NASA Astrophysics Data System (ADS)
Polun, S. G.; Hickcox, K.; Tesfaye, S.; Gomez, F. G.
2016-12-01
The central Afar rift in Ethiopia and Djibouti is a zone of accommodation between the onshore propagations of the Gulf of Aden and Red Sea oceanic spreading centers forming part of the Afar triple junction that divides the Arabia, Nubia, and Somalia plates. While extension in the onshore magmatic propagators is accommodated through magmatism and associated faulting, extension in the central Afar is accommodated solely by large and small faults. The contributions of these major faults to the overall strain budget can be well characterized, but smaller faults are more difficult to quantify. Sparse GPS data covering the region constrain the total extension budget across the diffuse triple junction zone. Late Quaternary slip rates for major faults in Hanle, Dobe, Guma, and Immino grabens were estimated using the quantitative analysis of faulted landforms. This forms a nearly complete transect from the onshore propagation of the Red Sea rift in Tendaho graben and the onshore propagation of the Gulf of Aden rift at Manda Inakir. Field surveying was accomplished using a combination of electronic distance measurer profiling and low altitude aerial surveying. Age constraints are provided from the Holocene lacustrine history or through terrestrial cosmogenic nuclide (TCN) dating of the faulted geomorphic surface. Along this transect, late Quaternary slip rates of major faults appear to accommodate 25% of the total horizontal stretching rate between the southern margin of Tendaho graben and the Red Sea coast, as determined from published GPS velocities. This constrains the proportion of total extension between Nubia and Arabia that is accommodated through major faulting in the central Afar, compared to the magmatism and associated faulting of the magmatic propagators elsewhere in the triple junction. Along the transect, individual fault slip rates decrease from the southeast to the northwest, suggesting a `Crank-Arm' model may be more applicable to explain the regional kinematics and the evolution of the triple junction.
Strike-slip tectonics during rift linkage
NASA Astrophysics Data System (ADS)
Pagli, C.; Yun, S. H.; Ebinger, C.; Keir, D.; Wang, H.
2017-12-01
The kinematics of triple junction linkage and the initiation of transforms in magmatic rifts remain debated. Strain patterns from the Afar triple junction provide tests of current models of how rifts grow to link in area of incipient oceanic spreading. Here we present a combined analysis of seismicity, InSAR and GPS derived strain rate maps to reveal that the plate boundary deformation in Afar is accommodated primarily by extensional tectonics in the Red Sea and Gulf of Aden rifts, and does not require large rotations about vertical axes (bookshelf faulting). Additionally, models of stress changes and seismicity induced by recent dykes in one sector of the Afar triple junction provide poor fit to the observed strike-slip earthquakes. Instead we explain these patterns as rift-perpendicular shearing at the tips of spreading rifts where extensional strains terminate against less stretched lithosphere. Our results demonstrate that rift-perpendicular strike-slip faulting between rift segments achieves plate boundary linkage during incipient seafloor spreading.
Evolution of the northern Main Ethiopian rift: birth of a triple junction
NASA Astrophysics Data System (ADS)
Wolfenden, Ellen; Ebinger, Cynthia; Yirgu, Gezahegn; Deino, Alan; Ayalew, Dereje
2004-07-01
Models for the formation of the archetypal rift-rift-rift triple junction in the Afar depression have assumed the synchronous development of the Red Sea-Aden-East African rift systems soon after flood basaltic magmatism at 31 Ma, but the timing of intial rifting in the northern sector of the East African rift system had been poorly constrained. The aims of our field, geochronology, and remote sensing studies were to determine the timing and kinematics of rifting in the 3rd arm, the Main Ethiopian rift (MER), near its intersection with the southern Red Sea rift. New structural data and 10 new SCLF 40Ar/39Ar dates show that extension in the northern Main Ethiopian rift commenced after 11 Ma, more than 17 My after initial rifting in the southern Red Sea and Gulf of Aden. The triple junction, therefore, could have developed only during the past 11 My, or 20 My after the flood basaltic magmatism. Thus, the flood basaltic magmatism and separation of Arabia from Africa are widely separated in time from the opening of the Main Ethiopian rift, which marks the incipient Nubia-Somalia plate boundary; triple junction formation is not a primary feature of breakup above the Afar mantle plume. The East African rift system appears to have propagated northward from the Mesozoic Anza rift system into the Afar depression to cut across Oligo-Miocene rift structures of the Red Sea and Gulf of Aden, in response to global plate reorganisations. Structural patterns reveal a change from 130°E-directed extension to 105°E-directed extension sometime in the interval 6.6 to 3 Ma, consistent with predictions from global plate kinematic studies. The along-axis propagation of rifting in each of the three arms of the triple junction has led to a NE-migration of the triple junction since 11 Ma.
NASA Astrophysics Data System (ADS)
Rooney, Tyrone O.; Mohr, Paul; Dosso, Laure; Hall, Chris
2013-02-01
The Afar triple junction, where the Red Sea, Gulf of Aden and African Rift System extension zones converge, is a pivotal domain for the study of continental-to-oceanic rift evolution. The western margin of Afar forms the southernmost sector of the western margin of the Red Sea rift where that margin enters the Ethiopian flood basalt province. Tectonism and volcanism at the triple junction had commenced by ˜31 Ma with crustal fissuring, diking and voluminous eruption of the Ethiopian-Yemen flood basalt pile. The dikes which fed the Oligocene-Quaternary lava sequence covering the western Afar rift margin provide an opportunity to probe the geochemical reservoirs associated with the evolution of a still active continental margin. 40Ar/39Ar geochronology reveals that the western Afar margin dikes span the entire history of rift evolution from the initial Oligocene flood basalt event to the development of focused zones of intrusion in rift marginal basins. Major element, trace element and isotopic (Sr-Nd-Pb-Hf) data demonstrate temporal geochemical heterogeneities resulting from variable contributions from the Afar plume, depleted asthenospheric mantle, and African lithosphere. The various dikes erupted between 31 Ma and 22 Ma all share isotopic signatures attesting to a contribution from the Afar plume, indicating this initial period in the evolution of the Afar margin was one of magma-assisted weakening of the lithosphere. From 22 Ma to 12 Ma, however, diffuse diking during continued evolution of the rift margin facilitated ascent of magmas in which depleted mantle and lithospheric sources predominated, though contributions from the Afar plume persisted. After 10 Ma, magmatic intrusion migrated eastwards towards the Afar rift floor, with an increasing fraction of the magmas derived from depleted mantle with less of a lithospheric signature. The dikes of the western Afar margin reveal that magma generation processes during the evolution of this continental rift margin are increasingly dominated by shallow decompressional melting of the ambient asthenosphere, the composition of which may in part be controlled by preferential channeling of plume material along the developing neo-oceanic axes of extension.
NASA Astrophysics Data System (ADS)
Koptev, Alexander; Burov, Evgueni; Calais, Eric; Leroy, Sylvie; Gerya, Taras; Cloetingh, Sierd; Guillou-Frottier, Laurent
2017-04-01
We use numerical thermo-mechanical experiments in order to analyze the role of active mantle plume, far-field tectonic stresses and pre-existing lithospheric heterogeneities in structural development of the East African Rift system (EARS). It is commonly assumed that the Cenozoic rifts have avoided the cratons and follow the mobile belts which serve as the weakest pathways within the non-uniform material structured during pre-rift stages. Structural control of the pre-existing heterogeneities within the Proterozoic belts at the scale of individual faults or rifts has been demonstrated as well. However, the results of our numerical experiments show that the formation of two rift zones on opposite sides of a thick lithosphere segment can be explained without appealing to pre-imposed heterogeneities at the crustal level. These models have provided a unified physical framework to understand the development of the Eastern branch, the Western branch and its southern prolongation by the Malawi rift around thicker lithosphere of the Tanzanian and Bangweulu cratons as a result of the interaction between pre-stressed continental lithosphere and single mantle plume anomaly corresponding to the Kenyan plume. The second series of experiments has been designed in order to investigate northern segment of the EARS where Afro-Arabian plate separation is supposed to be related with the impact of Afar mantle plume. We demonstrate that whereas relatively simple linear rift structures are preferred in case of uni-directional extension, more complex rifting patterns combining one or several ridge-ridge-ridge triple junctions can form in response to bi-directional extensional far-field stresses. In particular, our models suggest that Afar triple junction represents an end-member mode of plume-induced bi-directional rifting combining asymmetrical northward traction and symmetrical EW extension of similar magnitudes. The presence of pre-existing linear weak zones appears to be not mandatory for deformation localization ultimately leading to present configuration of the Afar triple junction. Finally, for laterally extended experiments we have used parameters of the best-fit models for the southern and northern segments of the EARS in order to define the position of Kenyan plume and the velocity boundary conditions. These models cover all rifting and spreading structures associated with both Afar and Kenyan plumes: Red Sea Rift and the Aden Ridge to the north of the Afar Triple Junction; Main Ethiopian Rift running to the south that continues as the Kenyan Rift; Western Rift and its southern prolongation corresponding to Malawi rift. We argue that all these basic features associated with Cenozoic rifting in the EARS can be reproduced in a relatively simple context of the interaction between two mantle anomalies corresponding to Afar and Kenyan plumes and pre-stressed rheologically stratified continental lithosphere containing only first-order structural heterogeneities (such as Tanzanian and Bangweulu cratons).
NASA Astrophysics Data System (ADS)
Polun, S. G.; Stockman, M. B.; Hickcox, K.; Horrell, D.; Tesfaye, S.; Gomez, F. G.
2015-12-01
As the only subaerial exposure of a ridge - ridge - ridge triple junction, the Afar region of Ethiopia and Djibouti offers a rare opportunity to assess strain partitioning within this type of triple junction. Here, the plate boundaries do not link discretely, but rather the East African rift meets the Red Sea and Gulf of Aden rifts in a zone of diffuse normal faulting characterized by a lack of magmatic activity, referred to as the central Afar. An initial assessment of Late Quaternary strain partitioning is based on faulted landforms in the Dobe - Hanle graben system in Ethiopia and Djibouti. These two extensional basins are connected by an imbricated accommodation zone. Several fault scarps occur within terraces formed during the last highstand of Lake Dobe, around 5 ka - they provide a means of calibrating a numerical model of fault scarp degradation. Additional timing constraints will be provided by pending exposure ages. The spreading rates of both grabens are equivalent, however in Dobe graben, extension is partitioned 2:1 between northern, south dipping faults and the southern, north dipping fault. Extension in Hanle graben is primarily focused on the north dipping Hanle fault. On the north margin of Dobe graben, the boundary fault bifurcates, where the basin-bordering fault displays a significantly higher modeled uplift rate than the more distal fault, suggesting a basinward propagation of faulting. On the southern Dobe fault, surveyed fault scarps have ages ranging from 30 - 5 ka with uplift rates of 0.71, 0.47, and 0.68 mm/yr, suggesting no secular variation in slip rates from the late Plestocene through the Holocene. These rates are converted into horizontal stretching estimates, which are compared with regional strain estimated from velocities of relatively sparse GPS data.
NASA Astrophysics Data System (ADS)
Doubre, C.; Deprez, A.; Masson, F.; Socquet, A.; Lewi, E.; Grandin, R.; Calais, E.; Wright, T. J.; Bendick, R. O.; Pagli, C.; Peltzer, G.; de Chabalier, J. B.; Ibrahim Ahmed, S.
2014-12-01
The Afar Depression is an extraordinary submerged laboratory where the crustal mechanisms involved in the active rifting process can be studied. But the crustal movements at the regional scale are complicated by being the locus of the meeting of three divergent plate boundaries: the oceanic spreading ridges of the Red Sea and the Aden Ridge and the intra-continental East-African Rift (EAR). We present here the first GPS measurements conducted in a new network in Central Afar, complementing existing networks in Eritrea, around the Manda-Harraro 2005-2010 active segment, in the Northern part of the EAR and in Djibouti. Even if InSAR data were appropriate for mapping the deformation field, the results are difficult to interpret for analyzing the regional kinematics because of the atmospheric conditions, the lack of complete data catalogue, the acquisition configuration and the small velocity variations. Therefore, our measurements in the new sites are crucial to obtain an accurate velocity field over the whole depression, and focus specifically on the spatial organization of the deformation to characterize the tripe junction. These first results show that a small part of the motion of the Somalia plate with respect to the Nubia plate or the Arabia plate (2-3 mm/yr) occurs south of the Tadjura Gulf and East of the Adda-do segment in Southern Afar. The complex kinematic pattern involves a clockwise rotation of this Southeastern part of the Afar rift and can be related to the significant seismic activity regularly recorded in the region of Jigjiga (northern Somalia-Ethiopia border). The western continuation of the Aden Ridge into Afar extends West of the Asal rift segment and does not reach the young active segment of Manda-Inakir (MI). A slow gradient of velocity is observed across the Dobi Graben and across the large systems of faults between Lake Abhe and the MI rift segment. A striking change of the velocity direction occurs in the region of Assaïta, west of Lake Abhe, suggesting that this area represents the most probable location for the triple junction.
The Afar Depression: Was There a Triple Junction Above the Mantle Plume?
NASA Astrophysics Data System (ADS)
Ebinger, C.; Wolfenden, E.; Yirgu, G.; Ayalew, D.; Eagles, G.; Gloaguen, R.; Tiberi, C.; Rowland, J. R.; Deino, A.; Tesfaye, A.; Tesfaye, S.
2002-12-01
The Red Sea - Gulf of Aden- Main Ethiopian rift systems (Afar Depression) have served as the textbook example of a R-R-R triple junction zone which formed above a mantle plume (Ethiopia-Yemen flood basalt province, 31-28 Ma). Recent work has documented the onset and propagation of seafloor along the length of the Gulf of Aden and Red Sea arms, but the timing of continental rifting had been poorly constrained. Our aims were to constrain the timing of rift initiation in each arm of the rift near the proposed Oligocene triple junction and to re-assess models for break-up above a mantle plume. Although much of the early history of rifting is deeply buried by Pliocene-Recent lavas, erosional dissection of the rift margins provides windows into the early rift history. Along the southernmost Red Sea, faults commonly marked by eruptive centers initiated at about 26 Ma, coincident with rifting along the easternmost Gulf of Aden. New data from the rift immediately south of the southernmost Red Sea basin (ca.10N) constrain the earliest rift sequences in the northern Main Ethiopian rift (MER). Field and Ar-Ar data from sequences overlying the pre-rift flood basalts show that extension in the northern MER commenced at 12-10 Ma when the two rift systems were finally linked. The active zone of extension and magmatism in the southern Red Sea and eastern Gulf of Aden, however, had migrated east and north, respectively. Summarising, rifting in southern Ethiopia had commenced by 16-18 Ma, and had propagated northward to cut across Oligo-Miocene rift structures of the Red Sea and Gulf of Aden by 10 Ma, consistent with plate kinematic data. A triple junction could have developed only during the past 10 My, long after flood basaltic magmatism. Inverse models of gravity data predict a significant step (2-4 km) in the Moho where the youthful, less extended MER breaks into the Afar Depression. Project EAGLE (UK-US-Ethiopia) is now acquiring seismic data across and along this zone to evaluate mechanisms for rift segmentation and propagation prior to breakup.
Stress field during early magmatism in the Ali Sabieh Dome, Djibouti, SE Afar rift
NASA Astrophysics Data System (ADS)
Sue, Christian; Le Gall, Bernard; Daoud, Ahmed Mohamed
2014-09-01
The so-called Ali Sabieh range, SE Afar rift, exhibits an atypical antiform structure occurring in the overall extensional tectonic context of the Afar triple junction. We dynamically analyzed the brittle deformation of this specific structural high using four different methods in order to better constrain the tectonic evolution of this key-area in the Afar depression. Paleostress inversions appear highly consistent using the four methods, which a posteriori validates this approach. Computed paleostress fields document two major signals: an early E-W extensional field, and a later transcurrent field, kinematically consistent with the previous one. The Ali Sabieh range may have evolved continuously during Oligo-Miocene times from large-scale extensional to transcurrent tectonism, as the result of probable local stress permutation between σ1 and σ2 stress axes.
[Activities of Dept. of Geological Sciences, Colorado University
NASA Technical Reports Server (NTRS)
Bilham, Roger
1997-01-01
Using remotely sensed data and GPS observations we completed a study of neotectonic processes responsible for landscape changes in an area of active extensional deformation and volcanism. The findings from this study describe the extensional processes operating in the region of the Afar triple junction and the northern Ethiopian rift.
NASA Astrophysics Data System (ADS)
Doubre, Cécile; Déprez, Aline; Masson, Frédéric; Socquet, Anne; Lewi, Elias; Grandin, Raphaël; Nercessian, Alexandre; Ulrich, Patrice; De Chabalier, Jean-Bernard; Saad, Ibrahim; Abayazid, Ahmadine; Peltzer, Gilles; Delorme, Arthur; Calais, Eric; Wright, Tim
2017-02-01
Kinematics of divergent boundaries and Rift-Rift-Rift junctions are classically studied using long-term geodetic observations. Since significant magma-related displacements are expected, short-term deformation provides important constraints on the crustal mechanisms involved both in active rifting and in transfer of extensional deformation between spreading axes. Using InSAR and GPS data, we analyse the surface deformation in the whole Central Afar region in detail, focusing on both the extensional deformation across the Quaternary magmato-tectonic rift segments, and on the zones of deformation transfer between active segments and spreading axes. The largest deformation occurs across the two recently activated Asal-Ghoubbet (AG) and Manda Hararo-Dabbahu (MH-D) magmato-tectonic segments with very high strain rates, whereas the other Quaternary active segments do not concentrate any large strain, suggesting that these rifts are either sealed during interdyking periods or not mature enough to remain a plate boundary. Outside of these segments, the GPS horizontal velocity field shows a regular gradient following a clockwise rotation of the displacements from the Southeast to the East of Afar, with respect to Nubia. Very few shallow creeping structures can be identified as well in the InSAR data. However, using these data together with the strain rate tensor and the rotations rates deduced from GPS baselines, the present-day strain field over Central Afar is consistent with the main tectonic structures, and therefore with the long-term deformation. We investigate the current kinematics of the triple junction included in our GPS data set by building simple block models. The deformation in Central Afar can be described by adding a central microblock evolving separately from the three surrounding plates. In this model, the northern block boundary corresponds to a deep EW-trending trans-tensional dislocation, locked from the surface to 10-13 km and joining at depth the active spreading axes of the Red Sea and the Aden Ridge, from AG to MH-D rift segments. Over the long-term, this plate configuration could explain the presence of the en-échelon magmatic basins and subrifts. However, the transient behaviour of the spreading axes implies that the deformation in Central Afar evolves depending on the availability of magma supply within the well-established segments.
NASA Astrophysics Data System (ADS)
Koptev, A.; Leroy, S. D.; Calais, E.; Gerya, T.
2016-12-01
We present numerical experiments that target to reveal the role of active mantle plume, far-field tectonic forces and pre-existing lithospheric heterogeneities in structural development of the East African Rift system (EARS). Starting with models capturing the essential geophysical features of the central and southern parts of the EARS (two «cratonic» bodies (Tanzanian craton and Bangweulu block) embedded into a «normal» surrounding lithosphere) we show that development of the magmatic Eastern branch, the amagmatic Western branch and its southern prolongation (Malawi rift) can be the result of non-uniform splitting of some hot plume material that has been initially seeded underneath the southern part of Tanzanian craton. The second series of experiments has been designed in order to investigate northern segment of the EARS where Afro-Arabian plate separation is supposed to be related with the impact of Afar mantle plume. These models permit us to reproduce observed orientation and relative position of two spreading axes (Red Sea, Gulf of Aden) and rifting (Main Ethiopian rift) one. All are joining at Afar triple junction. Finally, for laterally extended experiment we have used parameters of the best-fit models for the southern and northern segments of the EARS in order to define the position of Kenyan plume and the velocity boundary conditions. This model cover all rifting and spreading structure associated with both Afar and Kenyan plumes: Red Sea Rift and the Aden Ridge to the north of the Afar Triple Junction; Main Ethiopian Rift running to the south that continues as the Kenyan Rift; Western Rift and its southern prolongation corresponding to Malawi rift.We argue that main features of the EARS can be reproduced in a relatively simple context of the interaction between two mantle anomalies corresponding to Afar and Kenyan plumes and pre-stressed rheologically stratified continental lithosphere containing only first-order structural heterogeneities (such as Tanzanian and Bangweulu cratons).
NASA Astrophysics Data System (ADS)
Natali, Claudio; Beccaluva, Luigi; Bianchini, Gianluca; Siena, Franca
2010-05-01
The Oligocene Continental Flood Basalts (CFB) of the Northern Ethiopia and the conjugate Yemen province testifies a huge volcanic event related to the "Afar plume" occurred at ca. 30 Ma (in 1 Ma or less; Hofmann et al., 1997) prior to the continental rifting stage. The zonal arrangement of CFB lavas with Low-Ti tholeiites (LT) in the west, High-Ti tholeiites (HT1) to the east and very High-Ti transitional basalts and picrites (HT2, TiO2 4-6 wt%) closer to the Afar triple junction has been considered a record of magmas generated from the flanks to the centre of a plume head, currently corresponding to the Afar hotspot (Beccaluva et al., 2009). In the central-eastern part of the plateau (Lalibela area), neighbouring the Afar escarpment, abundant rhyolites characterize the upper part of the volcanic sequence and have been interpreted as the differentiated products of CFB magmas (Ayalew et al., 2006). The unusual association of picrite and rhyolite magmas erupted in an elongated area, parallel to the Afar escarpment, appears to be related to peculiar tectonomagmatic events developed in the apical zone of a stretched lithosphere impinged by a mantle plume. As previously suggested, the HT basaltic and picritic magmas could have been generated in the innermost part (core) of the plume head from the hottest, deepest and most metasomatised mantle domains, enriched by "plume components" (Beccaluva et al., 2009). The late stages of these magmatic events were accompanied by the onset of continental rifting, with faulting and block tilting, leading to favourable conditions for magma differentiation in shallow (crustal) chambers located N-S along the future Afar Escarpment. Quantitative petrological modelling shows that efficient fractional crystallization processes of HT transitional basaltic magmas could result in highly differentiated peralkaline rhyolitic products, generally localized at the top (lower density) of the magma reservoirs. From these latter, abundant rhyolitic magma were erupted (sometimes alternating to HT basalts and picrites) during the paroxystic extensional phases which ultimately led to continental break-up and the formation of the Red Sea-Gulf of Aden-East African rift system centred in the Afar "triple junction". References: Ayalew et al. (2006). Geol. Soc. London Sp. Pub. 259, 121-130. Beccaluva et al. (2009). J. Petrol. 50, 1377-1403. Hofmann et al. (1997). Nature 389, 838-841.
Inverse models of gravity data from the Red Sea-Aden-East African rifts triple junction zone
NASA Astrophysics Data System (ADS)
Tiberi, Christel; Ebinger, Cynthia; Ballu, Valérie; Stuart, Graham; Oluma, Befekadu
2005-11-01
The combined effects of stretching and magmatism permanently modify crustal structure in continental rifts and volcanic passive margins. The Red Sea-Gulf of Aden-Ethiopian rift triple junction zone provides a unique opportunity to examine incipient volcanic margin formation above or near an asthenospheric upwelling. We use gravity inversions and forward modelling to examine lateral variations in crust and upper mantle structure across the Oligocene flood basalt province, which has subsequently been extended to form the Red Sea, Gulf of Aden and Main Ethiopian rifts. We constrain and test the obtained models with new and existing seismic estimates of crustal thickness. In particular, we predict crustal thickness across the uplifted plateaux and rift valleys, and calibrate our results with recent receiver function analyses. We discuss the results together with a 3-D distribution of density contrasts in terms of magmatic margin structure. The main conclusions are: (1) a denser (+240 kg m-3) and/or a thinner crust (23 km) in the triple junction zone of the Afar depression; (2) a shallower Moho is found along the Main Ethiopian rift axis, with crustal thickness values decreasing from 32-33 km in the south to 24 km beneath the southern Afar depression; (3) thicker crust (~40 km) is present beneath the broad uplifted Oligocene flood basalt province, suggesting that crustal underplating compensates most of the plateau uplift and (4) possible magmatic underplating or a segmentation in the rift structure is observed at ~8°N, 39°W beneath several collapsed caldera complexes. These results indicate that magmatism has profoundly changed crustal structure throughout the flood basalt province.
Initiation and Along-Axis Segmentation of Seaward-Dipping Volcanic Sequences Captured in Afar
NASA Astrophysics Data System (ADS)
Ebinger, C.; Wolfenden, E.; Yirgu, G.; Keir, D.
2003-12-01
The Afar triple junction zone provides a unique opportunity to examine the early development of magmatic margins, as respective limbs of the triple junction capture different stages of the breakup process. Initial rifting in the southernmost Red Sea occurred concurrent with, or soon after flood basaltic magmatism at ~31 Ma in the Ethiopia-Yemen plume province, whereas the northern part of the Main Ethiopian rift initiated after 12 Ma. Both rift systems initiated with the development of high-angle border fault systems bounding broad basins, but 8-10 My after rifting we see riftward migration of strain from the western border fault to narrow zones of increasingly more basaltic magmatism. These localised zones of faulting and volcanism (magmatic segments) show a segmentation independent of the border fault segmentation. The much older, more evolved magmatic segments in the southern Red Sea, where not onlapped by Pliocene-Recent sedimentary strata, dip steeply riftward and define a regional eastward flexure into transitional oceanic crust, as indicated by gravity models constrained by seismic refraction and receiver function data. The southern Red Sea magmatic segments have been abandoned in Pliocene-Recent triple junction reorganisations, whereas the process of seaward-dipping volcanic sequence emplacement is ongoing in the seismically and volcanically active Main Ethiopian rift. Field, remote sensing, gravity, and seismicity data from the Main Ethiopian and southern Red Sea rifts indicate that seaward-dipping volcanic sequences initiate in moderately stretched continental crust above a narrow zone of dike-intrusion. Our comparison of active and ancient magmatic segments show that they are the precursors to seaward-dipping volcanic sequences analogous to those seen on passive continental margins, and provides insights into the initiation of along-axis segmentation of seafloor-spreading centers.
Keir, Derek; Belachew, M.; Ebinger, C.J.; Kendall, J.-M.; Hammond, J.O.S.; Stuart, G.W.; Ayele, A.; Rowland, J.V.
2011-01-01
Rifting of the continents leading to plate rupture occurs by a combination of mechanical deformation and magma intrusion, yet the spatial and temporal scales over which these alternate mechanisms localize extensional strain remain controversial. Here we quantify anisotropy of the upper crust across the volcanically active Afar Triple Junction using shear-wave splitting from local earthquakes to evaluate the distribution and orientation of strain in a region of continental breakup. The pattern of S-wave splitting in Afar is best explained by anisotropy from deformation-related structures, with the dramatic change in splitting parameters into the rift axis from the increased density of dyke-induced faulting combined with a contribution from oriented melt pockets near volcanic centres. The lack of rift-perpendicular anisotropy in the lithosphere, and corroborating geoscientific evidence of extension dominated by dyking, provide strong evidence that magma intrusion achieves the majority of plate opening in this zone of incipient plate rupture. PMID:21505441
Plate kinematics of the Afro-Arabian Rift System with emphasis on the Afar Depression, Ethiopia
NASA Astrophysics Data System (ADS)
Bottenberg, Helen Carrie
This work utilizes the Four-Dimensional Plates (4DPlates) software, and Differential Interferometric Synthetic Aperture Radar (DInSAR) to examine plate-scale, regional-scale and local-scale kinematics of the Afro-Arabian Rift System with emphasis on the Afar Depression in Ethiopia. First, the 4DPlates is used to restore the Red Sea, the Gulf of Aden, the Afar Depression and the Main Ethiopian Rift to development of a new model that adopts two poles of rotation for Arabia. Second, the 4DPlates is used to model regional-scale and local-scale kinematics within the Afar Depression. Most plate reconstruction models of the Afro-Arabian Rift System relies on considering the Afar Depression as a typical rift-rift-rift triple junction where the Arabian, Somali and Nubian (African) plates are separating by the Red Sea, the Gulf of Aden and the Main Ethiopian Rift suggesting the presence of "sharp and rigid" plate boundaries. However, at the regional-scale the Afar kinematics are more complex due to stepping of the Red Sea propagator and the Gulf of Aden propagator onto Afar as well as the presence of the Danakil, Ali Sabieh and East Central Block "micro-plates". This study incorporates the motion of these micro-plates into the regional-scale model and defined the plate boundary between the Arabian and the African plates within Afar as likely a diffused zone of extensional strain within the East Central Block. Third, DInSAR technology is used to create ascending and descending differential interferograms from the Envisat Advanced Synthetic Aperture Radar (ASAR) C-Band data for the East Central Block to image active crustal deformation related to extensional tectonics and volcanism. Results of the DInSAR study indicate no strong strain localization but rather a diffused pattern of deformation across the entire East Central Block.
Kinematics of the southern Red Sea-Afar Triple Junction and implications for plate dynamics
NASA Astrophysics Data System (ADS)
McClusky, Simon; Reilinger, Robert; Ogubazghi, Ghebrebrhan; Amleson, Aman; Healeb, Biniam; Vernant, Philippe; Sholan, Jamal; Fisseha, Shimelles; Asfaw, Laike; Bendick, Rebecca; Kogan, Lewis
2010-03-01
GPS measurements adjacent to the southern Red Sea and Afar Triple Junction, indicate that the Red Sea Rift bifurcates south of 17° N latitude with one branch following a continuation of the main Red Sea Rift (˜150° Az.) and the other oriented more N-S, traversing the Danakil Depression. These two rift branches account for the full Arabia-Nubia relative motion. The partitioning of extension between rift branches varies approximately linearly along strike; north of ˜16°N latitude, extension (˜15 mm/yr) is all on the main Red Sea Rift while at ˜13°N, extension (˜20 mm/yr) has transferred completely to the Danakil Depression. The Danakil Block separates the two rifts and rotates in a counterclockwise sense with respect to Nubia at a present-day rate of 1.9 ± 0.1°/Myr around a pole located at 17.0 ± 0.2°N, 39.7 ± 0.2°E, accommodating extension along the rifts and developing the roughly triangular geometry of the Danakil Depression. Rotating the Danakil Block back in time to close the Danakil Depression, and assuming that the rotation rate with respect to Nubia has been roughly constant, the present width of the Danakil Depression is consistent with initiation of block rotation at 9.3 ± 4 Ma, approximately coincident with the initiation of ocean spreading in the Gulf of Aden, and a concomitant ˜70% increase in the rate of Nubia-Arabia relative motion.
Upper mantle temperature and the onset of extension and break-up in Afar, Africa
NASA Astrophysics Data System (ADS)
Armitage, John J.; Ferguson, David J.; Goes, Saskia; Hammond, James O. S.; Calais, Eric; Rychert, Catherine A.; Harmon, Nicholas
2015-05-01
It is debated to what extent mantle plumes play a role in continental rifting and eventual break-up. Afar lies at the northern end of the largest and most active present-day continental rift, where the East African Rift forms a triple junction with the Red Sea and Gulf of Aden rifts. It has a history of plume activity yet recent studies have reached conflicting conclusions on whether a plume still contributes to current Afar tectonics. A geochemical study concluded that Afar is a mature hot rift with 80 km thick lithosphere, while seismic data have been interpreted to reflect the structure of a young, oceanic rift basin above mantle of normal temperature. We develop a self-consistent forward model of mantle flow that incorporates melt generation and retention to test whether predictions of melt chemistry, melt volume and lithosphere-asthenosphere seismic structure can be reconciled with observations. The rare-earth element composition of mafic samples at the Erta Ale, Dabbahu and Asal magmatic segments can be used as both a thermometer and chronometer of the rifting process. Low seismic velocities require a lithosphere thinned to 50 km or less. A strong positive impedance contrast at 50 to 70 km below the rift seems linked to the melt zone, but is not reproduced by isotropic seismic velocity alone. Combined, the simplest interpretation is that mantle temperature below Afar is still elevated at 1450 °C, rifting started around 22-23 Ma, and the lithosphere has thinned from 100 to 50 km to allow significant decompressional melting.
Kinematics of the Danakil microplate
NASA Astrophysics Data System (ADS)
Eagles, Graeme; Gloaguen, Richard; Ebinger, Cynthia
2002-10-01
A refinement and extrapolation of recent motion estimates for the Danakil microplate, based on ancient kinematic indicators in the Afar region, describes the evolution of a microplate in the continental realm. The Danakil horst is an elevated part of this microplate, exposing a Precambrian basement within the Afar depression, the site of the Nubia-Somalia-Arabia triple junction. We compare evidence for strike- or oblique-slip faults in data from the Afar depression and southern Red Sea to small circles about published poles of rotation for the Danakil microplate with respect to Nubia. A reconstruction about the preferred pole reunites lengths of a Precambrian shear zone on the Nubia and Danakil sides and preserves a uniform basement fabric strike through Nubia, Danakil and Yemen. Since at least magnetic chron C5 (˜11 Ma) Danakil rotated about a different pole with respect to Nubia than either Somalia or Arabia, but between chrons C5 and C2A Nubia-Danakil motion was a close approximation to Nubia-Somalia motion. Since C2A relative motions of the Danakil microplate have been independent of movements on any of the neighbouring plate boundaries. We relate this to the onset of oceanic-type accretion within Afar. The resulting eastwards acceleration of Danakil was accommodated by westwards propagation of the Gulf of Aden rift that became the new, discrete, plate boundary between the Danakil microplate and the Somalia plate. Present-day activity suggests that the Red Sea and Aden rifts will link through Afar, thereby isolating the Danakil horst as a microcontinent on the Arabian margin.
Silicic central volcanoes as precursors to rift propagation: the Afar case
NASA Astrophysics Data System (ADS)
Lahitte, Pierre; Gillot, Pierre-Yves; Courtillot, Vincent
2003-02-01
The Afar depression is a triple junction characterised by thinned continental crust, where three rift systems meet (Red Sea, Gulf of Aden and East African Rift). About 100 recent K-Ar ages obtained on Plio-Pleistocene lavas [Lahitte et al., J. Geophys. Res. (2002) in press; Kidane et al., J. Geophys. Res. (2002) in press], complemented by new geomorphological interpretations, allow better understanding of the volcano-tectonic activity linked to rift propagation. In Central Afar, a significant spatial and temporal correlation is observed between the occurrence of silicic central volcanoes and the initiation of the successive phases of on-land propagation of the Red Sea and Aden rifts. Inside the Afar depression, at the scale of both a whole ridge and a small rift segment, silicic lavas are systematically erupted close to the location of a future rift segment and prior to the main extensive phase associated with fissural basaltic activity. Central silicic volcanoes therefore appear to be precursor features, and their locations underline the preferred direction of future rift propagation. Evolved volcanoes (and associated magma chambers) form zones of localised lithospheric weakness, which concentrate stress and guide the development of fractures in which fissural magmatism is next emplaced. Differentiated silicic lavas are erupted first. Then, as extension increases, basaltic magma directly erupts to the surface. This composite style of rifting, with volcanic and tectonic components, is a scaled-down equivalent of the continental break-up process at the largest scale.
