanthera philoxeroides.

    PubMed

    You, Wen-Hua; Han, Cui-Min; Fang, Long-Xiang; Du, Dao-Lin

    2016-01-01

    Many notorious invasive plants are clonal, spreading mainly by vegetative propagules. Propagule pressure (the number of propagules) may affect the establishment, growth, and thus invasion success of these clonal plants, and such effects may also depend on habitat conditions. To understand how propagule pressure, habitat conditions and clonal integration affect the establishment and growth of the invasive clonal plants, an 8-week greenhouse with an invasive clonal plant, Alternanthera philoxeroides was conducted. High (five fragments) or low (one fragment) propagule pressure was established either in bare soil (open habitat) or dense native vegetation of Jussiaea repens (vegetative habitat), with the stolon connections either severed from or connected to the relatively older ramets. High propagule pressure greatly increased the establishment and growth of A. philoxeroides, especially when it grew in vegetative habitats. Surprisingly, high propagule pressure significantly reduced the growth of individual plants of A. philoxeroides in open habitats, whereas it did not affect the individual growth in vegetative habitats. A shift in the intraspecific interaction on A. philoxeroides from competition in open habitats to facilitation in vegetative habitats may be the main reason. Moreover, clonal integration significantly improved the growth of A. philoxeroides only in open habitats, especially with low propagule pressure, whereas it had no effects on the growth and competitive ability of A. philoxeroides in vegetative habitats, suggesting that clonal integration may be of most important for A. philoxeroides to explore new open space and spread. These findings suggest that propagule pressure may be crucial for the invasion success of A. philoxeroides, and such an effect also depends on habitat conditions.

  5. Improved clonality detection in Hodgkin lymphoma using a semi-nested modification of the BIOMED-2 PCR assay for IGH and IGK rearrangements: A paraffin-embedded tissue study.

    PubMed

    Han, Shusen; Masaki, Ayako; Sakamoto, Yuma; Takino, Hisashi; Murase, Takayuki; Iida, Shinsuke; Inagaki, Hiroshi

    2018-05-01

    The BIOMED-2 PCR protocols targeting IGH and IGK genes may be useful for detecting clonality in Hodgkin lymphoma (HL). The clonality detection rates, however, have not been very high with these methods using paraffin-embedded tumor sections. We previously described the usefulness of the semi-nested BIOMED-2 IGH assay in B-cell malignancies. In this study, we devised a novel semi-nested BIOMED-2 IGK assay. Employing 58 cases of classical HL, we carried out the standard BIOMED-2, BIOMED-2 followed by BIOMED-2 re-amplification, and BIOMED-2 followed by semi-nested BIOMED-2, all targeting IGH and IGK, using paraffin-embedded tissues. In both IGH and IGK assays, semi-nested assays yielded significantly higher clonality detection rates than the standard assays and re-amplification assays. Clonality was detected in 13/58 (22.4%) classical HL cases using the standard IGH/IGK assays while it was detected in 38/58 (65.5%) cases using semi-nested IGH/IGK assays. The detection rates were not associated with the HL subtypes, CD30-positive cell density, CD20-positive cell density, or Epstein-Barr virus (EBV) positivity. In conclusion, tumor clonality was detected in nearly two-thirds of classical HL cases using semi-nested BIOMED-2 IGH/IGK assays using paraffin tumor sections. These semi-nested assays may be useful when the standard IGH/IGK assays fail to detect clonality in histopathologically suspected HLs. © 2018 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  6. Cancer evolution, mutations, and clonal selection in relapse neuroblastoma.

    PubMed

    Schulte, Marc; Köster, Johannes; Rahmann, Sven; Schramm, Alexander

    2018-05-01

    The notion of cancer as a complex evolutionary system has been validated by in-depth molecular analyses of tumor progression over the last years. While a complex interplay of cell-autonomous programs and cell-cell interactions determines proliferation and differentiation during normal development, intrinsic and acquired plasticity of cancer cells allow for evasion of growth factor limitations, apoptotic signals, or attacks from the immune system. Treatment-induced molecular selection processes have been described by a number of studies already, but understanding of those events facilitating metastatic spread, organ-specific homing, and resistance to anoikis is still in its early days. In principle, somatic events giving rise to cancer progression should be easier to follow in childhood tumors bearing fewer mutations and genomic aberrations than their counterparts in adulthood. We have previously reported on the genetic events accompanying relapsing neuroblastoma, a solid tumor of early childhood. Our results indicated significantly higher single nucleotide variants in relapse tumors, gave hints for branched tumor evolution upon treatment and clonal selection as deduced from shifts in allelic frequencies between primary and relapsing neuroblastoma. Here, we will review these findings and give an outlook on dealing with intratumoral heterogeneity and sub-clonal diversity in neuroblastoma for future targeted treatments.

  7. Recent advances in understanding clonal haematopoiesis in aplastic anaemia

    PubMed Central

    Stanley, Natasha; Olson, Timothy S.; Babushok, Daria V.

    2016-01-01

    Summary Acquired aplastic anaemia (AA) is an immune-mediated bone marrow failure disorder inextricably linked to clonal haematopoiesis. The majority of AA patients have somatic mutations and/or structural chromosomal abnormalities detected as early as at diagnosis. In contrast to other conditions linked to clonal haematopoiesis, the clonal signature of AA reflects its immune pathophysiology. The most common alterations are clonal expansions of cells lacking glycophosphotidylinositol-anchored proteins, loss of human leucocyte antigen alleles, and mutations in BCOR/BCORL1, ASXL1 and DNMT3A. Here, we present the current knowledge of clonal haematopoiesis in AA as it relates to aging, inherited bone marrow failure, and the grey-zone overlap of AA and myelodysplastic syndrome (MDS). We conclude by discussing the significance of clonal haematopoiesis both for improved diagnosis of AA, as well as for a more precise, personalized approach to prognostication of outcomes and therapy choices. PMID:28107566

  8. Biodegradation of BOD and ammonia-free using bacterial consortium in aerated fixed film bioreactor (AF2B)

    NASA Astrophysics Data System (ADS)

    Prayitno, Rulianah, Sri; Saroso, Hadi; Meilany, Diah

    2017-06-01

    BOD and Ammonia-free (NH3-N) are pollutants of hospital wastewater which often exceed the quality standards. It is because biological processes in wastewater treatment plant (WWTP) have not been effective in degrading BOD and NH3-N. Therefore, a study on factors that influence the biodegradation of BOD and NH3-N by choosing the type of bacteria to improve the mechanisms of biodegradation processes is required. Bacterial consortium is a collection of several types of bacteria obtained from isolation process, which is known to be more effective than a single bacterial in degrading pollutants. On the other hand, AF2B is a type of reactor in wastewater treatment system. The AF2B contains a filter media that has a large surface area so that the biodegradation process of pollutants by microorganism can be improved. The objective of this research is to determine the effect of volume of starter and air supplies on decreasing BOD and NH3-N in hospital wastewater using bacterial consortium in the AF2B on batch process. The research was conducted in three stages: the making of the growth curve of the bacterial consortium, bacterial consortium acclimatization, and hospital wastewater treatment in the AF2B with batch process. The variables used are the volume of starter (65%, 75%, and 85% in volume) and air supplies (2.5, 5, and 7.5 L/min). Meanwhile, the materials used are hospital wastewater, bacterial consortium (Pseudomonas diminuta, Pseudomonas capica, Bacillius sp, and Nitrobacter sp), blower, and AF2B. AF2B is a plastic basin containing a filter media with a wasp-nest shape used as a medium for growing the bacterial consortium. In the process of making the growth curve, a solid form of bacterial consortium was dissolved in sterilized water, then grown in a nutrient broth (NB). Then, shaking and sampling were done at any time to determine the path growth of bacterial consortium. In the acclimatization process, bacterial isolates were grown using hospital wastewater as a

  9. Advances for Studying Clonal Evolution in Cancer

    PubMed Central

    Raphael, Benjamin J.; Chen, Feng; Wendl, Michael C.

    2013-01-01

    The “clonal evolution” model of cancer emerged and “evolved” amid ongoing advances in technology, especially in recent years during which next generation sequencing instruments have provided ever higher resolution pictures of the genetic changes in cancer cells and heterogeneity in tumors. It has become increasingly clear that clonal evolution is not a single sequential process, but instead frequently involves simultaneous evolution of multiple subclones that co-exist because they are of similar fitness or are spatially separated. Co-evolution of subclones also occurs when they complement each other’s survival advantages. Recent studies have also shown that clonal evolution is highly heterogeneous: different individual tumors of the same type may undergo very different paths of clonal evolution. New methodological advancements, including deep digital sequencing of a mixed tumor population, single cell sequencing, and the development of more sophisticated computational tools, will continue to shape and reshape the models of clonal evolution. In turn, these will provide both an improved framework for the understanding of cancer progression and a guide for treatment strategies aimed at the elimination of all, rather than just some, of the cancer cells within a patient. PMID:23353056

  10. Advances for studying clonal evolution in cancer.

    PubMed

    Ding, Li; Raphael, Benjamin J; Chen, Feng; Wendl, Michael C

    2013-11-01

    The "clonal evolution" model of cancer emerged and "evolved" amid ongoing advances in technology, especially in recent years during which next generation sequencing instruments have provided ever higher resolution pictures of the genetic changes in cancer cells and heterogeneity in tumors. It has become increasingly clear that clonal evolution is not a single sequential process, but instead frequently involves simultaneous evolution of multiple subclones that co-exist because they are of similar fitness or are spatially separated. Co-evolution of subclones also occurs when they complement each other's survival advantages. Recent studies have also shown that clonal evolution is highly heterogeneous: different individual tumors of the same type may undergo very different paths of clonal evolution. New methodological advancements, including deep digital sequencing of a mixed tumor population, single cell sequencing, and the development of more sophisticated computational tools, will continue to shape and reshape the models of clonal evolution. In turn, these will provide both an improved framework for the understanding of cancer progression and a guide for treatment strategies aimed at the elimination of all, rather than just some, of the cancer cells within a patient. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. The clonal and mutational evolution spectrum of primary triple-negative breast cancers.

    PubMed

    Shah, Sohrab P; Roth, Andrew; Goya, Rodrigo; Oloumi, Arusha; Ha, Gavin; Zhao, Yongjun; Turashvili, Gulisa; Ding, Jiarui; Tse, Kane; Haffari, Gholamreza; Bashashati, Ali; Prentice, Leah M; Khattra, Jaswinder; Burleigh, Angela; Yap, Damian; Bernard, Virginie; McPherson, Andrew; Shumansky, Karey; Crisan, Anamaria; Giuliany, Ryan; Heravi-Moussavi, Alireza; Rosner, Jamie; Lai, Daniel; Birol, Inanc; Varhol, Richard; Tam, Angela; Dhalla, Noreen; Zeng, Thomas; Ma, Kevin; Chan, Simon K; Griffith, Malachi; Moradian, Annie; Cheng, S-W Grace; Morin, Gregg B; Watson, Peter; Gelmon, Karen; Chia, Stephen; Chin, Suet-Feung; Curtis, Christina; Rueda, Oscar M; Pharoah, Paul D; Damaraju, Sambasivarao; Mackey, John; Hoon, Kelly; Harkins, Timothy; Tadigotla, Vasisht; Sigaroudinia, Mahvash; Gascard, Philippe; Tlsty, Thea; Costello, Joseph F; Meyer, Irmtraud M; Eaves, Connie J; Wasserman, Wyeth W; Jones, Steven; Huntsman, David; Hirst, Martin; Caldas, Carlos; Marra, Marco A; Aparicio, Samuel

    2012-04-04

    Primary triple-negative breast cancers (TNBCs), a tumour type defined by lack of oestrogen receptor, progesterone receptor and ERBB2 gene amplification, represent approximately 16% of all breast cancers. Here we show in 104 TNBC cases that at the time of diagnosis these cancers exhibit a wide and continuous spectrum of genomic evolution, with some having only a handful of coding somatic aberrations in a few pathways, whereas others contain hundreds of coding somatic mutations. High-throughput RNA sequencing (RNA-seq) revealed that only approximately 36% of mutations are expressed. Using deep re-sequencing measurements of allelic abundance for 2,414 somatic mutations, we determine for the first time-to our knowledge-in an epithelial tumour subtype, the relative abundance of clonal frequencies among cases representative of the population. We show that TNBCs vary widely in their clonal frequencies at the time of diagnosis, with the basal subtype of TNBC showing more variation than non-basal TNBC. Although p53 (also known as TP53), PIK3CA and PTEN somatic mutations seem to be clonally dominant compared to other genes, in some tumours their clonal frequencies are incompatible with founder status. Mutations in cytoskeletal, cell shape and motility proteins occurred at lower clonal frequencies, suggesting that they occurred later during tumour progression. Taken together, our results show that understanding the biology and therapeutic responses of patients with TNBC will require the determination of individual tumour clonal genotypes.

  12. Recent advances in understanding clonal haematopoiesis in aplastic anaemia.

    PubMed

    Stanley, Natasha; Olson, Timothy S; Babushok, Daria V

    2017-05-01

    Acquired aplastic anaemia (AA) is an immune-mediated bone marrow failure disorder inextricably linked to clonal haematopoiesis. The majority of AA patients have somatic mutations and/or structural chromosomal abnormalities detected as early as at diagnosis. In contrast to other conditions linked to clonal haematopoiesis, the clonal signature of AA reflects its immune pathophysiology. The most common alterations are clonal expansions of cells lacking glycophosphotidylinositol-anchored proteins, loss of human leucocyte antigen alleles, and mutations in BCOR/BCORL1, ASXL1 and DNMT3A. Here, we present the current knowledge of clonal haematopoiesis in AA as it relates to aging, inherited bone marrow failure, and the grey-zone overlap of AA and myelodysplastic syndrome (MDS). We conclude by discussing the significance of clonal haematopoiesis both for improved diagnosis of AA, as well as for a more precise, personalized approach to prognostication of outcomes and therapy choices. © 2017 John Wiley & Sons Ltd.

  13. Clonal origins and parallel evolution of regionally synchronous colorectal adenoma and carcinoma.

    PubMed

    Kim, Tae-Min; An, Chang Hyeok; Rhee, Je-Keun; Jung, Seung-Hyun; Lee, Sung Hak; Baek, In-Pyo; Kim, Min Sung; Lee, Sug Hyung; Chung, Yeun-Jun

    2015-09-29

    Although the colorectal adenoma-to-carcinoma sequence represents a classical cancer progression model, the evolution of the mutational landscape underlying this model is not fully understood. In this study, we analyzed eight synchronous pairs of colorectal high-grade adenomas and carcinomas, four microsatellite-unstable (MSU) and four-stable (MSS) pairs, using whole-exome sequencing. In the MSU adenoma-carcinoma pairs, we observed no subclonal mutations in adenomas that became fixed in paired carcinomas, suggesting a 'parallel' evolution of synchronous adenoma-to-carcinoma, rather than a 'stepwise' evolution. The abundance of indel (in MSU and MSS pairs) and microsatellite instability (in MSU pairs) was noted in the later adenoma- or carcinoma-specific mutations, indicating that the mutational processes and functional constraints operative in early and late colorectal carcinogenesis are different. All MSU cases exhibited clonal, truncating mutations in ACVR2A, TGFBR2, and DNA mismatch repair genes, but none were present in APC or KRAS. In three MSS pairs, both APC and KRAS mutations were identified as both early and clonal events, often accompanying clonal copy number changes. An MSS case uniquely exhibited clonal ERBB2 amplification, followed by APC and TP53 mutations as carcinoma-specific events. Along with the previously unrecognized clonal origins of synchronous colorectal adenoma-carcinoma pairs, our study revealed that the preferred sequence of mutational events during colorectal carcinogenesis can be context-dependent.

  14. Kin Recognition in a Clonal Fish, Poecilia formosa

    PubMed Central

    Makowicz, Amber M.; Tiedemann, Ralph; Schlupp, Ingo

    2016-01-01

    Relatedness strongly influences social behaviors in a wide variety of species. For most species, the highest typical degree of relatedness is between full siblings with 50% shared genes. However, this is poorly understood in species with unusually high relatedness between individuals: clonal organisms. Although there has been some investigation into clonal invertebrates and yeast, nothing is known about kin selection in clonal vertebrates. We show that a clonal fish, the Amazon molly (Poecilia formosa), can distinguish between different clonal lineages, associating with genetically identical, sister clones, and use multiple sensory modalities. Also, they scale their aggressive behaviors according to the relatedness to other females: they are more aggressive to non-related clones. Our results demonstrate that even in species with very small genetic differences between individuals, kin recognition can be adaptive. Their discriminatory abilities and regulation of costly behaviors provides a powerful example of natural selection in species with limited genetic diversity. PMID:27483372

  15. Insights in Anaphylaxis and Clonal Mast Cell Disorders.

    PubMed

    González-de-Olano, David; Álvarez-Twose, Iván

    2017-01-01

    The prevalence of anaphylaxis among patients with clonal mast cell disorders (MCD) is clearly higher comparing to the general population. Due to a lower frequency of symptoms outside of acute episodes, clonal MCD in the absence of skin lesions might sometimes be difficult to identify which may lead to underdiagnosis, and anaphylaxis is commonly the presenting symptom in these patients. Although the release of mast cell (MC) mediators upon MC activation might present with a wide variety of symptoms, particular clinical features typically characterize MC mediator release episodes in patients with clonal MCD without skin involvement. Final diagnosis requires a bone marrow study, and it is recommended that this should be done in reference centers. In this article, we address the main triggers for anaphylaxis, risk factors, clinical presentation, diagnosis, and management of patients with MC activation syndromes (MCASs), with special emphasis on clonal MCAS [systemic mastocytosis and mono(clonal) MC activations syndromes].

  16. Insights in Anaphylaxis and Clonal Mast Cell Disorders

    PubMed Central

    González-de-Olano, David; Álvarez-Twose, Iván

    2017-01-01

    The prevalence of anaphylaxis among patients with clonal mast cell disorders (MCD) is clearly higher comparing to the general population. Due to a lower frequency of symptoms outside of acute episodes, clonal MCD in the absence of skin lesions might sometimes be difficult to identify which may lead to underdiagnosis, and anaphylaxis is commonly the presenting symptom in these patients. Although the release of mast cell (MC) mediators upon MC activation might present with a wide variety of symptoms, particular clinical features typically characterize MC mediator release episodes in patients with clonal MCD without skin involvement. Final diagnosis requires a bone marrow study, and it is recommended that this should be done in reference centers. In this article, we address the main triggers for anaphylaxis, risk factors, clinical presentation, diagnosis, and management of patients with MC activation syndromes (MCASs), with special emphasis on clonal MCAS [systemic mastocytosis and mono(clonal) MC activations syndromes]. PMID:28740494

  17. Draft Genome Sequence of Komagataeibacter intermedius Strain AF2, a Producer of Cellulose, Isolated from Kombucha Tea

    PubMed Central

    dos Santos, Renato Augusto Corrêa; Berretta, Andresa Aparecida; Barud, Hernane da Silva; Ribeiro, Sidney José Lima; González-García, Laura Natalia; Zucchi, Tiago Domingues

    2015-01-01

    Here, we present the draft genome sequence of Komagataeibacter intermedius strain AF2, which was isolated from Kombucha tea and is capable of producing cellulose, although at lower levels compared to another bacterium from the same environment, K. rhaeticus strain AF1. PMID:26634755

  18. Methicillin-susceptible Staphylococcus aureus endocarditis isolates are associated with clonal complex 30 genotype and a distinct repertoire of enterotoxins and adhesins.

    PubMed

    Nienaber, Juhsien J C; Sharma Kuinkel, Batu K; Clarke-Pearson, Michael; Lamlertthon, Supaporn; Park, Lawrence; Rude, Thomas H; Barriere, Steve; Woods, Christopher W; Chu, Vivian H; Marín, Mercedes; Bukovski, Suzana; Garcia, Patricia; Corey, G Ralph; Korman, Tony; Doco-Lecompte, Thanh; Murdoch, David R; Reller, L Barth; Fowler, Vance G

    2011-09-01

    Using multinational collections of methicillin-susceptible Staphylococcus aureus (MSSA) isolates from infective endocarditis (IE) and soft tissue infections (STIs), we sought to (1) validate the finding that S. aureus in clonal complex (CC) 30 is associated with hematogenous complications and (2) test the hypothesis that specific genetic characteristics in S. aureus are associated with infection severity. IE and STI isolates from 2 cohorts were frequency matched by geographic origin. Isolates underwent spa typing to infer CC and multiplex polymerase chain reaction for presence of virulence genes. 114 isolate pairs were genotyped. IE isolates were more likely to be CC30 (19.5% vs 6.2%; P = .005) and to contain 3 adhesins (clfB, cna, map/eap; P < .0001 for all) and 5 enterotoxins (tst, sea, sed, see, and sei; P ≤ .005 for all). CC30 isolates were more likely to contain cna, tst, sea, see, seg, and chp (P < .05 for all). MSSA IE isolates were significantly more likely to be CC30 and to possess a distinct repertoire of virulence genes than MSSA STI isolates from the same region. The genetic basis of this association requires further study.

  19. Clonal Evolution of Chemotherapy-resistant Urothelial Carcinoma

    PubMed Central

    Faltas, Bishoy M.; Prandi, Davide; Tagawa, Scott T.; Molina, Ana M.; Nanus, David M.; Sternberg, Cora; Rosenberg, Jonathan; Mosquera, Juan Miguel; Robinson, Brian; Elemento, Olivier; Sboner, Andrea; Beltran, Himisha; Demichelis, Francesca; Rubin, Mark A.

    2017-01-01

    Chemotherapy-resistant urothelial carcinoma (UC) has no uniformly curative therapy. Understanding how selective pressure from chemotherapy directs UC’s evolution and shapes its clonal architecture is a central biological question with clinical implications. To address this question, we performed whole-exome sequencing and clonality analysis of 72 UCs including 16 matched sets of primary and advanced tumors prospectively collected before and after chemotherapy. Our analysis provided several insights: (i) chemotherapy-treated UC is characterized by intra-patient mutational heterogeneity and the majority of mutations are not shared, (ii) both branching evolution and metastatic spread are very early events in the natural history of UC; (iii) chemotherapy-treated UC is enriched with clonal mutations involving L1-cell adhesion molecule (L1CAM) and integrin signaling pathways; (iv) APOBEC induced-mutagenesis is clonally-enriched in chemotherapy-treated UC and continues to shape UC’s evolution throughout its lifetime. PMID:27749842

  20. A role of NF-E2 in chronic inflammation and clonal evolution in essential thrombocythemia, polycythemia vera and myelofibrosis?

    PubMed

    Hasselbalch, Hans C

    2014-02-01

    A novel murine model for myeloproliferative neoplasms (MPNs) generated by overexpression of the transcription factor NF-E2 has recently been described. Sustained overexpression of NF-E2 in this model induced myeloid expansion with anemia, leukocytosis and thrombocytosis. Herein, it is debated if NF-E2 overexpression also might have induced a sustained state of in vivo leukocyte and platelet activation with chronic and self-perpetuating production of inflammatory products from activated leukocytes and platelets. If so, this novel murine model also may excellently describe the deleterious impact of sustained chronic NF-E2 overexpression during uncontrolled chronic inflammation upon the hematopoietic system--the development of clonal myeloproliferation. Accordingly, this novel murine model may also have delivered the proof of concept of chronic inflammation as a trigger and driver of clonal evolution in MPNs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Streptococcus mutans clonal variation revealed by multilocus sequence typing.

    PubMed

    Nakano, Kazuhiko; Lapirattanakul, Jinthana; Nomura, Ryota; Nemoto, Hirotoshi; Alaluusua, Satu; Grönroos, Lisa; Vaara, Martti; Hamada, Shigeyuki; Ooshima, Takashi; Nakagawa, Ichiro

    2007-08-01

    Streptococcus mutans is the major pathogen of dental caries, a biofilm-dependent infectious disease, and occasionally causes infective endocarditis. S. mutans strains have been classified into four serotypes (c, e, f, and k). However, little is known about the S. mutans population, including the clonal relationships among strains of S. mutans, in relation to the particular clones that cause systemic diseases. To address this issue, we have developed a multilocus sequence typing (MLST) scheme for S. mutans. Eight housekeeping gene fragments were sequenced from each of 102 S. mutans isolates collected from the four serotypes in Japan and Finland. Between 14 and 23 alleles per locus were identified, allowing us theoretically to distinguish more than 1.2 x 10(10) sequence types. We identified 92 sequence types in these 102 isolates, indicating that S. mutans contains a diverse population. Whereas serotype c strains were widely distributed in the dendrogram, serotype e, f, and k strains were differentiated into clonal complexes. Therefore, we conclude that the ancestral strain of S. mutans was serotype c. No geographic specificity was identified. However, the distribution of the collagen-binding protein gene (cnm) and direct evidence of mother-to-child transmission were clearly evident. In conclusion, the superior discriminatory capacity of this MLST scheme for S. mutans may have important practical implications.

  2. Clonal evolution of chemotherapy-resistant urothelial carcinoma.

    PubMed

    Faltas, Bishoy M; Prandi, Davide; Tagawa, Scott T; Molina, Ana M; Nanus, David M; Sternberg, Cora; Rosenberg, Jonathan; Mosquera, Juan Miguel; Robinson, Brian; Elemento, Olivier; Sboner, Andrea; Beltran, Himisha; Demichelis, Francesca; Rubin, Mark A

    2016-12-01

    Chemotherapy-resistant urothelial carcinoma has no uniformly curative therapy. Understanding how selective pressure from chemotherapy directs the evolution of urothelial carcinoma and shapes its clonal architecture is a central biological question with clinical implications. To address this question, we performed whole-exome sequencing and clonality analysis of 72 urothelial carcinoma samples, including 16 matched sets of primary and advanced tumors prospectively collected before and after chemotherapy. Our analysis provided several insights: (i) chemotherapy-treated urothelial carcinoma is characterized by intra-patient mutational heterogeneity, and the majority of mutations are not shared; (ii) both branching evolution and metastatic spread are very early events in the natural history of urothelial carcinoma; (iii) chemotherapy-treated urothelial carcinoma is enriched with clonal mutations involving L1 cell adhesion molecule (L1CAM) and integrin signaling pathways; and (iv) APOBEC-induced mutagenesis is clonally enriched in chemotherapy-treated urothelial carcinoma and continues to shape the evolution of urothelial carcinoma throughout its lifetime.

  3. CLONAL MEMORY

    PubMed Central

    McMichael, A. J.; Williamson, A. R.

    1974-01-01

    A single clone of B cells producing anti-DNP antibody recognizable by the isoelectric-focusing spectrum has been used, in a double transfer system, to study clonal memory. Trasnsferable B memory develops between 4 and 7 days after the first transfer with antigen. B-memory cells thus proliferate before or concomitantly with antibody-forming cells. PMID:4545165

  4. Draft Genome Sequence of Komagataeibacter intermedius Strain AF2, a Producer of Cellulose, Isolated from Kombucha Tea.

    PubMed

    Dos Santos, Renato Augusto Corrêa; Berretta, Andresa Aparecida; Barud, Hernane da Silva; Ribeiro, Sidney José Lima; González-García, Laura Natalia; Zucchi, Tiago Domingues; Goldman, Gustavo H; Riaño-Pachón, Diego M

    2015-12-03

    Here, we present the draft genome sequence of Komagataeibacter intermedius strain AF2, which was isolated from Kombucha tea and is capable of producing cellulose, although at lower levels compared to another bacterium from the same environment, K. rhaeticus strain AF1. Copyright © 2015 dos Santos et al.

  5. Management of atrial fibrillation in Greece: the MANAGE-AF study.

    PubMed

    Andrikopoulos, George; Pastromas, Sokratis; Mantas, Ioannis; Sakellariou, Dimitris; Kyrpizidis, Christos; Makridis, Pantelis; Goumas, Georgios; Stakos, Dimitris; Gotsis, Alexandros; Kartalis, Athanasios; Kazianis, Georgios; Babalis, Dimitrios; Toli, Konstantina; Tzeis, Stylianos; Papavasileiou, Maria; Kalogeropoulos, Petros; Vardas, Panos

    2014-01-01

    Although atrial fibrillation (AF) is a highly prevalent health problem with high morbidity and mortality, data regarding the clinical characteristics and management of AF in the Greek population are scarce. The "Current Clinical Practice in the MANAGEment of Atrial Fibrillation in Greece" study (MANAGEAF) aimed to assess the epidemiological features as well as the daily clinical practice in the management of Greek patients with AF. Taking into consideration the distribution of the Greek population, 603 consecutive patients over 18 years of age, with any type of AF, presenting at the emergency departments or outpatient clinics of 27 different centers, were included in our study. The mean age of the patients was 68.5 ± 12.1 years, with male patients representing 52.5% of the study population. The most common AF type in our cohort was non-paroxysmal AF (60%), including the patients with permanent (24.1%), persistent (17.4%), long-standing (4.8%) and first diagnosed AF (13.8%). Hypertension was the most common comorbidity (70.3%). A history of stroke or transient ischemic attack was detected in 9.2% of the patients, while 6.2% had a history of gastrointestinal bleeding. About half of the patients (49.3%) were treated with anticoagulant drugs, mainly vitamin K antagonists (46.9%), while 34.2% were on antiplatelet drugs, aspirin and/or clopidogrel. The mean INR level (1.7 ± 0.8) was sub-therapeutic, although the mean values for CHADS2 and CHA2DS2-VASc scores were 1.6 ± 1.2 and 3.0 ± 1.7, respectively. The MANAGE-AF baseline results indicate unsatisfactory levels of compliance with the current guidelines for the management of AF in Greece. Considering the undisputed effectiveness of anticoagulant treatment for preventing AF-related strokes, MANAGE-AF demonstrates the need for optimization of our therapeutic strategies for the management of cardioembolic stroke risk.

  6. The estrogen receptor antagonist ICI 182,780 can act both as an agonist and an inverse agonist when estrogen receptor α AF-2 is modified.

    PubMed

    Movérare-Skrtic, Sofia; Börjesson, Anna E; Farman, Helen H; Sjögren, Klara; Windahl, Sara H; Lagerquist, Marie K; Andersson, Annica; Stubelius, Alexandra; Carlsten, Hans; Gustafsson, Jan-Åke; Ohlsson, Claes

    2014-01-21

    The bone-sparing effect of estrogen is primarily mediated via estrogen receptor (ER) α, which stimulates target gene transcription through two activation functions (AFs), AF-1 in the N-terminal and AF-2 in the ligand-binding domain. It was recently demonstrated that the ER antagonist ICI 182,780 (ICI) acts as an ER agonist in uterus of mice with mutations in the ERα AF-2. To evaluate the estrogen-like effects of ICI in different tissues, ovariectomized wild-type mice and mice with mutations in the ERα AF-2 (ERαAF-2(0)) were treated with ICI, estradiol, or vehicle for 3 wk. Estradiol increased the trabecular and cortical bone mass as well as the uterine weight, whereas it reduced fat mass, thymus weight, and the growth plate height in wild-type but not in ERαAF-2(0) mice. Although ICI had no effect in wild-type mice, it exerted tissue-specific effects in ERαAF-2(0) mice. It acted as an ERα agonist on trabecular bone mass and uterine weight, whereas no effect was seen on cortical bone mass, fat mass, or thymus weight. Surprisingly, a pronounced inverse agonistic activity was seen on the growth plate height, resulting in enhanced longitudinal bone growth. In conclusion, ICI uses ERα AF-1 in a tissue-dependent manner in mice lacking ERαAF-2, resulting in no effect, agonistic activity, or inverse agonistic activity. We propose that ERα lacking AF-2 is constitutively active in the absence of ligand in the growth plate, enabling ICI to act as an inverse agonist.

  7. Clonal propagation of eucalyptus in Brazilian nurseries

    Treesearch

    Ken McNabb; Natal Goncalves; Jose Goncalves

    2002-01-01

    Brazil has established extensive Eucalyptus plantations to support a growing forest products industry. During the past 25 years, the country has been a pioneer in developing clonal propagation systems to regenerate these highly productive plantations. Original clonal selections optimized disease resistance, coppicing ability, and volume growth, while recent priorities...

  8. Clonality: an R package for testing clonal relatedness of two tumors from the same patient based on their genomic profiles.

    PubMed

    Ostrovnaya, Irina; Seshan, Venkatraman E; Olshen, Adam B; Begg, Colin B

    2011-06-15

    If a cancer patient develops multiple tumors, it is sometimes impossible to determine whether these tumors are independent or clonal based solely on pathological characteristics. Investigators have studied how to improve this diagnostic challenge by comparing the presence of loss of heterozygosity (LOH) at selected genetic locations of tumor samples, or by comparing genomewide copy number array profiles. We have previously developed statistical methodology to compare such genomic profiles for an evidence of clonality. We assembled the software for these tests in a new R package called 'Clonality'. For LOH profiles, the package contains significance tests. The analysis of copy number profiles includes a likelihood ratio statistic and reference distribution, as well as an option to produce various plots that summarize the results. Bioconductor (http://bioconductor.org/packages/release/bioc/html/Clonality.html) and http://www.mskcc.org/mskcc/html/13287.cfm.

  9. U2 small nuclear ribonucleoprotein particle (snRNP) auxiliary factor of 65 kDa, U2AF65, can promote U1 snRNP recruitment to 5' splice sites.

    PubMed Central

    Förch, Patrik; Merendino, Livia; Martínez, Concepción; Valcárcel, Juan

    2003-01-01

    The splicing factor U2AF(65), U2 small nuclear ribonucleoprotein particle (snRNP) auxillary factor of 65 kDa, binds to pyrimidine-rich sequences at 3' splice sites to recruit U2 snRNP to pre-mRNAs. We report that U2AF(65) can also promote the recruitment of U1 snRNP to weak 5' splice sites that are followed by uridine-rich sequences. The arginine- and serine-rich domain of U2AF(65) is critical for U1 recruitment, and we discuss the role of its RNA-RNA annealing activity in this novel function of U2AF(65). PMID:12558503

  10. Virulence, sporulation, and elicitin production in three clonal lineages of Phytophthora ramorum

    Treesearch

    Daniel Manter; Everett Hansen; Jennifer. Parke

    2010-01-01

    Phytophthora ramorum populations are clonal and consist of three clonal lineages: EU1 is the only lineage found in Europe with a few isolated nursery infections in the USA; NA1 is associated with natural infestations in California and Oregon as well as some nursery infections in North America, and NA2 has a limited distribution and has only...

  11. Ruminant Rhombencephalitis-Associated Listeria monocytogenes Alleles Linked to a Multilocus Variable-Number Tandem-Repeat Analysis Complex ▿ †

    PubMed Central

    Balandyté, Lina; Brodard, Isabelle; Frey, Joachim; Oevermann, Anna; Abril, Carlos

    2011-01-01

    Listeria monocytogenes is among the most important food-borne pathogens and is well adapted to persist in the environment. To gain insight into the genetic relatedness and potential virulence of L. monocytogenes strains causing central nervous system (CNS) infections, we used multilocus variable-number tandem-repeat analysis (MLVA) to subtype 183 L. monocytogenes isolates, most from ruminant rhombencephalitis and some from human patients, food, and the environment. Allelic-profile-based comparisons grouped L. monocytogenes strains mainly into three clonal complexes and linked single-locus variants (SLVs). Clonal complex A essentially consisted of isolates from human and ruminant brain samples. All but one rhombencephalitis isolate from cattle were located in clonal complex A. In contrast, food and environmental isolates mainly clustered into clonal complex C, and none was classified as clonal complex A. Isolates of the two main clonal complexes (A and C) obtained by MLVA were analyzed by PCR for the presence of 11 virulence-associated genes (prfA, actA, inlA, inlB, inlC, inlD, inlE, inlF, inlG, inlJ, and inlC2H). Virulence gene analysis revealed significant differences in the actA, inlF, inlG, and inlJ allelic profiles between clinical isolates (complex A) and nonclinical isolates (complex C). The association of particular alleles of actA, inlF, and newly described alleles of inlJ with isolates from CNS infections (particularly rhombencephalitis) suggests that these virulence genes participate in neurovirulence of L. monocytogenes. The overall absence of inlG in clinical complex A and its presence in complex C isolates suggests that the InlG protein is more relevant for the survival of L. monocytogenes in the environment. PMID:21984240

  12. Age-related mutations associated with clonal hematopoietic expansion and malignancies.

    PubMed

    Xie, Mingchao; Lu, Charles; Wang, Jiayin; McLellan, Michael D; Johnson, Kimberly J; Wendl, Michael C; McMichael, Joshua F; Schmidt, Heather K; Yellapantula, Venkata; Miller, Christopher A; Ozenberger, Bradley A; Welch, John S; Link, Daniel C; Walter, Matthew J; Mardis, Elaine R; Dipersio, John F; Chen, Feng; Wilson, Richard K; Ley, Timothy J; Ding, Li

    2014-12-01

    Several genetic alterations characteristic of leukemia and lymphoma have been detected in the blood of individuals without apparent hematological malignancies. The Cancer Genome Atlas (TCGA) provides a unique resource for comprehensive discovery of mutations and genes in blood that may contribute to the clonal expansion of hematopoietic stem/progenitor cells. Here, we analyzed blood-derived sequence data from 2,728 individuals from TCGA and discovered 77 blood-specific mutations in cancer-associated genes, the majority being associated with advanced age. Remarkably, 83% of these mutations were from 19 leukemia and/or lymphoma-associated genes, and nine were recurrently mutated (DNMT3A, TET2, JAK2, ASXL1, TP53, GNAS, PPM1D, BCORL1 and SF3B1). We identified 14 additional mutations in a very small fraction of blood cells, possibly representing the earliest stages of clonal expansion in hematopoietic stem cells. Comparison of these findings to mutations in hematological malignancies identified several recurrently mutated genes that may be disease initiators. Our analyses show that the blood cells of more than 2% of individuals (5-6% of people older than 70 years) contain mutations that may represent premalignant events that cause clonal hematopoietic expansion.

  13. Hospital clonal dissemination of Enterobacter aerogenes producing carbapenemase KPC-2 in a Chinese teaching hospital.

    PubMed

    Qin, Xiaohua; Yang, Yang; Hu, Fupin; Zhu, Demei

    2014-02-01

    Carbapenems are first-line agents for the treatment of serious nosocomial infections caused by multidrug-resistant Enterobacteriaceae. However, resistance to carbapenems has increased dramatically among Enterobacteriaceae in our hospital. In this study, we report clonal dissemination caused by carbapenem-resistant Enterobacter aerogenes (CREA). In 2011, CREA was identified from 12 patients admitted to the neurosurgical ward. All 12 clinical isolates were non-susceptible to cefotaxime, ceftazidime, cefoxitin, ertapenem, imipenem or meropenem. All isolates carried the gene encoding Klebsiella pneumoniae carbapenemase-2 (KPC-2), except for the isolate E4. However, a remarkably lower expression level of the porin OmpF was detected in the non-KPC-2-producing isolate E4 on SDS-PAGE compared with the carbapenem-susceptible isolate. Epidemiological and molecular investigations showed that a single E. aerogenes strain (PFGE type A), including seven KPC-2-producing clinical isolates, was primarily responsible for the first isolation and subsequent dissemination. In a case-control study, we identified risk factors for infection/colonization with CREA. Mechanical ventilation, the changing of sickbeds and previous use of broad-spectrum antibiotics were identified as potential risk factors. Our findings suggest that further studies should focus on judicious use of available antibiotics, implementation of active antibiotic resistance surveillance and strict implementation of infection-control measures to avoid the rapid spread or clonal dissemination caused by carbapenem-resistant Enterobacteriaceae in healthcare facilities.

  14. Rationale and design of the Atrial Fibrillation health Literacy Information Technology Trial: (AF-LITT).

    PubMed

    Guhl, Emily N; Schlusser, Courtney L; Henault, Lori E; Bickmore, Timothy W; Kimani, Everlyne; Paasche-Orlow, Michael K; Magnani, Jared W

    2017-11-01

    Atrial Fibrillation (AF) is a common cardiac arrhythmia that is challenging for patients and adversely impacts health-related quality of life (HRQoL). Long-term management of AF requires that patients adhere to complex therapies, understand difficult terminology, navigate subspecialty care, and have continued symptom monitoring with the goal of preventing adverse outcomes. Continued interventions to ameliorate the patient experience of AF are essential. The Atrial Fibrillation health Literacy Information Technology Trial (AF-LITT; NCT03093558) is an investigator-initiated, 2-arm randomized clinical trial (RCT). This RCT is a pilot in order to implement a novel, smartphone-based intervention to address the patient experience of AF. This pilot RCT will compare a combination of the Embodied Conversational Agent (ECA) and the Alive Cor Kardia Mobile heart rhythm monitor to the current standard of care. The study will enroll 180 adults with non-valvular AF who are receiving anticoagulation for stroke prevention and randomize them to receive a 30-day intervention (smartphone-based ECA/Kardia) or standard of care, which will include a symptom and adherence journal. The primary end-points are improvement in HRQoL and self-reported adherence to anticoagulation. The secondary end-points are the acceptability of the intervention to participants, its use by participants, and acceptability to referring physicians. The AF-LITT pilot aims to evaluate the efficacy of the ECA/Kardia to improve HRQoL and anticoagulant adherence, and to guide its implementation in a larger, multicenter clinical trial. The intervention has potential to improve HRQoL, adherence, and health care utilization in individuals with chronic AF. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Rationale and design of the Atrial Fibrillation health Literacy Information Technology Trial: (AF-LITT)

    PubMed Central

    Guhl, Emily N.; Schlusser, Courtney L.; Henault, Lori E.; Bickmore, Timothy W.; Kimani, Everlyne; Paasche-Orlow, Michael K.; Magnani, Jared W.

    2017-01-01

    Background Atrial Fibrillation (AF) is a common cardiac arrhythmia that is challenging for patients and adversely impacts health-related quality of life (HRQoL). Long-term management of AF requires that patients adhere to complex therapies, understand difficult terminology, navigate subspecialty care, and have continued symptom monitoring with the goal of preventing adverse outcomes. Continued interventions to ameliorate the patient experience of AF are essential. Design The Atrial Fibrillation health Literacy Information Technology Trial (AF-LITT; NCT03093558) is an investigator-initiated, 2-arm randomized clinical trial (RCT). This RCT is a pilot in order to implement a novel, smartphone-based intervention to address the patient experience of AF. This pilot RCT will compare a combination of the embodied conversational agent (ECA) and the Alive Cor Kardia Mobile heart rhythm monitor to the current standard of care. The study will enroll 180 adults with non-valvular AF who are receiving anticoagulation for stroke prevention and randomize them to receive a 30-day intervention (smartphone-based ECA/Kardia) or standard of care, which will include a symptom and adherence journal. The primary end-points are improvement in HRQoL and self-reported adherence to anticoagulation. The secondary end-points are the acceptability of the intervention to participants, its use by participants, and acceptability to referring physicians. Conclusions The AF-LITT pilot aims to evaluate the efficacy of the ECA/Kardia to improve HRQoL and anticoagulant adherence, and to guide its implementation in a larger, multicenter clinical trial. The intervention has potential to improve HRQoL, adherence, and health care utilization in individuals with chronic AF. PMID:28923492

  16. Aspergillus fumigatus (Af) Hydroxamate Siderophores Protect Formation of Af Biofilms from the Pseudomonas aeruginosa (Pa) Product Pyoverdine

    PubMed Central

    Sass, Gabriele; Stevens, David A

    2017-01-01

    Abstract Background Pa and Af are pathogens frequently found together in airways of immunocompromised patients and patients with cystic fibrosis (CF). Hence, interactions of Pa and Af require understanding. Both Pa and Af are crucially dependent on the availability of iron, and therefore are competitors in their microenvironment. We have shown, using deletion mutants of Pa, that the Pa siderophore pyoverdine, the dominant Pa inhibitor of Af, interferes with Af biofilms by iron chelation, and denial of iron to the fungus. Methods Protective compounds in Af supernatants were evaluated using assays for the quantification of Af biofilm metabolism by XTT measurement, spectrometric pyoverdine measurement, as well as Chrome Azorole S (CAS) assay for the determination of siderophore production. Results Here we provide evidence that whereas iron usage by Af promotes pyoverdine production by Pa, Af has developed a defense mechanism against anti-fungal pyoverdine effects. The ability of Af to produce hydroxamate siderophores, and shed these into the surrounding medium, where they sequester and transport iron, is a key factor for Af self-defense against Pa. Under low iron conditions, such as in the presence of high amounts of the Pa siderophore pyoverdine, siderophore-bound iron is then fed to Af, protecting the fungus from iron starvation. Af with a deletion mutation in sidA, a gene essential for the production of hydroxamate siderophores, was significantly more sensitive to Pa supernatants, as well as pure pyoverdine, than wild-type Af. Af supernatants, produced in the presence of celastrol, an inhibitor of SidA-generated biosynthesis of siderophores, or produced by the sidA mutant, were not able to protect Af from iron starvation. Conclusion Interference with the iron-dependent Af self-defense mechanism might represent a new approach for therapy against aspergillosis. Disclosures All authors: No reported disclosures.

  17. Methicillin-Susceptible Staphylococcus aureus Endocarditis Isolates Are Associated With Clonal Complex 30 Genotype and a Distinct Repertoire of Enterotoxins and Adhesins

    PubMed Central

    Nienaber, Juhsien J.C.; Sharma Kuinkel, Batu K.; Clarke-Pearson, Michael; Lamlertthon, Supaporn; Park, Lawrence; Rude, Thomas H.; Barriere, Steve; Woods, Christopher W.; Chu, Vivian H.; Marín, Mercedes; Bukovski, Suzana; Garcia, Patricia; Corey, G.Ralph; Korman, Tony; Doco-Lecompte, Thanh; Murdoch, David R.; Reller, L. Barth

    2011-01-01

    Background. Using multinational collections of methicillin-susceptible Staphylococcus aureus (MSSA) isolates from infective endocarditis (IE) and soft tissue infections (STIs), we sought to (1) validate the finding that S. aureus in clonal complex (CC) 30 is associated with hematogenous complications and (2) test the hypothesis that specific genetic characteristics in S. aureus are associated with infection severity. Methods. IE and STI isolates from 2 cohorts were frequency matched by geographic origin. Isolates underwent spa typing to infer CC and multiplex polymerase chain reaction for presence of virulence genes. Results. 114 isolate pairs were genotyped. IE isolates were more likely to be CC30 (19.5% vs 6.2%; P = .005) and to contain 3 adhesins (clfB, cna, map/eap; P < .0001 for all) and 5 enterotoxins (tst, sea, sed, see, and sei; P ≤ .005 for all). CC30 isolates were more likely to contain cna, tst, sea, see, seg, and chp (P < .05 for all). Conclusions. MSSA IE isolates were significantly more likely to be CC30 and to possess a distinct repertoire of virulence genes than MSSA STI isolates from the same region. The genetic basis of this association requires further study. PMID:21844296

  18. The estrogen receptor antagonist ICI 182,780 can act both as an agonist and an inverse agonist when estrogen receptor α AF-2 is modified

    PubMed Central

    Movérare-Skrtic, Sofia; Börjesson, Anna E.; Farman, Helen H.; Sjögren, Klara; Windahl, Sara H.; Lagerquist, Marie K.; Andersson, Annica; Stubelius, Alexandra; Carlsten, Hans; Gustafsson, Jan-Åke; Ohlsson, Claes

    2014-01-01

    The bone-sparing effect of estrogen is primarily mediated via estrogen receptor (ER) α, which stimulates target gene transcription through two activation functions (AFs), AF-1 in the N-terminal and AF-2 in the ligand-binding domain. It was recently demonstrated that the ER antagonist ICI 182,780 (ICI) acts as an ER agonist in uterus of mice with mutations in the ERα AF-2. To evaluate the estrogen-like effects of ICI in different tissues, ovariectomized wild-type mice and mice with mutations in the ERα AF-2 (ERαAF-20) were treated with ICI, estradiol, or vehicle for 3 wk. Estradiol increased the trabecular and cortical bone mass as well as the uterine weight, whereas it reduced fat mass, thymus weight, and the growth plate height in wild-type but not in ERαAF-20 mice. Although ICI had no effect in wild-type mice, it exerted tissue-specific effects in ERαAF-20 mice. It acted as an ERα agonist on trabecular bone mass and uterine weight, whereas no effect was seen on cortical bone mass, fat mass, or thymus weight. Surprisingly, a pronounced inverse agonistic activity was seen on the growth plate height, resulting in enhanced longitudinal bone growth. In conclusion, ICI uses ERα AF-1 in a tissue-dependent manner in mice lacking ERαAF-2, resulting in no effect, agonistic activity, or inverse agonistic activity. We propose that ERα lacking AF-2 is constitutively active in the absence of ligand in the growth plate, enabling ICI to act as an inverse agonist. PMID:24395795

  19. Invasive alien plants benefit more from clonal integration in heterogeneous environments than natives.

    PubMed

    Wang, Yong-Jian; Müller-Schärer, Heinz; van Kleunen, Mark; Cai, Ai-Ming; Zhang, Ping; Yan, Rong; Dong, Bi-Cheng; Yu, Fei-Hai

    2017-12-01

    What confers invasive alien plants a competitive advantage over native plants remains open to debate. Many of the world's worst invasive alien plants are clonal and able to share resources within clones (clonal integration), particularly in heterogeneous environments. Here, we tested the hypothesis that clonal integration benefits invasive clonal plants more than natives and thus confers invasives a competitive advantage. We selected five congeneric and naturally co-occurring pairs of invasive alien and native clonal plants in China, and grew pairs of connected and disconnected ramets under heterogeneous light, soil nutrient and water conditions that are commonly encountered by alien plants during their invasion into new areas. Clonal integration increased biomass of all plants in all three heterogeneous resource environments. However, invasive plants benefited more from clonal integration than natives. Consequently, invasive plants produced more biomass than natives. Our results indicate that clonal integration may confer invasive alien clonal plants a competitive advantage over natives. Therefore, differences in the ability of clonal integration could potentially explain, at least partly, the invasion success of alien clonal plants in areas where resources are heterogeneously distributed. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  20. Detecting truly clonal alterations from multi-region profiling of tumours

    PubMed Central

    Werner, Benjamin; Traulsen, Arne; Sottoriva, Andrea; Dingli, David

    2017-01-01

    Modern cancer therapies aim at targeting tumour-specific alterations, such as mutations or neo-antigens, and maximal treatment efficacy requires that targeted alterations are present in all tumour cells. Currently, treatment decisions are based on one or a few samples per tumour, creating uncertainty on whether alterations found in those samples are actually present in all tumour cells. The probability of classifying clonal versus sub-clonal alterations from multi-region profiling of tumours depends on the earliest phylogenetic branching event during tumour growth. By analysing 181 samples from 10 renal carcinoma and 11 colorectal cancers we demonstrate that the information gain from additional sampling falls onto a simple universal curve. We found that in colorectal cancers, 30% of alterations identified as clonal with one biopsy proved sub-clonal when 8 samples were considered. The probability to overestimate clonal alterations fell below 1% in 7/11 patients with 8 samples per tumour. In renal cell carcinoma, 8 samples reduced the list of clonal alterations by 40% with respect to a single biopsy. The probability to overestimate clonal alterations remained as high as 92% in 7/10 renal cancer patients. Furthermore, treatment was associated with more unbalanced tumour phylogenetic trees, suggesting the need of denser sampling of tumours at relapse. PMID:28344344

  1. Detecting truly clonal alterations from multi-region profiling of tumours

    NASA Astrophysics Data System (ADS)

    Werner, Benjamin; Traulsen, Arne; Sottoriva, Andrea; Dingli, David

    2017-03-01

    Modern cancer therapies aim at targeting tumour-specific alterations, such as mutations or neo-antigens, and maximal treatment efficacy requires that targeted alterations are present in all tumour cells. Currently, treatment decisions are based on one or a few samples per tumour, creating uncertainty on whether alterations found in those samples are actually present in all tumour cells. The probability of classifying clonal versus sub-clonal alterations from multi-region profiling of tumours depends on the earliest phylogenetic branching event during tumour growth. By analysing 181 samples from 10 renal carcinoma and 11 colorectal cancers we demonstrate that the information gain from additional sampling falls onto a simple universal curve. We found that in colorectal cancers, 30% of alterations identified as clonal with one biopsy proved sub-clonal when 8 samples were considered. The probability to overestimate clonal alterations fell below 1% in 7/11 patients with 8 samples per tumour. In renal cell carcinoma, 8 samples reduced the list of clonal alterations by 40% with respect to a single biopsy. The probability to overestimate clonal alterations remained as high as 92% in 7/10 renal cancer patients. Furthermore, treatment was associated with more unbalanced tumour phylogenetic trees, suggesting the need of denser sampling of tumours at relapse.

  2. Clonal hematopoiesis in acquired aplastic anemia.

    PubMed

    Ogawa, Seishi

    2016-07-21

    Clonal hematopoiesis (CH) in aplastic anemia (AA) has been closely linked to the evolution of late clonal disorders, including paroxysmal nocturnal hemoglobinuria and myelodysplastic syndromes (MDS)/acute myeloid leukemia (AML), which are common complications after successful immunosuppressive therapy (IST). With the advent of high-throughput sequencing of recent years, the molecular aspect of CH in AA has been clarified by comprehensive detection of somatic mutations that drive clonal evolution. Genetic abnormalities are found in ∼50% of patients with AA and, except for PIGA mutations and copy-neutral loss-of-heterozygosity, or uniparental disomy (UPD) in 6p (6pUPD), are most frequently represented by mutations involving genes commonly mutated in myeloid malignancies, including DNMT3A, ASXL1, and BCOR/BCORL1 Mutations exhibit distinct chronological profiles and clinical impacts. BCOR/BCORL1 and PIGA mutations tend to disappear or show stable clone size and predict a better response to IST and a significantly better clinical outcome compared with mutations in DNMT3A, ASXL1, and other genes, which are likely to increase their clone size, are associated with a faster progression to MDS/AML, and predict an unfavorable survival. High frequency of 6pUPD and overrepresentation of PIGA and BCOR/BCORL1 mutations are unique to AA, suggesting the role of autoimmunity in clonal selection. By contrast, DNMT3A and ASXL1 mutations, also commonly seen in CH in the general population, indicate a close link to CH in the aged bone marrow, in terms of the mechanism for selection. Detection and close monitoring of somatic mutations/evolution may help with prediction and diagnosis of clonal evolution of MDS/AML and better management of patients with AA. © 2016 by The American Society of Hematology.

  3. Clonal hematopoiesis in acquired aplastic anemia

    PubMed Central

    2016-01-01

    Clonal hematopoiesis (CH) in aplastic anemia (AA) has been closely linked to the evolution of late clonal disorders, including paroxysmal nocturnal hemoglobinuria and myelodysplastic syndromes (MDS)/acute myeloid leukemia (AML), which are common complications after successful immunosuppressive therapy (IST). With the advent of high-throughput sequencing of recent years, the molecular aspect of CH in AA has been clarified by comprehensive detection of somatic mutations that drive clonal evolution. Genetic abnormalities are found in ∼50% of patients with AA and, except for PIGA mutations and copy-neutral loss-of-heterozygosity, or uniparental disomy (UPD) in 6p (6pUPD), are most frequently represented by mutations involving genes commonly mutated in myeloid malignancies, including DNMT3A, ASXL1, and BCOR/BCORL1. Mutations exhibit distinct chronological profiles and clinical impacts. BCOR/BCORL1 and PIGA mutations tend to disappear or show stable clone size and predict a better response to IST and a significantly better clinical outcome compared with mutations in DNMT3A, ASXL1, and other genes, which are likely to increase their clone size, are associated with a faster progression to MDS/AML, and predict an unfavorable survival. High frequency of 6pUPD and overrepresentation of PIGA and BCOR/BCORL1 mutations are unique to AA, suggesting the role of autoimmunity in clonal selection. By contrast, DNMT3A and ASXL1 mutations, also commonly seen in CH in the general population, indicate a close link to CH in the aged bone marrow, in terms of the mechanism for selection. Detection and close monitoring of somatic mutations/evolution may help with prediction and diagnosis of clonal evolution of MDS/AML and better management of patients with AA. PMID:27121470

  4. Polymerase chain reaction-based clonality testing in tissue samples with reactive lymphoproliferations: usefulness and pitfalls. A report of the BIOMED-2 Concerted Action BMH4-CT98-3936.

    PubMed

    Langerak, A W; Molina, T J; Lavender, F L; Pearson, D; Flohr, T; Sambade, C; Schuuring, E; Al Saati, T; van Dongen, J J M; van Krieken, J H J M

    2007-02-01

    Lymphoproliferations are generally diagnosed via histomorphology and immunohistochemistry. Although mostly conclusive, occasionally the differential diagnosis between reactive lesions and malignant lymphomas is difficult. In such cases molecular clonality studies of immunoglobulin (Ig)/T-cell receptor (TCR) rearrangements can be useful. Here we address the issue of clonality assessment in 106 histologically defined reactive lesions, using the standardized BIOMED-2 Ig/TCR multiplex polymerase chain reaction (PCR) heteroduplex and GeneScan assays. Samples were reviewed nationally, except 10% random cases and cases with clonal results selected for additional international panel review. In total 75% (79/106) only showed polyclonal Ig/TCR targets (type I), whereas another 15% (16/106) represent probably polyclonal cases, with weak Ig/TCR (oligo)clonality in an otherwise polyclonal background (type II). Interestingly, in 10% (11/106) clear monoclonal Ig/TCR products were observed (types III/IV), which prompted further pathological review. Clonal cases included two missed lymphomas in national review and nine cases that could be explained as diagnostically difficult cases or probable lymphomas upon additional review. Our data show that the BIOMED-2 Ig/TCR multiplex PCR assays are very helpful in confirming the polyclonal character in the vast majority of reactive lesions. However, clonality detection in a minority should lead to detailed pathological review, including close interaction between pathologist and molecular biologist.

  5. Histological Transformation and Progression in Follicular Lymphoma: A Clonal Evolution Study.

    PubMed

    Kridel, Robert; Chan, Fong Chun; Mottok, Anja; Boyle, Merrill; Farinha, Pedro; Tan, King; Meissner, Barbara; Bashashati, Ali; McPherson, Andrew; Roth, Andrew; Shumansky, Karey; Yap, Damian; Ben-Neriah, Susana; Rosner, Jamie; Smith, Maia A; Nielsen, Cydney; Giné, Eva; Telenius, Adele; Ennishi, Daisuke; Mungall, Andrew; Moore, Richard; Morin, Ryan D; Johnson, Nathalie A; Sehn, Laurie H; Tousseyn, Thomas; Dogan, Ahmet; Connors, Joseph M; Scott, David W; Steidl, Christian; Marra, Marco A; Gascoyne, Randy D; Shah, Sohrab P

    2016-12-01

    Follicular lymphoma (FL) is an indolent, yet incurable B cell malignancy. A subset of patients experience an increased mortality rate driven by two distinct clinical end points: histological transformation and early progression after immunochemotherapy. The nature of tumor clonal dynamics leading to these clinical end points is poorly understood, and previously determined genetic alterations do not explain the majority of transformed cases or accurately predict early progressive disease. We contend that detailed knowledge of the expansion patterns of specific cell populations plus their associated mutations would provide insight into therapeutic strategies and disease biology over the time course of FL clinical histories. Using a combination of whole genome sequencing, targeted deep sequencing, and digital droplet PCR on matched diagnostic and relapse specimens, we deciphered the constituent clonal populations in 15 transformation cases and 6 progression cases, and measured the change in clonal population abundance over time. We observed widely divergent patterns of clonal dynamics in transformed cases relative to progressed cases. Transformation specimens were generally composed of clones that were rare or absent in diagnostic specimens, consistent with dramatic clonal expansions that came to dominate the transformation specimens. This pattern was independent of time to transformation and treatment modality. By contrast, early progression specimens were composed of clones that were already present in the diagnostic specimens and exhibited only moderate clonal dynamics, even in the presence of immunochemotherapy. Analysis of somatic mutations impacting 94 genes was undertaken in an extension cohort consisting of 395 samples from 277 patients in order to decipher disrupted biology in the two clinical end points. We found 12 genes that were more commonly mutated in transformed samples than in the preceding FL tumors, including TP53, B2M, CCND3, GNA13, S1PR2, and P2RY

  6. Histological Transformation and Progression in Follicular Lymphoma: A Clonal Evolution Study

    PubMed Central

    Mottok, Anja; Boyle, Merrill; Tan, King; Meissner, Barbara; Bashashati, Ali; Roth, Andrew; Shumansky, Karey; Nielsen, Cydney; Giné, Eva; Moore, Richard; Morin, Ryan D.; Sehn, Laurie H.; Tousseyn, Thomas; Dogan, Ahmet; Scott, David W.; Steidl, Christian; Gascoyne, Randy D.; Shah, Sohrab P.

    2016-01-01

    Background Follicular lymphoma (FL) is an indolent, yet incurable B cell malignancy. A subset of patients experience an increased mortality rate driven by two distinct clinical end points: histological transformation and early progression after immunochemotherapy. The nature of tumor clonal dynamics leading to these clinical end points is poorly understood, and previously determined genetic alterations do not explain the majority of transformed cases or accurately predict early progressive disease. We contend that detailed knowledge of the expansion patterns of specific cell populations plus their associated mutations would provide insight into therapeutic strategies and disease biology over the time course of FL clinical histories. Methods and Findings Using a combination of whole genome sequencing, targeted deep sequencing, and digital droplet PCR on matched diagnostic and relapse specimens, we deciphered the constituent clonal populations in 15 transformation cases and 6 progression cases, and measured the change in clonal population abundance over time. We observed widely divergent patterns of clonal dynamics in transformed cases relative to progressed cases. Transformation specimens were generally composed of clones that were rare or absent in diagnostic specimens, consistent with dramatic clonal expansions that came to dominate the transformation specimens. This pattern was independent of time to transformation and treatment modality. By contrast, early progression specimens were composed of clones that were already present in the diagnostic specimens and exhibited only moderate clonal dynamics, even in the presence of immunochemotherapy. Analysis of somatic mutations impacting 94 genes was undertaken in an extension cohort consisting of 395 samples from 277 patients in order to decipher disrupted biology in the two clinical end points. We found 12 genes that were more commonly mutated in transformed samples than in the preceding FL tumors, including TP53, B2

  7. Spatial intratumoral heterogeneity and temporal clonal evolution in esophageal squamous cell carcinoma.

    PubMed

    Hao, Jia-Jie; Lin, De-Chen; Dinh, Huy Q; Mayakonda, Anand; Jiang, Yan-Yi; Chang, Chen; Jiang, Ye; Lu, Chen-Chen; Shi, Zhi-Zhou; Xu, Xin; Zhang, Yu; Cai, Yan; Wang, Jin-Wu; Zhan, Qi-Min; Wei, Wen-Qiang; Berman, Benjamin P; Wang, Ming-Rong; Koeffler, H Phillip

    2016-12-01

    Esophageal squamous cell carcinoma (ESCC) is among the most common malignancies, but little is known about its spatial intratumoral heterogeneity (ITH) and temporal clonal evolutionary processes. To address this, we performed multiregion whole-exome sequencing on 51 tumor regions from 13 ESCC cases and multiregion global methylation profiling for 3 of these 13 cases. We found an average of 35.8% heterogeneous somatic mutations with strong evidence of ITH. Half of the driver mutations located on the branches of tumor phylogenetic trees targeted oncogenes, including PIK3CA, NFE2L2 and MTOR, among others. By contrast, the majority of truncal and clonal driver mutations occurred in tumor-suppressor genes, including TP53, KMT2D and ZNF750, among others. Interestingly, phyloepigenetic trees robustly recapitulated the topological structures of the phylogenetic trees, indicating a possible relationship between genetic and epigenetic alterations. Our integrated investigations of spatial ITH and clonal evolution provide an important molecular foundation for enhanced understanding of tumorigenesis and progression in ESCC.

  8. Health Information in Somali (Af-Soomaali )

    MedlinePlus

    ... Af-Soomaali (Somali) Bilingual PDF Health Information Translations Pendulum Exercises for Shoulder - Af-Soomaali (Somali) Bilingual PDF ... Af-Soomaali (Somali) Bilingual PDF Health Information Translations Pendulum Exercises for Shoulder - Af-Soomaali (Somali) Bilingual PDF ...

  9. Effects of Clonal Reproduction on Evolutionary Lag and Evolutionary Rescue.

    PubMed

    Orive, Maria E; Barfield, Michael; Fernandez, Carlos; Holt, Robert D

    2017-10-01

    Evolutionary lag-the difference between mean and optimal phenotype in the current environment-is of keen interest in light of rapid environmental change. Many ecologically important organisms have life histories that include stage structure and both sexual and clonal reproduction, yet how stage structure and clonality interplay to govern a population's rate of evolution and evolutionary lag is unknown. Effects of clonal reproduction on mean phenotype partition into two portions: one that is phenotype dependent, and another that is genotype dependent. This partitioning is governed by the association between the nonadditive genetic plus random environmental component of phenotype of clonal offspring and their parents. While clonality slows phenotypic evolution toward an optimum, it can dramatically increase population survival after a sudden step change in optimal phenotype. Increased adult survival slows phenotypic evolution but facilitates population survival after a step change; this positive effect can, however, be lost given survival-fecundity trade-offs. Simulations indicate that the benefits of increased clonality under environmental change greatly depend on the nature of that change: increasing population persistence under a step change while decreasing population persistence under a continuous linear change requiring de novo variation. The impact of clonality on the probability of persistence for species in a changing world is thus inexorably linked to the temporal texture of the change they experience.

  10. Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity.

    PubMed

    Marusyk, Andriy; Tabassum, Doris P; Altrock, Philipp M; Almendro, Vanessa; Michor, Franziska; Polyak, Kornelia

    2014-10-02

    Cancers arise through a process of somatic evolution that can result in substantial sub-clonal heterogeneity within tumours. The mechanisms responsible for the coexistence of distinct sub-clones and the biological consequences of this coexistence remain poorly understood. Here we used a mouse xenograft model to investigate the impact of sub-clonal heterogeneity on tumour phenotypes and the competitive expansion of individual clones. We found that tumour growth can be driven by a minor cell subpopulation, which enhances the proliferation of all cells within a tumour by overcoming environmental constraints and yet can be outcompeted by faster proliferating competitors, resulting in tumour collapse. We developed a mathematical modelling framework to identify the rules underlying the generation of intra-tumour clonal heterogeneity. We found that non-cell-autonomous driving of tumour growth, together with clonal interference, stabilizes sub-clonal heterogeneity, thereby enabling inter-clonal interactions that can lead to new phenotypic traits.

  11. Genetic evolution of nevus of Ota reveals clonal heterogeneity acquiring BAP1 and TP53 mutations.

    PubMed

    Vivancos, Ana; Caratú, Ginevra; Matito, Judit; Muñoz, Eva; Ferrer, Berta; Hernández-Losa, Javier; Bodet, Domingo; Pérez-Alea, Mileidys; Cortés, Javier; Garcia-Patos, Vicente; Recio, Juan A

    2016-03-01

    Melanoma presents molecular alterations based on its anatomical location and exposure to environmental factors. Due to its intrinsic genetic heterogeneity, a simple snapshot of a tumor's genetic alterations does not reflect the tumor clonal complexity or specific gene-gene cooperation. Here, we studied the genetic alterations and clonal evolution of a unique patient with a Nevus of Ota that developed into a recurring uveal-like dermal melanoma. The Nevus of Ota and ulterior lesions contained GNAQ mutations were c-KIT positive, and tumors showed an increased RAS pathway activity during progression. Whole-exome sequencing of these lesions revealed the acquisition of BAP1 and TP53 mutations during tumor evolution, thereby unmasking clonal heterogeneity and allowing the identification of cooperating genes within the same tumor. Our results highlight the importance of studying tumor genetic evolution to identify cooperating mechanisms and delineate effective therapies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Synchrony of clonal cell proliferation and contiguity of clonally related cells: production of mosaicism in the ventricular zone of developing mouse neocortex

    NASA Technical Reports Server (NTRS)

    Cai, L.; Hayes, N. L.; Nowakowski, R. S.

    1997-01-01

    We have analyzed clonal cell proliferation in the ventricular zone (VZ) of the early developing mouse neocortex with a replication-incompetent retrovirus encoding human placental alkaline phosphatase (AP). The retrovirus was injected into the lateral ventricles on embryonic day 11 (E11), i.e., at the onset of neuronogenesis. Three days postinjection, on E14, a total of 259 AP-labeled clones of various sizes were found in 7 fetal brains. There are approximately 7 cell cycles between E11 and E14 (), and there is a 1-2 cell cycle delay between retroviral injection and the production of a retrovirally labeled "founder" cell; thus, we estimate that the "age" of the clones was about 5-6 cell cycles. Almost one-half of the clones (48.3%) identified were pure proliferating clones containing cells only in the VZ. Another 18.5% contained both proliferating and postproliferative cells, and 33.2% contained only postproliferative cells. It was striking that over 90% of the clonally related proliferating cells occurred in clusters of two or more apparently contiguous cells, and about 73% of the proliferating cells occurred in clusters of three or more cells. Regardless of the number of cells in the clone, these clusters were tightly packed and confined to a single level of the VZ. This clustering of proliferating cells indicates that clonally related cells maintain neighbor-neighbor relationships as they undergo interkinetic nuclear migration and progress through several cell cycles, and, as a result, the ventricular zone is a mosaic of small clusters of clonally related and synchronously cycling cells. In addition, cells in the intermediate zone and the cortical plate were also frequently clustered, indicating that they became postproliferative at a similar time and that the output of the VZ is influenced by its mosaic structure.

  13. Clonal evolution models of tumor heterogeneity.

    PubMed

    Shlush, Liran I; Hershkovitz, Dov

    2015-01-01

    Somatic/clonal evolution is the process of sequential acquisition of vertically transmittable genetic/epigenetic elements in multicellular organisms. Cancer is the result of somatic evolution. Understanding the processes that shape the evolution of individual tumors might help us to treat cancer more efficiently. The initiating genetic/epigenetic events occur in functional cells and provide the cell of origin a selective advantage under a changing environment. The initiating genetic events tend to be enriched in specific tissues (and are sometimes specific for those tissues), as different tissues undergo different changes in the environment that will activate selective forces on different cells of origin. For the initial clonal expansion to occur premalignant clones need to have a relative fitness advantage over their competitors. It is estimated that the premalignant phase can take several years. Once the premalignant clonal expansion is established, the premalignant cells will contribute to the changing environment and will start competing among themselves. In late stages of cancer evolution the environmental changes might be similar across different tissues, including a lack of physical space, a shortage of energy, and activation of the immune system, and more and more of the hallmarks of cancer will evolve. In this review we will explore the possible clinical relevance of the heterogeneity that evolves during this long somatic evolution. Above all, it should be stressed that the earlier the clonal expansion is recognized, the less diverse and less fit for survival the cells in the population are.

  14. GACD: Integrated Software for Genetic Analysis in Clonal F1 and Double Cross Populations.

    PubMed

    Zhang, Luyan; Meng, Lei; Wu, Wencheng; Wang, Jiankang

    2015-01-01

    Clonal species are common among plants. Clonal F1 progenies are derived from the hybridization between 2 heterozygous clones. In self- and cross-pollinated species, double crosses can be made from 4 inbred lines. A clonal F1 population can be viewed as a double cross population when the linkage phase is determined. The software package GACD (Genetic Analysis of Clonal F1 and Double cross) is freely available public software, capable of building high-density linkage maps and mapping quantitative trait loci (QTL) in clonal F1 and double cross populations. Three functionalities are integrated in GACD version 1.0: binning of redundant markers (BIN); linkage map construction (CDM); and QTL mapping (CDQ). Output of BIN can be directly used as input of CDM. After adding the phenotypic data, the output of CDM can be used as input of CDQ. Thus, GACD acts as a pipeline for genetic analysis. GACD and example datasets are freely available from www.isbreeding.net. © The American Genetic Association. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Genet-specific DNA methylation probabilities detected in a spatial epigenetic analysis of a clonal plant population.

    PubMed

    Araki, Kiwako S; Kubo, Takuya; Kudoh, Hiroshi

    2017-01-01

    In sessile organisms such as plants, spatial genetic structures of populations show long-lasting patterns. These structures have been analyzed across diverse taxa to understand the processes that determine the genetic makeup of organismal populations. For many sessile organisms that mainly propagate via clonal spread, epigenetic status can vary between clonal individuals in the absence of genetic changes. However, fewer previous studies have explored the epigenetic properties in comparison to the genetic properties of natural plant populations. Here, we report the simultaneous evaluation of the spatial structure of genetic and epigenetic variation in a natural population of the clonal plant Cardamine leucantha. We applied a hierarchical Bayesian model to evaluate the effects of membership of a genet (a group of individuals clonally derived from a single seed) and vegetation cover on the epigenetic variation between ramets (clonal plants that are physiologically independent individuals). We sampled 332 ramets in a 20 m × 20 m study plot that contained 137 genets (identified using eight SSR markers). We detected epigenetic variation in DNA methylation at 24 methylation-sensitive amplified fragment length polymorphism (MS-AFLP) loci. There were significant genet effects at all 24 MS-AFLP loci in the distribution of subepiloci. Vegetation cover had no statistically significant effect on variation in the majority of MS-AFLP loci. The spatial aggregation of epigenetic variation is therefore largely explained by the aggregation of ramets that belong to the same genets. By applying hierarchical Bayesian analyses, we successfully identified a number of genet-specific changes in epigenetic status within a natural plant population in a complex context, where genotypes and environmental factors are unevenly distributed. This finding suggests that it requires further studies on the spatial epigenetic structure of natural populations of diverse organisms, particularly for

  16. Evolution of Sequence Type 4821 Clonal Complex Meningococcal Strains in China from Prequinolone to Quinolone Era, 1972–2013

    PubMed Central

    Guo, Qinglan; Mustapha, Mustapha M.; Chen, Mingliang; Qu, Di; Zhang, Xi; Harrison, Lee H.

