Science.gov

Sample records for afar mantle plume

  1. Anisotropic Signature of the Afar plume in the Upper Mantle.

    NASA Astrophysics Data System (ADS)

    Sicilia, D.; Montagner, J.; Debayle, E.; Leveque, J.; Cara, M.; Lepine, J.

    2002-12-01

    Plumes remain enigmatic geological objects and it is still unclear how they are formed and whether they act independently from plate tectonics. The role of plumes in mantle dynamics can be investigated by studying their interaction with lithosphere and crust and their perturbations on flow pattern in the mantle. The flow pattern can be derived from seismic anisotropy. An anisotropic surface wave tomography in the Horn of Africa was performed. The choice of the experiment in the Horn of Africa is motivated by the the presence of the Afar hotspot, one of the biggest continental hotspot. In the framework of the mantle degree 2 pattern, the Afar hotspot is the antipode of the Pacific superswell, but its origin at depth and its geodynamic importance are still debated. Data were collected from the permanent IRIS and GEOSCOPE networks and from the PASSCAL experiment in Tanzania and Saudi Arabia. We completed our data base with a French deployment of portable broadband stations surrounding the Afar Hotspot. Path average phase velocities are obtained by using a method based on a least-squares minimization (Beucler et al.,2002). A correction of the data is applied according to the a priori 3SMAC model (Nataf and Ricard, 1996). 3D-models of velocity, radial and azimuthal anisotropies are inverted for. Down to 250km, low velocities are found beneath the Red Sea, the Gulf of Aden, the South East of the Tanzania Craton, the Afar hotspot. High velocities are present in the eastern Arabia and the Tanzania Craton. These results are in agreement with the isotropic model of Debayle et al. (2002). The anisotropy model beneath Afar displays a complex pattern. The azimuthal anisotropy shows that the Afar plume might be interpreted as feeding other hotspots in central Africa. Deeper in the asthenosphere, a wide stem of positive radial anisotropy (VSH > VSV) comes up, where we might expect the reverse sign. The same observation was made below Iceland (Gaherty, 2001) and Hawaii (Montagner

  2. The mantle transition zone beneath the Afar Depression and adjacent regions: implications for mantle plumes and hydration

    NASA Astrophysics Data System (ADS)

    Reed, C. A.; Gao, S. S.; Liu, K. H.; Yu, Y.

    2016-06-01

    The Afar Depression and its adjacent areas are underlain by an upper mantle marked by some of the world's largest negative velocity anomalies, which are frequently attributed to the thermal influences of a lower-mantle plume. In spite of numerous studies, however, the existence of a plume beneath the area remains enigmatic, partially due to inadequate quantities of broad-band seismic data and the limited vertical resolution at the mantle transition zone (MTZ) depth of the techniques employed by previous investigations. In this study, we use an unprecedented quantity (over 14 500) of P-to-S receiver functions (RFs) recorded by 139 stations from 12 networks to image the 410 and 660 km discontinuities and map the spatial variation of the thickness of the MTZ. Non-linear stacking of the RFs under a 1-D velocity model shows robust P-to-S conversions from both discontinuities, and their apparent depths indicate the presence of an upper-mantle low-velocity zone beneath the entire study area. The Afar Depression and the northern Main Ethiopian Rift are characterized by an apparent 40-60 km depression of both MTZ discontinuities and a normal MTZ thickness. The simplest and most probable interpretation of these observations is that the apparent depressions are solely caused by velocity perturbations in the upper mantle and not by deeper processes causing temperature or hydration anomalies within the MTZ. Thickening of the MTZ on the order of 15 km beneath the southern Arabian Plate, southern Red Sea and western Gulf of Aden, which comprise the southward extension of the Afro-Arabian Dome, could reflect long-term hydration of the MTZ. A 20 km thinning of the MTZ beneath the western Ethiopian Plateau is observed and interpreted as evidence for a possible mantle plume stem originating from the lower mantle.

  3. Seismically imaging the Afar plume

    NASA Astrophysics Data System (ADS)

    Hammond, J. O.; Kendall, J. M.; Bastow, I. D.; Stuart, G. W.; Keir, D.; Ayele, A.; Ogubazghi, G.; Ebinger, C. J.; Belachew, M.

    2011-12-01

    Plume related flood basalt volcanism in Ethiopia has long been cited to have instigated continental breakup in northeast Africa. However, to date seismic images of the mantle beneath the region have not produced conclusive evidence of a plume-like structure. As a result the nature and even existence of a plume in the region and its role in rift initiation and continental rupture are debated. Previous seismic studies using regional deployments of sensors in East-Africa show that low seismic velocities underlie northeast Africa, but their resolution is limited to the top 200-300km of the Earth. Thus, the connection between the low velocities in the uppermost mantle and those imaged in global studies in the lower mantle is unclear. We have combined new data from Afar, Ethiopia with 6 other regional experiments and global network stations across Ethiopia, Eritrea, Djibouti and Yemen, to produce high-resolution models of upper mantle P- and S- wave velocities to the base of the transition zone. Relative travel time tomographic inversions show that the top 100km is dominated by focussed low velocity zones, likely associated with melt in the lithosphere/uppermost asthenosphere. Below these depths a broad SW-NE oriented sheet like upwelling extends down to the top of the transition zone. Within the transition zone two focussed sharp-sided low velocity regions exist: one beneath the Western Ethiopian plateau outside the rift valley, and the other beneath the Afar depression. The nature of the transition zone anomalies suggests that small upwellings may rise from a broader low velocity plume-like feature in the lower mantle. This interpretation is supported by numerical and analogue experiments that suggest the 660km phase change and viscosity jump may impede flow from the lower to upper mantle creating a thermal boundary layer at the base of the transition zone. This allows smaller, secondary upwellings to initiate and rise to the surface. Our images of secondary upwellings

  4. Heat sources for mantle plumes

    NASA Astrophysics Data System (ADS)

    Beier, C.; Rushmer, T.; Turner, S. P.

    2008-06-01

    Melting anomalies in the Earth's upper mantle have often been attributed to the presence of mantle plumes that may originate in the lower mantle, possibly from the core-mantle boundary. Globally, mantle plumes exhibit a large range in buoyancy flux that is proportional to their temperature and volume. Plumes with higher buoyancy fluxes should have higher temperatures and experience higher degrees of partial melting. This excess heat in mantle plumes could reflect either (1) an enrichment of the heat-producing elements (HPE: U, Th, K) in their mantle source leading to an increase of heat production by radioactive decay, (2) material transport from core to mantle (either advective or diffusive), or (3) conductive heat transport across the core-mantle boundary. The advective/diffusive transport of heat may result in a physical contribution of material from the core to the lower mantle. If core material is incorporated into the lower mantle, mantle plumes with a higher buoyancy flux should have higher core tracers, e.g., increased 186Os, 187Os, and Fe concentrations. Geophysical and dynamic modeling indicate that at least Afar, Easter, Hawaii, Louisville, and Samoa may all originate at the core-mantle boundary. These plumes encompass the whole range of known buoyancy fluxes from 0.9 Mg s-1 (Afar) to 8.7 Mg s-1 (Hawaii), providing evidence that the buoyancy flux is largely independent of other geophysical parameters. In an effort to explore whether the heat-producing elements are the cause of excess heat we looked for correlations between fractionation-corrected concentrations of the HPE and buoyancy flux. Our results suggest that there is no correlation between HPE concentrations and buoyancy flux (with and without an additional correction for variable degrees of partial melting). As anticipated, K, Th, and U are positively correlated with each other (e.g., Hawaii, Iceland, and Galapagos have significantly lower concentrations than, e.g., Tristan da Cunha, the Canary

  5. Upper Mantle Structure beneath Afar: inferences from surface waves.

    NASA Astrophysics Data System (ADS)

    Sicilia, D.; Montagner, J.; Debayle, E.; Lepine, J.; Leveque, J.; Cara, M.; Ataley, A.; Sholan, J.

    2001-12-01

    The Afar hotspot is related to one of the most important plume from a geodynamic point of view. It has been advocated to be the surface expression of the South-West African Superswell. Below the lithosphere, the Afar plume might feed other hotspots in central Africa (Hadiouche et al., 1989; Ebinger & Sleep, 1998). The processes of interaction between crust, lithosphere and plume are not well understood. In order to gain insight into the scientific issue, we have performed a surface-wave tomography covering the Horn of Africa. A data set of 1404 paths for Rayleigh waves and 473 paths for Love waves was selected in the period range 45-200s. They were collected from the permanent IRIS and GEOSCOPE networks and from the PASSCAL experiment, in Tanzania and Saudi Arabia. Other data come from the broadband stations deployed in Ethiopia and Yemen in the framework of the French INSU program ``Horn of Africa''. The results presented here come from a path average phase velocities obtained with a method based on a least-squares minimization (Beucler et al., 2000). The local phase velocity distribution and the azimuthal anisotropy were simultaneously retrieved by using the tomographic technique of Montagner (1986). A correction of the data is applied according to the crustal structure of the 3SMAC model (Nataf & Ricard, 1996). We find low velocities down to 200 km depth beneath the Red Sea, the Gulf of Aden, Afars, the Ethiopian Plateau and southern Arabia. High velocities are present in the eastern Arabia and the Tanzania Craton. The anisotropy beneath Afar seems to be complex, but enables to map the flow pattern at the interface lithosphere-asthenosphere. The results presented here are complementary to those obtained by Debayle et al. (2001) at upper-mantle transition zone depths using waveform inversion of higher Rayle igh modes.

  6. Geochemical evidence of mantle reservoir evolution during progressive rifting along the western Afar margin

    NASA Astrophysics Data System (ADS)

    Rooney, Tyrone O.; Mohr, Paul; Dosso, Laure; Hall, Chris

    2013-02-01

    The Afar triple junction, where the Red Sea, Gulf of Aden and African Rift System extension zones converge, is a pivotal domain for the study of continental-to-oceanic rift evolution. The western margin of Afar forms the southernmost sector of the western margin of the Red Sea rift where that margin enters the Ethiopian flood basalt province. Tectonism and volcanism at the triple junction had commenced by ˜31 Ma with crustal fissuring, diking and voluminous eruption of the Ethiopian-Yemen flood basalt pile. The dikes which fed the Oligocene-Quaternary lava sequence covering the western Afar rift margin provide an opportunity to probe the geochemical reservoirs associated with the evolution of a still active continental margin. 40Ar/39Ar geochronology reveals that the western Afar margin dikes span the entire history of rift evolution from the initial Oligocene flood basalt event to the development of focused zones of intrusion in rift marginal basins. Major element, trace element and isotopic (Sr-Nd-Pb-Hf) data demonstrate temporal geochemical heterogeneities resulting from variable contributions from the Afar plume, depleted asthenospheric mantle, and African lithosphere. The various dikes erupted between 31 Ma and 22 Ma all share isotopic signatures attesting to a contribution from the Afar plume, indicating this initial period in the evolution of the Afar margin was one of magma-assisted weakening of the lithosphere. From 22 Ma to 12 Ma, however, diffuse diking during continued evolution of the rift margin facilitated ascent of magmas in which depleted mantle and lithospheric sources predominated, though contributions from the Afar plume persisted. After 10 Ma, magmatic intrusion migrated eastwards towards the Afar rift floor, with an increasing fraction of the magmas derived from depleted mantle with less of a lithospheric signature. The dikes of the western Afar margin reveal that magma generation processes during the evolution of this continental rift margin

  7. Multiple mantle upwellings through the transition zone beneath the Afar Depression?

    NASA Astrophysics Data System (ADS)

    Hammond, J. O.; Kendall, J. M.; Stuart, G. W.; Thompson, D. A.; Ebinger, C. J.; Keir, D.; Ayele, A.; Goitom, B.; Ogubazghi, G.

    2012-12-01

    Previous seismic studies using regional deployments of sensors in East-Africa show that low seismic velocities underlie Africa, but their resolution is limited to the top 200-300km of the Earth. Thus, the connection between the low velocities in the uppermost mantle and those imaged in global studies in the lower mantle is unclear. We have combined new data from Afar, Ethiopia with 7 other regional experiments and global network stations across Kenya, Ethiopia, Eritrea, Djibouti and Yemen, to produce high-resolution models of upper mantle P- and S-wave velocities to the base of the transition zone. Relative travel time tomographic inversions show that within the transition zone two focussed sharp-sided low velocity regions exist: one beneath the Western Ethiopian plateau outside the rift valley, and the other beneath the Afar depression. Estimates of transition zone thickness suggest that this is unlikely to be an artefact of mantle discontinuity topography as a transition zone of normal thickness underlies the majority of Afar and surrounding regions. However, a low velocity layer is evident directly above the 410 discontinuity, co-incident with some of the lowest seismic velocities suggesting that smearing of a strong low velocity layer of limited depth extent may contribute to the tomographic models in north-east Afar. The combination of seismic constraints suggests that small low temperature (<50K) upwellings may rise from a broader low velocity plume-like feature in the lower mantle. This interpretation is supported by numerical and analogue experiments that suggest the 660km phase change and viscosity jump may impede flow from the lower to upper mantle creating a thermal boundary layer at the base of the transition zone. This allows smaller, secondary upwellings to initiate and rise to the surface. These, combined with possible evidence of melt above the 410 discontinuity can explain the seismic velocity models. Our images of secondary upwellings suggest that

  8. Seismic Imaging of Mantle Plumes

    NASA Astrophysics Data System (ADS)

    Nataf, Henri-Claude

    The mantle plume hypothesis was proposed thirty years ago by Jason Morgan to explain hotspot volcanoes such as Hawaii. A thermal diapir (or plume) rises from the thermal boundary layer at the base of the mantle and produces a chain of volcanoes as a plate moves on top of it. The idea is very attractive, but direct evidence for actual plumes is weak, and many questions remain unanswered. With the great improvement of seismic imagery in the past ten years, new prospects have arisen. Mantle plumes are expected to be rather narrow, and their detection by seismic techniques requires specific developments as well as dedicated field experiments. Regional travel-time tomography has provided good evidence for plumes in the upper mantle beneath a few hotspots (Yellowstone, Massif Central, Iceland). Beneath Hawaii and Iceland, the plume can be detected in the transition zone because it deflects the seismic discontinuities at 410 and 660 km depths. In the lower mantle, plumes are very difficult to detect, so specific methods have been worked out for this purpose. There are hints of a plume beneath the weak Bowie hotspot, as well as intriguing observations for Hawaii. Beneath Iceland, high-resolution tomography has just revealed a wide and meandering plume-like structure extending from the core-mantle boundary up to the surface. Among the many phenomena that seem to take place in the lowermost mantle (or D''), there are also signs there of the presence of plumes. In this article I review the main results obtained so far from these studies and discuss their implications for plume dynamics. Seismic imaging of mantle plumes is still in its infancy but should soon become a turbulent teenager.

  9. The He isotope composition of the earliest picrites erupted by the Ethiopia plume, implications for mantle plume source

    NASA Astrophysics Data System (ADS)

    Stuart, Finlay; Rogers, Nick; Davies, Marc

    2016-04-01

    The earliest basalts erupted by mantle plumes are Mg-rich, and typically derived from mantle with higher potential temperature than those derived from the convecting upper mantle at mid-ocean ridges and ocean islands. The chemistry and isotopic composition of picrites from CFB provide constraints on the composition of deep Earth and thus the origin and differentiation history. We report new He-Sr-Nd-Pb isotopic composition of the picrites from the Ethiopian flood basalt province from the Dilb (Chinese Road) section. They are characterized by high Fe and Ti contents for MgO = 10-22 wt. % implying that the parent magma was derived from a high temperature low melt fraction, most probably from the Afar plume head. The picrite 3He/4He does not exceed 21 Ra, and there is a negative correlation with MgO, the highest 3He/4He corresponding to MgO = 15.4 wt. %. Age-corrected 87Sr/86Sr (0.70392-0.70408) and 143Nd/144Nd (0.512912-0.512987) display little variation and are distinct from MORB and OIB. Age-corrected Pb isotopes display a significant range (e.g. 206Pb/204Pb = 18.70-19.04) and plot above the NHRL. These values contrast with estimates of the modern Afar mantle plume which has lower 3He/4He and Sr, Nd and Pb isotope ratios that are more comparable with typical OIB. These results imply either interaction between melts derived from the Afar mantle plume and a lithospheric component, or that the original Afar mantle plume had a rather unique radiogenic isotope composition. Regardless of the details of the origins of this unusual signal, our observations place a minimum 3He/4He value of 21 Ra for the Afar mantle plume, significantly greater than the present day value of 16 Ra, implying a significant reduction over 30 Myr. In addition the Afar source was less degassed than convecting mantle but more degassed than mantle sampled by the proto-Iceland plume (3He/4He ~50 Ra). This suggests that the largest mantle plumes are not sourced in a single deep mantle domain with a

  10. Mantle plumes and continental tectonics.

    PubMed

    Hill, R I; Campbell, I H; Davies, G F; Griffiths, R W

    1992-04-10

    Mantle plumes and plate tectonics, the result of two distinct modes of convection within the Earth, operate largely independently. Although plumes are secondary in terms of heat transport, they have probably played an important role in continental geology. A new plume starts with a large spherical head that can cause uplift and flood basalt volcanism, and may be responsible for regional-scale metamorphism or crustal melting and varying amounts of crustal extension. Plume heads are followed by narrow tails that give rise to the familiar hot-spot tracks. The cumulative effect of processes associated with tail volcanism may also significantly affect continental crust.

  11. Revisiting Hotspots and Mantle Plumes: Some Phenomenology

    NASA Astrophysics Data System (ADS)

    King, S. D.; White-Gaynor, A. L.

    2012-12-01

    Sleep (1990) used gravity, topography and heat flow from 37 hotspots to ``constrain the mechanism for swell uplift and to obtain fluxes and excess temperatures of mantle plumes,'' complementing a previous analysis by Davies (1988). We repeat that analysis for the same 37 hotspots using gravity from EGM2008 and topography from ETOPO1 (Amante and Eakins, 2009). EGM2008 is complete to spherical harmonic degree and order 2159, or roughly 20 km spatial resolution (Pavlis et al., 2012). The vertical accuracy of ETOPO1 is on the order of 10 meters. With these new models we hope to improve the uplift and subsidence rates along all 37 hotspot tracks--one of the major limitations the previous work. For example, of the 37 hotspots considered Sleep ranked only 7 with good reliability while 14 were fair and 16 were poor. With this new information we can compare and contrast hotspots with various other groupings of hotspots based on tomographic images of mantle structure (Montelli et al, 2003), primary versus secondary hotspots (Courtillot et al., 2003) or relationship to cratonic boundaries (King, 2008). One encounters some puzzles when attempting to reconcile buoyancy fluxes with other groupings of hotspots and/or observations. For example, Coutillot et al.'s seven primary hotspots include: Afar, Easter, Hawaii, Iceland, Louisville, Réunion, and Tristan. Sleep (1990) categorized the reliability of the buoyancy flux calculated by from Afar, Hawaii, Iceland, and Réunion as good, while Tristan and Easter were fair and Louisville was poor. The calculated buoyancy fluxes from Macdonald and Marqueses (both listed as fair) are twice as large as those from Iceland, Tristan, and Réunion. While we recognize that these observations cannot uniquely constrain the origin of these anomalies, better observations should help test various hypotheses.

  12. Redox conditions for mantle plumes

    NASA Astrophysics Data System (ADS)

    Heister, L. E.; Lesher, C. E.

    2005-12-01

    The vanadium to scandium ratio (V/Sc) for basalts from mid-ocean ridge (MOR) and arc environments has been proposed as a proxy for fO2 conditions during partial melting (e.g. [1] and [2]). Contrary to barometric measurements of the fO2 of primitive lavas, the V/Sc ratio of the upper mantle at mid-ocean ridges and arcs is similar, leading previous authors to propose that the upper mantle has uniform redox potential and is well-buffered. We have attempted to broaden the applicability of the V/Sc parameter to plume-influenced localities (both oceanic and continental), where mantle heterogeneities associated with recycled sediments, mafic crust, and metasomatized mantle, whether of shallow or deep origin, exist. We find that primitive basalts from the North Atlantic Igneous Province (NAIP), Hawaii (both the Loa and Kea trends), Deccan, Columbia River, and Siberian Traps show a range of V/Sc ratios that are generally higher (average ~9) than those for MOR (average ~ 6.7) or arc (average ~7) lavas. Based on forward polybaric decompression modeling, we attribute these differences to polybaric melting and melt segregation within the garnet stability field rather than the presence of a more oxidized mantle in plume-influenced settings. Like MORB, the V/Sc ratios for plume-influenced basalts can be accounted for by an oxidation state approximately one log unit below the Ni-NiO buffer (NNO-1). Our analysis suggests that source heterogeneities have little, if any, resolvable influence on mantle redox conditions, although they have significant influence on the trace element and isotopic composition of mantle-derived melts. We suggest that variations in the redox of erupted lavas is largely a function of shallow lithospheric processes rather than intrinsic to the mantle source, regardless of tectonic setting. [1] Li and Lee (2004) EPSL, [2] Lee et al. (2005) J. of Petrology

  13. Seismic Imaging of the crust and upper mantle beneath Afar, Ethiopia

    NASA Astrophysics Data System (ADS)

    Hammond, J. O.; Kendall, J. M.; Stuart, G. W.; Ebinger, C. J.

    2009-12-01

    margins, supporting ideas of preferential melt generation at these regions of high strain. This includes a region of low velocity close to the edge of the proposed location of the Danakil microplate. Outside of these focused regions the velocities are relatively fast. Below ~250km the anomaly broadens to cover most of the Afar region with only the rift margins remaining fast. At transition zone depths little anomaly is seen beneath Afar, but some low velocities remain present beneath the MER. These studies suggest that in northern Ethiopia the Red Sea rift is dominant. The presence of thin crust beneath northern Afar suggests that the Red Sea rift is creating oceanic like crust in this region. The lack of deep mantle low velocity anomalies beneath Afar suggest that a typical narrow conduit plume does not exist in this region, rather the velocity models seem more similar to passive upwelling of material beneath Afar.

  14. Upper mantle structure of shear-waves velocities and stratification of anisotropy in the Afar Hotspot region

    NASA Astrophysics Data System (ADS)

    Sicilia, D.; Montagner, J.-P.; Cara, M.; Stutzmann, E.; Debayle, E.; Lépine, J.-C.; Lévêque, J.-J.; Beucler, E.; Sebai, A.; Roult, G.; Ayele, A.; Sholan, J. M.

    2008-12-01

    The Afar area is one of the biggest continental hotspots active since about 30 Ma. It may be the surface expression of a mantle "plume" related to the African Superswell. Central Africa is also characterized by extensive intraplate volcanism. Around the same time (30 Ma), volcanic activity re-started in several regions of the African plate and hotspots such as Darfur, Tibesti, Hoggar and Mount Cameroon, characterized by a significant though modest volcanic production. The interactions of mantle upwelling with asthenosphere, lithosphere and crust remain unclear and seismic anisotropy might help in investigating these complex interactions. We used data from the global seismological permanent FDSN networks (GEOSCOPE, IRIS, MedNet, GEO- FON, etc.), from the temporary PASSCAL experiments in Tanzania and Saudi Arabia and a French deployment of 5 portable broadband stations surrounding the Afar Hotspot. A classical two-step tomographic inversion from surface waves performed in the Horn of Africa with selected Rayleigh wave and Love wave seismograms leads to a 3D-model of both S V velocities and azimuthal anisotropy, as well as radial SH/ SV anisotropy, with a lateral resolution of 500 km. The region is characterized by low shear-wave velocities beneath the Afar Hotspot, the Red Sea, the Gulf of Aden and East of the Tanzania Craton to 400 km depth. High velocities are present in the Eastern Arabia and the Tanzania Craton. The results of this study enable us to rule out a possible feeding of the Central Africa hotspots from the "Afar plume" above 150-200 km. The azimuthal anisotropy displays a complex pattern near the Afar Hotspot. Radial anisotropy, although poorly resolved laterally, exhibits S H slower than S V waves down to about 150 km depth, and a reverse pattern below. Both azimuthal and radial anisotropies show a stratification of anisotropy at depth, corresponding to different physical processes. These results suggest that the Afar hotspot has a different and

  15. Teaching the Mantle Plumes Debate

    NASA Astrophysics Data System (ADS)

    Foulger, G. R.

    2010-12-01

    There is an ongoing debate regarding whether or not mantle plumes exist. This debate has highlighted a number of issues regarding how Earth science is currently practised, and how this feeds into approaches toward teaching students. The plume model is an hypothesis, not a proven fact. And yet many researchers assume a priori that plumes exist. This assumption feeds into teaching. That the plume model is unproven, and that many practising researchers are skeptical, may be at best only mentioned in passing to students, with most teachers assuming that plumes are proven to exist. There is typically little emphasis, in particular in undergraduate teaching, that the origin of melting anomalies is currently uncertain and that scientists do not know all the answers. Little encouragement is given to students to become involved in the debate and to consider the pros and cons for themselves. Typically teachers take the approach that “an answer” (or even “the answer”) must be taught to students. Such a pedagogic approach misses an excellent opportunity to allow students to participate in an important ongoing debate in Earth sciences. It also misses the opportunity to illustrate to students several critical aspects regarding correct application of the scientific method. The scientific method involves attempting to disprove hypotheses, not to prove them. A priori assumptions should be kept uppermost in mind and reconsidered at all stages. Multiple working hypotheses should be entertained. The predictions of a hypothesis should be tested, and unpredicted observations taken as weakening the original hypothesis. Hypotheses should not be endlessly adapted to fit unexpected observations. The difficulty with pedagogic treatment of the mantle plumes debate highlights a general uncertainty about how to teach issues in Earth science that are not yet resolved with certainty. It also represents a missed opportunity to let students experience how scientific theories evolve, warts

  16. Constraining the source of mantle plumes

    NASA Astrophysics Data System (ADS)

    Cagney, N.; Crameri, F.; Newsome, W. H.; Lithgow-Bertelloni, C.; Cotel, A.; Hart, S. R.; Whitehead, J. A.

    2016-02-01

    In order to link the geochemical signature of hot spot basalts to Earth's deep interior, it is first necessary to understand how plumes sample different regions of the mantle. Here, we investigate the relative amounts of deep and shallow mantle material that are entrained by an ascending plume and constrain its source region. The plumes are generated in a viscous syrup using an isolated heater for a range of Rayleigh numbers. The velocity fields are measured using stereoscopic Particle-Image Velocimetry, and the concept of the 'vortex ring bubble' is used to provide an objective definition of the plume geometry. Using this plume geometry, the plume composition can be analysed in terms of the proportion of material that has been entrained from different depths. We show that the plume composition can be well described using a simple empirical relationship, which depends only on a single parameter, the sampling coefficient, sc. High-sc plumes are composed of material which originated from very deep in the fluid domain, while low-sc plumes contain material entrained from a range of depths. The analysis is also used to show that the geometry of the plume can be described using a similarity solution, in agreement with previous studies. Finally, numerical simulations are used to vary both the Rayleigh number and viscosity contrast independently. The simulations allow us to predict the value of the sampling coefficient for mantle plumes; we find that as a plume reaches the lithosphere, 90% of its composition has been derived from the lowermost 260-750 km in the mantle, and negligible amounts are derived from the shallow half of the lower mantle. This result implies that isotope geochemistry cannot provide direct information about this unsampled region, and that the various known geochemical reservoirs must lie in the deepest few hundred kilometres of the mantle.

  17. Earth science: Plate motion and mantle plumes

    NASA Astrophysics Data System (ADS)

    Müller, R. Dietmar

    2011-07-01

    A model based on geophysical data from the Indian Ocean suggests that a mantle-plume head may once have coupled the motions of the African and Indian tectonic plates, and determined their respective speeds. See Article p.47

  18. Sampling by mantle plumes : the legacy of the plume source

    NASA Astrophysics Data System (ADS)

    Brandeis, G.; Touitou, F.; Davaille, A.

    2013-12-01

    Plumes in the Earth's mantle are considered to be at the origin of intraplate volcanism (or hotspots). They continue to fascinate the scientific community by the heterogeneity of the material they sample on the surface of our planet. To characterize what part of the mantle is sampled by plumes, we have developed a laboratory model for laminar thermal plumes at high Prandtl number, in a fluid whose viscosity depends strongly on the temperature. This study describes the precise phenomenology of the plume and proposes scaling laws for the speed and temperature of the conduit of the plume. We show a strong dependence of these features of the plume with the Rayleigh number and viscosity ratio. Our visualization technique allows for the simultaneous non-intrusive measurements of the temperature, deformation and velocity fields. By calculating numerically the advection of passive markers through the experimental velocity field, we found that (1) the hot center of the plume conduit only consists of fluid which has passed through the thermal boundary layer ("TBL") at the bottom of the tank from which the plume was issued. Moreover, as material is stretched by velocity gradients, it is also in the thermal boundary layer that most of the material stretching occurs (2). The fluid is then transported in the conduit without lateral mixing, and further stretched vertically by the lateral velocity gradients. Since it is only the hot upwelling plume center which melts and therefore is sampled by volcanic activity, (1) implies that the plume geochemical signature is representative of the material located in the deep TBL of the mantle from which the plume is issued. On the other hand, (2) implies that filaments, pancakes, and concentric or bimodal zonation of the plume at the surface all result from different distributions of the heterogeneities in the plume source, filaments being the most generic case. Finally, we apply the scaling laws to the case of Hawaii.

  19. Plume locations and thermal anomalies determined by S-to-P receiver function imaging of the onset of melting: Afar, Hawaii, Galapagos, and Iceland (Invited)

    NASA Astrophysics Data System (ADS)

    Rychert, C.; Harmon, N.; Ebinger, C. J.; Hammond, J. O.; Kendall, J. M.; Laske, G.; Shearer, P. M.

    2013-12-01

    In classical plume theory, thermal anomalies rise vertically to the surface of the Earth. However, seismically imaging plume locations has proven challenging, and several observations and results from geodynamics suggest that plume trajectories may be more complicated than simple vertical upwellings. Here we use S-to-P receiver functions to image upper mantle discontinuity structure beneath volcanically active regions. We image a strong, sharp velocity increase in depth that is likely the base of a melt-rich layer beneath Hawaii, Iceland, Galapagos, and Afar. The discontinuity is likely related to the onset of melting, and is therefore expected deeper in locations of thermal plume anomalies. We use depth variations to constrain plume locations and the magnitude of thermal plume anomalies at asthenospheric depths in these regions. Beneath Hawaii we find a discontinuity at 110 to 155 km depth, deepest 100 km west of Hawaii in the location of slowest shear velocities as constrained by surface waves. Beneath Galapagos the discontinuity is imaged at ~125 to 145 km, deeper in 3 sectors that are coincident with the slowest shear velocity anomalies in the upper 100 km, as constrained by surface waves. One is located in the southwest in a hypothesized plume location. The other two are to the northwest and northeast, possibly illuminating multiple plume diversions related to complex plume-ridge interactions. Beneath Iceland the discontinuity is imaged at 110 - 160 km, deeper in the northeast in the location of hypothesized plume impingement. Beneath the Afar rift the discontinuity is imaged at ~75 km depth, suggesting that the plume is located outside our study region. Overall the maximum discontinuity depths correspond to ~100°C local thermal anomalies, or ~200°C from ambient mantle. In addition, the deepest realizations of the discontinuities are not necessarily located directly beneath surface hotspots. This suggests that either plumes approach the surface at an angle

  20. Dynamics of thermochemical plumes: 2. Complexity of plume structures and its implications for mapping mantle plumes

    NASA Astrophysics Data System (ADS)

    Lin, Shu-Chuan; van Keken, Peter E.

    2006-03-01

    The mantle plume hypothesis provides explanations for several major observations of surface volcanism. The dynamics of plumes with purely thermal origin has been well established, but our understanding of the role of compositional variations in the Earth's mantle on plume formation is still incomplete. In this study we explore the structures of plumes originating from a thermochemical boundary layer at the base of the mantle in an attempt to complement fluid dynamical studies of purely thermal plumes. Our numerical experiments reveal diverse characteristics of thermochemical plumes that frequently deviate from the classic features of plumes. In addition, owing to the interplay between the thermal and compositional buoyancy forces, the morphology, temperature, and flow fields in both the plume head and plume conduit are strongly time-dependent. The entrainment of the dense layer and secondary instabilities developed in the boundary layer contribute to lateral heterogeneities and enhance stirring processes in the plume head. Our models show that substantial topography of the compositional layer can develop simultaneously with the plumes. In addition, plumes may be present in the lower mantle for more than 70 million years. These features may contribute to the large low seismic velocity provinces beneath the south central Pacific, the southern Atlantic Ocean, and Africa. Our model results support the idea that the dynamics of mantle plumes is much more complicated than conventional thinking based on studies of purely thermal plumes. The widely used criteria for mapping mantle plumes, such as a vertically continuous low seismic velocity signature and strong surface topography swell, may not be universally applicable. We propose that the intrinsic density contrast of the distinct composition may reduce the associated topography of some large igneous provinces such as Ontong Java.

  1. Hydrous upwelling across the mantle transition zone beneath the Afar Triple Junction

    NASA Astrophysics Data System (ADS)

    Thompson, D. A.; Kendall, J. M.; Hammond, J. O. S.; Stuart, G. W.; Helffrich, G. R.; Keir, D.; Ayele, A.; Goitom, B.

    2014-12-01

    The upwelling of material from the lower mantle to the base of the lithosphere is hypothesised as being a primary geodynamic process and the mechanisms that drive upwelling (e.g. thermal vs. compositional buoyancy) are key to our understanding of whole mantle convection. We address these issues with new seismic data from recent deployments located on the Afar Triple Junction. The detailed images of deep structure beneath this large igneous province illuminate features that give insights into the nature of upwelling from the deep mantle. A seismic low velocity layer directly above the mantle transition zone, interpreted as a stable melt layer, along with a prominent 520 km discontinuity suggest the presence of a hydrous upwelling. Coincident with these features is a tomographically determined low velocity feature within the mantle transition zone, and relatively uniform transition zone thickness associated with this implies little variation in temperature. This suggests that upwelling is driven by compositional as opposed to thermal buoyancy. The results are consistent with volatile rich, chemically distinct upwellings rising from a heterogenous lower mantle source within the African Superplume.

  2. A LREE-depleted component in the Afar plume: Further evidence from Quaternary Djibouti basalts

    NASA Astrophysics Data System (ADS)

    Daoud, Mohamed A.; Maury, René C.; Barrat, Jean-Alix; Taylor, Rex N.; Le Gall, Bernard; Guillou, Hervé; Cotten, Joseph; Rolet, Joël

    2010-02-01

    Major, trace element and isotopic (Sr, Nd, Pb) data and unspiked K-Ar ages are presented for Quaternary (0.90-0.95 Ma old) basalts from the Hayyabley volcano, Djibouti. These basalts are LREE-depleted (La n/Sm n = 0.76-0.83), with 87Sr/ 86Sr ratios ranging from 0.70369 to 0.70376, and rather homogeneous 143Nd/ 144Nd ( ɛNd = + 5.9-+ 7.3) and Pb isotopic compositions ( 206Pb/ 204Pb = 18.47-18.55, 207Pb/ 204Pb = 15.52-15.57, 208Pb/ 204Pb = 38.62-38.77). They are very different from the underlying enriched Tadjoura Gulf basalts, and from the N-MORB erupted from the nascent oceanic ridges of the Red Sea and Gulf of Aden. Their compositions closely resemble those of (1) depleted Quaternary Manda Hararo basalts from the Afar depression in Ethiopia and (2) one Oligocene basalt from the Ethiopian Plateau trap series. Their trace element and Sr, Nd, Pb isotope systematics suggest the involvement of a discrete but minor LREE-depleted component, which is probably an intrinsic part of the Afar plume.

  3. The Axum-Adwa basalt-trachyte complex: a late magmatic activity at the periphery of the Afar plume

    NASA Astrophysics Data System (ADS)

    Natali, C.; Beccaluva, L.; Bianchini, G.; Siena, F.

    2013-08-01

    CFB event, characterized by comparatively lower volume of more alkaline products, conforms to the progressive vanishing of the Afar plume thermal effects and the parallel decrease of the partial melting degrees of the related mantle sources. This evolution is also concomitant with the variation of the tectono-magmatic regime from regional lithospheric extension (CFB eruption) to localized rifting processes that favoured magmatic differentiation.

  4. Influence of the Afar plume on the deep structure of Aden and Red Sea margins - Insight from teleseismic tomography in western Yemen

    NASA Astrophysics Data System (ADS)

    Korostelev, Félicie; Basuyau, Clémence; Leroy, Sylvie; Ahmed, Abdulhakim; Keir, Derek; Stuart, Graham; Rolandone, Frédérique; Ganad, Ismail Al; Khanbari, Khaled

    2013-04-01

    Continental rupture processes under mantle plume influence are still poorly known although extensively studied. The Afar plume has been largely investigated in Ethiopia to study early stages of continental break-up. Here we imaged the lithospheric structure of western continental Yemen to evaluate the role of the Afar plume on the evolution of the continental margin and its extent towards the East. A part of the YOCMAL project (YOung Conjugate MArgins Laboratory) permitted the deployment of twenty-three broadband stations in Yemen (from 2009 to 2010). Using a classical teleseismic tomography (Aki et al., 1974) on these stations together with a permanent GFZ station, we image the relative velocity variations of P-waves in the crust and lithosphere down to 300 km depth, with a maximum lateral resolution of about ~20 km. The model thus obtained shows (1) a dramatic and localized thinning of the crust in the vicinity of the Red Sea and the Gulf of Aden (2) the presence of magmatic underplating related to seaward dipping reflectors under those two volcanic margins (3) two granitic syn-rift intrusions on the border of the great escarpment (4) a low velocity anomaly in which with evidence of partial melting, just below thick Oligocene trapps series and other volcanic events (from 15 Ma to present). This low velocity anomaly could correspond to an abnormally hot mantle and could be responsible for dynamic topography and recent magmatism in western Yemen. (5) Finally, we infer the presence of hot material under the Southwestern corner of Yemen that could be related to Miocene volcanism in Jabal an Nar.

  5. Apollinaris Patera: An Early Martian Mantle Plume?

    NASA Astrophysics Data System (ADS)

    Kiefer, W. S.

    2015-12-01

    Apollinaris Patera is one of the largest volcanos on Mars outside of the Tharsis volcanic province (summit relief 5.4 km, volume 7.3x1013 m3). The mapped crater densities on Apollinaris indicate that volcanic activity ended 3.5 to 3.8 billion years ago. Apollinaris is located on the northern (lowland) side of the martian hemispheric dichotomy. Because it is an isolated, relatively point-like source of volcanism, it is plausibly interpreted as an early example of a martian mantle plume. Plume structure and conditions in the mantle can be constrained using finite element mantle convection simulations combined with a variety of petrological, geophysical, and geologic observations. (1) Basalts studied by the MER Spirit rover in nearby Gusev crater are similar in age and possibly physically connected to Apollinaris Patera. Petrologic modeling of the Gusev crater basalt compositions indicates that the thermal lithosphere was about 100 km thick with a mantle potential temperature of 1480-1530 °C. This requires a mantle thermal Rayleigh number of about 2x108 at the time of volcanism, based on the volume-averaged mantle viscosity. (2) Pyroclastic deposits at Apollinaris indicate that at least a portion of the volcanism occurred in the presence of a high concentration of water or other volatiles. This lowers the solidus temperature and increases the magma production rate but has only a limited effect on the minimum depth of melting. (3) There is a localized magnetic anomaly beneath Apollinaris that indicates that the martian core dynamo persisted until at least the earliest stage of Apollinaris volcanism, which in turn sets a lower bound on the core heat flux of 5-10 mW m-2. Preservation of the magnetic field may be the result of formation of magnetic minerals such as magnetite due to volcanically-driven hydrothermal alteration of crustal rocks beneath Apollinaris.

  6. Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept

    PubMed Central

    Dannberg, Juliane; Sobolev, Stephan V.

    2015-01-01

    The Earth's biggest magmatic events are believed to originate from massive melting when hot mantle plumes rising from the lowermost mantle reach the base of the lithosphere. Classical models predict large plume heads that cause kilometre-scale surface uplift, and narrow (100 km radius) plume tails that remain in the mantle after the plume head spreads below the lithosphere. However, in many cases, such uplifts and narrow plume tails are not observed. Here using numerical models, we show that the issue can be resolved if major mantle plumes contain up to 15–20% of recycled oceanic crust in a form of dense eclogite, which drastically decreases their buoyancy and makes it depth dependent. We demonstrate that, despite their low buoyancy, large enough thermochemical plumes can rise through the whole mantle causing only negligible surface uplift. Their tails are bulky (>200 km radius) and remain in the upper mantle for 100 millions of years. PMID:25907970

  7. Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept.

    PubMed

    Dannberg, Juliane; Sobolev, Stephan V

    2015-04-24

    The Earth's biggest magmatic events are believed to originate from massive melting when hot mantle plumes rising from the lowermost mantle reach the base of the lithosphere. Classical models predict large plume heads that cause kilometre-scale surface uplift, and narrow (100 km radius) plume tails that remain in the mantle after the plume head spreads below the lithosphere. However, in many cases, such uplifts and narrow plume tails are not observed. Here using numerical models, we show that the issue can be resolved if major mantle plumes contain up to 15-20% of recycled oceanic crust in a form of dense eclogite, which drastically decreases their buoyancy and makes it depth dependent. We demonstrate that, despite their low buoyancy, large enough thermochemical plumes can rise through the whole mantle causing only negligible surface uplift. Their tails are bulky (>200 km radius) and remain in the upper mantle for 100 millions of years.

  8. Rhyolites associated to Ethiopian CFB: Clues for initial rifting at the Afar plume axis

    NASA Astrophysics Data System (ADS)

    Natali, Claudio; Beccaluva, Luigi; Bianchini, Gianluca; Siena, Franca

    2011-12-01

    A comprehensive tectono-magmatic model based on new geochemical and field data is discussed in order to highlight the significance of the high-TiO 2 bimodal picrite basalt/rhyolite association in the north-eastern sector of the Ethiopian Plateau, which is considered to be the axial zone of the 30 Ma Continental Flood Basalt activity related to the Afar plume (Beccaluva et al., 2009). In this area the volcanic sequence consists of approximately 1700 m of high TiO 2 (4-6.5%) picrite basalts, covered by rhyolitic ignimbrites and lavas, with an average thickness of 300 m, which discontinuously extend over an area of nearly 13,500 km 2 (ca. 3600 km 3). Petrogenetic modelling, using rock and mineral chemical data and phase equilibria calculations by PELE and MELTS, indicates that: 1) picrite basalts could generate rhyolitic, sometimes peralkaline, residual melts with persistently high titanium contents (TiO 2 0.4-1.1%; Fluorine 0.2-0.3%; H 2O 2-3%; density ca. 2.4) corresponding to liquid fractions 9-16%; 2) closed system fractional crystallisation processes developed at 0.1-0.3 GPa pressure and 1390-750 °C temperature ranges, under QFM fO 2 conditions; 3) the highest crystallisation rate - involving 10-13% of Fe-Ti oxide removal - in the temperature range 1070-950 °C, represents a transitory (short-lived) fractionation stage, which results in the absence of erupted silica intermediate products (Daly gap). The eruption of low aspect ratio fluorine-rich rhyolitic ignimbrites and lavas capping the basic volcanics implies a rapid change from open- to closed-system tectono-magmatic conditions, which favoured the trapping of parental picrite basalts and their fractionation in upwardly zoned magma chambers. This evolution resulted from the onset of continental rifting, which was accompanied by normal faulting and block tilting, and the formation of shallow - N-S elongated - fissural chambers parallel to the future Afar Escarpment. The eruption of large volumes of rhyolitic

  9. Interaction of a mantle plume and a segmented mid-ocean ridge: Results from numerical modeling

    NASA Astrophysics Data System (ADS)

    Georgen, Jennifer E.

    2014-04-01

    Previous investigations have proposed that changes in lithospheric thickness across a transform fault, due to the juxtaposition of seafloor of different ages, can impede lateral dispersion of an on-ridge mantle plume. The application of this “transform damming” mechanism has been considered for several plume-ridge systems, including the Reunion hotspot and the Central Indian Ridge, the Amsterdam-St. Paul hotspot and the Southeast Indian Ridge, the Cobb hotspot and the Juan de Fuca Ridge, the Iceland hotspot and the Kolbeinsey Ridge, the Afar plume and the ridges of the Gulf of Aden, and the Marion/Crozet hotspot and the Southwest Indian Ridge. This study explores the geodynamics of the transform damming mechanism using a three-dimensional finite element numerical model. The model solves the coupled steady-state equations for conservation of mass, momentum, and energy, including thermal buoyancy and viscosity that is dependent on pressure and temperature. The plume is introduced as a circular thermal anomaly on the bottom boundary of the numerical domain. The center of the plume conduit is located directly beneath a spreading segment, at a distance of 200 km (measured in the along-axis direction) from a transform offset with length 100 km. Half-spreading rate is 0.5 cm/yr. In a series of numerical experiments, the buoyancy flux of the modeled plume is progressively increased to investigate the effects on the temperature and velocity structure of the upper mantle in the vicinity of the transform. Unlike earlier studies, which suggest that a transform always acts to decrease the along-axis extent of plume signature, these models imply that the effect of a transform on plume dispersion may be complex. Under certain ranges of plume flux modeled in this study, the region of the upper mantle undergoing along-axis flow directed away from the plume could be enhanced by the three-dimensional velocity and temperature structure associated with ridge

  10. Mantle plumes in the vicinity of subduction zones

    NASA Astrophysics Data System (ADS)

    Mériaux, C. A.; Mériaux, A.-S.; Schellart, W. P.; Duarte, J. C.; Duarte, S. S.; Chen, Z.

    2016-11-01

    We present three-dimensional deep-mantle laboratory models of a compositional plume within the vicinity of a buoyancy-driven subducting plate with a fixed trailing edge. We modelled front plumes (in the mantle wedge), rear plumes (beneath the subducting plate) and side plumes with slab/plume systems of buoyancy flux ratio spanning a range from 2 to 100 that overlaps the ratios in nature of 0.2-100. This study shows that 1) rising side and front plumes can be dragged over thousands of kilometres into the mantle wedge, 2) flattening of rear plumes in the trench-normal direction can be initiated 700 km away from the trench, and a plume material layer of lesser density and viscosity can ultimately almost entirely underlay a retreating slab after slab/plume impact, 3) while side and rear plumes are not tilted until they reach ∼600 km depth, front plumes can be tilted at increasing depths as their plume buoyancy is lessened, and rise at a slower rate when subjected to a slab-induced downwelling, 4) rear plumes whose buoyancy flux is close to that of a slab, can retard subduction until the slab is 600 km long, and 5) slab-plume interaction can lead to a diversity of spatial plume material distributions into the mantle wedge. We discuss natural slab/plume systems of the Cascadia/Bowie-Cobb, and Nazca/San Felix-Juan Fernandez systems on the basis of our experiments and each geodynamic context and assess the influence of slab downwelling at depths for the starting plumes of Java, Coral Sea and East Solomon. Overall, this study shows how slab/plume interactions can result in a variety of geological, geophysical and geochemical signatures.

  11. Recycled crust and the secular cooling of mantle plumes

    NASA Astrophysics Data System (ADS)

    Gazel Dondi, E.; Herzberg, C. T.; Vidito, C. A.

    2012-12-01

    Current models suggest that the massive basaltic production responsible for the emplacement of Large Igneous Provinces (LIPS) during the Permian-Paleocene may represent the initial phases of some of the mantle plumes that feed the current ocean island basalts (OIB). In some cases this magmatism was so voluminous that it produced global environmental impacts. Recent petrological, geochemical and geophysical studies of some of these localities like Samoa, Hawaii, Galapagos provide evidence that melting is related to a true mantle plume that originates from a boundary layer beneath the upper mantle. Thus, plume-related magmas produced in OIB and LIPS and their connecting plume tracks provide evidence on mantle temperature, size and composition of heterogeneities, and deep geochemical cycles. Although a lot of work has been done on LIPS and OIB, no complete record of the evolution of a mantle plume is available to this point. Galapagos-related lavas provide a complete record of the evolution of a mantle plume since the plume's initial stages in the Cretaceous. In the case of the Galapagos, our work suggests a decrease from TP(max) of 1650 °C in the Cretaceous to 1500 °C in the present day. Our recent work on the Galapagos Islands and the preliminary work on older Galapagos-related terranes suggest that this secular cooling is related with increasing amounts of recycled crust in the plume. Detailed olivine chemistry shows that although peridotite is the dominant source lithology of the Galapagos Plume, a recycled pyroxenite component is also significant in both isotopically enriched and depleted domains of the archipelago. We suggest that this possibly represents two separate bodies of recycled crust within the Galapagos mantle plume.

  12. The 2016 Case for Mantle Plumes and a Plume-Fed Asthenosphere (Augustus Love Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Morgan, Jason P.

    2016-04-01

    The process of science always returns to weighing evidence and arguments for and against a given hypothesis. As hypotheses can only be falsified, never universally proved, doubt and skepticism remain essential elements of the scientific method. In the past decade, even the hypothesis that mantle plumes exist as upwelling currents in the convecting mantle has been subject to intense scrutiny; from geochemists and geochronologists concerned that idealized plume models could not fit many details of their observations, and from seismologists concerned that mantle plumes can sometimes not be 'seen' in their increasingly high-resolution tomographic images of the mantle. In the place of mantle plumes, various locally specific and largely non-predictive hypotheses have been proposed to explain the origins of non-plate boundary volcanism at Hawaii, Samoa, etc. In my opinion, this debate has now passed from what was initially an extremely useful restorative from simply 'believing' in the idealized conventional mantle plume/hotspot scenario to becoming an active impediment to our community's ability to better understand the dynamics of the solid Earth. Having no working hypothesis at all is usually worse for making progress than having an imperfect and incomplete but partially correct one. There continues to be strong arguments and strong emerging evidence for deep mantle plumes. Furthermore, deep thermal plumes should exist in a mantle that is heated at its base, and the existence of Earth's (convective) geodynamo clearly indicates that heat flows from the core to heat the mantle's base. Here I review recent seismic evidence by French, Romanowicz, and coworkers that I feel lends strong new observational support for the existence of deep mantle plumes. I also review recent evidence consistent with the idea that secular core cooling replenishes half the mantle's heat loss through its top surface, e.g. that the present-day mantle is strongly bottom heated. Causes for

  13. The composition of mantle plumes and the deep Earth

    NASA Astrophysics Data System (ADS)

    Hastie, Alan R.; Fitton, J. Godfrey; Kerr, Andrew C.; McDonald, Iain; Schwindrofska, Antje; Hoernle, Kaj

    2016-06-01

    Determining the composition and geochemical diversity of Earth's deep mantle and subsequent ascending mantle plumes is vital so that we can better understand how the Earth's primitive mantle reservoirs initially formed and how they have evolved over the last 4.6 billion years. Further data on the composition of mantle plumes, which generate voluminous eruptions on the planet's surface, are also essential to fully understand the evolution of the Earth's hydrosphere and atmosphere with links to surface environmental changes that may have led to mass extinction events. Here we present new major and trace element and Sr-Nd-Pb-Hf isotope data on basalts from Curacao, part of the Caribbean large igneous province. From these and literature data, we calculate combined major and trace element compositions for the mantle plumes that generated the Caribbean and Ontong Java large igneous provinces and use mass balance to determine the composition of the Earth's lower mantle. Incompatible element and isotope results indicate that mantle plumes have broadly distinctive depleted and enriched compositions that, in addition to the numerous mantle reservoirs already proposed in the literature, represent large planetary-scale geochemical heterogeneity in the Earth's deep mantle that are similar to non-chondritic Bulk Silicate Earth compositions.

  14. The chemical structure of the Hawaiian mantle plume.

    PubMed

    Ren, Zhong-Yuan; Ingle, Stephanie; Takahashi, Eiichi; Hirano, Naoto; Hirata, Takafumi

    2005-08-11

    The Hawaiian-Emperor volcanic island and seamount chain is usually attributed to a hot mantle plume, located beneath the Pacific lithosphere, that delivers material sourced from deep in the mantle to the surface. The shield volcanoes of the Hawaiian islands are distributed in two curvilinear, parallel trends (termed 'Kea' and 'Loa'), whose rocks are characterized by general geochemical differences. This has led to the proposition that Hawaiian volcanoes sample compositionally distinct, concentrically zoned, regions of the underlying mantle plume. Melt inclusions, or samples of local magma 'frozen' in olivine phenocrysts during crystallization, may record complexities of mantle sources, thereby providing better insight into the chemical structure of plumes. Here we report the discovery of both Kea- and Loa-like major and trace element compositions in olivine-hosted melt inclusions in individual, shield-stage Hawaiian volcanoes--even within single rock samples. We infer from these data that one mantle source component may dominate a single lava flow, but that the two mantle source components are consistently represented to some extent in all lavas, regardless of the specific geographic location of the volcano. We therefore suggest that the Hawaiian mantle plume is unlikely to be compositionally concentrically zoned. Instead, the observed chemical variation is probably controlled by the thermal structure of the plume.

  15. Primordial helium entrained by the hottest mantle plumes.

    PubMed

    Jackson, M G; Konter, J G; Becker, T W

    2017-02-16

    Helium isotopes provide an important tool for tracing early-Earth, primordial reservoirs that have survived in the planet's interior. Volcanic hotspot lavas, like those erupted at Hawaii and Iceland, can host rare, high (3)He/(4)He isotopic ratios (up to 50 times the present atmospheric ratio, Ra) compared to the lower (3)He/(4)He ratios identified in mid-ocean-ridge basalts that form by melting the upper mantle (about 8Ra; ref. 5). A long-standing hypothesis maintains that the high-(3)He/(4)He domain resides in the deep mantle, beneath the upper mantle sampled by mid-ocean-ridge basalts, and that buoyantly upwelling plumes from the deep mantle transport high-(3)He/(4)He material to the shallow mantle beneath plume-fed hotspots. One problem with this hypothesis is that, while some hotspots have (3)He/(4)He values ranging from low to high, other hotspots exhibit only low (3)He/(4)He ratios. Here we show that, among hotspots suggested to overlie mantle plumes, those with the highest maximum (3)He/(4)He ratios have high hotspot buoyancy fluxes and overlie regions with seismic low-velocity anomalies in the upper mantle, unlike plume-fed hotspots with only low maximum (3)He/(4)He ratios. We interpret the relationships between (3)He/(4)He values, hotspot buoyancy flux, and upper-mantle shear wave velocity to mean that hot plumes-which exhibit seismic low-velocity anomalies at depths of 200 kilometres-are more buoyant and entrain both high-(3)He/(4)He and low-(3)He/(4)He material. In contrast, cooler, less buoyant plumes do not entrain this high-(3)He/(4)He material. This can be explained if the high-(3)He/(4)He domain is denser than low-(3)He/(4)He mantle components hosted in plumes, and if high-(3)He/(4)He material is entrained from the deep mantle only by the hottest, most buoyant plumes. Such a dense, deep-mantle high-(3)He/(4)He domain could remain isolated from the convecting mantle, which may help to explain the preservation of early Hadean (>4.5 billion years ago

  16. Limited latitudinal mantle plume motion for the Louisville hotspot

    NASA Astrophysics Data System (ADS)

    Koppers, Anthony A. P.; Yamazaki, Toshitsugu; Geldmacher, Jörg; Gee, Jeffrey S.; Pressling, Nicola; Koppers, Anthony A. P.; Yamazaki, Toshitsugu; Geldmacher, Jörg; Gee, Jeffrey S.; Pressling, Nicola; Hoshi, Hiroyuki; Anderson, L.; Beier, C.; Buchs, D. M.; Chen, L.-H.; Cohen, B. E.; Deschamps, F.; Dorais, M. J.; Ebuna, D.; Ehmann, S.; Fitton, J. G.; Fulton, P. M.; Ganbat, E.; Hamelin, C.; Hanyu, T.; Kalnins, L.; Kell, J.; Machida, S.; Mahoney, J. J.; Moriya, K.; Nichols, A. R. L.; Rausch, S.; Sano, S.-I.; Sylvan, J. B.; Williams, R.

    2012-12-01

    Hotspots that form above upwelling plumes of hot material from the deep mantle typically leave narrow trails of volcanic seamounts as a tectonic plate moves over their location. These seamount trails are excellent recorders of Earth's deep processes and allow us to untangle ancient mantle plume motions. During ascent it is likely that mantle plumes are pushed away from their vertical upwelling trajectories by mantle convection forces. It has been proposed that a large-scale lateral displacement, termed the mantle wind, existed in the Pacific between about 80 and 50 million years ago, and shifted the Hawaiian mantle plume southwards by about 15° of latitude. Here we use 40Ar/39Ar age dating and palaeomagnetic inclination data from four seamounts associated with the Louisville hotspot in the South Pacific Ocean to show that this hotspot has been relatively stable in terms of its location. Specifically, the Louisville hotspot--the southern hemisphere counterpart of Hawai'i--has remained within 3-5° of its present-day latitude of about 51°S between 70 and 50 million years ago. Although we cannot exclude a more significant southward motion before that time, we suggest that the Louisville and Hawaiian hotspots are moving independently, and not as part of a large-scale mantle wind in the Pacific.

  17. Primordial helium entrained by the hottest mantle plumes

    NASA Astrophysics Data System (ADS)

    Jackson, M. G.; Konter, J. G.; Becker, T. W.

    2017-02-01

    Helium isotopes provide an important tool for tracing early-Earth, primordial reservoirs that have survived in the planet’s interior. Volcanic hotspot lavas, like those erupted at Hawaii and Iceland, can host rare, high 3He/4He isotopic ratios (up to 50 times the present atmospheric ratio, Ra) compared to the lower 3He/4He ratios identified in mid-ocean-ridge basalts that form by melting the upper mantle (about 8Ra; ref. 5). A long-standing hypothesis maintains that the high-3He/4He domain resides in the deep mantle, beneath the upper mantle sampled by mid-ocean-ridge basalts, and that buoyantly upwelling plumes from the deep mantle transport high-3He/4He material to the shallow mantle beneath plume-fed hotspots. One problem with this hypothesis is that, while some hotspots have 3He/4He values ranging from low to high, other hotspots exhibit only low 3He/4He ratios. Here we show that, among hotspots suggested to overlie mantle plumes, those with the highest maximum 3He/4He ratios have high hotspot buoyancy fluxes and overlie regions with seismic low-velocity anomalies in the upper mantle, unlike plume-fed hotspots with only low maximum 3He/4He ratios. We interpret the relationships between 3He/4He values, hotspot buoyancy flux, and upper-mantle shear wave velocity to mean that hot plumes—which exhibit seismic low-velocity anomalies at depths of 200 kilometres—are more buoyant and entrain both high-3He/4He and low-3He/4He material. In contrast, cooler, less buoyant plumes do not entrain this high-3He/4He material. This can be explained if the high-3He/4He domain is denser than low-3He/4He mantle components hosted in plumes, and if high-3He/4He material is entrained from the deep mantle only by the hottest, most buoyant plumes. Such a dense, deep-mantle high-3He/4He domain could remain isolated from the convecting mantle, which may help to explain the preservation of early Hadean (>4.5 billion years ago) geochemical anomalies in lavas sampling this reservoir.

  18. Role of the deep mantle in generating the compositional asymmetry of the Hawaiian mantle plume

    NASA Astrophysics Data System (ADS)

    Weis, Dominique; Garcia, Michael O.; Rhodes, J. Michael; Jellinek, Mark; Scoates, James S.

    2011-12-01

    Linear chains of volcanic ocean islands are one of the most distinctive features on our planet. The longest, the Hawaiian-Emperor Chain, has been active for more than 80 million years, and is thought to have formed as the Pacific Plate moved across the Hawaiian mantle plume, the hottest and most productive of Earth's plumes. Volcanoes fed by the plume today form two adjacent trends, including Mauna Kea and Mauna Loa, that exhibit strikingly different geochemical characteristics. An extensive data set of isotopic analyses shows that lavas with these distinct characteristics have erupted in parallel along the Kea and Loa trends for at least 5 million years. Seismological data suggest that the Hawaiian mantle plume, when projected into the deep mantle, overlies the boundary between typical Pacific lower mantle and a sharply defined layer of apparently different material. This layer exhibits low seismic shear velocities and occurs on the Loa side of the plume. We conclude that the geochemical differences between the Kea and Loa trends reflect preferential sampling of these two distinct sources of deep mantle material. Similar indications of preferential sampling at the limit of a large anomalous low-velocity zone are found in Kerguelen and Tristan da Cunha basalts in the Indian and Atlantic oceans, respectively. We infer that the anomalous low-velocity zones at the core-mantle boundary are storing geochemical anomalies that are enriched in recycled material and sampled by strong mantle plumes.

  19. Tectonic events, continental intraplate volcanism, and mantle plume activity in northern Arabia: Constraints from geochemistry and Ar-Ar dating of Syrian lavas

    NASA Astrophysics Data System (ADS)

    Krienitz, M.-S.; Haase, K. M.; Mezger, K.; van den Bogaard, P.; Thiemann, V.; Shaikh-Mashail, M. A.

    2009-04-01

    New 40Ar/39Ar ages combined with chemical and Sr, Nd, and Pb isotope data for volcanic rocks from Syria along with published data of Syrian and Arabian lavas constrain the spatiotemporal evolution of volcanism, melting regime, and magmatic sources contributing to the volcanic activity in northern Arabia. Several volcanic phases occurred in different parts of Syria in the last 20 Ma that partly correlate with different tectonic events like displacements along the Dead Sea Fault system or slab break-off beneath the Bitlis suture zone, although the large volume of magmas and their composition suggest that hot mantle material caused volcanism. Low Ce/Pb (<20), Nb/Th (<10), and Sr, Nd, and Pb isotope variations of Syrian lavas indicate the role of crustal contamination in magma genesis, and contamination of magmas with up to 30% of continental crustal material can explain their 87Sr/86Sr. Fractionation-corrected major element compositions and REE ratios of uncontaminated lavas suggest a pressure-controlled melting regime in western Arabia that varies from shallow and high-degree melt formation in the south to increasingly deeper regions and lower extents of the beginning melting process northward. Temperature estimates of calculated primary, crustally uncontaminated Arabian lavas indicate their formation at elevated mantle temperatures (Texcess ˜ 100-200°C) being characteristic for their generation in a plume mantle region. The Sr, Nd, and Pb isotope systematic of crustally uncontaminated Syrian lavas reveal a sublithospheric and a mantle plume source involvement in their formation, whereas a (hydrous) lithospheric origin of lavas can be excluded on the basis of negative correlations between Ba/La and K/La. The characteristically high 206Pb/204Pb (˜19.5) of the mantle plume source can be explained by material entrainment associated with the Afar mantle plume. The Syrian volcanic rocks are generally younger than lavas from the southern Afro-Arabian region, indicating

  20. Anatomy of mantle plumes: hot heads and cold stems

    NASA Astrophysics Data System (ADS)

    Davaille, A. B.; Kumagai, I.; Vatteville, J.; Touitou, F.; Brandeis, G.

    2012-12-01

    Recent petrological studies show evidences for secular cooling in mantle plumes: the source temperature of oceanic plateaus could be 100°C hotter than the source temperature of volcanic island chains (Herzberg and Gazel, Nature, 2009). In terms of mantle plumes, it would mean that the temperature of the plume head is hotter than that of the plume stem. This is at odd with a model where a plume head would entrain so much ambient mantle on its journey towards the Earth's surface that it would end up being considerably colder than its narrow stem. So we revisited the problem using laboratory experiments and new visualization techniques to measure in situ simultaneously the temperature, velocity and composition fields. At time t=0, a hot instability is created by heating a patch of a given radius at constant power or constant temperature. The fluids are mixtures of sugar syrups , with a strongly temperature-dependent viscosity, and salt. Rayleigh numbers were varied from 104 to 108, viscosity ratios between 1.8 and 4000, and buoyancy ratios between 0 and 2. After a stage where heat transport is by conduction only, the hot fluid gathers in a sphere and begins to rise, followed by a stem anchored on the hot patch. In all cases, temperatures in the head start with higher values than in the subsequent stem. This is also the case for the thermal instabilities rising from a infinite plate heated uniformly. However, the head also cools faster than the stem as they rise, so that they will eventually have the same temperature if the mantle is deep enough. Moreover, all the material sampled by partial melting in the plume head or stem would be coming from the heated area around the deep source, and very little entrainment from the ambient mantle is predicted. The difference in temperature between head and stem strongly depends on the mantle depth, the viscosity ratio and the buoyancy ratio. Our scaling laws predict that Earth's mantle plumes can indeed have hot heads and colder

  1. Helium isotopic variations in Ethiopian plume lavas: nature of magmatic sources and limit on lower mantle contribution

    NASA Astrophysics Data System (ADS)

    Marty, Bernard; Pik, Raphae¨l.; Gezahegn, Yirgu

    1996-10-01

    Oligocene Continental Flood Basalts (CFB) from Ethiopia exhibit a wide range of 3He/ 4He ratios, from 0.035 Ra in crust-contaminated Low-Ti lava to 19.6 Ra in plume-derived high-Ti lava (where Ra is the atmospheric ratio of 1.38 × 10 -6). Quaternary basalts sampled in the Main Ethiopian Rift and in Afar also display dramatic 3He/ 4He variations from 0.009 Ra to 16.9 Ra. Low isotopic ratios partly reflect crustal assimilation whereas 3He/ 4He values higher than the mean isotopic ratio of the upper mantle (8 ± 1 Ra as measured in Normal Mid-Ocean Ridge Basalts [N-MORB]) indicate the contribution of a lower mantle component. The geographical extension of plume-type He is consistent with an approximate radius of ˜ 1000 km for the flattened plume head. Helium isotopic data show that strong lower mantle signals were already apparent during early emissions of CFB and pre-dated by more than 15 Ma the major phases of rifting in the African Horn region, contrary to the view of passive decompression melting contemporary with large-scale rifting. The He-Sr composition of the plume component cannot result from a simple binary mixing between lower mantle and upper mantle end-members and requires the contribution of other component(s) such as recycled crust. The proportion of the lower mantle contribution to the total mass of material involved in the building of the Ethiopian magmatic province, as estimated from He contents and isotopic ratios in the respective mantle sources, is found to be small (< 5%). Except for He (and Ne), such contribution has no impact on the trace element and isotopic compositions of plume basalts, which are dominated by mixing between upper mantle, continental crust and recycled sources. If the thermal anomaly necessary to produce CFB originates in the lower mantle, as generally proposed, then there exists a dramatic decoupling between mass and heat transfers across the lower mantle-upper mantle boundary layer.

  2. New Insights Into the Heat Sources of Mantle Plumes, or: Where Does all the Heat Come From, Heat Producing Elements, Advective or Conductive Heat Flow?

    NASA Astrophysics Data System (ADS)

    Rushmer, T.; Beier, C.; Turner, S.

    2007-12-01

    Melting anomalies in the Earth's upper mantle have often been attributed to the presence of mantle plumes that may originate in the lower mantle, possibly from the core-mantle boundary. Globally, mantle plumes exhibit a large range in buoyancy flux that which is proportional to their temperature and volume. Plumes with higher buoyancy fluxes should have higher temperatures and experience higher degrees of partial melting. Excess heat in mantle plumes could reflect either a) an enrichment of the heat producing elements (HPE: U, Th, K) in their mantle source leading to an increase of heat production by radioactive decay or b) advective or conductive heat transport across the core-mantle boundary. The advective transport of heat may result in a physical contribution of material from the core to the lower mantle. If core material is incorporated into the lower mantle, mantle plumes with a higher buoyancy flux should have higher core tracers, e.g. increased 186Os and Fe concentrations. Geophysical and dynamic modelling indicate that at least Afar, Easter, Hawaii, Louisville and Samoa may all originate at the core-mantle boundary. These plumes encompass the whole range of known buoyancy fluxes from 1.2 Mgs -1(Afar) to 6.5 Mgs -1 (Hawaii) providing evidence that the buoyancy flux is largely independent of other geophysical parameters. In an effort to explore whether the heat producing elements are the cause of excess heat we looked for correlations between fractionation corrected concentrations of the HPE and buoyancy flux. Our results suggest that there is no correlation between HPE concentrations and buoyancy flux (with and without an additional correction for variable degrees of partial melting). As anticipated, K, Th and U are positively correlated with each other (e.g. Hawaii, Iceland and Galapagos have significantly lower concentrations than e.g. Tristan da Cunha, the Canary Islands and the Azores). We also find no correlation between currently available Fe

  3. A migratory mantle plume on Venus: Implications for Earth?

    USGS Publications Warehouse

    Chapman, M.G.; Kirk, R.L.

    1996-01-01

    A spatially fixed or at least internally rigid hotspot reference frame has been assumed for determining relative plate motions on Earth. Recent 1:5,000,000 scale mapping of Venus, a planet without terrestrial-style plate tectonics and ocean cover, reveals a systematic age and dimensional progression of corona-like arachnoids occurring in an uncinate chain. The nonrandom associations between arachnoids indicate they likely formed from a deep-seated mantle plume in a manner similar to terrestrial hotspot features. However, absence of expected convergent "plate" margin deformation suggests that the arachnoids are the surface expression of a migratory mantle plume beneath a stationary surface. If mantle plumes are not stationary on Venus, what if any are the implications for Earth?

  4. The Relative Motion of Pacific Mantle Plumes: Implications for the Viscosity Structure of the Earth's Mantle.

    NASA Astrophysics Data System (ADS)

    Konrad, K.; Koppers, A. A. P.; Steinberger, B. M.; Konter, J. G.; Finlayson, V.; Jackson, M. G.

    2015-12-01

    The origin of linear, age-progressive hotspot chains have been long attributed to thermal anomalies in the lower mantle. More recently, it has been shown that individual mantle plumes show variable and independent motion. In an effort to assess the relative vectors and magnitudes of plume motion recorded on the Pacific plate we compare the long-lived Hawaii, Louisville and Rurutu hotspot tracks. All three plumes show motion in the modeled age range (0 - 80 Ma) with variable magnitudes related to the proximity of the hotspot from zones of major mantle upwelling as defined primarily by the location of spreading ridges. We compare the observed inter-hotspot distance between tracks through time to the hotspot distances derived through large scale mantle flow and related plume motion modeling. Over 80,000 different hotspot motion model runs with varied viscosity structures, mantle tomography models, and plume starting ages, buoyancies, and depths are compared using a Kolmogorov-Smirnov test to find a mantle structure which best fits the observed inter-hotspot distance data. Preliminary results in particular are most sensitive to the assumed viscosity structure of the Earth's mantle and thus finding realistic viscosity structures will provide critical and much needed boundary conditions for Earth-like geodynamic modeling.

  5. Asymmetric three-dimensional topography over mantle plumes.

    PubMed

    Burov, Evgueni; Gerya, Taras

    2014-09-04

    The role of mantle-lithosphere interactions in shaping surface topography has long been debated. In general, it is supposed that mantle plumes and vertical mantle flows result in axisymmetric, long-wavelength topography, which strongly differs from the generally asymmetric short-wavelength topography created by intraplate tectonic forces. However, identification of mantle-induced topography is difficult, especially in the continents. It can be argued therefore that complex brittle-ductile rheology and stratification of the continental lithosphere result in short-wavelength modulation and localization of deformation induced by mantle flow. This deformation should also be affected by far-field stresses and, hence, interplay with the 'tectonic' topography (for example, in the 'active/passive' rifting scenario). Testing these ideas requires fully coupled three-dimensional numerical modelling of mantle-lithosphere interactions, which so far has not been possible owing to the conceptual and technical limitations of earlier approaches. Here we present new, ultra-high-resolution, three-dimensional numerical experiments on topography over mantle plumes, incorporating a weakly pre-stressed (ultra-slow spreading), rheologically realistic lithosphere. The results show complex surface evolution, which is very different from the smooth, radially symmetric patterns usually assumed as the canonical surface signature of mantle upwellings. In particular, the topography exhibits strongly asymmetric, small-scale, three-dimensional features, which include narrow and wide rifts, flexural flank uplifts and fault structures. This suggests a dominant role for continental rheological structure and intra-plate stresses in controlling dynamic topography, mantle-lithosphere interactions, and continental break-up processes above mantle plumes.

  6. Seismic evidence for a tilted mantle plume and north-south mantle flow beneath Iceland

    USGS Publications Warehouse

    Shen, Y.; Solomon, S.C.; Bjarnason, I. Th; Nolet, G.; Morgan, W.J.; Allen, R.M.; Vogfjord, K.; Jakobsdottir, S.; Stefansson, R.; Julian, B.R.; Foulger, G.R.

    2002-01-01

    Shear waves converted from compressional waves at mantle discontinuities near 410- and 660-km depth recorded by two broadband seismic experiments in Iceland reveal that the center of an area of anomalously thin mantle transition zone lies at least 100 km south of the upper-mantle low-velocity anomaly imaged tomographically beneath the hotspot. This offset is evidence for a tilted plume conduit in the upper mantle, the result of either northward flow of the Icelandic asthenosphere or southward flow of the upper part of the lower mantle in a no-net-rotation reference frame. ?? 2002 Elsevier Science B.V. All rights reserved.

  7. Mantle plume capture, anchoring and outflow during ridge interaction

    NASA Astrophysics Data System (ADS)

    Gibson, S. A.; Richards, M. A.; Geist, D.

    2015-12-01

    Geochemical and geophysical studies have shown that >40% of the world's mantle plumes are currently interacting with the global ridge system and such interactions may continue for up to 180 Myr[1]. At sites of plume-ridge interaction up to 1400 km of the spreading centre is influenced by dispersed plume material but there are few constraints on how and where the ridge-ward transfer of deep-sourced material occurs, and also how it is sustained over long time intervals. Galápagos is an archetypal example of an off-axis plume and sheds important light on these mechanisms. The Galápagos plume stem is located ~200 km south of the spreading axis and its head influences 1000 km of the ridge. Nevertheless, the site of enriched basalts, greatest crustal thickness and elevated topography on the ridge, together with active volcanism in the archipelago, correlate with a narrow zone (~150 km) of low-velocity, high-temperature mantle that connects the plume stem and ridge at depths of ~100 km[2]. The enriched ridge basalts contain a greater amount of partially-dehydrated, recycled oceanic crust than basalts elsewhere on the spreading axis, or indeed basalts erupted in the region between the plume stem and ridge. The presence of these relatively volatile-rich ridge basalts requires flow of plume material below the peridotite solidus (i.e.>80 km). We propose a 2-stage model for the development and sustainment of a confined zone of deep ridge-ward plume flow. This involves initial on-axis capture and establishment of a sub-ridge channel of plume flow. Subsequent anchoring of the plume stem to a contact point on the ridge during axis migration results in confined ridge-ward flow of plume material via a deep network of melt channels embedded in the normal spreading and advection of the plume head[2]. Importantly, sub-ridge flow is maintained. The physical parameters and styles of mantle flow we have defined for Galápagos are less-well known at other sites of plume

  8. Growth and mixing dynamics of mantle wedge plumes

    NASA Astrophysics Data System (ADS)

    Gorczyk, Weronika; Gerya, Taras V.; Connolly, James A. D.; Yuen, David A.

    2007-07-01

    Recent work suggests that hydrated partially molten thermal-chemical plumes that originate from subducted slab as a consequence of Rayleigh-Taylor instability are responsible for the heterogeneous composition of the mantle wedge. We use a two-dimensional ultrahigh-resolution numerical simulation involving 10 × 109 active markers to anticipate the detailed evolution of the internal structure of natural plumes beneath volcanic arcs in intraoceanic subduction settings. The plumes consist of partially molten hydrated peridotite, dry solid mantle, and subducted oceanic crust, which may compose as much as 12% of the plume. As plumes grow and mature these materials mix chaotically, resulting in attenuation and duplication of the original layering on scales of 1-1000 m. Comparison of numerical results with geological observations from the Horoman ultramafic complex in Japan suggests that mixing and differentiation processes related to development of partially molten plumes above slabs may be responsible for the strongly layered lithologically mixed (marble cake) structure of asthenospheric mantle wedges.

  9. The link between Hawaiian mantle plume composition, magmatic flux, and deep mantle geodynamics

    NASA Astrophysics Data System (ADS)

    Harrison, Lauren N.; Weis, Dominique; Garcia, Michael O.