Volcano-tectonic evolution of the Western Afar margin: new geochronological and structural data
NASA Astrophysics Data System (ADS)
Stab, Martin; Pik, Raphael; Bellahsen, Nicolas; Leroy, Sylvie; Ayalew, Dereje; Denèle, Yoann
2013-04-01
The rift system in NW-Afar (Ethiopia) is part of the Nubia-Somalia-Arabia triple junction located above the Afar hot spot active mainly since Oligocene times. It represents a unique natural laboratory for field study of superficial and deep lithospheric structure and process interactions during the transition between rifting and oceanic spreading in magma-rich setting. Most past field studies in Afar focused on the recognition and correlation of Afar's volcano-stratigraphic record and led to models of margin development that stress out the major trends of volcanic structures and give accordingly the following chronological "big picture". (1) 2km-thick flood basalt province emplaced at ca. 30 Ma due to hot spot activity over Jurassic to Permian sedimentary rocks and basement. (2) Rifting started around 25-20 Ma with half graben and great escarpment formation along with localization of volcanic activity in highly faulted narrower basins followed by lithospheric flexure. (3) The deformation migrated toward the rift centre with the emplacement around 8-5 Ma of bi-modal volcanics later faulted. (4) A second pulse of flood-basalt, the so-called Stratoid series, started at 4 Ma, until 1 Ma. In this contribution, we present new structural field data and lavas (U-Th/He) datings along a cross-section from the marginal graben to the Manda-Hararo active rift axis. In the newly explored Sullu Adu ranges, which were previously thought to be made of 8 Ma Dahla Basalts Fm., we mapped normal faults arrays affecting a complex magmatic series. We dated highly tilted 30 Ma pre-rift basic and silicic volcanic rocks that are unconformably overlain by syn-rift volcanics (25 to 8 Ma). This pattern is in some places either masked by unconformable thick stratoid cover or strongly eroded by dense river drainage. However, it is preserved enough to suggest a lower-than-expected extension ratio and/or the presence of major normal faults controlling seaward-dipping reflectors (SDR) emplacement such as the one observed on seismic reflection profiles in North and South Atlantic volcanic margins.
NASA Astrophysics Data System (ADS)
Sani, Federico; Ghinassi, Massimiliano; Papini, Mauro; Oms, Oriol; Finotello, Alvise
2017-10-01
The Afar region is a triangular area located at the triple junction between the African, Somalia, and Arabian plates, which are currently diverging at different rates. Currently, the extension vector is roughly oriented in a NE-SW direction in the Afar, Red Sea and Gulf of Aden, in respect to Arabia plate, whereas the Nubian-Somalian divergence, evidenced by the Main Ethiopian Rift (MER), is approximately WNW-ESE (N95-100°E). This study focuses on the tectono-sedimentary evolution of a sector from Massawa to the north up to the continental Early-Middle Pleistocene Dandiero Basin to the south. This basin is filled with approximately 500 m thick fluvial-lacustrine deposits and includes six formations. Sedimentation occurred mainly along the basin axis and allowed accumulation of sand and mud deposits with subordinate gravels close to the basin margin. The age of the basin infill succession is well constrained through integration between paleomagnetic and paleontological data and ranges between 1.2 and 0.75 Ma. The Dandiero Basin is controlled by two main roughly NNW-SSE trending, east dipping normal faults. The westernmost fault delimits the basins from the plateau, whereas the easternmost marks the limit between the basin succession and the Late Pleistocene Samoti Plain. We infer that the NNW-trending faults were progressively activated as a consequence of the Danakil Block counter clockwise rotation and were superimposed to the N-S trending faults that delimited the basin at the time of its inception as a marginal graben roughly aligned to the Eritrean-Ethiopian plateau. The timing of deformation (1.2 Ma up to Present) is well constrained by the age of syntectonic sediments of the Dandiero Basin and volcanic products of the Alid Volcano. These relations allowed us to refine the timing and evolution of this sector of Afar and giving some insights on the geodynamics of the area.
NASA Astrophysics Data System (ADS)
Hamlyn, J.; Keir, D.; Hammond, J.; Wright, T.; Neuberg, J.; Kibreab, A.; Ogubazghi, G.; Goitom, B.
2012-04-01
Nabro volcano dominates the central part of the Nabro Volcanic Range (NVR), which trends SSW-NNE covering a stretch of 110 km from the SEE margin of the Afar depression to the Red Sea. Regionally, the NVR sits within the Afar triangle, the triple junction of the Somalian, Arabian and African plates. On 12th June 2011 Nabro volcano suddenly erupted after being inactive for 10, 000 years. In response, a network of 8 seismometers, were located around the active vent. The seismic signals detected by this array and those arriving at a regional seismic station (located to the north-west) were processed to provide accurate earthquake locations for the period August-October. Transects of the volcano were used to create cross sections to aid the interpretation. Typically, the majority of the seismic events are located at the active vent and on the flanks of Nabro, with fewer events dispersed around the surrounding area. However, there appears to be a smaller hub of events to the south-west of Nabro beneath the neighbouring Mallahle volcanic caldera (located on the Ethiopian side of the international border). This may imply some form of co-dependent relationship within the plumbing of the magma system beneath both calderas.
Geodynamics of the East African Rift System ∼30 Ma ago: A stress field model
NASA Astrophysics Data System (ADS)
Min, Ge; Hou, Guiting
2018-06-01
The East African Rift System (EARS) is thought to be an intra-continental ridge that meets the Red Sea and the Gulf of Aden at the Ethiopian Afar as the failed arm of the Afar triple junction. The geodynamics of EARS is still unclear even though several models have been proposed. One model proposes that the EARS developed in a local tensile stress field derived from far-field loads because of the pushing of oceanic ridges. Alternatively, some scientists suggest that the formation of the EARS can be explained by upwelling mantle plumes beneath the lithospheric weak zone (e.g., the Pan-African suture zone). In our study, a shell model is established to consider the Earth's spherical curvature, the lithospheric heterogeneity of the African continent, and the coupling between the mantle plumes and the mid-ocean ridge. The results are calculated via the finite element method using ANSYS software and fit the geological evidence well. To discuss the effects of the different rock mechanical parameters and the boundary conditions, four comparative models are established with different parameters or boundary conditions. Model I ignores the heterogeneity of the African continent, Model II ignores mid-ocean spreading, Model III ignores the upwelling mantle plumes, and Model IV ignores both the heterogeneity of the African continent and the upwelling mantle plumes. Compared to these models is the original model that shows the best-fit results; this model indicates that the coupling of the upwelling mantle plumes and the mid-ocean ridge spreading causes the initial lithospheric breakup in Afar and East Africa. The extension direction and the separation of the EARS around the Tanzanian craton are attributed to the heterogeneity of the East African basement.
Upper-mantle seismic structure in a region of incipient continental breakup: northern Ethiopian rift
NASA Astrophysics Data System (ADS)
Bastow, Ian D.; Stuart, Graham W.; Kendall, J.-Michael; Ebinger, Cynthia J.
2005-08-01
The northern Ethiopian rift forms the third arm of the Red Sea, Gulf of Aden triple junction, and marks the transition from continental rifting in the East African rift to incipient oceanic spreading in Afar. We determine the P- and S-wave velocity structure beneath the northern Ethiopian rift using independent tomographic inversion of P- and S-wave relative arrival-time residuals from teleseismic earthquakes recorded by the Ethiopia Afar Geoscientific Lithospheric Experiment (EAGLE) passive experiment using the regularised non-linear least-squares inversion method of VanDecar. Our 79 broad-band instruments covered an area 250 × 350 km centred on the Boset magmatic segment ~70 km SE of Addis Ababa in the centre of the northern Ethiopian rift. The study area encompasses several rift segments showing increasing degrees of extension and magmatic intrusion moving from south to north into the Afar depression. Analysis of relative arrival-time residuals shows that the rift flanks are asymmetric with arrivals associated with the southeastern Somalian Plate faster (~0.65 s for the P waves; ~2 s for the S waves) than the northwestern Nubian Plate. Our tomographic inversions image a 75 km wide tabular low-velocity zone (δVP~-1.5 per cent, δVS~-4 per cent) beneath the less-evolved southern part of the rift in the uppermost 200-250 km of the mantle. At depths of >100 km, north of 8.5°N, this low-velocity anomaly broadens laterally and appears to be connected to deeper low-velocity structures under the Afar depression. An off-rift low-velocity structure extending perpendicular to the rift axis correlates with the eastern limit of the E-W trending reactivated Precambrian Ambo-Guder fault zone that is delineated by Quaternary eruptive centres. Along axis, the low-velocity upwelling beneath the rift is segmented, with low-velocity material in the uppermost 100 km often offset to the side of the rift with the highest rift flank topography. Our observations from this magmatic rift zone, which is transitional between continental and oceanic rifting, do not support detachment fault models of lithospheric extension but instead point to strain accommodation via magma assisted rifting.
Present-day kinematics of the Danakil block (southern Red Sea-Afar) constrained by GPS
NASA Astrophysics Data System (ADS)
Ladron de Guevara, R.; Jonsson, S.; Ruch, J.; Doubre, C.; Reilinger, R. E.; Ogubazghi, G.; Floyd, M.; Vasyura-Bathke, H.
2017-12-01
The rifting of the Arabian plate from the Nubian and Somalian plates is primarily accommodated by seismic and magmatic activity along two rift arms of the Afar triple junction (the Red Sea and Gulf of Aden rifts). The spatial distribution of active deformation in the Afar region have been constrained with geodetic observations. However, the plate boundary configuration in which this deformation occurs is still not fully understood. South of 17°N, the Red Sea rift is composed of two parallel and overlapping rift branches separated by the Danakil block. The distribution of the extension across these two overlapping rifts, their potential connection through a transform fault zone and the counterclockwise rotation of the Danakil block have not yet been fully resolved. Here we analyze new GPS observations from the Danakil block, the Gulf of Zula area (Eritrea) and Afar (Ethiopia) together with previous geodetic survey data to better constrain the plate kinematics and active deformation of the region. The new data has been collected in 2016 and add up to 5 years to the existing geodetic observations (going back to 2000). Our improved GPS velocity field shows differences with previously modeled GPS velocities, suggesting that the rate and rotation of the Danakil block need to be updated. The new velocity field also shows that the plate-boundary strain is accommodated by broad deformation zones rather than across sharp boundaries between tectonic blocks. To better determine the spatial distribution of the strain, we first implement a rigid block model to constrain the overall regional plate kinematics and to isolate the plate-boundary deformation at the western boundary of the Danakil block. We then study whether the recent southern Red Sea rifting events have caused detectable changes in observed GPS velocities and if the observations can be used to constrain the scale of this offshore rift activity. Finally, we investigate different geometries of transform faults that might connect the two overlapping branches of the southern Red Sea rift in the Gulf of Zula region.
Geodynamical simulation of the RRF triple junction
NASA Astrophysics Data System (ADS)
Wang, Z.; Wei, D.; Liu, M.; Shi, Y.; Wang, S.
2017-12-01
Triple junction is the point at which three plate boundaries meet. Three plates at the triple junction form a complex geological tectonics, which is a natural laboratory to study the interactions of plates. This work studies a special triple junction, the oceanic transform fault intersects the collinear ridges with different-spreading rates, which is free of influence of ridge-transform faults and nearby hotspots. First, we build 3-D numerical model of this triple junction used to calculate the stead-state velocity and temperature fields resulting from advective and conductive heat transfer. We discuss in detail the influence of the velocity and temperature fields of the triple junction from viscosity, spreading rate of the ridge. The two sides of the oceanic transform fault are different sensitivities to the two factors. And, the influence of the velocity mainly occurs within 200km of the triple junction. Then, we modify the model by adding a ridge-transform fault to above model and directly use the velocity structure of the Macquarie triple junction. The simulation results show that the temperature at both sides of the oceanic transform fault decreases gradually from the triple junction, but the temperature difference between the two sides is a constant about 200°. And, there is little effect of upwelling velocity away from the triple junction 100km. The model results are compared with observational data. The heat flux and thermal topography along the oceanic transform fault of this model are consistent with the observed data of the Macquarie triple junction. The earthquakes are strike slip distributed along the oceanic transform fault. Their depths are also consistent with the zone of maximum shear stress. This work can help us to understand the interactions of plates of triple junctions and help us with the foundation for the future study of triple junctions.
Insights into Seismic and Volcanic Processes around the Arabian Plate from InSAR Observations
NASA Astrophysics Data System (ADS)
Jónsson, Sigurjón; Wang, Teng; Akoglu, Ahmet; Feng, Guangcai; Xu, Wenbin; Harrington, Jonathan; Cavalié, Olivier
2014-05-01
We use InSAR observations to study a variety of seismic and volcanic processes at the plate boundary surrounding the Arabian plate. The plate-boundary motion ranges from extension in the Red Sea and Gulf of Aden to the south, to compression in Turkey and Iran to the north, with transform motion to the west and to the east. Many large earthquakes have occurred during the past two decades in the region, some of which we are studying, including the 1995 magnitude 7.2 earthquake in the Gulf of Aqaba, the 2011 magnitude 7.1 Van earthquake in eastern Turkey, the 2012 Ahar earthquake duplet in northwestern Iran, as well as the 2013 magnitude 7.7 Baluchistan (Pakistan) earthquake. These earthquakes took place in tectonic settings ranging from a transtension in the Gulf of Aqaba, to transpression in Baluchistan, to almost pure compression in eastern Turkey. For the Aqaba earthquake we add previously unused InSAR data and use modern data processing methods to improve earlier fault-model estimations. In the case of the Baluchistan earthquake we find surprisingly uniform and simple fault slip along the over 200 km long rupture, with maximum slip of almost 10 m near the surface. In addition, for the Van earthquake we use SAR-image offset tracking in the near-field, as some of the interferograms are almost completely incoherent. By identifying point-like targets within the images, we are able to derive better pixel offsets between SAR sub-images than with standard offset-tracking methods. We use the azimuth- and range offsets to derive the 3D coseismic displacements, which help constraining the geometry and slip of the causative northward-dipping thrust fault. Further west, in the region near the triple junction between the Arabian, Eurasian, and Anatolian plates, we use large-scale InSAR data processing to map the interseismic deformation near the triple junction and find very shallow locking depth of the eastern part of the East Anatolian Fault, indicating limited strain accumulation and less-than-expected earthquake potential. In addition to the seismic processes, we are studying three volcanic eruptions that took place in the southern Red Sea during the past several years, on Jebel at Tair Island (2007-8) and within the Zubair archipelago (2011-12 and 2013). We use InSAR and optical data to study these eruptions and to constrain the feeder-dike geometry and the associated stress directions. On Jebel at Tair we find evidence for a temporarily varying stress field that is isolated from the regional Red Sea stress regime. The two eruptions in the Zubair archipelago were surtseyan and produced two small islands. The islands were formed entirely from explosive phreatomagmatic activity, as the eruptions did not last long enough to progress to an effusive eruption. The reawakened volcanic activity in the southern Red Sea comes after more than century-long quiescence and seems to be a part the recent increase in activity in the region near the Afar triple junction, following the onset of the Dabbahu (Afar) rifting episode in 2005.
The 1974 Ethiopian rift geodimeter survey
NASA Technical Reports Server (NTRS)
Mohr, P.
1977-01-01
The field techniques and methods of data reduction for five successive geodimeter surveys in the Ethiopian rift valley are enlarged upon, with the considered conclusion that there is progressive accumulation of upper crustal strain, consonant with on-going rift extension. The extension is restricted to the Quaternary volcanotectonic axis of the rift, namely the Wonji fault belt, and is occurring at rates of 3 to 6 mm/yr in the northern sector of the rift valley. Although this concurs with the predictions of platetectonic analysis of the Afar triple junction, it is considered premature to endorse such a concurrence on the basis of only 5 years of observations. This is underlined by the detection of local tectonic contractions and expansions associated with geothermal and gravity anomalies in the central sector of the rift valley. There is a hint of a component of dextral slip along some of the rift-floor fault zones, both from geological evidence and from the strain patterns detected in the present geodetic surveys.
The initiation of segmented buoyancy-driven melting during continental breakup
Gallacher, Ryan J.; Keir, Derek; Harmon, Nicholas; Stuart, Graham; Leroy, Sylvie; Hammond, James O. S.; Kendall, J-Michael; Ayele, Atalay; Goitom, Berhe; Ogubazghi, Ghebrebrhan; Ahmed, Abdulhakim
2016-01-01
Melting of the mantle during continental breakup leads to magmatic intrusion and volcanism, yet our understanding of the location and dominant mechanisms of melt generation in rifting environments is impeded by a paucity of direct observations of mantle melting. It is unclear when during the rifting process the segmented nature of magma supply typical of seafloor spreading initiates. Here, we use Rayleigh-wave tomography to construct a high-resolution absolute three-dimensional shear-wave velocity model of the upper 250 km beneath the Afar triple junction, imaging the mantle response during progressive continental breakup. Our model suggests melt production is highest and melting depths deepest early during continental breakup. Elevated melt production during continental rifting is likely due to localized thinning and melt focusing when the rift is narrow. In addition, we interpret segmented zones of melt supply beneath the rift, suggesting that buoyancy-driven active upwelling of the mantle initiates early during continental rifting. PMID:27752044
NASA Astrophysics Data System (ADS)
Horner-Johnson, B. C.; Gordon, R. G.; Cowles, S. M.; Argus, D. F.
2003-12-01
A new analysis of geologically current plate motion across the Southwest Indian Ridge and of the current location of the Nubia-Antarctica-Somalia triple junction is presented. We estimate spreading rates averaged over the past 3.2 Myr from 103 well-distributed, nearly ridge-perpendicular profiles crossing the Southwest Indian Ridge. We evaluate all available bathymetric data to estimate the azimuths and uncertainties of transform faults; six are estimated from multi-beam data and twelve from precision depth recorder data. If the Nubia-Somalia boundary is narrow where it intersects the Southwest Indian Ridge, that intersection lies between about 26° E and 32° E. This places it either along the spreading ridge segment just west of the Andrew Bain transform fault complex or along the transform fault complex itself. These limits are narrower than, and contained within, limits of about 24° E to 33° E previously found by Lemaux et al. (2002) from an analysis of the locations of magnetic anomaly 5. The data are consistent with a narrow boundary, but also consistent with a diffuse boundary as wide as about 700 km. The new Nubia-Somalia pole of rotation lies southwest of southern Africa and differs significantly from previously estimated poles, including that from data in the Red Sea and Gulf of Aden. The new pole indicates displacement rates of Somalia relative to Nubia of 3.4 +/- 1.3\\ mm yr-1 (95% confidence limits) towards 176.8° between Somalia and Nubia near the Southwest Indian Ridge, and of 8.4 +/- 1.3\\ mm yr-1 (95% confidence limits) towards 118.5° near Afar.
NASA Astrophysics Data System (ADS)
Cronin, V. S.
2012-12-01
First generation ideas of the kinematic stability of triple junctions lead to the common belief that the geometry of ridge-ridge-ridge (RRR) triple junctions remains constant over time under conditions of symmetric spreading. Given constant relative motion between each plate pair -- that is, the pole of plate relative motion is fixed to both plates in each pair during finite motion, as assumed in many accounts of plate kinematics -- there would be no boundary mismatch at the triple junction and no apparent kinematic reason why a microplate might develop there. But if, in a given RRR triple junction, the finite motion of one plate as observed from the other plate is not circular (as is generally the case, given the three-plate problem of plate kinematics), the geometry of the ridges and the triple junction will vary with time (Cronin, 1992, Tectonophys 207, 287-301). To explore the possible consequences of non-circular finite motion between plates at an RRR triple junction, a simple model was coded based on the cycloid finite-motion model (e.g., Cronin, 1987, Geology 15, 1006-1009) using NNR-MORVEL56 velocities for individual plates (Argus et al., 2011, G3 12, doi: 10.1029/2011GC003751). Initial assumptions include a spherical Earth, symmetric spreading, and constant angular velocities during the modeled finite time interval. The assumed-constant angular velocity vectors constitute a reference frame for observing finite plate motion. Typical results are [1] that the triple junction migrates relative to a coordinate system fixed to the angular-velocity vectors, [2] ridge axes rotates relative to each other, and [3] a boundary mismatch develops at the synthetic triple junction that might result in microplate nucleation. In a model simulating the Galapagos triple junction between the Cocos, Nazca and Pacific plates whose initial state did not include the Galapagos microplate, the mismatch gap was as much as ~3.4 km during 3 Myr of model displacement (see figure). The centroid of the synthetic triple junction translates ~81 km toward azimuth ~352° in 3 Myr. Of course, the details will vary as different angular velocity vectors are used; however, modeling indicates that non-circular finite relative motion between adjacent plates generally results in boundary mismatches and rotation of ridge segments relative to each other at RRR triple junctions. Left: synthetic Galapagos triple junction at initial model time, without a microplate. Right: synthetic triple junction after 3 Myr displacement, illustrating the resulting boundary mismatch (gap) and rotated ridge axes.
Guo, Fei; Li, Ning; Fecher, Frank W.; Gasparini, Nicola; Quiroz, Cesar Omar Ramirez; Bronnbauer, Carina; Hou, Yi; Radmilović, Vuk V.; Radmilović, Velimir R.; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J.
2015-01-01
The multi-junction concept is the most relevant approach to overcome the Shockley–Queisser limit for single-junction photovoltaic cells. The record efficiencies of several types of solar technologies are held by series-connected tandem configurations. However, the stringent current-matching criterion presents primarily a material challenge and permanently requires developing and processing novel semiconductors with desired bandgaps and thicknesses. Here we report a generic concept to alleviate this limitation. By integrating series- and parallel-interconnections into a triple-junction configuration, we find significantly relaxed material selection and current-matching constraints. To illustrate the versatile applicability of the proposed triple-junction concept, organic and organic-inorganic hybrid triple-junction solar cells are constructed by printing methods. High fill factors up to 68% without resistive losses are achieved for both organic and hybrid triple-junction devices. Series/parallel triple-junction cells with organic, as well as perovskite-based subcells may become a key technology to further advance the efficiency roadmap of the existing photovoltaic technologies. PMID:26177808
Guo, Fei; Li, Ning; Fecher, Frank W; Gasparini, Nicola; Ramirez Quiroz, Cesar Omar; Bronnbauer, Carina; Hou, Yi; Radmilović, Vuk V; Radmilović, Velimir R; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J
2015-07-16
The multi-junction concept is the most relevant approach to overcome the Shockley-Queisser limit for single-junction photovoltaic cells. The record efficiencies of several types of solar technologies are held by series-connected tandem configurations. However, the stringent current-matching criterion presents primarily a material challenge and permanently requires developing and processing novel semiconductors with desired bandgaps and thicknesses. Here we report a generic concept to alleviate this limitation. By integrating series- and parallel-interconnections into a triple-junction configuration, we find significantly relaxed material selection and current-matching constraints. To illustrate the versatile applicability of the proposed triple-junction concept, organic and organic-inorganic hybrid triple-junction solar cells are constructed by printing methods. High fill factors up to 68% without resistive losses are achieved for both organic and hybrid triple-junction devices. Series/parallel triple-junction cells with organic, as well as perovskite-based subcells may become a key technology to further advance the efficiency roadmap of the existing photovoltaic technologies.
The Evolution of the Indian Ocean Triple Junction and the Finite Rotation Problem.
1980-09-01
AD-AG&9 103 ~S HOLE OCEANOGRAPHIC INSTITUTION MASS F/6 6/7 THE EVOLUTION OF THE INDIAN OCEAN TRIPLE JUNCTION AND THE FINIT-ETC(U1 SEP 80 C R TAPSCOTT...1111flfl 1.4 111116 MICROCOPY RESOLUTION TEST CHART WHOI-80-37 THE EVOLUTION OF THE INDIAN OCEAN TRIPLE JUNCTION AND THE FINITE ROTATION PROBLEM by...purpose of the United States Government. This thesis should be cited as: Christopher R. Tapscott, 1979. The Evolution of the Indian Ocean Triple Junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Wenhong; School of Mechanical Engineering, Shandong University of Technology, Zibo 255049; Wang, Weiguo, E-mail: wang_weiguo@vip.163.com
Grain orientations and grain boundary migrations near triple junctions in a high purity aluminum were analyzed by electron back scattered diffraction. The results indicate that there are good correlations between the Schmid factors or Taylor factors and the misorientation values of point to original point in grains near the triple junctions in a slightly deformed sample. Grains with higher Schmid factors or lower Taylor factors typically correspond to higher misorientation values near the triple junctions. In a subsequent annealing at 400 °C, both grain boundaries and triple junctions migrate, but the former leave ghost lines. During such migration, a grainmore » boundary grows from the grain with lower Schmid factor (higher Taylor factor) into the grain with higher Schmid factor (lower Taylor factor). Usually, the amount of migration of a grain boundary is considerably greater than that of a triple junction, and the grain boundary becomes more curved after migration. These observations indicate that the triple junctions have drag effects on grain boundary migration. - Highlights: • Polycrystalline aluminum with fine grains about 30 μm were used. • Off-line in situ EBSD was used to identify TJs before and after annealing. • Grains with higher SFs have higher misorientation values near TJs after deformation. • Grain boundaries grow from hard grains into soft grains during annealing. • Triple junctions have drag effects on grain boundaries migration.« less
Mediterranean extension and the Africa-Eurasia collision
NASA Astrophysics Data System (ADS)
Jolivet, Laurent; Faccenna, Claudio
2000-12-01
A number of tectonic events occurred contemporaneously in the Mediterranean region and the Middle East 30-25 Myr ago. These events are contemporaneous to or immediately followed a strong reduction of the northward absolute motion of Africa. Geological observations in the Neogene extensional basins of the Mediterranean region reveal that extension started synchronously from west to east 30-25 Myr ago. In the western Mediterranean it started in the Gulf of Lion, Valencia trough, and Alboran Sea as well as between the Maures massif and Corsica between 33 and 27 Ma ago. It then propagated eastward and southward to form to Liguro-Provençal basin and the Tyrrhenian Sea. In the eastern Mediterranean, extension started in the Aegean Sea before the deposition of marine sediments onto the collapsed Hellenides in the Aquitanian and before the cooling of high-temperature metamorphic core complexes between 20 and 25 Ma. Foundering of the inner zones of the Carpathians and extension in the Panonnian basin also started in the late Oligocene-early Miocene. The body of the Afro-Arabian plate first collided with Eurasia in the eastern Mediterranean region progressively from the Eocene to the Oligocene. Extensional tectonics was first recorded in the Gulf of Aden, Afar triple junction, and Red Sea region also in the Oligocene. A general magmatic surge occurred above all African hot spots, especially the Afar one. We explore the possibility that these drastic changes in the stress regime of the Mediterranean region and Middle East and the contemporaneous volcanic event were triggerred by the Africa/Arabia-Eurasia collision, which slowed down the motion of Africa. The present-day Mediterranean Sea was then locked between two collision zones, and the velocity of retreat of the African slab increased and became larger than the velocity of convergence leading to backarc extension. East of the Caucasus and northern Zagros collision zone the Afro-Arabian plate was still pulled by the slab pull force in the Zagros subduction zone, which created extensional stresses in the northeast corner of the Afro-Arabian plate. The Arabian plate was formed by propagation of a crack from the Carlsberg ridge westward toward the weak part of the African lithosphere above the Afar plume.
Tectonic Evolution of the Jurassic Pacific Plate
NASA Astrophysics Data System (ADS)
Nakanishi, M.; Ishihara, T.
2015-12-01
We present the tectonic evolution of the Jurassic Pacific plate based on magnetic anomly lineations and abyssal hills. The Pacific plate is the largest oceanic plate on Earth. It was born as a microplate aroud the Izanagi-Farallon-Phoenix triple junction about 192 Ma, Early Jurassic [Nakanishi et al., 1992]. The size of the Pacific plate at 190 Ma was nearly half that of the present Easter or Juan Fernandez microplates in the East Pacific Rise [Martinez et at, 1991; Larson et al., 1992]. The plate boundary surrounding the Pacific plate from Early Jurassic to Early Cretaceous involved the four triple junctions among Pacific, Izanagi, Farallon, and Phoenix plates. The major tectonic events as the formation of oceanic plateaus and microplates during the period occurred in the vicinity of the triple junctions [e.g., Nakanishi and Winterer, 1998; Nakanishi et al., 1999], implying that the study of the triple junctions is indispensable for understanding the tectonic evolution of the Pacific plate. Previous studies indicate instability of the configuration of the triple junctions from Late Jurassic to Early Cretaceous (155-125 Ma). On the other hand, the age of the birth of the Pacific plate was determined assuming that all triple junctions had kept their configurations for about 30 m.y. [Nakanishi et al., 1992] because of insufficient information of the tectonic history of the Pacific plate before Late Jurassic.Increase in the bathymetric and geomagnetic data over the past two decades enables us to reveal the tectonic evolution of the Pacific-Izanagi-Farallon triple junction before Late Jurassic. Our detailed identication of magnetic anomaly lineations exposes magnetic bights before anomaly M25. We found the curved abyssal hills originated near the triple junction, which trend is parallel to magnetic anomaly lineations. These results imply that the configuration of the Pacific-Izanagi-Farallon triple junction had been RRR before Late Jurassic.
A kinematic model for the development of the Afar Depression and its paleogeographic implications
NASA Astrophysics Data System (ADS)
Redfield, T. F.; Wheeler, W. H.; Often, M.
2003-11-01
The Afar Depression is a highly extended region of continental to transitional oceanic crust lying at the junction of the Red Sea, the Gulf of Aden and the Ethiopian rifts. We analyze the evolution of the Afar crust using plate kinematics and published crustal models to constrain the temporal and volumetric evolution of the rift basin. Our reconstruction constrains the regional-scale initial 3D geometry and subsequent extension and is well calibrated at the onset of rifting (˜20 Ma) and from the time of earliest documented sea-floor spreading anomalies (˜6 Ma Red Sea; ˜10 Ma Gulf of Aden). It also suggests the Danakil block is a highly extended body, having undergone between ˜200% and ˜400% stretch. Syn-rift sedimentary and magmatic additions to the crust are taken from the literature. Our analysis reveals a discrepancy: either the base of the crust has not been properly imaged, or a (plume-related?) process has somehow caused bulk removal of crustal material since extension began. Inferring subsidence history from thermal modeling and flexural considerations, we conclude subsidence in Afar was virtually complete by Mid Pliocene time. Our analysis contradicts interpretations of late (post 3 Ma) large (˜2 km) subsidence of the Hadar area near the Ethiopian Plateau, suggesting paleoclimatic data record regional, not local, climate change. Tectonic reconstruction (supported by paleontologic and isotopic data) suggests that a land bridge connected Africa and Arabia, via Danakil, up to the Early to Middle Pliocene. The temporal constraints on land bridge and escarpment morphology constrain Afar paleogeography, climate, and faunal migration routes. These constraints (particularly the development of geographic isolation) are fundamentally important for models evaluating and interpreting biologic evolution in the Afar, including speciation and human origins.
Transition from slab to slabless: Results from the 1993 Mendocino triple junction seismic experiment
Beaudoin, B.C.; Godfrey, N.J.; Klemperer, S.L.; Lendl, C.; Trehu, A.M.; Henstock, T.J.; Levander, A.; Holl, J.E.; Meltzer, A.S.; Luetgert, J.H.; Mooney, W.D.
1996-01-01
Three seismic refraction-reflection profiles, part of the Mendocino triple junction seismic experiment, allow us to compare and contrast crust and upper mantle of the North American margin before and after it is modified by passage of the Mendocino triple junction. Upper crustal velocity models reveal an asymmetric Great Valley basin overlying Sierran or ophiolitic rocks at the latitude of Fort Bragg, California, and overlying Sierran or Klamath rocks near Redding, California. In addition, the upper crustal velocity structure indicates that Franciscan rocks underlie the Klamath terrane east of Eureka, California. The Franciscan complex is, on average, laterally homogeneous and is thickest in the triple junction region. North of the triple junction, the Gorda slab can be traced 150 km inboard from the Cascadia subduction zone. South of the triple junction, strong precritical reflections indicate partial melt and/or metamorphic fluids at the base of the crust or in the upper mantle. Breaks in these reflections are correlated with the Maacama and Bartlett Springs faults, suggesting that these faults extend at least to the mantle. We interpret our data to indicate tectonic thickening of the Franciscan complex in response to passage of the Mendocino triple junction and an associated thinning of these rocks south of the triple junction due to assimilation into melt triggered by upwelling asthenosphere. The region of thickened Franciscan complex overlies a zone of increased scattering, intrinsic attenuation, or both, resulting from mechanical mixing of lithologies and/or partial melt beneath the onshore projection of the Mendocino fracture zone. Our data reveal that we have crossed the southern edge of the Gorda slab and that this edge and/or the overlying North American crust may have fragmented because of the change in stress presented by the edge.
NASA Astrophysics Data System (ADS)
Horner-Johnson, Benjamin C.; Gordon, Richard G.; Cowles, Sara M.; Argus, Donald F.
2005-07-01
A new analysis of geologically current plate motion across the Southwest Indian ridge (SWIR) and of the current location of the Nubia-Antarctica-Somalia triple junction is presented. Spreading rates averaged over the past 3.2 Myr are estimated from 103 well-distributed, nearly ridge-perpendicular profiles that cross the SWIR. All available bathymetric data are evaluated to estimate the azimuths and uncertainties of transform faults; six are estimated from multibeam data and 12 from precision depth recorder (PDR) data. If both the Nubian and Somalian component plates are internally rigid near the SWIR and if the Nubia-Somalia boundary is narrow where it intersects the SWIR, that intersection lies between ~26°E and ~32°E. Thus, the boundary is either along the spreading ridge segment just west of the Andrew Bain transform fault complex (ABTFC) or along some of the transform fault complex itself. These limits are narrower than and contained within limits of ~24°E to ~33°E previously found by Lemaux et al. from an analysis of the locations of magnetic anomaly 5. The data are consistent with a narrow boundary, but also consistent with a diffuse boundary as wide as ~700 km. The new Nubia-Somalia pole of rotation lies ~10° north of the Bouvet triple junction, which places it far to the southwest of southern Africa. The new angular velocity determined only from data along the SWIR indicates displacement rates of Somalia relative to Nubia of 3.6 +/- 0.5 mm yr-1 (95 per cent confidence limits) towards 176° (S04° E) between Somalia and Nubia near the SWIR, and of 8.3 +/- 1.9 mm yr-1 (95 per cent confidence limits) towards 121° (S59° E) near Afar. The new Nubia-Somalia angular velocity differs significantly from the Nubia-Somalia angular velocity estimated from Gulf of Aden and Red sea data. This significant difference has three main alternative explanations: (i) that the plate motion data have substantial unmodelled systematic errors, (ii) that the Nubian component plate is not a single rigid plate, or (iii) that the Somalian component plate is not a single rigid plate. We tentatively prefer the third explanation given the geographical distribution of earthquakes within the African composite plate relative to the inferred location of the Nubia-Somalia boundary along the SWIR.
Reappraisal of the Arabia-India-Somalia triple junction kinematics
NASA Astrophysics Data System (ADS)
Fournier, Marc; Patriat, Philippe; Leroy, Sylvie
2001-07-01
We propose alternative kinematics for the Arabia-India-Somalia triple junction based on a re-interpretation of seismological and magnetic data. The new triple junction of the ridge-ridge-ridge type is located at the bend of the Sheba Ridge in the eastern gulf of Aden at 14.5°N and 56.4°E. The Owen fracture zone (Arabia-India boundary) is connected to the Sheba Ridge by an ultra-slow divergent boundary trending N80°E±10° marked by diffuse seismicity. The location of the Arabia-India rotation pole is constrained at 14.1°N and 71.2°E by fitting the active part of the Owen fracture zone with a small circle. The finite kinematics of the triple junction is inferred from the present-day kinematics. Since the inception of the accretion 15-18 Ma ago, the Sheba Ridge has probably receded ∼300 km at the expense of the Carlsberg Ridge which propagated northwestward in the gulf of Aden, while an ultra-slow divergent plate boundary developed between the Arabian and Indian plates. The overall geometry of the new triple junction is very similar to that of the Azores triple junction.
Geodetic constraints on continental rifting along the Red Sea
NASA Astrophysics Data System (ADS)
Reilinger, R.; McClusky, S.; Arrajehi, A.; Mahmoud, S.; Rayan, A.; Ghebreab, W.; Ogubazghi, G.; Al-Aydrus, A.