    2018-01-01

    The expansion of hypervirulent sequence type 4821 clonal complex (CC4821) lineage Neisseria meningitidis bacteria has led to a shift in meningococcal disease epidemiology in China, from serogroup A (MenA) to MenC. Knowledge of the evolution and genetic origin of the emergent MenC strains is limited. In this study, we subjected 76 CC4821 isolates collected across China during 1972–1977 and 2005–2013 to phylogenetic analysis, traditional genotyping, or both. We show that successive recombination events within genes encoding surface antigens and acquisition of quinolone resistance mutations possibly played a role in the emergence of CC4821 as an epidemic clone in China. MenC and MenB CC4821 strains have spread across China and have been detected in several countries in different continents. Capsular switches involving serogroups B and C occurred among epidemic strains, raising concerns regarding possible increases in MenB disease, given that vaccines in use in China do not protect against MenB. PMID:29553310

  17. Ultra-sensitive Sequencing Identifies High Prevalence of Clonal Hematopoiesis-Associated Mutations throughout Adult Life.

    PubMed

    Acuna-Hidalgo, Rocio; Sengul, Hilal; Steehouwer, Marloes; van de Vorst, Maartje; Vermeulen, Sita H; Kiemeney, Lambertus A L M; Veltman, Joris A; Gilissen, Christian; Hoischen, Alexander

    2017-07-06

    Clonal hematopoiesis results from somatic mutations in hematopoietic stem cells, which give an advantage to mutant cells, driving their clonal expansion and potentially leading to leukemia. The acquisition of clonal hematopoiesis-driver mutations (CHDMs) occurs with normal aging and these mutations have been detected in more than 10% of individuals ≥65 years. We aimed to examine the prevalence and characteristics of CHDMs throughout adult life. We developed a targeted re-sequencing assay combining high-throughput with ultra-high sensitivity based on single-molecule molecular inversion probes (smMIPs). Using smMIPs, we screened more than 100 loci for CHDMs in more than 2,000 blood DNA samples from population controls between 20 and 69 years of age. Loci screened included 40 regions known to drive clonal hematopoiesis when mutated and 64 novel candidate loci. We identified 224 somatic mutations throughout our cohort, of which 216 were coding mutations in known driver genes (DNMT3A, JAK2, GNAS, TET2, and ASXL1), including 196 point mutations and 20 indels. Our assay's improved sensitivity allowed us to detect mutations with variant allele frequencies as low as 0.001. CHDMs were identified in more than 20% of individuals 60 to 69 years of age and in 3% of individuals 20 to 29 years of age, approximately double the previously reported prevalence despite screening a limited set of loci. Our findings support the occurrence of clonal hematopoiesis-associated mutations as a widespread mechanism linked with aging, suggesting that mosaicism as a result of clonal evolution of cells harboring somatic mutations is a universal mechanism occurring at all ages in healthy humans. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  18. Selective Inhibition of Tumor Growth by Clonal NK Cells Expressing an ErbB2/HER2-Specific Chimeric Antigen Receptor

    PubMed Central

    Schönfeld, Kurt; Sahm, Christiane; Zhang, Congcong; Naundorf, Sonja; Brendel, Christian; Odendahl, Marcus; Nowakowska, Paulina; Bönig, Halvard; Köhl, Ulrike; Kloess, Stephan; Köhler, Sylvia; Holtgreve-Grez, Heidi; Jauch, Anna; Schmidt, Manfred; Schubert, Ralf; Kühlcke, Klaus; Seifried, Erhard; Klingemann, Hans G; Rieger, Michael A; Tonn, Torsten; Grez, Manuel; Wels, Winfried S

    2015-01-01

    Natural killer (NK) cells are an important effector cell type for adoptive cancer immunotherapy. Similar to T cells, NK cells can be modified to express chimeric antigen receptors (CARs) to enhance antitumor activity, but experience with CAR-engineered NK cells and their clinical development is still limited. Here, we redirected continuously expanding and clinically usable established human NK-92 cells to the tumor-associated ErbB2 (HER2) antigen. Following GMP-compliant procedures, we generated a stable clonal cell line expressing a humanized CAR based on ErbB2-specific antibody FRP5 harboring CD28 and CD3ζ signaling domains (CAR 5.28.z). These NK-92/5.28.z cells efficiently lysed ErbB2-expressing tumor cells in vitro and exhibited serial target cell killing. Specific recognition of tumor cells and antitumor activity were retained in vivo, resulting in selective enrichment of NK-92/5.28.z cells in orthotopic breast carcinoma xenografts, and reduction of pulmonary metastasis in a renal cell carcinoma model, respectively. γ-irradiation as a potential safety measure for clinical application prevented NK cell replication, while antitumor activity was preserved. Our data demonstrate that it is feasible to engineer CAR-expressing NK cells as a clonal, molecularly and functionally well-defined and continuously expandable cell therapeutic agent, and suggest NK-92/5.28.z cells as a promising candidate for use in adoptive cancer immunotherapy. PMID:25373520

  19. JMJD6 and U2AF65 co-regulate alternative splicing in both JMJD6 enzymatic activity dependent and independent manner

    PubMed Central

    Yi, Jia; Shen, Hai-Feng; Qiu, Jin-Song; Huang, Ming-Feng; Zhang, Wen-Juan; Ding, Jian-Cheng; Zhu, Xiao-Yan; Zhou, Yu

    2017-01-01

    Abstract JMJD6, a jumonji C (Jmj C) domain-containing protein demethylase and hydroxylase, has been implicated in an array of biological processes. It has been shown that JMJD6 interacts with and hydroxylates multiple serine/arginine-rich (SR) proteins and SR related proteins, including U2AF65, all of which are known to function in alternative splicing regulation. However, whether JMJD6 is widely involved in alternative splicing and the molecular mechanism underlying JMJD6-regulated alternative splicing have remained incompletely understood. Here, by using RASL-Seq, we investigated the functional impact of RNA-dependent interaction between JMJD6 and U2AF65, revealing that JMJD6 and U2AF65 co-regulated a large number of alternative splicing events. We further demonstrated the JMJD6 function in alternative splicing in jmjd6 knockout mice. Mechanistically, we showed that the enzymatic activity of JMJD6 was required for a subset of JMJD6-regulated splicing, and JMJD6-mediated lysine hydroxylation of U2AF65 could account for, at least partially, their co-regulated alternative splicing events, suggesting both JMJD6 enzymatic activity-dependent and independent control of alternative splicing. These findings reveal an intimate link between JMJD6 and U2AF65 in alternative splicing regulation, which has important implications in development and disease processes. PMID:27899633

  20. Phenotypic profile of expanded NK cells in chronic lymphoproliferative disorders: a surrogate marker for NK-cell clonality

    PubMed Central

    Bárcena, Paloma; Jara-Acevedo, María; Tabernero, María Dolores; López, Antonio; Sánchez, María Luz; García-Montero, Andrés C.; Muñoz-García, Noemí; Vidriales, María Belén; Paiva, Artur; Lecrevisse, Quentin; Lima, Margarida; Langerak, Anton W.; Böttcher, Sebastian; van Dongen, Jacques J.M.

    2015-01-01

    Currently, the lack of a universal and specific marker of clonality hampers the diagnosis and classification of chronic expansions of natural killer (NK) cells. Here we investigated the utility of flow cytometric detection of aberrant/altered NK-cell phenotypes as a surrogate marker for clonality, in the diagnostic work-up of chronic lymphoproliferative disorders of NK cells (CLPD-NK). For this purpose, a large panel of markers was evaluated by multiparametric flow cytometry on peripheral blood (PB) CD56low NK cells from 60 patients, including 23 subjects with predefined clonal (n = 9) and polyclonal (n = 14) CD56low NK-cell expansions, and 37 with CLPD-NK of undetermined clonality; also, PB samples from 10 healthy adults were included. Clonality was established using the human androgen receptor (HUMARA) assay. Clonal NK cells were found to show decreased expression of CD7, CD11b and CD38, and higher CD2, CD94 and HLADR levels vs. normal NK cells, together with a restricted repertoire of expression of the CD158a, CD158b and CD161 killer-associated receptors. In turn, NK cells from both clonal and polyclonal CLPD-NK showed similar/overlapping phenotypic profiles, except for high and more homogeneous expression of CD94 and HLADR, which was restricted to clonal CLPD-NK. We conclude that the CD94hi/HLADR+ phenotypic profile proved to be a useful surrogate marker for NK-cell clonality. PMID:26556869

  1. Functional expression of the Na-K-2Cl cotransporter NKCC2 in mammalian cells fails to confirm the dominant-negative effect of the AF splice variant.

    PubMed

    Hannemann, Anke; Christie, Jenny K; Flatman, Peter W

    2009-12-18

    The renal bumetanide-sensitive Na-K-2Cl cotransporter (NKCC2) is the major salt transport pathway in the apical membrane of the mammalian thick ascending limb. It is differentially spliced and the three major variants (A, B, and F) differ in their localization and transport characteristics. Most knowledge about its regulation comes from experiments in Xenopus oocytes as NKCC2 proved difficult to functionally express in a mammalian system. Here we report the cloning and functional expression of untagged and unmodified versions of the major splice variants from ferret kidney (fNKCC2A, -B, and -F) in human embryonic kidney (HEK) 293 cells. Many NKCC2 antibodies used in this study detected high molecular weight forms of the transfected proteins, probably NKCC2 dimers, but not the monomers. Interestingly, monomers were strongly detected by phosphospecific antibodies directed against phosphopeptides in the regulatory N terminus. Bumetanide-sensitive (86)Rb uptake was significantly higher in transfected HEK-293 cells and could be stimulated by incubating cells in a medium containing a low chloride concentration prior the uptake measurements. fNKCC2 was less sensitive to the reduction in chloride concentration than NKCC1. Using HEK-293 cells stably expressing fNKCC2A we also show that co-expression of variant NKCC2AF does not have the dominant-negative effect on NKCC2A activity that was seen in Xenopus oocytes, nor is it trafficked to the cell surface. In addition, fNKCC2AF is neither complex glycosylated nor phosphorylated in its N terminus regulatory region like other variants.

  2. Intraspecific competition and light effect on reproduction of Ligularia virgaurea, an invasive native alpine grassland clonal herb

    PubMed Central

    Xie, Tian-peng; Zhang, Ge-fei; Zhao, Zhi-gang; Du, Guo-zhen; He, Gui-yong

    2014-01-01

    The relationship between sexual reproduction and clonal growth in clonal plants often shows up at the ramet level. However, only a few studies focus on the relationship at the genet level, which could finally account for evolution. The sexual reproduction and clonal growth of Ligularia virgaurea, a perennial herb widely distributed in the alpine grasslands of the Qinghai-Tibetan Plateau of China, were studied under different competition intensities and light conditions at the genet level through a potted experiment. The results showed that: (1) sexual reproduction did not depend on density or light, and increasing clonal growth with decreasing density and increasing light intensity indicated that intraspecific competition and light intensity may affect the clonal life history of L. virgaurea; (2) both sexual reproduction and clonal growth show a positive linear relationship with genet size under different densities and light conditions; (3) a threshold size is required for sexual reproduction and no evidence of a threshold size for clonal growth under different densities and light conditions; (4) light level affected the allocation of total biomass to clonal and sexual structures, with less allocation to clonal structures and more allocation to sexual structures in full sunlight than in shade; (5) light determined the onset of sexual reproduction, and the genets in the shade required a smaller threshold size for sexual reproduction to occur than the plants in full sunlight; and (6) no evidence was found of trade-offs between clonal growth and sexual reproduction under different densities and light conditions at the genet level, and the positive correlation between two reproductive modes indicated that these are two integrated processes. Clonal growth in this species may be viewed as a growth strategy that tends to maximize genet fitness. PMID:24683463

  3. Increase of genetic diversity and clonal replacement of epidemic methicillin-resistant Staphylococcus aureus strains in South-East Austria.

    PubMed

    Zarfel, Gernot; Luxner, Josefa; Folli, Bettina; Leitner, Eva; Feierl, Gebhard; Kittinger, Clemens; Grisold, Andrea

    2016-07-01

    Spa-typing and microarray techniques were used to study epidemiological changes in methicillin-resistant Staphylococcus aureus (MRSA) in South-East Austria. The population structure of 327 MRSA isolated between 2002 and 2012 was investigated. MRSA was assigned to 58 different spa types and 14 different MLST CC (multilocus sequence type clonal complexes); in particular, between 2007 and 2012, an increasing diversity in MRSA clones could be observed. The most abundant clonal complex was CC5. On the respective SCCmec cassettes, the CC5 isolates differed clearly within this decade and CC5/SCCmecI, the South German MRSA, predominant in 2002, was replaced by CC5/SCCmecII, the Rhine-Hesse MRSA in 2012. Whereas in many European countries MLST CC22-MRSA (EMRSA 15, the Barnim epidemic MRSA) is predominant, this clone occurred in Austria nearly 10 years later than in neighbouring countries. CC45, the Berlin EMRSA, epidemic in Germany, was only sporadically found in South-East Austria. The Irish ST8-MRSA-II represented by spa-type t190 was frequently found in 2002 and 2007, but disappeared in 2012. Our results demonstrate clonal replacement of MRSA clones within the last years in Austria. Ongoing surveillance is warranted for detection of changes within the MRSA population. © FEMS 2016.

  4. Alteration of the SETBP1 gene and splicing pathway genes SF3B1, U2AF1, and SRSF2 in childhood acute myeloid leukemia.

    PubMed

    Choi, Hyun-Woo; Kim, Hye-Ran; Baek, Hee-Jo; Kook, Hoon; Cho, Duck; Shin, Jong-Hee; Suh, Soon-Pal; Ryang, Dong-Wook; Shin, Myung-Geun

    2015-01-01

    Recurrent somatic SET-binding protein 1 (SETBP1) and splicing pathway gene mutations have recently been found in atypical chronic myeloid leukemia and other hematologic malignancies. These mutations have been comprehensively analyzed in adult AML, but not in childhood AML. We investigated possible alteration of the SETBP1, splicing factor 3B subunit 1 (SF3B1), U2 small nuclear RNA auxiliary factor 1 (U2AF1), and serine/arginine-rich splicing factor 2 (SRSF2) genes in childhood AML. Cytogenetic and molecular analyses were performed to reveal chromosomal and genetic alterations. Sequence alterations in the SETBP1, SF3B1, U2AF1, and SRSF2 genes were examined by using direct sequencing in a cohort of 53 childhood AML patients. Childhood AML patients did not harbor any recurrent SETBP1 gene mutations, although our study did identify a synonymous mutation in one patient. None of the previously reported aberrations in the mutational hotspot of SF3B1, U2AF1, and SRSF2 were identified in any of the 53 patients. Alterations of the SETBP1 gene or SF3B1, U2AF1, and SRSF2 genes are not common genetic events in childhood AML, implying that the mutations are unlikely to exert a driver effect in myeloid leukemogenesis during childhood.

  5. Clonal Outbreak of Plasmodium falciparum Infection in Eastern Panama

    PubMed Central

    Obaldia, Nicanor; Baro, Nicholas K.; Calzada, Jose E.; Santamaria, Ana M.; Daniels, Rachel; Wong, Wesley; Chang, Hsiao-Han; Hamilton, Elizabeth J.; Arevalo-Herrera, Myriam; Herrera, Socrates; Wirth, Dyann F.; Hartl, Daniel L.; Marti, Matthias; Volkman, Sarah K.

    2015-01-01

    Identifying the source of resurgent parasites is paramount to a strategic, successful intervention for malaria elimination. Although the malaria incidence in Panama is low, a recent outbreak resulted in a 6-fold increase in reported cases. We hypothesized that parasites sampled from this epidemic might be related and exhibit a clonal population structure. We tested the genetic relatedness of parasites, using informative single-nucleotide polymorphisms and drug resistance loci. We found that parasites were clustered into 3 clonal subpopulations and were related to parasites from Colombia. Two clusters of Panamanian parasites shared identical drug resistance haplotypes, and all clusters shared a chloroquine-resistance genotype matching the pfcrt haplotype of Colombian origin. Our findings suggest these resurgent parasite populations are highly clonal and that the high clonality likely resulted from epidemic expansion of imported or vestigial cases. Malaria outbreak investigations that use genetic tools can illuminate potential sources of epidemic malaria and guide strategies to prevent further resurgence in areas where malaria has been eliminated. PMID:25336725

  6. Structure and biological activities of eumenine mastoparan-AF (EMP-AF), a new mast cell degranulating peptide in the venom of the solitary wasp (Anterhynchium flavomarginatum micado).

    PubMed

    Konno, K; Hisada, M; Naoki, H; Itagaki, Y; Kawai, N; Miwa, A; Yasuhara, T; Morimoto, Y; Nakata, Y

    2000-11-01

    A new mast cell degranulating peptide, eumenine mastoparan-AF (EMP-AF), was isolated from the venom of the solitary wasp Anterhynchium flavomarginatum micado, the most common eumenine wasp found in Japan. The structure was analyzed by FAB-MS/MS together with Edman degradation, which was corroborated by solid-phase synthesis. The sequence of EMP-AF, Ile-Asn-Leu-Leu-Lys-Ile-Ala-Lys-Gly-Ile-Ile-Lys-Ser-Leu-NH(2), was similar to that of mastoparan, a mast cell degranulating peptide from a hornet venom; tetradecapeptide with C-terminus amidated and rich in hydrophobic and basic amino acids. In fact, EMP-AF exhibited similar activity to mastoparan in stimulating degranulation from rat peritoneal mast cells and RBL-2H3 cells. It also showed significant hemolytic activity in human erythrocytes. Therefore, this is the first example that a mast cell degranulating peptide is found in the solitary wasp venom. Besides the degranulation and hemolytic activity, EMP-AF also affects on neuromuscular transmission in the lobster walking leg preparation. Three analogs EMP-AF-1 approximately 3 were snythesized and biologically tested together with EMP-AF, resulting in the importance of the C-terminal amide structure for biological activities.

  7. Usefullness of IGH/TCR PCR studies in lymphoproliferative disorders with inconclusive clonality by flow cytometry.

    PubMed

    Ribera, Jordi; Zamora, Lurdes; Juncà, Jordi; Rodríguez, Inés; Marcé, Silvia; Cabezón, Marta; Millá, Fuensanta

    2013-07-25

    In up to 5-15% of studies of lymphoproliferative disorders (LPD) flow cytometry (FCM) or immunomorphologic methods cannot discriminate malignant from reactive processes. The aim of this work was to determine the usefulness of PCR for solving these diagnostic uncertainties. We analyzed IGH and TCRγ genes by PCR in 106 samples with inconclusive FCM results. A clonal result was registered in 36/106 studies, with a LPD being confirmed in 27 (75%) of these cases. Specifically, 9/9 IGH clonal and 16/25 TCRγ clonal results were finally diagnosed with LPD. Additionally, 2 clonal TCRγ samples with suspicion of undefined LPD were finally diagnosed with T LPD. Although polyclonal results were obtained in 47 of the cases studied (38 IGH and 9 TCRγ), hematologic neoplasms were diagnosed in 4/38 IGH polyclonal and in 1/9 TCRγ polyclonal studies. There were also 14 PCR polyclonal results (4 IGH, 10 TCRγ), albeit non-conclusive. Of these, 2/4 were eventually diagnosed with B-cell lymphoma and 3/10 with T-cell LPD. In 8 IGH samples the results of PCR techniques were non-informative but in 3/8 cases a B lymphoma was finally confirmed. We concluded that PCR is a useful technique to identify LPD when FCM is inconclusive. A PCR clonal B result is indicative of malignancy but IGH polyclonal and non-conclusive results do not exclude lymphoid neoplasms. Interpretation of T-cell clonality should be based on all the available clinical and analytical data. © 2013 Clinical Cytometry Society. Copyright © 2013 Clinical Cytometry Society.

  8. Pre-leukemic clonal hematopoiesis and the risk of therapy-related myeloid neoplasms: a case-control study

    PubMed Central

    Takahashi, Koichi; Wang, Feng; Kantarjian, Hagop; Doss, Denaha; Khanna, Kanhav; Thompson, Erika; Zhao, Li; Patel, Keyur; Neelapu, Sattva; Gumbs, Curtis; Bueso-Ramos, Carlos; DiNardo, Courtney D; Colla, Simona; Ravandi, Farhad; Zhang, Jianhua; Huang, Xuelin; Wu, Xifeng; Samaniego, Felipe; Garcia-Manero, Guillermo; Andrew Futreal, P.

    2017-01-01

    Background Therapy-related myeloid neoplasms (t-MNs) are often fatal secondary malignancies. Risk factors for t-MNs are not well understood. Recent studies suggested that individuals with clonal hematopoiesis have higher risk of developing hematological malignancies. We hypothesized that cancer patients with clonal hematopoiesis have increased risk of developing t-MNs. Methods We conducted a retrospective case-control study to compare the prevalence of clonal hematopoiesis between patients who developed t-MNs (cases) and who did not develop t-MNs (control). For cases, we studied14 patients with various types of cancers who developed t-MNs and whose paired samples of t-MN bone marrow (BM) and peripheral blood (PB) that were previously obtained at the time of primary cancer diagnosis were available. Fifty four patients with lymphoma who received combination chemotherapy and did not develop t-MNs after at least 5 years of follow up were studied as a control. We performed molecular barcode sequencing of 32 genes on the pre-treatment PB samples to detect clonal hematopoiesis. For the t-MN cases, we also performed targeted gene sequencing on t-MN BM samples and investigated clonal evolution from clonal hematopoiesis to t-MNs. To confirm association between clonal hematopoiesis and t-MN development, we also analyzed prevalence of clonal hematopoiesis in a separate cohort of 74 patients with lymphoma. All of these patients were treated under the prospective randomized trial of frontline chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) with or without melatonin and 5 (7%) of them had developed t-MNs. Findings In 14 patients with t-MNs, we detected pre-leukemic mutations in 10 of their prior PB samples (71%). In control, clonal hematopoiesis was detected in 17 patients (31%), and the cumulative incidence of t-MNs at 5 years was significantly higher in patients with clonal hematopoiesis (30% [95% CI: 16% – 51%] vs. 7% [95% CI: 2% – 21

  9. Long-Term Colonization of the Cystic Fibrosis Lung by Burkholderia cepacia Complex Bacteria: Epidemiology, Clonal Variation, and Genome-Wide Expression Alterations

    PubMed Central

    Coutinho, Carla P.; dos Santos, Sandra C.; Madeira, Andreia; Mira, Nuno P.; Moreira, Ana S.; Sá-Correia, Isabel

    2011-01-01

    Long-term respiratory infections with Burkholderia cepacia complex (Bcc) bacteria in cystic fibrosis (CF) patients generally lead to a more rapid decline in lung function and, in some cases, to a fatal necrotizing pneumonia known as the “cepacia syndrome.” Bcc bacteria are ubiquitous in the environment and are recognized as serious opportunistic pathogens that are virtually impossible to eradicate from the CF lung, posing a serious clinical threat. The epidemiological survey of Bcc bacteria involved in respiratory infections at the major Portuguese CF Treatment Center at Santa Maria Hospital, in Lisbon, has been carried out by our research group for the past 16 years, covering over 500 clinical isolates where B. cepacia and B. cenocepacia are the predominant species, with B. stabilis, B. contaminans, B. dolosa, and B. multivorans also represented. The systematic and longitudinal study of this CF population during such an extended period of time represents a unique case–study, comprehending 41 Bcc-infected patients (29 pediatric and 12 adult) of whom around 70% have been persistently colonized between 7 months and 9 years. During chronic infection, the CF airways represent an evolving ecosystem, with multiple phenotypic variants emerging from the clonal population and becoming established in the patients’ airways as the result of genetic adaptation. Understanding the evolutionary mechanisms involved is crucial for an improved therapeutic outcome of chronic infections in CF. This review focuses on our contribution to the understanding of these adaptive mechanisms based on extensive phenotypic, genotypic, and genome-wide expression approaches of selected Bcc clonal variants obtained during long-term colonization of the CF airways. PMID:22919578

  10. Long-term colonization of the cystic fibrosis lung by Burkholderia cepacia complex bacteria: epidemiology, clonal variation, and genome-wide expression alterations.

    PubMed

    Coutinho, Carla P; Dos Santos, Sandra C; Madeira, Andreia; Mira, Nuno P; Moreira, Ana S; Sá-Correia, Isabel

    2011-01-01

    Long-term respiratory infections with Burkholderia cepacia complex (Bcc) bacteria in cystic fibrosis (CF) patients generally lead to a more rapid decline in lung function and, in some cases, to a fatal necrotizing pneumonia known as the "cepacia syndrome." Bcc bacteria are ubiquitous in the environment and are recognized as serious opportunistic pathogens that are virtually impossible to eradicate from the CF lung, posing a serious clinical threat. The epidemiological survey of Bcc bacteria involved in respiratory infections at the major Portuguese CF Treatment Center at Santa Maria Hospital, in Lisbon, has been carried out by our research group for the past 16 years, covering over 500 clinical isolates where B. cepacia and B. cenocepacia are the predominant species, with B. stabilis, B. contaminans, B. dolosa, and B. multivorans also represented. The systematic and longitudinal study of this CF population during such an extended period of time represents a unique case-study, comprehending 41 Bcc-infected patients (29 pediatric and 12 adult) of whom around 70% have been persistently colonized between 7 months and 9 years. During chronic infection, the CF airways represent an evolving ecosystem, with multiple phenotypic variants emerging from the clonal population and becoming established in the patients' airways as the result of genetic adaptation. Understanding the evolutionary mechanisms involved is crucial for an improved therapeutic outcome of chronic infections in CF. This review focuses on our contribution to the understanding of these adaptive mechanisms based on extensive phenotypic, genotypic, and genome-wide expression approaches of selected Bcc clonal variants obtained during long-term colonization of the CF airways.

  11. Sequential karyotyping in Burkitt lymphoma reveals a linear clonal evolution with increase in karyotype complexity and a high frequency of recurrent secondary aberrations.

    PubMed

    Aukema, Sietse M; Theil, Laura; Rohde, Marius; Bauer, Benedikt; Bradtke, Jutta; Burkhardt, Birgit; Bonn, Bettina R; Claviez, Alexander; Gattenlöhner, Stefan; Makarova, Olga; Nagel, Inga; Oschlies, Ilske; Pott, Christiane; Szczepanowski, Monika; Traulsen, Arne; Kluin, Philip M; Klapper, Wolfram; Siebert, Reiner; Murga Penas, Eva M

    2015-09-01

    Typical Burkitt lymphoma is characterized by an IG-MYC translocation and overall low genomic complexity. Clinically, Burkitt lymphoma has a favourable prognosis with very few relapses. However, the few patients experiencing disease progression and/or relapse have a dismal outcome. Here we report cytogenetic findings of seven cases of Burkitt lymphoma in which sequential karyotyping was performed at time of diagnosis and/or disease progression/relapse(s). After case selection, karyotype re-review and additional molecular analyses were performed in six paediatric cases, treated in Berlin-Frankfurt-Münster-Non-Hodgkin lymphoma study group trials, and one additional adult patient. Moreover, we analysed 18 cases of Burkitt lymphoma from the Mitelman database in which sequential karyotyping was performed. Our findings show secondary karyotypes to have a significant increase in load of cytogenetic aberrations with a mean number of 2, 5 and 8 aberrations for primary, secondary and third investigations. Importantly, this increase in karyotype complexity seemed to result from recurrent secondary chromosomal changes involving mainly trisomy 21, gains of 1q and 7q, losses of 6q, 11q, 13q, and 17p. In addition, our findings indicate a linear clonal evolution to be the predominant manner of cytogenetic evolution. Our data may provide a biological framework for the dismal outcome of progressive and relapsing Burkitt lymphoma. © 2015 John Wiley & Sons Ltd.

  12. JMJD6 and U2AF65 co-regulate alternative splicing in both JMJD6 enzymatic activity dependent and independent manner.

    PubMed

    Yi, Jia; Shen, Hai-Feng; Qiu, Jin-Song; Huang, Ming-Feng; Zhang, Wen-Juan; Ding, Jian-Cheng; Zhu, Xiao-Yan; Zhou, Yu; Fu, Xiang-Dong; Liu, Wen

    2017-04-07

    JMJD6, a jumonji C (Jmj C) domain-containing protein demethylase and hydroxylase, has been implicated in an array of biological processes. It has been shown that JMJD6 interacts with and hydroxylates multiple serine/arginine-rich (SR) proteins and SR related proteins, including U2AF65, all of which are known to function in alternative splicing regulation. However, whether JMJD6 is widely involved in alternative splicing and the molecular mechanism underlying JMJD6-regulated alternative splicing have remained incompletely understood. Here, by using RASL-Seq, we investigated the functional impact of RNA-dependent interaction between JMJD6 and U2AF65, revealing that JMJD6 and U2AF65 co-regulated a large number of alternative splicing events. We further demonstrated the JMJD6 function in alternative splicing in jmjd6 knockout mice. Mechanistically, we showed that the enzymatic activity of JMJD6 was required for a subset of JMJD6-regulated splicing, and JMJD6-mediated lysine hydroxylation of U2AF65 could account for, at least partially, their co-regulated alternative splicing events, suggesting both JMJD6 enzymatic activity-dependent and independent control of alternative splicing. These findings reveal an intimate link between JMJD6 and U2AF65 in alternative splicing regulation, which has important implications in development and disease processes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Invasive clonal plant species have a greater root-foraging plasticity than non-invasive ones.

    PubMed

    Keser, Lidewij H; Dawson, Wayne; Song, Yao-Bin; Yu, Fei-Hai; Fischer, Markus; Dong, Ming; van Kleunen, Mark

    2014-03-01

    Clonality is frequently positively correlated with plant invasiveness, but which aspects of clonality make some clonal species more invasive than others is not known. Due to their spreading growth form, clonal plants are likely to experience spatial heterogeneity in nutrient availability. Plasticity in allocation of biomass to clonal growth organs and roots may allow these plants to forage for high-nutrient patches. We investigated whether this foraging response is stronger in species that have become invasive than in species that have not. We used six confamilial pairs of native European clonal plant species differing in invasion success in the USA. We grew all species in large pots under homogeneous or heterogeneous nutrient conditions in a greenhouse, and compared their nutrient-foraging response and performance. Neither invasive nor non-invasive species showed significant foraging responses to heterogeneity in clonal growth organ biomass or in aboveground biomass of clonal offspring. Invasive species had, however, a greater positive foraging response in terms of root and belowground biomass than non-invasive species. Invasive species also produced more total biomass. Our results suggest that the ability for strong root foraging is among the characteristics promoting invasiveness in clonal plants.

  14. Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study.

    PubMed

    Takahashi, Koichi; Wang, Feng; Kantarjian, Hagop; Doss, Denaha; Khanna, Kanhav; Thompson, Erika; Zhao, Li; Patel, Keyur; Neelapu, Sattva; Gumbs, Curtis; Bueso-Ramos, Carlos; DiNardo, Courtney D; Colla, Simona; Ravandi, Farhad; Zhang, Jianhua; Huang, Xuelin; Wu, Xifeng; Samaniego, Felipe; Garcia-Manero, Guillermo; Futreal, P Andrew

    2017-01-01

    , doxorubicin, vincristine, and prednisone, with or without melatonin. This trial was done at MD Anderson Cancer Center between 1999 and 2001 (protocol number 98-009). We identified 14 cases and 54 controls. Of the 14 cases, we detected clonal haemopoiesis in the peripheral blood samples of ten (71%) patients. We detected clonal haemopoiesis in 17 (31%) of the 54 controls. The cumulative incidence of therapy-related myeloid neoplasms in both cases and controls at 5 years was significantly higher in patients with clonal haemopoiesis (30%, 95% CI 16-51) than in those without (7%, 2-21; p=0·016). In the external cohort, five (7%) of 74 patients developed therapy-related myeloid neoplasms, of whom four (80%) had clonal haemopoiesis; 11 (16%) of 69 patients who did not develop therapy-related myeloid neoplasms had clonal haemopoiesis. In the external cohort, the cumulative incidence of therapy-related myeloid neoplasms at 10 years was significantly higher in patients with clonal haemopoiesis (29%, 95% CI 8-53) than in those without (0%, 0-0; p=0·0009). In a multivariate Fine and Gray model based on the external cohort, the presence of clonal haemopoiesis significantly increased the risk of therapy-related myeloid neoplasm development (hazard ratio 13·7, 95% CI 1·7-108·7; p=0·013). Preleukaemic clonal haemopoiesis is common in patients with therapy-related myeloid neoplasms at the time of their primary cancer diagnosis and before they have been exposed to treatment. Our results suggest that clonal haemopoiesis could be used as a predictive marker to identify patients with cancer who are at risk of developing therapy-related myeloid neoplasms. A prospective trial to validate this concept is warranted. Cancer Prevention Research Institute of Texas, Red and Charline McCombs Institute for the Early Detection and Treatment of Cancer, NIH through MD Anderson Cancer Center Support Grant, and the MD Anderson MDS & AML Moon Shots Program. Copyright © 2017 Elsevier Ltd. All rights

  15. Increased Heart Rate Is Associated With Higher Mortality in Patients With Atrial Fibrillation (AF): Results From the Outcomes Registry for Better Informed Treatment of AF (ORBIT-AF)

    PubMed Central

    Steinberg, Benjamin A; Kim, Sunghee; Thomas, Laine; Fonarow, Gregg C; Gersh, Bernard J; Holmqvist, Fredrik; Hylek, Elaine; Kowey, Peter R; Mahaffey, Kenneth W; Naccarelli, Gerald; Reiffel, James A; Chang, Paul; Peterson, Eric D; Piccini, Jonathan P

    2015-01-01

    Background Most patients with atrial fibrillation (AF) require rate control; however, the optimal target heart rate remains under debate. We aimed to assess rate control and subsequent outcomes among patients with permanent AF. Methods and Results We studied 2812 US outpatients with permanent AF in the Outcomes Registry for Better Informed Treatment of Atrial Fibrillation. Resting heart rate was measured longitudinally and used as a time-dependent covariate in multivariable Cox models of all-cause and cause-specific mortality during a median follow-up of 24 months. At baseline, 7.4% (n=207) had resting heart rate <60 beats per minute (bpm), 62% (n=1755) 60 to 79 bpm, 29% (n=817) 80 to 109 bpm, and 1.2% (n=33) ≥110 bpm. Groups did not differ by age, previous cerebrovascular disease, heart failure status, CHA2DS2-VASc scores, renal function, or left ventricular function. There were significant differences in race (P=0.001), sinus node dysfunction (P=0.004), and treatment with calcium-channel blockers (P=0.006) and anticoagulation (P=0.009). In analyses of continuous heart rates, lower heart rate ≤65 bpm was associated with higher all-cause mortality (adjusted hazard ratio [HR], 1.15 per 5-bpm decrease; 95% CI, 1.01 to 1.32; P=0.04). Similarly, increasing heart rate >65 bpm was associated with higher all-cause mortality (adjusted HR, 1.10 per 5-bpm increase; 95% CI, 1.05 to 1.15; P<0.0001). This relationship was consistent across endpoints and in a broader sensitivity analysis of permanent and nonpermanent AF patients. Conclusions Among patients with permanent AF, there is a J-shaped relationship between heart rate and mortality. These data support current guideline recommendations, and clinical trials are warranted to determine optimal rate control. Clinical Trial Registration URL: http://clinicaltrials.gov/. Unique identifier: NCT01165710. PMID:26370445

  16. Increased Heart Rate Is Associated With Higher Mortality in Patients With Atrial Fibrillation (AF): Results From the Outcomes Registry for Better Informed Treatment of AF (ORBIT-AF).

    PubMed

    Steinberg, Benjamin A; Kim, Sunghee; Thomas, Laine; Fonarow, Gregg C; Gersh, Bernard J; Holmqvist, Fredrik; Hylek, Elaine; Kowey, Peter R; Mahaffey, Kenneth W; Naccarelli, Gerald; Reiffel, James A; Chang, Paul; Peterson, Eric D; Piccini, Jonathan P

    2015-09-14

    Most patients with atrial fibrillation (AF) require rate control; however, the optimal target heart rate remains under debate. We aimed to assess rate control and subsequent outcomes among patients with permanent AF. We studied 2812 US outpatients with permanent AF in the Outcomes Registry for Better Informed Treatment of Atrial Fibrillation. Resting heart rate was measured longitudinally and used as a time-dependent covariate in multivariable Cox models of all-cause and cause-specific mortality during a median follow-up of 24 months. At baseline, 7.4% (n=207) had resting heart rate <60 beats per minute (bpm), 62% (n=1755) 60 to 79 bpm, 29% (n=817) 80 to 109 bpm, and 1.2% (n=33) ≥110 bpm. Groups did not differ by age, previous cerebrovascular disease, heart failure status, CHA2DS2-VASc scores, renal function, or left ventricular function. There were significant differences in race (P=0.001), sinus node dysfunction (P=0.004), and treatment with calcium-channel blockers (P=0.006) and anticoagulation (P=0.009). In analyses of continuous heart rates, lower heart rate ≤65 bpm was associated with higher all-cause mortality (adjusted hazard ratio [HR], 1.15 per 5-bpm decrease; 95% CI, 1.01 to 1.32; P=0.04). Similarly, increasing heart rate >65 bpm was associated with higher all-cause mortality (adjusted HR, 1.10 per 5-bpm increase; 95% CI, 1.05 to 1.15; P<0.0001). This relationship was consistent across endpoints and in a broader sensitivity analysis of permanent and nonpermanent AF patients. Among patients with permanent AF, there is a J-shaped relationship between heart rate and mortality. These data support current guideline recommendations, and clinical trials are warranted to determine optimal rate control. URL: http://clinicaltrials.gov/. Unique identifier: NCT01165710. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  17. A Common Origin for B-1a and B-2 Lymphocytes in Clonal Pre- Hematopoietic Stem Cells.

    PubMed

    Hadland, Brandon K; Varnum-Finney, Barbara; Mandal, Pankaj K; Rossi, Derrick J; Poulos, Michael G; Butler, Jason M; Rafii, Shahin; Yoder, Mervin C; Yoshimoto, Momoko; Bernstein, Irwin D

    2017-06-06

    Recent evidence points to the embryonic emergence of some tissue-resident innate immune cells, such as B-1a lymphocytes, prior to and independently of hematopoietic stem cells (HSCs). However, whether the full hematopoietic repertoire of embryonic HSCs initially includes these unique lineages of innate immune cells has been difficult to assess due to lack of clonal assays that identify and assess HSC precursor (pre-HSC) potential. Here, by combining index sorting of single embryonic hemogenic precursors with in vitro HSC maturation and transplantation assays, we analyze emerging pre-HSCs at the single-cell level, revealing their unique stage-specific properties and clonal lineage potential. Remarkably, clonal pre-HSCs detected between E9.5 and E11.5 contribute to the complete B cell repertoire, including B-1a lymphocytes, revealing a previously unappreciated common precursor for all B cell lineages at the pre-HSC stage and a second embryonic origin for B-1a lymphocytes. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Aldosterone induces clonal β-cell failure through glucocorticoid receptor

    PubMed Central

    Chen, Fang; Liu, Jia; Wang, Yanyang; Wu, Tijun; Shan, Wei; Zhu, Yunxia; Han, Xiao

    2015-01-01

    Aldosterone excess causes insulin resistance in peripheral tissues and directly impairs the function of clonal β-cell. The aim of this study was to investigate the molecular mechanisms involved in the aldosterone-induced impairment of clonal β-cells. As expected, aldosterone induced apoptosis and β-cell dysfunction, including impairment of insulin synthesis and secretion, which were reversed by Glucocorticoid receptor (GR) antagonists or GR-specific siRNA. However, mineralocorticoid receptor (MR) antagonists or MR-specific siRNA had no effect on impairment of clonal β-cells induced by aldosterone. Besides, aldosterone significantly decreased expression and activity of MafA, while activated JNK and p38 MAPK in a GR-dependent manner. In addition, JNK inhibitors (SP600125) and/or p38 inhibitors (SB203580) could abolish the effect of aldosterone on MafA expression and activity. Importantly, overexpression of JNK1 or p38 reversed the protective effect of a GR antagonist on the decrease of MafA expression and activity. Furthermore, aldosterone inhibits MafA expression at the transcriptional and post-transcriptional level through activation of JNK and p38, respectively. Consequently, overexpression of MafA increased synthesis and secretion of insulin, and decreased apoptosis in clonal β-cells exposed to aldosterone. These findings identified aldosterone as an inducer of clonal β-cell failure that operates through the GR-MAPK-MafA signaling pathway. PMID:26287126

  19. Clonal cooperativity in heterogenous cancers

    PubMed Central

    Zhou, Hengbo; Neelakantan, Deepika; Ford, Heide L.

    2016-01-01

    Tumor heterogeneity is a major obstacle to the development of effective therapies and is thus an important focus of cancer research. Genetic and epigenetic alterations, as well as altered tumor microenvironments, result in tumors made up of diverse subclones with different genetic and phenotypic characteristics. Intratumor heterogeneity enables competition, but also supports clonal cooperation via cell-cell contact or secretion of factors, resulting in enhanced tumor progression. Here, we summarize recent findings related to interclonal interactions within a tumor and the therapeutic implications of such interactions, with an emphasis on how different subclones collaborate with each other to promote proliferation, metastasis and therapy-resistance. Furthermore, we propose that disruption of clonal cooperation by targeting key factors (such as Wnt and Hedgehog, amongst others) can be an alternative approach to improving clinical outcomes. PMID:27582427

  20. 3′UTR-truncated Hmga2 cDNA causes MPN-like hematopoiesis by conferring a clonal growth advantage at the level of HSC in mice

    PubMed Central

    Ikeda, Kazuhiko; Mason, Philip J.

    2011-01-01

    Overexpression of high mobility group AT-hook 2 (HMGA2) is found in a number of benign and malignant tumors, including the clonal PIGA− cells in 2 cases of paroxysmal nocturnal hemoglobinuria (PNH) and some myeloproliferative neoplasms (MPNs), and recently in hematopoietic cell clones resulting from gene therapy procedures. In nearly all these cases overexpression is because of deletions or translocations that remove the 3′ untranslated region (UTR) which contains binding sites for the regulatory micro RNA let-7. We were therefore interested in the effect of HMGA2 overexpression in hematopoietic tissues in transgenic mice (ΔHmga2 mice) carrying a 3′UTR-truncated Hmga2 cDNA. ΔHmga2 mice expressed increased levels of HMGA2 protein in various tissues including hematopoietic cells and showed proliferative hematopoiesis with increased numbers in all lineages of peripheral blood cells, hypercellular bone marrow (BM), splenomegaly with extramedullary erythropoiesis and erythropoietin-independent erythroid colony formation. ΔHmga2-derived BM cells had a growth advantage over wild-type cells in competitive repopulation and serial transplantation experiments. Thus overexpression of HMGA2 leads to proliferative hematopoiesis with clonal expansion at the stem cell and progenitor levels and may account for the clonal expansion in PNH and MPNs and in gene therapy patients after vector insertion disrupts the HMGA2 locus. PMID:21460244

  1. [Lymphocytic Clonal Expansion in Adult Patients with Epstein-Barr Virus-Associated Lymphoproliferative Disease].

    PubMed

    Zhong, Feng-Luan; Zhang, Hong-Yu; Zhang, Qian; Feng, Jia; Zhang, Wen-Li; Xu, Lei; Xu, Hai-Chan; Wen, Juan-Juan; Meng, Qing-Xiang

    2017-12-01

    To explore the lymphocytic clonal expansion in adult patients with Epstein-Barr virus-associated lymphoproliferative diseases (EBV+LPD), and to investigate the experimental methods for EBV+LPD cells so as to provide a more objective measure for the diagnosis, classification and prognosis in the early stage of this disease. Peripheral blood samples from 5 patients with EBV+LPD, 4 patients with adult infectious mononucleosis(IM) as negative control and 3 patients with acute NK-cell leukemia(ANKL) as positive control were collected. Prior to immunochemotherapy, viral loads and clonality were analysed by flow cytometry (FCM), T cell receptor gene rearrangement (TCR) was detected by real-time polymerase chain reaction (RT-PCR), and diversity of EB virus terminal repeat (EBV-TR) was detected by Southern blot. FCM showed only 1 case with clonal TCRVβ in 5 patients with EBV+LPD, TCR clonal expansion could be detected both in patients with IM(4 of 4) and 4 patients with EBV+LPD(4 of 5), Out of patients with EBV+LPD, 1 patient displayed a monoclonal band and 2 patients showed oligoclonal bands when detecting EBV-TR by southen blot. Detecting the diversity of EBV-TR by Southern blot may be the most objective way to reflex clonal transformation of EBV+LPD, which is of great benefit to the diagnosis, classification and prognosis in the early stage of this disease.

  2. Emergence of Clonal Hematopoiesis in the Majority of Patients with Acquired Aplastic Anemia

    PubMed Central

    Babushok, Daria V.; Perdigones, Nieves; Perin, Juan C.; Olson, Timothy S.; Ye, Wenda; Roth, Jacquelyn J.; Lind, Curt; Cattier, Carine; Li, Yimei; Hartung, Helge; Paessler, Michele E.; Frank, Dale M.; Xie, Hongbo M.; Cross, Shanna; Cockroft, Joshua D.; Podsakoff, Gregory M.; Monos, Dimitrios; Biegel, Jaclyn A.; Mason, Philip J.; Bessler, Monica

    2015-01-01

    Acquired aplastic anemia (aAA) is a non-malignant disease caused by autoimmune destruction of early hematopoietic cells. Clonal hematopoiesis is a late complication, seen in 20–25% of older patients. We hypothesized that clonal hematopoiesis in aAA is a more general phenomenon, which can arise early in disease even in younger patients. To evaluate clonal hematopoiesis in aAA, we used comparative whole exome sequencing of paired bone marrow and skin in 22 patients. We found somatic mutations in sixteen patients (72.7%) with a median disease duration of 1 year; twelve (66.7%) were patients with pediatriconset aAA. Fifty-eight mutations in 51 unique genes were primarily in pathways of immunity and transcriptional regulation. Most frequently mutated was PIGA, with 7 mutations. Only two mutations were in genes recurrently-mutated in MDS. Two patients had oligoclonal loss of HLA alleles, linking immune escape to clone emergence. Two patients had activating mutations in key signaling pathways (STAT5B(p.N642H), CAMK2G(p.T306M)). Our results suggest that clonal hematopoiesis in aAA is common, with two mechanisms emerging― immune escape and increased proliferation. Our findings expand conceptual understanding of this non-neoplastic blood disorder. Future prospective studies of clonal hematopoiesis in aAA will be critical for understanding outcomes, and for designing personalized treatment strategies. PMID:25800665

  3. Demographic consequences of greater clonal than sexual reproduction in Dicentra canadensis.

    PubMed

    Lin, Chia-Hua; Miriti, Maria N; Goodell, Karen

    2016-06-01

    Clonality is a widespread life history trait in flowering plants that may be essential for population persistence, especially in environments where sexual reproduction is unpredictable. Frequent clonal reproduction, however, could hinder sexual reproduction by spatially aggregating ramets that compete with seedlings and reduce inter-genet pollination. Nevertheless, the role of clonality in relation to variable sexual reproduction in population dynamics is often overlooked. We combined population matrix models and pollination experiments to compare the demographic contributions of clonal and sexual reproduction in three Dicentra canadensis populations, one in a well-forested landscape and two in isolated forest remnants. We constructed stage-based transition matrices from 3 years of census data to evaluate annual population growth rates, λ. We used loop analysis to evaluate the relative contribution of different reproductive pathways to λ. Despite strong temporal and spatial variation in seed set, populations generally showed stable growth rates. Although we detected some pollen limitation of seed set, manipulative pollination treatments did not affect population growth rates. Clonal reproduction contributed significantly more than sexual reproduction to population growth in the forest remnants. Only at the well-forested site did sexual reproduction contribute as much as clonal reproduction to population growth. Flowering plants were more likely to transition to a smaller size class with reduced reproductive potential in the following year than similarly sized nonflowering plants, suggesting energy trade-offs between sexual and clonal reproduction at the individual level. Seed production had negligible effects on growth and tuber production of individual plants. Our results demonstrate that clonal reproduction is vital for population persistence in a system where sexual reproduction is unpredictable. The bias toward clonality may be driven by low fitness returns

  4. Age-related cancer mutations associated with clonal hematopoietic expansion

    PubMed Central

    Xie, Mingchao; Lu, Charles; Wang, Jiayin; McLellan, Michael D.; Johnson, Kimberly J.; Wendl, Michael C.; McMichael, Joshua F.; Schmidt, Heather K.; Yellapantula, Venkata; Miller, Christopher A.; Ozenberger, Bradley A.; Welch, John S.; Link, Daniel C.; Walter, Matthew J.; Mardis, Elaine R.; Dipersio, John F.; Chen, Feng; Wilson, Richard K.; Ley, Timothy J.; Ding, Li

    2015-01-01

    Several genetic alterations characteristic of leukemia and lymphoma have been detected in the blood of individuals without apparent hematological malignancies. We analyzed blood-derived sequence data from 2,728 individuals within The Cancer Genome Atlas, and discovered 77 blood-specific mutations in cancer-associated genes, the majority being associated with advanced age. Remarkably, 83% of these mutations were from 19 leukemia/lymphoma-associated genes, and nine were recurrently mutated (DNMT3A, TET2, JAK2, ASXL1, TP53, GNAS, PPM1D, BCORL1 and SF3B1). We identified 14 additional mutations in a very small fraction of blood cells, possibly representing the earliest stages of clonal expansion in hematopoietic stem cells. Comparison of these findings to mutations in hematological malignancies identified several recurrently mutated genes that may be disease initiators. Our analyses show that the blood cells of more than 2% of individuals (5–6% of people older than 70 years) contain mutations that may represent premalignant, initiating events that cause clonal hematopoietic expansion. PMID:25326804

  5. Sub-inhibitory concentrations of oxacillin modify the expression of agr locus in Staphylococcus aureus clinical strains belonging to different clonal complexes.

    PubMed

    Viedma, Esther; Pérez-Montarelo, Dafne; Villa, Jennifer; Muñoz-Gallego, Irene; Larrosa, Nieves; Fernández-Hidalgo, Nuria; Gavaldà, Joan; Almirante, Benito; Chaves, Fernando

    2018-04-16

    The ability of Staphylococcus aureus to invade tissues and cause an infectious disease is the result of a multi-factorial process supported by the huge number of virulence factors inherent to this microorganism tightly regulated by the accessory gene regulator (agr). During antimicrobial therapy bacteria may be exposed to sub-inhibitory concentrations (subMICs) of antibiotics that may trigger transcriptional changes that may have an impact on the pathogenesis of infection. The objective of this study was to investigate the effect of oxacillin sub-MICs on agr system expression as the key component in the regulation of virulence in methicillin-susceptible (MSSA) and -resistant S. aureus (MRSA) strains. Furthermore, we studied the genetic basis of the agr locus and their potential association with the expression levels. We have examined the expression of RNAIII and agrA mRNA as biomarkers for agr expression in the presence and absence of oxacillin subMICs in 10 MSSA and 4 MRSA clinical strains belonging to 5 clonal complexes (CC45-agrI, CC8-agrI, CC5-agrII, CC15-agrII and CC30-agrIII) causing endovascular complications. The DNA sequences of agr locus were obtained by whole genome sequencing. Our results revealed that exposure to subMICs of oxacillin had an impact on agr locus expression modifying the relative levels of expression with increases in 11 strains and with decreases in 3 strains. Thereby, the exposure to subMICs of oxacillin resulted in higher levels of expression of agr in CC15 and CC45 and lower levels in CC30. We also observed the presence of mutations in agrC and agrA in 13/14 strains with similar mutation profiles among strains within individual CCs except for strains of CC5. Although, agr expression levels differed among strains within CCs, the presence of these mutations was associated with differences in agr expression levels in most cases. Changes in agr expression induced by exposure to oxacillin subMICs should be considered because they could

  6. Chromosome aberrations of clonal origin are present in astronauts' blood lymphocytes.

    PubMed

    George, K; Durante, M; Willingham, V; Cucinotta, F A

    2004-01-01

    Radiation-induced chromosome translocations remain in peripheral blood cells over many years, and can potentially be used to measure retrospective doses or prolonged low-dose rate exposures. However, several recent studies have indicated that some individuals possess clones of cells with balanced chromosome abnormalities, which can result in an overestimation of damage and, therefore, influence the accuracy of dose calculations. We carefully examined the patterns of chromosome damage found in the blood lymphocytes of twelve astronauts, and also applied statistical methods to screen for the presence of potential clones. Cells with clonal aberrations were identified in three of the twelve individuals. These clonal cells were present in samples collected both before and after space flight, and yields are higher than previously reported for healthy individuals in this age range (40-52 years of age). The frequency of clonal damage appears to be even greater in chromosomes prematurely condensed in interphase, when compared with equivalent analysis in metaphase cells. The individuals with clonal aberrations were followed-up over several months and the yields of all clones decreased during this period. Since clonal aberrations may be associated with increased risk of tumorigenesis, it is important to accurately identify cells containing clonal rearrangements for risk assessment as well as biodosimetry. Copyright 2003 S. Karger AG, Basel

  7. Chromosome aberrations of clonal origin are present in astronauts' blood lymphocytes

    NASA Technical Reports Server (NTRS)

    George, K.; Durante, M.; Willingham, V.; Cucinotta, F. A.

    2004-01-01

    Radiation-induced chromosome translocations remain in peripheral blood cells over many years, and can potentially be used to measure retrospective doses or prolonged low-dose rate exposures. However, several recent studies have indicated that some individuals possess clones of cells with balanced chromosome abnormalities, which can result in an overestimation of damage and, therefore, influence the accuracy of dose calculations. We carefully examined the patterns of chromosome damage found in the blood lymphocytes of twelve astronauts, and also applied statistical methods to screen for the presence of potential clones. Cells with clonal aberrations were identified in three of the twelve individuals. These clonal cells were present in samples collected both before and after space flight, and yields are higher than previously reported for healthy individuals in this age range (40-52 years of age). The frequency of clonal damage appears to be even greater in chromosomes prematurely condensed in interphase, when compared with equivalent analysis in metaphase cells. The individuals with clonal aberrations were followed-up over several months and the yields of all clones decreased during this period. Since clonal aberrations may be associated with increased risk of tumorigenesis, it is important to accurately identify cells containing clonal rearrangements for risk assessment as well as biodosimetry. Copyright 2003 S. Karger AG, Basel.

  8. Multifocal clonal evolution characterized using circulating tumour DNA in a case of metastatic breast cancer

    PubMed Central

    Murtaza, Muhammed; Dawson, Sarah-Jane; Pogrebniak, Katherine; Rueda, Oscar M.; Provenzano, Elena; Grant, John; Chin, Suet-Feung; Tsui, Dana W. Y.; Marass, Francesco; Gale, Davina; Ali, H. Raza; Shah, Pankti; Contente-Cuomo, Tania; Farahani, Hossein; Shumansky, Karey; Kingsbury, Zoya; Humphray, Sean; Bentley, David; Shah, Sohrab P.; Wallis, Matthew; Rosenfeld, Nitzan; Caldas, Carlos

    2015-01-01

    Circulating tumour DNA analysis can be used to track tumour burden and analyse cancer genomes non-invasively but the extent to which it represents metastatic heterogeneity is unknown. Here we follow a patient with metastatic ER-positive and HER2-positive breast cancer receiving two lines of targeted therapy over 3 years. We characterize genomic architecture and infer clonal evolution in eight tumour biopsies and nine plasma samples collected over 1,193 days of clinical follow-up using exome and targeted amplicon sequencing. Mutation levels in the plasma samples reflect the clonal hierarchy inferred from sequencing of tumour biopsies. Serial changes in circulating levels of sub-clonal private mutations correlate with different treatment responses between metastatic sites. This comparison of biopsy and plasma samples in a single patient with metastatic breast cancer shows that circulating tumour DNA can allow real-time sampling of multifocal clonal evolution. PMID:26530965

  9. Multifocal clonal evolution characterized using circulating tumour DNA in a case of metastatic breast cancer.

    PubMed

    Murtaza, Muhammed; Dawson, Sarah-Jane; Pogrebniak, Katherine; Rueda, Oscar M; Provenzano, Elena; Grant, John; Chin, Suet-Feung; Tsui, Dana W Y; Marass, Francesco; Gale, Davina; Ali, H Raza; Shah, Pankti; Contente-Cuomo, Tania; Farahani, Hossein; Shumansky, Karey; Kingsbury, Zoya; Humphray, Sean; Bentley, David; Shah, Sohrab P; Wallis, Matthew; Rosenfeld, Nitzan; Caldas, Carlos

    2015-11-04

    Circulating tumour DNA analysis can be used to track tumour burden and analyse cancer genomes non-invasively but the extent to which it represents metastatic heterogeneity is unknown. Here we follow a patient with metastatic ER-positive and HER2-positive breast cancer receiving two lines of targeted therapy over 3 years. We characterize genomic architecture and infer clonal evolution in eight tumour biopsies and nine plasma samples collected over 1,193 days of clinical follow-up using exome and targeted amplicon sequencing. Mutation levels in the plasma samples reflect the clonal hierarchy inferred from sequencing of tumour biopsies. Serial changes in circulating levels of sub-clonal private mutations correlate with different treatment responses between metastatic sites. This comparison of biopsy and plasma samples in a single patient with metastatic breast cancer shows that circulating tumour DNA can allow real-time sampling of multifocal clonal evolution.

  10. Trampling, defoliation and physiological integration affect growth, morphological and mechanical properties of a root-suckering clonal tree.

    PubMed

    Xu, Liang; Yu, Fei-Hai; van Drunen, Elles; Schieving, Feike; Dong, Ming; Anten, Niels P R

    2012-04-01

    Grazing is a complex process involving the simultaneous occurrence of both trampling and defoliation. Clonal plants are a common feature of heavily grazed ecosystems where large herbivores inflict the simultaneous pressures of trampling and defoliation on the vegetation. We test the hypothesis that physiological integration (resource sharing between interconnected ramets) may help plants to deal with the interactive effects of trampling and defoliation. In a field study, small and large ramets of the root-suckering clonal tree Populus simonii were subjected to two levels of trampling and defoliation, while connected or disconnected to other ramets. Plant responses were quantified via survival, growth, morphological and stem mechanical traits. Disconnection and trampling increased mortality, especially in small ramets. Trampling increased stem length, basal diameter, fibrous root mass, stem stiffness and resistance to deflection in connected ramets, but decreased them in disconnected ones. Trampling decreased vertical height more in disconnected than in connected ramets, and reduced stem mass in disconnected ramets but not in connected ramets. Defoliation reduced basal diameter, leaf mass, stem mass and leaf area ratio, but did not interact with trampling or disconnection. Although clonal integration did not influence defoliation response, it did alleviate the effects of trampling. We suggest that by facilitating resource transport between ramets, clonal integration compensates for trampling-induced damage to fine roots.

  11. Dispersion of Multidrug-Resistant Enterococcus faecium Isolates Belonging to Major Clonal Complexes in Different Portuguese Settings▿

    PubMed Central

    Freitas, Ana R.; Novais, Carla; Ruiz-Garbajosa, Patricia; Coque, Teresa M.; Peixe, Luísa

    2009-01-01

    The population structure of 56 Enterococcus faecium isolates selected from a collection of enterococci from humans, animals, and the environment in Portugal (1997 to 2007) was analyzed by multilocus sequence typing. We identified 41 sequence types clustering into CC17, CC5, CC9, CC22 and CC94, all clonal lineages comprising isolates from different hosts. Our findings highlight the role of community-associated hosts as reservoirs of enterococci able to cause human infections. PMID:19447948

  12. Clonality and serotypes of Streptococcus mutans among children by multilocus sequence typing

    PubMed Central

    Momeni, Stephanie S.; Whiddon, Jennifer; Cheon, Kyounga; Moser, Stephen A.; Childers, Noel K.

    2015-01-01

    Studies using multilocus sequence typing (MLST) have demonstrated that Streptococcus mutans isolates are genetically diverse. Our laboratory previously demonstrated clonality of S. mutans using MLST but could not discount the possibility of sampling bias. In this study, the clonality of randomly selected S. mutans plaque isolates from African American children was examined using MLST. Serotype and presence of collagen-binding proteins (CBP) cnm/cbm were also assessed. One hundred S. mutans isolates were randomly selected for MLST analysis. Sequence analysis was performed and phylogenetic trees were generated using START2 and MEGA. Thirty-four sequence types (ST) were identified of which 27 were unique to this population. Seventy-five percent of the isolates clustered into 16 clonal groups. Serotypes observed were c (n=84), e (n=3), and k (n=11). The prevalence of S. mutans isolates serotype k was notably high at 17.5%. All isolates were cnm/cbm negative. The clonality of S. mutans demonstrated in this study illustrates the importance of localized populations studies and are consistent with transmission. The prevalence of serotype k, a recently proposed systemic pathogen, observed in this study is higher than reported in most populations and is the first report of S. mutans serotype k in a US population. PMID:26443288

  13. AF-GEOSpace Version 2.0: Space Environment Software Products for 2002

    NASA Astrophysics Data System (ADS)

    Hilmer, R. V.; Ginet, G. P.; Hall, T.; Holeman, E.; Tautz, M.

    2002-05-01

    AF-GEOSpace Version 2.0 (release 2002 on WindowsNT/2000/XP) is a graphics-intensive software program developed by AFRL with space environment models and applications. It has grown steadily to become a development tool for automated space weather visualization products and helps with a variety of tasks: orbit specification for radiation hazard avoidance; satellite design assessment and post-event analysis; solar disturbance effects forecasting; frequency and antenna management for radar and HF communications; determination of link outage regions for active ionospheric conditions; and physics research and education. The object-oriented C++ code is divided into five module classes. Science Modules control science models to give output data on user-specified grids. Application Modules manipulate these data and provide orbit generation and magnetic field line tracing capabilities. Data Modules read and assist with the analysis of user-generated data sets. Graphics Modules enable the display of features such as plane slices, magnetic field lines, line plots, axes, the Earth, stars, and satellites. Worksheet Modules provide commonly requested coordinate transformations and calendar conversion tools. Common input data archive sets, application modules, and 1-, 2-, and 3-D visualization tools are provided to all models. The code documentation includes detailed examples with click-by-click instructions for investigating phenomena that have well known effects on communications and spacecraft systems. AF-GEOSpace Version 2.0 builds on the success of its predecessors. The first release (Version 1.21, 1996/IRIX on SGI) contained radiation belt particle flux and dose models derived from CRRES satellite data, an aurora model, an ionosphere model, and ionospheric HF ray tracing capabilities. Next (Version 1.4, 1999/IRIX on SGI) science modules were added related to cosmic rays and solar protons, low-Earth orbit radiation dosages, single event effects probability maps, ionospheric

  14. Clonal analysis reveals a common origin between nonsomite-derived neck muscles and heart myocardium

    PubMed Central

    Lescroart, Fabienne; Hamou, Wissam; Francou, Alexandre; Théveniau-Ruissy, Magali; Kelly, Robert G.; Buckingham, Margaret

    2015-01-01

    Neck muscles constitute a transition zone between somite-derived skeletal muscles of the trunk and limbs, and muscles of the head, which derive from cranial mesoderm. The trapezius and sternocleidomastoid neck muscles are formed from progenitor cells that have expressed markers of cranial pharyngeal mesoderm, whereas other muscles in the neck arise from Pax3-expressing cells in the somites. Mef2c-AHF-Cre genetic tracing experiments and Tbx1 mutant analysis show that nonsomitic neck muscles share a gene regulatory network with cardiac progenitor cells in pharyngeal mesoderm of the second heart field (SHF) and branchial arch-derived head muscles. Retrospective clonal analysis shows that this group of neck muscles includes laryngeal muscles and a component of the splenius muscle, of mixed somitic and nonsomitic origin. We demonstrate that the trapezius muscle group is clonally related to myocardium at the venous pole of the heart, which derives from the posterior SHF. The left clonal sublineage includes myocardium of the pulmonary trunk at the arterial pole of the heart. Although muscles derived from the first and second branchial arches also share a clonal relationship with different SHF-derived parts of the heart, neck muscles are clonally distinct from these muscles and define a third clonal population of common skeletal and cardiac muscle progenitor cells within cardiopharyngeal mesoderm. By linking neck muscle and heart development, our findings highlight the importance of cardiopharyngeal mesoderm in the evolution of the vertebrate heart and neck and in the pathophysiology of human congenital disease. PMID:25605943

  15. Clonal analysis reveals a common origin between nonsomite-derived neck muscles and heart myocardium.

    PubMed

    Lescroart, Fabienne; Hamou, Wissam; Francou, Alexandre; Théveniau-Ruissy, Magali; Kelly, Robert G; Buckingham, Margaret

    2015-02-03

    Neck muscles constitute a transition zone between somite-derived skeletal muscles of the trunk and limbs, and muscles of the head, which derive from cranial mesoderm. The trapezius and sternocleidomastoid neck muscles are formed from progenitor cells that have expressed markers of cranial pharyngeal mesoderm, whereas other muscles in the neck arise from Pax3-expressing cells in the somites. Mef2c-AHF-Cre genetic tracing experiments and Tbx1 mutant analysis show that nonsomitic neck muscles share a gene regulatory network with cardiac progenitor cells in pharyngeal mesoderm of the second heart field (SHF) and branchial arch-derived head muscles. Retrospective clonal analysis shows that this group of neck muscles includes laryngeal muscles and a component of the splenius muscle, of mixed somitic and nonsomitic origin. We demonstrate that the trapezius muscle group is clonally related to myocardium at the venous pole of the heart, which derives from the posterior SHF. The left clonal sublineage includes myocardium of the pulmonary trunk at the arterial pole of the heart. Although muscles derived from the first and second branchial arches also share a clonal relationship with different SHF-derived parts of the heart, neck muscles are clonally distinct from these muscles and define a third clonal population of common skeletal and cardiac muscle progenitor cells within cardiopharyngeal mesoderm. By linking neck muscle and heart development, our findings highlight the importance of cardiopharyngeal mesoderm in the evolution of the vertebrate heart and neck and in the pathophysiology of human congenital disease.

  16. Clonal Analysis of the Microbiota of Severe Early Childhood Caries

    PubMed Central

    Kanasi, E.; Dewhirst, F.E.; Chalmers, N.I.; Kent, R.; Moore, A.; Hughes, C.V.; Pradhan, N.; Loo, C.Y.; Tanner, A.C.R.

    2010-01-01

    Background/Aims Severe early childhood caries is a microbial infection that severely compromises the dentition of young children. The aim of this study was to characterize the microbiota of severe early childhood caries. Methods Dental plaque samples from 2- to 6-year-old children were analyzed using 16S rRNA gene cloning and sequencing, and by specific PCR amplification for Streptococcus mutans and Bifidobacteriaceae species. Results Children with severe caries (n = 39) had more dental plaque and gingival inflammation than caries-free children (n = 41). Analysis of phylotypes from operational taxonomic unit analysis of 16S rRNA clonal metalibraries from severe caries and caries-free children indicated that while libraries differed significantly (p < 0.0001), there was increased diversity than detected in this clonal analysis. Using the Human Oral Microbiome Database, 139 different taxa were identified. Within the limits of this study, caries-associated taxa included Granulicatella elegans (p < 0.01) and Veillonella sp. HOT-780 (p < 0.01). The species associated with caries-free children included Capnocytophaga gingivalis (p < 0.01), Abiotrophia defectiva (p < 0.01), Lachnospiraceae sp. HOT-100 (p < 0.05), Streptococcus sanguinis (p < 0.05) and Streptococcus cristatus (p < 0.05). By specific PCR, S. mutans (p < 0.005) and Bifidobacteriaceae spp. (p < 0.0001) were significantly associated with severe caries. Conclusion Clonal analysis of 80 children identified a diverse microbiota that differed between severe caries and caries-free children, but the association of S. mutans with caries was from specific PCR analysis, not from clonal analysis, of samples. PMID:20861633

  17. Emergence of clonal hematopoiesis in the majority of patients with acquired aplastic anemia.

    PubMed

    Babushok, Daria V; Perdigones, Nieves; Perin, Juan C; Olson, Timothy S; Ye, Wenda; Roth, Jacquelyn J; Lind, Curt; Cattier, Carine; Li, Yimei; Hartung, Helge; Paessler, Michele E; Frank, Dale M; Xie, Hongbo M; Cross, Shanna; Cockroft, Joshua D; Podsakoff, Gregory M; Monos, Dimitrios; Biegel, Jaclyn A; Mason, Philip J; Bessler, Monica

    2015-04-01

    Acquired aplastic anemia (aAA) is a nonmalignant disease caused by autoimmune destruction of early hematopoietic cells. Clonal hematopoiesis is a late complication, seen in 20-25% of older patients. We hypothesized that clonal hematopoiesis in aAA is a more general phenomenon, which can arise early in disease, even in younger patients. To evaluate clonal hematopoiesis in aAA, we used comparative whole exome sequencing of paired bone marrow and skin samples in 22 patients. We found somatic mutations in 16 patients (72.7%) with a median disease duration of 1 year; of these, 12 (66.7%) were patients with pediatric-onset aAA. Fifty-eight mutations in 51 unique genes were found primarily in pathways of immunity and transcriptional regulation. Most frequently mutated was PIGA, with seven mutations. Only two mutations were in genes recurrently mutated in myelodysplastic syndrome. Two patients had oligoclonal loss of the HLA alleles, linking immune escape to clone emergence. Two patients had activating mutations in key signaling pathways (STAT5B (p.N642H) and CAMK2G (p.T306M)). Our results suggest that clonal hematopoiesis in aAA is common, with two mechanisms emerging-immune escape and increased proliferation. Our findings expand conceptual understanding of this nonneoplastic blood disorder. Future prospective studies of clonal hematopoiesis in aAA will be critical for understanding outcomes and for designing personalized treatment strategies. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Two spin-canting textures in the antiferromagnetic phase AF1 of MnWO4 based on the new polar atomistic model in P2

    NASA Astrophysics Data System (ADS)

    Park, S.-H.; Liu, B.-Q.; Behal, D.; Pedersen, B.; Schneidewind, A.

    2018-04-01

    The low temperature antiferromagnetic (AF) phase of MnWO4 (the so-called AF1 phase) exhibits different spin-canting configurations at two Mn2+ sublattices of the (3  +  1)-dimensional magnetic structure. The suggested superspace group {{\\boldsymbol P}}2.1^\\prime(α, 1/2, γ)0s is a significant consequence of the polar space group {{\\boldsymbol P}} 2 true for the nuclear structure of MnWO4. Density functional theory calculations showed that its ground state prefers this two spin-canting system. The structural difference between two independent atomic sites for Mn (Mn a , Mn b ) is too small to allow microscopically detectable electric polarisation. However, this hidden intrinsic polar character allows AF1 two commensurately modulated spin-canting textures. This is considered as the prerequisite onset of the improper ferroelectricity enhanced by the helical spin order in the multiferroic phase AF2 of MnWO4.

  19. Coordination and redox state-dependent structural changes of the heme-based oxygen sensor AfGcHK associated with intraprotein signal transduction.

    PubMed

    Stranava, Martin; Man, Petr; Skálová, Tereza; Kolenko, Petr; Blaha, Jan; Fojtikova, Veronika; Martínek, Václav; Dohnálek, Jan; Lengalova, Alzbeta; Rosůlek, Michal; Shimizu, Toru; Martínková, Markéta

    2017-12-22

    The heme-based oxygen sensor histidine kinase Af GcHK is part of a two-component signal transduction system in bacteria. O 2 binding to the Fe(II) heme complex of its N-terminal globin domain strongly stimulates autophosphorylation at His 183 in its C-terminal kinase domain. The 6-coordinate heme Fe(III)-OH - and -CN - complexes of Af GcHK are also active, but the 5-coordinate heme Fe(II) complex and the heme-free apo-form are inactive. Here, we determined the crystal structures of the isolated dimeric globin domains of the active Fe(III)-CN - and inactive 5-coordinate Fe(II) forms, revealing striking structural differences on the heme-proximal side of the globin domain. Using hydrogen/deuterium exchange coupled with mass spectrometry to characterize the conformations of the active and inactive forms of full-length Af GcHK in solution, we investigated the intramolecular signal transduction mechanisms. Major differences between the active and inactive forms were observed on the heme-proximal side (helix H5), at the dimerization interface (helices H6 and H7 and loop L7) of the globin domain and in the ATP-binding site (helices H9 and H11) of the kinase domain. Moreover, separation of the sensor and kinase domains, which deactivates catalysis, increased the solvent exposure of the globin domain-dimerization interface (helix H6) as well as the flexibility and solvent exposure of helix H11. Together, these results suggest that structural changes at the heme-proximal side, the globin domain-dimerization interface, and the ATP-binding site are important in the signal transduction mechanism of Af GcHK. We conclude that Af GcHK functions as an ensemble of molecules sampling at least two conformational states. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Clonal heterogeneity as a driver of disease variability in the evolution of myeloproliferative neoplasms.

    PubMed

    Prick, Janine; de Haan, Gerald; Green, Anthony R; Kent, David G

    2014-10-01

    Myeloproliferative neoplasms (MPNs) are clonal hematological diseases in which cells of the myelo-erythroid lineage are overproduced and patients are predisposed to leukemic transformation. Hematopoietic stem cells are the suspected disease-initiating cells, and these cells must acquire a clonal advantage relative to nonmutant hematopoietic stem cells to perpetuate disease. In 2005, several groups identified a single gain-of-function point mutation in JAK2 that associated with the majority of MPNs, and subsequent studies have led to a comprehensive understanding of the mutational landscape in MPNs. However, confusion still exists as to how a single genetic aberration can be associated with multiple distinct disease entities. Many explanations have been proposed, including JAK2V617F homozygosity, individual patient heterogeneity, and the differential regulation of downstream JAK2 signaling pathways. Several groups have made knock-in mouse models expressing JAK2V617F and have observed divergent phenotypes, each recapitulating some aspects of disease. Intriguingly, most of these models do not observe a strong hematopoietic stem cell self-renewal advantage compared with wild-type littermate controls, raising the question of how a clonal advantage is established in patients with MPNs. This review summarizes the current molecular understanding of MPNs and the diversity of disease phenotypes and proposes that the increased proliferation induced by JAK2V617F applies a selection pressure on the mutant clone that results in highly diverse clonal evolution in individuals. Copyright © 2014 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  1. Synthesis of clonality and polyploidy in vertebrate animals by hybridization between two sexual species.