    2017-04-01

    Oceanic island basalts sample mantle reservoirs that are isotopically and compositionally heterogeneous. The Hawaiian-Emperor chain represents ∼85 Myr of volcanism supplied by a deep mantle plume. Two geographically and geochemically delineated trends, Kea and Loa, are well documented within the Hawaiian Islands. Enriched Loa compositions originate from subduction recycled or primordial material stored in deep mantle reservoirs such as the large low shear velocity province (LLSVP) below Hawai'i. Loa compositions have not been observed along the Emperor Seamounts (>50 Ma), whereas lavas on the Hawaiian Islands (<6.5 Ma) sample both Kea and Loa sources. Lead isotopes in shield lavas along the Northwest Hawaiian Ridge (NWHR) spanning ∼42 Myr between the bend in the chain and the Hawaiian Islands record the geochemical evolution of the Hawaiian mantle plume over a time period when many geophysical parameters (volcanic propagation rate, magmatic flux, mantle potential temperature) increased significantly. Along the NWHR, the Loa geochemical component appears ephemerally, which we link to the sampling of different lower mantle compositional domains by the Hawaiian mantle plume. The plume initially sampled only the deep Pacific mantle (Kea component) from outside the LLSVP during the formation of the Emperor Seamounts. Southward migration and anchoring of the plume on the LLSVP led to entrainment of increasing amounts of LLSVP material (Loa component) along the NWHR as documented by an increase in 208Pb*/206Pb* with decreasing age. The correlation between 208Pb*/206Pb* and magmatic flux suggests source composition affects the magmatic flux, and explains why the Hawaiian mantle plume has dramatically strengthened through time.

  10. Seismic Migration Imaging of the Lithosphere beneath the Afar Rift System, East Africa

    NASA Astrophysics Data System (ADS)

    Lee, T. T. Y.; Chen, C. W.; Rychert, C.; Harmon, N.

    2015-12-01

    The Afar Rift system in east Africa is an ideal natural laboratory for investigating the incipient continental rifting, an essential component of plate tectonics. The Afar Rift is situated at the triple junction of three rifts, namely the southern Red Sea Rift, Gulf of Aden Rift and Main Ethiopian Rift (MER). The ongoing continental rifting at Afar transitions to seafloor spreading toward the southern Red Sea. The tectonic evolution of Afar is thought to be influenced by a mantle plume, but how the plume affects and interacts with the Afar lithosphere remains elusive. In this study, we use array seismic data to produce high-resolution migration images of the Afar lithosphere from scattered teleseismic wavefields to shed light on the lithospheric structure and associated tectonic processes. Our preliminary results indicate the presence of lithospheric seismic discontinuities with depth variation across the Afar region. Beneath the MER axis, we detect a pronounced discontinuity at 55 km depth, characterized by downward fast-to-slow velocity contrast, which appears to abruptly deepen to 75 km depth to the northern flank of MER. This discontinuity may be interpreted as the lithosphere-asthenosphere boundary. Beneath the Ethiopian Plateau, on the other hand, a dipping structure with velocity increase is identified at 70-90 km depth. Further synthesis of observations from seismic tomography, receiver functions, and seismic anisotropy in the Afar region will offer better understanding of tectonic significance of the lithospheric discontinuities.

  11. Temperature fluctuation of the Iceland mantle plume through time

    NASA Astrophysics Data System (ADS)

    Spice, Holly E.; Fitton, J. Godfrey; Kirstein, Linda A.

    2016-02-01

    The newly developed Al-in-olivine geothermometer was used to find the olivine-Cr-spinel crystallization temperatures of a suite of picrites spanning the spatial and temporal extent of the North Atlantic Igneous Province (NAIP), which is widely considered to be the result of a deep-seated mantle plume. Our data confirm that start-up plumes are associated with a pulse of anomalously hot mantle over a large spatial area before becoming focused into a narrow upwelling. We find that the thermal anomaly on both sides of the province at Baffin Island/West Greenland and the British Isles at ˜61 Ma across an area ˜2000 km in diameter was uniform, with Al-in-olivine temperatures up to ˜300°C above that of average mid-ocean ridge basalt (MORB) primitive magma. Furthermore, by combining our results with geochemical data and existing geophysical and bathymetric observations, we present compelling evidence for long-term (>107 year) fluctuations in the temperature of the Iceland mantle plume. We show that the plume temperature fell from its initial high value during the start-up phase to a minimum at about 35 Ma, and that the mantle temperature beneath Iceland is currently increasing.

  12. Thermo-chemical plumes rooted in the deep mantle beneath major hotspots: implications for mantle dynamics

    NASA Astrophysics Data System (ADS)

    Romanowicz, B. A.; French, S.

    2015-12-01

    The existence of mantle plumes as a possible origin for hotspots has been the subject of debate for the last 30 years. Many seismic tomographic studies have hinted at the presence of plume-like features in the lower mantle, but resolution of narrow low velocity features is difficult, and ambiguity remains as to the vertical continuity of these features and how distinct they are from other low velocity blobs. We present robust evidence for significant, vertically continuous, low velocity columns in the lower mantle beneath prominent hotspots located within the footprint of the large low shear velocity provinces (LLSVPs), from a recent global, radially anisotropic whole mantle shear-wave velocity (Vs) model, SEMUCB-WM1 (French and Romanowicz, 2014, 2015). This model was constructed by inversion of a large dataset of long period three-component seismograms down to 32s period. Because it includes surface-wave overtones, S-diffracted waves and multiply reflected waves between the surface and the CMB, this dataset provides considerably better illumination of the whole mantle volume than can be obtained with a standard set of travel times alone. In addition, accurate numerical computation of the forward wavefield using the spectral element method at each iteration of the model construction, allows us to better resolve regions of lower than average Vs. The imaged plumes have several common characteristics: they are rooted in patches of very low Vs near the core mantle boundary, some of which contain documented ULVZs, and extend vertically through the lower mantle up to ~1000 km depth, where some are deflected horizontally, or give rise to somewhat thinner conduits that meander through the upper mantle in the vicinity of the target hotpots. Combined with evidence for slab stagnation at ~1000 km depth, this suggests a change in rheology between 660 and 1000 km depth, very high viscosity throughout the bulk of the lower mantle, and lower viscosity plumes, only mildly

  13. Water undersaturated mantle plume volcanism on present-day Mars

    NASA Astrophysics Data System (ADS)

    Kiefer, Walter S.; Li, Qingsong

    2016-11-01

    Based on meteorite evidence, the present-day Martian mantle has a combined abundance of up to a few hundred ppm of H2O, Cl, and F, which lowers the solidus and enhances the magma production rate. Adiabatic decompression melting in upwelling mantle plumes is the best explanation for young (last 200 Myr) volcanism on Mars. We explore water undersaturated mantle plume volcanism using a finite element mantle convection model coupled to a model of hydrous peridotite melting. Relative to a dry mantle, the reduction in solidus temperature due to water increases the magma production rate by a factor of 1.3-1.7 at 50 ppm water and by a factor of 1.9-3.2 at 200 ppm water. Mantle water also decreases the viscosity and increases the vigor of convection, which indirectly increases the magma production rate by thinning the thermal boundary layer and increasing the flow velocity. At conditions relevant to Mars, these indirect effects can cause an order of magnitude increase in the magma production rate. Using geologic and geophysical observations of the Late Amazonian magma production rate and geochemical observations of melt fractions in shergottite meteorites, present-day Mars is constrained to have a core-mantle boundary temperature of 1750 to 1800 °C and a volume-averaged thermal Rayleigh number of 2 × 106 to 107, indicating that moderately vigorous mantle convection has persisted to the present day. Melting occurs at depths of 2.5-6 GPa and is controlled by the Rayleigh number at the low pressure end and by the mantle water concentration at high pressure.

  14. Petrological evidence for secular cooling in mantle plumes.

    PubMed

    Herzberg, Claude; Gazel, Esteban

    2009-04-02

    Geological mapping and geochronological studies have shown much lower eruption rates for ocean island basalts (OIBs) in comparison with those of lavas from large igneous provinces (LIPs) such as oceanic plateaux and continental flood provinces. However, a quantitative petrological comparison has never been made between mantle source temperature and the extent of melting for OIB and LIP sources. Here we show that the MgO and FeO contents of Galapagos-related lavas and their primary magmas have decreased since the Cretaceous period. From petrological modelling, we infer that these changes reflect a cooling of the Galapagos mantle plume from a potential temperature of 1,560-1,620 degrees C in the Cretaceous to 1,500 degrees C at present. Iceland also exhibits secular cooling, in agreement with previous studies. Our work provides quantitative petrological evidence that, in general, mantle plumes for LIPs with Palaeocene-Permian ages were hotter and melted more extensively than plumes of more modern ocean islands. We interpret this to reflect episodic flow from lower-mantle domains that are lithologically and geochemically heterogeneous.

  15. Seismic tomographic evidence for upwelling mantle plume in NE China

    NASA Astrophysics Data System (ADS)

    He, Chuansong; Santosh, M.

    2016-05-01

    In this study, we collected teleseismic data recorded by permanent and mobile seismic stations and carried out a teleseismic P-wave tomographic study. The results reveal low velocity perturbation regions at the central part of NE China and specifically in the Songliao basin at different depths, which correspond to the location of a proposed upwelling mantle plume identified by receiver function in a recent study. Receiver function data show a predominantly mafic/ultra-mafic lower crust in the Songliao basin, in contrast to the predominantly felsic lower crust in the other regions. The vestige of upwelling mantle plume is well defined at the mantle transition region. Based on the above results, we suggest that the volcanism in NE China and the Songliao basin formation might be related to Mesozoic mantle plume beneath NE China. We also evaluate alternate models on lower crustal delamination contributing to the volcanism in NE China following collision and amalgamation between the Siberia craton and the North China-Mongolian block during late Jurassic and early Cretaceous.

  16. Magmatic implications of mantle wedge plumes: Experimental study

    NASA Astrophysics Data System (ADS)

    Castro, A.; Gerya, T. V.

    2008-06-01

    Numerical and laboratory experiments beside natural observations suggest that hydration and partial melting along the subducting slab can trigger Rayleigh-Taylor instabilities that evolve into partially molten diapiric structures ("cold plumes") that rise through the hot asthenospheric wedge. Mixed cold plumes composed of tectonic melanges derived from subduction channels can transport the fertile subducted crustal materials towards hotter zones of the suprasubduction mantle wedge leading to the formation of silicic melts. We investigate magmatic consequences of this plausible geodynamic scenario by using an experimental approach. Melt compositions, fertility and reaction between silicic melts and the peridotite mantle (both hydrous and dry) were tested by means of piston-cylinder experiments at conditions of 1000°C and pressures of 2.0 and 2.5GPa. The results indicate that silicic melts of trondhjemite and granodiorite compositions may be produced in the ascending mixed plume megastructures. Our experiments show that the formation of an Opx-rich reaction band, developed at the contact between the silicic melts and the peridotite, protect silicic melts from further reaction in contrast to the classical view that silicic melts are completely consumed in the mantle. The mixed, mantle-crust isotopic signatures which are characteristic of many calc-alkaline batholiths are also expected from this petrogenetic scenario.

  17. On the origin of noble gases in mantle plumes.

    PubMed

    Coltice, Nicolas; Ricard, Yanick

    2002-11-15

    The chemical differences between deep- and shallow-mantle sources of oceanic basalts provide evidence that several distinct components coexist within the Earth's mantle. Most of these components have been identified as recycled in origin. However, the noble-gas signature is still a matter of debate and questions the preservation of primitive regions in the convective mantle. We show that a model where the noble-gas signature observed in Hawaii and Iceland comes from a pristine homogeneous deep layer would imply a primitive (3)He content and (3)He/(22)Ne ratio that are very unlikely. On the contrary, mass balances show that the partly degassed peridotite of a marble-cake mantle can be the noble-gas end-member with an apparent 'primitive'-like composition. This component is mixed with recycled oceanic crust in different proportions in the plume sources and in the shallow mantle. A recycling model of the mantle, involving gravitational segregation of the oceanic crust at the bottom of the mantle, potentially satisfies trace-element as well as noble-gas constraints.

  18. Life Cycle of Mantle Plumes: A perspective from the Galapagos Plume (Invited)

    NASA Astrophysics Data System (ADS)

    Gazel, E.; Herzberg, C. T.

    2009-12-01

    Hotspots are localized sources of heat and magmatism considered as modern-day evidence of mantle plumes. Some hotspots are related to massive magmatic production that generated Large Igneous Provinces (LIPS), an initial-peak phase of plume activity with a mantle source hotter and more magmatically productive than present-day hotspots. Geological mapping and geochronological studies have shown much lower eruption rates for OIB compared to lavas from Large Igneous Provinces LIPS such as oceanic plateaus and continental flood provinces. Our study is the first quantitative petrological comparison of mantle source temperatures and extent of melting for OIB and LIP sources. The wide range of primary magma compositions and inferred mantle potential temperatures for each LIP and OIB occurrence suggest that this rocks originated form a hotspot, a spatially localized source of heat and magmatism restricted in time. Extensive outcrops of basalt, picrite, and sometimes komatiite with circa 65-95 Ma ages occupy portions of the pacific shore of Central and South America included in the Caribbean Large Igneous Province (CLIP). There is general consensus of a Pacific-origin of CLIP and most studies suggest that it was produced by melting in the Galapagos mantle plume. The Galapagos connection is consistent with isotopic and geochemical similarities with lavas from the present-day Galapagos hotspot. A Galapagos link for rocks in South American oceanic complexes (eg. the island of Gorgona) is more controversial and requires future work. The MgO and FeO contents of lavas from the Galapagos related lavas and their primary magmas have decreased since the Cretaceous. From petrological modeling we infer that these changes reflect a cooling of the Galapagos mantle plume from a potential temperature of 1560-1620 C in the Cretaceous to 1500 C at the present time. These temperatures are higher than 1350 C for ambient mantle associated with oceanic ridges, and provide support for the mantle

  19. Mantle plume capture, anchoring, and outflow during Galápagos plume-ridge interaction

    NASA Astrophysics Data System (ADS)

    Gibson, S. A.; Geist, D. J.; Richards, M. A.

    2015-05-01

    Compositions of basalts erupted between the main zone of Galápagos plume upwelling and adjacent Galápagos Spreading Center (GSC) provide important constraints on dynamic processes involved in transfer of deep-mantle-sourced material to mid-ocean ridges. We examine recent basalts from central and northeast Galápagos including some that have less radiogenic Sr, Nd, and Pb isotopic compositions than plume-influenced basalts (E-MORB) from the nearby ridge. We show that the location of E-MORB, greatest crustal thickness, and elevated topography on the GSC correlates with a confined zone of low-velocity, high-temperature mantle connecting the plume stem and ridge at depths of ˜100 km. At this site on the ridge, plume-driven upwelling involving deep melting of partially dehydrated, recycled ancient oceanic crust, plus plate-limited shallow melting of anhydrous peridotite, generate E-MORB and larger amounts of melt than elsewhere on the GSC. The first-order control on plume stem to ridge flow is rheological rather than gravitational, and strongly influenced by flow regimes initiated when the plume was on axis (>5 Ma). During subsequent northeast ridge migration material upwelling in the plume stem appears to have remained "anchored" to a contact point on the GSC. This deep, confined NE plume stem-to-ridge flow occurs via a network of melt channels, embedded within the normal spreading and advection of plume material beneath the Nazca plate, and coincides with locations of historic volcanism. Our observations require a more dynamically complex model than proposed by most studies, which rely on radial solid-state outflow of heterogeneous plume material to the ridge.

  20. Chondritic Xenon in the Earth's mantle: new constrains on a mantle plume below central Europe

    NASA Astrophysics Data System (ADS)

    Caracausi, Antonio; Avice, Guillaume; Bernard, Peter; Furi, Evelin; Marty, Bernard

    2016-04-01

    Due to their inertness, their low abundances, and the presence of several different radiochronometers in their isotope systematics, the noble gases are excellent tracers of mantle dynamics, heterogeneity and differentiation with respect to the atmosphere. Xenon deserves particular attention because its isotope systematic can be related to specific processes during terrestrial accretion (e.g., Marty, 1989; Mukhopadhyay, 2012). The origin of heavy noble gases in the Earth's mantle is still debated, and might not be solar (Holland et al., 2009). Mantle-derived CO2-rich gases are particularly powerful resources for investigating mantle-derived noble gases as large quantities of these elements are available and permit high precision isotope analysis. Here, we report high precision xenon isotopic measurements in gases from a CO2 well in the Eifel volcanic region (Germany), where volcanic activity occurred between 700 ka and 11 ka years ago. Our Xe isotope data (normalized to 130Xe) show deviations at all masses compared to the Xe isotope composition of the modern atmosphere. The improved analytical precision of the present study, and the nature of the sample, constrains the primordial Xe end-member as being "chondritic", and not solar, in the Eifel mantle source. This is consistent with an asteroidal origin for the volatile elements in Earth's mantle and it implies that volatiles in the atmosphere and in the mantle originated from distinct cosmochemical sources. Despite a significant fraction of recycled atmospheric xenon in the mantle, primordial Xe signatures still survive in the mantle. This is also a demonstration of a primordial component in a plume reservoir. Our data also show that the reservoir below the Eifel region contains heavy-radiogenic/fissiogenic xenon isotopes, whose ratios are typical of plume-derived reservoirs. The fissiogenic Pu-Xe contribution is 2.26±0.28 %, the UXe contribution is negligible, the remainder being atmospheric plus primordial. Our

  1. Geodynamics of the Yellowstone hotspot and mantle plume: Seismic and GPS imaging, kinematics, and mantle flow

    NASA Astrophysics Data System (ADS)

    Smith, Robert B.; Jordan, Michael; Steinberger, Bernhard; Puskas, Christine M.; Farrell, Jamie; Waite, Gregory P.; Husen, Stephan; Chang, Wu-Lung; O'Connell, Richard

    2009-11-01

    Integration of geophysical and geological data show that the Yellowstone hotspot resulted from a mantle plume interacting with the overriding North America plate, a process that has highly modified continental lithosphere by magmatic and tectonic processes and produced the 16-17 Ma, 700-km-long Yellowstone-Snake River Plain (YSRP) silicic volcanic system. Accessibility of the YSRP allowed large-scale geophysical projects to seismically image the hotspot and evaluate its kinematic properties using geodetic measurements. Seismic tomography reveals a crustal magma reservoir of 8% to 15% melt, 6 km to 16 km deep, beneath the Yellowstone caldera. An upper-mantle low-P-wave-velocity body extends vertically from 80 km to 250 km beneath Yellowstone, but the anomalous body tilts 60 °WNW and extends to 660 km depth into the mantle transition zone. We interpret this conduit-shaped low-velocity body as a plume of up to - 3.5% Vp and - 5.5% Vs perturbation that corresponds to a 1-2% partial melt. Models of whole mantle convection reveal eastward upper-mantle flow beneath Yellowstone at relatively high rates of 5 cm/yr that deflects the ascending plume into its west-tilted geometry. A geodynamic model of the Yellowstone plume constrained by Vp and Vs velocities and attenuation parameters suggests low excess temperatures of up to 120 K, corresponding to a maximum 2.5% melt, and a small buoyancy flux of 0.25 Mg/s, i.e., properties of a cool, weak plume. The buoyancy flux is many times smaller than for oceanic plumes, nonetheless, plume buoyancy has produced a ~ 400-km-wide, ~ 500-m-high topographic swell centered on the Yellowstone Plateau. Contemporary deformation derived from GPS measurements reveals SW extension of 2-3 mm/yr across the Yellowstone Plateau, one-fourth of the total Basin-Range opening rate, which we consider to be part of Basin-Range intraplate extension. Locally, decadal episodes of subsidence and uplift, averaging ~ 2 cm/yr, characterize the 80-year

  2. Surface and Mantle Expression of the Early Permian Tarim Mantle Plume

    NASA Astrophysics Data System (ADS)

    Chen, Mimi; Tian, Wei

    2015-04-01

    The mantle process during the Early Permian Tarim plume event is revealed by flood basalt and mantle xenoliths. Permian Tarim flood basalts have typical two pulses' eruption. The first pulse of the Tarim flood basalt was erupted at 291-290Ma, characterized by OIB-like Zr/Nb (~5.83), Nb/La and Ce/Pb ratios, and PUM-like initial 187Os/188Os ratios (0.1308-0.1329). They're plotted along a 290±11Ma isochron, implying a pristine "plume mantle" source. The second pulse of the Tarim flood basalt was erupted at 283-281 Ma, with Zr/Nb (~13.6), Nb/La and Ce/Pb ratios similar or close to the lower crust and initial 187Os/188Os ratios (0.1743~19.6740) that deviated from the ~290 Ma isochron line, indicative of significant crustal assimilation. Mantle-derived peridotite and pyroxenite xenoliths hosted in Cenozoic alkali basalts (~20 Ma) are found in the Xikeer, western Tarim Block. Based on their petrographic and geochemical characteristics, peridotite xenoliths can be divided into three groups. Group 1 peridotites, with the presence of the high Mg-number of olivines (91-93) and spinel-pyroxenes clusters, experienced high-degree melt extraction (~17% fractional melting) from garnet- to spinel-stable field. Groups 2 and 3 peridotites, characterized by the clinopyroxenes with spoon-shaped and highly fractionated REE patterns respectively, underwent extensive silicate melt metasomatism at low melt/rock ratios (15) and that the host basanite is incapable of being the metasomatic agent. The Re-Os isotopic systematics of the Xikeer peridotites and pyroxenites yield an isochron of 290±11 Ma, virtually identical to the age of Tarim flood basalts. Their PUM-like Os initial ratios and convecting mantle-like ɛNd(t=290 Ma) strongly suggest that the Xikeer mantle xenoliths derive from the plume mantle. We propose that the Xikeer xenolith suite recorded mantle 'auto-refertilization' process, i.e., they may have been initially formed by melt extraction from the convecting mantle and

  3. An analytic model of axisymmetric mantle plume due to thermal and chemical diffusion

    NASA Technical Reports Server (NTRS)

    Liu, Mian; Chase, Clement G.

    1990-01-01

    An analytic model of axisymmetric mantle plumes driven by either thermal diffusion or combined diffusion of both heat and chemical species from a point source is presented. The governing equations are solved numerically in cylindrical coordinates for a Newtonian fluid with constant viscosity. Instead of starting from an assumed plume source, constraints on the source parameters, such as the depth of the source regions and the total heat input from the plume sources, are deduced using the geophysical characteristics of mantle plumes inferred from modelling of hotspot swells. The Hawaiian hotspot and the Bermuda hotspot are used as examples. Narrow mantle plumes are expected for likely mantle viscosities. The temperature anomaly and the size of thermal plumes underneath the lithosphere can be sensitive indicators of plume depth. The Hawaiian plume is likely to originate at a much greater depth than the Bermuda plume. One suggestive result puts the Hawaiian plume source at a depth near the core-mantle boundary and the source of the Bermuda plume in the upper mantle, close to the 700 km discontinuity. The total thermal energy input by the source region to the Hawaiian plume is about 5 x 10(10) watts. The corresponding diameter of the source region is about 100 to 150 km. Chemical diffusion from the same source does not affect the thermal structure of the plume.

  4. Tectonics of the Afar Depression: A review and synthesis

    NASA Astrophysics Data System (ADS)

    Beyene, Alebachew; Abdelsalam, Mohamed G.

    2005-01-01

    This article outlines geomorphological and tectonic elements of the Afar Depression, and discusses its evolution. A combination of far-field stress, due to the convergence of the Eurasian and Arabian plates along the Zagros Orogenic Front, and uplift of the Afar Dome due to a rising mantle plume reinforced each other to break the lithosphere of the Arabian-Nubian Shield. Thermal anomalies beneath the Arabian-Nubian Shield in the range of 150 °C-200 °C, induced by a rising plume that mechanically and thermally eroded the base of the mantle lithosphere and generated pulses of prodigious flood basalt since ˜30 Ma. Subsequent to the stretching and thinning the Afar Dome subsided to form the Afar Depression. The fragmentation of the Arabian-Nubian Shield led to the separation of the Nubian, Arabian and Somalian Plates along the Gulf of Aden, the Red Sea and the Main Ethiopian Rift. The rotation of the intervening Danakil, East-Central, and Ali-Sabieh Blocks defined major structural trends in the Afar Depression. The Danakil Block severed from the Nubian plate at ˜20 Ma, rotated anti-clockwise, translated from lower latitude and successively moved north, left-laterally with respect to Nubia. The westward propagating Gulf of Aden rift breached the Danakil Block from the Ali-Sabieh Block at ˜2 Ma and proceeded along the Gulf of Tajura into the Afar Depression. The propagation and overlap of the Red Sea and the Gulf of Aden along the Manda Hararo-Gobaad and Asal-Manda Inakir rifts caused clockwise rotation of the East-Central Block. Faulting and rifting in the southern Red Sea, western Gulf of Aden and northern Main Ethiopian Rift superimposed on Afar. The Afar Depression initiated as diffused extension due to far-field stress and area increase over a dome elevated by a rising plume. With time, the lithospheric extension intensified, nucleated in weak zones, and developed into incipient spreading centers.

  5. Linking mantle plumes, large igneous provinces and environmental catastrophes.

    PubMed

    Sobolev, Stephan V; Sobolev, Alexander V; Kuzmin, Dmitry V; Krivolutskaya, Nadezhda A; Petrunin, Alexey G; Arndt, Nicholas T; Radko, Viktor A; Vasiliev, Yuri R

    2011-09-14

    Large igneous provinces (LIPs) are known for their rapid production of enormous volumes of magma (up to several million cubic kilometres in less than a million years), for marked thinning of the lithosphere, often ending with a continental break-up, and for their links to global environmental catastrophes. Despite the importance of LIPs, controversy surrounds even the basic idea that they form through melting in the heads of thermal mantle plumes. The Permo-Triassic Siberian Traps--the type example and the largest continental LIP--is located on thick cratonic lithosphere and was synchronous with the largest known mass-extinction event. However, there is no evidence of pre-magmatic uplift or of a large lithospheric stretching, as predicted above a plume head. Moreover, estimates of magmatic CO(2) degassing from the Siberian Traps are considered insufficient to trigger climatic crises, leading to the hypothesis that the release of thermogenic gases from the sediment pile caused the mass extinction. Here we present petrological evidence for a large amount (15 wt%) of dense recycled oceanic crust in the head of the plume and develop a thermomechanical model that predicts no pre-magmatic uplift and requires no lithospheric extension. The model implies extensive plume melting and heterogeneous erosion of the thick cratonic lithosphere over the course of a few hundred thousand years. The model suggests that massive degassing of CO(2) and HCl, mostly from the recycled crust in the plume head, could alone trigger a mass extinction and predicts it happening before the main volcanic phase, in agreement with stratigraphic and geochronological data for the Siberian Traps and other LIPs.

  6. Dynamics of plumes in a compressible mantle with phase changes: Implications for phase boundary topography

    NASA Astrophysics Data System (ADS)

    Bossmann, Andrea B.; van Keken, Peter E.

    2013-11-01

    While plumes rising from the deep mantle may be responsible for hotspot volcanism, their existence has not yet been unambiguously confirmed by seismological studies. Several seismic studies reported that the topography of the 670-km discontinuity is flat below hotspots, which disagrees with the elevation expected due to its negative Clapeyron slope and plume excess temperature. An improved numerical method that includes compressibility and consistently implemented phase transitions is used to study plume evolution in the Earth’s mantle. The influence of latent heat on plume behavior for varying convective vigor and Clapeyron slope of the endothermic phase change at 670 km depth is studied in axisymmetric spherical shell geometry. Minor differences in plume dynamics are found for models considering and neglecting latent heat. Three regimes of plume behavior at the endothermic phase boundary are observed: besides complete plume inhibition and penetration along the symmetry axis an intermediate regime in which the plume forms a ring around the symmetry axis is found. These models also predict that the 670-km discontinuity is flat below hotspots due to a large plume head in the lower mantle of about 1000 km diameter that significantly thins as it rises into the upper mantle. This is explained by the lower viscosity in the upper mantle and the spreading of the temporarily inhibited plume below the endothermic phase boundary, which reconciles the flat 670-km discontinuity with a deep mantle plume origin.

  7. The role of heat source for spatio-temporal variations of mantle plumes

    NASA Astrophysics Data System (ADS)

    Kumagai, I.; Yamagishi, Y.; Davaille, A.

    2014-12-01

    Hot mantle plumes ascending from the core-mantle boundary experience a filtering effect by the endothermic phase change at the 660-km discontinuity. Fluid dynamics predicts that some hot mantle plumes stagnate at the phase boundary and locally heat the bottom of the upper mantle. This generates the secondary plumes in the upper mantle originating hotspots volcanic activities on the Earth's surface. Recently, seismic tomographic images around the upper-lower mantle boundary showed that the horizontal scale of the low velocity regions, which corresponds to that of the thermally buoyant heat sources, is the order of 100-1000 km. Although most of the fluid dynamic theories on the thermal plumes have been developed using an assumption that the heat source effect is negligible, the behaviors of the starting plumes in the upper mantle should depend on the size of heat source, which is generated by the hotter plume from the CMB. In order to understand the effects of heater size on the starting plume generation, we have experimentally investigated the behaviors of thermally buoyant plumes using a localized heat source (circular plate heater). The combination of quantitative visualization techniques of temperature (Thermochromic Liquid Crystals) and velocity (Particle Image Velocimetry) fields reveals the transient nature of the plume evolution: a variety of the spatio-tempotal distribution of plumes. Simple scaling laws for their ascent velocity and spacing of the plumes are experimentally determined. We also estimate the onset time of the secondary plumes in the upper mantle which depends on the local characteristics of the thermal boundary layer developing at the upper-lower mantle boundary.

  8. Identification of an ancient mantle reservoir and young recycled materials in the source region of a young mantle plume: Implications for potential linkages between plume and plate tectonics

    NASA Astrophysics Data System (ADS)

    Wang, Xuan-Ce; Li, Zheng-Xiang; Li, Xian-Hua; Li, Jie; Xu, Yi-Gang; Li, Xiang-Hui

    2013-09-01

    Whether or not mantle plumes and plate subduction are genetically linked is a fundamental geoscience question that impinges on our understanding of how the Earth works. Late Cenozoic basalts in Southeast Asia are globally unique in relation to this question because they occur above a seismically detected thermal plume adjacent to deep subducted slabs. In this study, we present new Pb, Sr, Nd, and Os isotope data for the Hainan flood basalts. Together with a compilation of published results, our work shows that less contaminated basaltic samples from the synchronous basaltic eruptions in Hainan-Leizhou peninsula, the Indochina peninsula and the South China Sea seamounts share the same isotopic and geochemical characteristics. They have FOZO-like Sr, Nd, and Pb isotopic compositions (the dominant lower mantle component). These basalts have primitive Pb isotopic compositions that lie on, or very close to, 4.5- to 4.4-Ga geochrons on 207Pb/204Pb versus 206Pb/204Pb diagram, suggesting a mantle source developed early in Earth's history (4.5-4.4 Ga). Furthermore, our detailed geochemical and Sr, Nd, Pb and Os isotopic analyses suggest the presence of 0.5-0.2 Ga recycled components in the late Cenozoic Hainan plume basalts. This implies a mantle circulation rate of >1 cm/yr, which is similar to that of previous estimates for the Hawaiian mantle plume. The identification of the ancient mantle reservoir and young recycled materials in the source region of these synchronous basalts is consistent with the seismically detected lower mantle-rooted Hainan plume that is adjacent to deep subducted slab-like seismic structures just above the core-mantle boundary. We speculate that the continued deep subduction and the presence of a dense segregated basaltic layer may have triggered the plume to rise from the thermal-chemical pile. This work therefore suggests a dynamic linkage between deep subduction and mantle plume generation.

  9. Plume Generation Zones On The Core Mantle Boundary: their origin and what they tell about how the Earth works - and how it has worked (Arthur Holmes Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Burke, Kevin

    2014-05-01

    It is more than 50 years since Wilson (1963) suggested that a fixed plume of deep origin from the convecting mantle is generating the Hotspots of the Hawaiian chain on the overlying moving rigid lithosphere and nearly 45 years since Morgan (1972) followed by suggesting that the plumes which generate Hotspots rise only from the Core/Mantle Boundary (CMB). During the past ~ 15 years testing has begun of a refinement of Morgan's idea based on the observation that Plumes responsible for Hotspots, Large Igneous Provinces (LIPs) and a significant fraction of other igneous rocks (including kimberlites) originate only in Plume Generation Zones (PGZs) at the edges on the CMB of one or other of TUZO and JASON the 2 antipodal, equatorial, Large Low Shear Wave Velocity Provinces (LLSVPs) of the deep mantle (Garnero et al. 2007) or from similar PGZs at the edges on the CMB of ~8 smaller Low Shear Wave Velocity Provinces. Today I will: (i) demonstrate using dated Hotspot, Large Igneous Province and Kimberlite occurrence history and paleomagnetic rotations (e.g. Torsvik et al. 2010, Burke et al.2008) the stability throughout the past 0.55 Ga of the LLSVPs and LSVPs (ii) show from the history of the Earth and Mars how the LLSVPs and LSVPs are likely to have formed early in Earth history and to have been stable since ~ 4.4 Ga (Burke et al. 2012) (iii) show, following an analogy suggested by Jack Whitehead of similarity to atmospheric fronts, why plumes are generated only from PGZs on the CMB at the margins of LLSVPs and LSVPs. (iv) show from results of recent seismological studies of Iceland, Jan Mayen, Hawaii, Yellowstone, the Afar and Ontong Java, that although plumes rise vertically in the deep mantle from the CMB their fate in the top ~ 1, 000 km of the mantle is proving to be varied and to depend largely, as Wilson suggested, on how they interact with the plates above them. Properties of the Plume Generation Zones (PGZs) on the CMB and of the plumes that rise from them are

  10. The role of a mantle plume in the formation of Yellowstone volcanism

    NASA Astrophysics Data System (ADS)

    Leonard, Tiffany; Liu, Lijun

    2016-02-01

    The origin of the Yellowstone volcanic province remains debated. Proposed hypotheses involve either a mantle plume or not. Recent tomographic images allow a quantitative evaluation of the plume hypothesis and its interaction with the Farallon slabs. Using 4-D geodynamic models with data assimilation, we find that the slab is always in the way of the initially rising plume and that the plume could reach the surface only through the broken slab hinge at ~15 Ma. For most of the time, the sinking slabs dominate the mantle flow and prohibit upwelling. We find that a plume that satisfies the present mantle image beneath Yellowstone fails to predict both voluminous hot materials at shallow depths beneath the western U.S. and the age migration of the hot spot tracks. We suggest that a plume is likely to have much less influence on the Yellowstone volcanism than previously thought.

  11. Dynamics and structure of thermo-chemical mantle plumes: Are numerical models consistent with observations?

    NASA Astrophysics Data System (ADS)

    Dannberg, J.; Sobolev, S. V.

    2013-12-01

    According to widely accepted models, plumes ascend from the core-mantle boundary and cause massive melting when they reach the base of the lithosphere. Most of these models consider plumes as purely thermal and predict flattening of the plume head to a disk-like structure, thin plume tails with a radius on the scale of 100 km and kilometer-scale topographic uplift before and during the eruption of flood basalts. However, several paleogeographic and paleotectonic field studies indicate significantly smaller surface uplift during the development of many LIPs, and seismic imaging reveals thicker plume tails as well as a more complex plume structure in the upper mantle including broad low-velocity anomalies up to 400 km depth and elongated low-velocity fingers. Moreover, geochemical data indicate a plume composition that differs from that of the average mantle and recent geodynamic models of plumes in the upper mantle show that plumes containing a large fraction of eclogite and therefore having very low buoyancy can explain the observations much better. Nevertheless, the question remains how such a low-buoyancy plume can rise through the whole mantle and how this ascent affects its dynamics. We perform numerical experiments in 2D axisymmetric geometry to systematically study the dynamics of the plume ascent as well as 2D and 3D models with prescribed velocity at the upper boundary to investigate the interaction between plume- and plate-driven flow. For that purpose, we use modified versions of the finite-element codes Citcom and Aspect. Our models employ complex material properties incorporating phase transitions with the accompanying density changes, Clapeyron slopes and latent heat effects for the peridotite and eclogite phase, mantle compressibility and a highly temperature- and depth-dependent viscosity. We study under which conditions (excess temperature, plume volume and eclogite content) thermo-chemical plumes can ascend through the whole mantle and what

  12. Double Layering and Bilateral Asymmetry of a Thermochemical Plume in the Upper Mantle beneath Hawaii

    NASA Astrophysics Data System (ADS)

    Ito, G.; Ballmer, M. D.; Wolfe, C. J.; Solomon, S. C.

    2012-12-01

    Classical plume theory describes purely thermal upwellings that rise through the entire mantle, pond beneath the lithospheric plate in a thin "pancake," and generate hotspot volcanism. High-resolution seismic velocity images obtained from the Plume-Lithosphere Undersea Melt Experiment (PLUME) support the concept of a deep-rooted mantle plume beneath the Hawaiian hotspot. However, in detail these images challenge traditional concepts inasmuch as they indicate a broad low-velocity body in the upper mantle that is much thicker and more asymmetric than a thermal pancake predicted from purely thermal plume models. Geochemical observations also argue against a purely thermal (i.e., isochemical) mantle source for Hawaiian lavas and instead indicate a heterogeneous plume involving mafic lithologies such as eclogite. To explore the dynamical and melting behavior of hot plumes that also contain eclogite, we perform three-dimensional numerical simulations of thermochemical convection. The models simulate eclogite with an excess density relative to ambient-mantle peridotite that peaks at depths of 410-300 km due to solid phase changes and lessens at depths of 250-190 km where eclogite is removed by melting. For a plume core with an eclogite content >12%, a moderately buoyant plume stem rises into the upper mantle but pools as a much wider body at depths of 450-300 km (the "deep eclogite pool", or DEP). Out of the top of the DEP rises a shallow plume that feeds hotspot volcanism and supplies material into a thin sublithospheric pancake that supports the hotspot swell. Seismic resolution tests indicate that the double layering of hot plume material (DEP and shallow pancake) can account for the thick low-velocity body as imaged by PLUME. We also find that upwelling fingers of non-eclogitic outskirt material can support magmatism comparable in volume and geographic distribution to Hawaiian rejuvenated stage and arch volcanism. In some models, thermochemical plumes with radial and

  13. New observational and experimental evidence for a plume-fed asthenosphere boundary layer in mantle convection

    NASA Astrophysics Data System (ADS)

    Morgan, J. P.; Hasenclever, J.; Shi, C.

    2013-03-01

    The textbook view is that the asthenosphere is the place beneath the tectonic plates where competing temperature and pressure effects on mantle rheology result in the lowest viscosity region of Earth's mantle. We think the sub-oceanic asthenosphere exists for a different reason, that instead it is where rising plumes of hot mantle stall and spread out beneath the strong tectonic plates. Below this plume-fed asthenosphere is a thermal and density inversion with cooler underlying average-temperature mantle. Here we show several recent seismic studies that are consistent with a plume-fed asthenosphere. These include the seismic inferences that asthenosphere appears to resist being dragged down at subduction zones, that a sub-oceanic thermal inversion ∼250-350 km deep is needed to explain the seismic velocity gradient there for an isochemical mantle, that a fast 'halo' of shear-wave travel-times surrounds the Hawaiian plume conduit, and that an apparent seismic reflector is found ∼300 km beneath Pacific seafloor near Hawaii. We also present 2D axisymmetric and 3D numerical experiments that demonstrate these effects in internally consistent models with a plume-fed asthenosphere. If confirmed, the existence of a plume-fed asthenosphere will change our understanding of the dynamics of mantle convection and melting, and the links between surface plate motions and mantle convection.

  14. Modeling of Mauritius as a Heterogeneous Mantle Plume

    NASA Astrophysics Data System (ADS)

    Moore, J. C.; White, W. M.; Paul, D.; Duncan, R. A.

    2008-12-01

    Mauritius Island (20°20' S, 57°30' E) is located in the western Indian Ocean and is the penultimate volcanic island of the Réunion mantle plume. Mauritius has a well-established history of episodic volcanism and erosional hiatus, traditionally characterized by three chemically and temporally distinct eruptive phases: 1) the voluminous shield-building lavas of the Older Series (8.4-5.5 Ma), 2) the Intermediate Series (3.5-1.9 Ma), and 3) the Younger Series (1.0-0.00 Ma; Duncan, unpub. data). Recent collaboration with the Mauritian Water Resource Unit has permitted the study of a series of newly available drill cores, facilitating an advanced subsurface investigation into the evolution of the island. Radiometric dating of deep lava units from these cores has identified the earliest known sample from Mauritius (B18-1; 8.4 Ma) and demonstrated the existence of Intermediate and Younger Series lavas at previously unanticipated depths, some greater than 150 meters. Calculated volumes for the combined post- erosional lavas exceed 35 km3, closely resembling new results for Hawaiian analogues (20-60 km3; Garcia, pers. comm.). While these two post-erosional series remain temporally distinct (a 0.9 M.y. hiatus remains despite new dates), they are indistinguishable in major, trace, and isotopic composition. The shield building Older Series lavas are enriched in incompatible trace elements relative to the post-erosional lavas, an inverse relationship to that observed at both Hawaii (Maui, Oahu, and Kauai) and Tahaa (Societies). In contrast isotope systematics are consistent, with shield building lavas having more enriched isotopic signatures than post-erosional lavas. The observed differences cannot be explained solely by variations in the extent of partial melting and require distinct and heterogeneous sources for the shield and post-erosional lavas. Two magma generation scenarios for a heterogeneous mantle plume with enriched (eclogitic) and depleted (peridotitic

  15. Crustal Structure of the Gulf of Aden Continental Margins, from Afar to Oman, by Ambient Noise Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Korostelev, F.; Weemstra, C.; Boschi, L.; Leroy, S. D.; Ren, Y.; Stuart, G. W.; Keir, D.; Rolandone, F.; Ahmed, A.; Al Ganad, I.; Khanbari, K. M.; Doubre, C.; Hammond, J. O. S.; Kendall, J. M.

    2014-12-01

    Continental rupture processes under mantle plume influence are still poorly known although extensively studied. The Gulf of Aden presents volcanic margins to the west, where they are influenced by the Afar hotspot, and non volcanic margins east of longitude 46° E. We imaged the crustal structure of the Gulf of Aden continental margins from Afar to Oman to evaluate the role of the Afar plume on the evolution of the passive margin and its extent towards the East. We use Ambient Noise Seismic Tomography to better understand the architecture and processes along the Gulf of Aden. This recent method, developed in the last decade, allows us to study the seismic signal propagating between two seismic stations. Ambient Noise Seismic Tomography is thus free from artifacts related to the distribution of earthquakes. We collected continuous records from about 200 permanent or temporary stations since 1999 to compute Rayleigh phase velocity maps over the Gulf of Aden.

  16. Receiver function imaging of the onset of melting, implications for volcanism beneath the Afar Rift in contrast to hotspot environments

    NASA Astrophysics Data System (ADS)

    Rychert, C. A.; Harmon, N.; Hammond, J. O.; Laske, G.; Kendall, J.; Ebinger, C. J.; Shearer, P. M.; Bastow, I. D.; Keir, D.; Ayele, A.; Belachew, M.; Stuart, G. W.

    2012-12-01

    Heating, melting, and stretching destroy continents at volcanic rifts. Mantle plumes are often invoked to thermally weaken the continental lithosphere and accommodate rifting through the influx of magma. However the relative effects of mechanical stretching vs. melt infiltration and weakening are not well quantified during the evolution of rifting. S-to-p (Sp) imaging beneath the Afar Rift and hotspot regions such as Hawaii provides additional constraints. We use data from the Ethiopia/Kenya Broadband Seismic Experiment (EKBSE), the Ethiopia Afar Geophysical Lithospheric Experiment (EAGLE), a new UK/US led deployment of 46 stations in the Afar depression and surrounding area, and the PLUME experiment. We use two methodologies to investigate structure and locate robust features: 1) binning by conversion point and then simultaneous deconvolution in the frequency domain, and 2) extended multitaper followed by migration and stacking. We image a lithosphere-asthenosphere boundary at ~75 km beneath the flank of the Afar Rift vs. its complete absence beneath the rift, where the mantle lithosphere has been totally destroyed. Instead a strong velocity increase with depth at ~75 km depth matches geodynamic model predictions for a drop in melt percentage at the onset of decompression melting. The shallow depth of the onset of melting is consistent with a mantle potential temperature = 1350 - 1400°C, i.e., typical for adiabatic decompression melting. Therefore although a plume initially destroyed the mantle lithosphere, its influence directly beneath Afar today is minimal. Volcanism continues via adiabatic decompression melting assisted by strong melt buoyancy effects. This contrasts with a similar feature at much deeper depth, ~150 km, just west of Hawaii, where a deep thermal plume is hypothesized to impinge on the lithosphere. Improved high resolution imaging of rifting, ridges, and hotspots in a variety of stages and tectonic settings will increase constraints on the

  17. Evidence for recycled Archaean oceanic mantle lithosphere in the Azores plume.

    PubMed

    Schaefer, Bruce F; Turner, Simon; Parkinson, Ian; Rogers, Nick; Hawkesworth, Chris

    2002-11-21

    The compositional differences between mid-ocean-ridge and ocean-island basalts place important constraints on the form of mantle convection. Also, it is thought that the scale and nature of heterogeneities within plumes and the degree to which heterogeneous material endures within the mantle might be reflected in spatial variations of basalt composition observed at the Earth's surface. Here we report osmium isotope data on lavas from a transect across the Azores archipelago which vary in a symmetrical pattern across what is thought to be a mantle plume. Many of the lavas from the centre of the plume have lower 187Os/188Os ratios than most ocean-island basalts and some extend to subchondritic 187Os/188Os ratios-lower than any yet reported from ocean-island basalts. These low ratios require derivation from a depleted, harzburgitic mantle, consistent with the low-iron signature of the Azores plume. Rhenium-depletion model ages extend to 2.5 Gyr, and we infer that the osmium isotope signature is unlikely to be derived from Iberian subcontinental lithospheric mantle. Instead, we interpret the osmium isotope signature as having a deep origin and infer that it may be recycled, Archaean oceanic mantle lithosphere that has delaminated from its overlying oceanic crust. If correct, our data provide evidence for deep mantle subduction and storage of oceanic mantle lithosphere during the Archaean era.

  18. Plume's buoyancy and heat fluxes from the deep mantle estimated by an instantaneous mantle flow simulation based on the S40RTS global seismic tomography model

    NASA Astrophysics Data System (ADS)

    Yoshida, Masaki

    2012-11-01

    It is still an open question as to how much heat is transported from the deep mantle to the upper mantle by mantle upwelling plumes, which would impose a strong constraint on models of the thermal evolution of the earth. Here I perform numerical computations of instantaneous mantle flow based on a recent highly resolved global seismic tomography model (S40RTS), apply new simple fluid dynamics theories to the plume's radius and velocity, considering a Poiseuille flow assumption and a power-law relationship between the boundary layer thickness and Rayleigh number, and estimate the plume's buoyancy and heat fluxes from the deep lower mantle under varying plume viscosity. The results show that for some major mantle upwelling plumes with localized strong ascent velocity under the South Pacific and Africa, the buoyancy fluxes of each plume beneath the ringwoodite to perovskite + magnesiowüstite ("660-km") phase decomposition boundary are comparable to those inferred from observed hotspot swell volumes on the earth, i.e., on the order of 1 Mg s-1, when the plume viscosity is 1019-1020 Pa s. This result, together with previous numerical simulations of mantle convection and the gentle Clausius-Clapeyron slope for the 660-km phase decomposition derived from recent high-pressure measurements under dehydrated/hydrated conditions in the mantle transition zone, implies that mantle upwelling plumes in the lower mantle penetrate the 660-km phase decomposition boundary without significant loss in thermal buoyancy because of the weak thermal barrier at the 660-km boundary. The total plume heat flux under the South Pacific is estimated to be about 1 TW beneath the 660-km boundary, which is significantly smaller than the core-mantle boundary heat flux. Previously published scaling laws for the plume's radius and velocity based on a plume spacing theory, which explains well plume dynamics in three-dimensional time-dependent mantle convection, suggest that these plume fluxes depend

  19. Dynamics of a thermally-driven mantle plume with Stereo PIV and Thermochromic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Newsome, William; Cotel, Aline; Lithgow-Bertelloni, Carolina; Hart, Stanley; Whitehead, John

    2008-11-01

    Although many have studied the chemistry and dynamics of mantle plumes, fundamental questions remain. These can be grouped into two general issues: a) Plume structure and dynamical interaction with the surrounding mantle, b) The degree of entrainment and mixing in mantle plumes of chemically distinct material from the deep mantle. Heat is used as the driving convective mechanism to form a single thermal plume. The experiments are conducted in a Plexiglas tank (inner dimensions of 26.5x26.5x26.5 cm). A small heater of 2.0 cm diameter and centered in the tank bottom is connected to programmable power supply. By varying voltage settings we can simulate varying heat fluxes in the deep mantle. Our experiments utilize Stereoscopic Particle Image Velocimetry (SPIV) and Thermochromic Liquid Crystals (TLC's) to reconstruct the 3D flow and temperature fields within the tank. Penetration height, plume head size, velocity and vorticity fields are determined using SPIV providing insight into the plume structure and the nature of the entrainment process.

  20. Tectonic plates, D (double prime) thermal structure, and the nature of mantle plumes

    NASA Technical Reports Server (NTRS)

    Lenardic, A.; Kaula, W. M.

    1994-01-01

    It is proposed that subducting tectonic plates can affect the nature of thermal mantle plumes by determining the temperature drop across a plume source layer. The temperature drop affects source layer stability and the morphology of plumes emitted from it. Numerical models are presented to demonstrate how introduction of platelike behavior in a convecting temperature dependent medium, driven by a combination of internal and basal heating, can increase the temperature drop across the lower boundary layer. The temperature drop increases dramatically following introduction of platelike behavior due to formation of a cold temperature inversion above the lower boundary layer. This thermal inversion, induced by deposition of upper boundary layer material to the system base, decays in time, but the temperature drop across the lower boundary layer always remains considerably higher than in models lacking platelike behavior. On the basis of model-inferred boundary layer temperature drops and previous studies of plume dynamics, we argue that generally accepted notions as to the nature of mantle plumes on Earth may hinge on the presence of plates. The implication for Mars and Venus, planets apparently lacking plate tectonics, is that mantle plumes of these planets may differ morphologically from those of Earth. A corollary model-based argument is that as a result of slab-induced thermal inversions above the core mantle boundary the lower most mantle may be subadiabatic, on average (in space and time), if major plate reorganization timescales are less than those acquired to diffuse newly deposited slab material.

  1. Broad plumes rooted at the base of the Earth's mantle beneath major hotspots.

    PubMed

    French, Scott W; Romanowicz, Barbara

    2015-09-03

    Plumes of hot upwelling rock rooted in the deep mantle have been proposed as a possible origin of hotspot volcanoes, but this idea is the subject of vigorous debate. On the basis of geodynamic computations, plumes of purely thermal origin should comprise thin tails, only several hundred kilometres wide, and be difficult to detect using standard seismic tomography techniques. Here we describe the use of a whole-mantle seismic imaging technique--combining accurate wavefield computations with information contained in whole seismic waveforms--that reveals the presence of broad (not thin), quasi-vertical conduits beneath many prominent hotspots. These conduits extend from the core-mantle boundary to about 1,000 kilometres below Earth's surface, where some are deflected horizontally, as though entrained into more vigorous upper-mantle circulation. At the base of the mantle, these conduits are rooted in patches of greatly reduced shear velocity that, in the case of Hawaii, Iceland and Samoa, correspond to the locations of known large ultralow-velocity zones. This correspondence clearly establishes a continuous connection between such zones and mantle plumes. We also show that the imaged conduits are robustly broader than classical thermal plume tails, suggesting that they are long-lived, and may have a thermochemical origin. Their vertical orientation suggests very sluggish background circulation below depths of 1,000 kilometres. Our results should provide constraints on studies of viscosity layering of Earth's mantle and guide further research into thermochemical convection.

  2. Double layering of a thermochemical plume in the upper mantle beneath Hawaii

    NASA Astrophysics Data System (ADS)

    Ballmer, M. D.; Ito, G.; Wolfe, C. J.; Cadio, C.; Solomon, S. C.

    2012-04-01

    Volcanism far from plate boundaries has traditionally been explained by "classical" plume theory. Classical plumes are typically described as narrow thermal upwellings that rise through the entire mantle to be deflected into a thin (<100 km) "pancake" beneath the overriding lithosphere. The pancake is thought to be deflected by the drag of the overriding plate and hence to support a hotspot swell that is parabolic in map view and symmetric about the direction of plate motion. Many hotspots and their swells, such as Cape Verde and Iceland, are indeed well explained by near-classical thermal plumes. High-resolution seismic velocity images obtained from the PLUME project support the concept of a deep-rooted mantle plume beneath the Hawaiian hotspot. However, in detail these images challenge traditional concepts inasmuch as they indicate a low-velocity body in the upper mantle that is too thick (~400 km) and asymmetric to be interpreted as a classical pancake. Classical plume theory is, moreover, inconsistent with several geochemical characteristics of Hawaiian magmas, which point to a heterogeneous mantle source involving mafic lithologies such as eclogite and not an exclusively thermal (i.e., isochemical) origin¹. To explore the dynamical and melting behavior of plumes containing a substantial fraction (~15%) of eclogite, we performed three-dimensional numerical simulations of thermochemical convection. Relative to ambient-mantle peridotite, eclogite is intrinsically dense. This density contrast is sensitive to phase changes in the upper mantle; the contrast peaks at 410-300 km and lessens at about 250-190 km depth, where eclogite is subsequently removed by melting. For a plume core with an eclogite content >12%, these effects locally increase the density beyond that of the ambient mantle. Therefore, the upwelling column forms a broad and thick pool at depths of 450-300 km (which we term the deep eclogite pool, or DEP). As the DEP is well supported by the deeper

  3. Past Plate Motions and The Evolution of Earth's Lower Mantle: Relating LLSVPs and Plume Distribution

    NASA Astrophysics Data System (ADS)

    Bull, A. L.; Torsvik, T. H.; Shephard, G. E.

    2015-12-01

    Seismic tomography elucidates broad, low shear-wave velocity structures in the lower mantle beneath Africa and the central Pacific with uncertain physical and compositional origins. The anomalously slow areas, which cover nearly 50% of the core-mantle boundary, are often referred to as Large Low Shear Velocity Provinces (LLSVPs) due to the reduced velocity of seismic waves passing through them. Several hypotheses have arisen to explain the LLSVPs in the context of large-scale mantle convection. One end-member scenario infers a spatial correlation between LLSVP margins at depth and the reconstructed surface eruption sites of hotspots, kimberlites, and Large Igneous Provinces. Such a correlation has been explained by the preferential triggering of plumes at LLSVP margins by impingement of the subducting lithosphere upon the lower thermal boundary layer at the interface between ambient mantle and the higher density structures. This scenario propounds that Earth's plate motion history plays a controlling role in plume development, and that the location, geometry and morphology of plumes may be influenced by the movement of subducting slabs. Here, we investigate what is necessary to create such a pattern of plume distribution in relation to LLSVPs. We consider what effect past plate motions may have had on the evolution of Earth's lower mantle, and discuss the development of mantle plumes in terms of subduction dynamics. We integrate plate tectonic histories and numerical models of mantle convection to investigate the role that subduction history plays in the development and evolution of plumes in the presence of LLSVPs. To test whether an interaction exists between the surface location of subduction and plume eruption sites, and if so, to what degree over time, we apply varying shifts to the absolute reference frame of the plate reconstruction. With this method, we are able to change the location of subduction at the surface and thus the global flow field. This in turn

  4. Mixing and Entrainment in Mantle Plumes: A 3D Experimental Investigation

    NASA Astrophysics Data System (ADS)

    Newsome, W.; Cotel, A.; Lithgow-Bertelloni, C.; Hart, S.; Whitehead, J.

    2008-12-01

    Significant differences exist between isotopic signatures of typical mid-ocean ridge basalts (MORB) and those associated with many ocean islands, with ocean island basalts (OIB) generally exhibiting more variability in trace element concentrations and a bias towards enrichment in more primitive isotopes as well in some cases. Such observations coupled with other geophysical evidence have been used to suggest that OIB's are surface manifestations of upwellings originating in the deep interior near the core-mantle boundary that interact with distinct, heterogeneous reservoirs as material is transported from the Earth's interior to the surface. Although many have studied the chemistry and dynamics of these mantle plumes, fundamental questions remain. Such questions can be grouped into two general issues: a) Plume structure and dynamical interaction with the surrounding mantle, b) The degree of entrainment and mixing in mantle plumes of chemically distinct material from the deep mantle. We address these fundamental questions by performing detailed fluid dynamical experiments to determine the structure, temperature, velocity, and degree of entrainment in thermal plumes. Heat is used as the driving convective mechanism to form a single thermal plume. The experiments are conducted in a Plexiglas tank (inner dimensions of 26.5×26.5×26.5 cm). A small heater of 2.0 cm diameter and centered in the tank bottom is connected to programmable power supply. By varying voltage settings we can simulate varying heat fluxes in the deep mantle. Our experiments utilize Stereoscopic Particle Image Velocimetry (SPIV) and Thermochromic Liquid Crystals (TLC's) to reconstruct the 3D flow and temperature fields within the tank. Penetration height and plume head size are related to the varying buoyancy flux. In addition, velocity and vorticity fields determined using SPIV provide insight into the plume structure and the nature of the entrainment process.

  5. The thermal and mechanical structure of a two-dimensional plume in the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Yinting, Li; Meissner, R. O.; En, Xue

    1983-10-01

    On the condition that the distribution of velocity and temperature at the mid-plane of a mantle plume has been obtained (pages 213-218, this issue), the problem of determining the lateral structure of the plume at a given depth is reduced to solving an eigenvalue problem of a set of ordinary differential equations with five unknown functions, with an eigenvalue being related to the thermal thickness of the plume at this depth. The lateral profiles of upward velocity, temperature and viscosity in the plume and the thickness of the plume at various depths are calculated for two sets of Newtonian rheological parameters. The calculations show that the precondition for the existence of the plume, δT/ L ≪ 1 ( L = the height of the plume, δT = lateral distance from the mid-plane), can be satisfied, except for the starting region of the plume or near the base of the lithosphere. At the lateral distance, δT, the upward velocity decreases to 0.1 - 50% of its maximum value at different depths. It is believed that this model may provide an approach for a quantitative description of the detailed structure of a mantle plume.

  6. I. Multi-scale dynamics of mantle plumes and II. Compressible thermo-chemical convection and the stability of mantle superplumes

    NASA Astrophysics Data System (ADS)

    Tan, Eh

    The dynamic interaction of mantle plumes with subducted slabs and plate-scale flow is studied in Part I. We found that plumes preferentially develop on the edge of slabs and that a substantial amount of hot mantle can be trapped beneath slabs over long periods of time, leading to "mega-plume" formation. We used the solver-coupling technique to study the deflection of plume conduits and compare our result with the parameterized approach. The stability of mantle superplumes in compressible thermo-chemical convection is studied in Part II. The depth-dependent chemical density profile, caused by composition-dependent compressibility, is the preferred mechanism to stabilize the superplumes.

  7. Seismic structure of the lithosphere beneath NW Namibia: Impact of the Tristan da Cunha mantle plume

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaohui; Heit, Benjamin; Brune, Sascha; Steinberger, Bernhard; Geissler, Wolfram H.; Jokat, Wilfried; Weber, Michael

    2017-01-01

    Northwestern Namibia, at the landfall of the Walvis Ridge, was affected by the Tristan da Cunha mantle plume during continental rupture between Africa and South America, as evidenced by the presence of the Etendeka continental flood basalts. Here we use data from a passive-source seismological network to investigate the upper mantle structure and to elucidate the Cretaceous mantle plume-lithosphere interaction. Receiver functions reveal an interface associated with a negative velocity contrast within the lithosphere at an average depth of 80 km. We interpret this interface as the relic of the lithosphere-asthenosphere boundary (LAB) formed during the Mesozoic by interaction of the Tristan da Cunha plume head with the pre-existing lithosphere. The velocity contrast might be explained by stagnated and "frozen" melts beneath an intensively depleted and dehydrated peridotitic mantle. The present-day LAB is poorly visible with converted waves, indicating a gradual impedance contrast. Beneath much of the study area, converted phases of the 410 and 660 km mantle transition zone discontinuities arrive 1.5 s earlier than in the landward plume-unaffected continental interior, suggesting high velocities in the upper mantle caused by a thick lithosphere. This indicates that after lithospheric thinning during continental breakup, the lithosphere has increased in thickness during the last 132 Myr. Thermal cooling of the continental lithosphere alone cannot produce the lithospheric thickness required here. We propose that the remnant plume material, which has a higher seismic velocity than the ambient mantle due to melt depletion and dehydration, significantly contributed to the thickening of the mantle lithosphere.

  8. Osmium-187 enrichment in some plumes: Evidence for core-mantle interaction?

    USGS Publications Warehouse

    Walker, R.J.; Morgan, J.W.; Horan, M.F.

    1995-01-01

    Calculations with data for asteroidal cores indicate that Earth's outer core may have a rhenium/osmium ratio at least 20 percent greater than that of the chondritic upper mantle, potentially leading to an outer core with an osmium-187/osmium-188 ratio at least 8 percent greater than that of chondrites. Because of the much greater abundance of osmium in the outer core relative to the mantle, even a small addition of metal to a plume ascending from the D??? layer would transfer the enriched isotopic signature to the mixture. Sources of certain plume-derived systems seem to have osmium-187/osmium-188 ratios 5 to 20 percent greater than that for chondrites, consistent with the ascent of a plume from the core-mantle boundary.

  9. Osmium-187 Enrichment in Some Plumes: Evidence for Core-Mantle Interaction?

    NASA Astrophysics Data System (ADS)

    Walker, Richard J.; Morgan, John W.; Horan, Mary F.

    1995-08-01

    Calculations with data for asteroidal cores indicate that Earth's outer core may have a rhenium/osmium ratio at least 20 percent greater than that of the chondritic upper mantle, potentially leading to an outer core with an osmium-187/osmium-188 ratio at least 8 percent greater than that of chondrites. Because of the much greater abundance of osmium in the outer core relative to the mantle, even a small addition of metal to a plume ascending from the D'' layer would transfer the enriched isotopic signature to the mixture. Sources of certain plume-derived systems seem to have osmium-187/osmium-188 ratios 5 to 20 percent greater than that for chondrites, consistent with the ascent of a plume from the core-mantle boundary.

  10. The LIP-OIB transitional phase in the Galapagos mantle plume

    NASA Astrophysics Data System (ADS)

    Trela, J.; Gazel, E.; Vidito, C. A.; Class, C.; Jicha, B. R.; Bizimis, M.; Herzberg, C. T.; Alvarado-Induni, G.

    2014-12-01

    Although significant work has been done on LIPS and OIB, no complete record of the evolution of a mantle plume is available at this point. Galapagos-related lavas provide a complete record of the evolution of a mantle plume since the plume's initial stages in the Cretaceous. Our petrological models (PRIMELT2) suggest that the Galapagos plume head that formed the Caribbean Large Igneous Province (CLIP) at ~95 Ma melted at hotter temperatures than the ocean island basalt (OIB) equivalents of the modern archipelago. While this work suggests a significant decrease in mantle potential temperatures (Tp) over time, the exact mechanism responsible for secular cooling of the Galapagos plume remains unclear. One viable explanation is that plumes entraining recycled oceanic crust (pyroxenite) will be cooler than purely peridotite plumes, due to the effect of dense pyroxenite on the plume's buoyancy. High-precision electron microprobe analyses on olivine cores from the ~70 Ma Galapagos-related Quepos terrane in Costa Rica indicate a mixed peridotite-pyroxenite source lithology, not evident during the LIP stage. The appearance of this pyroxenitic component correlates with the first record of an EMII isotopic signature (Northern Galapagos Domain), and significant high-field strength enrichments in the Galapagos plume related lavas. This dense pyroxenite component may explain the marked decrease in Tp observed at ~70 Ma due to its effect on the plume's buoyancy. Otherwise, the pyroxenite component may have been diluted during voluminous basalt production of the CLIP by high peridotite melt fractions. Future research will incorporate further petrological modeling, olivine chemistry, and radiogenic isotope work of accreted Galapagos terranes in Central America to test whether or not a decrease in Tp correlates with increasing pyroxenite content in source melts.

  11. Strain distribution across magmatic margins during the breakup stage: Seismicity patterns in the Afar rift zone

    NASA Astrophysics Data System (ADS)

    Brown, C.; Ebinger, C. J.; Belachew, M.; Gregg, T.; Keir, D.; Ayele, A.; Aronovitz, A.; Campbell, E.

    2008-12-01

    Fault patterns record the strain history along passive continental margins, but geochronological constraints are, in general, too sparse to evaluate these patterns in 3D. The Afar depression in Ethiopia provides a unique setting to evaluate the time and space relations between faulting and magmatism across an incipient passive margin that formed above a mantle plume. The margin comprises a high elevation flood basalt province with thick, underplated continental crust, a narrow fault-line escarpment underlain by stretched and intruded crust, and a broad zone of highly intruded, mafic crust lying near sealevel. We analyze fault and seismicity patterns across and along the length of the Afar rift zone to determine the spatial distribution of strain during the final stages of continental breakup, and its relation to active magmatism and dike intrusions. Seismicity data include historic data and 2005-2007 data from the collaborative US-UK-Ethiopia Afar Geodynamics Project that includes the 2005-present Dabbahu rift episode. Earthquake epicenters cluster within discrete, 50 km-long magmatic segments that lack any fault linkage. Swarms also cluster along the fault-line scarp between the unstretched and highly stretched Afar rift zone; these earthquakes may signal release of stresses generated by large lateral density contrasts. We compare Coulomb static stress models with focal mechanisms and fault kinematics to discriminate between segmented magma intrusion and crank- arm models for the central Afar rift zone.

  12. Mixing and entrainment in mantle plumes: A 3D experimental investigation

    NASA Astrophysics Data System (ADS)

    Newsome, W.; Lithgow-Bertelloni, C. R.; Cotel, A. J.; Hart, S. R.; Whitehead, J. A.

    2009-12-01

    Significant differences exist between isotopic signatures of typical mid-ocean ridge basalts (MORB) and those associated with many ocean islands, with ocean island basalts (OIB) generally exhibiting more variability in trace element concentrations and a bias towards enrichment in more primitive isotopes as well in some cases. Such observations coupled with other geophysical evidence have been used to suggest that OIB’s are surface manifestations of upwellings originating in the deep interior near the core-mantle boundary that interact with distinct, heterogeneous reservoirs as material is transported from the Earth’s interior to the surface. Although many have studied the chemistry and dynamics of these mantle plumes, fundamental questions remain. Such questions can be grouped into two general issues: a) Plume structure and dynamical interaction with the surrounding mantle, b) The degree of entrainment and mixing in mantle plumes of chemically distinct material from the deep mantle. We address these fundamental questions via detailed fluid dynamical experiments to determine the structure, temperature, velocity, entrained mass origin, and degree of entrainment in thermal plumes. Heat is used as the driving convective mechanism to form a single thermal plume in corn syrup. The experiments are conducted using Stereoscopic Particle Image Velocimetry (SPIV) and Thermochromic Liquid Crystals (TLC’s) to measure the 3D flow and temperature fields within the tank. A finite volume numerical model using SPIV velocities as inputs permits reconstruction of temperature values for warmer regions where the fluid temperature is beyond the working range of the TLC’s. Preliminary results further strengthen arguments that the classical view of plumes having well-developed scroll heads may be more a characteristic of injection-type experiments than a fundamental feature of all thermal upwellings, particularly those sourced from a thermal boundary layer. Hence, such scroll

  13. The Emperor Seamounts: southward motion of the Hawaiian hotspot plume in Earth's mantle.

    PubMed

    Tarduno, John A; Duncan, Robert A; Scholl, David W; Cottrell, Rory D; Steinberger, Bernhard; Thordarson, Thorvaldur; Kerr, Bryan C; Neal, Clive R; Frey, Fred A; Torii, Masayuki; Carvallo, Claire

    2003-08-22

    The Hawaiian-Emperor hotspot track has a prominent bend, which has served as the basis for the theory that the Hawaiian hotspot, fixed in the deep mantle, traced a change in plate motion. However, paleomagnetic and radiometric age data from samples recovered by ocean drilling define an age-progressive paleolatitude history, indicating that the Emperor Seamount trend was principally formed by the rapid motion (over 40 millimeters per year) of the Hawaiian hotspot plume during Late Cretaceous to early-Tertiary times (81 to 47 million years ago). Evidence for motion of the Hawaiian plume affects models of mantle convection and plate tectonics, changing our understanding of terrestrial dynamics.

  14. Upper- and mid-mantle interaction between the Samoan plume and the Tonga–Kermadec slabs

    PubMed Central

    Chang, Sung-Joon; Ferreira, Ana M. G.; Faccenda, Manuele

    2016-01-01

    Mantle plumes are thought to play a key role in transferring heat from the core–mantle boundary to the lithosphere, where it can significantly influence plate tectonics. On impinging on the lithosphere at spreading ridges or in intra-plate settings, mantle plumes may generate hotspots, large igneous provinces and hence considerable dynamic topography. However, the active role of mantle plumes on subducting slabs remains poorly understood. Here we show that the stagnation at 660 km and fastest trench retreat of the Tonga slab in Southwestern Pacific are consistent with an interaction with the Samoan plume and the Hikurangi plateau. Our findings are based on comparisons between 3D anisotropic tomography images and 3D petrological-thermo-mechanical models, which self-consistently explain several unique features of the Fiji–Tonga region. We identify four possible slip systems of bridgmanite in the lower mantle that reconcile the observed seismic anisotropy beneath the Tonga slab (VSH>VSV) with thermo-mechanical calculations. PMID:26924190

  15. Upper- and mid-mantle interaction between the Samoan plume and the Tonga-Kermadec slabs.

    PubMed

    Chang, Sung-Joon; Ferreira, Ana M G; Faccenda, Manuele

    2016-02-29

    Mantle plumes are thought to play a key role in transferring heat from the core-mantle boundary to the lithosphere, where it can significantly influence plate tectonics. On impinging on the lithosphere at spreading ridges or in intra-plate settings, mantle plumes may generate hotspots, large igneous provinces and hence considerable dynamic topography. However, the active role of mantle plumes on subducting slabs remains poorly understood. Here we show that the stagnation at 660 km and fastest trench retreat of the Tonga slab in Southwestern Pacific are consistent with an interaction with the Samoan plume and the Hikurangi plateau. Our findings are based on comparisons between 3D anisotropic tomography images and 3D petrological-thermo-mechanical models, which self-consistently explain several unique features of the Fiji-Tonga region. We identify four possible slip systems of bridgmanite in the lower mantle that reconcile the observed seismic anisotropy beneath the Tonga slab (V(SH)>V(SV)) with thermo-mechanical calculations.

  16. Probing the age and temperature of rifting in Afar

    NASA Astrophysics Data System (ADS)

    Armitage, John; Goes, Saskia; Ferguson, David; Hammond, James; Calais, Eric

    2014-05-01

    Rifting along the southern part of the Red Sea margin in NE Africa (leading to formation of Afar) has been closely associated with magmatic activity since the initiation of extension at around ~ 25Ma. Numerous active volcanoes are currently found along rift zones here and magma intrusion into the crust has potentially accommodated significant amounts of extension. This extensive present-day volcanism has been linked to elevated mantle temperature, perhaps due to a thermal plume, or as a consequence of passive flow in the mantle beneath the extending lithosphere. Geochemical evidence for basaltic lavas erupted in Afar have been used to suggest that mantle temperatures are in the range 1370 to 1490°C, and that the region is currently experiencing late stage rifting. Analysis of changes in shear wave seismic velocities and relative travel time tomography suggests mantle temperatures are within a similar range, yet the region has greater similarities to a young spreading centre. The range in potential temperature estimates is however very large, with different implications for the volcanic history of the region and hence timing of break-up. Rather than focusing a single observable, we use a relatively straight forward model of extension and decompression melting to predict the seismic-velocity and attenuation structure of the asthenosphere and lithosphere, synthetic receiver functions as a result of this seismic structure, crustal thickness as a result of decompression and finally the melt composition. From this combined study we find that melt composition and seismic structure are dependent on both temperature and time. If mantle potential temperature is 1350°C then both the seismic structure and melt composition can be matched if the duration of extension is more than 30 Myr. However this is longer than the estimated duration of extension from plate reconstructions, and given the low rate of extension in Afar, this cold model only generates up to 5 km of igneous

  17. Simultaneous 2-D Measurements of Transient Velocity and Temperature Fields in a Thermal Starting Plume: Laboratory Models of Entrainment and Structure of Mantle Plumes

    NASA Astrophysics Data System (ADS)

    Kumagai, I.; Yanagisawa, T.; Kurita, K.

    2002-12-01

    Both numerical and experimental models of thermal plumes suggest that mantle plumes entrain surrounding mantle and their morphology (temperature and compositional fields in the plume head) evolves as they rise. Recent geochemical and isotopic studies of mantle plume products have revealed mixing of the ambient mantle with the primitive plume source. In order to make a quantitative comparison of the geophysical modeling with geological evidences, it is desired to show a precise image of spatial and temporal evolution of temperature and compositional fields in the plumes. Here, we present preliminary results of our laboratory experiments on thermal starting plumes using a quantitative technique of digital image processing. By coupling Particle Image Velocimetry (PIV) with Laser Induced Fluorescence (LIF) we can measure simultaneous 2-dimensional transient velocity and temperature fields in a thermal plume. Our experiments were conducted in a transparent rectangular tank containing a viscous fluid. Buoyancy in the form of heat was injected into the fluid by operating a heater at the base of the tank. The flow was marked with tracer particles for velocity and with the fluorescence dye, Rhodamine B, for temperature measurements. The particles and the fluorescence dye were illuminated and exited by a thin vertical sheet of laser light that was oriented to contain the axis of symmetry. We succeeded in simultaneous measurements of ascent velocity of the plume head, precise velocity field within the plume head, and evolution of the temperature field. This makes clear their relation and is useful for considering the entrainment process of plumes. Our aim of this study is to clarify the physics of entrainment and mixing phenomena of starting plumes, and to make quantitative geophysical models of mantle plumes connecting with geological and seismic evidences. In this presentation, we will show that this quantitative technique is a powerful tool for approaching these issues.

  18. Plumes do not Exist: Plate Circulation is Confined to Upper Mantle

    NASA Astrophysics Data System (ADS)

    Hamilton, W. B.

    2002-12-01

    Plumes from deep mantle are widely conjectured to define an absolute reference frame, inaugurate rifting, drive plates, and profoundly modify oceans and continents. Mantle properties and composition are assumed to be whatever enables plumes. Nevertheless, purported critical evidence for plume speculation is false, and all data are better interpreted without plumes. Plume fantasies are made ever more complex and ad hoc to evade contradictory data, and have no predictive value because plumes do not exist. All plume conjecture derives from Hawaii and the guess that the Emperor-Hawaii inflection records a 60-degree change in Pacific plate direction at 45 Ma. Paleomagnetic latitudes and smooth Pacific spreading patterns disprove any such change. Rationales for other fixed plumes collapse when tested, and hypotheses of jumping, splitting, and gyrating plumes are specious. Thermal and physical properties of Hawaiian lithosphere falsify plume predictions. Purported tomographic support elsewhere represents artifacts and misleading presentations. Asthenosphere is everywhere near solidus temperature, so melt needs a tensional setting for egress but not local heat. Gradational and inconsistent contrasts between MORB and OIB are as required by depth-varying melt generation and behavior in contrasted settings and do not indicate systematically unlike sources. MORB melts rise, with minimal reaction, through hot asthenosphere, whereas OIB melts react with cool lithosphere, and lose mass, by crystallizing refractories and retaining and assimilating fusibles. The unfractionated lower mantle of plume conjecture is contrary to cosmologic and thermodynamic data, for mantle below 660 km is more refractory than that above. Subduction, due to density inversion by top-down cooling that forms oceanic lithosphere, drives plate tectonics and upper-mantle circulation. It organizes plate motions and lithosphere stress, which controls plate boundaries and volcanic chains. Hinge rollback is the

  19. Fluid dynamics of active heterogeneities in a mantle plume conduit

    NASA Astrophysics Data System (ADS)

    Farnetani, C. G.; Limare, A.; Hofmann, A. W.

    2015-12-01

    Laboratory experiments and numerical simulations indicate that the flow of a purely thermal plume preserves the azimuthal zonation of the source region, thus providing a framework to attribute a deep origin to the isotopic zonation of Hawaiian lavas. However, previous studies were limited to passive heterogeneities not affecting the flow. We go beyond this simplification by considering active heterogeneities which are compositionally denser, or more viscous, and we address the following questions: (1) How do active heterogeneities modify the axially symmetric velocity field of the plume conduit? (2) Under which conditions is the azimuthal zonation of the source region no longer preserved in the plume stem? (3) How do active heterogeneities deform during upwelling and what is their shape once at sublithospheric depths? We conducted both laboratory experiments, using a Particle Image Velocimetry (PIV) to calculate the velocity field, and high resolution three-dimensional simulations where millions of tracers keep track of the heterogeneous fluid. For compositionally denser heterogeneities we cover a range of buoyancy ratios 0plume axis. We find that by increasing λ, the shape of the heterogeneity changes from filament-like to blob-like characterized by internal rotation and little stretching. By increasing B the heterogeneity tends to spread at the base of the plume stem and to rise as a tendril close to the axis, so that the initial zonation may be poorly preserved. We also find that the plume velocity field can be profoundly modified by active heterogeneities, and we explore the relation between strain rates and the evolving shape of the upwelling heterogeneity.