2006-12-01
We are using the Global Positioning System (GPS) to monitor and quantify patterns and rates of tectonic and magmatic deformation associated with active rifting of the continental lithosphere and the transition to sea floor spreading in the Red Sea. Broad-scale motions of the Nubian and Arabian plates indicate coherent plate motion with internal deformation below the current resolution of our measurements (~ 1-2 mm/yr). The GPS-determined Euler vector for Arabia-Nubia is indistinguishable from the geologic Euler vector determined from marine magnetic anomalies, and Arabia-Eurasia relative motion from GPS is equal within uncertainties to relative motion determined from plate reconstructions, suggesting that Arabia plate motion has remained constant (±10%) during at least the past ~10 Ma. The approximate agreement between broad-scale GPS rates of extension (i.e., determined from relative plate motions) and those determined from magnetic anomalies along the Red Sea rift implies that spreading in the central Red Sea is primarily confined to the central rift (±10-20%). Extension appears to be more broadly distributed in the N Red Sea and Gulf of Suez where comparisons with geologic data also indicate a relatively recent (between 500 and 125 kyr BP) change in the motion of the Sinai block that is distinct from both Nubia and Arabia. In the southern Red Sea, GPS results are beginning to define the motion of the "Danakil micro-plate". We investigate and report on a model involving CCW rotation of the Danakil micro-plate relative to Nubia and magmatic inflation below the Afar Triple Junction that is consistent with available geodetic constraints. Running the model back in time suggests that the Danakil micro-plate has been an integral part of rifting/triple junction processes throughout the history of separation of the Arabian and Nubian plates. On the scale of Nubia-Arabia-Eurasia plate interactions, we show that new area formed at spreading centers roughly equals that consumed at trenches, implying a dynamic connection between extension and subduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnabel, Manuel; Tamboli, Adele C; Warren, Emily L
Despite steady advancements in the efficiency of crystalline Silicon (c-Si) photovoltaics (PV) within the last decades, the theoretical efficiency limit of 29.4 percent depicts an insurmountable barrier for silicon-based single-junction solar cells. Combining the Si cell with a second absorber material on top in a dual junction tandem or triple junction solar cell is an attractive option to surpass this limit significantly. We demonstrate a mechanically stacked GaInP/Si dual-junction cell with an in-house measured efficiency of 31.5 percent and a GaInP/GaAs/Si triple-junction cell with a certified efficiency of 35.4 percent.
Triple Junctions, Boninites, and a New Microplate in the Western Pacific
NASA Astrophysics Data System (ADS)
Flores, J. A.; Casey, J.
2017-12-01
A new microplate has been discovered while trying to correlate melting processes in subduction zones that are forming boninites along the southern Mariana Plate. The westward boundary between the Mariana plate and the Philippine Sea plate is along a well-defined back-arc spreading center. The southern extension of this spreading center to the intersection with the Mariana Trench does not have a recognized morphological boundary. Previous work has hypothesized that subduction beneath a spreading center provides conditions required for boninite petrogenesis. Therefore, the exact location of the trench-trench-ridge triple junction needs to be found and correlated with known boninite locations. The triple junction was found using fault plane solutions to constrain the southern boundary of the two plates as it transects across the forearc. Normal faults suggest the triple junction to be at approximately 11.9N 144.1W; slip direction of reverse faults associated with the subducting plate are dominantly north-south west of this junction and northwest-southeast on the east side. While locating the southern boundary, the nucleation of a new spreading center that creates a ridge-ridge-ridge triple junction was found. The main spreading center trends mostly north-south until about 12.5N 143W, where two other spreading centers meet. The western spreading zone trends mostly east-west and seems to be in its infancy whereas there is another spreading center trending northwest-southeast. It is this last spreading center that forms the trench-ridge-trench triple junction. Discovery of these triple junctions isolates a piece of lithosphere that we interpret to be a new microplate that we name the Challenger Microplate.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Niu, Pingjuan; Li, Yuqiang; Song, Minghui; Zhang, Jianxin; Ning, Pingfan; Chen, Peizhuan
2017-12-01
Ga0.51In0.49P/In0.01Ga0.99As/Ge triple-junction solar cells for space applications were grown on 4 inch Ge substrates by metal organic chemical vapor deposition methods. The triple-junction solar cells were obtained by optimizing the subcell structure, showing a high open-circuit voltage of 2.77 V and a high conversion efficiency of 31% with 30.15 cm2 area under the AM0 spectrum at 25 °C. In addition, the In0.01Ga0.99As middle subcell structure was focused by optimizing in order to improve the anti radiation ability of triple-junction solar cells, and the remaining factor of conversion efficiency for middle subcell structure was enhanced from 84% to 92%. Finally, the remaining factor of external quantum efficiency for triple-junction solar cells was increased from 80% to 85.5%.
Distributed deformation ahead of the Cocos-Nazca Rift at the Galapagos triple junction
NASA Astrophysics Data System (ADS)
Smith, Deborah K.; Schouten, Hans; Zhu, Wen-lu; Montési, Laurent G. J.; Cann, Johnson R.
2011-11-01
The Galapagos triple junction is not a simple ridge-ridge-ridge (RRR) triple junction. The Cocos-Nazca Rift (C-N Rift) tip does not meet the East Pacific Rise (EPR). Instead, two secondary rifts form the link: Incipient Rift at 2°40‧N and Dietz Deep volcanic ridge, the southern boundary of the Galapagos microplate (GMP), at 1°10‧N. Recently collected bathymetry data are used to investigate the regional tectonics prior to the establishment of the GMP (∼1.5 Ma). South of C-N Rift a band of northeast-trending cracks cuts EPR-generated abyssal hills. It is a mirror image of a band of cracks previously identified north of C-N Rift on the same age crust. In both areas, the western ends of the cracks terminate against intact abyssal hills suggesting that each crack initiated at the EPR spreading center and cut eastward into pre-existing topography. Each crack formed a short-lived triple junction until it was abandoned and a new crack and triple junction initiated nearby. Between 2.5 and 1.5 Ma, the pattern of cracking is remarkably symmetric about C-N Rift providing support for a crack interaction model in which crack initiation at the EPR axis is controlled by stresses associated with the tip of the westward-propagating C-N Rift. The model also shows that offsets of the EPR axis may explain times when cracking is not symmetric. South of C-N Rift, cracks are observed on seafloor as old as 10.5 Ma suggesting that this triple junction has not been a simple RRR triple junction during that time.
The Performance of Advanced III-V Solar Cells
NASA Technical Reports Server (NTRS)
Mueller, Robert L.; Gaddy, Edward; Day, John H. (Technical Monitor)
2002-01-01
Test results show triple junction solar cells with efficiencies as high as 27% at 28C and 136.7 mw/sq cm. Triple junction cells also achieve up to 27.5% at -120 C and 5 mw/sq cm, conditions applicable to missions to Jupiter. Some triple junction cells show practically no degradation as a result of Low Intensity Low Temperature (LILT) effects, while others show some; this degradation can be overcome with minor changes to the cell design.
NASA Astrophysics Data System (ADS)
Sai, Hitoshi; Matsui, Takuya; Koida, Takashi; Matsubara, Koji; Kondo, Michio; Sugiyama, Shuichiro; Katayama, Hirotaka; Takeuchi, Yoshiaki; Yoshida, Isao
2015-05-01
We report a high-efficiency triple-junction thin-film silicon solar cell fabricated with the so-called substrate configuration. It was verified whether the design criteria for developing single-junction microcrystalline silicon (μc-Si:H) solar cells are applicable to multijunction solar cells. Furthermore, a notably high short-circuit current density of 32.9 mA/cm2 was achieved in a single-junction μc-Si:H cell fabricated on a periodically textured substrate with a high-mobility front transparent contacting layer. These technologies were also combined into a-Si:H/μc-Si:H/μc-Si:H triple-junction cells, and a world record stabilized efficiency of 13.6% was achieved.
Hüsler, P L; Klump, H H
1995-09-10
We have designed a Hoogsteen (HG) triple-helical three-way junction (ternary complex) constructed from three 33-mer oligonucleotides based on the same subset of sequences used for the Watson-Crick (WC) triple-helical three-way junction, characterized previously (P. L. Hüsler and H. H. Klump (1994) Arch. Biochem. Biophys., 313, 29-38). The junction differs primarily in the assembly of the branch point and the ends of the arms. The three oligonucleotides can each fold into a WC hairpin, linked by a four-member cytosine loop, each containing a homo-pyrimidine 10-mer single-strand extension. On lowering the pH (between 6 and 4), the extensions mutually associate to one of the other hairpins via Hoogsteen (HG) hydrogen bonding. Collectively, this process results in the formation of the branch point and the triple-helical arms. The HG triple-helical three-way junction is characterized by gel electrophoresis, circular dichroism, uv melting, and differential scanning calorimetry. The junction undergoes thermal unfolding in two distinct temperature regions. In the temperature range 15 to 50 degrees C loss of HG base pairing results in the dissociation of the three-way junction. Between 55 and 95 degrees C the resulting hairpins undergo further successive unfolding. The overall calorimetric unfolding enthalpy and entropy changes associated with the loss of HG base pairing are approximately equal to the sum of the enthalpy and entropy changes associated with the dissociation of the HG base pairing in the isolated arms (170.6 kcal.mol-1; 540.1 cal.mol-1.K-1). It is apparent from these results that in the proximity of the branch point the structure is not perturb or strain. This result is contrary to the results obtained for the WC triple-helical three-way and for three-way junctions constructed from canonical double-helical DNA. Complete folding of the junction requires either high Na+ (600 mM) ion concentrations or 40-60 mM Mg2+.
Continental Break-up Above A Mantle Plume: Opening of The Southern Red Sea
NASA Astrophysics Data System (ADS)
Ebinger, C.; Eagles, G.; Elders, C.; Gloaguen, R.; McClay, K.; Tiberi, C.; Wolfenden, E.
Initial rifting in the Red Sea occurred concurrent with, or soon after flood basaltic mag- matism at~31 Ma in the Ethiopia-Yemen plume province. Yet, the development of the ca. 400 km-wide extensional province of the southern Red Sea between 31 Ma and the onset of seafloor spreading at ~4 Ma has been poorly understood, in large part owing to inaccessibility in the Afar depression. The Afar depression is a diffuse extensional province marking a triple point zone between plate boundaries in the Red Sea (Arabia Nubia), the Gulf of Aden (Arabia Somalia); and the Main Ethiopian Rift (Somalia Nu- bia). Complicating this setting, the Danakil horst is a microplate lying between oceanic provinces in the southernmost Red Sea and incipient seafloor spreading in the northern Afar depression. We have integrated exploration seismic, gravity, well, and magnetic data from offshore regions with remote sensing, geological and geophysical data from Ethiopia, Eritrea, and Yemen to evaluate models for continental break-up above mantle plumes. Plate kinematic reconstructions using a pole of rotation within the error ellipse of the Chu and Gordon (1999) pole predict real features in remote sensing and gravity data; these reconstructions provide a general framework for our interpretations. Field and geochronology studies along the western margin of Afar show a southward prop- agation of rifting since about 25 Ma when extension commenced offshore Red Sea and in Yemen. We also see an eastward migration of strain from the western border fault to narrow zones of primarily basaltic magmatism since mid-Miocene time. These magmatic sequences, where not onlapped by Pliocene-Recent sedimentary strata, dip steeply seaward and define a regional eastward flexure into transitional oceanic crust, as suggested by gravity models constrained by existing seismic data. Our synthesis suggests that the southern Afar depression, assumed to be most proximal to the plume, was the site of incipient seafloor spreading in Miocene time, but that this has ceased or stalled during plate reorganisation as the Aden rift propagated into Afar to make the Danakil a microplate.
Origin of silicic crust by rifting and bimodal plume volcanism in the Afar Depression
NASA Astrophysics Data System (ADS)
Ghatak, A.; Basu, A. R.; Ebinger, C. J.
2010-12-01
The youngest mantle plume province worldwide occurs at the seismically and volcanically active East African - Red Sea - Gulf of Aden (Afar) triple junction, where one or more upwellings has impinged the thick cratonic lithosphere since ~45 Ma. A spectacular example of magmatism in the Afar depression is seen in the present to < 2 Ma old bimodal fissural mafic and peralkaline silicic eruptions in the ~60 km-long Dabbahu-Manda Hararo (DMH) Rift. In this study we report major, trace elements, and Nd-Sr-Pb isotopes in recent basaltic and silicic rocks originating from the center of the DMH rift segment, exposed along the rift axis and flanks of this segment. The rare earth element (REE) patterns of the silicic rocks and basalts are different in two significant ways: (1) the silicic rocks show a prominent positive Ce-anomaly that is extremely rare in volcanic rocks; and (2) this positive Ce-anomaly is accompanied by a strong negative Eu-anomaly. These anomalies are absent in the basaltic rocks. The positive Ce-anomaly is probably due to interaction in a magma chamber, similar in composition to the basalts, with deep saline aquifer or brines that typically show positive Ce-anomaly. The REE patterns of the two lava groups are interpreted to be due to fractional crystallization of plagioclase in a magma chamber similar in REE composition as the basalts that erupted in the DMH segments. We interpret the silicic rocks to be residues after ~20% fractional crystallization of plagioclase in the DMH basalts. The Nd-Pb isotopic composition of the basalts and rhyolites of the DMH are similar to the Ethiopian plume as defined by the ~30 Ma old Ethiopian flood basalts. Based on their high 3He/4He ratios (R/RA ~30) and Nd-Sr-Pb isotopic data, the source of the Ethiopian plume is generally believed to be in the lower mantle. Therefore, the similarity of the Nd-Pb and Pb-Pb isotopic variations between the Ethiopian plume and the DMH lavas indicates that these lavas were sourced from the lower mantle, and this source zone showed little variation over the past 30 Ma. Some of the silicic lavas fall distinctly outside the plume field toward more radiogenic 87Sr/86Sr at relatively restricted Nd and Pb isotopic compositions. This excursion in Sr-isotopic ratios of the silicic lavas, in concert with their positive Ce-anomaly, is interpreted to be due to mixing of the Afar plume derived basaltic magma with fluids from saline aquifers. We conclude that the bimodal lavas are consanguineous, the silicic lavas being generated by fractional crystallization of plagioclase in a lower mantle plume-derived basaltic magma-chamber, caused by the interaction with saline aquifers. The generation of bimodal volcanism from parental primitive basalts without any contribution from pre-existing continental crust in Dabbahu may explain other similar intraplate magmatism including early Archean-Hadean continental crust formation prior to onset of arc-volcanism.
Triple Junction Reorganizations: A Mechanism for the Initiation of the Great Pacific Fractures Zones
NASA Astrophysics Data System (ADS)
Pockalny, R. A.; Larson, R. L.; Grindlay, N. R.
2001-12-01
There are two general explanations for the initiation of oceanic transform faults that eventually evolve into fracture zones: transforms inherited from continental break-up and transforms acquired in response to a change in plate motions. These models are sufficient to explain the fracture zones in oceans formed by continental break-up. However, neither model accounts for the initiation of the large-offset, great Pacific fracture zones that characterized the Pacific-Farallon plate boundary prior to 25 Ma. Primarily, these models are unable to explain why the initial age of these fracture zones becomes progressively younger from the Mendocino fracture zone (\\~{ } 160 Ma) southward down to the Resolution FZ (\\~{ }84 Ma). We propose a new transform initiation mechanism for the great Pacific fracture zones, which is intimately tied to tectonic processes at triple junctions and directly related to the growth of the Pacific Plate. Recently acquired multibeam bathymetry and marine geophysics data collected along Pandora's Escarpment in the southwestern Pacific have identified the escarpment as the trace of the Pacific-Farallon-Phoenix triple junction on the Pacific Plate. Regional changes in the trend of the triple junction trace between 84-121 Ma roughly coincide with the initiation of the Marquesas, Austral and Resolution fracture zones. Bathymetry and backscatter data from the projected intersections of these fracture zones with the triple junction trace identify several anomalous structures that suggest tectonic reorganizations of the triple junction. We believe this reorganization created the initial transform fault(s) that ultimately became the large-offset, great Pacific fracture zones. Several possible mechanisms for initiating the transform faults are explored including microplate formation, ridge-tip propagation, and spontaneous transform fault formation.
Enhanced Conversion Efficiency of III–V Triple-junction Solar Cells with Graphene Quantum Dots
Lin, Tzu-Neng; Santiago, Svette Reina Merden S.; Zheng, Jie-An; Chao, Yu-Chiang; Yuan, Chi-Tsu; Shen, Ji-Lin; Wu, Chih-Hung; Lin, Cheng- An J.; Liu, Wei-Ren; Cheng, Ming-Chiang; Chou, Wu-Ching
2016-01-01
Graphene has been used to synthesize graphene quantum dots (GQDs) via pulsed laser ablation. By depositing the synthesized GQDs on the surface of InGaP/InGaAs/Ge triple-junction solar cells, the short-circuit current, fill factor, and conversion efficiency were enhanced remarkably. As the GQD concentration is increased, the conversion efficiency in the solar cell increases accordingly. A conversion efficiency of 33.2% for InGaP/InGaAs/Ge triple-junction solar cells has been achieved at the GQD concentration of 1.2 mg/ml, corresponding to a 35% enhancement compared to the cell without GQDs. On the basis of time-resolved photoluminescence, external quantum efficiency, and work-function measurements, we suggest that the efficiency enhancement in the InGaP/InGaAs/Ge triple-junction solar cells is primarily caused by the carrier injection from GQDs to the InGaP top subcell. PMID:27982073
NASA Technical Reports Server (NTRS)
Edmondson, Kenneth M.; Joslin, David E.; Fetzer, Chris M.; King, Richard R.; Karam, Nasser H.; Mardesich, Nick; Stella, Paul M.; Rapp, Donald; Mueller, Robert
2005-01-01
The unparalleled success of the Mars Exploration Rovers (MER) powered by GaInP/GaAs/Ge triple-junction solar cells has demonstrated a lifetime for the rovers that exceeded the baseline mission duration by more than a factor of five.
Surface Breakdown Characteristics of Silicone Oil for Electric Power Apparatus
NASA Astrophysics Data System (ADS)
Wada, Junichi; Nakajima, Akitoshi; Miyahara, Hideyuki; Takuma, Tadasu; Okabe, Shigemitu; Kohtoh, Masanori; Yanabu, Satoru
This paper describes the surface breakdown characteristics of the silicone oil which has the possibility of the application to innovative switchgear as an insulating medium. At the first step, we have experimentally studied on the impulse breakdown characteristics of the configuration with a triple-junction where a solid insulator is in contact with the electrode. The test configurations consist of solid material (Nomex and pressboard) and liquid insulation oil (silicone and mineral oil). We have discussed the experimental results based on the maximal electric field at a triple-junction. As the second step, we have studied the configuration which may improve the surface breakdown characteristics by lowering the electric field near the triple-junction.
Photovoltaic Power for Future NASA Missions
NASA Technical Reports Server (NTRS)
Landis, Geoffrey; Bailey, Sheila G.; Lyons, Valerie J. (Technical Monitor)
2002-01-01
Recent advances in crystalline solar cell technology are reviewed. Dual-junction and triple-junction solar cells are presently available from several U. S. vendors. Commercially available triple-junction cells consisting of GaInP, GaAs, and Ge layers can produce up to 27% conversion efficiency in production lots. Technology status and performance figures of merit for currently available photovoltaic arrays are discussed. Three specific NASA mission applications are discussed in detail: Mars surface applications, high temperature solar cell applications, and integrated microelectronic power supplies for nanosatellites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, G.S.
1993-07-13
A high-performance superconducting analog-to-digital converter is described, comprising: a bidirectional binary counter having n stages of triple-junction reversible flip-flops connected together in a cascade arrangement from the least significant bit (LSB) to the most significant bit (MSB) where n is the number of bits of the digital output, each triple-junction reversible flip-flop including first, second and third shunted Josephson tunnel junctions and a superconducting inductor connected in a bridge circuit, the Josephson junctions and the inductor forming upper and lower portions of the flip-flop, each reversible flip-flop being a bistable logic circuit in which the direction of the circulating currentmore » determines the state of the circuit; and means for applying an analog input current to the bidirectional counter; wherein the bidirectional counter algebraically counts incremental changes in the analog input current, increasing the binary count for positive incremental changes in the analog current and decreasing the binary count for negative incremental changes in the current, and wherein the counter does not require a gate bias, thus minimizing power dissipation.« less
Nelson, Scott D.
2016-05-10
A photoconductive switch having a wide bandgap semiconductor material substrate between opposing electrodes, with one of the electrodes having an aperture or apertures at an electrode-substrate interface for transversely directing radiation therethrough from a radiation source into a triple junction region of the substrate, so as to geometrically constrain the conductivity path to within the triple junction region.
Geochemical signals of progressive continental rupture in the Main Ethiopian Rift
NASA Astrophysics Data System (ADS)
Furman, T.; Bryce, J.; Yirgu, G.; Ayalew, D.; Cooper, L.
2003-04-01
Mafic volcanics of the Main Ethiopian Rift record the development of magmatic rift segments during continental extension. The Ethiopian Rift is one arm of a triple junction that formed above a Paleogene mantle plume, concurrent with eruption of flood basalts ca. 30 Ma across northern Ethiopian and Yemen. The geochemistry of Ethiopian Rift lavas thus provides insight into processes associated with the shift from mechanical (lithospheric) to magmatic (asthenospheric) segmentation in the transitional phase of continental rifting. Quaternary basalts from five volcanic centers representing three magmatic segments display along-axis geochemical variations that likely reflect the degree of rifting and magma supply, which increase abruptly with proximity to the highly-extended Afar region. To first order, the geochemical data indicate a decreasing degree of shallow-level fractionation and greater involvement of depleted or plume-like mantle source materials in basalts sampled closer to the Afar. These spatially controlled geochemical signatures observed in contemporaneous basalts are similar to temporal variations documented in southern Ethiopia, where Quaternary lavas indicate a greater degree of crustal extension than those erupted at the onset of plume activity. Primitive Ethiopian Rift basalts have geochemical signatures (e.g., Ce/Pb, La/Nb, Ba/Nb, Ba/Rb, U/Th) that overlap ocean island basalt compositions, suggesting involvement of sub-lithospheric source materials. The estimated depth of melting (65-75 km) is shallower than values obtained for young primitive mafic lavas from the Western Rift and southern Kenya as well as Oligocene Ethiopian flood basalts from the onset of plume-driven activity. Basalts from the Turkana region (N. Kenya) and Erta 'Ale (Danakil depression) reflect melting at shallower levels, corresponding to the greater degree of crustal extension in these provinces. Preliminary Sr and Nd isotopic data trend towards primitive earth values, consistent with values observed previously in central Ethiopia that are associated with moderately high 3He/4He values (<19 RA; Marty et al. 1996) and interpreted as reflecting involvement of a mantle plume. Taken together, these data support a model in which upwelling plume material sampled in central Ethiopia incorporates depleted mantle during ascent beneath the more highly extended portions of the African Rift.
NASA Astrophysics Data System (ADS)
Vigny, Christophe; de Chabalier, Jean-Bernard; Ruegg, Jean-Claude; Huchon, Philippe; Feigl, Kurt L.; Cattin, Rodolphe; Asfaw, Laike; Kanbari, Khaled
2007-06-01
Since most of Tadjoura-Asal rift system sits on dry land in the Afar depression near the triple junction between the Arabia, Somalia, and Nubia plates, it is an ideal natural laboratory for studying rifting processes. We analyze these processes in light of a time series of geodetic measurements from 1978 through 2003. The surveys used triangulation (1973), trilateration (1973, 1979, and 1981-1986), leveling (1973, 1979, 1984-1985, and 2000), and the Global Positioning System (GPS, in 1991, 1993, 1995, 1997, 1999, 2001, and 2003). A network of about 30 GPS sites covers the Republic of Djibouti. Additional points were also measured in Yemen and Ethiopia. Stations lying in the Danakil block have almost the same velocity as Arabian plate, indicating that opening near the southern tip of the Red Sea is almost totally accommodated in the Afar depression. Inside Djibouti, the Asal-Ghoubbet rift system accommodates 16 ± 1 mm/yr of opening perpendicular to the rift axis and exhibits a pronounced asymmetry with essentially null deformation on its southwestern side and significant deformation on its northeastern side. This rate, slightly higher than the large-scale Arabia-Somalia motion (13 ± 1 mm/yr), suggests transient variations associated with relaxation processes following the Asal-Ghoubbet seismovolcanic sequence of 1978. Inside the rift, the deformation pattern exhibits a clear two-dimensional pattern. Along the rift axis, the rate decreases to the northwest, suggesting propagation in the same direction. Perpendicular to the rift axis, the focus of the opening is clearly shifted to the northeast, relative to the topographic rift axis, in the "Petit Rift," a rift-in-rift structure, containing most of the active faults and the seismicity. Vertical motions, measured by differential leveling, show the same asymmetric pattern with a bulge of the northeastern shoulder. Although the inner floor of the rift is subsiding with respect to the shoulders, all sites within the rift system show uplift at rates varying from 0 to 10 mm/yr with respect to a far-field reference outside the rift.
10.4% Efficient triple organic solar cells containing near infrared absorbers
NASA Astrophysics Data System (ADS)
Meerheim, Rico; Körner, Christian; Oesen, Benjamin; Leo, Karl
2016-03-01
The efficiency of organic solar cells can be increased by serially stacked subcells with spectrally different absorber materials. For the triple junction devices presented here, we use the small molecule donor materials DCV5T-Me for the green region and Tol2-benz-bodipy or Ph2-benz-bodipy as near infrared absorbers. The broader spectral response allows an efficiency increase from a pure DCV5T-Me triple cell to a triple junction containing a Ph2-benz-bodipy subcell, reaching 10.4%. As often observed for organic photovoltaics, the efficiency is further increased at low light intensities to 11%, which allows improved energy harvesting under real outdoor conditions and better performance indoor.
Semiconductor switch geometry with electric field shaping
Booth, R.; Pocha, M.D.
1994-08-23
An optoelectric switch is disclosed that utilizes a cylindrically shaped and contoured GaAs medium or other optically active semiconductor medium to couple two cylindrically shaped metal conductors with flat and flared termination points each having an ovoid prominence centrally extending there from. Coupling the truncated ovoid prominence of each conductor with the cylindrically shaped optically active semiconductor causes the semiconductor to cylindrically taper to a triple junction circular line at the base of each prominence where the metal conductor conjoins with the semiconductor and a third medium such as epoxy or air. Tapering the semiconductor at the triple junction inhibits carrier formation and injection at the triple junction and thereby enables greater current carrying capacity through and greater sensitivity of the bulk area of the optically active medium. 10 figs.
Semiconductor switch geometry with electric field shaping
Booth, Rex; Pocha, Michael D.
1994-01-01
An optoelectric switch is disclosed that utilizes a cylindrically shaped and contoured GaAs medium or other optically active semiconductor medium to couple two cylindrically shaped metal conductors with flat and flared termination points each having an ovoid prominence centrally extending there from. Coupling the truncated ovoid prominence of each conductor with the cylindrically shaped optically active semiconductor causes the semiconductor to cylindrically taper to a triple junction circular line at the base of each prominence where the metal conductor conjoins with the semiconductor and a third medium such as epoxy or air. Tapering the semiconductor at the triple junction inhibits carrier formation and injection at the triple junction and thereby enables greater current carrying capacity through and greater sensitivity of the bulk area of the optically active medium.
The Cape Mendocino, California, earthquakes of April 1992: Subduction at the triple junction
Oppenheimer, D.; Beroza, G.; Carver, G.; Dengler, L.; Eaton, J.; Gee, L.; Gonzalez, F.; Jayko, A.; Li, W.H.; Lisowski, M.; Magee, M.; Marshall, G.; Murray, M.; McPherson, R.; Romanowicz, B.; Satake, K.; Simpson, R.; Somerville, P.; Stein, R.; Valentine, D.
1993-01-01
The 25 April 1992 magnitude 7.1 Cape Mendocino thrust earthquake demonstrated that the North America—Gorda plate boundary is seismogenic and illustrated hazards that could result from much larger earthquakes forecast for the Cascadia region. The shock occurred just north of the Mendocino Triple Junction and caused strong ground motion and moderate damage in the immediate area. Rupture initiated onshore at a depth of 10.5 kilometers and propagated up-dip and seaward. Slip on steep faults in the Gorda plate generated two magnitude 6.6 aftershocks on 26 April. The main shock did not produce surface rupture on land but caused coastal uplift and a tsunami. The emerging picture of seismicity and faulting at the triple junction suggests that the region is likely to continue experiencing significant seismicity.
Grain boundary and triple junction diffusion in nanocrystalline copper
NASA Astrophysics Data System (ADS)
Wegner, M.; Leuthold, J.; Peterlechner, M.; Song, X.; Divinski, S. V.; Wilde, G.
2014-09-01
Grain boundary and triple junction diffusion in nanocrystalline Cu samples with grain sizes,
NASA Astrophysics Data System (ADS)
Doubre, C.; Socquet, A.; Masson, F.; Cressot, C.; Mohamed, K.; Vigny, C.; Ruegg, J.
2010-12-01
Due to the presence of magma and a complex thermal structure, the dynamics of divergent plate boundaries are complicated, with microseismicity (ML<4) contributing very little to the total moment release. For the last 35 years several geodetic campaigns have been conducted at the western tip of the Aden Ridge propagating on land into Afar (Republic of Djibouti). The first segment above water, the Asal Rift, experienced a seismo-volcanic event in 1978, which was the first rifting episode, along with the 1978-1985 Icelandic Krafla event, to be monitored by terrestrial geodetic measurements. These measurements revealed the opening of two 1-2 m-wide dykes in the rift inner floor. Since then, terrestrial and spatial geodetic monitoring shows that the rift kept opening, during the post-rifting period, at a rate largely exceeding the plates’ motions. This significant opening rate is decreasing with time to tend, three decades after the rifting event, to the far-field opening rate. We present here the results of the GPS measurements of a 45 site network covering the Tadjoura-Asal Rift System, previously made every two years from 1995 to 2003, and repeated in 2010. The calculated 1999-2010 horizontal velocity field is very homogeneous with a quasi-constant N045° direction with respect to Somalia and a regular increase from the southern to the northern margin of the Asal Rift clearly controlled by a few normal faults, and reaching a maximum of 12.5 mm/yr. A non-negligible part of the Arabia-Somalia divergent movement (1 to 2 mm/yr) is observed south of this rift, which sheds light on the role of the active normal faults bounding the asymmetrical Gaggadé Basin and therefore brings important constraints on the location of the Red Sea Ridge-Aden Ridge-East African Rift triple junction. Since the last 2003 campaign, the lack of micro-seismicity within the Asal Rift seems to be associated with a ˜2 mm/yr decrease of the opening rate deduced from the GPS time series analysis. These results confirm the importance of non-steady state behavior of the Asal volcano-tectonic rift segment, and the role of geothermal/volcanic activity on the occurrence of transients, as suggested by InSAR results.
Behrmann, J.H.; Lewis, S.D.; Cande, S.C.
1994-01-01
An active oceanic spreading ridge is being subducted beneath the South American continent at the Chile Triple Junction. This process has played a major part in the evolution of most of the continental margins that border the Pacific Ocean basin. A combination of high resolution swath bathymetric maps, seismic reflection profiles and drillhole and core data from five sites drilled during Ocean Drilling Program (ODP) Leg 141 provide important data that define the tectonic, structural and stratigraphic effects of this modern example of spreading ridge subduction. A change from subduction accretion to subduction erosion occurs along-strike of the South American forearc. This change is prominently expressed by normal faulting, forearc subsidence, oversteepening of topographic slopes and intensive sedimentary mass wasting, overprinted on older signatures of sediment accretion, overthrusting and uplift processes in the forearc. Data from drill sites north of the triple junction (Sites 859-861) show that after an important phase of forearc building in the early to late Pliocene, subduction accretion had ceased in the late Pliocene. Since that time sediment on the downgoing oceanic Nazca plate has been subducted. Site 863 was drilled into the forearc in the immediate vicinity of the triple junction above the subducted spreading ridge axis. Here, thick and intensely folded and faulted trench slope sediments of Pleistocene age are currently involved in the frontal deformation of the forearc. Early faults with thrust and reverse kinematics are overprinted by later normal faults. The Chile Triple Junction is also the site of apparent ophiolite emplacement into the South American forearc. Drilling at Site 862 on the Taitao Ridge revealed an offshore volcanic sequence of Plio-Pleistocene age associated with the Taitao Fracture Zone, adjacent to exposures of the Pliocene-aged Taitao ophiolite onshore. Despite the large-scale loss of material from the forearc at the triple junction, ophiolite emplacement produces a large topographic promontory in the forearc immediately after ridge subduction, and represents the first stage of forearc rebuilding. ?? 1994 Springer-Verlag.
A four-way junction with triple-helical arms: design, characterization, and stability.
Makube, N; Klump, H H
2000-05-01
The formation of the four-way junction containing four triple-helical arms has been demonstrated using chemical methods (polyacrylamide gel electrophoresis and chemical footprinting using OsO(4) as a probe) and physical methods (UV absorbance melting and DSC). The junction J(T1T3) was assembled from two 20-mer purine strands and two 44-mer pyrimidine strands. To determine the contribution of the different arms to the stability of the complete structure of J(T1T3), the junction was compared to two simplified substructures, J(T1) and J(T3), respectively. Common to these complexes is the underlying double-helical four-way junction Js. Addition of Na(+) had a profound effect on stabilizing and subsequently folding the junctions into the stacked X-structures. The following results support the structure present: (i) The native polyacrylamide electrophoresis exhibits only a single band(s) corresponding to one species present when all four single strands are mixed in equal amounts. (ii) OsO(4) modifications were investigated at pH 5.0 and in the presence of 10 mM Mg(2+) and 100 mM Na(+). There is no cleavage of thymine residues at the branch point and throughout the structure. (iii) The thermal unfolding of J(T1) and J(T3) illustrates that the triple-helical arms are more stable than the double-helical arms which are contained in these junctions and that J(T1T3) with four triple-helical arms is slightly more stable than J(T1) and J(T3). (iv) The calorimetric transition enthalpies determined for the arms of J(T1T3) are comparable to those associated with the unfolding of its corresponding arms in J(T1) and J(T3). The results also illustrate that the formation of the junctions is not restricted by the pH, [Na(+)], sequence composition of the arms, and/or the loop position. Copyright 2000 Academic Press.
Constraints for timing of extensional tectonics in the western margin of the Red Sea in Eritrea
NASA Astrophysics Data System (ADS)
Ghebreab, Woldai; Carter, Andrew; Hurford, Anthony J.; Talbot, Christopher J.
2002-06-01
Recent work on asthenosphere-lithosphere coupling reinforces past observations that active and passive rifting models do not adequately describe real rifts. There remains insufficient knowledge of fundamental controls on rift architecture. In the actively extending Red Sea margin of eastern Eritrea, which lies at the Red Sea/Danakil-Gulf of Aden and the East African rift triple junction zone, the geometry and kinematics of extension are complex and poorly defined due to large data gaps. Extension and sea-floor spreading in both the Red Sea and Gulf of Aden have influenced the Neogene tectonic development of Eritrea but many of the structures have Pan-African origins and do not follow normal plate opening geometries. To constrain the rifting history in eastern Eritrea, apatite fission-track thermochronologic data were measured for 22 Pan-African rock samples. Results identify late Oligocene-early Miocene cooling coincident with extension and erosion along the conjugate margin in Yemen. A younger age group, confined to Mt Ghedem, relates to an episode of fault reactivation and dyke injection that began ˜10 Ma coincident with rotation of the nearby Danakil block. Initially this was driven by onset of sea-floor spreading in the Gulf of Aden and later, in the Pliocene, aided by northward rifting in the Afar depression concomitant with spreading in the Red Sea. These different processes highlight the complex linkage between different extensional events and rift architecture.
Space Solar Cell Research and Development Projects at Emcore Photovoltaics
NASA Technical Reports Server (NTRS)
Sharps, Paul; Aiken,Dan; Stan, Mark; Cornfeld, Art; Newman, Fred; Endicter, Scott; Girard, Gerald; Doman, John; Turner, Michele; Sandoval, Annette;
2007-01-01
The GaInP2/InGaAs/Ge triple junction device lattice matched to germanium has achieved the highest power conversion efficiency and the most commercial success for space applications [1]. What are the practical performance limits of this technology? In this paper we will describe what we consider to be the practical performance limits of the lattice matched GaInP2/InGaAs/Ge triple junction cell. In addition, we discuss the options for next generation space cell performance.