    PubMed

    Choleva, Lukáš; Janko, Karel; De Gelas, Koen; Bohlen, Jörg; Šlechtová, Věra; Rábová, Marie; Ráb, Petr

    2012-07-01

    Because most clonal vertebrates have hybrid genomic constitutions, tight linkages are assumed among hybridization, clonality, and polyploidy. However, predictions about how these processes mechanistically relate during the switch from sexual to clonal reproduction have not been validated. Therefore, we performed a crossing experiment to test the hypothesis that interspecific hybridization per se initiated clonal diploid and triploid spined loaches (Cobitis) and their gynogenetic reproduction. We reared two F1 families resulting from the crossing of 14 pairs of two sexual species, and found their diploid hybrid constitution and a 1:1 sex ratio. While males were infertile, females produced unreduced nonrecombinant eggs (100%). Synthetic triploid females and males (96.3%) resulted in each of nine backcrossed families from eggs of synthesized diploid F1s fertilized by haploid sperm from sexual males. Five individuals (3.7%) from one backcross family were genetically identical to the somatic cells of the mother and originated via gynogenesis; the sperm of the sexual male only triggered clonal development of the egg. Our reconstruction of the evolutionary route from sexuality to clonality and polyploidy in these fish shows that clonality and gynogenesis may have been directly triggered by interspecific hybridization and that polyploidy is a consequence, not a cause, of clonality. © 2012 The Author(s).

  2. Molecular epidemiology of clonal diploids: a quick overview and a short DIY (do it yourself) notice.

    PubMed

    De Meeûs, Thierry; Lehmann, Laurent; Balloux, François

    2006-03-01

    In this short review we report the basic notions needed for understanding the population genetics of clonal diploids. We focus on the consequences of clonality on the distribution of genetic diversity within individuals, between individuals and between populations. We then summarise how to detect clonality in mainly sexual populations, conversely, how to detect sexuality in mainly clonal populations and also how genetic differentiation between populations is affected by clonality in diploids. This information is then used for building recipes on how to analyse and interpret genetic polymorphism data in molecular epidemiology studies of clonal diploids.

  3. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade

    PubMed Central

    McGranahan, Nicholas; Furness, Andrew J. S.; Rosenthal, Rachel; Ramskov, Sofie; Lyngaa, Rikke; Saini, Sunil Kumar; Jamal-Hanjani, Mariam; Wilson, Gareth A.; Birkbak, Nicolai J.; Hiley, Crispin T.; Watkins, Thomas B. K.; Shafi, Seema; Murugaesu, Nirupa; Mitter, Richard; Akarca, Ayse U.; Linares, Joseph; Marafioti, Teresa; Henry, Jake Y.; Van Allen, Eliezer M.; Miao, Diana; Schilling, Bastian; Schadendorf, Dirk; Garraway, Levi A.; Makarov, Vladimir; Rizvi, Naiyer A.; Snyder, Alexandra; Hellmann, Matthew D.; Merghoub, Taha; Wolchok, Jedd D.; Shukla, Sachet A.; Wu, Catherine J.; Peggs, Karl S.; Chan, Timothy A.; Hadrup, Sine R.; Quezada, Sergio A.; Swanton, Charles

    2016-01-01

    As tumors grow, they acquire mutations, some of which create neoantigens that influence the response of patients to immune checkpoint inhibitors. We explored the impact of neoantigen intratumor heterogeneity (ITH) on antitumor immunity. Through integrated analysis of ITH and neoantigen burden, we demonstrate a relationship between clonal neoantigen burden and overall survival in primary lung adenocarcinomas. CD8+ tumor-infiltrating lymphocytes reactive to clonal neoantigens were identified in early-stage non–small cell lung cancer and expressed high levels of PD-1. Sensitivity to PD-1 and CTLA-4 blockade in patients with advanced NSCLC and melanoma was enhanced in tumors enriched for clonal neoantigens. T cells recognizing clonal neoantigens were detectable in patients with durable clinical benefit. Cytotoxic chemotherapy–induced subclonal neoantigens, contributing to an increased mutational load, were enriched in certain poor responders. These data suggest that neoantigen heterogeneity may influence immune surveillance and support therapeutic developments targeting clonal neoantigens. PMID:26940869

  4. Clonal group distribution of fluoroquinolone-resistant Escherichia coli among humans and companion animals in Australia.

    PubMed

    Platell, Joanne L; Cobbold, Rowland N; Johnson, James R; Trott, Darren J

    2010-09-01

    To determine the phylogenetic group distribution and prevalence of three major globally disseminated clonal groups [clonal group A (CGA) and O15:K52:H1, associated with phylogenetic group D, and sequence type ST131, associated with phylogenetic group B2] among fluoroquinolone-resistant extra-intestinal Escherichia coli isolates from humans and companion animals in Australia. Clinical extra-intestinal fluoroquinolone-resistant E. coli isolates were obtained from humans (n = 582) and companion animals (n = 125), on Australia's east coast (October 2007-October 2009). Isolates were tested for susceptibility to seven antimicrobial agents, and for phylogenetic group, O type and clonal-group-specific single nucleotide polymorphisms by PCR. The fluoroquinolone-resistant isolates were typically resistant to multiple agents (median of four). Analysis revealed that clonal group ST131 accounted for a large subset of the human isolates (202/585, 35%), but for a much smaller proportion of the companion animal isolates (9/125, 7.2%; P 2%) and companion animal (0.8%) isolates. In Australia, a large proportion (42%) of recent fluoroquinolone-resistant extra-intestinal E. coli isolates from humans are represented by three major globally disseminated clonal groups, predominantly ST131, which by contrast is comparatively rare among fluoroquinolone-resistant E. coli from companion animals. In conjunction with Australia's ban on fluoroquinolone use in livestock, these results argue against a major domestic food animal or companion animal source for fluoroquinolone-resistant extra-intestinal E. coli among humans in Australia. However, both humans and companion animals are involved in the intercontinental emergence and dissemination of ST131.

  5. Longevity of clonal plants: why it matters and how to measure it

    PubMed Central

    de Witte, Lucienne C.; Stöcklin, Jürg

    2010-01-01

    Background Species' life-history and population dynamics are strongly shaped by the longevity of individuals, but life span is one of the least accessible demographic traits, particularly in clonal plants. Continuous vegetative reproduction of genets enables persistence despite low or no sexual reproduction, affecting genet turnover rates and population stability. Therefore, the longevity of clonal plants is of considerable biological interest, but remains relatively poorly known. Scope Here, we critically review the present knowledge on the longevity of clonal plants and discuss its importance for population persistence. Direct life-span measurements such as growth-ring analysis in woody plants are relatively easy to take, although, for many clonal plants, these methods are not adequate due to the variable growth pattern of ramets and difficult genet identification. Recently, indirect methods have been introduced in which genet size and annual shoot increments are used to estimate genet age. These methods, often based on molecular techniques, allow the investigation of genet size and age structure of whole populations, a crucial issue for understanding their viability and persistence. However, indirect estimates of clonal longevity are impeded because the process of ageing in clonal plants is still poorly understood and because their size and age are not always well correlated. Alternative estimators for genet life span such as somatic mutations have recently been suggested. Conclusions Empirical knowledge on the longevity of clonal species has increased considerably in the last few years. Maximum age estimates are an indicator of population persistence, but are not sufficient to evaluate turnover rates and the ability of long-lived clonal plants to enhance community stability and ecosystem resilience. In order to understand the dynamics of populations it will be necessary to measure genet size and age structure, not only life spans of single individuals, and to

  6. Genetic relationships and clonal population structure of serotype 2 strains of Neisseria meningitidis.

    PubMed Central

    Caugant, D A; Zollinger, W D; Mocca, L F; Frasch, C E; Whittam, T S; Frøholm, L O; Selander, R K

    1987-01-01

    Two hundred and thirty-four strains of Neisseria meningitidis, including 94 serotype 2a, 111 serotype 2b, and 19 serotype 2c isolates, together with 10 isolates that were serotyped as 2 with polyvalent antiserum but did not react with monoclonal antibodies, were characterized by the electrophoretic mobilities of 15 metabolic enzymes. Of these enzymes, 14 were polymorphic, and 56 distinctive combinations of alleles at the enzyme loci (electrophoretic types) were identified, among which the mean genetic diversity per locus was 0.413, or about 75% of that recorded for the species N. meningitidis as a whole. Mean genetic diversity among electrophoretic types of the same serotype (2a, 2b, or 2c) was, however, on average, less than half the total species diversity, and no multilocus genotypes were shared between isolates of the different serotypes, which belong to distinctive clonal lineages. Recent temporal changes in the frequencies of recovery of pathogenic strains of serotypes 2a and 2b in South Africa and North America resulted from clone replacement in these populations rather than evolutionary modification of the serotype protein of the initially dominant clones. PMID:3106223

  7. Multidisciplinary insight into clonal expansion of HTLV-1-infected cells in adult T-cell leukemia via modeling by deterministic finite automata coupled with high-throughput sequencing.

    PubMed

    Farmanbar, Amir; Firouzi, Sanaz; Park, Sung-Joon; Nakai, Kenta; Uchimaru, Kaoru; Watanabe, Toshiki

    2017-01-31

    Clonal expansion of leukemic cells leads to onset of adult T-cell leukemia (ATL), an aggressive lymphoid malignancy with a very poor prognosis. Infection with human T-cell leukemia virus type-1 (HTLV-1) is the direct cause of ATL onset, and integration of HTLV-1 into the human genome is essential for clonal expansion of leukemic cells. Therefore, monitoring clonal expansion of HTLV-1-infected cells via isolation of integration sites assists in analyzing infected individuals from early infection to the final stage of ATL development. However, because of the complex nature of clonal expansion, the underlying mechanisms have yet to be clarified. Combining computational/mathematical modeling with experimental and clinical data of integration site-based clonality analysis derived from next generation sequencing technologies provides an appropriate strategy to achieve a better understanding of ATL development. As a comprehensively interdisciplinary project, this study combined three main aspects: wet laboratory experiments, in silico analysis and empirical modeling. We analyzed clinical samples from HTLV-1-infected individuals with a broad range of proviral loads using a high-throughput methodology that enables isolation of HTLV-1 integration sites and accurate measurement of the size of infected clones. We categorized clones into four size groups, "very small", "small", "big", and "very big", based on the patterns of clonal growth and observed clone sizes. We propose an empirical formal model based on deterministic finite state automata (DFA) analysis of real clinical samples to illustrate patterns of clonal expansion. Through the developed model, we have translated biological data of clonal expansion into the formal language of mathematics and represented the observed clonality data with DFA. Our data suggest that combining experimental data (absolute size of clones) with DFA can describe the clonality status of patients. This kind of modeling provides a basic

  8. Germ line variants predispose to both JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms

    PubMed Central

    Hinds, David A.; Barnholt, Kimberly E.; Mesa, Ruben A.; Kiefer, Amy K.; Do, Chuong B.; Eriksson, Nicholas; Mountain, Joanna L.; Francke, Uta; Tung, Joyce Y.; Nguyen, Huong (Marie); Zhang, Haiyu; Gojenola, Linda; Zehnder, James L.

    2016-01-01

    We conducted a genome-wide association study (GWAS) to identify novel predisposition alleles associated with Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) and JAK2 V617F clonal hematopoiesis in the general population. We recruited a web-based cohort of 726 individuals with polycythemia vera, essential thrombocythemia, and myelofibrosis and 252 637 population controls unselected for hematologic phenotypes. Using a single-nucleotide polymorphism (SNP) array platform with custom probes for the JAK2 V617F mutation (V617F), we identified 497 individuals (0.2%) among the population controls who were V617F carriers. We performed a combined GWAS of the MPN cases plus V617F carriers in the control population (n = 1223) vs the remaining controls who were noncarriers for V617F (n = 252 140). For these MPN cases plus V617F carriers, we replicated the germ line JAK2 46/1 haplotype (rs59384377: odds ratio [OR] = 2.4, P = 6.6 × 10−89), previously associated with V617F-positive MPN. We also identified genome-wide significant associations in the TERT gene (rs7705526: OR = 1.8, P = 1.1 × 10−32), in SH2B3 (rs7310615: OR = 1.4, P = 3.1 × 10−14), and upstream of TET2 (rs1548483: OR = 2.0, P = 2.0 × 10−9). These associations were confirmed in a separate replication cohort of 446 V617F carriers vs 169 021 noncarriers. In a joint analysis of the combined GWAS and replication results, we identified additional genome-wide significant predisposition alleles associated with CHEK2, ATM, PINT, and GFI1B. All SNP ORs were similar for MPN patients and controls who were V617F carriers. These data indicate that the same germ line variants endow individuals with a predisposition not only to MPN, but also to JAK2 V617F clonal hematopoiesis, a more common phenomenon that may foreshadow the development of an overt neoplasm. PMID:27365426

  9. Metabolic heterogeneity in clonal microbial populations.

    PubMed

    Takhaveev, Vakil; Heinemann, Matthias

    2018-02-21

    In the past decades, numerous instances of phenotypic diversity were observed in clonal microbial populations, particularly, on the gene expression level. Much less is, however, known about phenotypic differences that occur on the level of metabolism. This is likely explained by the fact that experimental tools probing metabolism of single cells are still at an early stage of development. Here, we review recent exciting discoveries that point out different causes for metabolic heterogeneity within clonal microbial populations. These causes range from ecological factors and cell-inherent dynamics in constant environments to molecular noise in gene expression that propagates into metabolism. Furthermore, we provide an overview of current methods to quantify the levels of metabolites and biomass components in single cells. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Clinical and Economic Implications of AF Related Stroke.

    PubMed

    Ali, Ali N; Abdelhafiz, Ahmed

    2016-01-01

    A major cause of morbidity and mortality among patients with atrial fibrillation (AF) relates to the increased risk of stroke. The burden of illness that AF imparts on stroke is likely to increase with our aging populations and increasingly sophisticated cardiac monitoring techniques. Understanding the clinical and economic differences between AF related ischaemic stroke and non-AF related stroke is important if we are to improve future cost effectiveness analyses of potential preventative treatments, but also to help educate clinical and policy decision makers on use or availability of treatments to prevent AF related stroke. In this article we review the existing evidence that highlights differences in the clinical characteristics and outcomes between AF and non-AF stroke, as well as differences in their economic impact and discuss ways to improve future economic analyses.

  11. Spatial Genetic Structure and Clonal Diversity in an Alpine Population of Salix herbacea (Salicaceae)

    PubMed Central

    Reisch, Christoph; Schurm, Sophia; Poschlod, Peter

    2007-01-01

    Background and Aims Many alpine plant species combine clonal and sexual reproduction to minimize the risks of flowering and seed production in high mountain regions. The spatial genetic structure and diversity of these alpine species is strongly affected by different clonal strategies (phalanx or guerrilla) and the proportion of generative and vegetative reproduction. Methods The clonal structure of the alpine plant species Salix herbacea was investigated in a 3 × 3 m plot of an alpine meadow using microsatellite (simple sequence repeat; SSR) analysis. The data obtained were compared with the results of a random amplified polymorphic DNA (RAPD) analysis. Key Results SSR analysis, based on three loci and 16 alleles, revealed 24 different genotypes and a proportion of distinguishable genotypes of 0·18. Six SSR clones were found consisting of at least five samples, 17 clones consisting of more than two samples and seven single genotypes. Mean clone size comprising at least five samples was 0·96 m2, and spatial autocorrelation analysis showed strong similarity of samples up to 130 cm. RAPD analysis revealed a higher level of clonal diversity but a comparable number of larger clones and a similar spatial structure. Conclusions The spatial genetic structure as well as the occurrence of single genotypes revealed in this study suggests both clonal and sexual propagation and repeated seedling recruitment in established populations of S. herbacea and is thus suggestive of a relaxed phalanx strategy. PMID:17242040

  12. Cwf16p Associating with the Nineteen Complex Ensures Ordered Exon Joining in Constitutive Pre-mRNA Splicing in Fission Yeast

    PubMed Central

    Sasaki-Haraguchi, Noriko; Ikuyama, Takeshi; Yoshii, Shogo; Takeuchi-Andoh, Tomoko; Frendewey, David; Tani, Tokio

    2015-01-01

    Exons are ligated in an ordered manner without the skipping of exons in the constitutive splicing of pre-mRNAs with multiple introns. To identify factors ensuring ordered exon joining in constitutive pre-mRNA splicing, we previously screened for exon skipping mutants in Schizosaccharomyces pombe using a reporter plasmid, and characterized three exon skipping mutants named ods1 (ordered splicing 1), ods2, and ods3, the responsible genes of which encode Prp2/U2AF59, U2AF23, and SF1, respectively. They form an SF1-U2AF59-U2AF23 complex involved in recognition of the branch and 3′ splice sites in pre-mRNA. In the present study, we identified a fourth ods mutant, ods4, which was isolated in an exon-skipping screen. The ods4 + gene encodes Cwf16p, which interacts with the NineTeen Complex (NTC), a complex thought to be involved in the first catalytic step of the splicing reaction. We isolated two multi-copy suppressors for the ods4-1 mutation, Srp2p, an SR protein essential for pre-mRNA splicing, and Tif213p, a translation initiation factor, in S. pombe. The overexpression of Srp2p suppressed the exon-skipping phenotype of all ods mutants, whereas Tif213p suppressed only ods4-1, which has a mutation in the translational start codon of the cwf16 gene. We also showed that the decrease in the transcriptional elongation rate induced by drug treatment suppressed exon skipping in ods4-1. We propose that Cwf16p/NTC participates in the early recognition of the branch and 3′ splice sites and cooperates with the SF1-U2AF59-U2AF23 complex to maintain ordered exon joining. PMID:26302002

  13. The human urothelium consists of multiple clonal units, each maintained by a stem cell.

    PubMed

    Gaisa, Nadine T; Graham, Trevor A; McDonald, Stuart A C; Cañadillas-Lopez, Sagrario; Poulsom, Richard; Heidenreich, Axel; Jakse, Gerhard; Tadrous, Paul J; Knuechel, Ruth; Wright, Nicholas A

    2011-10-01

    Little is known about the clonal architecture of human urothelium. It is likely that urothelial stem cells reside within the basal epithelial layer, yet lineage tracing from a single stem cell as a means to show the presence of a urothelial stem cell has never been performed. Here, we identify clonally related cell areas within human bladder mucosa in order to visualize epithelial fields maintained by a single founder/stem cell. Sixteen frozen cystectomy specimens were serially sectioned. Patches of cells deficient for the mitochondrially encoded enzyme cytochrome c oxidase (CCO) were identified using dual-colour enzyme histochemistry. To show that these patches represent clonal proliferations, small CCO-proficient and -deficient areas were individually laser-capture microdissected and the entire mitochondrial genome (mtDNA) in each area was PCR amplified and sequenced to identify mtDNA mutations. Immunohistochemistry was performed for the different cell layers of the urothelium and adjacent mesenchyme. CCO-deficient patches could be observed in normal urothelium of all cystectomy specimens. The two-dimensional length of these negative patches varied from 2-3 cells (about 30 µm) to 4.7 mm. Each cell area within a CCO-deficient patch contained an identical somatic mtDNA mutation, indicating that the patch was a clonal unit. Patches contained all the mature cell differentiation stages present in the urothelium, suggesting the presence of a stem cell. Our results demonstrate that the normal mucosa of human bladder contains stem cell-derived clonal units that actively replenish the urothelium during ageing. The size of the clonal unit attributable to each stem cell was broadly distributed, suggesting replacement of one stem cell clone by another. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  14. Clonal integration facilitates spread of Paspalum paspaloides from terrestrial to cadmium-contaminated aquatic habitats.

    PubMed

    Luo, F-L; Xing, Y-P; Wei, G-W; Li, C-Y; Yu, F-H

    2017-11-01

    Cadmium (Cd) is a hazardous environmental pollutant with high toxicity to plants, which has been detected in many wetlands. Clonal integration (resource translocation) between connected ramets of clonal plants can increase their tolerance to stress. We hypothesised that clonal integration facilitates spread of amphibious clonal plants from terrestrial to Cd-contaminated aquatic habitats. The spread of an amphibious grass Paspalum paspaloides was simulated by growing basal older ramets in uncontaminated soil connected (allowing integration) or not connected (preventing integration) to apical younger ramets of the same fragments in Cd-contaminated water. Cd contamination of apical ramets of P. paspaloides markedly decreased growth and photosynthetic capacity of the apical ramets without connection to the basal ramets, but did not decrease these properties with connection. Cd contamination did not affect growth of the basal ramets without connection to the apical ramets, but Cd contamination of 4 and 12 mg·l -1 significantly increased growth with connection. Consequently, clonal integration increased growth of the apical ramets, basal ramets and whole clones when the apical ramets were grown in Cd-contaminated water of 4 and 12 mg·l -1 . Cd was detected in the basal ramets with connection to the apical ramets, suggesting Cd could be translocated due to clonal integration. Clonal integration, most likely through translocation of photosynthates, can support P. paspaloides to spread from terrestrial to Cd-contaminated aquatic habitats. Amphibious clonal plants with a high ability for clonal integration are particularly useful for re-vegetation of degraded aquatic habitats caused by Cd contamination. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  15. Clonal diversity analysis using SNP microarray: a new prognostic tool for chronic lymphocytic leukemia.

    PubMed

    Zhang, Linsheng; Znoyko, Iya; Costa, Luciano J; Conlin, Laura K; Daber, Robert D; Self, Sally E; Wolff, Daynna J

    2011-12-01

    Chronic lymphocytic leukemia (CLL) is a clinically heterogeneous disease. The methods currently used for monitoring CLL and determining conditions for treatment are limited in their ability to predict disease progression, patient survival, and response to therapy. Although clonal diversity and the acquisition of new chromosomal abnormalities during the disease course (clonal evolution) have been associated with disease progression, their prognostic potential has been underappreciated because cytogenetic and fluorescence in situ hybridization (FISH) studies have a restricted ability to detect genomic abnormalities and clonal evolution. We hypothesized that whole genome analysis using high resolution single nucleotide polymorphism (SNP) microarrays would be useful to detect diversity and infer clonal evolution to offer prognostic information. In this study, we used the Infinium Omni1 BeadChip (Illumina, San Diego, CA) array for the analysis of genetic variation and percent mosaicism in 25 non-selected CLL patients to explore the prognostic value of the assessment of clonal diversity in patients with CLL. We calculated the percentage of mosaicism for each abnormality by applying a mathematical algorithm to the genotype frequency data and by manual determination using the Simulated DNA Copy Number (SiDCoN) tool, which was developed from a computer model of mosaicism. At least one genetic abnormality was identified in each case, and the SNP data was 98% concordant with FISH results. Clonal diversity, defined as the presence of two or more genetic abnormalities with differing percentages of mosaicism, was observed in 12 patients (48%), and the diversity correlated with the disease stage. Clonal diversity was present in most cases of advanced disease (Rai stages III and IV) or those with previous treatment, whereas 9 of 13 patients without detected clonal diversity were asymptomatic or clinically stable. In conclusion, SNP microarray studies with simultaneous evaluation

  16. Clonal Architecture of Secondary Acute Myeloid Leukemia

    PubMed Central

    Walter, Matthew J.; Shen, Dong; Ding, Li; Shao, Jin; Koboldt, Daniel C.; Chen, Ken; Larson, David E.; McLellan, Michael D.; Dooling, David; Abbott, Rachel; Fulton, Robert; Magrini, Vincent; Schmidt, Heather; Kalicki-Veizer, Joelle; O’Laughlin, Michelle; Fan, Xian; Grillot, Marcus; Witowski, Sarah; Heath, Sharon; Frater, John L.; Eades, William; Tomasson, Michael; Westervelt, Peter; DiPersio, John F.; Link, Daniel C.; Mardis, Elaine R.; Ley, Timothy J.; Wilson, Richard K.; Graubert, Timothy A.

    2012-01-01

    BACKGROUND The myelodysplastic syndromes are a group of hematologic disorders that often evolve into secondary acute myeloid leukemia (AML). The genetic changes that underlie progression from the myelodysplastic syndromes to secondary AML are not well understood. METHODS We performed whole-genome sequencing of seven paired samples of skin and bone marrow in seven subjects with secondary AML to identify somatic mutations specific to secondary AML. We then genotyped a bone marrow sample obtained during the antecedent myelodysplastic-syndrome stage from each subject to determine the presence or absence of the specific somatic mutations. We identified recurrent mutations in coding genes and defined the clonal architecture of each pair of samples from the myelodysplastic-syndrome stage and the secondary-AML stage, using the allele burden of hundreds of mutations. RESULTS Approximately 85% of bone marrow cells were clonal in the myelodysplastic-syndrome and secondary-AML samples, regardless of the myeloblast count. The secondary-AML samples contained mutations in 11 recurrently mutated genes, including 4 genes that have not been previously implicated in the myelodysplastic syndromes or AML. In every case, progression to acute leukemia was defined by the persistence of an antecedent founding clone containing 182 to 660 somatic mutations and the outgrowth or emergence of at least one subclone, harboring dozens to hundreds of new mutations. All founding clones and subclones contained at least one mutation in a coding gene. CONCLUSIONS Nearly all the bone marrow cells in patients with myelodysplastic syndromes and secondary AML are clonally derived. Genetic evolution of secondary AML is a dynamic process shaped by multiple cycles of mutation acquisition and clonal selection. Recurrent gene mutations are found in both founding clones and daughter subclones. (Funded by the National Institutes of Health and others.) PMID:22417201

  17. Prevalence and clonal analysis of Porphyromonas gingivalis in primary endodontic infections.

    PubMed

    Siqueira, José F; Rôças, Isabela N; Silva, Marlei G

    2008-11-01

    This study investigated the prevalence of Porphyromonas gingivalis in 62 teeth with primary endodontic infections by using a species-specific 16S rRNA gene-based nested polymerase chain reaction assay. P. gingivalis isolates recovered from 2 infected root canals were also analyzed for clonal diversity by using arbitrarily primed PCR. Overall, P. gingivalis was found in 48% of the samples. This species was specifically detected in 36% of canals of teeth with chronic apical periodontitis, in 46% of the cases of acute apical periodontitis, and in 67% of acute apical abscesses. P. gingivalis was significantly more frequent in abscess aspirates than in canals of teeth with chronic apical periodontitis (P < .05). Typing of colonies retrieved from 2 infected canals revealed 2 clones per individual. These findings confirmed that P. gingivalis can be an important endodontic pathogen, mostly associated with acute abscesses, and demonstrated that different clonal types of this species can colonize the root canal in the same individual.

  18. CLO-PLA: a database of clonal and bud-bank traits of the Central European flora.

    PubMed

    Klimešová, Jitka; Danihelka, Jiří; Chrtek, Jindřich; de Bello, Francesco; Herben, Tomáš

    2017-04-01

    This dataset presents comprehensive and easy-to-use information on 29 functional traits of clonal growth, bud banks, and lifespan of members of the Central European flora. The source data were compiled from a number of published sources (see the reference file) and the authors' own observations or studies. In total, 2,909 species are included (2,745 herbs and 164 woody species), out of which 1,532 (i.e., 52.7% of total) are classified as possessing clonal growth organs (1,480, i.e., 53.9%, if woody plants are excluded). This provides a unique, and largely unexplored, set of traits of clonal growth that can be used in studies on comparative plant ecology, plant evolution, community assembly, and ecosystem functioning across the large flora of Central Europe. It can be directly imported into a number of programs and packages that perform trait-based and phylogenetic analyses aimed to answer a variety of open and pressing ecological questions. © 2017 by the Ecological Society of America.

  19. An atlas of B-cell clonal distribution in the human body.

    PubMed

    Meng, Wenzhao; Zhang, Bochao; Schwartz, Gregory W; Rosenfeld, Aaron M; Ren, Daqiu; Thome, Joseph J C; Carpenter, Dustin J; Matsuoka, Nobuhide; Lerner, Harvey; Friedman, Amy L; Granot, Tomer; Farber, Donna L; Shlomchik, Mark J; Hershberg, Uri; Luning Prak, Eline T

    2017-09-01

    B-cell responses result in clonal expansion, and can occur in a variety of tissues. To define how B-cell clones are distributed in the body, we sequenced 933,427 B-cell clonal lineages and mapped them to eight different anatomic compartments in six human organ donors. We show that large B-cell clones partition into two broad networks-one spans the blood, bone marrow, spleen and lung, while the other is restricted to tissues within the gastrointestinal (GI) tract (jejunum, ileum and colon). Notably, GI tract clones display extensive sharing of sequence variants among different portions of the tract and have higher frequencies of somatic hypermutation, suggesting extensive and serial rounds of clonal expansion and selection. Our findings provide an anatomic atlas of B-cell clonal lineages, their properties and tissue connections. This resource serves as a foundation for studies of tissue-based immunity, including vaccine responses, infections, autoimmunity and cancer.

  20. Clonality in myeloproliferative disorders: Analysis by means of polymerase chain reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilliland, D.G.; Blanchard, K.L.; Levy, J.

    1991-08-01

    The myeloproliferative syndromes are acquired disorders of hematopoiesis that provide insights into the transition from somatic cell mutation to neoplasia. The clonal origin of specific blood cells can be assessed in patients with X chromosome-linked polymorphisms, taking advantage of random inactivation of the X chromosome. The authors have adapted the PCR for determination of clonality on as few as 100 cells, including individual colonies grown in culture. Amplifying a polymorphic portion of the X chromosome-linked phosphoglycerate kinase (PGK) gene after selective digestion of the active X chromosome with a methylation-sensitive restriction enzyme gave results fully concordant with standard Southern blottingmore » of DNA samples form normal (polyclonal) polymorphonuclear cells (PMN) as well as clonal PMN from patients with myelodysplastic syndrome and polycythemia vera (PCV). They have used this technique to demonstrate heterogeneity of lineage involvement in patients with PCV. The same clinical phenotype may arise from clonal proliferation of different hematopoietic progenitors.« less

  1. PyClone: statistical inference of clonal population structure in cancer.

    PubMed

    Roth, Andrew; Khattra, Jaswinder; Yap, Damian; Wan, Adrian; Laks, Emma; Biele, Justina; Ha, Gavin; Aparicio, Samuel; Bouchard-Côté, Alexandre; Shah, Sohrab P

    2014-04-01

    We introduce PyClone, a statistical model for inference of clonal population structures in cancers. PyClone is a Bayesian clustering method for grouping sets of deeply sequenced somatic mutations into putative clonal clusters while estimating their cellular prevalences and accounting for allelic imbalances introduced by segmental copy-number changes and normal-cell contamination. Single-cell sequencing validation demonstrates PyClone's accuracy.

  2. Competition, salinity, and clonal growth in native and introduced irises.

    PubMed

    Mopper, Susan; Wiens, Karen C; Goranova, Greta A

    2016-09-01

    Iris pseudacorus spread rapidly into North America after introduction from Europe in the 1800s and now co-occurs with native I. hexagona in freshwater Louisiana wetlands. Native irises support and interact with multiple trophic levels, whereas I. pseudacorus is classified an invasive pest because it grows aggressively, reduces biodiversity, and displaces native vegetation. Salinity levels are increasing in coastal wetlands worldwide. We examined how salt-stress affects competitive interactions between these conspecifics. We established a three-way full-factorial common-garden experiment that included species (I. pseudacorus, I. hexagona), competition (no competition, intraspecific competition, and interspecific competition), and salinity (0, 4, 8 parts per thousand NaCl), with six replicates per treatment. After 18 mo, Iris pseudacorus produced much more biomass than the native species did (F1, 92 = 71.5, P < 0.0001). Interspecific competition did not affect the introduced iris, but biomass of the native was strongly reduced (competition × species interaction: F2, 95 = 76.7, P = 0.002). Salinity significantly reduced biomass of both species (F2, 92 = 21.8, P < 0.0001), with no species × salinity interaction (F2, 84 = 1.85, P = 0.16). Our results demonstrate that salt stress strongly reduced clonal reproduction in native and introduced irises; however, the introduced iris had a competitive advantage over the native, regardless of environmental salinity levels. Based on patterns in clonal reproduction, the introduced iris could potentially threaten native iris populations. We are currently investigating seed production and mortality during competition and stress because both clonal and sexual reproduction must be considered when predicting long-term population dynamics. © 2016 Botanical Society of America.

  3. Cancer stem cells: A product of clonal evolution?

    PubMed

    van Niekerk, Gustav; Davids, Lester M; Hattingh, Suzèl M; Engelbrecht, Anna-Mart

    2017-03-01

    The cancer stem cell (CSC) model has emerged as a prominent paradigm for explaining tumour heterogeneity. CSCs in tumour recurrence and drug resistance have also been implicated in a number of studies. In fact, CSCs are often identified by their expression of drug-efflux proteins which are also highly expressed in normal stem cells. Similarly, pro-survival or proliferation signalling often exhibited by stem cells is regularly reported as being upregulated by CSC. Here we review evidence suggesting that many aspects of CSCs are more readily described by clonal evolution. As an example, cancer cells often exhibit copy number gains of genes involved in drug-efflux proteins and pro-survival signalling. Consequently, clonal selection for stem cell traits may result in cancer cells developing "stemness" traits which impart a fitness advantage, without strictly following a CSC model. Finally, since symmetric cell division would give rise to more cells than asymmetric division, it is expected that more advanced tumours would depart from a CSC. Collectively, these observations suggest clonal evolution may explain many aspects of the CSC. © 2016 UICC.

  4. Thromboembolic event rate in paroxysmal and persistent atrial fibrillation: Data from the GISSI-AF trial

    PubMed Central

    2013-01-01

    Background Few data on the thromboembolic (TE) risk of paroxysmal and persistent atrial fibrillation (AF) are available. This study aimed to assess the incidence of TE events in paroxysmal and persistent AF. Methods We performed a subset post hoc analysis of 771 patients with paroxysmal and 463 with persistent AF enrolled in the multicenter, prospective, randomized, double-blind, placebo-controlled GISSI-AF trial - comparing the efficacy of valsartan versus placebo in preventing AF recurrences – where the choice of antithrombotic treatment was left to the judgment of the referring physician. TE and major outcome events were centrally validated. AF recurrences were detected by frequent clinic visits and a transtelephonic monitoring device with weekly and symptomatic transmissions. Results Eighty-five percent of patients had a history of hypertension, and the 7.7% had heart failure, left ventricular dysfunction, or both. The mean CHADS2 score was 1.41±0.84. TE and major bleeding events were observed at a low incidence among the overall population at 1-year follow-up (0.97% and 0.81%, respectively). The univariate and multivariable analyses revealed no statistically significant differences in the incidence of TE, major bleeding events or mortality in paroxysmal and persistent AF patients. TE events were more common among women than men (p=0.02). The follow-up examination showed under- or overtreatment with warfarin in many patients, according to guideline suggestions. Warfarin was more frequently prescribed to patients with persistent AF (p<0.0001) and patients with AF recurrences (p<0.0001). AF recurrences were noninvasively detected in 632 (51.2%) patients. In patients without AF recurrences, the TE event rate was 0.5% versus 1.74%, 1.28%, and 1.18% for those with only symptomatic, only asymptomatic or both symptomatic and asymptomatic AF recurrences, respectively, but the difference was not statistically significant, even after adjusting for warfarin treatment

  5. Clonal hematopoiesis as determined by the HUMARA assay is a marker for acquired mutations in epigenetic regulators in older women.

    PubMed

    Wiedmeier, Julia Erin; Kato, Catherine; Zhang, Zhenzhen; Lee, Hyunjung; Dunlap, Jennifer; Nutt, Eric; Rattray, Rogan; McKay, Sarah; Eide, Christopher; Press, Richard; Mori, Motomi; Druker, Brian; Dao, Kim-Hien

    2016-09-01

    Recent large cohort studies revealed that healthy older individuals harbor somatic mutations that increase their risk for hematologic malignancy and all-cause cardiovascular deaths. The majority of these mutations are in chromatin and epigenetic regulatory genes (CERGs). CERGs play a key role in regulation of DNA methylation (DNMT3A and TET2) and histone function (ASXL1) and in clonal proliferation of hematopoietic stem cells. We hypothesize that older women manifesting clonal hematopoiesis, defined here as a functional phenomenon in which a hematopoietic stem cell has acquired a survival and proliferative advantage, harbor a higher frequency of somatic mutations in CERGs. The human androgen receptor gene (HUMARA) assay was used in our study to detect the presence of nonrandom X inactivation in women, a marker for clonal hematopoiesis. In our pilot study, we tested 127 blood samples from women ≥65 years old without a history of invasive cancer or hematologic malignancies. Applying stringent qualitative criteria, we found that 26% displayed clonal hematopoiesis; 52.8% displayed polyclonal hematopoiesis; and 21.3% had indeterminate patterns (too close to call by qualitative assessment). Using Illumina MiSeq next-generation sequencing, we identified somatic mutations in CERGs in 15.2% of subjects displaying clonal hematopoiesis (three ASXL1 and two DNMT3A mutations with an average variant allele frequency of 15.7%, range: 6.3%-23.3%). In a more limited sequencing analysis, we evaluated the frequency of ASXL1 mutations by Sanger sequencing and found mutations in 9.7% of the clonal samples and 0% of the polyclonal samples. By comparing several recent studies (with some caveats as described), we determined the fold enrichment of detecting CERG mutations by using the HUMARA assay as a functional screen for clonal hematopoiesis. We conclude that a functional assay of clonal hematopoiesis is enriching for older women with somatic mutations in CERGs, particularly for ASXL

  6. Distinguishing between incomplete lineage sorting and genomic introgressions: complete fixation of allospecific mitochondrial DNA in a sexually reproducing fish (Cobitis; Teleostei), despite clonal reproduction of hybrids.

    PubMed

    Choleva, Lukas; Musilova, Zuzana; Kohoutova-Sediva, Alena; Paces, Jan; Rab, Petr; Janko, Karel

    2014-01-01

    Distinguishing between hybrid introgression and incomplete lineage sorting causing incongruence among gene trees in that they exhibit topological differences requires application of statistical approaches that are based on biologically relevant models. Such study is especially challenging in hybrid systems, where usual vectors mediating interspecific gene transfers--hybrids with Mendelian heredity--are absent or unknown. Here we study a complex of hybridizing species, which are known to produce clonal hybrids, to discover how one of the species, Cobitis tanaitica, has achieved a pattern of mito-nuclear mosaic genome over the whole geographic range. We appplied three distinct methods, including the method using solely the information on gene tree topologies, and found that the contrasting mito-nuclear signal might not have resulted from the retention of ancestral polymorphism. Instead, we found two signs of hybridization events related to C. tanaitica; one concerning nuclear gene flow and the other suggested mitochondrial capture. Interestingly, clonal inheritance (gynogenesis) of contemporary hybrids prevents genomic introgressions and non-clonal hybrids are either absent or too rare to be detected among European Cobitis. Our analyses therefore suggest that introgressive hybridizations are rather old episodes, mediated by previously existing hybrids whose inheritance was not entirely clonal. Cobitis complex thus supports the view that the type of resulting hybrids depends on a level of genomic divergence between sexual species.

  7. Determination of total selenium in food samples by d-CPE and HG-AFS.

    PubMed

    Wang, Mei; Zhong, Yizhou; Qin, Jinpeng; Zhang, Zehua; Li, Shan; Yang, Bingyi

    2017-07-15

    A dual-cloud point extraction (d-CPE) procedure was developed for the simultaneous preconcentration and determination of trace level Se in food samples by hydride generation-atomic fluorescence spectrometry (HG-AFS). The Se(IV) was complexed with ammonium pyrrolidinedithiocarbamate (APDC) in a Triton X-114 surfactant-rich phase, which was then treated with a mixture of 16% (v/v) HCl and 20% (v/v) H 2 O 2 . This converted the Se(IV)-APDC into free Se(IV), which was back extracted into an aqueous phase at the second cloud point extraction stage. This aqueous phase was analyzed directly by HG-AFS. Optimization of the experimental conditions gave a limit of detection of 0.023μgL -1 with an enhancement factor of 11.8 when 50mL of sample solution was preconcentrated to 3mL. The relative standard deviation was 4.04% (c=6.0μgL -1 , n=10). The proposed method was applied to determine the Se contents in twelve food samples with satisfactory recoveries of 95.6-105.2%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Xylella fastidiosa CoDiRO strain associated with the olive quick decline syndrome in southern Italy belongs to a clonal complex of the subspecies pauca that evolved in Central America.

    PubMed

    Marcelletti, Simone; Scortichini, Marco

    2016-12-01

    Xylella fastidiosa, a xylem-limited bacterium transmitted by xylem-fluid-feeding Hemiptera insects, causes economic losses of both woody and herbaceous plant species. A Xyl. fastidiosa subsp. pauca strain, namely CoDiRO, was recently found to be associated with the 'olive quick decline syndrome' in southern Italy (i.e. Apulia region). Recently, some Xyl. fastidiosa strains intercepted in France from Coffea spp. plant cuttings imported from Central and South America were characterized. The introduction of infected plant material from Central America in Apulia was also postulated even though an ad hoc study to confirm this hypothesis is lacking. In the present study, we assessed the complete and draft genome of 27 Xyl. fastidiosa strains. Through a genome-wide approach, we confirmed the occurrence of three subspecies within Xyl. fastidiosa, namely fastidiosa, multiplex and pauca, and demonstrated the occurrence of a genetic clonal complex of four Xyl. fastidiosa strains belonging to subspecies pauca which evolved in Central America. The CoDiRO strain displayed 13 SNPs when compared with a strain isolated in Costa Rica from Coffea sp. and 32 SNPs when compared with two strains obtained from Nerium oleander in Costa Rica. These results support the close relationships of the two strains. The four strains in the clonal complex contain prophage-like genes in their genomes. This study strongly supports the possibility of the introduction of Xyl. fastidiosa in southern Italy via coffee plants grown in Central America. The data also stress how the current global circulation of agricultural commodities potentially threatens the agrosystems worldwide.

  9. Muscle Stem Cells Undergo Extensive Clonal Drift during Tissue Growth via Meox1-Mediated Induction of G2 Cell-Cycle Arrest.

    PubMed

    Nguyen, Phong Dang; Gurevich, David Baruch; Sonntag, Carmen; Hersey, Lucy; Alaei, Sara; Nim, Hieu Tri; Siegel, Ashley; Hall, Thomas Edward; Rossello, Fernando Jaime; Boyd, Sarah Elizabeth; Polo, Jose Maria; Currie, Peter David

    2017-07-06

    Organ growth requires a careful balance between stem cell self-renewal and lineage commitment to ensure proper tissue expansion. The cellular and molecular mechanisms that mediate this balance are unresolved in most organs, including skeletal muscle. Here we identify a long-lived stem cell pool that mediates growth of the zebrafish myotome. This population exhibits extensive clonal drift, shifting from random deployment of stem cells during development to reliance on a small number of dominant clones to fuel the vast majority of muscle growth. This clonal drift requires Meox1, a homeobox protein that directly inhibits the cell-cycle checkpoint gene ccnb1. Meox1 initiates G 2 cell-cycle arrest within muscle stem cells, and disrupting this G 2 arrest causes premature lineage commitment and the resulting defects in muscle growth. These findings reveal that distinct regulatory mechanisms orchestrate stem cell dynamics during organ growth, beyond the G 0 /G 1 cell-cycle inhibition traditionally associated with maintaining tissue-resident stem cells. Copyright © 2017. Published by Elsevier Inc.

  10. Bone marrow mesenchymal stem cells from infants with MLL-AF4+ acute leukemia harbor and express the MLL-AF4 fusion gene

    PubMed Central

    Catalina, Purificación; Rodríguez, René; Melen, Gustavo J.; Bueno, Clara; Arriero, Mar; García-Sánchez, Félix; Lassaletta, Alvaro; García-Sanz, Ramón

    2009-01-01

    MLL-AF4 fusion is a hallmark genetic abnormality in infant B-acute lymphoblastic leukemia (B-ALL) known to arise in utero. The cellular origin of leukemic fusion genes during human development is difficult to ascertain. The bone marrow (BM) microenvironment plays an important role in the pathogenesis of several hematological malignances. BM mesenchymal stem cells (BM-MSC) from 38 children diagnosed with cytogenetically different acute leukemias were screened for leukemic fusion genes. Fusion genes were absent in BM-MSCs of childhood leukemias carrying TEL-AML1, BCR-ABL, AML1-ETO, MLL-AF9, MLL-AF10, MLL-ENL or hyperdiploidy. However, MLL-AF4 was detected and expressed in BM-MSCs from all cases of MLL-AF4+ B-ALL. Unlike leukemic blasts, MLL-AF4+ BM-MSCs did not display monoclonal Ig gene rearrangements. Endogenous or ectopic expression of MLL-AF4 exerted no effect on MSC culture homeostasis. These findings suggest that MSCs may be in part tumor-related, highlighting an unrecognized role of the BM milieu on the pathogenesis of MLL-AF4+ B-ALL. MLL-AF4 itself is not sufficient for MSC transformation and the expression of MLL-AF4 in MSCs is compatible with a mesenchymal phenotype, suggesting a differential impact in the hematopoietic system and mesenchyme. The absence of monoclonal rearrangements in MLL-AF4+ BM-MSCs precludes the possibility of cellular plasticity or de-differentiation of B-ALL blasts and suggests that MLL-AF4 might arise in a population of prehematopoietic precursors. PMID:19995953

  11. AF-2364 [1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide] is a potential male contraceptive: a review of recent data.

    PubMed

    Cheng, C Yan; Mruk, Dolores; Silvestrini, Bruno; Bonanomi, Michele; Wong, Ching-Hang; Siu, Michelle K Y; Lee, Nikki P Y; Lui, Wing-Yee; Mo, Meng-Yun

    2005-10-01

    Earlier studies have shown that 1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide (AF-2364) is a potential male contraceptive when administered orally to adult Sprague-Dawley rats. This compound induces reversible germ cell loss from the seminiferous epithelium by disrupting cell adhesion function between Sertoli and germ cells, in particular, elongating/elongate/round spermatids and spermatocytes but not spermatogonia. Thus, this event is accompanied by a transient loss of fertility in treated rats. Once the drug is metabolically cleared, the remaining spermatogonia can begin repopulating the epithelium, and fertility bounces back. In this review, we summarize recent findings regarding the possible use of this drug for male contraception and its mechanism of action in the rat testis. We also provide an update on the efficacy results of using different treatment regimens in adult rats where AF-2364 was administered by gavage vs. intraperitoneal and intramuscular administration. These results have clearly indicated that AF-2364 is indeed a reversible male contraceptive. Furthermore, the tissue distribution in multiple organs and biological fluids using [3H]-AF-2364 is also reviewed. These data have clearly illustrated the low bioavailability of AF-2364 in rats and that this compound is not specifically taken up by any organs including the testis or the epididymis. These summaries are helpful to investigators in the field who seek to understand the molecular mechanism of action of AF-2364 in the rat testis and to explore its possible use for male contraception.

  12. Changes in amniotic fluid concentration of thrombin-antithrombin III complexes in patients with preterm labor: evidence of an increased thrombin generation

    PubMed Central

    Erez, Offer; Romero, Roberto; Vaisbuch, Edi; Chaiworapongsa, Tinnakorn; Kusanovic, Juan Pedro; Mazaki-Tovi, Shali; Gotsch, Francesca; Gomez, Ricardo; Maymon, Eli; Pacora, Percy; Edwin, Samuel S.; Kim, Chong Jai; Than, Nandor Gabor; Mittal, Pooja; Yeo, Lami; Dong, Zhong; Yoon, Bo Hyun; Hassan, Sonia S; Mazor, Moshe

    2012-01-01

    Objective Preterm labor is associated with excessive maternal thrombin generation as evidenced by increased circulating thrombin–antithrombin (TAT) III complexes concentration. In addition to its hemostatic functions, thrombin has uterotonic properties that may participate in the mechanism leading to preterm birth in cases of intrauterine bleeding. Thrombin also has a proinflammatory role, and inflammation is associated with increased thrombin generation. The aim of this study was to determine whether intra-amniotic infection/inflammation (IAI) is associated with increased amniotic fluid (AF) thrombin generation in women with preterm and term deliveries. Study design This cross-sectional study included the following groups: 1) mid-trimester (n=74); 2) term not in labor (n=39); 3) term in labor (n=25); 4) term in labor with IAI (n=22); 5) spontaneous preterm labor (PTL) who delivered at term (n=62); 6) PTL without IAI who delivered preterm (n=59); 7) PTL with IAI (n=71). The AF TAT III complexes concentration was measured by ELISA. Non-parametric statistics were used for analysis. Results 1) TAT III complexes were identified in all AF samples; 2) patients with PTL who delivered preterm, with and without IAI, had a significantly higher median AF TAT III complexes concentration than those with an episode of PTL who delivered at term (p<0.001, p=0.03, respectively); 3) among patients with preterm labor without IAI, elevated AF TAT III complexes concentration were independently associated with a shorter amniocentesis-to-delivery interval (hazard ratio- 1.5, 95%CI, 1.07–2.1); 4) among patients at term, those with IAI had a higher median AF TAT III complexes concentration than those without IAI, whether in labor or not in labor (p=0.02); 5) there was no significant difference between the median AF TAT III complexes concentration of patients at term with and without labor; and 6) patients who had a mid-trimester amniocentesis had a lower median AF TAT III complexes

  13. Analysis of the Sensitivity and Uncertainty in 2-Stage Clonal Growth Models for Formaldehyde with Relevance to Other Biologically-Based Dose Response (BBDR) Models

    EPA Science Inventory

    The National Center for Environmental Assessment (NCEA) has conducted and supported research addressing uncertainties in 2-stage clonal growth models for cancer as applied to formaldehyde. In this report, we summarized publications resulting from this research effort, discussed t...

  14. Clonal Spread in Second Growth Stands of Coast Redwood, Sequoia sempervirens

    Treesearch

    Vladimir Douhovnikoff; Richard S. Dodd

    2007-01-01

    Coast redwood (Sequoia sempervirens) is one of the rare conifers to reproduce successfully through clonal spread. The importance of this mode of reproduction in stand development is largely unknown. Understanding the importance of clonal spread and the spatial structure of clones is crucial for stand management strategies that would aim to maximize...

  15. Stenotrophomonas maltophilia in Mexico: antimicrobial resistance, biofilm formation and clonal diversity.

    PubMed

    Flores-Treviño, Samantha; Gutiérrez-Ferman, Jessica Lizzeth; Morfín-Otero, Rayo; Rodríguez-Noriega, Eduardo; Estrada-Rivadeneyra, Diego; Rivas-Morales, Catalina; Llaca-Díaz, Jorge M; Camacho-Ortíz, Adrián; Mendoza-Olazarán, Soraya; Garza-González, Elvira

    2014-11-01

    Stenotrophomonas maltophilia is an important multidrug-resistant nosocomial pathogen associated with high mortality. Our aim was to examine antimicrobial susceptibility, biofilm production and clonal relatedness of clinical isolates of S. maltophilia. S. maltophilia isolates were collected between 2006 and 2013 from two tertiary care hospitals in Mexico. Antimicrobial susceptibility was evaluated by the broth microdilution method. PCR was used to determine the presence of β-lactamase genes L1 and L2. Biofilm formation was assessed with crystal violet staining. Clonal relatedness was determined by PFGE. Among the 119 collected S. maltophilia isolates, 73 (61.3%) were from the respiratory tract. Resistance levels exceeded 75% for imipenem, meropenem, ampicillin, aztreonam, gentamicin and tobramycin. Resistance to trimethoprim-sulfamethoxazole was 32.8%. L1 and L2 genes were detected in 77.1% (91/118) and 66.9% (79/118) of isolates, respectively. All S. maltophilia strains were able to produce biofilms. Strains were classified as weak (47.9%, 57/119), moderate (38.7%, 46/119), or strong (13.4%, 16/119) biofilm producers. A total of 89 distinct PFGE types were identified and 21.6% (22/102) of the isolates were distributed in nine clusters. This is the first study in Mexico to reveal characteristics of clinical isolates of S. maltophilia. Clonal diversity data indicate low cross-transmission of S. maltophilia in a hospital setting. The high antibiotic resistance underscores the need for continuous surveillance of S. maltophilia in hospital settings in Mexico. © 2014 The Authors.

  16. The gene for human U2 snRNP auxiliary factor small 35-kDa subunit (U2AF1) maps to the progressive myoclonus epilepsy (EPM1) critical region on chromosome 21q22.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalioti, M.D.; Rossier, C.; Antonarakis, S.E.

    1996-04-15

    We used targeted exon trapping to clone portions of genes from human chromosome 21q22.3. One trapped sequence showed complete homology with the cDNA of human U2AF{sup 35} (M96982; HGM-approved nomenclature U2AF1), which encodes for the small 35-kDa subunit of the U2 snRNP auxiliary factor. Using the U2AF1 cDNA as a probe, we mapped this gene to cosmid Q15D2, a P1, and YAC 350F7 of the Chumakov et al. contig, close to the cystathionine-{beta}-synthase gene (CBS) on 21q22.3. This localization was confirmed by PCR using oligonucleotides from the 3{prime} UTR and by FISH. As U2AF1 associated with a number of differentmore » factors during mRNA splicing, overexpression in trisomy 21 individuals could contribute to some Down syndrome phenotypes by interfering with the splicing process. Furthermore, because this gene maps in the critical region for the progressive myoclonus epilepsy I locus (EPM1), mutation analysis will be carried out in patients to evaluate the potential role of U2AF1 as a candidate for EPM1. 24 refs., 1 fig.« less

  17. AF Sites

    Science.gov Websites

    Speeches Archive Former AF Top 3 Viewpoints and Speeches Air Force Warrior Games 2017 Events 2018 Air Force Strategic Documents Desert Storm 25th Anniversary Observances DoD Warrior Games Portraits in Courage

  18. Investigation of the Virulence Factors and Molecular Characterization of the Clonal Relations of Multidrug-Resistant Acinetobacter baumannii Isolates.

    PubMed

    Ali, Hayssam M; Salem, Mohamed Z M; El-Shikh, Mohamed S; Megeed, Ahmed Abdel; Alogaibi, Yahya A; Talea, Ibrahim Ahmed

    2017-01-01

    Multidrug-resistant (MDR) Acinetobacter baumannii infections are a great public health concern and demand continuous surveillance and antibiotic stewardship. Virulence traits and the pathogenicity of Acinetobacter are less studied compared with the molecular epidemiological and antibiotic resistance profile of this organism. In our present study, we investigated the primary characteristics contributing to the virulence of MDR A. baumannii isolates and compared them with avirulent isolates. A total of 32 well-characterized MDR A. baumannii clinical isolates and 22 avirulent isolates from a healthy individual were subjected to multilocus sequence typing and polymerase chain reaction (PCR) for a variety of biofilm-associated genes. Additionally, a number of in vitro tests were performed to determine virulence properties. Isolates were found to relate to six sequence types (STs) in which the dominant sequence was ST557 in clinical isolates, followed by ST195 and ST208. However, ST557 and ST222 were absent in avirulent isolates. All STs belonged to clonal complex 2 and clonal lineage 2, which is considered to be a universal clone. PCR analysis showed that most clinical isolates were positive for biofilm-forming genes, such as csu and bap, and also carried pga and ompA genes, which were less common in avirulent isolates. Biofilm formation, phospholipase C production, hemolytic activity, and acinetobactin production occurred significantly more frequently in clinical isolates compared with avirulent isolates. Though A. baumannii clonal lineages showed common virulence traits, they differed in virulent phenotype expression. These findings further support previous studies indicating that A. baumannii is a versatile pathogen with an ability to acquire iron and survive in iron-limiting conditions, highlighting the acinetobactin-mediated iron acquisition mechanisms involved in the pathogenesis of A. baumannii infections.

  19. T-cell stimuli independently sum to regulate an inherited clonal division fate

    PubMed Central

    Marchingo, J. M.; Prevedello, G.; Kan, A.; Heinzel, S.; Hodgkin, P. D.; Duffy, K. R.

    2016-01-01

    In the presence of antigen and costimulation, T cells undergo a characteristic response of expansion, cessation and contraction. Previous studies have revealed that population-level reproducibility is a consequence of multiple clones exhibiting considerable disparity in burst size, highlighting the requirement for single-cell information in understanding T-cell fate regulation. Here we show that individual T-cell clones resulting from controlled stimulation in vitro are strongly lineage imprinted with highly correlated expansion fates. Progeny from clonal families cease dividing in the same or adjacent generations, with inter-clonal variation producing burst-size diversity. The effects of costimulatory signals on individual clones sum together with stochastic independence; therefore, the net effect across multiple clones produces consistent, but heterogeneous population responses. These data demonstrate that substantial clonal heterogeneity arises through differences in experience of clonal progenitors, either through stochastic antigen interaction or by differences in initial receptor sensitivities. PMID:27869196

  20. Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA-seq.

    PubMed

    Reinius, Björn; Mold, Jeff E; Ramsköld, Daniel; Deng, Qiaolin; Johnsson, Per; Michaëlsson, Jakob; Frisén, Jonas; Sandberg, Rickard

    2016-11-01

    Cellular heterogeneity can emerge from the expression of only one parental allele. However, it has remained controversial whether, or to what degree, random monoallelic expression of autosomal genes (aRME) is mitotically inherited (clonal) or stochastic (dynamic) in somatic cells, particularly in vivo. Here we used allele-sensitive single-cell RNA-seq on clonal primary mouse fibroblasts and freshly isolated human CD8 + T cells to dissect clonal and dynamic monoallelic expression patterns. Dynamic aRME affected a considerable portion of the cells' transcriptomes, with levels dependent on the cells' transcriptional activity. Notably, clonal aRME was detected, but it was surprisingly scarce (<1% of genes) and mainly affected the most weakly expressed genes. Consequently, the overwhelming majority of aRME occurs transiently within individual cells, and patterns of aRME are thus primarily scattered throughout somatic cell populations rather than, as previously hypothesized, confined to patches of clonally related cells.

  1. Plant Clonal Integration Mediates the Horizontal Redistribution of Soil Resources, Benefiting Neighboring Plants.

    PubMed

    Ye, Xue-Hua; Zhang, Ya-Lin; Liu, Zhi-Lan; Gao, Shu-Qin; Song, Yao-Bin; Liu, Feng-Hong; Dong, Ming

    2016-01-01

    Resources such as water taken up by plants can be released into soils through hydraulic redistribution and can also be translocated by clonal integration within a plant clonal network. We hypothesized that the resources from one (donor) microsite could be translocated within a clonal network, released into different (recipient) microsites and subsequently used by neighbor plants in the recipient microsite. To test these hypotheses, we conducted two experiments in which connected and disconnected ramet pairs of Potentilla anserina were grown under both homogeneous and heterogeneous water regimes, with seedlings of Artemisia ordosica as neighbors. The isotopes [(15)N] and deuterium were used to trace the translocation of nitrogen and water, respectively, within the clonal network. The water and nitrogen taken up by P. anserina ramets in the donor microsite were translocated into the connected ramets in the recipient microsites. Most notably, portions of the translocated water and nitrogen were released into the recipient microsite and were used by the neighboring A. ordosica, which increased growth of the neighboring A. ordosica significantly. Therefore, our hypotheses were supported, and plant clonal integration mediated the horizontal hydraulic redistribution of resources, thus benefiting neighboring plants. Such a plant clonal integration-mediated resource redistribution in horizontal space may have substantial effects on the interspecific relations and composition of the community and consequently on ecosystem processes.

  2. Virulence, sporulation, and elicitin production in three clonal lineages of Phytophthora ramorum

    USDA-ARS?s Scientific Manuscript database

    Phytophthora ramorum populations are clonal and consist of three lineages. Recent studies have shown that the clonal lineages may have varying degrees of aggressiveness on some host species, such as Quercus rubra. In this study, we examined virulence, sporulation and elicitin production of five P. ...

  3. Calsequestrin 2 deletion causes sinoatrial node dysfunction and atrial arrhythmias associated with altered sarcoplasmic reticulum calcium cycling and degenerative fibrosis within the mouse atrial pacemaker complex1

    PubMed Central

    Glukhov, Alexey V.; Kalyanasundaram, Anuradha; Lou, Qing; Hage, Lori T.; Hansen, Brian J.; Belevych, Andriy E.; Mohler, Peter J.; Knollmann, Björn C.; Periasamy, Muthu; Györke, Sandor; Fedorov, Vadim V.

    2015-01-01

    Aims Loss-of-function mutations in Calsequestrin 2 (CASQ2) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT patients also exhibit bradycardia and atrial arrhythmias for which the underlying mechanism remains unknown. We aimed to study the sinoatrial node (SAN) dysfunction due to loss of CASQ2. Methods and results In vivo electrocardiogram (ECG) monitoring, in vitro high-resolution optical mapping, confocal imaging of intracellular Ca2+ cycling, and 3D atrial immunohistology were performed in wild-type (WT) and Casq2 null (Casq2−/−) mice. Casq2−/− mice exhibited bradycardia, SAN conduction abnormalities, and beat-to-beat heart rate variability due to enhanced atrial ectopic activity both at baseline and with autonomic stimulation. Loss of CASQ2 increased fibrosis within the pacemaker complex, depressed primary SAN activity, and conduction, but enhanced atrial ectopic activity and atrial fibrillation (AF) associated with macro- and micro-reentry during autonomic stimulation. In SAN myocytes, CASQ2 deficiency induced perturbations in intracellular Ca2+ cycling, including abnormal Ca2+ release, periods of significantly elevated diastolic Ca2+ levels leading to pauses and unstable pacemaker rate. Importantly, Ca2+ cycling dysfunction occurred not only at the SAN cellular level but was also globally manifested as an increased delay between action potential (AP) and Ca2+ transient upstrokes throughout the atrial pacemaker complex. Conclusions Loss of CASQ2 causes abnormal sarcoplasmic reticulum Ca2+ release and selective interstitial fibrosis in the atrial pacemaker complex, which disrupt SAN pacemaking but enhance latent pacemaker activity, create conduction abnormalities and increase susceptibility to AF. These functional and extensive structural alterations could contribute to SAN dysfunction as well as AF in CPVT patients. PMID:24216388

  4. Effect of clonal reproduction on genetic structure in Pentaclethra macroloba (Fabaceae: Mimosoideae).

    PubMed

    Gaddis, Keith D; Zukin, Helen L; Dieterich, Inca A; Braker, Elizabeth; Sork, Victoria L

    2014-06-01

    The existence of monodominant forests on well-drained soils in tropical regions has been widely reported. Such forests most likely result from a combination of both ecological and evolutionary factors. Under conditions of high seed and seedling mortality, vegetative reproduction could create a reproductive advantage leading to forest dominance, and profoundly affect the distribution of genetic variation in a clonal species. We investigated these effects in a low diversity forest site in Northeastern Costa Rica dominated by the species Pentaclethra macroloba, which sprouts from the root mass of fallen trees and from snapped trunks. We examined the population structure of juvenile P. macroloba growing in different soil types and across an elevational gradient. Using seven molecular markers, we genotyped 173 juvenile P. macroloba from 18 plots (six plots in seasonally inundated swamps, and 12 plots in upland non-swamp) spanning 50-300m in elevation at La Selva Biological Station and the adjacent Reserva Ecológica Bijagual in Northeastern Costa Rica. We answered two specific questions: (1) How extensive is clonal reproduction? and (2) what is the distribution of genetic diversity and structure? We found that clonal reproduction occurred exclusively within inundated swamp areas. However, there was no significant difference between genetic diversity measures in swamp and non-swamp plots, which were both generally low when compared with other tropical forest species. Genetic structure was significant across all plots (F(ST) = -0.109). However, genetic structure among swamp plots (F(ST) = 0.128) was higher than among non-swamp upland plots (F(ST) = 0.093). Additionally, spatial autocorrelation among individuals within non-swamp upland plots was significant from the 25 to 100m spatial scale, but not within swamp plots. The degree of overall genetic structure we found in P. macroloba is high for a tropical forest tree. The incidence of clonal reproduction is a contributing

  5. Clonal plasticity and diversity facilitates the adaptation of Rhododendron aureum Georgi to alpine environment

    PubMed Central

    Wang, Xiaolong; Zhao, Wei; Li, Lin; You, Jian; Ni, Biao

    2018-01-01

    Four small oval populations and five large intensive populations of Rhododendron aureum growing at the alpine in Changbai Mountain (China) were studied in two types of habitat (in the tundra and in Betula ermanii forest). Identification and delimitation of genets were inferred from excavation in small populations and from amplified fragment length polymorphism (AFLP) markers by the standardized sampling design in large populations. Clonal architecture and clonal diversity were then estimated. For the four small populations, they were monoclonal, the spacer length (18.6 ± 5.6 in tundra, 29.7 ± 9.7 in Betula ermanii forest, P < 0.05) was shorter and branching intensity (136.7 ± 32.9 in tundra, 43.4 ± 12.3 in Betula ermanii forest, P < 0.05) was higher in the tundra than that in Betula ermanii forest. For the five large populations, they were composed of multiple genets with high level of clonal diversity (Simpson’s index D = 0.84, clonal richness R = 0.25, Fager's evenness E = 0.85); the spatial distribution of genets showed that the clonal growth strategy of R. aureum exhibits both guerilla and phalanx. Our results indicate that the clonal plasticity of R. aureum could enhance exploitation of resource heterogeneity and in turn greatly contribute to maintenance or improvement of fitness and the high clonal diversity of R. aureum increase the evolutionary rates to adapt the harsh alpine environment in Changbai Mountain. PMID:29746526

  6. Clonal variation in proliferation rate of cultures of GPK cells.

    PubMed

    Riley, P A; Hola, M

    1981-09-01

    Pedigrees of twenty-six clones of a line of keratocytes derived from guinea-pig ear epidermis (GPK cells) were analysed from time-lapse film. The mean interdivision time (IDT) for the culture was 1143 +/- 215 (SD) min. The mean generation rates (mean reciprocal interdivision times) of clones varied over a range of 3.93--10.2 x 10(-4)/min and the standard deviation of the clonal mean generation rates was 16.8% of the average value. Transient intraclonal variations in IDT due to mitoses in a plane perpendicular to the substratum were observed. The data were also analysed on the basis of cell location in sixteen equal zones (quadrats) of the filmed area. The mean generation rate of quadrats was 8.73 x 10(-4)/min (SD = 4.9%). The spatial distribution showed some clustering of cells. The mean local density of the clones (2.25 +/- 0.62 cells/10(-4) cm2) was significantly higher than the quadrat density (1.76 +/- 0.8 cells/10(-4) cm2). There was no significant correlation between clonal density and mean generation rates, whereas for quadrats a significant negative correlation was found (P = 2.7%). The results support the proposition that cell lineage is the major determinant of the proliferation rate of subconfluent cultures.

  7. [Comparison of clonal architecture between two divergent Leymus chinensis types in Songnen grassland].

    PubMed

    He, Nianpeng; Wu, Ling; Zhou, Daowei

    2004-12-01

    This paper studied the clonal architecture of two divergent Leymus chinensis types (grey-green type and yellow-green type) in Songnen grassland, and compared their internode length, spacer length, interbranching length, interbranching angle, and ramet population density and height under the same habitat. The results showed that there was no significant difference in these clonal characteristics except spacer length and ramet population density between the two types of L. chinensis, and yellow-green type, with less spacer length and more ramet density than grey-green type, should be more adaptable to the resourceful habitat. Moreover, the V-indices of the clonal architecture of two divergent L. chinensis types were all close to 1, and the difference was not significant. Therefore, both of the two types belonged to typical guerilla clonal plant.

  8. Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA-seq

    PubMed Central

    Ramsköld, Daniel; Deng, Qiaolin; Johnsson, Per; Michaëlsson, Jakob; Frisén, Jonas; Sandberg, Rickard

    2016-01-01

    Cellular heterogeneity can emerge from the expression of only one parental allele. However, it has remained controversial whether, or to what degree, random monoallelic expression of autosomal genes (aRME) is mitotically inherited (clonal) or stochastic (dynamic) in somatic cells, particularly in vivo. Here, we used allele-sensitive single-cell RNA-seq on clonal primary mouse fibroblasts and in vivo human CD8+ T-cells to dissect clonal and dynamic monoallelic expression patterns. Dynamic aRME affected a considerable portion of the cells’ transcriptomes, with levels dependent on the cells’ transcriptional activity. Importantly, clonal aRME was detected but was surprisingly scarce (<1% of genes) and affected mainly the most low-expressed genes. Consequently, the overwhelming portion of aRME occurs transiently within individual cells and patterns of aRME are thus primarily scattered throughout somatic cell populations rather than, as previously hypothesized, confined to patches of clonally related cells. PMID:27668657

  9. Structure of the MLL CXXC domain – DNA complex and its functional role in MLL-AF9 leukemia

    PubMed Central

    Cierpicki, Tomasz; Risner, Laurie E.; Grembecka, Jolanta; Lukasik, Stephen M.; Popovic, Relja; Omonkowska, Monika; Shultis, David S.; Zeleznik-Le, Nancy J.; Bushweller, John H.

    2010-01-01

    MLL (Mixed Lineage Leukemia) is the target of chromosomal translocations which cause leukemias with poor prognosis. All leukemogenic MLL fusion proteins retain the CXXC domain which binds to nonmethylated CpG DNA. We present the solution structure of the MLL CXXC domain in complex with DNA, showing for the first time how the CXXC domain distinguishes nonmethylated from methylated CpG DNA. Based on the structure, we designed point mutations which disrupt DNA binding. Introduction of these mutations into MLL-AF9 results in increased DNA methylation of specific CpG nucleotides in Hoxa9, increased H3K9 methylation, decreased expression of Hoxa9 locus transcripts, loss of immortalization potential, and inability to induce leukemia in mice. These results establish that DNA binding by the CXXC domain and protection against DNA methylation is essential for MLL fusion leukemia. They also provide support for this interaction as a potential target for therapeutic intervention. PMID:20010842

  10. Microsatellites within the feline androgen receptor are suitable for X chromosome-linked clonality testing in archival material.

    PubMed

    Farwick, Nadine M; Klopfleisch, Robert; Gruber, Achim D; Weiss, Alexander Th A

    2017-04-01

    Objectives A hallmark of neoplasms is their origin from a single cell; that is, clonality. Many techniques have been developed in human medicine to utilise this feature of tumours for diagnostic purposes. One approach is X chromosome-linked clonality testing using polymorphisms of genes encoded by genes on the X chromosome. The aim of this study was to determine if the feline androgen receptor gene was suitable for X chromosome-linked clonality testing. Methods The feline androgen receptor gene was characterised and used to test clonality of feline lymphomas by PCR and polyacrylamide gel electrophoresis, using archival formalin-fixed, paraffin-embedded material. Results Clonality of the feline lymphomas under study was confirmed and the gene locus was shown to represent a suitable target in clonality testing. Conclusions and relevance Because there are some pitfalls of using X chromosome-linked clonality testing, further studies are necessary to establish this technique in the cat.

  11. Identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor–ligand complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, Jacob Lauwring, E-mail: jla@mb.au.dk; Schrøder, Tenna Juul; Christensen, Søren

    2014-02-01

    The identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor–ligand complex are reported. Sortilin is a type I membrane glycoprotein belonging to the vacuolar protein sorting 10 protein (Vps10p) family of sorting receptors and is most abundantly expressed in the central nervous system. Sortilin has emerged as a key player in the regulation of neuronal viability and has been implicated as a possible therapeutic target in a range of disorders. Here, the identification of AF40431, the first reported small-molecule ligand of sortilin, is reported. Crystals of the sortilin–AF40431 complex were obtained bymore » co-crystallization and the structure of the complex was solved to 2.7 Å resolution. AF40431 is bound in the neurotensin-binding site of sortilin, with the leucine moiety of AF40431 mimicking the binding mode of the C-terminal leucine of neurotensin and the 4-methylumbelliferone moiety of AF40431 forming π-stacking with a phenylalanine.« less

  12. Clonal expansion under the microscope: studying lymphocyte activation and differentiation using live-cell imaging.

    PubMed

    Polonsky, Michal; Chain, Benjamin; Friedman, Nir

    2016-03-01

    Clonal expansion of lymphocytes is a hallmark of vertebrate adaptive immunity. A small number of precursor cells that recognize a specific antigen proliferate into expanded clones, differentiate and acquire various effector and memory phenotypes, which promote effective immune responses. Recent studies establish a large degree of heterogeneity in the level of expansion and in cell state between and within expanding clones. Studying these processes in vivo, while providing insightful information on the level of heterogeneity, is challenging due to the complex microenvironment and the inability to continuously track individual cells over extended periods of time. Live cell imaging of ex vivo cultures within micro fabricated arrays provides an attractive methodology for studying clonal expansion. These experiments facilitate continuous acquisition of a large number of parameters on cell number, proliferation, death and differentiation state, with single-cell resolution on thousands of expanding clones that grow within controlled environments. Such data can reveal stochastic and instructive mechanisms that contribute to observed heterogeneity and elucidate the sequential order of differentiation events. Intercellular interactions can also be studied within these arrays by following responses of a controlled number of interacting cells, all trapped within the same microwell. Here we describe implementations of live-cell imaging within microwell arrays for studies of lymphocyte clonal expansion, portray insights already gained from these experiments and outline directions for future research. These tools, together with in vivo experiments tracking single-cell responses, will expand our understanding of adaptive immunity and the ways by which it can be manipulated.

  13. Hospitalizations in patients with atrial fibrillation: an analysis from ROCKET AF.

    PubMed

    DeVore, Adam D; Hellkamp, Anne S; Becker, Richard C; Berkowitz, Scott D; Breithardt, Guenter; Hacke, Werner; Halperin, Jonathan L; Hankey, Graeme J; Mahaffey, Kenneth W; Nessel, Christopher C; Singer, Daniel E; Fox, Keith A A; Patel, Manesh R; Piccini, Jonathan P

    2016-08-01

    The high costs associated with treatment for atrial fibrillation (AF) are primarily due to hospital care, but there are limited data to understand the reasons for and predictors of hospitalization in patients with AF. The ROCKET AF trial compared rivaroxaban with warfarin for stroke prophylaxis in AF. We described the frequency of and reasons for hospitalization during study follow-up and utilized Cox proportional hazards models to assess for baseline characteristics associated with all-cause hospitalization. Of 14 171 patients, 14% were hospitalized at least once. Of 2614 total hospitalizations, 41% were cardiovascular including 4% for AF; of the remaining, 12% were for bleeding. Compared with patients not hospitalized, hospitalized patients were older (74 vs. 72 years), and more frequently had diabetes (46 vs. 39%), prior MI (23 vs. 16%), and paroxysmal AF (19 vs. 17%), but less frequently had prior transient ischaemic attack/stroke (49 vs. 56%). After multivariable adjustment, lung disease [hazard ratio (HR) 1.46, 95% confidence interval (CI) 1.29-1.66], diabetes [1.22, (1.11-1.34)], prior MI [1.27, (1.13-1.42)], and renal dysfunction [HR 1.07 per 5 unit GFR < 65 mL/min, (1.04-1.10)] were associated with increased hospitalization risk. Treatment assignment was not associated with differential rates of hospitalization. Nearly 1 in 7 of the moderate-to-high-risk patients with AF enrolled in this trial was hospitalized within 2 years, and both AF and bleeding were rare causes of hospitalization. Further research is needed to determine whether care pathways directed at comorbid conditions among AF patients could reduce the need for and costs associated with hospitalization. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  14. Detection of atrial fibrillation and flutter by a dual-chamber implantable cardioverter-defibrillator. For the Worldwide Jewel AF Investigators.