  20. Seismic velocity variations beneath central Mongolia: Evidence for upper mantle plumes?

    NASA Astrophysics Data System (ADS)

    Zhang, Fengxue; Wu, Qingju; Grand, Stephen P.; Li, Yonghua; Gao, Mengtan; Demberel, Sodnomsambuu; Ulziibat, Munkhuu; Sukhbaatar, Usnikh

    2017-02-01

    Central Mongolia is marked by wide spread recent volcanism as well as significant topographic relief even though it is far from any plate tectonic boundaries. The cause of the recent magmatism and topography remains uncertain partially because little is known of the underlying mantle seismic structure due to the lack of seismic instrumentation in the region. From August 2011 through August 2013, 69 broadband seismic stations were deployed in central Mongolia. Teleseismic traveltime residuals were measured using waveform correlation and were inverted to image upper mantle P and S velocity variations. Significant lateral variations in seismic velocity are imaged in the deep upper mantle (100 to 800 km depth). Most significant are two continuous slow anomalies from the deep upper mantle to near the surface. One slow feature has been imaged previously and may be a zone of deep upwelling bringing warm mantle to beneath the Hangay Dome resulting in uplift and magmatism including the active Khanuy Gol and Middle Gobi volcanoes. The second, deep low velocity anomaly is seen in the east from 800 to 150 km depth. The anomaly ends beneath the Gobi Desert that is found to have fast shallow mantle indicating a relatively thick lithosphere. We interpret the second deep slow anomaly as a mantle upwelling that is deflected by the thick Gobi Desert lithosphere to surrounding regions such as the Hentay Mountains to the north. The upwellings are a means of feeding warmer than normal asthenospheric mantle over a widely distributed region beneath Mongolia resulting in distributed volcanic activity and uplift. There is no indication that the upwellings are rooted in the deep lower mantle i.e. classic plumes. We speculate the upwellings may be related to deep subduction of the Pacific and Indian plates and are thus plumes anchored in the upper mantle.

  1. The Kea- and Loa- trends and magma genesis in the Hawaiian mantle plume

    NASA Astrophysics Data System (ADS)

    Ren, Z.; Ingle, S.; Takahashi, E.; Hirano, N.; Hirata, T.; Tatsumi, Y.

    2005-12-01

    The Hawaiian-Emperor volcanic island and seamount chain has been created by a hot mantle plume located beneath the Pacific lithosphere. The shield volcanoes of the Hawaiian islands are distributed in two curvilinear parallel trends, termed _eKea_Eand _eLoa_E(Jackson et al., 1972). Lavas from these two trends are commonly believed to have different geochemical characteristics (Tatsumoto, 1978; Frey et al., 1994; Hauri, 1996; Lassiter et al., 1996; Abouchami et al., 2005). The Kea- and Loa- geochemical trends within the Hawaiian shield volcanoes have been interpreted to reflect melting above a compositionally concentrically zoned (Hauri, 1996; Lassiter et al., 1996; Kurz et al., 1996; DePaolo et al., 2001) or compositionally left-right asymmetrically zoned mantle plume (Abouchami et al., 2005). In order to evaluate the homogeneity of the mantle plume source sampled by the Kea- and Loa- trends, we analyzed major and trace element compositions of olivine-hosted melt inclusions from Hawaiian shield lavas, using EPMA and Laser ICP-MS. We selected lava samples form submarine Hana Ridge, Haleakala volcano (Kea trend) and submarine exposures of the Makapuu stage, Koolau volcano (Loa trend), respectively. We found both Kea- and Loa-like major and trace element compositions from olivine-hosted melt inclusions in individual, shield-stage Hawaiian volcanoes, even within single rock samples. We infer from these data that although one mantle source component may dominate a single lava flow, the two (or more) mantle source components are consistently represented to some extent in all lavas, regardless of the specific geographic location of the volcano. On the basis of whole rock geochemical characteristics (Ren et al., J. pet., 2004; 2005) combined with the melt inclusion data (Ren et al., 2005, Nature), we propose a Hawaiian mantle plume characterized by more random heterogeneity than would be present in a simple compositionally zoned mantle plume. The geochemical differences in

  2. Successful and Failing plumes in a Heterogeneous Mantle: the Icelandic Case

    NASA Astrophysics Data System (ADS)

    Kumagai, I.; Davaille, A.; Kurita, K.; Stutzmann, E.

    2007-12-01

    Although Iceland is always cited as an exemple of hot spot volcanism produced by a deep mantle plume, an increasing number of observations cannot be explained by the classical plume model of a mushroom-shaped plume out of a sustained localized heat source. Volcanic episodes with moderate temperature predate the major episode of mafic magma emplacement (~60Ma) containing hot picrite magma with strong rare gas anomalies. Present-day Iceland shows moderate temperatures, a strong rare gas anomaly, and an apparent disconnection between slow seismic anomalies in the upper and lower mantle. Noteworthy, the same mixture of geochemical ingredients are found in Icelandic lavas during its 80 Myr of activity. We present a new experimental study of the more realistic case of thermochemical convective instabilities developping out of a heterogeneous bottom hot thermal boundary layer. Depending on the buoyancy ratio B, two end-member regimes are observed. For large B, a thermal plume develops above the denser layer and only a small amount of denser fluid is entrained in the plume. For small B, the dense layer can be sufficently heated to become buoyant and rise: the thermo-chemical plume is therefore mainly constituted of material from the chemically denser layer. The fate of the heterogeneous material in the plume then depends on time since the instability cools as it ascends. As a result, the core of the plume head, which consists of initially hotter but chemically heavier material, can cool enough to become denser than the ambient fluid before reaching the surface of the tank: the heterogeneous material then sinks back and a new thermal plume with a lower temperature anomaly is generated from the top edge of the heavier collapsing blob. In this "failing-plume" mode, the thermo-chemical plume fails to deliver most of the chemical heterogeneity to the surface. Hence, the thermal and compositional structure of a thermo-chemical plume changes with time and is quite irregular. In

  3. Delineating the Exmouth Mantle Plume (NW Australia) : Implications for the Origin of Volcanic Margins

    NASA Astrophysics Data System (ADS)

    Rohrman, M. H.

    2014-12-01

    Denudation and magmatism are distinct characteristics of Large Igneous Provinces, such as the Northwest Australian volcanic margin. Unfortunately, its temporal and spatial extent is poorly defined. Here, I present a simple isostatic model relating denudation to plume induced lithospheric thinning and underplating to delineate the Late Jurassic/Early Cretaceous Exmouth mantle plume. This upwelling was centered on a highly extended and subsided continental fragment known as the subsea Sonne/Sonja Ridge area and includes the Cuvier Margin (CM) and Cape Range Fracture Zone (CRFZ). The region is characterized by ~3 km denudation and ~ 500 m tectonic uplift, with erosion products acting as provenance for the Early Cretaceous Lower Barrow delta. Partial melting of the plume generated an underplate, characterized as a high velocity body (HVB) on seismic data. Denudation analysis indicates that only ~40 % of the HVB is melt related, with the effective underplate ~ 4 km thick at the plume centre, decreasing in the outer regions. Widespread plume induced convective lithospheric thinning set the boundary conditions for subsequent extension related magmatism and breakup in the Valanginian, as recorded by subsidence analysis of exploration wells. Hot plume derived material flowed to regions under extension, initiating additional magmatism now observed as SDRs (Seaward Dipping Reflectors series), initially thick magmatic crust, followed by normal ocean spreading in the Hauterivian. After initial upwelling, the thermal plume can be traced in a western direction as a hotspot to the Quokka Rise in the mid Cretaceous, before terminating after 35 - 50 Ma of activity. These findings suggest that most volcanic margins are generated by plume upwellings that are relatively passive features, with uplift consisting of a combination of plume induced convective lithospheric thinning and underplating. Melt migration and mantle heating subsequently lower stresses and facilitate breakup.

  4. Lead isotopes reveal bilateral asymmetry and vertical continuity in the Hawaiian mantle plume.

    PubMed

    Abouchami, W; Hofmann, A W; Galer, S J G; Frey, F A; Eisele, J; Feigenson, M

    2005-04-14

    The two parallel chains of Hawaiian volcanoes ('Loa' and 'Kea') are known to have statistically different but overlapping radiogenic isotope characteristics. This has been explained by a model of a concentrically zoned mantle plume, where the Kea chain preferentially samples a more peripheral portion of the plume. Using high-precision lead isotope data for both centrally and peripherally located volcanoes, we show here that the two trends have very little compositional overlap and instead reveal bilateral, non-concentric plume zones, probably derived from the plume source in the mantle. On a smaller scale, along the Kea chain, there are isotopic differences between the youngest lavas from the Mauna Kea and Kilauea volcanoes, but the 550-thousand-year-old Mauna Kea lavas are isotopically identical to Kilauea lavas, consistent with Mauna Kea's position relative to the plume, which was then similar to that of present-day Kilauea. We therefore conclude that narrow (less than 50 kilometres wide) compositional streaks, as well as the larger-scale bilateral zonation, are vertically continuous over tens to hundreds of kilometres within the plume.

  5. Seismic anisotropy beneath La Réunion hotspot track: plume spreading vs deep mantle convection

    NASA Astrophysics Data System (ADS)

    Barruol, G.; Fontaine, F. R.

    2012-12-01

    Seismic anisotropy beneath the Western Indian Ocean is analyzed from temporary and permanent seismological deployments on the Piton de la Fournaise volcano, the active place of La Réunion hotspot, and from the permanent stations in Mauritius, Rodrigues and the Maldives Islands, in order to decipher the sublithospheric spreading signature of La Réunion mantle plume and the large-scale mantle flow pattern induced by the buoyancy-driven upwelling of the African superplume. The comparison of the SKS splitting observations with geodynamic mantle flow models show that the large-scale anisotropy pattern - characterized by fast directions trending NE-SW in the north (Maldives and Seychelles) to EW in the south (Mauritius, Rodrigues and La Réunion) may be largely explained by asthenospheric flow resulting from the combined effects of plate motion and deep mantle circulation. Anisotropy observed at the seismic stations installed on La Réunion Island shows, however, complex backazimuthal variations characterized by numerous "nulls" and by fast split directions trending normal to the plate motion observed within only a small backazimuthal window, that cannot be explained by neither a single nor two anisotropic layers. By testing models of sublithospheric spreading of La Réunion mantle upwelling, we show that this complex anisotropy pattern can be explained by a parabolic asthenospheric plume spreading with a plume conduit located 100 to 200 km north of La Réunion Island. Anisotropy beneath the GEOSCOPE station recently installed in Rodrigues Island does not appear to be influenced by the La Réunion plume-spreading signature but is fully compatible with either a model of large-scale deep mantle convection pattern and/or with a channeled asthenospheric flow beneath the Rodrigues ridge.

  6. Evolution of North Atlantic Passive Margins Controlled by the Iceland Mantle Plume

    NASA Astrophysics Data System (ADS)

    Parnell-Turner, R. E.; White, N. J.; Henstock, T.; Murton, B. J.; Jones, S. M.

    2015-12-01

    Evolution of North Atlantic passive margins has been profoundly influenced by the Iceland mantle plume over the past 60 Ma. Residual depth anomalies of oceanic lithosphere, long wavelength gravity anomalies and seismic tomographic models show that upwelling mantle material extends from Baffin Bay to Western Norway. At fringing passive margins such as Northwest Scotland, there is evidence for present-day dynamic support of the crust. The Iceland plume is bisected by the Reykjanes Ridge ridge, which acts as a tape-recorder of the temporal variability of the plume. We present regional seismic reflection profiles that traverse the oceanic basin between northwest Europe and Greenland. A diachronous pattern of V-shaped ridges and troughs are imaged beneath marine sediments, revealing a complete record of transient periodicity that can be traced continuously back to ~55 Myrs. This periodicity increases from ~3 to ~8 Ma with clear evidence for minor, but systematic, asymmetric crustal accretion. V-shaped ridges grow with time and reflect small (5-30°C) changes in mantle temperature, consistent with episodic generation of hot solitary waves triggered by growth of thermal boundary layer instabilities within the mantle. Our continuous record of convective activity suggests that the otherwise uniform thermal subsidence of sedimentary basins, which fringe the North Atlantic Ocean, has been punctuated by periods of variable dynamic topography. This record can explain a set of diverse observations from the geologic record. Paleogene unconformities in the Faroe-Shetland Basin, the punctuated deposition of contourite drifts and variations in deep-water current strength can all be explained by transient mantle plume behavior. These signals of convective activity should lead to improved insights into the fluid dynamics of the mantle, and into the evolution of volcanic passive margins.

  7. Hunting for the Tristan plume - An upper mantle tomography around the volcanic island Tristan da Cunha

    NASA Astrophysics Data System (ADS)

    Schlömer, Antje; Geissler, Wolfram H.; Jokat, Wilfried; Jegen, Marion

    2016-04-01

    Tristan da Cunha is a volcanic island in the South Atlantic close to the Mid-Atlantic Ridge. It is part of an area consisting of widely scattered seamounts and small islands at the western and youngest end of the aseismic Walvis Ridge. Tristan da Cunha together with the Walvis Ridge represents the classical example of a mantle plume track, because of the connection to the Cretaceous Etendeka flood basalt province in NW Namibia. The genesis of the island has so far remained enigmatic. It is hotly debated, if Tristan da Cunha sits actually above a deep mantle plume or if it is only originated by upwelling material from weak (leaky) fracture zones. It also has to be clarified if there are any indications for a plume-ridge interaction. Geochemical investigations have shown complex compositions of magmatic samples from Tristan da Cunha, which could be interpreted as a mixing of plume-derived melts and depleted upper mantle sources. To improve our understanding about the origin of Tristan and to test the mantle plume hypothesis, we deployed 24 broadband ocean-bottom seismometers and 2 seismological land stations around and on the island during an expedition in January 2012 with the German research vessel Maria S. Merian. After acquiring continuous seismological data for almost one year, the seismometers were recovered in early January 2013. We cross-correlated the arrival times of teleseismic P and PKP phases to perform a finite-frequency tomography of the upper mantle beneath the study area. Here we show the 3D mantle structure in terms of velocity variations: We do not image a "classical" plume-like structure directly beneath Tristan da Cunha, but we observe regions of low velocities at the edges of our array that we relate to local mantle upwelling from potentially deeper sources. Additionally we discuss local seismicity within the Tristan da Cunha region, which show processes along the nearby mid-ocean ridge and transform faults. Furthermore, the local seismicity

  8. The Yellowstone Hotspot and Related Plume: Volcano-Tectonics, Tomography, Kinematics, Dynamics and Mantle Flow

    NASA Astrophysics Data System (ADS)

    Jordan, M.; Smith, R. B.; Puskas, C.; Farrell, J.; Waite, G.

    2005-12-01

    Earth's violent forces have produced the renowned scenery and the world's largest display of geysers at Yellowstone National Park. The energy responsible for these features is related to the Yellowstone hotspot, a coupled crust-mantle magmatic system that has had a profound influence on a much larger area of the western US: the Yellowstone-Snake River Plain-Newberry volcanic field (YSRPN). The volcanic system has produced a 16 Ma track of NE-trending, time progressive, silicic-basaltic volcanism from the Snake River Plain (SNR) to Yellowstone with a mirror image of NW-trending magmatism across the high lava plains to the Newberry caldera, OR. The origin of this magmatic-tectono system has been variously ascribed to plume-plate interaction, lithosphere extension, return mantle flow, decompression melting, etc. We interpret and integrate results from modeling of data from a prototype EarthScope experiment in 1999-2002. These include crust-mantle tomography, geoid and gravity modeling, kinematics from GPS, and geodynamic models. We present a comprehensive model for the mechanism behind YSRPN that is in accordance with our observations and models, e.g. from GPS and seismology. Geodetic data show high rates of deformation at the Yellowstone Plateau, with periods of pronounced uplift and subsidence as well as significant EW extension. Seismic tomography reveals a pronounced mid-crustal P- and S-wave low velocity body of > 8% melt extending from ~6 km to 15 km beneath the caldera. This system is fed by an upper-mantle low velocity plume-like body of up to 1.5% melt in the upper 200 km. The body further extends down to the the base of the transition zone at 650 km depth, notably tilting WNW. At this depth, we estimate the excess temperature between 85 K and 120 K, depending on the water content. Using the inclined plume-geometry and the 650-km source depth we extrapolate the mantle source southwestward as a plume-head in oceanic-type lithosphere beneath the Columbia

  9. A Fossil Mantle Plume under the Emeishan Flood Basalts: Integration of Geology, Geophysics and Geochemistry

    NASA Astrophysics Data System (ADS)

    Xu, Y.; He, B.; Chung, S.

    2004-12-01

    The plume hypothesis is now challenged because some fundamental aspects predicted by the modeling of plumes are found to be lacking in classic regions like Iceland and Yellowstone. Instead of invoking a ¡°bottom-up¡± process, some researchers favor a ¡°top-down¡± hypothesis for the formation of large igneous provinces (LIPs), in which shallow lithospheric processes may fuel melt production. Seismic investigations and tomographic models help trace mantle plumes in modern, active hotspots, but are of limited benefit in identifying ancient plumes, mainly because geophysics provides us with a snapshot of the present-day Earth¡_s structure. Consequently the geological ¡°footprint¡± associated with thermal anomalies are the clues to tracing ancient plumes. According to some theoretical models, pre-volcanic lithospheric uplift is the most important criteria used to identify the presence of plumes. The lack of such evidence, on the other hand, is an argument against the involvement of plumes in the formation of LIPs. Recent examination of the middle-late Permian sedimentology in southwest China reveals kilometer-scale lithospheric doming prior to the Emeishan flood volcanism (He et al., 2003). This, and correlations between diverse, independent parameters involving crustal doming, paleo-geography, sea level change, mantle melting mechanism and crust-mantle structure, provide evidence for a fossil mantle plume under the Emeishan LIP. Specifically, the consequences of plume-lithosphere interaction include: (a) pre-volcanic uplift including thinning of marine carbonates, a marine to sub-aerial transition, local provenance of clastic sediments, and a marked erosional unconformity, evident as palaeokarstic surfaces on the marine carbonates; (b) a domal structure (700 km radius); (c) variations in the thickness of volcanic rocks across the domal structure; (d) variations in flood basalt geochemistry from the center to the edge of the domal structure that are

  10. Interactions of the Greater Ontong Java mantle plume component with the Osbourn Trough.

    PubMed

    Zhang, Guo-Liang; Li, Chao

    2016-11-21

    The Ontong Java-Manihiki-Hikurangi plateau (OJMHP) is considered to have originated from a starting mantle plume, and have been rifted apart by two spreading ridges. However, the ages of these spreading ridges and their possible interactions with the presumed mantle plume are unclear. The Manihiki-Hikurangi plateau has been rifted apart by the Osbourn Trough which formed the southwestern Pacific crust to the east of the Tonga-Kermadec trench. Here we report Pb-Hf-Os isotopes of the basaltic crust (Site U1365 of IODP Expedition 329) formed by the Osbourn Trough. Linear regression of Re-Os isotopes results in an age of 103.7 ± 2.3 Ma for Site U1365 basalts, indicating that the Manihiki-Hikurangi plateau was rifted apart by the Osbourn Trough with a spreading rate of ~190 mm/yr. The superfast spreading rate supports the Osbourn as an abandoned segment of the early Pacific spreading ridge, which initially overlapped with the giant starting plume. Moreover, the Pb-Hf isotopes of some of Site U1365 basalts show distinct differences from those of the Pacific mid-ocean ridge basalts, while they are similar to the basalts of the Ontong Java and Manihiki plateaus. We suggest that the OJMHP mantle plume components has been involved by the Osbourn spreading center.

  11. Interactions of the Greater Ontong Java mantle plume component with the Osbourn Trough

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Liang; Li, Chao

    2016-11-01

    The Ontong Java-Manihiki-Hikurangi plateau (OJMHP) is considered to have originated from a starting mantle plume, and have been rifted apart by two spreading ridges. However, the ages of these spreading ridges and their possible interactions with the presumed mantle plume are unclear. The Manihiki-Hikurangi plateau has been rifted apart by the Osbourn Trough which formed the southwestern Pacific crust to the east of the Tonga-Kermadec trench. Here we report Pb-Hf-Os isotopes of the basaltic crust (Site U1365 of IODP Expedition 329) formed by the Osbourn Trough. Linear regression of Re-Os isotopes results in an age of 103.7 ± 2.3 Ma for Site U1365 basalts, indicating that the Manihiki-Hikurangi plateau was rifted apart by the Osbourn Trough with a spreading rate of ~190 mm/yr. The superfast spreading rate supports the Osbourn as an abandoned segment of the early Pacific spreading ridge, which initially overlapped with the giant starting plume. Moreover, the Pb-Hf isotopes of some of Site U1365 basalts show distinct differences from those of the Pacific mid-ocean ridge basalts, while they are similar to the basalts of the Ontong Java and Manihiki plateaus. We suggest that the OJMHP mantle plume components has been involved by the Osbourn spreading center.

  12. Interactions of the Greater Ontong Java mantle plume component with the Osbourn Trough

    PubMed Central

    Zhang, Guo-Liang; Li, Chao

    2016-01-01

    The Ontong Java-Manihiki-Hikurangi plateau (OJMHP) is considered to have originated from a starting mantle plume, and have been rifted apart by two spreading ridges. However, the ages of these spreading ridges and their possible interactions with the presumed mantle plume are unclear. The Manihiki-Hikurangi plateau has been rifted apart by the Osbourn Trough which formed the southwestern Pacific crust to the east of the Tonga-Kermadec trench. Here we report Pb-Hf-Os isotopes of the basaltic crust (Site U1365 of IODP Expedition 329) formed by the Osbourn Trough. Linear regression of Re-Os isotopes results in an age of 103.7 ± 2.3 Ma for Site U1365 basalts, indicating that the Manihiki-Hikurangi plateau was rifted apart by the Osbourn Trough with a spreading rate of ~190 mm/yr. The superfast spreading rate supports the Osbourn as an abandoned segment of the early Pacific spreading ridge, which initially overlapped with the giant starting plume. Moreover, the Pb-Hf isotopes of some of Site U1365 basalts show distinct differences from those of the Pacific mid-ocean ridge basalts, while they are similar to the basalts of the Ontong Java and Manihiki plateaus. We suggest that the OJMHP mantle plume components has been involved by the Osbourn spreading center. PMID:27869235

  13. Midcontinent Rift and Remnants of Initiating Mantle Plume Imaged With Magnetotellurics

    NASA Astrophysics Data System (ADS)

    Bowles-martinez, E.; Schultz, A.

    2015-12-01

    Geologic evidence has long suggested that the Midcontinent Rift (MCR) was initiated by a mantle plume 1.1 Ga in the western Lake Superior region. EarthScope magnetotelluric data has been inverted to create a 3D resistivity model that shows remnants of the plume to depths of at least 150 km. The mantle plume remnants are imaged as a body of highly conductive material in the lithosphere. It is focused below western Lake Superior and northwestern Wisconsin, and elongated in a NW-SE direction, consistent with plate motion vectors. Recent seismic velocity models from EarthScope data also show an anomaly at this location. The presence of a plume after so much time has passed invites many questions regarding the long-term stability of conductive materials, the thickness of the lithosphere, and the stability of sub-craton mantle over long time periods. The resistivity model also shows features defining the length of the MCR as well as the Grenville orogeny. New data being collected this summer is incorporated into the model, extending it southeast across Grenville.

  14. Enhanced convection and fast plumes in the lower mantle induced by the spin transition in ferropericlase.

    SciTech Connect

    Bower, D. J.; Gurnis, M.; Jackson, J. M.; Sturhahn, W.; X-Ray Science Division; California Inst. of Tech.

    2009-05-28

    Using a numerical model we explore the consequences of the intrinsic density change ({Delta}{rho}/{rho} {approx} 2-4%) caused by the Fe{sup 2+} spin transition in ferropericlase on the style and vigor of mantle convection. The effective Clapeyron slope of the transition from high to low spin is strongly positive in pressure-temperature space and broadens with high temperature. This introduces a net spin-state driving density difference for both upwellings and downwellings. In 2-D cylindrical geometry spin-buoyancy dominantly enhances the positive thermal buoyancy of plumes. Although the additional buoyancy does not fundamentally alter large-scale dynamics, the Nusselt number increases by 5-10%, and vertical velocities by 10-40% in the lower mantle. Advective heat transport is more effective and temperatures in the core-mantle boundary region are reduced by up to 12%. Our findings are relevant to the stability of lowermost mantle structures.

  15. Mantle plume influence on the Neogene uplift and extension of the US western Cordillera?

    USGS Publications Warehouse

    Parsons, T.; Thompson, G.A.; Sleep, Norman H.

    1994-01-01

    Despite its highly extended and thinned crust, much of the western Cordillera in the United States is elevated more than 1km above sea level. Therefore, this region cannot be thought of as thick crust floating isostatically in a uniform mantle; rather, the lithospheric mantle and/or the upper asthenosphere must vary in thickness or density across the region. Utilizing crustal thickness and density constraints, the residual mass defcicit that must occur in the mantle lithosphere and asthenosphere beneath the western Cordillera was modelled. A major hot spot broke out during a complex series of Cenozoic tectonic events that included lithospheric thickening, back-arc extension, and transition from subduction to a transform plate boundary. It is suggested that many of the characteristics that make the western Cordillera unique among extensional provinces can be attributed to the mantle plume that created the Yellowstone hot spot. -Authors

  16. Processes accompanying of mantle plume emplacement into continental lithosphere: Evidence from NW Arabian plate, Western Syria

    NASA Astrophysics Data System (ADS)

    Sharkov, E. V.

    2015-12-01

    Lower crustal xenoliths occurred in the Middle Cretaceous lamprophyre diatremes in Jabel Ansaria (Western Syria) (Sharkov et al., 1992). They are represented mainly garnet granulites and eclogite-like rocks, which underwent by deformations and retrograde metamorphism, and younger fresh pegmatoid garnet-kaersutite-clinopyroxene (Al-Ti augite) rocks; mantle peridotites are absent in these populations. According to mineralogical geothermobarometers, forming of garnet-granulite suite rocks occurred under pressure 13.5-15.4 kbar (depths 45-54 kn) and temperature 965-1115oC. At the same time, among populations of mantle xenoliths in the Late Cenozoic platobasalts of the region, quite the contrary, lower crustal xenoliths are absent, however, predominated spinel lherzolites (fragments of upper cooled rim of a plume head), derived from the close depths (30-40 km: Sharkov, Bogatikov, 2015). From this follows that ancient continental crust was existed here even in the Middle Cretaceous, but in the Late Cenozoic was removed by extended mantle plume head; at that upper sialic crust was not involved in geomechanic processes, because Precambrian metamorphic rocks survived as a basement for Cambrian to Cenozoic sedimentary cover of Arabian platform. In other words, though cardinal rebuilding of deep-seated structure of the region occurred in the Late Cenozoic but it did not affect on the upper shell of the ancient lithosphere. Because composition of mantle xenolithis in basalts is practically similar worldwide, we suggest that deep-seated processes are analogous also. As emplacement of the mantle plume heads accompanied by powerful basaltic magmatism, very likely that range of lower (mafic) continental crust existence is very convenient for extension of plume heads and their adiabatic melting. If such level, because of whatever reasons, was not reached, melting was limited but appeared excess of volatile matters which led to forming of lamprophyre or even kimberlite.

  17. Bunbury Basalt: Gondwana breakup products or earliest vestiges of the Kerguelen mantle plume?

    NASA Astrophysics Data System (ADS)

    Olierook, Hugo K. H.; Jourdan, Fred; Merle, Renaud E.; Timms, Nicholas E.; Kusznir, Nick; Muhling, Janet R.

    2016-04-01

    In this contribution, we investigate the role of a mantle plume in the genesis of the Bunbury Basalt using high-precision 40Ar/39Ar geochronology and whole-rock geochemistry, and by using crustal basement thickness of the eastern Indian Ocean and the western Australian continent. The Bunbury Basalt is a series of lava flows and deep intrusive rocks in southwestern Australia thought to be the earliest igneous products from the proto-Kerguelen mantle plume. Nine new plateau ages indicate that the Bunbury Basalt erupted in three distinct phases, at 136.96 ± 0.43 Ma, 132.71 ± 0.43 Ma and 130.45 ± 0.82 Ma. All Bunbury Basalt samples are enriched tholeiitic basalts with varying contributions from the continental lithosphere that are similar to other Kerguelen plume-products. Based on plate reconstructions and the present geochronological constraints, the eruption of the oldest Bunbury Basalt preceded the emplacement of the Kerguelen large igneous province by at least 10-20 m.y. Such age differences between a precursor and the main magmatic event are not uncommon but do require additional explanation. Low crustal stretching factors beneath the Bunbury Basalt (β ≈ 1.4) indicate that decompression melting could not have been generated from asthenospheric mantle with a normal chemistry and geotherm. An elevated geotherm from the mantle plume coupled with the geochemical similarity between the Bunbury Basalt and other Kerguelen plume-products suggests a shared origin exists. However, new age constraints of the oldest Bunbury Basalt are synchronous with the breakup of eastern Gondwana and the initial opening of the Indian Ocean at ca. 137-136 Ma, which may mean an alternative explanation is possible. The enriched geochemistry can equally be explained by a patch of shallow mantle beneath the southern Perth Basin. The patch may have been enriched during Gondwana suturing at ca. 550-500 Ma, during early rifting events by magmatic underplating or by intruded melts into the

  18. Modulation of mantle plumes and heat flow at the core mantle boundary by plate-scale flow: results from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Gonnermann, Helge M.; Jellinek, A. Mark; Richards, Mark A.; Manga, Michael

    2004-09-01

    We report results from analog laboratory experiments, in which a large-scale flow is imposed upon natural convection from a hot boundary layer at the base of a large tank of corn syrup. The experiments show that the subdivision of the convective flow into four regions provides a reasonable conceptual framework for interpreting the effects of large-scale flow on plumes. Region I includes the area of the hot thermal boundary layer (TBL) that is thinned by the large-scale flow, thereby suppressing plumes. Region II encompasses the critically unstable boundary layer where plumes form. Region III is the area above the boundary layer that is devoid of plumes. Region IV comprises the area of hot upwelling and plume conduits. Quantitative analysis of our experiments results in a scaling law for heat flux from the hot boundary and for the spatial extent of plume suppression. When applied to the Earth's core-mantle boundary (CMB), our results suggest that large-scale mantle flow, due to sinking lithospheric plates, can locally thin the TBL and suppress plume formation over large fractions of the CMB. Approximately 30% of heat flow from the core may be due to increased heat flux from plate-scale flow. Furthermore, CMB heat flux is non-uniformly distributed along the CMB, with large areas where heat flux is increased on average by a factor of 2. As a consequence, the convective flow pattern in the outer core may be affected by CMB heat-flux heterogeneity and sensitive to changes in plate-scale mantle flow. Because of plume suppression and 'focusing' of hot mantle from the CMB into zones of upwelling flow, plume conduits (hotspots) are expected to be spatially associated with lower-mantle regions of low seismic velocities, inferred as hot upwelling mantle flow.

  19. A new model for the development of the active Afar volcanic margin

    NASA Astrophysics Data System (ADS)

    Pik, Raphaël; Stab, Martin; Bellahsen, Nicolas; Leroy, Sylvie

    2016-04-01

    response to the deformation of the lithosphere, through a petrological and geochemical study of the pre- to syn-rift lavas and concluded that the lithospheric mantle experienced the combined effect of post-plume cooling, but also thinning during the Miocene. This is accompanied by the early channelization of the plume head into narrower zones, which helped focus extension at the future volcanic margins location. The anomalous mantle potential temperature increased during the very last localization phase (< 1 Ma), which leads us to argue in favor of the focussed activity of a plume stem below the volcanic margin, instead of purely passive adiabatic decompression. Our new interpretation of the regional isotopic signatures of lavas depicts a clear framework of the Afar plume and lithospheric mantle relationships to on going extension and segmentation of these margins, and allow us to propose new contrasted models for their development.

  20. Double layering of thermochemical-plume material can reconcile upper-mantle seismic velocity structure beneath Hawaii

    NASA Astrophysics Data System (ADS)

    Ballmer, M. D.; Ito, G.; Wolfe, C. J.; Laske, G.; Solomon, S. C.

    2011-12-01

    Volcanism far from plate boundaries, in Hawaii and elsewhere, has traditionally been explained by "classical" plume theory. Classical plumes are typically described as narrow thermal upwellings that rise through the entire mantle to be deflected into a thin (<100 km), bilaterally symmetric "pancake" beneath the overriding lithosphere. New high-resolution seismic velocity images obtained from the PLUME seismic experiment indeed support the concept of a deep-rooted mantle plume to feed Hawaiian volcanism. However, in detail these images challenge classical concepts inasmuch as they indicate a low-velocity body in the upper mantle that is too thick (~400 km) and asymmetric to be interpreted as a pancake. Classical plumes are, moreover, inconsistent with geochemical aspects of Hawaiian volcanism, which indicate a heterogeneous mantle source involving mafic lithologies such as eclogite, and not an exclusively thermal (i.e., isochemical) origin. To explore the dynamical behavior and melting of plumes with a substantial fraction of eclogite (10-18%), we performed thermochemical three-dimensional numerical experiments. Relative to the ambient-mantle peridotite, eclogite is intrinsically dense. This chemical density contrast is sensitive to phase changes in the upper mantle peaking at depths of 410-300 km and fading at 250-190 km, where eclogite is removed by partial melting. For models with an eclogite content >12%, these effects cause a complex regime of plume upwelling. The thermochemical plume forms a broad and thick pool at depths of 480-300 km (deep eclogite pool, or DEP), from which one or two secondary plumes rise to feed a hot shallow pancake that supports the seafloor swell. The rising secondary plumes undergo decompression melting at their deflection points to supply shield stage and rejuvenated stage volcanism. Their transience in vigor can reconcile observations of temporal variability of Hawaiian hotspot volcanism. The double layering of hot plume material

  1. Multstage Melting and Mantle Flow in the Galapagos Plume-Ridge Province

    NASA Astrophysics Data System (ADS)

    Geist, D.

    2010-12-01

    residue from the upper melt zone (depleted in all incompatible elements) overlying residue from the lower melt zone (depleted in volatiles, including helium). The northern Galapagos volcanoes tap either ambient upper mantle or plume that has been depleted by both stages of melting, whereas the GSC is supplied by the deeper return flow, which has only been depleted of its volatile components.

  2. Alignments of volcanic features in the southern hemisphere of Mars produced by migrating mantle plumes

    NASA Astrophysics Data System (ADS)

    Leone, Giovanni

    2016-01-01

    Mars shows alignments of volcanic landforms in its southern hemisphere, starting from the equatorial regions and converging towards the South Pole, and visible at global scale. These composite alignments of volcanoes, calderas, shields, vents, heads of valley networks and massifs between the equatorial regions and the southern polar region define twelve different lines, fitted by rhumb lines (loxodromes), that I propose to be the traces of mantle plumes. The morphology of the volcanic centres changes along some of the alignments suggesting different processes of magma emplacement and eruptive style. The diameters of the volcanic centres and of the volcanic provinces are largest at Tharsis and Elysium, directly proportional to the number of alignments starting from them. A minor presence of unaligned volcanic features is observed on the northern lowlands and on the highlands outside the 12 major alignments. The heads of channels commonly interpreted as fluvial valleys are aligned with the other volcanic centres; unaltered olivine is present along their bed-floors, raising severe doubts as to their aqueous origin. Several hypotheses have tried to explain the formation of Tharsis with the migration of a single mantle plume under the Martian lithosphere, but the discovery of twelve alignments, six starting from Tharsis, favours the hypothesis of several mantle plumes as predicted by the model of the Southern Polar Giant Impact (SPGI) and provides a new view on the formation of the volcanic provinces of Mars.

  3. Geothermal constraints on Emeishan mantle plume magmatism: paleotemperature reconstruction of the Sichuan Basin, SW China

    NASA Astrophysics Data System (ADS)

    Zhu, Chuanqing; Hu, Shengbiao; Qiu, Nansheng; Jiang, Qiang; Rao, Song; Liu, Shuai

    2016-10-01

    The Middle-Late Permian Emeishan Large Igneous Province (ELIP) in southwestern China represents a classic example of a mantle plume origin. To constrain the thermal regime of the ELIP and contemporaneous magmatic activity in the northeastern Sichuan Basin, maximum paleotemperature profiles of deep boreholes were reconstructed using vitrinite reflectance (Ro) and apatite fission track data. Two heating patterns were identified: (1) heating of the overlying lithosphere by magma storage regions and/or magmatic activity related to the mantle plume, which resulted in a relatively strong geothermal field and (2) direct heating of country rock by stock or basalt. Borehole Ro data and reconstructed maximum paleotemperature profiles near the ELIP exhibit abrupt tectonothermal unconformities between the Middle and Late Permian. The profiles in the lower subsections (i.e., pre-Middle Permian) exhibited significantly higher gradients than those in the upper subsections. Distal to the basalt province, high paleo-geotemperatures (hereafter, paleotemperatures) were inferred, despite deformation of the paleogeothermal curve due to deep faults and igneous rocks within the boreholes. In contrast, Ro profiles from boreholes without igneous rocks (i.e., Late Permian) contained no break at the unconformity. Paleotemperature gradients of the upper and the lower subsections and erosion at the Middle/Late Permian unconformity revealed variations in the thermal regime. The inferred spatial distribution of the paleothermal regime and the erosion magnitudes record the magmatic and tectonic-thermal response to the Emeishan mantle plume.

  4. Multiple volcanic episodes of flood basalts caused by thermochemical mantle plumes.

    PubMed

    Lin, Shu-Chuan; van Keken, Peter E

    2005-07-14

    The hypothesis that a single mushroom-like mantle plume head can generate a large igneous province within a few million years has been widely accepted. The Siberian Traps at the Permian-Triassic boundary and the Deccan Traps at the Cretaceous-Tertiary boundary were probably erupted within one million years. These large eruptions have been linked to mass extinctions. But recent geochronological data reveal more than one pulse of major eruptions with diverse magma flux within several flood basalts extending over tens of million years. This observation indicates that the processes leading to large igneous provinces are more complicated than the purely thermal, single-stage plume model suggests. Here we present numerical experiments to demonstrate that the entrainment of a dense eclogite-derived material at the base of the mantle by thermal plumes can develop secondary instabilities due to the interaction between thermal and compositional buoyancy forces. The characteristic timescales of the development of the secondary instabilities and the variation of the plume strength are compatible with the observations. Such a process may contribute to multiple episodes of large igneous provinces.

  5. RHUM-RUM investigates La Réunion mantle plume from crust to core

    NASA Astrophysics Data System (ADS)

    Sigloch, Karin; Barruol, Guilhem

    2013-04-01

    RHUM-RUM (Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel) is a French-German passive seismic experiment designed to image an oceanic mantle plume - or lack of plume - from crust to core beneath La Réunion Island, and to understand these results in terms of material, heat flow and plume dynamics. La Réunion hotspot is one of the most active volcanoes in the world, and its hotspot track leads unambiguously to the Deccan Traps of India, one of the largest flood basalt provinces on Earth, which erupted 65 Ma ago. The genesis and the origin at depth of the mantle upwelling and of the hotspot are still very controversial. In the RHUM-RUM project, 57 German and French ocean-bottom seismometers (OBS) are deployed over an area of 2000 km x 2000 km2 centered on La Réunion Island, using the "Marion Dufresne" and "Meteor" vessels. The one-year OBS deployment (Oct. 2012 - Oct. 2013) will be augmented by terrestrial deployments in the Iles Eparses in the Mozambique Channel, in Madagascar, Seychelles, Mauritius, Rodrigues and La Réunion islands. A significant number of OBS will be also distributed along the Central and South West Indian Ridges to image the lower-mantle beneath the hotspot, but also to provide independent opportunity for the study of these slow to ultra-slow ridges and of possible plume-ridge interactions. RHUM-RUM aims to characterize the vertically ascending flow in the plume conduit, as well as any lateral flow spreading into the asthenosphere beneath the western Indian Ocean. We want to establish the origin of the heat source that has been fueling this powerful hotspot, by answering the following questions: Is there a direct, isolated conduit into the deepest mantle, which sources its heat and material from the core-mantle boundary? Is there a plume connection to the African superswell at mid-mantle depths? Might the volcanism reflect merely an upper mantle instability? RHUM-RUM also aims at studying the hotspot's interaction with the

  6. RHUM-RUM investigates La Réunion mantle plume from crust to core

    NASA Astrophysics Data System (ADS)

    Sigloch, K.; Barruol, G.

    2012-12-01

    RHUM-RUM (Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel) is a French-German passive seismic experiment designed to image an oceanic mantle plume - or lack of plume - from crust to core beneath La Réunion Island, and to understand these results in terms of material, heat flow and plume dynamics. La Réunion hotspot is one of the most active volcanoes in the world, and its hotspot track leads unambiguously to the Deccan Traps of India, one of the largest flood basalt provinces on Earth, which erupted 65 Ma ago. The genesis and the origin at depth of the mantle upwelling and of the hotspot are still very controversial. In the RHUM-RUM project, 57 German and French ocean-bottom seismometers (OBS) are deployed over an area of 2000 km x 2000 km2 centered on La Réunion Island, using the "Marion Dufresne" and "Meteor" vessels. The one-year OBS deployment (Oct. 2012 - Oct. 2013) will be augmented by terrestrial deployments in the Iles Eparses in the Mozambique Channel, in Madagascar, Seychelles, Mauritius, Rodrigues and La Réunion islands. A significant number of OBS will be also distributed along the Central and South West Indian Ridges to image the lower-mantle beneath the hotspot, but also to provide independent opportunity for the study of these slow to ultra-slow ridges and of possible plume-ridge interactions. RHUM-RUM aims to characterize the vertically ascending flow in the plume conduit, as well as any lateral flow spreading into the asthenosphere beneath the western Indian Ocean. We want to establish the origin of the heat source that has been fueling this powerful hotspot, by answering the following questions: Is there a direct, isolated conduit into the deepest mantle, which sources its heat and material from the core-mantle boundary? Is there a plume connection to the African superswell at mid-mantle depths? Might the volcanism reflect merely an upper mantle instability? RHUM-RUM also aims at studying the hotspot's interaction with the

  7. Global P-wave tomography of mantle plumes and subducting slabs

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Zhao, D.

    2008-12-01

    There are many volcanoes on the Earth which can be generally classified into 3 categories: island arc volcanoes, mid-ocean ridge volcanoes, and hotspot volcanoes. Hotspot volcanoes denote intraplate volcanoes like Hawaii, or anomalously large mid-ocean ridge volcanoes like Iceland. So far many researchers have studied the origin of hotspot volcanoes and have used mantle plume hypothesis to explain them. However, we still have little knowledge about mantle plumes yet. In this study, we determined a new model of whole mantle P-wave tomography to understand the origin of hotspot volcanoes. We used the global tomography method of Zhao (2001, 2004). A 3-D grid net was set up in the mantle, and velocity perturbations at every grid nodes were taken as unknown parameters. The iasp91 velocity model (Kennett and Engdahl, 1991) was taken as the 1-D initial model. We selected 9106 earthquakes from the events occurred in the last forty years from the ISC catalog. About 1.6 million arrival-time data of five-type P phases (P, pP, PP, PcP, and Pdiff) were used to conduct the tomographic inversion. In our previous model (Zhao, 2004), the grid interval in the E-W direction is too small in the polar regions. In this study, in order to remedy this problem, we use a flexible-grid approach to make the lateral grid intervals in the polar regions nearly the same as the other portions of the mantle. As a result, the tomographic images in the polar regions are remarkably improved. Our new tomographic model shows huge low-velocity (low-V) zones in the entire mantle under Tahiti and Lake Victoria, which reflect the Pacific and African superplumes, being consistent with the previous studies. A clear low-V zone is revealed under Mt. Erebus volcano in Antarctica. Other major hotspots also exhibit significant low-V zones in the mantle under their surface locations. Beneath Bering Sea, we found that the Pacific slab is subducting from the Aleutian trench and it is stagnant in the mantle transition

  8. Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust.

    PubMed

    Cabral, Rita A; Jackson, Matthew G; Rose-Koga, Estelle F; Koga, Kenneth T; Whitehouse, Martin J; Antonelli, Michael A; Farquhar, James; Day, James M D; Hauri, Erik H

    2013-04-25

    Basaltic lavas erupted at some oceanic intraplate hotspot volcanoes are thought to sample ancient subducted crustal materials. However, the residence time of these subducted materials in the mantle is uncertain and model-dependent, and compelling evidence for their return to the surface in regions of mantle upwelling beneath hotspots is lacking. Here we report anomalous sulphur isotope signatures indicating mass-independent fractionation (MIF) in olivine-hosted sulphides from 20-million-year-old ocean island basalts from Mangaia, Cook Islands (Polynesia), which have been suggested to sample recycled oceanic crust. Terrestrial MIF sulphur isotope signatures (in which the amount of fractionation does not scale in proportion with the difference in the masses of the isotopes) were generated exclusively through atmospheric photochemical reactions until about 2.45 billion years ago. Therefore, the discovery of MIF sulphur in these young plume lavas suggests that sulphur--probably derived from hydrothermally altered oceanic crust--was subducted into the mantle before 2.45 billion years ago and recycled into the mantle source of Mangaia lavas. These new data provide evidence for ancient materials, with negative Δ(33)S values, in the mantle source for Mangaia lavas. Our data also complement evidence for recycling of the sulphur content of ancient sedimentary materials to the subcontinental lithospheric mantle that has been identified in diamond-hosted sulphide inclusions. This Archaean age for recycled oceanic crust also provides key constraints on the length of time that subducted crustal material can survive in the mantle, and on the timescales of mantle convection from subduction to upwelling beneath hotspots.

  9. Regional uplift associated with continental large igneous provinces: The roles of mantle plumes and the lithosphere

    USGS Publications Warehouse

    Saunders, A.D.; Jones, S.M.; Morgan, L.A.; Pierce, K.L.; Widdowson, M.; Xu, Y.G.

    2007-01-01

    Provinces. In these examples, rifting is not a requirement for onset of LIP magmatism but melting rates are significantly increased when rifting occurs. Models that attempt to explain emplacement of these five LIPs without hot mantle supplied by mantle plumes often have difficulties in explaining the observations of surface uplift, rifting and magmatism. For example, small-scale convection related to craton or rift boundaries (edge-driven convection) cannot easily explain widespread (1000??km scale) transient surface uplift (Emeishan, Deccan, North Atlantic), and upper mantle convection initiated by differential incubation beneath cratons (the hotcell model) is at odds with rapid onset of surface uplift (Emeishan, North Atlantic). The start-up plume concept is still the most parsimonious way of explaining the observations presented here. However, observations of surface uplift cannot directly constrain the depth of origin of the hot mantle in a plume head. The short time interval between onset of transient surface uplift and magmatism in the North Atlantic and Emeishan means that the associated starting plume heads were probably not large (??? 1000??km diameter) roughly spherical diapirs and are likely to have formed narrow (??? 100??km radius) upwelling jets, with hot mantle then spreading rapidly outward within the asthenosphere. In cases where rifting post-dates magmatism (N Atlantic Phase 1) or where the degree of lithospheric extension may not have been great (Siberia), a secondary mechanism of lithospheric thinning, such as gravitational instability or delamination of the lower lithosphere, may be required to allow hot mantle to decompress sufficiently to explain the observed volume of magma with a shallow melting geochemical signature. Any such additional thinning mechanisms are probably a direct consequence of plume head emplacement. ?? 2007 Elsevier B.V. All rights reserved.

  10. Abnormal high surface heat flow caused by the Emeishan mantle plume

    NASA Astrophysics Data System (ADS)

    Jiang, Qiang; Qiu, Nansheng; Zhu, Chuanqing

    2016-04-01

    It is commonly believed that increase of heat flow caused by a mantle plume is small and transient. Seafloor heat flow data near the Hawaiian hotspot and the Iceland are comparable to that for oceanic lithosphere elsewhere. Numerical modeling of the thermal effect of the Parana large igneous province shows that the added heat flow at the surface caused by the magmatic underplating is less than 5mW/m2. However, the thermal effect of Emeishan mantle plume (EMP) may cause the surface hear-flow abnormally high. The Middle-Late Emeishan mantle plume is located in the western Yangtze Craton. The Sichuan basin, to the northeast of the EMP, is a superimposed basin composed of Paleozoic marine carbonate rocks and Mesozoic-Cenozoic terrestrial clastic rocks. The vitrinite reflectance (Ro) data as a paleogeothermal indicator records an apparent change of thermal regime of the Sichuan basin. The Ro profiles from boreholes and outcrops which are close to the center of the basalt province exhibit a 'dog-leg' style at the unconformity between the Middle and Upper Permian, and they show significantly higher gradients in the lower subsection (pre-Middle Permian) than the Upper subsection (Upper Permian to Mesozoic). Thermal history inversion based on these Ro data shows that the lower subsection experienced a heat flow peak much higher than that of the upper subsection. The abnormal heat flow in the Sichuan basin is consistent with the EMP in temporal and spatial distribution. The high-temperature magmas from deep mantle brought heat to the base of the lithosphere, and then large amount of heat was conducted upwards, resulting in the abnormal high surface heat flow.

  11. Thermal models beneath Kamchatka and the Pacific Plate rejuvenation from a mantle plume impact

    NASA Astrophysics Data System (ADS)

    Manea, V. C.; Manea, M.

    The Northwest Pacific area, comprising the Kamchatka peninsula, is a distinctive area where a series of on going geodynamical processes like: plate rejuvenation from a mantle plume impact, slab detachment, slab edge melting and exotic volcanism, take place. With the help of finite element modeling we infer the thermal structure across Kamchatka in a series of 2D profiles normal to the trench. We chose the location at these profiles based on seismicity, geochemical variation and offshore heat flow measurements. Assuming that the transition from brittle to ductile behavior inside the subducting slab corresponds to the 650°C isotherm, our thermal models predict a good fit with maximum depth of seismicity (˜500 km) for southern Kamchatka only if the exothermic olivine-spinel phase transition is introduced. In the central part of Kamchatka, a good fit is obtained if the hot mantle plume, located just beneath Meiji Guyot seamount, thermally rejuvenates the subducting Pacific plate. Further to the north, the seismicity shallows more (200-100 km) and slab rejuvenation alone cannot provide a thermal structure with a good fit with seismically active subducting slab. A good explanation for such shallow seismicity might be the slab detachment due to cessation of subduction just north of Kamchatka-Aleutians junction. The thermal structure beneath the northernmost active volcano in Kamchatka, Scheveluch, which exhibits a strong adakitic signature, shows that slab edge exposure to the hotter asthenosphere creates the favorable conditions for oceanic crust melting at ˜70 km depth, just beneath Scheveluch. Our numerical models show that plate rejuvenation from a mantle plume, slab edge exposure to hot upper mantle and probably slab detachment play an essential role in subduction slabs thermal structure, seismicity down-dip extension and geochemical variations of lavas in Kamchatka.

  12. Seismic Anisotropy near Hawaii - Evidence for plume-related mantle flow

    NASA Astrophysics Data System (ADS)

    Laske, Gabi; Marzen, Rachel

    2016-04-01

    During the Hawaiian PLUME (Plume-Lithosphere Undersea Melt Experiment) deployment, we collected continuous seismic data at ten land stations and nearly 70 ocean bottom sites from 2005 through mid-2007. Both the usage broad-band seismometers as well as the central location of Hawaii with good azimuthal seismicity coverage has allowed us to conduct a comprehensive analysis of surface wave azimuthal anisotropy at periods between 20 and 100 s. We use a sub-array approach to successively fit propagating spherical wave fronts in order to obtain frequency-dependent estimates at a large number of points. We use the standard Smith-and-Dahlen parameterization to express azimuthal variations. A systematic comparison between results obtained for different truncation levels in the trigonometric expansion allows us to assess stability of the results and assign error bars. At short periods, the fast direction aligns coherently with the fossil spreading direction across the entire PLUME network. This result supports the idea that flow-aligned asthenospheric material is "frozen" to the bottom of the cooling plate as it thickens. However, at longer periods, that sense the asthenosphere below the fast direction rotates incoherently, indicating that flow in the asthenosphere is significantly perturbed from the direction of current plate motion. A published shear-wave splitting study (Collins et al., 2012) found no evidence for such an anomalous mantle flow and therefore seems inconsistent with our results. We present initial surface-wave inversion results that suggest that plume-related mantle flow does not reach into the upper lithosphere. We also present forward-modeling results attempting to reconcile both surface-wave and shear-wave splitting observations. Collins, J.A., Wolfe, C.J. and Laske, G., 2012. Shear wave splitting at the Hawaiian hots pot from the PLUME land and ocean bottom seismometer deployments, Geochem. Geophys. Geosys., 13, doi:10.1029/2011gc003881.

  13. Lithium Isotopic Composition of Mantle Plumes and the Distribution of Lithium Isotopes Among Earth's Reservoirs

    NASA Astrophysics Data System (ADS)

    Chan, L.; Hart, S. R.; Blusztajn, J. S.; Lassiter, J. C.; Frey, F. A.; Hauri, E. H.

    2006-12-01

    We have determined lithium isotopic compositions of seventy nearly unaltered basaltic lavas from the Samoan and Cook-Austral volcanic chains, and Pitcairn Island. In addition, the Li isotope record of Mauna Kea has been extended from 3.1 km to 3.3 km using the newly recovered deep drill core of Hawaii Scientific Drilling Project (HSDP-2). From the results of the Hawaii and South Pacific hotspots, we examine the source components of mantle plumes and consider the distribution of Li isotopes among Earth's major reservoirs. The total δ^{7}Li range observed in South Pacific and Hawaiian islands is 2.5 to 7.5‰, suggesting considerable heterogeneity in the deep mantle. The Hawaiian plume occupies the lower range, 2.5 to 5.7‰. Cook-Austral samples depict mixing between HIMU and depleted mantle (DM) components. The DM endmember has δ^{7}Li values of 3.2 to 4.2‰, identical to MORB. HIMU type lavas are isotopically heavier than MORB, reflecting the influence of recycled oceanic crust. The most extreme HIMU signature was observed at Mangaia (7.4‰; Nishio et al., 2005). The EM1 composition shown by Pitcairn is relatively light (3.3 to 4.1‰) and resembles the global average of subducting sediments (~3‰). Malumalu seamount of the Samoan chain defines the most extreme composition of the EM2 mantle; δ^{7}Li range from 4.5 to 5.6‰. High 3He/4He samples of Ofu Island (R/Ra = 24 to 33.7) suggest that the least degassed mantle has δ^{7}Li of about 3‰. In addition to these classic mantle endmembers, we observe an additional component that elevates Samoan lavas above the typical mantle baseline (~3‰) up to 7.5‰. The source of this enrichment is likely mantle wedge material that has been metasomatized by 7Li-rich slab fluids (Elliott et al., 2004). On the other hand, recent studies suggest that a large portion of subducted Li can be retained in high-pressure metamorphosed slab (Marschall et al., in press). This implies that deeply subducted slab need not be

  14. A mantle plume initiation model for the wrangellia flood basalt and other oceanic plateaus.

    PubMed

    Richards, M A; Jones, D L; Duncan, R A; Depaolo, D J

    1991-10-11

    The vast Wrangellia terrane of Alaska and British Columbia is an accreted oceanic plateau with Triassic strata that contain a 3- to 6-kilometers thick flood basalt, bounded above and below by marine sedimentary rocks. This enormous outpouring of basalt was preceded by rapid uplift and was followed by gradual subsidence of the plateau. The uplift and basalt eruptions occurred in less than approximately 5 million years, and were not accompanied by significant extension or rifting of the lithosphere. This sequence of events is predicted by a mantle plume initiation, or plume head, model that has recently been developed to explain continental flood volcanism. Evidence suggests that other large oceanic basalt plateaus, such as the Ontong-Java, Kerguelen, and Caribbean, were formed as the initial outbursts of the Louisville Ridge, Kerguelen, and Galapagos hot spots, respectively. Such events may play an important role in the creation and development of both oceanic and continental crust.

  15. Mixing and entrainment in mantle plumes: A 3D experimental investigation

    NASA Astrophysics Data System (ADS)

    Newsome, William; Cotel, Aline; Lithgow-Bertelloni, Carolina; Hart, Stanley; Whitehead, John

    2011-11-01

    Significant differences exist between isotopic signatures of typical mid-ocean ridge basalts (MORB) and those associated with many ocean islands, with ocean island basalts (OIB) generally exhibiting more variability in trace element concentrations and also a bias towards enrichment in radiogenic isotopes such as Sr, Nd, Hf and Pb. Such observations coupled with other geophysical evidence have been used to suggest that OIB's are surface manifestations of thermal plumes originating in the deep interior near the core-mantle boundary that interact with distinct, heterogeneous reservoirs as material is transported from the Earth's interior to the surface. We experimentally investigate the structure and transport characteristics of isolated thermal plumes in corn syrup. The 3D velocity field is measured using a scanning stereoscopic particle image velocimetry system. Two types of tracer particles are simultaneously utilized, with thermochromic liquid crystals providing an estimate of the temperature field. Lagrangian coherent structures computed from the velocity field identify key material lines and surfaces that provide a taxonomic picture of plumes operating in different regimes. These govern how the plume interacts with the ambient during its ascent.

  16. Hunting for the Tristan mantle plume - An upper mantle tomography around the volcanic island of Tristan da Cunha

    NASA Astrophysics Data System (ADS)

    Schlömer, Antje; Geissler, Wolfram H.; Jokat, Wilfried; Jegen, Marion

    2017-03-01

    The active volcanic island Tristan da Cunha, located at the southwestern and youngest end of the Walvis Ridge - Tristan/Gough hotspot track, is believed to be the surface expression of a huge thermal mantle anomaly. While several criteria for the diagnosis of a classical hotspot track are met, the Tristan region also shows some peculiarities. Consequently, it is vigorously debated if the active volcanism in this region is the expression of a deep mantle plume, or if it is caused by shallow plate tectonics and the interaction with the nearby Mid-Atlantic Ridge. Because of a lack of geophysical data in the study area, no model or assumption has been completely confirmed. We present the first amphibian P-wave finite-frequency travel time tomography of the Tristan da Cunha region, based on cross-correlated travel time residuals of teleseismic earthquakes recorded by 24 ocean-bottom seismometers. The data can be used to image a low velocity structure southwest of the island. The feature is cylindrical with a radius of ∼100 km down to a depth of 250 km. We relate this structure to the origin of Tristan da Cunha and name it the Tristan conduit. Below 250 km the low velocity structure ramifies into narrow veins, each with a radius of ∼50 km. Furthermore, we imaged a linkage between young seamounts southeast of Tristan da Cunha and the Tristan conduit.

  17. Interaction of mantle plumes and migrating mid-ocean ridges: Implications for the Gal{acute a}pagos plume-ridge system

    SciTech Connect

    Ito, G.; Lin, J.; Gable, C.W.

    1997-07-01

    We investigate the three-dimensional interaction of mantle plumes and migrating mid-ocean ridges with variable viscosity numerical models. Numerical models predict that along-axis plume width W and maximum distance of plume-ridge interaction x{sub max} scale with (Q/U){sup 1/2}, where Q is plume source volume flux and U is ridge full spreading rate. Both W and x{sub max} increase with buoyancy number {Pi}{sub b} which reflects the strength of gravitational- versus plate-driven spreading. Scaling laws derived for stationary ridges in steady-state with near-ridge plumes are consistent with those obtained from independent studies of {ital Ribe} [1996]. In the case of a migrating ridge, the distance of plume-ridge interaction is reduced when a ridge migrates toward the plume because of the excess drag of the faster moving leading plate and enhanced when a ridge migrates away from the plume because of the reduced drag of the slower moving trailing plate. Given the mildly buoyant and relatively viscous plumes investigated here, the slope of the lithospheric boundary and thermal erosion of the lithosphere have little effect on plume flow. From observed plume widths of the Gal{acute a}pagos plume-migrating ridge system, our scaling laws yield estimates of Gal{acute a}pagos plume volume flux of 5{endash}16{times}10{sup 6}km{sup 3}m.y.{sup {minus}1} and a buoyancy flux of {minus}2{times}10{sup 3}kgs{sup {minus}1}. Model results suggest that the observed increase in bathymetric and mantle-Bouguer gravity anomalies along Cocos Plate isochrons with increasing isochron age is due to higher crustal production when the Gal{acute a}pagos ridge axis was closer to the plume several million years ago. The anomaly amplitudes can be explained by a plume source with a relatively mild temperature anomaly (50{degree}{endash}100{degree}C) and moderate radius (100{endash}200 km). (Abstract Truncated)

  18. Constraining the Early Isotopic and Trace Element Signature of the Yellowstone Mantle Plume: Evidence from Imnaha Basalts

    NASA Astrophysics Data System (ADS)

    Patterson, J. D.; Ramos, F. C.; Wolff, J. A.

    2007-12-01

    Characterizing the geochemical signatures of plumes is critical for evaluating the petrogenetic evolution of plume- related volcanic rocks. The main phase of Columbia River flood basalt activity (16.6 - 15.5 Ma), considered to represent the first clear manifestation of the Yellowstone hotspot on the North American continent, includes the Steens Mountain, Imnaha, Grande Ronde and Picture Gorge basalts. Isotopic and trace element covariations defined by Grande Ronde, Steens Mountains, and Picture Gorge basalts diverge radially from the field of Imnaha basalts, which retain signatures that most closely reflect the 'undiluted' geochemical characteristics of the Yellowstone mantle plume. Sr, Nd, Pb isotope ratios and incompatible trace element abundances and ratios of Imnaha basalts closely resemble those of some Pacific EM II OIB groups. Nonetheless, the compositions of some Imnaha lavas reflect mixing of the plume with different mantle types. Others have clearly been affected by interaction of plume-derived basalt with continental crust, although the latter process is much more significant in the genesis of the succeeding Grande Ronde basalts. We will review the geochemical characteristics of the Yellowstone plume as recorded in the Imnaha basalt in the context of later-erupted volcanic products of the Columbia - Snake - Yellowstone system, and Pacific mantle plumes more generally.

  19. What the Spatial Correlation of He Isotope and Seimic Velocity Anomalies Implies for Rifting and Volatile Sources in Ethiopia and Afar

    NASA Astrophysics Data System (ADS)

    House, B. M.; Hilton, D. R.; Hammond, J. O. S.; Halldorsson, S. A.; Scarsi, P.

    2015-12-01

    Helium isotope ratios higher than the upper mantle value of 8 ± 1RA (RA = air 3He/4He) are unambiguous tracers of deep mantle (plume) volatile input in lavas and geothermal fluids from Ethiopia and Afar. However the significance of the surface distribution of He isotope ratios in terms of plume structure and melt distribution has received little attention. Recent seismic studies of this segment of the East African Rift give greatly improved lateral resolution of velocity anomalies allowing, for the first time, a detailed comparison of He isotope variations and tomographic imaging of melts, which presumably act to supply heat, mass and volatiles to the surface. To produce a detailed map of He isotope ratios of the region, we generated 94 new high quality He measurements of fluid inclusions in mafic phenocrysts from lavas sampled along (and off) the axis of the Main Ethiopian Rift (MER) and Afar. Our contribution nearly doubles the existing dataset. Now, ~95% of the region from Chamo Lake through Afar including flood basalts on the flank of the MER - an area of ~400 000 km2- falls within 90 km of a He isotope measurement. This allows us to compare the spatial distribution of He isotope ratios from young lavas with the pattern of upper mantle S-wave velocity anomalies (Hammond et al. 2013) to determine how regions of low velocity (high melt content) correlate with He isotope ratios. We find that regions of higher 3He/4He ratios - up to 19 RA - correlate with anomalously low velocities at 75 km (i.e. shallow mantle) depth, and sites with low He isotope ratios cluster in higher velocity regions. Sustained upwelling and impingement of a deep mantle plume could explain this spatial correlation; however recent seismic evidence suggests shallow decompression melting accounts for most current volcanism in the MER and Afar (Rychert et al. 2012). Elevated He isotope ratios may therefore reflect shallow remobilization of stalled, undegassed plume material in the absence of a

  20. The Mantle Plume Hypothesis Pro and Con: Evidence from Earth's Most Voluminous Large Igneous Provinces

    NASA Astrophysics Data System (ADS)

    Ingle, S.; Coffin, M. F.

    2004-12-01

    Mantle plumes are upwellings of large volumes of mantle material in focused conduits, the leading ends of which are referred to as plume heads. Large igneous provinces (LIPs) are suspected to form from magmatism resulting from plume head decompression melting, but, evidence for this theory for the origins of LIPs is mixed. We have now reached the point of having either to modify the theory to fit characteristics of individual LIPs or to abandon the theory and search for a more unifying explanation. A case study of the two biggest LIPs on Earth - the Ontong Java Plateau (OJP) in the western equatorial Pacific Ocean, and the Kerguelen Plateau / Broken Ridge (KPBR) in the southern Indian Ocean - allows us to examine key predictions of mantle plume theory, including: (1) subaerial eruption of large portions of oceanic LIPs (2) large extents of partial melting in the plume head, resulting in tholeiitic basalt-type magmas, coupled with (3) rapid formation of the LIP, (4) post-formation subsidence comparable to normal oceanic lithosphere, and (5) the presence of a hotspot track and/or an active hotspot. The KPBR formed largely above sea level over a protracted time period ( ˜120 Ma - present) in the growing Indian Ocean basin. Early Cretaceous melts were derived from a heterogeneous source, complicated by subsequent local assimilation of continental crust. Most lavas recovered from the plateau are tholeiitic, but alkalic and evolved volcanics occur in several, widespread locations. Subsidence of the plateau has followed predictions for normal oceanic lithosphere. A prominent hotspot track, the Ninetyeast Ridge, connects Broken Ridge with Early Cretaceous continental basalts on the eastern margin of India. The Kerguelen hotspot is still active today, creating Heard and MacDonald Islands on the central plateau. The OJP was constructed well below sea level on existing Pacific lithosphere. Nearly the entire volume of magma is believed to have been created instantaneously, at

  1. A mantle plume beneath California? The mid-Miocene Lovejoy Flood Basalt, northern California

    USGS Publications Warehouse

    Garrison, N.J.; Busby, C.J.; Gans, P.B.; Putirka, K.; Wagner, D.L.

    2008-01-01

    The Lovejoy basalt represents the largest eruptive unit identified in California, and its age, volume, and chemistry indicate a genetic affinity with the Columbia River Basalt Group and its associated mantle-plume activity. Recent field mapping, geochemical analyses, and radiometric dating suggest that the Lovejoy basalt erupted during the mid-Miocene from a fissure at Thompson Peak, south of Susanville, California. The Lovejoy flowed through a paleovalley across the northern end of the Sierra Nevada to the Sacramento Valley, a distance of 240 km. Approximately 150 km3 of basalt were erupted over a span of only a few centuries. Our age dates for the Lovejoy basalt cluster are near 15.4 Ma and suggest that it is coeval with the 16.1-15.0 Ma Imnaha and Grande Ronde flows of the Columbia River Basalt Group. Our new mapping and age dating support the interpretation that the Lovejoy basalt erupted in a forearc position relative to the ancestral Cascades arc, in contrast with the Columbia River Basalt Group, which erupted in a backarc position. The arc front shifted trenchward into the Sierran block after 15.4 Ma. However, the Lovejoy basalt appears to be unrelated to volcanism of the predominantly calc-alkaline Cascade arc; instead, the Lovejoy is broadly tholeiitic, with trace-element characteristics similar to the Columbia River Basalt Group. Association of the Lovejoy basalt with mid-Miocene flood basalt volcanism has considerable implications for North American plume dynamics and strengthens the thermal "point source" explanation, as provided by the mantle-plume hypothesis. Alternatives to the plume hypothesis usually call upon lithosphere-scale cracks to control magmatic migrations in the Yellowstone-Columbia River basalt region. However, it is difficult to imagine a lithosphere-scale flaw that crosses Precambrian basement and accreted terranes to reach the Sierra microplate, where the Lovejoy is located. Therefore, we propose that the Lovejoy represents a rapid

  2. Geochemical characteristics of Antarctic magmatism connected with Karoo-Maud and Kerguelen mantle plumes

    NASA Astrophysics Data System (ADS)

    Sushchevskaya, Nadezhda; Krymsky, Robert; Belyatsky, Boris; Antonov, Anton; Migdisova, Natalya

    2013-04-01

    dykes of the Schirmacher Oasis and basalts and dolerites of the Queen Maud Land (180 Ma) are identical in petrology and geochemistry terms and supposedly could be interpreted as the manifestation of the Karoo-Maud plume activity in Antarctica [Sushchevskaya et al., 2012]. The spatial distribution of the dikes indicates the eastward spreading of the plume material from DML to the Schirmacher Oasis within at least 10 Ma (up to ~35 Ma, taking into account the uncertainty of age determination). On the other hand, the considerable duration and multistage character of plume magmatism related to the activity of the Karoo-Maud plume in Antarctica and Africa [Leat et al., 2007; Luttinen et al., 2002] may indicate that the Mesozoic dikes of the oasis correspond to a single stage of plume magmatism. On the basis of obtained isotopic data it has been determined two magmatic melt evolution trends for basalts from: Queen Maud Land - Kerguelen Archipelago - Afanasy Nikitin Rise (Indian Ocean) and Jetty - Schirmacher oasises which mantle sources are quite different. Thus the Jetty - Schirmacher oasises magmatic melt sources are characterized by prevalence of the matter of moderately enriched or primitive chondritic mantle source and lithospheric mantle of Proterozoic ages but the substances of depleted mantle source similar to MORB-type and ancient mantle are absent. New data obtained on Nd, Sr, Pb isotopic and lithophile elements compositions of the alkaline-ultrabasic rocks from the Jetty oasis and Gaussberg volcano completed imagine of the Kerguelen-plume evolution. It has been confirmed unique character of the alkaline lamproiites of the Gaussberg volcano enrichments. Highly radiogenic Sr and Pb isotope ratios of these lamproiites reflect melting of the ancient sublithospheric depleted mantle which was stored from the Archean till nowadays unaffected by metasomatic-enrichment processes. During modern melting of this mantle part there is input of additional substances (crustal fluid

  3. Archaean to Paleozoic mantle plumes in the N-E Baltic shield

    NASA Astrophysics Data System (ADS)

    Bayanova, T.

    2003-04-01

    In Archaean the largest alkaline province occurred in the Keivy terrane. U-Pb dated zircon from alkaline and nepheline syenite (Ponoy, Zapadnokeivsky, Belaya Tundra and Saharjok) gave the age of 2.75-2.61Ga. The alkaline granite of the terrane belongs to A-type granite and has high HFSE and low Y/Nb and Yb/Ta ratios typical of enriched mantle. Nepheline syenite of Saharjok massif corresponds to analogous of the OIB-magma. ɛNd(T) ranges from +0.6 to -9.0 and reflects high metamorphic alterations of the rocks. ɛSr(T) shows a large scatter from -10000 to +100 for alkaline granite and from +100 to +5000 for subalkaline rocks which is interpreted as long-term magmatic differentiation. On ɛSr-ɛNd diagram less-altered alkaline granosyenite and alkaline gabbro lie in EM2 field (Zozulya and Bayanova, 2002). He^3/He^4 ratio for ilmenite from Ponoy massif is 0.6x10-6 suggesting contribution of mantle helium (Vetrin et al., 2000). U-Pb ages for zircons from the alkaline massifs are quite similar to those of 2613±18 and 2611±10 Ma for baddeleyite and zircon from Siilinjarvi's carbonatite. Geochronological results for the Kola alkaline massifs of the Baltic Shield increase well-known world data (Blichert-Toft et al., 1996). Close U-Pb ages are yielded by zircons from anorthosite of Achinsky, Tsaga and Medvezhje-Schuchjeozersky terranes. Duration of magmatism and isotope signatures for the rocks and minerals from alkaline and anorthosite association reflect the Archaean plume existence. In Proterozoic there are distinguished two 350 km-long belts of the PGE-bearing intrusions: Mt. Generalskaya, Monchepluton, Pana massif and Imandra Lopolith - Northern belt and Finnish Russian Southern belt with Penikat, Koiliismaa, Kontilainen and Olanga-group intrusions and Burakovsky massif in Karelia. U-Pb precise zircon-baddeleyite ages for the different parts of the intrusions (gabbronorite, gabbropegmatite and anorthosite) show 100 m.y. (2.5-2.4 Ga) duration of the mantle plume. Rocks

  4. The High Arctic Large Igneous Province Mantle Plume caused uplift of Arctic Canada

    NASA Astrophysics Data System (ADS)

    Galloway, Jennifer; Ernst, Richard; Hadlari, Thomas

    2016-04-01

    The Sverdrup Basin is an east-west-trending extensional sedimentary basin underlying the northern Canadian Arctic Archipelago. The tectonic history of the basin began with Carboniferous-Early Permian rifting followed by thermal subsidence with minor tectonism. Tectonic activity rejuvenated in the Hauterivian-Aptian by renewed rifting and extension. Strata were deformed by diapiric structures that developed during episodic flow of Carboniferous evaporites during the Mesozoic and the basin contains igneous components associated with the High Arctic Large Igneous Province (HALIP). HALIP was a widespread event emplaced in multiple pulses spanning ca. 180 to 80 Ma, with igneous rocks on Svalbard, Franz Josef Island, New Siberian Islands, and also in the Sverdrup Basin on Ellef Ringnes, Axel Heiberg, and Ellesmere islands. Broadly contemporaneous igneous activity across this broad Arctic region along with a reconstructed giant radiating dyke swarm suggests that HALIP is a manifestation of large mantle plume activity probably centred near the Alpha Ridge. Significant surface uplift associated with the rise of a mantle plume is predicted to start ~10-20 my prior to the generation of flood basalt magmatism and to vary in shape and size subsequently throughout the LIP event (1,2,3) Initial uplift is due to dynamical support associated with the top of the ascending plume reaching a depth of about 1000 km, and with continued ascent the uplift topography broadens. Additional effects (erosion of the ductile lithosphere and thermal expansion caused by longer-term heating of the mechanical lithosphere) also affect the shape of the uplift. Topographic uplift can be between 1 to 4 km depending on various factors and may be followed by subsidence as the plume head decays or become permanent due to magmatic underplating. In the High Arctic, field and geochronological data from HALIP relevant to the timing of uplift, deformation, and volcanism are few. Here we present new evidence

  5. Patterns in Galápagos Magmatism Arising from the Upper Mantle Dynamics of Plume-Ridge Interaction

    NASA Astrophysics Data System (ADS)

    Ito, G.; Bianco, T. A.

    2014-12-01

    The origin of various patterns seen in Galápagos magmatism is investigated using numerical simulations of a mantle plume interacting with the Galapágos Spreading Center (GSC) as its position and geometry evolved over the past 6 Myr. Models predict magma generation and composition from a mantle composed of fusible veins of material enriched in incompatible elements imbedded in a more refractory depleted matrix. Model 1 simulates a low-viscosity plume owing to a temperature-dependent mantle rheology; Model 2 includes the added dependence on water content, which leads to high-viscosities in the dehydrated, shallow upper mantle. Model 1 produces the most favorable results. It shows how a modest crustal thickness anomaly observed along the Western GSC can arise from a plume with large excess temperatures (>100˚C). Model 1 also predicts geographic patterns in magma isotopic compositions generally resembling those observed along the GSC as well as around the Galapágos Archipelago. These patterns are predicted to arise out of the differences in melting depths between the enriched veins and depleted matrix, coupled with spatial variations in the rate of mantle upwelling and decompression melting. The results provide an alternative to traditional explanations involving the plume mixing with or entraining the ambient mantle. The models are still missing some essential factors as indicated by the predicted increases, rather than the observed decrease in incompatible element concentration away from the hotspot along the GSC. Possible factors include a regional-scale zoning in incompatible element and/or water content within the plume, or melt migration that delivers a larger flux of incompatible-element-rich melts to the GSC. This study will be published as one of 18 chapters in The Galapagos: A Natural Laboratory for Earth Sciences, edited by K. Harpp, E. Mittlestaedt, N. d'Ozouville, and D. W. Graham, Geophys. Monogr. 204. AGU & J. Wiley, 2014.