Evans, J.R.; Foulger, G.R.; Julian, B.R.; Miller, A.D.
1996-01-01
The Hengill region in SW Iceland is an unstable ridge-ridge-transform triple junction between an active and a waning segment of the mid-Atlantic spreading center and a transform that is transgressing southward. The triple junction contains active and extinct spreading segments and a widespread geothermal area. We evaluated shear-wave birefringence for locally recorded upper-crustal earthquakes using an array of 30 three-component digital seismographs. Fast-polarization directions, ??, are mostly NE to NNE, subparallel to the spreading axis and probably caused by fissures and microcracks related to spreading. However, there is significant variability in ?? throughout the array. The lag from fast to slow S is not proportional to earthquake depth (ray length), being scattered at all depths. The average wave-speed difference between qS1 and qS2 in the upper 2-5 km of the crust is 2-5%. Our results suggest considerable heterogeneity or strong S scattering.
Multicolor (UV-IR) Photodetectors Based on Lattice-Matched 6.1 A II/VI and III/V Semiconductors
2015-08-27
photodiodes with different cutoff wavelengths connected in series with tunnel diodes between adjacent photodiodes. The LEDs optically bias the inactive...perfectly conductive n-CdTe/p-InSb tunnel junction. 15. SUBJECT TERMS optical biasing; multi-junction photodetectors; triple-junction solar cell...during this project, including initial demonstrations of optical addressing, tunnel junction studies and multicolor device characterization
Marple, R.; Miller, R.
2006-01-01
Seismic-reflection data were integrated with other geophysical, geologic, and seismicity data to better determine the location and nature of buried faults in the Charleston, South Carolina, region. Our results indicate that the 1886 Charleston, South Carolina, earthquake and seismicity near Summerville are related to local stresses caused by a 12?? bend in the East Coast fault system (ECFS) and two triple-fault junctions. One triple junction is formed by the intersection of the northwest-trending Ashley River fault with the two segments of the ECFS north and south of the bend. The other triple junction is formed by the intersection of the northeast-trending Summerville fault and a newly discovered northwest-trending Berkeley fault with the ECFS about 10 km north of the bend. The Summerville fault is a northwest-dipping border fault of the Triassic-age Jedburg basin that is undergoing reverse-style reactivation. This reverse-style reactivation is unusual because the Summerville fault parallels the regional stress field axis, suggesting that the reactivation is from stresses applied by dextral motion on the ECFS. The southwest-dip and reverse-type motion of the Berkeley fault are interpreted from seismicity data and a seismic-reflection profile in the western part of the study area. Our results also indicate that the East Coast fault system is a Paleozoic basement fault and that its reactivation since early Mesozoic time has fractured through the overlying allochthonous terranes.
Nabro and Mallahle Volcanoes, Eritrea and Ethiopia, SRTM Colored Height and Shaded Relief
NASA Technical Reports Server (NTRS)
2004-01-01
The area known as the Afar Triangle is located at the northern end of the East Africa Rift, where it approaches the southeastern end of the Red Sea and the southwestern end of the Gulf of Aden. The East African Rift, the Red Sea, and the Gulf of Aden are all zones where Earth's crust is pulling apart in a process known as crustal spreading. Their three-way meeting is known as a triple junction, and their spreading creates a triangular topographic depression for which the area was named.
Not surprisingly, the topographic effects of crustal spreading are more dramatic in the Afar Triangle than anywhere else upon Earth's landmasses. The spreading is primarily evident as patterns of numerous tension cracks. But some of these cracks provide conduits for magma to rise to the surface to form volcanoes.Shown here are a few of the volcanoes of the Afar Triangle. The larger two are Nabro Volcano (upper right, in Eritrea) and Mallahle Volcano (lower left, in Ethiopia). Nabro Volcano shows clear evidence of multiple episodes of activity that resulted in a crater in a crater in a crater. Many volcanoes in this area are active, including one nearby that last erupted in 1990.This image was created directly from an SRTM elevation model. A shade image was derived by computing topographic slope in the north-south direction. Northern slopes appear bright and southern slopes appear dark. The shade image was then combined with a color coding of topographic height, with green at the lower elevations, rising through yellow, orange, and red, up to purple at the highest elevations.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.Size: 35.2 kilometers (21.8 miles) by 22.5 kilometers (14.0 miles) Location: 13.3 degrees North latitude, 41.7 degrees East longitude Orientation: North toward the top Image Data: Shaded and colored SRTM elevation model Date Acquired: February 2000NASA Astrophysics Data System (ADS)
Schouten, H.; Smith, D. K.
2005-12-01
Magellan and Trinidad microplates developed at the Mesozoic triple junction between the Pacific, Phoenix and Farallon plates; the microplates were instrumental in the transition from a transform-ridge-transform to a ridge-ridge-ridge triple junction, which took several tens of millions of years. Contrasting qualitative models for the evolution of these microplates [e.g., Tamaki and Larson, 1988; Nakanishi et al., 1992] provide meager insight in the mechanics of microplate evolution and triple junction transformation. We propose a quantitative model for the evolution of Magellan and Trinidad microplates based on the edge-driven microplate kinematic principles [Schouten et al., 1993] that have provided successful quantitative solutions for the motions of Easter, Juan Fernandez, and Galapagos microplates. In these edge-driven solutions, two angular velocity vectors (describing motion between microplate and driving plates) are located on the microplate boundaries at the tip of rifts that propagate between microplate and driving plates. The rift propagation leaves pseudofaults on microplate and driving plates; the pseudofaults, which can be recognized in the seafloor topography, then become proxies for the trajectories of the angular velocity vectors from which a quantitative solution of microplate motion is derived. Using the estimated seafloor topography of the region and published marine magnetic anomaly lineations we propose the following scenario. The Magellan microplate rotated counterclockwise as evidenced by the fanning of magnetic lineations about the Magellan Trough and the rotation of the older Mid-Pac Mountains lineation set. The Trinidad microplate rotated clockwise relative to the Pacific plate to judge from the wedge-shaped region about the Trinidad trough that has its narrow tip on the Victoria fracture zone (recognized in the estimated seafloor topograpy). The clockwise motion of the Trinidad microplate was driven by Pacific-Phoenix motion; the counterclockwise motion of the Magellan microplate by Pacific-Farallon motion. Thus the Magellan trough opened between the counter-rotating Trinidad and Magellan microplates, similar to the opening of Hess Deep between two counter-rotating Galapagos microplates at the present Galapagos triple junction [Klein et al., 2005]. When the northeastward propagating rift between the Trindad microplate and the Phoenix plate and the southward propagating rift between the Magellan microplate and the Farallon plate broke through to the Phoenix-Farallon spreading center, a new ridge-ridge-ridge triple junction was established between the Pacific, Phoenix and Farallon plates and the Trinidad and Magellan microplates ceased rotating and were abandoned on the Pacific plate.
Hydrothermal Exploration at the Chile Triple Junction - ABE's last adventure?
NASA Astrophysics Data System (ADS)
German, C. R.; Shank, T. M.; Lilley, M. D.; Lupton, J. E.; Blackman, D. K.; Brown, K. M.; Baumberger, T.; Früh-Green, G.; Greene, R.; Saito, M. A.; Sylva, S.; Nakamura, K.; Stanway, J.; Yoerger, D. R.; Levin, L. A.; Thurber, A. R.; Sellanes, J.; Mella, M.; Muñoz, J.; Diaz-Naveas, J. L.; Inspire Science Team
2010-12-01
In February and March 2010 we conducted preliminary exploration for hydrothermal plume signals along the East Chile Rise where it intersects the continental margin at the Chile Triple Junction (CTJ). This work was conducted as one component of our larger NOAA-OE funded INSPIRE project (Investigation of South Pacific Reducing Environments) aboard RV Melville cruise MV 1003 (PI: Andrew Thurber, Scripps) with all shiptime funded through an award of the State of California to Andrew Thurber and his co-PI's. Additional support came from the Census of Marine Life (ChEss and CoMarge projects). At sea, we conducted a series of CTD-rosette and ABE autonomous underwater vehicle operations to prospect for and determine the nature of any seafloor venting at, or adjacent to, the point where the the East Chile Rise subducts beneath the continental margin. Evidence from in situ sensing (optical backscatter, Eh) and water column analyses of dissolved CH4, δ3He and TDFe/TDMn concentrations document the presence of two discrete sites of venting, one right at the triple junction and the other a further 10km along axis, north of the Triple Junction, but still within the southernmost segment of the East Chile Rise. From an intercomparison of the abundance of different chemical signals we can intercompare likely characteristics of these differet source sites and also differentiate between them and the high methane concentrations released from cold seep sites further north along the Chile Margin, both with the CTJ region and also at the Concepcion Methane Seep Area (CMSA). This multi-disciplinary and international collaboration - involving scientists from Chile, the USA, Europe and Japan - can serve as an excellent and exciting launchpoint for wide-ranging future investigations of the Chile Triple Junction area - the only place on Earth where an oceanic spreading center is being actively subducted beneath a continent and also the only place on Earth where all known forms of deep-sea chemically-reducing ecosystem (hydrothermal vents, cold seeps, oxygen minimum zones and large organic falls) have the potential to co-exist.
Godfrey, N.J.; Meltzer, A.S.; Klemperer, S.L.; Trehu, A.M.; Leitner, B.; Clarke, S.H.; Ondrus, A.
1998-01-01
The Gorda Escarpment is a north facing scarp immediately south of the Mendocino transform fault (the Gorda/Juan de Fuca-Pacific plate boundary) between 126??W and the Mendocino triple junction. It elevates the seafloor at the northern edge of the Vizcaino block, part of the Pacific plate, ??? 1.5 km above the seafloor of the Gorda/Juan de Fuca plate to the north. Stratigraphy interpreted from multichannel seismic data across and close to the Gorda Escarpment suggests that the escarpment is a relatively recent pop-up feature caused by north-south compression across the plate boundary. Close to 126??W. the Vizcaino block acoustic basement shallows and is overlain by sediments that thin north toward the Gorda Escarpment. These sediments are tilted south and truncated at the seafloor. By contrast, in a localized region at the eastern end of the Gorda Escarpment, close to the Mendocino triple junction, the top of acoustic basement dips north and is overlain by a 2-km-thick wedge of pre-11 Ma sedimentary rocks that thickens north, toward the Gorda Escarpment. This wedge of sediments is restricted to the northeast corner of the Vizcaino block. Unless the wedge of sediments was a preexisting feature on the Vizcaino block before it was transferred from the North American to the Pacific plate, the strong spatial correlation between the sedimentary wedge and the triple junction suggests the entire Vizcaino block, with the San Andreas at its eastern boundary, has been part of the Pacific plate since significantly before 11 Ma.
Creep deformation and mechanisms in Haynes 230 at 800 °C and 900 °C
NASA Astrophysics Data System (ADS)
Pataky, Garrett J.; Sehitoglu, Huseyin; Maier, Hans J.
2013-11-01
Creep was studied in Haynes 230, a material candidate for the very high temperature reactor's intermediate heat exchanger, at 800 °C and 900 °C. This study focused on the differences between the behavior at the two elevated temperature, and using the microstructure, grain boundary serrations and triple junction strain concentrations were quantitatively identified. There was significant damage in the 900 °C samples and the creep was almost entirely tertiary. In contrast, the 800 °C sample exhibited secondary creep. Using an Arrhenius equation, the minimum creep rate exponents were found to be n ≈ 3 and n ≈ 5 for 900 °C and 800 °C, respectively. The creep mechanisms were identified as solute drag for n ≈ 3 and dislocation climb for n ≈ 5. Strain concentrations were identified at triple junctions and grain boundary serrations using high resolution digital image correlation overlaid on the microstructure. The grain boundary serrations restrict grain boundary sliding which may reduce the creep damage at triple junctions and extend the creep life of Haynes 230 at elevated temperatures.
NASA Technical Reports Server (NTRS)
Jenkins, Phillip; Scheiman, Chris; Goodbody, Chris; Baur, Carsten; Sharps, Paul; Imaizumi, Mitsuru; Yoo, Henry; Sahlstrom, Ted; Walters, Robert; Lorentzen, Justin;
2006-01-01
This paper reports the results of an international measurement round robin of monolithic, triple-junction, GaInP/GaAs/Ge space solar cells. Eight laboratories representing national labs, solar cell vendors and space solar cell consumers, measured cells using in-house reference cells and compared those results to measurements made where each lab used the same set of reference cells. The results show that most of the discrepancy between laboratories is likely due to the quality of the standard cells rather than the measurement system or solar simulator used.
3-D laser confocal microscopy study of the oxidation of NdFeB magnets in atmospheric conditions
NASA Astrophysics Data System (ADS)
Meakin, J. P.; Speight, J. D.; Sheridan, R. S.; Bradshaw, A.; Harris, I. R.; Williams, A. J.; Walton, A.
2016-08-01
Neodymium iron boron (NdFeB) magnets are used in a number of important applications, such as generators in gearless wind turbines, motors in electric vehicles and electronic goods (e.g.- computer hard disk drives, HDD). Hydrogen can be used as a processing gas to separate and recycle scrap sintered Nd-Fe-B magnets from end-of-life products to form a powder suitable for recycling. However, the magnets are likely to have been exposed to atmospheric conditions prior to processing, and any oxidation could lead to activation problems for the hydrogen decrepitation reaction. Many previous studies on the oxidation of NdFeB magnets have been performed at elevated temperatures; however, few studies have been formed under atmospheric conditions. In this paper a combination of 3-D laser confocal microscopy and Raman spectroscopy have been used to assess the composition, morphology and rate of oxidation/corrosion on scrap sintered NdFeB magnets. Confocal microscopy has been employed to measure the growth of surface reaction products at room temperature, immediately after exposure to air. The results showed that there was a significant height increase at the triple junctions of the Nd-rich grain boundaries. Using Raman spectroscopy, the product was shown to consist of Nd2O3 and formed only on the Nd-rich triple junctions. The diffusion coefficient of the triple junction reaction product growth at 20 °C was determined to be approximately 4 × 10-13 cm2/sec. This value is several orders of magnitude larger than values derived from the diffusion controlled oxide growth observations at elevated temperatures in the literature. This indicates that the growth of the room temperature oxidation products are likely defect enhanced processes at the NdFeB triple junctions.
Southeast Pacific tectonic evolution from Early Oligocene to Present
NASA Astrophysics Data System (ADS)
Tebbens, S. F.; Cande, S. C.
1997-06-01
Plate tectonic reconstructions of the Nazca, Antarctic, and Pacific plates are presented from late Oligocene to Present. These reconstructions document major plate boundary reorganizations in the southeast Pacific at dirons 6C (24 Ma), 6(o) (20 Ma), and 5A (12 Ma) and a smaller reorganization at chron 3(o) (5 Ma). During the chron 6(o) reorganization it appears that a ridge propagated into crust north of the northernmost Pacific-Antarctic Ridge, between the Chiloe fracture zone (FZ) of the Chile ridge and Agassiz FZ of the Pacific-Nazca ridge, which resulted in a northward jump of the Pacific-Antarctic-Nazca (PAC-ANT-NAZ) mid-ocean triple junction. During the chron 5A reorganization the Chile ridge propagated northward from the Valdivia FZ system to the Challenger FZ, through lithosphere formed roughly 5 Myr earlier at the Pacific-Nazca ridge. During this reorganization a short-lived microplate (the Friday microplate) existed at the PAC-ANT-NAZ triple junction. The PAC-ANT-NAZ triple junction jumped northward 500 km as a result of this reorganization, from a location along the Valdivia FZ to a location along the Challenger FZ. The chron 5A reorganization also included a change in spreading direction of the Chile and Pacific-Antarctic ridges. The reorganization at chron 3(o) initiated the formation of the Juan Fernandez and Easter microplates along the East Pacific rise. The manner of plate boundary reorganization at chron 6(o) and chron 5A (and possibly today at the Juan Fernandez microplate) included a sequence of rift propagation, transfer of lithosphere from one plate to another, microplate formation, and microplate abandonment and resulted in northward migration of the PAC-ANT-NAZ triple junction. The associated microplate differs from previously studied microplates in that there is no failed ridge.
NASA Technical Reports Server (NTRS)
Edmondson, Kenneth M.; Joslin, David E.; Fetzer, Chris M.; King, RIchard R.; Karam, Nasser H.; Mardesich, Nick; Stella, Paul M.; Rapp, Donald; Mueller, Robert
2007-01-01
The unparalleled success of the Mars Exploration Rovers (MER) powered by GaInP/GaAs/Ge triple-junction solar cells has demonstrated a lifetime for the rovers that exceeded the baseline mission duration by more than a factor of five. This provides confidence in future longer-term solar powered missions on the surface of Mars. However, the solar cells used on the rovers are not optimized for the Mars surface solar spectrum, which is attenuated at shorter wavelengths due to scattering by the dusty atmosphere. The difference between the Mars surface spectrum and the AM0 spectrum increases with solar zenith angle and optical depth. The recent results of a program between JPL and Spectrolab to optimize GaInP/GaAs/Ge solar cells for Mars are presented. Initial characterization focuses on the solar spectrum at 60-degrees zenith angle at an optical depth of 0.5. The 60-degree spectrum is reduced to 1/6 of the AM0 intensity and is further reduced in the blue portion of the spectrum. JPL has modeled the Mars surface solar spectra, modified an X-25 solar simulator, and completed testing of Mars-optimized solar cells previously developed by Spectrolab with the modified X-25 solar simulator. Spectrolab has focused on the optimization of the higher efficiency Ultra Triple-Junction (UTJ) solar cell for Mars. The attenuated blue portion of the spectrum requires the modification of the top sub-cell in the GaInP/GaAs/Ge solar cell for improved current balancing in the triple-junction cell. Initial characterization confirms the predicted increase in power and current matched operation for the Mars surface 60-degree zenith angle solar spectrum.
Tectonic fabric of northern North Fiji and Lau basins from GLORIA sidescan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiffin, D.L.; Clarke, J.E.H.; Johnson, D.
1990-06-01
GLORIA mosaics, Seabeam, and seismic data over parts of the backarc New Hebrides arc, northwest and central North Fiji basin, Fiji Fracture Zone north of Fiji, Peggy Ridge, northeast Lau basin, northern Tonga arc, northwestern Tonga Trench, and Western Samoa reveal a complex tectonic framework for the region. Two triple junctions and several rifts are clearly delineated by outcrops and ridges of neovolcanic rocks. Backarc troughs in the New Hebrides Arc are commonly floored by volcanic rocks with little sediment cover. The locus of major faults are well defined in places by volcanic ridges and scarps. On the Fiji Fracturemore » Zone north of Fiji, scarps indicate the trace, but west of Fiji it disappears for about 100 km, becoming well pronounced again near the central North Fiji basin triple junction. At Peggy Ridge a very extensive area of sheet-like volcanics indicates activity extends northeast from Peggy Ridge toward the western extension of the Tonga Trench passing west of Niuafo'ou Island, possibly marking a fault-to-trench transition. East of Niuafo'ou Island, backarc spreading close to the Tofua Arc is seen at a nascent triple junction, its northern arm approaching close to the western Tonga Trench. Long linear fault scarps in the trench result from bending of the crust. Only a few areas, including the seafloor north of Samoa, are mainly sediment covered. Two known hydrothermal deposits near the two triple junctions have been imaged, but other mapped areas of extensive neo-volcanics in the vicinity of propagators and pull-apart basins suggest sites for further investigation. The prevalence of ridge propagators and extensional basins suggests their significant role in the development of the region.« less
NASA Astrophysics Data System (ADS)
Hartnady, Chris; Hartnady, Michael; Wise, Edward; Blake, Dylan; McGibbon, David; Hay, E. Rowena
2017-04-01
The Danakil Depression in the North Afar region of Ethiopia reaches elevations deeper than 120 m below sea level and contains a Pleistocene-Holocene evaporite sequence currently investigated for potash mineral deposits. Separated from the main Ethiopian escarpment by the Dogua horst mountains, the asymmetric half-graben is bordered on its western (Nubian) side by the active, normal Main Danakil Rift-border Fault (MDRF). Above the MDRF, a series of piedmont alluvial fans (bajadas) fringes the Dogua Horst, emanating from a series of wadi catchments between the larger perennial rivers (Ragali, Saba) that drain from the high (>2000 m) Ethiopian Plateau. On its eastern side, the Danakil block contains Proterozoic-Palaeozoic sequences correlated with similar units in the Dogua range, and forms a microplate rotating independently between the larger Nubian and Arabian plates (McClusky et al., 2010). An understanding of the sedimentary and tectonic evolution of the Danakil-Nubia (DA-NU) plate system is crucial to the beneficial development of fresh groundwater resources and to an assessment of seismotectonic and volcanic geohazards in the area. Between the Mt Alid caldera in the Dandeiro graben and the Erta'Ale crater in the south Danakil, the rate of present-day DA-NU motion is 10.9 - 13.5 mm/yr, with direction azimuths N106E- N096E (after Schettino et al., 2016). DA-NU relative motion is focussed along the east-dipping MDRF in the Danakil but switches to an eastern (west-dipping) rift-border normal fault in the Dandiero, a northward extension of the Renda-Maglalla-Coma graben, separating the Dogua Horst from the main part of the NU plate. This change in rifting asymmetry occurs across a WNW/ESE-striking zone of basement faulting that terminates the Dogua Horst and functions as a left-stepping proto-transform fault zone, across the NNW direction of DA-NU proto-rift propagation. From 13-channel multispectral data of the European Space Agency satellite Sentinel-2A, a false-colour composite image, centred about MDRF and covering a wide region across the Ethiopia-Eritrea border, was created by combination of selected spectral band-ratios. This Sentinel-2A-based lithological mapping is integrated with the new ALOS AW3D30 digital elevation model, providing geomorphometric analysis and morphotectonic interpretations that allow 1) revision of previous fault-zone mapping, 2) seismotectonic contextualization of the earthquake record, and 3) improved discrimination of volcanic units and centres, both basaltic and silicic, along the northward propagating DA-NU rift zone. References McClusky, S., et al., 2010. Kinematics of the southern Red Sea-Afar Triple Junction and implications for plate dynamics. Geophys. Res. Lett., 37, L05301, doi:10.1029/2009GL041127 Schettino, A., Macchiavelli, C., Pierantoni, P.P., Zanoni, D., and Rasul, N., 2016. Recent kinematics of the tectonic plates surrounding the Red Sea and Gulf of Aden. Geophys. J. Int., 207, 457-480, doi: 10.1093/gji/gg
Hernández-Saz, J; Herrera, M; Delgado, F J; Duguay, S; Philippe, T; Gonzalez, M; Abell, J; Walters, R J; Molina, S I
2016-07-29
The analysis by atom probe tomography (APT) of InAlAsSb layers with applications in triple junction solar cells (TJSCs) has shown the existence of In- and Sb-rich regions in the material. The composition variation found is not evident from the direct observation of the 3D atomic distribution and because of this a statistical analysis has been required. From previous analysis of these samples, it is shown that the small compositional fluctuations determined have a strong effect on the optical properties of the material and ultimately on the performance of TJSCs.
McCrory, P.A.
2000-01-01
Geologic measurement of permanent contraction across the Cascadia subduction margin constrains one component of the tectonic deformation along the convergent plate boundary, the component critical for the seismic hazard assessment of crustal faults. A comprehensive survey of active faults in onshore subduction margin rocks at the southern end of the Cascadia subduction zone indicates that these thrust faults accommodate ??10 mm/yr of convergence oriented 020??-045??. Seismotectonic models of subduction zones typically assign this upper plate strain to the estimate of aseismic slip on the megathrust. Geodetic models include this permanent crustal strain within estimates of elastic strain accumulation on the megathrust. Both types of models underestimate the seismic hazard associated with crustal faults. Subtracting the observed contraction from the plate convergence rate (40-50 mm/yr; directed 040??-055??) leaves 30-40 mm/yr of convergence to be partitioned between slip on the megathrust, contraction within the southern Juan de Fuca plate, and crustal contraction outside the subduction complex rocks. This simple estimate of slip partitioning neglects the discrepancy between the plate convergence and contraction directions in the vicinity of the Mendocino triple junction. The San Andreas and Cascadia limbs of the Mendocino triple junction are not collinear. The eastern edge of the broad San Andreas boundary is ??85 km east of the Cascadia subduction boundary, and across this zone the Pacific plate converges directly with the North America plate. The skewed orientation of crustal structures just north of the leading edge of the Pacific plate suggests that they are deforming in a hybrid stress field resulting from both Juan de Fuca-North America motion and Pacific-North America motion. The composite convergence direction (50 mm/yr: directed 023??) is consistent with the compressive stress axis (020??) inferred from focal mechanisms of crustal earthquakes in the Humboldt region. Deformation in such a hybrid stress field implies that the crustal faults are being loaded from two major tectonic sources. The slip on crustal faults north of the Mendocino triple junction may consume 4-5 mm/yr of Pacific-Humboldt convergence. The remaining 17-18 mm/yr of convergence may be consumed as distributed shortening expressed in the high rates of uplift in the Cape Mendocino region or as northward translation of the continental margin, north of the triple junction.
NASA Technical Reports Server (NTRS)
Sinharoy, Samar; Patton, Martin O.; Valko, Thomas M., Sr.; Weizer, Victor G.
2002-01-01
Theoretical calculations have shown that highest efficiency III-V multi-junction solar cells require alloy structures that cannot be grown on a lattice-matched substrate. Ever since the first demonstration of high efficiency metamorphic single junction 1.1 eV and 1.2 eV InGaAs solar cells by Essential Research Incorporated (ERI), interest has grown in the development of multi-junction cells of this type using graded buffer layer technology. ERI is currently developing a dual-junction 1.6 eV InGaP/1.1 eV InGaAs tandem cell (projected practical air-mass zero (AM0), one-sun efficiency of 28%, and 100-sun efficiency of 37.5%) under a Ballistic Missile Defense Command (BMDO) SBIR Phase II program. A second ongoing research effort at ERI involves the development of a 2.1 eV AlGaInP/1.6 eV InGaAsP/1.2 eV InGaAs triple-junction concentrator tandem cell (projected practical AM0 efficiency of 36.5% under 100 suns) under a SBIR Phase II program funded by the Air Force. We are in the process of optimizing the dual-junction cell performance. In case of the triple-junction cell, we have developed the bottom and the middle cell, and are in the process of developing the layer structures needed for the top cell. A progress report is presented in this paper.
NASA Astrophysics Data System (ADS)
Yeh, Li-Ko; Tian, Wei-Cheng; Lai, Kun-Yu; He-Hau, Jr.
2016-12-01
GaInP/GaAs/Ge triple-junction concentrator solar cells with significant efficiency enhancement were demonstrated with antireflective ZnO nanoneedles. The novel nanostructure was attained with a Zn(NO3)2-based solution containing vitamin C. Under one sun AM 1.5G solar spectrum, conversion efficiency of the triple-junction device was improved by 23.7% via broadband improvement in short-circuit currents of 3 sub-cells after the coverage by the nanoneedles with a graded refractive index profile. The efficiency enhancement further went up to 45.8% at 100 suns. The performance boost through the nanoneedles also became increasingly pronounced in the conditions of high incident angles and the cloudy weather, e.g. 220.0% of efficiency enhancement was observed at the incident angle of 60°. These results were attributed to the exceptional broadband omnidirectionality of the antireflective nanoneedles.
Associations of Pd, U and Ag in the SiC layer of neutron-irradiated TRISO fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lillo, Thomas; Rooyen, Isabella Van
2015-05-01
Knowledge of the associations and composition of fission products in the neutron irradiated SiC layer of high-temperature gas reactor TRISO fuel is important to the understanding of various aspects of fuel performance that presently are not well understood. Recently, advanced characterization techniques have been used to examine fuel particles from the Idaho National Laboratory’s AGR-1 experiment. Nano-sized Ag and Pd precipitates were previously identified in grain boundaries and triple points in the SiC layer of irradiated TRISO nuclear fuel. Continuation of this initial research is reported in this paper and consists of the characterization of a relatively large number ofmore » nano-sized precipitates in three areas of the SiC layer of a single irradiated TRISO nuclear fuel particle using standardless EDS analysis on focused ion beam-prepared transmission electron microscopy samples. Composition and distribution analyses of these precipitates, which were located on grain boundaries, triple junctions and intragranular precipitates, revealed low levels, generally <10 atomic %, of palladium, silver and/or uranium with palladium being the most common element found. Palladium by itself, or associated with either silver or uranium, was found throughout the SiC layer. A small number of precipitates on grain boundaries and triple junctions were found to contain only silver or silver in association with palladium while uranium was always associated with palladium but never found by itself or in association with silver. Intergranular precipitates containing uranium were found to have migrated ~23 μm along a radial direction through the 35 μm thick SiC coating during the AGR-1 experiment while silver-containing intergranular precipitates were found at depths up to ~24 μm in the SiC layer. Also, Pd-rich, nano-precipitates (~10 nm in diameter), without evidence for the presence of either Ag or U, were revealed in intragranular regions throughout the SiC layer. Because not all grain boundaries and triple junctions contained precipitates with fission products and/or uranium, along with the differences in migration behavior between Pd, Ag and U, it was concluded that crystallographic grain boundary and triple junction parameters likely influence migration behavior.« less
Unfolding of a branched double-helical DNA three-way junction with triple-helical ends.
Hüsler, P L; Klump, H H
1994-08-15
We have designed three oligonucleotides (33 mers) which when mixed in a 1:1:1 ratio form double-helical DNA three-way junctions with triple helical ends in the pH interval pH 4 to 5.5. The triplex to coil transition is initiated by raising the temperature and was recorded by temperature gradient gel electrophoresis, uv melting, and differential scanning calorimetry. The transitions can be deconvoluted into three subtransitions representing the independent thermal denaturation of each of the arms. We have proposed a model for the unfolding pathway and give the thermodynamic parameters for each step as calculated using the formalism outlined in the appendix.
Laser induced non-monotonic degradation in short-circuit current of triple-junction solar cells
NASA Astrophysics Data System (ADS)
Dou, Peng-Cheng; Feng, Guo-Bin; Zhang, Jian-Min; Song, Ming-Ying; Zhang, Zhen; Li, Yun-Peng; Shi, Yu-Bin
2018-06-01
In order to study the continuous wave (CW) laser radiation effects and mechanism of GaInP/GaAs/Ge triple-junction solar cells (TJSCs), 1-on-1 mode irradiation experiments were carried out. It was found that the post-irradiation short circuit current (ISC) of the TJSCs initially decreased and then increased with increasing of irradiation laser power intensity. To explain this phenomenon, a theoretical model had been established and then verified by post-damage tests and equivalent circuit simulations. Conclusion was drawn that laser induced alterations in the surface reflection and shunt resistance were the main causes for the observed non-monotonic decrease in the ISC of the TJSCs.
NASA Astrophysics Data System (ADS)
Pérez, Omar J.; Wesnousky, Steven G.; De La Rosa, Roberto; Márquez, Julio; Uzcátegui, Redescal; Quintero, Christian; Liberal, Luis; Mora-Páez, Héctor; Szeliga, Walter
2018-06-01
We examine the hypocentral distribution of seismicity and a series of geodetic velocity vectors obtained from Global Positioning System (GPS) observations between 1994 and 2015 both off-shore and mainland northwestern South America [66° W - 77° W; 8° N - 14° N]. Our analysis, that includes a kinematic block modeling, shows that east of the Caribbean-South American-North Andes plates triple junction at ˜68° W; 10.7° N, right-lateral easterly oriented shear motion (˜19.6 ± 2.0 mm/yr) between the Caribbean and South-America plates is split along two easterly striking, right-lateral strike slip subparallel fault zones: the San Sebastián fault that runs offshore the Venezuelan coast and slips about 17.0 ± 0.5 mm/yr, and the La Victoria fault, located onshore to the south, which is accumulating strain equivalent to 2.6 ± 0.4 mm/yr. West of the triple junction, relative right-lateral motion between the Caribbean and South American plates is mostly divided between the Morrocoy and Boconó fault systems which strike northwest and southwest from the triple junction, respectively, and bound the intervening North Andes plate that shows an easterly oriented geodetic slip of 15.0 ± 1.0 mm/yr relative to the South American plate. Slip on the Morrocoy fault is right-lateral and transtensional. Motion across the Boconó fault is also right-lateral but instead transpressional, divided between ˜9 to 11 mm/yr of right-slip on the Boconó fault and 2 to 5 mm/yr of convergence across adjacent and subparallel thrust faults. Farther west of the triple junction, ˜800 km away in northern Colombia, the Caribbean plate subducts to the southeast beneath the North Andes plate at a geodetically estimated rate of ˜5-7 mm/yr.
NASA Astrophysics Data System (ADS)
Bauhuis, Gerard J.; Mulder, Peter; Haverkamp, Erik J.; Schermer, John J.; Nash, Lee J.; Fulgoni, Dominic J. F.; Ballard, Ian M.; Duggan, Geoffrey
2010-10-01
The epitaxial lift-off (ELO) technique has been combined with inverted III-V PV cell epitaxial growth with the aim of employing thin film PV cells in HCPV systems. In a stepwise approach to the realization of an inverted triple junction on a MELO platform we have first grown a GaAs single junction PV cell to establish the basic layer release process and cell processing steps followed by the growth, fabrication and test of an inverted InGaP/GaAs dual junction structure.
The Galapagos Microplate Revealed
NASA Astrophysics Data System (ADS)
Smith, D. K.; Schouten, H.; Cann, J. R.; Zhu, W.; Montesi, L. G.; Mitchell, G. A.
2009-12-01
We report a new bathymetry survey of the Galapagos microplate (GMP), which separates the Pacific, Nazca, and Cocos plates at the Galapagos Triple Junction. Prior to the formation of the microplate, 1.5-1.0 Ma, there was a succession of transient minor rifts forming triple junctions north and south of the propagating Cocos-Nazca rift (see Schouten et al. abstract). As proposed by Lonsdale (1988) the formation of a large near-axis seamount coincided with the initiation of the GMP and stabilized rifting on its southern boundary, now called Dietz Deep Rift. Lonsdale also proposed that the GMP was rotating clockwise at 6 degrees/my. Schouten et al. (1993) and Klein et al. (2005) applied an edge-driven microplate model to the GMP to understand its kinematics and predicted rotation rates of 30-40 degrees/my and 22 degrees/my, respectively. These interpretations and predictions were based on sparse bathymetry data. In early 2009 (AT 15-41), we mapped the Galapagos microplate in its entirety to understand more fully the conditions that led to the stabilization of the southern triple junction at Dietz Deep Rift and to constrain the rotation rate of the microplate. Our new data show the two highly contrasted sections of Dietz Deep Rift. The northeastern section contains Dietz Deep, a 2 km deep basin, within a fault-dominated rift valley about 20 km wide; subsidiary rifts occur to the south. Sidescan data indicate that extension in this broadly rifted area has been largely amagmatic. The southwestern section of Dietz Deep Rift is dominated by a variety of volcanic constructions in which faulting plays a minor part. The volcanism has resulted in two large seamounts and a number of volcanic ridges running parallel to the fault dominated rift valley. The largest volcanic ridge is steep-sided and straight, and extends to intersect the East Pacific Rise (EPR) at 1 10’N to form the triple junction. Other minor volcanic ridges occur in the SW section of the microplate fanning towards the EPR from the north side of the large, straight ridge. Most of the core of the microplate shows N-S abyssal hills produced at the EPR, and indicates that the microplate is not rotating and has not rotated for much of its history. A section of seafloor in the northeast part of the microplate, however, has been rotated and indicates that before about 1 Ma the kinematics of the region were different. We present scenarios for the evolution of the southern triple junction to explain the seafloor patterns.