    PubMed

    Swerdlow, C D; Schsls, W; Dijkman, B; Jung, W; Sheth, N V; Olson, W H; Gunderson, B D

    2000-02-29

    To distinguish prolonged episodes of atrial fibrillation (AF) that require cardioversion from self-terminating episodes that do not, an atrial implantable cardioverter-defibrillator (ICD) must be able to detect AF continuously for extended periods. The ICD should discriminate between atrial tachycardia/flutter (AT), which may be terminated by antitachycardia pacing, and AF, which requires cardioversion. We studied 80 patients with AT/AF and ventricular arrhythmias who were treated with a new atrial/dual-chamber ICD. During a follow-up period lasting 6+/-2 months, we validated spontaneous, device-defined AT/AF episodes by stored electrograms in all patients. In 58 patients, we performed 80 Holter recordings with telemetered atrial electrograms, both to validate the continuous detection of AT/AF and to determine the sensitivity of the detection of AT/AF. Detection was appropriate in 98% of 132 AF episodes and 88% of 190 AT episodes (98% of 128 AT episodes with an atrial cycle length <300 ms). Intermittent sensing of far-field R waves during sinus tachycardia caused 27 inappropriate AT/AF detections; these detections lasted 2.6+/-2.0 minutes. AT/AF was detected continuously in 27 of 28 patients who had spontaneous episodes of AT/AF (96%). The device memory recorded 90 appropriate AT/AF episodes lasting >1 hour, for a total of 2697 hours of continuous detection of AT/AF. During Holter monitoring, the sensitivity of the detection of AT/AF (116 hours) was 100%; the specificity of the detection of non-AT/AF rhythms (1290 hours) was 99.99%. Of 166 appropriate episodes detected as AT, 45% were terminated by antitachycardia pacing. A new ICD detects AT/AF accurately and continuously. Therapy may be programmed for long-duration AT/AF, with a low risk of underdetection. Discrimination of AT from AF permits successful pacing therapy for a significant fraction of AT.

  15. Global epidemiology of capsular group W meningococcal disease (1970-2015): Multifocal emergence and persistence of hypervirulent sequence type (ST)-11 clonal complex.

    PubMed

    Mustapha, Mustapha M; Marsh, Jane W; Harrison, Lee H

    2016-03-18

    Following an outbreak in Mecca Saudi Arabia in 2000, meningococcal strains expressing capsular group W (W) emerged as a major cause of invasive meningococcal disease (IMD) worldwide. The Saudi Arabian outbreak strain (Hajj clone) belonging to the ST-11 clonal complex (cc11) is similar to W cc11 causing occasional sporadic disease before 2000. Since 2000, W cc11 has caused large meningococcal disease epidemics in the African meningitis belt and endemic disease in South America, Europe and China. Traditional molecular epidemiologic typing suggested that a majority of current W cc11 burden represented global spread of the Hajj clone. However, recent whole genome sequencing (WGS) analyses revealed significant genetic heterogeneity among global W cc11 strains. While continued spread of the Hajj clone occurs in the Middle East, the meningitis belt and South Africa have co-circulation of the Hajj clone and other unrelated W cc11 strains. Notably, South America, the UK, and France share a genetically distinct W cc11 strain. Other W lineages persist in low numbers in Europe, North America and the meningitis belt. In summary, WGS is helping to unravel the complex genomic epidemiology of group W meningococcal strains. Wider application of WGS and strengthening of global IMD surveillance is necessary to monitor the continued evolution of group W lineages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A Computational Clonal Analysis of the Developing Mouse Limb Bud

    PubMed Central

    Marcon, Luciano; Arqués, Carlos G.; Torres, Miguel S.; Sharpe, James

    2011-01-01

    A comprehensive spatio-temporal description of the tissue movements underlying organogenesis would be an extremely useful resource to developmental biology. Clonal analysis and fate mappings are popular experiments to study tissue movement during morphogenesis. Such experiments allow cell populations to be labeled at an early stage of development and to follow their spatial evolution over time. However, disentangling the cumulative effects of the multiple events responsible for the expansion of the labeled cell population is not always straightforward. To overcome this problem, we develop a novel computational method that combines accurate quantification of 2D limb bud morphologies and growth modeling to analyze mouse clonal data of early limb development. Firstly, we explore various tissue movements that match experimental limb bud shape changes. Secondly, by comparing computational clones with newly generated mouse clonal data we are able to choose and characterize the tissue movement map that better matches experimental data. Our computational analysis produces for the first time a two dimensional model of limb growth based on experimental data that can be used to better characterize limb tissue movement in space and time. The model shows that the distribution and shapes of clones can be described as a combination of anisotropic growth with isotropic cell mixing, without the need for lineage compartmentalization along the AP and PD axis. Lastly, we show that this comprehensive description can be used to reassess spatio-temporal gene regulations taking tissue movement into account and to investigate PD patterning hypothesis. PMID:21347315

  17. Assessment of clonality and serotypes of Streptococcus mutans among children by multilocus sequence typing.

    PubMed

    Momeni, Stephanie S; Whiddon, Jennifer; Cheon, Kyounga; Moser, Stephen A; Childers, Noel K

    2015-12-01

    Studies using multilocus sequence typing (MLST) have demonstrated that Streptococcus mutans isolates are genetically diverse. Our laboratory previously demonstrated clonality of S. mutans using MLST but could not discount the possibility of sampling bias. In this study, the clonality of randomly selected S. mutans plaque isolates from African-American children was examined using MLST. Serotype and the presence of collagen-binding proteins (CBPs) encoded by cnm/cbm were also assessed. One-hundred S. mutans isolates were randomly selected for MLST analysis. Sequence analysis was performed and phylogenetic trees were generated using start2 and mega. Thirty-four sequence types were identified, of which 27 were unique to this population. Seventy-five per cent of the isolates clustered into 16 clonal groups. The serotypes observed were c (n = 84), e (n = 3), and k (n = 11). The prevalence of S. mutans isolates of serotype k was notably high, at 17.5%. All isolates were cnm/cbm negative. The clonality of S. mutans demonstrated in this study illustrates the importance of localized population studies and are consistent with transmission. The prevalence of serotype k, a recently proposed systemic pathogen, observed in this study, is higher than reported in most populations and is the first report of S. mutans serotype k in a United States population. © 2015 Eur J Oral Sci.

  18. Clinical presentation, management, and outcomes in the Indian Heart Rhythm Society-Atrial Fibrillation (IHRS-AF) registry.

    PubMed

    Vora, A; Kapoor, A; Nair, M; Lokhandwala, Y; Narsimhan, C; Ravikishore, A G; Dwivedi, S K; Namboodiri, N; Hygriv, R; Saxena, A; Nabar, A; Garg, S; Bardoloi, N; Yadav, R; Nambiar, A; Pandurangi, U; Jhala, D; Naik, A; Nagmallesh; Rajagopal, S; Selvaraj, R; Arora, V; Thachil, A; Thomas, J; Panicker, G

    A national atrial fibrillation (AF) registry was conducted under the aegis of the Indian Heart Rhythm Society (IHRS), to capture epidemiological data-type of AF, clinical presentation and comorbidities, current treatment practices, and 1-year follow-up outcomes. A total of 1537 patients were enrolled from 24 sites in India in the IHRS-AF registry from July 2011 to August 2012. Their baseline characteristics and follow-up data were recorded in case report forms and subsequently analyzed. The average age of Indian AF patients was 54.7 years. There was a marginal female preponderance - 51.5% females and 48.5% males. At baseline, 20.4% had paroxysmal AF; 33% had persistent AF; 35.1% had permanent AF and 11% had first AF episode. At one-year follow-up, 45.6% patients had permanent AF. Rheumatic valvular heart disease (RHD) was present in 47.6% of patients. Hypertension, heart failure, coronary artery disease, and diabetes were seen in 31.4%, 18.7%, 16.2%, and 16.1%, respectively. Rate control was the strategy used in 75.2% patients, digoxin and beta-blockers being the most frequently prescribed rate-control drugs. Oral anticoagulation (OAC) drugs were used in 70% of patients. The annual mortality was 6.5%, hospitalization 8%, and incidence of stroke 1%. In India, AF patients are younger and RHD is still the most frequent etiology. Almost two-third of the patients have persistent/permanent AF. At one-year follow-up, there is a significant mortality and morbidity in AF patients in India. Copyright © 2016. Published by Elsevier B.V.

  19. Cost of resistance to trematodes in freshwater snail populations with low clonal diversity.

    PubMed

    Dagan, Yael; Kosman, Evsey; Ben-Ami, Frida

    2017-12-13

    The persistence of high genetic variability in natural populations garners considerable interest among ecologists and evolutionary biologists. One proposed hypothesis for the maintenance of high levels of genetic diversity relies on frequency-dependent selection imposed by parasites on host populations (Red Queen hypothesis). A complementary hypothesis suggests that a trade-off between fitness costs associated with tolerance to stress factors and fitness costs associated with resistance to parasites is responsible for the maintenance of host genetic diversity. The present study investigated whether host resistance to parasites is traded off with tolerance to environmental stress factors (high/low temperatures, high salinity), by comparing populations of the freshwater snail Melanoides tuberculata with low vs. high clonal diversity. Since polyclonal populations were found to be more parasitized than populations with low clonal diversity, we expected them to be tolerant to environmental stress factors. We found that clonal diversity explained most of the variation in snail survival under high temperature, thereby suggesting that tolerance to high temperatures of clonally diverse populations is higher than that of populations with low clonal diversity. Our results suggest that resistance to parasites may come at a cost of reduced tolerance to certain environmental stress factors.

  20. Validation of the REMA score for predicting mast cell clonality and systemic mastocytosis in patients with systemic mast cell activation symptoms.

    PubMed

    Alvarez-Twose, I; González-de-Olano, D; Sánchez-Muñoz, L; Matito, A; Jara-Acevedo, M; Teodosio, C; García-Montero, A; Morgado, J M; Orfao, A; Escribano, L

    2012-01-01

    A variable percentage of patients with systemic mast cell (MC) activation symptoms meet criteria for systemic mastocytosis (SM). We prospectively evaluated the clinical utility of the REMA score versus serum baseline tryptase (sBt) levels for predicting MC clonality and SM in 158 patients with systemic MC activation symptoms in the absence of mastocytosis in the skin (MIS). World Health Organization criteria for SM were applied in all cases. MC clonality was defined as the presence of KIT-mutated MC or by a clonal HUMARA test. The REMA score consisted of the assignment of positive or negative points as follows: male (+1), female (-1), sBt <15 μg/l (-1) or >25 μg/l (+2), presence (-2) or absence (+1) of pruritus, hives or angioedema and presence (+3) of presyncope or syncope. Efficiency of the REMA score for predicting MC clonality and SM was assessed by receiver operating characteristic (ROC) curve analyses and compared to those obtained by means of sBt levels alone. Molecular studies revealed the presence of clonal MC in 68/80 SM cases and in 11/78 patients who did not meet the criteria for SM. ROC curve analyses confirmed the greater sensitivity and a similar specificity of the REMA score versus sBt levels (84 vs. 59% and 74 vs. 70% for MC clonality and 87 vs. 62% and 73 vs. 71% for SM, respectively). Our results confirm the clinical utility of the REMA score to predict MC clonality and SM in patients suffering from systemic MC activation symptoms without MIS. Copyright © 2011 S. Karger AG, Basel.

  1. Clonal tests of new cottonwood selections from the southeast

    Treesearch

    Jonathan Paul Jeffreys; Samuel B. Land; Emily B. Schultz; Andrew J. Londo

    2006-01-01

    One hundred “new” clones and 20 “check” clones were established with unrooted cuttings during March-April 2003 in a second-stage clonal trial in Missouri and Georgia. The new clones had been selected for 2-year superiority in Melampsora leaf rust resistance, height growth, and diameter growth during first-stage rooted cutting trials. All 120 clones were vegetatively...

  2. Significant spread of extensively drug-resistant Acinetobacter baumannii genotypes of clonal complex 92 among intensive care unit patients in a university hospital in southern Iran.

    PubMed

    Saffari, Fereshteh; Monsen, Tor; Karmostaji, Afsaneh; Azimabad, Fahimeh Bahadori; Widerström, Micael

    2017-11-01

    Infections associated with Acinetobacter baumannii represent an increasing threat in healthcare settings. Therefore, we investigated the epidemiological relationship between clinical isolates of A. baumannii obtained from patients in a university hospital in Bandar Abbas in southern Iran. Sixty-four consecutive non-duplicate clinical isolates collected during 2014-2015 were subjected to susceptibility testing, clonal relationship analysis using PFGE, multilocus variable-number tandem-repeat analysis (MLVA) and multilocus sequence typing (MLST), and examined for the presence of carbapenemases and integrons. Almost all A. baumannii isolates were extensively drug-resistant (XDR; 98 %) and carried an OXA carbapenemase gene (blaOXA-23-like; 98 %) and class 1 integrons (48 %). PFGE and MLST analysis identified three major genotypes, all belonging to clonal complex 92 (CC92): sequence type 848 (ST848) (n=23), ST451 (n=16) and ST195 (n=8). CC92 has previously been documented in the hospital setting in northern Iran, and ST195 has been reported in Arab States of the Persian Gulf. These data suggest national and global transmission of A. baumannii CC92. This report demonstrates the occurrence and potential spread of closely related XDR genotypes of A. baumannii CC92 within a university hospital in southern Iran. These genotypes were found in the majority of the investigated isolates, showed high prevalence of blaOXA-23 and integron class 1, and were associated with stay in the intensive care unit. Very few treatment options remain for healthcare-adapted XDR A. baumannii, and hence effective measures are desperately needed to reduce the spread of these strains and resultant infections in the healthcare setting.

  3. Cytogenetic clonal evolution in myelodysplastic syndromes is associated with inferior prognosis.

    PubMed

    Neukirchen, Judith; Lauseker, Michael; Hildebrandt, Barbara; Nolting, Ann-Christin; Kaivers, Jennifer; Kobbe, Guido; Gattermann, Norbert; Haas, Rainer; Germing, Ulrich

    2017-12-01

    The karyotype of bone marrow cells at the time of diagnosis is a strong prognostic parameter for overall survival as well as acute myeloid leukemia (AML) progression in patients with myelodysplastic syndromes (MDS). However, to the authors' knowledge, few data exist regarding the prognostic impact of cytogenetic clonal evolution during the course of MDS. The authors evaluated follow-up karyotype analyses in 549 patients from the Dusseldorf MDS Registry. Clonal evolution was detectable in 24% of the entire cohort and in 18% of 294 patients receiving best supportive care. The authors noted a clear adverse effect of clonal evolution on the risk of leukemic transformation (hazard ratio, 2.233; P = .036) and overall survival (hazard ratio, 3.677; P<.001). The authors also analyzed the prognostic influence of subclones detectable at the time of diagnosis. Again, such a finding was associated with a significantly shorter overall survival and a higher 5-year-probability of acute myeloid leukemia progression (30% vs 22%). The results of the current study support the belief that follow-up karyotype analyses should be performed, especially in patients with lower-risk and intermediate-risk MDS, to identify those patients who are at higher risk of disease progression and therefore might benefit from earlier or more intensive treatment. Cancer 2017;123:4608-4616. © 2017 American Cancer Society. © 2017 American Cancer Society.

  4. The modified stepwise ablation guided by low-dose ibutilide in chronic atrial fibrillation trial (The MAGIC-AF Study).

    PubMed

    Singh, Sheldon M; d'Avila, Andre; Kim, Young-Hoon; Aryana, Arash; Mangrum, J Michael; Michaud, Gregory F; Dukkipati, Srinivas R; Barrett, Conor D; Heist, E Kevin; Parides, Michael K; Thorpe, Kevin E; Reddy, Vivek Y

    2016-05-21

    Complex fractionated atrial electrograms (CFAE) are targeted during persistent atrial fibrillation (AF) ablation. However, many CFAE sites are non-specific resulting in extensive ablation. Ibutilide has been shown to reduce left atrial surface area exhibiting CFAE. We hypothesized that ibutilide administration prior to CFAE ablation would identify sites critical for persistent AF maintenance allowing for improved procedural efficacy and long-term freedom from atrial arrhythmias. Two hundred patients undergoing a first-ever persistent AF catheter ablation procedure were randomly assigned to receive either 0.25 mg of intravenous ibutilide or saline placebo upon completion of pulmonary vein isolation. Complex fractionated atrial electrogram sites were then targeted with ablation. The primary efficacy endpoint was the 1-year single procedure freedom from atrial arrhythmia off anti-arrhythmic drugs. Similar procedural characteristics (procedure, fluoroscopy, and ablation times) were observed with both strategies despite a greater reduction in left atrial surface area with CFAE sites (8 vs. 1%, P < 0.0001) and AF termination during CFAE ablation with ibutilide compared with placebo (75 vs. 57%, P = 0.007). The primary efficacy endpoint was achieved in 56% of patients receiving ibutilide and 49% receiving placebo (P = 0.35). No significant differences in peri-procedural complications were observed in both groups. Despite a reduction in CFAE area and greater AF termination during CFAE ablation, procedural characteristics and clinical outcomes were unchanged when CFAE ablation was guided by ibutilide administration. ClinicalTrials.gov number: NCT01014741. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  5. The genetics of myelodysplastic syndrome: from clonal haematopoiesis to secondary leukaemia.

    PubMed

    Sperling, Adam S; Gibson, Christopher J; Ebert, Benjamin L

    2017-01-01

    Myelodysplastic syndrome (MDS) is a clonal disease that arises from the expansion of mutated haematopoietic stem cells. In a spectrum of myeloid disorders ranging from clonal haematopoiesis of indeterminate potential (CHIP) to secondary acute myeloid leukaemia (sAML), MDS is distinguished by the presence of peripheral blood cytopenias, dysplastic haematopoietic differentiation and the absence of features that define acute leukaemia. More than 50 recurrently mutated genes are involved in the pathogenesis of MDS, including genes that encode proteins involved in pre-mRNA splicing, epigenetic regulation and transcription. In this Review we discuss the molecular processes that lead to CHIP and further clonal evolution to MDS and sAML. We also highlight the ways in which these insights are shaping the clinical management of MDS, including classification schemata, prognostic scoring systems and therapeutic approaches.

  6. Effects of repeated administration of (-)-nicotine on AF64A-induced learning and memory impairment in rats.

    PubMed

    Hiramatsu, M; Yamatsu, T; Kameyama, T; Nabeshima, T

    2002-03-01

    It has been reported that pretreatment with (-)-nicotine prevents glutamate- and amyloid beta protein (Abeta)-induced cytotoxicity in vitro. However, few studies on the neuroprotective effects of (-)-nicotine in vivo have been reported. We examined whether repeated administration of (-)-nicotine exhibits neuroprotective effects in AF64A-treated rats. (-)-Nicotine (0.1 and 0.2 mg/kg, s.c.) was administered once a day for 28 days. On day 14, AF64A (2.5 nmol/side) was injected bilaterally into the hippocampus. Intrahippocampal injection of AF64A showed severe impairment of learning and memory in rats in the water maze and passive avoidance tests. Repeated administration of (-)-nicotine (0.1 and 0.2 mg/kg, s.c.) did not reverse the impairment of memory induced by AF64A in the water maze test. Interestingly, the (-)-nicotine (0.1 and 0.2 mg/kg, s.c.)-treated group showed weak impairment of learning and memory after AF64A treatment compared to the (AF64A + saline)-treated group in the passive avoidance test. These results suggested that (-)-nicotine may have neuroprotective effects against the neurotoxicity induced by AF64A.

  7. Big Bang Tumor Growth and Clonal Evolution.

    PubMed

    Sun, Ruping; Hu, Zheng; Curtis, Christina

    2018-05-01

    The advent and application of next-generation sequencing (NGS) technologies to tumor genomes has reinvigorated efforts to understand clonal evolution. Although tumor progression has traditionally been viewed as a gradual stepwise process, recent studies suggest that evolutionary rates in tumors can be variable with periods of punctuated mutational bursts and relative stasis. For example, Big Bang dynamics have been reported, wherein after transformation, growth occurs in the absence of stringent selection, consistent with effectively neutral evolution. Although first noted in colorectal tumors, effective neutrality may be relatively common. Additionally, punctuated evolution resulting from mutational bursts and cataclysmic genomic alterations have been described. In this review, we contrast these findings with the conventional gradualist view of clonal evolution and describe potential clinical and therapeutic implications of different evolutionary modes and tempos. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  8. An Expanded Lateral Interactive Clonal Selection Algorithm and Its Application

    NASA Astrophysics Data System (ADS)

    Gao, Shangce; Dai, Hongwei; Zhang, Jianchen; Tang, Zheng

    Based on the clonal selection principle proposed by Burnet, in the immune response process there is no crossover of genetic material between members of the repertoire, i. e., there is no knowledge communication during different elite pools in the previous clonal selection models. As a result, the search performance of these models is ineffective. To solve this problem, inspired by the concept of the idiotypic network theory, an expanded lateral interactive clonal selection algorithm (LICS) is put forward. In LICS, an antibody is matured not only through the somatic hypermutation and the receptor editing from the B cell, but also through the stimuli from other antibodies. The stimuli is realized by memorizing some common gene segment on the idiotypes, based on which a lateral interactive receptor editing operator is also introduced. Then, LICS is applied to several benchmark instances of the traveling salesman problem. Simulation results show the efficiency and robustness of LICS when compared to other traditional algorithms.

  9. United we stand, divided we fall: a meta-analysis of experiments on clonal integration and its relationship to invasiveness.

    PubMed

    Song, Yao-Bin; Yu, Fei-Hai; Keser, Lidewij H; Dawson, Wayne; Fischer, Markus; Dong, Ming; van Kleunen, Mark

    2013-02-01

    Many ecosystems are dominated by clonal plants. Among the most distinctive characteristics of clonal plants is their potential for clonal integration (i.e. the translocation of resources between interconnected ramets), suggesting that integration may play a role in their success. However, a general synthesis of effects of clonal integration on plant performance is lacking. We conducted a meta-analysis on the effects of clonal integration on biomass production and asexual reproduction of the whole clone, the recipient part (i.e. the part of a clone that imports resources) and the donor part (i.e. the part of a clone that exports resources). The final dataset contained 389 effect sizes from 84 studies covering 57 taxa. Overall, clonal integration increased performance of recipient parts without decreasing that of donor parts, and thus increased performance of whole clones. Among the studies and taxa considered, the benefits of clonal integration did not differ between two types of experimental approaches, between stoloniferous and rhizomatous growth forms, between directions of resource translocation (from younger to older ramet or vice versa), or among types of translocated resources (water, nutrients and carbohydrates). Clonal taxa with larger benefits of integration on whole-clone performance were not more invasive globally, but taxa in which recipient parts in unfavorable patches benefited more from integration were. Our results demonstrate general performance benefits of clonal integration, at least in the short term, and suggest that clonal integration contributes to the success of clonal plants.

  10. Baseline Demographics, Safety, and Patient Acceptance of an Insertable Cardiac Monitor for Atrial Fibrillation Screening: The REVEAL-AF Study.

    PubMed

    Conti, Sergio; Reiffel, James A; Gersh, Bernard J; Kowey, Peter R; Wachter, Rolf; Halperin, Jonathan L; Kaplon, Rachelle E; Pouliot, Erika; Verma, Atul

    2017-01-01

    Given the high prevalence and risk of stroke associated with atrial fibrillation (AF), detection strategies have important public health implications. The ongoing prospective, single-arm, open-label, multicenter REVEAL AF trial is evaluating the incidence of previously undetected AF using an insertable cardiac monitor (ICM) in patients without prior AF or device implantation, but who could be at risk for AF due to their demographic characteristics, +/- non-specific but compatible symptoms. Enrollment required an elevated AF risk profile defined as CHADS2≥3 or CHADS 2 =2 plus one or more of the following: coronary artery disease, renal impairment, sleep apnea or chronic obstructive pulmonary disease. Exclusions included stroke or transient ischemic attack occurring in the previous year. Of 450 subjects screened, 399 underwent a device insertion attempt, and 395 were included in the final analysis (Reveal XT: n=122; Reveal LINQ: n=273; excluded: n=4). Participants were primarily identified by demographic characteristics and the presence of nonspecific symptoms, but without prior documentation of "overt" AF. The most common symptoms were palpitations (51%), dizziness/lightheadedness/pre-syncope (36%), and shortness of breath (36%). Over 100 subjects were enrolled in each pre-defined CHADS2 subgroup (2, 3 and ≥4). AF risk factors not included in the CHADS2 score were well represented (prevalence≥15%). Procedure and/or device related serious adverse events were low, with the miniaturized Reveal LINQ ICM having a more favorable safety profile than the predicate Reveal XT (all: n=13 [3.3%]; LINQ: n=6 [2.2%]; XT: n=7 [5.7%]). These data demonstrate that REVEAL AF was successful in enrolling its target population, high risk patients were willing to undergo ICM monitoring for AF screening, and ICM use in this group is becoming increasingly safe with advancements in technology. A clinically meaningful incidence of device detected AF in this study will inform clinical

  11. Community-Associated Methicillin-Resistant Staphylococcus aureus Clonal Complex 80 Type IV (CC80-MRSA-IV) Isolated from the Middle East: A Heterogeneous Expanding Clonal Lineage

    PubMed Central

    Harastani, Houda H.; Tokajian, Sima T.

    2014-01-01

    Background The emergence of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA) has caused a change in MRSA epidemiology worldwide. In the Middle East, the persistent spread of CA-MRSA isolates that were associated with multilocus sequence type (MLST) clonal complex 80 and with staphylococcal cassette chromosome mec (SCCmec) type IV (CC80-MRSA-IV), calls for novel approaches for infection control that would limit its spread. Methodology/Principal Findings In this study, the epidemiology of CC80-MRSA-IV was investigated in Jordan and Lebanon retrospectively covering the period from 2000 to 2011. Ninety-four S. aureus isolates, 63 (67%) collected from Lebanon and 31 (33%) collected from Jordan were included in this study. More than half of the isolates (56%) were associated with skin and soft tissue infections (SSTIs), and 73 (78%) were Panton-Valentine Leukocidin (PVL) positive. Majority of the isolates (84%) carried the gene for exofoliative toxin d (etd), 19% had the Toxic Shock Syndrome Toxin-1 gene (tst), and seven isolates from Jordan had a rare combination being positive for both tst and PVL genes. spa typing showed the prevalence of type t044 (85%) and pulsed-field gel electrophoresis (PFGE) recognized 21 different patterns. Antimicrobial susceptibility testing showed the prevalence (36%) of a unique resistant profile, which included resistance to streptomycin, kanamycin, and fusidic acid (SKF profile). Conclusions The genetic diversity among the CC80 isolates observed in this study poses an additional challenge to infection control of CA-MRSA epidemics. CA-MRSA related to ST80 in the Middle East was distinguished in this study from the ones described in other countries. Genetic diversity observed, which may be due to mutations and differences in the antibiotic regimens between countries may have led to the development of heterogeneous strains. Hence, it is difficult to maintain “the European CA-MRSA clone” as a uniform clone and it

  12. Clonal growth strategy, diversity and structure: A spatiotemporal response to sedimentation in tropical Cyperus papyrus swamps.

    PubMed

    Geremew, Addisie; Stiers, Iris; Sierens, Tim; Kefalew, Alemayehu; Triest, Ludwig

    2018-01-01

    Land degradation and soil erosion in the upper catchments of tropical lakes fringed by papyrus vegetation can result in a sediment load gradient from land to lakeward. Understanding the dynamics of clonal modules (ramets and genets) and growth strategies of plants on such a gradient in both space and time is critical for exploring a species adaptation and processes regulating population structure and differentiation. We assessed the spatial and temporal dynamics in clonal growth, diversity, and structure of an emergent macrophyte, Cyperus papyrus (papyrus), in response to two contrasting sedimentation regimes by combining morphological traits and genotype data using 20 microsatellite markers. A total of 636 ramets from six permanent plots (18 x 30 m) in three Ethiopian papyrus swamps, each with discrete sedimentation regimes (high vs. low) were sampled for two years. We found that ramets under the high sedimentation regime (HSR) were significantly clumped and denser than the sparse and spreading ramets under the low sedimentation regime (LSR). The HSR resulted in significantly different ramets with short culm height and girth diameter as compared to the LSR. These results indicated that C. papyrus ameliorates the effect of sedimentation by shifting clonal growth strategy from guerrilla (in LSR) to phalanx (in HSR). Clonal richness, size, dominance, and clonal subrange differed significantly between sediment regimes and studied time periods. Each swamp under HSR revealed a significantly high clonal richness (R = 0.80) as compared to the LSR (R = 0.48). Such discrepancy in clonal richness reflected the occurrence of initial and repeated seedling recruitment strategies as a response to different sedimentation regimes. Overall, our spatial and short-term temporal observations highlighted that HSR enhances clonal richness and decreases clonal subrange owing to repeated seedling recruitment and genets turnover.

  13. Clonal growth strategy, diversity and structure: A spatiotemporal response to sedimentation in tropical Cyperus papyrus swamps

    PubMed Central

    Stiers, Iris; Sierens, Tim; Kefalew, Alemayehu; Triest, Ludwig

    2018-01-01

    Land degradation and soil erosion in the upper catchments of tropical lakes fringed by papyrus vegetation can result in a sediment load gradient from land to lakeward. Understanding the dynamics of clonal modules (ramets and genets) and growth strategies of plants on such a gradient in both space and time is critical for exploring a species adaptation and processes regulating population structure and differentiation. We assessed the spatial and temporal dynamics in clonal growth, diversity, and structure of an emergent macrophyte, Cyperus papyrus (papyrus), in response to two contrasting sedimentation regimes by combining morphological traits and genotype data using 20 microsatellite markers. A total of 636 ramets from six permanent plots (18 x 30 m) in three Ethiopian papyrus swamps, each with discrete sedimentation regimes (high vs. low) were sampled for two years. We found that ramets under the high sedimentation regime (HSR) were significantly clumped and denser than the sparse and spreading ramets under the low sedimentation regime (LSR). The HSR resulted in significantly different ramets with short culm height and girth diameter as compared to the LSR. These results indicated that C. papyrus ameliorates the effect of sedimentation by shifting clonal growth strategy from guerrilla (in LSR) to phalanx (in HSR). Clonal richness, size, dominance, and clonal subrange differed significantly between sediment regimes and studied time periods. Each swamp under HSR revealed a significantly high clonal richness (R = 0.80) as compared to the LSR (R = 0.48). Such discrepancy in clonal richness reflected the occurrence of initial and repeated seedling recruitment strategies as a response to different sedimentation regimes. Overall, our spatial and short-term temporal observations highlighted that HSR enhances clonal richness and decreases clonal subrange owing to repeated seedling recruitment and genets turnover. PMID:29338034

  14. Effects of sediment burial on tropical ruderal seagrasses are moderated by clonal integration

    NASA Astrophysics Data System (ADS)

    Ooi, Jillian Lean Sim; Kendrick, Gary A.; Van Niel, Kimberly P.

    2011-12-01

    Seagrasses are clonal plants that grow submerged in dynamic sedimentary environments where burial is a common occurrence. Clonal organisms may respond to burial in very different ways depending on how strongly integrated they are through horizontal rhizomes, but the effect of clonal integration under conditions of stress such as burial is poorly studied for seagrasses. We test the effect of burial on tropical seagrasses that occur in multispecific meadows by subjecting plants in mixed stands to burial of 0, 2, 4, 8 and 16 cm for 27 days. Treatments were divided into those where rhizomes were severed and those where rhizomes were left intact. We hypothesize that species withstand burial better if clonal integration is maintained (intact rhizomes). Results showed that all species tolerated burial of up to 4 cm without adverse effects but significant reductions in shoot density and biomass become evident at 8 cm of burial. Furthermore, Cymodocea serrulata and Syringodium isoetifolium were strong integrators, i.e. they provide support for buried shoots, whereas Halophila ovalis and Halodule uninervis were weak integrators that did not show evidence of subsidizing buried shoots. Vertical elongation was observed for C. serrulata and H. uninervis as a response to burial only when rhizomes were severed, leading us to speculate on whether species rely on vertical elongation as an escape strategy only in the absence of resource translocation. Our distinction between the responses of treatments with intact rhizomes from those with severed rhizomes may be extended to an interpretation of burial scale (intact rhizomes=broad spatial-scale burial; severed rhizomes=fine spatial-scale burial). We concluded that broad spatial-scale burial exceeding 4 cm leads to rapid loss or reduction of all species. However, fine spatial-scale burial exceeding 4 cm, such as those caused by shrimp mounds (bioturbation), is expected to favor C. serrulata and S. isoetifolium, while H. ovalis and H

  15. Molecular Characteristics of Mantle Cell Lymphoma Presenting with Clonal Plasma Cell Component

    PubMed Central

    Visco, Carlo; Hoeller, Sylvia; Malik, Jeffrey T.; Xu-Monette, Zijun Y.; Wiggins, Michele L.; Liu, Jessica; Sanger, Warren G.; Liu, Zhongfeng; Chang, Julie; Ranheim, Erik A.; Gradowski, Joel F.; Serrrano, Sergio; Wang, Huan-You; Liu, Qingquan; Dave, Sandeep; Olsen, Brian; Gascoyne, Randy D.; Campo, Elias; Swerdlow, Steven H.; Chan, Wing C.; Tzankov, Alexander; Young, Ken H.

    2011-01-01

    The normal counterparts of mantle cell lymphoma (MCL) are naïve quiescent B-cells that have not been processed through the germinal center (GC). For this reason, while lymphomas arising from GC or post-GC B-cells often exhibit plasmacytic differentiation, MCL rarely presents with plasmacytic features. Seven cases of MCL with a monotypic plasma cell (PC) population were collected from six centers and studied by immunohistochemistry, FICTION (Fluorescence immunophenotyping and Interphase Cytogenetics as a Tool for the Investigation of Neoplasms), capillary gel electrophoresis, and restriction fragment length polymorphism of immunoglobulin heavy chain analysis (RFLP/IgH) of microdissections of each of the MCL and PC populations to assess their clonal relationship. Clinical presentation was rather unusual compared to typical MCL, with two cases arising from extranodal soft-tissues of the head. All MCL cases were morphologically and immunohistochemically typical, bearing the t(11;14)(q13;q32). In all cases PC populations were clonal. In 5 of the 7 cases, the MCL and PC clones showed identical restriction fragments, indicating a common clonal origin of the neoplastic populations. The two cases with clonal diversity denoted the coexistence of two different tumors in a composite lymphoma/plasma cell neoplasm. Our findings suggest that MCL can present with a PC component that is often clonally related to the lymphoma, representing a rare but unique biological variant of this tumor. PMID:21263238

  16. AF-Shell 1.0 User Guide

    NASA Technical Reports Server (NTRS)

    McElroy, Mark W.

    2017-01-01

    This document serves as a user guide for the AF-Shell 1.0 software, an efficient tool for progressive damage simulation in composite laminates. This guide contains minimal technical material and is meant solely as a guide for a new user to apply AF-Shell 1.0 to laminate damage simulation problems.

  17. Extracting uranium from seawater: Promising AF series adsorbents

    DOE PAGES

    Das, Sadananda; Oyola, Y.; Mayes, Richard T.; ...

    2015-11-02

    Here, a new family of high surface area polyethylene fiber adsorbents (AF series) was recently developed at the Oak Ridge National Laboratory (ORNL). The AF series of were synthesized by radiation-induced graft polymerization of acrylonitrile and itaconic acid (at different monomer/co-monomer mol ratios) onto high surface area polyethylene fibers. The degree of grafting (%DOG) of AF series adsorbents was found to be 154 354%. The grafted nitrile groups were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8more » ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged from 170-200 g-U/kg-ads irrespective of %DOG. A monomer/co-monomer mol ratio in the range of 7.57-10.14 seemed to be optimum for highest uranium loading capacity. Subsequently, the adsorbents were also tested with natural seawater at Pacific Northwest National Laboratory (PNNL) using flow-through exposure uptake experiments to determine uranium loading capacity with varying KOH conditioning time at 80 C. The highest adsorption capacity of AF1 measured after 56 days of marine testing was demonstrated as 3.9 g-U/kg-adsorbent and 3.2 g-U/kg-adsorbent for 1hr and 3hrs of KOH conditioning at 80 C, respectively. Based on capacity values of several AF1 samples, it was observed that changing KOH conditioning from 3hrs to 1hr at 80 C resulted in 22-27% increase in uranium loading capacity in seawater.« less

  18. Extracting Uranium from Seawater: Promising AF Series Adsorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, S.; Oyola, Y.; Mayes, Richard T.

    A new family of high-surface-area polyethylene fiber adsorbents named the AF series was recently developed at the Oak Ridge National Laboratory (ORNL). The AF series adsorbents were synthesized by radiation-induced graft polymerization of acrylonitrile and itaconic acid (at different monomer/comonomer mol ratios) onto high surface area polyethylene fibers. The degree of grafting (%DOG) of AF series adsorbents was found to be 154-354%. The grafted nitrile groups were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with 0.44 M KOH at 80 °C followed by screening at ORNL with sodium-based synthetic aqueous solution, spiked withmore » 8 ppm uranium. The uranium adsorption capacity in simulated seawater screening ranged from 170 to 200 g-U/kg-ads irrespective of %DOG. A monomer/comonomer molar ratio in the range of 7.57-10.14 seemed to be optimum for highest uranium loading capacity. Subsequently, the adsorbents were also tested with natural seawater at Pacific Northwest National Laboratory (PNNL) using flow-through column experiments to determine uranium loading capacity with varying KOH conditioning times at 80 °C. The highest adsorption capacity of AF1 measured after 56 days of marine testing was demonstrated as 3.9 g-U/kg-adsorbent and 3.2 g-U/kg-adsorbent for 1 and 3 h of KOH conditioning at 80 °C, respectively. Based on capacity values of several AF1 samples, it was observed that changing KOH conditioning from 1 to 3 h at 80 °C resulted in a 22-27% decrease in uranium adsorption capacity in seawater.« less

  19. Extracting uranium from seawater: Promising AF series adsorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Sadananda; Oyola, Y.; Mayes, Richard T.

    Here, a new family of high surface area polyethylene fiber adsorbents (AF series) was recently developed at the Oak Ridge National Laboratory (ORNL). The AF series of were synthesized by radiation-induced graft polymerization of acrylonitrile and itaconic acid (at different monomer/co-monomer mol ratios) onto high surface area polyethylene fibers. The degree of grafting (%DOG) of AF series adsorbents was found to be 154 354%. The grafted nitrile groups were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8more » ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged from 170-200 g-U/kg-ads irrespective of %DOG. A monomer/co-monomer mol ratio in the range of 7.57-10.14 seemed to be optimum for highest uranium loading capacity. Subsequently, the adsorbents were also tested with natural seawater at Pacific Northwest National Laboratory (PNNL) using flow-through exposure uptake experiments to determine uranium loading capacity with varying KOH conditioning time at 80 C. The highest adsorption capacity of AF1 measured after 56 days of marine testing was demonstrated as 3.9 g-U/kg-adsorbent and 3.2 g-U/kg-adsorbent for 1hr and 3hrs of KOH conditioning at 80 C, respectively. Based on capacity values of several AF1 samples, it was observed that changing KOH conditioning from 3hrs to 1hr at 80 C resulted in 22-27% increase in uranium loading capacity in seawater.« less

  20. Genetic Diversity of Human Pathogenic Members of the Fusarium oxysporum Complex Inferred from Multilocus DNA Sequence Data and Amplified Fragment Length Polymorphism Analyses: Evidence for the Recent Dispersion of a Geographically Widespread Clonal Lineage and Nosocomial Origin

    PubMed Central

    O'Donnell, Kerry; Sutton, Deanna A.; Rinaldi, Michael G.; Magnon, Karen C.; Cox, Patricia A.; Revankar, Sanjay G.; Sanche, Stephen; Geiser, David M.; Juba, Jean H.; van Burik, Jo-Anne H.; Padhye, Arvind; Anaissie, Elias J.; Francesconi, Andrea; Walsh, Thomas J.; Robinson, Jody S.

    2004-01-01

    Fusarium oxysporum is a phylogenetically diverse monophyletic complex of filamentous ascomycetous fungi that are responsible for localized and disseminated life-threatening opportunistic infections in immunocompetent and severely neutropenic patients, respectively. Although members of this complex were isolated from patients during a pseudoepidemic in San Antonio, Tex., and from patients and the water system in a Houston, Tex., hospital during the 1990s, little is known about their genetic relatedness and population structure. This study was conducted to investigate the global genetic diversity and population biology of a comprehensive set of clinically important members of the F. oxysporum complex, focusing on the 33 isolates from patients at the San Antonio hospital and on strains isolated in the United States from the water systems of geographically distant hospitals in Texas, Maryland, and Washington, which were suspected as reservoirs of nosocomial fusariosis. In all, 18 environmental isolates and 88 isolates from patients spanning four continents were genotyped. The major finding of this study, based on concordant results from phylogenetic analyses of multilocus DNA sequence data and amplified fragment length polymorphisms, is that a recently dispersed, geographically widespread clonal lineage is responsible for over 70% of all clinical isolates investigated, including all of those associated with the pseudoepidemic in San Antonio. Moreover, strains of the clonal lineage recovered from patients were conclusively shown to genetically match those isolated from the hospital water systems of three U.S. hospitals, providing support for the hypothesis that hospitals may serve as a reservoir for nosocomial fusarial infections. PMID:15528703

  1. Escherichia coli ST131, an Intriguing Clonal Group

    PubMed Central

    Bertrand, Xavier; Madec, Jean-Yves

    2014-01-01

    SUMMARY In 2008, a previously unknown Escherichia coli clonal group, sequence type 131 (ST131), was identified on three continents. Today, ST131 is the predominant E. coli lineage among extraintestinal pathogenic E. coli (ExPEC) isolates worldwide. Retrospective studies have suggested that it may originally have risen to prominence as early as 2003. Unlike other classical group B2 ExPEC isolates, ST131 isolates are commonly reported to produce extended-spectrum β-lactamases, such as CTX-M-15, and almost all are resistant to fluoroquinolones. Moreover, ST131 E. coli isolates are considered to be truly pathogenic, due to the spectrum of infections they cause in both community and hospital settings and the large number of virulence-associated genes they contain. ST131 isolates therefore seem to contradict the widely held view that high levels of antimicrobial resistance are necessarily associated with a fitness cost leading to a decrease in pathogenesis. Six years after the first description of E. coli ST131, this review outlines the principal traits of ST131 clonal group isolates, based on the growing body of published data, and highlights what is currently known and what we need to find out to provide public health authorities with better information to help combat ST131. PMID:24982321

  2. Clonal analysis of stem cells in differentiation and disease.

    PubMed

    Colom, Bartomeu; Jones, Philip H

    2016-12-01

    Tracking the fate of individual cells and their progeny by clonal analysis has redefined the concept of stem cells and their role in health and disease. The maintenance of cell turnover in adult tissues is achieved by the collective action of populations of stem cells with an equal likelihood of self-renewal or differentiation. Following injury stem cells exhibit striking plasticity, switching from homeostatic behavior in order to repair damaged tissues. The effects of disease states on stem cells are also being uncovered, with new insights into how somatic mutations trigger clonal expansion in early neoplasia. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Strong but diverging clonality - climate relationships of different plant clades explain weak overall pattern across China.

    PubMed

    Ye, Duo; Liu, Guofang; Song, Yao-Bin; Cornwell, William K; Dong, Ming; Cornelissen, Johannes H C

    2016-06-01

    The clonal strategy should be relatively important in stressful environments (i.e. of low resource availability or harsh climate), e.g. in cold habitats. However, our understanding of the distribution pattern of clonality along environmental gradients is still far from universal. The weakness and inconsistency of overall clonality-climate relationships across taxa, as reported in previous studies, may be due to different phylogenetic lineages having fundamental differences in functional traits other than clonality determining their climate response. Thus, in this study we compared the clonality-climate relationships along a latitudinal gradient within and between different lineages at several taxonomic levels, including four major angiosperm lineages (Magnoliidae, Monocotyledoneae, Superrosidae and Superasteridae), orders and families. To this aim we used a species clonality dataset for 4015 vascular plant species in 545 terrestrial communities across China. Our results revealed clear predictive patterns of clonality proportion in relation to environmental gradients for the predominant representatives of each of the taxonomic levels above, but the relationships differed in shape and strength between the 4 major angiosperm lineages, between the 12 orders and between the 12 families. These different relationships canceled out one another when all lineages at a certain taxonomic level were pooled. Our findings highlight the importance of explicitly accounting for the functional or taxonomic scale for studying variation in plant ecological strategy across environmental gradients.

  4. Purification of Bone Marrow Clonal Cells from Patients with Myelodysplastic Syndrome via IGF-IR

    PubMed Central

    He, Qi; Chang, Chun-Kang; Xu, Feng; Zhang, Qing-Xia; Shi, Wen-Hui; Li, Xiao

    2015-01-01

    Malignant clonal cells purification can greatly benefit basic and clinical studies in myelodysplastic syndrome (MDS). In this study, we investigated the potential of using type 1 insulin-like growth factor receptor (IGF-IR) as a marker for purification of malignant bone marrow clonal cells from patients with MDS. The average percentage of IGF-IR expression in CD34+ bone marrow cells among 15 normal controls was 4.5%, 70% of which also express the erythroid lineage marker CD235a. This indicates that IGF-IR mainly express in erythropoiesis. The expression of IGF-IR in CD34+ cells of 55 MDS patients was significantly higher than that of cells from the normal controls (54.0 vs. 4.5%). Based on the pattern of IGF-IR expression in MDS patients and normal controls, sorting of IGF-IR-positive and removal of CD235a-positive erythroid lineage cells with combination of FISH detection were performed on MDS samples with chromosomal abnormalities. The percentage of malignant clonal cells significantly increased after sorting. The enrichment effect was more significant in clonal cells with a previous percentage lower than 50%. This enrichment effect was present in samples from patients with +8, 5q-/-5, 20q-/-20 or 7q-/-7 chromosomal abnormalities. These data suggest that IGF-IR can be used as a marker for MDS bone marrow clonal cells and using flow cytometry for positive IGF-IR sorting may effectively purify MDS clonal cells. PMID:26469401

  5. Construction of a transfer vector for a clonal isolate of LdNPV

    Treesearch

    Shivanand T. Hiremath; Martha Fikes; Audrey Ichida

    1991-01-01

    Deoxyribonucleic acid from a clonal isolate of LdNPV (CI A2-1), obtained by in vivo cloning procedures, was used to construct genomic libraries in phage (lamda Gem 11) and cosmid (pHC79) vectors. Overlapping clones were selected to generate a restriction enzyme map. The restriction enzyme map, covering about 85% of the CI A2-1 genome, was determined...

  6. Effects of complex life cycles on genetic diversity: cyclical parthenogenesis

    PubMed Central

    Rouger, R; Reichel, K; Malrieu, F; Masson, J P; Stoeckel, S

    2016-01-01

    Neutral patterns of population genetic diversity in species with complex life cycles are difficult to anticipate. Cyclical parthenogenesis (CP), in which organisms undergo several rounds of clonal reproduction followed by a sexual event, is one such life cycle. Many species, including crop pests (aphids), human parasites (trematodes) or models used in evolutionary science (Daphnia), are cyclical parthenogens. It is therefore crucial to understand the impact of such a life cycle on neutral genetic diversity. In this paper, we describe distributions of genetic diversity under conditions of CP with various clonal phase lengths. Using a Markov chain model of CP for a single locus and individual-based simulations for two loci, our analysis first demonstrates that strong departures from full sexuality are observed after only a few generations of clonality. The convergence towards predictions made under conditions of full clonality during the clonal phase depends on the balance between mutations and genetic drift. Second, the sexual event of CP usually resets the genetic diversity at a single locus towards predictions made under full sexuality. However, this single recombination event is insufficient to reshuffle gametic phases towards full-sexuality predictions. Finally, for similar levels of clonality, CP and acyclic partial clonality (wherein a fixed proportion of individuals are clonally produced within each generation) differentially affect the distribution of genetic diversity. Overall, this work provides solid predictions of neutral genetic diversity that may serve as a null model in detecting the action of common evolutionary or demographic processes in cyclical parthenogens (for example, selection or bottlenecks). PMID:27436524

  7. Effects of complex life cycles on genetic diversity: cyclical parthenogenesis.

    PubMed

    Rouger, R; Reichel, K; Malrieu, F; Masson, J P; Stoeckel, S

    2016-11-01

    Neutral patterns of population genetic diversity in species with complex life cycles are difficult to anticipate. Cyclical parthenogenesis (CP), in which organisms undergo several rounds of clonal reproduction followed by a sexual event, is one such life cycle. Many species, including crop pests (aphids), human parasites (trematodes) or models used in evolutionary science (Daphnia), are cyclical parthenogens. It is therefore crucial to understand the impact of such a life cycle on neutral genetic diversity. In this paper, we describe distributions of genetic diversity under conditions of CP with various clonal phase lengths. Using a Markov chain model of CP for a single locus and individual-based simulations for two loci, our analysis first demonstrates that strong departures from full sexuality are observed after only a few generations of clonality. The convergence towards predictions made under conditions of full clonality during the clonal phase depends on the balance between mutations and genetic drift. Second, the sexual event of CP usually resets the genetic diversity at a single locus towards predictions made under full sexuality. However, this single recombination event is insufficient to reshuffle gametic phases towards full-sexuality predictions. Finally, for similar levels of clonality, CP and acyclic partial clonality (wherein a fixed proportion of individuals are clonally produced within each generation) differentially affect the distribution of genetic diversity. Overall, this work provides solid predictions of neutral genetic diversity that may serve as a null model in detecting the action of common evolutionary or demographic processes in cyclical parthenogens (for example, selection or bottlenecks).

  8. Action of AF64A on rat brain muscarinic receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eva, C.; Costa, E.

    ICV administration of compound AF64A (ethylcholine mustard aziridium ion) induces a long-term selective cholinergic hypofunction; however, it does not modify the characteristics of muscarinic receptors. In brain muscarinic receptor activation can either stimulate phosphoinositide turnover or inhibit adenylate cyclase. ICV infusion of AF64A (5 nmol/side/2.5 ..mu..l) reduced the hippocampal ACh content 10 or 30 days after the treatment to 75% of the control values. Under these conditions neither in the striatum nor in the frontal cortex ACh levels were decreased. The carbachol dose-dependent stimulation in hippocampal slices differed from that observed in control rats. The carbachol efficacy was increased butmore » its potency was unchanged by AF64A. In contrast, ICV administration of AF64A failed to alter the oxotremorine efficacy or potency in inhibiting the forskolin stimulated adenylate cyclase in rat hippocampal membranes. These results suggest the two transducer systems coupled to muscarinic receptors may be differentially regulatable by cholinergic input.« less

  9. Genetic inactivation of Nrf2 prevents clonal expansion of initiated cells in a nutritional model of rat hepatocarcinogenesis.

    PubMed

    Orrù, Claudia; Szydlowska, Marta; Taguchi, Keiko; Zavattari, Patrizia; Perra, Andrea; Yamamoto, Masayuki; Columbano, Amedeo

    2018-06-21

    Dysregulation of the Keap1-Nrf2 pathway has been observed in experimental and human tumors, suggesting possible roles of the pathway in cancer development. Herein, we examined whether Nrf2 (Nfe2l2) activation occurs at early steps of rat hepatocarcinogenesis, to assess critical contributions of Nrf2 to the onset of hepatocellular carcinoma (HCC). We used wild-type (WT) and Nrf2 knockout (Nrf2KO) rats treated with a single injection of diethylnitrosamine (DENA) followed by choline-devoid methionine-deficient (CMD) diet. This experimental model causes massive fatty liver and steatohepatitis with fibrosis and enables identification of early stages of hepatocarcinogenesis. We found that Nrf2 activation takes place in early preneoplastic lesions identified by the marker glutathione S-transferase placental form (GSTP). Nrf2 missense mutations, known to disrupt the Keap1-Nrf2 binding, were present in 65.7% of GSTP-positive foci. Nrf2KO rats were used to directly investigate whether Nrf2 is critical for initiation and/or clonal expansion of DENA-damaged hepatocytes. While Nrf2 genetic inactivation did not alter DENA-induced initiation, it led to increased liver injury and chronic compensatory hepatocyte regeneration when rats were fed a CMD diet. However, in spite of such a permissive environment, the livers of Nrf2KO rats did not display any preneoplastic lesion unlike those of WT rats. These results demonstrate that, in a model of hepatocarcinogenesis resembling human non-alcoholic fatty liver disease: i) Nrf2 is activated at early steps of the tumorigenic process and ii) Nrf2 is mandatory for the clonal expansion of initiated cells, indicating that Nrf2 is critical in the onset of HCC. Dysregulation of the Keap1-Nrf2 molecular pathway has been observed in human tumors. In a nutritional model of hepatocarcinogenesis, the protein Nrf2 is frequently mutated/activated at early steps of the tumorigenic process. Herein, we show that Nrf2 is mandatory for the development of

  10. Experimental Investigation of the Formation of Complex Craters

    NASA Astrophysics Data System (ADS)

    Martellato, E.; Dörfler, M. A.; Schuster, B.; Wünnemman, K.; Kenkmann, T.

    2017-09-01

    The formation of complex impact craters is still poorly understood, because standard material models fail to explain the gravity-driven collapse at the observed size-range of a bowl-shaped transient crater into a flat-floored crater structure with a central peak or ring and terraced rim. To explain such a collapse the so-called Acoustic Fluidization (AF) model has been proposed. The AF assumes that heavily fractured target rocks surrounding the transient crater are temporarily softened by an acoustic field in the wake of an expanding shock wave generated upon impact. The AF has been successfully employed in numerous modeling studies of complex crater formation; however, there is no clear relationship between model parameters and observables. In this study, we present preliminary results of laboratory experiments aiming at relating the AF parameters to observables such as the grain size, average wave length of the acoustic field and its decay time τ relative to the crater formation time.

  11. [Chronologic analysis of clonal evolution in acquired aplastic anemia and sMDS].

    PubMed

    Yoshizato, Tetsuichi

    2016-04-01

    Acquired aplastic anemia (AA) is a prototype of idiopathic bone marrow failure, which is caused by immune-mediated destruction of hematopoietic progenitors but is also characterized by frequent evolution to clonal myeloid disorders, such as myelodysplastic syndromes or acute myeloid leukemia. However, the chronological behavior of the clonality and its link to myelodysplastic syndrome or acute myeloid leukemia has not been fully explored. To define the clonality and its chronological behavior in AA, we performed targeted sequencing (N=439) in cases with AA. Somatic mutations were detected in 1/3 of our cases. Mutations were most frequently found in DNMT3A, followed by BCOR, PIGA and ASXL1. The prevalence of mutations increased with age. The clone sizes in DNMT3A and ASXL1 were prone to increase, whereas those of BCOR and PIGA were more likely to decrease or remain stable. Mutations in PIGA, BCOR and BCORL1 correlated with a better response to immunosuppressive therapy and more favorable survival. On the other hand, other mutations were associated with worse outcomes. The chronological dynamics of clonality showed marked variability and were not necessarily associated with prognosis.

  12. Cardiovascular risk profile and management of atrial fibrillation in India: Real world data from RealiseAF survey.

    PubMed

    Narasimhan, C; Verma, Jagmohan Singh; Ravi Kishore, A G; Singh, Balbir; Dani, Sameer; Chawala, Kamaldeep; Haque, Azizul; Khan, Aftab; Nair, Mohan; Vora, Amit; Rajasekhar, V; Thomas, Joy M; Gupta, Anoop; Naik, Ajay; Prakash, V S; Naditch, Lisa; Gabriel Steg, P

    Atrial fibrillation (AF) is the most common sustained arrhythmia with high risk for many cardiovascular (CV) complications. Adherence to recommended management guidelines is important to avoid complications. In India, there is little knowledge on how AF is managed in real world. This is a cross-sectional study of patients in India enrolled in RealiseAF survey between February 2010 and March 2010 with a diagnosis of AF within the last 12 months. From 15 centers, 301 patients {mean age 59.9 years (14.4); 52.5% males} were recruited. AF was controlled in 50% of patients with 77 (26.7%) in sinus rhythm and 67 (23.3%) with heart rate <80beats/min. Hypertension (50.8%), valvular heart disease (40.7%), heart failure (25.9%), and diabetes (20.4%) were the most common underlying CV diseases. Increased risk for stroke (CHADS 2 score≥2) was present in 36.6%. Most of the patients (85%) were symptomatic. AF was paroxysmal, persistent, and permanent in 28.7%, 22.7%, and 34.3% respectively. In 14%, AF was diagnosed as first episode. Forty-six percent of patients had rate control, 35.2% rhythm control, 0.3% both strategies, and 18.4% received no therapy for AF before the visit. At the end of the visit, adoption to rate control strategy increased to 52.3% and patients with no therapy decreased to 7%. AF in India is not adequately controlled. Concomitant CV risk factors and risk of stroke are high. The study underscores the need for improved adoption of guideline-directed management for optimal control of AF and reducing the risk of stroke. Copyright © 2016. Published by Elsevier B.V.

  13. Clonal Growth of Dermal Papilla Cells in Hydrogels Reveals Intrinsic Differences between Sox2-Positive and -Negative Cells In Vitro and In Vivo

    PubMed Central

    Driskell, Ryan R; Juneja, Vikram R; Connelly, John T; Kretzschmar, Kai; Tan, David W -M; Watt, Fiona M

    2012-01-01

    In neonatal mouse skin, two types of dermal papilla (DP) are distinguished by Sox2 expression: CD133+Sox2+ DP are associated with guard/awl/auchene hairs, whereas CD133+Sox2− DP are associated with zigzag (ZZ) hairs. We describe a three-dimensional hydrogel culture system that supports clonal growth of CD133+Sox2+, CD133+Sox2−, and CD133−Sox2− (non-DP) neonatal dermal cells. All three cell populations formed spheres that expressed the DP markers alkaline phosphatase, α8 integrin, and CD133. Nevertheless, spheres formed by CD133− cells did not efficiently support hair follicle formation in skin reconstitution assays. In the presence of freshly isolated P2 dermal cells, CD133+Sox2+ and CD133+Sox2− spheres contributed to the DP of both AA and ZZ hairs. Hair type did not correlate with sphere size. Sox2 expression was maintained in culture, but not induced significantly in Sox2− cells in vitro or in vivo, suggesting that Sox2+ cells are a distinct cellular lineage. Although Sox2+ cells were least efficient at forming spheres, they had the greatest ability to contribute to DP and non-DP dermis in reconstituted skin. As the culture system supports clonal growth of DP cells and maintenance of distinct DP cell types, it will be useful for further analysis of intrinsic and extrinsic signals controlling DP function. PMID:22189784

  14. The association between polyploidy and clonal reproduction in diploid and tetraploid Chamerion angustifolium.

    PubMed

    Baldwin, Sarah J; Husband, Brian C

    2013-04-01

    Clonal reproduction is associated with the incidence of polyploidy in flowering plants. This pattern may arise through selection for increased clonality in polyploids compared to diploids to reduce mixed-ploidy mating. Here, we test whether clonal reproduction is greater in tetraploid than diploid populations of the mixed-ploidy plant, Chamerion angustifolium, through an analysis of the size and spatial distribution of clones in natural populations using AFLP genotyping and a comparison of root bud production in a greenhouse study. Natural tetraploid populations (N = 5) had significantly more AFLP genotypes (x¯ = 10.8) than diploid populations (x¯ = 6.0). Tetraploid populations tended to have fewer ramets per genotype and fewer genotypes with >1 ramet. In a spatial autocorrelation analysis, ramets within genotypes were more spatially aggregated in diploid populations than in tetraploid populations. In the greenhouse, tetraploids allocated 90.4% more dry mass to root buds than diploids, but tetraploids produced no more root buds and 44% fewer root buds per unit root mass than diploids. Our results indicate that clonal reproduction is significant in most populations, but tetraploid populations are not more clonal than diploids, nor are their clones more spatially aggregated. As a result, tetraploids may be less sheltered from mixed-ploidy mating and diploids more exposed to inbreeding, the balance of which could influence the establishment of tetraploids in diploid populations. © 2013 Blackwell Publishing Ltd.

  15. Clonal selection versus clonal cooperation: the integrated perception of immune objects

    PubMed Central

    Nataf, Serge

    2016-01-01

    Analogies between the immune and nervous systems were first envisioned by the immunologist Niels Jerne who introduced the concepts of antigen "recognition" and immune "memory". However, since then, it appears that only the cognitive immunology paradigm proposed by Irun Cohen, attempted to further theorize the immune system functions through the prism of neurosciences. The present paper is aimed at revisiting this analogy-based reasoning. In particular, a parallel is drawn between the brain pathways of visual perception and the processes allowing the global perception of an "immune object". Thus, in the visual system, distinct features of a visual object (shape, color, motion) are perceived separately by distinct neuronal populations during a primary perception task. The output signals generated during this first step instruct then an integrated perception task performed by other neuronal networks. Such a higher order perception step is by essence a cooperative task that is mandatory for the global perception of visual objects. Based on a re-interpretation of recent experimental data, it is suggested that similar general principles drive the integrated perception of immune objects in secondary lymphoid organs (SLOs). In this scheme, the four main categories of signals characterizing an immune object (antigenic, contextual, temporal and localization signals) are first perceived separately by distinct networks of immunocompetent cells.  Then, in a multitude of SLO niches, the output signals generated during this primary perception step are integrated by TH-cells at the single cell level. This process eventually generates a multitude of T-cell and B-cell clones that perform, at the scale of SLOs, an integrated perception of immune objects. Overall, this new framework proposes that integrated immune perception and, consequently, integrated immune responses, rely essentially on clonal cooperation rather than clonal selection. PMID:27830060

  16. Bacterial clonal diagnostics as a tool for evidence-based empiric antibiotic selection.

    PubMed

    Tchesnokova, Veronika; Avagyan, Hovhannes; Rechkina, Elena; Chan, Diana; Muradova, Mariya; Haile, Helen Ghirmai; Radey, Matthew; Weissman, Scott; Riddell, Kim; Scholes, Delia; Johnson, James R; Sokurenko, Evgeni V

    2017-01-01

    Despite the known clonal distribution of antibiotic resistance in many bacteria, empiric (pre-culture) antibiotic selection still relies heavily on species-level cumulative antibiograms, resulting in overuse of broad-spectrum agents and excessive antibiotic/pathogen mismatch. Urinary tract infections (UTIs), which account for a large share of antibiotic use, are caused predominantly by Escherichia coli, a highly clonal pathogen. In an observational clinical cohort study of urgent care patients with suspected UTI, we assessed the potential for E. coli clonal-level antibiograms to improve empiric antibiotic selection. A novel PCR-based clonotyping assay was applied to fresh urine samples to rapidly detect E. coli and the urine strain's clonotype. Based on a database of clonotype-specific antibiograms, the acceptability of various antibiotics for empiric therapy was inferred using a 20%, 10%, and 30% allowed resistance threshold. The test's performance characteristics and possible effects on prescribing were assessed. The rapid test identified E. coli clonotypes directly in patients' urine within 25-35 minutes, with high specificity and sensitivity compared to culture. Antibiotic selection based on a clonotype-specific antibiogram could reduce the relative likelihood of antibiotic/pathogen mismatch by ≥ 60%. Compared to observed prescribing patterns, clonal diagnostics-guided antibiotic selection could safely double the use of trimethoprim/sulfamethoxazole and minimize fluoroquinolone use. In summary, a rapid clonotyping test showed promise for improving empiric antibiotic prescribing for E. coli UTI, including reversing preferential use of fluoroquinolones over trimethoprim/sulfamethoxazole. The clonal diagnostics approach merges epidemiologic surveillance, antimicrobial stewardship, and molecular diagnostics to bring evidence-based medicine directly to the point of care.

  17. Quantitative stability of hematopoietic stem and progenitor cell clonal output in rhesus macaques receiving transplants

    PubMed Central

    Koelle, Samson J.

    2017-01-01

    Autologous transplantation of hematopoietic stem and progenitor cells lentivirally labeled with unique oligonucleotide barcodes flanked by sequencing primer targets enables quantitative assessment of the self-renewal and differentiation patterns of these cells in a myeloablative rhesus macaque model. Compared with other approaches to clonal tracking, this approach is highly quantitative and reproducible. We documented stable multipotent long-term hematopoietic clonal output of monocytes, granulocytes, B cells, and T cells from a polyclonal pool of hematopoietic stem and progenitor cells in 4 macaques observed for up to 49 months posttransplantation. A broad range of clonal behaviors characterized by contribution level and biases toward certain cell types were extremely stable over time. Correlations between granulocyte and monocyte clonalities were greatest, followed by correlations between these cell types and B cells. We also detected quantitative expansion of T cell–biased clones consistent with an adaptive immune response. In contrast to recent data from a nonquantitative murine model, there was little evidence for clonal succession after initial hematopoietic reconstitution. These findings have important implications for human hematopoiesis, given the similarities between macaque and human physiologies. PMID:28087539

  18. Contaminated handwashing sinks as the source of a clonal outbreak of KPC-2-producing Klebsiella oxytoca on a hematology ward.

    PubMed

    Leitner, Eva; Zarfel, Gernot; Luxner, Josefa; Herzog, Kathrin; Pekard-Amenitsch, Shiva; Hoenigl, Martin; Valentin, Thomas; Feierl, Gebhard; Grisold, Andrea J; Högenauer, Christoph; Sill, Heinz; Krause, Robert; Zollner-Schwetz, Ines

    2015-01-01

    We investigated sinks as possible sources of a prolonged Klebsiella pneumonia carbapenemase (KPC)-producing Klebsiella oxytoca outbreak. Seven carbapenem-resistant K. oxytoca isolates were identified in sink drains in 4 patient rooms and in the medication room. Investigations for resistance genes and genetic relatedness of patient and environmental isolates revealed that all the isolates harbored the blaKPC-2 and blaTEM-1 genes and were genetically indistinguishable. We describe here a clonal outbreak caused by KPC-2-producing K. oxytoca, and handwashing sinks were a possible reservoir. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Identification and Characterization of an Antifungal Protein, AfAFPR9, Produced by Marine-Derived Aspergillus fumigatus R9.

    PubMed

    Rao, Qi; Guo, Wenbin; Chen, Xinhua

    2015-05-01

    A fungal strain, R9, was isolated from the South Atlantic sediment sample and identified as Aspergillus fumigatus. An antifungal protein, AfAFPR9, was purified from the culture supernatant of Aspergillus fumigatus R9. AfAFPR9 was identified to be restrictocin, which is a member of the ribosome-inactivating proteins (RIPs), by MALDI-TOF-TOF-MS. AfAFPR9 displayed antifungal activity against plant pathogenic Fusarium oxysporum, Alternaria longipes, Colletotrichum gloeosporioides, Paecilomyces variotii, and Trichoderma viride at minimum inhibitory concentrations of 0.6, 0.6, 1.2, 1.2, and 2.4 μg/disc, respectively. Moreover, AfAFPR9 exhibited a certain extent of thermostability, and metal ion and denaturant tolerance. The iodoacetamide assay showed that the disulfide bridge in AfAFPR9 was indispensable for its antifungal action. The cDNA encoding for AfAFPR9 was cloned from A. fumigatus R9 by RTPCR and heterologously expressed in E. coli. The recombinant AfAFPR9 protein exhibited obvious antifungal activity against C. gloeosporioides, T. viride, and A. longipes. These results reveal the antifungal properties of a RIP member (AfAFPR9) from marine-derived Aspergillus fumigatus and indicated its potential application in controlling plant pathogenic fungi.

  20. Is AF Ablation Cost Effective?

    PubMed Central

    Martin-Doyle, William; Reynolds, Matthew R.

    2010-01-01

    The use of catheter ablation to treat AF is increasing rapidly, but there is presently an incomplete understanding of its cost-effectiveness. AF ablation procedures involve significant up-front expenditures, but multiple randomized trials have demonstrated that ablation is more effective than antiarrhythmic drugs at maintaining sinus rhythm in a second-line and possibly first-line rhythm control setting. Although truly long-term data are limited, ablation, as compared with antiarrrhythmic drugs, also appears associated with improved symptoms and quality of life and a reduction in downstream hospitalization and other health care resource utilization. Several groups have developed cost effectiveness models comparing AF ablation primarily to antiarrhythmic drugs and the model results suggest that ablation likely falls within the range generally accepted as cost-effective in developed nations. This paper will review available information on the cost-effectiveness of catheter ablation for the treatment of atrial fibrillation, and discuss continued areas of uncertainty where further research is required. PMID:20936083

  1. Integration Site and Clonal Expansion in Human Chronic Retroviral Infection and Gene Therapy

    PubMed Central

    Niederer, Heather A.; Bangham, Charles R. M.

    2014-01-01

    Retroviral vectors have been successfully used therapeutically to restore expression of genes in a range of single-gene diseases, including several primary immunodeficiency disorders. Although clinical trials have shown remarkable results, there have also been a number of severe adverse events involving malignant outgrowth of a transformed clonal population. This clonal expansion is influenced by the integration site profile of the viral integrase, the transgene expressed, and the effect of the viral promoters on the neighbouring host genome. Infection with the pathogenic human retrovirus HTLV-1 also causes clonal expansion of cells containing an integrated HTLV-1 provirus. Although the majority of HTLV-1-infected people remain asymptomatic, up to 5% develop an aggressive T cell malignancy. In this review we discuss recent findings on the role of the genomic integration site in determining the clonality and the potential for malignant transformation of cells carrying integrated HTLV-1 or gene therapy vectors, and how these results have contributed to the understanding of HTLV-1 pathogenesis and to improvements in gene therapy vector safety. PMID:25365582

  2. Differential influence of clonal integration on morphological and growth responses to light in two invasive herbs.

    PubMed

    Xu, Cheng-Yuan; Schooler, Shon S; Van Klinken, Rieks D

    2012-01-01

    In contrast to seeds, high sensitivity of vegetative fragments to unfavourable environments may limit the expansion of clonal invasive plants. However, clonal integration promotes the establishment of propagules in less suitable habitats and may facilitate the expansion of clonal invaders into intact native communities. Here, we examine the influence of clonal integration on the morphology and growth of ramets in two invasive plants, Alternanthera philoxeroides and Phyla canescens, under varying light conditions. In a greenhouse experiment, branches, connected ramets and severed ramets of the same mother plant were exposed under full sun and 85% shade and their morphological and growth responses were assessed. The influence of clonal integration on the light reaction norm (connection×light interaction) of daughter ramets was species-specific. For A. philoxeroides, clonal integration evened out the light response (total biomass, leaf mass per area, and stem number, diameter and length) displayed in severed ramets, but these connection×light interactions were largely absent for P. canescens. Nevertheless, for both species, clonal integration overwhelmed light effect in promoting the growth of juvenile ramets during early development. Also, vertical growth, as an apparent shade acclimation response, was more prevalent in severed ramets than in connected ramets. Finally, unrooted branches displayed smaller organ size and slower growth than connected ramets, but the pattern of light reaction was similar, suggesting mother plants invest in daughter ramets prior to their own branches. Clonal integration modifies light reaction norms of morphological and growth traits in a species-specific manner for A. philoxeroides and P. canescens, but it improves the establishment of juvenile ramets of both species in light-limiting environments by promoting their growth during early development. This factor may be partially responsible for their ability to successfully colonize

  3. Hyaluronan-CD44v3 interaction with Oct4-Sox2-Nanog promotes miR-302 expression leading to self-renewal, clonal formation, and cisplatin resistance in cancer stem cells from head and neck squamous cell carcinoma.