  6. Rapid formation of ontong java plateau by aptian mantle plume volcanism.

    PubMed

    Tarduno, J A; Sliter, W V; Kroenke, L; Leckie, M; Mayer, H; Mahoney, J J; Musgrave, R; Storey, M; Winterer, E L

    1991-10-18

    The timing of flood basalt volcanism associated with formation of the Ontong Java Plateau (OJP) is estimated from paleomagnetic and paleontologic data. Much of OJP formed rapidly in less than 3 million years during the early Aptian, at the beginning of the Cretaceous Normal Polarity Superchron. Crustal emplacement rates are inferred to have been several times those of the Deccan Traps. These estimates are consistent with an origin of the OJP by impingement at the base of the oceanic lithosphere by the head of a large mantle plume. Formation of the OJP may have led to a rise in sea level that induced global oceanic anoxia. Carbon dioxide emissions likely contributed to the mid-Cretaceous greenhouse climate but did not provoke major biologic extinctions.

  7. The Yellowstone magmatic system from the mantle plume to the upper crust

    NASA Astrophysics Data System (ADS)

    Huang, H. H.; Lin, F. C.; Schmandt, B.; Farrell, J.; Smith, R. B.; Tsai, V. C.

    2015-12-01

    The Yellowstone supervolcano is one of the largest active continental silicic volcanic fields in the world. An understanding of its properties is key to enhancing our knowledge of volcanic mechanisms and corresponding risk. Using a joint local and teleseismic earthquake P-wave seismic inversion, we unveil a basaltic lower-crustal magma body that provides a magmatic link between the Yellowstone mantle plume and the previously imaged upper-crustal magma reservoir. This lower-crustal magma body has a volume of 46,000 km3, ~4.5 times larger than the upper-crustal magma reservoir, and contains a melt fraction of ~2%. These estimates are critical to understanding the evolution of bimodal basaltic-rhyolitic volcanism, explaining the magnitude of CO2 discharge, and constraining dynamic models of the magmatic system for volcanic hazard assessment.

  8. Volcanology. The Yellowstone magmatic system from the mantle plume to the upper crust.

    PubMed

    Huang, Hsin-Hua; Lin, Fan-Chi; Schmandt, Brandon; Farrell, Jamie; Smith, Robert B; Tsai, Victor C

    2015-05-15

    The Yellowstone supervolcano is one of the largest active continental silicic volcanic fields in the world. An understanding of its properties is key to enhancing our knowledge of volcanic mechanisms and corresponding risk. Using a joint local and teleseismic earthquake P-wave seismic inversion, we revealed a basaltic lower-crustal magma body that provides a magmatic link between the Yellowstone mantle plume and the previously imaged upper-crustal magma reservoir. This lower-crustal magma body has a volume of 46,000 cubic kilometers, ~4.5 times that of the upper-crustal magma reservoir, and contains a melt fraction of ~2%. These estimates are critical to understanding the evolution of bimodal basaltic-rhyolitic volcanism, explaining the magnitude of CO2 discharge, and constraining dynamic models of the magmatic system for volcanic hazard assessment.

  9. Rapid formation of Ontong Java Plateau by Aptian mantle plume volcanism

    USGS Publications Warehouse

    Tarduno, J.A.; Sliter, W.V.; Kroenke, L.; Leckie, M.; Mayer, H.; Mahoney, J.J.; Musgrave, R.; Storey, M.; Winterer, E.L.

    1991-01-01

    The timing of flood basalt volcanism associated with formation of the Ontong Java Plateau (OJP) is estimated from paleomagnetic and paleontologic data. Much of OJP formed rapidly in less than 3 million years during the early Aptian, at the beginning of the Cretaceous Normal Polarity Superchron. Crustal emplacement rates are inferred to have been several times those of the Deccan Traps. These estimates are consistent with an origin of the OJP by impingement at the base of the oceanic lithosphere by the head of a large mantle plume. Formation of the OJP may have led to a rise in sea level that induced global oceanic anoxia. Carbon dioxide emissions likely contributed to the mid-Cretaceous greenhouse climate but did not provoke major biologic extinctions.

  10. Constraints on Mantle Plume Melting Conditions in the Martian Mantle Based on Improved Melting Phase Relationships of Olivine-Phyric Shergottite Yamato 980459

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.; Rapp, Jennifer F.; Usui, Tomohiro; Draper, David S.; Filiberto, Justin

    2016-01-01

    Martian meteorite Yamato 980459 (hereafter Y98) is an olivine-phyric shergottite that has been interpreted as closely approximating a martian mantle melt [1-4], making it an important constraint on adiabatic decompression melting models. It has long been recognized that low pressure melting of the Y98 composition occurs at extremely high temperatures relative to martian basalts (1430 degC at 1 bar), which caused great difficulties in a previous attempt to explain Y98 magma generation via a mantle plume model [2]. However, previous studies of the phase diagram were limited to pressures of 2 GPa and less [2, 5], whereas decompression melting in the present-day martian mantle occurs at pressures of 3-7 GPa, with the shallow boundary of the melt production zone occurring just below the base of the thermal lithosphere [6]. Recent experimental work has now extended our knowledge of the Y98 melting phase relationships to 8 GPa. In light of this improved petrological knowledge, we are therefore reassessing the constraints that Y98 imposes on melting conditions in martian mantle plumes. Two recently discovered olivine- phyric shergottites, Northwest Africa (NWA) 5789 and NWA 6234, may also be primary melts from the martian mantle [7, 8]. However, these latter meteorites have not been the subject of detailed experimental petrology studies, so we focus here on Y98.

  11. An asymptotic solution of hydrodynamic equations at the mid-plane of a plume in the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Yinting, Li; Meissner, R. O.; En, Xue

    1983-10-01

    From the partial differential equations of hydrodynamics governing the movements in the Earth's mantle of a Newtonian fluid with a pressure- and temperature-dependent viscosity, considering the bilateral symmetry of velocity and temperature distributions at the mid-plane of the plume, an analytical solution of the governing equations near the mid-plane of the plume was found by the method of asymptotic analysis. The vertical distribution of the upward velocity, viscosity and temperature at the mid-plane, and the temperature excess at the centre of the plume above the ambient mantle temperature were then calculated for two sets of Newtonian rheological parameters. The results obtained show that the temperature at the mid-plane and the temperature excess are nearly independent of the rheological parameters. The upward velocity at the mid-plane, however, is strongly dependent on the rheological parameters.

  12. Al-in-olivine thermometry evidence for the mantle plume origin of the Emeishan large igneous province

    NASA Astrophysics Data System (ADS)

    Xu, Rong; Liu, Yongsheng

    2016-12-01

    The Emeishan large igneous province (ELIP) is renowned for its world-class Ni-Cu-(PGE) deposits and its link with the Capitanian mass extinction. The ELIP is generally thought to be associated with a deep mantle plume; however, evidence for such a model has been challenged through geology, geophysics and geochemistry. In many large igneous province settings, olivine-melt equilibrium thermometry has been used to argue for or against the existence of plumes. However, this method involves large uncertainties such as assumptions regarding melt compositions and crystallisation pressures. The Al-in-olivine thermometer avoids these uncertainties and is used here to estimate the temperatures of picrites in the ELIP. The calculated maximum temperature (1440 °C) is significantly ( 250 °C) higher than the Al-in-olivine temperature estimated for the average MORB, thus providing compelling evidence for the existence of thermal mantle plumes in the ELIP.

  13. The importance of broad, integrated data sets for mantle plume studies - South Atlantic combined with South African evidence

    NASA Astrophysics Data System (ADS)

    Class, C.

    2013-12-01

    Geochemistry alone cannot distinguish between shallow enriched sources and plume sources including deep recycled material, because both types are formed by differentiation processes near the surface of the Earth [1]. The observation of elevated 3He/4He isotope ratios above the values typical in MORB has been arguably the least equivocal geochemical tracer in support of mantle plumes from the lower mantle [2,3]. In the oceans, elevated 3He/4He isotope ratios are almost exclusively found in volcanic rocks related to an age-progressive track of seamounts, aseismic ridges or islands. Similarly, geochemically anomalously enriched MORB related to such an age-progressive track has been taken as evidence for plume-ridge interaction. The presence of continental material from shallow recycling has been suggested, in most cases, based on continental samples not spatially related to the respective oceanic basalts, but based on their extreme continental-type composition and/or continental material from other places. However, each of these arguments by themselves are equivocal. Here it is argued that putting oceanic basalt samples in a broader context allows better constraints on the origin of mantle plume geochemical signatures. For example, sampling continental material spatially related to oceanic basalts through rifting processes allow testing the role of shallow sources from recent continental breakup. In addition, sampling seamounts adjacent to bathymetric anomalies in the oceans can place constraints on the low temperature melting components in the upper mantle specific to this area, and thus allows distinction between plume and ambient mantle sources. This approach is applied to the source composition of the four South Atlantic plumes that have been related to the edge of the African LLSVP [4]. The Shona plume has been shown to be active for 80 Ma and its track extends to the African continental shelf [4]. Extending the age progression of this plume onto the continent

  14. Petrological processes in mantle plume heads: Evidence from study of mantle xenoliths in the late Cenozoic alkali Fe-Ti basalts in Western Syria

    NASA Astrophysics Data System (ADS)

    Sharkov, Evgenii

    2015-04-01

    It is consensus now that within-plate magmatism is considered with ascending of mantle plumes and adiabatic melting of their head. At the same time composition of the plumes' matter and conditions of its adiabatic melting are unclear yet. The major source of objective information about it can be mantle xenoliths in alkali basalts and basanites which represent fragments of material of the plume heads above magma-generation zone. They are not represent material in melting zone, however, carry important information about material of modern mantle plumes, its phase composition and components, involved in melting. Populations of mantle xenoliths in basalts are characterized by surprising sameness in the world and represented by two major types: (1) dominated rocks of ``green'' series, and (2) more rare rocks of ``black'' series, which formed veins in the ``green'' series matrix. It can evidence about common composition of plume material in global scale. In other words, the both series of xenoliths represent two types of material of thermochemical mantle plumes, ascended from core-mantle boundary (Maruyama, 1994; Dobretsov et al., 2001). The same types of xenoliths are found in basalts and basanites of Western Syria (Sharkov et al., 1996). Rocks of ``green'' series are represented by Sp peridotites with cataclastic and protogranular structures and vary in composition from dominated spinel lherzolites to spinel harzburgites and rare spinel pyroxenites (websterites). It is probably evidence about incomplete homogenizing of the plume head matter, where material, underwent by partial melting, adjoins with more fertile material. Such heterogeneity was survived due to quick cooling of upper rim of the plume head in contact with relatively cold lithosphere. Essential role among xenoliths of the ``black'' series play Al-Ti-augite and water-bearing phases like hornblende (kaersutute) and Ti-phlogopite. Rocks of this series are represented by wehrlite, clinopyroxenite, amphibole

  15. Mongolian plateau: Evidence for a late Cenozoic mantle plume under central Asia

    NASA Astrophysics Data System (ADS)

    Windley, Brian F.; Allen, Mark B.

    1993-04-01

    The 2500 x 700 km Mongolian plateau (average elevation 2000 m) is situated between the Altai orogen and the Siberian craton and occupies much of Mongolia and Transbaikalia in Russia. The plateau is characterized by (1) basin and range topography and two major domes(Hentai, 600 x 300 km, and Hangai, 800 x 550 km), where altitudes reach 3905 m; (2) lithosphere that is thinner than adjacent areas (minimum ˜50 km); (3) elevated heat flow (up to 120 mW/m2); (4) dominantly alkaline basaltic volcanism in the form of cones, lava fields, and volcanic plateaus mostly of Miocene-Quaternary age, and (5) rifts, including Baikal (main evolution in the Pliocene-Quaternary), Tunka (Oligocene-early Miocene), and Hobsogol (Pliocene-Quaternary). Existing models explain these features in terms of diapiric upwelling of a mantle asthenolith below the main rifts and/or as a long-distance effect of the India-Asia collision. We propose that the late Cenozoic uplift of the whole Mongolian plateau and associated rifting, magmatism, high heat flow, and lithospherec thinning are not externally driven by the India-Asia collision, but are the expression of the interaction of a mantle plume with overlying lithosphere. Some rifts link and interact with major strike-slip faults, such as the Bolnai. Such faults may be the major expression of the India-Asia collision in this region.

  16. The mantle plume beneath Iceland and its interaction with the North-Atlantic Ridge: A seismological investigation

    NASA Astrophysics Data System (ADS)

    Allen, Richard Martin

    This thesis presents a range of studies designed to reveal the detailed structure of the plume beneath Iceland as it rises through the upper mantle and interacts with the lithosphere and the Mid-Atlantic Ridge. These studies are part of the HOTSPOT project, which was a collaborative effort to collect data from a network of thirty PASSCAL seismometers deployed across Iceland from July 1996 to August 1998. The crustal model presented is derived from local Love wave observations, Sn travel-time measurements and point observations of crustal thickness from previous. The low S-velocity structure reveals a vast plumbing system which feeds melt from the plume vertically through the lower crust into the upper crust where it travels laterally along the mid-ocean rift. The lowest velocity anomalies are found at ˜10 km depth beneath the two most active volcanic complexes on Iceland, Hekla and Bartharbunga-Grimsfjall. The crustal thickness varies from 15 km around the edges of Iceland and beneath the Snaefellsnes rift zone to its thickest, 46 km, above the current center of the mantle plume. The thickness is a record of plume activity and indicates that since the Snaefellsnes rift zone was active the plume has been increasing in intensity to its current maximum today. Two independent approaches are used to investigate the mantle structure. Firstly, a new technique is developed to sample the plume conduit at depth (250--400 km) in which the frequency dependent amplitude variations across Iceland are measured, and the plume geometry which best satisfies the patterns of observed amplitudes is determined through forward modeling. This technique avoids the drawbacks of ray theory which reduce the amplitude of the imaged anomaly through the process of wavefront healing. In the best fit model the plume conduit has a peak S-velocity anomaly of -12% and is 200 km in diameter. Secondly, the largest teleseismic body wave travel-time dataset compiled to date for Iceland is inverted to

  17. Contourite Deposition in the North Atlantic Ocean Moderated By Mantle Plume Activity: Evidence from Seismic Reflection Images

    NASA Astrophysics Data System (ADS)

    Parnell-Turner, R. E.; McCave, I. N. N.; White, N. J.; Henstock, T.; Murton, B. J.; Jones, S. M.

    2014-12-01

    It is generally accepted that the strength of Northern Component Water overflow, the ancient precursor of North Atlantic Deep Water, has varied throughout Neogene times. Variations in dynamic support of the lithosphere, due to transient behavior of the Iceland mantle plume, probably control spatial and temporal water depth variations this region. Pathways and intensities of oceanic bottom currents, together with deposition of contourite drifts, are strongly influenced by changing bathymetry. Here, we combine detailed observations of contourite drift deposits from seismic reflection profiles with a chronology of plume activity, to test the relationships between deep-water circulation, sedimentary drift accumulation and mantle convection. We present multi-channel seismic reflection profiles acquired over Bjorn, Gardar and Hatton Drifts in the Iceland Basin and over the northernmost portion of Eirik Drift, east of Greenland. Depositional hiatuses are easily identified and correlated between these high-quality images and nearby boreholes, which allows us to construct history of sedimentation across the North Atlantic Ocean over the past 5 Ma. We observe kilometer-scale westward-migration of Bjorn Drift, which can be explained by varying current strength and sediment supply, probably moderated by fluctuating dynamic support on overall subsidence. We place these observations into a new continuous 55 Ma record of Iceland mantle plume activity. There is compelling evidence to support the hypothesis that variations in mantle convection deep beneath the plates has profound consequences for deep-water flow and sediment deposition at Earth's surface.

  18. Geodynamic models of a Yellowstone plume and its interaction with subduction and large-scale mantle circulation

    NASA Astrophysics Data System (ADS)

    Steinberger, B. M.

    2012-12-01

    Yellowstone is a site of intra-plate volcanism, with many traits of a classical "hotspot" (chain of age-progressive volcanics with active volcanism on one end; associated with flood basalt), yet it is atypical, as it is located near an area of Cenozoic subduction zones. Tomographic images show a tilted plume conduit in the upper mantle beneath Yellowstone; a similar tilt is predicted by simple geodynamic models: In these models, an initially (at the time when the corresponding Large Igneous Province erupted, ~15 Myr ago) vertical conduit gets tilted while it is advected in and buoyantly rising through large-scale flow: Generally eastward flow in the upper mantle in these models yields a predicted eastward tilt (i.e., the conduit is coming up from the west). In these models, mantle flow is derived from density anomalies, which are either inferred from seismic tomography or from subduction history. One drawback of these models is, that the initial plume location is chosen "ad hoc" such that the present-day position of Yellowstone is matched. Therefore, in another set of models, we study how subducted slabs (inferred from 300 Myr of subduction history) shape a basal chemically distinct layer into thermo-chemical piles, and create plumes along its margins. Our results show the formation of a Pacific pile. As subduction approaches this pile, the models frequently show part of the pile being separated off, with a plume rising above this part. This could be an analog to the formation and dynamics of the Yellowstone plume, yet there is a mismatch in location of about 30 degrees. It is therefore a goal to devise a model that combines the advantages of both models, i.e. a fully dynamic plume model, that matches the present-day position of Yellowstone. This will probably require "seeding" a plume through a thermal anomaly at the core-mantle boundary and possibly other modifications. Also, for a realistic model, the present-day density anomaly derived from subduction should

  19. The effect of plumes and a free surface on mantle dynamics with continents and self-consistent plate tectonics

    NASA Astrophysics Data System (ADS)

    Jain, Charitra; Rozel, Antoine; Tackley, Paul

    2014-05-01

    Rolf et al. (EPSL, 2012) and Coltice et al. (Science, 2012) investigated the thermal and dynamical influences of continents on plate tectonics and the thermal state of Earth's mantle, but they did not explicitly consider the influence of mantle plumes. When present, strong mantle plumes arising from the deep mantle can impose additional stresses on the continents, thereby facilitating continental rifting (Storey, Nature 1995; Santosh et al., Gondwana Research 2009) and disrupting the supercontinent cycle (Philips and Bunge, Geology 2007). In recent years, several studies have characterized the relation between the location of the plumes and the continents, but with contradicting observations. While Heron and Lowman (GRL, 2010; Tectonophysics, 2011) propose regions where downwelling has ceased (irrespective of overlying plate) as the preferred location for plumes, O'Neill et al. (Gondwana Research, 2009) show an anti-correlation between the average positions of subducting slabs at continental margins, and mantle plumes at continental/oceanic interiors. Continental motion is attributed to the viscous stresses imparted by the convecting mantle and the extent of this motion depends on the heat budget of the mantle. Core-mantle boundary (CMB) heat flux, internal heating from decay of radioactive elements, and mantle cooling contribute to this heat budget. Out of these sources, CMB heat flux is not well defined; however, the recent determination that the core's thermal conductivity is much higher than previously thought requires a CMB heat flow of at least 12 TW (de Koker et al., PNAS 2012; Pozzo et al., Nature 2012; Gomi et al., PEPI 2013), much higher than early estimates of 3-4 TW (Lay et al., Nature 2008). Thus, it is necessary to characterize the effect of increased CMB heat flux on mantle dynamics. In almost all mantle convection simulations, the top boundary is treated as a free-slip surface whereas Earth's surface is a deformable free surface. With a free

  20. VP and VS structure of the Yellowstone hot spot from teleseismic tomography: Evidence for an upper mantle plume

    USGS Publications Warehouse

    Waite, Gregory P.; Smith, Robert B.; Allen, Richard M.

    2006-01-01

    The movement of the lithosphere over a stationary mantle magmatic source, often thought to be a mantle plume, explains key features of the 16 Ma Yellowstone–Snake River Plain volcanic system. However, the seismic signature of a Yellowstone plume has remained elusive because of the lack of adequate data. We employ new teleseismic P and S wave traveltime data to develop tomographic images of the Yellowstone hot spot upper mantle. The teleseismic data were recorded with two temporary seismograph arrays deployed in a 500 km by 600 km area centered on Yellowstone. Additional data from nearby regional seismic networks were incorporated into the data set. The VP and VS models reveal a strong low-velocity anomaly from ∼50 to 200 km directly beneath the Yellowstone caldera and eastern Snake River Plain, as has been imaged in previous studies. Peak anomalies are −2.3% for VP and −5.5% for VS. A weaker, anomaly with a velocity perturbation of up to −1.0% VP and −2.5% VS continues to at least 400 km depth. This anomaly dips 30° from vertical, west-northwest to a location beneath the northern Rocky Mountains. We interpret the low-velocity body as a plume of upwelling hot, and possibly wet rock, from the mantle transition zone that promotes small-scale convection in the upper ∼200 km of the mantle and long-lived volcanism. A high-velocity anomaly, 1.2%VP and 1.9% VS, is located at ∼100 to 250 km depth southeast of Yellowstone and may represent a downwelling of colder, denser mantle material.

  1. Hot Spots and Mantle Plumes: A Window Into the Deep Earth and a Lesson on How Science Really Works

    NASA Astrophysics Data System (ADS)

    Caplan-Auerbach, J.

    2010-12-01

    Despite years of discussion, debate and controversy over the causes of ocean island volcanism, most students simply learn that such features form from fixed plumes of hot material rising from the core mantle boundary. Although we know that the Hawaiian plume exhibited substantial southward motion, most introductory geology textbooks still report that hot spots are fixed and that the Hawaiian-Emperor bend reflects a change in plate motion. That mantle plumes are the focus of significant controversy within the scientific community is rarely, if ever, discussed, and alternative models for the formation of intraplate volcanoes are ignored. Students may thus complete their studies without learning about the dynamic debate focused on the existence and formation of mantle plumes. This issue represents an opportunity for students to see how science really works, how new models are constructed, and what distinguishes a hypothesis from a theory. The culminating project in Western Washington University’s Introduction to Geophysics class, a course required for the BS degree in geology, focuses on the hot spot and mantle plume debate. For the first nine weeks of the quarter students learn about general topics in geophysics including plate tectonics, magnetism, seismology, gravity and heat flow. At the end of the course, students break into small research groups with the goal of investigating how geophysics may be used to address three questions: (1) Do ocean island volcanoes form from mantle plumes? (2) Are “hot spots” actually hot? (3) Are hot spots stationary? Each group examines how these questions may be addressed using a specific geophysical tool. In addition to the five topics described above, a sixth group investigates the question of “if not hot spots/mantle plumes, how do ocean island volcanoes form?” Students read the current literature on the topic and present their results to their classmates. Presentations focus on topics such as the use of seismic

  2. Midcontinent rift volcanism in the Lake Superior region: Sr, Nd, and Pb isotopic evidence for a mantle plume origin

    USGS Publications Warehouse

    Nicholson, S.W.; Shirey, S.B.

    1990-01-01

    Between 1091 and 1098 Ma, most of a 15- to 20-km thickness of dominantly tholeiitic basalt erupted in the Midcontinent Rift System of the Lake Superior region, North America. The Portage Lake Volcanics in Michigan, which are the younget MRS flood basalts, fall into distinctly high- and low-TiO2 types having different liquid lines of descent. Incompatible trace elements in both types of tholeiites are enriched compared to depleted or primitive mantle and both basalt types are isotopically indistinguishable. The isotopic enrichment of the MRS source compared to depleted mantle is striking and must have occurred at least 700 m.y. before 1100 Ma. There are two likely sources for such magmatism: subcontinental lithospheric mantle enriched during the early Proterozoic or enriched mantle derived from an upwelling plume. Decompression melting of an upwelling enriched mantle plume in a region of lithosphere thinned by extension could have successfully generated the enormous volume (850 ?? 103 km3) of relatively homogeneous magma in a restricted time interval. -from Authors

  3. Mantle transition zone structure and upper mantle S velocity variations beneath Ethiopia: Evidence for a broad, deep-seated thermal anomaly

    NASA Astrophysics Data System (ADS)

    Benoit, Margaret H.; Nyblade, Andrew A.; Owens, Thomas J.; Stuart, Graham

    2006-11-01

    Ethiopia has been subjected to widespread Cenozoic volcanism, rifting, and uplift associated with the Afar hot spot. The hot spot tectonism has been attributed to one or more thermal upwellings in the mantle, for example, starting thermal plumes and superplumes. We investigate the origin of the hot spot by imaging the S wave velocity structure of the upper mantle beneath Ethiopia using travel time tomography and by examining relief on transition zone discontinuities using receiver function stacks. The tomographic images reveal an elongated low-velocity region that is wide (>500 km) and extends deep into the upper mantle (>400 km). The anomaly is aligned with the Afar Depression and Main Ethiopian Rift in the uppermost mantle, but its center shifts westward with depth. The 410 km discontinuity is not well imaged, but the 660 km discontinuity is shallower than normal by ˜20-30 km beneath most of Ethiopia, but it is at a normal depth beneath Djibouti and the northwestern edge of the Ethiopian Plateau. The tomographic results combined with a shallow 660 km discontinuity indicate that upper mantle temperatures are elevated by ˜300 K and that the thermal anomaly is broad (>500 km wide) and extends to depths ≥660 km. The dimensions of the thermal anomaly are not consistent with a starting thermal plume but are consistent with a flux of excess heat coming from the lower mantle. Such a broad thermal upwelling could be part of the African Superplume found in the lower mantle beneath southern Africa.

  4. Small shields smarms on Mars and Venus: Surface manifestation of deep mantle plume

    NASA Astrophysics Data System (ADS)

    Xiao, L.; Smith, M.; Huang, J.; He, Q.

    2009-04-01

    In spite of large shield volcanoes on terrestrial planets are most remarkable volcanic edifices and have been extensively studied, small shields, especially small shields swarms are also import surface manifestation of deep interior thermal anomalies and indicatives of planetary thermal history. In this study, we indentified and mapped two shields swarms on Mars based on MOLA, THEMIS and HRSC data and compared their features with shield fields on Venus. It is suggested that these terrestrial small shields swarms are surface manifestation of hot spots or mantle plumes. There are small shield swarms in Syria Planum and Thaumasia Highland on Mars. More than seventy small shield volcanoes can be identified in the Syria Planum with an area of 24x104km2. These small shield volcanoes are Hesperian in age and are typically 10-30km in diameter and 100-250m high. Volcanoes to the north are symmetric and have steeper slope than those volcanoes to the southeast. Generally, there are few volcanoes beyond the northwestern Syria plateau. Eleven small volcanoes in the Noachian Coprates Rise and Thaumasia Highlands have been identified and more than thirty similar small volcanoes were mapped in Thaumasia Fossae and to the southwest on the southern cratered highlands. They cover an area about 33x104km2. All of these Noachian shields have diameters ranging from 50 to 80km, and 1.5-2.0km high. They are randomly distributed in the heavily crated highlands. These edifices are heavily cut by radial channels, suggesting the edifices are original shields or cones. There are tens thousands of small shields (mostly less than 20 km in diameter) on Venus. They are randomly distributed on the Venusian surface. We classify those regions with high concentration of small shields (more than 5 shields within an area of 1000 km2) as small shield swarms. This density is much higher than that on Mars. They are occurring primarily in the lowlands. Of total 556 shield swarms, mostly are 100-200km in

  5. The Hawaiian Mantle Plume from Toe to Head along the Northwest Hawaiian Ridge

    NASA Astrophysics Data System (ADS)

    Harrison, L.; Weis, D.; Garcia, M. O.

    2015-12-01

    The Hawaiian-Emperor (HE) chain records ~82 Myr of volcanism1 with two distinct geochemical and geographical trends, Kea and Loa, identified on the archipelago. The Northwest Hawaiian Ridge (NWHR) includes 51 volcanoes, spanning ~42 Myr between the bend in the HE chain and the Hawaiian Islands (47% of the HE chain2), that has no high-precision isotopic data aside from two volcanoes near the bend1. Only Kea compositions have been observed on Emperor seamounts (>50 Ma)1,3, whereas the Hawaiian Islands (<6.5 Ma) have both Kea and Loa lavas3,4. We have analyzed 23 samples of shield stage tholeiitic lavas from 13 NWHR volcanoes for Pb isotopes to test if the Loa trend exhibits a persistent presence along the ridge after Diakakuji seamount1. Age corrected 206Pb/204Pb range from 17.870 at Diakakuji to 18.654 at Midway atoll. The most enriched Loa isotopic compositions are erupted at Diakakuji (comparable to Lanai), and Mokumanamana, West Nihoa, and Nihoa have isotopic compositions similar to Mauna Loa. These observations suggest an ephemeral presence of the Loa geochemical trend along the NWHR. When shield-stage lavas of each Hawaiian volcano is averaged, NWHR volcanoes shows the most and least radiogenic Pb of the entire HE dataset: Diakakuji (0.9703) and Midway (0.9247). The NWHR exhibits the most geochemically extreme lava compositions along a region where many geophysical parameters (volcanic propagation rate, magmatic flux, mantle potential temperature) were changing significantly2,5. At a broader scale, correlation between radiogenic Pb and magmatic flux suggests source composition may control some of these changes, and help explain why the Hawaiian mantle plume seems to be strengthening5 rather than waning like classic plumes and LIPs. 1Regelous et al., 2003, J. Pet., 44, 1, 113-140. 2Garcia et al., 2015, GSA Sp. Pap. 511. 3Tanaka et al., 2008, EPSL, 265, 450-465. 4Weis et al., 2011, Nat. Geosci., 4, 831-838. 5Vidal & Bonneville, 2004, J. Geophy. Res., 109.

  6. Mantle plume related Paleozoic riftogenic alkaline magmatism of Mongolia: isotope and geocemical evidence.

    NASA Astrophysics Data System (ADS)

    Yarmolyuk, V.; Savatenkov, V.; Kozlovsky, A.

    2003-04-01

    trough fraction crystallization without of appreciable assimilation of oceanic crust material. Evolution in chemical and Nd and Sr isotope composition of mafic volcanic rocks from GTZ to GAZ reflects change in tectonic settings of riftogenic magmatism caused by drift of litospheric slab under the mantle diapir (mantle plume), that triggered sequential rifts formation during the Upper Paleozoic in Mongolia.

  7. Project Hotspot - The Snake River Scientific Drilling Project - Investigating the Interactions of Mantle Plumes and Continental Lithosphere

    NASA Astrophysics Data System (ADS)

    Shervais, J. W.

    2008-12-01

    The Yellowstone-Snake River Plain (YSRP) volcanic province is the world's best modern example of a time- transgressive hotspot track beneath continental crust. Recently, a 100 km wide thermal anomaly has been imaged by seismic tomography to depths of over 500 km beneath the Yellowstone Plateau. The Yellowstone Plateau volcanic field consists largely of rhyolite lavas and ignimbrites, with few mantle-derived basalts. In contrast, the Snake River Plain (SRP), which represents the track of the Yellowstone hotspot, consists of rhyolite caldera complexes that herald the onset of plume-related volcanism and basalts that are compositionally similar to ocean island basalts like Hawaii. The SRP preserves a record of volcanic activity that spans over 16 Ma and is still active today, with basalts as young as 200 ka in the west and 2 ka in the east. The SRP is unique because it is young and relatively undisturbed tectonically, and because it contains a complete record of volcanic activity associated with passage of the hotspot. This complete volcanic record can only be sampled by drilling. In addition, the western SRP rift basin preserves an unparalleled deep-water lacustrine archive of paleoclimate evolution in western North America during the late Neogene. The central question addressed by the Snake River Scientific Drilling Project is how do mantle hotspots interact with continental lithosphere, and how does this interaction affect the geochemical evolution of mantle-derived magmas and the continental lithosphere? Our hypothesis is that continental mantle lithosphere is constructed in part from the base up by the underplating of mantle plumes, which are compositionally distinct from cratonic lithosphere, and that plumes modify the impacted lithosphere by thermally and mechanically eroding cratonic mantle lithosphere, and by underplating depleted plume-source mantle. Addition of mafic magma to the crust represents a significant contribution to crustal growth, and densifies

  8. Tracking the Tristan-Gough Mantle Plume Using Discrete Chains of Intraplate Volcanic Centers Buried in the Walvis Ridge

    NASA Astrophysics Data System (ADS)

    O'Connor, J. M.; Jokat, W.; Wijbrans, J. R.

    2015-12-01

    Explanations for hotspot trails range from deep mantle plumes rising from the core-mantle boundary (CMB) to shallow plate cracking. Such mechanisms cannot explain uniquely the scattered hotspot trails distributed across a 2,000-km-wide swell in the sea floor of the southeast Atlantic Ocean. While these hotspot trails formed synchronously, in a pattern consistent with movement of the African Plate over plumes rising from the edge of the African LLSVP, their distribution is controlled by the interplay between plumes and the motion and structure of the African Plate (O'Connor et al., 2012). A significant challenge is to establish how the vigor and flow of hotspot material to the mid-ocean ridge constructed the Walvis Ridge. 40Ar/39Ar ages for three sites across the central Walvis Ridge sampled by Ocean Drilling (DSDP Leg 74) (Rohde et al., 2013; O'Connor and Jokat, 2015a) indicate an apparent inverse relation between the volume flux of hotspot volcanism and the distance between the mid-ocean ridge and the Tristan-Gough hotspot. Moreover, since ca. 93 Ma the geometry and motion of the mid-ocean ridge determined where hotspot material was channeled to the plate surface to build the Walvis Ridge. Interplay between hotspot flow, and the changing geometry of the mid-ocean ridge as it migrated relative to the Tristan-Gough hotspot, might explain much of the age and morphology of the Walvis Ridge. Thus, tracking the location of the Tristan-Gough plume might not be practicable if most of the complex morphology of the massive Walvis Ridge is related to the proximity of the South Atlantic mid-ocean ridge. But 40Ar/39Ar basement ages for the Tristan-Gough hotspot track (Rohde et al., 2013; O'Connor and Jokat, 2015b), together with information about morphology and crustal structure from new swath maps and seismic profiles, suggest that separated age-progressive intraplate segments track the location of the Tristan-Gough mantle plume. The apparent continuity of the inferred age

  9. Tracking the Tristan-Gough Mantle Plume Using Discrete Chains of Intraplate Volcanic Centers Buried in the Walvis Ridge

    NASA Astrophysics Data System (ADS)

    O'Connor, John; Jokat, Wilfried; Wijbrans, Jan

    2016-04-01

    Explanations for hotspot trails range from deep mantle plumes rising from the core-mantle boundary (CMB) to shallow plate cracking. Such mechanisms cannot explain uniquely the scattered hotspot trails distributed across a 2,000-km-wide swell in the sea floor of the southeast Atlantic Ocean. While these hotspot trails formed synchronously, in a pattern consistent with movement of the African Plate over plumes rising from the edge of the African LLSVP, their distribution is controlled by the interplay between plumes and the motion and structure of the African Plate (O'Connor et al. 2012). A significant challenge is to establish how the vigor and flow of hotspot material to the mid-ocean ridge constructed the Walvis Ridge. 40Ar/39Ar stratigraphy for three sites across the central Walvis Ridge sampled by Ocean Drilling (DSDP Leg 74) (Rohde et al., 2013; O'Connor & Jokat 2015a) indicates an apparent inverse relation between the volume flux of hotspot volcanism and the distance between the mid-ocean ridge and the Tristan-Gough hotspot. Moreover, since ˜93 Ma the geometry and motion of the mid-ocean ridge determined where hotspot material was channeled to the plate surface to build the Walvis Ridge. Interplay between hotspot flow, and the changing geometry of the mid-ocean ridge as it migrated relative to the Tristan-Gough hotspot, might explain much of the age and morphology of the Walvis Ridge. Thus, tracking the location of the Tristan-Gough plume might not be practicable if most of the complex morphology of the massive Walvis Ridge is related to the proximity of the South Atlantic mid-ocean ridge. But 40Ar/39Ar basement ages for the Tristan-Gough hotspot track (Rohde et al., 2013; O'Connor & Jokat 2015b), together with information about morphology and crustal structure from new swath maps and seismic profiles, suggest that separated age-progressive intraplate segments track the location of the Tristan-Gough mantle plume. The apparent continuity of the inferred age

  10. Mantle plumes - A boundary layer approach for Newtonian and non-Newtonian temperature-dependent rheologies. [modeling for island chains and oceanic aseismic ridges

    NASA Technical Reports Server (NTRS)

    Yuen, D. A.; Schubert, G.

    1976-01-01

    Stress is placed on the temperature dependence of both a linear Newtonian rheology and a nonlinear olivine rheology in accounting for narrow mantle flow structures. The boundary-layer theory developed incorporates an arbitrary temperature-dependent power-law rheology for the medium, in order to facilitate the study of mantle plume dynamics under real conditions. Thermal, kinematic, and dynamic structures of mantle plumes are modelled by a two-dimensional natural-convection boundary layer rising in a fluid with a temperature-dependent power-law relationship between shear stress and strain rate. An analytic similarity solution is arrived at for upwelling adjacent to a vertical isothermal stress-free plane. Newtonian creep as a deformation mechanism, thermal anomalies resulting from chemical heterogeneity, the behavior of plumes in non-Newtonian (olivine) mantles, and differences in the dynamics of wet and dry olivine are discussed.

  11. Platinum-Group Elements in Basalts Derived From the Icelandic Mantle Plume -Past and Present.

    NASA Astrophysics Data System (ADS)

    Momme, P.; Oskarsson, N.; Gronvold, K.; Tegner, C.; Brooks, K.; Keays, R.

    2001-12-01

    Paleogene basalts ( ~55Ma) derived from the ancestral Iceland mantle plume and extruded during continental rifting are exposed along the Blosseville Kyst in central East Greenland. These basalts comprise three intercalated series, viz: a low-Ti, high-Ti and a very high-Ti series. The two Ti-rich series are interpreted to represent continental flood basalts formed by low degrees of partial melting (degree of melting F=3-9%) while the low-Ti series are believed to have formed by higher degrees of partial melting (F:15-25%). All three of the East Greenland basalt series are enriched in the PGE, relative to normal MORB. During differentiation of the low-Ti series, Pd increase from 11 to 24 ppb whereas Pt and Ir decrease from 12 and 0.6 ppb to 3 and <0.05 ppb respectively. The primitive basalts (molar Mg#60) of the dominant high-Ti series contain ~6-10 ppb Pd, ~7-10 ppb Pt and ~0.2 ppb Ir whereas the most evolved basalts (Mg#43) contain 25 ppb Pd, 5 ppb Pt and <0.05 ppb Ir. The PGE-rich nature of these basalts is surprising because low degree partial melts are generally S-saturated and hence strongly depleted in the PGE (cf, Keays, 1995). However, our data indicates that all of the East Greenland magmas were S-undersaturated and as they underwent differentiation, Pd behaved incompatibly while Ir and Pt behaved compatibly. Primitive Holocene Icelandic olivine tholeiites contain 120 ppm Cu, 6 ppb Pd, 4 ppb Pt and 0.2 ppb Ir while their picritic counterparts contain 74 ppm Cu, 17 ppb Pd, 7 ppb Pt and 0.3 ppb Ir. Both the olivine tholeiites and the picrites are believed to have formed by high degrees of partial melting (15-25%) which would have exhausted all of the sulphides in the mantle source region and produced S-undersaturated magmas. In Icelandic samples with 10-14wt% MgO, Cu and the PGEs vary systematically between the primitive picrite and olivine tholeiite compositions given above i.e there is an inverse correlation between Cu and the PGEs. This is best explained

  12. Transition of Mount Etna lavas from a mantle-plume to an island-arc magmatic source.

    PubMed

    Schiano, P; Clocchiatti, R; Ottolini, L; Busà, T

    2001-08-30

    Mount Etna lies near the boundary between two regions that exhibit significantly different types of volcanism. To the north, volcanism in the Aeolian island arc is thought to be related to subduction of the Ionian lithosphere. On Sicily itself, however, no chemical or seismological evidence of subduction-related volcanism exists, and so it is thought that the volcanism-including that on Mount Etna itself-stems from the upwelling of mantle material, associated with various surface tectonic processes. But the paucity of geological evidence regarding the primary composition of magma from Mount Etna means that its source characteristics remain controversial. Here we characterize the trace-element composition of a series of lavas emitted by Mount Etna over the past 500 kyr and preserved as melt inclusions inside olivine phenocrysts. We show that the compositional change in primary magmas from Mount Etna reflects a progressive transition from a predominantly mantle-plume source to one with a greater contribution from island-arc (subduction-related) basalts. We suggest that this is associated with southward migration of the Ionian slab, which is becoming juxtaposed with a mantle plume beneath Sicily. This implies that the volcanism of Mount Etna has become more calc-alkaline, and hence more explosive, during its evolution.

  13. Plume formation in the D-double prime-layer and the roughness of the core-mantle boundary

    NASA Technical Reports Server (NTRS)

    Olson, Peter; Schubert, Gerald; Anderson, Charles

    1987-01-01

    A series of very-high-resolution finite element calculations of plume formation in the D-double prime-layer has been performed for several plausible rheologies and boundary conditions in order to study both the early and later stages of boundary layer development. The results show that plumes are initiated by coalescence of small-scale convective instabilities within the low-viscosity region immediately above the core-mantle boundary (CMB). These instabilities support topographic roughness on the CMB having horizontal scales of 20-50 km and provide a source for scattered P-waves seen as precursors to the phases PKIKP and PKKP. The calculated structure of fully developed plumes emerging from the D-double prime-layer consists of 5-50 cm/yr flow confined to 50-100 km thick vertical conduits. With strongly temperature-dependent viscosity, plumes exhibit time-dependent behavior, including upward propagating solitary conduit waves, which may contribute to episodicity in hotspot volcanism.

  14. The Role of Karoo-Maud and Kerguelen Mantle Plumes in the Geochemical Evolution of Indian Ocean Magmatism

    NASA Astrophysics Data System (ADS)

    Sushchevskaya, N. M.; Belyatsky, B. V.; Leitchenkov, G. L.

    2008-12-01

    The study of plume-related magmatism within Antarctica proves the spreading of the Karoo-Maud plume, which determined the split of the Gondwana continent and formation of the Indian Ocean, to the east - from Queen Maud Land towards Schirmacher Oasis during a period of ~10 Myr. Isotopic compositions of Schirmacher Oasis dolerites demonstrate clearly radiogenic signatures - 87Sr/86Sr: 0.7045 - 0.7047, 208Pb/204Pb: 37.98 - 38.2; 207Pb/204Pb: 15.45 - 15.52; and reflect crustal contamination processes, which took place during plume upwelling and emplacement into the continental crust. The process of Indian Ocean opening started ~160 Myr ago and took place in a very specific manner - in the presence of non-spreading lithospheric blocks of different thickness and with the formation of intraplate volcanic rises fixed in the sea bottom relief around Antarctica [Leitchenkov et al., 2007]. The similarity of geochemical characteristics of Schirmacher Oasis magmas with the lavas from the Indian Ocean rises (Afanasy Nikitin and the central part of Kerguelen plateau (Ocean Drilling Program Site 749)) points out that in both cases the source of their enrichment is the ancient material of the Gondwana continent. Magmatism, developed 40 Myr after the main phase of Karoo-Maud volcanism at the margins of the neighboring continents of Australia (Bunberry basalts) and India (Rajmakhal traps), could be initiated by the Karoo-Maud plume which was moving along the nascent spreading zone, later it was replaced and located in the Kerguelen plateau region, where it remains as an active hot spot. On the other hand, the role of a mantle plume in the break-up of Gondwana (as well as other supercontinents) is still not definite. Thus, emplacement of the Karoo-Maud plume under the South Africa and East Antarctica lithosphere about 180 Myr ago was at least 20 Myr earlier than the beginning of plate separation, while the Kerguelen plume, manifested as a LIP at Kerguelen Plateau ~115 Myr ago

  15. Receiver function imaging of the lithosphere-asthenosphere boundary and melt beneath the Afar Rift in comparison to other systems

    NASA Astrophysics Data System (ADS)

    Rychert, Catherine A.; Harmon, Nicholas

    2015-04-01

    Heating, melting, and stretching destroy continents at volcanic rifts. Mantle plumes are often invoked to thermally weaken the continental lithosphere and accommodate rifting through the influx of magma. However the relative effects of mechanical stretching vs. melt infiltration and weakening are not well quantified during the evolution of rifting. S-to-p (Sp) imaging beneath the Afar Rift provides additional constraints. We use two methodologies to investigate structure and locate robust features: 1) binning by conversion point and then simultaneous deconvolution in the frequency domain, and 2) extended multitaper followed by migration and stacking. We image a lithosphere-asthenosphere boundary at ~75 km beneath the flank of the Afar Rift vs. its complete absence beneath the rift. Instead, a strong velocity increase with depth at ~75 km depth is imaged. Beneath the rift axis waveform modeling suggests the lack of a mantle lithosphere with a velocity increase at ~75 km depth. Geodynamic models that include high melt retention and suppress thermal convection easily match the required velocity-depth profile, the velocity increase arising from a drop in melt percentage at the onset of decompression melting. Whereas, models with conservative melt retention that include thermal buoyancy effects cannot reproduce the strong velocity increase. The shallow depth of the onset of melting is consistent with a mantle potential temperature = 1350 - 1400°C, i.e., typical for adiabatic decompression melting. Trace element signatures and geochemical modeling have been used to argue for a thick lithosphere beneath the rift and slightly higher mantle potential temperatures ~1450°C, although overall, given modeling assumptions, the results are not in disagreement. Therefore, although a plume initially destroyed the mantle lithosphere, its influence directly beneath Afar today is not strong. Volcanism continues via adiabatic decompression melting assisted by strong melt buoyancy

  16. Are high 3He/4He ratios in oceanic basalts an indicator of deep-mantle plume components?

    USGS Publications Warehouse

    Meibom, A.; Anderson, D.L.; Sleep, Norman H.; Frei, R.; Chamberlain, C.P.; Hren, M.T.; Wooden, J.L.

    2003-01-01

    The existence of a primordial, undegassed lower mantle reservoir characterized by high concentration of 3He and high 3He/4He ratios is a cornerstone assumption in modern geochemistry. It has become standard practice to interpret high 3He/4He ratios in oceanic basalts as a signature of deep-rooted plumes. The unfiltered He isotope data set for oceanic spreading centers displays a wide, nearly Gaussian, distribution qualitatively similar to the Os isotope (187Os/188 Os) distribution of mantle-derived Os-rich alloys. We propose that both distributions are produced by shallow mantle processes involving mixing between different proportions of recycled, variably aged radiogenic and unradiogenic domains under varying degrees of partial melting. In the case of the Re-Os isotopic system, radiogenic mid-ocean ridge basalt (MORB)-rich and unradiogenic (depleted mantle residue) endmembers are constantly produced during partial melting events. In the case of the (U+Th)-He isotope system, effective capture of He-rich bubbles during growth of phenocryst olivine in crystallizing magma chambers provides one mechanism for 'freezing in' unradiogenic (i.e. high 3He/4He) He isotope ratios, while the higher than chondritic (U+Th)/He elemental ratio in the evolving and partially degassed MORB melt provides the radiogenic (i.e. low 3He/4He) endmember. If this scenario is correct, the use of He isotopic signatures as a fingerprint of plume components in oceanic basalts is not justified. Published by Elsevier Science B.V.

  17. Isotopic (Pb, Sr, Nd, C, O) evidence for plume-related sampling of an ancient, depleted mantle reservoir

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Simonetti, Antonio

    2015-02-01

    The exact mantle source for carbonatite melts remains highly controversial. Despite their predominant occurrence within continental (lithospheric) domains, the radiogenic isotope data from young (< 200 Ma) carbonatite complexes worldwide overlap the fields defined by present-day oceanic island basalts (OIBs). This feature suggests an intimate petrogenetic relationship with asthenospheric mantle. New Pb, Sr, C, and O isotopic data are reported here for constituent minerals from the Oka carbonatite complex, which is associated with the Cretaceous Monteregian Igneous Province (MIP), northeastern North America. The Pb isotope data define linear arrays in Pb-Pb isotope diagrams, with the corresponding Sr isotope ratios being highly variable (0.70314-0.70343); both these features are consistent with open system behavior involving at least three distinct mantle reservoirs. Compared to the isotope composition of known mantle sources for OIBs and carbonatite occurrences worldwide, the least radiogenic 207Pb/204Pb (14.96 ± 0.07) and 208Pb/204Pb (37.29 ± 0.15) isotopic compositions relative to their corresponding 206Pb/204Pb ratios (18.86 ± 0.08) reported here are distinct, and indicate the involvement of an ancient depleted mantle (ADM) source. The extremely unradiogenic Pb isotope compositions necessitate U/Pb fractionation early in Earth's history (prior to 4.0 Ga ago) and growth via a multi-stage Pb evolution model. The combined stable (C and O) and radiogenic isotopic compositions effectively rule out crustal/lithosphere contamination during the petrogenetic history of the Oka complex. Instead, the isotopic variations reported here most likely result from the mixing of discrete, small volume partial melts derived from a heterogeneous plume source characterized by a mixed HIMU-EM1-ADM signature.

  18. Co-location of eruption sites of the Siberian Traps and North Atlantic Igneous Province: Implications for the nature of hotspots and mantle plumes

    NASA Astrophysics Data System (ADS)

    Smirnov, Aleksey V.; Tarduno, John A.

    2010-09-01

    One of the striking exceptions to the mantle plume head-tail hypothesis that seeks to explain magmatism of large igneous provinces (LIPs) and hotspot tracks is the ~250 million-year-old Siberian Traps. The lack of a clear hotspot track linked to this LIP has been one motivation to explore non-plume alternative mechanisms. Here, we use a paleomagnetic Euler pole analysis to constrain the location of the Siberian Traps at the time of their eruption. The reconstructed position coincides with the mantle region that also saw eruption of the ~ 61-58 million year-old North Atlantic Igneous Province (NAIP). Together with LIP volume estimates, this reconstruction poses a dilemma for some non-plume models: the partial-melts needed to account for the Siberian Traps should have depleted the enriched upper mantle source that is in turn crucial for the later formation of the NAIP. The observations instead suggest the existence of a long-lived (>250 million-year-long) lower mantle chemical and/or thermal anomaly, and significant temporal changes in mantle plume flux.

  19. On the relationship between tectonic plates and thermal mantle plume morphology

    NASA Technical Reports Server (NTRS)

    Lenardic, A.; Kaula, W. M.

    1993-01-01

    Models incorporating plate-like behavior, i.e., near uniform surface velocity and deformation concentrated at plate boundaries, into a convective system, heated by a mix of internal and basal heating and allowing for temperature dependent viscosity, were constructed and compared to similar models not possessing plate-like behavior. The simplified numerical models are used to explore how plate-like behavior in a convective system can effect the lower boundary layer from which thermal plumes form. A principal conclusion is that plate-like behavior can significantly increase the temperature drop across the lower thermal boundary layer. This temperature drop affects the morphology of plumes by determining the viscosity drop across the boundary layer. Model results suggest that plumes on planets possessing plate-like behavior, e.g., the Earth, may differ in morphologic type from plumes on planets not possessing plate-like behavior, e.g., Venus and Mars.

  20. Hydrous solidus of CMAS-pyrolite and melting of mantle plumes at the bottom of the upper mantle

    NASA Astrophysics Data System (ADS)

    Litasov, Konstantin; Ohtani, Eiji

    2003-11-01

    We showed in previous experiments that the melting temperature of hydrous pyrolite, at the transition boundary between wadsleyite and olivine, is abruptly reduced by the presence of 2 wt.% H2O. In this paper we determine the apparent solidus for CaO-MgO-Al2O3-SiO2-pyrolite with lower and geologically more reasonable H2O contents (0.5 wt.%). Phase relations and melt compositions have been determined at pressures of 13.5-17.0 GPa and temperatures of 1600 to 2100°C. There was no abrupt decrease of solidus temperature along the phase boundary between olivine and wadsleyite in pyrolite with 0.5 wt.% H2O. However significant gradual decrease of the solidus temperature at pressures below 15-16 GPa still supports previous models for a hydrous origin of some ancient komatiites by dehydration melting of rising wet plumes at pressures of 4-10 GPa.

  1. Impact of a fixed Siberian Traps mantle plume on the tectonics of the Arctic

    NASA Astrophysics Data System (ADS)

    Lawver, L. A.; Norton, I. O.; Gahagan, L.

    2012-12-01

    Eruption of the Siberian Traps at the Permo-Triassic boundary [~250 Ma] produced more than 3 x 106 km3 of rapidly emplaced magma throughout a region ~2.5 x 106 km2 in extent. Dates from the New Siberian Islands of 252 ± 2 Ma (Kuzmichev & Pease, 2007) indicate that Siberian Trap-related magmas are found ~500 km to the east of where they are generally shown to terminate to the west of the Lena River. Cenozoic opening of the Eurasian Basin would account for some of this discrepancy. A Siberian Trap mantle plume in an absolute reference frame fixed to the present day location of the Iceland hot spot, tracks through time across the Taimyr Peninsula region during the Late Triassic period and then to north of the Severnaya Zemlya archipelago by the end of the Middle Jurassic. With the exception of some Middle Triassic dates from the Taimyr Peninsula there is no apparent expression of a hot spot track during the this period. Motion of Laurasia in a paleomagnetically controlled reference frame has the Franz Josef Land archipelago over the fixed hotspot from about 155 Ma to 147 Ma prior to the early phase of the High Arctic Large Igneous Province [HALIP], generally taken to be 130 Ma to 120 Ma. Campsie et al (1988) have one date of 145 Ma from samples collected by Fridthof Nansen in 1895-1896 on Solsberi Island. Dibner et al (1988) have a dozen ages from dolerite samples from various islands spanning the period 175 ±12 Ma to 138 ±10 Ma with five of them between 158 Ma to 144 Ma. During the Late Jurassic into the earliest Cretaceous the track of the fixed hotspot follows the future margin of the Barents Shelf just inboard of a reconstructed Lomonosov Ridge. By the end of the Valanginian, the hotspot tracks curves slightly, mimicking the southern curve of the Lomonosov Ridge off North America. The early phase of the HALIP moves the region of the northern Ellesmere Island over the hotspot while forming the Mendeleev and Alpha ridges. By middle Albian time, the Siberian Traps

  2. Searching for Seismic Signatures of a Plume Source at the Base of the Mantle Below the Galapagos Island Hotspot

    NASA Astrophysics Data System (ADS)

    Vanacore, E.; Niu, F.

    2007-12-01

    , in the Northeast portion of the sampled region bounded to the south and west at approximately \\m-3°S and \\m267° longitude. While the residual differential travel times and the anisotropy measurements do not conclusively show that there is a mantle plume source at the base of the mantle in this region, the data does indicate there the lower mantle beneath the Galapagos Islands has significant structure meriting further study.

  3. Whether the gravitational anomalies of the lunar farside can be traces of ancient mantle plumes?

    NASA Astrophysics Data System (ADS)

    Petrova, A.; Gusev, A.; Petrova, N.

    Global topographic and gravitational field models derived from data collected by the Clementine spacecraft reveal a new picture of the shape and internal structure of the Moon. The discovery of gravitational signatures ("mascons") at continental part of Lunar far side (and not only at mare basins) raises the question about its origin. It is interesting to verify a hypothesis of an origin of these anomalies connected with a motion of convection plumes, which took place in an early stage of evolution of the Moon. In this case the convection plumes could be preserved in the top crust of the Moon as positive gravitational anomalies. The behavior of a lunar surface in a vicinity of such anomalies will have the certain characteristics: increasing of a thermal flow in region of the plume; in a tectonosphere of continental crust the plume produces positive gravitational anomalies; topographic features in the form of arched lineament; the pluton-like intrusions (''mascons''); the crust becomes more thin due to Moho boundary uplifts. We have carried out a visual analysis of topographical and gravitational maps, which were obtained by Clementine, in zones of gravitational anomalies of a different origin. The analysis was directed on search for topographical features describing plume manifestation and for correlation of gravitational anomalies with a topographic relief.

  4. Finite frequency tomography shows a variety of plumes

    NASA Astrophysics Data System (ADS)

    Nolet, G.; Montelli, R.; Masters, G.; Dahlen, F. A.; Hung, S.

    2003-04-01

    The new technique of finite-frequency tomography (see abstract by Montelli et al., this meeting) is very powerful in imaging objects of small dimension in the lower mantle. The first global images of P velocity anomalies obtained by using this technique to invert a small but very accurate data set of long period P arrivals bottoming in the lower mantle show 18 low velocity anomalies in excess of -0.5%, all but two of which are associated with a known hotspot at the surface, and they serve as an unprecented glimpse into the deep mechanisms that give rise to hotspots. The following synopsis is given under the caveat that we have not yet incorporated high frequency waves into the interpretation, nor completed a full resolution analysis at the time of writing of this abstract (both will be presented at the meeting). We observe six or seven hotspots fed by a plume extending to the core-mantle boundary: Cap Verde, Easter Island, Hawaii, Kerguelen, St Helena, Tahiti, and perhaps also Azores. Several hotspots, among which are Bouvet, Bowie, and Mount Erebus, seem to originate at mid-mantle depth, while others (Afar, Ascension, Galapagos, Iceland, la Reunion and others) seem to be mostly confined to the upper mantle. Many renowned hotspots (such as Eifel, Samoa and Yellowstone) have only very weak low velocity anomalies at depth and may be the result of superficial processes confined to the top of the upper mantle. We confirm the existence of the two superplumes which both have Δ V_P < -0.5% extending as high as 2000 km depth. It is clear that no one plume/hotspot model can explain the variety in deep expressions of hotspots in the mantle. If midmantle plume origins represent originally deep plumes in their end stage, while the two unidentified anomalies are either beginning new plumes (Greenland) or plumes cut off in their initial ascent (W. Pacific), the large number of plumes caught in this phase would point to lengthy rise times of the order of tens of millions of

  5. Understanding the nature of mantle upwelling beneath East-Africa

    NASA Astrophysics Data System (ADS)

    Civiero, Chiara; Hammond, James; Goes, Saskia; Ahmed, Abdulhakim; Ayele, Atalay; Doubre, Cecile; Goitom, Berhe; Keir, Derek; Kendall, Mike; Leroy, Sylvie; Ogubazghi, Ghebrebrhan; Rumpker, Georg; Stuart, Graham

    2014-05-01

    The concept of hot upwelling material - otherwise known as mantle plumes - has long been accepted as a possible mechanism to explain hotspots occurring at Earth's surface and it is recognized as a way of removing heat from the deep Earth. Nevertheless, this theory remains controversial since no one has definitively imaged a plume and over the last decades several other potential mechanisms that do not require a deep mantle source have been invoked to explain this phenomenon, for example small-scale convection at rifted margins, meteorite impacts or lithospheric delamination. One of the best locations to study the potential connection between hotspot volcanism at the surface and deep mantle plumes on land is the East African Rift (EAR). We image seismic velocity structure of the mantle below EAR with higher resolution than has been available to date by including seismic data recorded by stations from many regional networks ranging from Saudi Arabia to Tanzania. We use relative travel-time tomography to produce P- velocity models from the surface down into the lower mantle incorporating 9250 ray-paths in our model from 495 events and 402 stations. We add smaller earthquakes (4.5 < mb < 5.5) from poorly sampled regions in order to have a more uniform data coverage. The tomographic results allow us to image structures of ~ 100-km length scales to ~ 1000 km depth beneath the northern East-Africa rift (Ethiopia, Eritrea, Djibouti, Yemen) with good resolution also in the transition zone and uppermost lower mantle. Our observations provide evidence that the shallow mantle slow seismic velocities continue trough the transition zone and into the lower mantle. In particular, the relatively slow velocity anomaly beneath the Afar Depression extends up to depths of at least 1000 km depth while another low-velocity anomaly beneath the Main Ethiopian Rift seems to be present in the upper mantle only. These features in the lower mantle are isolated with a diameter of about 400 km

  6. Is the track of the Yellowstone hotspot driven by a deep mantle plume? -- Review of volcanism, faulting, and uplift in light of new data

    USGS Publications Warehouse

    Pierce, Kenneth L.; Morgan, Lisa A.

    2009-01-01

    Both the belts of faulting and the YCHT are asymmetrical across the volcanic hotspot track, flaring out 1.6 times more on the south than the north side. This and the southeast tilt of the Yellowstone plume may reflect southeast flow of the upper mantle.

  7. Plume-subduction interaction in southern Central America: Mantle upwelling and slab melting

    NASA Astrophysics Data System (ADS)

    Gazel, Esteban; Hoernle, Kaj; Carr, Michael J.; Herzberg, Claude; Saginor, Ian; den Bogaard, Paul van; Hauff, Folkmar; Feigenson, Mark; Swisher, Carl

    2011-01-01

    The volcanic front in southern Central America is well known for its Galapagos OIB-like geochemical signature. A comprehensive set of geochemical, isotopic and geochronological data collected on volumetrically minor alkaline basalts and adakites were used to better constrain the mantle and subduction magma components and to test the different models that explain this OIB signature in an arc setting. We report a migration of back-arc alkaline volcanism towards the northwest, consistent with arc-parallel mantle flow models, and a migration towards the southeast in the adakites possibly tracking the eastward movement of the triple junction where the Panama Fracture Zone intersects the Middle America Trench. The adakites major and trace element compositions are consistent with magmas produced by melting a mantle-wedge source metasomatized by slab derived melts. The alkaline magmas are restricted to areas that have no seismic evidence of a subducting slab. The geochemical signature of the alkaline magmas is mostly controlled by upwelling asthenosphere with minor contributions from subduction components. Mantle potential temperatures calculated from the alkaline basalt primary magmas increased from close to ambient mantle (~ 1380-1410 °C) in the Pliocene to ~ 1450 °C in the younger units. The calculated initial melting pressures for these primary magmas are in the garnet stability field (3.0-2.7 GPa). The average final melting pressures range between 2.7 and 2.5 GPa, which is interpreted as the lithosphere-asthenosphere boundary at ~ 85-90 km. We provide a geotectonic model that integrates the diverse observations presented here. The slab detached after the collision of the Galapagos tracks with the arc (~ 10-8 Ma). The detachment allowed hotter asthenosphere to flow into the mantle wedge. This influx of hotter asthenosphere explains the increase in mantle potential temperatures, the northwest migration in the back-arc alkaline lavas that tracks the passage of the

  8. Low velocities in the oceanic upper mantle and their relation to plumes: insights from SEM-based waveform tomography

    NASA Astrophysics Data System (ADS)

    Lekic, V.; French, S. W.; Romanowicz, B. A.

    2013-12-01

    into several vertically coherent "conduits", the most prominent under Hawaii and the Pacific superswell, where they appear to be rooted in the lower mantle. These conduits have complex shapes, in particular, the one associated with Hawaii undulates as it "rises", and is deflected towards the ridge as it reaches the bottom of the "fingering" layer. Individual hotspots do not lie immediately above the conduits but in their general vicinity. Nor are the fingers always associated with prominent hotspots. This morphology in the top 400 km of the oceanic mantle suggests the presence of a complex dynamic interplay between plate-driven flow just below the lithosphere, return flow directed toward the ridges, and influx from the deep plume conduits.

  9. Keweenaw hot spot: Geophysical evidence for a 1. 1 Ga mantle plume beneath the Midcontinent Rift System

    SciTech Connect

    Hutchinson, D.R. ); White, R.S. ); Cannon, W.F.; Schulz, K.J. )

    1990-07-10

    The Proterozoic Midcontinent Rift System of North America is remarkably similar to Phanerozoic rifted continental margins and flood basalt provinces. Like the younger analogues, the volcanism within this older rift can be explained by decompression melting and rapid extrusion of igneous material during lithospheric extension above a broad, asthenospheric, thermal anomaly which the authors call the Keweenaw hot spot. Great Lakes International Multidisciplinary Program on Crustal evolution seismic reflection profiles constrain end-member models of melt thickness and stretching factors, which yield an inferred mantle potential temperature of 1,500-1,570C during rifting. Combined gravity modeling and subsidence calculations are consistent with stretching factors that reached 3 or 4 before rifting ceased, and much of the lower crust beneath the rift consists of relatively high density intruded or underplated synrift igneous material. The isotopic signature of Keweenawan volcanic rocks, presented in a companion paper by Nicholson and Shirey (this issue), is consistent with the model of passive rifting above an asthenospheric mantle plume.

  10. Sulfur and lead isotopic evidence of relic Archean sediments in the Pitcairn mantle plume

    PubMed Central

    Delavault, Hélène; Thomassot, Emilie; Devey, Colin W.; Dazas, Baptiste

    2016-01-01

    The isotopic diversity of oceanic island basalts (OIB) is usually attributed to the influence, in their sources, of ancient material recycled into the mantle, although the nature, age, and quantities of this material remain controversial. The unradiogenic Pb isotope signature of the enriched mantle I (EM I) source of basalts from, for example, Pitcairn or Walvis Ridge has been variously attributed to recycled pelagic sediments, lower continental crust, or recycled subcontinental lithosphere. Our study helps resolve this debate by showing that Pitcairn lavas contain sulfides whose sulfur isotopic compositions are affected by mass-independent fractionation (S-MIF down to Δ33S = −0.8), something which is thought to have occurred on Earth only before 2.45 Ga, constraining the youngest possible age of the EM I source component. With this independent age constraint and a Monte Carlo refinement modeling of lead isotopes, we place the likely Pitcairn source age at 2.5 Ga to 2.6 Ga. The Pb, Sr, Nd, and Hf isotopic mixing arrays show that the Archean EM I material was poor in trace elements, resembling Archean sediment. After subduction, this Archean sediment apparently remained stored in the deep Earth for billions of years before returning to the surface as Pitcairn´s characteristic EM I signature. The presence of negative S-MIF in the deep mantle may also help resolve the problem of an apparent deficit of negative Δ33S anomalies so far found in surface reservoirs. PMID:27791057

  11. Sulfur and lead isotopic evidence of relic Archean sediments in the Pitcairn mantle plume

    NASA Astrophysics Data System (ADS)

    Delavault, Hélène; Chauvel, Catherine; Thomassot, Emilie; Devey, Colin W.; Dazas, Baptiste

    2016-11-01

    The isotopic diversity of oceanic island basalts (OIB) is usually attributed to the influence, in their sources, of ancient material recycled into the mantle, although the nature, age, and quantities of this material remain controversial. The unradiogenic Pb isotope signature of the enriched mantle I (EM I) source of basalts from, for example, Pitcairn or Walvis Ridge has been variously attributed to recycled pelagic sediments, lower continental crust, or recycled subcontinental lithosphere. Our study helps resolve this debate by showing that Pitcairn lavas contain sulfides whose sulfur isotopic compositions are affected by mass-independent fractionation (S-MIF down to Δ33S = -0.8), something which is thought to have occurred on Earth only before 2.45 Ga, constraining the youngest possible age of the EM I source component. With this independent age constraint and a Monte Carlo refinement modeling of lead isotopes, we place the likely Pitcairn source age at 2.5 Ga to 2.6 Ga. The Pb, Sr, Nd, and Hf isotopic mixing arrays show that the Archean EM I material was poor in trace elements, resembling Archean sediment. After subduction, this Archean sediment apparently remained stored in the deep Earth for billions of years before returning to the surface as Pitcairńs characteristic EM I signature. The presence of negative S-MIF in the deep mantle may also help resolve the problem of an apparent deficit of negative Δ33S anomalies so far found in surface reservoirs.

  12. Geochemistry and petrology of greenstones from the Erdenetsogt formation, central Mongolia: New evidence for a middle Paleozoic mantle plume

    NASA Astrophysics Data System (ADS)

    Ganbat, E.; Ishiwatari, A.; Demberel, O.

    2012-12-01

    implies highly depleted (high melting degree) magma compare with MORB, and more identical to spinel from Hawaiian tholeiitic basalts. From those facts, it is concluded that the Cr-spinel of greenstones may have been derived from a mantle plume source. Furthermore, notable exceptions of the Hangay greenstones are very low ratios of Nb/Zr and Zr/Y (0.05-0.08 and 0.2-0.5, respectively), whereas Hentey basalts show HIMU characteristic (Tsukada, 2006). The greenstones are slightly enriched in LREE and TiO2 (1.6-2.2 wt.%). We suggest that greenstones in Erdenetsogt formation may have been formed as plume-related oceanic island (hotspot or oceanic plateau) within paleo-oceanic plate located between the Siberian and the North China Cratons, and then accreted to the active continental margin of Siberian Craton during middle to late Paleozoic. This setting is analogous to the present southwest Pacific realm. Keywords: Hangay-Hentey accretionary complex, Erdenetsogt Formation, greenstones, clinopyroxene, Cr-spinel, mantle plume

  13. Geochemical Systematics of Hawaiian Post-shield Lavas: Implications for the Chemical Structure of the Hawaiian Mantle Plume

    NASA Astrophysics Data System (ADS)

    Hanano, D.; Weis, D.; Aciego, S.; Scoates, J. S.; Depaolo, D. J.

    2005-12-01

    High-precision Pb and Hf isotopic ratios by MC-ICP-MS and trace element concentrations by HR-ICP-MS of lavas forming Hawaiian volcanoes allow for new perspectives in the study of the source components associated with the Hawaiian mantle plume. In particular, late-stage lavas represent small-volume eruptions and small degrees of melting, and can provide better resolution of the geochemical heterogeneities in the plume. This study involves post-shield lavas from the Mauna Kea, Kohala, and Hualalai volcanoes on the island of Hawaii. Lavas from these specific volcanoes provide information about the region in which the plume is being deflected and sheared to the northwest by the movement of the Pacific plate. Pb isotopic compositions from Hualalai are the least radiogenic with 206Pb/204Pb = 17.888-18.028, compared to 18.343-18.408 for Mauna Kea and 18.286-18.439 for Kohala, which is consistent with each volcano belonging to their respective Loa-Kea Pb trends. Mauna Kea post-shield lavas are less radiogenic in Pb than the shield and post-shield Mauna Kea lavas from HSDP-2, showing a systematic decrease as the volcano evolved from the shield to post-shield stage. A similar trend is observed between the tholeiites and alkaline lavas of Hualalai, while the opposite trend is observed for Kohala. Hualalai and Kohala post-shield lavas form linear arrays in Pb-Pb space with their respective tholeiites, indicating an origin from the same source. However, the relative proportions of the components involved in the genesis of the post-shield lavas appear to be different. Mauna Kea post-shield lavas lie along the lower extension of the Kea-lo8 array of HSDP-2 (Eisele et al., 2003), distinct from older (350-550 kyr) Mauna Kea lavas and recent Kilauea lavas (Abouchami et al., 2005). The low 206Pb/204Pb ratios of Hualalai post-shield lavas are indicative of a unique component in that volcano. The Pb isotopic compositions of the post-shield lavas are thus sampling isotopically distinct

  14. The Quaternary volcanic rocks of the northern Afar Depression (northern Ethiopia): Perspectives on petrology, geochemistry, and tectonics

    NASA Astrophysics Data System (ADS)

    Hagos, Miruts; Koeberl, Christian; van Wyk de Vries, Benjamin

    2016-05-01

    The northern Afar Depression is one of the most volcano-tectonically active parts of the East African Rift system, a place where oceanic rifting may be beginning to form an incipient oceanic crust. In its center, over an area that is ∼80 km long and ∼50 km wide, there are seven major NNW-SSE-aligned shield volcanoes/volcanic edifices surrounded by compositionally distinct fissure-fed basalts. The Quaternary lavas in this area range from transitional to tholeiitic basalts, with significant across-axis variation both in mineralogy and chemistry. The variation in the contents of the major elements (TiO2, Al2O3, and Fe2O3), incompatible trace elements (Nd, Hf, Th, Ta), and the contents and ratios of the rare earth elements (REE) (e.g., (La/Yb)n = 5.3-8.9) indicate some variation in the petrogenetic processes responsible for the formation of these basalts. However, the variation in isotopic compositions of the mafic lavas is minimal (87Sr/86Sr = 0.7036-0.7041, 143Nd/144Nd = 0.51286-0.51289), which suggests only one source for all the Danakil Depression basalts. These basalts have isotope and incompatible trace element ratios that overlap with those of the Oligocene High-Ti2 flood basalts from the Ethiopian Plateau, interpreted as being derived from the last phase/tail of the Afar mantle plume source. Moreover, the Ce/Pb, Ba/U ratios indicate that the involvement of continental crust in the petrogenesis of the basaltic rocks is minimal; instead, both depth and degree of melting of the source reservoir underneath the northern Afar Depression played a major role for the production of incompatible element-enriched basalts (e.g., AleBagu Shield basalts) and the incompatible element-depleted tholeiitic basalts (e.g., Erta'Ale and Alu Shield basalts).

  15. Splash Plumes

    NASA Astrophysics Data System (ADS)

    Davies, J. H.

    2006-12-01

    I have discovered a new class of thermal upwellings in mantle convection simulations which are not rooted in a thermal boundary layer (ref 1). Since they look a bit like water droplet splashes, I have abbreviated these `plumes not rooted in thermal boundary layers' as `splash plumes'. These mantle convection simulations are high resolution ( ~ 22km spacing) 3D spherical simulations at Earth-like vigour. They have a chondritic rate of internal heating and bottom heating that straddles expected Earth values. There is a realistic depth variation in viscosity, with a lithosphere and lower mantle more viscous than upper mantle. The mantle is compressible with the coefficient of thermal expansion decreasing with depth. Some models have phase transitions. The surface of the models is driven by 119Myr of recent plate motion history. At the end of most simulations (present day) we discover many examples of hot mid-mantle thermal anomalies in the shape of bowls which have hot cylindrical plumes rising from the rim. They originate at a range of depths and are not rooted in thermal boundary layers. These splash plumes are formed from hot mantle collecting beneath the surface, and then a cold instability from the surface descending onto the sheet of hot underlying material pushing it down into the mantle and forming a bowl. The plumes are formed by instabilities coming from the bowl rim edge. In fact the downwellings can push the sheets all the way to the core mantle boundary in certain cases where it is then difficult to tell splash plumes apart from `traditional plumes'. Splash plumes might provide explanations for weak, short-lived plumes that do not seem to have deep roots (e.g. Eifel). If the surface boundary condition is made free-slip (ref 2), rather than be driven by recent plate motion history, we do not discover splash plumes but rather large steady strong thermal boundary layer plumes. Therefore while the discovery of splash plumes is interesting, potentially a more

  16. Petrogenesis of nephelinites from the Tarim Large Igneous Province, NW China: Implications for mantle source characteristics and plume-lithosphere interaction

    NASA Astrophysics Data System (ADS)

    Cheng, Zhiguo; Zhang, Zhaochong; Hou, Tong; Santosh, M.; Zhang, Dongyang; Ke, Shan

    2015-04-01

    The nephelinite exposed in the Wajilitage area in the northwestern margin of the Tarim large igneous province (TLIP), Xinjiang, NW China display porphyritic textures with clinopyroxene, nepheline and olivine as the major phenocryst phases, together with minor apatite, sodalite and alkali feldspar. The groundmass typically has cryptocrystalline texture and is composed of crystallites of clinopyroxene, nepheline, Fe-Ti oxides, sodalite, apatite, rutile, biotite, amphibole and alkali feldspar. We report rutile SIMS U-Pb age of 268 ± 30 Ma suggesting that the nephelinite may represent the last phase of the TLIP magmatism, which is also confirmed by the field relation. The nephelinite shows depleted Sr-Nd isotopic compositions with age-corrected 87Sr/86Sr and εNd(t) values of 0.70348-0.70371 and + 3.28 to + 3.88 respectively indicating asthenospheric mantle source. Based on the reconstructed primary melt composition, the depth of magma generation is estimated as 115-140 km and the temperatures of mantle melting as 1540-1575 °C. The hotter than normal asthenospheric mantle temperature suggests the involvement of mantle thermal plume. The Mg isotope values display a limited range of δ26Mg from - 0.35 to - 0.55‰, which are lower than the mantle values (- 0.25‰). The Mg isotopic compositions, combined with the Sr-Nd isotopes and major and trace element data suggest that the Wajilitage nephelinite was most likely generated by low-degree partial melting of the hybridized carbonated peridotite/eclogite source, which we correlate with metasomatism by subducted carbonates within the early-middle Paleozoic convergent regime. A plume-lithosphere model is proposed with slight thinning of the lithosphere and variable depth and degree of melting of the carbonated mantle during the plume-lithosphere interaction. This model also accounts for the variation in lithology of the TLIP.

  17. Double Mantle Plume Upwelling—A Possible Formation Mechanism of Beta Plateau and Devana Chasma,Venus

    NASA Astrophysics Data System (ADS)

    Ding, N.