NASA Astrophysics Data System (ADS)
Acton, Gary D.; Tessema, Abera; Jackson, Michael; Bilham, Roger
2000-08-01
Deformation throughout Afar over the past 2 myr has been characterized by widespread and intense crustal fragmentation that results from inhomogeneous extension across the region. In eastern Afar, this situation has evolved to localized extension associated with the westward propagation of the Gulf of Aden/Gulf of Tadjurah seafloor spreading system into the Asal-Ghoubbet Rift. During the gradual process of rift propagation and localization, crustal blocks in eastern Afar sustained clockwise rotations of ˜11°. To better understand the processes of rift propagation and localization and how they affect the rest of Afar, we have collected and analyzed over 400 oriented paleomagnetic samples from 67 lava flows from central and southern Afar. Unlike eastern Afar, the mean paleomagnetic direction from central Afar indicates that vertical-axis rotations are statistically insignificant (3.6°±4.4°), though small clockwise rotations (<8°) are permitted. Thus, propagation and localization in central Afar have not had the same influence in causing crustal block rotations or, perhaps more likely, have not reached the same stage of evolution as seen in eastern Afar. In addition, several of the lava flows record intriguing geomagnetic field behavior associated with polarity transitions, excursions, or large secular variation events. Interestingly, the transitional or anomalous virtual geomagnetic poles (VGPs) tend to cluster in two nearly antipodal regions, one in the northern Pacific Ocean and the other in the southwest Indian Ocean. One lava flow has recorded both of the antipodal transitional components, with the two components residing in magnetic minerals with unblocking temperatures above and below ˜500°C, respectively. Reheating and partial remagnetization by the overlying flow cannot explain either of the transitional directions because both differ significantly from that of the reversely magnetized overlying flow. The high-temperature component gives a VGP in the northern Pacific, whereas the lower-temperature component gives a nearly antipodal VGP south of Cape Town, South Africa. Hence, the configuration of the geomagnetic field appears to have jumped nearly instantaneously from a northern-hemisphere transitional state to a southern-hemisphere one during this normal-to-reverse polarity transition.
NASA Astrophysics Data System (ADS)
Mintairov, M. A.; Evstropov, V. V.; Mintairov, S. A.; Shvarts, M. Z.; Kozhukhovskaia, S. A.; Kalyuzhnyy, N. A.
2017-11-01
The existence within monolithic double- and triple-junction solar cells of a photoelectric source, which counteracts the basic photovoltaic p-n junctions, is proved. The paper presents a detailed analysis of the shape of the light IV-characteristics, as well as the dependence Voc-Jsc (open circuit voltage - short-circuit current). It is established that the counteracting source is tunnel p+-n+ junction. The photoelectric characteristics of samples with different tunnel diode peak current values were investigated, including the case of a zero value. When the tunnel p+-n+ junction is photoactive, the Voc-Jsc dependence has a dropping part, including a sharp jump. This undesirable effect decreases with increasing peak current.
On the enigmatic birth of the Pacific Plate within the Panthalassa Ocean
Boschman, Lydian M.; van Hinsbergen, Douwe J. J.
2016-01-01
The oceanic Pacific Plate started forming in Early Jurassic time within the vast Panthalassa Ocean that surrounded the supercontinent Pangea, and contains the oldest lithosphere that can directly constrain the geodynamic history of the circum-Pangean Earth. We show that the geometry of the oldest marine magnetic anomalies of the Pacific Plate attests to a unique plate kinematic event that sparked the plate’s birth at virtually a point location, surrounded by the Izanagi, Farallon, and Phoenix Plates. We reconstruct the unstable triple junction that caused the plate reorganization, which led to the birth of the Pacific Plate, and present a model of the plate tectonic configuration that preconditioned this event. We show that a stable but migrating triple junction involving the gradual cessation of intraoceanic Panthalassa subduction culminated in the formation of an unstable transform-transform-transform triple junction. The consequent plate boundary reorganization resulted in the formation of a stable triangular three-ridge system from which the nascent Pacific Plate expanded. We link the birth of the Pacific Plate to the regional termination of intra-Panthalassa subduction. Remnants thereof have been identified in the deep lower mantle of which the locations may provide paleolongitudinal control on the absolute location of the early Pacific Plate. Our results constitute an essential step in unraveling the plate tectonic evolution of “Thalassa Incognita” that comprises the comprehensive Panthalassa Ocean surrounding Pangea. PMID:29713683
On the Enigmatic Birth of the Pacific Plate within the Panthalassa Ocean
NASA Astrophysics Data System (ADS)
Boschman, L.; Van Hinsbergen, D. J. J.
2016-12-01
The oceanic Pacific Plate started forming in Early Jurassic time within the vast Panthalassa Ocean that surrounded the supercontinent Pangea and contains the oldest lithosphere that can directly constrain the geodynamic history of the circum-Pangean Earth. Here, we show that the geometry of the oldest marine magnetic anomalies of the Pacific Plate attests of a unique plate kinematic event that sparked the plate's birth in virtually a point location, surrounded by the Izanagi, Farallon and Phoenix Plates. We reconstruct the unstable triple junction that caused the plate reorganization leading to the birth of the Pacific Plate and present a model of the plate tectonic configuration that preconditioned this event. We show that a stable, but migrating triple junction involving the gradual cessation of intra-oceanic Panthalassa subduction culminated in the formation of an unstable transform-transform-transform triple junction. The consequent plate boundary reorganization resulted in the formation of a stable triangular three-ridge system from which the nascent Pacific Plate expanded. We link the birth of the Pacific Plate to the regional termination of intra-Panthalassa subduction. Remnants thereof have been identified in the deep lower mantle of which the locations may provide paleolongitudinal control on the absolute location of the early Pacific Plate. Our results constitute an essential step in unraveling the plate tectonic evolution of `Thalassa Incognita' comprising the comprehensive Panthalassa Ocean surrounding Pangea.
Singh, Meenesh R; Clark, Ezra L; Bell, Alexis T
2015-11-10
Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.
NASA Astrophysics Data System (ADS)
Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.
2015-11-01
Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.
On the enigmatic birth of the Pacific Plate within the Panthalassa Ocean.
Boschman, Lydian M; van Hinsbergen, Douwe J J
2016-07-01
The oceanic Pacific Plate started forming in Early Jurassic time within the vast Panthalassa Ocean that surrounded the supercontinent Pangea, and contains the oldest lithosphere that can directly constrain the geodynamic history of the circum-Pangean Earth. We show that the geometry of the oldest marine magnetic anomalies of the Pacific Plate attests to a unique plate kinematic event that sparked the plate's birth at virtually a point location, surrounded by the Izanagi, Farallon, and Phoenix Plates. We reconstruct the unstable triple junction that caused the plate reorganization, which led to the birth of the Pacific Plate, and present a model of the plate tectonic configuration that preconditioned this event. We show that a stable but migrating triple junction involving the gradual cessation of intraoceanic Panthalassa subduction culminated in the formation of an unstable transform-transform-transform triple junction. The consequent plate boundary reorganization resulted in the formation of a stable triangular three-ridge system from which the nascent Pacific Plate expanded. We link the birth of the Pacific Plate to the regional termination of intra-Panthalassa subduction. Remnants thereof have been identified in the deep lower mantle of which the locations may provide paleolongitudinal control on the absolute location of the early Pacific Plate. Our results constitute an essential step in unraveling the plate tectonic evolution of "Thalassa Incognita" that comprises the comprehensive Panthalassa Ocean surrounding Pangea.
NASA Technical Reports Server (NTRS)
Mueller, Robert L.; Anspaugh, Bruce E.
1993-01-01
A series of environmental tests were completed on one type of triple junction a-Si and two types of CuInSe2 thin film solar cells. The environmental tests include electron irradiation at energies of 0.7, 1.0, and 2.0 MeV, proton irradiation at energies of 0.115, 0.24, 0.3, 0.5, 1.0, and 3.0 MeV, post-irradiation annealing at temperatures between 20 C and 60 C, long term exposure to air mass zero (AM0) photons, measurement of the cells as a function of temperature and illumination intensity, and contact pull strength tests. As expected, the cells are very resistant to electron and proton irradiation. However, when a selected cell type is exposed to low energy protons designed to penetrate to the junction region, there is evidence of more significant damage. A significant amount of recovery was observed after annealing in several of the cells. However, it is not permanent and durable, but merely a temporary restoration, later nullified with additional irradiation. Contact pull strengths measured on the triple junction a-Si cells averaged 667 grams, and pull strengths measured on the Boeing CuInSe2 cells averaged 880 grams. Significant degradation of all cell types was observed after exposure to a 580 hour photon degradation test, regardless of whether the cells had been unirradiated or irradiated (electrons or protons). Although one cell from one manufacturer lost approximately 60 percent of its power after the photon test, several other cells from this manufacturer did not degrade at all.
Afar-wide Crustal Strain Field from Multiple InSAR Tracks
NASA Astrophysics Data System (ADS)
Pagli, C.; Wright, T. J.; Wang, H.; Calais, E.; Bennati Rassion, L. S.; Ebinger, C. J.; Lewi, E.
2010-12-01
Onset of a rifting episode in the Dabbahu volcanic segment, Afar (Ethiopia), in 2005 renewed interest in crustal deformation studies in the area. As a consequence, an extensive geodetic data set, including InSAR and GPS measurements have been acquired over Afar and hold great potential towards improving our understanding of the extensional processes that operate during the final stages of continental rupture. The current geodetic observational and modelling strategy has focused on detailed, localised studies of dyke intrusions and eruptions mainly in the Dabbahu segment. However, an eruption in the Erta ‘Ale volcanic segment in 2008, and cluster of earthquakes observed in the Tat Ale segment, are testament to activity elsewhere in Afar. Here we make use of the vast geodetic dataset available to obtain strain information over the whole Afar depression. A systematic analysis of all the volcanic segments, including Dabbahu, Manda-Hararo, Alayta, Tat ‘Ale Erta Ale and the Djibouti deformation zone, is undertaken. We use InSAR data from multiple tracks together with available GPS measurements to obtain a velocity field model for Afar. We use over 300 radar images acquired by the Envisat satellite in both descending and ascending orbits, from 12 distinct tracks in image and wide swath modes, spanning the time period from October 2005 to present time. We obtain the line-of-sight deformation rates from each InSAR track using a network approach and then combine the InSAR velocities with the GPS observations, as suggested by Wright and Wang (2010) following the method of England and Molnar (1997). A mesh is constructed over the Afar area and then we solve for the horizontal and vertical velocities on each node. The resultant full 3D Afar-wide velocity field shows where current strains are being accumulated within the various volcanic segments of Afar, the width of the plate boundary deformation zone and possible connections between distinct volcanic segments on a regional scale. A comparison of crustal strains from the geodetic analysis with the seismicity data will also be made.
NASA Astrophysics Data System (ADS)
Sametoglu, Ferhat; Celikel, Oguz; Witt, Florian
2017-10-01
A differential spectral responsivity (DSR) measurement system has been designed and constructed at National Metrology Institute of Turkey (TUBITAK UME) to determine the spectral responsivity (SR) of a single- or a multi-junction photovoltaic device (solar cell). The DSR setup contains a broad band light bias source composed of a constructed Solar Simulator based on a 1000 W Xe-arc lamp owning a AM-1.5 filter and 250 W quartz-tungsten-halogen lamp, a designed and constructed LED-based Bias Light Sources, a DC voltage bias circuit, and a probe beam optical power tracking and correction circuit controlled with an ADuC847 microcontroller card together with an embedded C based software, designed and constructed in TUBITAK UME under this project. By using the constructed DSR measurement system, the SR calibration of solar cells, the monolitic triple-junction solar cell GaInP/GaInAs/Ge and its corresponding component cells have been performed within the EURAMET Joint Research Project SolCell.
Performance of High-Efficiency Advanced Triple-Junction Solar Panels for the LILT Mission Dawn
NASA Technical Reports Server (NTRS)
Fatemi, Navid S.; Sharma, Surya; Buitrago, Oscar; Sharps, Paul R.; Blok, Ron; Kroon, Martin; Jalink, Cees; Harris, Robin; Stella, Paul; Distefano, Sal
2005-01-01
NASA's Discovery Mission Dawn is designed to (LILT) conditions. operate within the solar system's Asteroid belt, where the large distance from the sun creates a low-intensity, low-temperature (LILT) condition. To meet the mission power requirements under LlLT conditions, very high-efficiency multi-junction solar cells were selected to power the spacecraft to be built by Orbital Sciences Corporation (OSC) under contract with JPL. Emcore's InGaP/InGaAs/Ge advanced triple-junction (ATJ) solar cells, exhibiting an average air mass zero (AMO) efficiency of greater than 27.6% (one-sun, 28 C), were used to populate the solar panels [1]. The two solar array wings, to be built by Dutch Space, with 5 large- area panels each (total area of 36.4 sq. meters) are projected to produce between 10.3 kWe and 1.3 kWe of end-of life (EOL) power in the 1.0 to 3.0 AU range, respectively. The details of the solar panel design, testing and power analysis are presented.
Ultrastable Nontoxic RNA Nanoparticles for Targeting Triple-Negative Breast Cancer Stem Cells
2016-04-01
delivery system to meet the urgent need of efficient strategies for the treatment of breast cancer. 15. SUBJECT TERMS RNA nanotechnology ; three-way...construct a new generation of drugs composed purely of RNA (Nature Nanotechnology , 2011, 6: 658; Nano Today, 2012, 7: 245). Our goal is to apply our...anti-proliferative, anti-invasive and anti- metastasis properties. 2. KEYWORDS: RNA nanotechnology ; three-way junction; RNA aptamer; miRNA; triple
the role of magmatism and segmentation in the structural evolution of the Afar Rift
NASA Astrophysics Data System (ADS)
Stab, Martin; Bellahsen, Nicolas; Pik, Raphaël; Quidelleur, Xavier; Ayalew, Dereje; Leroy, Sylvie
2015-04-01
A common issue at volcanic passive margins (VPM) is the lack of observation of the structures that accommodate stretching and thinning. Indeed, the most distal parts and the Ocean-Continent Transition is often masked by thick seaward-dipping reflectors (SDR) sequences. Some current challenges are then to know if the observed thinning fit the divergence (thinning vs dyking); and what is the rheological effect of magma supply that re-thickens the crust during extension? In the Central Afar magmatic rift (Ethiopia), the structures related to rifting since Oligocene are cropping out onshore and are well preserved. We present here a new structural model based on field data and lavas (U-Th/He and K/Ar) datings along a balanced cross-section of the Central Afar Western Margin. We mapped continent-ward normal fault array affecting highly tilted trapp series (29-30 Ma) unconformably overlain by tilted Oligo-Miocene (25-7 Ma) acid series. The main extensional and necking/thinning event took place during the end of this Miocene magmatic episode. The Pliocene flood basalt (Stratoid series) is erupted over an already thinned crust. The bulk extension for the Afar Western Margin is ß ~ 2.50. Our main findings are: - Oligo-Miocene deformation in Central Afar appears to be largely distributed through space and time ("magmatic wide rift"). It has been accommodated in a 200-300 km wide strip being a diffuse incipient plate boundary during the whole rifting history until the formation of present-day magmatic segments. There is a period of tectonic quiescence accompanied with few magma erupted at the surface between 25 Ma and 7 Ma. We suggest that tectonic and magmatic activity was focused at that time on the highly faulted Danakil block and Southern Red Sea, away from our study zone. - ß ~ 2.50 is higher than the thinning factor of ~1.30 observed in geophysical studies. We propose that the continental crust in Central Afar has been re-thickened during extension by the syn-rift magmatic supply. The difference in tectono-magmatic style between Central Afar (distributed extension and thick crust) and Northern Afar Erta Ale segment (narrow graben, thin crust) may be explained by the difference of magma volume (extruded & underplated) brought to the crust during extension. Magma supply in Central Afar thus allows the crust to be stretched without extreme thinning despite high degree of divergence. Thus, break-up may occur in both Central and Northern Afar, not depending on the apparent thickness of the crust but rather on the ability of the system to localize deformation. - There appears to be a link between early-rift transform zones and distribution of magmatic activity that affects in turn the structural style. We suggest that the closest feature from the SDR at mature VPM is the Stratoid series. The difference of volume between the Stratoid and the enormous volume of SDR imaged in seismic studies (e.g South Atlantic) is probably best explained by an initial low mantle potential temperature in Afar. Contrasted structural styles in Afar are the product of magma supply and segmentation, controlling thinning and extension distribution in the rift.
Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.
2015-01-01
Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices. PMID:26504215
Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.
2015-10-26
Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO 2 reduction on silver and coppermore » cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H 2 and CO) and Hythane (H 2 and CH 4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. Finally, we show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C 2H 4 have high profitability indices.« less
Hotspots and Superswell Beneath Africa Inferred From Surface Wave Anisotropic Tomography.
NASA Astrophysics Data System (ADS)
Sebai, A.; Stutzmann, E.; Montagner, J.
2003-12-01
In order to study the interaction at depth between hotspots and lithosphere we present a new anisotropic S-wave tomographic model of Africa which is derived from Rayleigh and Love wave phase velocity measurements. The strongest negative anomaly corresponds to the Afar plume which is presently the most active area of Africa. This slow anomaly, visible down to the deepest inverted depth (400km), is associated with azimuthal anisotropy that is weak right beneath the Afar and whose direction at further distances is diverging around the plume. This is consistent with active upwelling beneath the Afar. The smaller hotspots of Tibesti, Darfur, Hoggar and Mt Cameroon have appeared in regions that had been weakened by Late Jurassic-Early Cretaceous (145 Ma) rifting of West and Central Africa. They are associated with slow velocities down to about 200km. The smaller amplitude of these anomalies with respect to the Afar area and their limited depth extent may indicate that these hotspots have their origin in the uppermost boundary layer between asthenosphere and lithosphere. Nevertheless, there may be a complex relationship at depths shallower than 150km between these hotspots and the Afar. The superswell, located in the southern part of Africa is characterized by a broad area of positive velocity anomaly visible down to 300km depth. The base of Kalahari craton ( ˜ 280 km) is evidently characterized by an increase of azimuthal anisotropy. The direction of azimuthal axis is roughly North-South that rotates at the longitude of the Eastern rift to move around the Afar. This may suggest a feeding of Victoria and Afar hotspots from the deep South African superplume.
NASA Astrophysics Data System (ADS)
Brown, C.; Ebinger, C. J.; Belachew, M.; Gregg, T.; Keir, D.; Ayele, A.; Aronovitz, A.; Campbell, E.
2008-12-01
Fault patterns record the strain history along passive continental margins, but geochronological constraints are, in general, too sparse to evaluate these patterns in 3D. The Afar depression in Ethiopia provides a unique setting to evaluate the time and space relations between faulting and magmatism across an incipient passive margin that formed above a mantle plume. The margin comprises a high elevation flood basalt province with thick, underplated continental crust, a narrow fault-line escarpment underlain by stretched and intruded crust, and a broad zone of highly intruded, mafic crust lying near sealevel. We analyze fault and seismicity patterns across and along the length of the Afar rift zone to determine the spatial distribution of strain during the final stages of continental breakup, and its relation to active magmatism and dike intrusions. Seismicity data include historic data and 2005-2007 data from the collaborative US-UK-Ethiopia Afar Geodynamics Project that includes the 2005-present Dabbahu rift episode. Earthquake epicenters cluster within discrete, 50 km-long magmatic segments that lack any fault linkage. Swarms also cluster along the fault-line scarp between the unstretched and highly stretched Afar rift zone; these earthquakes may signal release of stresses generated by large lateral density contrasts. We compare Coulomb static stress models with focal mechanisms and fault kinematics to discriminate between segmented magma intrusion and crank- arm models for the central Afar rift zone.
Sr isotopic composition of Afar volcanics and its implication for mantle evolution
NASA Astrophysics Data System (ADS)
Barberi, F.; Civetta, L.; Varet, J.
1980-10-01
Investigations of Rb-Sr systematics of basalts from the Afar depression (Ethiopia) indicate the presence of a heterogeneous mantle source region. The Sr isotopic compositions of the basalts from the Afar axial and transverse ranges identify source regions which are enriched in LIL elements and radiogenic Sr (axial ranges) and others which are relatively depleted (transverse ranges). Sr isotopic composition of basalts from the Red Sea, Gulf of Aden and Gulf of Tadjoura, which range from 0.70300 to 0.70340 are also reported and compared with the more radiogenic Afar region, which is characterized by 87Sr/ 86Sr ranging from 0.70328 to 0.70410. Available geochemical and isotopic data suggest that a relation exists between magma composition and the advancement of the rifting process through progressive lithosphere attenuation leading to continental break-up. However, the petrogenetic process is not simple and probably implies a vertically zoned mantle beneath the Afar region. Sr isotopic evidence suggests that the vertically zoned mantle is more radiogenic and enriched in LIL elements in its upper part.
NASA Technical Reports Server (NTRS)
Anderson-Fontana, S.; Larson, R. L.; Engein, J. F.; Lundgren, P.; Stein, S.
1986-01-01
Magnetic and bathymetric profiles derived from the R/V Endeavor survey and focal mechanism studies for earthquakes on two of the Juan Fernandez microplate boundaries are analyzed. It is observed that the Nazca-Juan Fernandez pole is in the northern end of the microplate since the magnetic lineation along the East Ridge of the microplate fans to the south. The calculation of the relative motion of the Juan Fernandez-Pacific-Nazca-Antarctic four-plate system using the algorithm of Minster et al. (1974) is described. The development of tectonic and evolutionary models of the region is examined. The tectonic model reveals that the northern boundary of the Juan Fernandez microplate is a zone of compression and that the West Ridge and southwestern boundary are spreading obliquely; the evolutionary model relates the formation of the Juan Fernandez microplate to differential spreading rates at the triple junction.
Counter-rotating microplates at the Galapagos triple junction.
Klein, Emily M; Smith, Deborah K; Williams, Clare M; Schouten, Hans
2005-02-24
An 'incipient' spreading centre east of (and orthogonal to) the East Pacific Rise at 2 degrees 40' N has been identified as forming a portion of the northern boundary of the Galapagos microplate. This spreading centre was described as a slowly diverging, westward propagating rift, tapering towards the East Pacific Rise. Here we present evidence that the 'incipient rift' has also rifted towards the east and opens anticlockwise about a pivot at its eastern end. The 'incipient rift' then bounds a second microplate, north of the clockwise-rotating Galapagos microplate. The Galapagos triple junction region, in the eastern equatorial Pacific Ocean, thus consists of two counter-rotating microplates partly separated by the Hess Deep rift. Our kinematic solution for microplate motion relative to the major plates indicates that the two counter-rotating microplates may be treated as rigid blocks driven by drag on the microplates' edges3.
Griscom, A.; Jachens, R.C.
1989-01-01
Geologic and geophysical data for the San Andreas fault system north of San Francisco suggest that the eastern boundary of the Pacific plate migrated eastward from its presumed original position at the base of the continental slope to its present position along the San Andreas transform fault by means of a series of eastward jumps of the Mendocino triple junction. These eastward jumps total a distance of about 150 km since 29 Ma. Correlation of right-laterally displaced gravity and magnetic anomalies that now have components at San Francisco and on the shelf north of Point Arena indicates that the presently active strand of the San Andreas fault north of the San Francisco peninsula formed recently at about 5 Ma when the triple junction jumped eastward a minimum of 100 km to its present location at the north end of the San Andreas fault. -from Authors
High Radiation Resistance IMM Solar Cell
NASA Technical Reports Server (NTRS)
Pan, Noren
2015-01-01
Due to high launch costs, weight reduction is a key driver for the development of new solar cell technologies suitable for space applications. This project is developing a unique triple-junction inverted metamorphic multijunction (IMM) technology that enables the manufacture of very lightweight, low-cost InGaAsP-based multijunction solar cells. This IMM technology consists of indium (In) and phosphorous (P) solar cell active materials, which are designed to improve the radiation-resistant properties of the triple-junction solar cell while maintaining high efficiency. The intrinsic radiation hardness of InP materials makes them of great interest for building solar cells suitable for deployment in harsh radiation environments, such as medium Earth orbit and missions to the outer planets. NASA Glenn's recently developed epitaxial lift-off (ELO) process also will be applied to this new structure, which will enable the fabrication of the IMM structure without the substrate.
Durvalumab and Tremelimumab in Combination With First-Line Chemotherapy in Advanced Solid Tumors
2018-05-16
Small Cell Lung Carcinoma; Carcinoma, Squamous Cell of Head and Neck; Stomach Neoplasms; Triple Negative Breast Neoplasms; Ovarian Neoplasms; Fallopian Tube Neoplasms; Peritoneal Neoplasms; Esophagogastric Junction Neoplasms; Carcinoma, Pancreatic Ductal; Esophageal Squamous Cell Carcinoma
Major and micro seismo-volcanic crises in the Asal Rift, Djibouti
NASA Astrophysics Data System (ADS)
Peltzer, G.; Doubre, C.; Tomic, J.
2009-05-01
The Asal-Ghoubbet Rift is located on the eastern branch of the Afar triple junction between the Arabia, Somalia, and Nubia tectonic plates. The last major seismo-volcanic crisis on this segment occurred in November 1978, involving two earthquakes of mb=5+, a basaltic fissure eruption, the development of many open fissures across the rift and up to 80 cm of vertical slip on the bordering faults. Geodetic leveling revealed ~2 m of horizontal opening of the rift accompanied by ~70 cm of subsidence of the inner-floor, consistent with models of the elastic deformation produced by the injection of magma in a system of two dykes. InSAR data acquired at 24-day intervals during the last 12 years by the Canadian Radarsat satellite over the Asal Rift show that the two main faults activated in 1978 continue to slip with periods of steady creep at rates of 0.3-1.3 mm/yr, interrupted by sudden slip events of a few millimeters, in 2000 and 2003. Slip events are coincident with bursts of micro earthquakes distributed around and over the Fieale volcanic center in the eastern part of the Asal Rift. In both cases (the 1978 crisis and micro-slip events), the observed geodetic moment released by fault slip exceeds by a few orders of magnitude the total seismic moment released by earthquakes over the same period. Aseismic fault slip is likely to be the faults response to a changing stress field associated with a volcanic process and not due to dry friction on faults. Sustained injection of magma (1978 crisis) and/or crustal fluids (micro-slip events) in dykes and fissures is a plausible mechanism to control fluid pressure in the basal parts of faults and trigger aseismic slip. In this respect, the micro-events observed by InSAR during a 12-year period of low activity in the rift and the 1978 seismo-volcanic episode are of same nature.
Barriers and facilitators to accessing skilled birth attendants in Afar region, Ethiopia.
King, Rosemary; Jackson, Ruth; Dietsch, Elaine; Hailemariam, Asseffa
2015-05-01
to explore barriers and facilitators that enable women to access skilled birth attendance in Afar Region, Ethiopia. researchers used a Key Informant Research approach (KIR), whereby Health Extension Workers participated in an intensive training workshop and conducted interviews with Afar women in their communities. Data was also collected from health-care workers through questionnaires, interviews and focus groups. fourteen health extension workers were key informants and interviewers; 33 women and eight other health-care workers with a range of experience in caring for Afar childbearing women provided data as individuals and in focus groups. participants identified friendly service, female skilled birth attendants (SBA) and the introduction of the ambulance service as facilitators to SBA. There are many barriers to accessing SBA, including women׳s low status and restricted opportunities for decision making, lack of confidence in health-care facilities, long distances, cost, domestic workload, and traditional practices which include a preference for birthing at home with a traditional birth attendant. many Afar men and women expressed a lack of confidence in the services provided at health-care facilities which impacts on skilled birth attendance utilisation. ambulance services that are free of charge to women are effective as a means to transfer women to a hospital for emergency care if required and expansion of ambulance services would be a powerful facilitator to increasing institutional birth. Skilled birth attendants working in institutions need to ensure their practice is culturally, physically and emotionally safe if more Afar women are to accept their midwifery care. Adequate equipping and staffing of institutions providing emergency obstetric and newborn care will assist in improving community perceptions of these services. Most importantly, mutual respect and collaboration between traditional birth attendants (Afar women׳s preferred caregiver), health extension workers and skilled birth attendants will help ensure timely consultation and referral and reduce delay for women if they require emergency maternity care. Copyright © 2015 Elsevier Ltd. All rights reserved.
American Federation for Aging Research
... Press Room Links Videos HuffPost Infoaging Biology of Aging Disease Center Healthy Aging Ask the Expert Contact Us Press Info Contact ... the pipeline of research in the biology of aging AFAR's Impact GIVE to AFAR's work to help ...
1984-09-21
Identify by block number) - FIELD GROUP SUB-GROUP Double layer pillbox antennas Triple layer pillbox antenna The possibility of designing very broadband... Design .................... 1 Broadband Feed De gn ........................................... 2 Ex mental Simulation of Double Layer Pillbox...5 REFERENCES ................................................... 6 APPENDIX - COAXIAL TO WAVEGUIDE JUNCTION DESIGN
Anisotropic Signature of the Afar plume in the Upper Mantle.
NASA Astrophysics Data System (ADS)
Sicilia, D.; Montagner, J.; Debayle, E.; Leveque, J.; Cara, M.; Lepine, J.
2002-12-01
Plumes remain enigmatic geological objects and it is still unclear how they are formed and whether they act independently from plate tectonics. The role of plumes in mantle dynamics can be investigated by studying their interaction with lithosphere and crust and their perturbations on flow pattern in the mantle. The flow pattern can be derived from seismic anisotropy. An anisotropic surface wave tomography in the Horn of Africa was performed. The choice of the experiment in the Horn of Africa is motivated by the the presence of the Afar hotspot, one of the biggest continental hotspot. In the framework of the mantle degree 2 pattern, the Afar hotspot is the antipode of the Pacific superswell, but its origin at depth and its geodynamic importance are still debated. Data were collected from the permanent IRIS and GEOSCOPE networks and from the PASSCAL experiment in Tanzania and Saudi Arabia. We completed our data base with a French deployment of portable broadband stations surrounding the Afar Hotspot. Path average phase velocities are obtained by using a method based on a least-squares minimization (Beucler et al.,2002). A correction of the data is applied according to the a priori 3SMAC model (Nataf and Ricard, 1996). 3D-models of velocity, radial and azimuthal anisotropies are inverted for. Down to 250km, low velocities are found beneath the Red Sea, the Gulf of Aden, the South East of the Tanzania Craton, the Afar hotspot. High velocities are present in the eastern Arabia and the Tanzania Craton. These results are in agreement with the isotropic model of Debayle et al. (2002). The anisotropy model beneath Afar displays a complex pattern. The azimuthal anisotropy shows that the Afar plume might be interpreted as feeding other hotspots in central Africa. Deeper in the asthenosphere, a wide stem of positive radial anisotropy (VSH > VSV) comes up, where we might expect the reverse sign. The same observation was made below Iceland (Gaherty, 2001) and Hawaii (Montagner, 2002). Different interpretations of this observation can be proposed, in terms of perturbation of the flow pattern around Afar or of the predominant influence of water-rich plume material where other mechanisms of alignment prevail (Jung and Karato, 2001).
Transient cracks and triple junctions induced by Cocos-Nazca propagating rift
NASA Astrophysics Data System (ADS)
Schouten, H.; Smith, D. K.; Zhu, W.; Montesi, L. G.; Mitchell, G. A.; Cann, J. R.
2009-12-01
The Galapagos triple junction is a ridge-ridge-ridge triple junction where the Cocos, Nazca, and Pacific plates meet around the Galapagos microplate (GMP). On the Cocos plate, north of the large gore that marks the propagating Cocos-Nazca (C-N) Rift, a 250-km-long and 50-km-wide band of NW-SE-trending cracks crosscuts the N-S-trending abyssal hills of the East Pacific Rise (EPR). These appear as a succession of minor rifts, accommodating some NE-SW extension of EPR-generated seafloor. The rifts successively intersected the EPR in triple junctions at distances of 50-100 km north of the tip of the C-N Rift. We proposed a simple crack interaction model to explain the location of the transient rifts and their junction with the EPR. The model predicts that crack locations are controlled by the stress perturbation along the EPR, induced by the dominant C-N Rift, and scaled by the distance of its tip to the EPR (Schouten et al., 2008). The model also predicts that tensile stresses are symmetric about the C-N Rift and thus, similar cracks should have occurred south of the C-N Rift prior to formation of the GMP about 1 Ma. There were no data at the time to test this prediction. In early 2009 (AT 15-41), we mapped an area on the Nazca plate south of the C-N rift out to 4 Ma. The new bathymetric data confirm the existence of a distinctive pattern of cracks south of the southern C-N gore that mirrors the pattern on the Cocos plate until about 1 Ma, and lends support to the crack interaction model. The envelope of the symmetric cracking pattern indicates that the distance between the C-N Rift tip and the EPR varied between 40 and 65 km during this time (1-4 Ma). The breakdown of the symmetry at 1 Ma accurately dates the onset of a southern plate boundary of the GMP, now Dietz Deep Rift. At present, the southern rift boundary of the GMP joins the EPR with a steep-sided, 80 km long ridge. This ridge releases the stress perturbation otherwise induced along the EPR by elastic interaction with the C-N Rift and prevents the formation of minor rifts of the type in the North of the C-N Rift. However, the seafloor displays traces of rifts formed as the Dietz Deep Rift was approaching the EPR. In fact, the present day ridge appears to have originated as one of these minor rifts, probably stabilized by enhanced magma supply from a nearby volcano at the southwestern end of Dietz Deep.
NASA Technical Reports Server (NTRS)
Kronberg, P. (Principal Investigator)
1974-01-01
The author has identified the following significant results. ERTS-1 MSS imagery covering the Afar-Triangle/Ethiopia and adjacent regions (Ethiopian Plateau, Somali Plateau, and parts of Yemen and Saudi Arabi) was applied to the mapping of lithologic and structural units of the test area at a scale 1:1,000,000. Results of the geological evaluation of the ERTS-1 imagery of the Afar have proven the usefullness of this type of satellite data for regional geological mapping. Evaluation of the ERTS images also resulted in new aspects of the structural setting and tectonic development of the Afar-Triangle, where three large rift systems, the oceanic rifts of the Red Sea and Gulf of Aden and the continental East African rift system, seem to meet each other. Surface structures mapped by ERTS do not indicate that the oceanic rift of the Gulf of Aden (Sheba Ridge) continues into the area of continental crust west of the Gulf of Tadjura. ERTS data show that the Wonji fault belt of the African rift system does not enter or cut through the central Afar. The Aysha-Horst is not a Horst but an autochthonous spur of the Somali Plateau.
NASA Astrophysics Data System (ADS)
Sugaya, Takeyoshi; Tayagaki, Takeshi; Aihara, Taketo; Makita, Kikuo; Oshima, Ryuji; Mizuno, Hidenori; Nagato, Yuki; Nakamoto, Takashi; Okano, Yoshinobu
2018-05-01
We report high-quality dual-junction GaAs solar cells grown using solid-source molecular beam epitaxy and their application to smart stacked III–V//Si quadruple-junction solar cells with a two-terminal configuration for the first time. A high open-circuit voltage of 2.94 eV was obtained in an InGaP/GaAs/GaAs triple-junction top cell that was stacked to a Si bottom cell. The short-circuit current density of a smart stacked InGaP/GaAs/GaAs//Si solar cell was in good agreement with that estimated from external quantum efficiency measurements. An efficiency of 18.5% with a high open-circuit voltage of 3.3 V was obtained in InGaP/GaAs/GaAs//Si two-terminal solar cells.
Kong, Lijing; Wu, Zhiming; Chen, Shanshan; Cao, Yiyan; Zhang, Yong; Li, Heng; Kang, Junyong
2015-01-01
An electroluminescence microscopy combined with a spectroscopy was developed to visually analyze multi-junction solar cells. Triple-junction solar cells with different conversion efficiencies were characterized by using this system. The results showed that the mechanical damages and material defects in solar cells can be clearly distinguished, indicating a high-resolution imaging. The external quantum efficiency (EQE) measurements demonstrated that different types of defects or damages impacted cell performance in various degrees and the electric leakage mostly degraded the EQE. Meanwhile, we analyzed the relationship between electroluminescence intensity and short-circuit current density J SC. The results indicated that the gray value of the electroluminescence image corresponding to the intensity was almost proportional to J SC. This technology provides a potential way to evaluate the current matching status of multi-junction solar cells.