    PubMed

    Bourguignon, Lilly Y W; Wong, Gabriel; Earle, Christine; Chen, Liqun

    2012-09-21

    Human head and neck squamous cell carcinoma (HNSCC) is a highly malignant cancer associated with major morbidity and mortality. In this study, we determined that human HNSCC-derived HSC-3 cells contain a subpopulation of cancer stem cells (CSCs) characterized by high levels of CD44v3 and aldehyde dehydrogenase-1 (ALDH1) expression. These tumor cells also express several stem cell markers (the transcription factors Oct4, Sox2, and Nanog) and display the hallmark CSC properties of self-renewal/clonal formation and the ability to generate heterogeneous cell populations. Importantly, hyaluronan (HA) stimulates the CD44v3 (an HA receptor) interaction with Oct4-Sox2-Nanog leading to both a complex formation and the nuclear translocation of three CSC transcription factors. Further analysis reveals that microRNA-302 (miR-302) is controlled by an upstream promoter containing Oct4-Sox2-Nanog-binding sites, whereas chromatin immunoprecipitation (ChIP) assays demonstrate that stimulation of miR-302 expression by HA-CD44 is Oct4-Sox2-Nanog-dependent in HNSCC-specific CSCs. This process results in suppression of several epigenetic regulators (AOF1/AOF2 and DNMT1) and the up-regulation of several survival proteins (cIAP-1, cIAP-2, and XIAP) leading to self-renewal, clonal formation, and cisplatin resistance. These CSCs were transfected with a specific anti-miR-302 inhibitor to silence miR-302 expression and block its target functions. Our results demonstrate that the anti-miR-302 inhibitor not only enhances the expression of AOF1/AOF2 and DNMT1 but also abrogates the production of cIAP-1, cIAP-2, and XIAP and HA-CD44v3-mediated cancer stem cell functions. Taken together, these findings strongly support the contention that the HA-induced CD44v3 interaction with Oct4-Sox2-Nanog signaling plays a pivotal role in miR-302 production leading to AOF1/AOF2/DNMT1 down-regulation and survival of protein activation. All of these events are critically important for the acquisition of cancer

  4. Hyaluronan-CD44v3 Interaction with Oct4-Sox2-Nanog Promotes miR-302 Expression Leading to Self-renewal, Clonal Formation, and Cisplatin Resistance in Cancer Stem Cells from Head and Neck Squamous Cell Carcinoma*

    PubMed Central

    Bourguignon, Lilly Y. W.; Wong, Gabriel; Earle, Christine; Chen, Liqun

    2012-01-01

    Human head and neck squamous cell carcinoma (HNSCC) is a highly malignant cancer associated with major morbidity and mortality. In this study, we determined that human HNSCC-derived HSC-3 cells contain a subpopulation of cancer stem cells (CSCs) characterized by high levels of CD44v3 and aldehyde dehydrogenase-1 (ALDH1) expression. These tumor cells also express several stem cell markers (the transcription factors Oct4, Sox2, and Nanog) and display the hallmark CSC properties of self-renewal/clonal formation and the ability to generate heterogeneous cell populations. Importantly, hyaluronan (HA) stimulates the CD44v3 (an HA receptor) interaction with Oct4-Sox2-Nanog leading to both a complex formation and the nuclear translocation of three CSC transcription factors. Further analysis reveals that microRNA-302 (miR-302) is controlled by an upstream promoter containing Oct4-Sox2-Nanog-binding sites, whereas chromatin immunoprecipitation (ChIP) assays demonstrate that stimulation of miR-302 expression by HA-CD44 is Oct4-Sox2-Nanog-dependent in HNSCC-specific CSCs. This process results in suppression of several epigenetic regulators (AOF1/AOF2 and DNMT1) and the up-regulation of several survival proteins (cIAP-1, cIAP-2, and XIAP) leading to self-renewal, clonal formation, and cisplatin resistance. These CSCs were transfected with a specific anti-miR-302 inhibitor to silence miR-302 expression and block its target functions. Our results demonstrate that the anti-miR-302 inhibitor not only enhances the expression of AOF1/AOF2 and DNMT1 but also abrogates the production of cIAP-1, cIAP-2, and XIAP and HA-CD44v3-mediated cancer stem cell functions. Taken together, these findings strongly support the contention that the HA-induced CD44v3 interaction with Oct4-Sox2-Nanog signaling plays a pivotal role in miR-302 production leading to AOF1/AOF2/DNMT1 down-regulation and survival of protein activation. All of these events are critically important for the acquisition of cancer

  5. Clonal Expansion (CE) Models in Cancer Risk Assessment

    EPA Science Inventory

    Cancer arises when cells accumulate sufficient critical mutations. Carcinogens increase the probability of mutation during cell division or promote clonal expansion within stages. Multistage CE models recapitulate this process and provide a framework for incorporating relevant da...

  6. Acute myeloid leukaemia: a paradigm for the clonal evolution of cancer?

    PubMed Central

    Grove, Carolyn S.; Vassiliou, George S.

    2014-01-01

    Acute myeloid leukaemia (AML) is an uncontrolled clonal proliferation of abnormal myeloid progenitor cells in the bone marrow and blood. Advances in cancer genomics have revealed the spectrum of somatic mutations that give rise to human AML and drawn our attention to its molecular evolution and clonal architecture. It is now evident that most AML genomes harbour small numbers of mutations, which are acquired in a stepwise manner. This characteristic, combined with our ability to identify mutations in individual leukaemic cells and our detailed understanding of normal human and murine haematopoiesis, makes AML an excellent model for understanding the principles of cancer evolution. Furthermore, a better understanding of how AML evolves can help us devise strategies to improve the therapy and prognosis of AML patients. Here, we draw from recent advances in genomics, clinical studies and experimental models to describe the current knowledge of the clonal evolution of AML and its implications for the biology and treatment of leukaemias and other cancers. PMID:25056697

  7. Stroke prevention in atrial fibrillation and 'real world' adherence to guidelines in the Balkan Region: The BALKAN-AF Survey.

    PubMed

    Potpara, Tatjana S; Dan, Gheorghe-Andrei; Trendafilova, Elina; Goda, Artan; Kusljugic, Zumreta; Manola, Sime; Music, Ljilja; Musetescu, Rodica; Badila, Elisabeta; Mitic, Gorana; Paparisto, Vilma; Dimitrova, Elena S; Polovina, Marija M; Petranov, Stanislav L; Djergo, Hortensia; Loncar, Daniela; Bijedic, Amira; Brusich, Sandro; Lip, Gregory Y H

    2016-02-12

    Data on the management of atrial fibrillation (AF) in the Balkan Region are limited. The Serbian AF Association (SAFA) prospectively investigated contemporary 'real-world' AF management in clinical practice in Albania, Bosnia&Herzegovina, Bulgaria, Croatia, Montenegro, Romania and Serbia through a 14-week (December 2014-February 2015) prospective, multicentre survey of consecutive AF patients. We report the results pertinent to stroke prevention strategies. Of 2712 enrolled patients, 2663 (98.2%) with complete data were included in this analysis (mean age 69.1 ± 10.9 years, female 44.6%). Overall, 1960 patients (73.6%) received oral anticoagulants (OAC) and 762 (28.6%) received antiplatelet drugs. Of patients given OAC, 17.2% received non-vitamin K antagonist oral anticoagulants (NOACs). CHA2DS2-VASc score was not significantly associated with OAC use. Of the 'truly low-risk' patients (CHA2DS2-VASc = 0 [males], or 1 [females]) 56.5% received OAC. Time in Therapeutic Range (TTR) was available in only 18.7% of patients (mean TTR: 49.5% ± 22.3%). Age ≥ 80 years, prior myocardial infarction and paroxysmal AF were independent predictors of OAC non-use. Our survey shows a relatively high overall use of OAC in AF patients, but with low quality of vitamin K antagonist therapy and insufficient adherence to AF guidelines. Additional efforts are needed to improve AF-related thromboprophylaxis in clinical practice in the Balkan Region.

  8. Clonal success of piliated penicillin nonsusceptible pneumococci

    PubMed Central

    Sjöström, K.; Blomberg, C.; Fernebro, J.; Dagerhamn, J.; Morfeldt, E.; Barocchi, M. A.; Browall, S.; Moschioni, M.; Andersson, M.; Henriques, F.; Albiger, B.; Rappuoli, Rino; Normark, S.; Henriques-Normark, B.

    2007-01-01

    Antibiotic resistance in pneumococci is due to the spread of strains belonging to a limited number of clones. The Spain9V-3 clone of sequence type (ST)156 is one of the most successful clones with reduced susceptibility to penicillin [pneumococci nonsusceptible to penicillin (PNSP)]. In Sweden during 2000–2003, a dramatic increase in the number of PNSP isolates was observed. Molecular characterization of these isolates showed that a single clone of sequence type ST156 increased from 40% to 80% of all serotype 14, thus causing the serotype expansion. Additionally, during the same time period, we examined the clonal composition of two serotypes 9V and 19F: all 9V and 20% of 19F isolates belonged to the clonal cluster of ST156, and overall ≈50% of all PNSP belonged to the ST156 clonal cluster. Moreover, microarray and PCR analysis showed that all ST156 isolates, irrespective of capsular type, carried the rlrA pilus islet. This islet was also found to be present in the penicillin-sensitive ST162 clone, which is believed to be the drug-susceptible ancestor of ST156. Competitive experiments between related ST156 serotype 19F strains confirmed that those containing the rlrA pilus islet were more successful in an animal model of carriage. We conclude that the pilus island is an important biological factor common to ST156 isolates and other successful PNSP clones. In Sweden, a country where the low antibiotic usage does not explain the spread of resistant strains, at least 70% of all PNSP isolates collected during year 2003 carried the pilus islet. PMID:17644611

  9. Comparison of the DiversiLab Repetitive Element PCR System with spa Typing and Pulsed-Field Gel Electrophoresis for Clonal Characterization of Methicillin-Resistant Staphylococcus aureus▿

    PubMed Central

    Babouee, B.; Frei, R.; Schultheiss, E.; Widmer, A. F.; Goldenberger, D.

    2011-01-01

    The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has become an increasing problem worldwide in recent decades. Molecular typing methods have been developed to identify clonality of strains and monitor spread of MRSA. We compared a new commercially available DiversiLab (DL) repetitive element PCR system with spa typing, spa clonal cluster analysis, and pulsed-field gel electrophoresis (PFGE) in terms of discriminatory power and concordance. A collection of 106 well-defined MRSA strains from our hospital was analyzed, isolated between 1994 and 2006. In addition, we analyzed 6 USA300 strains collected in our institution. DL typing separated the 106 MRSA isolates in 10 distinct clusters and 8 singleton patterns. Clustering analysis into spa clonal complexes resulted in 3 clusters: spa-CC 067/548, spa-CC 008, and spa-CC 012. The discriminatory powers (Simpson's index of diversity) were 0.982, 0.950, 0.846, and 0.757 for PFGE, spa typing, DL typing, and spa clonal clustering, respectively. DL typing and spa clonal clustering showed the highest concordance, calculated by adjusted Rand's coefficients. The 6 USA300 isolates grouped homogeneously into distinct PFGE and DL clusters, and all belonged to spa type t008 and spa-CC 008. Among the three methods, DL proved to be rapid and easy to perform. DL typing qualifies for initial screening during outbreak investigation. However, compared to PFGE and spa typing, DL typing has limited discriminatory power and therefore should be complemented by more discriminative methods in isolates that share identical DL patterns. PMID:21307215

  10. Three enzymatically active neurotoxins of Clostridium botulinum strain Af84: BoNT/A2, /F4, and /F5.

    PubMed

    Kalb, Suzanne R; Baudys, Jakub; Smith, Theresa J; Smith, Leonard A; Barr, John R

    2014-04-01

    Botulinum neurotoxins (BoNTs) are produced by various species of clostridia and are potent neurotoxins which cause the disease botulism, by cleaving proteins needed for successful nerve transmission. There are currently seven confirmed serotypes of BoNTs, labeled A-G, and toxin-producing clostridia typically only produce one serotype of BoNT. There are a few strains (bivalent strains) which are known to produce more than one serotype of BoNT, producing either both BoNT/A and /B, BoNT/A and /F, or BoNT/B and /F, designated as Ab, Ba, Af, or Bf. Recently, it was reported that Clostridium botulinum strain Af84 has three neurotoxin gene clusters: bont/A2, bont/F4, and bont/F5. This was the first report of a clostridial organism containing more than two neurotoxin gene clusters. Using a mass spectrometry based proteomics approach, we report here that all three neurotoxins, BoNT/A2, /F4, and /F5, are produced by C. botulinum Af84. Label free MS(E) quantification of the three toxins indicated that toxin composition is 88% BoNT/A2, 1% BoNT/F4, and 11% BoNT/F5. The enzymatic activity of all three neurotoxins was assessed by examining the enzymatic activity of the neurotoxins upon peptide substrates, which mimic the toxins' natural targets, and monitoring cleavage of the substrates by mass spectrometry. We determined that all three neurotoxins are enzymatically active. This is the first report of three enzymatically active neurotoxins produced in a single strain of Clostridium botulinum.

  11. Bacterial clonal diagnostics as a tool for evidence-based empiric antibiotic selection

    PubMed Central

    Tchesnokova, Veronika; Avagyan, Hovhannes; Rechkina, Elena; Chan, Diana; Muradova, Mariya; Haile, Helen Ghirmai; Radey, Matthew; Weissman, Scott; Riddell, Kim; Scholes, Delia; Johnson, James R.

    2017-01-01

    Despite the known clonal distribution of antibiotic resistance in many bacteria, empiric (pre-culture) antibiotic selection still relies heavily on species-level cumulative antibiograms, resulting in overuse of broad-spectrum agents and excessive antibiotic/pathogen mismatch. Urinary tract infections (UTIs), which account for a large share of antibiotic use, are caused predominantly by Escherichia coli, a highly clonal pathogen. In an observational clinical cohort study of urgent care patients with suspected UTI, we assessed the potential for E. coli clonal-level antibiograms to improve empiric antibiotic selection. A novel PCR-based clonotyping assay was applied to fresh urine samples to rapidly detect E. coli and the urine strain's clonotype. Based on a database of clonotype-specific antibiograms, the acceptability of various antibiotics for empiric therapy was inferred using a 20%, 10%, and 30% allowed resistance threshold. The test's performance characteristics and possible effects on prescribing were assessed. The rapid test identified E. coli clonotypes directly in patients’ urine within 25–35 minutes, with high specificity and sensitivity compared to culture. Antibiotic selection based on a clonotype-specific antibiogram could reduce the relative likelihood of antibiotic/pathogen mismatch by ≥ 60%. Compared to observed prescribing patterns, clonal diagnostics-guided antibiotic selection could safely double the use of trimethoprim/sulfamethoxazole and minimize fluoroquinolone use. In summary, a rapid clonotyping test showed promise for improving empiric antibiotic prescribing for E. coli UTI, including reversing preferential use of fluoroquinolones over trimethoprim/sulfamethoxazole. The clonal diagnostics approach merges epidemiologic surveillance, antimicrobial stewardship, and molecular diagnostics to bring evidence-based medicine directly to the point of care. PMID:28350870

  12. Analysis of the clonal repertoire of gene-corrected cells in gene therapy.

    PubMed

    Paruzynski, Anna; Glimm, Hanno; Schmidt, Manfred; Kalle, Christof von

    2012-01-01

    Gene therapy-based clinical phase I/II studies using integrating retroviral vectors could successfully treat different monogenetic inherited diseases. However, with increased efficiency of this therapy, severe side effects occurred in various gene therapy trials. In all cases, integration of the vector close to or within a proto-oncogene contributed substantially to the development of the malignancies. Thus, the in-depth analysis of integration site patterns is of high importance to uncover potential clonal outgrowth and to assess the safety of gene transfer vectors and gene therapy protocols. The standard and nonrestrictive linear amplification-mediated PCR (nrLAM-PCR) in combination with high-throughput sequencing exhibits technologies that allow to comprehensively analyze the clonal repertoire of gene-corrected cells and to assess the safety of the used vector system at an early stage on the molecular level. It enables clarifying the biological consequences of the vector system on the fate of the transduced cell. Furthermore, the downstream performance of real-time PCR allows a quantitative estimation of the clonality of individual cells and their clonal progeny. Here, we present a guideline that should allow researchers to perform comprehensive integration site analysis in preclinical and clinical studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Heterogeneous water supply affects growth and benefits of clonal integration between co-existing invasive and native Hydrocotyle species.

    PubMed

    Wang, Yong-Jian; Bai, Yun-Fei; Zeng, Shi-Qi; Yao, Bin; Wang, Wen; Luo, Fang-Li

    2016-07-21

    Spatial patchiness and temporal variability in water availability are common in nature under global climate change, which can remarkably influence adaptive responses of clonal plants, i.e. clonal integration (translocating resources between connected ramets). However, little is known about the effects of spatial patchiness and temporal heterogeneity in water on growth and clonal integration between congeneric invasive and native Hydrocotyle species. In a greenhouse experiment, we subjected severed or no severed (intact) fragments of Hydrocotyle vulgaris, a highly invasive species in China, and its co-existing, native congener H. sibthorpioides to different spatial patchiness (homogeneous and patchy) and temporal interval (low and high interval) in water supply. Clonal integration had significant positive effects on growth of both species. In the homogeneous water conditions, clonal integration greatly improved the growth in fragments of both species under low interval in water. However, in the patchy water conditions, clonal integration significantly increased growth in both ramets and fragments of H. vulgaris under high interval in water. Therefore, spatial patchiness and temporal interval in water altered the effects of clonal integration of both species, especially for H. vulgaris. The adaptation of H. vulgaris might lead to invasive growth and potential spread under the global water variability.

  14. Clonal yeast biofilms can reap competitive advantages through cell differentiation without being obligatorily multicellular

    PubMed Central

    Hanghøj, Kristian Ebbesen; Andersen, Kaj Scherz; Boomsma, Jacobus J.

    2016-01-01

    How differentiation between cell types evolved is a fundamental question in biology, but few studies have explored single-gene phenotypes that mediate first steps towards division of labour with selective advantage for groups of cells. Here, we show that differential expression of the FLO11 gene produces stable fractions of Flo11+ and Flo11− cells in clonal Saccharomyces cerevisiae biofilm colonies on medium with intermediate viscosity. Differentiated Flo11+/− colonies, consisting of adhesive and non-adhesive cells, obtain a fourfold growth advantage over undifferentiated colonies by overgrowing glucose resources before depleting them, rather than depleting them while they grow as undifferentiated Flo11− colonies do. Flo11+/− colonies maintain their structure and differentiated state by switching non-adhesive cells to adhesive cells with predictable probability. Mixtures of Flo11+ and Flo11− cells from mutant strains that are unable to use this epigenetic switch mechanism produced neither integrated colonies nor growth advantages, so the condition-dependent selective advantages of differentiated FLO11 expression can only be reaped by clone-mate cells. Our results show that selection for cell differentiation in clonal eukaryotes can evolve before the establishment of obligate undifferentiated multicellularity, and without necessarily leading to more advanced organizational complexity. PMID:27807261

  15. Standardizing the Nomenclature for Clonal Lineages of the Sudden Oak Death Pathogen, Phytophthora ramorum

    USDA-ARS?s Scientific Manuscript database

    Phytophthora ramorum, the causal agent of sudden oak death and ramorum blight, is known to exist as three distinct clonal lineages based on a range of molecular marker systems. However, in the recent literature there exists no consensus on naming of lineages. Here we name clonal lineages of P. ramor...

  16. Heterogeneity of Clonal Expansion and Maturation-Linked Mutation Acquisition in Hematopoietic Progenitors in Human Acute Myeloid Leukemia

    PubMed Central

    Walter, Roland B.; Laszlo, George S.; Lionberger, Jack M.; Pollard, Jessica A.; Harrington, Kimberly H.; Gudgeon, Chelsea J.; Othus, Megan; Rafii, Shahin; Meshinchi, Soheil; Appelbaum, Frederick R.; Bernstein, Irwin D.

    2014-01-01

    Recent technological advances led to an appreciation of the genetic complexity of human acute myeloid leukemia (AML) but underlying progenitor cells remain poorly understood because their rarity precludes direct study. We developed a co-culture method integrating hypoxia, aryl hydrocarbon receptor inhibition, and micro-environmental support via human endothelial cells to isolate these cells. X-chromosome inactivation studies of the least mature precursors derived following prolonged culture of CD34+/CD33− cells revealed polyclonal growth in highly curable AMLs, suggesting mutations necessary for clonal expansion were acquired in more mature progenitors. Consistently, in core-binding factor (CBF) leukemias with known complementing mutations, immature precursors derived following prolonged culture of CD34+/CD33− cells harbored neither mutation or the CBF mutation alone, whereas more mature precursors often carried both mutations. These results were in contrast to those with leukemias with poor prognosis that showed clonal dominance in the least mature precursors. These data indicate heterogeneity among progenitors in human AML that may have prognostic and therapeutic implications. PMID:24721792

  17. A Targeted Oligonucleotide Enhancer of SMN2 Exon 7 Splicing Forms Competing Quadruplex and Protein Complexes in Functional Conditions

    PubMed Central

    Smith, Lindsay D.; Dickinson, Rachel L.; Lucas, Christian M.; Cousins, Alex; Malygin, Alexey A.; Weldon, Carika; Perrett, Andrew J.; Bottrill, Andrew R.; Searle, Mark S.; Burley, Glenn A.; Eperon, Ian C.

    2014-01-01

    Summary The use of oligonucleotides to activate the splicing of selected exons is limited by a poor understanding of the mechanisms affected. A targeted bifunctional oligonucleotide enhancer of splicing (TOES) anneals to SMN2 exon 7 and carries an exonic splicing enhancer (ESE) sequence. We show that it stimulates splicing specifically of intron 6 in the presence of repressing sequences in intron 7. Complementarity to the 5′ end of exon 7 increases U2AF65 binding, but the ESE sequence is required for efficient recruitment of U2 snRNP. The ESE forms at least three coexisting discrete states: a quadruplex, a complex containing only hnRNP F/H, and a complex enriched in the activator SRSF1. Neither hnRNP H nor quadruplex formation contributes to ESE activity. The results suggest that splicing limited by weak signals can be rescued by rapid exchange of TOES oligonucleotides in various complexes and raise the possibility that SR proteins associate transiently with ESEs. PMID:25263560

  18. [Clonal association of flat epithelial atypia and tubular breast cancer].

    PubMed

    Aulmann, S; Elsawaf, Z; Penzel, R; Schirmacher, P; Sinn, H P

    2008-11-01

    Flat epithelial atypia (FEA) of the breast has recently gained attention as a possible precursor lesion of highly differentiated breast cancer. Especially tubular carcinomas, with which FEA shares cytological features, often occur in close proximity to each other. To examine a possible clonal relationship, we analysed mutations of the highly variable region of the mitochondrial genome in a series of tubular carcinomas, associated FEA and normal glands. Multiple sequence alignment showed identical mtDNA mutations in approximately 50% of paired FEA and tumour samples, indicative of a clonal relationship. Our data indicate a possible precursor role of FEA in the development of tubular breast cancer.

  19. Genomic complexity and dynamics of clonal evolution in childhood acute myeloid leukemia studied with whole-exome sequencing.

    PubMed

    Masetti, Riccardo; Castelli, Ilaria; Astolfi, Annalisa; Bertuccio, Salvatore Nicola; Indio, Valentina; Togni, Marco; Belotti, Tamara; Serravalle, Salvatore; Tarantino, Giuseppe; Zecca, Marco; Pigazzi, Martina; Basso, Giuseppe; Pession, Andrea; Locatelli, Franco

    2016-08-30

    Despite significant improvement in treatment of childhood acute myeloid leukemia (AML), 30% of patients experience disease recurrence, which is still the major cause of treatment failure and death in these patients. To investigate molecular mechanisms underlying relapse, we performed whole-exome sequencing of diagnosis-relapse pairs and matched remission samples from 4 pediatric AML patients without recurrent cytogenetic alterations. Candidate driver mutations were selected for targeted deep sequencing at high coverage, suitable to detect small subclones (0.12%). BiCEBPα mutation was found to be stable and highly penetrant, representing a separate biological and clinical entity, unlike WT1 mutations, which were extremely unstable. Among the mutational patterns underlying relapse, we detected the acquisition of proliferative advantage by signaling activation (PTPN11 and FLT3-TKD mutations) and the increased resistance to apoptosis (hyperactivation of TYK2). We also found a previously undescribed feature of AML, consisting of a hypermutator phenotype caused by SETD2 inactivation. The consequent accumulation of new mutations promotes the adaptability of the leukemia, contributing to clonal selection. We report a novel ASXL3 mutation characterizing a very small subclone (<1%) present at diagnosis and undergoing expansion (60%) at relapse. Taken together, these findings provide molecular clues for designing optimal therapeutic strategies, in terms of target selection, adequate schedule design and reliable response-monitoring techniques.

  20. Ephemeral clonal integration in Calathea marantifolia (Marantaceae): Evidence of diminished integration over time.

    PubMed

    Matlaga, David P; da S L Sternberg, Leonel

    2009-02-01

    A major advantage of clonal growth forms is the intergenerational transfer of resources through vascular connections (clonal integration). Connections linking ramets can be persistent or ephemeral. For species with ephemeral connections, whether the extent of clonal integration changes over time is unclear. To address this issue, we tracked water movement using an isotopic label and assessed the demographic performance of parent and offspring ramets over time in a severing experiment. Our study system was the understory herb Calathea marantifolia, which has parent ramets that produce vegetative bulbils (clonal offspring) that pass through distinct pre- and post-rooting stages. Little water was transported between parents and offspring, and the direction of movement was primarily from parent to pre-rooting offspring. Anatomical observations of inter-ramet connections showed that vascular bundles were twice as abundant in parent stems compared to inter-ramet connections. Severing inter-ramet connections reduced the growth of offspring ramets but not parents. Survival of pre-rooting offspring was reduced by 10% due to severing, but post-rooting offspring were not affected. Our results suggest that offspring ramets of C. marantifolia are weaned from their parent as they progress from pre- to post-rooting stages.

  1. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality

    USDA-ARS?s Scientific Manuscript database

    To gain a detailed understanding of how plant microbes evolve and adapt to hosts, pesticides, and other factors, knowledge of the population dynamics and evolutionary history of populations is crucial. Plant pathogen populations are often clonal or partially clonal which requires different analytica...

  2. Warfarin for prevention of thromboembolism in atrial fibrillation: comparison of patient characteristics and outcomes of the "Real-World" Michigan Anticoagulation Quality Improvement Initiative (MAQI2) registry to the RE-LY, ROCKET-AF, and ARISTOTLE trials.

    PubMed

    Hughey, Andrew B; Gu, Xiaokui; Haymart, Brian; Kline-Rogers, Eva; Almany, Steve; Kozlowski, Jay; Besley, Dennis; Krol, Gregory D; Ahsan, Syed; Kaatz, Scott; Froehlich, James B; Barnes, Geoffrey D

    2018-06-14

    Randomized controlled trials (RCTs) examining warfarin use for stroke prevention in atrial fibrillation (AF) may not accurately reflect real-world populations. We aimed to determine the representativeness of the RCT populations to real-world patients and to describe differences in the characteristics of trial populations from trial eligible patients in a real-world setting. We hypothesized that a significant fraction of real-world patients would not qualify for the RE-LY, ROCKET-AF, and ARISTOTLE trials and that real-world patients qualifying for the studies may have more strokes and bleeding events. We compared the inclusion and exclusion criteria, patient characteristics, and clinical outcomes from RE-LY, ROCKET-AF, and ARISTOTLE against data from the Michigan Anticoagulation Quality Improvement Initiative (MAQI 2 ), a regional network of six community- and academic-based anticoagulation clinics. Of the 1446 non-valvular AF patients in the MAQI 2 registry taking warfarin, approximately 40-60% would meet the selection criteria used in RE-LY (788, 54.5%), ROCKET-AF (566, 39.1%), and ARISTOTLE (866, 59.9%). The most common reasons for exclusion from one or more trial were anemia (15.1%), other concurrent medications (11.2%), and chronic kidney disease (9.4%). Trial-eligible MAQI 2 patients were older, more frequently female, with a higher rate of paroxysmal AF, and lower rates of congestive heart failure, previous stroke, and previous myocardial infarction than the trial populations. MAQI 2 patients eligible for each trial had a lower rate of stroke and similar rate of major bleeding than was observed in the trials. A sizable proportion of real-world AF patients managed in anticoagulation clinics would not have been eligible for the RE-LY, ROCKET-AF, and ARISOTLE trials. The expected stroke risk reduction and bleeding risk among real-world AF patients on warfarin may not be congruent with published clinical trial data.

  3. [Establishment of the retrovirus-mediated murine model with MLL-AF9 leukemia].

    PubMed

    Xu, Si-Miao; Yang, Yang; Zhou, Mi; Zhao, Xue-Jiao; Qin, Yu; Zhang, Pei-Ling; Yuan, Rui-Feng; Zhou, Jian-Feng; Fang, Yong

    2013-10-01

    This study was purposed to establish a retrovirus-mediated murine model with MLL-AF9 leukemia, so as to provide a basis for further investigation of the pathogenesis and therapeutic strategy of MLL associated leukemia. Murine (CD45.2) primary hematopoietic precursor positively selected for expression of the progenitor marker c-Kit by means of MACS were transduced with a retrovirus carrying MLL-AF9 fusion gene. After cultured in vitro, the transduced cells were injected intravenously through the tail vein into the lethally irradiated mice (CD45.1). PCR, flow cytometry and morphological observation were employed to evaluate the murine leukemia model system. The results showed that MLL-AF9 fusion gene was expressed in the infected cells, and the cells had a dramatically enhanced potential to generate myeloid colonies with primitive and immature morphology. Flow cytometric analysis revealed that the immortalized cells highly expressed myeloid lineage surface markers Gr-1 and Mac-1. Moreover, the expression levels of Hoxa9 and Meis1 mRNA were significantly higher in the MLL-AF9 cells than that in control. The mice transplanted with MLL-AF9 cells displayed typical signs of leukemia within 6-12 weeks. Extensive infiltration leukemic cells was observed in the Wright-Giemsa stained peripheral blood smear and bone marrow, and also in the histology of liver and spleen. Flow cytometric analysis of the bone marrow and spleen cells demonstrated that the CD45.2 populations expressed highly myeloid markers Gr-1 and Mac-1. The leukemic mice died within 12 weeks. It is concluded that the retrovirus-mediated murine model with MLL-AF9 leukemia is successfully established, which can be applied in the subsequent researches.

  4. Mobile Health Technology for Atrial Fibrillation Management Integrating Decision Support, Education, and Patient Involvement: mAF App Trial.

    PubMed

    Guo, Yutao; Chen, Yundai; Lane, Deirdre A; Liu, Lihong; Wang, Yutang; Lip, Gregory Y H

    2017-12-01

    Mobile Health technology for the management of patients with atrial fibrillation is unknown. The simple mobile AF (mAF) App was designed to incorporate clinical decision-support tools (CHA 2 DS 2 -VASc [Congestive heart failure, Hypertension, Age ≥75 years, Diabetes Mellitus, Prior Stroke or TIA, Vascular disease, Age 65-74 years, Sex category], HAS-BLED [Hypertension, Abnormal renal/liver function, Stroke, Bleeding history or predisposition, Labile INR, Elderly, Drugs/alcohol concomitantly], SAMe-TT 2 R 2 [Sex, Age <60 years, Medical history, Treatment, Tobacco use, Race] scores), educational materials, and patient involvement strategies with self-care protocols and structured follow-up. Patients with atrial fibrillation were randomized into 2 groups (mAF App vs usual care) in a cluster randomized design pilot study. Patients' knowledge, quality of life, drug adherence, and anticoagulation satisfaction were evaluated at baseline, 1 month, and 3 months. Usability, feasibility, and acceptability of the mAF App were assessed at 1 month. A total of 113 patients were randomized to mAF App intervention (mean age, 67.4 years; 57.5% were male; mean follow-up, 69 days), and 96 patients were randomized to usual care (mean age, 70.9 years; 55.2% were male; mean follow-up, 95 days). More than 90% of patients reported that the mAF App was easy, user-friendly, helpful, and associated with significant improvements in knowledge compared with the usual care arm (P values for trend <.05). Drug adherence and anticoagulant satisfaction were significantly better with the mAF App versus usual care (all P < .05). Quality of life scores were significantly increased in the mAF App arm versus usual care, with anxiety and depression reduced (all P < .05). The pilot mAFA Trial is the first prospective randomized trial of Mobile Health technology in patients with atrial fibrillation, demonstrating that the mAF App, integrating clinical decision support, education, and patient

  5. Predictors of arrhythmia recurrence after balloon cryoablation of atrial fibrillation: the value of CAAP-AF risk scoring system.

    PubMed

    Sanhoury, Mohamed; Moltrasio, Massimo; Tundo, Fabrizio; Riva, Stefania; Dello Russo, Antonio; Casella, Michela; Tondo, Claudio; Fassini, Gaetano

    2017-08-01

    In the present study, we aimed to test the value of CAAP-AF score for prediction of atrial fibrillation (AF) recurrence at follow-up in a group of our patients treated by balloon cryoablation. A total of 283 symptomatic drug-refractory AF patients [261 (92%) with paroxysmal AF] who underwent pulmonary vein isolation (PVI) with second-generation cryoballoon between April 2012 and October 2016 were included. The CAAP-AF score was calculated for every patient. A total of 283 patients [68 female (20%), mean age 59.8 ± 11.4 years] were included in the present analysis. Eighty-nine patients (31%) had hypertension and 13 (4%) had coronary artery disease. The mean left atrial diameter and left ventricular ejection fraction were 40.6 ± 7.0 mm and 60.0 ± 9.1%, respectively. The mean CHA 2 DS 2 -VASc score was 1.2 ± 1.1, and mean number of prior failed antiarrhythmic drugs was 1.4 ± 0.8. At 18 ± 6 months follow-up, 25 patients (8.87%) developed AF recurrence. The recurrence rate was as follows: 3.17% (score 0-3), 8.47% (score 4), 16.28% (score 5), 6.67% (score 6), 23.08% (score 7), and 36.36% (score ≥8). The recurrence rate was 4.86% at a score <5 and 16.49% at a value ≥5; a score cutoff ≥5 predicted AF recurrence with a sensitivity 64% and specificity 68%. The present analysis suggests the usefulness of CAAP-AF scoring system, with its simple and easily obtained six clinical variables, to predict AF recurrence after PVI by means of second-generation cryoballoon. A score value ≥5 predicted AF recurrence with a sensitivity 64% and specificity 68%.

  6. Post-irradiation somatic mutation and clonal stabilisation time in the human colon.

    PubMed Central

    Campbell, F; Williams, G T; Appleton, M A; Dixon, M F; Harris, M; Williams, E D

    1996-01-01

    BACKGROUND: Colorectal crypts are clonal units in which somatic mutation of marker genes in stem cells leads to crypt restricted phenotypic conversion initially involving part of the crypt, later the whole crypt. Studies in mice show that the time taken for the great majority of mutated crypts to be completely converted, the clonal stabilisation time, is four weeks in the colon and 21 weeks in the ileum. Differences in the clonal stabilisation time between tissues and species are thought to reflect differences in stem cell organisation and crypt kinetics. AIM: To study the clonal stabilisation time in the human colorectum. METHODS: Stem cell mutation can lead to crypt restricted loss of O-acetylation of sialomucins in subjects heterozygous for O-acetyltransferase gene activity. mPAS histochemistry was used to visualise and quantify crypts partially or wholly involved by the mutant phenotype in 21 informative cases who had undergone colectomy up to 34 years after radiotherapy. RESULTS: Radiotherapy was followed by a considerable increase in the discordant crypt frequency that remained significantly increased for many years. The proportion of discordant crypts showing partial involvement was initially high but fell to normal levels about 12 months after irradiation. CONCLUSIONS: Crypts wholly involved by a mutant phenotype are stable and persistent while partially involved crypts are transient. The clonal stabilisation time is approximately one year in the human colon compared with four weeks in the mouse. The most likely reason for this is a difference in the number of stem cells in a crypt stem cell niche, although differences in stem cell cycle time and crypt fission may also contribute. These findings are of relevance to colorectal gene therapy and carcinogenesis in stem cell systems. PMID:8944567

  7. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients.

    PubMed

    Siravegna, Giulia; Mussolin, Benedetta; Buscarino, Michela; Corti, Giorgio; Cassingena, Andrea; Crisafulli, Giovanni; Ponzetti, Agostino; Cremolini, Chiara; Amatu, Alessio; Lauricella, Calogero; Lamba, Simona; Hobor, Sebastijan; Avallone, Antonio; Valtorta, Emanuele; Rospo, Giuseppe; Medico, Enzo; Motta, Valentina; Antoniotti, Carlotta; Tatangelo, Fabiana; Bellosillo, Beatriz; Veronese, Silvio; Budillon, Alfredo; Montagut, Clara; Racca, Patrizia; Marsoni, Silvia; Falcone, Alfredo; Corcoran, Ryan B; Di Nicolantonio, Federica; Loupakis, Fotios; Siena, Salvatore; Sartore-Bianchi, Andrea; Bardelli, Alberto

    2015-07-01

    Colorectal cancers (CRCs) evolve by a reiterative process of genetic diversification and clonal evolution. The molecular profile of CRC is routinely assessed in surgical or bioptic samples. Genotyping of CRC tissue has inherent limitations; a tissue sample represents a single snapshot in time, and it is subjected to spatial selection bias owing to tumor heterogeneity. Repeated tissue samples are difficult to obtain and cannot be used for dynamic monitoring of disease progression and response to therapy. We exploited circulating tumor DNA (ctDNA) to genotype colorectal tumors and track clonal evolution during treatment with the epidermal growth factor receptor (EGFR)-specific antibodies cetuximab or panitumumab. We identified alterations in ctDNA of patients with primary or acquired resistance to EGFR blockade in the following genes: KRAS, NRAS, MET, ERBB2, FLT3, EGFR and MAP2K1. Mutated KRAS clones, which emerge in blood during EGFR blockade, decline upon withdrawal of EGFR-specific antibodies, indicating that clonal evolution continues beyond clinical progression. Pharmacogenomic analysis of CRC cells that had acquired resistance to cetuximab reveals that upon antibody withdrawal KRAS clones decay, whereas the population regains drug sensitivity. ctDNA profiles of individuals who benefit from multiple challenges with anti-EGFR antibodies exhibit pulsatile levels of mutant KRAS. These results indicate that the CRC genome adapts dynamically to intermittent drug schedules and provide a molecular explanation for the efficacy of rechallenge therapies based on EGFR blockade.

  8. Clonal multiplication of Cymbidiums through tissue culture of the shoot meristem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wimber, Donald E.

    The propagation of clonal varieties of some orchids is at times exasperatingly slow and occasionally an almost futile effort. Clonal multiplication is generally confined to dlvidlng mature plants and to starting plants from pseudobulbs. There is, of course, the specialized technique for obtaining Phalaenopsis plantlets from the aseptic culture of inflorescence nodes, but this is basically the same thing as propagating plants from pseudobulbs. In certain cases it is highly desirable to rapidly multiply certain clones of orchids. Awarded varieties could thereby be dispersed with great rapidity where now it may take decades for some clones to became fairly common.more » Commercial flower production would be very much enhanced if certain desirable clones could be multiplied ad infinitum within a short time. Orchid flower production could then be placed more on a par with many of the other cut flowers and the clonal peculiarities of some fo the current hybrids could be pampered instead of ignored. This paper describes a tissue culture method for the rapid propagation of Cymbidium clones.« less

  9. Significance of clonal rearrangements of lymphocyte antigen receptor genes on the prognosis of chronic enteropathy in 22 Shiba dogs.

    PubMed

    Ohmi, Aki; Ohno, Koichi; Uchida, Kazuyuki; Goto-Koshino, Yuko; Tomiyasu, Hirotaka; Kanemoto, Hideyuki; Fukushima, Kenjiro; Tsujimoto, Hajime

    2017-09-29

    Shiba dogs are predisposed to chronic enteropathy (CE) and have poorer prognosis than other dog breeds. The objective of this study was to investigate the significance of polymerase chain reaction for antigen receptor rearrangement (PARR) results on clinical findings and prognosis of Shiba dogs with CE. We retrospectively collected data on 22 Shiba dogs diagnosed as having CE. Fifty-nine percent of the dogs had clonality-positive results on PARR analysis. Furthermore, on histopathology, epitheliotropic behavior of small lymphocytes of the intestinal mucosa was observed significantly more frequently in dogs with clonal rearrangement of antigen receptor genes (P=0.027). The median overall survival time of clonality-positive dogs was 48 days (range, 4-239 days), compared to 271 days (range, 45-1,316+ days) in clonality-negative dogs. The median overall survival time of epitheliotropism-positive dogs was 76 days (range, 30-349 days) compared to 239 days (range, 4-1,316+ days) for epitheliotropism-negative dogs. Statistical analysis revealed that the clonality-positive result was associated with significantly shorter survival time (P=0.036). In contrast, presence or absence of epitheliotropism had no statistically significant effect on survival time (P=0.223). These cases might appropriately be diagnosed as small T-cell intestinal lymphoma; there are some common clinical and pathogenic features with human enteropathy-associated T-cell lymphoma type 2. The pathogenesis and poor prognosis for Shiba dogs with CE seem to be associated with this type of lymphoma, although further investigation is warranted.

  10. Clonal evolution in breast cancer revealed by single nucleus genome sequencing.

    PubMed

    Wang, Yong; Waters, Jill; Leung, Marco L; Unruh, Anna; Roh, Whijae; Shi, Xiuqing; Chen, Ken; Scheet, Paul; Vattathil, Selina; Liang, Han; Multani, Asha; Zhang, Hong; Zhao, Rui; Michor, Franziska; Meric-Bernstam, Funda; Navin, Nicholas E

    2014-08-14

    Sequencing studies of breast tumour cohorts have identified many prevalent mutations, but provide limited insight into the genomic diversity within tumours. Here we developed a whole-genome and exome single cell sequencing approach called nuc-seq that uses G2/M nuclei to achieve 91% mean coverage breadth. We applied this method to sequence single normal and tumour nuclei from an oestrogen-receptor-positive (ER(+)) breast cancer and a triple-negative ductal carcinoma. In parallel, we performed single nuclei copy number profiling. Our data show that aneuploid rearrangements occurred early in tumour evolution and remained highly stable as the tumour masses clonally expanded. In contrast, point mutations evolved gradually, generating extensive clonal diversity. Using targeted single-molecule sequencing, many of the diverse mutations were shown to occur at low frequencies (<10%) in the tumour mass. Using mathematical modelling we found that the triple-negative tumour cells had an increased mutation rate (13.3×), whereas the ER(+) tumour cells did not. These findings have important implications for the diagnosis, therapeutic treatment and evolution of chemoresistance in breast cancer.

  11. Critical analysis of the stringent complete response in multiple myeloma: contribution of sFLC and bone marrow clonality

    PubMed Central

    Paiva, Bruno; López-Anglada, Lucía; Mateos, María-Victoria; Cedena, Teresa; Vidríales, María-Belén; Sáez-Gómez, María Auxiliadora; Contreras, Teresa; Oriol, Albert; Rapado, Inmaculada; Teruel, Ana-Isabel; Cordón, Lourdes; Blanchard, María Jesús; Bengoechea, Enrique; Palomera, Luis; de Arriba, Felipe; Cueto-Felgueroso, Cecilia; Orfao, Alberto; Bladé, Joan; San Miguel, Jesús F.; Lahuerta, Juan José

    2015-01-01

    Stringent complete response (sCR) criteria are used in multiple myeloma as a deeper response category compared with CR, but prospective validation is lacking, it is not always clear how evaluation of clonality is performed, and is it not known what the relative clinical influence is of the serum free light chain ratio (sFLCr) and bone marrow (BM) clonality to define more sCR. To clarify this controversy, we focused on 94 patients that reached CR, of which 69 (73%) also fulfilled the sCR criteria. Patients with sCR displayed slightly longer time to progression (median, 62 vs 53 months, respectively; P = .31). On analyzing this contribution to the prognosis of sFLCr or clonality, it was found that the sFLCr does not identify patients in CR at distinct risk; by contrast, low-sensitive multiparametric flow cytometry (MFC) immunophenotyping (2 colors), which is equivalent to immunohistochemistry, identifies a small number of patients (5 cases) with high residual tumor burden and dismal outcome; nevertheless, using traditional 4-color MFC, persistent clonal BM disease was detectable in 36% of patients, who, compared with minimal residual disease-negative cases, had a significantly inferior outcome. These results show that the current definition of sCR should be revised. PMID:26089396

  12. Critical analysis of the stringent complete response in multiple myeloma: contribution of sFLC and bone marrow clonality.

    PubMed

    Martínez-López, Joaquín; Paiva, Bruno; López-Anglada, Lucía; Mateos, María-Victoria; Cedena, Teresa; Vidríales, María-Belén; Sáez-Gómez, María Auxiliadora; Contreras, Teresa; Oriol, Albert; Rapado, Inmaculada; Teruel, Ana-Isabel; Cordón, Lourdes; Blanchard, María Jesús; Bengoechea, Enrique; Palomera, Luis; de Arriba, Felipe; Cueto-Felgueroso, Cecilia; Orfao, Alberto; Bladé, Joan; San Miguel, Jesús F; Lahuerta, Juan José

    2015-08-13

    Stringent complete response (sCR) criteria are used in multiple myeloma as a deeper response category compared with CR, but prospective validation is lacking, it is not always clear how evaluation of clonality is performed, and is it not known what the relative clinical influence is of the serum free light chain ratio (sFLCr) and bone marrow (BM) clonality to define more sCR. To clarify this controversy, we focused on 94 patients that reached CR, of which 69 (73%) also fulfilled the sCR criteria. Patients with sCR displayed slightly longer time to progression (median, 62 vs 53 months, respectively; P = .31). On analyzing this contribution to the prognosis of sFLCr or clonality, it was found that the sFLCr does not identify patients in CR at distinct risk; by contrast, low-sensitive multiparametric flow cytometry (MFC) immunophenotyping (2 colors), which is equivalent to immunohistochemistry, identifies a small number of patients (5 cases) with high residual tumor burden and dismal outcome; nevertheless, using traditional 4-color MFC, persistent clonal BM disease was detectable in 36% of patients, who, compared with minimal residual disease-negative cases, had a significantly inferior outcome. These results show that the current definition of sCR should be revised. © 2015 by The American Society of Hematology.

  13. Production and carbon allocation in a clonal Eucalyptus plantation with water and nutrient manipulations

    Treesearch

    Jose Luiz Stape; Dan Binkley; Michael G. Ryan

    2008-01-01

    We examined resource limitations on growth and carbon allocation in a fast-growing, clonal plantation of Eucalyptus grandis urophylla in Brazil by characterizing responses to annual rainfall, and response to irrigation and fertililization for 2 years. Productivity measures included gross primary production (GPP), total belowground carbon allocation (...

  14. Standardizing the nomenclature for clonal lineages of the sudden oak death pathogen, Phytophthora ramorum

    Treesearch

    N.J. Grünwald; E.M. Goss; K. Ivors; M. Garbelotto; F.N. Martin; S. Prospero; E. Hansen; P.J.M. Bonants; R.C. Hamelin; G. Chastagner; S. Werres; D.M. Rizzo; G. Abad; P. Beales; G.J. Bilodeau; C.L. Blomquist; C. Brasier; S.C. Brière; A. Chandelier; J.M. Davidson; S. Denman; M. Elliott; S.J. Frankel; E.M. Goheen; H. de Gruyter; K. Heungens; D. James; A. Kanaskie; M.G. McWilliams; W. Man in ' t Veld; E. Moralejo; N.K. Osterbauer; M.E. Palm; J.L. Parke; A.M. Perez Sierra; S.F. Shamoun; N. Shishkoff; P.W. Tooley; A.M. Vettraino; J. Webber; T.L. Widmer

    2009-01-01

    Phytophthora ramorum, the causal agent of sudden oak death and ramorum blight, is known to exist as three distinct clonal lineages which can only be distinguished by performing molecular marker-based analyses. However, in the recent literature there exists no consensus on naming of these lineages. Here we propose a system for naming clonal lineages of P. ramorum based...

  15. A Novel Hybrid Clonal Selection Algorithm with Combinatorial Recombination and Modified Hypermutation Operators for Global Optimization

    PubMed Central

    Lin, Jingjing; Jing, Honglei

    2016-01-01

    Artificial immune system is one of the most recently introduced intelligence methods which was inspired by biological immune system. Most immune system inspired algorithms are based on the clonal selection principle, known as clonal selection algorithms (CSAs). When coping with complex optimization problems with the characteristics of multimodality, high dimension, rotation, and composition, the traditional CSAs often suffer from the premature convergence and unsatisfied accuracy. To address these concerning issues, a recombination operator inspired by the biological combinatorial recombination is proposed at first. The recombination operator could generate the promising candidate solution to enhance search ability of the CSA by fusing the information from random chosen parents. Furthermore, a modified hypermutation operator is introduced to construct more promising and efficient candidate solutions. A set of 16 common used benchmark functions are adopted to test the effectiveness and efficiency of the recombination and hypermutation operators. The comparisons with classic CSA, CSA with recombination operator (RCSA), and CSA with recombination and modified hypermutation operator (RHCSA) demonstrate that the proposed algorithm significantly improves the performance of classic CSA. Moreover, comparison with the state-of-the-art algorithms shows that the proposed algorithm is quite competitive. PMID:27698662

  16. Growth and stem form quality of clonal Pinus taeda following fertilization in the Virginia Piedmont

    Treesearch

    Jeremy P. Stovall; Colleen A. Carlson; John R. Seiler; Thomas R. Fox

    2013-01-01

    Clonal forestry offers the opportunity to increase yields, enhance uniformity, and improve wood characteristics. Intensive silvicultural practices, including fertilization, will be required to capture the full growth potential of clonal plantations. However, variation in nutrient use efficiency that exists among clones could affect growth responses. Our research...

  17. Temperature-Dependent Growth and Fission Rate Plasticity Drive Seasonal and Geographic Changes in Body Size in a Clonal Sea Anemone.

    PubMed

    Ryan, Will H

    2018-02-01

    The temperature-size rule is a commonly observed pattern where adult body size is negatively correlated with developmental temperature. In part, this may occur as a consequence of allometric scaling, where changes in the ratio of surface area to mass limit oxygen diffusion as body size increases. As oxygen demand increases with temperature, a smaller body should be favored as temperature increases. For clonal animals, small changes in growth and/or fission rate can rapidly alter the average body size of clonal descendants. Here I test the hypothesis that the clonal sea anemone Diadumene lineata is able to track an optimal body size through seasonal temperature changes using fission rate plasticity. Individuals from three regions (Florida, Georgia, and Massachusetts) across the species' latitudinal range were grown in a year-long reciprocal common garden experiment mimicking seasonal temperature changes at three sites. Average body size was found to be smaller and fission rates higher in warmer conditions, consistent with the temperature-size rule pattern. However, seasonal size and fission patterns reflect a complex interaction between region-specific thermal reaction norms and the local temperature regime. These details provide insight into both the range of conditions required for oxygen limitation to contribute to a negative correlation between body size and temperature and the role that fission rate plasticity can play in tracking a rapidly changing optimal phenotype.

  18. Clonal Analysis of Newborn Hippocampal Dentate Granule Cell Proliferation and Development in Temporal Lobe Epilepsy1,2,3

    PubMed Central

    LaSarge, Candi L.; McAuliffe, John J.

    2015-01-01

    Abstract Hippocampal dentate granule cells are among the few neuronal cell types generated throughout adult life in mammals. In the normal brain, new granule cells are generated from progenitors in the subgranular zone and integrate in a typical fashion. During the development of epilepsy, granule cell integration is profoundly altered. The new cells migrate to ectopic locations and develop misoriented “basal” dendrites. Although it has been established that these abnormal cells are newly generated, it is not known whether they arise ubiquitously throughout the progenitor cell pool or are derived from a smaller number of “bad actor” progenitors. To explore this question, we conducted a clonal analysis study in mice expressing the Brainbow fluorescent protein reporter construct in dentate granule cell progenitors. Mice were examined 2 months after pilocarpine-induced status epilepticus, a treatment that leads to the development of epilepsy. Brain sections were rendered translucent so that entire hippocampi could be reconstructed and all fluorescently labeled cells identified. Our findings reveal that a small number of progenitors produce the majority of ectopic cells following status epilepticus, indicating that either the affected progenitors or their local microenvironments have become pathological. By contrast, granule cells with “basal” dendrites were equally distributed among clonal groups. This indicates that these progenitors can produce normal cells and suggests that global factors sporadically disrupt the dendritic development of some new cells. Together, these findings strongly predict that distinct mechanisms regulate different aspects of granule cell pathology in epilepsy. PMID:26756038

  19. Pre-clinical laboratory evaluation of the new 'AF' arterial line filter range.

    PubMed

    Yarham, Gemma; Mulholland, John

    2010-07-01

    The presence of emboli was recognised relatively early in the history of open heart surgery. The emboli produced during cardiopulmonary bypass have the predisposition to distribute into, and ultimately obstruct, microvessels of all tissues. The Sorin Group has recently developed a new range of arterial line filters. Before the Sorin AF range of filters was released for pre-launch clinical trials, our group performed in vitro laboratory testing of the AF range against a selection of commercially available filters on the global market. The Sorin AF620 and AF640 demonstrate both the smallest prime volume and smallest surface contact area (92ml and 290 cm(2), respectively).The results of the GME Handling Efficiency experiments ranged by 39.6%, from 95.9% to 56.3%. In terms of an air bolus handling, the results of the Limit Bolus experiment ranged by 97 ml, from 147.5 ml down to 50 ml. The pressure drop across all the filters was measured under steady state experimental conditions. All of the above investigations were considered against surface area and prime volume. It is clear from the results that some commercially available arterial line filters perform better than others, not only in overall performance, but also with regard to individual characteristics. Evaluating arterial line filters for hospital-specific use has to balance pressure drop, surface area, micro air handling, prime volume and gross air handling; all points need to be considered. In the AF620 and AF640, Sorin boast that they are the two smallest prime and smallest surface area filters commercially available on the global market. The Sorin AF filter range performs well in all of the areas we investigated and will be a competitive option for centres, irrespective of which characteristics they use to evaluate and select their arterial line filter.

  20. Clonal integration in Ludwigia hexapetala under different light regimes

    USDA-ARS?s Scientific Manuscript database

    Physiological integration among ramets of invasive plant species may support their colonization and spread in novel aquatic environments where growth-limiting resources are spatially heterogeneous. Under contrasting light conditions, we investigated how clonal integration influences growth, biomass...

  1. Microcoppice: a new strategy for red oak clonal propagation

    Treesearch

    D.E. Harper; B.H. McCown

    1991-01-01

    The great demand for red oak (Quercus rubra L.) has forced plant propagators to consider viable methods of mass clonal propagation for the species. A process called 'microcoppicing' is presently being developed to help meet such needs.

  2. Deciphering KRAS and NRAS mutated clone dynamics in MLL-AF4 paediatric leukaemia by ultra deep sequencing analysis.

    PubMed

    Trentin, Luca; Bresolin, Silvia; Giarin, Emanuela; Bardini, Michela; Serafin, Valentina; Accordi, Benedetta; Fais, Franco; Tenca, Claudya; De Lorenzo, Paola; Valsecchi, Maria Grazia; Cazzaniga, Giovanni; Kronnie, Geertruy Te; Basso, Giuseppe

    2016-10-04

    To induce and sustain the leukaemogenic process, MLL-AF4+ leukaemia seems to require very few genetic alterations in addition to the fusion gene itself. Studies of infant and paediatric patients with MLL-AF4+ B cell precursor acute lymphoblastic leukaemia (BCP-ALL) have reported mutations in KRAS and NRAS with incidences ranging from 25 to 50%. Whereas previous studies employed Sanger sequencing, here we used next generation amplicon deep sequencing for in depth evaluation of RAS mutations in 36 paediatric patients at diagnosis of MLL-AF4+ leukaemia. RAS mutations including those in small sub-clones were detected in 63.9% of patients. Furthermore, the mutational analysis of 17 paired samples at diagnosis and relapse revealed complex RAS clone dynamics and showed that the mutated clones present at relapse were almost all originated from clones that were already detectable at diagnosis and survived to the initial therapy. Finally, we showed that mutated patients were indeed characterized by a RAS related signature at both transcriptional and protein levels and that the targeting of the RAS pathway could be of beneficial for treatment of MLL-AF4+ BCP-ALL clones carrying somatic RAS mutations.

  3. Clonal analysis of human embryonic stem cell differentiation into teratomas.

    PubMed

    Blum, Barak; Benvenisty, Nissim

    2007-08-01

    Differentiation of human embryonic stem cells (HESCs) can be studied in vivo through the induction of teratomas in immune-deficient mice. Cells within the teratomas differentiate into all three embryonic germ layers. However, the exact nature of the proliferation and differentiation of HESCs within the teratoma is not fully characterized, and it is not clear whether the differentiation is cell autonomous or affected by neighboring cells. Here, we establish a genetic approach to study the clonality of differentiation in teratomas using a mixture of HESC lines. We first demonstrate, by means of 5-bromo-2'-deoxyuridine incorporation, that cell proliferation occurs throughout the teratoma, and that there are no clusters of undifferentiated-proliferating cells. Using a combination of laser capture microdissection and DNA fingerprinting analysis, we show that different cell lines contribute mutually to the same distinctive tissue structures. Further support for the nonclonal differentiation within the teratoma was achieved by fluorescence in situ hybridization analysis of sex chromosomes. We therefore suggest that in vivo differentiation of HESCs is polyclonal and, thus, may not be cell autonomous, stressing the need for a three-dimensional growth in order to achieve complex differentiation of HESCs. Disclosure of potential conflicts of interest is found at the end of this article.

  4. Infection of Melissococcus plutonius clonal complex 12 strain in European honeybee larvae is essentially confined to the digestive tract

    PubMed Central

    TAKAMATSU, Daisuke; SATO, Masumi; YOSHIYAMA, Mikio

    2015-01-01

    Melissococcus plutonius is an important pathogen that causes European foulbrood (EFB) in honeybee larvae. Recently, we discovered a group of M. plutonius strains that are phenotypically and genetically distinct from other strains. These strains belong to clonal complex (CC) 12, as determined by multilocus sequence typing analysis, and show atypical cultural and biochemical characteristics in vitro compared with strains of other CCs tested. Although EFB is considered to be a purely intestinal infection according to early studies, it is unknown whether the recently found CC12 strains cause EFB by the same pathomechanism. In this study, to obtain a better understanding of EFB, we infected European honeybee (Apis mellifera) larvae per os with a well-characterized CC12 strain, DAT561, and analyzed the larvae histopathologically. Ingested DAT561 was mainly localized in the midgut lumen surrounded by the peritrophic matrix (PM) in the larvae. In badly affected larvae, the PM and midgut epithelial cells degenerated, and some bacterial cells were detected outside of the midgut. However, they did not proliferate in the deep tissues actively. By immunohistochemical analysis, the PM was stained with anti-M. plutonius serum in most of the DAT561-infected larvae. In some larvae, luminal surfaces of the PM were more strongly stained than the inside. These results suggest that infection of CC12 strain in honeybee larvae is essentially confined to the intestine. Moreover, our results imply the presence of M. plutonius-derived substances diffusing into the larval tissues in the course of infection. PMID:26256232

  5. Selection and Clonal Propagation of High Artemisinin Genotypes of Artemisia annua

    PubMed Central

    Wetzstein, Hazel Y.; Porter, Justin A.; Janick, Jules; Ferreira, Jorge F. S.; Mutui, Theophilus M.

    2018-01-01

    Artemisinin, produced in the glandular trichomes of Artemisia annua L. is a vital antimalarial drug effective against Plasmodium falciparum resistant to quinine-derived medicines. Although work has progressed on the semi-synthetic production of artemisinin, field production of A. annua remains the principal commercial source of the compound. Crop production of artemisia must be increased to meet the growing worldwide demand for artemisinin combination therapies (ACTs) to treat malaria. Grower artemisinin yields rely on plants generated from seeds from open-pollinated parents. Although selection has considerably increased plant artemisinin concentration in the past 15 years, seed-generated plants have highly variable artemisinin content that lowers artemisinin yield per hectare. Breeding efforts to produce improved F1 hybrids have been hampered by the inability to produce inbred lines due to self-incompatibility. An approach combining conventional hybridization and selection with clonal propagation of superior genotypes is proposed as a means to enhance crop yield and artemisinin production. Typical seed-propagated artemisia plants produce less than 1% (dry weight) artemisinin with yields below 25 kg/ha. Genotypes were identified producing high artemisinin levels of over 2% and possessing improved agronomic characteristics such as high leaf area and shoot biomass production. Field studies of clonally-propagated high-artemisinin plants verified enhanced plant uniformity and an estimated gross primary productivity of up to 70 kg/ha artemisinin, with a crop density of one plant m-2. Tissue culture and cutting protocols for the mass clonal propagation of A. annua were developed for shoot regeneration, rooting, acclimatization, and field cultivation. Proof of concept studies showed that both tissue culture-regenerated plants and rooted cutting performed better than plants derived from seed in terms of uniformity, yield, and consistently high artemisinin content. Use of

  6. Spatial and temporal clonal evolution of intrahepatic cholangiocarcinoma.

    PubMed

    Dong, Liang-Qing; Shi, Yang; Ma, Li-Jie; Yang, Liu-Xiao; Wang, Xiao-Ying; Zhang, Shu; Wang, Zhi-Chao; Duan, Meng; Zhang, Zhao; Liu, Long-Zi; Zheng, Bo-Hao; Ding, Zhen-Bin; Ke, Ai-Wu; Gao, Da-Ming; Yuan, Ke; Zhou, Jian; Fan, Jia; Xi, Ruibin; Gao, Qiang

    2018-07-01

    Intrahepatic cholangiocarcinoma (ICC) is the second-most lethal primary liver cancer. Little is known about intratumoral heterogeneity (ITH) and its impact on ICC progression. We aimed to investigate the ITH of ICC in the hope of helping to develop new therapeutic strategies. We obtained 69 spatially distinct regions from six operable ICCs. Patient-derived primary cancer cells (PDPCs) were established for each region, followed by whole-exome sequencing (WES) and multi-level validation. We observed widespread ITH for both somatic mutations and clonal architecture, shaped by multiple mechanisms, like clonal "illusion", parallel evolution and chromosome instability. A median of 60.3% of mutations were heterogeneous, among which 85% of the driver mutations were located on the branches of tumor phylogenetic trees. Many truncal and clonal driver mutations occurred in tumor suppressor genes, such as TP53, SMARCB1 and PBRM1 that are involved in DNA repair and chromatin-remodeling. Genome doubling occurred in most cases (5/6) after the accumulation of truncal mutations and was shared by all intratumoral sub-regions. In all cases, ongoing chromosomal instability is evident throughout the evolutionary trajectory of ICC. The recurrence of ICC1239 provided evidence to support the polyclonal metastatic seeding in ICC. The change of mutation landscape and internal diversity among subclones during metastasis, such as the loss of chemoresistance mediator, can be used for new treatment strategies. Targeted therapy against truncal alterations, such as IDH1, JAK1, and KRAS mutations and EGFR amplification, was developed in 5/6 patients. Integrated investigations of spatial ITH and clonal evolution may provide an important molecular foundation for enhanced understanding of tumorigenesis and progression in ICC. We applied multiregional whole-exome sequencing to investigate the evolution of intrahepatic cholangiocarcinoma (ICC). The results revealed that many factors, such as parallel

  7. Cytoreductive conditioning intensity predicts clonal diversity in ADA-SCID retroviral gene therapy patients

    PubMed Central

    Lill, Georgia R.; Shaw, Kit; Carbonaro-Sarracino, Denise A.; Davila, Alejandra; Sokolic, Robert; Candotti, Fabio; Pellegrini, Matteo

    2017-01-01

    Retroviral gene therapy has proved efficacious for multiple genetic diseases of the hematopoietic system, but roughly half of clinical gene therapy trial protocols using gammaretroviral vectors have reported leukemias in some of the patients treated. In dramatic contrast, 39 adenosine deaminase–deficient severe combined immunodeficiency (ADA-SCID) patients have been treated with 4 distinct gammaretroviral vectors without oncogenic consequence. We investigated clonal dynamics and diversity in a cohort of 15 ADA-SCID children treated with gammaretroviral vectors and found clear evidence of genotoxicity, indicated by numerous common integration sites near proto-oncogenes and by increased abundance of clones with integrations near MECOM and LMO2. These clones showed stable behavior over multiple years and never expanded to the point of dominance or dysplasia. One patient developed a benign clonal dominance that could not be attributed to insertional mutagenesis and instead likely resulted from expansion of a transduced natural killer clone in response to chronic Epstein-Barr virus viremia. Clonal diversity and T-cell repertoire, measured by vector integration site sequencing and T-cell receptor β-chain rearrangement sequencing, correlated significantly with the amount of busulfan preconditioning delivered to patients and to CD34+ cell dose. These data, in combination with results of other ADA-SCID gene therapy trials, suggest that disease background may be a crucial factor in leukemogenic potential of retroviral gene therapy and underscore the importance of cytoreductive conditioning in this type of gene therapy approach. PMID:28351939

  8. Cytoreductive conditioning intensity predicts clonal diversity in ADA-SCID retroviral gene therapy patients.

    PubMed

    Cooper, Aaron R; Lill, Georgia R; Shaw, Kit; Carbonaro-Sarracino, Denise A; Davila, Alejandra; Sokolic, Robert; Candotti, Fabio; Pellegrini, Matteo; Kohn, Donald B

    2017-05-11

    Retroviral gene therapy has proved efficacious for multiple genetic diseases of the hematopoietic system, but roughly half of clinical gene therapy trial protocols using gammaretroviral vectors have reported leukemias in some of the patients treated. In dramatic contrast, 39 adenosine deaminase-deficient severe combined immunodeficiency (ADA-SCID) patients have been treated with 4 distinct gammaretroviral vectors without oncogenic consequence. We investigated clonal dynamics and diversity in a cohort of 15 ADA-SCID children treated with gammaretroviral vectors and found clear evidence of genotoxicity, indicated by numerous common integration sites near proto-oncogenes and by increased abundance of clones with integrations near MECOM and LMO2 These clones showed stable behavior over multiple years and never expanded to the point of dominance or dysplasia. One patient developed a benign clonal dominance that could not be attributed to insertional mutagenesis and instead likely resulted from expansion of a transduced natural killer clone in response to chronic Epstein-Barr virus viremia. Clonal diversity and T-cell repertoire, measured by vector integration site sequencing and T-cell receptor β-chain rearrangement sequencing, correlated significantly with the amount of busulfan preconditioning delivered to patients and to CD34 + cell dose. These data, in combination with results of other ADA-SCID gene therapy trials, suggest that disease background may be a crucial factor in leukemogenic potential of retroviral gene therapy and underscore the importance of cytoreductive conditioning in this type of gene therapy approach.

  9. Secondary immunization generates clonally related antigen-specific plasma cells and memory B cells.

    PubMed

    Frölich, Daniela; Giesecke, Claudia; Mei, Henrik E; Reiter, Karin; Daridon, Capucine; Lipsky, Peter E; Dörner, Thomas

    2010-09-01

    Rechallenge with T cell-dependent Ags induces memory B cells to re-enter germinal centers (GCs) and undergo further expansion and differentiation into plasma cells (PCs) and secondary memory B cells. It is currently not known whether the expanded population of memory B cells and PCs generated in secondary GCs are clonally related, nor has the extent of proliferation and somatic hypermutation of their precursors been delineated. In this study, after secondary tetanus toxoid (TT) immunization, TT-specific PCs increased 17- to 80-fold on days 6-7, whereas TT-specific memory B cells peaked (delayed) on day 14 with a 2- to 22-fold increase. Molecular analyses of V(H)DJ(H) rearrangements of individual cells revealed no major differences of gene usage and CDR3 length between TT-specific PCs and memory B cells, and both contained extensive evidence of somatic hypermutation with a pattern consistent with GC reactions. This analysis identified clonally related TT-specific memory B cells and PCs. Within clusters of clonally related cells, sequences shared a number of mutations but also could contain additional base pair changes. The data indicate that although following secondary immunization PCs can derive from memory B cells without further somatic hypermutation, in some circumstances, likely within GC reactions, asymmetric mutation can occur. These results suggest that after the fate decision to differentiate into secondary memory B cells or PCs, some committed precursors continue to proliferate and mutate their V(H) genes.

  10. Clonal Evaluation of Prostate Cancer by ERG/SPINK1 Status to Improve Prognosis Prediction

    DTIC Science & Technology

    2017-12-01

    meaning that most men with prostate cancer have multiple, genetically distinct cancers. Pathologists cannot assess clonality by routine microscopic...Hence, in this proposal we utilized dual ERG/SPINK1 immunohistochemistry (IHC)—as a readout of clonal, mutually exclusive molecular subtypes—to assess...multiclonal (also referred to as multifocal), meaning that more than 80% of men with prostate cancer actually have multiple, genetically distinct

  11. Anaphylaxis as a clinical manifestation of clonal mast cell disorders.

    PubMed

    Matito, A; Alvarez-Twose, I; Morgado, J M; Sánchez-Muñoz, L; Orfao, A; Escribano, L

    2014-08-01

    Clonal mast cell disorders comprise a heterogeneous group of disorders characterized by the presence of gain of function KIT mutations and a constitutively altered activation-associated mast cell immunophenotype frequently associated with clinical manifestations related to the release of mast cells mediators. These disorders do not always fulfil the World Health Organization (WHO)-proposed criteria for mastocytosis, particularly when low-sensitive diagnostic approaches are performed. Anaphylaxis is a frequent presentation of clonal mast cell disorders, particularly in mastocytosis patients without typical skin lesions. The presence of cardiovascular symptoms, e.g., hypotension, occurring after a hymenoptera sting or spontaneously in the absence of cutaneous manifestations such as urticaria is characteristic and differs from the presentation of anaphylaxis in the general population without mastocytosis.

  12. Three-gene identity coefficients demonstrate that clonal reproduction promotes inbreeding and spatial relatedness in yellow-cedar, Callitropsis nootkatensis.

    PubMed

    Thompson, Stacey Lee; Bérubé, Yanik; Bruneau, Anne; Ritland, Kermit

    2008-10-01

    Asexual reproduction has the potential to promote population structuring through matings between clones as well as through limited dispersal of related progeny. Here we present an application of three-gene identity coefficients that tests whether clonal reproduction promotes inbreeding and spatial relatedness within populations. With this method, the first two genes are sampled to estimate pairwise relatedness or inbreeding, whereas the third gene is sampled from either a clone or a sexually derived individual. If three-gene coefficients are significantly greater for clones than nonclones, then clonality contributes excessively to genetic structure. First, we describe an estimator of three-gene identity and briefly evaluate its properties. We then use this estimator to test the effect of clonality on the genetic structure within populations of yellow-cedar (Callitropsis nootkatensis) using a molecular marker survey. Five microsatellite loci were genotyped for 485 trees sampled from nine populations. Our three-gene analyses show that clonal ramets promote inbreeding and spatial structure in most populations. Among-population correlations between clonal extent and genetic structure generally support these trends, yet with less statistical significance. Clones appear to contribute to genetic structure through the limited dispersal of offspring from replicated ramets of the same clonal genet, whereas this structure is likely maintained by mating among these relatives.

  13. Facilitation of amphibious habit by physiological integration in the clonal, perennial, climbing herb Ipomoea aquatica.

    PubMed

    Lin, Hui-Feng; Alpert, Peter; Zhang, Qian; Yu, Fei-Hai

    2018-03-15

    Physiological integration of connected ramets of clonal plants can increase clonal performance when ramets grow in contrasting microenvironments within a habitat. In amphibious clonal species, integration of ramets in different habitats, terrestrial and aquatic, is possible. This may increase performance of amphibious clones, especially under eutrophic conditions. To test this, clonal fragments consisting of two ramets of the amphibious, perennial, climbing herb Ipomoea aquatica connected by a stem were placed such that the proximal ramet was rooted in a simulated riparian community of four other species, while the distal ramet extended into a simulated aquatic habitat with open water and sediment. The connection between ramets was either left intact or severed, and 0, 5, or 25mg N L -1 was added to the aquatic habitat to simulate different degrees of eutrophication. Without added N, fragments in which the original ramets were left connected accumulated two times more total mass than fragments in which the ramets were disconnected from one another. The positive effect of connection increased two-fold with increasing N. These results were consistent with the hypotheses that physiological integration between connected terrestrial and aquatic ramets can increase clonal performance in plants and that this effect can be greater when the aquatic ramet is richer in nutrients. Connection reduced root to shoot ratio in terrestrial ramets, but increased it in aquatic ones, suggesting that physiological integration induced a division of labor in which terrestrial ramets specialized for light acquisition and aquatic ramets specialized for acquisition of nutrients. This provides the first report of increase in clonal performance and induction of division of labor due to physiological integration between ramets in different habitats. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Tatalina AFS, Alaska. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1983-03-01

    M’CROCOpy pESLUTONEST CkA~l PH THIS SHEET Af) m r’",I "er-"i cprit, r I ~~~~Tahen 01.-ing ,lt c’, ’ .c,- us. Bel ii % owe i -r LEVEL ~ut with Ier r iNVENTORY...82172 MAR N 62 53 W V558 ELV: 964 FT PAT. PAinTS A-F HOURS SU M &UZED: OOOOZ - 230OZ PER{IOD OF RECORD: HOUPLY OBSERYATION.1: JAN 73 - DEC 81 SLW4MAY OF...NOVEM_ _ _ _ .._ ,- .- ,z. 702315 SA A. i. ts 58 9 STATION LOCATION AND INS’rRUMtNTATION ,HI STORY NUr! TIf E 11T to tw ITLmU am M GS of CEO(IAPNICAL

  15. Sparrevohn AFS, Alaska. Revised Uniform Summary of Surface Weather Observations.

    DTIC Science & Technology

    1985-09-18

    SSURFACE WEATHER OBSERVATIONS SPARREVOHN AFS AK MSC #702350 N 61 06 W155 35 ELEV: 1573 FT PASV PARTS A-F HOURS SUMMARIZED: 0000 - 2300 LST PERIOD OF RECORD...stations around the world. This is the provenance of the number (e.g., MSC 999999) which will appear on future OL-A standard products. D I...AFS Af PEt 7oif of [ COPD : 77-84 MONTH: A W, HO URS4LS3: ALL 7.3 itIts 816181L1F7 IN 6FAFLIF WILCS INs ((I (F IF F G CF b t I, [ CF ŕ 6 1 ,F F F tF7F I

  16. Lineage tracing reveals multipotent stem cells maintain human adenomas and the pattern of clonal expansion in tumor evolution

    PubMed Central

    Humphries, Adam; Cereser, Biancastella; Gay, Laura J.; Miller, Daniel S. J.; Das, Bibek; Gutteridge, Alice; Elia, George; Nye, Emma; Jeffery, Rosemary; Poulsom, Richard; Novelli, Marco R.; Rodriguez-Justo, Manuel; McDonald, Stuart A. C.; Wright, Nicholas A.; Graham, Trevor A.

    2013-01-01

    The genetic and morphological development of colorectal cancer is a paradigm for tumorigenesis. However, the dynamics of clonal evolution underpinning carcinogenesis remain poorly understood. Here we identify multipotential stem cells within human colorectal adenomas and use methylation patterns of nonexpressed genes to characterize clonal evolution. Numerous individual crypts from six colonic adenomas and a hyperplastic polyp were microdissected and characterized for genetic lesions. Clones deficient in cytochrome c oxidase (CCO−) were identified by histochemical staining followed by mtDNA sequencing. Topographical maps of clone locations were constructed using a combination of these data. Multilineage differentiation within clones was demonstrated by immunofluorescence. Methylation patterns of adenomatous crypts were determined by clonal bisulphite sequencing; methylation pattern diversity was compared with a mathematical model to infer to clonal dynamics. Individual adenomatous crypts were clonal for mtDNA mutations and contained both mucin-secreting and neuroendocrine cells, demonstrating that the crypt contained a multipotent stem cell. The intracrypt methylation pattern was consistent with the crypts containing multiple competing stem cells. Adenomas were epigenetically diverse populations, suggesting that they were relatively mitotically old populations. Intratumor clones typically showed less diversity in methylation pattern than the tumor as a whole. Mathematical modeling suggested that recent clonal sweeps encompassing the whole adenoma had not occurred. Adenomatous crypts within human tumors contain actively dividing stem cells. Adenomas appeared to be relatively mitotically old populations, pocketed with occasional newly generated subclones that were the result of recent rapid clonal expansion. Relative stasis and occasional rapid subclone growth may characterize colorectal tumorigenesis. PMID:23766371

  17. Lineage tracing reveals multipotent stem cells maintain human adenomas and the pattern of clonal expansion in tumor evolution.