    2009-12-01

    Ning Ding,Zuoxun Zeng,China University of Geosciences,Wuhan,430074,China NingDing.eagle@gmail.com Introduction:Venus represents a‘one plate planet’[1],and the uplift,fractures and volcanism in Beta Regio on Venus are considered to be formed by lithosphere uplift driven by a hot plume[2]. Based on the double peaking saddle landform,we suggest the tectonic pattern of double mantle plume upwelling to interpret the formation mechanism of Beta Plateau and Devana Chasma.We take a physical modeling to validate this possibility. Model:There is no ductile shear in Venus[3],so we use quartz sands to simulate the crust of Venus.We use two wood stickes 1.5cm in diameter rising from the rubber canvas slowly and straight till about half of the model,then falling down slowly and straight.The base is a hard rubber plate,in the center of which,there are two holes 3cm in diameter,and the distance between them is 5cm.The holes are covered by rubber canvas.We use the quartz sands in colours of white, red and black with particle size of 70 mess as the model materials. Result:Fig.1:At the beginning of the wood stickes upwelling,only fine radial cracks are formed above the upwelling from central to outside.With the upwelling continue,surface energy of the fine radial cracks increase and make the cracks unstable,finally,the fine radial cracks connect each other and form a fracture zone.And then the two mantle plume downwelling,the fracture zone is developed to form a chasma at the end. Fig.2:The four profiles all form reverse faults outside and normal faults inside.But the difference is the faults in the middle of the chasma goes deeper than others.It is the pattern of Beta Plateau where the tectonic rising is cut by Devana Chasma zone in the topographic features. Fig.3:From the tow fig., we can see two points similar:a.the elevation is high and distribution area is large around the area of two upwelling and it is high around the area of chasma,but the distribution area is small

  18. Petrology and Geochronology of Kaula Volcano lavas: An off-axis window into the Hawaiian Mantle Plume

    NASA Astrophysics Data System (ADS)

    Garcia, M. O.; Weis, D.; Jicha, B. R.; Tree, J. P.; Bizimis, M.

    2014-12-01

    The Hawaiian Islands extend NW for 625 km from Lō'ihi to Ka'ula island. One anomalous feature cross-cutting the Hawaiian Islands is the Kaua'i Ridge, a 165 km-long bathymetric high with three well-defined gravity highs. These gravity highs are centered under or near the islands of Ka'ula, Ni'ihau and Kaua'i, and represent the cores of three shield volcanoes whose volumes decrease dramatically with distance from the axis of the Hawaiian Chain (Kaua'i, 58 x 103 km3, Ni'ihau x 103 km, Ka'ula 10 x 103 km; Robinson and Eakins 2006). Ka'ula Volcano, on the SW end of the Kaua'i Ridge, is centered 100 km off the axis of the Hawaiian mantle plume. The volcano is capped by a small island, which is a remnant of a nephelinitic tuff cone. The cone contains abundant accidental bombs of lava (tholeiite, phonolite and basanite), peridotite and pyroxenite, and unexploded ordnance from US military bombing. Two JASON dives on the flanks of Ka'ula recovered only alkalic lavas. Three stage of Ka'ula volcanism have been identified from sampling the volcanic bombs and flanks of the volcano. These rocks were dated using 40Ar/39Ar methods for the basalts and K-Ar for the phonolites. A tholeiitic shield basalt yielded an age of 6.2 Ma, the oldest reliable age for any Hawaiian Island tholeiite. Post-shield phonolites gave ages of 4.0 to 4.2 Ma (Garcia et al., 1986) and rejuvenation stage alkalic basalts yielded ages of 1.9 to 0.5 Ma. These ages are nearly identical to those for the same stages for adjacent Ni'ihau volcano but slightly older than on Kauai, 100 km to the NE (Sherrod et al. 2007). Thus, volcanism was nearly simultaneous along Kaua'i Ridge. The new age results extend to 420 km the distance within the Hawaiian Islands that experienced coeval rejuvenated volcanism. Geochemically, the rejuvenated and tholeiitic lavas from the Kaua'i Ridge are very similar with mixed source signatures of Loa and Kea trend compositions. Mixed Loa-Kea sources have been found for many other Hawaiian

  19. Garnet-bearing ultramafic rocks from the Dominican Republic: Fossil mantle plume fragments in an ultra high pressure oceanic complex?

    NASA Astrophysics Data System (ADS)

    Gazel, Esteban; Abbott, Richard N.; Draper, Grenville

    2011-07-01

    Ultra high pressure (UHP) garnet-bearing ultramafic rocks from the Dominican Republic may represent the only known example where such rocks were exhumed at an ocean-ocean convergent plate boundary, and where the protolith crystallized from a UHP magma (> 3.2 GPa, > 1500 °C). This study focuses on the petrology and geochemistry of one of the ultramafic lithologies, the pegmatitic garnet-clinopyroxenite (garnet + clinopyroxene + spinel + corundum + hornblende). Three distinct types of garnet were recognized: Type-1 garnet (low Ca, high Mg) is interpreted as near magmatic (P > 3.2 GPa, > 1500 °C). Type-1‧ garnet (high Ca, low Mg) is interpreted as having formed approximately isochemically from magmatic high-Al clinopyroxene. Type-2 garnet (intermediate Ca, high Mg, and low Fe + Mn) formed together with hornblende as a result of late, low-pressure retrograde hydration. Clinopyroxene is close to diopside-hedenbergite (Mg# ~ 88) and metasomatized by arc-related fluids. Spinel and corundum occur as microinclusions in type-1 and type-1‧ garnets in the only reported natural occurrence of coexisting garnet + spinel + corundum, indicative of very high pressure. Chondrite-normalized REEs (rare earth elements) of the garnets show humped or weakly sinusoidal patterns, typically associated with garnet inclusions in diamond and garnet in kimberlite that crystallized at UHP conditions. These humped to weakly sinusoidal REE patterns developed as the result of interaction with a light REE-enriched metasomatic fluid. Partitioning of REEs between type-1‧ and type-1 garnets is consistent with the former having inherited its REEs from a high-Al clinopyroxene predecessor. The partitioning preserves a record of near-solidus temperatures (~ 1475 °C). Petrology and phase relationships independently suggest near-solidus conditions > 1500 °C (the highest temperature conditions reported in a UHP orogenic setting), providing evidence for an origin in a mantle plume. Therefore, the

  20. Mantle source of the 2.44-2.50-Ga mantle plume-related magmatism in the Fennoscandian Shield: evidence from Os, Nd, and Sr isotope compositions of the Monchepluton and Kemi intrusions

    NASA Astrophysics Data System (ADS)

    Yang, Sheng-Hong; Hanski, Eero; Li, Chao; Maier, Wolfgang D.; Huhma, Hannu; Mokrushin, Artem V.; Latypov, Rais; Lahaye, Yann; O'Brien, Hugh; Qu, Wen-Jun

    2016-12-01

    Significant PGE and Cr mineralization occurs in a number of 2.44-2.50-Ga mafic layered intrusions located across the Karelian and Kola cratons. The intrusions have been interpreted to be related to mantle plume activity. Most of the intrusions have negative ɛNd values of about -1 to -2 and slightly radiogenic initial Sr isotope compositions of about 0.702 to 0.703. One potential explanation is crustal contamination of a magma derived from a mantle plume, but another possibility is that the magma was derived from metasomatized sub-continental lithospheric mantle. Samples from the upper chromitite layers of the Kemi intrusion and most samples from the previously studied Koitelainen and Akanvaara intrusions have supra-chondritic γOs values indicating some crustal contamination, which may have contributed to the formation of chromitites in these intrusions. Chromite separates from the main ore zone of the Kemi and Monchepluton intrusions show nearly chondritic γOs, similar to the coeval Vetreny belt komatiites. We suggest that the Os isotope composition of the primitive magma was not significantly changed by crustal contamination due to a high Os content of the magma and a low Os content of the contaminant. Modeling suggests that the Os and Nd isotope compositions of the Monchepluton and Kemi intrusions cannot be explained by assuming a magma source in the sub-continental lithospheric mantle with sub-chondritic γOs. A better match for the isotope data would be a plume mantle source with chondritic Re/Os and Os isotope composition, followed by crustal contamination.

  1. Are the Equatorial Highlands on Venus formed by mantle plume diapirs?

    NASA Technical Reports Server (NTRS)

    Olson, Peter

    1991-01-01

    Several origins have been proposed for the Equatorial Highlands on Venus, including spreading centers and plume-related uplift. Recently, the spreading center hypothesis has been shown to be incompatible with the measured geoid and topography variations over the highlands. It is also difficult to reconcile the range of geoid anomalies over the highlands with a steady-state plum model. There is a large variation in admittance values (geoid/topography ratios) among highland regions. This variation suggests that different uplifted regions represent distinct stages in a time dependent process. It has been proposed that the Beta Regio, Thetis Regio, Ovda Regio, and Artemis Plateau Equatorial Highland Regions are formed by large mantel diapirs. According to this model, topography and geoid height decrease with increasing age of the highland, as the diapir spreads out beneath the lithosphere. In order to determine if the diapir model is compatible with the sequence of tectonic and volcanic events recorded in the surface geology of the highlands, a series of finite difference calculations were made of the ascent and partial melting of a spherical thermal diapir in an incompressible, infinite Prandtl number, isoviscous fluid.

  2. Pb, Nd, and Sr isotopic evidence for a multicomponent source for rocks of Cook-Austral Islands and heterogeneities of mantle plumes

    USGS Publications Warehouse

    Nakamura, Y.; Tatsumoto, M.

    1988-01-01

    Sr, Nd, and Pb isotopic compositions were measured in alkaline volcanic rocks (alkali basalt, ankaramite, nephelinite, phonolite, and trachyte) from the South Cook Islands (Aitutaki, Mauke, Rarotonga, Atiu, and Mangaia) and the Austral Islands (Rimatara and Rurutu). The results show that the Cook-Austral rocks have an extremely wide range in isotopic compositions of Pb: 206Pb 204Pb from 18.25 to 21.76, 207pb 204pb from 15.48 to 15.83, and sol208pb 204Pb from 38.37 to 40.62, whereas isotopic compositions of Sr and Nd are less variable. Isotopically, Mangaia, Rimatara, and Rurutu form one group (Mangaia group), which shows extremely radiogenic Pb isotopic compositions but near-MORB (mid-oceanic ridge basalts) values for Sr and Nd isotopic ratios. In contrast, samples from Aitutaki, Rarotonga, Mauke, and Atiu (Aitutaki group) have high 207Pb 204Pb and 208Pb 204Pb and moderately high 87Sr 86Sr (Dupal anomaly). The Aitutaki group could have been derived from heterogeneous mantle plumes, which rose from the enriched deep mantle (the almost primitive lower mantle or recycled continental and oceanic slabs). On the other hand, the Mangaia component could have been derived from the depleted upper mantle which may have been metasomatized with a CO2-rich fluid, as indicated by the near-MORB values of Sr and Nd isotopes. Although Pb isotopic data of the two groups cannot be distinguished from each other statistically, the end components of the Pb-Pb system do not match with those of the Nd-Sr system. Thus, the data must be explained by a multi-, at least three, component mixing model: the mantle plumes (Dupal component and a recycled oceanic slab), metasomatized upper mantle, and lithosphere. The K-Ar ages and isotopic characteristics of the Cook-Austral rocks indicate that if one mantle plume rises from the deep mantle in this region, it has separated into at least two segments on the way to the surface. ?? 1988.

  3. Pb, Nd, and Sr isotopic evidence for a multicomponent source for rocks of Cook-Austral Islands and heterogeneities of mantle plumes

    SciTech Connect

    Nakamura, Yoichi; Tatsumoto, Mitsunobu )

    1988-12-01

    Sr, Nd, and Pb isotopic compositions were measured in alkane volcanic rocks from the South Cook Islands and the Austral Islands. The results show that the Cook-Austral rocks have an extremely wide range in isotopic compositions of Pb: {sup 206}Pb/{sup 204}Pb from 18.25 to 21.76, {sup 207}Pb/{sup 204}Pb from 15.48 to 15.83, and {sup 208}Pb/{sup 204}Pb from 38.37 to 40.62, whereas isotopic compositions of Sr and Nd are less variable. Isotopically, Mangaia, Rimatara, and Rurutu form one group, which shows extremely ratiogenic Pb isotopic compositions but near-MORB (mid-ocean ridge basalts) values for Sr and Nd isotopic ratios. In contrast, samples from Aitutaki, Rarotonga, Mauke, and Atiu (Aitutaki group) have high {sup 207}Pb/{sup 204}Pb and {sup 208}Pb/{sup 204}Pb and moderately high {sup 87}Sr/{sup 86}Sr (Dupal anomaly). The Aitutaki group could have been derived from heterogeneous mantle plumes, which rose from the enriched deep mantle (the almost primitive lower mantle or recycled continental and oceanic slabs). On the other hand, the Mangaia component could have been derived from the depleted upper mantle which may have been metasomatized with a Co{sub 2}-rich fluid, as indicated by the near-MORB values of Sr and Nd isotopes. Although Pb isotopic data of the two groups cannot be distinguished from each other statistically, the end components of the Pb-Pb system do not match with those of the Nd-Sr system. Thus, the data must be explained by a multi-, at least three, component mixing model: the mantle plumes, metasomatized upper mantle, and lithosphere. The K-Ar ages and isotopic characteristics of the Cook-Austral rocks indicate that if one mantle plume rises from the deep mantle in this region, it has separated into at least two segments on the way to the surface.

  4. Is the track of the Yellowstone hotspot driven by a deep mantle plume? — Review of volcanism, faulting, and uplift in light of new data

    NASA Astrophysics Data System (ADS)

    Pierce, Kenneth L.; Morgan, Lisa A.

    2009-11-01

    Geophysical imaging of a tilted mantle plume extending at least 500 km beneath the Yellowstone caldera provides compelling support for a plume origin of the entire Yellowstone hotspot track back to its inception at 17 Ma with eruptions of flood basalts and rhyolite. The widespread volcanism, combined with a large volume of buoyant asthenosphere, supports a plume head as an initial phase. Estimates of the diameter of the plume head suggest it completely spanned the upper mantle and was fed from sources beneath the transition zone, We consider a mantle-plume depth to at least 1,000 km to best explain the large scale of features associated with the hotspot track. The Columbia River-Steens flood basalts form a northward-migrating succession consistent with the outward spreading of a plume head beneath the lithosphere. The northern part of the inferred plume head spread (pancaked) upward beneath Mesozoic oceanic crust to produce flood basalts, whereas basalt melt from the southern part intercepted and melted Paleozoic and older crust to produce rhyolite from 17 to 14 Ma. The plume head overlapped the craton margin as defined by strontium isotopes; westward motion of the North American plate has likely "scraped off" the head from the plume tail. Flood basalt chemistries are explained by delamination of the lithosphere where the plume head intersected this cratonic margin. Before reaching the lithosphere, the rising plume head apparently intercepted the east-dipping Juan de Fuca slab and was deflected ~ 250 km to the west; the plume head eventually broke through the slab, leaving an abruptly truncated slab. Westward deflection of the plume head can explain the anomalously rapid hotspot movement of 62 km/m.y. from 17 to 10 Ma, compared to the rate of ~ 25 km/m.y. from 10 to 2 Ma. A plume head-to-tail transition occurred in the 14-to-10-Ma interval in the central Snake River Plain and was characterized by frequent (every 200-300 ka for about 2 m.y. from 12.7 to 10.5 Ma

  5. Cocos Plate Seamounts offshore NW Costa Rica and SW Nicaragua: Implications for large-scale distribution of Galápagos plume material in the upper mantle

    NASA Astrophysics Data System (ADS)

    Herbrich, Antje; Hoernle, Kaj; Werner, Reinhard; Hauff, Folkmar; Bogaard, Paul v. d.; Garbe-Schönberg, Dieter

    2015-01-01

    The origin of intraplate volcanism not directly part of a hotspot track, such as diffuse seamount provinces, and the extent of mantle plume influence on the upper mantle remain enigmatic. Here we present new 40Ar/39Ar age data and geochemical (major and trace-element and Sr-Nd-Pb isotopic) data from seamounts on the Cocos Plate presently located offshore of NW Costa Rica and SW Nicaragua. The seamounts (~ 7-24 Ma) require mixing of an enriched ocean island basalt composition, similar to that of the Northern Galápagos Domain, with two depleted components. One of the depleted components is similar to East Pacific Rise normal mid-ocean ridge basalt and the other has more depleted incompatible elements, either reflecting secondary melting of MORB or a depleted Galápagos plume component. Seamounts with ages significantly younger than the ocean crust formed in an intraplate setting and can be explained by northward transport of Galápagos plume material along the base of the Cocos Plate up to 900 km away from the hotspot and 250-500 km north of the Galápagos hotspot track. We propose that melting occurs due to decompression as the mantle upwells to shallower depth as it flows northwards, either due to changes in lithospheric thickness or as a result of upwelling at the edge of a viscous plug of accumulated plume material at the base of the lithosphere. The tholeiitic to alkaline basalt compositions of the Cocos Plate Seamounts compared to the more silica under-saturated compositions of Hawaiian rejuvenated and arch (alkali basalts to nephelinites) lavas are likely to reflect the significant difference in age (< 25 vs ~ 90 Ma) and thus thickness of the lithosphere on which the lavas were erupted.

  6. Composition of the Tarim mantle plume: Constraints from clinopyroxene antecrysts in the early Permian Xiaohaizi dykes, NW China

    NASA Astrophysics Data System (ADS)

    Wei, Xun; Xu, Yi-Gang; Luo, Zhen-Yu; Zhao, Jian-Xin; Feng, Yue-Xing

    2015-08-01

    Numerous alkaline basaltic dykes crosscut the Early Permian Xiaohaizi wehrlite in drill-cores and syenite intrusion in the Tarim large igneous province, NW China. One basaltic dyke contains abundant clinopyroxene macrocrysts with strong resorption textures. Such a textural disequilibrium is consistent with their contrasting chemistry between the macrocrysts (Mg# = 80-89) and the host dyke (Mg# = 39, corresponding to Mg# = 73 of clinopyroxene in equilibrium with the dyke), indicating that they are not phenocrysts. The clinopyroxene macrocrysts are characterized by low TiO2 (0.26-1.09 wt.%), Al2O3 (1.15-3.10 wt.%) and Na2O (0.16-0.37 wt.%), unlike those in mantle peridotites but resembling those in layered mafic intrusions in the same area. The clinopyroxene macrocrysts and the clinopyroxenes from the Xiaohaizi cumulate wehrlites define a coherent compositional trend and have identical trace element patterns, pointing to a comagmatic origin for these crystals. Accordingly, the macrocrysts cannot be xenocrysts foreign to the magmatic system. Rather they are antecrysts that crystallized from progenitor magmas and have been reincorporated into the host dyke before intrusion. The 87Sr/86Sri (0.7035-0.7037) and εNdi (4.5-4.8) of the clinopyroxene macrocrysts with high Mg# (80-89) are apparently lower and higher than their respective ratios of the clinopyroxenes in the wehrlites (Mg# = 75-84, 87Sr/86Sri = 0.7038-0.7041, εNdi = 1.0-1.9). This difference in isotopes can be accounted for by assimilation and fractional crystallization (AFC) process operated during the formation of the Xiaohaizi intrusion. In this sense, the clinopyroxene macrocrysts record the composition of the uncontaminated Tarim plume-derived melts.

  7. Geochemistry of Alvarado and Sarmiento Ridges Suggests Widespread Galapagos Plume-Upper Mantle Interaction in the Miocene Eastern Pacific?

    NASA Astrophysics Data System (ADS)

    Castillo, P. R.; Lonsdale, P. F.

    2004-12-01

    Alvarado and Sarmiento are 1-2 km high, ~400 km-long, NE striking volcanic ridges in the Peru Basin that lie 150 km and 250 km, respectively, southeast of the Grijalva Scarp. The latter marks the southern boundary between the younger Cocos-Nazca and older EPR-Farallon crusts. The two ridges were originally proposed as transform fault trails on the Farallon plate, but new evidence suggest that they were the result of fissure eruption during an initially (pre-24Ma) broad zone of Farallon plate rupture. The rupture later became focussed along the Grijalva fracture, splitting the Farallon plate at 23Ma to create the Cocos and Nazca plates and initiating the Cocos-Nazca spreading center. Lava samples from the ridges were dredged during the DANA 02 expedition aboard R/V Revelle in Fall 2003. The lavas are invariably basalts ranging from tholeiitic to alkalic in composition. The basalts have flat to highly incompatible element-enriched trace element patterns and although their isotopic ratios are not as radiogenic as those of some of the Galapagos hotspot lavas, they are neither as depleted as those of normal-MORB (87Sr/86Sr[25Ma] >0.7027; 143Nd/144Nd[25Ma] <0.5130; 206Pb/204Pb[25Ma] >18.66). Some of the ridge lavas are compositionally similar to enriched-MORB erupted along the GSC section close to the Galapagos hotspot, but the majority are more akin to the relatively depleted hotspot lavas erupted at the center of the Galapagos Archipelago. The new geochemical data suggest that the volcanic ridge lavas came from a fairly large, anomalous region of the upper mantle that may have been created by the interaction between a Galapagos plume and the depleted source of MORB.

  8. Radial Anisotropy beneath the Main Ethiopian Rift and Afar Depression

    NASA Astrophysics Data System (ADS)

    Accardo, N. J.; Gaherty, J. B.; Jin, G.; Shillington, D. J.

    2014-12-01

    The Main Ethiopian Rift (MER) and Afar uniquely capture the final stages of transition from continental rifting in the broader East African Rift System to incipient seafloor spreading above a mantle hotspot. Studies of the region increasingly point to magmatism as a controlling factor on continental extension. However, the character and depth extent of these melt products remain contentious. Radial anisotropy derived from surface waves provides a unique diagnostic constraint on the presence of oriented melt pockets versus broader oriented anisotropic fabrics. This study investigates the thermal and radially anisotropic structure beneath the broader MER and Afar to resolve the magmatic character of the region and ultimately to understand the role of magmatism in present day rift development. We utilize 104 stations from 4 collocated arrays in the MER/Afar region to constrain radial anisotropy within the upper mantle via the inversion of Love- and Rayleigh-wave observations between 25 and 100 s period. We employ a multi-channel cross-correlation algorithm to obtain inter-station phase and amplitude information. The multi-channel phase observations are inverted for dynamic phase velocity across the array, which are then corrected for focusing and multipathing using the amplitude observations via Helmholtz tomography. We jointly invert Love- and Rayleigh-wave structural phase velocity measurements employing crustal constraints from co-located active source experiments to obtain estimates of Vsv and Vsh between 50 - 170 km depth. Preliminary results readily reveal the distinct shear velocity structure beneath the MER and Afar. Within the MER, shear velocity structure suggests pronounced low velocities accompanied by strong anisotropy between 80 - 140 km depth beneath the western Ethiopian plateau and rift valley. Within Afar, shear velocity structure is more varied with the slowest velocities found at shallow depths (less than 70 km depth), accompanied by weak

  9. Is the track of the Yellowstone hotspot driven by a deep mantle plume? - Review of volcanism, faulting, and uplift in light of new data

    USGS Publications Warehouse

    Pierce, K.L.; Morgan, L.A.

    2009-01-01

    Geophysical imaging of a tilted mantle plume extending at least 500??km beneath the Yellowstone caldera provides compelling support for a plume origin of the entire Yellowstone hotspot track back to its inception at 17??Ma with eruptions of flood basalts and rhyolite. The widespread volcanism, combined with a large volume of buoyant asthenosphere, supports a plume head as an initial phase. Estimates of the diameter of the plume head suggest it completely spanned the upper mantle and was fed from sources beneath the transition zone, We consider a mantle-plume depth to at least 1,000 km to best explain the large scale of features associated with the hotspot track. The Columbia River-Steens flood basalts form a northward-migrating succession consistent with the outward spreading of a plume head beneath the lithosphere. The northern part of the inferred plume head spread (pancaked) upward beneath Mesozoic oceanic crust to produce flood basalts, whereas basalt melt from the southern part intercepted and melted Paleozoic and older crust to produce rhyolite from 17 to 14??Ma. The plume head overlapped the craton margin as defined by strontium isotopes; westward motion of the North American plate has likely "scraped off" the head from the plume tail. Flood basalt chemistries are explained by delamination of the lithosphere where the plume head intersected this cratonic margin. Before reaching the lithosphere, the rising plume head apparently intercepted the east-dipping Juan de Fuca slab and was deflected ~ 250??km to the west; the plume head eventually broke through the slab, leaving an abruptly truncated slab. Westward deflection of the plume head can explain the anomalously rapid hotspot movement of 62??km/m.y. from 17 to 10??Ma, compared to the rate of ~ 25??km/m.y. from 10 to 2??Ma. A plume head-to-tail transition occurred in the 14-to-10-Ma interval in the central Snake River Plain and was characterized by frequent (every 200-300??ka for about 2??m.y. from 12.7 to 10

  10. Plume-derived rare gases in 380 Ma carbonatites from the Kola region (Russia) and the argon isotopic composition in the deep mantle

    NASA Astrophysics Data System (ADS)

    Marty, Bernard; Tolstikhin, Igor; Kamensky, Igor L.; Nivin, Valentin; Balaganskaya, Elena; Zimmermann, Jean-Louis

    1998-12-01

    In an effort to document the source of the parental melts to carbonatites, we have measured rare gases in 380 Ma carbonatites and associated mineral assemblages from the Kola Peninsula, eastern part of the Baltic shield in Russia. These series were emplaced during widespread Devonian magmatism when several large ultrabasic-alkaline-carbonatite massifs were formed. 4He/ 3He ratios vary from 1×10 6 to 1×10 7 in the bulk He extracted by melting of samples from three localities, including the large Kovdor massif. A comparison of measured abundances of 3He and 4He with those expected from in-situ production revealed a large (up to 10 5 times) excess of 3He, implying a significant contribution from a mantle-derived 3He-bearing fluid. Crushing of these samples allowed extraction of fluids with 4He/ 3He ratios down to 38,000, lower than those of mid-ocean ridge basalts and in the range of 4He/ 3He observed in 3He-rich ocean island basalts (OIBs) related to mantle plumes. 20Ne/ 22Ne up to 12.1±0.2 are higher than the atmospheric value of 9.80, implying the occurrence of primordial (solar-type) neon in the carbonatite source. 20Ne/ 22Ne and 21Ne/ 22Ne ratios display a good correlation, with the regression line close to (slightly to the right of) the Loihi Seamount correlation. Extrapolation of the regression to solar 20Ne/ 22Ne of 13.8 gives a 21Ne/ 22Ne of 0.045 for the plume end-member, well below the mid-ocean ridge basalt (MORB) source (upper mantle) end-member of 0.07. The measured 40Ar/ 36Ar ratios up to 2790 correlate very well with the Ne isotopic ratios, and the best estimate of the 40Ar/ 36Ar ratio of the plume source is within 5000±1000. Although the 3He/ 22Ne ratio in the plume source appears to be comparable to the solar value within a factor of 2, the 22Ne/ 36Ar ratio, computed from Ne-Ar isotope correlation, is two orders of magnitude lower than the solar value. Such difference is unlikely to be due to magmatic fractionation since the observed 4He/ 40Ar

  11. Rare gas isotopes and parent trace elements in ultrabasic-alkaline-carbonatite complexes, Kola Peninsula: identification of lower mantle plume component

    NASA Astrophysics Data System (ADS)

    Tolstikhin, I. N.; Kamensky, I. L.; Marty, B.; Nivin, V. A.; Vetrin, V. R.; Balaganskaya, E. G.; Ikorsky, S. V.; Gannibal, M. A.; Weiss, D.; Verhulst, A.; Demaiffe, D.

    2002-03-01

    During the Devonian magmatism (370 Ma ago) ˜20 ultrabasic-alkaline-carbonatite complexes (UACC) were formed in the Kola Peninsula (north-east of the Baltic Shield). In order to understand mantle and crust sources and processes having set these complexes, rare gases were studied in ˜300 rocks and mineral separates from 9 UACC, and concentrations of parent Li, K, U, and Th were measured in ˜70 samples. 4He/ 3He ratios in He released by fusion vary from pure radiogenic values ˜10 8 down to 6 × 10 4. The cosmogenic and extraterrestrial sources as well as the radiogenic production are unable to account for the extremely high abundances of 3He, up to 4 × 10 -9 cc/g, indicating a mantle-derived fluid in the Kola rocks. In some samples helium extracted by crushing shows quite low 4He/ 3He = 3 × 10 4, well below the mean ratio in mid ocean ridge basalts (MORB), (8.9 ± 1.0) × 10 4, indicating the contribution of 3He-rich plume component. Magnetites are principal carriers of this component. Trapped 3He is extracted from these minerals at high temperatures 1100°C to 1600°C which may correspond to decrepitation or annealing primary fluid inclusions, whereas radiogenic 4He is manly released at a temperature range of 500°C to 1200°C, probably corresponding to activation of 4He sites degraded by U, Th decay. Similar 4He/ 3He ratios were observed in Oligocene flood basalts from the Ethiopian plume. According to a paleo-plate-tectonic reconstruction, 450 Ma ago the Baltica (including the Kola Peninsula) continent drifted not far from the present-day site of that plume. It appears that both magmatic provinces could relate to one and the same deep-seated mantle source. The neon isotopic compositions confirm the occurrence of a plume component since, within a conventional 20Ne/ 22Ne versus 21Ne/ 22Ne diagram, the regression line for Kola samples is indistinguishable from those typical of plumes, such as Loihi (Hawaii). 20Ne/ 22Ne ratios (up to 12.1) correlate well with 40

  12. Temporal variations in the mantle potential temperatures along the Northwest Hawaiian Ridge using olivine-liquid equilibria: Implications for Hawaiian plume melt flux variations

    NASA Astrophysics Data System (ADS)

    Tree, J. P.; Garcia, M. O.; Putirka, K. D.

    2013-12-01

    samples from Midway, Hancock, and Gardner Pinnacles will be analyzed in order to obtain additional estimates of temporal variations in mantle potential temperature variations along the Ridge. Other parameters may also be affecting the magmatic productivity such as source heterogeneities (ie: pyroxenite vs peridotite) or melting pressure. These will be investigated using the computational methods of PRIMELT2 to understand significance of temperature, pressure, and compositional variations on the melt flux history of Hawaiian mantle plume.

  13. New Crustal Thickness for Djibouti, Afar, Using Seismic Techniques

    NASA Astrophysics Data System (ADS)

    Dugda, Mulugeta; Bililign, Solomon

    2008-10-01

    Crustal thickness and Poisson's ratio for the seismic station ATD in Djibouti, Afar, has been investigated using two seismic techniques (H-κ stacking of receiver functions and a joint inversion of receiver functions and surface wave group velocities). Both techniques give consistent results of crustal thickness 23±1.5 km and Poisson's ratio 0.31±0.02. We also determined a mean P-wave velocity (Vp) of ˜6.2 km/s but ˜6.9-7.0 km/s below a 2 - 5 km thick low velocity layer at the surface. Previous studies of crustal structure for Djibouti reported that the crust is 6 to 11 km thick while our study shows that the crust beneath Djibouti is between 20 and 25 km. This study argues that the crustal thickness values reported for Djibouti for the last 3 decades were not consistent with the reports for the other neighboring region in central and eastern Afar. Our results for ATD in Djibouti, however, are consistent with the reports of crustal thickness in many other parts of central and eastern Afar. We attribute this difference to how the Moho (the crust-mantle discontinuity) is defined (an increase of Vp to 7.4 km/s in this study vs. 6.9 km/s in previous studies).

  14. Seismic Observations From the Afar Rift Dynamics Project: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Hammond, J. O.; Guidarelli, M.; Belachew, M.; Keir, D.; Ayele, A.; Ebinger, C.; Stuart, G.; Kendall, J.

    2008-12-01

    Following the 2005 Dabbahu rifting event in Afar, 9 broadband seismometers were installed around the active rift segment to study the microseismicity associated with this and subsequent dyking events. These recorded more than one year of continuous data. In March 2007, 41 stations were deployed throughout Afar and the adjacent rift flanks as part of a large multi-national, collaboration involving universities and organisations from the UK, US and Ethiopia. This abstract describes the crustal and upper mantle structure results of the first 19 months of data. Bulk crustal structure has been determined using the H-k stacking of receiver functions and thickness varies from ~45 km on the rift margins to ~16 km beneath the northeastern Afar stations. Estimates of Vp/Vs show normal continental crust values (1.7-1.8) on the rift margins, and very high values (2.0-2.2) in Afar. A study of seismic noise interferometry is in early stages, but inversions using 20 s Green's function estimates, with some control from regional surface waves, show evidence for thin crustal regions around the recently rifted Dabbahu segment. To improve our understanding of the physical and compositional properties of the crust and locate regions of high attenuation (an indicator of melt), we determine attenuation (Q) using t* values measured from spectra of P wave arrivals. We present whole path attenuation from source to receiver, which will provide a starting point for a future tomographic inversion. SKS-wave splitting results show sharp changes over small lateral distances (40° over <30 km), with fast directions overlying the Dabbahu segment aligning parallel with the recent diking. This supports ideas of melt dominated anisotropy beneath the Ethiopian rift. Seismic tomography inversions show that in the top 150 km low velocities mimic the trend of the seismicity in Afar. The low velocity anomalies extend from the main Ethiopian rift NE, towards Djibouti, and from Djibouti NW towards the

  15. Interaction of extended mantle plume head with ancient lithosphere: evidence from deep-seated xenoliths in basalts and lamprophyre diatremes in Western Syria

    NASA Astrophysics Data System (ADS)

    Sharkov, Evgenii

    2016-04-01

    The Middle Cretaceous lamprophyric diatremes of the Jabel Ansaria Ridge contain xenoliths of ancient lower crustal rocks mainly represented by the suite of partly altered garnet granulite and eclogite-like rocks, which were formed at the expense of ferrogabbros and ferroclinopyroxenites most likely in the course of underplating of Fe-Ti basalt. Garnet (Alm26Grs11Py63) megacrysts and coarse-granular garnet-clinopyroxene intergrowths are most likely the varieties of rocks of this series. Garnet megacrysts are represented by large (up to 10 cm in diameter) round "nodules," often molten from the surface. Garnet is usually fractured, and the kelyphite material similar to that in rocks of the eclogite-granulite series occurs in fractures. In addition, we found several intergrowths of garnet with large (up to 3-5 cm in length) crystals of high-Al augite with the low of Ti and Na contents like in rocks of the eclogite-granulite suite. Coarse-grained garnet-clinopyroxene-hornblende rocks with spinel, as well as megacrysts of Al-Ti augite with kaersutite, form the second group in prevalence. This group is close to mantle xenoliths of the "black series" in alkali Fe-Ti basalt worldwide. Kaersutite in these rocks contains gaseous cavities, which provides evidence for the origin of rocks at the expense of a strongly fluidized melt/fluid. In contrast to rocks of the eclogite-granulite series, these rocks did not undergo alteration. Garnet Alm19-26Grs12-13.5Py59-67.5 usually associates with dark opaque spinel. In contrast, the Late Cenozoic plateaubasalts of the region practically do not contain lower crustal xenoliths, whereas xenoliths of mantle spinel lherzolite (fragments of the upper cooled rim of the plume head) are widely abundant. According to data of mineralogical thermobarometry, rocks of the eclogite-granulite suite were formed at 13.5-15.4 kbar (depths of 45-54 km) and 965-1115°C. Rocks of this suite are typical representatives of the continental lower crust

  16. Sub-km HIMU-type Enriched Mantle at a Mid-ocean Ridge Far From a Plume: Endeavour, JdFR

    NASA Astrophysics Data System (ADS)

    Gill, J. B.; Michael, P. J.; Dreyer, B. M.; Clague, D. A.; Ramos, F. C.

    2015-12-01

    The Endeavour segment of the Juan de Fuca Ridge is characterized by abundant enriched (E) MORB since the currently inflated axial ridge formed <105 years ago, and by the full range of depleted (D) to E-MORB during the last 2300 years in the km-wide axial graben. Two different styles of enrichment of moderately incompatible elements are present. The first characterized basalts across the ~5 km-wide ridge from >10,000 to ~4000 years ago, whereas the second characterizes more recent basalts erupted in the axial graben. We attribute the first to a higher proportion of pyroxenite to enriched peridotite in the mantle source during ridge inflation. The more recent style reflects the reduced role of pyroxenite after the axial graben formed. The enriched component for both styles is a HIMU-type because it has low 87Sr/86Sr and 176Hf/177Hf relative to 143Nd/144Nd, lower 3He/4He (~8.1 RA) than in the more depleted basalts, shallow slopes on Pb isotope diagrams, and high Nb/LREE ratios. It is regionally widespread and shared with the West Valley and Explorer segments to the north. At least 14 different samplings of mantle components occurred within <1 km of ridge length and width during a time when <1 km of upwelling occurred, indicating that the scale of mantle heterogeneity is <1 km in this setting that is far from a plume.

  17. Uppermost mantle velocity from Pn tomography in the Gulf of Aden

    NASA Astrophysics Data System (ADS)

    Corbeau, Jordane; Rolandone, Frédérique; Leroy, Sylvie; Al-Lazki, Ali; Keir, Derek; Stuart, Graham; Stork, Anna

    2013-04-01

    We present an analysis of Pn traveltimes to determine lateral variations of velocity in the uppermost mantle and crustal thickness beneath the Gulf of Aden and its margins. No detailed tomographic image of the entire Gulf of Aden was available. Previous tomographic studies covered the eastern Gulf of Aden and were thus incomplete or at a large scale with a too low resolution to see the lithospheric structures. From 1990 to 2010, 49206 Pn arrivals were selected from the International Seismological Center catalogue. We also used temporary networks : YOCMAL (Young Conjugate Margins Laboratory) networks with broadband stations located in Oman, Yemen and Socotra from 2003 to 2011, and Djibouti network from 2009 to 2011. From these networks we picked Pn arrivals and selected 4110 rays. Using a least-squares tomographic code (Hearn, 1996), these data were analyzed to solve for velocity variations in the mantle lithosphere. We perform different inversions for shorter and longer ray path data sets in order to separate the shallow and deep structure within the mantle lid. In the upper lid, zones of low velocity (7.7 km/s) around Sanaa, Aden, Afar, and along the Gulf of Aden are related to active volcanism. Off-axis volcanism and a regional melting anomaly in the Gulf of Aden area may be connected to the Afar plume, and explained by the model of channeling material away from the Afar plume along ridge-axis. Our study validates the channeling model and shows that the influence of the Afar hotspot may extend much farther eastwards along the Aden and Sheba ridges into the Gulf of Aden than previously believed. Still in the upper lid, high Pn velocities (>8,2 km/s) are observed in Yemen and may be related to the presence of a magmatic underplating under the volcanic margin of Aden and under the Red Sea margins. In the lower lid, zones of low velocities are spatially located differently than in the upper lid. On the Oman margin, a low velocity zone (7.6 km/s) suggests deep partial

  18. Deepwater mantle 3He plumes over the northern Mid-Atlantic Ridge (36°N-40°N) and the Azores Platform

    NASA Astrophysics Data System (ADS)

    Jean-Baptiste, P.; Fourré, E.; Dapoigny, A.; Charlou, J. L.; Donval, J.-P.

    2008-03-01

    As part of a multidisciplinary project aimed at studying mid-ocean ridge processes near the Azores, fifty water column profiles were analyzed for 3He/4He ratios in dissolved helium (a well-known hydrothermal tracer) from 36°N to 40°N along the Mid-Atlantic Ridge (MAR) and over the Azores Plateau. As expected, large δ3He anomalies could be observed over the Rainbow, Lucky Strike, and Menez Gwen hydrothermal sites. The main finding of the present study is the discovery of a large hydrothermal 3He plume north of the Açor Fracture Zone (north AFZ site), with a CH4/3He ratio indicative of a basaltic-hosted hydrothermal system. Clear 3He and CH4 anomalies, likely corresponding to unknown venting sites too, were also detected in the Amar Minor segment and south of the Kurchatov Fracture Zone. Evidence for substantial mantle helium degassing was also observed in the deep nodal basins along the Terceira Rift. On the basis of 3He plumes over the total length of the surveyed segments, the distribution of hydrothermal sites corresponds to a site frequency of 1.3 ± 0.2 site/100 km, in good agreement with the global vent field statistics of Baker and German (2004). For the Rainbow, Lucky Strike, and Menez Gwen sites, the application of a plume model based on the conservation of mass, heat, and momentum shows that the heat output computed by the model is only an estimation of the heat released by the focused part of the flow imputable to one single vent. Applied to the north AFZ venting site for which the height of the plume is not known precisely, the model does not allow us to discriminate between a Menez Gwen/Rainbow type of venting or a more focused vent complex such as the one observed at the TAG site (26°N).

  19. Linking the Earth's surface with the deep-mantle plume beneath a region from Iceland to the city of Perm

    NASA Astrophysics Data System (ADS)

    Glišović, Petar; Forte, Alessandro; Simmons, Nathan; Grand, Stephen

    2014-05-01

    Current tomography models consistently reveal three large-scale regions of strongly reduced seismic velocity in the lowermost mantle under the Pacific, Africa and a region that extends from below Iceland to the city of Perm (the Perm Anomaly). We have carried out mantle dynamic simulations (Glišović et al., GJI 2012; Glišović & Forte, EPSL 2014) of the evolution of these large-scale structures that directly incorporate: 1) robust constraints provided by joint seismic-geodynamic inversions of mantle density structure with constraints provided by mineral physics data (Simmons et al., GJI 2009); and 2) constraints on mantle viscosity inferred by inversion of a suite of convection-related and glacial isostatic adjustment data sets (Mitrovica & Forte, EPSL 2004) characterised by Earth-like Rayleigh numbers. The convection simulations provide a detailed insight into the very-long-time evolution of the buoyancy of these lower-mantle anomalies. We find, in particular, that the buoyancy associated with the Perm Anomaly generates a very long-lived superplume that is connected to the paleomagnetic location of the Siberian Traps at the time of their eruption (Smirnov & Tarduno, EPSL 2010) and also to location of North Atlantic Igneous Provinces (i.e., the opening of North Atlantic Ocean).

  20. Mapping Mantle Mixing and the Extent of Superplume Influence Using He-Ne-Ar-CO2-N2 Isotopes: The Case of the East Africa Rift System

    NASA Astrophysics Data System (ADS)

    Hilton, D. R.; Halldorsson, S. A.; Scarsi, P.; Castillo, P.; Abebe, T.; Kulongoski, J. T.

    2014-12-01

    Earth's mantle possesses distinct and variable volatile characteristics as sampled by magmatic activity in different tectonic environments. In general, trace element depleted mid-ocean ridge basalts, with low Sr and Pb isotope values (but high ɛNd and ɛHf), release mantle-derived noble gases characterised by 3He/4He ~8 ± 1RA, (21Ne/22Ne)ex ~0.06 and 40Ar/36Ar ≥ 10,000 with CO2 and N2 having δ13C~-5‰ and δ15N ~-5‰, respectively. In contrast, enriched intraplate lavas possess higher 3He/4He (up to 50RA), lower (21Ne/22Ne)ex ~0.035 and 40Ar/36Ar ≤ 10,000 with generally higher but variable δ13C and δ15N. These isotopic attributes of mantle-derived volatiles can be exploited to map the extent, and mixing characteristics, of enriched (plume) mantle with depleted asthenospheric mantle ± the effects of over-riding lithosphere and/or crust. The East African Rift System (EARS) is superimposed upon two massive plateaux - the Ethiopia and Kenya domes - regarded as geophysical manifestations of a superplume source, a huge thermochemical anomaly originated at the core-mantle boundary and providing dynamic support for the plateaux. We present new volatile isotopic and relative abundance data (on the same samples) for geothermal fluids (He-CO2-N2), lavas (He-Ne-Ar) and xenoliths (He-Ne-Ar-CO2-N2) which provide an unprecedented overview of the distribution of mantle volatiles of the Ethiopia Dome, from the Red Sea via the Afar region and Main Ethiopian Rift (MER) to the Turkana Depression. Notably, peaks in geothermal fluid 3He/4He (16RA) and δ15N (+6.5‰) are coincident within the MER but the maximum δ13C (-0.78‰) lies ~100 km to the south. Highs in 3He/4He (14RA), δ13C (~-1‰) and δ15N (+3.4‰) for mafic crystals occur in the Afar region ~ 500km to the north. We assess the significance of the off-set in these volatile isotope signals, for sampling volatile heterogeneity in the plume source and/or the relative sensitivity of different volatiles to

  1. Constraints on a plume in the mid-mantle beneath the Iceland region from seismic array data

    USGS Publications Warehouse

    Pritchard, M.J.; Foulger, G.R.; Julian, B.R.; Fyen, J.

    2000-01-01

    Teleseismic P waves passing through low-wave-speed bodies in the mantle are refracted, causing anomalies in their propagation directions that can be measured by seismometer arrays. Waves from earthquakes in the eastern Pacific and western North America arriving at the NORSAR array in Norway and at seismic stations in Scotland pass beneath the Iceland region at depths of ~ 1000-2000 km. Waves arriving at NORSAR have anomalous arrival azimuths consistent with a low-wave-speed body at a depth of ~ 1500 km beneath the Iceland-Faeroe ridge with a maximum diameter of ~ 250 km and a maximum wave-speed contrast of ~ 1.5 per cent. This agrees well with whole-mantle tomography results, which image a low-wave-speed body at this location with a diameter of ~ 500 km and a wave-speed anomaly of ~ 0.5 per cent, bearing in mind that whole-mantle tomography, because of its limited resolution, broadens and weakens small anomalies. The observations cannot resolve the location of the body, and the anomaly could be caused in whole or in part by larger bodies farther away, for example by a body imaged beneath Greenland by whole-mantle tomography.

  2. Full seismic waveform inversion of the African crust and Mantle - Initial Results

    NASA Astrophysics Data System (ADS)

    Afanasiev, Michael; Ermert, Laura; Staring, Myrna; Trampert, Jeannot; Fichtner, Andreas

    2016-04-01

    We report on the progress of a continental-scale full-waveform inversion (FWI) of Africa. From a geodynamic perspective, Africa presents an especially interesting case. This interest stems from the presence of several anomalous features such as a triple junction in the Afar region, a broad region of high topography to the south, and several smaller surface expressions such as the Cameroon Volcanic Line and Congo Basin. The mechanisms behind these anomalies are not fully clear, and debate on their origin spans causative mechanisms from isostatic forcing, to the influence of localized asthenospheric upwelling, to the presence of deep mantle plumes. As well, the connection of these features to the African LLSVP is uncertain. Tomographic images of Africa present unique challenges due to uneven station coverage: while tectonically active areas such as the Afar rift are well sampled, much of the continent exhibits a severe dearth of seismic stations. As well, while mostly surrounded by tectonically active spreading plate boundaries (a fact which contributes to the difficulties in explaining the South's high topography), sizeable seismic events (M > 5) in the continent's interior are relatively rare. To deal with these issues, we present a combined earthquake and ambient noise full-waveform inversion of Africa. The noise component serves to boost near-surface sensitivity, and aids in mitigating issues related to the sparse source / station coverage. The earthquake component, which includes local and teleseismic sources, aims to better resolve deeper structure. This component also has the added benefit of being especially useful in the search for mantle plumes: synthetic tests have shown that the subtle scattering of elastic waves off mantle plumes makes the plumes an ideal target for FWI [1]. We hope that this new model presents a fresh high-resolution image of sub-African geodynamic structure, and helps advance the debate regarding the causative mechanisms of its surface

  3. RHUM-RUM, a Large-Scale Effort to Seismologically Image a Mantle Plume Under the Reunion Hotspot: Experiment Presentation and Initial Results

    NASA Astrophysics Data System (ADS)

    Sigloch, K.; Barruol, G.

    2014-12-01

    RHUM-RUM is a German-French geophysical experiment based on the seafloor and on islands surrounding the hotspot of La Réunion, western Indian Ocean. Its primary objective is to clarify the presence or absence of a mantle plume beneath the Reunion hotspot, which is thought to have first pierced the surface 65 million years ago with the eruption of the Deccan Traps on India. RHUM-RUM's central component is a one-year deployment (Oct 2012 - Nov 2013) of 57 broadband ocean-bottom seismometers (OBS) and hydrophones on an area of 2000x2000 km2 surrounding the hotspot. All OBS have been successfully recovered. We also have been operating 37 land seismometers on the islands of La Réunion, Mauritius, Rodrigues, southern Seychelles, îles Eparses, and on Madagascar between 2011 and 2014. As the data collection stage is drawing to a close, we discuss data yield and quality with respect to RHUM-RUM's primary purpose (passive seismological imaging through all depth levels of the mantle) and secondary applications ("environmental seismology" in a sparsely instrumented area, e.g., tracking of tropical cyclones). We give an overview of the research questions investigated by the RHUM-RUM group, and present preliminary results.

  4. Dating the onset and nature of the Middle Permian Emeishan large igneous province eruptions in SW China using conodont biostratigraphy and its bearing on mantle plume uplift models

    NASA Astrophysics Data System (ADS)

    Sun, Yadong; Lai, Xulong; Wignall, Paul B.; Widdowson, Mike; Ali, Jason R.; Jiang, Haishui; Wang, Wei; Yan, Chunbo; Bond, David P. G.; Védrine, Stéphanie

    2010-09-01

    The Middle Permian Emeishan large igneous province of SW China has provided the quintessential example of the phenomenon of kilometre-scale pre-eruption domal uplift associated with mantle plume impingement on the base of the lithosphere. One key line of evidence is an interpreted zone of truncation of the platform carbonates belonging to the Maokou Formation that underlies the volcanic pile. Here we test this interpretation by conodont age dating the uppermost beds of the Maokou Formation in sections from Yunnan, Sichuan, Guizhou and Guangxi provinces, which span locations from the inner part of the igneous province to several hundred kilometres beyond its margins. The results show that eruptions began in the Jinogondolella altudaensis Zone (˜ 263 Ma) of the Middle Capitanian Stage and greatly increased in extent and volume in the J. xuanhanensis Zone (˜ 262 Ma). Pre-eruption uplift was muted, and most locations within the terrain and at many locations beyond its margins witnessed platform collapse (not uplift) with deep-water facies (radiolarian cherts and submarine fans) developing in the J. altudaensis Zone. The clearest evidence for an emergence surface occurs around the margins of the province in the J. xuanhanensis Zone. This is after the initial onset of eruptions and marks either a eustatic sequence boundary or a brief pulse of tectonic uplift contemporaneous with volcanism. As with recent studies on the basal volcanic successions of the Emeishan LIP, kilometre-scale plume-related domal uplift prior to Emeishan eruptions is not supported by these data; rather a more complex interaction between plume and lithosphere with minor localized uplift and subsidence is inferred.

  5. Isotope-geochemical Nd-Sr evidence of Palaeoproterozoic plume magmatism in Fennoscandia and mantle-crust interaction on stages of layered intrusions formation

    NASA Astrophysics Data System (ADS)

    Serov, Pavel; Bayanova, Tamara; Kunakkuzin, Evgeniy; Steshenko, Ekaterina

    2016-04-01

    characteristic feature is that in most cases, the proportion of mantle component decreases from the central parts of intrusions to their boundary zones. This may indicate a slight degree of contamination of the magma intrusion by crustal material near the contacts with the frame- rocks. Thus, our investigations show that Palaeoproterozoic layered PGE-bearing intrusions in the N-E Fennoscandian Shield were derived from intraplate magmatism. The same Palaeoproterozoic layered intrusions are known on the Fennoscandian Shield, Superior and Wyoming provinces of the world, and according to [Heaman, 1997; Ernst et.al., 2008] they were derived from the mantle plumes which caused the breakup of the oldest Kenorland supercontinent. These studies were supported by the RFBR 15-35-20501.

  6. Mantle plumes beneath the South Pacific superswell revealed by finite frequency P tomography using regional seafloor and island data

    NASA Astrophysics Data System (ADS)

    Obayashi, M.; Yoshimitsu, J.; Sugioka, H.; Ito, A.; Isse, T.; Shiobara, H.; Reymond, D.; Suetsugu, D.

    2016-11-01

    We present a new tomographic image beneath the South Pacific superswell, using finite frequency P wave travel time tomography with global and regional data. The regional stations include broadband ocean-bottom seismograph stations. The tomographic image shows slow anomalies of 200-300 km in diameter beneath most hot spots in the studied region, extending continuously from the shallow upper mantle to 400 km depth. Narrow and weak slow anomalies are detected at depths of 500-1000 km, connecting the upper mantle slow anomalies with large-scale slow anomalies with lateral dimension of 1000-2000 km prevailing below 1000 km depth down to the core-mantle boundary. There are two slow anomalies around the Society hot spot at depths shallower than 400 km, which both emerge from the same slow anomaly at 500 km depth. One of them is located beneath the Society hot spot and the other underlies 500 km east of the Society hot spot, where no volcanism is observed.

  7. Constraining the Composition of the Subcontinental Lithospheric Mantle Beneath the East African Rift: FTIR Analysis of Water in Spinel Peridotite Mantle Xenoliths

    NASA Technical Reports Server (NTRS)

    Erickson, Stephanie Gwen; Nelson, Wendy R.; Peslier, Anne H.; Snow, Jonathan E.

    2014-01-01

    The East African Rift System was initiated by the impingement of the Afar mantle plume on the base of the non-cratonic continental lithosphere (assembled during the Pan-African Orogeny), producing over 300,000 kmof continental flood basalts approx.30 Ma ago. The contribution of the subcontinental lithospheric mantle (SCLM) to this voluminous period of volcanism is implied based on basaltic geochemical and isotopic data. However, the role of percolating melts on the SCLM composition is less clear. Metasomatism is capable of hybridizing or overprinting the geochemical signature of the SCLM. In addition, models suggest that adding fluids to lithospheric mantle affects its stability. We investigated the nature of the SCLM using Fourier transform infrared spectrometry (FTIR) to measure water content in mantle xenoliths entrained in young (1 Ma) basaltic lavas from the Ethiopian volcanic province. The mantle xenoliths consist dominantly of spinel lherzolites and are composed of nominally anhydrous minerals, which can contain trace water as H in mineral defects. Eleven mantle xenoliths come from the Injibara-Gojam region and two from the Mega-Sidamo region. Water abundances of olivines in six samples are 1-5ppm H2O while the rest are below the limit of detection (<0.5 ppm H2O); orthopyroxene and clinopyroxene contain 80-238 and 111-340 ppm wt H2O, respectively. Two xenoliths have higher water contents - a websterite (470 ppm) and dunite (229 ppm), consistent with involvement of ascending melts. The low water content of the upper SCLM beneath Ethiopia is as dry as the oceanic mantle except for small domains represented by percolating melts. Consequently, rifting of the East African lithosphere may not have been facilitated by a hydrated upper mantle.

  8. A Melt Inclusion Study in Primitive Olivines from the Adventive Cones of the Piton de la Fournaise Volcano, La Réunion Island : Implications for the Nature of the Réunion Mantle Plume

    NASA Astrophysics Data System (ADS)

    Valer, M.; Schiano, P.; Bachelery, P.

    2015-12-01

    According to Courtillot et al. (2003), the mantle plume that forms the Réunion hot spot originates from the deepest part of the lower mantle. Based on the isotopic compositions of the lavas, this long-lived plume appears relatively homogeneous during the last 65 My (e.g Fisk et al., 1988), and is believed to correspond to an ubiquitous mantle component common to ocean island basalts (e.g Bosch et al., 2008). Here, we give additional information on the nature of the Réunion mantle plume by studying the chemical composition of silicate melt inclusions trapped within early-formed, primitive olivine crystals (Fo>85%) from the adventive cones of the Piton de la Fournaise Volcano. These cones have emitted distinct magmas from the historical lavas. In particular, we focus on very incompatible trace element ratios, which reflect the long-term characteristics of the basalt sources and do not depend on the age of the source. The results indicate that the trapped melts have very primitive compositions (up to 11.93 wt% MgO) relative to the lavas. They also suggest that the magmas found in the adventive cones originate from a common chemical source, corresponding to either (1) a homogeneous mixed source between different mantle components (HIMU, EM 1, EM 2 and DMM), or (2) a near-primitive less-differentiated mantle source. Some very incompatible trace element ratios (e.g Th/La, Nb/La) display values similar to the primitive mantle ones, giving thus further support for hypothesis (2), as also inferred by Vlastélic et al. (2006) and Schiano et al. (2012). If based on Ce/Pb and Nb/U systematics, Hofmann et al. (1986) argued that the sources of all oceanic basalts (MORB and OIB) have undergone continental crust extraction, we propose an intermediate origin for the Réunion plume, between a primitive-like mantle domain and a depleted one, almost not affected by the recycling processes.

  9. A melt inclusion study in primitive olivines from the adventive cones of the Piton de la Fournaise volcano, La Réunion Island : Implications for the nature of the Réunion mantle plume

    NASA Astrophysics Data System (ADS)

    Valer, Marina; Schiano, Pierre; Bachèlery, Patrick

    2016-04-01

    According to Courtillot et al. (2003), the mantle plume that forms the Réunion hot spot originates from the deepest part of the lower mantle. Based on the isotopic compositions of the lavas, this long-lived plume appears relatively homogeneous during the last 65 My (e.g Fisk et al., 1988), and is believed to correspond to an ubiquitous mantle component common to ocean island basalts (e.g Bosch et al., 2008). Here, we give additional information on the nature of the Réunion mantle plume by studying the chemical composition of silicate melt inclusions trapped within early-formed, primitive olivine crystals (Fo>85%) from the adventive cones of the Piton de la Fournaise volcano. These cones have emitted distinct magmas from the historical lavas. In particular, we focus on very incompatible trace element ratios, which reflect the long-term characteristics of the basalt sources and do not depend on the age of the source. The results indicate that the trapped melts have primitive compositions (up to 10.55 wt.% MgO) relative to the lavas. They also suggest that the magmas found in the adventive cones originate from a common chemical source, corresponding to either (1) a homogeneous mixed source between different mantle components (HIMU, EM 1, EM 2 and DMM), or (2) a near-primitive less-differentiated mantle source. Some very incompatible trace element ratios (e.g Th/La, Nb/La) display values similar to the primitive mantle ones, giving thus further support for hypothesis (2), as also inferred by Vlastélic et al. (2006) and Schiano et al. (2012). If based on Ce/Pb and Nb/U systematics, Hofmann et al. (1986) argued that the sources of all oceanic basalts (MORB and OIB) have undergone continental crust extraction, we propose an intermediate origin for the Réunion plume, between a primitive-like mantle domain and a depleted one, almost not affected by the recycling processes.

  10. Midcontinent rift volcanism in the Lake Superior region: Sr, Nd, and Pb isotopic evidence for a mantle plume origin

    SciTech Connect

    Nicholson, S.W. Univ. of Minnesota, MN ); Shirey, S.B. )

    1990-07-10

    Between 1091 and 1098 Ma, most of a 15- to 20-km thickness of dominantly tholeiitic basalt erupted in the Midcontinent Rift System of the Lake Superior region, North American. The Portage Lake Volcanics in Michigan, which are the youngest MRS flood basalts, fall into distinctly high- and low-TiO{sub 2} types having different liquid lines of descent. Incompatible trace elements in both types of tholeiites are enriched compared to depleted or primitive mantle (La/Yb = 4.3-5.3; Th/Ta = 2.12-2.16; Zr/Y = 4.3-4.4), and both basalt types are isotopically indistinguishable. Sr, Nd, and Pb isotopic compositions of the Portage Lake tholeiites have {sup 87}Sr/{sup 86}Sr{sub i} {approx}0.7038, {epsilon}{sub Nd(1095 Ma)} {approx}0 {plus minus} 2, and {mu}{sub 1} {approx}8.2. Model ages with respect to a depleted mantle source (T{sub DM}) average about 1950-2100 Ma. Portage Lake rhyolits fall into two groups. Type I rhyolites have Nd and Pb isotopic characteristics ({epsilon}{sub Nd(1095 Ma)} {approx}0 to {minus}4.7; {mu}{sub 1} {approx}8.2-7.8) consistent with contamination of tholeiitic rocks by 5-10% Archean crust. The one type II rhyolite analyzed has Nd and Pb isotopic compositions ({epsilon}{sub Nd(1095 Ma)} {approx}{minus}13 to {minus}16; {mu}{sub 1} {approx}7.6-7.7) which are consistent with partial melting of Archean crust. Early Proterozoic crust was not a major contaminant of MRS rocks in the Lake Superior region. Most reported Nd and Pb isotopic compositions of MRS tholeiites from the main stage of volcanism in the Lake Superior region and of the Duluth Complex are comparable to the Nd and Pb isotopic data for Portage lake tholeiites. The isotopic enrichment of the MRS source compared to depleted mantle is striking and must have occurred at least 700 m.y. before 1100 Ma.

  11. The 89 Ma Tortugal komatiitic suite, Costa Rica: Implications for a common geological origin of the Caribbean and Eastern Pacific region from a mantle plume

    NASA Astrophysics Data System (ADS)

    Alvarado, Guillermo E.; Denyer, Percy; Sinton, Christopher W.

    1997-05-01

    Komatiites are reported for the first time in the northern part of the Gulf of Nicoya, Costa Rica. These rocks, dated at 89.7 ± 1.4 Ma (Turonian) by 40Ar/39Ar methods, occur as a large, elongated (14 km long, 1.5 km wide) N60°W striking body in the ophiolitic Nicoya Complex. These lavas have high MgO (26% 29%), Ni, and Cr, have high CaO/Al2O3 (0.98 1.08) and moderate Al2O3/TiO2 (5.55 8.44) ratios, and are depleted in Al2O3 (4% 5.5%), K2O (0.02% 0.37%), and TiO2 (0.59% 0.9%). Although these lavas are cumulates, their geochemical composition indicates an origin from a primary komatiitic magma, with a melting temperature of 1700 °C at a depth of 150 km. Similarities in the petrology and age (88 90 Ma) of Gorgona, Curaìao, and Nicoya-Tortugal mafic and ultramafic volcanic rocks suggest that these rocks had a common origin. These occurrences suggest a single hotspot center over a large area of the Caribbean and Eastern Pacific Mesozoic region due to a major thermal anomaly in the mantle, such as a hot, rising, convective plume.

  12. A kinematic model for the development of the Afar Depression and its paleogeographic implications

    NASA Astrophysics Data System (ADS)

    Redfield, T. F.; Wheeler, W. H.; Often, M.

    2003-11-01

    The Afar Depression is a highly extended region of continental to transitional oceanic crust lying at the junction of the Red Sea, the Gulf of Aden and the Ethiopian rifts. We analyze the evolution of the Afar crust using plate kinematics and published crustal models to constrain the temporal and volumetric evolution of the rift basin. Our reconstruction constrains the regional-scale initial 3D geometry and subsequent extension and is well calibrated at the onset of rifting (˜20 Ma) and from the time of earliest documented sea-floor spreading anomalies (˜6 Ma Red Sea; ˜10 Ma Gulf of Aden). It also suggests the Danakil block is a highly extended body, having undergone between ˜200% and ˜400% stretch. Syn-rift sedimentary and magmatic additions to the crust are taken from the literature. Our analysis reveals a discrepancy: either the base of the crust has not been properly imaged, or a (plume-related?) process has somehow caused bulk removal of crustal material since extension began. Inferring subsidence history from thermal modeling and flexural considerations, we conclude subsidence in Afar was virtually complete by Mid Pliocene time. Our analysis contradicts interpretations of late (post 3 Ma) large (˜2 km) subsidence of the Hadar area near the Ethiopian Plateau, suggesting paleoclimatic data record regional, not local, climate change. Tectonic reconstruction (supported by paleontologic and isotopic data) suggests that a land bridge connected Africa and Arabia, via Danakil, up to the Early to Middle Pliocene. The temporal constraints on land bridge and escarpment morphology constrain Afar paleogeography, climate, and faunal migration routes. These constraints (particularly the development of geographic isolation) are fundamentally important for models evaluating and interpreting biologic evolution in the Afar, including speciation and human origins.

  13. MORB melting processes beneath the southern Mid-Atlantic Ridge (40-55°S): a role for mantle plume-derived pyroxenite

    NASA Astrophysics Data System (ADS)

    le Roux, P. J.; le Roex, A. P.; Schilling, J.-G.

    2002-07-01

    Major and selected trace element abundances of MORB dredged from the moderately slow spreading southern MAR (40-55°S), in the vicinity of the Shona and Discovery mantle plumes, are used to constrain their melting conditions. All samples plot to high Fe8 relative to the Na8-Fe8 global trend, the high Fe8 of N-MORB in particular being anomalous. Shona-influenced MORB plot at lower Na8 and towards higher Fe8 values along the global trend than associated N-MORB, consistent with deeper initiation of melting. Discovery-influenced MORB extend to higher Na8 and lower Fe8 compositions than associated N-MORB. Anomalous Na8 and Fe8, and Si8, Ca8 and Al8, of most Discovery-influenced MORB are interpreted to reflect increased modal clinopyroxene in their source regions. Calculated Fmean range from 15-17% for N-MORB, 16-19% for Shona-influenced MORB, and 11-18.5% for selected, least-anomalous Discovery(+LOMU)-influenced MORB. Calculated Pinitial are fairly constant for N-MORB ( 18+/-2 kbar), slightly greater for Shona-influenced MORB ( 20+/-3 kbar), whereas for least anomalous Discovery(+LOMU)-influenced MORB calculated Pinitial group around 16+/-2 and 22 kbar. Calculated crustal thicknesses range mostly between 6-9 km, but for Shona- and a single Discovery(+LOMU)-influenced MORB location the range is 8-12 km. Anomalous compositions of some Discovery-influenced MORB are interpreted to reflect variable melting of pyroxenite veins, initially formed as small-degree (2-3%) melts of garnet lherzolite within the upwelling off-axis Discovery mantle plume, and subsequently entrained in the ambient spinel lherzolite beneath the ridge axis. Because of lower solidus temperatures relative to ambient spinel lherzolite, initial melting preferentially consumed the low abundance (2.5-3.5%) pyroxenite veins. Variable mixing between vein- and host mantle-derived melts led to the range of Discovery(+LOMU)-influenced MORB compositions. In the vicinity of transform off-sets, melting is restricted

  14. the role of magmatism and segmentation in the structural evolution of the Afar Rift

    NASA Astrophysics Data System (ADS)

    Stab, Martin; Bellahsen, Nicolas; Pik, Raphaël; Quidelleur, Xavier; Ayalew, Dereje; Leroy, Sylvie

    2015-04-01

    -rift magmatic supply. The difference in tectono-magmatic style between Central Afar (distributed extension and thick crust) and Northern Afar Erta Ale segment (narrow graben, thin crust) may be explained by the difference of magma volume (extruded & underplated) brought to the crust during extension. Magma supply in Central Afar thus allows the crust to be stretched without extreme thinning despite high degree of divergence. Thus, break-up may occur in both Central and Northern Afar, not depending on the apparent thickness of the crust but rather on the ability of the system to localize deformation. - There appears to be a link between early-rift transform zones and distribution of magmatic activity that affects in turn the structural style. We suggest that the closest feature from the SDR at mature VPM is the Stratoid series. The difference of volume between the Stratoid and the enormous volume of SDR imaged in seismic studies (e.g South Atlantic) is probably best explained by an initial low mantle potential temperature in Afar. Contrasted structural styles in Afar are the product of magma supply and segmentation, controlling thinning and extension distribution in the rift.

  15. Crustal and upper mantle structure beneath south-western margin of the Arabian Peninsula from teleseismic tomography

    NASA Astrophysics Data System (ADS)

    Korostelev, Félicie; Basuyau, Clémence; Leroy, Sylvie; Tiberi, Christel; Ahmed, Abdulhakim; Stuart, Graham W.; Keir, Derek; Rolandone, Frédérique; Ganad, Ismail; Khanbari, Khaled; Boschi, Lapo

    2014-07-01

    image the lithospheric and upper asthenospheric structure of western continental Yemen with 24 broadband stations to evaluate the role of the Afar plume on the evolution of the continental margin and its extent eastward along the Gulf of Aden. We use teleseismic tomography to compute relative P wave velocity variations in south-western Yemen down to 300 km depth. Published receiver function analysis suggest a dramatic and localized thinning of the crust in the vicinity of the Red Sea and the Gulf of Aden, consistent with the velocity structure that we retrieve in our model. The mantle part of the model is dominated by the presence of a low-velocity anomaly in which we infer partial melting just below thick Oligocene flood basalts and recent off-axis volcanic events (from 15 Ma to present). This low-velocity anomaly could correspond to an abnormally hot mantle and could be responsible for dynamic topography and recent magmatism in western Yemen. Our new P wave velocity model beneath western Yemen suggests the young rift flank volcanoes beneath margins and on the flanks of the Red Sea rift are caused by focused small-scale diapiric upwelling from a broad region of hot mantle beneath the area. Our work shows that relatively hot mantle, along with partial melting of the mantle, can persist beneath rifted margins after breakup has occurred.

  16. Investigating Transition Zone Thickness Variation under the Arabian Plate: Evidence Lacking for Deep Mantle Upwellings

    NASA Astrophysics Data System (ADS)

    Juliá, J.; Tang, Z.; Mai, P. M.; Zahran, H.

    2014-12-01

    Cenozoic volcanic outcrops in Arabia - locally known as harrats - span more than 2000 km along the western half of the Arabian plate, from eastern Yemen to southern Syria. The magmatism is bimodal in character, with older volcanics (30 to 20 My) being tholeiitic-to-transitional and paralleling the Red Sea margin, and younger volcanics (12 Ma to Recent) being transitional-to-strongly-alkalic and aligning in a more north-south direction. The bimodal character has been attributed to a two-stage rifting process along the Red Sea, where the old volcanics would have produced from shallow sources related to an initial passive rifting stage, and young volcanics would have originated from one or more deep-seated mantle plumes driving present active rifting. Early models suggested the harrats would have resulted from either lateral flow from the Afar plume in Ethiopia, or more locally from a separate mantle plume directly located under the shield. Most recently, tomographic images of the Arabian mantle have suggested the northern harrats could be resulting from flow originating at a deep plume under Jordan. In this work, we investigate the location of deep mantle plumes under the Arabian plate by mapping transition zone thickness with teleseismic receiver functions. The transition zone is bounded by seismic discontinuities, nominally at 410 and 660 km depth, originating from phase transitions in the olivine-normative component of the mantle. The precise depth of the discontinuities is strongly dependent on temperature and, due to the opposing signs of the corresponding Clapeyron slopes, positive temperature anomalies are expected to result in thinning of the transition zone. Our dataset consists of ~5000 low-frequency (fc < 0.25 Hz) receiver function waveforms obtained at ~110 broadband stations belonging to a number of permanent and temporary seismic networks in the region. The receiver functions were migrated to depth and stacked along a ~2000 km long record section

  17. P-wave travel-time tomography reveals multiple mantle upwellings beneath the northern East-Africa Rift

    NASA Astrophysics Data System (ADS)

    Hammond, J. O. S.; Civiero, C.; Goes, S. D. B.; Ahmed, A.; Ayele, A.; Doubre, C.; Goitom, B.; Keir, D.; Kendall, M.; Leroy, S. D.; Ogubazghi, G.; Rumpker, G.; Stuart, G. W.

    2014-12-01

    The East African Rift (EAR) shows evidence for active magmatism from the eruption of flood basalts 30 Ma to active volcanism associated with rifting today. Mantle plumes have been invoked as the likely cause. However, the nature of mantle upwelling is debated, with proposed models ranging from a single broad plume, the African Superplume, connected to the LLSVP beneath Southern Africa, to multiple distinct sources of upwelling along the East-Africa Rift. We present a new relative travel-time tomography model that images detailed P-wave velocities below the northern East-African rift from the surface to lower mantle depths. Data comes from 439 stations that cover the area from Tanzania to Saudi Arabia. The aperture of the integrated dataset allows us to image for the first time low-velocity structures of ~ 100-km length scales down to depths of 900 km beneath this region. Our images provide evidence of at least two separate low-velocity structures with a diameter of ~200 km that continue through the transition zone and into the lower mantle: the first, and most pronounced, is beneath the Afar Depression, which extends to at least 900 km depth and a second is located beneath the Main Ethiopian Rift that extends to at least 750 km. Taking into account seismic sensitivity to temperature and thermally controlled phase boundary topography, we interpret these features as multiple focused upwellings from below the transition zone with excess temperatures of ~ 100-150 K. Such temperatures are also fully consistent with previous petrological and other geophysical estimates. Furthermore, the separate structures could explain differences in geochemistry of erupted magmas along the rift zone, as well as the dynamic topography seen at the surface. Our findings thus support the involvement of multiple plumes in the evolution of the EAR and a direct connection between lower mantle features and the volcanism at the surface.

  18. Multiple mantle upwellings in the transition zone beneath the northern East-African Rift system from relative P-wave travel-time tomography

    NASA Astrophysics Data System (ADS)

    Civiero, Chiara; Hammond, James O. S.; Goes, Saskia; Fishwick, Stewart; Ahmed, Abdulhakim; Ayele, Atalay; Doubre, Cecile; Goitom, Berhe; Keir, Derek; Kendall, J.-Michael; Leroy, Sylvie; Ogubazghi, Ghebrebrhan; Rümpker, Georg; Stuart, Graham W.

    2015-09-01

    Mantle plumes and consequent plate extension have been invoked as the likely cause of East African Rift volcanism. However, the nature of mantle upwelling is debated, with proposed configurations ranging from a single broad plume connected to the large low-shear-velocity province beneath Southern Africa, the so-called African Superplume, to multiple lower-mantle sources along the rift. We present a new P-wave travel-time tomography model below the northern East-African, Red Sea, and Gulf of Aden rifts and surrounding areas. Data are from stations that span an area from Madagascar to Saudi Arabia. The aperture of the integrated data set allows us to image structures of ˜100 km length-scale down to depths of 700-800 km beneath the study region. Our images provide evidence of two clusters of low-velocity structures consisting of features with diameter of 100-200 km that extend through the transition zone, the first beneath Afar and a second just west of the Main Ethiopian Rift, a region with off-rift volcanism. Considering seismic sensitivity to temperature, we interpret these features as upwellings with excess temperatures of 100 ± 50 K. The scale of the upwellings is smaller than expected for lower mantle plume sources. This, together with the change in pattern of the low-velocity anomalies across the base of the transition zone, suggests that ponding or flow of deep-plume material below the transition zone may be spawning these upper mantle upwellings. This article was corrected on 28 SEP 2015. See the end of the full text for details.

  19. Petrology and geochronology of lavas from Ka'ula Volcano: Implications for rejuvenated volcanism of the Hawaiian mantle plume

    NASA Astrophysics Data System (ADS)

    Garcia, Michael O.; Weis, Dominique; Jicha, Brian R.; Ito, Garrett; Hanano, Diane

    2016-07-01

    Marine surveying and submersible sampling of Ka'ula Volcano, located 100 km off the axis of the Hawaiian chain, revealed widespread areas of young volcanism. New 40Ar/39Ar and geochemical analyses of the olivine-phyric submarine and subaerial volcanic rocks show that Ka'ula is shrouded with 1.9-0.5 Ma alkalic basalts. The ages and chemistry of these rocks overlap with rejuvenated lavas on nearby, northern Hawaiian Island shields (Ni'ihau, Kaua'i and South Kaua'i Swell). Collectively, these rejuvenated lavas cover a vast area (∼7000 km2), much more extensive than any other area of rejuvenated volcanism worldwide. Ka'ula rejuvenated lavas range widely in alkalinity and incompatible element abundances (e.g., up to 10× P2O5 at a given MgO value) and ratios indicating variable degrees of melting of a heterogeneous source. Heavy REE elements in Ka'ula lavas are pinned at a mantle normalized Yb value of 10 ± 1, reflecting the presence of garnet in the source. Trace element ratios indicate the source also contained phlogopite and an Fe-Ti oxide. The new Ka'ula ages show that rejuvenated volcanism was nearly coeval from ∼0.3 to 0.6 Ma along a 450 km segment of the Hawaiian Islands (from West Maui to north of Ka'ula). The ages and volumes for rejuvenated volcanism are inconsistent with all but one geodynamic melting model proposed to date. This model advocates a significant contribution of pyroxenite to rejuvenated magmas. Analyses of olivine phenocryst compositions suggest a major (33-69%) pyroxenite component in Ka'ula rejuvenated lavas, which correlates positively with radiogenic Pb isotope ratios for Ka'ula. This correlation is also observed in lavas from nearby South Kaua'i lavas, as was reported for Atlantic oceanic islands. The presence of pyroxenite in the source may have extended the duration and volume of Hawaiian rejuvenated volcanism.