Thomsen, Louiza Bohn; Burkhart, Annette; Moos, Torben
2015-01-01
In vitro blood-brain barrier (BBB) models based on primary brain endothelial cells (BECs) cultured as monoculture or in co-culture with primary astrocytes and pericytes are useful for studying many properties of the BBB. The BECs retain their expression of tight junction proteins and efflux transporters leading to high trans-endothelial electric resistance (TEER) and low passive paracellular permeability. The BECs, astrocytes and pericytes are often isolated from small rodents. Larger species as cows and pigs however, reveal a higher yield, are readily available and have a closer resemblance to humans, which make them favorable high-throughput sources for cellular isolation. The aim of the present study has been to determine if the preferable combination of purely porcine cells isolated from the 6 months old domestic pigs, i.e. porcine brain endothelial cells (PBECs) in co-culture with porcine astrocytes and pericytes, would compare with PBECs co-cultured with astrocytes and pericytes isolated from newborn rats with respect to TEER value and low passive permeability. The astrocytes and pericytes were grown both as contact and non-contact co-cultures as well as in triple culture to examine their effects on the PBECs for barrier formation as revealed by TEER, passive permeability, and expression patterns of tight junction proteins, efflux transporters and the transferrin receptor. This syngenic porcine in vitro BBB model is comparable to triple cultures using PBECs, rat astrocytes and rat pericytes with respect to TEER formation, low passive permeability, and expression of hallmark proteins signifying the brain endothelium (tight junction proteins claudin 5 and occludin, the efflux transporters P-glycoprotein (PgP) and breast cancer related protein (BCRP), and the transferrin receptor).
Edwards, Joel H.; Kluesner, Jared W.; Silver, Eli A.; Bangs, Nathan L.
2018-01-01
Understanding the links between subducting slabs and upper-plate deformation is a longstanding goal in the field of tectonics. New 3D seismic sequence stratigraphy, mapped within the Costa Rica Seismogenesis Project (CRISP) seismic-reflection volume offshore southern Costa Rica, spatiotemporally constrains several Pleistocene outer forearc processes and provides clearer connections to subducting plate dynamics. Three significant shelf and/or slope erosional events at ca. 2.5–2.3 Ma, 1.95–1.78 Ma, and 1.78–1.19 Ma, each with notable differences in spatial extent, volume removed, and subsequent margin response, caused abrupt shifts in sedimentation patterns and rates. These shifts, coupled with observed deformation, suggest three primary mechanisms for Pleistocene shelf and slope vertical motions: (1) regional subaerial erosion and rapid subsidence linked to the southeastward Panama Fracture Zone triple-junction migration, with associated abrupt bathymetric variations and plate kinematic changes; (2) transient, kilometer-scale uplift and subsidence due to inferred subducting plate topography; and (3) progressive outer wedge shortening accommodated by landward- and seaward-dipping thrust faults and fold development due to the impinging Cocos Ridge. Furthermore, we find that the present-day wedge geometry (to within ∼3 km along strike) has been maintained through the Pleistocene, in contrast to modeled landward margin retreat. We also observe that deformation, i.e., extension and shortening, is decoupled from net margin subsidence. Our findings do not require basal erosion, and they suggest that the vertical motions of the Costa Rican outer forearc are not the result of a particular continuous process, but rather are a summation of plate to plate changes (e.g., passage of a fracture zone triple junction) and episodic events (e.g., subducting plate topography).
The Voronoi Implicit Interface Method for computing multiphase physics
Saye, Robert I.; Sethian, James A.
2011-01-01
We introduce a numerical framework, the Voronoi Implicit Interface Method for tracking multiple interacting and evolving regions (phases) whose motion is determined by complex physics (fluids, mechanics, elasticity, etc.), intricate jump conditions, internal constraints, and boundary conditions. The method works in two and three dimensions, handles tens of thousands of interfaces and separate phases, and easily and automatically handles multiple junctions, triple points, and quadruple points in two dimensions, as well as triple lines, etc., in higher dimensions. Topological changes occur naturally, with no surgery required. The method is first-order accurate at junction points/lines, and of arbitrarily high-order accuracy away from such degeneracies. The method uses a single function to describe all phases simultaneously, represented on a fixed Eulerian mesh. We test the method’s accuracy through convergence tests, and demonstrate its applications to geometric flows, accurate prediction of von Neumann’s law for multiphase curvature flow, and robustness under complex fluid flow with surface tension and large shearing forces. PMID:22106269
The Voronoi Implicit Interface Method for computing multiphase physics.
Saye, Robert I; Sethian, James A
2011-12-06
We introduce a numerical framework, the Voronoi Implicit Interface Method for tracking multiple interacting and evolving regions (phases) whose motion is determined by complex physics (fluids, mechanics, elasticity, etc.), intricate jump conditions, internal constraints, and boundary conditions. The method works in two and three dimensions, handles tens of thousands of interfaces and separate phases, and easily and automatically handles multiple junctions, triple points, and quadruple points in two dimensions, as well as triple lines, etc., in higher dimensions. Topological changes occur naturally, with no surgery required. The method is first-order accurate at junction points/lines, and of arbitrarily high-order accuracy away from such degeneracies. The method uses a single function to describe all phases simultaneously, represented on a fixed Eulerian mesh. We test the method's accuracy through convergence tests, and demonstrate its applications to geometric flows, accurate prediction of von Neumann's law for multiphase curvature flow, and robustness under complex fluid flow with surface tension and large shearing forces.
The Voronoi Implicit Interface Method for computing multiphase physics
Saye, Robert I.; Sethian, James A.
2011-11-21
In this paper, we introduce a numerical framework, the Voronoi Implicit Interface Method for tracking multiple interacting and evolving regions (phases) whose motion is determined by complex physics (fluids, mechanics, elasticity, etc.), intricate jump conditions, internal constraints, and boundary conditions. The method works in two and three dimensions, handles tens of thousands of interfaces and separate phases, and easily and automatically handles multiple junctions, triple points, and quadruple points in two dimensions, as well as triple lines, etc., in higher dimensions. Topological changes occur naturally, with no surgery required. The method is first-order accurate at junction points/lines, and of arbitrarilymore » high-order accuracy away from such degeneracies. The method uses a single function to describe all phases simultaneously, represented on a fixed Eulerian mesh. Finally, we test the method’s accuracy through convergence tests, and demonstrate its applications to geometric flows, accurate prediction of von Neumann’s law for multiphase curvature flow, and robustness under complex fluid flow with surface tension and large shearing forces.« less
Oceanographic Telecommuting: Going to Sea Virtually
NASA Astrophysics Data System (ADS)
Smith, Deborah K.; Lemmond, Peter
2005-09-01
Oceanography in the 21st century is on the verge of changing the way it does business. Telecommuting from office to sea is about to make the same impact as telecommuting between home and the office did 20 years ago. A recent geophysical survey highlighted the role that telecommuting will soon play in ocean research. In June 2005, R/V Knorr was in the middle of the Atlantic Ocean conducting a geophysical survey of a region centered at 13°N along the Mid-Atlantic Ridge in the general area of the diffuse triple junction between the North America (NA),Africa (AF), and South America (SA) plates. This region is particularly notable because of a unique zone of seismicity that occurs ~70 km west of the ridge axis between 14°20'N and 12°50'N.The survey conducted on this cruise (KN182-3) was a first step toward understanding how slow spreading lithosphere is deforming in the NA-SA-AF triple junction region.
NASA Technical Reports Server (NTRS)
Lord, Kenneth R., II; Walters, Michael R.; Woodyard, James R.
1993-01-01
The effect of 1.00 MeV proton irradiation on hydrogenated amorphous silicon alloy triple-junction solar cells is reported for the first time. The cells were designed for radiation resistance studies and included 0.35 cm(sup 2) active areas on 1.0 by 2.0 cm(sup 2) glass superstrates. Three cells were irradiated through the bottom contact at each of six fluences between 5.10E12 and 1.46E15 cm(sup -2). The effect of the irradiations was determined with light current-voltage measurements. Proton irradiation degraded the cell power densities from 8.0 to 98 percent for the fluences investigated. Annealing irradiated cells at 200 C for two hours restored the power densities to better than 90 percent. The cells exhibited radiation resistances which are superior to cells reported in the literature for fluences less than 1E14 cm(sup -2).
NASA Astrophysics Data System (ADS)
Materna, Kathryn; Taira, Taka'aki; Bürgmann, Roland
2018-01-01
The Mendocino Triple Junction (MTJ), at the northern terminus of the San Andreas Fault system, is an actively deforming plate boundary region with poorly constrained estimates of seismic coupling on most offshore fault surfaces. Characteristically repeating earthquakes provide spatial and temporal descriptions of aseismic creep at the MTJ, including on the oceanic transform Mendocino Fault Zone (MFZ) as it subducts beneath North America. Using a dataset of earthquakes from 2008 to 2017, we find that the easternmost segment of the MFZ displays creep during this period at about 65% of the long-term slip rate. We also find creep at slower rates on the shallower strike-slip interface between the Pacific plate and the North American accretionary wedge, as well as on a fault that accommodates Gorda subplate internal deformation. After a nearby
NASA Technical Reports Server (NTRS)
Harris, R.D.; Imaizumi, M.; Walters, R.J.; Lorentzen, J.R.; Messenger, S.R.; Tischler, J.G.; Ohshima, T.; Sato, S.; Sharps, P.R.; Fatemi, N.S.
2008-01-01
The performance of triple junction InGaP/(In)GaAs/Ge space solar cells was studied following high energy electron irradiation at low temperature. Cell characterization was carried out in situ at the irradiation temperature while using low intensity illumination, and, as such, these conditions reflect those found for deep space, solar powered missions that are far from the sun. Cell characterization consisted of I-V measurements and quantum efficiency measurements. The low temperature irradiations caused substantial degradation that differs in some ways from that seen after room temperature irradiations. The short circuit current degrades more at low temperature while the open circuit voltage degrades more at room temperature. A room temperature anneal after the low temperature irradiation produced a substantial recovery in the degradation. Following irradiation at both temperatures and an extended room temperature anneal, quantum efficiency measurement suggests that the bulk of the remaining damage is in the (In)GaAs sub-cell
Grain Refinement Kinetics in a Low Alloyed Cu–Cr–Zr Alloy Subjected to Large Strain Deformation
Morozova, Anna; Borodin, Elijah; Bratov, Vladimir; Zherebtsov, Sergey; Kaibyshev, Rustam
2017-01-01
This paper investigates the microstructural evolution and grain refinement kinetics of a solution-treated Cu–0.1Cr–0.06Zr alloy during equal channel angular pressing (ECAP) at a temperature of 673 K via route BC. The microstructural change during plastic deformation was accompanied by the formation of the microband and an increase in the misorientations of strain-induced subboundaries. We argue that continuous dynamic recrystallization refined the initially coarse grains, and discuss the dynamic recrystallization kinetics in terms of grain/subgrain boundary triple junction evolution. A modified Johnson–Mehl–Avrami–Kolmogorov relationship with a strain exponent of about 1.49 is used to express the strain dependence of the triple junctions of high-angle boundaries. Severe plastic deformation by ECAP led to substantial strengthening of the Cu–0.1Cr–0.06Zr alloy. The yield strength increased from 60 MPa in the initial state to 445 MPa after a total strain level of 12. PMID:29210990
NASA Astrophysics Data System (ADS)
Sicilia, D.; Montagner, J.-P.; Cara, M.; Stutzmann, E.; Debayle, E.; Lépine, J.-C.; Lévêque, J.-J.; Beucler, E.; Sebai, A.; Roult, G.; Ayele, A.; Sholan, J. M.
2008-12-01
The Afar area is one of the biggest continental hotspots active since about 30 Ma. It may be the surface expression of a mantle "plume" related to the African Superswell. Central Africa is also characterized by extensive intraplate volcanism. Around the same time (30 Ma), volcanic activity re-started in several regions of the African plate and hotspots such as Darfur, Tibesti, Hoggar and Mount Cameroon, characterized by a significant though modest volcanic production. The interactions of mantle upwelling with asthenosphere, lithosphere and crust remain unclear and seismic anisotropy might help in investigating these complex interactions. We used data from the global seismological permanent FDSN networks (GEOSCOPE, IRIS, MedNet, GEO- FON, etc.), from the temporary PASSCAL experiments in Tanzania and Saudi Arabia and a French deployment of 5 portable broadband stations surrounding the Afar Hotspot. A classical two-step tomographic inversion from surface waves performed in the Horn of Africa with selected Rayleigh wave and Love wave seismograms leads to a 3D-model of both S V velocities and azimuthal anisotropy, as well as radial SH/ SV anisotropy, with a lateral resolution of 500 km. The region is characterized by low shear-wave velocities beneath the Afar Hotspot, the Red Sea, the Gulf of Aden and East of the Tanzania Craton to 400 km depth. High velocities are present in the Eastern Arabia and the Tanzania Craton. The results of this study enable us to rule out a possible feeding of the Central Africa hotspots from the "Afar plume" above 150-200 km. The azimuthal anisotropy displays a complex pattern near the Afar Hotspot. Radial anisotropy, although poorly resolved laterally, exhibits S H slower than S V waves down to about 150 km depth, and a reverse pattern below. Both azimuthal and radial anisotropies show a stratification of anisotropy at depth, corresponding to different physical processes. These results suggest that the Afar hotspot has a different and deeper origin than the other African hotspots (Darfur, Tibesti, Hoggar). These latter hotspots can be traced down to 200 km from S-wave velocity but have no visible effect on radial and azimuthal anisotropy.
Critical Research for Cost-Effective Photoelectrochemical Production of Hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Liwei; Deng, Xunming; Abken, Anka
2014-10-29
The objective of this project is to develop critical technologies required for cost-effective production of hydrogen from sunlight and water using a-Si triple junction solar cell based photo-electrodes. In this project, Midwest Optoelectronics, LLC (MWOE) and its collaborating organizations utilize triple junction a-Si thin film solar cells as the core element to fabricate photoelectrochemical (PEC) cells. Triple junction a-Si/a-SiGe/a-SiGe solar cell is an ideal material for making cost-effective PEC system which uses sun light to split water and generate hydrogen. It has the following key features: 1) It has an open circuit voltage (Voc ) of ~ 2.3V and hasmore » an operating voltage around 1.6V. This is ideal for water splitting. There is no need to add a bias voltage or to inter-connect more than one solar cell. 2) It is made by depositing a-Si/a-SiGe/aSi-Ge thin films on a conducting stainless steel substrate which can serve as an electrode. When we immerse the triple junction solar cells in an electrolyte and illuminate it under sunlight, the voltage is large enough to split the water, generating oxygen at the Si solar cell side (for SS/n-i-p/sunlight structure) and hydrogen at the back, which is stainless steel side. There is no need to use a counter electrode or to make any wire connection. 3) It is being produced in large rolls of 3ft wide and up to 5000 ft long stainless steel web in a 25MW roll-to-roll production machine. Therefore it can be produced at a very low cost. After several years of research with many different kinds of material, we have developed promising transparent, conducting and corrosion resistant (TCCR) coating material; we carried out extensive research on oxygen and hydrogen generation catalysts, developed methods to make PEC electrode from production-grade a-Si solar cells; we have designed and tested various PEC module cases and carried out extensive outdoor testing; we were able to obtain a solar to hydrogen conversion efficiency (STH) about 5.7% and a running time about 480 hrs, which are very promising results; we have also completed a techno-economic analysis of our PEC system, which indicates that a projected hydrogen generation cost of $2/gge is achievable with a 50 Ton-per-day (TPD) scale under certain conditions.« less
Modeling the Blood-Brain Barrier in a 3D triple co-culture microfluidic system.
Adriani, G; Ma, D; Pavesi, A; Goh, E L K; Kamm, R D
2015-01-01
The need for a blood-brain barrier (BBB) model that accurately mimics the physiological characteristics of the in-vivo situation is well-recognized by researchers in academia and industry. However, there is currently no in-vitro model allowing studies of neuronal growth and/or function influenced by factors from the blood that cross through the BBB. Therefore, we established a 3D triple co-culture microfluidic system using human umbilical vein endothelial cells (HUVEC) together with primary rat astrocytes and neurons. Immunostaining confirmed the successful triple co-culture system consisting of an intact BBB with tight intercellular junctions in the endothelial monolayer. The BBB selective permeability was determined by a fluorescent-based assay using dextrans of different molecular weights. Finally, neuron functionality was demonstrated by calcium imaging.
Triple junction orogeny: tectonic evolution of the Pan-African Northern Damara Belt, Namibia
NASA Astrophysics Data System (ADS)
Lehmann, Jérémie; Saalmann, Kerstin; Naydenov, Kalin V.; Milani, Lorenzo; Charlesworth, Eugene G.; Kinnaird, Judith A.; Frei, Dirk; Kramers, Jan D.; Zwingmann, Horst
2014-05-01
Trench-trench-trench triple junctions are generally geometrically and kinematically unstable and therefore can result at the latest stages in complicated collisional orogenic belts. In such geodynamic sites, mechanism and timescale of deformations that accommodate convergence and final assembly of the three colliding continental plates are poorly studied. In western Namibia, Pan-African convergence of three cratonic blocks led to pene-contemporaneous closure of two highly oblique oceanic domains and formation of the triple junction Damara Orogen where the NE-striking Damara Belt abuts to the west against the NNW-striking Kaoko-Gariep Belt. Detailed description of structures and microstructures associated with remote sensing analysis, and dating of individual deformation events by means of K-Ar, Ar-Ar (micas) and U-Pb (zircon) isotopic studies from the Northern Damara Belt provide robust constraints on the tectonic evolution of this palaeo-triple junction orogeny. There, passive margin sequences of the Neoproterozoic ocean were polydeformed and polymetamorphosed to the biotite zone of the greenschist facies to up to granulite facies and anatexis towards the southern migmatitic core of the Central Damara Belt. Subtle relict structures and fold pattern analyses reveal the existence of an early D1 N-S shortening event, tentatively dated between ~635 Ma and ~580 Ma using published data. D1 structures were almost obliterated by pervasive and major D2 E-W coaxial shortening, related to the closure of the Kaoko-Gariep oceanic domain and subsequent formation of the NNW-striking Kaoko-Gariep Belt to the west of the study area. Early, km-scale D1 E-W trending steep folds were refolded during this D2 event, producing either Type I or Type II fold interference patterns visible from space. The D2 E-W convergence could have lasted until ~533 Ma based on published and new U-Pb ages. The final D3 NW-SE convergence in the northernmost Damara Belt produced a NE-striking deformation front in weak metasedimentary rocks during SE-directed indentation of a rigid Paleoproterozoic basement. In the central and southern parts of the Northern Damara Belt, D3 is mostly expressed by km-scale local Type I fold interference patterns formed by the refolding of D2 upright synclines as well as bending around a steep axis of the D2 refolded folds and steep S2 multilayer. In the western part however, where the two orthogonal trends of the Damara and Kaoko-Gariep Belts meet, D3 is described in literature as sinistral shearing along reactivated steep S2 planes that is associated with steep-hinge folds with steep NE-striking axial planes. Our new ages indicate that D3 lasted from ~513 Ma to ~460 Ma throughout the entire Northern Damara Belt. These results document for the first time a regional-scale early Pan-African N-S shortening event of uncertain geotectonic significance. They furthermore indicate that two competing orthogonal collisional systems have contributed in resolving instabilities at the triple orogenic junction over a period in the order of ~100 m.y. and could therefore account for the assembly of the three cratons. The E-W convergence was preponderant in strength and pre-dates the NW-SE one, the latter being associated with localized sinistral shearing along the Kaoko Belt interface in the westernmost Northern Damara Belt.
Dilute Nitrides For 4-And 6- Junction Space Solar Cells
NASA Astrophysics Data System (ADS)
Essig, S.; Stammler, E.; Ronsch, S.; Oliva, E.; Schachtner, M.; Siefer, G.; Bett, A. W.; Dimroth, F.
2011-10-01
According to simulations the efficiency of conventional, lattice-matched GaInP/GaInAs/Ge triple-junction space solar cells can be strongly increased by the incorporation of additional junctions. In this way the existing excess current of the Germanium bottom cell can be reduced and the voltage of the stack can be increased. In particular, the use of 1.0 eV materials like GaInNAs opens the door for solar cells with significantly improved conversion efficiency. We have investigated the material properties of GaInNAs grown by metal organic vapour phase epitaxy (MOVPE) and its impact on the quantum efficiency of solar cells. Furthermore we have developed a GaInNAs subcell with a bandgap energy of 1.0 eV and integrated it into a GaInP/GaInAs/GaInNAs/Ge 4-junction and a AlGaInP/GaInP/AlGaInAs/GaInAs/GaInNAs/Ge 6- junction space solar cell. The material quality of the dilute nitride junction limits the current density of these devices to 9.3 mA/cm2 (AM0). This is not sufficient for a 4-junction cell but may lead to current matched 6- junction devices in the future.
Shear zone junctions: Of zippers and freeways
NASA Astrophysics Data System (ADS)
Passchier, Cees W.; Platt, John P.
2017-02-01
Ductile shear zones are commonly treated as straight high-strain domains with uniform shear sense and characteristic curved foliation trails, bounded by non-deforming wall rock. Many shear zones, however, are branched, and if movement on such branches is contemporaneous, the resulting shape can be complicated and lead to unusual shear sense arrangement and foliation geometries in the wall rock. For Y-shaped shear zone triple junctions with three joining branches and transport direction at a high angle to the branchline, only eight basic types of junction are thought to be stable and to produce significant displacement. The simplest type, called freeway junctions, have similar shear sense in all three branches. The other types show joining or separating behaviour of shear zone branches similar to the action of a zipper. Such junctions may have shear zone branches that join to form a single branch (closing zipper junction), or a single shear zone that splits to form two branches, (opening zipper junction). All categories of shear zone junctions show characteristic foliation patterns and deflection of markers in the wall rock. Closing zipper junctions are unusual, since they form a non-active zone with opposite deflection of foliations in the wall rock known as an extraction fault or wake. Shear zipper junctions can form domains of overprinting shear sense along their flanks. A small and large field example are given from NE Spain and Eastern Anatolia. The geometry of more complex, 3D shear zone junctions with slip parallel and oblique to the branchline is briefly discussed.
NASA Astrophysics Data System (ADS)
Alene, Mulugeta; Hart, William K.; Saylor, Beverly Z.; Deino, Alan; Mertzman, Stanley; Haile-Selassie, Yohannes; Gibert, Luis B.
2017-06-01
The Woranso-Mille (WORMIL) area in the west-central Afar, Ethiopia, contains several Pliocene basalt flows, tuffs, and fossiliferous volcaniclastic beds. We present whole-rock major- and trace-element data including REE, and Sr-Nd-Pb isotope ratios from these basalts to characterize the geochemistry, constrain petrogenetic processes, and infer mantle sources. Six basalt groups are distinguished stratigraphically and geochemically within the interval from 3.8 to 3 Ma. The elemental and isotopic data show intra- and inter-group variations derived primarily from source heterogeneity and polybaric crystallization ± crustal inputs. The combined Sr-Nd-Pb isotope data indicate the involvement of three main reservoirs: the Afar plume, depleted mantle, and enriched continental lithosphere (mantle ± crust). Trace element patterns and ratios further indicate the basalts were generated from spinel-dominated shallow melting, consistent with significantly thinned Pliocene lithosphere in western Afar. The on-land continuation of the Aden rift into western Afar during the Pliocene is reexamined in the context of the new geochemistry and age constraints of the WORMIL basalts. The new data reinforce previous interpretations that progressive rifting and transformation of the continental lithosphere to oceanic lithosphere allows for increasing asthenospheric inputs through time as the continental lithosphere is thinned. Accepted trace element values for BHVO-2 are those recently recommended by Jochum et al. (2016) rounded to provide the same significant figures as the data. Ternary model after Schilling et al. (1992); Endmembers from Rooney et al. (2012).
Differentiating flow, melt, or fossil seismic anisotropy beneath Ethiopia
NASA Astrophysics Data System (ADS)
Hammond, J. O. S.; Kendall, J.-M.; Wookey, J.; Stuart, G. W.; Keir, D.; Ayele, A.
2014-05-01
Ethiopia is a region where continental rifting gives way to oceanic spreading. Yet the role that pre-existing lithospheric structure, melt, mantle flow, or active upwellings may play in this process is debated. Measurements of seismic anisotropy are often used to attempt to understand the contribution that these mechanisms may play. In this study, we use new data in Afar, Ethiopia along with legacy data across Ethiopia, Djibouti, and Yemen to obtain estimates of mantle anisotropy using SKS-wave splitting. We show that two layers of anisotropy exist, and we directly invert for these. We show that fossil anisotropy with fast directions oriented northeast-southwest may be preserved in the lithosphere away from the rift. Beneath the Main Ethiopian Rift and parts of Afar, anisotropy due to shear segregated melt along sharp changes in lithospheric thickness dominates the shear-wave splitting signal in the mantle. Beneath Afar, away from regions with significant lithospheric topography, melt pockets associated with the crustal and uppermost mantle magma storage dominate the signal in localized regions. In general, little anisotropy is seen in the uppermost mantle beneath Afar suggesting melt retains no preferential alignment. These results show the important role melt plays in weakening the lithosphere and imply that as rifting evolves passive upwelling sustains extension. A dominant northeast-southwest anisotropic fast direction is observed in a deeper layer across all of Ethiopia. This suggests that a conduit like plume is lacking beneath Afar today, rather a broad flow from the southwest dominates flow in the upper mantle.
Recent off-axis volcanism in the eastern Gulf of Aden: Implications for plume-ridge interaction
NASA Astrophysics Data System (ADS)
Leroy, Sylvie; d'Acremont, Elia; Tiberi, Christel; Basuyau, Clémence; Autin, Julia; Lucazeau, Francis; Sloan, Heather
2010-04-01
Evidence of anomalous volcanism is readily observed in the Gulf of Aden, although, much of this oceanic basin remains as yet unmapped. In this paper, we investigate the possible connection of the Afar hotspot with a major off-axis volcanic structure and its interpretation as a consequence of a the anomalous presence of melt by integrating several data sets, both published and unpublished, from the Encens-Sheba cruise, the Aden New Century (ANC) cruise and several other onshore and marine surveys. These include bathymetric, gravity, magnetic, magneto-telluric data, and rock samples. Based upon these observations, interpretations were made of seafloor morphology, gravity and magnetic models, seafloor age, geochemical analyses and tectonic setting. We discuss the possible existence of a regional melting anomaly in the Gulf of Aden area and of the probability of its connection to the Afar plume. Several models that might explain the anomalous volcanism are taken into account, such as a local melting anomaly unrelated to the Afar plume, an anomalously large volume of melt associated with seafloor spreading, and interaction of the ridge with the Afar plume. A local melting anomaly and atypical seafloor spreading prove inconsistent with our observations. Two previously proposed models of plume-ridge interactions are examined: the diffuse plume dispersion called pancaked flow and channelized along-axis flow. We conclude that the configuration and structure of this young ocean basin may have the effect of channeling material away from the Afar plume along the Aden and Sheba Ridges to produce the off-axis volcanism observed on the ridge flanks. This interpretation implies that the influence of the Afar hotspot may extend much farther eastwards into the Gulf of Aden than previously believed. The segmentation of the Gulf of Aden and the configuration of the Aden-Sheba system may provide a potential opportunity to study channeled flow of solid plume mantle from the plume along a segmented ridge and nearby continental margins.
NASA Astrophysics Data System (ADS)
Rychert, C. A.; Harmon, N.; Hammond, J. O.; Laske, G.; Kendall, J.; Ebinger, C. J.; Shearer, P. M.; Bastow, I. D.; Keir, D.; Ayele, A.; Belachew, M.; Stuart, G. W.
2012-12-01
Heating, melting, and stretching destroy continents at volcanic rifts. Mantle plumes are often invoked to thermally weaken the continental lithosphere and accommodate rifting through the influx of magma. However the relative effects of mechanical stretching vs. melt infiltration and weakening are not well quantified during the evolution of rifting. S-to-p (Sp) imaging beneath the Afar Rift and hotspot regions such as Hawaii provides additional constraints. We use data from the Ethiopia/Kenya Broadband Seismic Experiment (EKBSE), the Ethiopia Afar Geophysical Lithospheric Experiment (EAGLE), a new UK/US led deployment of 46 stations in the Afar depression and surrounding area, and the PLUME experiment. We use two methodologies to investigate structure and locate robust features: 1) binning by conversion point and then simultaneous deconvolution in the frequency domain, and 2) extended multitaper followed by migration and stacking. We image a lithosphere-asthenosphere boundary at ~75 km beneath the flank of the Afar Rift vs. its complete absence beneath the rift, where the mantle lithosphere has been totally destroyed. Instead a strong velocity increase with depth at ~75 km depth matches geodynamic model predictions for a drop in melt percentage at the onset of decompression melting. The shallow depth of the onset of melting is consistent with a mantle potential temperature = 1350 - 1400°C, i.e., typical for adiabatic decompression melting. Therefore although a plume initially destroyed the mantle lithosphere, its influence directly beneath Afar today is minimal. Volcanism continues via adiabatic decompression melting assisted by strong melt buoyancy effects. This contrasts with a similar feature at much deeper depth, ~150 km, just west of Hawaii, where a deep thermal plume is hypothesized to impinge on the lithosphere. Improved high resolution imaging of rifting, ridges, and hotspots in a variety of stages and tectonic settings will increase constraints on the forces sustaining volcanism and the factors that dictate the style of breakup beneath rifts.
Seismic Observations From the Afar Rift Dynamics Project: Preliminary Results
NASA Astrophysics Data System (ADS)
Hammond, J. O.; Guidarelli, M.; Belachew, M.; Keir, D.; Ayele, A.; Ebinger, C.; Stuart, G.; Kendall, J.
2008-12-01
Following the 2005 Dabbahu rifting event in Afar, 9 broadband seismometers were installed around the active rift segment to study the microseismicity associated with this and subsequent dyking events. These recorded more than one year of continuous data. In March 2007, 41 stations were deployed throughout Afar and the adjacent rift flanks as part of a large multi-national, collaboration involving universities and organisations from the UK, US and Ethiopia. This abstract describes the crustal and upper mantle structure results of the first 19 months of data. Bulk crustal structure has been determined using the H-k stacking of receiver functions and thickness varies from ~45 km on the rift margins to ~16 km beneath the northeastern Afar stations. Estimates of Vp/Vs show normal continental crust values (1.7-1.8) on the rift margins, and very high values (2.0-2.2) in Afar. A study of seismic noise interferometry is in early stages, but inversions using 20 s Green's function estimates, with some control from regional surface waves, show evidence for thin crustal regions around the recently rifted Dabbahu segment. To improve our understanding of the physical and compositional properties of the crust and locate regions of high attenuation (an indicator of melt), we determine attenuation (Q) using t* values measured from spectra of P wave arrivals. We present whole path attenuation from source to receiver, which will provide a starting point for a future tomographic inversion. SKS-wave splitting results show sharp changes over small lateral distances (40° over <30 km), with fast directions overlying the Dabbahu segment aligning parallel with the recent diking. This supports ideas of melt dominated anisotropy beneath the Ethiopian rift. Seismic tomography inversions show that in the top 150 km low velocities mimic the trend of the seismicity in Afar. The low velocity anomalies extend from the main Ethiopian rift NE, towards Djibouti, and from Djibouti NW towards the Dabbahu segment. Outside of these linear regions the velocities are relatively fast. Below ~250 km the anomaly broadens to cover most of the Afar region with only the rift margins remaining fast. The seismic studies will be integrated with results from other areas of the consortium project (e.g., Magneto- tellurics, GPS, insar, gravity, petrology, geochemistry), enabling us to develop a greater understanding of rifting beneath an area of incipient oceanic spreading.
A directional nucleation-zipping mechanism for triple helix formation
Alberti, Patrizia; Arimondo, Paola B.; Mergny, Jean-Louis; Garestier, Thérèse; Hélène, Claude; Sun, Jian-Sheng
2002-01-01
A detailed kinetic study of triple helix formation was performed by surface plasmon resonance. Three systems were investigated involving 15mer pyrimidine oligonucleotides as third strands. Rate constants and activation energies were validated by comparison with thermodynamic values calculated from UV-melting analysis. Replacement of a T·A base pair by a C·G pair at either the 5′ or the 3′ end of the target sequence allowed us to assess mismatch effects and to delineate the mechanism of triple helix formation. Our data show that the association rate constant is governed by the sequence of base triplets on the 5′ side of the triplex (referred to as the 5′ side of the target oligopurine strand) and provides evidence that the reaction pathway for triple helix formation in the pyrimidine motif proceeds from the 5′ end to the 3′ end of the triplex according to the nucleation-zipping model. It seems that this is a general feature for all triple helices formation, probably due to the right-handedness of the DNA double helix that provides a stronger base stacking at the 5′ than at the 3′ duplex–triplex junction. Understanding the mechanism of triple helix formation is not only of fundamental interest, but may also help in designing better triple helix-forming oligonucleotides for gene targeting and control of gene expression. PMID:12490709
NASA Technical Reports Server (NTRS)
Lee, H. S.; Yamaguchi, M.; Elkins-Daukes, N. J.; Khan, A.; Takamoto, T.; Imaizumi, M.; Ohshima, T.; Itoh, H.
2007-01-01
A high efficient In0.48Ga0.52P/In0.01Ga0.99As/Ge triple junction solar cell has been developed for application in space and terrestrial concentrator PV system [1-3]. Recently, a high conversion efficiency of 31.5% (AM1.5G) has been obtained in InGaP/(In)GaAs/Ge triple junction solar cell, and as a new top cell material of triple junction cells, (Al)InGaP [1] has been proposed to improve the open-circuit voltage (Voc) because it shows a higher Voc of 1.5V while maintaining the same short-circuit current (ISC) as a conventional InGaP top cell under AM1.5G conditions as seen in figure 1 (a). Moreover, the spectral response of 1.96eV AlInGaP cell with a thickness of 2.5..m shows a higher response in the long wavelength region, compared with that of 1.87eV InGaP cell with 0.6..m thickness, as shown in figure 1 (b). Its development will realize next generation multijunction (MJ) solar cells such as a lattice mismatched AlInGaP/InGaAs/Ge 3-junction and lattice matched AlInGaP/GaAs/InGaAsN/Ge 4-junction solar cells. Figure 2 shows the super high-efficiency MJ solar cell structures and wide band spectral response by MJ solar cells under AM1.5G conditions. For realizing high efficient MJ space solar cells, the higher radiation-resistance under the electron or proton irradiation is required. The irradiation studies for a conventional top cell InGaP have been widely done [4-6], but little irradiation work has been performed on AlInGaP solar cells. Recently, we made the first reports of 1 MeV electron or 30 keV proton irradiation effects on AlInGaP solar cells, and evaluated the defects generated by the irradiation [7,8]. The present study describes the recovery of 1 MeV electron / 30 keV proton irradiation-induced defects in n+p- AlInGaP solar cells by minority-carrier injection enhanced annealing or isochronal annealing. The origins of irradiation-induced defects observed by deep level transient spectroscopy (DLTS) measurements are discussed.
2016-02-18
Dose Escalation; Safety; Preliminary Efficacy; Advanced Solid Tumors; Metastatic Breast Cancer; Advanced Pancreatic Adenocarcinoma; Metastatic Colorectal Cancer; Recurrent Glioblastoma Multiforme; Gastric Cancer; Gastroesophageal Junction Cancer; Triple Negative Metastatic Breast Cancer; Hormone Receptor Positive (ER+/PR+, and Her2-) Metastatic Breast Cancer
NASA Astrophysics Data System (ADS)
Sahu, Sandeep; Yadav, Prabhat Chand; Shekhar, Shashank
2018-02-01
In this investigation, Inconel 600 alloy was thermomechanically processed to different strains via hot rolling followed by a short-time annealing treatment to determine an appropriate thermomechanical process to achieve a high fraction of low-Σ CSL boundaries. Experimental results demonstrate that a certain level of deformation is necessary to obtain effective "grain boundary engineering"; i.e., the deformation must be sufficiently high to provide the required driving force for postdeformation static recrystallization, yet it should be low enough to retain a large fraction of original twin boundaries. Samples processed in such a fashion exhibited 77 pct length fraction of low-Σ CSL boundaries, a dominant fraction of which was from Σ3 ( 64 pct), the latter with very low deviation from its theoretical misorientation. The application of hot rolling also resulted in a very low fraction of Σ1 ( 1 pct) boundaries, as desired. The process also leads to so-called "triple junction engineering" with the generation of special triple junctions, which are very effective in disrupting the connectivity of the random grain boundary network.