    PubMed

    Humphries, Adam; Cereser, Biancastella; Gay, Laura J; Miller, Daniel S J; Das, Bibek; Gutteridge, Alice; Elia, George; Nye, Emma; Jeffery, Rosemary; Poulsom, Richard; Novelli, Marco R; Rodriguez-Justo, Manuel; McDonald, Stuart A C; Wright, Nicholas A; Graham, Trevor A

    2013-07-02

    The genetic and morphological development of colorectal cancer is a paradigm for tumorigenesis. However, the dynamics of clonal evolution underpinning carcinogenesis remain poorly understood. Here we identify multipotential stem cells within human colorectal adenomas and use methylation patterns of nonexpressed genes to characterize clonal evolution. Numerous individual crypts from six colonic adenomas and a hyperplastic polyp were microdissected and characterized for genetic lesions. Clones deficient in cytochrome c oxidase (CCO(-)) were identified by histochemical staining followed by mtDNA sequencing. Topographical maps of clone locations were constructed using a combination of these data. Multilineage differentiation within clones was demonstrated by immunofluorescence. Methylation patterns of adenomatous crypts were determined by clonal bisulphite sequencing; methylation pattern diversity was compared with a mathematical model to infer to clonal dynamics. Individual adenomatous crypts were clonal for mtDNA mutations and contained both mucin-secreting and neuroendocrine cells, demonstrating that the crypt contained a multipotent stem cell. The intracrypt methylation pattern was consistent with the crypts containing multiple competing stem cells. Adenomas were epigenetically diverse populations, suggesting that they were relatively mitotically old populations. Intratumor clones typically showed less diversity in methylation pattern than the tumor as a whole. Mathematical modeling suggested that recent clonal sweeps encompassing the whole adenoma had not occurred. Adenomatous crypts within human tumors contain actively dividing stem cells. Adenomas appeared to be relatively mitotically old populations, pocketed with occasional newly generated subclones that were the result of recent rapid clonal expansion. Relative stasis and occasional rapid subclone growth may characterize colorectal tumorigenesis.

  18. Long-term clonal dynamics of Enterococcus faecium strains causing bloodstream infections (1995-2015) in Spain.

    PubMed

    Tedim, Ana P; Ruíz-Garbajosa, Patricia; Rodríguez, Maria Concepción; Rodríguez-Baños, Mercedes; Lanza, Val F; Derdoy, Laura; Cárdenas Zurita, Gonzalo; Loza, Elena; Cantón, Rafael; Baquero, Fernando; Coque, Teresa M

    2017-01-01

    To investigate the population structure of Enterococcus faecium causing bloodstream infections (BSIs) in a tertiary Spanish hospital with low glycopeptide resistance, and to enhance our knowledge of the dynamics of emergence and spread of high-risk clonal complexes. All available E. faecium causing BSIs (n = 413) in our hospital (January 1995-May 2015) were analysed for antibiotic susceptibility (CLSI), putative virulence traits (PCR, esp, hyl Efm ) and clonal relationship (SmaI-PFGE, MLST evaluated by goeBURST and BAPS). The increased incidence of BSIs caused by enterococci [2.3‰ of attended patients (inpatients and outpatients) in 1996 to 3.0‰ in 2014] significantly correlated with the increase in BSIs caused by E. faecium (0.33‰ of attended patients in 1996 to 1.3‰ in 2014). The BSIs Enterococcus faecalis:E. faecium ratio changed from 5:1 in 1996 to 1:1 in 2014. During the last decade an increase in E. faecium BSIs episodes in cancer patients (10.9% in 1995-2005 and 37.1% in 2006-15) was detected. Ampicillin-susceptible E. faecium (ASEfm; different STs/BAPS) and ampicillin-resistant E. faecium (AREfm; ST18/ST17-BAPS 3.3a) isolates were recovered throughout the study. Successive waves of BAPS 2.1a-AREfm (ST117, ST203 and ST80) partially replaced ASEfm and ST18-AREfm since 2006. Different AREfm clones (belonging to BAPS 2.1a and BAPS 3.3a) consistently isolated during the last decade from BSIs might be explained by a continuous and dense colonization (favouring both invasion and cross-transmission) of hospitalized patients. High-density colonization by these clones is probably enhanced in elderly patients by heavy and prolonged antibiotic exposure, particularly in oncological patients. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Genetic hierarchy and temporal variegation in the clonal history of acute myeloid leukaemia.

    PubMed

    Hirsch, Pierre; Zhang, Yanyan; Tang, Ruoping; Joulin, Virginie; Boutroux, Hélène; Pronier, Elodie; Moatti, Hannah; Flandrin, Pascale; Marzac, Christophe; Bories, Dominique; Fava, Fanny; Mokrani, Hayat; Betems, Aline; Lorre, Florence; Favier, Rémi; Féger, Frédéric; Mohty, Mohamad; Douay, Luc; Legrand, Ollivier; Bilhou-Nabera, Chrystèle; Louache, Fawzia; Delhommeau, François

    2016-08-18

    In acute myeloid leukaemia (AML) initiating pre-leukaemic lesions can be identified through three major hallmarks: their early occurrence in the clone, their persistence at relapse and their ability to initiate multilineage haematopoietic repopulation and leukaemia in vivo. Here we analyse the clonal composition of a series of AML through these characteristics. We find that not only DNMT3A mutations, but also TET2, ASXL1 mutations, core-binding factor and MLL translocations, as well as del(20q) mostly fulfil these criteria. When not eradicated by AML treatments, pre-leukaemic cells with these lesions can re-initiate the leukaemic process at various stages until relapse, with a time-dependent increase in clonal variegation. Based on the nature, order and association of lesions, we delineate recurrent genetic hierarchies of AML. Our data indicate that first lesions, variegation and treatment selection pressure govern the expansion and adaptive behaviour of the malignant clone, shaping AML in a time-dependent manner.

  20. Genetic characterisation of Toxoplasma gondii in wildlife from North America revealed widespread and high prevalence of the fourth clonal type

    USGS Publications Warehouse

    Dubey, J.P.; Velmurugan, G.V.; Ragendran, C.; Yabsley, M.J.; Thomas, N.J.; Beckmen, K.B.; Sinnett, D.; Ruid, D.; Hart, J.; Fair, P.A.; McFee, W.E.; Shearn-Bochsler, V.; Kwok, O.C.H.; Ferreira, L.R.; Choudhary, S.; Faria, E.B.; Zhou, H.; Felix, T.A.; Su, C.

    2011-01-01

    Little is known of the genetic diversity of Toxoplasma gondii circulating in wildlife. In the present study wild animals, from the USA were examined for T. gondii infection. Tissues of naturally exposed animals were bioassayed in mice for isolation of viable parasites. Viable T. gondii was isolated from 31 animals including, to our knowledge for the first time, from a bald eagle (Haliaeetus leucocephalus), five gray wolves (Canis lupus), a woodrat (Neotoma micropus), and five Arctic foxes (Alopex lagopus). Additionally, 66 T. gondii isolates obtained previously, but not genetically characterised, were revived in mice. Toxoplasma gondii DNA isolated from these 97 samples (31+66) was characterised using 11 PCR-restriction fragment length polymorphism (RFLP) markers (SAG1, 5'- and 3'-SAG2, alt.SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1 and Apico). A total of 95 isolates were successfully genotyped. In addition to clonal Types II, and III, 12 different genotypes were found. These genotype data were combined with 74 T. gondii isolates previously characterised from wildlife from North America and a composite data set of 169 isolates comprised 22 genotypes, including clonal Types II, III and 20 atypical genotypes. Phylogenetic network analysis showed limited diversity with dominance of a recently designated fourth clonal type (Type 12) in North America, followed by the Type II and III lineages. These three major lineages together accounted for 85% of strains in North America. The Type 12 lineage includes previously identified Type A and X strains from sea otters. This study revealed that the Type 12 lineage accounts for 46.7% (79/169) of isolates and is dominant in wildlife of North America. No clonal Type I strain was identified among these wildlife isolates. These results suggest that T. gondii strains in wildlife from North America have limited diversity, with the occurrence of only a few major clonal types.

  1. Clonal integration supports the expansion from terrestrial to aquatic environments of the amphibious stoloniferous herb Alternanthera philoxeroides.

    PubMed

    Wang, N; Yu, F-H; Li, P-X; He, W-M; Liu, J; Yu, G-L; Song, Y-B; Dong, M

    2009-05-01

    Effects of clonal integration on land plants have been extensively studied, but little is known about the role in amphibious plants that expand from terrestrial to aquatic conditions. We simulated expansion from terrestrial to aquatic habitats in the amphibious stoloniferous alien invasive alligator weed (Alternanthera philoxeroides) by growing basal ramets of clonal fragments in soils connected (allowing integration) or disconnected (preventing integration) to the apical ramets of the same fragments submerged in water to a depth of 0, 5, 10 or 15 cm. Clonal integration significantly increased growth and clonal reproduction of the apical ramets, but decreased both of these characteristics in basal ramets. Consequently, integration did not affect the performance of whole clonal fragments. We propose that alligator weed possesses a double-edged mechanism during population expansion: apical ramets in aquatic habitats can increase growth through connected basal parts in terrestrial habitats; however, once stolon connections with apical ramets are lost by external disturbance, the basal ramets in terrestrial habitats increase stolon and ramet production for rapid spreading. This may contribute greatly to the invasiveness of alligator weed and also make it very adaptable to habitats with heavy disturbance and/or highly heterogeneous resource supply.

  2. Feasibility and cost-effectiveness of stroke prevention through community screening for atrial fibrillation using iPhone ECG in pharmacies. The SEARCH-AF study.

    PubMed

    Lowres, Nicole; Neubeck, Lis; Salkeld, Glenn; Krass, Ines; McLachlan, Andrew J; Redfern, Julie; Bennett, Alexandra A; Briffa, Tom; Bauman, Adrian; Martinez, Carlos; Wallenhorst, Christopher; Lau, Jerrett K; Brieger, David B; Sy, Raymond W; Freedman, S Ben

    2014-06-01

    Atrial fibrillation (AF) causes a third of all strokes, but often goes undetected before stroke. Identification of unknown AF in the community and subsequent anti-thrombotic treatment could reduce stroke burden. We investigated community screening for unknown AF using an iPhone electrocardiogram (iECG) in pharmacies, and determined the cost-effectiveness of this strategy.Pharmacists performedpulse palpation and iECG recordings, with cardiologist iECG over-reading. General practitioner review/12-lead ECG was facilitated for suspected new AF. An automated AF algorithm was retrospectively applied to collected iECGs. Cost-effectiveness analysis incorporated costs of iECG screening, and treatment/outcome data from a United Kingdom cohort of 5,555 patients with incidentally detected asymptomatic AF. A total of 1,000 pharmacy customers aged ≥65 years (mean 76 ± 7 years; 44% male) were screened. Newly identified AF was found in 1.5% (95% CI, 0.8-2.5%); mean age 79 ± 6 years; all had CHA2DS2-VASc score ≥2. AF prevalence was 6.7% (67/1,000). The automated iECG algorithm showed 98.5% (CI, 92-100%) sensitivity for AF detection and 91.4% (CI, 89-93%) specificity. The incremental cost-effectiveness ratio of extending iECG screening into the community, based on 55% warfarin prescription adherence, would be $AUD5,988 (€3,142; $USD4,066) per Quality Adjusted Life Year gained and $AUD30,481 (€15,993; $USD20,695) for preventing one stroke. Sensitivity analysis indicated cost-effectiveness improved with increased treatment adherence.Screening with iECG in pharmacies with an automated algorithm is both feasible and cost-effective. The high and largely preventable stroke/thromboembolism risk of those with newly identified AF highlights the likely benefits of community AF screening. Guideline recommendation of community iECG AF screening should be considered.

  3. Breast tumor heterogeneity: cancer stem cells or clonal evolution?

    PubMed

    Campbell, Lauren L; Polyak, Kornelia

    2007-10-01

    Breast tumors are composed of a variety of cell types with distinct morphologies and behaviors. It is not clear how this tumor heterogeneity comes about. Two popular concepts that attempt to explain this are the cancer stem cell hypothesis and the clonal evolution model. Each of these ideas has been investigated for some time, leading to the accumulation of numerous findings that are used to support one or the other. Although the two views share some similarities, they are fundamentally different notions with very different clinical implications. Analysis of the research backing each concept, along with a review of the results of our recent study investigating putative breast cancer stem cells, suggests how the cancer stem cell hypothesis and the clonal evolution model may be involved in generating breast tumor heterogeneity. An understanding of this process will allow the development of more effective ways to treat and prevent breast cancer.

  4. The strainrange partitioning behavior of an advanced gas turbine disk alloy, AF2-1DA

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Nachtigall, A. J.

    1979-01-01

    The low-cycle, creep-fatigue characteristics of the advanced gas turbine disk alloy, AF2-1DA have been determined at 1400 F and are presented in terms of the method of strainrange partitioning (SRP). The mean stresses which develop in the PC and CP type SRP cycles at the lowest inelastic strainrange were observed to influence the cyclic lives to a greater extent than the creep effects and hence interfered with a conventional interpretation of the results by SRP. A procedure is proposed for dealing with the mean stress effects on life which is compatible with SRP.

  5. Somatic Mutations and Clonal Hematopoiesis in Aplastic Anemia.

    PubMed

    Yoshizato, Tetsuichi; Dumitriu, Bogdan; Hosokawa, Kohei; Makishima, Hideki; Yoshida, Kenichi; Townsley, Danielle; Sato-Otsubo, Aiko; Sato, Yusuke; Liu, Delong; Suzuki, Hiromichi; Wu, Colin O; Shiraishi, Yuichi; Clemente, Michael J; Kataoka, Keisuke; Shiozawa, Yusuke; Okuno, Yusuke; Chiba, Kenichi; Tanaka, Hiroko; Nagata, Yasunobu; Katagiri, Takamasa; Kon, Ayana; Sanada, Masashi; Scheinberg, Phillip; Miyano, Satoru; Maciejewski, Jaroslaw P; Nakao, Shinji; Young, Neal S; Ogawa, Seishi

    2015-07-02

    In patients with acquired aplastic anemia, destruction of hematopoietic cells by the immune system leads to pancytopenia. Patients have a response to immunosuppressive therapy, but myelodysplastic syndromes and acute myeloid leukemia develop in about 15% of the patients, usually many months to years after the diagnosis of aplastic anemia. We performed next-generation sequencing and array-based karyotyping using 668 blood samples obtained from 439 patients with aplastic anemia. We analyzed serial samples obtained from 82 patients. Somatic mutations in myeloid cancer candidate genes were present in one third of the patients, in a limited number of genes and at low initial variant allele frequency. Clonal hematopoiesis was detected in 47% of the patients, most frequently as acquired mutations. The prevalence of the mutations increased with age, and mutations had an age-related signature. DNMT3A-mutated and ASXL1-mutated clones tended to increase in size over time; the size of BCOR- and BCORL1-mutated and PIGA-mutated clones decreased or remained stable. Mutations in PIGA and BCOR and BCORL1 correlated with a better response to immunosuppressive therapy and longer and a higher rate of overall and progression-free survival; mutations in a subgroup of genes that included DNMT3A and ASXL1 were associated with worse outcomes. However, clonal dynamics were highly variable and might not necessarily have predicted the response to therapy and long-term survival among individual patients. Clonal hematopoiesis was prevalent in aplastic anemia. Some mutations were related to clinical outcomes. A highly biased set of mutations is evidence of Darwinian selection in the failed bone marrow environment. The pattern of somatic clones in individual patients over time was variable and frequently unpredictable. (Funded by Grant-in-Aid for Scientific Research and others.).

  6. Effects of Cu Pollution on the Expansion of an Amphibious Clonal Herb in Aquatic-Terrestrial Ecotones.

    PubMed

    Xu, Liang; Zhou, Zhen-Feng

    2016-01-01

    Physiological integration can enhance the performance of clonal plants in aquatic and terrestrial heterogeneous habitats and associated ecotones. Similar to nutrients, pollutants may be transported among connected ramets via physiological integration. Few studies have examined the expansion of amphibious clonal plants from terrestrial to aquatic environments, particularly when the local water supply is polluted with heavy metals. A greenhouse experiment was conducted using the amphibious plant Alternanthera philoxeroides to determine whether Cu can spread among clonal plants and examine the corresponding effects of this pollution on the expansion of clonal plants in aquatic-terrestrial ecotones. Ramets from the same clonal fragments were rooted in unpolluted soil and polluted water at five different levels. The responses of the ramets in terrestrial and aquatic habitats were quantified via traits associated with growth, morphology and Cu accumulation. The results indicated that ramets in soil and water significantly differed in nearly all of these traits. The expansion of populations from terrestrial to polluted aquatic habitats was facilitated by stem elongation rather than new ramet production. The accumulated Cu in polluted ramets can be horizontally transported to other ramets in soil via connected stolons. In terms of clonal growth patterns, variations in Cu pollution intensity were negatively correlated with variations in the morphological and growth traits of ramets in polluted aquatic habitats and unpolluted soil. We concluded that Cu ions are distributed among the clones and accumulated in different ramet tissues in heterogeneous habitats. Therefore, we suggest that Cu pollution of aquatic-terrestrial ecotones, especially at high levels, can affect the growth and expansion of the whole clones because Cu ions are shared between integrated ramets.

  7. Effects of Cu Pollution on the Expansion of an Amphibious Clonal Herb in Aquatic-Terrestrial Ecotones

    PubMed Central

    Zhou, Zhen-Feng

    2016-01-01

    Physiological integration can enhance the performance of clonal plants in aquatic and terrestrial heterogeneous habitats and associated ecotones. Similar to nutrients, pollutants may be transported among connected ramets via physiological integration. Few studies have examined the expansion of amphibious clonal plants from terrestrial to aquatic environments, particularly when the local water supply is polluted with heavy metals. A greenhouse experiment was conducted using the amphibious plant Alternanthera philoxeroides to determine whether Cu can spread among clonal plants and examine the corresponding effects of this pollution on the expansion of clonal plants in aquatic-terrestrial ecotones. Ramets from the same clonal fragments were rooted in unpolluted soil and polluted water at five different levels. The responses of the ramets in terrestrial and aquatic habitats were quantified via traits associated with growth, morphology and Cu accumulation. The results indicated that ramets in soil and water significantly differed in nearly all of these traits. The expansion of populations from terrestrial to polluted aquatic habitats was facilitated by stem elongation rather than new ramet production. The accumulated Cu in polluted ramets can be horizontally transported to other ramets in soil via connected stolons. In terms of clonal growth patterns, variations in Cu pollution intensity were negatively correlated with variations in the morphological and growth traits of ramets in polluted aquatic habitats and unpolluted soil. We concluded that Cu ions are distributed among the clones and accumulated in different ramet tissues in heterogeneous habitats. Therefore, we suggest that Cu pollution of aquatic-terrestrial ecotones, especially at high levels, can affect the growth and expansion of the whole clones because Cu ions are shared between integrated ramets. PMID:27736932

  8. Clonal structure and variable fertilization success in Florida Keys broadcast-spawning corals

    NASA Astrophysics Data System (ADS)

    Miller, M. W.; Baums, I. B.; Pausch, R. E.; Bright, A. J.; Cameron, C. M.; Williams, D. E.; Moffitt, Z. J.; Woodley, C. M.

    2018-03-01

    Keystone reef-building corals in the Caribbean are predominantly self-incompatible broadcast spawners and a majority are threatened due to both acute adult mortality and poor recruitment. As population densities decline, concerns about fertilization limitation and effective population size in these species increase and would be further exacerbated by either high clonality or gametic incompatibility of parental genotypes. This study begins to address these concerns for two Caribbean broadcasting species by characterizing clonal structure and quantifying experimental pairwise fertilization success. Orbicella faveolata showed surprisingly high and contrasting levels of clonality between two sampled sites; Acropora palmata was previously known to be highly clonal. Individual pairwise crosses of synchronously spawning genotypes of each species were conducted by combining aliquots of gamete bundles immediately after spawning, and showed high and significant variability in fertilization success. Over half of the individual crosses of O. faveolata and about one-third of A. palmata crosses yielded ≤ 40% fertilization. Total sperm concentration was quantified in only a subset of O. faveolata crosses (range of 1-6 × 107 mL-1), but showed no correlation with fertilization success. We interpret that both parental incompatibility and individual genotypes with low-quality gametes are likely to have contributed to the variable fertilization observed with important implications for conservation. Differential fertilization success implies effective population size may be considerably smaller than hoped and population enhancement efforts need to incorporate many more parental genotypes at the patch scale to ensure successful larval production than indicated by estimates based simply on preserving levels of standing genetic diversity.

  9. Cape Newenham AFS, Alaska. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1983-04-01

    OBSERVATIONS) L P- 14 H~N A A-F S .~ 73-F2 ____ JA&,. ALL WI- LAt E -- .. - - 6 7 0 11 16 17 21 22 27 28- 33 34 *0 41 A7 48 5 .7 * . .3 .4 .4 . 1 . i E...PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) 4LL . LAT -E- - 10 1 1 i 7 23 22 ’ 2 3 3 A 40 A 3 5 A7 A • ’ .. 5 .t",5...SCOTT A. APR 03 UNCLASSIFIED USAFETAC/DS-83/019 SBI-AD-EB50 397 F/6 4/2 NL SU 2. lii .0 EM *,*,- Ica L- 11111 1.25 s~w ,r- 1 . 11.6 I MiCRQ OPY

  10. Clonality of Bacterial Pathogens Causing Hospital-Acquired Pneumonia.

    PubMed

    Pudová, V; Htoutou Sedláková, M; Kolář, M

    2016-09-01

    Hospital-acquired pneumonia (HAP) is one of the most serious complications in patients staying in intensive care units. This multicenter study of Czech patients with HAP aimed at assessing the clonality of bacterial pathogens causing the condition. Bacterial isolates were compared using pulsed-field gel electrophoresis. Included in this study were 330 patients hospitalized between May 1, 2013 and December 31, 2014 at departments of anesthesiology and intensive care medicine of four big hospitals in the Czech Republic. A total of 531 bacterial isolates were obtained, of which 267 were classified as etiological agents causing HAP. Similarity or identity was assessed in 231 bacterial isolates most frequently obtained from HAP patients. Over the study period, no significant clonal spread was noted. Most isolates were unique strains, and the included HAP cases may therefore be characterized as mostly endogenous. Yet there were differences in species and potential identical isolates between the participating centers. In three hospitals, Gram-negative bacteria (Enterobacteriaceae and Pseudomonas aeruginosa) prevailed as etiological agents, and Staphylococcus aureus was most prevalent in the fourth center.

  11. Synchronous Endometrial and Ovarian Carcinomas: Evidence of Clonality.

    PubMed

    Anglesio, Michael S; Wang, Yi Kan; Maassen, Madlen; Horlings, Hugo M; Bashashati, Ali; Senz, Janine; Mackenzie, Robertson; Grewal, Diljot S; Li-Chang, Hector; Karnezis, Anthony N; Sheffield, Brandon S; McConechy, Melissa K; Kommoss, Friedrich; Taran, Florin A; Staebler, Annette; Shah, Sohrab P; Wallwiener, Diethelm; Brucker, Sara; Gilks, C Blake; Kommoss, Stefan; Huntsman, David G

    2016-06-01

    Many women with ovarian endometrioid carcinoma present with concurrent endometrial carcinoma. Organ-confined and low-grade synchronous endometrial and ovarian tumors (SEOs) clinically behave as independent primary tumors rather than a single advanced-stage carcinoma. We used 18 SEOs to investigate the ancestral relationship between the endometrial and ovarian components. Based on both targeted and exome sequencing, 17 of 18 patient cases of simultaneous cancer of the endometrium and ovary from our series showed evidence of a clonal relationship, ie, primary tumor and metastasis. Eleven patient cases fulfilled clinicopathological criteria that would lead to classification as independent endometrial and ovarian primary carcinomas, including being of FIGO stage T1a/1A, with organ-restricted growth and without surface involvement; 10 of 11 of these cases showed evidence of clonality. Our observations suggest that the disseminating cells amongst SEOs are restricted to physically accessible and microenvironment-compatible sites yet remain indolent, without the capacity for further dissemination. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Perception of neighboring plants by rhizomes and roots: morphological manifestations of a clonal plant

    USGS Publications Warehouse

    Huber-Sannwald, Elisabeth; Pyke, David A.; Caldwell, M.M.

    1997-01-01

    A previous study showed that clonal morphology of the rhizomatous grass Elymus lanceolatus ssp. lanceolatus (Scibner & J.G. Smith Gould) was influenced more by neighbouring root systems than by the local distribution of nutrients. In this study we determine whether individual rhizomes or roots of E. lanceolatus perceive neighbouring root systems and how this is manifested in morphological responses of E. lanceolatus clones. Elymus lanceolatus was grown in the same bin with Pseudoroegneria spicata (Pursh) A. Love or Agropyron desertorum (Fisch. ex Link) Schult. plants. Elymus lanceolatus was separated from its neighbours by different barriers. The barriers allowed either only E. lanceolatus roots; only a single E. lanceolatus primary rhizome; or both roots and rhizomes to contact the neighbour root system. When only a single E. lanceolatus primary rhizome with potentially developing branching rhizomes made contact with the neighbour, the clonal structure of E. lanceolatus was modified more with P. spicata as the neighbour than with A. desertorum. With root contact of E. lanceolatus alone there was a similar effect with the neighbouring plants, but there was a more marked inhibitory effect on E. lanceolatus clonal growth with P. spicata than with A. desertorum, compared with the treatment with only a single rhizome in contact with the neighbour. Root resource competition in the unconstrained treatment (roots and rhizomes) between neighbouring plant and E. lanceolatus was more apparent with A. desertorum than with P. spicata. This study is one of the first to document that rhizome and root contact of a clonal plant with its neighbours may induce different clonal responses depending on the species of neighbour.

  13. Five Genes Encoding Surface-Exposed LPXTG Proteins Are Enriched in Hospital-Adapted Enterococcus faecium Clonal Complex 17 Isolates▿

    PubMed Central

    Hendrickx, Antoni P. A.; van Wamel, Willem J. B.; Posthuma, George; Bonten, Marc J. M.; Willems, Rob J. L.

    2007-01-01

    Most Enterococcus faecium isolates associated with hospital outbreaks and invasive infections belong to a distinct genetic subpopulation called clonal complex 17 (CC17). It has been postulated that the genetic evolution of CC17 involves the acquisition of various genes involved in antibiotic resistance, metabolic pathways, and virulence. To gain insight into additional genes that may have favored the rapid emergence of this nosocomial pathogen, we aimed to identify surface-exposed LPXTG cell wall-anchored proteins (CWAPs) specifically enriched in CC17 E. faecium. Using PCR and Southern and dot blot hybridizations, 131 E. faecium isolates (40 CC17 and 91 non-CC17) were screened for the presence of 22 putative CWAP genes identified from the E. faecium TX0016 genome. Five genes encoding LPXTG surface proteins were specifically enriched in E. faecium CC17 isolates. These five LPXTG surface protein genes were found in 28 to 40 (70 to 100%) of CC17 and in only 7 to 24 (8 to 26%) of non-CC17 isolates (P < 0.05). Three of these CWAP genes clustered together on the E. faecium TX0016 genome, which may comprise a novel enterococcal pathogenicity island covering E. faecium contig 609. Expression at the mRNA level was demonstrated, and immunotransmission electron microscopy revealed an association of the five LPXTG surface proteins with the cell wall. Minimal spanning tree analysis based on the presence and absence of 22 CWAP genes revealed grouping of all 40 CC17 strains together with 18 hospital-derived but evolutionary unrelated non-CC17 isolates in a distinct CWAP-enriched cluster, suggesting horizontal transfer of CWAP genes and a role of these CWAPs in hospital adaptation. PMID:17873043

  14. Mobile dune fixation by a fast-growing clonal plant: a full life-cycle analysis.

    PubMed

    Li, Shou-Li; Yu, Fei-Hai; Werger, Marinus J A; Dong, Ming; During, Heinjo J; Zuidema, Pieter A

    2015-03-11

    Desertification is a global environmental problem, and arid dunes with sparse vegetation are especially vulnerable to desertification. One way to combat desertification is to increase vegetation cover by planting plant species that can realize fast population expansion, even in harsh environments. To evaluate the success of planted species and provide guidance for selecting proper species to stabilize active dunes, demographic studies in natural habitats are essential. We studied the life history traits and population dynamics of a dominant clonal shrub Hedysarum laeve in Inner-Mongolia, northern China. Vital rates of 19057 ramets were recorded during three annual censuses (2007-2009) and used to parameterize Integral Projection Models to analyse population dynamics. The life history of H. laeve was characterized by high ramet turnover and population recruitment entirely depended on clonal propagation. Stochastic population growth rate was 1.32, suggesting that the populations were experiencing rapid expansion. Elasticity analysis revealed that clonal propagation was the key contributor to population growth. The capacity of high clonal propagation and rapid population expansion in mobile dunes makes H. laeve a suitable species to combat desertification. Species with similar life-history traits to H. laeve are likely to offer good opportunities for stabilizing active dunes in arid inland ecosystems.

  15. Clonality and Micro-Diversity of a Nationwide Spreading Genotype of Mycobacterium tuberculosis in Japan

    PubMed Central

    Wada, Takayuki; Iwamoto, Tomotada; Tamaru, Aki; Seto, Junji; Ahiko, Tadayuki; Yamamoto, Kaori; Hase, Atushi; Maeda, Shinji; Yamamoto, Taro

    2015-01-01

    Mycobacterium tuberculosis transmission routes can be estimated from genotypic analysis of clinical isolates from patients. In Japan, still a middle-incidence country of TB, a unique genotype strain designated as ‘M-strain’ has been isolated nationwide recently. To ascertain the history of the wide spread of the strain, 10 clinical isolates from different areas were subjected to genome-wide analysis based on deep sequencers. Results show that all isolates possessed common mutations to those of referential strains. The greatest number of accumulated single nucleotide variants (SNVs) from the oldest coalescence was 13 nucleotides, indicating high clonality of these isolates. When an SNV common to the isolates was used as a surrogate marker of the clone, authentic clonal isolates with variation in a reliable subset of variable number of tandem repeat (VNTR) genotyping method can be selected successfully from clinical isolates populations of M. tuberculosis. When the authentic clones can also be assigned to sub-clonal groups by SNVs derived from the genomic comparison, they are classifiable into three sub-clonal groups with a bias of geographical origins. Feedback from genomic analysis of clinical isolates of M. tuberculosis to genotypic markers will be an efficient strategy for the big data in various settings for public health actions against TB. PMID:25734518

  16. Pandemic extra-intestinal pathogenic Escherichia coli (ExPEC) clonal group O6-B2-ST73 as a cause of avian colibacillosis in Brazil.

    PubMed

    Cunha, Marcos Paulo Vieira; Saidenberg, Andre Becker; Moreno, Andrea Micke; Ferreira, Antonio José Piantino; Vieira, Mônica Aparecida Midolli; Gomes, Tânia Aparecida Tardelli; Knöbl, Terezinha

    2017-01-01

    Extra-intestinal pathogenic Escherichia coli (ExPEC) represent an emerging pathogen, with pandemic strains increasingly involved in cases of urinary tract infections (UTIs), bacteremia, and meningitis. In addition to affecting humans, the avian pathotype of ExPEC, avian pathogenic E. coli (APEC), causes severe economic losses to the poultry industry. Several studies have revealed overlapping characteristics between APEC and human ExPEC, leading to the hypothesis of a zoonotic potential of poultry strains. However, the description of certain important pandemic clones, such as Sequence Type 73 (ST73), has not been reported in food sources. We characterized 27 temporally matched APEC strains from diverse poultry farms in Brazil belonging to the O6 serogroup because this serogroup is frequently described as a causal factor in UTI and septicemia in humans in Brazil and worldwide. The isolates were genotypically characterized by identifying ExPEC virulence factors, phylogenetically tested by phylogrouping and multilocus sequence type (MLST) analysis, and compared to determine their similarity employing the pulsed field gel electrophoresis (PFGE) technique. The strains harbored a large number of virulence determinants that are commonly described in uropathogenic E. coli (UPEC) and sepsis associated E. coli (SEPEC) strains and, to a lesser extent in neonatal meningitis associated E. coli (NMEC), such as pap (85%), sfa (100%), usp (100%), cnf1 (22%), kpsMTII (66%), hlyA (52%), and ibeA (4%). These isolates also yielded a low prevalence of some genes that are frequently described in APEC, such as iss (37%), tsh, ompT, and hlyF (8% each), and cvi/cva (0%). All strains were classified as part of the B2 phylogroup and sequence type 73 (ST73), with a cluster of 25 strains showing a clonal profile by PFGE. These results further suggest the zoonotic potential of some APEC clonal lineages and their possible role in the epidemiology of human ExPEC, in addition to providing the first

  17. Adiabatic Compression Sensitivity of AF-M315E (Briefing Charts)

    DTIC Science & Technology

    2015-07-27

    Charts 3. DATES COVERED (From - To) July 2015-July 2015 4. TITLE AND SUBTITLE Adiabatic Compression Sensitivity of AF - M315E (Briefing Charts) 5a...PA#15402. 14. ABSTRACT The Air Force Research Laboratory developed monopropellant, AF - M315E , has been selected for demonstration under the NASA...Pollux Drive, Edwards AFB, CA 93524-7048. Adiabatic Compression Sensitivity of AF - M315E Phu Quach ERC, Incorporated Air Force Research Laboratory

  18. Overexpression of afsR and Optimization of Metal Chloride to Improve Lomofungin Production in Streptomyces lomondensis S015.

    PubMed

    Wang, Wei; Wang, Huasheng; Hu, Hongbo; Peng, Huasong; Zhang, Xuehong

    2015-05-01

    As a global regulatory gene in Streptomyces, afsR can activate the biosynthesis of many secondary metabolites. The effect of afsR on the biosynthesis of a phenazine metabolite, lomofungin, was studied in Streptomyces lomondensis S015. There was a 2.5-fold increase of lomofungin production in the afsR-overexpressing strain of S. lomondensis S015 N1 compared with the wild-type strain. Meanwhile, the transcription levels of afsR and two important genes involved in the biosynthesis of lomofungin (i.e., phzC and phzE) were significantly upregulated in S. lomondensis S015 N1. The optimization of metal chlorides was investigated to further increase the production of lomofungin in the afsR-overexpressing strain. The addition of different metal chlorides to S. lomondensis S015 N1 cultivations showed that CaCl2, FeCl2, and MnCl2 led to an increase in lomofungin biosynthesis. The optimum concentrations of these metal chlorides were obtained using response surface methodology. CaCl2 (0.04 mM), FeCl2 (0.33 mM), and MnCl2 (0.38 mM) gave a maximum lomofungin production titer of 318.0 ± 10.7 mg/l, which was a 4.1-fold increase compared with that of S. lomondensis S015 N1 without the addition of a metal chloride. This work demonstrates that the biosynthesis of phenazine metabolites can be induced by afsR. The results also indicate that metal chlorides addition might be a simple and useful strategy for improving the production of other phenazine metabolites in Streptomyces.

  19. Reconstruction of cartilage with clonal mesenchymal stem cell-acellular dermal matrix in cartilage defect model in nonhuman primates.

    PubMed

    Ma, Anlun; Jiang, Li; Song, Lijun; Hu, Yanxin; Dun, Hao; Daloze, Pierre; Yu, Yonglin; Jiang, Jianyuan; Zafarullah, Muhammad; Chen, Huifang

    2013-07-01

    Articular cartilage defects are commonly associated with trauma, inflammation and osteoarthritis. Mesenchymal stem cell (MSC)-based therapy is a promising novel approach for repairing articular cartilage. Direct intra-articular injection of uncommitted MSCs does not regenerate high-quality cartilage. This study explored utilization of a new three-dimensional, selected chondrogenic clonal MSC-loaded monkey acellular dermal matrix (MSC-ADM) scaffold to repair damaged cartilage in an experimental model of knee joint cartilage defect in Cynomolgus monkeys. MSCs were characterized for cell size, cell yield, phenotypes, proliferation and chondrogenic differentiation capacity. Chondrogenic differentiation assays were performed at different MSC passages by sulfated glycosaminoglycans (sGAG), collagen, and fluorescence activated cell sorter (FACS) analysis. Selected chondrogenic clonal MSCs were seeded onto ADM scaffold with the sandwich model and MSC-loaded ADM grafts were analyzed by confocal microscopy and scanning electron microscopy. Cartilage defects were treated with normal saline, clonal MSCs and clonal MSC-ADM grafts, respectively. The clinical parameters, and histological and immunohistochemical examinations were evaluated at weeks 8, 16, 24 post-treatment, respectively. Polyclonal and clonal MSCs could differentiate into the chondrogenic lineage after stimulation with suitable chondrogenic factors. They expressed mesenchymal markers and were negative for hematopoietic markers. Articular cartilage defects were considerably improved and repaired by selected chondrogenic clonal MSC-based treatment, particularly, in MSC-ADM-treated group. The histological scores in MSC-ADM-treated group were consistently higher than those of other groups. Our results suggest that selected chondrogenic clonal MSC-loaded ADM grafts could improve the cartilage lesions in Cynomolgus monkey model, which may be applicable for repairing similar human cartilage defects. Copyright © 2013

  20. Safety of percutaneous left atrial appendage closure: results from the Watchman Left Atrial Appendage System for Embolic Protection in Patients with AF (PROTECT AF) clinical trial and the Continued Access Registry.

    PubMed

    Reddy, Vivek Y; Holmes, David; Doshi, Shephal K; Neuzil, Petr; Kar, Saibal

    2011-02-01

    The Watchman Left Atrial Appendage System for Embolic Protection in Patients With AF (PROTECT AF) randomized trial compared left atrial appendage closure against warfarin in atrial fibrillation (AF) patients with CHADS₂ ≥1. Although the study met the primary efficacy end point of being noninferior to warfarin therapy for the prevention of stroke/systemic embolism/cardiovascular death, there was a significantly higher risk of complications, predominantly pericardial effusion and procedural stroke related to air embolism. Here, we report the influence of experience on the safety of percutaneous left atrial appendage closure. The study cohort for this analysis included patients in the PROTECT AF trial who underwent attempted device left atrial appendage closure (n=542 patients) and those from a subsequent nonrandomized registry of patients undergoing Watchman implantation (Continued Access Protocol [CAP] Registry; n=460 patients). The safety end point included bleeding- and procedure-related events (pericardial effusion, stroke, device embolization). There was a significant decline in the rate of procedure- or device-related safety events within 7 days of the procedure across the 2 studies, with 7.7% and 3.7% of patients, respectively, experiencing events (P=0.007), and between the first and second halves of PROTECT AF and CAP, with 10.0%, 5.5%, and 3.7% of patients, respectively, experiencing events (P=0.006). The rate of serious pericardial effusion within 7 days of implantation, which had made up >50% of the safety events in PROTECT AF, was lower in the CAP Registry (5.0% versus 2.2%, respectively; P=0.019). There was a similar experience-related improvement in procedure-related stroke (0.9% versus 0%, respectively; P=0.039). Finally, the functional impact of these safety events, as defined by significant disability or death, was statistically superior in the Watchman group compared with the warfarin group in PROTECT AF. This remained true whether significance

  1. Incidence and economic burden of suspected adverse events and adverse event monitoring during AF therapy.

    PubMed

    Kim, M H; Lin, J; Hussein, M; Battleman, D

    2009-12-01

    Rhythm- and rate-control therapies are an essential part of atrial fibrillation (AF) management; however, the use of existing agents is often limited by the occurrence of adverse events. The aim of this study was to evaluate suspected adverse events and adverse event monitoring, and associated medical costs, in patients receiving AF rhythm-control and/or rate-control therapy. This retrospective cohort study used claims data from the Integrated Healthcare Information Systems National Managed Care Benchmark Database from 2002-2006. Patients hospitalized for AF (primary diagnosis), and who had at least 365 days' enrollment before and after the initial (index) AF hospitalization, were included in the analysis. Suspected AF therapy-related adverse events and function tests for adverse event monitoring were identified according to pre-specified diagnosis codes/procedures, and examined over the 12 months following discharge from the index hospitalization. Events/function tests had to have occurred within 90 days of a claim for AF therapy to be considered a suspected adverse event/adverse event monitoring. Of 4174 AF patients meeting the study criteria, 3323 received AF drugs; 428 received rhythm-control only (12.9%), 2130 rate-control only (64.1%), and 765 combined rhythm/rate-control therapy (23.0%). Overall, 50.1% of treated patients had a suspected adverse event and/or function test for adverse event monitoring (45.5% with rate-control, 53.5% with rhythm-control, and 61.2% with combined rhythm/rate-control). Suspected cardiovascular adverse events were the most common events (occurring in 36.1% of patients), followed by pulmonary (6.1%), and endocrine events (5.9%). Overall, suspected adverse events/function tests were associated with mean annual per-patient costs of $3089 ($1750 with rhythm-control, $2041 with rate control, and $6755 with combined rhythm/rate-control). As a retrospective analysis, the study is subject to potential selection bias, while its reliance on

  2. Supplementation of OmniGen-AF alters the metabolic response to a glucose tolerance test in beef heifers

    USDA-ARS?s Scientific Manuscript database

    This study was designed to determine whether feeding OmniGen-AF to feedlot heifers would alter metabolic profiles in response to a glucose tolerance test. Heifer calves (n=184; 216±1 kg) were allocated into 2 treatment diets: 1) Control, fed a standard receiving ration, and 2) OmniGen-AF (OG), fed t...

  3. AF RPA Training: Utility and Tradition in Conflict

    DTIC Science & Technology

    2017-06-01

    The AF and the Army offer competing views on the future of UAS training . Both services export its cultural values, as the Navy, USMC, and...and visions. Despite common technologies, each service approached UAS from different starting points, and created different training models. The AF...issues reflected different approaches each service took to Unmanned Aerial Systems (UAS) operational employment, personnel management, and training

  4. Inter- and intra-patient clonal and subclonal heterogeneity of chronic lymphocytic leukaemia: evidence from circulating and lymph nodal compartments

    PubMed Central

    Bonina, Silvia; Messina, Monica; Chiaretti, Sabina; Ilari, Caterina; Cafforio, Luciana; Raponi, Sara; Mauro, Francesca Romana; Di Maio, Valeria; De Propris, Maria Stefania; Nanni, Mauro; Ciardullo, Carmela; Rossi, Davide; Gaidano, Gianluca; Guarini, Anna; Rabadan, Raul; Foà, Robin

    2015-01-01

    Summary Whole exome sequencing and copy number aberration (CNA) analysis was performed on cells taken from peripheral blood (PB) and lymph nodes (LN) of patients with chronic lymphocytic leukaemia (CLL). Of 64 non-silent somatic mutations, 54 (84.4%) were clonal in both compartments, 3 (4.7%) were PB-specific and 7 (10.9%) were LN-specific. Most of the LN- or PB-specific mutations were subclonal in the other corresponding compartment (variant frequency 0.5-5.3%). Of 41 CNAs, 27 (65.8%) were shared by both compartments and 7 (17.1%) were LN- or PB-specific. Overall, 6 of 9 cases (66.7%) showed genomic differences between the compartments. At subsequent relapse, Case 10, with 6 LN-specific lesions, and Case 100, with 6 LN-specific and 8 PB-specific lesions, showed, in the PB, the clonal expansion of LN-derived lesions with an adverse impact: SF3B1 mutation, BIRC3 deletion, del8(p23.3-p11.1), del9(p24.3-p13.1) and gain 2(p25.3-p14). CLL shows an intra-patient clonal heterogeneity according to the disease compartment, with both LN and PB-specific mutations/CNAs. The LN microenvironment might contribute to the clonal selection of unfavourable lesions, as LN-derived mutations/CNAs can appear in the PB at relapse. PMID:26597680

  5. Genetic diversity and clonal characteristics of ciprofloxacin-resistant Campylobacter jejuni isolated from Chilean patients with gastroenteritis.

    PubMed

    Collado, Luis; Muñoz, Nataly; Porte, Lorena; Ochoa, Sofía; Varela, Carmen; Muñoz, Ivo

    2018-03-01

    Campylobacter jejuni is a major cause of acute gastroenteritis worldwide. However, it has also been associated with other diseases such as bacteremia and with several post-infection sequelae. Although campylobacteriosis is usually a self-limited infection, antibiotics are indicated for severe and chronic conditions. Unfortunately, several industrialised nations have reported a substantial increase in antibiotic resistance of C. jejuni. However, there is still a lack of knowledge about the epidemiology of resistance developed by this pathogen in the developing world. For this reason, our objective was to determine the resistance of clinical C. jejuni strains to ciprofloxacin and erythromycin in Chile and their associated genotypes. Fifty C. jejuni isolates recovered from fecal samples of people with acute gastroenteritis, in central and southern Chile between 2006 and 2015, were analysed. Resistance to erythromycin and ciprofloxacin was assessed by disk diffusion and agar dilution methods. Furthermore, these strains were genotyped by Multilocus Sequence Typing (MLST). Only one of the isolates was resistant to erythromycin. However, 48% of them were resistant to ciprofloxacin. The minimal inhibitory concentration of these ciprofloxacin-resistant isolates was in the range between 4 and 32 μg/ml. Moreover, MLST analyses showed that most ciprofloxacin-resistant strains were grouped into three dominant clonal complexes (ST-21, ST-48 and ST-353), while the unique strain resistant to both antibiotics belonged to the ST-45 complex. Our results evidence a high ciprofloxacin resistance and suggest that there is a dissemination of resistant clonal lineages responsible for cases of campylobacteriosis in Chile. Further studies should elucidate the origin of these resistant genotypes. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Dynamics of Tumor Heterogeneity Derived from Clonal Karyotypic Evolution.

    PubMed

    Laughney, Ashley M; Elizalde, Sergi; Genovese, Giulio; Bakhoum, Samuel F

    2015-08-04

    Numerical chromosomal instability is a ubiquitous feature of human neoplasms. Due to experimental limitations, fundamental characteristics of karyotypic changes in cancer are poorly understood. Using an experimentally inspired stochastic model, based on the potency and chromosomal distribution of oncogenes and tumor suppressor genes, we show that cancer cells have evolved to exist within a narrow range of chromosome missegregation rates that optimizes phenotypic heterogeneity and clonal survival. Departure from this range reduces clonal fitness and limits subclonal diversity. Mapping of the aneuploid fitness landscape reveals a highly favorable, commonly observed, near-triploid state onto which evolving diploid- and tetraploid-derived populations spontaneously converge, albeit at a much lower fitness cost for the latter. Finally, by analyzing 1,368 chromosomal translocation events in five human cancers, we find that karyotypic evolution also shapes chromosomal translocation patterns by selecting for more oncogenic derivative chromosomes. Thus, chromosomal instability can generate the heterogeneity required for Darwinian tumor evolution. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Mutational landscape, clonal evolution patterns, and role of RAS mutations in relapsed acute lymphoblastic leukemia

    PubMed Central

    Oshima, Koichi; Khiabanian, Hossein; da Silva-Almeida, Ana C.; Tzoneva, Gannie; Abate, Francesco; Ambesi-Impiombato, Alberto; Sanchez-Martin, Marta; Carpenter, Zachary; Penson, Alex; Perez-Garcia, Arianne; Eckert, Cornelia; Nicolas, Concepción; Balbin, Milagros; Sulis, Maria Luisa; Kato, Motohiro; Koh, Katsuyoshi; Paganin, Maddalena; Basso, Giuseppe; Gastier-Foster, Julie M.; Devidas, Meenakshi; Loh, Mignon L.; Kirschner-Schwabe, Renate; Palomero, Teresa; Rabadan, Raul; Ferrando, Adolfo A.

    2016-01-01

    Although multiagent combination chemotherapy is curative in a significant fraction of childhood acute lymphoblastic leukemia (ALL) patients, 20% of cases relapse and most die because of chemorefractory disease. Here we used whole-exome and whole-genome sequencing to analyze the mutational landscape at relapse in pediatric ALL cases. These analyses identified numerous relapse-associated mutated genes intertwined in chemotherapy resistance-related protein complexes. In this context, RAS-MAPK pathway-activating mutations in the neuroblastoma RAS viral oncogene homolog (NRAS), kirsten rat sarcoma viral oncogene homolog (KRAS), and protein tyrosine phosphatase, nonreceptor type 11 (PTPN11) genes were present in 24 of 55 (44%) cases in our series. Interestingly, some leukemias showed retention or emergence of RAS mutant clones at relapse, whereas in others RAS mutant clones present at diagnosis were replaced by RAS wild-type populations, supporting a role for both positive and negative selection evolutionary pressures in clonal evolution of RAS-mutant leukemia. Consistently, functional dissection of mouse and human wild-type and mutant RAS isogenic leukemia cells demonstrated induction of methotrexate resistance but also improved the response to vincristine in mutant RAS-expressing lymphoblasts. These results highlight the central role of chemotherapy-driven selection as a central mechanism of leukemia clonal evolution in relapsed ALL, and demonstrate a previously unrecognized dual role of RAS mutations as drivers of both sensitivity and resistance to chemotherapy. PMID:27655895

  8. Impact of acute atrial fibrillation termination and prolongation of atrial fibrillation cycle length on the outcome of ablation of persistent atrial fibrillation: A substudy of the STAR AF II trial.

    PubMed

    Kochhäuser, Simon; Jiang, Chen-Yang; Betts, Timothy R; Chen, Jian; Deisenhofer, Isabel; Mantovan, Roberto; Macle, Laurent; Morillo, Carlos A; Haverkamp, Wilhelm; Weerasooriya, Rukshen; Albenque, Jean-Paul; Nardi, Stefano; Menardi, Endrj; Novak, Paul; Sanders, Prashanthan; Verma, Atul

    2017-04-01

    Controversy exists about the impact of acute atrial fibrillation (AF) termination and prolongation of atrial fibrillation cycle length (AFCL) during ablation on long-term procedural outcome. The purpose of this study was to analyze the influence of AF termination and AFCL prolongation on freedom from AF in patients from the STAR AF II (Substrate and Trigger Ablation for Reduction of Atrial Fibrillation Trial-Part II) trial. Acute changes in AFCL and AF termination were collected during the index procedure of the STAR AF II trial and compared to recurrence of AF at 18 months. Recurrence was assessed by ECG, Holter (3, 6, 9, 12, 18 months), and weekly transtelephonic ECG monitoring for 18 months. AF terminated in 8% of the pulmonary vein isolation (PVI) arm, 45% in the PVI+complex electrogram arm, and 22% of the PVI+linear ablation arm (P <.001), but freedom from AF did not differ among the 3 groups (P = .15). Freedom from AF was significantly higher in patients who presented to the laboratory in sinus rhythm (SR) compared to those without AF termination (63% vs 44%, P = .007). Patients with AF termination had an intermediate outcome (53%) that was not significantly different from those in SR (P = .84) or those who did not terminate (P = .08). AF termination was a univariable predictor of success (P = .007), but by multivariable analysis, presence of early SR was the strongest predictor of success (hazard ratio 0.67, P = .004). Prolongation of AFCL was not predictive of 18-month freedom from AF. Acute AF termination and prolongation in AFCL did not consistently predict 18-month freedom from AF. Presence of SR before or early during the ablation was the strongest predictor of better outcome. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  9. Single-unit activity during natural vision: diversity, consistency, and spatial sensitivity among AF face patch neurons.

    PubMed

    McMahon, David B T; Russ, Brian E; Elnaiem, Heba D; Kurnikova, Anastasia I; Leopold, David A

    2015-04-08

    Several visual areas within the STS of the macaque brain respond strongly to faces and other biological stimuli. Determining the principles that govern neural responses in this region has proven challenging, due in part to the inherently complex stimulus domain of dynamic biological stimuli that are not captured by an easily parameterized stimulus set. Here we investigated neural responses in one fMRI-defined face patch in the anterior fundus (AF) of the STS while macaques freely view complex videos rich with natural social content. Longitudinal single-unit recordings allowed for the accumulation of each neuron's responses to repeated video presentations across sessions. We found that individual neurons, while diverse in their response patterns, were consistently and deterministically driven by the video content. We used principal component analysis to compute a family of eigenneurons, which summarized 24% of the shared population activity in the first two components. We found that the most prominent component of AF activity reflected an interaction between visible body region and scene layout. Close-up shots of faces elicited the strongest neural responses, whereas far away shots of faces or close-up shots of hindquarters elicited weak or inhibitory responses. Sensitivity to the apparent proximity of faces was also observed in gamma band local field potential. This category-selective sensitivity to spatial scale, together with the known exchange of anatomical projections of this area with regions involved in visuospatial analysis, suggests that the AF face patch may be specialized in aspects of face perception that pertain to the layout of a social scene.

  10. Adult T-cell leukemia: molecular basis for clonal expansion and transformation of HTLV-1-infected T cells.

    PubMed

    Watanabe, Toshiki

    2017-03-02

    Adult T-cell leukemia (ATL) is an aggressive T-cell malignancy caused by human T-cell leukemia virus type 1 (HTLV-1) that develops through a multistep carcinogenesis process involving 5 or more genetic events. We provide a comprehensive overview of recently uncovered information on the molecular basis of leukemogenesis in ATL. Broadly, the landscape of genetic abnormalities in ATL that include alterations highly enriched in genes for T-cell receptor-NF-κB signaling such as PLCG1 , PRKCB , and CARD11 and gain-of function mutations in CCR4 and CCR7 Conversely, the epigenetic landscape of ATL can be summarized as polycomb repressive complex 2 hyperactivation with genome-wide H3K27 me3 accumulation as the basis of the unique transcriptome of ATL cells. Expression of H3K27 methyltransferase enhancer of zeste 2 was shown to be induced by HTLV-1 Tax and NF-κB. Furthermore, provirus integration site analysis with high-throughput sequencing enabled the analysis of clonal composition and cell number of each clone in vivo, whereas multicolor flow cytometric analysis with CD7 and cell adhesion molecule 1 enabled the identification of HTLV-1-infected CD4 + T cells in vivo. Sorted immortalized but untransformed cells displayed epigenetic changes closely overlapping those observed in terminally transformed ATL cells, suggesting that epigenetic abnormalities are likely earlier events in leukemogenesis. These new findings broaden the scope of conceptualization of the molecular mechanisms of leukemogenesis, dissecting them into immortalization and clonal progression. These recent findings also open a new direction of drug development for ATL prevention and treatment because epigenetic marks can be reprogrammed. Mechanisms underlying initial immortalization and progressive accumulation of these abnormalities remain to be elucidated. © 2017 by The American Society of Hematology.

  11. Emergence of carbapenem non-susceptible multidrug resistant Acinetobacter baumannii strains of clonal complexes 103(B) and 92(B) harboring OXA-type carbapenemases and metallo-β-lactamases in Southern India.

    PubMed

    Saranathan, Rajagopalan; Vasanth, Vaidyanathan; Vasanth, Thamodharan; Shabareesh, Pidathala Raghavendra Venkata; Shashikala, P; Devi, Chandrakesan Sheela; Kalaivani, Ramakrishnan; Asir, Johny; Sudhakar, Pagal; Prashanth, K

    2015-05-01

    The molecular epidemiology and carbapenem resistance mechanisms of clinical isolates of Acinetobacter baumannii obtained from a south Indian tertiary care hospital were investigated by repetitive extragenic palindromic sequence PCR (REP-PCR) and multi-locus sequence typing (MLST). Analysis of resistant determinants was achieved by PCR screening for the presence of genes encoding OXA-carbapenemases, metallo-β-lactamases (MBLs) and efflux pumps. REP-PCR generated around eight clusters of high heterogeneity; of these, two major clusters (I and V) appeared to be clonal in origin. Analysis of representative isolates from different clusters by MLST revealed that most of the isolates belonged to sequence type 103 of CC103(B) . Second most prevalent ST belonged to clonal complex (CC) 92(B) which is also referred to as international clone II. Most of the isolates were multi-drug resistant, being susceptible only to polymyxin-B and newer quinolones. Class D β-lactamases such as blaOXA-51-like (100%), blaOXA-23-like (56.8%) and blaOXA-24-like (14.8%) were found to be predominant, followed by a class B β-lactamase, namely blaIMP-1 (40.7%); none of the isolates had blaOXA-58 like, blaNDM-1 or blaSIM-1 . Genes of efflux-pump adeABC were predominant, most of isolates being biofilm producers that were PCR-positive for autoinducer synthase gene (>94%). Carbapenem non-susceptible isolates were highly diverse and present throughout the hospital irrespective of type of ward or intensive care unit. Although previous reports have documented diverse resistant mechanisms in A. baumannii, production of MBL and OXA-type of carbapenamases were found to be the predominant mechanism(s) of carbapenem resistance identified in strains isolated from Southern India. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.

  12. Genetic Heterogeneity and Clonal Evolution of Tumor Cells and their Impact on Precision Cancer Medicine.

    PubMed

    Sabaawy, Hatem E

    2013-11-18

    The efficacy of targeted therapies in leukemias and solid tumors depends upon the accurate detection and sustained targeting of initial and evolving driver mutations and/or aberrations in cancer cells. Tumor clonal evolution of the diverse populations of cancer cells during cancer progression contributes to the longitudinal variations of clonal, morphological, anatomical, and molecular heterogeneity of tumors. Moreover, drug-resistant subclones present at initiation of therapy or emerging as a result of targeted therapies represent major challenges for achieving success of personalized therapies in providing meaningful improvement in cancer survival rates. Here, I briefly portray tumor cell clonal evolution at the cellular and molecular levels, and present the multiple types of genetic heterogeneity in tumors, with a focus on their impact on the implementation of personalized or precision cancer medicine.

  13. Genetic Dissection of Clonally Inherited Genomes of Poeciliopsis. I. Linkage Analysis and Preliminary Assessment of Deleterious Gene Loads

    PubMed Central

    Leslie, James F.; Vrijenhoek, Robert C.

    1978-01-01

    Theoretical considerations suggest that a high load of deleterious mutations should accumulate in asexual genomes. An ideal system for testing this hypothesis occurs in the hybrid all-female fish Poeciliopsis monacha-lucida. The hybrid genotype is retained between generations by an oogenetic process that transmits only a nonrecombinant haploid monacha genome to their ova. The hybrid genotype is re-established in nature by fertilization of these monacha eggs with sperm from a sexual species, P. lucida. The unique reproductive mechanism of these hybrids allows the genetic dissection of the clonal monacha genome by forced matings with males of P. monacha. The resultant F1 hybrids and their backcross progeny were examined to determine the amount and kinds of genetic changes that might have occurred in two clonal monacha genomes.—Using six allozyme markers, four similar linkage groups were identified in each clonal genome. Segregation and assortment at these loci revealed no apparent differences between monacha genomes from sexually and clonally reproducing species. Mortality of F1 and backcross progeny revealed differences between the two clonal genomes, suggesting that deleterious genes may accumulate in genomes sheltered from recombination. PMID:17248875

  14. CHROMOSOME 11 ABERRATIONS IN SMALL COLONY L5178Y TK-/-MUTANTS EARLY IN THEIR CLONAL HISTORY

    EPA Science Inventory

    The authors have developed a cytogenetic technique that allows observation of chromosome rearrangements associated with TK-/- mutagenesis of the L5178Y/TK+/-3.7.2C cell line early in mutant clonal history. For a series of mutagenic treatments they show that the major proportion (...

  15. Clonal Distribution of Disease-Associated and Healthy Carrier Isolates of Neisseria meningitidis between 1983 and 2005 in Cuba ▿

    PubMed Central

    Climent, Yanet; Yero, Daniel; Martinez, Isabel; Martín, Alejandro; Jolley, Keith A.; Sotolongo, Franklin; Maiden, Martin C. J.; Urwin, Rachel; Pajón, Rolando

    2010-01-01

    In response to epidemic levels of serogroup B meningococcal disease in Cuba during the 1980s, the VA-MENGOC-BC vaccine was developed and introduced into the National Infant Immunization Program in 1991. Since then the incidence of meningococcal disease in Cuba has returned to the low levels recorded before the epidemic. A total of 420 Neisseria meningitidis strains collected between 1983 and 2005 in Cuba were analyzed by multilocus sequence typing (MLST). The set of strains comprised 167 isolated from disease cases and 253 obtained from healthy carriers. By MLST analysis, 63 sequence types (STs) were identified, and 32 of these were reported to be a new ST. The Cuban isolates were associated with 12 clonal complexes; and the most common were ST-32 (246 isolates), ST-53 (86 isolates), and ST-41/44 (36 isolates). This study also showed that the application of VA-MENGOC-BC, the Cuban serogroup B and C vaccine, reduced the frequency and diversity of hypervirulent clonal complexes ST-32 (vaccine serogroup B type-strain) and ST-41/44 and also affected other lineages. Lineages ST-8 and ST-11 were no longer found during the postvaccination period. The vaccine also affected the genetic composition of the carrier-associated meningococcal isolates. The number of carrier isolates belonging to hypervirulent lineages decreased significantly after vaccination, and ST-53, a sequence type common in carriers, became the predominant ST. PMID:20042619

  16. Dental Laboratory Career Ladder AFS 982X0.

    DTIC Science & Technology

    1982-09-01

    7ADA120 102 AIR FORCE OCCUPATIONAL MEASUREMENT CENTER RANDOLPH AFB TX F/6 Ri9 DENTAL LABORATORY CAREER LADDER AFS 982XO.(U) UNCLASSIFIED NLEEEili E...Eli E~lllllllllEEE EEEEEIIIEEEEEE EIEEEEIIEEEEEE IIIIIIIIIIIIIIlLZ UNITED STATES AIR FORCE 0! DENTAL LABORATORY CAREER LADDER DTlC AFS 982X0 ELEr.L_...LADDER STRUCTURE GROUPS ----------------------------------- 57 APPENDIX B - JOB DESCRIPTIONS FOR BASE AND AREA DENTAL LABORATORY PERSONNEL

  17. Refinement of detecting atrial fibrillation in stroke patients: results from the TRACK-AF Study.

    PubMed

    Reinke, F; Bettin, M; Ross, L S; Kochhäuser, S; Kleffner, I; Ritter, M; Minnerup, J; Dechering, D; Eckardt, L; Dittrich, R

    2018-04-01

    Detection of occult atrial fibrillation (AF) is crucial for optimal secondary prevention in stroke patients. The AF detection rate was determined by implantable cardiac monitor (ICM) and compared to the prediction rate of the probability of incident AF by software based analysis of a continuously monitored electrocardiogram at follow-up (stroke risk analysis, SRA); an optimized AF detection algorithm is proposed by combining both tools. In a monocentric prospective study 105 out of 389 patients with cryptogenic stroke despite extensive diagnostic workup were investigated with two additional cardiac monitoring tools: (a) 20 months' monitoring by ICM and (b) SRA during hospitalization at the stroke unit. The detection rate of occult AF was 18% by ICM (n = 19) (range 6-575 days) and 62% (n = 65) had an increased risk for AF predicted by SRA. When comparing the predictive accuracy of SRA to ICM, the sensitivity was 95%, specificity 35%, positive predictive value 27% and negative predictive value 96%. In 18 patients with AF detected by ICM, SRA also showed a medium risk for AF. Only one patient with a very low risk predicted by SRA developed AF revealed by ICM after 417 days. A combination of SRA and ICM is a promising strategy to detect occult AF. SRA is reliable in predicting incident AF with a high negative predictive value. Thus, SRA may serve as a cost-effective pre-selection tool identifying patients at risk for AF who may benefit from further cardiac monitoring by ICM. © 2017 EAN.

  18. Clonal evolution in paired endometrial intraepithelial neoplasia/atypical hyperplasia and endometrioid adenocarcinoma.

    PubMed

    Russo, Mariano; Broach, James; Sheldon, Kathryn; Houser, Kenneth R; Liu, Dajiang J; Kesterson, Joshua; Phaeton, Rebecca; Hossler, Carrie; Hempel, Nadine; Baker, Maria; Newell, Jordan M; Zaino, Richard; Warrick, Joshua I

    2017-09-01

    Endometrial intraepithelial neoplasia (EIN) and atypical endometrial hyperplasia (AH) are histomorphologically defined precursors to endometrioid adenocarcinoma, which are unified as EIN/AH by the World Health Organization. EIN/AH harbors a constellation of molecular alterations similar to those found in endometrioid adenocarcinoma. However, the process of clonal evolution from EIN/AH to carcinoma is poorly characterized. To investigate, we performed next-generation sequencing, copy number alteration (CNA) analysis, and immunohistochemistry for mismatch repair protein expression on EIN/AH and endometrioid adenocarcinoma samples from 6 hysterectomy cases with spatially distinct EIN/AH and carcinoma. In evaluating all samples, EIN/AH and carcinoma did not differ in mutational burden, CNA burden, or specific genes mutated (all P>.1). All paired EIN/AH and carcinoma samples shared at least one identical somatic mutation, frequently in PI(3)K pathway members. Large CNAs (>10 genes in length) were identified in 83% of cases; paired EIN/AH and carcinoma samples shared at least one identical CNA in these cases. Mismatch repair protein expression matched in all paired EIN/AH and carcinoma samples. All paired EIN/AH and carcinoma samples had identical The Cancer Genome Atlas subtype, with 3 classified as "copy number low endometrioid" and 3 classified as "microsatellite instability hypermutated." Although paired EIN/AH and carcinoma samples were clonal, private mutations (ie, present in only one sample) were identified in EIN/AH and carcinoma in all cases, frequently in established cancer-driving genes. These findings indicate that EIN/AH gives rise to endometrioid adenocarcinoma by a complex process of subclone evolution, not a linear accumulation of molecular events. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Novel insights regarding the operational characteristics and teleological purpose of the renal Na+-K+-Cl2 cotransporter (NKCC2s) splice variants.

    PubMed

    Brunet, Geneviève M; Gagnon, Edith; Simard, Charles F; Daigle, Nikolas D; Caron, Luc; Noël, Micheline; Lefoll, Marie-Hélène; Bergeron, Marc J; Isenring, Paul

    2005-10-01

    The absorptive Na(+)-K(+)-Cl(-) cotransporter (NKCC2) is a polytopic protein that forms homooligomeric complexes in the apical membrane of the thick ascending loop of Henle (TAL). It occurs in at least four splice variants (called B, A, F, and AF) that are identical to one another except for a short region in the membrane-associated domain. Although each of these variants exhibits unique functional properties and distributions along the TAL, their teleological purpose and structural organization remain poorly defined. In the current work, we provide additional insight in these regards by showing in mouse that the administration of either furosemide or an H(2)O-rich diet, which are predicted to alter NKCC2 expression in the TAL, exerts differential effects on mRNA levels for the variants, increasing those of A (furosemide) but decreasing those of F and AF (furosemide or H(2)O). Based on a yeast two-hybrid mapping analysis, we also show that the formation of homooligomeric complexes is mediated by two self-interacting domains in the COOH terminus (residues 671 to 816 and 910 to 1098), and that these complexes could probably include more than one type of variant. Taken together, the data reported here suggest that A, F, and AF each play unique roles that are adapted to specific physiological needs, and that the accomplishment of such roles is coordinated through the splicing machinery as well as complex NKCC2-NKCC2 interactions.

  20. Acute megakaryoblastic leukemia after transient myeloproliferative disorder with clonal karyotype evolution in a phenotypically normal neonate.

    PubMed

    Polski, Jacek M; Galambos, Csaba; Gale, Gordon B; Dunphy, Cherie H; Evans, H Lance; Batanian, Jacqueline R

    2002-01-01

    We report a case of transient myeloproliferative disorder (TMD) in a neonate without features of Down syndrome (DS) with clonal karyotype evolution, after apparent spontaneous resolution of TMD, but eventually progressing to acute megakaryoblastic leukemia (AMKL). The patient had petechiae, thrombocytopenia, and blastemia. Trisomy 21 with a satellited Y chromosome (Yqs) was found in proliferating blasts. A stimulated peripheral blood culture confirmed the constitutional origin of the Yqs, but did not reveal the presence of any trisomic 21 cell. By the age of 3 months, clonal chromosome evolution in the form of an interstitial deletion of the long-arm of chromosome 13 [del(13)(q13q31)] was detected along with trisomy 21 in unstimulated bone marrow cultures. However, remission was achieved without treatment at the age of 4 months. Trisomy 21 and del(13)(q13q31) were not identified in either cytogenetics or fluorescence in situ hybridization studies at that time. The child was asymptomatic until the age of 20 months when anemia and thrombocytopenia prompted a bone marrow biopsy, revealing changes consistent with AMKL. The remission proceeded by clonal karyotype evolution in a neonate with TMD demonstrates that clonal karyotype evolution does not indicate an immediately progressive disease. However, the development of AMKL after TMD in this case illustrates the increased risk for leukemia in TMD cases, even without DS. The gradual clonal evolution of the blasts in our patient suggests that "multiple hits" oncogenesis applies to TMD progression to acute leukemia.

  1. Atherosclerosis and clonal hematopoyesis: A new risk factor.

    PubMed

    Páramo Fernández, José A

    Recent research has revealed that clonal hematopoyesis of indeterminate potential (CHIP) characterized by the acquisition of somatic mutations in hematopoietic stem cells, is not only a common age-related disorder and a premalignant condition, but it is also associated with the development of atherosclerotic vascular diseases. Mutations in DNMT3A, TET2 and ASXL1 were each individually associated with coronary heart disease, stroke and coronary calcification. Therefore, CHIP emerges as a new risk factor for atherosclerotic vascular pathologies and its detection may be relevant as a new therapeutic target in order to modify the natural course of the disease. Copyright © 2018 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. 32 CFR 989.12 - AF Form 813, Request for Environmental Impact Analysis.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false AF Form 813, Request for Environmental Impact... FORCE ENVIRONMENTAL PROTECTION ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.12 AF Form 813, Request for Environmental Impact Analysis. The Air Force uses AF Form 813 to document the need for...

  3. SNP-based differentiation of Phytophthora infestans clonal lineages using locked nucleic acid probes and high resolution melt analysis

    USDA-ARS?s Scientific Manuscript database

    Phytophthora infestans, the cause of the devastating late blight disease of potato and tomato, exhibits a clonal reproductive lifestyle in North America. Phenotypes such as fungicide sensitivity and host preference are conserved among individuals within clonal lineages, while substantial phenotypic ...

  4. Effects of Iron Depletion on CALM-AF10 Leukemias

    PubMed Central

    Heath, Jessica L.; Weiss, Joshua M.

    2014-01-01

    Iron, an essential nutrient for cellular growth and proliferation, enters cells via clathrin-mediated endocytosis (CME). The clathrin assembly lymphoid myeloid (CALM) protein plays an essential role in the cellular import of iron by CME. CALM-AF10 leukemias harbor a single copy of the normal CALM gene, and may therefore be more sensitive to the growth inhibitory effect of iron restriction compared with normal hematopoietic cells. We found that Calm heterozygous (CalmHET) murine fibroblasts exhibit signs of iron deficiency, with increased surface transferrin receptor (sTfR) levels and reduced growth rates. CalmHET hematopoietic cells are more sensitive in vitro to iron chelators than their wild type counterparts. Iron chelation also displayed toxicity towards cultured CalmHET CALM-AF10 leukemia cells and this effect was additive to that of chemotherapy. In mice transplanted with CalmHET CALM-AF10 leukemia, we found that dietary iron restriction reduces tumor burden in the spleen. However, dietary iron restriction, used alone or in conjunction with chemotherapy, did not increase survival of mice with CalmHET CALM-AF10 leukemia. In summary, while Calm heterozygosity results in iron deficiency and increased sensitivity to iron chelation in vitro, our data in mice do not suggest that iron depletion strategies would be beneficial for the therapy of CALM-AF10 leukemia patients. PMID:25193880

  5. One-step analysis of DNA/chitosan complexes by field-flow fractionation reveals particle size and free chitosan content.

    PubMed

    Ma, Pei Lian; Buschmann, Michael D; Winnik, Françoise M

    2010-03-08

    The composition of samples obtained upon complexation of DNA with chitosan was analyzed by asymmetrical flow field flow fractionation (AF4) with online UV-visible, multiangle light scattering (MALS), and dynamic light scattering (DLS) detectors. A chitosan labeled with rhodamine B to facilitate UV-vis detection of the polycation was complexed with DNA under conditions commonly used for transfection (chitosan glucosamine to DNA phosphate molar ratio of 5). AF4 analysis revealed that 73% of the chitosan-rhodamine remained free in the dispersion and that the DNA/chitosan complexes had a broad size distribution ranging from 20 to 160 nm in hydrodynamic radius. The accuracy of the data was assessed by comparison with data from batch-mode DLS and scanning electron microscopy. The AF4 combined with DLS allowed the characterization of small particles that were not detected by conventional batch-mode DLS. The AF4 analysis will prove to be an important tool in the field of gene therapy because it readily provides, in a single measurement, three important physicochemical parameters of the complexes: the amount of unbound polycation, the hydrodynamic size of the complexes, and their size distribution.

  6. Analysis of Clonality and Antibiotic Resistance among Early Clinical Isolates of Enterococcus faecium in the United States

    PubMed Central

    Galloway-Peña, Jessica R.; Nallapareddy, Sreedhar R.; Arias, Cesar A.; Eliopoulos, George M.; Murray, Barbara E.