  20. Plate break-up geometry in SE-Afar

    NASA Astrophysics Data System (ADS)

    Geoffroy, Laurent; Le Gall, Bernard; Daoud, Mohamed

    2014-05-01

    New structural data acquired in Djibouti strongly support the view of a magma-rich to magma-poor pair of conjugate margins developed in SE Afar since at least 9 Ma. Our model is illustrated by a crustal-scale transect that emphasizes the role of a two-stage extensional detachment fault system, with opposing senses of motion through time. The geometry and kinematics of this detachment fault pattern are mainly documented from lavas and fault dip data extracted from remote sensing imagery (Landsat ETM+, and corresponding DEM), further calibrated by field observations. Although expressed by opposite fault geometries, the two successive extensional events evidenced here are part of a two-stage continental extensional tear-system associated with the ongoing propagation of the Aden-Tadjoura oceanic axis to the NW. A flip-flop evolution of detachment faults accommodating lithosphere divergence has recently been proposed for the development of the Indian Ocean and continental margins (Sauter et al., 2013). However, the SE Afar evolution further suggests a radical and sudden change in lithosphere behavior during extension, from a long-term and widespread magmatic stage to a syn-sedimentary break-up stage where mantle melting concentrates along the future oceanic axis. Of special interest is the fact that a late and rapid stage of non-magmatic extension led to break-up, whose geometry triggered the location of the break-up axis and earliest oceanic accretion. New structural data acquired in Djibouti strongly support the view of a magma-rich to magma-poor pair of conjugate margins developed in SE Afar since at least 9 Ma. Our model is illustrated by a crustal-scale transect that emphasizes the role of a two-stage extensional detachment fault system, with opposing senses of motion through time. The geometry and kinematics of this detachment fault pattern are mainly documented from lavas and fault dip data extracted from remote sensing imagery (Landsat ETM+, and corresponding

  1. Three-dimensional electrical conductivity in the mantle beneath the Payún Matrú Volcanic Field in the Andean backarc of Argentina near 36.5°S: evidence for decapitation of a mantle plume by resurgent upper mantle shear during slab steepening

    NASA Astrophysics Data System (ADS)

    Burd, A. I.; Booker, J. R.; Mackie, R.; Favetto, A.; Pomposiello, M. C.

    2014-08-01

    Southern Mendoza and northern Neuquén Provinces, south of the Pampean Shallow Subduction region in western Argentina, are host to the <2 Myr Payunia Basaltic Province, which covers ˜39 500 km2 with primarily basaltic intraplate volcanism. This backarc igneous province can be explained by extension due to trench roll-back following steepening of a flat slab that existed in the middle to late Miocene. Magnetotelluric data collected at 37 sites from 67°W to 70°W and 35°S to 38°S are used to probe the source of the Payún Matrú basalts. These data, which require significantly 3-D structure, are inverted with a 3-D non-linear conjugate gradient algorithm that minimizes structure for a given data misfit. We identify two significant electrically conductive structures. One, called the SWAP (shallow western asthenospheric plume) approaches the surface beneath the Payún Matrú Caldera and the Trómen Volcano and dips westward towards the subducted Nazca slab. The second, called the DEEP (deep eastern plume) approaches the surface ˜100 km to the southeast of Payún Matrú and dips steeply east to ˜400 km depth while remaining above the subducted Nazca slab. We use a variety of model assessment techniques including forward modelling and constrained inversion to test the veracity of these features. We interpret the SWAP as the source of the <2 Myr intraplate volcanism. Our model assessment permits but does not require the SWAP to connect to the Nazca slab. The SWAP and DEEP are electrically connected only in the shallow crust, which is likely due to the Neuquén sedimentary basin and not a magmatic process. We propose that the SWAP and DEEP may have been more robustly connected in the past, but that the DEEP was decapitated to form the SWAP when shallow northwestward mantle flow resumed during steepening of the slab. The ˜2 Myr basaltic volcanism is the result of this decapitated DEEP magma that had ponded below the crust until extension allowed eruption. The

  2. Along-rift Variations in Deformation and Magmatism in the Ethiopian and Afar Rift Systems

    NASA Astrophysics Data System (ADS)

    Keir, D.; Bastow, I. D.; Corti, G.; Mazzarini, F.; Rooney, T. O.

    2015-12-01

    The geological record at rifts and margins worldwide often reveals along-strike variations in volumes of extruded and intruded igneous rocks. These variations may be the result of asthenospheric heterogeneity, variations in rate, and timing of extension; alternatively, preexisting plate architecture and/or the evolving kinematics of extension during breakup may exert first-order control on magmatism. The Ethiopian and Afar Rift systems provide an excellent opportunity to address this since it exposes, along strike, several sectors of asynchronous rift development from continental rifting in the south to incipient oceanic spreading in the north. Here we perform studies of distribution and style of volcanism and faulting along strike in the MER and Afar. We also incorporate synthesis of geophysical, geochemical, and petrological constraints on magma generation and emplacement in order to discriminate between tectonic and mantle geodynamic controls on the geological record of a newly forming magmatic rift. Along-rift changes in extension by magma intrusion and plate stretching, and the three-dimensional focusing of melt where the rift dramatically narrows each influence igneous intrusion, volcanism and subsidence history. In addition, rift obliquity plays an important role in localizing intrusion into the crust beneath en echelon volcanic segments. Along-strike variations in volumes and types of igneous rocks found at rifted margins thus likely carry information about the development of strain during rifting, as well as the physical state of the convecting mantle at the time of breakup.

  3. Magmatic Plumbing at an Incipient Oceanic Spreading Centre: Evidence From Local Earthquake Data in Northern Afar

    NASA Astrophysics Data System (ADS)

    Illsley-Kemp, F.; Keir, D.; Bull, J. M.; Ayele, A.; Hammond, J. O. S.; Kendal, M. J.; Gallacher, R. J.; Gernon, T.; Goitom, B.

    2015-12-01

    The transition from continental breakup to seafloor spreading is characterised by voluminous intrusive and extrusive magmatic activity, focused along narrow rift segments. The manner in which this magma is stored and transported within the crust is poorly constrained. It is difficult to answer these questions by studying previously rifted continental margins, as the area of transition is buried deep beneath volcanic and sedimentary sequences. Northern Afar presents a unique opportunity to resolve this problem, as it exposes subaerially the magma-rich transition from continental rifting to an oceanic spreading centre. The region therefore acts as a laboratory in which the geological signatures of continental breakup can be investigated unambiguously. For two years, between 2011 and 2013, a seismic network of 20 seismic stations was deployed in the area. Presented here are the hypocentral locations and local magnitudes of over 4500 earthquakes. Seismicity is focused along the western border fault and at active volcanic centres. Magma pathways beneath active volcanoes are clearly defined by seismicity spanning the entire crust. The data allows for the development of a calibrated local magnitude scale for northern Afar and provides an insight into the nature of seismic attenuation in the uppermost mantle. I discuss the implications that these results have on our understanding of the distribution of extension, melt storage and migration and upper mantle processes during the last stages of continental rifting.

  4. The Upper Mantle Flow Field around South-Africa as Reflected by Isotopic Provinciality

    NASA Astrophysics Data System (ADS)

    Meyzen, C.; Blichert-Toft, J.; Ludden, J.; Humler, E.; Mevel, C.; Albarede, F.

    2006-12-01

    Isotopic studies of MORB have established the existence of broad isotopic provinces within the underlying asthenosphere, such as in the Indian Ocean (DUPAL). How these features relate to mantle circulation is, however, still unknown. The steepness of the transition between such isotopic provinces will define the geometry of the velocity field in the upper mantle. In this respect, the transition between the Indian and South Atlantic provinces, two domains that are isotopically contrasted, should be readily identifiable over this long ridge segment. Here, we present Hf isotope data for 60 samples dredged along the SWIR between 35° and 69°E. The new Hf isotope data show that the Indian asthenosphere does not spill directly into the South Atlantic upper mantle: the general decreasing southward gradient observed for ^{176}Hf/^{177}Hf down the mid- Atlantic Ridge, and also for Sr isotopes and model Th/U ratios (derived from Pb isotopes), is overprinted by material with radiogenic Sr, unradiogenic Hf and high Th/U. The Indian domain grades into the South Atlantic around Bouvet, while the South Atlantic collides with the Atlantic province around Tristan. We interpret these features to represent fronts between three adjacent isotopic provinces similar to what has been suggested for the Australian-Antarctic Discordance. The common DUPAL signature of MORB and OIB from the Indian province and the geochemistry of Gulf of Aden MORB and the Afar plume suggest that the source of this distinctive mantle component is deep and lies to the north of the province. This is also what the three-dimensional flow field computed by Behn et al. (2004) from shear-wave splitting shows with a major lower mantle upwelling radiating at the base of the asthenosphere under the Afar plume. Lower mantle gushing out from this source flows southward unimpeded along the Indian ridges, whereas it only reaches the South Atlantic ridge after first having been deflected under the deep roots of the South

  5. Where Plumes Live

    NASA Astrophysics Data System (ADS)

    King, S. D.

    2004-12-01

    From the perspective of fluid dynamics, `Plumes or not?' might be the wrong question. Let me begin by defining a few terms. Plume with a `P' is the well-known thermal structure with thin (order 100 km) tail and large, bulbous head that originates at the core-mantle boundary. The thin tail/large, bulbous-head morphology has been generated in a number of laboratory and numerical experiments. It can be seen, for example, on the cover of the famous fluid dynamics text by Batchelor. There is a clearly-defined range of parameters for which this structure is the preferred solution for instabilities arising from a bottom boundary layer in a convecting fluid. For example, a strong temperature-dependent rheology is needed. By contrast, plume with a `p' is any cylindrical or quasi-cylindrical instability originating from a thermal (or thermo-chemical) boundary layer. In fluid dynamics plume is sometimes used interchangeable with jet. Unless there is a very small temperature drop across the core-mantle boundary or a rather remarkable balance between temperature and composition at the base of the mantle, there are almost certainly plumes. (Note the little p.) Are these plumes the thermal structures with thin (order 100 km) tails and large bulbous heads or could they be broad, hot regions such as the degree 2 pattern seen in global seismic tomography images of the lower mantle, or the disconnected droplets seen in chaotic convection? To study this question, I will present a sequence of numerical `experiments' that illustrate the morphology of instabilities from a basal thermal boundary layer, i.e., plumes. Some of the aspects I will present include: spherical geometry, temperature-and pressure-dependence of rheology, internal heating, pressure-dependent coefficient of thermal expansion, variable coefficient of thermal diffusivity, phase transformations, and compositional layering at the base of the mantle. The goal is to map out the parameters and conditions where Plumes live

  6. Elastic flexure controls magma trajectories and explains the offset of primary volcanic activity upstream of mantle plume axis at la Réunion and Hawaii hotspot islands

    NASA Astrophysics Data System (ADS)

    Gerbault, Muriel; Fontaine, Fabrice J.; Rabinowicz, Michel; Bystricky, Misha

    2017-03-01

    Surface volcanism at la Réunion and Hawaii occurs with an offset of 150-180 km upstream to the plume axis with respect to the plate motion. This striking observation raises questions about the forcing of plume-lithosphere thermo-mechanical interactions on melt trajectories beneath these islands. Based on visco-elasto-plastic numerical models handled at kilometric resolution, we propose to explain this offset by the development of compressional stresses at the base of the lithosphere, that result from elastic plate bending above the upward load exerted by the plume head. This horizontal compression adopts a disc shape centered around the plume axis: (i) it is 20 km thick, (ii) it has a 150 km radius, (iii) it lays at the base of the elastic part of the lithosphere, i.e., around ∼50-70 km depth where the temperature varies from ∼600 °C to ∼750 °C, (iv) it lasts for 5 to 10 My in an oceanic plate of age greater than 70 My, and (vi) it is controlled by the visco-elastic relaxation time at ∼50-70 km depth. This period of time exceeds the time during which both the Somalian/East-African and Pacific plates drift over the Reunion and Hawaii plumes, respectively. This indicates that this basal compression is actually a persistent feature. It is inferred that the buoyant melts percolating in the plume head pond below this zone of compression and eventually spread laterally until the most compressive principal elastic stresses reverse to the vertical, i.e., ∼150 km away from the plume head. There, melts propagate through dikes upwards to ∼35 km depth, where the plate curvature reverses and ambient compression diminishes. This 30-35 km depth may thus host a magmatic reservoir where melts transported by dykes pond. Only after further magmatic differentiation can dykes resume their ascension up to the surface and begin forming a volcanic edifice. As the volcano grows because of melt accumulation at the top of the plate, the lithosphere is flexed downwards

  7. Exposed guyot from the afar rift, ethiopia.

    PubMed

    Bonatti, E; Tazieff, H

    1970-05-29

    A series of originally submarine volcanoes has been found in the Afar Depression. Some of the volcanic structures are morphologically similar to oceanic guyots. One of them consists of strata of finely fragmented and pulverized basaltic glass. The fragmentation of the lava is probably the result of stream explosions taking place during the submarine eruption. The flat top of this guyot is considered to be a constructional feature; by analogy, it is suggested that not all oceanic guyots are necessarily the result of wave truncation of former volcanic islands.

  8. The basaltic volcanism of the Dumisseau Formation in the Sierra de Bahoruco, SW Dominican Republic: A record of the mantle plume-related magmatism of the Caribbean Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Escuder-Viruete, Javier; Joubert, Marc; Abad, Manuel; Pérez-Valera, Fernando; Gabites, Janet

    2016-06-01

    The basaltic volcanism of the Dumisseau Fm in the Sierra de Bahoruco, SW Dominican Republic, offers the opportunity to study, on land, the volcanism of the Caribbean Large Igneous Province (CLIP). It consists of an at least 1.5 km-thick sequence of submarine basaltic flows and pyroclastic deposits, intruded by doleritic dykes and sills. Three geochemical groups have been identified: low-Ti tholeiites (group I); high-Ti transitional basalts (group II); and high-Ti and LREE-enriched alkaline basalts (group III). These geochemical signatures indicate a plume source for all groups of basalts, which are compositionally similar to the volcanic rocks that make up various CLIP fragments in the northern region of the Caribbean Plate. Trace element modelling indicates that group I magmas are products of 8-20% melting of spinel lherzolite, group II magmas result 4-10% melting of a mixture of spinel and garnet lherzolite, and group III basalts are derived by low degrees (0.05-4%) of melting of garnet lherzolite. Dynamic melting models suggest that basalts represent aggregate melts produced by progressive decompression melting in a mantle plume. There is no compositional evidence for the involvement of a Caribbean supra-subduction zone mantle or crust in the generation of the basalts. Two 40Ar/39Ar whole-rock ages reflect the crystallisation of group II magmas at least in the late Campanian (~ 74 Ma) and the lower Eocene (~ 53 Ma). All data suggest that the Dumisseau Fm is an emerged fragment of the CLIP, which continues southward through the Beata Ridge

  9. The development of extension and magmatism in the Red Sea rift of Afar

    NASA Astrophysics Data System (ADS)

    Keir, Derek; Bastow, Ian D.; Pagli, Carolina; Chambers, Emma L.

    2013-11-01

    Despite the importance of continental breakup in plate tectonics, precisely how extensional processes such as brittle faulting, ductile plate stretching, and magma intrusion evolve in space and time during the development of new ocean basins remains poorly understood. The rifting of Arabia from Africa in the Afar depression is an ideal natural laboratory to address this problem since the region exposes subaerially the tectonically active transition from continental rifting to incipient seafloor spreading. We review recent constraints on along-axis variations in rift morphology, crustal and mantle structure, the distribution and style of ongoing faulting, subsurface magmatism and surface volcanism in the Red Sea rift of Afar to understand processes ultimately responsible for the formation of magmatic rifted continental margins. Our synthesis shows that there is a fundamental change in rift morphology from central Afar northward into the Danakil depression, spatially coincident with marked thinning of the crust, an increase in the volume of young basalt flows, and subsidence of the land towards and below sea-level. The variations can be attributed to a northward increase in proportion of extension by ductile plate stretching at the expense of magma intrusion. This is likely in response to a longer history of localised heating and weakening in a narrower rift. Thus, although magma intrusion accommodates strain for a protracted period during rift development, the final stages of breakup are dominated by a phase of plate stretching with a shift from intrusive to extrusive magmatism. This late-stage pulse of decompression melting due to plate thinning may be responsible for the formation of seaward dipping reflector sequences of basalts and sediments, which are ubiquitous at magmatic rifted margins worldwide.

  10. Magmatism on rift flanks: Insights from ambient noise phase velocity in Afar region

    NASA Astrophysics Data System (ADS)

    Korostelev, Félicie; Weemstra, Cornelis; Leroy, Sylvie; Boschi, Lapo; Keir, Derek; Ren, Yong; Molinari, Irene; Ahmed, Abdulhakim; Stuart, Graham W.; Rolandone, Frédérique; Khanbari, Khaled; Hammond, James O. S.; Kendall, J. M.; Doubre, Cécile; Ganad, Ismail Al; Goitom, Berhe; Ayele, Atalay

    2015-04-01

    During the breakup of continents in magmatic settings, the extension of the rift valley is commonly assumed to initially occur by border faulting and progressively migrate in space and time toward the spreading axis. Magmatic processes near the rift flanks are commonly ignored. We present phase velocity maps of the crust and uppermost mantle of the conjugate margins of the southern Red Sea (Afar and Yemen) using ambient noise tomography to constrain crustal modification during breakup. Our images show that the low seismic velocities characterize not only the upper crust beneath the axial volcanic systems but also both upper and lower crust beneath the rift flanks where ongoing volcanism and hydrothermal activity occur at the surface. Magmatic modification of the crust beneath rift flanks likely occurs for a protracted period of time during the breakup process and may persist through to early seafloor spreading.

  11. Regional kinematic models for the development of the Afar depression

    NASA Astrophysics Data System (ADS)

    Redfield, T. F.; Wheeler, W. H.; Often, M.

    2003-04-01

    Few reconstructions of the Afar rift combine plate kinematics with analyses of the rift basin evolution. The Afar rift is a highly-extended region of continental to transitional oceanic crust lying at the junction of the Red Sea, Gulf of Aden and Ethiopian rifts. Here, we present a new Afar reconstruction taking into account plate kinematics, crustal thinning and magmatic construction. We use a regional plate reconstruction incorporating Nubia, Arabia, Somalia and Danakil to constrain the regional-scale extension and subsidence of the rift and relative movement of Danakil. The plate model is temporally and spatially well constrained at the onset of rifting (ca. 20 Ma) and from sea-floor spreading anomalies in the Red Sea (ca. 6 Ma-present) and Gulf of Aden (ca. 10 Ma-present). The Red Sea pre-rift fit is constrained by piercing points along the Red Sea margins (Sultan et al. 1993). We model the Late Oligocene to present-day evolution of the Afar crust by volume balance using a crustal model based on published topographic and depth-to-Moho interpretations as well as volume estimates of extrusive and sedimentary rocks. Errors stemming from plate boundary uncertainties are small in relation to the reconstructed volume. We partition Afar magmatism into pre-extensional and syn-extensional volumes. From thermal modeling and flexural considerations we infer that the regional-scale subsidence of the Afar depression was virtually complete by Mid Pliocene time. Our model supports the interpretation that the escarpments bounding the Afar Depression achieved nearly their present height (ca. 3 km) by the Late Miocene. Erosional considerations suggest the Late Miocene escarpments were steeper than they are today. Our model does not support the interpretation found in the paleo-anthropological literature that Late Miocene and Pliocene vertical movements were sufficiently large (ca. 2 km) to cause small fault blocks such as Hadar to migrate through climatic temperature zones

  12. Small scale inhomogeneity in the mantle source of the Cape Verde hotspot is probably related to plume complexity: implications from Sr, Nd and high precision Pb isotopes and geochemistry

    NASA Astrophysics Data System (ADS)

    Holm, P. M.; Sørensen, R. V.

    2009-04-01

    The volcanic rocks of one of the major islands of the Cape Verde hotspot have been investigated in order to test mantle plume models. From the centre of the Cape Verde Rise an array of islands trend west, the northern HIMU-type Cape Verde Islands. Of these, São Nicolau (SN) is the easternmost and Santo Antão the westernmost. Sixty samples of primitive (MgO = 9-14 wt%) basanitic composition from SN that represent the four volcanic stages of the 9 - 0.1 Ma evolution of the island have been analysed for Sr, Nd and high precision Pb isotopic composition. Pb ranges to a less radiogenic composition than on SA [1] and has lower 8/4 than the rocks of the southern EM1-type Cape Verde islands. Most SN lavas have a young HIMU character with negative 7/4. The most radiogenic Pb at SN is less thorogenic than Pb at SA. Temporal variation is also evident: An intermediate age group of samples have particularly low La/Nb = 0.4 - 0.5 and the least LREE-enrichment for SN. The youngest group of rocks has the lowest Zr/Nb = 2.5 - 3.0 and the most unradiogenic Sr and radiogenic Nd in the archipelago. At least four of the mantle source components for the SN magmas are different from any found in the SA magmas. High precision Pb data allow identification of parallel trends for northern SN and the southern island Santiago, which therefore must have unrelated source components. For the northern Cape Verde islands source compositions vary from E to W as well as with time. This cannot be explained by stationary enriched lithosphere components. The derivation of melts from a complex plume source is modelled. [1] Holm P.M., Wilson J.R., Christensen B.P., Hansen S.L., Hein K.M., Mortensen A.K., Pedersen R., Plesner S., and Runge M.K. (2006) JPetrol 47, 145-189.

  13. Plumes, orogenesis, and supercontinental fragmentation

    NASA Astrophysics Data System (ADS)

    Dalziel, I. W. D.; Lawver, L. A.; Murphy, J. B.

    2000-05-01

    A time-space relationship between large igneous provinces (LIPS), present day hot spots, and the fragmentation of Pangea has been documented over several decades, but the cause of fragmentation has remained elusive. LIPS are regarded either as the result of impingement of a mantle plume on the base of the lithosphere, or as the initial products of adiabatic decompression melting of anomalously hot mantle. Do LIPS therefore constitute evidence of an active role for plumes from the deep mantle in supercontinental fragmentation, or are they merely the first indications of a large-scale but near-surface tectonic process? Two long recognized and enigmatic orogenic events may offer a solution to this geologically important 'chicken or egg' conundrum. The reconstructed early Mesozoic Gondwanide fold belt of South America, southern Africa, and Antarctica, could have resulted from 'plume-modified orogeny', flattening of a downgoing lithospheric slab due to the buoyancy of a plume rising beneath a continental margin subduction zone. If so, the ˜180 Ma Karroo and Ferrar LIPS associated with the opening of the ocean basin between East and West Gondwanaland at ˜165 Ma resulted from impingement of this plume and are unrelated to the thermal insulation of the shallow mantle beneath Gondwanaland. It would then follow that the plume itself played an active, possibly critical, role in the initial breakup of the supercontinent. The Late Paleozoic 'Ancestral Rockies' deformation in the southwestern United States could be yet another example of orogeny driven by a plume that initiated the break-up of Pangea approximately 15 Myr earlier in the Central Atlantic region.

  14. Mantle dynamics following supercontinent formation

    NASA Astrophysics Data System (ADS)

    Heron, Philip J.

    This thesis presents mantle convection numerical simulations of supercontinent formation. Approximately 300 million years ago, through the large-scale subduction of oceanic sea floor, continental material amalgamated to form the supercontinent Pangea. For 100 million years after its formation, Pangea remained relatively stationary, and subduction of oceanic material featured on its margins. The present-day location of the continents is due to the rifting apart of Pangea, with supercontinent dispersal being characterized by increased volcanic activity linked to the generation of deep mantle plumes. The work presented here investigates the thermal evolution of mantle dynamics (e.g., mantle temperatures and sub-continental plumes) following the formation of a supercontinent. Specifically, continental insulation and continental margin subduction are analyzed. Continental material, as compared to oceanic material, inhibits heat flow from the mantle. Previous numerical simulations have shown that the formation of a stationary supercontinent would elevate sub-continental mantle temperatures due to the effect of continental insulation, leading to the break-up of the continent. By modelling a vigorously convecting mantle that features thermally and mechanically distinct continental and oceanic plates, this study shows the effect of continental insulation on the mantle to be minimal. However, the formation of a supercontinent results in sub-continental plume formation due to the re-positioning of subduction zones to the margins of the continent. Accordingly, it is demonstrated that continental insulation is not a significant factor in producing sub-supercontinent plumes but that subduction patterns control the location and timing of upwelling formation. A theme throughout the thesis is an inquiry into why geodynamic studies would produce different results. Mantle viscosity, Rayleigh number, continental size, continental insulation, and oceanic plate boundary evolution are

  15. Zoned mantle convection.

    PubMed

    Albarède, Francis; Van Der Hilst, Rob D

    2002-11-15

    We review the present state of our understanding of mantle convection with respect to geochemical and geophysical evidence and we suggest a model for mantle convection and its evolution over the Earth's history that can reconcile this evidence. Whole-mantle convection, even with material segregated within the D" region just above the core-mantle boundary, is incompatible with the budget of argon and helium and with the inventory of heat sources required by the thermal evolution of the Earth. We show that the deep-mantle composition in lithophilic incompatible elements is inconsistent with the storage of old plates of ordinary oceanic lithosphere, i.e. with the concept of a plate graveyard. Isotopic inventories indicate that the deep-mantle composition is not correctly accounted for by continental debris, primitive material or subducted slabs containing normal oceanic crust. Seismological observations have begun to hint at compositional heterogeneity in the bottom 1000 km or so of the mantle, but there is no compelling evidence in support of an interface between deep and shallow mantle at mid-depth. We suggest that in a system of thermochemical convection, lithospheric plates subduct to a depth that depends - in a complicated fashion - on their composition and thermal structure. The thermal structure of the sinking plates is primarily determined by the direction and rate of convergence, the age of the lithosphere at the trench, the sinking rate and the variation of these parameters over time (i.e. plate-tectonic history) and is not the same for all subduction systems. The sinking rate in the mantle is determined by a combination of thermal (negative) and compositional buoyancy and as regards the latter we consider in particular the effect of the loading of plates with basaltic plateaux produced by plume heads. Barren oceanic plates are relatively buoyant and may be recycled preferentially in the shallow mantle. Oceanic plateau-laden plates have a more pronounced

  16. Compressible plume dynamics in the transition zone

    NASA Astrophysics Data System (ADS)

    Bossmann, A. B.; Van Keken, P. E.; Ritsema, J. E.; Goes, S. D.

    2012-12-01

    Plumes rising from the deep mantle may explain hotspot volcanism, but their occurrence in the lower mantle is not unambiguously confirmed by seismological imaging studies. Additionally, the seismologically observed flat topography of the 670 km discontinuity below hotspots disagrees with the elevation expected due to its negative Clapeyron slope and plume excess temperature. Numerical models that account for realistic rheology, compressibility and consistently implemented phase transitions may help reconciling these observations with the mantle plume hypothesis. Here we present numerical mantle plume models in an axisymmetric spherical shell geometry. The Anelastic Liquid Approximation is applied to the governing equations to account for mantle compressibility, viscous dissipation and work done against gravity. Besides this, a depth- and temperature dependent viscosity and the main phase boundaries at 400 and 670 km depth as well as latent heat effects during the phase transitions are considered. The reference state is based on the Birch-Murnaghan equation of state and considers PREM-like density jumps at 400 and 670 km depth and latent heat effects in the temperature profile. We include a dense layer above the core-mantle boundary from which the plume rises. Plume dynamics and morphology is studied for varying Clapeyron slope, especially at the endothermic phase transition, Rayleigh number and different viscosity models. We evaluate the importance of consistently implementing latent heat in the governing equations and reference state. Furthermore we vary excess density and thickness of the dense layer to study the effects on entrainment of the layer and the dynamics in the transition zone. Our models show that the seismologically observed flat topography of the 670 km phase boundary is consistent with a plume origin in the deep mantle and offer an additional explanation independent of previously proposed ones, as we observe a large plume head in the lower mantle

  17. Double flood basalts and plume head separation at the 660-kilometer discontinuity.

    PubMed

    Bercovici, D; Mahoney, J

    1994-11-25

    Several of the world's flood basalt provinces display two distinct times of major eruptions separated by between 20 million and 90 million years. These double flood basalts may occur because a starting mantle plume head can separate from its trailing conduit upon passing the interface between the upper mantle and the lower mantle. This detached plume head eventually triggers the first flood basalt event. The remaining conduit forms a new plume head, which causes the second eruptive event. The second plume head is predicted to arrive at the lithosphere at least 10 million years after the first plume head, in general agreement with observations regarding double flood basalts.

  18. Evolution of continental-scale drainage in response to mantle dynamics and surface processes: An example from the Ethiopian Highlands

    NASA Astrophysics Data System (ADS)

    Sembroni, Andrea; Molin, Paola; Pazzaglia, Frank J.; Faccenna, Claudio; Abebe, Bekele

    2016-05-01

    Ethiopia offers an excellent opportunity to study the effects and linkage between mantle dynamics and surface processes on landscape evolution. The Ethiopian Highlands (NW Ethiopia), characterized by a huge basaltic plateau, is part of the African Superswell, a wide region of dynamically-supported anomalously high topography related to the rising of the Afar plume. The initiation and steadiness of dynamic support beneath Ethiopia has been explored in several studies. However the presence, role, and timing of dynamic support beneath Ethiopia and its relationship with continental flood basalts volcanism and surface processes are poorly defined. Here, we present a geomorphological analysis of the Ethiopian Highlands supplying new constraints on the evolution of river network. We investigated the general topographic features (filtered topography, swath profiles, local relief) and the river network (river longitudinal profiles) of the study area. We also apply a knickpoint celerity model in order to provide a chronological framework to the evolution of the river network. The results trace the long-term progressive capture of the Ethiopian Highlands drainage system and confirm the long-term dynamic support of the area, documenting its impact on the contrasting development of the Blue Nile and Tekeze basins.

  19. Evolution of continental-scale drainage in response to mantle dynamics and surface processes: an example from the Ethiopian Highlands.

    NASA Astrophysics Data System (ADS)

    Sembroni, Andrea; Molin, Paola; Pazzaglia, Frank J.; Faccenna, Claudio; Abebe, Bekele

    2016-04-01

    Ethiopia offers an excellent opportunity to study the effects and linkage between mantle dynamics and surface processes on landscape evolution. The Ethiopian Highlands (NW Ethiopia), characterized by a huge basaltic plateau, is part of the African Superswell, a wide region of dynamically-supported anomalously high topography related to the rising of the Afar plume. The initiation and steadiness of dynamic support beneath Ethiopia has been explored in several studies. However the presence, role, and timing of dynamic support beneath Ethiopia and its relationship with continental flood basalts volcanism and surface processes are poorly defined. Here, we present a geomorphological analysis of the Ethiopian Highlands supplying new constrains on the evolution of river network. We investigated the general topographic features (filtered topography, swath profiles, local relief) and the river network (river longitudinal profiles) of the study area. We also apply a knickpoint celerity model in order to provide a chronological framework to the evolution of the river network. The results trace the long-term progressive capture of the Ethiopian Highlands drainage system and confirm the long-term dynamic support of the area, documenting its impact on the contrasting development of the Blue Nile and Tekeze basins.

  20. Magmato-tectonic Evolution of Asal Rift, Afar Depression

    NASA Astrophysics Data System (ADS)

    Pinzuti, P.; Manighetti, I.; Humler, E.

    2001-12-01

    We investigate the relationships between magmatic and tectonic activities during rifting, taking the example of Asal, one of the most recent and active rifts of Afar. We sampled and performed combined geochemical (major and trace elements) and paleomagnetic analyses of the successive basaltic lava flows (total: 48) exposed in three of the highest ( ~30-80 m) normal fault escarpments, on either side of the rift inner floor and of the Fieale volcano. Previous dating suggests that lava emplaced in the rift from ~300 ka on, and the piles we analyzed between ~110 and 90 ka. The chemical analyses (48 samples) reveal that all lava was poured out from the same shallow (< a few km) reservoir. Each pile is made of two to four distinct flow sets, each ~10 to 50 m-high and having slightly, hence rapidly evolved through low pressure crystallization. The chemical evolution from one flow set to the next suggests re-feeding of the reservoir (or slight cooling of the mantle). The paleomagnetic analyses (190 samples) reveal that each flow set was erupted very rapidly, as a pulse, in less than a ~thousand years. By contrast, the entire flow piles have properly recorded the secular variation of the magnetic field, including the Blake excursion. It results that, at least between ~110 and 90 ka, the magmatic activity occurred by pulses rapidly pouring out large volumes of lavas every 10+/-5 ka. At the sites analyzed, the lava accumulated during each pulse at a rate of ~1-5 cm/yr, much larger than the fault slip rates. One might conclude that flows continuously covered up and erased tectonic features during rifting. However, the long time-span which separates the initiation of the present rift faults ( ~50+/-20 ka) from the latest lava flows (on rift shoulders, ~90 ka) implies that these faults did not exist before, with the possible exception of those bounding the present inner floor. Rifting therefore occurred through dominant magmatic activity, at least from ~300 to 50 ka, when normal

  1. Three-dimensional simulations of plume-lithosphere interaction at the hawaiian swell

    PubMed

    Moore; Schubert; Tackley

    1998-02-13

    Rapid lithospheric thinning by mantle plumes has not been achieved in numerical experiments performed to date. Efficient thinning depends on small-scale instabilities that convectively remove lithospheric material. These instabilities are favored by hotter plumes or stronger temperature dependence of viscosity, and a simple scaling independent of rheology controls their onset. This scaling allows extrapolation of the results of numerical experiments to the Earth's mantle. Mantle plumes between 100 and 150 kelvins hotter than the background mantle should exhibit small-scale convective rolls aligned with the plate motion. The unusual variation in heat flow across the Hawaiian swell may be due to such instabilities. It was found that the spreading of the plume creates a downwelling curtain of material that isolates it from the rest of the mantle for distances of at least 1000 kilometers from the plume origin. This isolation has important consequences for the geochemical heterogeneity of the lithosphere and upper mantle.

  2. Not so hot "hot spots" in the oceanic mantle.

    PubMed

    Bonath, E

    1990-10-05

    Excess volcanism and crustal swelling associated with hot spots are generally attributed to thermal plumes upwelling from the mantle. This concept has been tested in the portion of the Mid-Atlantic Ridge between 34 degrees and 45 degrees (Azores hot spot). Peridotite and basalt data indicate that the upper mantle in the hot spot has undergone a high degree of melting relative to the mantle elsewhere in the North Atlantic. However, application of various geothermometers suggests that the temperature of equilibration of peridotites in the mantle was lower, or at least not higher, in the hot spot than elsewhere. The presence of H(2)O-rich metasomatized mantle domains, inferred from peridotite and basalt data, would lower the melting temperature of the hot spot mantle and thereby reconcile its high degree ofmelting with the lack of a mantle temperature anomaly. Thus, some so-called hot spots might be melting anomalies unrelated to abnormally high mantle temperature or thermal plumes.

  3. Mapping the Hawaiian plume conduit with converted seismic waves

    PubMed

    Li; Kind; Priestley; Sobolev; Tilmann; Yuan; Weber

    2000-06-22

    The volcanic edifice of the Hawaiian islands and seamounts, as well as the surrounding area of shallow sea floor known as the Hawaiian swell, are believed to result from the passage of the oceanic lithosphere over a mantle hotspot. Although geochemical and gravity observations indicate the existence of a mantle thermal plume beneath Hawaii, no direct seismic evidence for such a plume in the upper mantle has yet been found. Here we present an analysis of compressional-to-shear (P-to-S) converted seismic phases, recorded on seismograph stations on the Hawaiian islands, that indicate a zone of very low shear-wave velocity (< 4 km s(-1)) starting at 130-140 km depth beneath the central part of the island of Hawaii and extending deeper into the upper mantle. We also find that the upper-mantle transition zone (410-660 km depth) appears to be thinned by up to 40-50 km to the south-southwest of the island of Hawaii. We interpret these observations as localized effects of the Hawaiian plume conduit in the asthenosphere and mantle transition zone with excess temperature of approximately 300 degrees C. Large variations in the transition-zone thickness suggest a lower-mantle origin of the Hawaiian plume similar to the Iceland plume, but our results indicate a 100 degrees C higher temperature for the Hawaiian plume.

  4. Governance, Identity, and Counterinsurgency: Evidence from Ramadi and Tal Afar

    DTIC Science & Technology

    2013-03-01

    See Seymour M. Lipset, Political Man, Garden City, NY: Anchor Books, 1963; Arendt Lijphart, Democracy in Plural Societ- ies: A Comparative...Brave Rifles at Tall Afar, Septem- ber 2005,” in William G. Robertson , ed., In Contact! Case Studies from the Long War, Volume I, Ft. Leavenworth, KS...Lijphart, Arend. Democracy in Plural Societies, New Haven, CT: Yale University Press, 1977. Lipset, Seymour M. Political Man, Garden City, NY: Anchor Books

  5. The effect of recycled oceanic crust in the thermal evolution of the Galapagos Plume

    NASA Astrophysics Data System (ADS)

    Gazel, E.; Herzberg, C. T.; Vidito, C. A.

    2011-12-01

    Current models suggest that the massive basaltic production responsible for the emplacement of Large Igneous Provinces (LIPS) during the Permian-Paleocene may represent the initial phases (plume heads) of some of the mantle plumes that feed the current ocean island basalts (OIB). In many cases, magmatism associated with the initiation of mantle plumes was so voluminous that produced global environmental impacts. The origin of these intra-plate magmatism is still debated but recent petrological, geochemical and geophysical studies of some of these localities like Samoa, Hawaii, Galapagos, provide evidence that melting is related to a true mantle plume, representing a geochemically heterogeneous, hot-buoyant domain that originates from a boundary layer beneath the upper mantle. Thus, plume-related magmas produced in OIB and LIPS and their connecting plume tracks are windows into the Earth's mantle, providing evidence on mantle temperature, size and composition of heterogeneities, and the deep earth geochemical cycles. Our preliminary petrological modeling suggests that mantle plumes for LIPS with Permian-Paleocene ages were generally hotter and melted more extensively than plumes of more modern oceanic islands. Although a lot of work has been done on LIPS and OIB, no complete record of the evolution of a mantle plume is available to this point, mostly due to the inaccessibility of the submerged sections of almost all plume tracks. Galapagos-related lavas provide a complete record of the evolution of a mantle plume since the plume's initial stages in the Cretaceous. In the case of the Galapagos, our work suggests a decrease from TP(max) of1650 C in the Cretaceous to 1500 C in the present day. Our recent work on the Galapagos Islands and the preliminary work on older Galapagos-related terranes suggest that this secular cooling is directly related with increasing amounts of recycled crust in the plume.

  6. Plume or no plume: Emeishan Large Igneous Province in Southwest China revisited from receiver function analysis

    NASA Astrophysics Data System (ADS)

    He, Chuansong; Santosh, M.; Wu, Jianping; Chen, Xuanhua

    2014-07-01

    The Late Permian Emeishan Large Igneous Province at the western margin of the Yangtze craton and eastern Tibet is popularly regarded as the signature of mantle plume impingement onto the lithosphere. In this study, we investigate the crustal structure and upper mantle discontinuities of this region by employing H-k stacking of receiver function and depth domain receiver function. Our results image the mantle transition zone. However, no vestiges of any mantle plume upwelling in this area are recorded in our results, and the region is characterized by a largely cold domain. In contrast, our data reveal a region of lower crustal delamination that coincides with the cold mantle transition zone. We therefore suggest that the delaminated lower crustal material was recycled into the upper mantle or the mantle transition zone, turning the latter into a cold domain. The delamination of the lower crust might have also led to asthenospheric upwelling and plume-like upwelling from the mantle transition zone that generated the basalts in the Emeishan Large Igneous Province.

  7. Does MORB reflect upper mantle diversity?

    NASA Astrophysics Data System (ADS)

    Murton, B. J.; Smith, H.; Fitton, G.

    2013-12-01

    It is often stated that MORB provides a window into the composition of the earth's upper mantle. Although MORB displays a range of compositions, its spatial scale tends to be much longer than that of oceanic hotspots or mantle plumes, which also display greater compositional heterogeneity. Hence it is tempting to conclude that oceanic upper mantle is more homogeneous than mantle involved in hotspots and plumes. Observations from the interaction between Iceland and the adjacent Reykjanes Ridge offer a chance to test this view. A remarkable feature of this interaction is the rapid diminution of heterogeneity in basaltic lavas from onshore Iceland to off-shore along the adjacent mid-ocean spreading ridge (the Reykjanes Ridge). Young volcanic rocks on Iceland exhibit a wide range of trace-element and isotopic compositions reflecting a diversity of composition within the plume mantle beneath Iceland. The neovolcanic axis of the adjacent spreading ridge is also affected by the Iceland plume: the presence of a large diameter bathymetric swell, V-shaped ridges migrating out from Iceland, and associated enriched geochemical compositions all point to a ~1000-km diameter regional plume influence. Despite this, the diversity of lava composition decreases rapidly along the Reykanes Ridge away from Iceland. This decrease is unlikely to be an artefact of sampling as the Reykjanes Ridge has a very high density of samples acquired from dredge stations located every 2-3 km, each of which recovered a number of individual lavas. Collapsing the diversity of young lava compositions on Iceland produces a mean composition that lies on a mixing line between lavas from the northern Reykjanes Ridge and the highly enriched peripheral Icelandic volcano of Snaefjelsness. We argue that this decrease in heterogeneity is real and is evidence for either a mantle process that homogenises the outflowing Icelandic plume as it flows away from Iceland beneath the Reykjanes Ridge, or alternatively a

  8. Water in Mantle Sources of Oceanic Basalts

    NASA Astrophysics Data System (ADS)

    Dixon, J. E.

    2006-12-01

    This talk will review estimates of water partitioning during subduction as determined by studies of mantle- derived melts. A major uncertainty in the earth's water cycle is the effect of subduction and recycling of hydrated lithosphere on deep mantle water concentrations. The problem with quantifying the variablility of mantle volatiles is that their concentrations are easily modified by shallow crystallization and degassing processes. Careful examination of volatile data from submarine basalts is required to select only those that have not degassed water. For example, even basalts collected deep on a submarine rift zone are not immune because basaltic volcanoes that have breached the sea surface are like champagne bottles; once the cork is popped, the entire bottle goes flat (e.g., Dixon et al., 1991). Once degassing effects have been eliminated, mantle water concentrations show systematic variations. Mantle sources for mid-ocean ridge basalts contain about 120 ppm water, with the most depleted MORB end-member having about 60 ppm. Source regions for mantle plumes are wetter than MORB sources. The wettest mantle is found in plumes dominated by the "common mantle plume component" (FOZO; 700 to 800 ppm H2O, H2O /Ce=210 to 300). Mantle sources for plumes enriched in recycled lithosphere (EM1, EM2, LOMU, and HIMU) have about half as much water (300 to 400 ppm H2O) and lower ratios of water to similarly incompatible elements (H2O/Ce<=100). High H2O /Ce in FOZO plumes cannot be derived from recycled lithosphere; therefore, a significant amount of water must be juvenile, left over from planetary accretion. Thus, dehydration during subduction effectively partitions water into the exosphere (mantle wedge, crust, ocean, atmosphere) resulting in time-integrated depletion of water relative to other incompatible elements in recycled (deeply subducted) lithosphere and sediments and, ultimately, the majority of the mantle. These results are consistent with a global water cycle

  9. Birch's Mantle

    NASA Astrophysics Data System (ADS)

    Anderson, D. L.

    2002-12-01

    Francis Birch's 1952 paper started the sciences of mineral physics and physics of the Earth's interior. Birch stressed the importance of pressure, compressive strain and volume in mantle physics. Although this may seem to be an obvious lesson many modern paradoxes in the internal constitution of the Earth and mantle dynamics can be traced to a lack of appreciation for the role of compression. The effect of pressure on thermal properties such as expansivity can gravitational stratify the Earth irreversibly during accretion and can keep it chemically stratified. The widespread use of the Boussinesq approximation in mantle geodynamics is the antithesis of Birchian physics. Birch pointed out that eclogite was likely to be an important component of the upper mantle. Plate tectonic recycling and the bouyancy of oceanic crust at midmantle depths gives credence to this suggestion. Although peridotite dominates the upper mantle, variations in eclogite-content may be responsible for melting- or fertility-spots. Birch called attention to the Repetti Discontinuity near 900 km depth as an important geodynamic boundary. This may be the chemical interface between the upper and lower mantles. Recent work in geodynamics and seismology has confirmed the importance of this region of the mantle as a possible barrier. Birch regarded the transition region (TR ; 400 to 1000 km ) as the key to many problems in Earth sciences. The TR contains two major discontinuities ( near 410 and 650 km ) and their depths are a good mantle thermometer which is now being exploited to suggest that much of plate tectonics is confined to the upper mantle ( in Birch's terminology, the mantle above 1000 km depth ). The lower mantle is homogeneous and different from the upper mantle. Density and seismic velocity are very insensitive to temperature there, consistent with tomography. A final key to the operation of the mantle is Birch's suggestion that radioactivities were stripped out of the deeper parts of

  10. Magmatism on rift flanks: insights from Ambient-Noise Phase-velocity in Afar region

    NASA Astrophysics Data System (ADS)

    Korostelev, Félicie; Weemstra, Cornelis; Leroy, Sylvie; Boschi, Lapo; Ren, Yong; Ahmed, Abdulhakim; Keir, Derek; Stuart, Graham W.; Rolandone, Frédérique; Khanbari, Khaled; Hammond, James O. S.; Kendall, J. Michael; Doubre, Cécile; Ganad, Ismail Al

    2015-04-01

    During the breakup of continent in the presence of magma, strain is commonly assumed to initially occur by border faulting, and progressively migrate in space and time towards axial magma intrusion. Magmatic processes near the rift flanks are commonly ignored. We present phase-velocity maps of the crust and uppermost mantle of the conjugate margins of the southern Red Sea (Afar and Yemen) using ambient noise tomography to constrain crustal modification during breakup. Our images show that the low seismic velocities characterize not only upper crust beneath the axial volcanic systems, but also both upper and lower crust beneath rift flanks where ongoing volcanism and hydrothermal activity occurs at the surface. The results show that magmatic modification of the crust beneath rift flanks likely occurs for a protracted period of time during the breakup process, and may persist through to early seafloor spreading. Since ongoing flank magmatism during breakup impacts the thermal evolution of the lithosphere, it has implications for the subsidence history of the rift.

  11. Numerical modeling of mantle wedge processes and exhumation of UHP mantle in subduction zones

    NASA Astrophysics Data System (ADS)

    Gorczyk, W.; Gerya, T. V.; Guillot, S.; Connolly, J. A.; Yuen, D.

    2007-12-01

    The upwelling of subduction generated partially molten rocks is potentially a mechanism for the exhumation of UHP rocks through the mantle wedge. We investigated this processes using a 2-D coupled petrological- thermomechanical model that incorporates slab dehydration and water transport as well as partial melting of mantle and crustal rocks. This approach allows us to study the dynamics of mantle wedge processes including evolution of partially molten plumes and their interaction with surrounding dry mantle. To study the internal structure of the plumes we used ultra-high resolution numerical simulations with 10 billion active markers to detail the internal structure of natural plumes originating from the slab. The plumes consist of partially molten hydrated peridotite, dry solid mantle and subducted oceanic crust, which may comprise up to 12 volume % of the plume. As the plumes grow and mature these materials mix chaotically resulting in attenuation and duplication of the original layering on scales of 1-1000 m. Comparison of numerical results with geological observations from the Horoman ultramafic complex in Japan suggests that mixing and differentiation processes related to development of partially molten plumes above slabs may be responsible for strongly layered lithologically mixed (marble cake) structure of asthenospheric mantle wedges. The recent discovery of garnet bearing peridotites in the subduction zone of the Great Antilles in Hispaniola has raised questions about the process that leads to their exhumation. To evaluate whether upwelling plumes are a plausible exhumation mechanism we investigated the dynamics of subduction of slow spreading ridges. The results show that subduction of strongly serpentinized oceanic plate causes strong dehydration of the slab and leads to a rheological weakening of the interface between subducting and overriding plate. This weakening triggers trench retreat and massive asthenospheric upwelling into the gap between the

  12. Mantle metasomatism

    SciTech Connect

    Menzies, M.; Hawkesworth, C.

    1986-01-01

    The concept of metasomatism and its role in the geochemical enrichment and depletion processes in upper mantle rocks remains contentious. This volume makes a comprehensive contribution to the study of metasomatic and enrichment processes: origin and importance in determining trace element and isotopic heterogeneity in the lithospheric mantle. It begins with a theoretical thermodynamic and experimental justification for metasomatism and proceeds to present evidence for this process from the study of mantle xenoliths. Finally the importance of metasomatism in relation to basaltic volcanism is assessed. The contents are as follows: Dynamics of Translithospheric Migration of Metasomatic Fluid and Alkaline Magma. Solubility of Major and Trace Elements in Mantle Metasomatic Fluids: Experimental Constraints. Mineralogic and Geochemical Evidence for Differing Styles of Metasomatism in Spinel Lherzolite Xenoliths: Enriched Mantle Source Regions of Basalts. Characterization of Mantle Metasomatic Fluids in Spinel Lherzolites and Alkali Clinophyroyxenites from the West Eifel and South-West Uganda. Metasomatised Harzburgites in Kimberlite and Alkaline Magmas: Enriched Resites and ''Flushed'' Lherzolites. Metasomatic and Enrichment Phenomena in Garnet-Peridotite Facies Mantle Xenoliths from the Matsoku Kimberlite Pipe Lesotho. Evidence for Mantle Metasomatism in Periodite Nodules from the Kimberley Pipes South Africa. Metasomatic and Enrichment Processes in Lithospheric Peridotites, an Effective of Asthenosphere-Lithosphere Interaction. Isotope Variations in Recent Volcanics: A Trace Element Perspective. Source Regions of Mid-Ocean Ridge Basalts: Evidence for Enrichment Processes. The Mantle Source for the Hawaiian Islands: Constraints from the Lavas and Ultramafic Inclusions.

  13. Tvashtar's Plume

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This dramatic image of Io was taken by the Long Range Reconnaissance Imager (LORRI) on New Horizons at 11:04 Universal Time on February 28, 2007, just about 5 hours after the spacecraft's closest approach to Jupiter. The distance to Io was 2.5 million kilometers (1.5 million miles) and the image is centered at 85 degrees west longitude. At this distance, one LORRI pixel subtends 12 kilometers (7.4 miles) on Io.

    This processed image provides the best view yet of the enormous 290-kilometer (180-mile) high plume from the volcano Tvashtar, in the 11 o'clock direction near Io's north pole. The plume was first seen by the Hubble Space Telescope two weeks ago and then by New Horizons on February 26; this image is clearer than the February 26 image because Io was closer to the spacecraft, the plume was more backlit by the Sun, and a longer exposure time (75 milliseconds versus 20 milliseconds) was used. Io's dayside was deliberately overexposed in this picture to image the faint plumes, and the long exposure also provided an excellent view of Io's night side, illuminated by Jupiter. The remarkable filamentary structure in the Tvashtar plume is similar to details glimpsed faintly in 1979 Voyager images of a similar plume produced by Io's volcano Pele. However, no previous image by any spacecraft has shown these mysterious structures so clearly.

    The image also shows the much smaller symmetrical fountain of the plume, about 60 kilometers (or 40 miles) high, from the Prometheus volcano in the 9 o'clock direction. The top of a third volcanic plume, from the volcano Masubi, erupts high enough to catch the setting Sun on the night side near the bottom of the image, appearing as an irregular bright patch against Io's Jupiter-lit surface. Several Everest-sized mountains are highlighted by the setting Sun along the terminator, the line between day and night.

    This is the last of a handful of LORRI images that New Horizons is sending 'home' during its busy close

  14. Volatiles, rheology, and mantle convection: Comparing Earth, Venus, and Mars

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.

    1994-01-01

    Silicate rheology is controlled in part by volatile content. The variation of viscosity with position in the mantle will influence the nature of mantle convection; hence, modeling mantle convection and its effect on surface observables such as the geoid places constraints on the viscosity structure of a planet's mantle and may indirectly constrain the volatile distribution. Models of viscous mantle flow and the Earth's geoid indicate that there is roughly a two order of magnitude variation in viscosity between the upper and lower mantles, although there is some disagreement over the depth of the viscosity minimum in the upper mantle. Some studies of post-glacial rebound also support such a viscosity contrast between the upper and lower mantles. On Venus, several highland regions appear to be supported by mantle plumes. Modeling of the geoid and topography of these regions indicates that if these features are plume-related, then the mantle of Venus can not have an Earth-like low viscosity zone in its upper mantle. On Mars, the Tharsis volcanic province has alternatively been explained as supported either by mantle convection or by flexure of a thick lithosphere. If the convective model is correct, then the large geoid anomaly requires that Mars can not have a low viscosity zone in its upper mantle.

  15. The Afar Depression: interpretation of the 1960-2000 earthquakes

    NASA Astrophysics Data System (ADS)

    Hofstetter, R.; Beyth, M.

    2003-11-01

    We studied the seismic activity of the Afar Depression (AD) and adjacent regions during the period 1960-2000. We define seven distinct seismogenic regions using geological, tectonic and seismological data. Based on the frequency-magnitude relationships we obtain b-values of about 1 for the different regions. The pattern of the distribution of the location of epicentres fits with the known active fault zone in the AD and the axial volcanic ridges. The Bab el Mandab area and the Danakil-Aysha'a blocks are less active. For 125 intermediate to strong earthquakes the seismic moment and source parameters were calculated. The results of the fault plane solutions for the Afar Depression indicate mainly strike-slip and normal sense of movement originating from fault planes striking NW-SE. These results indicate a clockwise block rotation described previously as a bookshelf model in central AD. There are a few right-lateral faults east of Massawa with E-W-striking fault planes. At the southern Red Sea, north of the Danakil block, the mixed focal mechanisms, with axial plane striking NW-SE, comprise several reverse faulting, strike-slip motion and normal faulting. Right-lateral movement was also calculated for a cluster of seismic events between the Manda Hararo and Alyata volcanic ridges along NW-SE-striking faults. Along the N-S-striking faults in the escarpment, at the western Afar margins, there are two distinct clusters of epicentres. The strong earthquakes at the southern cluster exhibit normal or strike-slip motions. The intermediate to small earthquakes in the northern cluster exhibit reverse and strike-slip motions. Mainly normal faults were calculated along NE-SW-striking faults of the Ethiopian East African Rift. Estimates of the seismic efficiency suggest that the maximal values are about 50 per cent or less, implying that most of the motion is taken aseismically.

  16. The planet beyond the plume hypothesis

    NASA Astrophysics Data System (ADS)

    Smith, Alan D.; Lewis, Charles

    1999-12-01

    Acceptance of the theory of plate tectonics was accompanied by the rise of the mantle plume/hotspot concept which has come to dominate geodynamics from its use both as an explanation for the origin of intraplate volcanism and as a reference frame for plate motions. However, even with a large degree of flexibility permitted in plume composition, temperature, size, and depth of origin, adoption of any limited number of hotspots means the plume model cannot account for all occurrences of the type of volcanism it was devised to explain. While scientific protocol would normally demand that an alternative explanation be sought, there have been few challenges to "plume theory" on account of a series of intricate controls set up by the plume model which makes plumes seem to be an essential feature of the Earth. The hotspot frame acts not only as a reference but also controls plate tectonics. Accommodating plumes relegates mantle convection to a weak, sluggish effect such that basal drag appears as a minor, resisting force, with plates having to move themselves by boundary forces and continents having to be rifted by plumes. Correspondingly, the geochemical evolution of the mantle is controlled by the requirement to isolate subducted crust into plume sources which limits potential buffers on the composition of the MORB-source to plume- or lower mantle material. Crustal growth and Precambrian tectonics are controlled by interpretations of greenstone belts as oceanic plateaus generated by plumes. Challenges to any aspect of the plume model are thus liable to be dismissed unless a counter explanation is offered across the geodynamic spectrum influenced by "plume theory". Nonetheless, an alternative synthesis can be made based on longstanding petrological evidence for derivation of intraplate volcanism from volatile-bearing sources (wetspots) in conjunction with concepts dismissed for being incompatible or superfluous to "plume theory". In the alternative Earth, the sources for

  17. Propagating buoyant mantle upwelling on the Reykjanes Ridge

    NASA Astrophysics Data System (ADS)

    Martinez, Fernando; Hey, Richard

    2017-01-01

    Crustal features of the Reykjanes Ridge have been attributed to mantle plume flow radiating outward from the Iceland hotspot. This model requires very rapid mantle upwelling and a "rheological boundary" at the solidus to deflect plume material laterally and prevent extreme melting above the plume stem. Here we propose an alternative explanation in which shallow buoyant mantle upwelling instabilities propagate along axis to form the crustal features of the ridge and flanks. As only the locus of buoyant upwelling propagates this mechanism removes the need for rapid mantle plume flow. Based on new geophysical mapping we show that a persistent sub-axial low viscosity channel supporting buoyant mantle upwelling can explain the current oblique geometry of the ridge as a reestablishment of its original configuration following an abrupt change in opening direction. This mechanism further explains the replacement of ridge-orthogonal crustal segmentation with V-shaped crustal ridges and troughs. Our findings indicate that crustal features of the Reykjanes Ridge and flanks are formed by shallow buoyant mantle instabilities, fundamentally like at other slow spreading ridges, and need not reflect deep mantle plume flow.

  18. Origin of Plumes in Paleogeographically Constrained Global Convection Models

    NASA Astrophysics Data System (ADS)

    Hassan, R.; Flament, N. E.; Gurnis, M.; Bower, D. J.; Müller, D.

    2015-12-01

    Large igneous provinces (LIPs) erupting since 200 Ma may have originated from plumes that emerged from the edges of the large low shear velocity provinces (LLSVPs) in the deep lower mantle. Although qualitative assessments that are broadly in agreement with this hypothesis have been derived from numerical convection models, a quantitative assessment has been lacking. We present global convection models constrained by plume motions and subduction history over the last 230 Myr, where plumes emerge preferentially from the edges of thermochemical structures that resemble present-day LLSVPs beneath Africa and the Pacific Ocean. We also present a novel plume detection scheme and derive Monte Carlo-based statistical correlations of model plume eruption sites and reconstructed LIP eruption sites. We show that models with a chemically anomalous lower mantle are highly correlated to reconstructed LIP eruption sites, whereas the confidence level obtained for a model with purely thermal plumes falls just short of 95%. A network of embayments separated by steep ridges forms in the deep lower mantle in models with a chemically anomalous lower mantle. Plumes become anchored to the peaks of the chemical ridges and the network of ridges acts as a floating anchor, adjusting to subduction-induced flow through time. The network of ridges imposes a characteristic separation between conduits that can extend into the interior of the thermochemical structures. This may explain the observed clustering of reconstructed LIP eruption sites that mostly but not exclusively occur around the present-day LLSVPs.

  19. P- and S-wave delays caused by thermal plumes

    NASA Astrophysics Data System (ADS)

    Maguire, Ross; Ritsema, Jeroen; van Keken, Peter E.; Fichtner, Andreas; Goes, Saskia

    2016-08-01

    Many studies have sought to seismically image plumes rising from the deep mantle in order to settle the debate about their presence and role in mantle dynamics, yet the predicted seismic signature of realistic plumes remains poorly understood. By combining numerical simulations of flow, mineral-physics constraints on the relationships between thermal anomalies and wave speeds, and spectral-element method based computations of seismograms, we estimate the delay times of teleseismic S and P waves caused by thermal plumes. Wave front healing is incomplete for seismic periods ranging from 10 s (relevant in traveltime tomography) to 40 s (relevant in waveform tomography). We estimate P-wave delays to be immeasurably small (<0.3 s). S-wave delays are larger than 0.4 s even for S waves crossing the conduits of the thinnest thermal plumes in our geodynamic models. At longer periods (>20 s), measurements of instantaneous phase misfit may be more useful in resolving narrow plume conduits. To detect S-wave delays of 0.4-0.8 s and the diagnostic frequency dependence imparted by plumes, it is key to minimize the influence of the heterogeneous crust and upper mantle. We argue that seismic imaging of plumes will advance significantly if data from wide-aperture ocean-bottom networks were available since, compared to continents, the oceanic crust and upper mantle are relatively simple.

  20. A long-lived ancient subduction-induced mantle boundary within the Pacific mantle

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Smith-Duque, C. E.; Tang, S.; Li, S.; Alvarez Zarikian, C. A.; D'Hondt, S.; Inagaki, F.

    2012-12-01

    A large-scale mantle discontinuity has been identified along the East Pacific Rise (EPR) and the Pacific-Antarctic Ridge (PAR) with an inferred transition zone between the EPR 23°S-31°S. Because of strong interactions of the EPR with the Easter mantle plume, the nature and genesis of this geochemical transition zone remain unclear. IODP sites U1367 and U1368 drilled into the basement that was accreted from the mantle of the Pacific-Farallon/Nazca ridge at ~33.5 Ma and ~13.5 Ma, respectively, at latitudes of 28°S to 29°S on the EPR. Lavas from sites U1367 and U1368 are used here to track this mantle discontinuity away from the EPR. The Sr-Nd-Pb isotope data reported here show strong discrepancies between the two sites unrelated to the plume-ridge interaction. which suggests the persistence of a mantle boundary near latitudes of the Easter island since at least 33.5 Ma. Comparison of our data with those along the EPR-PAR defines an isotopic anomaly in the Pacific mantle with a mantle boundary near the EPR 29°S and a gentle transition near the PAR 57°S. This isotopic anomaly is coupled with a low-velocity zone near the core-mantle boundary in the south Pacific, low 3He/4He ratios of lavas, and shallow axial depth1 south of the EPR 29°S along the EPR-PAR. Interpretation of this mantle discontinuity involves an ancient subduction zone across the EPR 28°S-29°S that allowed long-lasting introduction of recycled oceanic crust and depleted mantle wedge into the south Pacific mantle. Lavas at sites U1367 and U1368 might have sampled mantle that once was part of this ancient subduction zone that remained largely intact and not stirred by mantle convection.

  1. Ridge suction drives plume-ridge interactions

    NASA Astrophysics Data System (ADS)

    Niu, Y.; Hékinian, R.

    2003-04-01

    Deep-sourced mantle plumes, if existing, are genetically independent of plate tectonics. When the ascending plumes approach lithospheric plates, interactions between the two occur. Such interactions are most prominent near ocean ridges where the lithosphere is thin and the effect of plumes is best revealed. While ocean ridges are mostly passive features in terms of plate tectonics, they play an active role in the context of plume-ridge interactions. This active role is a ridge suction force that drives asthenospheric mantle flow towards ridges because of material needs to form the ocean crust at ridges and lithospheric mantle in the vicinity of ridges. This ridge suction force increases with increasing plate separation rate because of increased material demand per unit time. As the seismic low-velocity zone atop the asthenosphere has the lowest viscosity that increases rapidly with depth, the ridge-ward asthenospheric flow is largely horizontal beneath the lithosphere. Recognizing that plume materials have two components with easily-melted dikes/veins enriched in volatiles and incompatible elements dispersed in the more refractory and depleted peridotitic matrix, geochemistry of some seafloor volcanics well illustrates that plume-ridge interactions are consequences of ridge-suction-driven flow of plume materials, which melt by decompression because of lithospheric thinning towards ridges. There are excellent examples: 1. The decreasing La/Sm and increasing MgO and CaO/Al_2O_3 in Easter Seamount lavas from Salas-y-Gomez Islands to the Easter Microplate East rift zone result from progressive decompression melting of ridge-ward flowing plume materials. 2. The similar geochemical observations in lavas along the Foundation hotline towards the Pacific-Antarctic Ridge result from the same process. 3. The increasing ridge suction force with increasing spreading rate explains why the Iceland plume has asymmetric effects on its neighboring ridges: both topographic and

  2. Hotspots and the evolution of the mantle

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1979-01-01

    Trace element patterns show that continental and ocean island basalts are complementary to mid-ocean ridge basalts (MORB). The relative sizes of the two source regions can be estimated from enrichment/depletion patterns. Their combined volume, computed from estimates of whole mantle abundances, occupies the entire upper mantle. The source regions appear to be the result of an early differentiation of the mantle. The MORB source evolved from the melt fraction which lost its late stage enriched fluids to the overlying plume source. The MORB source is primarily garnet and clinopyroxene, consistent with it being an eclogite cumulate.

  3. Numerical and laboratory experiments on the dynamics of plume-ridge interaction. Progress report

    SciTech Connect

    Kincaid, C.; Gable, C.W.

    1995-09-01

    Mantle plumes and passive upwelling beneath ridges are the two dominant modes of mantle transport and thermal/chemical fluxing between the Earth`s deep interior and surface. While plumes and ridges independently contribute to crustal accretion, they also interact and the dispersion of plumes within the upper mantle is strongly modulated by mid-ocean ridges. The simplest mode of interaction, with the plume centered on the ridge, has been well documented and modeled. The remaining question is how plumes and ridges interact when the plume is located off-axis; it has been suggested that a pipeline-like flow from the off-axis plume to the ridge axis at the base of the rigid lithosphere may develop. Mid-ocean ridges migrating away from hot mantle plumes can be affected by plume discharges over long times and ridge migration distances. Salient feature of this model is that off-axis plumes communicate with the ridge through a channel resulting from the refraction and dispersion of an axi-symmetric plume conduit along the base of the sloping lithosphere. To test the dynamics of this model, a series of numerical and laboratory dynamic experiments on the problem of a fixed ridge and an off-axis buoyant upwelling were conducted. Results are discussed.

  4. Magma-maintained rift segmentation at continental rupture in the 2005 Afar dyking episode.

    PubMed

    Wright, Tim J; Ebinger, Cindy; Biggs, Juliet; Ayele, Atalay; Yirgu, Gezahegn; Keir, Derek; Stork, Anna

    2006-07-20

    Seafloor spreading centres show a regular along-axis segmentation thought to be produced by a segmented magma supply in the passively upwelling mantle. On the other hand, continental rifts are segmented by large offset normal faults, and many lack magmatism. It is unclear how, when and where the ubiquitous segmented melt zones are emplaced during the continental rupture process. Between 14 September and 4 October 2005, 163 earthquakes (magnitudes greater than 3.9) and a volcanic eruption occurred within the approximately 60-km-long Dabbahu magmatic segment of the Afar rift, a nascent seafloor spreading centre in stretched continental lithosphere. Here we present a three-dimensional deformation field for the Dabbahu rifting episode derived from satellite radar data, which shows that the entire segment ruptured, making it the largest to have occurred on land in the era of satellite geodesy. Simple elastic modelling shows that the magmatic segment opened by up to 8 m, yet seismic rupture can account for only 8 per cent of the observed deformation. Magma was injected along a dyke between depths of 2 and 9 km, corresponding to a total intrusion volume of approximately 2.5 km3. Much of the magma appears to have originated from shallow chambers beneath Dabbahu and Gabho volcanoes at the northern end of the segment, where an explosive fissural eruption occurred on 26 September 2005. Although comparable in magnitude to the ten year (1975-84) Krafla events in Iceland, seismic data suggest that most of the Dabbahu dyke intrusion occurred in less than a week. Thus, magma intrusion via dyking, rather than segmented normal faulting, maintains and probably initiated the along-axis segmentation along this sector of the Nubia-Arabia plate boundary.

  5. Chondritic xenon in the Earth's mantle.

    PubMed

    Caracausi, Antonio; Avice, Guillaume; Burnard, Peter G; Füri, Evelyn; Marty, Bernard

    2016-05-05

    Noble gas isotopes are powerful tracers of the origins of planetary volatiles, and the accretion and evolution of the Earth. The compositions of magmatic gases provide insights into the evolution of the Earth's mantle and atmosphere. Despite recent analytical progress in the study of planetary materials and mantle-derived gases, the possible dual origin of the planetary gases in the mantle and the atmosphere remains unconstrained. Evidence relating to the relationship between the volatiles within our planet and the potential cosmochemical end-members is scarce. Here we show, using high-precision analysis of magmatic gas from the Eifel volcanic area (in Germany), that the light xenon isotopes identify a chondritic primordial component that differs from the precursor of atmospheric xenon. This is consistent with an asteroidal origin for the volatiles in the Earth's mantle, and indicates that the volatiles in the atmosphere and mantle originated from distinct cosmochemical sources. Furthermore, our data are consistent with the origin of Eifel magmatism being a deep mantle plume. The corresponding mantle source has been isolated from the convective mantle since about 4.45 billion years ago, in agreement with models that predict the early isolation of mantle domains. Xenon isotope systematics support a clear distinction between mid-ocean-ridge and continental or oceanic plume sources, with chemical heterogeneities dating back to the Earth's accretion. The deep reservoir now sampled by the Eifel gas had a lower volatile/refractory (iodine/plutonium) composition than the shallower mantle sampled by mid-ocean-ridge volcanism, highlighting the increasing contribution of volatile-rich material during the first tens of millions of years of terrestrial accretion.

  6. East Asia: Seismotectonics, magmatism and mantle dynamics

    NASA Astrophysics Data System (ADS)

    Zhao, Dapeng; Yu, Sheng; Ohtani, Eiji

    2011-02-01

    In this article, we review the significant recent results of geophysical studies and discuss their implications on seismotectonics, magmatism, and mantle dynamics in East Asia. High-resolution geophysical imaging revealed structural heterogeneities in the source areas of large crustal earthquakes, which may reflect magma and fluids that affected the rupture nucleation of large earthquakes. In subduction zone regions, the crustal fluids originate from the dehydration of the subducting slab. Magmatism in arc and back-arc areas is caused by the corner flow in the mantle wedge and dehydration of the subducting slab. The intraplate magmatism has different origins. The continental volcanoes in Northeast Asia (such as Changbai and Wudalianchi) seem to be caused by the corner flow in the big mantle wedge (BMW) above the stagnant slab in the mantle transition zone and the deep dehydration of the stagnant slab as well. The Tengchong volcano in Southwest China is possibly caused by a similar process in BMW above the subducting Burma microplate (or Indian plate). The Hainan volcano in southernmost China seems to be a hotspot fed by a lower-mantle plume associated with the Pacific and Philippine Sea slabs' deep subduction in the east and the Indian slab's deep subduction in the west down to the lower mantle. The occurrence of deep earthquakes under the Japan Sea and the East Asia margin may be related to a metastable olivine wedge in the subducting Pacific slab. The stagnant slab finally collapses down to the bottom of the mantle, which may trigger upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and cause the slab-plume interactions. Some of these issues, such as the origin of intraplate magmatism, are still controversial, and so further detailed studies are needed from now.

  7. Is the 'Fast Halo' around Hawaii as imaged in the PLUME experiment direct evidence for buoyant plume-fed asthenosphere?

    NASA Astrophysics Data System (ADS)

    Morgan, J. P.; Shi, C.; Hasenclever, J.

    2010-12-01

    An intriguing spatial pattern of variations in shear-wave arrival times has been mapped in the PLUME ocean bottom experiment (Wolfe et al., 2009) around Hawaii. The pattern consists of a halo of fast travel times surrounding a disk of slow arrivals from waves traveling up though the plume. We think it is directly sensing the pattern of dynamic uplift of the base of a buoyant asthenosphere - the buoyancy of the plume conduit lifting a 'rim' of the cooler, denser mantle that the plume rises through. The PLUME analysis inverted for lateral shear velocity variations beneath the lithosphere, after removing the assumed 1-D model velocity structure IASP91. They found that a slow plume-conduit extends to at least 1200 km below the Hawaiian hotspot. In this inversion the slow plume conduit is — quite surprisingly - surrounded by a fast wavespeed halo. A fast halo is impossible to explain as a thermal halo around the plume; this should lead to a slow wavespeed halo, not a fast one. Plume-related shearwave anisotropy also cannot simply explain this pattern — simple vertical strain around the plume conduit would result in an anisotropic slow shear-wavespeed halo, not a fast one. (Note the PLUME experiment’s uniform ‘fast-halo’ structure from 50-400km is likely to have strong vertical streaking in the seismic image; Pacific Plate-driven shear across a low-viscosity asthenosphere would be expected to disrupt and distort any cold sheet of vertical downwelling structure between 50-400km depths so that it would no longer be vertical as it is in the 2009 PLUME image with its extremely poor vertical depth control.) If the asthenosphere is plume-fed, hence more buoyant than underlying mantle, then there can be a simple explanation for this pattern. The anomaly would be due to faster traveltimes resulting from dynamic relief at the asthenosphere-mesosphere interface; uplift of the denser mesosphere by the buoyancy of the rising plume increases the distance a wave travels

  8. New Inferences of Earth's Mantle Viscosity Structure and Implications for Long-wavelength Structure in the Lower Mantle

    NASA Astrophysics Data System (ADS)

    Rudolph, M. L.; Lekic, V.; Lithgow-Bertelloni, C. R.

    2015-12-01

    The viscosity structure of Earth's deep mantle affects the thermal evolution of Earth, the ascent of mantle plumes, settling of subducted oceanic lithosphere, and the mixing of compositional heterogeneities in the mantle. Modeling the long wavelength non-hydrostatic geoid provides a constraint on the radial viscosity structure of Earth's mantle. We carried out inversions for the radial mantle viscosity structure using a transdimensional, hierarchical Bayesian technique that allows us to obtain solutions without specifying at the outset the number or locations of viscosity changes within the mantle. We obtained a posterior probability distribution of mantle viscosity structures, which allowed us to assess our confidence in our inferences of the viscosity structure. We find robust evidence for an increase in viscosity at 800-1200 km depth, significantly deeper than the mineral phase transformations which define the mantle transition zone. The viscosity increase is coincident in depth with regions where tomographic models image slab stagnation, plume deflection, and changes in large-scale structure, manifested in the mantle radial correlation function for the lowest spherical harmonic degrees. Here, we present new results from 3D, spherical-shell geometry thermal and thermochemical mantle convection simulations with prescribed plate motions based on paleogeographic reconstructions. These simulations employ a range of admissible mantle viscosity structures from our geoid inversions. We find that by including the inferred increase in viscosity at 1000 km depth, we can better reproduce the long wavelength mantle radial correlation function observed in the latest tomographic models GAP-P4 and SEMUCB-WM1. The similarity of the modeled and observed radial correlation functions is sensitive to the choice of lower mantle viscosity and the inclusion of phase changes in the transition zone and the mid-mantle. We will also discuss the effect of these viscosity structures on

  9. Transient Hotspot Motion Induced by Plume-Migrating Ridge Interaction

    NASA Astrophysics Data System (ADS)

    Hall, P. S.; Farahat, N. X.; Kundargi, R.

    2013-12-01

    Paleomagnetic data obtained from the Emperor Seamount Chain shows that the Hawaiian hotspot moved rapidly (~40 mm/yr) southward relative to the Earth's magnetic poles during the period of 81- 47 Ma before coming to rest at its present latitude, suggesting that this abrupt change in the motion of the hotspot created the prominent bend in the Hawaii-Emperor Seamount Chain (HESC) [Tarduno et al., 2003]. Tarduno et al. [2009] proposed that this period of rapid hotspot motion might have been the surface expression of the conduit of the presumed Hawaiian plume being entrained and tilted by the passage of a migrating mid-ocean ridge (the Pacific-Kula ridge system) over the plume. While geophysical and geochemical observations have suggested that ridges can influence the dispersion of plumes in the upper mantle at great distances (>1000 km), much about the interaction between mantle plumes and mid-ocean ridges remains poorly understood. We report on a series of 2-D numerical and 3-D analog geodynamic experiments in which a mid-ocean ridge migrates over a mantle plume. These experiments were undertaken to characterize variations in the location of plume-derived melt as the system evolves through time. A range of values for plume excess temperature, plume conduit width, spreading rate and ridge migration rate were investigated so as to fully evaluate the behavior of the system. We find that both the location of the maximum flux of plume-derived melt and the total area over which plume melt is generated vary systemically over the course of the experiments. Most notably, as the ridge moves away from the plume conduit, the area from which plume-derived melts are generated gradually expands in the direction of ridge migration until it reaches a maximum extent, after which it rapidly collapses back towards the plume conduit. The edge of this zone of plume-derived melting can extend as much as 1500 km from the plume conduit, and upon reaching its maximum extent it retreats towards

  10. Helium and lead isotopes reveal the geochemical geometry of the Samoan plume.

    PubMed

    Jackson, M G; Hart, S R; Konter, J G; Kurz, M D; Blusztajn, J; Farley, K A

    2014-10-16

    Hotspot lavas erupted at ocean islands exhibit tremendous isotopic variability, indicating that there are numerous mantle components hosted in upwelling mantle plumes that generate volcanism at hotspots like Hawaii and Samoa. However, it is not known how the surface expression of the various geochemical components observed in hotspot volcanoes relates to their spatial distribution within the plume. Here we present a relationship between He and Pb isotopes in Samoan lavas that places severe constraints on the distribution of geochemical species within the plume. The Pb-isotopic compositions of the Samoan lavas reveal several distinct geochemical groups, each corresponding to a different geographic lineament of volcanoes. Each group has a signature associated with one of four mantle endmembers with low (3)He/(4)He: EMII (enriched mantle 2), EMI (enriched mantle 1), HIMU (high µ = (238)U/(204)Pb) and DM (depleted mantle). Critically, these four geochemical groups trend towards a common region of Pb-isotopic space with high (3)He/(4)He. This observation is consistent with several low-(3)He/(4)He components in the plume mixing with a common high-(3)He/(4)He component, but not mixing much with each other. The mixing relationships inferred from the new He and Pb isotopic data provide the clearest picture yet of the geochemical geometry of a mantle plume, and are best explained by a high-(3)He/(4)He plume matrix that hosts, and mixes with, several distinct low-(3)He/(4)He components.