Tension, cell shape and triple-junction angle anisotropy in the Drosophila germband
NASA Astrophysics Data System (ADS)
Lacy, Monica; Hutson, M. Shane; Meyer, Christian; McDonald, Xena
In the field of tissue mechanics, the embryonic development of Drosophila melanogaster offers many opportunities for study. One of Drosophila's most crucial morphogenetic stages is the retraction of an epithelial tissue called the germband. During retraction, the segments of the retracting germband, as well as the individual germband cells, elongate in response to forces from a connected tissue, the amnioserosa. Modeling of this elongation, based on tissue responses to laser wounding, has plotted the internal germband tension against the external amnioserosa stress, creating a phase space to determine points and regions corresponding to stable elongation. Although the resulting fits indicate a necessary opposition of internal and external forces, they are inconclusive regarding the exact balance. We will present results testing the model predictions by measuring cell shapes and the correlations between cell-edge directions and triple-junction angles. These measures resolve the ambiguity in pinpointing the internal-external force balance for each germband segment. Research was supported by NIH Grant Numbers 1R01GM099107 and 1R21AR068933.
NASA Astrophysics Data System (ADS)
Sogabe, Tomah; Ogura, Akio; Okada, Yoshitaka
2014-02-01
Spectral response measurement plays great role in characterizing solar cell device because it directly reflects the efficiency by which the device converts the sunlight into an electrical current. Based on the spectral response results, the short circuit current of each subcell can be quantitatively determined. Although spectral response dependence on wavelength, i.e., the well-known external quantum efficiency (EQE), has been widely used in characterizing multijunction solar cell and has been well interpreted, detailed analysis of spectral response dependence on bias voltage (SR -Vbias) has not been reported so far. In this work, we have performed experimental and numerical studies on the SR -Vbias for Ga0.51In0.49P/Ga0.99In0.01As/Ge triple junction solar cell. Phenomenological description was given to clarify the mechanism of operation matching point variation in SR -Vbias measurements. The profile of SR-Vbias curve was explained in detail by solving the coupled two-diode current-voltage characteristic transcend formula for each subcell.
NASA Astrophysics Data System (ADS)
Bourgois, Jacques; Lagabrielle, Yves; Martin, Hervé; Dyment, Jérôme; Frutos, Jose; Cisternas, Maria Eugenia
2016-10-01
This paper aggregates the main basic data acquired along the Chile Triple Junction (CTJ) area (45°-48°S), where an active spreading center is presently subducting beneath the Andean continental margin. Updated sea-floor kinematics associated with a comprehensive review of geologic, geochemical, and geophysical data provide new constraints on the geodynamics of this puzzling area. We discuss: (1) the emplacement mode for the Pleistocene Taitao Ridge and the Pliocene Taitao Peninsula ophiolite bodies. (2) The occurrence of these ophiolitic complexes in association with five adakite-like plutonic and volcanic centers of similar ages at the same restricted locations. (3) The inferences from the co-occurrence of these sub-coeval rocks originating from the same subducting oceanic lithosphere evolving through drastically different temperature-pressure ( P- T) path: low-grade greenschist facies overprint and amphibolite-eclogite transition, respectively. (4) The evidences that document ridge-jump events and associated microplate individualization during subduction of the SCR1 and SCR-1 segments: the Chonos and Cabo Elena microplates, respectively. The ridge-jump process associated with the occurrence of several closely spaced transform faults entering subduction is controlling slab fragmentation, ophiolite emplacement, and adakite-like production and location in the CTJ area. Kinematic inconsistencies in the development of the Patagonia slab window document an 11- km westward jump for the SCR-1 spreading segment at ~6.5-to-6.8 Ma. The SCR-1 spreading center is relocated beneath the North Patagonia Icefield (NPI). We argue that the deep-seated difference in the dynamically sustained origin of the high reliefs of the North and South Patagonia Icefield (NPI and SPI) is asthenospheric convection and slab melting, respectively. The Chile Triple Junction area provides the basic constraints to define the basic signatures for spreading-ridge subduction beneath an Andean-type margin.
A model for Iapetan rifting of Laurentia based on Neoproterozoic dikes and related rocks
Burton, William C.; Southworth, Scott
2010-01-01
Geologic evidence of the Neoproterozoic rifting of Laurentia during breakup of Rodinia is recorded in basement massifs of the cratonic margin by dike swarms, volcanic and plutonic rocks, and rift-related clastic sedimentary sequences. The spatial and temporal distribution of these geologic features varies both within and between the massifs but preserves evidence concerning the timing and nature of rifting. The most salient features include: (1) a rift-related magmatic event recorded in the French Broad massif and the southern and central Shenandoah massif that is distinctly older than that recorded in the northern Shenandoah massif and northward; (2) felsic volcanic centers at the north ends of both French Broad and Shenandoah massifs accompanied by dike swarms; (3) differences in volume between massifs of cover-sequence volcanic rocks and rift-related clastic rocks; and (4) WNW orientation of the Grenville dike swarm in contrast to the predominately NE orientation of other Neoproterozoic dikes. Previously proposed rifting mechanisms to explain these features include rift-transform and plume–triple-junction systems. The rift-transform system best explains features 1, 2, and 3, listed here, and we propose that it represents the dominant rifting mechanism for most of the Laurentian margin. To explain feature 4, as well as magmatic ages and geochemical trends in the Northern Appalachians, we propose that a plume–triple-junction system evolved into the rift-transform system. A ca. 600 Ma mantle plume centered east of the Sutton Mountains generated the radial dike swarm of the Adirondack massif and the Grenville dike swarm, and a collocated triple junction generated the northern part of the rift-transform system. An eastern branch of this system produced the Long Range dike swarm in Newfoundland, and a subsequent western branch produced the ca. 554 Ma Tibbit Hill volcanics and the ca. 550 Ma rift-related magmatism of Newfoundland.
NASA Astrophysics Data System (ADS)
Materna, K.; Taira, T.; Burgmann, R.
2016-12-01
The Mendocino Triple Junction (MTJ), at the transition point between the San Andreas fault system, the Mendocino Transform Fault, and the Cascadia Subduction Zone, undergoes rapid tectonic deformation and produces more large (M>6.0) earthquakes than any region in California. Most of the active faults of the triple junction are located offshore, making it difficult to characterize both seismic slip and aseismic creep. In this work, we study aseismic creep rates near the MTJ using characteristically repeating earthquakes (CREs) as indicators of creep rate. CREs are generally interpreted as repeated failures of the same seismic patch within an otherwise creeping fault zone; as a consequence, the magnitude and recurrence time of the CREs can be used to determine a fault's creep rate through empirically calibrated scaling relations. Using seismic data from 2010-2016, we identify CREs as recorded by an array of eight 100-Hz PBO borehole seismometers deployed in the Cape Mendocino area. For each event pair with epicenters less than 30 km apart, we compute the cross-spectral coherence of 20 seconds of data starting one second before the P-wave arrival. We then select pairs with high coherence in an appropriate frequency band, which is determined uniquely for each event pair based on event magnitude, station distance, and signal-to-noise ratio. The most similar events (with median coherence above 0.95 at two or more stations) are selected as CREs and then grouped into CRE families, and each family is used to infer a local creep rate. On the Mendocino Transform Fault, we find relatively high creep rates of >5 cm/year that increase closer to the Gorda Ridge. Closer to shore and to the MTJ itself, we find many families of repeaters on and off the transform fault with highly variable creep rates, indicative of the complex deformation that takes place there.
NASA Astrophysics Data System (ADS)
Audin, L.; Quidelleur, X.; Coulié, E.; Courtillot, V.; Gilder, S.; Manighetti, I.; Gillot, P.-Y.; Tapponnier, P.; Kidane, T.
2004-07-01
A new detailed palaeomagnetic study of Tertiary volcanics, including extensive K-Ar and 40Ar/39Ar dating, helps constrain the deformation mechanisms related to the opening processes of the Afar depression (Ethiopia and Djibouti). Much of the Afar depression is bounded by 30 Myr old flood basalts and floored by the ca 2 Myr old Stratoid basalts, and evidence for pre-2 Ma deformation processes is accessible only on its borders. K-Ar and 40Ar/39Ar dating of several mineral phases from rhyolitic samples from the Ali Sabieh block shows indistinguishable ages around 20 Myr. These ages can be linked to separation of this block in relation to continental breakup. Different amounts of rotation are found to the north and south of the Holhol fault zone, which cuts across the northern part of the Ali Sabieh block. The southern domain did not record any rotation for the last 8 Myr, whereas the northern domain experienced approximately 12 +/- 9° of clockwise rotation. We propose to link this rotation to the counter-clockwise rotation observed in the Danakil block since 7 Ma. This provides new constraints on the early phases of rifting and opening of the southern Afar depression in connection with the propagation of the Aden ridge. A kinematic model of propagation and transfer of extension within southern Afar is proposed, with particular emphasis on the previously poorly-known period from 10 to 4 Ma.
Haeussler, P.J.; Bradley, D.C.; Wells, R.E.; Miller, M.L.
2003-01-01
Onshore evidence suggests that a plate is missing from published reconstructions of the northeastern Pacific Ooean in Paleocene- Eocene time. The Resurrection plate, named for the Resurrection Peninsula ophiolite near Seward, Alaska, was located east of the Kula plate and north of the Farallon plate. We interpret coeval near-trench magmatism in southern Alaska and the Cascadia margin as evidence for two slab windows associated with trench-ridge-trench (TRT) triple junctions, which formed the western and southern boundaries of the Resurrection plate. In Alaska, the Sanak-Baranof belt of near-trench intrusions records a west-to-east migration, from 61 to 50 Ma, of the northern TRT triple junction along a 2100-km-long section of coastline. In Oregon, Washington, and southern Vancouver Island, voluminous basaltic volcanism of the Siletz River Volcanics, Crescent Formation, and Metchosin Volcanics occurred between ca. 66 and 48 Ma. Lack of a clear age progression of magmatism along the Cascadia margin suggests that this southern triple junction did not migrate significantly. Synchronous near-trench magmatism from southeastern Alaska to Puget Sound at ca. 50 Ma documents the middle Eocene subduction of a spreading center, the crest of which was subparallel to the margin. We interpret this ca. 50 Ma event as recording the subduction-zone consumption of the last of the Resurrection plate. The existence and subsequent subduction of the Resurrection plate explains (1) northward terrane transport along the southeastern Alaska-British Columbia margin between 70 and 50 Ma, synchronous with an eastward-migrating triple junction in southern Alaska; (2) rapid uplift and voluminous magmatism in the Coast Mountains of British Columbia prior to 50 Ma related to subduction of buoyant, young oceanic crust of the Resurrection plate; (3) cessation of Coast Mountains magmatism at ca. 50 Ma due to cessation of subduction, (4) primitive mafic magmatism in the Coast Mountains and Cascade Range just after 50 Ma, related to slab-window magmatism, (5) birth of the Queen Charlotte transform margin at ca. 50 Ma, (6) extensional exhumation of high-grade metamorphic terranes and development of core complexes in British Columbia, Idaho, and Washington, and extensional collapse of the Cordilleran foreland fold-and-thrust belt in Alberta, Montana, and Idaho after 50 Ma related to initiation of the transform margin, (7) enigmatic 53-45 Ma magmatism associated with extension from Montana to the Yukon Territory as related to slab breakup and the formation of a slab window, (8) right-lateral margin-parallel strike-slip faulting in southern and western Alaska during Late Cretaceous and Paleocene time, which cannot be explained by Farallon convergence vectors, and (9) simultaneous changes in Pacific-Farallon and Pacific-Kula plate motions concurrent with demise of the Kula-Resurrection Ridge.
Seismic Imaging of the crust and upper mantle beneath Afar, Ethiopia
NASA Astrophysics Data System (ADS)
Hammond, J. O.; Kendall, J. M.; Stuart, G. W.; Ebinger, C. J.
2009-12-01
In March 2007 41 seismic stations were deployed in north east Ethiopia. These stations recorded until October 2009, whereupon the array was condensed to 13 stations. Here we show estimates of crustal structure derived from receiver functions and upper mantle velocity structure, derived from tomography and shear-wave splitting using the first 2.5 years of data. Bulk crustal structure has been determined by H-k stacking receiver functions. Crustal Thickness varies from ~45km on the rift margins to ~16km beneath the northeastern Afar stations. Estimates of Vp/Vs show normal continental crust values (1.7-1.8) on the rift margins, and very high values (2.0-2.2) in Afar, similar to results for the Main Ethiopian Rift (MER). This supports ideas of high levels of melt in the crust beneath the Ethiopian Rift. Additionally, we use a common conversion point migration technique to obtain high resolution images of crustal structure beneath the region. Both techniques show a linear region of thin crust (~16km) trending north-south, the same trend as the Red Sea rift. SKS-wave splitting results show a general north east-south west fast direction in the MER, systematically rotating to a more north-south fast direction towards the Red Sea. Additionally, stations close to the recent Dabbahu diking episode show sharp lateral changes over small lateral distances (40° over <30km), with fast directions overlying the Dabbahu segment aligning parallel with the recent diking. This supports ideas of melt dominated anisotropy beneath the Ethiopian rift. The magnitude of splitting in this region is smaller than that seen at the MER, suggesting a thinner region of melt, or less focused melt is causing the anisotropy. Seismic tomography inversions show that in the top 150km low velocities highlight plate boundaries. The low velocity anomalies extend from the main Ethiopian rift NE, towards Djibouti, and from Djibouti NW towards the Dabbahu segment The lowest velocities exist on the rift margins, supporting ideas of preferential melt generation at these regions of high strain. This includes a region of low velocity close to the edge of the proposed location of the Danakil microplate. Outside of these focused regions the velocities are relatively fast. Below ~250km the anomaly broadens to cover most of the Afar region with only the rift margins remaining fast. At transition zone depths little anomaly is seen beneath Afar, but some low velocities remain present beneath the MER. These studies suggest that in northern Ethiopia the Red Sea rift is dominant. The presence of thin crust beneath northern Afar suggests that the Red Sea rift is creating oceanic like crust in this region. The lack of deep mantle low velocity anomalies beneath Afar suggest that a typical narrow conduit plume does not exist in this region, rather the velocity models seem more similar to passive upwelling of material beneath Afar.
Mimila-Arroyo, J
2017-06-01
In this paper, it is demonstrated that the free electron gas primary thermometer based on a bipolar junction transistor is able to provide the temperature with an accuracy of a few parts per million. Its simple functioning principle exploits the behavior of the collector current when properly biased to extract the temperature. Using general purpose silicon transistors at the water triple point (273.16 K) and gallium melting point (302.9146), an accuracy of a few parts per million has been reached, constituting the simplest and the easiest to operate primary thermometer, that might be considered even for the redefinition of Kelvin.
NASA Astrophysics Data System (ADS)
Mimila-Arroyo, J.
2017-06-01
In this paper, it is demonstrated that the free electron gas primary thermometer based on a bipolar junction transistor is able to provide the temperature with an accuracy of a few parts per million. Its simple functioning principle exploits the behavior of the collector current when properly biased to extract the temperature. Using general purpose silicon transistors at the water triple point (273.16 K) and gallium melting point (302.9146), an accuracy of a few parts per million has been reached, constituting the simplest and the easiest to operate primary thermometer, that might be considered even for the redefinition of Kelvin.
Recent kinematics of the tectonic plates surrounding the Red Sea and Gulf of Aden
NASA Astrophysics Data System (ADS)
Schettino, Antonio; Macchiavelli, Chiara; Pierantoni, Pietro Paolo; Zanoni, Davide; Rasul, Najeeb
2016-10-01
The Red Sea and Gulf of Aden represent two young basins that formed between Africa and Arabia since the early Oligocene, floored by oceanic crust or by transitional and thinned continental crust. While in the easternmost Gulf of Aden, the rift-drift transition can be dated chron C6 (˜20.1 Ma), here we show that in the Red Sea the first pulse of seafloor spreading occurred during chron C3n.2n (˜4.6 Ma) around ˜17.1°N (present-day coordinates) and propagated southwards from this location, separating the Danakil microplate from Arabia. It is also shown that seafloor spreading between Arabia and Nubia started later, around chron 2A (˜2.58 Ma), and propagated northwards. At present, there is no magnetic evidence for the existence of a linear spreading centre in the northern Red Sea at latitudes higher than ˜24°N and in the southern Red Sea below ˜14.8°N. The present-day plate kinematics of this region can be described with high accuracy by a network of five interacting plates (Nubia, Arabia, Somalia, Sinai and Danakil) and six triple junctions. For times older than anomaly 2A (˜2.58 Ma) and up to anomaly 3, the absence of marine magnetic anomalies between Arabia and Nubia prevents a rigorous kinematic description of the five-plates system. However, there is strong evidence that the unique changes in plate motions during the last 5 Myr were a dramatic slowdown at chron C2 (˜1.77 Ma) in the spreading or extension rates along the ridge and rift axes, thereby a good representation of the real plate motions can be obtained anyway by backward extension of the oldest Arabia-Nubia and Arabia-Danakil stage rotations determined on the basis of marine magnetic anomalies, respectively, C2-C2A and C2A-C3. The proposed kinematic reconstructions are accompanied by a geodynamic explanation for the genesis of large continent-continent fracture zones at the rift-drift transition and by an analysis of the strain associated with plate motions in Afar, northeastern Egypt and Sinai.
The 3rd ACR in TAL’AFAR: Challenges and Adaptations
2008-01-08
raisins, and cucumbers, usually served in the local diet with grilled lamb and unleavened bread. Tal’Afar contains 18 distinctly named neighbor...accordingly, visiting the Joint Readiness Training Center at Ft. Polk, Louisiana, in the fall of 2002 to brush up...less confront an ill- defined insurgency. Featuring Bradley fighting vehicles, Abrams tanks, Apache attack helicopters, and armed-to-the- teeth
Mantle plumes and associated flow beneath Arabia and East Africa
NASA Astrophysics Data System (ADS)
Chang, Sung-Joon; Van der Lee, Suzan
2011-02-01
We investigate mantle plumes and associated flow beneath the lithosphere by imaging the three-dimensional S-velocity structure beneath Arabia and East Africa. This image shows elongated vertical and horizontal low-velocity anomalies down to at least mid mantle depths. This three-dimensional S-velocity model is obtained through the joint inversion of teleseismic S- and SKS-arrival times, regional S- and Rayleigh waveform fits, fundamental-mode Rayleigh-wave group velocities, and independent Moho constraints from receiver functions, reflection/refraction profiles, and gravity measurements. In the resolved parts of our S-velocity model we find that the Afar plume is distinctly separate from the Kenya plume, showing the Afar plume's origin in the lower mantle beneath southwestern Arabia. We identify another quasi-vertical low-velocity anomaly beneath Jordan and northern Arabia which extends into the lower mantle and may be related to volcanism in Jordan, northern Arabia, and possibly southern Turkey. Comparing locations of mantle plumes from the joint inversion with fast axes of shear-wave splitting, we confirm horizontal mantle flow radially away from Afar. Low-velocity channels in our model support southwestward flow beneath Ethiopia, eastward flow beneath the Gulf of Aden, but not northwestwards beneath the entire Red Sea. Instead, northward mantle flow from Afar appears to be channeled beneath Arabia.
New Crustal Thickness for Djibouti, Afar, Using Seismic Techniques
NASA Astrophysics Data System (ADS)
Dugda, Mulugeta; Bililign, Solomon
2008-10-01
Crustal thickness and Poisson's ratio for the seismic station ATD in Djibouti, Afar, has been investigated using two seismic techniques (H-κ stacking of receiver functions and a joint inversion of receiver functions and surface wave group velocities). Both techniques give consistent results of crustal thickness 23±1.5 km and Poisson's ratio 0.31±0.02. We also determined a mean P-wave velocity (Vp) of ˜6.2 km/s but ˜6.9-7.0 km/s below a 2 - 5 km thick low velocity layer at the surface. Previous studies of crustal structure for Djibouti reported that the crust is 6 to 11 km thick while our study shows that the crust beneath Djibouti is between 20 and 25 km. This study argues that the crustal thickness values reported for Djibouti for the last 3 decades were not consistent with the reports for the other neighboring region in central and eastern Afar. Our results for ATD in Djibouti, however, are consistent with the reports of crustal thickness in many other parts of central and eastern Afar. We attribute this difference to how the Moho (the crust-mantle discontinuity) is defined (an increase of Vp to 7.4 km/s in this study vs. 6.9 km/s in previous studies).
Ueno, Y; Mikawa, M; Hoshika, S; Takeba, M; Kitade, Y; Matsuda, A
2001-01-01
3'-3'-Linked oligodeoxynucleotides (ODNs) with the anthraquinonyl group at the junction point were synthesized on a DNA synthesizer using a controlled pore glass (CPG), which has pentaerythritol carrying the intercalator at one of the four hydroxymethyl groups. Stability of the triplexes with the target duplexes was studied by thermal denaturation. The 3'-3'-linked ODNs with the anthraquinonyl group enhanced the thermal stability of the triplexes when compared with those without the intercalator and the unmodified nonamer. The inhibitory activity of the 3'-3'-linked ODNs against the cleavage of the target DNA by the restriction enzyme Hind III was tested. It was found that the 3'-3'-linked ODN with the anthraquinonyl group at the junction point inhibited the cleavage by the enzyme more effectively than the nonamer and the 3'-3'-linked ODN without the intercalator.
NASA Astrophysics Data System (ADS)
Adlakha, I.; Solanki, K. N.
2015-03-01
We present a systematic study to elucidate the role of triple junctions (TJs) and their constituent grain boundaries on the structural stability of nanocrystalline materials. Using atomistic simulations along with the nudge elastic band calculations, we explored the atomic structural and thermodynamic properties of TJs in three different fcc materials. We found that the magnitude of excess energy at a TJ was directly related to the atomic density of the metal. Further, the vacancy binding and migration energetics in the vicinity of the TJ were examined as they play a crucial role in the structural stability of NC materials. The resolved line tension which takes into account the stress buildup at the TJ was found to be a good measure in predicting the vacancy binding tendency near the TJ. The activation energy for vacancy migration along the TJ was directly correlated with the measured excess energy. Finally, we show that the resistance for vacancy diffusion increased for TJs with larger excess stored energy and the defect mobility at some TJs is slower than their constituent GBs. Hence, our results have general implications on the diffusional process in NC materials and provide new insight into stabilizing NC materials with tailored TJs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guha, S
This is Phase II of a 3-phase, 3-year program. It is intended to expand, enhance, and accelerate knowledge and capabilities for developing high-performance, two-terminal multijunction amorphous Si alloy modules. We discuss investigations on back reflectors to improve cell performance and investigate uniformity in performance over a 1-sq.-ft. area. We present results on component cell performance, both in the initial and in the light-degraded states, deposited over a 1-sq.-ft. area. The uniformity in deposited is investigated by studying the performance of subcells deposited over the entire area. We also present results on the performance of triple- junction cells and modules. Themore » modules use grid-lines and encapsulants compatible with our production technology. We discuss the novel laser-processing technique that has bee developed at United Solar to improve energy-conversion efficiency and reduce manufacturing costs. We discuss in detail the optimization of the processing steps, and the performance of a laser-processed, triple- junction device of 12.6 cm{sup 2} area is presented. We also present experimental results on investigations of module reliability.« less
Model for threading dislocations in metamorphic tandem solar cells on GaAs (001) substrates
NASA Astrophysics Data System (ADS)
Song, Yifei; Kujofsa, Tedi; Ayers, John E.
2018-02-01
We present an approximate model for the threading dislocations in III-V heterostructures and have applied this model to study the defect behavior in metamorphic triple-junction solar cells. This model represents a new approach in which the coefficient for second-order threading dislocation annihilation and coalescence reactions is considered to be determined by the length of misfit dislocations, LMD, in the structure, and we therefore refer to it as the LMD model. On the basis of this model we have compared the average threading dislocation densities in the active layers of triple junction solar cells using linearly-graded buffers of varying thicknesses as well as S-graded (complementary error function) buffers with varying thicknesses and standard deviation parameters. We have shown that the threading dislocation densities in the active regions of metamorphic tandem solar cells depend not only on the thicknesses of the buffer layers but on their compositional grading profiles. The use of S-graded buffer layers instead of linear buffers resulted in lower threading dislocation densities. Moreover, the threading dislocation densities depended strongly on the standard deviation parameters used in the S-graded buffers, with smaller values providing lower threading dislocation densities.
Bypass Diode Temperature Tests of a Solar Array Coupon Under Space Thermal Environment Conditions
NASA Technical Reports Server (NTRS)
Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie; Wu, Gordon
2016-01-01
Tests were performed on a 56-cell Advanced Triple Junction solar array coupon whose purpose was to determine margin available for bypass diodes integrated with new, large multi-junction solar cells that are manufactured from a 4-inch wafer. The tests were performed under high vacuum with coupon back side thermal conditions of both cold and ambient. The bypass diodes were subjected to a sequence of increasing discrete current steps from 0 Amp to 2.0 Amp in steps of 0.25 Amp. At each current step, a temperature measurement was obtained via remote viewing by an infrared camera. This paper discusses the experimental methodology, experiment results, and the thermal model.
By-Pass Diode Temperature Tests of a Solar Array Coupon Under Space Thermal Environment Conditions
NASA Technical Reports Server (NTRS)
Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie
2016-01-01
Tests were performed on a 56-cell Advanced Triple Junction solar array coupon whose purpose was to determine margin available for bypass diodes integrated with new, large multi-junction solar cells that are manufactured from a 4-inch wafer. The tests were performed under high vacuum with cold and ambient coupon back-side. The bypass diodes were subjected to a sequence of increasing discrete current steps from 0 Amp to 2.0 Amp in steps of 0.25 Amp. At each current step, a temperature measurement was obtained via remote viewing by an infrared camera. This paper discusses the experimental methodology, including the calibration of the thermal imaging system, and the results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, S. A.; Lee, H. J.; Oh, Y. J., E-mail: yjoh@hanbat.ac.kr
We analyzed the effect of crystallographic anisotropy on the morphological evolution of a 12-nm-thick gold film during solid-state dewetting at high temperatures using automated indexing tool in a transmission electron microscopy. Dewetting initiated at grain-boundary triple junctions adjacent to large grains resulting from abnormal grain growth driven by (111) texture development. Voids at the junctions developed shapes with faceted edges bounded by low-index crystal planes. The kinetic mobility of the edges varied with the crystal orientation normal to the edges, with a predominance of specific edges with the slowest retraction rates as the annealing time was increased.
Si-Ge-Sn alloys with 1.0 eV gap for CPV multijunction solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roucka, Radek, E-mail: radek@translucentinc.com; Clark, Andrew; Landini, Barbara
2015-09-28
Si-Ge-Sn ternary group IV alloys offer an alternative to currently used 1.0 eV gap materials utilized in multijunction solar cells. The advantage of Si-Ge-Sn is the ability to vary both the bandgap and lattice parameter independently. We present current development in fabrication of Si-Ge-Sn alloys with gaps in the 1.0 eV range. Produced material exhibits excellent structural properties, which allow for integration with existing III-V photovoltaic cell concepts. Time dependent room temperature photoluminescence data demonstrate that these materials have long carrier lifetimes. Absorption tunable by compositional changes is observed. As a prototype device set utilizing the 1 eV Si-Ge-Sn junction,more » single junction Si-Ge-Sn device and triple junction device with Si-Ge-Sn subcell have been fabricated. The resulting I-V and external quantum efficiency data show that the Si-Ge-Sn junction is fully functional and the performance is comparable to other 1.0 eV gap materials currently used.« less
Design and Performance of a Triple Source Air Mass Zero Solar Simulator
NASA Technical Reports Server (NTRS)
Jenkins, Phillip; Scheiman, David; Snyder, David
2005-01-01
Simulating the sun in a laboratory for the purpose of measuring solar cells has long been a challenge for engineers and scientists. Multi-junction cells demand higher fidelity of a solar simulator than do single junction cells, due to a need for close spectral matching as well as AM0 intensity. A GaInP/GaAs/Ge solar cell for example, requires spectral matching in three distinct spectral bands (figure 1). A commercial single source high-pressure xenon arc solar simulator such as the Spectrolab X-25 at NASA Glenn Research Center, can match the top two junctions of a GaInP/GaAs/Ge cell to within 1.3% mismatch, with the GaAs cell receiving slightly more current than required. The Ge bottom cell however, is mismatched +8.8%. Multi source simulators are designed to match the current for all junctions but typically have small illuminated areas, less uniformity and less beam collimation compared to an X-25 simulator. It was our intent when designing a multi source simulator to preserve as many aspects of the X-25 while adding multi-source capability.
NASA Astrophysics Data System (ADS)
Lagabrielle, Yves; Guivel, Christèle; Maury, René C.; Bourgois, Jacques; Fourcade, Serge; Martin, Hervé
2000-11-01
High thermal gradients are expected to be found at sites of subduction of very young oceanic lithosphere and more particularly at ridge-trench-trench (RTT) triple junctions, where active oceanic spreading ridges enter a subduction zone. Active tectonics, associated with the emplacement of two main types of volcanic products, (1) MORB-type magmas, and (2) calc-alkaline acidic magmas in the forearc, also characterize these plate junction domains. In this context, MORB-type magmas are generally thought to derive from the buried active spreading center subducted at shallow depths, whereas the origin of calc-alkaline acidic magmas is more problematic. One of the best constrained examples of ridge-trench interaction is the Chile Triple Junction (CTJ) located southwest of the South American plate at 46°12'S, where the active Chile spreading center enters the subduction zone. In this area, there is a clear correlation between the emplacement of magmatic products and the migration of the triple junction along the active margin. The CTJ lava population is bimodal, with mafic to intermediate lavas (48-56% SiO 2) and acidic lavas ranging from dacites to rhyolites (66-73% SiO 2). Previous models have shown that partial melting of oceanic crust plus 10-20% of sediments, leaving an amphibole- and plagioclase-rich residue, is the only process that may account for the genesis of acidic magmas. Due to special plate geometry in the CTJ area, a given section of the margin may be successively affected by the passage of several ridge segments. We emphasize that repeated passages will lead to the development of very high thermal gradients allowing melting of rocks of oceanic origin at temperatures of 800-900°C and low pressures, corresponding to depths of 10-20 km depth only. In addition, the structure of the CTJ forearc domain is dominated by horizontal displacements and tilting of crustal blocks along a network of strike-slip faults. The occurrence of such a deformed domain implies that an important tectonic coupling may exist between the upper and the lower plates leading to the partitioning of the continental lithosphere and to the tectonic underplating of very young oceanic lithosphere below the continental wedge. We assume that in the case of the CTJ, the uncommon situation of three successive ridge segments entering the trench at 2-3 Ma intervals only resulted in a strong and finally long-lived thermal anomaly. This anomaly caused remelting of underplated portions of very young, still hot oceanic lithosphere. Only particular geometrical RTT configurations are able to produce such features. These include linear continental margin, short ridge segments slightly oblique to the trench and short transform faults. Finally, the CTJ example shows that a possible scenario for the origin of calc-alkaline acidic rocks in the near-trench region involves coeval tectonic coupling and repeated passage of thermal anomalies due to successive subduction of short ridge segments. Therefore, the local abundance of calc-alkaline acidic rocks, associated with MORB-type lavas in ancient series, could be the tracer of plate tectonic configurations involving the subduction of short ridge segments in a relatively short duration.
NASA Astrophysics Data System (ADS)
Stuart, Finlay; Rogers, Nick; Davies, Marc
2016-04-01
The earliest basalts erupted by mantle plumes are Mg-rich, and typically derived from mantle with higher potential temperature than those derived from the convecting upper mantle at mid-ocean ridges and ocean islands. The chemistry and isotopic composition of picrites from CFB provide constraints on the composition of deep Earth and thus the origin and differentiation history. We report new He-Sr-Nd-Pb isotopic composition of the picrites from the Ethiopian flood basalt province from the Dilb (Chinese Road) section. They are characterized by high Fe and Ti contents for MgO = 10-22 wt. % implying that the parent magma was derived from a high temperature low melt fraction, most probably from the Afar plume head. The picrite 3He/4He does not exceed 21 Ra, and there is a negative correlation with MgO, the highest 3He/4He corresponding to MgO = 15.4 wt. %. Age-corrected 87Sr/86Sr (0.70392-0.70408) and 143Nd/144Nd (0.512912-0.512987) display little variation and are distinct from MORB and OIB. Age-corrected Pb isotopes display a significant range (e.g. 206Pb/204Pb = 18.70-19.04) and plot above the NHRL. These values contrast with estimates of the modern Afar mantle plume which has lower 3He/4He and Sr, Nd and Pb isotope ratios that are more comparable with typical OIB. These results imply either interaction between melts derived from the Afar mantle plume and a lithospheric component, or that the original Afar mantle plume had a rather unique radiogenic isotope composition. Regardless of the details of the origins of this unusual signal, our observations place a minimum 3He/4He value of 21 Ra for the Afar mantle plume, significantly greater than the present day value of 16 Ra, implying a significant reduction over 30 Myr. In addition the Afar source was less degassed than convecting mantle but more degassed than mantle sampled by the proto-Iceland plume (3He/4He ~50 Ra). This suggests that the largest mantle plumes are not sourced in a single deep mantle domain with a common depletion history and that they do not mix with shallower mantle reservoirs to the same extent.
2006-05-01
Loreto Pazos Bazán13, Sheila Bailey14 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) 8. PERFORMING...Toporow12, Trinidad Gómez13, Loreto Pazos Bazán13 Sheila Bailey14 1Ohio Aerospace Institute, 2QinetiQ, Cody Technology Park, 3Fraunhofer Institute
NASA Astrophysics Data System (ADS)
Stab, Martin; Leroy, Sylvie; Bellahsen, Nicolas; Pik, Raphaël; Ayalew, Dereje; Yirgu, Gezahegn; Khanbari, Khaled
2017-04-01
The Afro-Arabian rift system is characterized by complex interactions between magmatism and rifting, leading to long-term segmentation of the associated continental margins. However, past studies focused on specific rift segments and no attempt has yet been made to reconcile them into a single comprehensive geodynamic model. To address this, we present interpretations of seismic profiles offshore the Eritrea-Yemeni margins in the southern Red Sea and the Yemeni margin in the Gulf of Aden and reassess the regional geodynamic evolution including the new tectonic evolution of the Central Afar Magmatic margin. We point out the role of two major transform zones in structuring the volcanism and faulting of the Red Sea-Afar-Aden margins. We show that those transform zones not only control the present-day rift organization, but were also active since the onset of rifting in Oligocene times. Early syn-rift transform zones control the emplacement and the development of seaward-dipping-reflector wedges immediately after the Continental Flood basalts (30 Ma), and are closely associated with mantle plume melts in the course of the segment extension. The margins segmentation thus appears to reflect the underlying mantle dynamics and thermal anomaly, which have directly influenced the style of rifting (wide vs. narrow rift), in controlling the development of preferential lithospheric thinning and massive transfer of magmas in the crust.