    2009-01-01

    Background The Enterococcus faecium genogroup, referred to as clonal complex 17 (CC17), seems to possess multiple determinants that increase its ability to survive and cause disease in nosocomial environments. Methods Using 53 clinical and geographically diverse US E. faecium isolates dating from 1971 to 1994 we determined the multi-locus sequence type, the presence of 16 putative virulence genes (hylEfm, espEfm and fms genes), resistance to ampicillin (AMPR), vancomycin (VANR) and high-levels of gentamicin and streptomycin. Results Overall, 16 different sequence types (STs), mostly CC17 isolates, were identified in 9 different regions of the US. The earliest CC17 isolates were part of an outbreak in 1982 in Richmond, VA. Characteristics of CC17 isolates included increases in AMPR, the presence of hylEfm and espEfm, emergence of VANR and the presence of at least 13/14 fms genes. Eight out of forty-one of the early AMPR isolates, however, were not within CC17. Conclusions While not all early US AMPR isolates were clonally related, E. faecium CC17 isolates have been circulating in the US since at least 1982 and appear to have progressively acquired additional virulence and antibiotic resistance determinants, perhaps explaining the recent success of this species in the hospital environment. PMID:19821720

  7. Termination of persistent atrial fibrillation during pulmonary vein isolation: insight from the MAGIC-AF trial.

    PubMed

    Singh, Sheldon M; d'Avila, Andre; Kim, Young-Hoon; Aryana, Arash; Mangrum, J Michael; Michaud, Gregory F; Dukkipati, Srinivas R; Barrett, Conor D; Heist, E Kevin; Parides, Michael K; Thorpe, Kevin E; Reddy, Vivek Y

    2017-10-01

    Controversy on the optimal ablation strategy for persistent atrial fibrillation (AF) exists with limited work evaluating a strategy of pulmonary vein isolation (PVI) alone when AF terminates during PVI. Thirty-five patients had AF termination during PVI in the Modified Ablation Guided by Ibutilide Use in Chronic Atrial Fibrillation (MAGIC-AF; ClinicalTrials.gov number: NCT01014741) study. The objective of the current study is to report the 1-year outcome after PVI alone in this unique patient group. The 1-year single procedure freedom from atrial arrhythmia off anti-arrhythmic drugs was reported for the 35 patients in the MAGIC-AF study with persistent AF termination during or upon completion of PVI. Freedom from recurrent atrial arrhythmia was achieved in 60% of patients where AF terminated during PVI. Cavotricuspid isthmus flutter was common when AF terminated to a macro re-entrant flutter during PVI, and responsible for 92% of all flutter circuits with AF termination. Persistent AF termination during PVI may identify a subgroup of patients who experience a similar long-term clinical outcome with PVI ablation alone when compared with other more extensive persistent AF ablation strategies. Pulmonary vein isolation alone may be an appropriate tactic in this subgroup of persistent AF patients. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  8. Clonality of bacterial consortia in root canals and subjacent gingival crevices.

    PubMed

    Parahitiyawa, Nipuna B; Chu, Frederick C S; Leung, Wai K; Yam, Wing C; Jin, Li Jian; Samaranayake, Lakshman P

    2015-02-01

    No oral niche can be considered to be segregated from the subjacent milieu because of the complex community behavior and nature of the oral biofilms. The aim of this study was to address the paucity of information on how these species are clonally related to the subjacent gingival crevice bacteria. We utilized a metagenomic approach of amplifying 16S rDNA from genomic DNA, cloning, sequencing and analysis using LIBSHUFF software to assess the genetic homogeneity of the bacterial species from two infected root canals and subjacent gingival crevices. The four niches studied yielded 186 clones representing 54 phylotypes. Clone library comparisons using LIBSHUFF software indicated that each niche was inhabited by a unique flora. Further, 42% of the clones were of hitherto unknown phylotypes indicating the extent of bacterial diversity, especially in infected root canals and subjacent gingival crevices. We believe data generated through this novel analytical tool shed new light on understanding oral microbial ecosystems. © 2014 Wiley Publishing Asia Pty Ltd.

  9. Clonal reproduction with androgenesis and somatic recombination: the case of the ant Cardiocondyla kagutsuchi

    NASA Astrophysics Data System (ADS)

    Okita, Ichiro; Tsuchida, Koji

    2016-04-01

    In haplodiploid insects such as ants, male sexuals develop from unfertilised haploid eggs, while female sexuals and workers develop from fertilized diploid eggs. However, some ant species do not exchange their gene pool between sexes; both male and female sexuals are clonally produced, while workers are sexually produced. To date, three ant species, Wasmannia auropunctata, Vollenhovia emeryi, and Paratrechina longicornis, have been reported to reproduce using such reproductive systems. In this study, we reveal that in one lineage of the ant Cardiocondyla kagutsuchi, male and female sexuals are also clonally produced. In contrast to the abovementioned three species, the workers were not only sexually produced but had recombinant sequences in their nuclear internal transcribed spacer regions, although the recombinant sequences were not detected in male or female sexuals. These results suggest that the lineage likely possesses a mechanism to compensate for the reduction in genetic variation due to clonal reproduction with somatic recombination that occurs within the workers.

  10. Clonal reproduction with androgenesis and somatic recombination: the case of the ant Cardiocondyla kagutsuchi.

    PubMed

    Okita, Ichiro; Tsuchida, Koji

    2016-04-01

    In haplodiploid insects such as ants, male sexuals develop from unfertilised haploid eggs, while female sexuals and workers develop from fertilized diploid eggs. However, some ant species do not exchange their gene pool between sexes; both male and female sexuals are clonally produced, while workers are sexually produced. To date, three ant species, Wasmannia auropunctata, Vollenhovia emeryi, and Paratrechina longicornis, have been reported to reproduce using such reproductive systems. In this study, we reveal that in one lineage of the ant Cardiocondyla kagutsuchi, male and female sexuals are also clonally produced. In contrast to the abovementioned three species, the workers were not only sexually produced but had recombinant sequences in their nuclear internal transcribed spacer regions, although the recombinant sequences were not detected in male or female sexuals. These results suggest that the lineage likely possesses a mechanism to compensate for the reduction in genetic variation due to clonal reproduction with somatic recombination that occurs within the workers.

  11. Structural basis for clonal diversity of the human T-cell response to a dominant influenza virus epitope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xinbo; Chen, Guobing; Weng, Nan-ping

    Influenza A virus (IAV) causes an acute infection in humans that is normally eliminated by CD8+ cytotoxic T lymphocytes. Individuals expressing the MHC class I molecule HLA-A2 produce cytotoxic T lymphocytes bearing T-cell receptors (TCRs) that recognize the immunodominant IAV epitope GILGFVFTL (GIL). Most GIL-specific TCRs utilize α/β chain pairs encoded by the TRAV27/TRBV19 gene combination to recognize this relatively featureless peptide epitope (canonical TCRs). However, ~40% of GIL-specific TCRs express a wide variety of other TRAV/TRBV combinations (non-canonical TCRs). To investigate the structural underpinnings of this remarkable diversity, we determined the crystal structure of a non-canonical GIL-specific TCR (F50)more » expressing the TRAV13-1/TRBV27 gene combination bound to GIL–HLA-A2 to 1.7 Å resolution. Comparison of the F50–GIL–HLA-A2 complex with the previously published complex formed by a canonical TCR (JM22) revealed that F50 and JM22 engage GIL–HLA-A2 in markedly different orientations. These orientations are distinguished by crossing angles of TCR to peptide–MHC of 29° for F50 versus 69° for JM22 and by a focus by F50 on the C terminus rather than the center of the MHC α1 helix for JM22. In addition, F50, unlike JM22, uses a tryptophan instead of an arginine to fill a critical notch between GIL and the HLA-A2 α2 helix. The F50–GIL–HLA-A2 complex shows that there are multiple structurally distinct solutions to recognizing an identical peptide–MHC ligand with sufficient affinity to elicit a broad anti-IAV response that protects against viral escape and T-cell clonal loss.« less

  12. The Hayflick Limit May Determine the Effective Clonal Diversity of Naive T Cells.

    PubMed

    Ndifon, Wilfred; Dushoff, Jonathan

    2016-06-15

    Having a large number of sufficiently abundant T cell clones is important for adequate protection against diseases. However, as shown in this paper and elsewhere, between young adulthood and >70 y of age the effective clonal diversity of naive CD4/CD8 T cells found in human blood declines by a factor of >10. (Effective clonal diversity accounts for both the number and the abundance of T cell clones.) The causes of this observation are incompletely understood. A previous study proposed that it might result from the emergence of certain rare, replication-enhancing mutations in T cells. In this paper, we propose an even simpler explanation: that it results from the loss of T cells that have attained replicative senescence (i.e., the Hayflick limit). Stochastic numerical simulations of naive T cell population dynamics, based on experimental parameters, show that the rate of homeostatic T cell proliferation increases after the age of ∼60 y because naive T cells collectively approach replicative senescence. This leads to a sharp decline of effective clonal diversity after ∼70 y, in agreement with empirical data. A mathematical analysis predicts that, without an increase in the naive T cell proliferation rate, this decline will occur >50 yr later than empirically observed. These results are consistent with a model in which exhaustion of the proliferative capacity of naive T cells causes a sharp decline of their effective clonal diversity and imply that therapeutic potentiation of thymopoiesis might either prevent or reverse this outcome. Copyright © 2016 by The American Association of Immunologists, Inc.

  13. Influence of Environmental Factors on the Production of Penitrems A-F by Penicillium crustosum.

    PubMed

    Kalinina, Svetlana A; Jagels, Annika; Cramer, Benedikt; Geisen, Rolf; Humpf, Hans-Ulrich

    2017-07-01

    Filamentous fungi produce a multitude of secondary metabolites, some of them known as mycotoxins, which are toxic to vertebrates and other animal groups in low concentrations. Among them, penitrems, which belong to the group of indole-diterpene mycotoxins, are synthesized by Penicillium and Aspergillus genera and exhibit potent tremorgenic effects. This is the first complex study of the penitrems A-F production under the influence of different abiotic factors, e.g., media, incubation time, temperature, pH, light, water activity, and carbon and nitrogen source as well as oxidative and salt stress. For this purpose, penitrems A-F were isolated from Penicillium crustosum cultures and used as analytical standards. Among the carbon sources, glucose supplemented to the media at the concentration of 50 g/L, showed the strongest inducing effect on the biosynthesis of penitrems. Among nitrogen sources, glutamate was found to be the most favorable supplement, significantly increasing production of these secondary metabolites. CuSO4-promoted oxidative stress was also shown to remarkably stimulate biosynthesis of all penitrems. In contrast, the salt stress, caused by the elevated concentrations of NaCl, showed an inhibitory effect on the penitrem biosynthesis. Finally, cheese model medium elicited exceptionally high production of all members of the penitrems family. Obtained results give insides into the biosynthesis of toxicologically relevant penitrems A-F under different environmental factors and can be utilized to prevent food contamination.

  14. Angiotensin converting enzyme 2 activity and human atrial fibrillation: increased plasma angiotensin converting enzyme 2 activity is associated with atrial fibrillation and more advanced left atrial structural remodelling.

    PubMed

    Walters, Tomos E; Kalman, Jonathan M; Patel, Sheila K; Mearns, Megan; Velkoska, Elena; Burrell, Louise M

    2017-08-01

    Angiotensin converting enzyme 2 (ACE2) is an integral membrane protein whose main action is to degrade angiotensin II. Plasma ACE2 activity is increased in various cardiovascular diseases. We aimed to determine the relationship between plasma ACE2 activity and human atrial fibrillation (AF), and in particular its relationship to left atrial (LA) structural remodelling. One hundred and three participants from a tertiary arrhythmia centre, including 58 with paroxysmal AF (PAF), 20 with persistent AF (PersAF), and 25 controls, underwent clinical evaluation, echocardiographic analysis, and measurement of plasma ACE2 activity. A subgroup of 20 participants underwent invasive LA electroanatomic mapping. Plasma ACE2 activity levels were increased in AF [control 13.3 (9.5-22.3) pmol/min/mL; PAF 16.9 (9.7-27.3) pmol/min/mL; PersAF 22.8 (13.7-33.4) pmol/min/mL, P = 0.006]. Elevated plasma ACE2 was associated with older age, male gender, hypertension and vascular disease, elevated left ventricular (LV) mass, impaired LV diastolic function and advanced atrial disease (P < 0.05 for all). Independent predictors of elevated plasma ACE2 activity were AF (P = 0.04) and vascular disease (P < 0.01). There was a significant relationship between elevated ACE2 activity and low mean LA bipolar voltage (adjusted R2 = 0.22, P = 0.03), a high proportion of complex fractionated electrograms (R2 = 0.32, P = 0.009) and a long LA activation time (R2 = 0.20, P = 0.04). Plasma ACE2 activity is elevated in human AF. Both AF and vascular disease predict elevated plasma ACE2 activity, and elevated plasma ACE2 is significantly associated with more advanced LA structural remodelling. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  15. Different osteochondral potential of clonal cell lines derived from adult human trabecular bone.

    PubMed

    Osyczka, Anna M; Nöth, Ulrich; Danielson, Keith G; Tuan, Rocky S

    2002-06-01

    Cells derived from human trabecular bones have been shown to have multipotential differentiation ability along osteogenic, chondrogenic, and adipogenic lineages. In this study, we have derived two clonal sublines of human trabecular bone cells by means of stable transduction with human papilloma virus E6/E7 genes. Our results showed that these clonal sublines differ in their osteochondral potential, but are equally adipogenic, indicative of the heterogeneous nature of the parental cell population. The availability of these cell lines should be useful for the analysis of the mechanisms regulating the differentiation of adult mesenchymal progenitor cells.

  16. CERN’s AFS replacement project

    NASA Astrophysics Data System (ADS)

    Iven, J.; Lamanna, M.; Pace, A.

    2017-10-01

    OpenAFS is the legacy solution for a variety of use cases at CERN, most notably home-directory services. OpenAFS has been used as the primary shared file-system for Linux (and other) clients for more than 20 years, but despite an excellent track record, the project’s age and architectural limitations are becoming more evident. We are now working to offer an alternative solution based on existing CERN storage services. The new solution will offer evolved functionality, and is expected to eventually benefit from operational synergies. In this paper we will present CERN’s usage and an analysis of our technical choices: we will focus on the alternatives chosen for the various use cases (among them EOS, CERNBox and CASTOR); on implementing the migration process over the coming years; and the challenges and opportunities of the migration.

  17. Assessing T cell clonal size distribution: a non-parametric approach.

    PubMed

    Bolkhovskaya, Olesya V; Zorin, Daniil Yu; Ivanchenko, Mikhail V

    2014-01-01

    Clonal structure of the human peripheral T-cell repertoire is shaped by a number of homeostatic mechanisms, including antigen presentation, cytokine and cell regulation. Its accurate tuning leads to a remarkable ability to combat pathogens in all their variety, while systemic failures may lead to severe consequences like autoimmune diseases. Here we develop and make use of a non-parametric statistical approach to assess T cell clonal size distributions from recent next generation sequencing data. For 41 healthy individuals and a patient with ankylosing spondylitis, who undergone treatment, we invariably find power law scaling over several decades and for the first time calculate quantitatively meaningful values of decay exponent. It has proved to be much the same among healthy donors, significantly different for an autoimmune patient before the therapy, and converging towards a typical value afterwards. We discuss implications of the findings for theoretical understanding and mathematical modeling of adaptive immunity.

  18. Somatic clonal evolution: A selection-centric perspective.

    PubMed

    Scott, Jacob; Marusyk, Andriy

    2017-04-01

    It is generally accepted that the initiation and progression of cancers is the result of somatic clonal evolution. Despite many peculiarities, evolution within populations of somatic cells should obey the same Darwinian principles as evolution within natural populations, i.e. variability of heritable phenotypes provides the substrate for context-specific selection forces leading to increased population frequencies of phenotypes, which are better adapted to their environment. Yet, within cancer biology, the more prevalent way to view evolution is as being entirely driven by the accumulation of "driver" mutations. Context-specific selection forces are either ignored, or viewed as constraints from which tumor cells liberate themselves during the course of malignant progression. In this review, we will argue that explicitly focusing on selection forces acting on the populations of neoplastic cells as the driving force of somatic clonal evolution might provide for a more accurate conceptual framework compared to the mutation-centric driver gene paradigm. Whereas little can be done to counteract the "bad luck" of stochastic occurrences of cancer-related mutations, changes in selective pressures and the phenotypic adaptations they induce can, in principle, be exploited to limit the incidence of cancers and to increase the efficiency of existing and future therapies. This article is part of a Special Issue entitled: Evolutionary principles - heterogeneity in cancer?, edited by Dr. Robert A. Gatenby. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Higher risk of death and stroke in patients with persistent vs. paroxysmal atrial fibrillation: results from the ROCKET-AF Trial.

    PubMed

    Steinberg, Benjamin A; Hellkamp, Anne S; Lokhnygina, Yuliya; Patel, Manesh R; Breithardt, Günter; Hankey, Graeme J; Becker, Richard C; Singer, Daniel E; Halperin, Jonathan L; Hacke, Werner; Nessel, Christopher C; Berkowitz, Scott D; Mahaffey, Kenneth W; Fox, Keith A A; Califf, Robert M; Piccini, Jonathan P

    2015-02-01

    Anticoagulation prophylaxis for stroke is recommended for at-risk patients with either persistent or paroxysmal atrial fibrillation (AF). We compared outcomes in patients with persistent vs. paroxysmal AF receiving oral anticoagulation. Patients randomized in the Rivaroxaban Once Daily Oral Direct Factor Xa Inhibition Compared With Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation (ROCKET-AF) trial (n = 14 264) were grouped by baseline AF category: paroxysmal or persistent. Multivariable adjustment was performed to compare thrombo-embolic events, bleeding, and death between groups, in high-risk subgroups, and across treatment assignment (rivaroxaban or warfarin). Of 14 062 patients, 11 548 (82%) had persistent AF and 2514 (18%) had paroxysmal AF. Patients with persistent AF were marginally older (73 vs. 72, P = 0.03), less likely female (39 vs. 45%, P < 0.0001), and more likely to have previously used vitamin K antagonists (64 vs. 56%, P < 0.0001) compared with patients with paroxysmal AF. In patients randomized to warfarin, time in therapeutic range was similar (58 vs. 57%, P = 0.94). Patients with persistent AF had higher adjusted rates of stroke or systemic embolism (2.18 vs. 1.73 events per 100-patient-years, P = 0.048) and all-cause mortality (4.78 vs. 3.52, P = 0.006). Rates of major bleeding were similar (3.55 vs. 3.31, P = 0.77). Rates of stroke or systemic embolism in both types of AF did not differ by treatment assignment (rivaroxaban vs. warfarin, Pinteraction = 0.6). In patients with AF at moderate-to-high risk of stroke receiving anticoagulation, those with persistent AF have a higher risk of thrombo-embolic events and worse survival compared with paroxysmal AF. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Cardiology.

  20. Higher risk of death and stroke in patients with persistent vs. paroxysmal atrial fibrillation: results from the ROCKET-AF Trial

    PubMed Central

    Steinberg, Benjamin A.; Hellkamp, Anne S.; Lokhnygina, Yuliya; Patel, Manesh R.; Breithardt, Günter; Hankey, Graeme J.; Becker, Richard C.; Singer, Daniel E.; Halperin, Jonathan L.; Hacke, Werner; Nessel, Christopher C.; Berkowitz, Scott D.; Mahaffey, Kenneth W.; Fox, Keith A.A.; Califf, Robert M.; Piccini, Jonathan P.

    2015-01-01

    Aim Anticoagulation prophylaxis for stroke is recommended for at-risk patients with either persistent or paroxysmal atrial fibrillation (AF). We compared outcomes in patients with persistent vs. paroxysmal AF receiving oral anticoagulation. Methods and results Patients randomized in the Rivaroxaban Once Daily Oral Direct Factor Xa Inhibition Compared With Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation (ROCKET-AF) trial (n = 14 264) were grouped by baseline AF category: paroxysmal or persistent. Multivariable adjustment was performed to compare thrombo-embolic events, bleeding, and death between groups, in high-risk subgroups, and across treatment assignment (rivaroxaban or warfarin). Of 14 062 patients, 11 548 (82%) had persistent AF and 2514 (18%) had paroxysmal AF. Patients with persistent AF were marginally older (73 vs. 72, P = 0.03), less likely female (39 vs. 45%, P < 0.0001), and more likely to have previously used vitamin K antagonists (64 vs. 56%, P < 0.0001) compared with patients with paroxysmal AF. In patients randomized to warfarin, time in therapeutic range was similar (58 vs. 57%, P = 0.94). Patients with persistent AF had higher adjusted rates of stroke or systemic embolism (2.18 vs. 1.73 events per 100-patient-years, P = 0.048) and all-cause mortality (4.78 vs. 3.52, P = 0.006). Rates of major bleeding were similar (3.55 vs. 3.31, P = 0.77). Rates of stroke or systemic embolism in both types of AF did not differ by treatment assignment (rivaroxaban vs. warfarin, Pinteraction = 0.6). Conclusion In patients with AF at moderate-to-high risk of stroke receiving anticoagulation, those with persistent AF have a higher risk of thrombo-embolic events and worse survival compared with paroxysmal AF. PMID:25209598

  1. Prognostic value of bone marrow involvement by clonal immunoglobulin gene rearrangements in follicular lymphoma

    PubMed Central

    Berget, Ellen; Helgeland, Lars; Liseth, Knut; Løkeland, Turid; Molven, Anders; Vintermyr, Olav Karsten

    2014-01-01

    Aims We aimed to evaluate the prognostic value of routine use of PCR amplification of immunoglobulin gene rearrangements in bone marrow (BM) staging in patients with follicular lymphoma (FL). Methods Clonal rearrangements were assessed by immunoglobulin heavy and light-chain gene rearrangement analysis in BM aspirates from 96 patients diagnosed with FL and related to morphological detection of BM involvement in biopsies. In 71 patients, results were also compared with concurrent flow cytometry analysis. Results BM involvement was detected by PCR in 34.4% (33/96) of patients. The presence of clonal rearrangements by PCR was associated with advanced clinical stage (I–III vs IV; p<0.001), high FL International Prognostic Index (FLIPI) score (0–1, 2 vs ≥3; p=0.003), and detection of BM involvement by morphology and flow cytometry analysis (p<0.001 for both). PCR-positive patients had a significantly poorer survival than PCR-negative patients (p=0.001, log-rank test). Thirteen patients positive by PCR but without morphologically detectable BM involvement, had significantly poorer survival than patients with negative morphology and negative PCR result (p=0.002). The poor survival associated with BM involvement by PCR was independent of the FLIPI score (p=0.007, Cox regression). BM involvement by morphology or flow cytometry did not show a significant impact on survival. Conclusions Our results showed that routine use of PCR-based clonality analysis significantly improved the prognostic impact of BM staging in patients with FL. BM involvement by PCR was also an independent adverse prognostic factor. PMID:25233852

  2. MRSA clonal complex 22 strains harboring toxic shock syndrome toxin (TSST-1) are endemic in the primary hospital in Gaza, Palestine.

    PubMed

    Al Laham, Nahed; Mediavilla, José R; Chen, Liang; Abdelateef, Nahed; Elamreen, Farid Abu; Ginocchio, Christine C; Pierard, Denis; Becker, Karsten; Kreiswirth, Barry N

    2015-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is an important pathogen in both community and healthcare-related settings worldwide. Current knowledge regarding the epidemiology of S. aureus and MRSA in Gaza is based on a single community-based carriage study. Here we describe a cross-sectional analysis of 215 clinical isolates collected from Al-Shifa Hospital in Gaza during 2008 and 2012. All isolates were characterized by spa typing, SCCmec typing, and detection of genes encoding Panton-Valentine leukocidin (PVL) and toxic shock syndrome toxin (TSST-1). Representative genotypes were also subjected to multilocus sequence typing (MLST). Antibiotic susceptibility testing was performed using VITEK2 and MicroScan. MRSA represented 56.3% of all S. aureus strains, and increased in frequency from 2008 (54.8%) to 2012 (58.4%). Aside from beta-lactams, resistance was observed to tetracycline, erythromycin, clindamycin, gentamicin, and fluoroquinolones. Molecular typing identified 35 spa types representing 17 MLST clonal complexes (CC), with spa 998 (Ridom t223, CC22) and spa 70 (Ridom t044, CC80) being the most prevalent. SCCmec types I, III, IV, V and VI were identified among MRSA isolates, while type II was not detected. PVL genes (lukF/S-PV) were detected in 40.0% of all isolates, while the TSST-1 gene (tst) was detected in 27.4% of all isolates, with surprisingly high frequency within CC22 (70.4%). Both PVL and TSST-1 genes were found in several isolates from 2012. Molecular typing of clinical isolates from Gaza hospitals revealed unusually high prevalence of TSST-1 genes among CC22 MRSA, which is noteworthy given a recent community study describing widespread carriage of a CC22 MRSA clone known as the 'Gaza strain'. While the latter did not address TSST-1, tst-positive spa 998 (Ridom t223) has been detected in several neighboring countries, and described as endemic in an Italian NICU, suggesting international spread of a 'Middle Eastern variant' of pandemic CC22

  3. Mycobactericidal and tuberculocidal activity of Korsolex AF, an amine detergent/disinfectant product.

    PubMed

    Hernández, A; Martró, E; Matas, L; Jiménez, A; Ausina, V

    2005-01-01

    The mycobactericidal and tuberculocidal activities of Korsolex AF against Mycobacterium tuberculosis, Mycobacterium avium-Mycobacterium intracellulare (MAI), Mycobacterium kansasii and Mycobacterium chelonae were determined using quantitative suspension and carrier tests. The effects of organic load and hard water were also considered. A clinical isolate of MAI was the most resistant of the four test organisms. A 2% solution had good mycobactericidal and tuberculocidal activities after 30 min of exposure. Although further evaluation using European standard tests is necessary, we conclude that Korsolex AF appears to be a promising product for the disinfection of hospital instruments contaminated with mycobacteria.

  4. Molecular Analysis of Mixed Endometrial Carcinomas Shows Clonality in Most Cases.

    PubMed

    Köbel, Martin; Meng, Bo; Hoang, Lien N; Almadani, Noorah; Li, Xiaodong; Soslow, Robert A; Gilks, C Blake; Lee, Cheng-Han

    2016-02-01

    Mixed endometrial carcinoma refers to a tumor that comprises 2 or more distinct histotypes. We studied 18 mixed-type endometrial carcinomas-11 mixed serous and low-grade endometrioid carcinomas (SC/EC), 5 mixed clear cell and low-grade ECs (CCC/EC), and 2 mixed CCC and SCs (CCC/SC), using targeted next-generation sequencing and immunohistochemistry to compare the molecular profiles of the different histotypes present in each case. In 16 of 18 cases there was molecular evidence that both components shared a clonal origin. Eight cases (6 EC/SC, 1 EC/CCC, and 1 SC/CCC) showed an SC molecular profile that was the same in both components. Five cases (3 CCC/EC and 2 SC/EC) showed a shared endometrioid molecular profile and identical mismatch-repair protein deficiency in both components. A single SC/EC case harbored the same POLE exonuclease domain mutation in both components. One SC/CCC and 1 EC/CCC case showed both shared and unique molecular features in the 2 histotype components, suggesting early molecular divergence from a common clonal origin. In 2 cases, there were no shared molecular features, and these appear to be biologically unrelated synchronous tumors. Overall, these results show that the different histologic components in mixed endometrial carcinomas typically share the same molecular aberrations. Mixed endometrial carcinomas most commonly occur through morphologic mimicry, whereby tumors with serous-type molecular profile show morphologic features of EC or CCC, or through underlying deficiency in DNA nucleotide repair, with resulting rapid accrual of mutations and intratumoral phenotypic heterogeneity. Less commonly, mixed endometrial carcinomas are the result of early molecular divergence from a common progenitor clone or are synchronous biologically unrelated tumors (collision tumors).

  5. Complex Actions of Thyroid Hormone Receptor Antagonist NH-3 on Gene Promoters in Different Cell Lines

    PubMed Central

    Shah, Vanya; Nguyen, Phuong; Nguyen, Ngoc-Ha; Togashi, Marie; Scanlan, Thomas S.; Baxter, John D.; Webb, Paul

    2014-01-01

    It is desirable to obtain new antagonists for thyroid hormone (TRs) and other nuclear receptors (NRs). We previously used X-ray structural models of TR ligand binding domains (LBDs) to design compounds, such as NH-3, that impair coactivator binding to activation function 2 (AF-2) and block thyroid hormone (triiodothyronine, T3) actions. However, TRs bind DNA and are transcriptionally active without ligand. Thus, NH-3 could modulate TR activity via effects on other coregulator interaction surfaces, such as activation function (AF-1) and corepressor binding sites. Here, we find that NH-3 blocks TR-LBD interactions with coactivators and corepressors and also inhibits activities of AF-1 and AF-2 in transfections. While NH-3 lacks detectable agonist activity at T3-activated genes in GC pituitary cells it nevertheless activates spot 14 (S14) in HTC liver cells with the latter effect accompanied by enhanced histone H4 acetylation and coactivator recruitment at the S14 promoter. Surprisingly, T3 promotes corepressor recruitment to target promoters. NH-3 effects vary; we observe transient recruitment of N-CoR to S14 in GC cells and dismissal and rebinding of N-CoR to the same promoter in HTC cells. We propose that NH-3 will generally behave as an antagonist by blocking AF-1 and AF-2 but that complex effects on coregulator recruitment may result in partial/mixed agonist effects that are independent of blockade of T3 binding in some contexts. These properties could ultimately be utilized in drug design and development of new selective TR modulators. PMID:18930112

  6. Selection for avian leukosis virus integration sites determines the clonal progression of B-cell lymphomas

    PubMed Central

    Malhotra, Sanandan; Justice, James; Morgan, Robin

    2017-01-01

    Avian leukosis virus (ALV) is a simple retrovirus that causes a wide range of tumors in chickens, the most common of which are B-cell lymphomas. The viral genome integrates into the host genome and uses its strong promoter and enhancer sequences to alter the expression of nearby genes, frequently inducing tumors. In this study, we compare the preferences for ALV integration sites in cultured cells and in tumors, by analysis of over 87,000 unique integration sites. In tissue culture we observed integration was relatively random with slight preferences for genes, transcription start sites and CpG islands. We also observed a preference for integrations in or near expressed and spliced genes. The integration pattern in cultured cells changed over the course of selection for oncogenic characteristics in tumors. In comparison to tissue culture, ALV integrations are more highly selected for proximity to transcription start sites in tumors. There is also a significant selection of ALV integrations away from CpG islands in the highly clonally expanded cells in tumors. Additionally, we utilized a high throughput method to quantify the magnitude of clonality in different stages of tumorigenesis. An ALV-induced tumor carries between 700 and 3000 unique integrations, with an average of 2.3 to 4 copies of proviral DNA per infected cell. We observed increasing tumor clonality during progression of B-cell lymphomas and identified gene players (especially TERT and MYB) and biological processes involved in tumor progression. PMID:29099869

  7. Human liver infiltrating γδ T cells are composed of clonally expanded circulating and tissue-resident populations.

    PubMed

    Hunter, Stuart; Willcox, Carrie R; Davey, Martin S; Kasatskaya, Sofya A; Jeffery, Hannah C; Chudakov, Dmitriy M; Oo, Ye H; Willcox, Benjamin E

    2018-05-18

    γδ T-cells comprise a substantial proportion of tissue-associated lymphocytes. However, our current understanding of human γδ T-cells is primarily based on peripheral blood subsets, while the immunobiology of tissue-associated subsets remains largely unclear. To address this, we characterised the TCR diversity, immunophenotype and function of human liver infiltrating γδ T-cells, focussing on the predominant tissue-associated Vδ2 neg γδ subset, which is implicated in liver immunopathology. Intrahepatic Vδ2 neg γδ T-cells were highly clonally focussed, with single expanded clonotypes featuring complex, private TCR rearrangements frequently dominating the compartment. Such T-cells were predominantly CD27 lo/neg effector lymphocytes, whereas naïve CD27 hi , TCR diverse populations present in matched blood were generally absent in the liver. Furthermore, while a CD45RA hi Vδ2 neg γδ effector subset present in both liver and peripheral blood contained overlapping TCR clonotypes, the liver Vδ2 neg γδ T-cell pool also included a phenotypically distinct CD45RA lo effector compartment that was enriched for expression of the tissue tropism marker CD69, the hepatic homing chemokine receptors CXCR3 and CXCR6, and liver-restricted TCR clonotypes, suggestive of intrahepatic tissue residency. Liver infiltrating Vδ2 neg γδ cells were capable of polyfunctional cytokine secretion, and unlike peripheral blood subsets, were responsive to both TCR and innate stimuli. These findings suggest the ability of Vδ2 neg γδ T-cells to undergo clonotypic expansion and differentiation is crucial in permitting access to solid tissues such as the liver, and can result in functionally distinct peripheral and liver-resident memory γδ T-cell subsets. They highlight the inherent functional plasticity within the Vδ2 neg γδ T-cell compartment, and may inform design of cellular therapies involving intrahepatic trafficking of γδ T-cells to suppress liver inflammation or

  8. Persistent Atrial Fibrillation Ablation in Females: Insight from the MAGIC-AF Trial.

    PubMed

    Singh, Sheldon M; D'Avila, Andre; Aryana, Arash; Kim, Young-Hoon; Mangrum, J Michael; Michaud, Gregory F; Dukkipati, Srinivas R; Heist, E Kevin; Barrett, Conor D; Thorpe, Kevin E; Reddy, Vivek Y

    2016-07-27

    Atrial fibrillation (AF) ablation is less frequently performed in women when compared to men. There are conflicting data on the safety and efficacy of AF ablation in women. The objective of this study was to compare the clinical characteristics and outcomes in a contemporary cohort of men and women undergoing persistent AF ablation procedures. A total of 182 men and 53 women undergoing a first-ever persistent AF catheter ablation procedure in The Modified Ablation Guided by Ibutilide Use in Chronic Atrial Fibrillation (MAGIC-AF) trial were evaluated. Clinical and procedural characteristics were compared between each gender. The primary efficacy endpoint was the 1-year single procedure freedom from atrial arrhythmia off anti-arrhythmic drugs. Women undergoing catheter ablation procedures were older than men (P < 0.001). The duration of AF and associated co-morbidities were similar between both genders. Single procedure drug-free atrial arrhythmia recurrence occurred in 53% of the cohort with no difference based on gender (men = 54%, women = 53%; P = 1.0). Procedural (P = 0.04), fluoroscopic (P = 0.02), and ablation times (P = 0.003) were shorter in women compared to men. Periprocedural complications and postablation improvement in quality of life were similar between men and women. Women undergoing a first-ever persistent AF ablation procedure were older but had similar clinical outcomes and complications when compared with men. © 2016 Wiley Periodicals, Inc.

  9. Embossed Teflon AF Laminate Membrane Microfluidic Diaphragm Valves

    NASA Technical Reports Server (NTRS)

    Willis, Peter; Hunt, Brian; White,Victor; Grunthaner, Frank

    2008-01-01

    A microfluidic system has been designed to survive spaceflight and to function autonomously on the Martian surface. It manipulates microscopic quantities of liquid water and performs chemical analyses on these samples to assay for the presence of molecules associated with past or present living processes. This technology lies at the core of the Urey Instrument, which is scheduled for inclusion on the Pasteur Payload of the ESA ExoMars rover mission in 2013. Fabrication processes have been developed to make the microfabricated Teflon-AF microfluidic diaphragm pumps capable of surviving extreme temperature excursions before and after exposure to liquid water. Two glass wafers are etched with features and a continuous Teflon membrane is sandwiched between them (see figure). Single valves are constructed using this geometry. The microfabricated devices are then post processed by heating the assembled device while applying pneumatic pressure to force the Teflon diaphragm against the valve seat while it is softened. After cooling the device, the embossed membrane retains this new shape. This solves previous problems with bubble introduction into the fluid flow where deformations of the membrane at the valve seat occurred during device bonding at elevated temperatures (100-150 C). The use of laminated membranes containing commercial Teflon AF 2400 sheet sandwiched between spun Teflon AF 1600 layers performed best, and were less gas permeable than Teflon AF 1600 membranes on their own. Spinning Teflon AF 1600 solution (6 percent in FLOURINERT(Registered TradeMark) FC40 solvent, 3M Company) at 500 rpm for 1.5 seconds, followed by 1,000 rpm for 3 seconds onto Borofloat glass wafers, results in a 10-micron-thick film of extremely smooth Teflon AF. This spinning process is repeated several times on flat, blank, glass wafers in order to gradually build a thick, smooth membrane. After running this process at least five times, the wafer and Teflon coating are heated under vacuum

  10. Effects of nutrient patches and root systems on the clonal plasticity of a rhizomatous grass

    USGS Publications Warehouse

    Huber-Sannwald, Elisabeth; Pyke, David A.; Caldwell, M.M.; Durham, S.

    1998-01-01

    Clonal plant foraging has been examined primarily on individual clones exposed to resource-poor and resource-rich environments. We designed an experiment to examine the clonal foraging behavior of the rhizomatous grass Elymus lanceolatus ssp. lanceolatus under the influence of neighboring plant root systems in a heterogeneous nutrient environment. Individual Elymus clones were planted in large bins together with one of three neighboring grass species, Agropyron desertorum, Pseudoroegneria spicata, or Bromus tectorum, which differ in rooting density and growth activity. The position of Elymus clones was manipulated so rhizomes encountered a short-duration nutrient patch and subsequently root systems of the neighboring plants. Unexpectedly, the morphological plasticity of the perennial grass Elymus lanceolatus ssp. lanceolatus was influenced by the presence of the neighboring species much more than by the local nutrient enrichments, although nutrient patches did amplify some of the foraging responses. Elymus rhizomes branched readily and initiated large daughter plants as they encountered the low-density root systems of Pseudoroegneria. When Elymus encountered the fine, dense root systems of the annual Bromus, clonal expansion was initially reduced. Yet, after the short growing season of Bromus, Elymus resumed clonal expansion and produced several daughter plants. Elymus clones were most constrained by the fine, dense root systems of Agropyron desertorum. In this case, a few, long rhizomes avoided the densely rooted soil environment by growing aboveground as stolons crossing over the Agropyron tussocks. Elymus clonal biomass was largest in neighborhoods of Pseudoroegneria, intermediate in neighborhoods with Bromus, and smallest in neighborhoods with Agropyron. The latter were approximately half the size of those in the Pseudoroegneria environments. Elymus growth could not be explained by simple resource competition alone; other mechanisms must have been involved in

  11. High resolution melting analysis (HRM) for the assessment of clonality in feline B-cell lymphomas.

    PubMed

    Henrich, Manfred; Scheffold, Svenja; Hecht, Werner; Reinacher, Manfred

    2018-06-01

    Analysis of clonality is gaining importance in diagnosing lymphomas in veterinary medicine. Usually, PCR for the analysis of antigen receptor rearrangement (PARR) is followed by electrophoretic separation of the PCR products. Aim of this study was to test the feasibility of HRM for the assessment of clonality in B-cell lymphomas of cats. High resolution melting analysis differentiates PCR products by their different melting point using the decrease in fluorescence of an intercalating dye during melting of the PCR product. Additionally, the method is easy to use with no post-PCR manipulation of the samples. Forty-seven feline B-cell lymphomas and 31 reactive lymphatic proliferations of cats were investigated by PARR followed either by capillary electrophoresis or an HRM assay. To objectify the interpretation of the HRM results a recently published mathematical approach was applied to the melting curve. To overcome discrepancies between the visual interpretation and the mathematical approach, the latter was modified to include testing of reproducibility and recognition of pseudoclonality. In 11 of 47 lymphoma cases clonal populations were detectable by HRM assay compared to 14 of 47 lymphomas in which clonal populations were detected by capillary electrophoresis assay. Neither of the methods showed a clonal pattern in any of the reactive samples. However, the HRM assay showed a unique pattern in cases of follicular lymphatic hyperplasia that had no corresponding pattern in capillary electrophoresis. The capillary electrophoresis assay could identify 3 lymphomas that were not detected by the HRM assay and is therefore regarded superior to the HRM assay. The comparison however, was hampered by the overall bad performance of the PARR, that might be the consequence of insufficient primer binding due to somatic hypermutation of the binding sites during antigen stimulated proliferation of the B lymphocytes. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Low incidence of clonality in cold water corals revealed through the novel use of standardized protocol adapted to deep sea sampling

    USGS Publications Warehouse

    Becheler, Ronan; Cassone, Anne-Laure; Noel, Philippe; Mouchel, Olivier; Morrison, Cheryl L.; Arnaud-Haond, Sophie

    2017-01-01

    Sampling in the deep sea is a technical challenge, which has hindered the acquisition of robust datasets that are necessary to determine the fine-grained biological patterns and processes that may shape genetic diversity. Estimates of the extent of clonality in deep-sea species, despite the importance of clonality in shaping the local dynamics and evolutionary trajectories, have been largely obscured by such limitations. Cold-water coral reefs along European margins are formed mainly by two reef-building species, Lophelia pertusa and Madrepora oculata. Here we present a fine-grained analysis of the genotypic and genetic composition of reefs occurring in the Bay of Biscay, based on an innovative deep-sea sampling protocol. This strategy was designed to be standardized, random, and allowed the georeferencing of all sampled colonies. Clonal lineages discriminated through their Multi-Locus Genotypes (MLG) at 6–7 microsatellite markers could thus be mapped to assess the level of clonality and the spatial spread of clonal lineages. High values of clonal richness were observed for both species across all sites suggesting a limited occurrence of clonality, which likely originated through fragmentation. Additionally, spatial autocorrelation analysis underlined the possible occurrence of fine-grained genetic structure in several populations of both L. pertusa and M. oculata. The two cold-water coral species examined had contrasting patterns of connectivity among canyons, with among-canyon genetic structuring detected in M. oculata, whereas L. pertusa was panmictic at the canyon scale. This study exemplifies that a standardized, random and georeferenced sampling strategy, while challenging, can be applied in the deep sea, and associated benefits outlined here include improved estimates of fine grained patterns of clonality and dispersal that are comparable across sites and among species.

  13. Characteristics and outcomes of atrial fibrillation patients with or without specific symptoms: results from the PREFER in AF registry.

    PubMed

    Bakhai, Ameet; Darius, Harald; De Caterina, Raffaele; Smart, Angela; Le Heuzey, Jean-Yves; Schilling, Richard John; Zamorano, José Luis; Shah, Mit; Bramlage, Peter; Kirchhof, Paulus

    2016-10-01

    Atrial fibrillation (AF) is a common condition that is a major cause of stroke. A significant proportion of patients with AF are not classically symptomatic at diagnosis or soon after diagnosis. There is little information comparing their characteristics, treatment, and outcomes of patients with symptoms, which predominate in clinical trials to those without. We analysed data from the Prevention of Thromboembolic Events-European Registry in Atrial Fibrillation. This was a prospective, real-world registry with a 12-month follow-up that included AF patients aged 18 years and over. Patients were divided into those with and without AF symptoms using the European Heart Rhythm Association (EHRA) score (Category I vs. Categories II-IV). Of the 6196 patients (mean age 72 years) with EHRA scores available, 501 (8.1%) were asymptomatic. A lower proportion of asymptomatic patients was female (22.8 vs. 41.2%), with less noted to have heart failure and coronary artery disease (P < 0.01 for all). There were no differences in terms of the prevalence of diabetes, obesity, or prior stroke. Asymptomatic patients had a lower CHA2DS2-VASc score (2.9 ± 1.7 vs. 3.4 ± 1.8; P < 0.01) and HAS-BLED score (1.8 ± 1.1 vs. 2.1 ± 1.2; P < 0.01). During the 1-year follow-up, adverse events occurred at similar frequencies in asymptomatic and symptomatic patients (1.6 vs. 0.8% for ischaemic stroke; P = 0.061; 1.4 vs. 1.3% for transient ischaemic attack; P = 0.840). Patients with higher CHA2DS2-VASc and HAS-BLED scores experienced more events, independent of symptoms. Antithrombotic therapy was comparable for both groups at baseline and at follow-up. The similar clinical characteristics and frequency of adverse events between asymptomatic and symptomatic AF patients revives the question of whether screening programmes to detect people with asymptomatic AF are worthwhile, particularly in those aged 65 and over potentially likely to have clinical and economic benefits from anticoagulants. This

  14. VDJ-Seq: Deep Sequencing Analysis of Rearranged Immunoglobulin Heavy Chain Gene to Reveal Clonal Evolution Patterns of B Cell Lymphoma.

    PubMed

    Jiang, Yanwen; Nie, Kui; Redmond, David; Melnick, Ari M; Tam, Wayne; Elemento, Olivier

    2015-12-28

    Understanding tumor clonality is critical to understanding the mechanisms involved in tumorigenesis and disease progression. In addition, understanding the clonal composition changes that occur within a tumor in response to certain micro-environment or treatments may lead to the design of more sophisticated and effective approaches to eradicate tumor cells. However, tracking tumor clonal sub-populations has been challenging due to the lack of distinguishable markers. To address this problem, a VDJ-seq protocol was created to trace the clonal evolution patterns of diffuse large B cell lymphoma (DLBCL) relapse by exploiting VDJ recombination and somatic hypermutation (SHM), two unique features of B cell lymphomas. In this protocol, Next-Generation sequencing (NGS) libraries with indexing potential were constructed from amplified rearranged immunoglobulin heavy chain (IgH) VDJ region from pairs of primary diagnosis and relapse DLBCL samples. On average more than half million VDJ sequences per sample were obtained after sequencing, which contain both VDJ rearrangement and SHM information. In addition, customized bioinformatics pipelines were developed to fully utilize sequence information for the characterization of IgH-VDJ repertoire within these samples. Furthermore, the pipeline allows the reconstruction and comparison of the clonal architecture of individual tumors, which enables the examination of the clonal heterogeneity within the diagnosis tumors and deduction of clonal evolution patterns between diagnosis and relapse tumor pairs. When applying this analysis to several diagnosis-relapse pairs, we uncovered key evidence that multiple distinctive tumor evolutionary patterns could lead to DLBCL relapse. Additionally, this approach can be expanded into other clinical aspects, such as identification of minimal residual disease, monitoring relapse progress and treatment response, and investigation of immune repertoires in non-lymphoma contexts.

  15. A simple web-based tool to compare freshwater fish data collected using AFS standard methods

    USGS Publications Warehouse

    Bonar, Scott A.; Mercado-Silva, Norman; Rahr, Matt; Torrey, Yuta T.; Cate, Averill

    2016-01-01

    The American Fisheries Society (AFS) recently published Standard Methods for Sampling North American Freshwater Fishes. Enlisting the expertise of 284 scientists from 107 organizations throughout Canada, Mexico, and the United States, this text was developed to facilitate comparisons of fish data across regions or time. Here we describe a user-friendly web tool that automates among-sample comparisons in individual fish condition, population length-frequency distributions, and catch per unit effort (CPUE) data collected using AFS standard methods. Currently, the web tool (1) provides instantaneous summaries of almost 4,000 data sets of condition, length frequency, and CPUE of common freshwater fishes collected using standard gears in 43 states and provinces; (2) is easily appended with new standardized field data to update subsequent queries and summaries; (3) compares fish data from a particular water body with continent, ecoregion, and state data summaries; and (4) provides additional information about AFS standard fish sampling including benefits, ongoing validation studies, and opportunities to comment on specific methods. The web tool—programmed in a PHP-based Drupal framework—was supported by several AFS Sections, agencies, and universities and is freely available from the AFS website and fisheriesstandardsampling.org. With widespread use, the online tool could become an important resource for fisheries biologists.

  16. In vivo effects on intron retention and exon skipping by the U2AF large subunit and SF1/BBP in the nematode Caenorhabditis elegans

    PubMed Central

    Ma, Long; Tan, Zhiping; Teng, Yanling; Hoersch, Sebastian; Horvitz, H. Robert

    2011-01-01

    The in vivo analysis of the roles of splicing factors in regulating alternative splicing in animals remains a challenge. Using a microarray-based screen, we identified a Caenorhabditis elegans gene, tos-1, that exhibited three of the four major types of alternative splicing: intron retention, exon skipping, and, in the presence of U2AF large subunit mutations, the use of alternative 3′ splice sites. Mutations in the splicing factors U2AF large subunit and SF1/BBP altered the splicing of tos-1. 3′ splice sites of the retained intron or before the skipped exon regulate the splicing pattern of tos-1. Our study provides in vivo evidence that intron retention and exon skipping can be regulated largely by the identities of 3′ splice sites. PMID:22033331

  17. Clonal dissemination of multilocus sequence type ST15 KPC-2-producing Klebsiella pneumoniae in Bulgaria.

    PubMed

    Markovska, Rumyana; Stoeva, Temenuga; Schneider, Ines; Boyanova, Lyudmila; Popova, Valentina; Dacheva, Daniela; Kaneva, Radka; Bauernfeind, Adolf; Mitev, Vanyo; Mitov, Ivan

    2015-10-01

    A total of 36 consecutive clinical and two fecal-screening carbapenem-resistant Klebsiella pneumoniae isolates from two Bulgarian university hospitals (Varna and Pleven) were investigated. Susceptibility testing, conjugation experiments, and plasmid replicon typing were carried out. Beta-lactamases were characterized by isoelectric focusing, PCR, and sequencing. Clonal relatedness was investigated by RAPD and multilocus sequence typing (MLST). Most of the isolates demonstrated multidrug resistance profile. Amikacin and tigecycline retained good activity with susceptibility rates of 95 and 87%, respectively. The resistance rate to colistin was 63%. Six RAPD- and MLST-types were identified: the dominating MLST-type was ST15 (27 isolates), followed by ST76 (six isolates), and ST1350 (two isolates). ST101, ST258, and ST151 were detected once. All except one of the K. pneumoniae produced KPC-2, mostly in combination with CTX-M-15, while for one isolate (ST101) the enzymes OXA-48 and CTX-M-14 were found. All KPC-2-producing transconjugants revealed the presence of IncFII plasmid. The OXA-48- and CTX-M-14-producing isolate showed the presence of L/M replicon type. The dissemination of KPC-2-producing K.pneumoniae in Bulgaria is mainly due to the sustained spread of successful ST15 clone and to a lesser extent of ST76 clone. This is the first report of OXA-48 producing ST101 K. pneumoniae in Bulgaria. © 2015 APMIS. Published by John Wiley & Sons Ltd.

  18. Noise-Driven Phenotypic Heterogeneity with Finite Correlation Time in Clonal Populations.

    PubMed

    Lee, UnJin; Skinner, John J; Reinitz, John; Rosner, Marsha Rich; Kim, Eun-Jin

    2015-01-01

    There has been increasing awareness in the wider biological community of the role of clonal phenotypic heterogeneity in playing key roles in phenomena such as cellular bet-hedging and decision making, as in the case of the phage-λ lysis/lysogeny and B. Subtilis competence/vegetative pathways. Here, we report on the effect of stochasticity in growth rate, cellular memory/intermittency, and its relation to phenotypic heterogeneity. We first present a linear stochastic differential model with finite auto-correlation time, where a randomly fluctuating growth rate with a negative average is shown to result in exponential growth for sufficiently large fluctuations in growth rate. We then present a non-linear stochastic self-regulation model where the loss of coherent self-regulation and an increase in noise can induce a shift from bounded to unbounded growth. An important consequence of these models is that while the average change in phenotype may not differ for various parameter sets, the variance of the resulting distributions may considerably change. This demonstrates the necessity of understanding the influence of variance and heterogeneity within seemingly identical clonal populations, while providing a mechanism for varying functional consequences of such heterogeneity. Our results highlight the importance of a paradigm shift from a deterministic to a probabilistic view of clonality in understanding selection as an optimization problem on noise-driven processes, resulting in a wide range of biological implications, from robustness to environmental stress to the development of drug resistance.

  19. Genetic diversity in three invasive clonal aquatic species in New Zealand

    PubMed Central

    2010-01-01

    Background Elodea canadensis, Egeria densa and Lagarosiphon major are dioecious clonal species which are invasive in New Zealand and other regions. Unlike many other invasive species, the genetic variation in New Zealand is very limited. Clonal reproduction is often considered an evolutionary dead end, even though a certain amount of genetic divergence may arise due to somatic mutations. The successful growth and establishment of invasive clonal species may be explained not by adaptability but by pre-existing ecological traits that prove advantageous in the new environment. We studied the genetic diversity and population structure in the North Island of New Zealand using AFLPs and related the findings to the number of introductions and the evolution that has occurred in the introduced area. Results Low levels of genetic diversity were found in all three species and appeared to be due to highly homogeneous founding gene pools. Elodea canadensis was introduced in 1868, and its populations showed more genetic structure than those of the more recently introduced of E. densa (1946) and L. major (1950). Elodea canadensis and L. major, however, had similar phylogeographic patterns, in spite of the difference in time since introduction. Conclusions The presence of a certain level of geographically correlated genetic structure in the absence of sexual reproduction, and in spite of random human dispersal of vegetative propagules, can be reasonably attributed to post-dispersal somatic mutations. Direct evidence of such evolutionary events is, however, still insufficient. PMID:20565861

  20. Clonal tracing of Sox9+ liver progenitors in oval cell injury

    PubMed Central

    Tarlow, Branden D.; Finegold, Milton J.; Grompe, Markus

    2014-01-01

    Proliferating ducts, termed “oval cells”, have long thought to be bipotential, i.e. produce both biliary ducts and hepatocytes during chronic liver injury. The precursor to oval cells is considered to be a facultative liver stem cell (LSC). Recent lineage tracing experiments indicated that the LSC is Sox9+ and can replace the bulk of hepatocyte mass in several settings. However, no clonal relationship between Sox9+ cells and the two epithelial liver lineages was established. We labeled Sox9+ mouse liver cells at low density with a multicolor fluorescent confetti reporter. Organoid formation validated the progenitor activity of the labeled population. Sox9+ cells were traced in multiple oval cell injury models using both histology and FACS. Surprisingly, only rare clones containing both hepatocytes and oval cells were found in any experiment. Quantitative analysis showed that Sox9+ cells contributed only minimally (<1%) to the hepatocyte pool, even in classic oval cell injury models. In contrast, clonally marked mature hepatocytes demonstrated the ability to self-renew in all classic mouse oval cell activation injuries. A hepatocyte chimera model to trace hepatocytes and non-parenchymal cells also demonstrated the prevalence of hepatocyte-driven regeneration in mouse oval cell injury models. Conclusion Sox9+ ductal progenitor cells give rise to clonal oval cell proliferation and bipotential organoids but rarely produce hepatocytes in vivo. Hepatocytes themselves are the predominant source of new parenchyma cells in prototypical mouse models of oval cell activation. PMID:24700457

  1. Exploring the mechanism how AF9 recognizes and binds H3K9ac by molecular dynamics simulations and free energy calculations.

    PubMed

    Wang, Quan; Zheng, Qing-Chuan; Zhang, Hong-Xing

    2016-11-01

    Histone acetylation is a very important regulatory mechanism in gene expression in the chromatin context. A new protein family-YEATS domains have been found as a novel histone acetylation reader, which could specific recognize the histone lysine acetylation. AF9 is an important one in the YEATS family. Focused on the AF9-H3K9ac (K9 acetylation) complex (ALY) (PDB code: 4TMP) and a serials of mutants, MUT (the acetyllsine of H3K9ac was mutated to lysine), F59A, G77A, and D103A, we applied molecular dynamics simulation and molecular mechanics Poisson-Boltzmann (MM-PBSA) free energy calculations to examine the role of AF9 protein in recognition interaction. The simulation results and analysis indicate that some residues of the protein have significant influence on recognition and binding to H3K9ac peptides and hydrophobic surface show the hydrophobic interactions play an important role in the binding. Our work can give important information to understand how the protein AF9 recognizes the peptides H3K9ac. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 779-786, 2016. © 2016 Wiley Periodicals, Inc.

  2. The AFS Volunteer Resources Study: Summary of Findings from Australia.

    ERIC Educational Resources Information Center

    Walsh, Desmond; And Others

    The American Field Service (AFS) has 3,500 volunteers throughout Australia. Local chapters recruit potential host families and participants. Host families are recruited actively and selectively while volunteers are recruited largely through AFS presentations at schools, through friends, and by returning volunteers. Due to a high level of demand…

  3. A Monomorphic Haplotype of Chromosome Ia Is Associated with Widespread Success in Clonal and Nonclonal Populations of Toxoplasma gondii

    PubMed Central

    Khan, Asis; Miller, Natalie; Roos, David S.; Dubey, J. P.; Ajzenberg, Daniel; Dardé, Marie Laure; Ajioka, James W.; Rosenthal, Benjamin; Sibley, L. David

    2011-01-01

    ABSTRACT Toxoplasma gondii is a common parasite of animals that also causes a zoonotic infection in humans. Previous studies have revealed a strongly clonal population structure that is shared between North America and Europe, while South American strains show greater genetic diversity and evidence of sexual recombination. The common inheritance of a monomorphic version of chromosome Ia (referred to as ChrIa*) among three clonal lineages from North America and Europe suggests that inheritance of this chromosome might underlie their recent clonal expansion. To further examine the diversity and distribution of ChrIa, we have analyzed additional strains with greater geographic diversity. Our findings reveal that the same haplotype of ChrIa* is found in the clonal lineages from North America and Europe and in older lineages in South America, where sexual recombination is more common. Although lineages from all three continents harbor the same conserved ChrIa* haplotype, strains from North America and Europe are genetically separate from those in South America, and these respective geographic regions show limited evidence of recent mixing. Genome-wide, array-based profiling of polymorphisms provided evidence for an ancestral flow from particular older southern lineages that gave rise to the clonal lineages now dominant in the north. Collectively, these data indicate that ChrIa* is widespread among nonclonal strains in South America and has more recently been associated with clonal expansion of specific lineages in North America and Europe. These findings have significant implications for the spread of genetic loci influencing transmission and virulence in pathogen populations. PMID:22068979

  4. Rapid contemporary evolution and clonal food web dynamics

    PubMed Central

    Jones, Laura E.; Becks, Lutz; Ellner, Stephen P.; Hairston, Nelson G.; Yoshida, Takehito; Fussmann, Gregor F.

    2009-01-01

    Character evolution that affects ecological community interactions often occurs contemporaneously with temporal changes in population size, potentially altering the very nature of those dynamics. Such eco-evolutionary processes may be most readily explored in systems with short generations and simple genetics. Asexual and cyclically parthenogenetic organisms such as microalgae, cladocerans and rotifers, which frequently dominate freshwater plankton communities, meet these requirements. Multiple clonal lines can coexist within each species over extended periods, until either fixation occurs or a sexual phase reshuffles the genetic material. When clones differ in traits affecting interspecific interactions, within-species clonal dynamics can have major effects on the population dynamics. We first consider a simple predator–prey system with two prey genotypes, parametrized with data from a well-studied experimental system, and explore how the extent of differences in defence against predation within the prey population determine dynamic stability versus instability of the system. We then explore how increased potential for evolution affects the community dynamics in a more general community model with multiple predator and multiple prey genotypes. These examples illustrate how microevolutionary ‘details’ that enhance or limit the potential for heritable phenotypic change can have significant effects on contemporaneous community-level dynamics and the persistence and coexistence of species. PMID:19414472

  5. Biomarkers in Persistent AF and Heart Failure: Impact of Catheter Ablation Compared with Rate Control.

    PubMed

    Jones, David G; Haldar, Shouvik K; Donovan, Jacqueline; McDonagh, Theresa A; Sharma, Rakesh; Hussain, Wajid; Markides, Vias; Wong, Tom

    2016-09-01

    To investigate the effects of catheter ablation and rate control strategies on cardiac and inflammatory biomarkers in patients with heart failure and persistent atrial fibrillation (AF). Patients were recruited from the ARC-HF trial (catheter Ablation vs Rate Control for management of persistent AF in Heart Failure, NCT00878384), which compared ablation with rate control for persistent AF in heart failure. B-type natriuretic peptide (BNP), midregional proatrial natriuretic peptide (MR-proANP), apelin, and interleukin-6 (IL-6) were assayed at baseline, 3 months, 6 months, and 12 months. The primary end point, analyzed per-protocol, was changed from baseline at 12 months. Of 52 recruited patients, 24 ablation and 25 rate control subjects were followed to 12 months. After 1.2 ± 0.5 procedures, sinus rhythm was present in 22 (92%) ablation patients; under rate control, rate criteria were achieved in 23 (96%) of 24 patients remaining in AF. At 12 months, MR-proANP fell significantly in the ablation arm (-106.0 pmol/L, interquartile range [IQR] -228.2 to -60.6) compared with rate control (-28.7 pmol/L, IQR -69 to +9.5, P = 0.028). BNP showed a similar trend toward reduction (P = 0.051), with no significant difference in apelin (P = 0.13) or IL-6 (P = 0.68). Changes in MR-proANP and BNP correlated with peak VO2 and ejection fraction, and MR-proANP additionally with quality-of-life score. Catheter ablation, compared with rate control, in patients with heart failure and persistent AF was associated with significant reduction in MR-proANP, which correlated with physiological and symptomatic improvement. Ablation-based rhythm control may induce beneficial cardiac remodeling, unrelated to changes in inflammatory state. This may have prognostic implications, which require confirmation by event end point studies. © 2016 Wiley Periodicals, Inc.

  6. Panmictic and Clonal Evolution on a Single Patchy Resource Produces Polymorphic Foraging Guilds

    PubMed Central

    Getz, Wayne M.; Salter, Richard; Lyons, Andrew J.; Sippl-Swezey, Nicolas

    2015-01-01

    We develop a stochastic, agent-based model to study how genetic traits and experiential changes in the state of agents and available resources influence individuals’ foraging and movement behaviors. These behaviors are manifest as decisions on when to stay and exploit a current resource patch or move to a particular neighboring patch, based on information of the resource qualities of the patches and the anticipated level of intraspecific competition within patches. We use a genetic algorithm approach and an individual’s biomass as a fitness surrogate to explore the foraging strategy diversity of evolving guilds under clonal versus hermaphroditic sexual reproduction. We first present the resource exploitation processes, movement on cellular arrays, and genetic algorithm components of the model. We then discuss their implementation on the Nova software platform. This platform seamlessly combines the dynamical systems modeling of consumer-resource interactions with agent-based modeling of individuals moving over a landscapes, using an architecture that lays transparent the following four hierarchical simulation levels: 1.) within-patch consumer-resource dynamics, 2.) within-generation movement and competition mitigation processes, 3.) across-generation evolutionary processes, and 4.) multiple runs to generate the statistics needed for comparative analyses. The focus of our analysis is on the question of how the biomass production efficiency and the diversity of guilds of foraging strategy types, exploiting resources over a patchy landscape, evolve under clonal versus random hermaphroditic sexual reproduction. Our results indicate greater biomass production efficiency under clonal reproduction only at higher population densities, and demonstrate that polymorphisms evolve and are maintained under random mating systems. The latter result questions the notion that some type of associative mating structure is needed to maintain genetic polymorphisms among individuals

  7. Effect of aldosterone on cochlear Af9 expression and hearing in guinea pig.

    PubMed

    Qin, Li; Zhang, Biyun; Wang, Qianying; Li, Duanchao; Luo, Xiaoli; Zhong, Shixun

    2017-09-01

    Af9 protein in cochlea may be closely related to endolymph regulation by aldosterone and thus may be involved in pathogenesis of endolymphatic hydrops (EH). EH is the pathological characteristic of Ménière's disease (MD). Aldosterone could induce EH, but its relationship with MD is still controversial. The aim of the present study is to investigate the Af9 protein expression in guinea pig cochlea and regulation of Af9 expression and cochlear function by aldosterone. The role of Af9 in pathogenesis of EH is discussed. Thirty guinea pigs were randomly divided into two groups. The treatment group was intraperitoneally injected with aldosterone 0.1 mg/kg/d for 5 days, while the control group was done with saline. Hearing and histomorphology of cochlea were examined. In addition, expression of Af9 protein was studied. The hearing threshold of the treatment group was increased. EH was induced in 73% of guinea pigs in the treatment group, and no EH was found in the control group. Af9 protein was found in spiral limbus, stria vascularis, Reissner's membrane, organ of Corti and spiral ganglion in both groups. Af9 expression in cochlea decreased significantly at protein level after treatment by aldosterone.

  8. GLA-AF, an emulsion-free vaccine adjuvant for pandemic influenza.

    PubMed

    Clegg, Christopher H; Roque, Richard; Perrone, Lucy A; Rininger, Joseph A; Bowen, Richard; Reed, Steven G

    2014-01-01

    The ongoing threat from Influenza necessitates the development of new vaccine and adjuvant technologies that can maximize vaccine immunogenicity, shorten production cycles, and increase global vaccine supply. Currently, the most successful adjuvants for Influenza vaccines are squalene-based oil-in-water emulsions. These adjuvants enhance seroprotective antibody titers to homologous and heterologous strains of virus, and augment a significant dose sparing activity that could improve vaccine manufacturing capacity. As an alternative to an emulsion, we tested a simple lipid-based aqueous formulation containing a synthetic TLR4 ligand (GLA-AF) for its ability to enhance protection against H5N1 infection. GLA-AF was very effective in adjuvanting recombinant H5 hemagglutinin antigen (rH5) in mice and was as potent as the stable emulsion, SE. Both adjuvants induced similar antibody titers using a sub-microgram dose of rH5, and both conferred complete protection against a highly pathogenic H5N1 challenge. However, GLA-AF was the superior adjuvant in ferrets. GLA-AF stimulated a broader antibody response than SE after both the prime and boost immunization with rH5, and ferrets were better protected against homologous and heterologous strains of H5N1 virus. Thus, GLA-AF is a potent emulsion-free adjuvant that warrants consideration for pandemic influenza vaccine development.

  9. Concurrent MPL515 and JAK2V617F mutations in myelofibrosis: chronology of clonal emergence and changes in mutant allele burden over time.

    PubMed

    Lasho, Terra L; Pardanani, Animesh; McClure, Rebecca F; Mesa, Ruben A; Levine, Ross L; Gilliland, D Gary; Tefferi, Ayalew

    2006-12-01

    MPLW515L/K and JAK2V617F can co-exist in myelofibrosis with myeloid metaplasia (MMM). The chronology of clonal emergence was studied in three such cases using serially stored bone marrow. At diagnosis, a major MPL515 mutant clone was accompanied by a minor JAK2V617F clone in all three instances. At 25 time points over a period of 4-8 years, allele burden fluctuated but remained high for MPLW515L/K and low for JAK2V617F. We conclude that MPLW515L/K and JAK2V617F are both early events in MMM and allele burden, rather than the mere presence of these mutations, might be relevant to phenotypic variation in myeloproliferative disorders.

  10. Chemistry of 1,1,2,2,9,9,10,10-octafluoro-[2,2]-paracyclophane: Its synthesis and reactions

    NASA Astrophysics Data System (ADS)

    Duan, Jian-Xin

    This dissertation describes the first example of the synthesis of 1,1,2,2,9,9,10,10-octafluoro[2.2]paracyclophane (AF4) under non-high-dilution conditions. Under very mild reaction conditions, bis-p-(chlorodifluoromethyl)benzene (TFPX dichloride) and its derivatives reacted with Zn dust in N,N-dimethyl acetamide (DMA) (Zinc method) affording the corresponding AF4 and its derivatives in moderate to good yields. Purification of products was also studied and an efficient purification process was developed. A new and very cheap method for preparation of TFPX dichloride is also disclosed. Using the very cheap fluorinating reagent, anhydrous hydrogen fluoride (AHF), 1,4-bis(trichloromethyl)benezene or its derivatives were converted to TFPX and its derivatives in high yields (F/Cl exchange reaction). With the success of the Zinc method and F/Cl exchange reaction, highly pure AF4 thus can be provided to the semiconductor industry and academy research scientists in large quantity and at a very low price. Starting from AF4, numerous AF4 derivatives were synthesized using convenient reaction conditions. Reaction of AF4 with fuming nitric acid at room temperature gave mono-nitroAF4 in almost quantitative yield. Reduction of the mono-nitroAF4 with iron powder in the presence of HCl in alcoholic solvent gave the aminoAF4 in 90% yield. Via the diazonium salt intermediate, iodoAF4 was also obtained in good yield. Under similar reaction conditions, disubstituted AF4 derivatives were also prepared in good yields. Heating a mixture of AF4, trifluoroacetyl peroxide and dichloromethane gave the trifluoromethylated dimeric AF4 as a mixture of diastereomers. When these products were heated to 170--180°C in the presence of I 2, 4-trifluoromethyl-AF4 was obtained in almost 87% yield. X-ray structural analysis showed that the C-C bond connecting the two cyclophane moieties to be longer than the normal C-C bond. Kinetic studies, conducted in the presence of excess amount of hydrogen donor

  11. Antimicrobial Susceptibility and Clonality of Clinical Ureaplasma Isolates in the United States

    PubMed Central

    Fernández, Javier; Karau, Melissa J.; Cunningham, Scott A.; Greenwood-Quaintance, Kerryl E.

    2016-01-01

    Ureaplasma urealyticum and Ureaplasma parvum are pathogens involved in urogenital tract and intrauterine infections and also in systemic diseases in newborns and immunosuppressed patients. There is limited information on the antimicrobial susceptibility and clonality of these species. In this study, we report the susceptibility of 250 contemporary isolates of Ureaplasma (202 U. parvum and 48 U. urealyticum isolates) recovered at Mayo Clinic, Rochester, MN. MICs of doxycycline, azithromycin, ciprofloxacin, tetracycline, erythromycin, and levofloxacin were determined by broth microdilution, with MICS of the last three interpreted according to CLSI guidelines. Levofloxacin resistance was found in 6.4% and 5.2% of U. parvum and U. urealyticum isolates, respectively, while 27.2% and 68.8% of isolates, respectively, showed ciprofloxacin MICs of ≥4 μg/ml. The resistance mechanism of levofloxacin-resistant isolates was due to mutations in parC, with the Ser83Leu substitution being most frequent, followed by Glu87Lys. No macrolide resistance was found among the 250 isolates studied; a single U. parvum isolate was tetracycline resistant. tet(M) was found in 10 U. parvum isolates, including the single tetracycline-resistant isolate, as well as in 9 isolates which had low tetracycline and doxycycline MICs. Multilocus sequence typing (MLST) performed on a selection of 46 isolates showed high diversity within the clinical Ureaplasma isolates studied, regardless of antimicrobial susceptibility. The present work extends previous knowledge regarding susceptibility to antimicrobial agents, resistance mechanisms, and clonality of Ureaplasma species in the United States. PMID:27246773

  12. Morphological response to competition for light in the clonal Trifolium repens (Fabaceae).

    PubMed

    Bittebiere, Anne-Kristel; Renaud, Nolwenn; Clément, Bernard; Mony, Cendrine

    2012-04-01

    Plant communities in temperate zones are dominated by clonal plants that can plastically modify their growth characteristics in response to competition. Given that plants compete with one another, and the implications this has for species coexistence, we conducted a study to assess how clonal species morphologically respond to competition for light depending on its intensity and heterogeneity, which are determined by the competitor species. We assessed the morphological response to competition for light of the clonal species Trifolium repens L. by measuring its growth performance, and vertical and horizontal growth traits. We used five competitive environments, i.e., one without competitor and four differing by their competitor species creating different conditions of competition intensity and heterogeneity. The morphological response of Trifolium repens to competition for light depended on the competitor identity. Competition intensity and heterogeneity, determined by competitor identity, had an interactive effect on most traits. The increase in petiole elongation and specific leaf area due to increased competition intensity was observed only at low to intermediate competition heterogeneity. Competition heterogeneity promoted the elongation of clone connections allowing space exploration. Our results demonstrated that the intensity and heterogeneity of competition, which depended on competitor identity, are of primary importance in determining the plastic response of Trifolium repens. This emphasizes that it is important to consider the fine-scale spatial distribution of individuals when studying their interactions within plant communities.

  13. Rivaroxaban in patients with atrial fibrillation: from ROCKET AF to everyday practice.

    PubMed

    Barón-Esquivias, Gonzalo; Marín, Francisco; Sanmartín Fernandez, Marcelo

    2017-05-01

    Registries and non-interventional studies offer relevant and complementary information to clinical trials, since they have a high external validity. Areas covered: The information regarding the efficacy and safety of rivaroxaban compared with warfarin, or rivaroxaban alone in clinical practice was reviewed in this manuscript. For this purpose, a search on MEDLINE and EMBASE databases was performed. The MEDLINE and EMBASE search included both medical subject headings (MeSH) and keywords including: atrial fibrillation (AF) OR warfarin OR clinical practice OR ROCKET AF AND rivaroxaban. Case reports were not considered. Expert commentary: In ROCKET AF, rivaroxaban was at least as effective as warfarin for the prevention of stroke in patients with nonvalvular AF at high risk of stroke, but, importantly, with a lesser risk of intracranial, critical and fatal bleedings. A number of observational comparative and non-comparative studies, with more than 60,000 patients included treated with rivaroxaban, have analyzed the efficacy and safety of rivaroxaban in real-life patients with AF in different clinical settings. These studies have shown that in clinical practice, rates of stroke and major bleeding were consistently lower than those reported in ROCKET AF, likely due to the lower thromboembolic and bleeding risk observed in these patients.

  14. GPIM AF-M315E Propulsion System

    NASA Technical Reports Server (NTRS)

    Spores, Ronald A.; Masse, Robert; Kimbrel, Scott; McLean, Chris

    2014-01-01

    The NASA Space Technology mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) Technology Demonstration Mission (TDM) will demonstrate an operational AF-M315E green propellant propulsion system. Aerojet-Rocketdyne is responsible for the development of the propulsion system payload. This paper statuses the propulsion system module development, including thruster design and system design; Initial test results for the 1N engineering model thruster are presented. The culmination of this program will be high-performance, green AF-M315E propulsion system technology at TRL 7+, with components demonstrated to TRL 9, ready for direct infusion to a wide range of applications for the space user community.