  11. Plate kinematics of the Afro-Arabian Rift System with emphasis on the Afar Depression, Ethiopia

    NASA Astrophysics Data System (ADS)

    Bottenberg, Helen Carrie

    This work utilizes the Four-Dimensional Plates (4DPlates) software, and Differential Interferometric Synthetic Aperture Radar (DInSAR) to examine plate-scale, regional-scale and local-scale kinematics of the Afro-Arabian Rift System with emphasis on the Afar Depression in Ethiopia. First, the 4DPlates is used to restore the Red Sea, the Gulf of Aden, the Afar Depression and the Main Ethiopian Rift to development of a new model that adopts two poles of rotation for Arabia. Second, the 4DPlates is used to model regional-scale and local-scale kinematics within the Afar Depression. Most plate reconstruction models of the Afro-Arabian Rift System relies on considering the Afar Depression as a typical rift-rift-rift triple junction where the Arabian, Somali and Nubian (African) plates are separating by the Red Sea, the Gulf of Aden and the Main Ethiopian Rift suggesting the presence of "sharp and rigid" plate boundaries. However, at the regional-scale the Afar kinematics are more complex due to stepping of the Red Sea propagator and the Gulf of Aden propagator onto Afar as well as the presence of the Danakil, Ali Sabieh and East Central Block "micro-plates". This study incorporates the motion of these micro-plates into the regional-scale model and defined the plate boundary between the Arabian and the African plates within Afar as likely a diffused zone of extensional strain within the East Central Block. Third, DInSAR technology is used to create ascending and descending differential interferograms from the Envisat Advanced Synthetic Aperture Radar (ASAR) C-Band data for the East Central Block to image active crustal deformation related to extensional tectonics and volcanism. Results of the DInSAR study indicate no strong strain localization but rather a diffused pattern of deformation across the entire East Central Block.

  12. Chemical complexity of hotspots caused by cycling oceanic crust through mantle reservoirs

    NASA Astrophysics Data System (ADS)

    Li, Mingming; McNamara, Allen K.; Garnero, Edward J.

    2014-05-01

    Lavas erupted at ocean island hotspots such as Hawaii have diverse geochemical signatures. These ocean island basalts are thought to be derived from many sources with different chemical compositions within Earth's mantle and contain components of more primitive, less degassed material, as well as several recycled oceanic crustal components. Furthermore, the recycled oceanic crustal components display vastly different ages. The various components may be derived from different mantle reservoirs that are entrained and carried to the surface by mantle plumes, but it is unclear how individual plumes could successively sample each of these reservoirs or why the recycled oceanic crust would have variable ages. Here we use high-resolution numerical simulations to investigate the interaction between mantle plumes, subducted oceanic crust and a more primitive lower mantle reservoir. In our simulations, some subducted oceanic crust is entrained directly into mantle plumes, but a significant fraction of the crust--up to 10%--enters the more primitive reservoirs. As a result, mantle plumes entrain a variable combination of relatively young oceanic crust directly from the subducting slab, older oceanic crust that has been stirred with ancient more primitive material and background, depleted mantle. Cycling of oceanic crust through mantle reservoirs can therefore reconcile observations of different recycled oceanic crustal ages and explain the chemical complexity of hotspot lavas.

  13. ASSESSMENT OF PLUME DIVING

    EPA Science Inventory

    This presentation presents an assessment of plume diving. Observations included: vertical plume delineation at East Patchogue, NY showed BTEX and MTBE plumes sinking on either side of a gravel pit; Lake Druid TCE plume sank beneath unlined drainage ditch; and aquifer recharge/dis...

  14. Plume-asthenosphere-lithosphere Interactions Within a Plume-fed Asthenosphere: Implications for Hawaii- and Iceland-type Plume-linked Topography, Melting and Geoid Anomalies

    NASA Astrophysics Data System (ADS)

    Shi, C.; Morgan, J. P.; Hasenclever, J.

    2010-12-01

    The competing view of the upper mantle is that the asthenosphere is the region where temperature and pressure conditions result in the lowest viscosity region of the mantle. We think the suboceanic asthenosphere exists for a different reason, that it is the “graveyard” for rising plumes of hotter-than-average mantle. This Plume-fed Asthenosphere (PFA) system could have significant effects on: 1) global mantle convection flow pattern as a decoupling mechanism and fast path between shallow and deep mantle, 2) dynamic topography and geoid anomalies through plume-asthenosphere-lithosphere interaction, and 3) dynamic relief at the base of a buoyant asthenosphere. In the past years we have presented observational evidence and a suite of 2D and 3D numerical experiments which suggest that in Earth’s mantle there exists a buoyant asthenosphere layer fed by upwelling in mantle plumes, and consumed by ridge upwelling and melt-extraction to make new compositional lithosphere, plate cooling to make new thermal lithosphere, and slab dragdown (Shi and Phipps Morgan, 2007-2009). Our PFA model may provide a possible explanation to the recent observations of underside reflections from a ~250-350km-deep reflector in ocean basins (Cao et al., 2010), the 200 degree hotter-than-underlying-mantle suboceanic asthenosphere (Cammarano and Romanowicz, 2007), and the “fast halo” seen in the recent PLUME seismic experiment (Wolfe et al., 2009). For this study, we study the effects of on- and off-axis deep-mantle plumes with thermal and compositional density and viscosity controlled by thermal and melt-extraction processes -- rather than only assuming that temperature controls density and an Arrhenius-type viscosity. The code we use is a parallel Matlab-based 3-D Finite Element code we have developed, which utilizes unstructured tetrahedral meshes, and which can handle large and abrupt (6 orders of magnitude) viscosity contrast. We will show the results of: 1) the necessary conditions

  15. Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt.

    PubMed

    Dixon, Jacqueline Eaby; Leist, Loretta; Langmuir, Charles; Schilling, Jean-Guy

    2002-11-28

    A substantial uncertainty in the Earth's global geochemical water cycle is the amount of water that enters the deep mantle through the subduction and recycling of hydrated oceanic lithosphere. Here we address the question of recycling of water into the deep mantle by characterizing the volatile contents of different mantle components as sampled by ocean island basalts and mid-ocean-ridge basalts. Although all mantle plume (ocean island) basalts seem to contain more water than mid-ocean-ridge basalts, we demonstrate that basalts associated with mantle plume components containing subducted lithosphere--'enriched-mantle' or 'EM-type' basalts--contain less water than those associated with a common mantle source. We interpret this depletion as indicating that water is extracted from the lithosphere during the subduction process, with greater than 92 per cent efficiency.

  16. Mantle cryptology

    SciTech Connect

    Zindler, A.; Jagoutz, E.

    1988-02-01

    A group of anhydrous peridotites from Peridot Mesa, Arizona, document isotopic and trace element heterogeneity in the source mantle. LREE enrichments in two spinel periodotites may have occurred immediately prior to entrainment through interaction with a melt similar to the hose basanite. Detailed characterization of inclusion-free peridotite phases, and washed and unwahsed whole-rock samples, verifies the presence of a ubiquitous secondary contaminant which derives from interaction of the peridotites with local ground waters and host magma. Once the veil of this contamination is removed, coexisting phases are found to be in isotopic equilibrium. Further, a comparison of washed whole rocks and calculated clean-bulk compositions documents the occurrence of an important intragranular fluid-hosted trace element component. For the very incompatible elements (K, Rb, Cs, and Ba, and probably U, Th, Pb and gaseous components as well) this component dominates the nodule budget for two of the three samples studied in detail. Production of basaltic magmas from fertile but incompatible-element-depleted peridotite requires the action of melting processes such as those recently proposed by McKenzie (1985) and O'Hara (1985). The distinctive feature of these models is that they call on effectively larger source volumes for more incompatible elements. In this context, depletions of incompatible trace elements in MORB source mantle will be more extreme than has heretofore been suspected. This would essentially preclude the long-term total isolation of a MORB source mantle above the 670 km seismic discontinuity.

  17. Upper-mantle origin of the Yellowstone hotspot

    USGS Publications Warehouse

    Christiansen, R.L.; Foulger, G.R.; Evans, J.R.

    2002-01-01

    Fundamental features of the geology and tectonic setting of the northeast-propagating Yellowstone hotspot are not explained by a simple deep-mantle plume hypothesis and, within that framework, must be attributed to coincidence or be explained by auxiliary hypotheses. These features include the persistence of basaltic magmatism along the hotspot track, the origin of the hotspot during a regional middle Miocene tectonic reorganization, a similar and coeval zone of northwestward magmatic propagation, the occurrence of both zones of magmatic propagation along a first-order tectonic boundary, and control of the hotspot track by preexisting structures. Seismic imaging provides no evidence for, and several contraindications of, a vertically extensive plume-like structure beneath Yellowstone or a broad trailing plume head beneath the eastern Snake River Plain. The high helium isotope ratios observed at Yellowstone and other hotspots are commonly assumed to arise from the lower mantle, but upper-mantle processes can explain the observations. The available evidence thus renders an upper-mantle origin for the Yellowstone system the preferred model; there is no evidence that the system extends deeper than ???200 km, and some evidence that it does not. A model whereby the Yellowstone system reflects feedback between upper-mantle convection and regional lithospheric tectonics is able to explain the observations better than a deep-mantle plume hypothesis.

  18. Mantle dynamics in Mars and Venus - Influence of an immobile lithosphere on three-dimensional mantle convection

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Bercovici, D.; Glatzmaier, G. A.

    1990-01-01

    The manner of the mantle convection in planets with rigid lids, such as Venus and Mars, is investigated using a numerical method. The effect of the rigid upper boundary condition on mantle convection was examined by comparing the convection in planets with rigid lids with results for planets with shear stress-free upper surfaces. The results for convection in models of the mantles of Mars and Venus show that the cylindrical plume is the prominent form of upwelling as long as sufficient heat enters the mantle from the core.

  19. Two views of Hawaiian plume structure

    NASA Astrophysics Data System (ADS)

    Hofmann, Albrecht W.; Farnetani, Cinzia G.

    2013-12-01

    Fundamentally contradictory interpretations of the isotopic compositions of Hawaiian basalts persist, even among authors who agree that the Hawaiian hotspot is caused by a deep-mantle plume. One view holds that the regional isotopic pattern of the volcanoes reflects large-scale heterogeneities in the basal thermal boundary layer of the mantle. These are drawn into the rising plume conduit, where they are vertically stretched and ultimately sampled by volcanoes. The alternative view is that the plume resembles a "uniformly heterogeneous plum pudding," with fertile plums of pyroxenite and/or enriched peridotite scattered in a matrix of more refractory peridotite. In a rising plume, the plums melt before the matrix, and the final melt composition is controlled significantly by the bulk melt fraction. Here we show that the uniformly heterogeneous plum pudding model is inconsistent with several geochemical observations: (1) the relative melt fractions inferred from La/Yb ratios in shield-stage basalts of the two parallel (Kea- and Loa-) volcanic chains, (2) the systematic Pb-isotopic differences between the chains, and the absence of such differences between shield and postshield phases, (3) the systematic shift to uniformly depleted Nd-isotopic compositions during rejuvenated volcanism. We extend our previous numerical simulation to the low melt production rates calculated far downstream (200-400 km) from shield volcanism. Part of these melts, feeding rejuvenated volcanism, are formed at pressures of ˜5 GPa in the previously unmelted underside of the plume, from material that originally constituted the uppermost part of the thermal boundary layer at the base of the mantle.

  20. Reply to Comment on “Garnet-bearing ultramafic rocks from the Dominican Republic: Fossil mantle plume fragments in an ultra high pressure oceanic complex?” by Jan C.M. De Hoog

    NASA Astrophysics Data System (ADS)

    Gazel, Esteban; Abbott, Richard N.; Draper, Grenville

    2012-03-01

    Two competing hypotheses have been proposed for garnet-bearing ultramafic rocks in the Dominican Republic: (1) The ultrahigh pressure (UHP) - ultrahigh temperature (UHT) hypothesis involves a magmatic protolith of mantle origin, which was then delivered to, and incorporated into deep-subducted oceanic crust (eclogite) at UHP conditions (Abbott et al., 2005, 2006, 2007; Abbott and Draper, 2010; Gazel et al., 2011). (2) The low-pressure (LP) hypothesis involves a plagioclase-bearing, arc-related protolith of crustal origin, which was then subducted to UHP conditions (De Hoog, 2011; Hattori et al., 2010a,b). In both hypotheses, the rocks were uplifted to the surface by an as yet poorly understood mechanism. Here we respond to concerns regarding the integrity of REE analyses, Cpx-Grt REE partitioning, other matters related to the interpretation of the trace element data, and Grt-Spl major-element thermometry. We show that none of the concerns precludes a UHP magmatic origin.

  1. Synthetic images of dynamically predicted plumes and comparison with a global tomographic model

    NASA Astrophysics Data System (ADS)

    Styles, Elinor; Goes, Saskia; van Keken, Peter E.; Ritsema, Jeroen; Smith, Hannah

    2011-11-01

    Seismic detection of a mantle plume may resolve the debate about the origin of hotspots and the role of plumes in mantle convection. In this paper, we test the hypothesis that whole-mantle plumes exist below major hotspots, by quantitatively comparing physically plausible plume models with seismic images following three steps. We (1) simulate a set of representative thermal plumes by solving the governing equations for Earth-like parameters in an axisymmetric spherical shell, (2) convert the thermal structure into shear-velocity anomalies using self-consistent thermo-dynamic relationships, and (3) project the theoretical plumes as seismic images using the S40RTS tomographic filter to account for finite seismic resolution. Simulated plumes with excess potential temperatures of 375 K map into negative shear-wave anomalies of up to 4-8% between 300 and 660 km depth, and 2.0-3.5% in the mid-lower mantle. Given the heterogeneous resolution of S40RTS, plumes of this strength are not easily detectable if tails are narrower than 150-250 km in the upper-mantle or 400-700 km in the lower mantle. In S40RTS, more than half of the forty hotspots we studied overlie low-velocity anomalies that extend through most of the lower mantle. These anomalies exceed 0.6% in the lower mantle, compatible with thermal plume strengths. They have widths mostly with the range 800-1200 km, which is at the high end of plausible thermal plume structures, and at the low end to be resolved in S40RTS. In the upper mantle, the shear velocity is low beneath more than ninety percent of the hotspots. For about ten, including Iceland, the East African hotspots, Hawaii, and the Samoa/Tahiti and Cobb/Bowie pairs, S40RTS low-velocity anomalies extending through the transition zone imply 200-300 K excess temperatures over a ~ 1000 km wide region. This is substantially broader than expected for thermal plume tails. Such anomalies may be compatible with deep-seated plumes, but only if plume flux is strongly

  2. Plume or no Plume, the Case of the Siberian Trap Formation

    NASA Astrophysics Data System (ADS)

    Reichow, M. K.; Saunders, A. D.; White, R. V.; Al'Mukhamedov, A. I.; Medvedev, A. I.; Inger, S.

    2003-12-01

    The generation mechanism of continental large igneous provinces, such as the Siberian Traps, are matters of recent debate, particularly their relation to mantle plumes derived from the Earth's interior. Alternative models relate the formation of large igneous provinces to bolide impacts or small-scale convection at the boundary of asymmetric lithospheres. Neither of these models is without criticism and each model cannot explain all characteristics of continental flood basalt formation alone. However, strong support for the involvement of a mantle plume comes from the observation that large volumes of basaltic melts ( ˜3 x 106 km3) erupted within a short period of time (< 1 My). Such high magma flux rates can only realistically be produced by decompression melting in the head of an uprising mantle plume. Although several areas surrounding the Siberian craton have been attributed to the Siberian Traps volcanic activity, the entire extent remains conjectural. Basaltic and gabbroic rocks occur throughout the West Siberian Basin (WSB) beneath a thick succession of Mesozoic and Cenozoic sediments. Further to the north of the Siberian craton, on the Taimyr Peninsula, are also basalt and dolerite rocks. We have obtained more than 100 samples from both areas and compared chemical data with data from the Siberian Traps. The basalts have chemical characteristics typical of fractionated, contaminated continental flood basalts (e.g. low Mg#, negative Nb anomaly). Trace element modelling suggests that the basalts represent different degrees of partial melting and crustal contamination. The major and trace element data from the WSB and Taimyr basalts show strong affinities with Siberian Trap basalts that precede the main pulse of volcanism extruded over large areas of the Siberian craton. Although the major and trace element data are consistent with a plume origin for the Siberian Traps, they cannot prove it; however, magma volume and timing constraints do strongly suggest that

  3. Spectral analysis of dike-induced earthquakes in Afar, Ethiopia

    NASA Astrophysics Data System (ADS)

    Tepp, Gabrielle; Ebinger, Cynthia J.; Yun, Sang-Ho

    2016-04-01

    Shallow dike intrusions may be accompanied by fault slip above the dikes, a superposition which complicates seismic and geodetic data analyses. The diverse volcano-tectonic and low-frequency local earthquakes accompanying the 2005-2010 large-volume dike intrusions in the Dabbahu-Manda Hararo rift (Afar), some with fault displacements of up to 3 m at the surface, provide an opportunity to examine the relations among the earthquakes, dike intrusions, and surface ruptures. We apply the frequency index (FI) method to characterize the spectra of swarm earthquakes from six of the dikes. These earthquakes often have broad spectra with multiple peaks, making the usual peak frequency classification method unreliable. Our results show a general bimodal character with high FI earthquakes associated with deeper dikes (top > 3 km subsurface) and low FI earthquakes associated with shallow dikes, indicating that shallow dikes result in earthquakes with more low-frequency content and larger-amplitude surface waves. Low FI earthquakes are more common during dike emplacement, suggesting that interactions between the dike and faults may lead to lower FI. Taken together, likely source processes for low FI earthquakes are shallow hypocenters (<3 km) possibly with surface rupture, slow rupture velocities, and interactions with dike fluids. Strong site effects also heavily influence the earthquake spectral content. Additionally, our results suggest a continuum of spectral responses, implying either that impulsive volcano-tectonic earthquakes and the unusual, emergent earthquakes have similar source processes or that simple spectral analyses, such as FI, cannot distinguish different source processes.

  4. Seismic imaging of melt in a displaced Hawaiian plume

    NASA Astrophysics Data System (ADS)

    Rychert, Catherine A.; Laske, Gabi; Harmon, Nicholas; Shearer, Peter M.

    2013-08-01

    The Hawaiian Islands are the classic example of hotspot volcanism: the island chain formed progressively as the Pacific plate moved across a fixed mantle plume. However, some observations are inconsistent with simple, vertical upwelling beneath a thermally defined plate and the nature of plume-plate interaction is debated. Here we use S-to-P seismic receiver functions, measured using a network of land and seafloor seismometers, to image the base of a melt-rich zone located 110 to 155 km beneath Hawaii. We find that this melt-rich zone is deepest 100 km west of Hawaii, implying that the plume impinges on the plate here and causes melting at greater depths in the mantle, rather than directly beneath the island. We infer that the plume either naturally upwells vertically beneath western Hawaii, or that it is instead deflected westwards by a compositionally depleted root that was generated beneath the island as it formed. The offset of the Hawaiian plume adds complexity to the classical model of a fixed plume that ascends vertically to the surface, and suggests that mantle melts beneath intraplate volcanoes may be guided by pre-existing structures beneath the islands.

  5. Paleoanthropology. Late Pliocene fossiliferous sedimentary record and the environmental context of early Homo from Afar, Ethiopia.

    PubMed

    DiMaggio, Erin N; Campisano, Christopher J; Rowan, John; Dupont-Nivet, Guillaume; Deino, Alan L; Bibi, Faysal; Lewis, Margaret E; Souron, Antoine; Garello, Dominique; Werdelin, Lars; Reed, Kaye E; Arrowsmith, J Ramón

    2015-03-20

    Sedimentary basins in eastern Africa preserve a record of continental rifting and contain important fossil assemblages for interpreting hominin evolution. However, the record of hominin evolution between 3 and 2.5 million years ago (Ma) is poorly documented in surface outcrops, particularly in Afar, Ethiopia. Here we present the discovery of a 2.84- to 2.58-million-year-old fossil and hominin-bearing sediments in the Ledi-Geraru research area of Afar, Ethiopia, that have produced the earliest record of the genus Homo. Vertebrate fossils record a faunal turnover indicative of more open and probably arid habitats than those reconstructed earlier in this region, which is in broad agreement with hypotheses addressing the role of environmental forcing in hominin evolution at this time. Geological analyses constrain depositional and structural models of Afar and date the LD 350-1 Homo mandible to 2.80 to 2.75 Ma.

  6. Stress field during early magmatism in the Ali Sabieh Dome, Djibouti, SE Afar rift

    NASA Astrophysics Data System (ADS)

    Sue, Christian; Le Gall, Bernard; Daoud, Ahmed Mohamed

    2014-09-01

    The so-called Ali Sabieh range, SE Afar rift, exhibits an atypical antiform structure occurring in the overall extensional tectonic context of the Afar triple junction. We dynamically analyzed the brittle deformation of this specific structural high using four different methods in order to better constrain the tectonic evolution of this key-area in the Afar depression. Paleostress inversions appear highly consistent using the four methods, which a posteriori validates this approach. Computed paleostress fields document two major signals: an early E-W extensional field, and a later transcurrent field, kinematically consistent with the previous one. The Ali Sabieh range may have evolved continuously during Oligo-Miocene times from large-scale extensional to transcurrent tectonism, as the result of probable local stress permutation between σ1 and σ2 stress axes.

  7. The State of Stress in the Afar Region From Inversion of Earthquake Focal Mechanisms

    NASA Astrophysics Data System (ADS)

    Hagos, L.; Lund, B.; Roberts, R.

    2006-12-01

    The state of stress in the Afar region, where the Arabian, Nubian, and Somalian plates meet, is investigated by inversion of earthquake focal mechanisms. Based on earlier studies in the region, we compiled a catalogue of 93 earthquakes, M > 4, with focal mechanisms, spanning the time period from 1969 to present. From this data set we select three clusters suitable for inversion: one along the EW trending Gulf of Aden and Tadjoura rift, one in central Afar, and one on the western margin of the Afar depression. Using the grid-search based inversion of Lund and Slunga (1999), we assess how the choice of fault plane from the nodal planes affect the results and include known fault data where possible. The resulting stress states show an overall normal faulting stress regime. This especially pronounced in the cluster on the western margin of the Afar depression, whereas the southern two clusters have more oblique stress states with significant strike-slip components. The estimated directions of the minimum principal stress vary from NE on the Danakil -Somalia plate boundary to an approximate EW direction at the western margin of the Afar depression. Although the data is scarce, we discuss the temporal consistency of the stress field through the studied time period. The broad zone of active extensional deformation at the Afar Depression, a triple junction where the Red Sea, the Gulf of Aden and the Main Ethiopian rift systems meet, constitutes a complicated tectonic region and we discuss our results in this context. We also compare the stress estimates to available deformation data in the region.

  8. A young source for the Hawaiian plume.

    PubMed

    Sobolev, Alexander V; Hofmann, Albrecht W; Jochum, Klaus Peter; Kuzmin, Dmitry V; Stoll, Brigitte

    2011-08-10

    Recycling of oceanic crust through subduction, mantle upwelling, and remelting in mantle plumes is a widely accepted mechanism to explain ocean island volcanism. The timescale of this recycling is important to our understanding of mantle circulation rates. Correlations of uranogenic lead isotopes in lavas from ocean islands such as Hawaii or Iceland, when interpreted as model isochrons, have yielded source differentiation ages between 1 and 2.5 billion years (Gyr). However, if such correlations are produced by mixing of unrelated mantle components they will have no direct age significance. Re-Os decay model ages take into account the mixing of sources with different histories, but they depend on the assumed initial Re/Os ratio of the subducted crust, which is poorly constrained because of the high mobility of rhenium during subduction. Here we report the first data on (87)Sr/(86)Sr ratios for 138 melt inclusions in olivine phenocrysts from lavas of Mauna Loa shield volcano, Hawaii, indicating enormous mantle source heterogeneity. We show that highly radiogenic strontium in severely rubidium-depleted melt inclusions matches the isotopic composition of 200-650-Myr-old sea water. We infer that such sea water must have contaminated the Mauna Loa source rock, before subduction, imparting a unique 'time stamp' on this source. Small amounts of seawater-derived strontium in plume sources may be common but can be identified clearly only in ultra-depleted melts originating from generally highly (incompatible-element) depleted source components. The presence of 200-650-Myr-old oceanic crust in the source of Hawaiian lavas implies a timescale of general mantle circulation with an average rate of about 2 (±1) cm yr(-1), much faster than previously thought.

  9. Afar-wide Crustal Strain Field from Multiple InSAR Tracks

    NASA Astrophysics Data System (ADS)

    Pagli, C.; Wright, T. J.; Wang, H.; Calais, E.; Bennati Rassion, L. S.; Ebinger, C. J.; Lewi, E.

    2010-12-01

    Onset of a rifting episode in the Dabbahu volcanic segment, Afar (Ethiopia), in 2005 renewed interest in crustal deformation studies in the area. As a consequence, an extensive geodetic data set, including InSAR and GPS measurements have been acquired over Afar and hold great potential towards improving our understanding of the extensional processes that operate during the final stages of continental rupture. The current geodetic observational and modelling strategy has focused on detailed, localised studies of dyke intrusions and eruptions mainly in the Dabbahu segment. However, an eruption in the Erta ‘Ale volcanic segment in 2008, and cluster of earthquakes observed in the Tat Ale segment, are testament to activity elsewhere in Afar. Here we make use of the vast geodetic dataset available to obtain strain information over the whole Afar depression. A systematic analysis of all the volcanic segments, including Dabbahu, Manda-Hararo, Alayta, Tat ‘Ale Erta Ale and the Djibouti deformation zone, is undertaken. We use InSAR data from multiple tracks together with available GPS measurements to obtain a velocity field model for Afar. We use over 300 radar images acquired by the Envisat satellite in both descending and ascending orbits, from 12 distinct tracks in image and wide swath modes, spanning the time period from October 2005 to present time. We obtain the line-of-sight deformation rates from each InSAR track using a network approach and then combine the InSAR velocities with the GPS observations, as suggested by Wright and Wang (2010) following the method of England and Molnar (1997). A mesh is constructed over the Afar area and then we solve for the horizontal and vertical velocities on each node. The resultant full 3D Afar-wide velocity field shows where current strains are being accumulated within the various volcanic segments of Afar, the width of the plate boundary deformation zone and possible connections between distinct volcanic segments on a

  10. On possible plume-guided seismic waves

    USGS Publications Warehouse

    Julian, B.R.; Evans, J.R.

    2010-01-01

    Hypothetical thermal plumes in the Earth's mantle are expected to have low seismic-wave speeds and thus would support the propagation of guided elastic waves analogous to fault-zone guided seismic waves, fiber-optic waves, and acoustic waves in the oceanic SOund Fixing And Ranging channel. Plume-guided waves would be insensitive to geometric complexities in the wave guide, and their dispersion would make them distinctive on seismograms and would provide information about wave-guide structure that would complement seismic tomography. Detecting such waves would constitute strong evidence of a new kind for the existence of plumes. A cylindrical channel embedded in an infinite medium supports two classes of axially symmetric elastic-wave modes, torsional and longitudinal-radial. Torsional modes have rectilinear particle motion tangent to the cylinder surface. Longitudinal-radial modes have elliptical particle motion in planes that include the cylinder axis, with retrograde motion near the axis. The direction of elliptical particle motion reverses with distance from the axis: once for the fundamental mode, twice for the first overtone, and so on. Each mode exists only above its cut-off frequency, where the phase and group speeds equal the shear-wave speed in the infinite medium. At high frequencies, both speeds approach the shear-wave speed in the channel. All modes have minima in their group speeds, which produce Airy phases on seismograms. For shear wave-speed contrasts of a few percent, thought to be realistic for thermal plumes in the Earth, the largest signals are inversely dispersed and have dominant frequencies of about 0.1-1 Hz and durations of 15-30 sec. There are at least two possible sources of observable plume waves: (1) the intersection of mantle plumes with high-amplitude core-phase caustics in the deep mantle; and (2) ScS-like reflection at the core-mantle boundary of downward-propagating guided waves. The widespread recent deployment of broadband

  11. Pyroxenite in the Galapagos plume source at 65 Ma

    NASA Astrophysics Data System (ADS)

    Whalen, W. T.; Gazel, E.; Vidito, C. A.; Herzberg, C. T.; Class, C.; Bizimis, M.; Alvarado-Induni, G.

    2013-12-01

    Mantle plumes originate from boundary layers below the upper mantle. Their surface expressions as hotspot tracks have been linked to voluminous outpourings of lava in the form of large igneous provinces. The Galapagos hotspot has been active since ~90 Ma and the oldest lavas of its associated submarine ridge have been dated to ~14 Ma, subducting at the Middle America Trench, off Costa Rica. The Galapagos plume head magmatic production is preserved as the Caribbean Large Igneous Province (CLIP). A series of 15-65 Ma accreted Galapagos paleo-ridges and islands/seamounts are accreted in the Pacific coast of Costa Rica and Panama. One of these accreted terranes, the Quepos block on the west coast of Costa Rica is an ancient, ~65 Ma Galapagos island. Olivine phenocrysts from Quepos picrites have elevated Ni and low Ca and Mn and Fe/Mn indicative of a dominant pyroxenite source component while CLIP samples are dominated by a peridotite source. The mantle potential temperature (max) of the plume changed from ~1650 to ~1550 C at 65 Ma. This change correlates with the first appearance of the pyroxenite component and an EMII signature (Northern Galapagos Domain) in the Galapagos plume. A relatively dense pyroxenite component may provide a mechanism for the change in Tp due to its effect on the plume's bouyancy. Alternatively, the pyroxenite component was diluted by high peridotite melt fraction during the massive production of the CLIP.

  12. Melting-induced dehydration and plume-lithosphere interaction at intra-plate hotspots

    NASA Astrophysics Data System (ADS)

    Kundargi, R.; Hall, P. S.

    2011-12-01

    While the dramatic effect of water on the rheology of olivine aggregates has been demonstrated experimentally [Hirth and Kohlstedt, 1996], the geodynamic implications of variations of water content within the mantle have yet to be fully explored. In particular, because water behaves as a highly incompatible element during partial melting of peridotite, the water content of the mantle will decrease rapidly with the onset of melting, resulting in an abrupt increase in the viscosity of the residual peridotite. Due to preferential removal of Fe relative to Mg during melting, the residual will also be slightly buoyant. The existence of this buoyant, viscous residual mantle has been shown to strongly effect mantle flow and melting at mid-ocean ridges [Braun et al., 2000; Hall and Parmentier, 2000], at ridge-centered mantle plumes [Ito et al., 1999] and at off-axis mantle plumes [e.g., Hall and Kincaid, 2003; 2004], and it has been proposed as the cause of the large bathymetric swell associated with the Hawaiian hotspot [Phipps Morgan and Morgan, 1995]. We present results from a series of numerical geodynamic experiments undertaken to evaluate the generation and fate of depleted, buoyant residual mantle within plumes rising in a purely intra-plate setting, and its effects on the pattern of mantle flow and melt generation. Experiments were conducted using the CitcomCU finite element package to model mantle flow associated with a thermally buoyant plume rising beneath an oceanic plate within a 3-D model domain corresponding to the upper mantle. Melting and dehydration are incorporated using a Lagrangian particle method [Hall and Kincaid, 2003]. The velocity of the overriding plate, plume temperature, plume water content and plume diameter were varied systematically between experiments to fully characterize the system. Results indicate that dehydration due to melting within the upwelling plume results in the growth of a viscous plug that extends downward from the base of the

  13. The 3rd ACR in TAL’AFAR: Challenges and Adaptations

    DTIC Science & Technology

    2008-01-08

    raisins, and cucumbers , usually served in the local diet with grilled lamb and unleavened bread. Tal’Afar contains 18 distinctly named neighbor...affairs and strategic/tactical studies , revealed dozens of articles between 2004 and 2006 on conventional vs. counterinsurgency warfare and on

  14. Volatile Organic Compound Emission from Quercus suber, Quercus canariensis, and its hybridisation product Quercus afares

    NASA Astrophysics Data System (ADS)

    Welter, S.; Bracho Nuñez, A.; Staudt, M.; Kesselmeier, J.

    2009-04-01

    Oaks represent one of the most important plant genera in the Northern hemisphere and include many intensively VOC emitting species. The major group constitutes the isoprene emitters, but also monoterpene emitters and non-emitters can be found. These variations in the oak species might partly be due to their propensity for inter- and intraspecific hybridisation. This study addresses the foliar VOC production of the former hybridisation product the deciduous Quercus afares and its parents, two very distant species: the evergreen monoterpene emitter Quercus suber and the deciduous isoprene emitter Quercus canariensis. The measurements were performed in Southern France, applying two different methods. Plants were investigated in situ in the field with a portable gas exchange measuring system as well as in the laboratory on cut branches with an adapted enclosure system. Quercus afares was found to be a monoterpene emitting species. However, the monoterpene emission was lower and the composition different to that of Quercus suber. Whereas Quercus suber trees belonged to the pinene type most individuals of Quercus afares were identified to represent a limonene type. Quercus canariensis emitted besides high amounts of isoprene also linalool and (Z)-3-hexenylacetate. Emissions from Quercus suber and Quercus afares were higher in the field measurements than in the laboratory on cut branches whereas Quercus canariensis exhibited lower isoprene emissions from cut branches. The results demonstrate the need of further emission studies on a plant species level.

  15. Cenozoic Plume-Slab Interaction Beneath the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Obrebski, M. J.; Allen, R. M.; Hung, S.; Pollitz, F. F.

    2009-12-01

    Here we present new images of the structure beneath the Pacific Northwest obtained by inverting both compressional and shear teleseismic body waves and using finite-frequency sensitivity kernels. The models use all available seismic data from the Earthscope Transportable Array, regional seismic networks and two Flexible Array experiments (Mendocino and FACES experiments) deployed on the west coast. By picking P, S and SKS arrivals manually and estimating station-to-station relative arrival times through cross correlation of the waveforms, we select only the highest quality data. East from the Juan de Fuca slab and north from the Mendocino Triple Junction, the mantle structure is dominated by high velocity blocks that are likely to be fragments of the Farallon slab. In the middle of the slab fragments, both our compressional (DNA09-P) and shear (DNA09-S) velocity models show a continuous low velocity anomaly that extends from the Yellowstone Caldera down into the lower mantle. We interpret this feature as a deep-seated mantle plume. The striking contrast between the slab-dominated mantle north from the MTJ and the continuous deep-seated Yellowstone mantle plume suggests the plume disrupted the Farallon slab during its ascent to the surface.

  16. Modeling Europa's dust plumes

    NASA Astrophysics Data System (ADS)

    Southworth, B. S.; Kempf, S.; Schmidt, J.

    2015-12-01

    The discovery of Jupiter's moon Europa maintaining a probably sporadic water vapor plume constitutes a huge scientific opportunity for NASA's upcoming mission to this Galilean moon. Measuring properties of material emerging from interior sources offers a unique chance to understand conditions at Europa's subsurface ocean. Exploiting results obtained for the Enceladus plume, we simulate possible Europa plume configurations, analyze particle number density and surface deposition results, and estimate the expected flux of ice grains on a spacecraft. Due to Europa's high escape speed, observing an active plume will require low-altitude flybys, preferably at altitudes of 5-100 km. At higher altitudes a plume may escape detection. Our simulations provide an extensive library documenting the possible structure of Europa dust plumes, which can be quickly refined as more data on Europa dust plumes are collected.

  17. Dust Plume off Mauritania

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A thick plume of dust blew off the coast of Mauritania in western Africa on October 2, 2007. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite observed the dust plume as it headed toward the southwest over the Atlantic Ocean. In this image, the dust varies in color from nearly white to medium tan. The dust plume is easier to see over the dark background of the ocean, but the plume stretches across the land surface to the east, as well. The dust plume's structure is clearest along the coastline, where relatively clear air pockets separate distinct puffs of dust. West of that, individual pillows of dust push together to form a more homogeneous plume. Near its southwest tip, the plume takes on yet another shape, with stripes of pale dust fanning out toward the northwest. Occasional tiny white clouds dot the sky overhead, but skies are otherwise clear.

  18. Hafnium and iron isotopes in early Archean komatiites record a plume-driven convection cycle in the Hadean Earth

    NASA Astrophysics Data System (ADS)

    Nebel, Oliver; Campbell, Ian H.; Sossi, Paolo A.; Van Kranendonk, Martin J.

    2014-07-01

    Archean (>2.5 billion years) komatiites are considered expressions of mantle plumes that originate from and thereby sample the lowermost mantle overlying the Earth's core. Some komatiites have reported Hf isotope signatures that require a mantle source with a time-integrated Lu/Hf that is appreciably higher than average modern depleted mantle. The systematic study of the time and locus of parent-daughter fractionation of the mantle sources of these komatiites potentially constrains differentiation processes in the early Earth, and subsequent distribution and storage of early mantle reservoirs. We present radiogenic Hf and stable Fe isotopes for a series of komatiites from the Pilbara craton in Western Australia (aged 3.5 to 2.9 Ga). After careful evaluation of the effects of alteration, we find that pristine samples are characterised by a light Fe isotope mantle source and initial 176Hf/177Hf well above the age-corrected depleted mantle. Taken together these observations require a component of an old, melt-depleted reservoir in their mantle source. The Hf isotope signature of this component appears to be complementary to the first terrestrial crust, as preserved in Hadean (i.e., >4 Ga) detrital zircon cores, suggesting a causal relationship and a Hadean age for this depletion event. We propose that this Early Refractory Reservoir (ERR) is the residue formed by deep melting in hot Hadean mantle plumes, which then accumulated at the base of the first crust. Parts of this primordial lithosphere were destabilised and sank to the core-mantle boundary in cold drips and subsequently returned in hot mantle plumes, whose thermal capacity allows melting of such refractory mantle with its archetype isotope signature. The cycling of this material via cold drips and hot plumes suggests a plume-dominated convection prior to ∼3.9 Ga, which is then replaced by Archean-style plate tectonics.

  19. The Marion and Bouvet Rises: Remelting Gondwana's Mantle

    NASA Astrophysics Data System (ADS)

    Dick, H. J.; Zhou, H.; Standish, J. J.

    2014-12-01

    Major, trace element and isotopic data along the SW Indian Ridge identify two major geochemical provinces centered on the Marion and Bouvet Hotspots with prominent correlations between the isotopic and major element composition of basalts, ridge depth, and mineralogy of spatially associated mantle peridotites. Both consist of axial rises with elevated ridge topography. Both the Bouvet and Marion Hotspots have small volcanic fluxes, while the associated axial-rises contrast sharply in size and geochemistry. The Bouvet Rise is small, proportional to the size of the hotspot, while the Marion, with Iceland, is one of the two largest oceanic rises. A mantle plume associated with the Marion Hotspot is incapable of supporting the rise; rather it appears to be supported by a large region of anomalously depleted mantle1. The Bouvet Plume, which likely originates above the mantle transition zone, appears to have had a direct control on the geometry of the western SWIR through time and thus likely does support the short Bouvet Rise. The bathymetric contrast between these two rises corresponds to notable differences in isotopic geochemistry: while the Marion Rise basalts exhibit a complex pattern of variability - it is a region where the classic 'Dupal' anomaly is well expressed, consistent with a major Archean mantle source that likely represents delaminated metasomatized sub-continental lithosphere entrained in the shallow mantle beneath the Ridge during formation of the central and SW Indian Ridges with the breakup of Gondwana. This is supported by a similar isotopic anomaly along the Rodriguez Rise on the Central Indian Ridge that also appears related to Gondwana breakup. By contrast, the mantle beneath the Bouvet Rise appears to represent largely post-Archean asthenosphere pulled from beneath the Gondwana lithosphere, interacting with a local small plume reflecting a local heterogeneity in the upper mantle. 1. Zhou, H.-y., Dick, H.J.B., 2013. Thin crust as evidence for

  20. Survival of the primitive mantle reservoir?

    NASA Astrophysics Data System (ADS)

    Huang, S.; Jacobsen, S. B.; Mukhopadhyay, S.

    2010-12-01

    The high-3He lavas are thought to originate from a deep primitive mantle source that has not been much modified since the formation of Earth’s core. Comparison of 4He/3He in MORBs and plume lavas indicate that the plume sources must be a lower mantle feature, in agreement with most geophysical inferences. However, the lithophile element isotope systems of plume lavas are not primitive. The idea that the high-3He source is significantly less processed and more primitive than MORB source is clearly supported by mixing trends in plots of 4He/3He versus Sr, Nd and Pb isotope ratios, which have been extrapolated to an inferred 4He/3He of ~17,000 (~43x the atmospheric ratio), a mantle reservoir named PHEM (Primitive HElium Mantle). Slightly lower 4He/3He, ~15,000, were reported for Baffin Island picrites. Recently, Jackson et al. (2010) claimed that some Baffin Island and Greenland picrites with single-stage Pb model ages of ~4.5 Ga have low 4He/3He, and argued that “their source is the most ancient accessible reservoir in the Earth’s mantle, and it may be parental to all mantle reservoirs”. However, the available data are insufficient to make such a claim, and we suggest an alternative interpretation. Specially: 1. Four out of ten Baffin Island and Greenland picrites used by Jackson et al. (2010) have 4He/3He higher than average MORB value and all are far removed from the lowest measured value of 15,000. 2. Five Greenland picrites which cluster around the 4.50 Gyr geochron (Jackson et al., 2010) form a curved 207Pb*/206Pb*-4He/3He trend. This trend is best explained as a mixing line, implying that the single-stage Pb ages of these lavas are meaningless. 3. In a 207Pb*/206Pb*-4He/3He plot, Koolau lavas from Hawaii overlap with Baffin Island and Greenland picrites. If Baffin Island and Greenland picrites represent melts from the primitive mantle based on their Pb and He isotopes (Jackson et al., 2010), a similar argument can be applied to Koolau lavas. However, it

  1. Modes of rifting in magma-rich settings: Tectono-magmatic evolution of Central Afar

    NASA Astrophysics Data System (ADS)

    Stab, Martin; Bellahsen, Nicolas; Pik, Raphaël.; Quidelleur, Xavier; Ayalew, Dereje; Leroy, Sylvie

    2016-01-01

    Recent research in Afar (northern Ethiopia) has largely focused on the formation of the present-day ocean-continent transition at active segments (e.g., Manda Hararo). However, the Oligo-Miocene history of extension, from the onset of rifting at ~25 Ma to the eruption of the massive Stratoïd flood basalts at ~4 Ma, remains poorly constrained. Here we present new structural data and radiometric dating from Central Afar, obtained along a zone stretching from the undeformed Oligocene Ethiopian plateau to the Manda Hararo and Tat'Ale active volcanic segments. Basaltic and rhyolitic formations were mapped in two key areas corresponding to the proximal and distal parts of a half-rift. We present a balanced composite cross section of Central Afar, reconstructed using our new data and previously published geophysical data on the crustal structure. Our main findings are as follows: (1) Extension during the Mio-Pliocene corresponds to a "wide rift" style of rifting. (2) The lower crust has been underplated/intruded and rethickened during rifting by magmatic injection. (3) Our restoration points to the existence of midcrustal shear zones that have helped to distribute extension in the upper crust and to localize extension at depth in a necking zone. Moreover, we suggest that there is a close relationship between the location of a shear zone and the underplated/intruded material. In magma-rich environments such as Central Afar, breakup should be achieved once the initial continental crust has been completely replaced by the newly, magmatically accreted crust. Consequently, and particularly in Afar, crustal thickness is not necessarily indicative of breakup but instead reflects differences in tectono-magmatic regimes.

  2. Imaging the mantle beneath Iceland using integrated seismological techniques

    USGS Publications Warehouse

    Allen, R.M.; Nolet, G.; Morgan, W.J.; Vogfjord, K.; Bergsson, B.H.; Erlendsson, P.; Foulger, G.R.; Jakobsdottir, S.; Julian, B.R.; Pritchard, M.; Ragnarsson, S.; Stefansson, R.

    2002-01-01

    Using a combination of body wave and surface wave data sets to reveal the mantle plume and plume head, this study presents a tomographic image of the mantle structure beneath Iceland to 400 km depth. Data comes primarily from the PASSCAL-HOTSPOT deployment of 30 broadband instruments over a period of 2 years, and is supplemented by data from the SIL and ICEMELT networks. Three sets of relative teleseismic body wave arrival times are generated through cross correlation: S and SKS arrivals at 0.03-0.1 Hz, and P and PKIKP arrivals at 0.03-0.1 and 0.8-2.0 Hz. Prior to inversion the crustal portion of the travel time anomalies is removed using the crustal model ICECRTb. This step has a significant effect on the mantle velocity variations imaged down to a depth of ???250 km. Inversion of relative arrival times only provides information on lateral velocity variations. Surface waves are therefore used to provide absolute velocity information for the uppermost mantle beneath Iceland. The average wave number for the Love wave fundamental mode at 0.020 and 0.024 Hz is measured and used to invert for the average S velocity. Combination of the body wave and surface wave information reveals a predominantly horizontal low-velocity anomaly extending from the Moho down to ???250 km depth, interpreted as a plume head. Below the plume head a near-cylindrical low-velocity anomaly with a radius of ???100 km and peak VP and VS anomalies of -2% and -4%, respectively, extends down to the maximum depth of resolution at 400 km. Within the plume head, in the uppermost mantle above the core of the plume, there is a relatively high velocity with a maximum VP and VS anomaly of +2%. This high-velocity anomaly may be the result of the extreme degree of melt extraction necessary to generate the thick (46 km) crust in central Iceland. Comparison of the plume volumetric flux implied by our images, the crustal generation rate, and the degree of melting suggested by rare earth element inversions

  3. Plume and plate controlled hotspot trails in the South Atlantic

    NASA Astrophysics Data System (ADS)

    O'Connor, John; Jokat, Wilfried; le Roex, Anton; Class, Cornelia; Wijbrans, Jan; Keßling, Stefanie; Kuiper, Klaudia; Nebel, Oliver

    2013-04-01

    Discovering if hotspots observed on the Earth's surface are explained by underlying plumes rising from the deep mantle or by shallow plate-driven processes continues to be an essential goal in Earth Science. Key evidence underpinning the mantle plume concept is the existence of age-progressive volcanic trails recording past plate motion relative to surface hotspots and their causal plumes. Using the icebreaker RV Polarstern, we sampled scattered hotspot trails on the 2,000 km-wide southeast Atlantic hotspot swell, which projects down to one of the Earth's two largest and deepest regions of slower-than-average seismic wave speed - the Africa Low Shear Wave Velocity Province - caused by a massive thermo-chemical 'pile' on the core-mantle boundary. We showed recently using Ar/Ar isotopic ages - and crustal structure and seafloor ages - that these hotspot trails are age progressive and formed synchronously across the swell, consistent with African plate motion over plumes rising from the stable edge of a Low Shear Wave Velocity Province (LLSVP) (O'Connor et al., 2012). We showed furthermore that hotspot trails formed initially only at spreading boundaries at the outer edges of the swell until roughly 44 million years ago, when they started forming across the swell, far from spreading boundaries in lithosphere that was sufficiently weak (young) for plume melts to reach the surface. We concluded that if plume melts formed synchronous age progressive hotspot trails whenever they could penetrate the lithosphere, then hotspot trails in the South Atlantic are controlled by the interplay between deep plumes and the shallow motion and structure of the African plate. If the distribution of hotspot trails reflects where plume melts could or could not penetrate the continental or oceanic lithosphere then plumes could have been active for significantly longer than indicated by their volcanic chains. This provides a mechanism for extended late stage interplay between deep mantle

  4. Comparing the nature of the western and eastern Azores mantle

    NASA Astrophysics Data System (ADS)

    Genske, Felix S.; Beier, Christoph; Stracke, Andreas; Turner, Simon P.; Pearson, Norman J.; Hauff, Folkmar; Schaefer, Bruce F.; Haase, Karsten M.

    2016-01-01

    The Azores islands in the central North-Atlantic originate from a regional melting anomaly, probably created by melting hot, unusually hydrous and geochemically enriched mantle. Here, we present Hf, Pb and Os isotopic data in geochemically well-characterised primitive lavas from the islands Flores and Corvo that are located west of the Mid-Atlantic Ridge (MAR), as well as submarine samples from a subsided island west of Flores and from Deep Sea Drilling Project (DSDP) holes drilled in the western part of the Azores platform and beyond. These are compared to existing data from the Azores islands east of the MAR. The geodynamic origin of the two islands west of the ridge axis and furthest from the inferred plume centre in the central part of the plateau is enigmatic. The new data constrain the source compositions of the Flores and Corvo lavas and show that the western and eastern Azores mantle is isotopically similar, with the exception of an enriched component found exclusively on eastern São Miguel. Trace element ratios involving high field strength elements (HFSE) are distinctly different in the western islands (e.g. twofold higher Nb/Zr) compared to any of the islands east of the MAR. A similar signature is observed in MAR basalts to the south of the Azores platform and inferred to originate from (auto-) metasomatic enrichment of the sub-ridge mantle (Gale et al., 2011, 2013). In a similar fashion, low degree melts from an enriched source component may metasomatise the ambient plume mantle underneath the western Azores islands. Melting such a modified plume mantle can explain the chemical differences between lavas from the western and eastern Azores islands without the need for additional plume components. Recent re-enrichment and intra melting column modification of the upwelling mantle can cause local to regional scale geochemical differences in mantle-derived melts.

  5. Subducting slabs: Jellyfishes in the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Loiselet, Christelle; Braun, Jean; Husson, Laurent; Le Carlier de Veslud, Christian; Thieulot, Cedric; Yamato, Philippe; Grujic, Djordje

    2010-08-01

    The constantly improving resolution of geophysical data, seismic tomography and seismicity in particular, shows that the lithosphere does not subduct as a slab of uniform thickness but is rather thinned in the upper mantle and thickened around the transition zone between the upper and lower mantle. This observation has traditionally been interpreted as evidence for the buckling and piling of slabs at the boundary between the upper and lower mantle, where a strong contrast in viscosity may exist and cause resistance to the penetration of slabs into the lower mantle. The distribution and character of seismicity reveal, however, that slabs undergo vertical extension in the upper mantle and compression near the transition zone. In this paper, we demonstrate that during the subduction process, the shape of low viscosity slabs (1 to 100 times more viscous than the surrounding mantle) evolves toward an inverted plume shape that we coin jellyfish. Results of a 3D numerical model show that the leading tip of slabs deform toward a rounded head skirted by lateral tentacles that emerge from the sides of the jellyfish head. The head is linked to the body of the subducting slab by a thin tail. A complete parametric study reveals that subducting slabs may achieve a variety of shapes, in good agreement with the diversity of natural slab shapes evidenced by seismic tomography. Our work also suggests that the slab to mantle viscosity ratio in the Earth is most likely to be lower than 100. However, the sensitivity of slab shapes to upper and lower mantle viscosities and densities, which remain poorly constrained by independent evidence, precludes any systematic deciphering of the observations.

  6. Subducting Slabs: Jellyfishes in the Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Loiselet, C.; Braun, J.; Husson, L.; Le Carlier de Veslud, C.; Thieulot, C.; Yamato, P.; Grujic, D.

    2010-12-01

    The constantly improving resolution of geophysical data, seismic tomography and seismicity in particular, shows that the lithosphere does not subduct as a slab of uniform thickness but is rather thinned in the upper mantle and thickened around the transition zone between the upper and lower mantle. This observation has traditionally been interpreted as evidence for the buckling and piling of slabs at the boundary between the upper and lower mantle, where a strong contrast in viscosity may exist and cause resistance to the penetration of slabs into the lower mantle. The distribution and character of seismicity reveal, however, that slabs undergo vertical extension in the upper mantle and compression near the transition zone. In this paper, we demonstrate that during the subduction process, the shape of low viscosity slabs (1 to 100 times more viscous than the surrounding mantle) evolves toward an inverted plume shape that we coin jellyfish. Results of a 3D numerical model show that the leading tip of slabs deform toward a rounded head skirted by lateral tentacles that emerge from the sides of the jellyfish head. The head is linked to the body of the subducting slab by a thin tail. A complete parametric study reveals that subducting slabs may achieve a variety of shapes, in good agreement with the diversity of natural slab shapes evidenced by seismic tomography. Our work also suggests that the slab to mantle viscosity ratio in the Earth is most likely to be lower than 100. However, the sensitivity of slab shapes to upper and lower mantle viscosities and densities, which remain poorly constrained by independent evidence, precludes any systematic deciphering of the observations.

  7. Water Distribution in the Continental and Oceanic Upper Mantle

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.

    2015-01-01

    Nominally anhydrous minerals such as olivine, pyroxene and garnet can accommodate tens to hundreds of ppm H2O in the form of hydrogen bonded to structural oxygen in lattice defects. Although in seemingly small amounts, this water can significantly alter chemical and physical properties of the minerals and rocks. Water in particular can modify their rheological properties and its distribution in the mantle derives from melting and metasomatic processes and lithology repartition (pyroxenite vs peridotite). These effects will be examined here using Fourier transform infrared spectrometry (FTIR) water analyses on minerals from mantle xenoliths from cratons, plume-influenced cratons and oceanic settings. In particular, our results on xenoliths from three different cratons will be compared. Each craton has a different water distribution and only the mantle root of Kaapvaal has evidence for dry olivine at its base. This challenges the link between olivine water content and survival of Archean cratonic mantle, and questions whether xenoliths are representative of the whole cratonic mantle. We will also present our latest data on Hawaii and Tanzanian craton xenoliths which both suggest the intriguing result that mantle lithosphere is not enriched in water when it interacts with melts from deep mantle upwellings (plumes).

  8. Water Storage in the Mantle and Effect of Water on Mantle Dynamics

    NASA Astrophysics Data System (ADS)

    Ohtani, E.; Litasov, K.

    2002-12-01

    Water is transported into the deep mantle by hydrous minerals in the descending slabs. In the peridotite layer of the cold slabs with local water enrichment, hydrous wadsleyite and hydrous ringwoodite are the main water reservoirs in the transition zone, and water is mainly stored in superhydrous phase B in the uppermost lower mantle. We observed decomposition of superhydrous phase B into periclase, Mg-perovskite, and Phase G(D) at around 30 GPa and 1000C based on the in situ X-ray diffraction experiments. In the basaltic component of the slabs lawsonite and phengite are the water reservoir up to about 13 GPa, however no hydrous phase exists in the composition at higher pressure at least up to 26 GPa. A candidate for water reservoir in the siliceous sediment of the slab is phase Egg AlSiO3OH in the transition zone conditions. It dehydrates to corundum, stishovite, and fluid at temperatures above 1200C and around 25 GPa, whereas it decomposes into stishovite and delta-AlOOH in the slab conditions below 1200C at the same pressure. Water solubility of wadsleyite and ringwoodite more than 2 wt.% at around 1000C decreases with incresing temperature and pressure, and the maximum solubility in wadsleyite along the mantle geotherm is around 0.5-0.8 wt.% in the transition zone. The water solubility in aluminous Mg-perovskite solid solution in peridotite and basalt compositions at 25 GPa and 1200-1600C, ca. 1500ppm and <100ppm respectively, implies that the basaltic component does not work as a water reservoir. Most of water released from the stagnant slabs in the uppermost lower mantle would tend to move upwards and to be trapped in the transition zone. Relatively dry hot plumes originating in the deep lower mantle can dissolve water by interaction with the hydrous transition zone. Hydration of mantle plumes can occur effectively, since our preliminary study implies the diffusion of hydrogen is fast in wadsleyite as was reported in olivine (Mackwell and Kohlstedt, 1990

  9. Geometry of the Arabia-Somalia Plate Boundary into Afar: Preliminary Results from the Seismic Profile Across the Asal Rift (Djibouti)

    NASA Astrophysics Data System (ADS)

    Vergne, J.; Doubre, C.; Mohamed, K.; Tiberi, C.; Leroy, S.; Maggi, A.

    2010-12-01

    In the Afar Depression, the Asal-Ghoubbet Rift in Djibouti is a young segment on land at the propagating tip of the Aden Ridge. This segment represents an ideal laboratory to observe the mechanisms of extension and the structural evolutions involved, from the continental break-up to the first stage of oceanic spreading. However, we lack first order information about the crustal and upper mantle structure in this region, which for example prevent detailed numerical modeling of the deformations observed at the surface from GPS or InSAR. Moreover the current permanent network is not well suited to precisely constrain the ratio of seismic/aseismic deformation and to characterize the active deformation and the rifting dynamics. Since November 2009 we have maintained a temporary network of 25 seismic stations deployed along a 150 km-long profile. Because we expect rapid variations of the lithospheric structure across the 10 km-wide central part of the rift, we gradually decreased the inter-stations spacing to less than 1 km in the middle section of the profile. In order to obtain a continuous image of the plate boundary, from the topographic surface to the upper mantle, several techniques and methods will be applied: P and S wave receiver functions, tomographies based on body waves, surface waves and seismic noise correlation, anisotropy, and finally a gravity-seismic joint inversion. We present some preliminary results deduced from the receiver functions applied to the data acquired during the first months of the experiment. We migrate several sets of receiver functions computed in various frequency bands to resolve both mantle interfaces and fine scale structures within the thin crust in the center of the rift. These first images confirm a rapid variation of the Moho depth on both sides of the rift and a very complex lithospheric structure in the central section with several low velocity zones within the top 50km that might correspond to magma lenses.

  10. Modeling Europa's Dust Plumes

    NASA Astrophysics Data System (ADS)

    Southworth, B.; Kempf, S.; Schmidt, J.

    2015-12-01

    The discovery of Europa maintaining a probably sporadic water vapor plume constitutes a huge scientific opportunity for NASA's upcoming mission to this Galilean moon. Measuring the properties of material emerging from interior sources offers a unique chance to understand conditions at Europa's subsurface ocean. Exploiting results obtained for the Enceladus plume, we adjust the ejection model by Schmidt et al. [2008] to the conditions at Europa. In this way, we estimate properties of a possible, yet unobserved dust component of the Europa plume. For a size-dependent speed distribution of emerging ice particles we use the model from Kempf et al. [2010] for grain dynamics, modified to run simulations of plumes on Europa. Specifically, we model emission from the two plume locations determined from observations by Roth et al. [2014] and also from other locations chosen at the closest approach of low-altitude flybys investigated in the Europa Clipper study. This allows us to estimate expected fluxes of ice grains on the spacecraft. We then explore the parameter space of Europa dust plumes with regard to particle speed distribution parameters, plume location, and spacecraft flyby elevation. Each parameter set results in a 3-dimensional particle density structure through which we simulate flybys, and a map of particle fallback ('snowfall') on the surface of Europa. Due to the moon's high escape speed, a Europa plume will eject few to no particles that can escape its gravity, which has several further consequences: (i) For given ejection velocity a Europa plume will have a smaller scale height, with a higher particle number densities than the plume on Enceladus, (ii) plume particles will not feed the diffuse Galilean dust ring, (iii) the snowfall pattern on the surface will be more localized about the plume location, and will not induce a global m = 2 pattern as seen on Enceladus, and (iv) safely observing an active plume will require low altitude flybys, preferably at 50

  11. Geophysical inferences of thermal-chemical structures in the lower mantle

    NASA Technical Reports Server (NTRS)

    Yuen, D. A.; Cadek, O.; Chopelas, A.; Matyska, C.

    1993-01-01

    Lateral variations of the temperature field in the lower mantle have been reconstructed using new results in mineral physics and seismic tomographic data. We show that, with the application of high-pressure experimental values of thermal expansivity and of sound velocities, the slow seismic anomalies in the lower mantle under the Pacific and Africa can be converted into realistic-looking plume structures with large dimensions of 0(1000 km). The outer fringes of the plumes have an excess temperature of around 400 K. In the core of the plumes are found tonguelike structures with extremely high thermal anomalies. These values can exceed 1200 K and are too high to be explained on the basis of thermal anomalies alone. We suggest that these major plumes in the deep mantle may be driven by both thermal and chemical buoyancies or that enhanced conductive heat-transfer may be important there.

  12. An olivine-free mantle source of Hawaiian shield basalts.

    PubMed

    Sobolev, Alexander V; Hofmann, Albrecht W; Sobolev, Stephan V; Nikogosian, Igor K

    2005-03-31

    More than 50 per cent of the Earth's upper mantle consists of olivine and it is generally thought that mantle-derived melts are generated in equilibrium with this mineral. Here, however, we show that the unusually high nickel and silicon contents of most parental Hawaiian magmas are inconsistent with a deep olivine-bearing source, because this mineral together with pyroxene buffers both nickel and silicon at lower levels. This can be resolved if the olivine of the mantle peridotite is consumed by reaction with melts derived from recycled oceanic crust, to form a secondary pyroxenitic source. Our modelling shows that more than half of Hawaiian magmas formed during the past 1 Myr came from this source. In addition, we estimate that the proportion of recycled (oceanic) crust varies from 30 per cent near the plume centre to insignificant levels at the plume edge. These results are also consistent with volcano volumes, magma volume flux and seismological observations.

  13. Plume source regions in the South Atlantic - spatial and temporal variability and implications for the LLSVP source region

    NASA Astrophysics Data System (ADS)

    Class, C.; le Roex, A. P.; O'Connor, J. M.; Jokat, W.

    2012-12-01

    To the extent that a lower mantle origin is accepted for individual mantle plumes, they are our only means of investigating the chemical variability of lower mantle regions in space and time. Ultimately such mapping of the lower mantle should provide important constraints on the geological processes that led to the formation of these plume source regions. It is generally accepted that mantle plume sources contain differentiated recycled material from the surface of the Earth, but uncertainties remain as to the nature, composition and age of these recycled components. In addition, in the southern hemisphere plumes preferentially rise from the edges of large low shear wave velocity provinces (LLSVP). It remains to be shown whether LLSVPs contribute material to rising mantle plumes and what their geochemical composition might be. The South Atlantic with four closely spaced mantle plumes in the vicinity to the African LLSVP could provide insights into these questions. Criteria in support of a lower mantle origin of these plumes are (1) presence of a flood basalt province (Tristan-Gough), (2) longevity of age-progressive volcanism (Tristan-Gough 130Ma, Shona 80 Ma, Discovery 40 Ma), as well as (3) enrichment of primordial 3He relative to MORB mantle (Discovery, Shona, Bouvet). The South Atlantic plumes are aligned and produce volcanism synchronously, consistent with their origin at the western edge of the African LLSVP. Geochemically the South Atlantic plumes are heterogeneous, spanning compositions in isotope space from EMI to Stracke's FOZO and the extreme DUPAL signature with high delta 74 and delta 84 as represented by Gough Island. The extreme DUPAL is found in 3 of the 4 plume systems, indicating a common mantle source. The extreme DUPAL contributed to the Tristan-Gough plume system since 70 Ma and represents the southern component of the laterally zoned plume conduit (Rhode, personal comm. 2012). The Discovery plume is laterally zoned since 40 Ma and the extreme

  14. Experiments on metal-silicate plumes and core formation.

    PubMed

    Olson, Peter; Weeraratne, Dayanthie

    2008-11-28

    Short-lived isotope systematics, mantle siderophile abundances and the power requirements of the geodynamo favour an early and high-temperature core-formation process, in which metals concentrate and partially equilibrate with silicates in a deep magma ocean before descending to the core. We report results of laboratory experiments on liquid metal dynamics in a two-layer stratified viscous fluid, using sucrose solutions to represent the magma ocean and the crystalline, more primitive mantle and liquid gallium to represent the core-forming metals. Single gallium drop experiments and experiments on Rayleigh-Taylor instabilities with gallium layers and gallium mixtures produce metal diapirs that entrain the less viscous upper layer fluid and produce trailing plume conduits in the high-viscosity lower layer. Calculations indicate that viscous dissipation in metal-silicate plumes in the early Earth would result in a large initial core superheat. Our experiments suggest that metal-silicate mantle plumes facilitate high-pressure metal-silicate interaction and may later evolve into buoyant thermal plumes, connecting core formation to ancient hotspot activity on the Earth and possibly on other terrestrial planets.

  15. Mapping the evolving strain field during continental breakup from crustal anisotropy in the Afar Depression

    PubMed Central

    Keir, Derek; Belachew, M.; Ebinger, C.J.; Kendall, J.-M.; Hammond, J.O.S.; Stuart, G.W.; Ayele, A.; Rowland, J.V.

    2011-01-01

    Rifting of the continents leading to plate rupture occurs by a combination of mechanical deformation and magma intrusion, yet the spatial and temporal scales over which these alternate mechanisms localize extensional strain remain controversial. Here we quantify anisotropy of the upper crust across the volcanically active Afar Triple Junction using shear-wave splitting from local earthquakes to evaluate the distribution and orientation of strain in a region of continental breakup. The pattern of S-wave splitting in Afar is best explained by anisotropy from deformation-related structures, with the dramatic change in splitting parameters into the rift axis from the increased density of dyke-induced faulting combined with a contribution from oriented melt pockets near volcanic centres. The lack of rift-perpendicular anisotropy in the lithosphere, and corroborating geoscientific evidence of extension dominated by dyking, provide strong evidence that magma intrusion achieves the majority of plate opening in this zone of incipient plate rupture. PMID:21505441

  16. Bookshelf faulting and horizontal block rotations between overlapping rifts in southern Afar

    SciTech Connect

    Tapponnier, P.; Armijo, R.; Manighetti, I.; Courtillot, V. )

    1990-01-01

    Lateral slip on initially rift-parallel normal faults may be a particularly efficient mechanism to accommodate strain between overlapping oceanic rifts. It occurs in southern Afar, where clockwise block rotations result from distributed dextral shear between the overlapping Ghoubbet Asal-Manda Inakir and Manda Hararo-Abhe Bad rifts. Faulting observed during the 1969, Serdo earthquakes and on SPOT images is consistent with the shear being taken up by left-lateral slip on steep NW-SE striking faults, which formed as normal faults before extensional strain became localized in the two rifts. This bookshelf faulting accounts quantitatively for the 14.5{degree} {plus minus}7.5{degree} rotation documented by paleomagnetism in the 1.8 {plus minus}0.4 Ma old Afar stratoid basalts, given the 17.5 {plus minus}5 mm/yr rate of separation between Arabia and Somalia.

  17. Evidence for melt channelization in Galapagos plume-ridge interaction

    NASA Astrophysics Data System (ADS)

    Mittal, T.; Richards, M. A.

    2015-12-01

    Many present-day hot spots are located within ~ 1000 km of a mid-ocean ridge, either currently or in the geologic past, leading to frequent interaction between these two magmatic regimes. The consequent plume-ridge interactions provide a unique opportunity to test models for asthenosphere-lithosphere dynamics, with the plume acting as a tracer fluid in the problem, and excess magmatism reflecting otherwise unsampled sub-surface phenomena. Galapagos is an off-ridge hotspot with the mantle plume located ~150-250 km south of the plate boundary. Plume-ridge interaction in Galapagos is expressed by the formation of volcanic lineaments of islands and seamounts - e.g., the Wolf-Darwin lineament (WDL) - providing a direct probe of the plume-ridge interaction process, especially in regards to geochemical data. Although several models have been proposed to explain plume-ridge interaction in Galapagos, none adequately explain the observed characteristics, especially the WDL. In particular, predicted lithospheric fault orientations and melt density considerations appear at odds with observations, suggesting that lithospheric extension is not the primary process for formation of these islands. Other off-ridge hotspots interacting with nearby spreading ridges, such as Reunion and Louisville, also exhibit volcanic lineaments linking the plume and the ridge. Thus these lineament-type features are a common outcome of plume-ridge interaction that are indicative of the underlying physics. We propose that the lineaments are surface expressions of narrow sub-lithospheric melt channels focused towards the spreading ridge. These channels should form naturally due to the reactive infiltration instability in a two-phase flow of magma and solid mantle as demonstrated in two-phase flow simulations (e.g., Katz & Weatherley 2012). For Galapagos, we show that melt channels can persist thermodynamically over sufficient length-scales to link the plume and nearby ridge segments. We also show that

  18. Os-He Isotope Systematics of Iceland Picrites: Evidence for a Deep Origin of the Iceland Plume

    NASA Technical Reports Server (NTRS)

    Brandon, Alan D.; Graham, David W.; Waight, Tod; Gautason, Bjarni

    2007-01-01

    Recent work on the origin of the Iceland hotspot suggests that it may result from upwelling upper mantle material rather than a deep plume. To constrain the depths of origins of Iceland mantle sources, Os and He isotope systematics were obtained on a suite picrites that span the compositional range observed within the neovolcanic zones.

  19. Recycled crust in the Galápagos Plume source at 70 Ma: Implications for plume evolution

    NASA Astrophysics Data System (ADS)

    Trela, Jarek; Vidito, Christopher; Gazel, Esteban; Herzberg, Claude; Class, Cornelia; Whalen, William; Jicha, Brian; Bizimis, Michael; Alvarado, Guillermo E.

    2015-09-01

    Galápagos plume-related lavas in the accreted terranes of the Caribbean and along the west coast of Costa Rica and Panama provide evidence on the evolution of the Galápagos mantle plume, specifically its mantle temperature, size and composition of heterogeneities, and dynamics. Here we provide new 40Ar/39Ar ages, major and trace element data, Sr-Nd-Pb isotopic compositions, and high-precision olivine analyses for samples from the Quepos terrane (Costa Rica) to closely examine the transitional phase of the Galápagos Plume from Large Igneous Province (LIP) to ocean island basalt (OIB) forming stages. The new ages indicate that the record of Quepos volcanism began at 70 Ma and persisted for 10 Ma. Petrological evidence suggests that the maximum mantle potential temperature (Tp) of the plume changed from ∼1650° to ∼1550 °C between 90-70 Ma. This change correlates with a dominant pyroxenite component in the Galapagos source as indicated by high Ni and Fe/Mn and low Ca olivines relative to those that crystallized in normal peridotite derived melts. The decrease in Tp also correlates with an increase in high-field strength element enrichments, e.g., Nb/Nb*, of the erupted lavas. Radiogenic isotope ratios (Nd-Pb) suggest that the Quepos terrane samples have intermediate (Central Domain) radiogenic signatures. The Galápagos plume at 70 Ma represents elevated pyroxenite melt productivity relative to peridotite in a cooling lithologically heterogeneous mantle.

  20. Re-evaluation of focal depths and source mechanisms of selected earthquakes in the Afar depression

    NASA Astrophysics Data System (ADS)

    Hagos, L.; Shomali, H.; Roberts, R.

    2006-10-01

    We present a stepwise inversion procedure to assess the focal depth and model earthquake source complexity of seven moderate-sized earthquakes (6.2 >Mw > 5.1) that occurred in the Afar depression and the surrounding region. The Afar depression is a region of highly extended and intruded lithosphere, and zones of incipient seafloor spreading. A time-domain inversion of full moment tensor was performed to model direct P and SH waves of teleseismic data. Waveform inversion of the selected events estimated focal depths in the range of 17-22 km, deeper than previously published results. This suggests that the brittle-ductile transition zone beneath parts of the Afar depression extends more than 22 km. The effect of near-source velocity structure on the moment tensor elements was also investigated and was found to respond little to the models considered. Synthetic tests indicate that the size of the estimated, non-physical, non-isotropic source component is rather sensitive to incorrect depth estimation. The dominant double couple part of the moment tensor solutions for most of the events indicates that their occurrence is mainly due to shearing. Parameters associated with source directivity (rupture velocity and azimuth) were also investigated. Re-evaluation of the analysed events shows predominantly normal faulting consistent with the relative plate motions in the region.

  1. Entrainment by Lazy Plumes

    NASA Astrophysics Data System (ADS)

    Kaye, Nigel; Hunt, Gary

    2004-11-01

    We consider plumes with source conditions that have a net momentum flux deficit compared to a pure plume - so called lazy plumes. We examine both the case of constant buoyancy flux and buoyancy flux linearly increasing with height. By re-casting the plume conservation equations (Morton, Taylor & Turner 1956) for a constant entrainment coefficient ((α)) in terms of the plume radius (β) and the dimensionless parameter (Γ=frac5Q^2 B4α M^5/2) we show that the far-field flow in a plume with a linear internal buoyancy flux gain is a constant velocity lazy plume with reduced entrainment and radial growth rate. For highly lazy source conditions we derive first-order approximate solutions which indicate a region of zero entrainment near the source. These phenomena have previously been observed, however, it has often been assumed that reduced entrainment implies a reduced (α). We demonstrate that a constant (α) formulation is able to capture the behaviour of these reduced entrainment flows. Morton, B. R., Taylor, G. I. & Turner, J. S. (1956), Turbulent gravitational convection from maintained and instantaneous sources.', Proc. Roy. Soc. 234, 1-23.

  2. Deep Mantle Cycling of Oceanic Crust: Evidence from Diamonds and Their Mineral Inclusions

    NASA Astrophysics Data System (ADS)

    Walter, M. J.; Kohn, S. C.; Araujo, D.; Bulanova, G. P.; Smith, C. B.; Gaillou, E.; Wang, J.; Steele, A.; Shirey, S. B.

    2011-10-01

    A primary consequence of plate tectonics is that basaltic oceanic crust subducts with lithospheric slabs into the mantle. Seismological studies extend this process to the lower mantle, and geochemical observations indicate return of oceanic crust to the upper mantle in plumes. There has been no direct petrologic evidence, however, of the return of subducted oceanic crustal components from the lower mantle. We analyzed superdeep diamonds from Juina-5 kimberlite, Brazil, which host inclusions with compositions comprising the entire phase assemblage expected to crystallize from basalt under lower-mantle conditions. The inclusion mineralogies require exhumation from the lower to upper mantle. Because the diamond hosts have carbon isotope signatures consistent with surface-derived carbon, we conclude that the deep carbon cycle extends into the lower mantle.

  3. Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions.

    PubMed

    Walter, M J; Kohn, S C; Araujo, D; Bulanova, G P; Smith, C B; Gaillou, E; Wang, J; Steele, A; Shirey, S B

    2011-10-07

    A primary consequence of plate tectonics is that basaltic oceanic crust subducts with lithospheric slabs into the mantle. Seismological studies extend this process to the lower mantle, and geochemical observations indicate return of oceanic crust to the upper mantle in plumes. There has been no direct petrologic evidence, however, of the return of subducted oceanic crustal components from the lower mantle. We analyzed superdeep diamonds from Juina-5 kimberlite, Brazil, which host inclusions with compositions comprising the entire phase assemblage expected to crystallize from basalt under lower-mantle conditions. The inclusion mineralogies require exhumation from the lower to upper mantle. Because the diamond hosts have carbon isotope signatures consistent with surface-derived carbon, we conclude that the deep carbon cycle extends into the lower mantle.

  4. Lithosphere erosion and breakup due to the interaction between extension and plume upwelling

    NASA Astrophysics Data System (ADS)

    Lavecchia, Alessio; Thieulot, Cedric; Beekman, Fred; Cloetingh, Sierd; Clark, Stuart

    2016-04-01

    We have built up 2D numerical models of coupled crust - lithospheric mantle - upper mantle systems. The reconstructed sections are subjected to external velocity fields and mantle plume impingement beneath the lithosphere, both acting simultaneously. The models are designed to simulate the interaction between plumes and lithosphere in an extensional setting with the main purpose to contribute to address the following questions: 1) Are plumes capable of weakening certain lithospheric regions? Where and when are the main effects observed? 2a) Can a plume really cause a plate break-off and drifting with no external contribution; 2b) if yes, are there any particularly favorable conditions required? In our models a novel aspect is melt generation due to plume, upper mantle and lithospheric mantle partial melting. Produced melts are capable to ascend across the reconstructed sections due to buoyancy. Furthermore, heat transport related to melt movement is taken into account and leads to a significant heating of host rocks at the melt neutral buoyancy depth. In absence of external stress or velocity fields, the effects of plume impingement beneath the lithosphere are negligible at surface. Here the main observed feature is the production of doming at various length scales, depending on the adopted rheology for the crust. At depth, the main effect is a thermo-mechanical erosion of the lithospheric mantle with production of melts and subsequent underplating of the crust. The heat flux due to plume impingement and crust underplating determines a weakening of crust and lithosphere. However, the strength drop is not followed by an appreciable deformation. When external stress or velocity fields are applied, the coupled effects with plume presence and melt production lead to great modifications of the lithospheric structure. Topography profiles are characterized by the presence of a horst and graben structure, and extensive erosion of the lithosphere always occurs. The presence

  5. Did mantle plume magmatism help trigger the Great Oxidation Event?

    NASA Astrophysics Data System (ADS)

    Ciborowski, T. Jake. R.; Kerr, Andrew C.

    2016-03-01

    The Great Oxidation Event (GOE) represents the first sustained appearance of free oxygen in Earth's atmosphere. This fundamental event in Earth's history has been dated to approximately 2450 million years ago (Ma), that is, hundreds of millions of years after the appearance of photosynthetic cyanobacteria in the fossil record. A variety of mechanisms have been suggested to explain this time lag between the onset of photosynthesis and atmospheric oxygenation, including orogenesis, changes in the areal extent and distribution of continental shelves, the secular release of hydrogen to space, and methanogenic bacterial stress. Recently, it has been proposed that subaerial volcanism during the early Proterozoic could have provided a large pulse of sulphate to the ancient oceans, the reduction of which liberated the oxygen to drive the GOE. Here we show that the Matachewan Large Igneous Province (LIP), which is partially preserved in Scandinavia and North America, is both exactly coincident with the onset of the GOE, and of sufficient magnitude to be the source of this sulphate release. We therefore propose that the volcanism associated with the emplacement of the Matachewan LIP was a principal driver of the oxygenation of our planet.

  6. Block rotation and continental extension in Afar: A comparison to oceanic microplate systems

    NASA Astrophysics Data System (ADS)

    Acton, Gary D.; Stein, Seth; Engeln, Joseph F.

    1991-06-01

    The reorganization of oceanic spreading centers separating major plates often appears to occur by a process in which discrete microplates form and evolve by rift propagation. To see whether such microplate behavior has implications for continental rifting, we investigate the application of a microplate model to the Afar region at the Nubia-Somalia-Arabia triple junction. Studies of marine magnetic anomalies, volcanic ages, bathymetry, and seismicity suggest that the westward propagating Gulf of Aden spreading center has propagated into eastern Afar within the past 2 m.y., causing rifting and extension within the continent. We derive constraints on the extension history from the geometry and timing of rift formation and from paleomagnetic data indicating that Pliocene to Pleistocene age rocks have undergone a clockwise rotation of ˜11°. We suggest that the history of rifting, the rotation, and several other features of the regional geology can be described by combining features of an oceanic microplate model and the concept of rift localization previously proposed for Afar. In this scenario, motion occurring on several rifts within an extensional zone preceding the propagating spreading center is gradually transferred to a single rift. While motion is transferred, the overlap region between the growing and dying rifts acts as one or more microplates or blocks that rotate relative to the surrounding major plates. The rifting history and rotations in eastern Afar are thus related to the rift propagation and localization that occurs as the plate boundary evolves. Provided the constraints we use are appropriate, our model better describes the regional kinematics than alternative block models including one based on "bookshelf" faulting. If the tectonics of Afar are typical for continental breakup, they have interesting implications for the geometry of passive margins. In particular, asymmetric rifted margins can be produced if the final location of the rift axis is not

  7. New geodetic measurements in central Afar constraining the Arabia-Somalia-Nubia triple junction kinematics

    NASA Astrophysics Data System (ADS)

    Doubre, C.; Deprez, A.; Masson, F.; Socquet, A.; Lewi, E.; Grandin, R.; Calais, E.; Wright, T. J.; Bendick, R. O.; Pagli, C.; Peltzer, G.; de Chabalier, J. B.; Ibrahim Ahmed, S.

    2014-12-01

    The Afar Depression is an extraordinary submerged laboratory where the crustal mechanisms involved in the active rifting process can be studied. But the crustal movements at the regional scale are complicated by being the locus of the meeting of three divergent plate boundaries: the oceanic spreading ridges of the Red Sea and the Aden Ridge and the intra-continental East-African Rift (EAR). We present here the first GPS measurements conducted in a new network in Central Afar, complementing existing networks in Eritrea, around the Manda-Harraro 2005-2010 active segment, in the Northern part of the EAR and in Djibouti. Even if InSAR data were appropriate for mapping the deformation field, the results are difficult to interpret for analyzing the regional kinematics because of the atmospheric conditions, the lack of complete data catalogue, the acquisition configuration and the small velocity variations. Therefore, our measurements in the new sites are crucial to obtain an accurate velocity field over the whole depression, and focus specifically on the spatial organization of the deformation to characterize the tripe junction. These first results show that a small part of the motion of the Somalia plate with respect to the Nubia plate or the Arabia plate (2-3 mm/yr) occurs south of the Tadjura Gulf and East of the Adda-do segment in Southern Afar. The complex kinematic pattern involves a clockwise rotation of this Southeastern part of the Afar rift and can be related to the significant seismic activity regularly recorded in the region of Jigjiga (northern Somalia-Ethiopia border). The western continuation of the Aden Ridge into Afar extends West of the Asal rift segment and does not reach the young active segment of Manda-Inakir (MI). A slow gradient of velocity is observed across the Dobi Graben and across the large systems of faults between Lake Abhe and the MI rift segment. A striking change of the velocity direction occurs in the region of Assaïta, west of Lake

  8. Prometheus: Io's wandering plume.

    PubMed

    Kieffer, S W; Lopes-Gautier, R; McEwen, A; Smythe, W; Keszthelyi, L; Carlson, R

    2000-05-19

    Unlike any volcanic behavior ever observed on Earth, the plume from Prometheus on Io has wandered 75 to 95 kilometers west over the last 20 years since it was first discovered by Voyager and more recently observed by Galileo. Despite the source motion, the geometric and optical properties of the plume have remained constant. We propose that this can be explained by vaporization of a sulfur dioxide and/or sulfur "snowfield" over which a lava flow is moving. Eruption of a boundary-layer slurry through a rootless conduit with sonic conditions at the intake of the melted snow can account for the constancy of plume properties.

  9. Lithology and temperature: How key mantle variables control rift volcanism

    NASA Astrophysics Data System (ADS)

    Shorttle, O.; Hoggard, M.; Matthews, S.; Maclennan, J.

    2015-12-01

    Continental rifting is often associated with extensive magmatic activity, emplacing millions of cubic kilometres of basalt and triggering environmental change. The lasting geological record of this volcanic catastrophism are the large igneous provinces found at the margins of many continents and abrupt extinctions in the fossil record, most strikingly that found at the Permo-Triassic boundary. Rather than being considered purely a passive plate tectonic phenomenon, these episodes are frequently explained by the involvement of mantle plumes, upwellings of mantle rock made buoyant by their high temperatures. However, there has been debate over the relative role of the mantle's temperature and composition in generating the large volumes of magma involved in rift and intra-plate volcanism, and even when the mantle is inferred to be hot, this has been variously attributed to mantle plumes or continental insulation effects. To help resolve these uncertainties we have combined geochemical, geophysical and modelling results in a two stage approach: Firstly, we have investigated how mantle composition and temperature contribute to melting beneath Iceland, the present day manifestation of the mantle plume implicated in the 54Ma break up of the North Atlantic. By considering both the igneous crustal production on Iceland and the chemistry of its basalts we have been able to place stringent constraints on the viable temperature and lithology of the Icelandic mantle. Although a >100°C excess temperature is required to generate Iceland's thick igneous crust, geochemistry also indicates that pyroxenite comprises 10% of its source. Therefore, the dynamics of rifting on Iceland are modulated both by thermal and compositional mantle anomalies. Secondly, we have performed a global assessment of the mantle's post break-up thermal history to determine the amplitude and longevity of continental insulation in driving excess volcanism. Using seismically constrained igneous crustal

  10. A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow

    NASA Astrophysics Data System (ADS)

    Hassan, Rakib; Müller, R. Dietmar; Gurnis, Michael; Williams, Simon E.; Flament, Nicolas

    2016-05-01

    Volcanic hotspot tracks featuring linear progressions in the age of volcanism are typical surface expressions of plate tectonic movement on top of narrow plumes of hot material within Earth’s mantle. Seismic imaging reveals that these plumes can be of deep origin—probably rooted on thermochemical structures in the lower mantle. Although palaeomagnetic and radiometric age data suggest that mantle flow can advect plume conduits laterally, the flow dynamics underlying the formation of the sharp bend occurring only in the Hawaiian-Emperor hotspot track in the Pacific Ocean remains enigmatic. Here we present palaeogeographically constrained numerical models of thermochemical convection and demonstrate that flow in the deep lower mantle under the north Pacific was anomalously vigorous between 100 million years ago and 50 million years ago as a consequence of long-lasting subduction systems, unlike those in the south Pacific. These models show a sharp bend in the Hawaiian-Emperor hotspot track arising from the interplay of plume tilt and the lateral advection of plume sources. The different trajectories of the Hawaiian and Louisville hotspot tracks arise from asymmetric deformation of thermochemical structures under the Pacific between 100 million years ago and 50 million years ago. This asymmetric deformation waned just before the Hawaiian-Emperor bend developed, owing to flow in the deepest lower mantle associated with slab descent in the north and south Pacific.

  11. A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow.

    PubMed

    Hassan, Rakib; Müller, R Dietmar; Gurnis, Michael; Williams, Simon E; Flament, Nicolas

    2016-05-12

    Volcanic hotspot tracks featuring linear progressions in the age of volcanism are typical surface expressions of plate tectonic movement on top of narrow plumes of hot material within Earth's mantle. Seismic imaging reveals that these plumes can be of deep origin--probably rooted on thermochemical structures in the lower mantle. Although palaeomagnetic and radiometric age data suggest that mantle flow can advect plume conduits laterally, the flow dynamics underlying the formation of the sharp bend occurring only in the Hawaiian-Emperor hotspot track in the Pacific Ocean remains enigmatic. Here we present palaeogeographically constrained numerical models of thermochemical convection and demonstrate that flow in the deep lower mantle under the north Pacific was anomalously vigorous between 100 million years ago and 50 million years ago as a consequence of long-lasting subduction systems, unlike those in the south Pacific. These models show a sharp bend in the Hawaiian-Emperor hotspot track arising from the interplay of plume tilt and the lateral advection of plume sources. The different trajectories of the Hawaiian and Louisville hotspot tracks arise from asymmetric deformation of thermochemical structures under the Pacific between 100 million years ago and 50 million years ago. This asymmetric deformation waned just before the Hawaiian-Emperor bend developed, owing to flow in the deepest lower mantle associated with slab descent in the north and south Pacific.

  12. Helium-3 from the mantle - Primordial signal or cosmic dust?

    NASA Technical Reports Server (NTRS)

    Anderson, Don L.

    1993-01-01

    Helium-3 in hotspot magmas has been used as unambiguous evidence for the existence of a primordial, undegassed reservoir deep in the Earth's mantle. However, a large amount of helium-3 is delivered to the Earth's surface by interplanetary dust particles (IDPs). Recycling of deep-sea sediments containing these particles to the mantle, and eventual incorporation in magma, can explain the high helium-3/helium-4 ratios of hotspot magmas. Basalts with high helium-3/helium-4 ratios may represent degassing of helium introduced by ancient (probably 1.5 to 2.0 billion years old) pelagic sediments rather than degassing of primordial lower mantle material brought to the surface in plumes. Influx of IDPs can also explain the neon and siderophile compositions of mantle samples.

  13. CHLORINATED SOLVENT PLUME CONTROL

    EPA Science Inventory

    This lecture will cover recent success in controlling and assessing the treatment of shallow ground water plumes of chlorinated solvents, other halogenated organic compounds, and methyl tert-butyl ether (MTBE).

  14. Methane Plumes on Mars

    NASA Video Gallery

    Spectrometer instruments attached to several telescopes detect plumes of methane emitted from Mars during its summer and spring seasons. High levels of methane are indicated by warmer colors. The m...

  15. 3-D numerical modeling of plume-induced subduction initiation

    NASA Astrophysics Data System (ADS)

    Baes, Marzieh; Gerya, taras; Sobolev, Stephan

    2016-04-01

    Investigation of mechanisms involved in formation of a new subduction zone can help us to better understand plate tectonics. Despite numerous previous studies, it is still unclear how and where an old oceanic plate starts to subduct beneath the other plate. One of the proposed scenarios for nucleation of subduction is plume-induced subduction initiation, which was investigated in detail, using 2-D models, by Ueda et al. (2008). Recently. Gerya et al. (2015), using 3D numerical models, proposed that plume-lithosphere interaction in the Archean led to the subduction initiation and onset of plate tectonic. In this study, we aim to pursue work of Ueda et al. (2008) by incorporation of 3-D thermo-mechanical models to investigate conditions leading to oceanic subduction initiation as a result of thermal-chemical mantle plume-lithosphere interaction in the modern earth. Results of our experiments show four different deformation regimes in response to plume-lithosphere interaction, that are a) self-sustaining subduction initiation where subduction becomes self-sustained, b) freezing subduction initiation where subduction stops at shallow depths, c) slab break-off where subducting circular slab breaks off soon after formation and d) plume underplating where plume does not pass through the lithosphere but spreads beneath it (failed subduction initiation). These different regimes depend on several parameters such as plume's size, composition and temperature, lithospheric brittle/plastic strength, age of the oceanic lithosphere and presence/absence of lithospheric heterogeneities. Results show that subduction initiates and becomes self-sustained when lithosphere is older than 10 Myr and non-dimensional ratio of the plume buoyancy force and lithospheric strength above the plume is higher than 2.

  16. Hot mantle upwelling across the 660 beneath Yellowstone

    NASA Astrophysics Data System (ADS)

    Schmandt, Brandon; Dueker, Kenneth; Humphreys, Eugene; Hansen, Steven

    2012-05-01

    P-to-s receiver functions mapped to depth through P and S body-wave tomography models image continuous 410 and 660 km discontinuities beneath the area covered by USArray prior to the year 2011. Mean depths to the 410 and 660 km discontinuities of 410 and 656 km imply a mantle transition zone that is about 4 km thicker than the global average and hence has a slightly cooler mean temperature and/or enhanced water content. Compared to the mean 660 depth beneath this ~ 2000 km wide area, the 660 beneath the Yellowstone hotspot is deflected upward by 12-18 km over an area about 200 km wide. This is the most anomalous shallowing of the 660 imaged and its horizontal extent is similar to the area where P and S tomography image low-velocity mantle extending from the top of the transition zone to about 900 km depth. Together, these results indicate a high-temperature, plume-like upwelling extending across the 660. The depth of 410 km discontinuity beneath the Yellowstone region is within 5 km of the mean depth implying that the plume is vertically heterogeneous and possibly discontinuous. Tomography indicates a similar vertically heterogeneous thermal plume. The irregular plume structure may be intrinsic to the dynamics of upwelling through the transition zone, or distortion may be caused by subduction-induced mantle flow. Topography of the 410 and 660 confirms that subducted slabs beneath the western U.S. are highly segmented, as inferred from recent tomography studies. We find no evidence of regionally pervasive velocity discontinuities between 750 and 1400 km depth. The plume's depth of origin within the lower mantle remains uncertain.

  17. Sulfur plumes off Namibia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Sulfur plumes rising up from the bottom of the ocean floor produce colorful swirls in the waters off the coast of Namibia in southern Africa. The plumes come from the breakdown of marine plant matter by anaerobic bacteria that do not need oxygen to live. This image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite on April 24, 2002 Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  18. Mantle transition zone thickness beneath the Yellowstone hotspot

    NASA Astrophysics Data System (ADS)

    Zurek, B. D.; Dueker, K.

    2002-12-01

    The Yellowstone hotspot is one of the largest continental hotspots, however whether the hotspot actively derives from a lower mantle plume or an upper mantle convective instability is not constrained. The plume model is supported by the 2-3 cm/yr volcanic age progression approximately parallel to the absolute North American plate motion and an elevated He3/He4 signature. Correspondingly, evidence against a plume model derives from the lack of dynamic topographic uplift (Lowry et al., 1998), absence of a low velocity anomaly below 200 km depth (Dueker et al., 2001) and shear-wave splits that show no plume related flow anomalies (Waite et al., 2002). To better constrain the origin of the hotspot, The Yellowstone Intermountain Seismic Array (YISA) with 47 PASSCAL broad-band seismometers was deployed for one year covering a region 250 km in radius from the center of the Yellowstone hotspot. Here we present images of the mantle transition zone from receiver function common conversion point imaging. Lateral velocity heterogeneity corrections are applied to the receiver functions using the teleseismic P-times calculated from the array. The mantle transition zone is composed of the 410 and 660 km discontinuities, these discontinuities are generally regarded to derive from phase changes that have opposite Clapeyron slopes. Thus if the mantle is assumed to be compositional homogenous, >100 degree lateral thermal gradients are resolvable from transition zone thickness maps. Preliminary results show that the transition zone beneath the Yellowstone hotspot has a mean thickness of 245 km with 20 km of variation across the array. The mean values of the 410 and 660 km discontinuities are, 412 km and 660 km, with 16 and 14 km of topography, respectively. The processes that could produce this topography are the focus of our current research.

  19. Plume Measurement System (PLUMES) Calibration Experiment

    DTIC Science & Technology

    1994-08-01

    Atle Lohrmann SonTek, Inc. 7940 Silverton Avenue, No. 105 San Diego, California 92126 and Craig Huhta JIMAR University of Hawaii, Honolulu, Hawaii 96822...Measurement System (PLUMES) Calibration Experiment by Age Lohrmann SonTek, Inc. 7940 Silverton Avenue, No. 105 San Diego, CA 92126 Craig Huhta JIMAR...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) &. PERFORMING ORGANIZATION SonTek, Inc., 7940 Silverton Avenue, No. 105, San Diego, CA 92126 REPORT NUMBER

  20. Flood basalts and hot-spot tracks: plume heads and tails.

    PubMed

    Richards, M A; Duncan, R A; Courtillot, V E

    1989-10-06

    Continental flood basalt eruptions have resulted in sudden and massive accumulations of basaltic lavas in excess of any contemporary volcanic processes. The largest flood basalt events mark the earliest volcanic activity of many major hot spots, which are thought to result from deep mantle plumes. The relative volumes of melt and eruption rates of flood basalts and hot spots as well as their temporal and spatial relations can be explained by a model of mantle plume initiation: Flood basalts represent plume "heads" and hot spots represent continuing magmatism associated with the remaining plume conduit or "tail." Continental rifting is not required, although it commonly follows flood basalt volcanism, and flood basalt provinces may occur as a natural consequence of the initiation of hot-spot activity in ocean basins as well as on continents.

  1. Seismic Velocity Structure of the Mantle beneath the Hawaiian Hotspot and Geodynamic Perspectives

    NASA Astrophysics Data System (ADS)

    Wolfe, C. J.; Laske, G.; Ballmer, M. D.; Ito, G.; Collins, J. A.; Solomon, S. C.; Rychert, C. A.

    2012-12-01

    Data from the PLUME deployments of land and ocean bottom seismometers have provided unprecedented new constraints on regional seismic structure of the mantle beneath the Hawaiian Islands and motivated a new generation of geodynamic models for understanding hotspot origins. Three-dimensional finite-frequency body-wave tomographic images of S- and P-wave velocity structure reveal an upper-mantle low-velocity anomaly beneath Hawaii that is elongated in the direction of the island chain and surrounded by a high-velocity anomaly in the shallow upper mantle that is parabolic in map view. Low velocities continue downward to the mantle transition zone between 410 and 660 km depth and extend into the topmost lower mantle southeast of Hawaii. Upper mantle structure from both S and P waves is asymmetric about the island chain, with lower velocities just southwest of the island of Hawaii and higher velocities to the east. Independent Rayleigh-wave tomography displays a similarly asymmetric structure in the lower lithosphere and asthenosphere, and also reveals a low-velocity anomaly (with horizontal dimensions of 100 by 300 km across and along the chain, respectively) beneath the hotspot swell that reaches to depths of at least 140 km. Shear-wave splitting observations dominantly reflect fossil lithospheric anisotropy, although a signature of asthenospheric flow also may be resolvable. S-to-P receiver function imaging of the lithosphere-asthenosphere boundary suggests shoaling from 100 km west of Hawaii to 80 km beneath the island, a pattern consistent with results from Rayleigh wave imaging. In terms of mantle plume geodynamic models, the broad upper-mantle low-velocity region beneath the Hawaiian Islands may reflect the "diverging pancake" at the top of the upwelling zone; the surrounding region of high velocities could represent a downwelling curtain of relatively cool sublithospheric material; and the low-velocity anomalies southeast of Hawaii in the transition zone and

  2. Rayleigh Wave Azimuthal Anisotropy Beneath Hawaii Using PLUME Ocean-Bottom Seismometers

    NASA Astrophysics Data System (ADS)

    Marzen, R.; Laske, G.

    2013-12-01

    Hawaii is an ideal location at which to study mantle plume dynamics because its central location on the Pacific plate enables analysis of plume-related geophysical anomalies separate from the effects of nearby plate boundaries. Previous understanding of the interaction of a proposed rising plume at Hawaii with flow patterns in the surrounding mantle was limited by a lack of data needed to perform high-resolution imaging of the anisotropic structure around the plume. Multiple geodynamical models show a parabolic flow pattern from the interaction of a rising plume with a moving plate, but the shear wave splitting of SKS waves shows a fast axis that is aligned with the fossil spreading direction. A possible explanation for this surprising result could be that flow in the asthenosphere is confined to a thin layer to which SKS data are insensitive. We prefer to measure the frequency-dependent azimuthal anisotropy of Rayleigh waves to understand variation in azimuthal anisotropy with depth. We use data from 185 events during the second PLUME ocean-bottom seismometer deployment to calculate Rayleigh wave azimuthal anisotropy at ~300 locations around Hawaii by comparing arrivals across a triangle of stations at frequencies between 10-50 mHz. We also use data from the first PLUME deployment to increase resolution near Hawaii. In initial inversions, we investigate how anisotropy changes through lithospheric and upper asthenospheric depths ranging from ~50 to 150 km. Results indicate that the orientation of the fast axis in the lithosphere aligns with the fossil spreading direction, but that at deeper depths this orientation shifts towards the direction of current plate motion. Additionally, a region of circling fast axis directions and low shear velocity anomalies to the west of the Island of Hawaii is indicative of a circular mantle flow associated with a rising mantle plume that does not reach into the upper lithosphere.

  3. Pb - Isotopes and Pulses of the Deccan Plume

    NASA Astrophysics Data System (ADS)

    Basu, A. R.; Yannopoulos, A. S.

    2015-12-01

    Mantle plumes are generally implicated for flood basalt generation in both continental and oceanic environments by impact of large plume heads beneath or within the lithosphere. The Deccan and Siberian flood basalt eruptions, synchronous with the Cretaceous-Paleogene and end-Permian extinctions, respectively, continue to fascinate geoscientists in search for the "kill-mechanisms" by impacts, volcanisms or both. Recently, Richards et al. (2015) proposed that bulk of the Deccan eruption was triggered by the Chicxulub impact. We showed (Basu et al., 1993) that early (68.5 Ma) and late (65 Ma) alkalic pulses of the Deccan were before and after the impact event at 66 Ma. Here, we focus on an extensive volcano-stratigraphic study of Pb isotopic systematics of 69 basaltic samples from 3 subgroups and 12 formations of the Deccan, each sampled from bottom to top along the stratigraphic section, covering the 3km thick 12 Deccan formations. Pb is sensitive to crustal contamination of mantle plume-derived magmas as both the upper and lower mantle are low in Pb (0.02 - 0.15 ppm) compared to ~ 4 ppm in continental crust. The lower Deccan formations of Kalsubai and Lonavala have initial 206Pb/204Pb with a widely varying range (16.543 - 22.823) indicating continental crustal contamination. In contrast, the upper formations of the Wai subgroup show a narrow range of 16.883 to 18.956, reflecting the plume signature. In addition, the 206Pb/204Pb and 207Pb/204Pb data of the Kalsubai subgroup lavas give an isochron age of 2603±140 Ma (single-stage, µ = 8). The Wai subgroup shows a narrow and restricted Pb isotopic range plotting closer to the Geochron. We interpret these data to infer that the basement rocks of the Deccan, the Archean Indian craton, were assimilated by the upwelling melt, ultimately clearing the conduit passages for the lavas sourced from direct melting of the plume head.

  4. The deep Earth origin of the Iceland plume and its effects on regional surface uplift and subsidence

    NASA Astrophysics Data System (ADS)

    Barnett-Moore, Nicholas; Hassan, Rakib; Flament, Nicolas; Müller, Dietmar

    2017-02-01

    The present-day seismic structure of the mantle under the North Atlantic Ocean indicates that the Iceland hotspot represents the surface expression of a deep mantle plume, which is thought to have erupted in the North Atlantic domain during the Palaeocene. The spatial and temporal evolution of the plume since its eruption is still highly debated, and little is known about its deep mantle history. Here, we use palaeogeographically constrained global mantle flow models to investigate the evolution of deep Earth flow beneath the North Atlantic since the Jurassic. The models show that over the last ˜ 100 Myr a remarkably stable pattern of convergent flow has prevailed in the lowermost mantle near the tip of the African Large Low-Shear Velocity Province (LLSVP), making it an ideal plume nucleation site. We extract model dynamic topography representative of a plume beneath the North Atlantic region since eruption at ˜ 60 Ma to present day and compare its evolution to available offshore geological and geophysical observations across the region. This comparison confirms that a widespread episode of Palaeocene transient uplift followed by early Eocene anomalous subsidence can be explained by the mantle-driven effects of a plume head ˜ 2500 km in diameter, arriving beneath central eastern Greenland during the Palaeocene. The location of the model plume eruption beneath eastern Greenland is compatible with several previous models. The predicted dynamic topography is within a few hundred metres of Palaeocene anomalous subsidence derived from well data. This is to be expected given the current limitations involved in modelling the evolution of Earth's mantle flow in 3-D, particularly its interactions with the base of a heterogeneous lithosphere as well as short-wavelength advective upper mantle flow, not captured in the presented global models.

  5. Early Earth plume-lid tectonics: A high-resolution 3D numerical modelling approach

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Gerya, T.

    2016-10-01

    Geological-geochemical evidence point towards higher mantle potential temperature and a different type of tectonics (global plume-lid tectonics) in the early Earth (>3.2 Ga) compared to the present day (global plate tectonics). In order to investigate tectono-magmatic processes associated with plume-lid tectonics and crustal growth under hotter mantle temperature conditions, we conduct a series of 3D high-resolution magmatic-thermomechanical models with the finite-difference code I3ELVIS. No external plate tectonic forces are applied to isolate 3D effects of various plume-lithosphere and crust-mantle interactions. Results of the numerical experiments show two distinct phases in coupled crust-mantle evolution: (1) a longer (80-100 Myr) and relatively quiet 'growth phase' which is marked by growth of crust and lithosphere, followed by (2) a short (∼20 Myr) and catastrophic 'removal phase', where unstable parts of the crust and mantle lithosphere are removed by eclogitic dripping and later delamination. This modelling suggests that the early Earth plume-lid tectonic regime followed a pattern of episodic growth and removal also called episodic overturn with a periodicity of ∼100 Myr.

  6. Mantle dynamics and geodesy

    NASA Technical Reports Server (NTRS)

    Albee, Arden

    1990-01-01

    Both completed work and work that is still in progress are presented. The completed work presented includes: (1) core-mantle boundary topography; (2) absolute value for mantle viscosity; (3) code development; (4) lateral heterogeneity of subduction zone rheology; and (5) planning for the Coolfront meeting. The work presented that is still in progress includes: (1) geoid anomalies for a chemically stratified mantle; and (2) geoid anomalies with lateral variations in viscosity.

  7. Yellowstone plume-continental lithosphere interaction beneath the Snake River Plain

    NASA Astrophysics Data System (ADS)

    Hanan, Barry B.; Shervais, John W.; Vetter, Scott K.

    2008-01-01

    The Snake River Plain represents 17 m.y. of volcanic activitythat took place as the North American continent migrated overa relatively fixed magma source, or hotspot. The identificationof a clear seismic image of a plume beneath Yellowstone is compellingevidence that the Miocene to recent volcanism associated withthe Columbia Plateau, Oregon High Lava Plains, Snake River Plain,Northern Nevada Rift and Yellowstone Plateau represents a singlemagmatic system related to a mantle plume. A remaining enigmais, why do radiogenic isotope signatures from basalts eruptedover the Mesozoic-Paleozoic accreted terrains suggesta plume source while basalts erupted across the Proterozoic-Archeancraton margin indicate an ancient subcontinental mantle lithospheresource? We show that ancient cratonic lithosphere like thatof the Wyoming province superimposes its inherent isotopic compositionon sublithospheric plume and/or asthenospheric melts. The resultsshow that Yellowstone plume could have a radiogenic isotopecomposition similar to the mantle source of the early ColumbiaRiver Basalt Group and that the plume source composition haspersisted to the present day.

  8. ON THE VIGOR OF MANTLE CONVECTION IN SUPER-EARTHS

    SciTech Connect

    Miyagoshi, Takehiro; Tachinami, Chihiro; Kameyama, Masanori; Ogawa, Masaki E-mail: ctchnm.geo@gmail.com E-mail: cmaogawa@mail.ecc.u-tokyo.ac.jp

    2014-01-01

    Numerical models are presented to clarify how adiabatic compression affects thermal convection in the mantle of super-Earths ten times the Earth's mass. The viscosity strongly depends on temperature, and the Rayleigh number is much higher than that of the Earth's mantle. The strong effect of adiabatic compression reduces the activity of mantle convection; hot plumes ascending from the bottom of the mantle lose their thermal buoyancy in the middle of the mantle owing to adiabatic decompression, and do not reach the surface. A thick lithosphere, as thick as 0.1 times the depth of the mantle, develops along the surface boundary, and the efficiency of convective heat transport measured by the Nusselt number is reduced by a factor of about four compared with the Nusselt number for thermal convection of incompressible fluid. The strong effect of adiabatic decompression is likely to inhibit hot spot volcanism on the surface and is also likely to affect the thermal history of the mantle, and hence, the generation of magnetic field in super-Earths.

  9. First Evidence of Epithermal Gold Occurrences in the SE Afar Rift, Republic of Djibouti

    NASA Astrophysics Data System (ADS)

    Moussa, Nima; Fouquet, Yves; Caminiti, Antoine Marie; Le Gall, Bernard; Rolet, Joel; Bohn, Marcel; Etoubleau, Joel; Delacourt, Christophe; Jalludin, Mohamed

    2010-05-01

    The Republic of Djibouti, located at the SE part of the Afar volcanic Triangle, is characterized by intense tectonic and bimodal volcanic activity, and is emplaced over an earlier magmatic rift system, as old as 25-30 Ma. Each magmatic event is accompanied by hydrothermal activity. Few works have been so far published on hydrothermal mineralization in the Afar area. Mineralization generally occur as veins and are mainly associated with acidic volcanic intrusions along the fractures at the edges of grabens established during the last 4 Ma. Eighty samples from hydrothermal quartz ± carbonate veins and breccias were studied on 9 different sites representative of 4 main volcanic events ranging in age from early Miocene up to Present. Gold was found in excess of 200 ppb in 30% of the samples. Mineralogical analyses based on optical reflected light microscopy, X-Ray diffractometry, X-Ray fluorescence, inductively coupled plasma mass spectroscopy and electron microprobe, led us to identify two types of gold mineralization (i) native gold, electrum, hessite and sulfides (chalcopyrite, pyrite, bornite, ± sphalerite, and galena) in massive quartz breccias and banded chalcedony, (ii) gold, electrum, hematite, magnetite, trace minerals (argentite) and adularia in banded chalcedony. Another group without gold is characterized by quartz, pyrite ± goethite. Secondary minerals are characterized by goethite, native silver and native copper. Arsenic is enriched in pyrite in samples with a high gold content. The bimodal volcanism, the occurrence of adularia, the native gold and electrum in banded silica veins, are classically observed in neutral epithermal systems. The discovery of this type of mineralization in a recent-active continental rift system supplies new insights about hydrothermal processes associated with volcanic activity in a spreading context. Keywords: Republic of Djibouti, Afar Triangle, Hydrothermal, Epithermal system, Gold

  10. A Brilliant Plume

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Long Range Reconnaissance Imager (LORRI) on New Horizons captured another dramatic picture of Jupiter's moon Io and its volcanic plumes, 19 hours after the spacecraft's closest approach to Jupiter on Feb. 28, 2007. LORRI took this 75 millisecond exposure at 0035 Universal Time on March 1, 2007, when Io was 2.3 million kilometers (1.4 million miles) from the spacecraft.

    Io's dayside is deliberately overexposed to bring out faint details in the plumes and on the moon's night side. The continuing eruption of the volcano Tvashtar, at the 1 o'clock position, produces an enormous plume roughly 330 kilometers (200 miles) high, which is illuminated both by sunlight and 'Jupiter light.'

    The shadow of Io, cast by the Sun, slices across the plume. The plume is quite asymmetrical and has a complicated wispy texture, for reasons that are still mysterious. At the heart of the eruption incandescent lava, seen here as a brilliant point of light, is reminding scientists of the fire fountains spotted by the Galileo Jupiter orbiter at Tvashtar in 1999.

    The sunlit plume faintly illuminates the surface underneath. 'New Horizons and Io continue to astonish us with these unprecedented views of the solar system's most geologically active body' says John Spencer, deputy leader of the New Horizons Jupiter Encounter Science Team and an Io expert from Southwest Research Institute.

    Because this image shows the side of Io that faces away from Jupiter, the large planet does not illuminate the moon's night side except for an extremely thin crescent outlining the edge of the disk at lower right. Another plume, likely from the volcano Masubi, is illuminated by Jupiter just above this lower right edge. A third and much fainter plume, barely visible at the 2 o'clock position, could be the first plume seen from the volcano Zal Patera.

    As in other New Horizons images of Io, mountains catch the setting Sun just beyond the terminator (the line dividing day and night

  11. Crustal Deformation Field Around Rift Zone In Southeastern Afar Derived From Jers-1/in-sar

    NASA Astrophysics Data System (ADS)

    Ozawa, T.; Nogi, Y.; Shibuya, K.

    Afar is one of the major active rift zones recognized on the ground and located around the triple junction of Arabia, Somalia and Nubian plates. Afar is one of the major rift zones recognized on the ground. The crustal deformation of Afar has been deduced from paleomagnetism, geology and seismology by many scientists. The current crustal deformation must be detected by geodetic measurements. Ruegg et al. (J. Geophys. Res., 1984) showed the crustal deformation across the Asal-Ghoubbet rift with rate of about 60 mm/yr extension derived from triangulation and trilateration. Walpersdorf et al. (J. Geodyn., 1999) show the opening between South Djibouti and Yemen with rate of 16 mm/yr by GPS surveys. Denser observations are required for detailed crustal deformation, however it is difficult to construct such observation network because of harsh environment. The geodetic application of remote sensing is useful in this region, and we apply JERS-1 SAR interferometry in southeastern Afar, which is one of the most active deformation area. In this study, we use six SAR scenes observed from 1996/5/20 to 1997/5/7, and generate five interferograms; these repeat cycles are 88 (2 pairs), 176, 264, 352 days. First, we generate the digital elevation model (DEM) from two 88 repeat cycle pairs applying the multiple pass SAR interferometry method by Kwok and Fahnestock (IEEE Trans. Geosci. Remote Sensing, 1996). Next, the topographic fringes of all pairs are removed using the DEM. The crustal deformation derived from SAR interferometry increases with expanding repeat cycle. Finally, the velocity field is estimated by fitting to linear trend for each pixel. The spreading rate of Asal-Ghoubbet rift derived from SAR interferometry is good agreement with that by Ruegg et al. (J. Geophys. Res., 1984). We can see the crustal deformation with the subsidence sense in the west of Asal-Ghoubbet rift. This suggests that the extension is distinguished in this area. The subsidence sense deformation

  12. Volcano-tectonic evolution of the Western Afar margin: new geochronological and structural data

    NASA Astrophysics Data System (ADS)

    Stab, Martin; Pik, Raphael; Bellahsen, Nicolas; Leroy, Sylvie; Ayalew, Dereje; Denèle, Yoann

    2013-04-01

    The rift system in NW-Afar (Ethiopia) is part of the Nubia-Somalia-Arabia triple junction located above the Afar hot spot active mainly since Oligocene times. It represents a unique natural laboratory for field study of superficial and deep lithospheric structure and process interactions during the transition between rifting and oceanic spreading in magma-rich setting. Most past field studies in Afar focused on the recognition and correlation of Afar's volcano-stratigraphic record and led to models of margin development that stress out the major trends of volcanic structures and give accordingly the following chronological "big picture". (1) 2km-thick flood basalt province emplaced at ca. 30 Ma due to hot spot activity over Jurassic to Permian sedimentary rocks and basement. (2) Rifting started around 25-20 Ma with half graben and great escarpment formation along with localization of volcanic activity in highly faulted narrower basins followed by lithospheric flexure. (3) The deformation migrated toward the rift centre with the emplacement around 8-5 Ma of bi-modal volcanics later faulted. (4) A second pulse of flood-basalt, the so-called Stratoid series, started at 4 Ma, until 1 Ma. In this contribution, we present new structural field data and lavas (U-Th/He) datings along a cross-section from the marginal graben to the Manda-Hararo active rift axis. In the newly explored Sullu Adu ranges, which were previously thought to be made of 8 Ma Dahla Basalts Fm., we mapped normal faults arrays affecting a complex magmatic series. We dated highly tilted 30 Ma pre-rift basic and silicic volcanic rocks that are unconformably overlain by syn-rift volcanics (25 to 8 Ma). This pattern is in some places either masked by unconformable thick stratoid cover or strongly eroded by dense river drainage. However, it is preserved enough to suggest a lower-than-expected extension ratio and/or the presence of major normal faults controlling seaward-dipping reflectors (SDR) emplacement

  13. Study of the deformation in Central Afar using InSAR NSBAS chain

    NASA Astrophysics Data System (ADS)

    Deprez, A.; Doubre, C.; Grandin, R.; Saad, I.; Masson, F.; Socquet, A.

    2013-12-01

    The Afar Depression (East Africa) connects all three continental plates of Arabia, Somalia and Nubia plates. For over 20 Ma, the divergent motion of these plates has led to the formation of large normal faults building tall scarps between the high plateaus and the depression, and the development of large basins and an incipient seafloor spreading along a series of active volcano-tectonic rift segments within the depression. The space-time evolution of the active surface deformation over the whole Afar region remains uncertain. Previous tectonic and geodetic studies confirm that a large part of the current deformation is concentrated along these segments. However, the amount of extension accommodated by other non-volcanic basins and normal faulting remains unclear, despite significant micro-seismic activity. Due to the active volcanism, large transient displacements related to dyking sequence, notably in the Manda Hararo rift (2005-2010), increase the difficulty to characterize the deformation field over simple time and space scales. In this study, we attempt to obtain a complete inventory of the deformation within the whole Afar Depression and to understand the associated phenomena, which occurred in this singular tectonic environment. We study in particular, the behavior of the structures activated during the post-dyking stage of the rift segments. For this purpose, we conduct a careful processing of a large set of SAR ENVISAT images over the 2004-2010 period, we also use previous InSAR results and GPS data from permanent stations and from campaigns conducted in 1999, 2003, 2010, 2012 within a GPS network particularly dense along the Asal-Ghoubbet segment. In one hand, in the western part of Afar, the far-field response of the 2005-2010 dyke sequence appears to be the dominant surface motion on the mean velocity field. In an other hand, more eastward across the Asal-Ghoubbet rift, strong gradients of deformation are observed. The time series analysis of both In

  14. 40 Million Years of the Iceland Plume

    NASA Astrophysics Data System (ADS)

    Parnell-Turner, R. E.; White, N.; Henstock, T.; Maclennan, J.; Murton, B. J.; Jones, S. M.

    2011-12-01

    The V-shaped ridges, straddling the mid oceanic ridges to the North and South of Iceland, provide us with a linear record of transient mantle convective circulation. Surprisingly, we know little about the structure of these ridges: prior to this study, the most recent regional seismic reflection profiles were acquired in the 1960s. During the Summer of 2010, we acquired over 3,000 km of seismic reflection data across the oceanic basin South of Iceland. The cornerstones of this programme are two 1000 km flowlines, which traverse the basin from Greenland to the European margin. The geometry of young V-shaped ridges near to the oceanic spreading center has been imaged in fine detail; older ridges, otherwise obscured in gravity datasets by sediment cover, have been resolved for the first time. We have mapped the sediment-basement interface, transformed each profile onto an astronomical time scale, and removed the effects of long wavelength plate cooling. The resulting chronology of Icelandic plume activity provides an important temporal frame of reference for plume flux over the past 40 million years. The profiles also cross major contourite drift deposits, notably the Gardar, Bjorn and Eirik drifts. Fine-scale sedimentary features imaged here demonstrate distinct episodes of drift construction; by making simple assumptions about sedimentation rates, we can show that periods of drift formation correspond to periods of enhanced deep water circulation which is in turn moderated by plume activity. From a regional point of view, this transient behaviour manifests itself in several important ways. Within sedimentary basins fringing the North Atlantic, short lived regional uplift events periodically interrupt thermal subsidence from Eocene times to the present day. From a paleoceanographic perspective, there is good correlation between V-shaped ridge activity and changes in overflow of the ancient precursor to North Atlantic Deep Water. This complete history of the Iceland

  15. Plumes and Earth's Dynamic History : from Core to Biosphere

    NASA Astrophysics Data System (ADS)

    Courtillot, V. E.

    2002-12-01

    The last half century has been dominated by the general acceptance of plate tectonics. Although the plume concept emerged early in this story, its role has remained ambiguous. Because plumes are singularities, both in space and time, they tend to lie dangerously close to catastrophism, as opposed to the calm uniformitarian view of plate tectonics. Yet, it has become apparent that singular events and transient phenomena are of great importance, even if by definition they cover only a small fraction of geological time, in diverse observational and theoretical fields such as 1) magnetic reversals and the geodynamo, 2) tomography and mantle convection, 3) continental rifting and collision, and 4) evolution of the fluid envelopes (atmospheric and oceanic "climate"; evolution of species in the biosphere). I will emphasize recent work on different types of plumes and on the correlation between flood basalts and mass extinctions. The origin of mantle plumes remains a controversial topic. We suggest that three types of plumes exist, which originate at the three main discontinuities in the Earth's mantle (base of lithosphere, transition zone and core-mantle boundary). Most of the hotspots are short lived (~ 10Ma) and seem to come from the transition zone or above. Important concentrations occur above the Pacific and African superswells. Less than 10 hotspots have been long lived (~ 100Ma) and may have a very deep origin. In the last 50 Ma, these deep-seated plumes in the Pacific and Indo-Atlantic hemispheres have moved slowly, but motion was much faster prior to that. This change correlates with major episodes of true polar wander. The deeper ("primary") plumes are thought to trace global shifts in quadrupolar convection in the lower mantle. These are the plumes that were born as major flood basalts or oceanic plateaus (designated as large igneous provinces or LIPs). Most have an original volume on the order or in excess of 2.5 Mkm3. In most provinces, volcanism lasted on

  16. The Earth's Mantle.

    ERIC Educational Resources Information Center

    McKenzie, D. P.

    1983-01-01

    The nature and dynamics of the earth's mantle is discussed. Research indicates that the silicate mantle is heated by the decay of radioactive isotopes and that the heat energizes massive convention currents in the upper 700 kilometers of the ductile rock. These currents and their consequences are considered. (JN)

  17. Plume primary smoke

    NASA Astrophysics Data System (ADS)

    Chastenet, J. C.

    1993-06-01

    The exhaust from a solid propellant rocket motor usually contains condensed species. These particles, also called 'Primary Smoke', are often prejudicial to missile detectability and to the guidance system. To avoid operational problems it is necessary to know and quantify the effects of particles on all aspects of missile deployment. A brief description of the origin of the primary smoke is given. It continues with details of the interaction between particles and light as function of both particles and light properties (nature, size, wavelength, etc). The effects of particles on plume visibility, attenuation of an optical beam propagated through the plume and the contribution of particles on optical signatures of the plume are also described. Finally, various methods used in NATO countries to quantify the primary smoke effects are discussed.

  18. Plume formation and lithosphere erosion - A comparison of laboratory and numerical experiments

    NASA Technical Reports Server (NTRS)

    Olson, Peter; Schubert, Gerald; Anderson, Charles; Goldman, Peggy

    1988-01-01

    The mechanics of thermal plume formation and intrusion into the lithosphere are investigated using a combination of laboratory and numerical simulations. The sequence of events leading to lithospheric thinning and uplift by thermal plumes is established, and some numerical estimates of the time scales for each stage in this process are derived that are applicable to the mantle. It is demonstrated that the two-dimensional finite element computations successfully reproduce the qualitative features seen in the experiments, with a quantitative discrepancy of typically 30 percent or less. The results of some calculations on plume formation and intrusion into model lithospheres with a variety of rheologies are presented.

  19. Seismic imaging of transition zone discontinuities suggests hot mantle west of Hawaii.

    PubMed

    Cao, Q; van der Hilst, R D; de Hoop, M V; Shim, S-H

    2011-05-27

    The Hawaiian hotspot is often attributed to hot material rising from depth in the mantle, but efforts to detect a thermal plume seismically have been inconclusive. To investigate pertinent thermal anomalies, we imaged with inverse scattering of SS waves the depths to seismic discontinuities below the Central Pacific, which we explain with olivine and garnet transitions in a pyrolitic mantle. The presence of an 800- to 2000-kilometer-wide thermal anomaly (ΔT(max) ~300 to 400 kelvin) deep in the transition zone west of Hawaii suggests that hot material does not rise from the lower mantle through a narrow vertical plume but accumulates near the base of the transition zone before being entrained in flow toward Hawaii and, perhaps, other islands. This implies that geochemical trends in Hawaiian lavas cannot constrain lower mantle domains directly.

  20. Convectively Driven Heat Flux Heterogeneity in Europa's Mantle

    NASA Astrophysics Data System (ADS)

    Travis, Bryan; Schubert, G.; Palguta, J.

    2006-09-01

    Features on the surface of Europa may reflect non-uniform heating in an underlying ocean due to variations in heat flux at the mantle surface. Pore water convection can generate a spatially heterogeneous heat flux in a fractured, permeable mantle, as illustrated in 2-D computer simulations of the thermal evolution of Europa. The model uses three layers - core, silicate mantle, and H2O (liquid and frozen). Processes active in the model include radiogenic heating, tidal dissipative heating (TDH), thermal diffusion, latent heat of melting and pore water convection. Starting from a cold Europa, radiogenic heating and TDH produce a temperature profile ranging from a peak near 1150 oC in the deep interior to 15 oC at the mantle surface, overlain by an 80 km deep ocean layer at 3 oC, capped by an ice shell approximately 20 km thick. This structure provides initial conditions for our pore water convection simulation. Mantle permeability is based on Earth values. An initial, very strong flow gives way to a weaker quasi-steady pattern of convection in the mantle's porosity. Plumes rise from the mantle at a roughly 10o spacing, through the ocean layer up to the base of the ice. These are typically 50 - 100 km wide at the base of the ice. Plume heat flux is 10-12 W/m2 during the initial transient, but later drops to about 0.5 - 1.5 W/m2. Heating at the base of the ice shell is spatially heterogeneous, but only strong enough to produce significant melt-through during the initial transient. However, strong spatial heterogeneity of basal heating of the ice shell could significantly influence convection in the ice phase. This work was supported by a grant from the Institute of Geophysics and Planetary Physics at Los Alamos National Laboratory and by the NASA Planetary Geology and Geophysics Program.

  1. Reconciling the Misfit Between the Yellowstone Plume Trace and Global Plate Motion Models: Channelized and Pancake Plume Flow on Basal Lithospheric Topography

    NASA Astrophysics Data System (ADS)

    Jordan, B. T.

    2001-12-01

    Age-progrssive rhyolitic volcanism from the Owyhee Plateau along the Snake River Plain to the Yellowstone Plateau is widely interpreted as reflecting the motion of the North American plate over a mantle plume. The strongest line of evidence against this interpretation is the misfit between the length of the interpreted plume trace and the length predicted by global plate motion models. As generally represented, the plume trace extends 700 km from the 16.1 Ma McDermitt Caldera to the caldera of the 0.6 Ma Lava Creek Tuff at Yellowstone. Global plate motion models predict a plume trace of 190-340 km in 16 m.y. Extension immediately south of the Snake River Plain has been estimated at 20%, well short of the >100% required to reconcile the misfit. Also complicating the plume interpretation is the position of the feeder dikes of the Columbia River basalts (CRB), widely interpreted as the result of emplacement of the head of the Yellowstone plume, >300 km north of the interpreted plume trace at 16 Ma. Both of these problems can be reconciled by considering the complex results of interaction of a mantle plume with basal lithospheric topography. The predicted position of the plume at 16 Ma, based on plate motion models plus extension, was near the southern end of the Snake River Plain, under thick Precambrian lithosphere. Thinner lithosphere occurred 150 to 200 km west of this point at the boundary with Paleozoic and Mesozoic accreted terranes. The CRB, Steens Basalts (SB), and Northern Nevada Rift (NNR) basalts were erupted through the accreted terranes west of this boundary beginning about 16.5 Ma. Two processes could link this basaltic volcanism to the plume: (1) assuming the plume head was >600 km in diameter, some plume head material would have risen to shallow depths and undergone decompression melting under CRB and SB dikes and the NNR; and (2) flow of plume head and conduit-fed material up a basal lithospheric gradient from under the cratonic lithosphere toward the

  2. Rocket plume burn hazard.

    PubMed

    Stoll, A M; Piergallini, J R; Chianta, M A

    1980-05-01

    By use of miniature rocket engines, the burn hazard posed by exposure to ejection seat rocket plume flames was determined in the anaesthetized rat. A reference chart is provided for predicting equivalent effects in human skin based on extrapolation of earlier direct measurements of heat input for rat and human burns. The chart is intended to be used in conjunction with thermocouple temperature measurements of the plume environment for design and modification of escape seat system to avoid thermal injury on ejection from multiplace aircraft.

  3. Testing geodynamic models of lowermost mantle flow with a regional shear wave splitting data set

    NASA Astrophysics Data System (ADS)

    Ford, H. A.; Long, M. D.

    2015-12-01

    Global flow models rely on a number of assumptions, including composition, temperature, viscosity, and deformation mechanism. In the upper mantle, flow models and their associated assumptions can be tested and refined with observations of seismic anisotropy, which is treated as a proxy for flow direction. Beneath the transition zone, direct observations of seismic anisotropy are scarce, except for in the lowermost ~250 km of the mantle. In this study, we utilize a comprehensive, previously published (Ford et al., 2015) shear wave splitting study in order to test a three-dimensional global geodynamic flow model (Walker et al., 2011). Our study focuses on a region of the lowermost mantle along the eastern edge of the African Superplume beneath the Afar region. We find that our observations are fit by a model which invokes slip along the (010) plane of post-perovskite with flow directed down and to the southwest. Critically, we demonstrate the ability of a regional data set to interrogate models of lower mantle flow.

  4. Role of the subduction filter in mantle recycling

    NASA Astrophysics Data System (ADS)

    Kimura, J. I.; Skora, S. E.; Gill, J.; Van Keken, P. E.

    2015-12-01

    Subduction modifies the descending basaltic and sedimentary oceanic crust and generates felsic arc materials and continental crust. Studies of element mass balances in the subduction zone therefore reveal the evolution of the Earth's two major geochemical reservoirs: the continent crust and mantle. We use the Arc Basalt Simulator ver.4 (ABS4) to model the geochemical mass balance during dehydration by prograde metamorphism and melting of the slab followed by subsequent flux melting of the wedge mantle caused by the addition of slab-derived liquids. The geochemistry of high-Mg andesite or adakite formed in a hot subduction zone is akin to the present-day bulk continental crust and to the Archean (>2 Ga) Tonalite-Trondjhemite-Granodiorite composition. Therefore, the residual slab and the metasomatized mantle wedge at hot subduction zones should be the most plausible sources for materials recycled back into the deep mantle. Model calculations of isotopic growth in the residual slab and mantle formed in hot subduction zones reproduce fairly well the EM1-FOZO-HIMU isotope arrays found in ocean island basalts (OIBs) of deep mantle plume origin, although FOZO with high 3He/4He is not generated by this slab recycling process. The recycled materials are bulk igneous ocean crust for HIMU and metasomatized mantle wedge peridotite for EM1. In contrast, the EM2-FOZO array can be generated in a cold subduction zone with igneous oceanic crust for FOZO and sediment for EM2 sources. Necessary residence time are ~2 Ga to form HIMU-FOZO-EM1 and ~1 Ga to form EM2-FOZO. The subducted oceanic crust (forming HIMU) and mantle wedge peridotite (forming EM1) may have travelled in the mantle together. They then melted together in an upwelling mantle plume to form the EM1-FOZO-HIMU isotopic variations found frequently in OIBs. In contrast, the less frequent EM2-FOZO array suggests a separate source and recycling path. These recycling ages are consistent with the change in the mantle potential

  5. Geochemical Diversity of the Mantle: 50 Years of Acronyms

    NASA Astrophysics Data System (ADS)

    Hart, S. R.

    2014-12-01

    50 years ago, Gast, Tilton and Hedge demonstrated that the oceanic mantle is isotopically heterogeneous. 28 years ago, Zindler and Hart formalized the concept of geochemical mantle components, with an attendant, to some, odious, acronym soup. Work on a marriage of mantle geochemistry and dynamics continues unabated. We know unequivocally that the mantle is chemically heterogeneous; we do not know the scale lengths of these heterogeneities. We know unequivocally that these heterogeneities have persisted for eons (Gy); we do not know where they were formed or where they are stored. Through the kind auspices of the Plume Model, we plausibly have access to the whole mantle. The most accessible and well understood mantle reservoir is the upper depleted MORB mantle (DMM). Classically, this mantle was depleted by extraction of oceanic and continental crust from a "chondritic" bulk silicate Earth. In this post-Boyet and Carlson world, the complementary enriched reservoir may instead be hidden in the deepest mantle. In this case, DMM will become an endangered acronym. Hofmann and White (1982) argued that radiogenic Pb mantle (HIMU) is re-cycled ocean crust, and this is a comfortably viable model. It does require some ad hoc chemical manipulations during subduction. Given 2 Gy of aggregate mantle strains, the mafic component in HIMU may be of small length scale (< 50 m), possibly subsumed into the dominant peridotitic lithology. This mantle species is globally widespread. Enriched mantles (EM1 and EM2) almost certainly reflect recycling of enriched continental material. This was splendidly verified by Jackson et al (2007), with 87Sr/86Sr in Samoan EM2 lavas up to 0.721. The lithology and length scale of EM1 and EM2 is unconstrained. EM1 is globally present; EM2 is confined to the SW Pacific hotspots. FOZO is a work in progress; many would like to see it become extinct! The trace element signatures of HIMU and FOZO mantles have been constrained using melting models; in both

  6. Three-dimensional mantle dynamics with an endothermic phase transition

    NASA Technical Reports Server (NTRS)

    Honda, S.; Balachandar, S.; Yuen, D. A.; Reuteler, D.

    1993-01-01

    3D convection for the spinel to perovskite phase change has been simulated numerically. Results for Rayleigh (Ra) numbers of 0(10 exp 6) show intermittent layering with a strong robust plume rising through the phase boundary. Many descending instabilities are deflected but merging cold sheets come together at a junction. A pool of cold material accumulates underneath in the phase-transition zone. A strong gravitational instability results, which precipitates a rapid and massive discharge of upper-mantle material.

  7. 3-D thermo-mechanical modeling of plume-induced subduction initiation

    NASA Astrophysics Data System (ADS)

    Baes, M.; Gerya, T.; Sobolev, S. V.

    2016-11-01

    Here, we study the 3-D subduction initiation process induced by the interaction between a hot thermo-chemical mantle plume and oceanic lithosphere using thermo-mechanical viscoplastic finite difference marker-in-cell models. Our numerical modeling results show that self-sustaining subduction is induced by plume-lithosphere interaction when the plume is sufficiently buoyant, the oceanic lithosphere is sufficiently old and the plate is weak enough to allow the buoyant plume to pass through it. Subduction initiation occurs following penetration of the lithosphere by the hot plume and the downward displacement of broken, nearly circular segments of lithosphere (proto-slabs) as a result of partially molten plume rocks overriding the proto-slabs. Our experiments show four different deformation regimes in response to plume-lithosphere interaction: a) self-sustaining subduction initiation, in which subduction becomes self-sustaining; b) frozen subduction initiation, in which subduction stops at shallow depths; c) slab break-off, in which the subducting circular slab breaks off soon after formation; and d) plume underplating, in which the plume does not pass through the lithosphere and instead spreads beneath it (i.e., failed subduction initiation). These regimes depend on several parameters, such as the size, composition, and temperature of the plume, the brittle/plastic strength and age of the oceanic lithosphere, and the presence/absence of lithospheric heterogeneities. The results show that subduction initiates and becomes self-sustaining when the lithosphere is older than 10 Myr and the non-dimensional ratio of the plume buoyancy force and lithospheric strength above the plume is higher than approximately 2. The outcomes of our numerical experiments are applicable for subduction initiation in the modern and Precambrian Earth and for the origin of plume-related corona structures on Venus.

  8. Tasmanian Tertiary basalts, the Balleny plume, and opening of the Tasman Sea (southwest Pacific Ocean)

    NASA Astrophysics Data System (ADS)

    Lanyon, Ruth; Varne, Rick; Crawford, Anthony J.

    1993-06-01

    A seamount chain extending from the Balleny Islands to the East Tasman Plateau records the passage of the Australian and Antarctic plates over the Balleny plume. A poorly known seamount chain trending northeast from the East Tasman Plateau across the Tasman Sea to the western edge off the Lord Howe Rise represents a possible older trace of the plume. Late Cretaceous inception of this plume, and of another beneath Marie Byrd Land on the stationary Antarctic plate, may have been involved in the initiation of spreading at ˜80 Ma in the Tasman Sea and southwest Pacific Ocean. The Balleny plume isotopic and trace element signature, indicative of a high U/Pb mantle source, is recorded in Cenozoic Tasmanian basalts but is not present in the adjacent Victorian mafic lava-field province, located farther from the plume trace.

  9. Source components of the Hawaiian shield lavas and their distribution in the plume

    NASA Astrophysics Data System (ADS)

    Ren, Z.; Hanyu, T.; Chang, Q.; Kawabata, H.; Miyazaki, T.; Takahashi, T.; Hirahara, Y.; Tatsumi, Y.

    2006-12-01

    We examined major, trace elements and Sr-, Nd-, Pb-, He- isotope compositions in a suite of fresh lavas from the submarine Koolau, Kilauea and Loihi volcanoes, as these volcanoes are believed to have sampled the three distinct Hawaiian plume components. The trace element ratios and isotopic variations imply that, to a first order, the composition of the Hawaiian shield lavas appears to be dominated by a mixture of two components: a relatively enriched component (Koolau) and a relatively depleted component (Loihi). The Koolau component consists of a higher proportion of ancient recycled oceanic crust (lower crust); the Loihi and Kea component contains a higher proportion relatively depleted FOZO like component that is from the lower mantle. On the basis of our new data involving previous whole rock (Ren et al., J. Petrol., 2004; 2006) and melt inclusion data (Ren et al., 2005, Nature), combined with the geochemical evolutions of the individual shield volcanoes, we propose a Hawaiian mantle plume characterized by more random heterogeneity than would be present in a simple compositionally zoned mantle plume. The plume may have a peridotite matrix from the lower mantle with recycled oceanic crust that may remain distinct geochemistry, forming streaks or ribbons distributed throughout the entire plume. The dominant component sampled at a given stage of the shield volcanoes is likely to be controlled by the thermal structure of the plume and the melting points of the different materials in the plume. References: (1)Ren, Z.-Y., Takahashi, E., Orihashi, Y., K. M. T. Johnson (2004), J. Petrol., 45, 2067-2099. (2)Ren, Z.-Y., T. Shibata, M. Yoshikawa, K. Johnson, E. Takahashi (2006), J. Petrol., 47, 255-275. (3)Ren, Z.-Y., S. Stephanie, E. Takahashi, N. Hirano, T. Hirata (2005), Nature, 436, 837-840.

  10. Lower mantle thermal structure deduced from seismic tomography, mineral physics and numerical modelling

    NASA Technical Reports Server (NTRS)

    Cadek, O.; Yuen, D. A.; Steinbach, V.; Chopelas, A.; Matyska, C.

    1994-01-01

    The long-wavelength thermal anomalies in the lower mantle have been mapped out using several seismic tomographic models in conjunction with thermodynamic parameters derived from high-pressure mineral physics experiments. These parameters are the depth variations of thermal expansivity and of the proportionality factor between changes in density and seismic velocity. The giant plume-like structures in the lower mantle under the Pacific Ocean and Africa have outer fringes with thermal anomalies around 300-400 K, but very high temperatures are found in the center of the plumes near the base of the core-mantle boundary. These extreme values can exceed +1500 K and may reflect large hot thermal anomalies in the lower mantle, which are supported by recent measurements of high melting temperatures of perovskite and iron. Extremely cold anomalies, around -1500 K, are found for anomalies in the deep mantle around the Pacific rim and under South America. Numerical simulations show that large negative thermal anomalies in the mid-lower mantle have modest magnitudes of around -500 K. correlation pattern exists between the present-day locations of cold masses in the lower mantle and the sites of past subduction since the Cretaceous. Results from correlation analysis show that the slab mass-flux in the lower mantle did not conform to a steady-state nature but exhibited time-dependent behavior.

  11. LAMP Observes the LCROSS Plume

    NASA Video Gallery

    This video shows LAMP’s view of the LCROSS plume. The first half of the animation shows the LAMP viewport scanning across the horizon, passing through the plume, and moving on. The second half of...

  12. Hydrostatic Modeling of Buoyant Plumes

    NASA Astrophysics Data System (ADS)

    Stroman, A.; Dewar, W. K.; Wienders, N.; Deremble, B.

    2014-12-01

    The Deepwater Horizon oil spill in the Gulf of Mexico has led to increased interest in understanding point source convection dynamics. Most of the existing oil plume models use a Lagrangian based approach, which computes integral measures such as plume centerline trajectory and plume radius. However, this approach doesn't account for feedbacks of the buoyant plume on the ambient environment. Instead, we employ an Eulerian based approach to acquire a better understanding of the dynamics of buoyant plumes. We have performed a series of hydrostatic modeling simulations using the MITgcm. Our results show that there is a dynamical response caused by the presence of the buoyant plume, in that there is a modification of the background flow. We find that the buoyant plume becomes baroclinically unstable and sheds eddies at the neutral buoyancy layer. We also explore different scenarios to determine the effect of the buoyancy source and the temperature stratification on the evolution of buoyant plumes.

  13. EUV analysis of polar plumes

    NASA Technical Reports Server (NTRS)

    Ahmad, I. A.; Withbroe, G. L.

    1977-01-01

    Three polar plumes were studied using Skylab Mg X and O VI data. The plumes lie within the boundaries of a polar coronal hole. We find that the mean temperature of the plumes is about 1.1 million K and that they have a small vertical temperature gradient. Densities are determined and found consistent with white light analyses. The variation of density with height in the plumes is compared with that expected for hydrostatic equilibrium. As is the case for other coronal features, polar plumes will be a source of solar wind if the magnetic field lines are open. On the basis of the derived plume model and estimates of the numbers of plumes in polar coronal holes, it appears that polar plumes contain about 15% of the mass in a typical polar hole and occupy about 10% of the volume.

  14. Distribution of brucellosis among small ruminants in the pastoral region of Afar, eastern Ethiopia.

    PubMed

    Ashenafi, F; Teshale, S; Ejeta, G; Fikru, R; Laikemariam, Y

    2007-12-01

    A cross-sectional study was conducted in the pastoral region of Afar, in eastern and central Ethiopia, to determine the distribution of brucellosis in small ruminants. Between December 2005 and June 2006, 1,568 serum samples were taken: 563 samples from sheep and 1,005 from goats. One hundred and forty-seven of these (9.4%) tested positive using the Rose Bengal plate test (RBPT), and 76 (4.8%) also tested positive by the complement fixation test (CFT). Brucellosis was detected in all five administrative zones of the region. The difference in prevalence (P) among the zones was not statistically significant (P > 0.05). The seroprevalence of Brucella infection was found to be 5.8% (n = 58) in goats and 3.2% (n = 18) in sheep. A prevalence rate of 5.3% was observed in adult animals and 1.6% in younger sheep and goats. Caprine species (chi2 = 5.56) and adult goats and sheep (chi2 = 4.84) were found to be at higher risk of Brucella infection (P < 0.05). No statistically significant difference was found between males and females (chi2 = 2.57, P > 0.05). The study showed that small-ruminant brucellosis is a widely distributed disease in Afar. The authors recommend the implementation of well-organised disease control and prevention methods to mitigate the economic losses and public health hazard caused by the disease.

  15. Enceladus' Water Vapour Plumes

    NASA Technical Reports Server (NTRS)

    Hansen, Candice J.; Esposito, L.; Colwell, J.; Hendrix, A.; Matson, Dennis; Parkinson, C.; Pryor, W.; Shemansky, D.; Stewart, I.; Tew, J.; Yung, Y.

    2006-01-01

    A viewgraph presentation on the discovery of Enceladus water vapor plumes is shown. Conservative modeling of this water vapor is also presented and also shows that Enceladus is the source of most of the water required to supply the neutrals in Saturn's system and resupply the E-ring against losses.

  16. Double Diffusive Plumes

    NASA Astrophysics Data System (ADS)

    Sutherland, Bruce; Lee, Brace

    2008-11-01

    Sour gas flares attempt to dispose of deadly H2S gas through combustion. What does not burn rises as a buoyant plume. But the gas is heavier than air at room temperature, so as the rising gas cools eventually it becomes negatively buoyant and descends back to the ground. Ultimately, our intent is to predict the concentrations of the gas at ground level in realistic atmospheric conditions. As a first step towards this goal we have performed laboratory experiments examining the structure of a steady state plume of hot and salty water that rises buoyantly near the source and descends as a fountain after it has cooled sufficiently. We call this a double-diffusive plume because its evolution is dictated by the different (turbulent) diffusivities of heat and salt. A temperature and conductivity probe measures both the salinity and temperature along the centreline of the plume. The supposed axisymmetric structure of the salinity concentration as it changes with height is determined by light-attenuation methods. To help interpret the results, a theory has been successfully adapted from the work of Bloomfield and Kerr (2000), who developed coupled equations describing the structure of fountains. Introducing a new empirical parameter for the relative rates of turbulent heat and salt diffusion, the predictions are found to agree favourably with experimental results.

  17. Evaluation of Visible Plumes.

    ERIC Educational Resources Information Center

    Brennan, Thomas

    Developed for presentation at the 12th Conference on Methods in Air Pollution and Industrial Hygiene Studies, University of Southern California, April, 1971, this outline discusses plumes with contaminants that are visible to the naked eye. Information covers: (1) history of air pollution control regulations, (2) need for methods of evaluating…

  18. PLUME and research sotware

    NASA Astrophysics Data System (ADS)

    Baudin, Veronique; Gomez-Diaz, Teresa

    2013-04-01

    The PLUME open platform (https://www.projet-plume.org) has as first goal to share competences and to value the knowledge of software experts within the French higher education and research communities. The project proposes in its platform the access to more than 380 index cards describing useful and economic software for this community, with open access to everybody. The second goal of PLUME focuses on to improve the visibility of software produced by research laboratories within the higher education and research communities. The "development-ESR" index cards briefly describe the main features of the software, including references to research publications associated to it. The platform counts more than 300 cards describing research software, where 89 cards have an English version. In this talk we describe the theme classification and the taxonomy of the index cards and the evolution with new themes added to the project. We will also focus on the organisation of PLUME as an open project and its interests in the promotion of free/open source software from and for research, contributing to the creation of a community of shared knowledge.

  19. Buoyant plume calculations

    SciTech Connect

    Penner, J.E.; Haselman, L.C.; Edwards, L.L.

    1985-01-01

    Smoke from raging fires produced in the aftermath of a major nuclear exchange has been predicted to cause large decreases in surface temperatures. However, the extent of the decrease and even the sign of the temperature change, depend on how the smoke is distributed with altitude. We present a model capable of evaluating the initial distribution of lofted smoke above a massive fire. Calculations are shown for a two-dimensional slab version of the model and a full three-dimensional version. The model has been evaluated by simulating smoke heights for the Hamburg firestorm of 1943 and a smaller scale oil fire which occurred in Long Beach in 1958. Our plume heights for these fires are compared to those predicted by the classical Morton-Taylor-Turner theory for weakly buoyant plumes. We consider the effect of the added buoyancy caused by condensation of water-laden ground level air being carried to high altitude with the convection column as well as the effects of background wind on the calculated smoke plume heights for several fire intensities. We find that the rise height of the plume depends on the assumed background atmospheric conditions as well as the fire intensity. Little smoke is injected into the stratosphere unless the fire is unusually intense, or atmospheric conditions are more unstable than we have assumed. For intense fires significant amounts of water vapor are condensed raising the possibility of early scavenging of smoke particles by precipitation. 26 references, 11 figures.

  20. The AfaR small RNA controls expression of the AfaD-VIII invasin in pathogenic Escherichia coli strains

    PubMed Central

    Pichon, Christophe; du Merle, Laurence; Lequeutre, Isabelle; Le Bouguénec, Chantal

    2013-01-01

    Pathogenic Escherichia coli strains carrying the afa-8 gene cluster are frequently associated with extra-intestinal infections in humans and animals. The afa-8 A to E genes determine the formation of an afimbrial adhesive sheath consisting of the AfaD-VIII invasin and the AfaE-VIII adhesin at the bacterial cell surface. This structure is thought to be required for host colonization. We characterized a new gene encoding the small RNA AfaR, which is transcribed in cis from the complementary strand of the 3′ untranslated region of the afaD messenger RNA, within the afaD–afaE intercistronic region. AfaR is a trans-acting Hfq-dependent antisense small RNA that binds the 5′ untranslated region of the afaD messenger RNA, initiating several ribonuclease E-dependent cleavages, thereby downregulating production of the AfaD-VIII invasin. AfaR transcription is dependent on σE, a member of the stress response family of extracytoplasmic alternative sigma factors. We found that the AfaR-dependent regulatory pathway was controlled by temperature, allowing the production of the AfaD-VIII invasin at temperatures above 37°C. Our findings suggest that the entry of afa-8-positive pathogenic E. coli strains into epithelial cells is tightly regulated by the AfaR small RNA. PMID:23563153

  1. The Mantle Seismic Heterogeneities Inferred by USArray Data

    NASA Astrophysics Data System (ADS)

    Ko, J. Y. T.; Zhan, Z.; Hung, S. H.; Li, D.; Helmberger, D. V.

    2015-12-01

    The detailed images of mantle seismic heterogeneities is establishing the link between modern mantle dynamics and past surface geological evolutions. The recent deployment of the USArray network of seismometers rolling from the west coast to the east coast of United States during 2004 to 2015 afford an extraordinary data set to investigate such mantle seismic heterogeneities. Here we first explored the D" structure beneath Caribbean region and found an east-to-west asymmetrical undulation of the D" discontinuity with a V-shaped depression of ~80-150 km over a lateral distance of 600 km, coinciding with a similar trend of shear wave velocity showing the most profound reduction of ~5% at the bottom of the thinnest D" layer. The strong correlation between the D" topography and velocity variations indicates lateral fluctuation in the D" temperature modulated by the reheated slab material has perturbed the phase transition boundary significantly and may reflect a transitional period of the proposed mega-plume scenario. Secondly, these emerging data not only shed light on the lowermost mantle structures but provide new constraints on the mid and upper mantle seismic velocity heterogeneities beneath the United States. We found that frequency-dependent traveltime residuals and amplitudes of S waves from South America events display considerable scatter patterns recorded by USArray stations which can be attributed to upper mantle heterogeneities beneath the U.S. and mid or lower mantle seismic anomalies along the raypaths. The analysis of waveform complexity is utilized in this work and gives complementary constraints on the location and geometry of these mantle heterogeneities such as possible slab remnants below Central and Eastern United States. We further exploited the newly developed 2D finite-difference method with various mantle heterogeneity models to better understand the possible geophysical features producing these anomalies.

  2. Mineralogy and composition of the oceanic mantle

    USGS Publications Warehouse

    Putirka, Keith; Ryerson, F.J.; Perfit, Michael; Ridley, W. Ian

    2011-01-01

    The mineralogy of the oceanic basalt source region is examined by testing whether a peridotite mineralogy can yield observed whole-rock and olivine compositions from (1) the Hawaiian Islands, our type example of a mantle plume, and (2) the Siqueiros Transform, which provides primitive samples of normal mid-ocean ridge basalt. New olivine compositional data from phase 2 of the Hawaii Scientific Drilling Project (HSDP2) show that higher Ni-in-olivine at the Hawaiian Islands is due to higher temperatures (T) of melt generation and processing (by c. 300°C) related to the Hawaiian mantle plume. DNi is low at high T, so parental Hawaiian basalts are enriched in NiO. When Hawaiian (picritic) parental magmas are transported to shallow depths, olivine precipitation occurs at lower temperatures, where DNi is high, leading to high Ni-in-olivine. Similarly, variations in Mn and Fe/Mn ratios in olivines are explained by contrasts in the temperatures of magma processing. Using the most mafic rocks to delimit Siqueiros and Hawaiian Co and Ni contents in parental magmas and mantle source compositions also shows that both suites can be derived from natural peridotites, but are inconsistent with partial melting of natural pyroxenites. Whole-rock compositions at Hawaii and Siqueiros are also matched by partial melting experiments conducted on peridotite bulk compositions. Hawaiian whole-rocks have elevated FeO contents compared with Siqueiros, which can be explained if Hawaiian parental magmas are generated from peridotite at 4-5 GPa, in contrast to pressures of slightly greater than 1 GPa for melt generation at Siqueiros; these pressures are consistent with olivine thermometry, as described in an earlier paper. SiO2-enriched Koolau compositions are reproduced if high-Fe Hawaiian parental magmas re-equilibrate at 1-1·5 GPa. Peridotite partial melts from experimental studies also reproduce the CaO and Al2O3 contents of Hawaiian (and Siqueiros) whole-rocks. Hawaiian magmas have TiO2

  3. Lithospheric response to plume- and plate-tectonic interactions

    NASA Astrophysics Data System (ADS)

    Puchkov, V.

    2012-04-01

    Plate movements and deformations of lithosphere are driven mostly by a thermochemical convection in asthenosphere. Contrariwise, plume-tectonic processes result from a larger-scale thermochemical convection in the whole mantle, starting at the core-mantle boundary (CMB) and depending on core-mantle interactions. The plate-tectonic processes affect lithosphere as a whole, dividing it into moving and deforming plates, while the plume-tectonic ones are manifested locally or regionally as LIPs (Large Igneous Provinces) and hot spots. Meeting in the lithosphere, these processes interact, resulting in a series of tectonic effects that deserve a special consideration. 1. It was noted (e.g. Sengor, 2001; Li et al., 2008) that destruction of supercontinents is accompanied by growth of a superplume (LIP) activity within continental territories. Meanwhile, there are cases when a superplume activity is not connected with continents and conversely, superplumes on continents do not necessarily lead to their splitting. According to V. Trubitsyn (2000), the break-up of a supercontinent is a result of a "blanketing effect" of heat accumulation under it, inducing a restructuring of a convection pattern. I suggested that superplumes simply add the heat to this effect, supplying the process with an additional energy and making the break-up of a supercontinent more easy. 2. One more example of a joint action of plate and plume processes is a formation of continental passive margins, that belong to two types: volcanic and avolcanic (Jeffroy,2005; Melankholina, 2008, 2011). Such characteristics of the volcanic type as a high volcanic activity, underplating, presence of specific seaward-dipping reflectors, are the result of an interference of a passive rifting with active plume processes after the break-up of a supercontinent. 3. Another example of a co-operation of plume- and plate tectonic mechanics is well known: it is a formation of time-progressive volcanic chains (Morgan,1971

  4. Modeling Plume-Triggered, Melt-Enabled Lithospheric Delamination

    NASA Astrophysics Data System (ADS)

    Perry-Houts, J.; Humphreys, G.

    2015-12-01

    It has been suggested that arrival of the Yellowstone plume below North America triggered a lithospheric foundering event which aided the eruption of the Columbia River flood basalts. This hypothesis potentially accounts for some of the biggest mysteries related to the CRB's including their location as "off-track" plume volcanism; and the anomalous chemical signatures of the most voluminous units. The foundered lithosphere appears to be a remnant chunk of Farallon slab, which had been stranded beneath the Blue Mountains terrain since the accretion of Siletzia. If this is the case then the mechanisms by which this slab stayed metastable between Siletzia accretion and CRB time, and then so suddenly broke loose, is unclear. The addition of heat and mantle buoyancy supplied by the Yellowstone plume provides a clue, but the geodynamic process by which the slab was able to detach remains unclear.Efforts to model numerically the underlying processes behind delamination events have been gaining popularity. Typically, such models have relied on drastically weakened regions within the crust, or highly non-linear rheologies to enable initiation and propagation of lithosphere removal. Rather than impose such a weak region a priori, we investigated the role of <