  15. Low incidence of clonality in cold water corals revealed through the novel use of a standardized protocol adapted to deep sea sampling

    NASA Astrophysics Data System (ADS)

    Becheler, Ronan; Cassone, Anne-Laure; Noël, Philippe; Mouchel, Olivier; Morrison, Cheryl L.; Arnaud-Haond, Sophie

    2017-11-01

    Sampling in the deep sea is a technical challenge, which has hindered the acquisition of robust datasets that are necessary to determine the fine-grained biological patterns and processes that may shape genetic diversity. Estimates of the extent of clonality in deep-sea species, despite the importance of clonality in shaping the local dynamics and evolutionary trajectories, have been largely obscured by such limitations. Cold-water coral reefs along European margins are formed mainly by two reef-building species, Lophelia pertusa and Madrepora oculata. Here we present a fine-grained analysis of the genotypic and genetic composition of reefs occurring in the Bay of Biscay, based on an innovative deep-sea sampling protocol. This strategy was designed to be standardized, random, and allowed the georeferencing of all sampled colonies. Clonal lineages discriminated through their Multi-Locus Genotypes (MLG) at 6-7 microsatellite markers could thus be mapped to assess the level of clonality and the spatial spread of clonal lineages. High values of clonal richness were observed for both species across all sites suggesting a limited occurrence of clonality, which likely originated through fragmentation. Additionally, spatial autocorrelation analysis underlined the possible occurrence of fine-grained genetic structure in several populations of both L. pertusa and M. oculata. The two cold-water coral species examined had contrasting patterns of connectivity among canyons, with among-canyon genetic structuring detected in M. oculata, whereas L. pertusa was panmictic at the canyon scale. This study exemplifies that a standardized, random and georeferenced sampling strategy, while challenging, can be applied in the deep sea, and associated benefits outlined here include improved estimates of fine grained patterns of clonality and dispersal that are comparable across sites and among species.

  16. Common data model for natural language processing based on two existing standard information models: CDA+GrAF.

    PubMed

    Meystre, Stéphane M; Lee, Sanghoon; Jung, Chai Young; Chevrier, Raphaël D

    2012-08-01

    An increasing need for collaboration and resources sharing in the Natural Language Processing (NLP) research and development community motivates efforts to create and share a common data model and a common terminology for all information annotated and extracted from clinical text. We have combined two existing standards: the HL7 Clinical Document Architecture (CDA), and the ISO Graph Annotation Format (GrAF; in development), to develop such a data model entitled "CDA+GrAF". We experimented with several methods to combine these existing standards, and eventually selected a method wrapping separate CDA and GrAF parts in a common standoff annotation (i.e., separate from the annotated text) XML document. Two use cases, clinical document sections, and the 2010 i2b2/VA NLP Challenge (i.e., problems, tests, and treatments, with their assertions and relations), were used to create examples of such standoff annotation documents, and were successfully validated with the XML schemata provided with both standards. We developed a tool to automatically translate annotation documents from the 2010 i2b2/VA NLP Challenge format to GrAF, and automatically generated 50 annotation documents using this tool, all successfully validated. Finally, we adapted the XSL stylesheet provided with HL7 CDA to allow viewing annotation XML documents in a web browser, and plan to adapt existing tools for translating annotation documents between CDA+GrAF and the UIMA and GATE frameworks. This common data model may ease directly comparing NLP tools and applications, combining their output, transforming and "translating" annotations between different NLP applications, and eventually "plug-and-play" of different modules in NLP applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. CONTRIBUTIONS OF SEXUAL AND ASEXUAL REPRODUCTION TO POPULATION STRUCTURE IN THE CLONAL SOFT CORAL, ALCYONIUM RUDYI.

    PubMed

    McFadden, Catherine S

    1997-02-01

    Numerous studies of population structure in sessile clonal marine invertebrates have demonstrated low genotypic diversity and nonequilibrium genotype frequencies within local populations that are monopolized by relatively few, highly replicated genets. All of the species studied to date produce planktonic sexual propagules capable of dispersing long distances; despite local genotypic disequilibria, populations are often panmictic over large geographic areas. The population structure paradigm these species represent may not be typical of the majority of clonal invertebrate groups, however, which are believed to produce highly philopatric sexual propagules. I used allozyme variation to examine the population structure of the temperate soft coral, Alcyonium rudyi, a typical clonal species whose sexually produced larvae and asexually produced ramets both have very low dispersal capabilities. Like other clonal plants and invertebrates, the local population dynamics of A. rudyi are dominated by asexual reproduction, and recruitment of new sexually produced genets occurs infrequently. As expected from its philopatric larval stage, estimates of genetic differentiation among populations of A. rudyi were highly significant at all spatial scales examined (mean θ = 0.300 among 20 populations spanning a 1100-km range), suggesting that genetic exchange seldom occurs among populations separated by as little as a few hundred meters. Mapping of multilocus allozyme genotypes within a dense aggregation of A. rudyi ramets confirmed that dispersal of asexual propagules is also very limited: members of the same genet usually remain within < 50 cm of one another on the same rock surface. Unlike most previously studied clonal invertebrates, populations of A. rudyi do not appear to be dominated by a few widespread genets: estimates of genotypic diversity (G o ) within 20 geographically distinct populations did not differ from expectations for outcrossing, sexual populations. Despite

  18. Multiplex CRISPR/Cas9-Based Genome Editing in Human Hematopoietic Stem Cells Models Clonal Hematopoiesis and Myeloid Neoplasia.

    PubMed

    Tothova, Zuzana; Krill-Burger, John M; Popova, Katerina D; Landers, Catherine C; Sievers, Quinlan L; Yudovich, David; Belizaire, Roger; Aster, Jon C; Morgan, Elizabeth A; Tsherniak, Aviad; Ebert, Benjamin L

    2017-10-05

    Hematologic malignancies are driven by combinations of genetic lesions that have been difficult to model in human cells. We used CRISPR/Cas9 genome engineering of primary adult and umbilical cord blood CD34 + human hematopoietic stem and progenitor cells (HSPCs), the cells of origin for myeloid pre-malignant and malignant diseases, followed by transplantation into immunodeficient mice to generate genetic models of clonal hematopoiesis and neoplasia. Human hematopoietic cells bearing mutations in combinations of genes, including cohesin complex genes, observed in myeloid malignancies generated immunophenotypically defined neoplastic clones capable of long-term, multi-lineage reconstitution and serial transplantation. Employing these models to investigate therapeutic efficacy, we found that TET2 and cohesin-mutated hematopoietic cells were sensitive to azacitidine treatment. These findings demonstrate the potential for generating genetically defined models of human myeloid diseases, and they are suitable for examining the biological consequences of somatic mutations and the testing of therapeutic agents. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Binding of hnRNP H and U2AF65 to Respective G-codes and a Poly-Uridine Tract Collaborate in the N50-5'ss Selection of the REST N Exon in H69 Cells

    PubMed Central

    Ortuño-Pineda, Carlos; Galindo-Rosales, José Manuel; Calderón-Salinas, José Victor; Villegas-Sepúlveda, Nicolás; Saucedo-Cárdenas, Odila; De Nova-Ocampo, Mónica; Valdés, Jesús

    2012-01-01

    The splicing of the N exon in the pre-mRNA coding for the RE1-silencing transcription factor (REST) results in a truncated protein that modifies the expression pattern of some of its target genes. A weak 3'ss, three alternative 5'ss (N4-, N50-, and N62-5'ss) and a variety of putative target sites for splicing regulatory proteins are found around the N exon; two GGGG codes (G2-G3) and a poly-Uridine tract (N-PU) are found in front of the N50-5'ss. In this work we analyzed some of the regulatory factors and elements involved in the preferred selection of the N50-5'ss (N50 activation) in the small cell lung cancer cell line H69. Wild type and mutant N exon/β-globin minigenes recapitulated N50 exon splicing in H69 cells, and showed that the N-PU and the G2-G3 elements are required for N50 exon splicing. Biochemical and knockdown experiments identified these elements as U2AF65 and hnRNP H targets, respectively, and that they are also required for N50 exon activation. Compared to normal MRC5 cells, and in keeping with N50 exon activation, U2AF65, hnRNP H and other splicing factors were highly expressed in H69 cells. CLIP experiments revealed that hnRNP H RNA-binding occurs first and is a prerequisite for U2AF65 RNA binding, and EMSA and CLIP experiments suggest that U2AF65-RNA recognition displaces hnRNP H and helps to recruit other splicing factors (at least U1 70K) to the N50-5'ss. Our results evidenced novel hnRNP H and U2AF65 functions: respectively, U2AF65-recruiting to a 5'ss in humans and the hnRNP H-displacing function from two juxtaposed GGGG codes. PMID:22792276

  20. Multi-jet propulsion organized by clonal development in a colonial siphonophore

    NASA Astrophysics Data System (ADS)

    Costello, John; Colin, Sean; Gemmell, Brad; Dabiri, John; Sutherland, Kelly

    2015-11-01

    Physonect siphonophores are colonial cnidarians that are pervasive predators in many neritic and oceanic ecosystems. Physonects employ multiple, clonal medusan individuals, termed nectophores, to propel an aggregate colony. Here we show that developmental differences between clonal nectophores of the physonect Nanomia bijuga produce a division of labor in thrust and torque production that controls direction and magnitude of whole colony swimming. Although smaller and less powerful, the position of young nectophores near the apex of the nectosome allows them to dominate torque production for turning whereas older, larger and more powerful individuals near the base of the nectosome contribute predominantly to forward thrust production. The patterns we describe offer insight into the biomechanical success of an ecologically important and widespread colonial animal group, but more broadly, provide basic physical understanding of a natural solution to multi-engine organization that may contribute to the expanding field of underwater distributed propulsion vehicle design.

  1. Multi-jet propulsion organized by clonal development in a colonial siphonophore.

    PubMed

    Costello, John H; Colin, Sean P; Gemmell, Brad J; Dabiri, John O; Sutherland, Kelly R

    2015-09-01

    Physonect siphonophores are colonial cnidarians that are pervasive predators in many neritic and oceanic ecosystems. Physonects employ multiple, clonal medusan individuals, termed nectophores, to propel an aggregate colony. Here we show that developmental differences between clonal nectophores of the physonect Nanomia bijuga produce a division of labour in thrust and torque production that controls direction and magnitude of whole-colony swimming. Although smaller and less powerful, the position of young nectophores near the apex of the nectosome allows them to dominate torque production for turning, whereas older, larger and more powerful individuals near the base of the nectosome contribute predominantly to forward thrust production. The patterns we describe offer insight into the biomechanical success of an ecologically important and widespread colonial animal group, but, more broadly, provide basic physical understanding of a natural solution to multi-engine organization that may contribute to the expanding field of underwater-distributed propulsion vehicle design.

  2. HPLC-HG-AFS determination of arsenic species in acute promyelocytic leukemia (APL) plasma and blood cells.

    PubMed

    Guo, Meihua; Wang, Wenjing; Hai, Xin; Zhou, Jin

    2017-10-25

    Arsenic trioxide (ATO) has been successfully used in the treatment of acute promyelocytic leukemia (APL). To clarify the arsenic species in APL patients, high performance liquid chromatography-hydride generation-atomic fluorescence spectrometry (HPLC-HG-AFS) and HG-AFS methods were developed and validated to quantify the plasma concentrations of inorganic arsenic (As(III) and As(V)) and methylated metabolites (MMA and DMA), and the total amounts of arsenic in blood cells and plasma. Blood cells and plasma were digested with mixtures of HNO 3 H 2 O 2 and analyzed by HG-AFS. For arsenic speciation, plasma samples were prepared with perchloric acid to precipitate protein. The supernatant was separated on an anion-exchange column within 6min with isocratic elution using 13mM CH 3 COONa, 3mM NaH 2 PO 4 , 4mM KNO 3 and 0.2mM EDTA-2Na. The methods provided linearity range of 0.2-20ng/mL for total arsenic and 2.0-50ng/mL for four arsenic species. The developed methods for total arsenic and arsenic species determination were precise and accurate. The spiked recoveries ranged from 81.2%-108.6% and the coefficients of variation for intra- and inter-batch precision were less than 9.3% and 12.5%, respectively. The developed methods were applied successfully for the assay of total arsenic and arsenic species in 5 APL patients. The HPLC-HG-AFS may be a good alternative for arsenic species determination in APL patients with its simplicity and low-cost in comparison with HPLC-ICP-MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage.

    PubMed

    Kaucka, Marketa; Zikmund, Tomas; Tesarova, Marketa; Gyllborg, Daniel; Hellander, Andreas; Jaros, Josef; Kaiser, Jozef; Petersen, Julian; Szarowska, Bara; Newton, Phillip T; Dyachuk, Vyacheslav; Li, Lei; Qian, Hong; Johansson, Anne-Sofie; Mishina, Yuji; Currie, Joshua D; Tanaka, Elly M; Erickson, Alek; Dudley, Andrew; Brismar, Hjalmar; Southam, Paul; Coen, Enrico; Chen, Min; Weinstein, Lee S; Hampl, Ales; Arenas, Ernest; Chagin, Andrei S; Fried, Kaj; Adameyko, Igor

    2017-04-17

    Cartilaginous structures are at the core of embryo growth and shaping before the bone forms. Here we report a novel principle of vertebrate cartilage growth that is based on introducing transversally-oriented clones into pre-existing cartilage. This mechanism of growth uncouples the lateral expansion of curved cartilaginous sheets from the control of cartilage thickness, a process which might be the evolutionary mechanism underlying adaptations of facial shape. In rod-shaped cartilage structures (Meckel, ribs and skeletal elements in developing limbs), the transverse integration of clonal columns determines the well-defined diameter and resulting rod-like morphology. We were able to alter cartilage shape by experimentally manipulating clonal geometries. Using in silico modeling, we discovered that anisotropic proliferation might explain cartilage bending and groove formation at the macro-scale.

  4. Asymmetric flow field flow fractionation for the characterization of globule size distribution in complex formulations: A cyclosporine ophthalmic emulsion case.

    PubMed

    Qu, Haiou; Wang, Jiang; Wu, Yong; Zheng, Jiwen; Krishnaiah, Yellela S R; Absar, Mohammad; Choi, Stephanie; Ashraf, Muhammad; Cruz, Celia N; Xu, Xiaoming

    2018-03-01

    Commonly used characterization techniques such as cryogenic-transmission electron microscopy (cryo-TEM) and batch-mode dynamic light scattering (DLS) are either time consuming or unable to offer high resolution to discern the poly-dispersity of complex drug products like cyclosporine ophthalmic emulsions. Here, a size-based separation and characterization method for globule size distribution using an asymmetric flow field flow fractionation (AF4) is reported for comparative assessment of cyclosporine ophthalmic emulsion drug products (model formulation) with a wide size span and poly-dispersity. Cyclosporine emulsion formulations that are qualitatively (Q1) and quantitatively (Q2) the same as Restasis® were prepared in house with varying manufacturing processes and analyzed using the optimized AF4 method. Based on our results, the commercially available cyclosporine ophthalmic emulsion has a globule size span from 30 nm to a few hundred nanometers with majority smaller than 100 nm. The results with in-house formulations demonstrated the sensitivity of AF4 in determining the differences in the globule size distribution caused by the changes to the manufacturing process. It is concluded that the optimized AF4 is a potential analytical technique for comprehensive understanding of the microstructure and assessment of complex emulsion drug products with high poly-dispersity. Published by Elsevier B.V.

  5. Clonal population of adult stem cells: life span and differentiation potential.

    PubMed

    Seruya, Mitchel; Shah, Anup; Pedrotty, Dawn; du Laney, Tracey; Melgiri, Ryan; McKee, J Andrew; Young, Henry E; Niklason, Laura E

    2004-01-01

    Adult stem cells derived from bone marrow, connective tissue, and solid organs can exhibit a range of differentiation potentials. Some controversy exists regarding the classification of mesenchymal stem cells as bona fide stem cells, which is in part derived from the limited ability to propagate true clonal populations of precursor cells. We isolated putative mesenchymal stem cells from the connective tissue of an adult rat (rMSC), and generated clonal populations via three rounds of dilutional cloning. The replicative potential of the clonal rMSC line far exceeded Hayflick's limit of 50-70 population doublings. The high capacity for self-renewal in vitro correlated with telomerase activity, as demonstrated by telomerase repeat amplification protocol (TRAP) assay. Exposure to nonspecific differentiation culture medium revealed multilineage differentiation potential of rMSC clones. Immunostaining confirmed the appearance of mesodermal phenotypes, including adipocytes possessing lipid-rich vacuoles, chondrocytes depositing pericellular type II collagen, and skeletal myoblasts expressing MyoD1. Importantly, the spectrum of differentiation capability was sustained through repeated passaging. Furthermore, serum-free conditions that led to high-efficiency smooth muscle differentiation were identified. rMSCs plated on collagen IV-coated surfaces and exposed to transforming growth factor-beta1 (TGF-beta1) differentiated into a homogeneous population expressing alpha-actin and calponin. Hence, clonogenic analysis confirmed the presence of a putative MSC population derived from the connective tissue of rat skeletal muscle. The ability to differentiate into a smooth muscle cell (SMC) phenotype, combined with a high proliferative capacity, make such a connective tissue-derived MSC population ideal for applications in vascular tissue construction.

  6. Outcomes after cardioversion and atrial fibrillation ablation in patients treated with rivaroxaban and warfarin in the ROCKET AF trial.

    PubMed

    Piccini, Jonathan P; Stevens, Susanna R; Lokhnygina, Yuliya; Patel, Manesh R; Halperin, Jonathan L; Singer, Daniel E; Hankey, Graeme J; Hacke, Werner; Becker, Richard C; Nessel, Christopher C; Mahaffey, Kenneth W; Fox, Keith A A; Califf, Robert M; Breithardt, Günter

    2013-05-14

    This study sought to investigate the outcomes following cardioversion or catheter ablation in patients with atrial fibrillation (AF) treated with warfarin or rivaroxaban. There are limited data on outcomes following cardioversion or catheter ablation in AF patients treated with factor Xa inhibitors. We compared the incidence of electrical cardioversion (ECV), pharmacologic cardioversion (PCV), or AF ablation and subsequent outcomes in patients in a post hoc analysis of the ROCKET AF (Efficacy and Safety Study of Rivaroxaban With Warfarin for the Prevention of Stroke and Non-Central Nervous System Systemic Embolism in Patients With Non-Valvular Atrial Fibrillation) trial. Over a median follow-up of 2.1 years, 143 patients underwent ECV, 142 underwent PCV, and 79 underwent catheter ablation. The overall incidence of ECV, PCV, or AF ablation was 1.45 per 100 patient-years (n = 321; 1.44 [n = 161] in the warfarin arm, 1.46 [n = 160] in the rivaroxaban arm). The crude rates of stroke and death increased in the first 30 days after cardioversion or ablation. After adjustment for baseline differences, the long-term incidence of stroke or systemic embolism (hazard ratio [HR]: 1.38; 95% confidence interval [CI]: 0.61 to 3.11), cardiovascular death (HR: 1.57; 95% CI: 0.69 to 3.55), and death from all causes (HR: 1.75; 95% CI: 0.90 to 3.42) were not different before and after cardioversion or AF ablation. Hospitalization increased after cardioversion or AF ablation (HR: 2.01; 95% CI: 1.51 to 2.68), but there was no evidence of a differential effect by randomized treatment (p value for interaction = 0.58). The incidence of stroke or systemic embolism (1.88% vs. 1.86%) and death (1.88% vs. 3.73%) were similar in the rivaroxaban-treated and warfarin-treated groups. Despite an increase in hospitalization, there were no differences in long-term stroke rates or survival following cardioversion or AF ablation. Outcomes were similar in patients treated with rivaroxaban or warfarin

  7. endAFS, a novel family E endoglucanase gene from Fibrobacter succinogenes AR1.

    PubMed Central

    Cavicchioli, R; East, P D; Watson, K

    1991-01-01

    The complete nucleotide sequence of endAFS, an endoglucanase gene isolated from the ruminal anaerobe Fibrobacter succinogenes AR1, was determined. endAFS encodes two overlapping open reading frames (ORF1 and ORF2), and it was proposed that a -1 ribosomal frameshift was required to allow contiguous synthesis of a 453-amino-acid endoglucanase. A proline- and threonine-rich region at the C terminus of ORF1 and rare codons for arginine and threonine were coincident with the proposed frameshift site. ENDAFS is proposed to be a member of subgroup 1 of family E endoglucanases, of which endoglucanases from Thermomonospora fusca and Persea americana (avocado) are also members. Endoglucanases from Clostridium thermocellum and Pseudomonas fluorescens form subgroup 2. Images PMID:1708767

  8. Long-term consequences of disturbances on reproductive strategies of the rare epiphytic lichen Lobaria pulmonaria: clonality a gift and a curse.

    PubMed

    Singh, Garima; Dal Grande, Francesco; Werth, Silke; Scheidegger, Christoph

    2015-01-01

    The effect of disturbance on symbiotic organisms such as lichens is particularly severe. In case of heterothallic lichen-forming fungi, disturbances may lead to unbalanced gene frequency and patchy distribution of mating types, thus inhibiting sexual reproduction and imposing clonality. The impact of disturbance on reproductive strategies and genetic diversity of clonal systems has so far received little attention. To infer the effects of disturbances on mating-type allele frequencies and population structure, we selected three populations in the Parc Jurassien Vaudois (Switzerland), which were affected by uneven-aged forestry, intensive logging and fire, respectively. We used microsatellite markers to infer genetic diversity, allelic richness and clonal diversity of the epiphytic lichen Lobaria pulmonaria and used L. pulmonaria-specific MAT1-1 and MAT1-2 markers to analyse the frequency and distribution of mating types of 889 individuals. Our study shows that stand-replacing disturbances affect the mating-type frequency and distribution, thus compromising the potential for sexual reproduction. The fire-disturbed area had a significantly lower genetic and genotypic diversity and a higher clonality. Furthermore, the majority of compatible mating pairs in this area were beyond the effective vegetative dispersal range of the species. We conclude that stand-replacing disturbances lead to lower chances of sex and symbiont reshuffling and thus have long-lasting negative consequences on the reproductive strategies and adaptive potential of epiphytic lichen symbioses. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Atrial Fibrillation Management Strategies in Routine Clinical Practice: Insights from the International RealiseAF Survey

    PubMed Central

    Chiang, Chern-En; Naditch-Brûlé, Lisa; Brette, Sandrine; Silva-Cardoso, José; Gamra, Habib; Murin, Jan; Zharinov, Oleg J.; Steg, Philippe Gabriel

    2016-01-01

    Background Atrial fibrillation (AF) can be managed with rhythm- or rate-control strategies. There are few data from routine clinical practice on the frequency with which each strategy is used and their correlates in terms of patients’ clinical characteristics, AF control, and symptom burden. Methods RealiseAF was an international, cross-sectional, observational survey of 11,198 patients with AF. The aim of this analysis was to describe patient profiles and symptoms according to the AF management strategy used. A multivariate logistic regression identified factors associated with AF management strategy at the end of the visit. Results Among 10,497 eligible patients, 53.7% used a rate-control strategy, compared with 34.5% who used a rhythm-control strategy. In 11.8% of patients, no clear strategy was stated. The proportion of patients with AF-related symptoms (EHRA Class > = II) was 78.1% (n = 4396/5630) for those using a rate-control strategy vs. 67.8% for those using a rhythm-control strategy (p<0.001). Multivariate logistic regression analysis revealed that age <75 years or the paroxysmal or persistent form of AF favored the choice of a rhythm-control strategy. A change in strategy was infrequent, even in patients with European Heart Rhythm Association (EHRA) Class > = II. Conclusions In the RealiseAF routine clinical practice survey, rate control was more commonly used than rhythm control, and a change in strategy was uncommon, even in symptomatic patients. In almost 12% of patients, no clear strategy was stated. Physician awareness regarding optimal management strategies for AF may be improved. PMID:26800084

  10. Infliximab induces clonal expansion of γδ-T cells in Crohn's disease: a predictor of lymphoma risk?

    PubMed

    Kelsen, Jens; Dige, Anders; Schwindt, Heinrich; D'Amore, Francesco; Pedersen, Finn S; Agnholt, Jørgen; Christensen, Lisbet A; Dahlerup, Jens F; Hvas, Christian L

    2011-03-31

    Concominant with the widespread use of combined immunotherapy in the management of Crohn's disease (CD), the incidence of hepato-splenic gamma-delta (γδ)-T cell lymphoma has increased sharply in CD patients. Malignant transformation of lymphocytes is believed to be a multistep process resulting in the selection of malignant γδ-T cell clones. We hypothesised that repeated infusion of anti-TNF-α agents may induce clonal selection and that concurrent treatment with immunomodulators further predisposes patients to γδ-T cell expansion. We investigated dynamic changes in the γδ-T cells of patient with CD following treatment with infliximab (Remicade®; n=20) or adalimumab (Humira®; n=26) using flow cytometry. In patients with a high γδ-T cell level, the γδ-T cells were assessed for clonality. Of these 46 CD patients, 35 had a γδ-T cells level (mean 1.6%) comparable to healthy individuals (mean 2.2%), and 11 CD patients (24%) exhibited an increased level of γδ-T cells (5-15%). In the 18 patients also receiving thiopurines or methotrexate, the average baseline γδ-T cell level was 4.4%. In three male CD patients with a high baseline value, the γδ-T cell population increased dramatically following infliximab therapy. A fourth male patient also on infliximab monotherapy presented with 20% γδ-T cells, which increased to 25% shortly after treatment and was 36% between infusions. Clonality studies revealed an oligoclonal γδ-T cell pattern with dominant γδ-T cell clones. In support of our clinical findings, in vitro experiments showed a dose-dependent proliferative effect of anti-TNF-α agents on γδ-T cells. CD patients treated with immunomodulators had constitutively high levels of γδ-T cells. Infliximab exacerbated clonal γδ-T cell expansion in vivo and induced γδ-T cell proliferation in vitro. Overall, young, male CD patients with high baseline γδ-T cell levels may be at an increased risk of developing malignant γδ-T cell lymphomas

  11. Infliximab Induces Clonal Expansion of γδ-T Cells in Crohn's Disease: A Predictor of Lymphoma Risk?

    PubMed Central

    Kelsen, Jens; Dige, Anders; Schwindt, Heinrich; D'Amore, Francesco; Pedersen, Finn S.; Agnholt, Jørgen; Christensen, Lisbet A.; Dahlerup, Jens F.; Hvas, Christian L.

    2011-01-01

    Background Concominant with the widespread use of combined immunotherapy in the management of Crohn's disease (CD), the incidence of hepato-splenic gamma-delta (γδ)-T cell lymphoma has increased sharply in CD patients. Malignant transformation of lymphocytes is believed to be a multistep process resulting in the selection of malignant γδ-T cell clones. We hypothesised that repeated infusion of anti-TNF-α agents may induce clonal selection and that concurrent treatment with immunomodulators further predisposes patients to γδ-T cell expansion. Methodology/Principal Findings We investigated dynamic changes in the γδ-T cells of patient with CD following treatment with infliximab (Remicade®; n = 20) or adalimumab (Humira®; n = 26) using flow cytometry. In patients with a high γδ-T cell level, the γδ-T cells were assessed for clonality. Of these 46 CD patients, 35 had a γδ-T cells level (mean 1.6%) comparable to healthy individuals (mean 2.2%), and 11 CD patients (24%) exhibited an increased level of γδ-T cells (5–15%). In the 18 patients also receiving thiopurines or methotrexate, the average baseline γδ-T cell level was 4.4%. In three male CD patients with a high baseline value, the γδ-T cell population increased dramatically following infliximab therapy. A fourth male patient also on infliximab monotherapy presented with 20% γδ-T cells, which increased to 25% shortly after treatment and was 36% between infusions. Clonality studies revealed an oligoclonal γδ-T cell pattern with dominant γδ-T cell clones. In support of our clinical findings, in vitro experiments showed a dose-dependent proliferative effect of anti-TNF-α agents on γδ-T cells. Conclusion/Significance CD patients treated with immunomodulators had constitutively high levels of γδ-T cells. Infliximab exacerbated clonal γδ-T cell expansion in vivo and induced γδ-T cell proliferation in vitro. Overall, young, male CD patients with high baseline γδ-T cell levels

  12. Structural and Magnetic Properties of M(mnt)(2) Salts (M = Ni, Pt, Cu) with a Ferrocene-Based Cation, [FcCH(2)N(CH(3))(3)](+). Interplay between M.M and M.S Intermolecular Interactions.

    PubMed

    Pullen, Anthony E.; Faulmann, Christophe; Pokhodnya, Konstantin I.; Cassoux, Patrick; Tokumoto, Madoka

    1998-12-28

    A series of metal bis-mnt complexes (mnt = 1,2-dithiolatomaleonitrile) with the trimethylammonium methylferrocene cation have been synthesized and characterized using X-ray diffraction, magnetic susceptibility, and differential scanning calorimetry measurements. The complexes have the formulas (FcCH(2)NMe(3))[Ni(mnt)(2)] (2), (FcCH(2)NMe(3))[Pt(mnt)(2)] (3), and (FcCH(2)NMe(3))(2)[Cu(mnt)(2)] (4) (where Fc = ferrocene). At 300 K, the crystal structures of 1:1 complexes 2 and 3 are very similar. They consist of pairs of [M(mnt)(2)](-) in a slipped configuration packed in stacks. Each [M(mnt)(2)](-) stack is separated from adjacent stacks by two columns of cations. Within the pairs, the [M(mnt)(2)](-) anions interact via short M.S contacts, while there are no short contacts between the pairs. Complex 4, which has a 2:1 stoichiometry, exhibits a markedly different packing arrangement of the anionic units. Due to the special position of the Cu atom in the asymmetric unit cell, [Cu(mnt)(2)](2)(-) dianions are completely isolated from each other. The magnetic susceptibility behavior of the nickel complex is consistent with the presence of magnetically isolated, antiferromagnetically (AF) coupled [Ni(mnt)(2)](-) pairs with the AF exchange parameter, J = -840 cm(-)(1). The platinum complex undergoes an endothermic structural phase transition (T(p)) at 247 K. Below T(p) its structure is characterized by the formation of magnetically isolated [Pt(mnt)(2)](2)(2)(-) dimers in an eclipsed configuration with short Pt.Pt and S.S contacts between monomers. In the magnetic properties, the structural changes reveal themselves as an abrupt susceptibility drop implying a substantial increase of the AF exchange parameter. A mechanism of the phase transition in the platinum compound is proposed. For compound 4, paramagnetic behavior is observed.

  13. Interfaces of Malignant and Immunologic Clonal Dynamics in Ovarian Cancer.

    PubMed

    Zhang, Allen W; McPherson, Andrew; Milne, Katy; Kroeger, David R; Hamilton, Phineas T; Miranda, Alex; Funnell, Tyler; Little, Nicole; de Souza, Camila P E; Laan, Sonya; LeDoux, Stacey; Cochrane, Dawn R; Lim, Jamie L P; Yang, Winnie; Roth, Andrew; Smith, Maia A; Ho, Julie; Tse, Kane; Zeng, Thomas; Shlafman, Inna; Mayo, Michael R; Moore, Richard; Failmezger, Henrik; Heindl, Andreas; Wang, Yi Kan; Bashashati, Ali; Grewal, Diljot S; Brown, Scott D; Lai, Daniel; Wan, Adrian N C; Nielsen, Cydney B; Huebner, Curtis; Tessier-Cloutier, Basile; Anglesio, Michael S; Bouchard-Côté, Alexandre; Yuan, Yinyin; Wasserman, Wyeth W; Gilks, C Blake; Karnezis, Anthony N; Aparicio, Samuel; McAlpine, Jessica N; Huntsman, David G; Holt, Robert A; Nelson, Brad H; Shah, Sohrab P

    2018-05-07

    High-grade serous ovarian cancer (HGSC) exhibits extensive malignant clonal diversity with widespread but non-random patterns of disease dissemination. We investigated whether local immune microenvironment factors shape tumor progression properties at the interface of tumor-infiltrating lymphocytes (TILs) and cancer cells. Through multi-region study of 212 samples from 38 patients with whole-genome sequencing, immunohistochemistry, histologic image analysis, gene expression profiling, and T and B cell receptor sequencing, we identified three immunologic subtypes across samples and extensive within-patient diversity. Epithelial CD8+ TILs negatively associated with malignant diversity, reflecting immunological pruning of tumor clones inferred by neoantigen depletion, HLA I loss of heterozygosity, and spatial tracking between T cell and tumor clones. In addition, combinatorial prognostic effects of mutational processes and immune properties were observed, illuminating how specific genomic aberration types associate with immune response and impact survival. We conclude that within-patient spatial immune microenvironment variation shapes intraperitoneal malignant spread, provoking new evolutionary perspectives on HGSC clonal dispersion. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Whole-exome sequencing reveals the spectrum of gene mutations and the clonal evolution patterns in paediatric acute myeloid leukaemia.

    PubMed

    Shiba, Norio; Yoshida, Kenichi; Shiraishi, Yuichi; Okuno, Yusuke; Yamato, Genki; Hara, Yusuke; Nagata, Yasunobu; Chiba, Kenichi; Tanaka, Hiroko; Terui, Kiminori; Kato, Motohiro; Park, Myoung-Ja; Ohki, Kentaro; Shimada, Akira; Takita, Junko; Tomizawa, Daisuke; Kudo, Kazuko; Arakawa, Hirokazu; Adachi, Souichi; Taga, Takashi; Tawa, Akio; Ito, Etsuro; Horibe, Keizo; Sanada, Masashi; Miyano, Satoru; Ogawa, Seishi; Hayashi, Yasuhide

    2016-11-01

    Acute myeloid leukaemia (AML) is a molecularly and clinically heterogeneous disease. Targeted sequencing efforts have identified several mutations with diagnostic and prognostic values in KIT, NPM1, CEBPA and FLT3 in both adult and paediatric AML. In addition, massively parallel sequencing enabled the discovery of recurrent mutations (i.e. IDH1/2 and DNMT3A) in adult AML. In this study, whole-exome sequencing (WES) of 22 paediatric AML patients revealed mutations in components of the cohesin complex (RAD21 and SMC3), BCORL1 and ASXL2 in addition to previously known gene mutations. We also revealed intratumoural heterogeneities in many patients, implicating multiple clonal evolution events in the development of AML. Furthermore, targeted deep sequencing in 182 paediatric AML patients identified three major categories of recurrently mutated genes: cohesion complex genes [STAG2, RAD21 and SMC3 in 17 patients (8·3%)], epigenetic regulators [ASXL1/ASXL2 in 17 patients (8·3%), BCOR/BCORL1 in 7 patients (3·4%)] and signalling molecules. We also performed WES in four patients with relapsed AML. Relapsed AML evolved from one of the subclones at the initial phase and was accompanied by many additional mutations, including common driver mutations that were absent or existed only with lower allele frequency in the diagnostic samples, indicating a multistep process causing leukaemia recurrence. © 2016 John Wiley & Sons Ltd.

  15. Clonal analysis of lineage fate in native haematopoiesis.

    PubMed

    Rodriguez-Fraticelli, Alejo E; Wolock, Samuel L; Weinreb, Caleb S; Panero, Riccardo; Patel, Sachin H; Jankovic, Maja; Sun, Jianlong; Calogero, Raffaele A; Klein, Allon M; Camargo, Fernando D

    2018-01-11

    Haematopoiesis, the process of mature blood and immune cell production, is functionally organized as a hierarchy, with self-renewing haematopoietic stem cells and multipotent progenitor cells sitting at the very top. Multiple models have been proposed as to what the earliest lineage choices are in these primitive haematopoietic compartments, the cellular intermediates, and the resulting lineage trees that emerge from them. Given that the bulk of studies addressing lineage outcomes have been performed in the context of haematopoietic transplantation, current models of lineage branching are more likely to represent roadmaps of lineage potential than native fate. Here we use transposon tagging to clonally trace the fates of progenitors and stem cells in unperturbed haematopoiesis. Our results describe a distinct clonal roadmap in which the megakaryocyte lineage arises largely independently of other haematopoietic fates. Our data, combined with single-cell RNA sequencing, identify a functional hierarchy of unilineage- and oligolineage-producing clones within the multipotent progenitor population. Finally, our results demonstrate that traditionally defined long-term haematopoietic stem cells are a significant source of megakaryocyte-restricted progenitors, suggesting that the megakaryocyte lineage is the predominant native fate of long-term haematopoietic stem cells. Our study provides evidence for a substantially revised roadmap for unperturbed haematopoiesis, and highlights unique properties of multipotent progenitors and haematopoietic stem cells in situ.

  16. Genomic Analysis of the Emergence and Rapid Global Dissemination of the Clonal Group 258 Klebsiella pneumoniae Pandemic

    PubMed Central

    Driebe, Elizabeth M.; MacCannell, Duncan R.; Roe, Chandler; Lemmer, Darrin; de Man, Tom; Rasheed, J. Kamile; Engelthaler, David M.; Keim, Paul; Limbago, Brandi M.

    2015-01-01

    Multidrug-resistant Klebsiella pneumoniae producing the KPC carbapenemase have rapidly spread throughout the world, causing severe healthcare-associated infections with limited antimicrobial treatment options. Dissemination of KPC-producing K. pneumoniae is largely attributed to expansion of a single dominant strain, ST258. In this study, we explore phylogenetic relationships and evolution within ST258 and its clonal group, CG258, using whole genome sequence analysis of 167 isolates from 20 countries collected over 17 years. Our results show a common ST258 ancestor emerged from its diverse parental clonal group around 1995 and likely acquired bla KPC prior to dissemination. Over the past two decades, ST258 has remained highly clonal despite diversity in accessory elements and divergence in the capsule polysaccharide synthesis locus. Apart from the large recombination event that gave rise to ST258, few mutations set it apart from its clonal group. However, one mutation occurs in a global transcription regulator. Characterization of outer membrane protein sequences revealed a profile in ST258 that includes a truncated OmpK35 and modified OmpK37. Our work illuminates potential genomic contributors to the pathogenic success of ST258, helps us better understand the global dissemination of this strain, and identifies genetic markers unique to ST258. PMID:26196384

  17. Clonal Expansion during Staphylococcus aureus Infection Dynamics Reveals the Effect of Antibiotic Intervention

    PubMed Central

    McVicker, Gareth; Prajsnar, Tomasz K.; Williams, Alexander; Wagner, Nelly L.; Boots, Michael; Renshaw, Stephen A.; Foster, Simon J.

    2014-01-01

    To slow the inexorable rise of antibiotic resistance we must understand how drugs impact on pathogenesis and influence the selection of resistant clones. Staphylococcus aureus is an important human pathogen with populations of antibiotic-resistant bacteria in hospitals and the community. Host phagocytes play a crucial role in controlling S. aureus infection, which can lead to a population “bottleneck” whereby clonal expansion of a small fraction of the initial inoculum founds a systemic infection. Such population dynamics may have important consequences on the effect of antibiotic intervention. Low doses of antibiotics have been shown to affect in vitro growth and the generation of resistant mutants over the long term, however whether this has any in vivo relevance is unknown. In this work, the population dynamics of S. aureus pathogenesis were studied in vivo using antibiotic-resistant strains constructed in an isogenic background, coupled with systemic models of infection in both the mouse and zebrafish embryo. Murine experiments revealed unexpected and complex bacterial population kinetics arising from clonal expansion during infection in particular organs. We subsequently elucidated the effect of antibiotic intervention within the host using mixed inocula of resistant and sensitive bacteria. Sub-curative tetracycline doses support the preferential expansion of resistant microorganisms, importantly unrelated to effects on growth rate or de novo resistance acquisition. This novel phenomenon is generic, occurring with methicillin-resistant S. aureus (MRSA) in the presence of β-lactams and with the unrelated human pathogen Pseudomonas aeruginosa. The selection of resistant clones at low antibiotic levels can result in a rapid increase in their prevalence under conditions that would previously not be thought to favor them. Our results have key implications for the design of effective treatment regimes to limit the spread of antimicrobial resistance, where

  18. Improvements In AF Ablation Outcome Will Be Based More On Technological Advancement Versus Mechanistic Understanding.

    PubMed

    Jiang Md, Chen-Yang; Jiang Ms, Ru-Hong

    2014-01-01

    Atrial fibrillation (AF) is one of the most common cardiac arrhythmias. Catheter ablation has proven more effective than antiarrhythmic drugs in preventing clinical recurrence of AF, however long-term outcome remains unsatisfactory. Ablation strategies have evolved based on progress in mechanistic understanding, and technologies have advanced continuously. This article reviews current mechanistic concepts and technological advancements in AF treatment, and summarizes their impact on improvement of AF ablation outcome.

  19. SIP1/NHERF2 enhances estrogen receptor alpha transactivation in breast cancer cells

    PubMed Central

    Meneses-Morales, Ivan; Tecalco-Cruz, Angeles C.; Barrios-García, Tonatiuh; Gómez-Romero, Vania; Trujillo-González, Isis; Reyes-Carmona, Sandra; García-Zepeda, Eduardo; Méndez-Enríquez, Erika; Cervantes-Roldán, Rafael; Pérez-Sánchez, Víctor; Recillas-Targa, Félix; Mohar-Betancourt, Alejandro; León-Del-Río, Alfonso

    2014-01-01

    The estrogen receptor alpha (ERα) is a ligand-activated transcription factor that possesses two activating domains designated AF-1 and AF-2 that mediate its transcriptional activity. The role of AF-2 is to recruit coregulator protein complexes capable of modifying chromatin condensation status. In contrast, the mechanism responsible for the ligand-independent AF-1 activity and for its synergistic functional interaction with AF-2 is unclear. In this study, we have identified the protein Na+/H+ Exchanger RegulatoryFactor 2 (NHERF2) as an ERα-associated coactivator that interacts predominantly with the AF-1 domain of the nuclear receptor. Overexpression of NHERF2 in breast cancer MCF7 cells produced an increase in ERα transactivation. Interestingly, the presence of SRC-1 in NHERF2 stably overexpressing MCF7 cells produced a synergistic increase in ERα activity. We show further that NHERF2 interacts with ERα and SRC-1 in the promoter region of ERα target genes. The binding of NHERF2 to ERα in MCF7 cells increased cell proliferation and the ability of MCF7 cells to form tumors in a mouse model. We analyzed the expression of NHERF2 in breast cancer tumors finding a 2- to 17-fold increase in its mRNA levels in 50% of the tumor samples compared to normal breast tissue. These results indicate that NHERF2 is a coactivator of ERα that may participate in the development of estrogen-dependent breast cancer tumors. PMID:24771346

  20. Different rates of defense evolution and niche preferences in clonal and nonclonal milkweeds (Asclepias spp.).

    PubMed

    Pellissier, Loïc; Litsios, Glenn; Fishbein, Mark; Salamin, Nicolas; Agrawal, Anurag A; Rasmann, Sergio

    2016-02-01

    Given the dual role of many plant traits to tolerate both herbivore attack and abiotic stress, the climatic niche of a species should be integrated into the study of plant defense strategies. Here we investigate the impact of plant reproductive strategy and components of species' climatic niche on the rate of chemical defense evolution in the milkweeds using a common garden experiment of 49 species. We found that across Asclepias species, clonal reproduction repeatedly evolved in lower temperature conditions, in species generally producing low concentrations of a toxic defense (cardenolides). Additionally, we found that rates of cardenolide evolution were lower for clonal than for nonclonal species. We thus conclude that because the clonal strategy is based on survival, long generation times, and is associated with tolerance of herbivory, it may be an alternative to toxicity in colder ecosystems. Taken together, these results indicate that the rate of chemical defense evolution is influenced by the intersection of life-history strategy and climatic niches into which plants radiate. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  1. Clonal origin of Epstein-Barr virus (EBV)-infected T/NK-cell subpopulations in EBV-positive T/NK-cell lymphoproliferative disorders of childhood.

    PubMed

    Ohga, Shouichi; Ishimura, Masataka; Yoshimoto, Goichi; Miyamoto, Toshihiro; Takada, Hidetoshi; Tanaka, Tamami; Ohshima, Koichi; Ogawa, Yoshiyasu; Imadome, Ken-Ichi; Abe, Yasunobu; Akashi, Koichi; Hara, Toshiro

    2011-05-01

    In Japan, chronic active Epstein-Barr virus infection (CAEBV) may manifest with infection of T-cells or NK-cells, clonal lymphoid proliferations, and overt lymphoid malignancy. These EBV-positive lymphoproliferative disorders (EBV(+)LPD) of childhood are related to, but distinct from the infectious mononucleosis-like CAEBV seen in Western populations. The clonal nature of viral infection within lymphoid subsets of patients with EBV(+)LPD of childhood is not well described. Viral distribution and clonotype were assessed within T-cell subsets, NK-cells, and CD34(+)stem cells following high purity cell sorting. Six Japanese patients with EBV(+)LPD of childhood (3 T-cell LPD and 3 NK-cell LPD) were recruited. Prior to immunochemotherapy, viral loads and clonal analyses of T-cell subsets, NK-cells, and CD34(+)stem cells were studied by high-accuracy cell sorting (>99.5%), Southern blotting and real-time polymerase chain reaction. Patient 1 had a monoclonal proliferation of EBV-infected γδT-cells and carried a lower copy number of EBV in αβT-cells. Patients 2 and 3 had clonal expansions of EBV-infected CD4(+)T-cells, and lower EBV load in NK-cells. Patients 4, 5 and 6 had EBV(+)NK-cell expansions with higher EBV load than T-cells. EBV-terminal repeats were determined as clonal bands in the minor targeted populations of 5 patients. The size of terminal repeats indicated the same clonotype in minor subsets as in the major subsets of four patients. EBV was not, however, detected in the bone marrow-derived CD34(+)stem cells of patients. A single EBV clonotype may infect multiple NK-cell and T-cell subsets of patients with EBV(+)LPD of childhood. CD34(+)stem cells are spared, suggesting infection of more differentiated elements. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Multi-jet propulsion organized by clonal development in a colonial siphonophore

    PubMed Central

    Costello, John H.; Colin, Sean P.; Gemmell, Brad J.; Dabiri, John O.; Sutherland, Kelly R.

    2015-01-01

    Physonect siphonophores are colonial cnidarians that are pervasive predators in many neritic and oceanic ecosystems. Physonects employ multiple, clonal medusan individuals, termed nectophores, to propel an aggregate colony. Here we show that developmental differences between clonal nectophores of the physonect Nanomia bijuga produce a division of labour in thrust and torque production that controls direction and magnitude of whole-colony swimming. Although smaller and less powerful, the position of young nectophores near the apex of the nectosome allows them to dominate torque production for turning, whereas older, larger and more powerful individuals near the base of the nectosome contribute predominantly to forward thrust production. The patterns we describe offer insight into the biomechanical success of an ecologically important and widespread colonial animal group, but, more broadly, provide basic physical understanding of a natural solution to multi-engine organization that may contribute to the expanding field of underwater-distributed propulsion vehicle design. PMID:26327286

  3. Clonal evolution and tumor-initiating cells: New dimensions in cancer patient treatment.

    PubMed

    Apostoli, Anthony J; Ailles, Laurie

    2016-01-01

    Human cancer is not a uniform disease but a plethora of disparate tumor types and subtypes. The differences that exist between individual tumors (intertumoral heterogeneity) present a significant roadblock to the eradication of cancer. It has also become increasingly clear that variations across individual tumors (intratumoral heterogeneity) have important implications to cancer progression and treatment efficacy. Therefore, in order to improve patient care and develop novel chemotherapeutics, the evolving tumor landscape needs to be further explored. Next-generation sequencing (NGS) technologies are revolutionizing the cancer research arena by providing state-of-the-art, high-speed methods of genome sequencing at single-nucleotide resolution, thus enabling an unprecedented detection of tumor-specific genetic abnormalities. These anomalies can be quantified to reveal specific frequencies of DNA alterations that correspond to distinct clonal populations within a given tumor. As such, NGS approaches have also been utilized to explore the heterogeneous landscape of patient tumors as well as to match metastatic and/or recurrent growths and patient-derived engrafts. By sequencing in this manner--through time so to speak--cancer researchers can track shifting clonal populations, make important inferences about tumor evolution and potentially identify tumor subclones that could be viably targeted. This exciting new territory has important implications for the competing clonal evolution and cancer stem cell models of tumor heterogeneity, and also offers a new dimension for cancer treatment and profound hope for patients in the coming years.

  4. Dynamic changes in clonal cytogenetic architecture during progression of chronic lymphocytic leukemia in patients and patient-derived murine xenografts

    PubMed Central

    Davies, Nicholas J.; Kwok, Marwan; Gould, Clive; Oldreive, Ceri E.; Mao, Jingwen; Parry, Helen; Smith, Edward; Agathanggelou, Angelo; Pratt, Guy; Taylor, Alexander Malcolm R.; Moss, Paul; Griffiths, Mike; Stankovic, Tatjana

    2017-01-01

    Subclonal heterogeneity and clonal selection influences disease progression in chronic lymphocytic leukemia (CLL). It is therefore important that therapeutic decisions are made based on an understanding of the CLL clonal architecture and its dynamics in individual patients. Identification of cytogenetic abnormalities by FISH remains the cornerstone of contemporary clinical practice and provides a simple means for prognostic stratification. Here, we demonstrate that multiplexed-FISH can enhance recognition of CLL subclonal repertoire and its dynamics during disease progression, both in patients and CLL patient-derived xenografts (PDX). We applied a combination of patient-specific FISH probes to 24 CLL cases before treatment and at relapse, and determined putative ancestral relationships between subpopulations with different cytogenetic features. We subsequently established 7 CLL PDX models in NOD/Shi-SCID/IL-2Rγctm1sug/Jic (NOG) mice. Application of multiplexed-FISH to these models demonstrated that all of the identified cytogenetic subpopulations had leukemia propagating activity and that changes in their representation during disease progression could be spontaneous, accelerated by treatment or treatment-induced. We conclude that multiplexed-FISH in combination with PDX models have the potential to distinguish between spontaneous and treatment-induced clonal selection, and therefore provide a valuable tool for the pre-clinical evaluation of novel therapies. PMID:28496009

  5. Exchange bias mechanism in FM/FM/AF spin valve systems in the presence of random unidirectional anisotropy field at the AF interface: The role played by the interface roughness due to randomness

    NASA Astrophysics Data System (ADS)

    Yüksel, Yusuf

    2018-05-01

    We propose an atomistic model and present Monte Carlo simulation results regarding the influence of FM/AF interface structure on the hysteresis mechanism and exchange bias behavior for a spin valve type FM/FM/AF magnetic junction. We simulate perfectly flat and roughened interface structures both with uncompensated interfacial AF moments. In order to simulate rough interface effect, we introduce the concept of random exchange anisotropy field induced at the interface, and acting on the interface AF spins. Our results yield that different types of the random field distributions of anisotropy field may lead to different behavior of exchange bias.

  6. Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage

    PubMed Central

    Kaucka, Marketa; Zikmund, Tomas; Tesarova, Marketa; Gyllborg, Daniel; Hellander, Andreas; Jaros, Josef; Kaiser, Jozef; Petersen, Julian; Szarowska, Bara; Newton, Phillip T; Dyachuk, Vyacheslav; Li, Lei; Qian, Hong; Johansson, Anne-Sofie; Mishina, Yuji; Currie, Joshua D; Tanaka, Elly M; Erickson, Alek; Dudley, Andrew; Brismar, Hjalmar; Southam, Paul; Coen, Enrico; Chen, Min; Weinstein, Lee S; Hampl, Ales; Arenas, Ernest; Chagin, Andrei S; Fried, Kaj; Adameyko, Igor

    2017-01-01

    Cartilaginous structures are at the core of embryo growth and shaping before the bone forms. Here we report a novel principle of vertebrate cartilage growth that is based on introducing transversally-oriented clones into pre-existing cartilage. This mechanism of growth uncouples the lateral expansion of curved cartilaginous sheets from the control of cartilage thickness, a process which might be the evolutionary mechanism underlying adaptations of facial shape. In rod-shaped cartilage structures (Meckel, ribs and skeletal elements in developing limbs), the transverse integration of clonal columns determines the well-defined diameter and resulting rod-like morphology. We were able to alter cartilage shape by experimentally manipulating clonal geometries. Using in silico modeling, we discovered that anisotropic proliferation might explain cartilage bending and groove formation at the macro-scale. DOI: http://dx.doi.org/10.7554/eLife.25902.001 PMID:28414273

  7. A Critical Role for CRM1 in Regulating HOXA Gene Transcription in CALM-AF10 Leukemias

    PubMed Central

    Conway, Amanda E.; Haldeman, Jonathan M.; Wechsler, Daniel S.; Lavau, Catherine P.

    2014-01-01

    The leukemogenic CALM-AF10 fusion protein is found in patients with immature acute myeloid and T-lymphoid malignancies. CALM-AF10 leukemias display abnormal H3K79 methylation and increased HOXA cluster gene transcription. Elevated expression of HOXA genes is critical for leukemia maintenance and progression; however, the precise mechanism by which CALM-AF10 alters HOXA gene expression is unclear. We previously determined that CALM contains a CRM1-dependent nuclear export signal (NES), which is both necessary and sufficient for CALM-AF10-mediated leukemogenesis. Here, we find that interaction of CALM-AF10 with the nuclear export receptor CRM1 is necessary for activating HOXA gene expression. We show that CRM1 localizes to HOXA loci where it recruits CALM-AF10, leading to transcriptional and epigenetic activation of HOXA genes. Genetic and pharmacological inhibition of the CALM-CRM1 interaction prevents CALM-AF10 enrichment at HOXA chromatin, resulting in immediate loss of transcription. These results provide a comprehensive mechanism by which the CALM-AF10 translocation activates the critical HOXA cluster genes. Furthermore, this report identifies a novel function of CRM1: the ability to bind chromatin and recruit the NES-containing CALM-AF10 transcription factor. PMID:25027513

  8. The prognostic significance of cardiac structure and function in atrial fibrillation: the ENGAGE AF-TIMI 48 Echocardiographic Substudy

    PubMed Central

    Gupta, Deepak K; Giugliano, Robert P; Ruff, Christian T; Claggett, Brian; Murphy, Sabina; Antman, Elliott; Mercuri, Michele F.; Braunwald, Eugene; Solomon, Scott D

    2016-01-01

    Background Atrial fibrillation (AF) is associated with increased risk for thromboembolism and death; however, the relationships between cardiac structure and function and adverse outcomes among individuals with AF are incompletely understood. Methods The ENGAGE AF –TIMI 48 study tested the once-daily oral factor Xa inhibitor edoxaban in comparison to warfarin for the prevention of stroke (ischemic or hemorrhagic) or systemic embolism in 21,105 subjects with nonvalvular AF and increased risk for thromboembolic events (CHADS22). In a prospective substudy of 971 subjects who underwent transthoracic echocardiography at baseline, we used Cox proportional hazards models to evaluate the associations between cardiac structure and function and the risks for death and thromboembolism (ischemic stroke, TIA, or systemic embolism). Results Over a median follow up of 2.5 years, 89 (9.2%) deaths and 48 (4.9%) incident thromboembolic events occurred in 971 subjects. In models adjusted for CHADS2 score, aspirin use, and randomized treatment, larger LV end diastolic volume index (HR: 1.49 [95%CI: 1.16,1.91] per 1 SD [12.9 ml/m2]) and higher LV filling pressures measured by E/′e (HR: 1.32 [95%CI: 1.08,1.61] per 1 SD [4.6]) were independently associated with increased risks for death. E/e′ > 13 significantly improved prediction of death beyond clinical factors alone. No features of cardiac structure and function were independently associated with thromboembolism in this population. Findings were similar when adjusted for CHA2DS2-VASc in place of CHADS2. Conclusions In a contemporary population of patients with atrial fibrillation at increased risk for thromboembolic events, larger LV size and higher filling pressures were significantly associated with increased risk for death, but neither left atrial nor left ventricular measures were associated with thromboembolic risk. LV size and filling pressures may help identify AF patients at increased risk of death. PMID:27106009

  9. Antimicrobial Susceptibility and Clonality of Clinical Ureaplasma Isolates in the United States.

    PubMed

    Fernández, Javier; Karau, Melissa J; Cunningham, Scott A; Greenwood-Quaintance, Kerryl E; Patel, Robin

    2016-08-01

    Ureaplasma urealyticum and Ureaplasma parvum are pathogens involved in urogenital tract and intrauterine infections and also in systemic diseases in newborns and immunosuppressed patients. There is limited information on the antimicrobial susceptibility and clonality of these species. In this study, we report the susceptibility of 250 contemporary isolates of Ureaplasma (202 U. parvum and 48 U. urealyticum isolates) recovered at Mayo Clinic, Rochester, MN. MICs of doxycycline, azithromycin, ciprofloxacin, tetracycline, erythromycin, and levofloxacin were determined by broth microdilution, with MICS of the last three interpreted according to CLSI guidelines. Levofloxacin resistance was found in 6.4% and 5.2% of U. parvum and U. urealyticum isolates, respectively, while 27.2% and 68.8% of isolates, respectively, showed ciprofloxacin MICs of ≥4 μg/ml. The resistance mechanism of levofloxacin-resistant isolates was due to mutations in parC, with the Ser83Leu substitution being most frequent, followed by Glu87Lys. No macrolide resistance was found among the 250 isolates studied; a single U. parvum isolate was tetracycline resistant. tet(M) was found in 10 U. parvum isolates, including the single tetracycline-resistant isolate, as well as in 9 isolates which had low tetracycline and doxycycline MICs. Multilocus sequence typing (MLST) performed on a selection of 46 isolates showed high diversity within the clinical Ureaplasma isolates studied, regardless of antimicrobial susceptibility. The present work extends previous knowledge regarding susceptibility to antimicrobial agents, resistance mechanisms, and clonality of Ureaplasma species in the United States. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. An efficient and reproducible method for in vitro clonal multiplication of Rauvolfia tetraphylla L. and evaluation of genetic stability using DNA-based markers.

    PubMed

    Faisal, Mohammad; Alatar, Abdulrahman A; Ahmad, Naseem; Anis, Mohammad; Hegazy, Ahmad K

    2012-12-01

    An efficient protocol is described for the rapid in vitro clonal propagation of an endangered medicinal plant, Rauvolfia tetraphylla L., through high frequency shoot induction from nodal explants collected from young shoots of a field grown plant. Effects of growth regulators [6-benzyladenine (BA), kinetin (Kin) 2iP, or α-naphthalene acetic acid (NAA)], carbohydrates, different medium [Murashige and Skoog (MS), Woody Plant Medium (WPM), Gamborg medium (B5), Linsmier and Skoog medium (LS)], and various pH levels on in vitro morphogenesis were investigated. The highest frequency of shoot regeneration (90 %) and maximum number of shoot (35.4 ± 2.3) per explant were observed on WPM medium supplemented with 7.5 μM BA, 2.5 μM NAA, and 30 g/l sucrose at pH 5.8. Well-developed shoots, 4-5 cm in length, were successfully rooted ex vitro at 90 % by a 30-min pulse treatment with 150 μM IBA prior to their transfer in planting substrates. The survival rate of transplantation reached 90 % when transferred to field condition. Genetic stability of micropropagated plantlets was assessed and compared with mother plant using Random Amplified Polymorphic DNA and Inter Simple Sequence Repeats markers. No variation was observed in DNA fingerprinting patterns among the micropropagated plants, which were similar to that of the donor plant illustrating their genetic uniformity and clonal fidelity. This confirms that clonal propagation of this plant using axillary shoot buds can be used for commercial exploitation of the selected genotype where a high degree of fidelity is an essential prerequisite. The work contributed to a better in vitro regeneration and clonal mass multiplication of R. tetraphylla and to develop a strategy for the germplasm conservation of this endangered medicinal plant.

  11. Somatic HLA mutations expose the role of class I–mediated autoimmunity in aplastic anemia and its clonal complications

    PubMed Central

    Duke, Jamie L.; Xie, Hongbo M.; Stanley, Natasha; Atienza, Jamie; Perdigones, Nieves; Nicholas, Peter; Ferriola, Deborah; Li, Yimei; Huang, Hugh; Ye, Wenda; Morrissette, Jennifer J. D.; Kearns, Jane; Porter, David L.; Podsakoff, Gregory M.; Eisenlohr, Laurence C.; Biegel, Jaclyn A.; Chou, Stella T.; Monos, Dimitrios S.; Bessler, Monica; Olson, Timothy S.

    2017-01-01

    Acquired aplastic anemia (aAA) is an acquired deficiency of early hematopoietic cells, characterized by inadequate blood production, and a predisposition to myelodysplastic syndrome (MDS) and leukemia. Although its exact pathogenesis is unknown, aAA is thought to be driven by human leukocyte antigen (HLA)–restricted T cell immunity, with earlier studies favoring HLA class II-mediated pathways. Using whole-exome sequencing (WES), we recently identified 2 patients with aAA with somatic mutations in HLA class I genes. We hypothesized that HLA class I mutations are pathognomonic for autoimmunity in aAA, but were previously underappreciated because the major histocompatibility complex (MHC) region is notoriously difficult to analyze by WES. Using a combination of targeted deep sequencing of HLA class I genes and single nucleotide polymorphism array (SNP-A) genotyping, we screened 66 patients with aAA for somatic HLA class I loss. We found somatic HLA loss in 11 patients (17%), with 13 loss-of-function mutations in HLA-A*33:03, HLA-A*68:01, HLA-B*14:02, and HLA-B*40:02 alleles. Three patients had more than 1 mutation targeting the same HLA allele. Interestingly, HLA-B*14:02 and HLA-B*40:02 were significantly overrepresented in patients with aAA compared with ethnicity-matched controls. Patients who inherited the targeted HLA alleles, regardless of HLA mutation status, had a more severe disease course with more frequent clonal complications as assessed by WES, SNP-A, and metaphase cytogenetics, and more frequent secondary MDS. The finding of recurrent HLA class I mutations provides compelling evidence for a predominant HLA class I-driven autoimmunity in aAA and establishes a novel link between immunogenetics and clonal evolution of patients with aAA. PMID:28971166

  12. AFS Estuaries Section - A Successful Partnership

    EPA Science Inventory

    The Estuaries Section of the American Fisheries Society offers travel awards to students in support of their attendance and presentations at the AFS meeting. Since 2007, the Southern Association of Marine Laboratories has partnered with the Estuaries Section to sponsor two stude...

  13. Genetic tagging of tumor cells with retrovirus vectors: Clonal analysis of tumor growth and metastasis in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korczak; Robson, I.B.; Lamarche, C.

    1988-08-01

    Retrovirus vector infection was used to introduce large numbers of unique genetic markers into tumor cell populations for the purpose of analyzing comparative changes in the clonal composition of metastatic versus that of nonmetastatic tumors during their progressive growth in vivo. The cell lines were SP1, a nonmetastatic, aneuploid mouse mammary adenocarcinoma, and SP1HU9L, a metastatic variant of SP1. Cells were infected with ..delta..e..delta..rhoMoTn, a replication-defective retrovirus vector which possesses the dominant selectable neo gene and crippled long terminal repeats. G418/sup r/ colonies were obtained at a frequency of 4 x 10/sup -3/. Southern blot analysis of a number ofmore » clones provided evidence of random and heritable integration of one or two copies of the proviral DNA. Clonal equation of primary tumor growth and the nature of lineage relationships among spontaneous metastases and primary tumors were analyzed by subcutaneously injecting 10/sup 5/ cells from a pooled mixture of 3.6 x 10/sup 2/ G418/sup r/ SP1HU9L or 10/sup 4/ G418/sup r/ SP1 colonies into syngeneic CBA/J mice. The most striking finding was the relative clonal homogeneity of advanced primary tumors; they invariably consisted of a small number (less than 10) of distinct clones despite the fact that hundreds of thousands of uniquely marked clones had been injected.« less

  14. TALEN mediated targeted editing of GM2/GD2-synthase gene modulates anchorage independent growth by reducing anoikis resistance in mouse tumor cells.

    PubMed

    Mahata, Barun; Banerjee, Avisek; Kundu, Manjari; Bandyopadhyay, Uday; Biswas, Kaushik

    2015-03-12

    Complex ganglioside expression is highly deregulated in several tumors which is further dependent on specific ganglioside synthase genes. Here, we designed and constructed a pair of highly specific transcription-activator like effector endonuclease (TALENs) to disrupt a particular genomic locus of mouse GM2-synthase, a region conserved in coding sequence of all four transcript variants of mouse GM2-synthase. Our designed TALENs effectively work in different mouse cell lines and TALEN induced mutation rate is over 45%. Clonal selection strategy is undertaken to generate stable GM2-synthase knockout cell line. We have also demonstrated non-homologous end joining (NHEJ) mediated integration of neomycin cassette into the TALEN targeted GM2-synthase locus. Functionally, clonally selected GM2-synthase knockout clones show reduced anchorage-independent growth (AIG), reduction in tumor growth and higher cellular adhesion as compared to wild type Renca-v cells. Insight into the mechanism shows that, reduced AIG is due to loss in anoikis resistance, as both knockout clones show increased sensitivity to detachment induced apoptosis. Therefore, TALEN mediated precise genome editing at GM2-synthase locus not only helps us in understanding the function of GM2-synthase gene and complex gangliosides in tumorigenicity but also holds tremendous potential to use TALENs in translational cancer research and therapeutics.

  15. High variation in clonal vs. sexual reproduction in populations of the wild strawberry, Fragaria virginiana (Rosaceae)

    PubMed Central

    Wilk, John A.; Kramer, Andrea T.; Ashley, Mary V.

    2009-01-01

    Background and Aims Many plants reproduce both clonally and sexually, and the balance between the two modes of reproduction will vary among populations. Clonal reproduction was characterized in three populations of the wild strawberry, Fragaria virginiana, to determine the extent that reproductive mode varied locally between sites. The study sites were fragmented woodlands in Cook County, Illinois, USA. Methods A total of 95 strawberry ramets were sampled from the three sites via transects. Ramets were mapped and genotyped at five variable microsatellite loci. The variability at these five loci was sufficient to assign plants to clones with high confidence, and the spatial pattern of genets was mapped at each site. Key Results A total of 27 distinct multilocus genotypes were identified. Of these, 18 genotypes were detected only once, with the remaining nine detected in multiple ramets. The largest clone was identified in 16 ramets. No genets were shared between sites, and each site exhibited markedly different clonal and sexual recruitment patterns, ranging from two non-overlapping and widespread genets to 19 distinct genets. Only one flowering genet was female; the remainder were hermaphrodites. Conclusions Local population history or fine-scale ecological differences can result in dramatically different reproductive patterns at small spatial scales. This finding may be fairly widespread among clonal plant species, and studies that aim to characterize reproductive modes in species capable of asexual reproduction need to evaluate reproductive modes in multiple populations and sites. PMID:19797422

  16. Modeling of genetic gain for single traits from marker-assisted seedling selection in clonally propagated crops

    PubMed Central

    Ru, Sushan; Hardner, Craig; Carter, Patrick A; Evans, Kate; Main, Dorrie; Peace, Cameron

    2016-01-01

    Seedling selection identifies superior seedlings as candidate cultivars based on predicted genetic potential for traits of interest. Traditionally, genetic potential is determined by phenotypic evaluation. With the availability of DNA tests for some agronomically important traits, breeders have the opportunity to include DNA information in their seedling selection operations—known as marker-assisted seedling selection. A major challenge in deploying marker-assisted seedling selection in clonally propagated crops is a lack of knowledge in genetic gain achievable from alternative strategies. Existing models based on additive effects considering seed-propagated crops are not directly relevant for seedling selection of clonally propagated crops, as clonal propagation captures all genetic effects, not just additive. This study modeled genetic gain from traditional and various marker-based seedling selection strategies on a single trait basis through analytical derivation and stochastic simulation, based on a generalized seedling selection scheme of clonally propagated crops. Various trait-test scenarios with a range of broad-sense heritability and proportion of genotypic variance explained by DNA markers were simulated for two populations with different segregation patterns. Both derived and simulated results indicated that marker-based strategies tended to achieve higher genetic gain than phenotypic seedling selection for a trait where the proportion of genotypic variance explained by marker information was greater than the broad-sense heritability. Results from this study provides guidance in optimizing genetic gain from seedling selection for single traits where DNA tests providing marker information are available. PMID:27148453

  17. Remediation of blowouts by clonal plants in Maqu degraded alpine grasslands of northwest China.

    PubMed

    Kang, JianJun; Zhao, WenZhi; Zhao, Ming

    2017-03-01

    The sand-fixation of plants is considered to be the most effective and fundamental measure in desertification control in many arid and semi-arid regions. Carex brunnescens (Carex spp) and Leymus secalinus (Leymus), two perennial clonal herbs native to the Maqu degraded alpine areas of northwest China, are dominant and constructive species in active sand dunes that have excellent adaptability to fix sand dunes found to date. In order to study the ability and mechanism of sandland blowout remediation by two clone plants C. brunnescens and L. secalinus, the artificially emulated blowouts were set up in the populations of two clonal plants in the field. The results showed that both C. brunnescens and L. secalinus produced more new ramets in the artificially emulated blowouts than in the natural conditions, suggesting that the two clonal plants had strong ability in blowouts remediation; while the biomass, number of leaves and height of new ramets in the artificially emulated blowouts were less than in the natural conditions due to the restriction of poor nutrients in the artificially emulated blowouts. The ability of blowouts remediation by C. brunnescens was stronger than L. secalinus, as it generated more new ramets than L. secalinus in the process of blowouts remediation. The new ramets of L. secalinus in the blowouts remediation were mainly generated by the buds in the rhizomes which spread from outside of the blowouts; while those of C. brunnescens were generated both by the buds in the rhizomes which spread from outside, and by the buds in the rhizomes inside which were freed from dormancy in the deeper soil under wind erosion conditions. These findings suggest that through rapid clonal expansion capability, C. brunnescens and L. secalinus exhibited strong ability in blowouts remediation which can be one of the most effective strategies to restore and reconstruct degraded vegetations in Maqu alpine areas of northwest China.

  18. Variable effects of dexamethasone on protein synthesis in clonal rat osteosarcoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, B.O.; Kream, B.E.

    1988-05-01

    We examined the effects of dexamethasone on protein synthesis in clonal rat osteoblastic osteosarcoma (ROS) cell lines by measuring the incorporation of (/sup 3/H)proline into collagenase-digestible and noncollagen protein in the cell layer and medium of the cultures. In ROS 17/2 and subclone C12 of ROS 17/2.8, dexamethasone decreased collagen synthesis with no change in DNA content of the cultures. In ROS 17/2.8 and its subclone G2, dexamethasone stimulated collagen and noncollagen protein synthesis, with a concomitant decrease in the DNA content of the cells. These data indicate that ROS cell lines are phenotypically heterogeneous and suggest that in normalmore » bone there may be distinct subpopulations of osteoblasts with varying phenotypic traits with respect to the regulation of protein synthesis.« less

  19. Molecular characterization of methicillin-resistant Staphylococcus aureus in nosocomial infections in a tertiary-care facility: emergence of new clonal complexes in Saudi Arabia.

    PubMed

    Senok, A; Ehricht, R; Monecke, S; Al-Saedan, R; Somily, A

    2016-11-01

    Changes in the molecular epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) continue to be reported. This study was carried out to characterize MRSA isolates in Saudi Arabia. MRSA isolates causing nosocomial infections (n = 117) obtained from 2009-2015 at a tertiary-care facility in Riyadh, Saudi Arabia, were studied. Molecular characterization of isolates was carried out using the StaphyType DNA microarray (Alere Technologies, Jena, Germany). Fourteen clonal complexes (CC) were identified, with the most common being CC80 (n = 35), CC6 (n = 15), CC5 (n = 13) and CC22 (n = 12). With the exception of nine ST239 MRSA-III isolates, all others were of community-associated MRSA lineages. The following strains are identified for the first time in Saudi Arabia: ST8-MRSA-IV [PVL(+)/ACME(+)], USA300 (n = 1); ST72-MRSA-IV USA700 (n = 1); CC5-MRSA-IV, [PVL(+)/edinA(+)], WA MRSA-121 (n = 1); CC5-MRSA-V+SCCfus, WA MRSA-14/109 (n = 2), CC97-MRSA-IV, WA MRSA-54/63; CC2250/2277-MRSA-IV and WA MRSA-114. CC15-MRSA (n = 3) was identified for the first time in clinical infection in Saudi Arabia. None of the isolates harboured vancomycin resistance genes, while genes for resistance to mupirocin and quaternary ammonium compounds were found in one and nine isolates respectively. Fifty-seven isolates (48.7%) were positive for Panton-Valentine leukocidin genes. While the staphylokinase (sak) and staphylococcal complement inhibitor (scn) genes were present in over 95% of the isolates, only 37.6% had the chemotaxis-inhibiting protein (chp) gene. Increasing occurrence of community-acquired MRSA lineages plus emergence of pandemic and rare MRSA strains is occurring in our setting. Strict infection control practices are important to limit the dissemination of these MRSA strains.

  20. Serotypes and Clonal Diversity of Streptococcus pneumoniae Causing Invasive Disease in the Era of PCV13 in Catalonia, Spain

    PubMed Central

    del Amo, Eva; Esteva, Cristina; Hernandez-Bou, Susanna; Galles, Carmen; Navarro, Marian; Sauca, Goretti; Diaz, Alvaro; Gassiot, Paula; Marti, Carmina; Larrosa, Nieves; Ciruela, Pilar; Jane, Mireia; Sá-Leão, Raquel; Muñoz-Almagro, Carmen

    2016-01-01

    The aim of this study was to study the serotypes and clonal diversity of pneumococci causing invasive pneumococcal disease in Catalonia, Spain, in the era of 13-valent pneumococcal conjugate vaccine (PCV13). In our region, this vaccine is only available in the private market and it is estimated a PCV13 vaccine coverage around 55% in children. A total of 1551 pneumococcal invasive isolates received between 2010 and 2013 in the Molecular Microbiology Department at Hospital Sant Joan de Déu, Barcelona, were included. Fifty-two serotypes and 249 clonal types—defined by MLST—were identified. The most common serotypes were serotype 1 (n = 182; 11.7%), 3 (n = 145; 9.3%), 19A (n = 137; 8.8%) and 7F (n = 122; 7.9%). Serotype 14 was the third most frequent serotype in children < 2 years (15 of 159 isolates). PCV7 serotypes maintained their proportion along the period of study, 16.6% in 2010 to 13.4% in 2013, whereas there was a significant proportional decrease in PCV13 serotypes, 65.3% in 2010 to 48.9% in 2013 (p<0.01). This decrease was mainly attributable to serotypes 19A and 7F. Serotype 12F achieved the third position in 2013 (n = 22, 6.4%). The most frequent clonal types found were ST306 (n = 154, 9.9%), ST191 (n = 111, 7.2%), ST989 (n = 85, 5.5%) and ST180 (n = 80, 5.2%). Despite their decrease, PCV13 serotypes continue to be a major cause of disease in Spain. These results emphasize the need for complete PCV13 vaccination. PMID:26953887