Xu, Liming; Dan, Mo; Shao, Anliang; Cheng, Xiang; Zhang, Cuiping; Yokel, Robert A; Takemura, Taro; Hanagata, Nobutaka; Niwa, Masami; Watanabe, Daisuke
2015-01-01
Silver nanoparticles (Ag-NPs) can enter the brain and induce neurotoxicity. However, the toxicity of Ag-NPs on the blood-brain barrier (BBB) and the underlying mechanism(s) of action on the BBB and the brain are not well understood. To investigate Ag-NP suspension (Ag-NPS)-induced toxicity, a triple coculture BBB model of rat brain microvascular endothelial cells, pericytes, and astrocytes was established. The BBB permeability and tight junction protein expression in response to Ag-NPS, NP-released Ag ions, and polystyrene-NP exposure were investigated. Ultrastructural changes of the microvascular endothelial cells, pericytes, and astrocytes were observed using transmission electron microscopy (TEM). Global gene expression of astrocytes was measured using a DNA microarray. A triple coculture BBB model of primary rat brain microvascular endothelial cells, pericytes, and astrocytes was established, with the transendothelial electrical resistance values >200 Ω·cm(2). After Ag-NPS exposure for 24 hours, the BBB permeability was significantly increased and expression of the tight junction (TJ) protein ZO-1 was decreased. Discontinuous TJs were also observed between microvascular endothelial cells. After Ag-NPS exposure, severe mitochondrial shrinkage, vacuolations, endoplasmic reticulum expansion, and Ag-NPs were observed in astrocytes by TEM. Global gene expression analysis showed that three genes were upregulated and 20 genes were downregulated in astrocytes treated with Ag-NPS. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the 23 genes were associated with metabolic processes, biosynthetic processes, response to stimuli, cell death, the MAPK pathway, and so on. No GO term and KEGG pathways were changed in the released-ion or polystyrene-NP groups. Ag-NPS inhibited the antioxidant defense of the astrocytes by increasing thioredoxin interacting protein, which inhibits the Trx system, and decreasing Nr4a1 and Dusp1. Meanwhile, Ag-NPS induced inflammation and apoptosis through modulation of the MAPK pathway or B-cell lymphoma-2 expression or mTOR activity in astrocytes. These results draw our attention to the importance of Ag-NP-induced toxicity on the neurovascular unit and provide a better understanding of its toxicological mechanisms on astrocytes.
Geochemistry of the mantle beneath the Rodriguez Triple Junction and the South-East Indian Ridge
NASA Astrophysics Data System (ADS)
Michard, A.; Montigny, R.; Schlich, R.
1986-05-01
Rare earth element abundances and Sr, Nd. Pb isotope compositions have been measured on zero-age dredge samples from the Rodriguez Triple Junction (RTJ) and the South-East Indian Ridge (SEIR), Along the SEIR. the geochemical "halo" of the St. Paul hot spot has a half-width of about 400 km and the data may be fairly well accounted for by a binary mixing between an Indian MORB-type component ( 87Sr/ 86Sr = 0.7028. 143Nd/ 144Nd = 0.51304. 206Pb/ 204Pb = 17.8) and the plume-type St. Paul component (0.7036, 0.5129, and 18.7 respectively). The alignment of the lead isotope data is particularly good with an apparent age of 1.95 ± 0.13 Ga and Th/U source value of 3.94. One sample dredged on the ridge 60 km southeast of St. Paul bears a definite Kerguelen isotopic signature. The RTJ has distinctive geochemical properties which contrast with those of the adjacent ridge segments. Low 206Pb/ 204Pb ratios which plots to the left of the geochron, rather high 208Pb/ 204Pb and 87Sr/ 87Sr ratios (17.4. 37.4, and 0.7031 respectively), a striking isotopic homogeneity, and variable LREE/HREE fractionation with (La/Sm) N, = 0.3-0.8 make this triple junction an anomalous site. The geochemical properties of the Indian Ocean basats have been examined using a three-component mantle model involving (a) a normal MORB-type source though to represent the depleted upper mantle matrix, (b) an OIB-type source of uncertain parentage (recycled oceanic crust?), and (c) a component with low μ. low Sm/Nd. high Rb/Sr (time-averaged value) which is tentatively assigned to ancient hydrothermal and abyssal sediments recycled in the mantle. The high 208Pb/ 204Pb and 87Sr/ 86Sr ratios typical of the Dupal anomaly are likely due to the widespread distribution of this latter component in the basalt source from this area. including that for MORBs.
Upper Mantle Structure beneath Afar: inferences from surface waves.
NASA Astrophysics Data System (ADS)
Sicilia, D.; Montagner, J.; Debayle, E.; Lepine, J.; Leveque, J.; Cara, M.; Ataley, A.; Sholan, J.
2001-12-01
The Afar hotspot is related to one of the most important plume from a geodynamic point of view. It has been advocated to be the surface expression of the South-West African Superswell. Below the lithosphere, the Afar plume might feed other hotspots in central Africa (Hadiouche et al., 1989; Ebinger & Sleep, 1998). The processes of interaction between crust, lithosphere and plume are not well understood. In order to gain insight into the scientific issue, we have performed a surface-wave tomography covering the Horn of Africa. A data set of 1404 paths for Rayleigh waves and 473 paths for Love waves was selected in the period range 45-200s. They were collected from the permanent IRIS and GEOSCOPE networks and from the PASSCAL experiment, in Tanzania and Saudi Arabia. Other data come from the broadband stations deployed in Ethiopia and Yemen in the framework of the French INSU program ``Horn of Africa''. The results presented here come from a path average phase velocities obtained with a method based on a least-squares minimization (Beucler et al., 2000). The local phase velocity distribution and the azimuthal anisotropy were simultaneously retrieved by using the tomographic technique of Montagner (1986). A correction of the data is applied according to the crustal structure of the 3SMAC model (Nataf & Ricard, 1996). We find low velocities down to 200 km depth beneath the Red Sea, the Gulf of Aden, Afars, the Ethiopian Plateau and southern Arabia. High velocities are present in the eastern Arabia and the Tanzania Craton. The anisotropy beneath Afar seems to be complex, but enables to map the flow pattern at the interface lithosphere-asthenosphere. The results presented here are complementary to those obtained by Debayle et al. (2001) at upper-mantle transition zone depths using waveform inversion of higher Rayle igh modes.
Measuring positive and negative affect and physiological hyperarousal among Serbian youth.
Stevanovic, Dejan; Laurent, Jeff; Lakic, Aneta
2013-01-01
This study extended previous cross-cultural work regarding the tripartite model of anxiety and depression by developing Serbian translations of the Positive and Negative Affect Scale for Children (PANAS-C), the Physiological Hyperarousal Scale for Children (PH-C), and the Affect and Arousal Scale (AFARS). Characteristics of the scales were examined using 449 students (M age = 12.61 years). Applying item retention criteria established in other studies, PH-C, PANAS-C, and AFARS translations with psychometric properties similar to English-language versions were identified. Preliminary validation of the scales was conducted using a subset of 194 students (M age = 12.37 years) who also completed measures of anxiety and depression. Estimates of reliability, patterns of correlations among scales, and age and gender differences were consistent with previous studies with English-speaking samples. Findings regarding scale validity were mixed, although consistent with existing literature. Serbian translations of the PH-C, PANAS-C, and AFARS mirror the original English-language scales in terms of both strengths and weaknesses.
NASA Astrophysics Data System (ADS)
Stork, A. L.; Stuart, G. W.; Henderson, C. M.; Keir, D.; Hammond, J. O. S.
2013-04-01
The Afar Depression, Ethiopia, offers unique opportunities to study the transition from continental rifting to oceanic spreading because the process is occurring onland. Using traveltime tomography and data from a temporary seismic deployment, we describe the first regional study of uppermost mantle P-wave velocities (VPn). We find two separate low VPn zones (as low as 7.2 km s-1) beneath regions of localized thinned crust in northern Afar, indicating the existence of high temperatures and, potentially, partial melt. The zones are beneath and off-axis from, contemporary crustal magma intrusions in active magmatic segments, the Dabbahu-Manda-Hararo and Erta'Ale segments. This suggests that these intrusions can be fed by off-axis delivery of melt in the uppermost mantle and that discrete areas of mantle upwelling and partial melting, thought to characterize segmentation of the uppermost mantle at seafloor spreading centres, are initiated during the final stages of break-up.
Grain boundary, triple junction and quadruple point mobility controlled normal grain growth
NASA Astrophysics Data System (ADS)
Rios, P. R.; Glicksman, M. E.
2015-07-01
Reduction in stored free energy provides the thermodynamic driving force for grain and bubble growth in polycrystals and foams. Evolution of polycrystalline networks exhibit the additional complication that grain growth may be controlled by several kinetic mechanisms through which the decrease in network energy occurs. Polyhedral boundaries, triple junctions (TJs), and quadruple points (QPs) are the geometrically distinct elements of three dimensional networks that follow Plateau's rules, provided that grain growth is limited by diffusion through, and motion of, cell boundaries. Shvindlerman and co-workers have long recognized the kinetic influences on polycrystalline grain growth of network TJs and QPs. Moreover, the emergence of interesting polycrystalline nanomaterials underscored that TJs can indeed influence grain growth kinetics. Currently there exist few detailed studies concerned either with network distributions of grain size, number of faces per grain, or with 'grain trajectories', when grain growth is limited by the motion of its TJs or QPs. By contrast there exist abundant studies of classical grain growth limited by boundary mobility. This study is focused on a topological/geometrical representation of polycrystals to obtain statistical predictions of the grain size and face number distributions, as well as growth 'trajectories' during steady-state grain growth. Three limits to grain growth are considered, with grain growth kinetics controlled by boundary, TJ, and QP mobilities.
Evidence for triple-junction rifting focussed on local magmatic centres along Parga Chasma, Venus
NASA Astrophysics Data System (ADS)
Graff, J. R.; Ernst, R. E.; Samson, C.
2018-05-01
Parga Chasma is a discontinuous rift system marking the southern boundary of the Beta-Atla-Themis (BAT) region on Venus. Along a 1500 km section of Parga Chasma, detailed mapping of Magellan Synthetic Aperture Radar images has revealed 5 coronae, 11 local rift zones distinct from a regional extension pattern, and 47 graben-fissure systems with radiating (28), linear (12) and circumferential (7) geometries. The magmatic centres of these graben-fissure systems typically coincide with coronae or large volcanoes, although a few lack any central magmatic or tectonic feature (i.e. are cryptic). Some of the magmatic centres are interpreted as the foci of triple-junction rifting that form the 11 local rift zones. Cross-cutting relationships between graben-fissure systems and local rift faults reveal synchronous formation, implying a genetic association. Additionally, cross-cutting relationships show that local rifting events postdate the regional extension along Parga Chasma, further indicating multiple stages of rifting. Evidence for multiple centres of younger magmatism and local rifting against a background of regional extension provides an explanation for the discontinuous morphology of Parga Chasma. Examination of the Atlantic Rift System (prior to ocean opening) on Earth provides an analogue to the rift morphologies observed on Venus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oswald, R.; Morris, J.
1994-11-01
The objective of this subcontract over its three-year duration is to advance Solarex`s photovoltaic manufacturing technologies, reduce its a-Si:H module production costs, increase module performance and expand the Solarex commercial production capacity. Solarex shall meet these objectives by improving the deposition and quality of the transparent front contact, by optimizing the laser patterning process, scaling-up the semiconductor deposition process, improving the back contact deposition, scaling-up and improving the encapsulation and testing of its a-Si:H modules. In the Phase 2 portion of this subcontract, Solarex focused on improving deposition of the front contact, investigating alternate feed stocks for the front contact,more » maximizing throughput and area utilization for all laser scribes, optimizing a-Si:H deposition equipment to achieve uniform deposition over large-areas, optimizing the triple-junction module fabrication process, evaluating the materials to deposit the rear contact, and optimizing the combination of isolation scribe and encapsulant to pass the wet high potential test. Progress is reported on the following: Front contact development; Laser scribe process development; Amorphous silicon based semiconductor deposition; Rear contact deposition process; Frit/bus/wire/frame; Materials handling; and Environmental test, yield and performance analysis.« less
High Current ESD Test of Advanced Triple Junction Solar Array Coupon
NASA Technical Reports Server (NTRS)
Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie
2014-01-01
Testing was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by Space Systems Loral, LLC (SSL). The ATJ coupon was a small, 4-cell, two-string configuration of flight-type design that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge (ESD) testing at two string voltages (100 V, 150 V) and four string currents (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 micro-seconds to 2.75 milli-seconds. All TSAs occurred at a string voltage of 150 V. Post-ESD functional testing showed that no degradation occurred due to the TSA events. These test results point to a robust design for application to a high-current, high-power mission.
Power System Mass Analysis for Hydrogen Reduction Oxygen Production on the Lunar Surface
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.
2009-01-01
The production of oxygen from the lunar regolith requires both thermal and electrical power in roughly similar proportions. This unique power requirement is unlike most applications on the lunar surface. To efficiently meet these requirements, both solar PV array and solar concentrator systems were evaluated. The mass of various types of photovoltaic and concentrator based systems were calculated to determine the type of power system that provided the highest specific power. These were compared over a range of oxygen production rates. Also a hybrid type power system was also considered. This system utilized a photovoltaic array to produce the electrical power and a concentrator to provide the thermal power. For a single source system the three systems with the highest specific power were a flexible concentrator/Stirling engine system, a rigid concentrator/Stirling engine system and a tracking triple junction solar array system. These systems had specific power values of 43, 34, and 33 W/kg, respectively. The hybrid power system provided much higher specific power values then the single source systems. The best hybrid combinations were the triple junction solar array with the flexible concentrator and the rigid concentrator. These systems had a specific power of 81 and 68 W/kg, respectively.
Tex, David M; Nakamura, Tetsuya; Imaizumi, Mitsuru; Ohshima, Takeshi; Kanemitsu, Yoshihiko
2017-05-16
Tandem solar cells are suited for space applications due to their high performance, but also have to be designed in such a way to minimize influence of degradation by the high energy particle flux in space. The analysis of the subcell performance is crucial to understand the device physics and achieve optimized designs of tandem solar cells. Here, the radiation-induced damage of inverted grown InGaP/GaAs/InGaAs triple-junction solar cells for various electron fluences are characterized using conventional current-voltage (I-V) measurements and time-resolved photoluminescence (PL). The conversion efficiencies of the entire device before and after damage are measured with I-V curves and compared with the efficiencies predicted from the time-resolved method. Using the time-resolved data the change in the carrier dynamics in the subcells can be discussed. Our optical method allows to predict the absolute electrical conversion efficiency of the device with an accuracy of better than 5%. While both InGaP and GaAs subcells suffered from significant material degradation, the performance loss of the total device can be completely ascribed to the damage in the GaAs subcell. This points out the importance of high internal electric fields at the operating point.
NASA Astrophysics Data System (ADS)
Royer, Jean-Yves; Schlich, Roland
1988-11-01
The Southeast Indian Ridge has the fastest spreading rates of the three mid-oceanic ridge systems of the Indian Ocean and has recorded the movements of Antarctica relative to Australia and India since the Late Cretaceous. New bathymetric and magnetic data have been collected by the R/V Marion Dufresne (1983) and the R/V Jean Charcot (1984), on the western part of this ridge, between the Rodriguez Triple Junction (25.5°S, 70.0°E) and the Amsterdam and Saint-Paul islands (38°S, 78°E). These data bring additional information on the seafloor magnetic pattern produced by the Southeast Indian Ridge during the past 20 m.y. A new tectonic chart is proposed for the area around the Amsterdam and Saint-Paul islands. We have mapped 17 isochrons ranging from anomalies 6 to 1 (20.5-0.7 Ma) based on the compilation of all the data available in this area (25 cruises). Their distribution clearly shows asymmetric features. Reconstructions at short time intervals show that stage poles of rotation describe oscillatory movements along a direction parallel to the Southeast Indian Ridge axis. Observed changes in spreading rates and the stability of the spreading directions since the Miocene support this result.
Multi Plumes and Their Flows beneath Arabia and East Africa
NASA Astrophysics Data System (ADS)
Chang, S.; van der Lee, S.
2010-12-01
The three-dimensional S-velocity structure beneath Arabia and East Africa is estimated down to the lower mantle to investigate vertical and horizontal extension of low-velocity anomalies that bear out the presence of mantle plumes and their flows beneath lithosphere. We estimated this model through joint inversion of teleseismic S- and SKS-arrival times, regional S- and Rayleigh waveform fits, fundamental-mode Rayleigh-wave group velocities, and independent Moho constraints from receiver functions, reflection/refraction profiles, and gravity measurements. With the unprecedented resolution in our S-velocity model, we found different flow patterns of hot materials upwelling beneath Afar beneath the Red Sea and the Gulf of Aden. While the low-velocity anomaly from Afar is well confined beneath the Gulf of Aden, inferring mantle flow along the gulf, N-S channel of low velocity is found beneath Arabia, not along the Red Sea. The Afar plume is distinctively separate from the Kenya plume, showing its origin in the lower mantle beneath southwestern Arabia. We identified another low-velocity extension to the lower mantle beneath Jordan and northern Arabia, which is thought to have caused volcanism in Jordan, northern Arabia, and possibly southern Turkey. Comparing locations of mantle plumes from the joint inversion with fast axes of shear-wave splitting, we confirmed horizontal plume flow from Afar in NS direction beneath Arabia and in NE-SW direction beneath Ethiopia as a likely cause of the observed seismic anisotropy.
Flow, melt and fossil seismic anisotropy beneath Ethiopia
NASA Astrophysics Data System (ADS)
Hammond, James; Kendall, J.-Michael; Wookey, James; Stuart, Graham; Keir, Derek; Ayele, Atalay
2014-05-01
Ethiopia is a region where continental rifting gives way to oceanic spreading. Yet the role that pre-existing lithospheric structure, melt, mantle flow or active upwellings may play in this process is debated. Measurements of seismic anisotropy are often used to attempt to understand the contribution that these mechanisms may play. In this study we use new data in Afar, Ethiopia along with legacy data across Ethiopia, Djibouti and Yemen to obtain estimates of mantle anisotropy using SKS-wave splitting. We show that two layers of anisotropy exist, and use shear-wave splitting tomography to invert for these. We show that fossil anisotropy with fast directions oriented northeast-southwest may be preserved in the lithosphere away from the rift. Beneath the Main Ethiopian Rift and parts of Afar, anisotropy due aligned melt due to sharp changes in lithospheric thickness dominate the shear-wave splitting signal in the mantle. Beneath Afar, away from lithospheric topography, melt pockets associated with the crustal magma storage dominate the signal and little anisotropy is seen in the uppermost mantle suggesting melt retains no preferential alignment, possibly due to a lack of mantle lithosphere. These results show the important role melt plays in weakening the lithosphere and imply that as rifting evolves passive upwelling sustains extension. A dominant northeast-southwest anisotropic fast direction is observed in a deeper layer across all of Ethiopia. This suggests that a conduit like plume is absent beneath Afar today, rather a broad flow from the southwest dominates in the upper mantle.
Yasin, Mohammed; Animut, Getachew
2014-08-01
The experiment was conducted to determine the supplementary feeding value of ground Prosopis juliflora pod (Pjp) and cottonseed meal (CSM) and their mixtures on feed intake, body weight gain and carcass parameters of Afar sheep fed a basal diet of pasture hay. Twenty-five yearling fat-tailed Afar rams with mean initial live weight 17.24 ± 1.76 kg (mean ± SD) were used in a randomized complete block design. Animals were blocked on their initial body weight. The experiment was conducted for 12 weeks and carcass evaluation followed. Treatments were hay alone ad libitum (T 1) or with 300 g CSM (T 2), 300 g Pjp (T 5), 2:1 ratio (T 3) and 1:2 ratio of CSM : Pjp (T 4). The CP contents of the hay, CSM and Pjp were 10.5, 44.5 and 16.7 %, respectively. Hay DM intake was higher (P < 0.05) for non-supplemented and total DM intake was lower in non-supplemented. Average daily weight gain (ADG) was lower (P < 0.05) for T 1 compared to all supplemented treatments except T 5. Hot carcass weight and rib-eye muscle area also followed the same trend like that of ADG. Compared with feeding hay alone, supplementing with CSM or a mixture of CSM and Pjp appeared to be a better feeding strategy, biologically, for yearling Afar rams.
NASA Technical Reports Server (NTRS)
Arvidson, R. E.
1981-01-01
Topography and gravity anomaly images for the continental United States were constructed. Evidence was found based on gravity, remote sensing data, the presence, trend, and character of fractures, and on rock type data, for a Precambrian rift through Missouri. The feature is probably the failed arm of a triple junction that existed prior to formation of the granite-rhyolite terrain of southern Missouri.
A Safety and Tolerability Study of INCAGN02385 in Select Advanced Malignancies
2018-05-15
Cervical Cancer; Microsatellite Instability (MSI)-High Endometrial Cancer; Gastric Cancer (Including Stomach and Gastroesophageal Junction [GEJ]); Esophageal Cancer; Hepatocellular Carcinoma; Melanoma (Uveal Melanoma Excluded); Merkel Cell Carcinoma; Mesothelioma; MSI-high Colorectal Cancer; Non-small Cell Lung Cancer (NSCLC); Ovarian Cancer; Squamous Cell Carcinoma of the Head and Neck (SCCHN); Small Cell Lung Cancer (SCLC); Renal Cell Carcinoma (RCC); Triple-negative Breast Cancer; Urothelial Carcinoma; Diffuse Large B-cell Lymphoma
The Strength of Binary Junctions in Hexagonal Close-Packed Crystals
2014-03-01
equilib- rium, on either slip plane, the dislocation on that plane intersects both triple points at the same angle with the junc- tion line, regardless...electronic properties of threading dislocations in wide band-gap gallium nitride (a wurtzite crystal structure consisting of two interpenetrating hcp...yield surface was composed of individual points , it pro- vided insight on the resistance of the lock to breaking as a result of the applied stresses. Via
On-Orbit Demonstration of a Lithium-Ion Capacitor and Thin-Film Multijunction Solar Cells
NASA Astrophysics Data System (ADS)
Kukita, Akio; Takahashi, Masato; Shimazaki, Kazunori; Kobayashi, Yuki; Sakai, Tomohiko; Toyota, Hiroyuki; Takahashi, Yu; Murashima, Mio; Uno, Masatoshi; Imaizumi, Mitsuru
2014-08-01
This paper describes an on-orbit demonstration of the Next-generation Small Satellite Instrument for Electric power systems (NESSIE) on which an aluminum- laminated lithium-ion capacitor (LIC) and a lightweight solar panel called KKM-PNL, which has space solar sheets using thin-film multijunction solar cells, were installed. The flight data examined in this paper covers a period of 143 days from launch. We verified the integrity of an LIC constructed using a simple and lightweight mounting method: no significant capacitance reduction was observed. We also confirmed that inverted metamorphic multijunction triple-junction thin-film solar cells used for evaluation were healthy at 143 days after launch, because their degradation almost matched the degradation predictions for dual-junction thin-film solar cells.
Influence of voids distribution on the deformation behavior of nanocrystalline palladium
NASA Astrophysics Data System (ADS)
Bachurin, D. V.
2018-07-01
Uniaxial deformation of three-dimensional nanocrystalline palladium containing porosity in the form of voids was investigated by means of molecular dynamics method. Simulations were performed at temperature of 300 K and at a constant strain rate of 108s-1. Two cases of voids distribution were considered: random and at triple or quadrupole junctions. It has been revealed that both the voids distribution and subsequent annealing at elevated temperature influence the deformation behavior of nanocrystalline palladium. In particular, the presence of voids at grain junctions results in a reduction of the Young's modulus and more pronounced softening effect during plastic deformation. The subsequent annealing evokes shrinkage of voids and strengthening effect. Contribution of grain boundary accommodation processes into both elastic and plastic deformation of nanocrystalline materials is discussed.
Development, Qualification and Production of Space Solar Cells with 30% EOL Efficiency
NASA Astrophysics Data System (ADS)
Guter, Wolfgang; Ebel, Lars; Fuhrmann, Daniel; Kostler, Wolfgang; Meusel, Matthias
2014-08-01
AZUR SPACE's latest qualified solar cell product 3G30-advanced provides a high end-of-life (EOL) efficiency of 27.8% for 5E14 (1 MeV e-/cm2) at low production costs. In order to further reduce the mass, the 3G30-advanced was thinned down to as thin as 20 μm and tested in space. Next generation solar cells must exceed the EOL efficiency of the 3G30-advanced and therefore will utilize the excess current of the Ge subcell. This can be achieved by a metamorphic cell concept. While average beginning-of-life efficiencies above 31% have already been demonstrated with upright metamorphic triple-junction cells, AZUR's next generation product will comprise a metamorphic 4- junction device targeting 30% EOL.
NASA Astrophysics Data System (ADS)
Casey, J.; Dewey, J. F.
2013-12-01
The principal enigma of large obducted ophiolite slabs is that they clearly must have been generated by some form of organized sea-floor spreading/plate-accretion, such as may be envisioned for the oceanic ridges, yet the volcanics commonly have arc affinity (Miyashiro) with boninites (high-temperature/low-pressure, high Mg and Si andesites), which are suggestive of a forearc origin. PT conditions under which boninites and metamorphic soles form and observations of modern forearc systems lead us to the conclusion that ophiolite formation is associated with overriding plate spreading centers that intersect the trench to form ridge-trench-trench of ridge-trench-tranform triple junctions. The spreading centers extend and lengthen the forearc parallel to the trench and by definition are in supra-subduction zone (SSZ) settings. Many ophiolites likewise have complexly-deformed associated mafic-ultramafic assemblages that suggest fracture zone/transform along their frontal edges, which in turn has led to models involving the nucleation of subduction zones on fracture zones or transpressional transforms. Hitherto, arc-related sea-floor-spreading has been considered to be either pre-arc (fore-arc boninites) or post-arc (classic Karig-style back arc basins that trench-parallel split arcs). Syn-arc boninites and forearc oceanic spreading centers that involve a stable ridge/trench/trench triple or a ridge-trench-transform triple junction, the ridge being between the two upper plates, are consistent with large slab ophiolite formation in an obduction-ready settting. The direction of subduction must be oblique with a different sense in the two subduction zones and the oblique subduction cannot be partitioned into trench orthogonal and parallel strike-slip components. As the ridge spreads, new oceanic lithosphere is created within the forearc, the arc and fore-arc lengthen significantly, and a syn-arc ophiolite forearc complex is generated by this mechanism. The ophiolite ages along arc-strike; a distinctive diachronous MORB-like to boninitic to arc volcanic stratigraphy develops vertically in the forearc and eruption centers progressively migrate from the forearc back to the main arc massif with time. Dikes in the ophiolite are commonly highly oblique to the trench (as are back-arc magnetic anomalies in modern environments). Boninites and high-mg andesites are generated in the fore-arc under the aqueous, low pressure/high temperature, regime at the ridge above the instantaneously developed subducting and dehydrating slab. We review both modern subduction environments and ancient obducted ophiolite analogues that illustrate this tectonic model for subduction initiation and the creation and rapid divergent-convergent plate tectonic transitions to ophiolitic forearcs.
Strain transfer between disconnected, propagating rifts in Afar
NASA Astrophysics Data System (ADS)
Manighetti, I.; Tapponnier, P.; Courtillot, V.; Gallet, Y.; Jacques, E.; Gillot, P.-Y.
2001-01-01
We showed before that both the Aden and Red Sea plate boundaries are currently rifting and propagating along two distinct paths into Afar through the opening of a series of disconnected, propagating rifts. Here we use new geochronological, tectonic, and paleomagnetic data that we acquired mostly in the southeastern part of Afar to examine the geometry, kinematics, and time-space evolution of faulting related to strain transfer processes. It appears that transfer of strain is accommodated by a bookshelf faulting mechanism wherever rifts or plate boundaries happen to overlap without being connected. This mechanism implies the rotation about a vertical axis of small rigid blocks along rift-parallel faults that are shown to slip with a left-lateral component, which is as important as their normal component of slip (rates of ˜2-3 mm/yr). By contrast, where rifts do not overlap, either a classic transform fault (Maskali) or an oblique transfer zone (Mak'arrasou) kinematically connects them. The length of the Aden-Red Sea overlap has increased in the last ˜0.9 Myr, as the Aden plate boundary propagated northward into Afar. As a consequence, the first-order blocks that we identify within the overlap did not all rotate during the same time-span nor by the same amounts. Similarly, the major faults that bound them did not necessarily initiate and grow as their neighboring faults did. Despite these variations in strain distribution and kinematics, the overlap kept accommodating a constant amount of strain (7 to 15% of the extension amount imposed by plate driving forces), which remained distributed on a limited number (seven or eight) of major faults, each one having slipped at constant rates (˜3 and 2 mm/yr for vertical and lateral rates, respectively). The fault propagation rates and the block rotation rates that we either measure or deduce are so fast (30-130 mm/yr and 15-38°/Myr, respectively) that they imply that strain transfer processes are transient, as has been shown to be the case for the processes of tearing, rift propagation, and strain jumps in Afar.
Increase in earthquake swarm activity in the southern Red Sea, Afar and Gulf of Aden
NASA Astrophysics Data System (ADS)
Ruch, Joël; Keir, Derek; Ogubazghi, Ghebrebrhan; di Giacomo, Domenico; Ladron Viltres, Renier; Jónsson, Sigurjón
2017-04-01
Rifting events periodically occur at divergent plate boundaries, consisting of magmatic intrusions, seismic swarms, surface faulting and in some cases volcanic eruptions. While earthquake swarms also occur at other types of plate boundaries, the swarms that have been observed in inland rift zones (e.g., in Afar and Iceland) and in a few offshore cases show an unambiguous relation with magmatic intrusions. These swarms typically last for a few days to a few weeks, lack a clear mainshock-aftershock decay pattern. Here we present a new study on earthquake swarms in the southern Red Sea, Afar and Gulf of Aden. We provide the first earthquake swarm catalogue for the region, which we compiled by integrating reexamined global and local earthquake catalogues with historical observations from 1960 to 2016. We find that in several cases in all the three areas, swarms have been re-occurring at the same locations every few decades (e.g., in the Bada area in Eritrea and Port Sudan region in the southern Red Sea in 1967 and 1993, and in the western Gulf of Aden in 1979, 1997 and 2010-2012). This suggests the existence of active spreading centers that are more active than previously thought. The swarms show different families of earthquake magnitudes, with clusters of Mw4 and Mw5 events (southern Red Sea and Aden) and occasional larger than Mw6 events, primarily in the southern Afar region (the Serdo and Dobi areas). Of the three areas, Gulf of Aden shows the highest swarm activity, followed by the Afar area and the southern Red Sea. Despite seeing the least amount of activity and lower magnitudes, the southern Red Sea has experienced multiple earthquake swarms and three volcanic eruptions (two of which resulted in new volcanic islands) during the past 10 years. We show that the three areas have been subject to an almost simultaneous increase of earthquake swarm activity during the last 10 years. This period (2005-2014) was much more active compared to the preceding decades (1960-2005) and might indicate an increase of magma supply in the region.
Multiple mantle upwellings through the transition zone beneath the Afar Depression?
NASA Astrophysics Data System (ADS)
Hammond, J. O.; Kendall, J. M.; Stuart, G. W.; Thompson, D. A.; Ebinger, C. J.; Keir, D.; Ayele, A.; Goitom, B.; Ogubazghi, G.
2012-12-01
Previous seismic studies using regional deployments of sensors in East-Africa show that low seismic velocities underlie Africa, but their resolution is limited to the top 200-300km of the Earth. Thus, the connection between the low velocities in the uppermost mantle and those imaged in global studies in the lower mantle is unclear. We have combined new data from Afar, Ethiopia with 7 other regional experiments and global network stations across Kenya, Ethiopia, Eritrea, Djibouti and Yemen, to produce high-resolution models of upper mantle P- and S-wave velocities to the base of the transition zone. Relative travel time tomographic inversions show that within the transition zone two focussed sharp-sided low velocity regions exist: one beneath the Western Ethiopian plateau outside the rift valley, and the other beneath the Afar depression. Estimates of transition zone thickness suggest that this is unlikely to be an artefact of mantle discontinuity topography as a transition zone of normal thickness underlies the majority of Afar and surrounding regions. However, a low velocity layer is evident directly above the 410 discontinuity, co-incident with some of the lowest seismic velocities suggesting that smearing of a strong low velocity layer of limited depth extent may contribute to the tomographic models in north-east Afar. The combination of seismic constraints suggests that small low temperature (<50K) upwellings may rise from a broader low velocity plume-like feature in the lower mantle. This interpretation is supported by numerical and analogue experiments that suggest the 660km phase change and viscosity jump may impede flow from the lower to upper mantle creating a thermal boundary layer at the base of the transition zone. This allows smaller, secondary upwellings to initiate and rise to the surface. These, combined with possible evidence of melt above the 410 discontinuity can explain the seismic velocity models. Our images of secondary upwellings suggest that there is no evidence for a plume in the classical sense (i.e. a narrow conduit). Instead, we propose that secondary upwellings rise from the base of the transition zone and connect with the northeast flowing African superswell in the upper mantle.
Geodynamic environments of ultra-slow spreading
NASA Astrophysics Data System (ADS)
Kokhan, Andrey; Dubinin, Evgeny
2015-04-01
Ultra-slow spreading is clearly distinguished as an outstanding type of crustal accretion by recent studies. Spreading ridges with ultra-slow velocities of extension are studied rather well. But ultra-slow spreading is characteristic feature of not only spreading ridges, it can be observed also on convergent and transform plate boundaries. Ultra-slow spreading is observed now or could have been observed in the past in the following geodynamic environments on divergent plate boundaries: 1. On spreading ridges with ultra-slow spreading, both modern (f.e. Gakkel, South-West Indian, Aden spreading center) and ceased (Labrador spreading center, Aegir ridge); 2. During transition from continental rifting to early stages of oceanic spreading (all spreading ridges during incipient stages of their formation); 3. During incipient stages of formation of spreading ridges on oceanic crust as a result of ridge jumps and reorganization of plate boundaries (f.e. Mathematicians rise and East Pacific rise); 4. During propagation of spreading ridge into the continental crust under influence of hotspot (Aden spreading center and Afar triple junction), under presence of strike-slip faults preceding propagation (possibly, rift zone of California Bay). Ultra-slow spreading is observed now or could have been observed in the past in the following geodynamic environments on transform plate boundaries: 1. In transit zones between two "typical" spreading ridges (f.e. Knipovich ridge); 2. In semi strike-slip/extension zones on the oceanic crust (f.e. American-Antarctic ridge); 3. In the zones of local extension in regional strike-slip areas in pull-apart basins along transform boundaries (Cayman trough, pull-apart basins of the southern border of Scotia plate). Ultra-slow spreading is observed now or could have been observed in the past in the following geodynamic environments on convergent plate boundaries: 1. During back-arc rifting on the stage of transition into back-arc spreading (central part of Bransfield rift); 2. During back-arc inter-subduction spreading (Ayu trough, northern Fiji basin), 3. During diffuse back-arc spreading (area on the south-eastern border of Scotia sea), 4. During back-arc spreading under splitting of island arc (northern extremity of Mariana trough). Each of the geodynamic environments is characterized by peculiar topographic, geological and geophysical features forming under the same spreading velocities. Development of ultra-slow spreading in each of these environments results in formation of peculiar extension sedimentary basins.
NASA Astrophysics Data System (ADS)
Touchard, Yannick; Rochette, Pierre; Aubry, Marie Pierre; Michard, Annie
2003-02-01
Volcanic traps correspond typically to aerial emissions of more than 10 6 km 3 of magma over 1 Myr periods. The potential global impact of such emissions makes the precise correlation of traps with the global magnetobiochronologic timescale an important task. Our study is focused on the Ethiopian traps which correspond to the birth of the Afar hotspot at the triple junction between the Red Sea, Aden Gulf and East-African rift. The Ethiopian traps have a significant acidic component (about 10% of the traps by volume) which enables more efficient stratospheric aerosol diffusion than for the main basaltic eruptions. Furthermore, a magnetostratigraphy is well established for the traps: traps activity began in Chron C11r.2r and ended in Chron C11r.1r or C10r, with well clustered 40Ar/ 39Ar ages at 30±0.5 Ma. Four tephra layers, marked by prominent magnetic susceptibility peaks, occur in Oligocene sections of sites from Ocean Drilling Program Leg 115, drilled in the southern Indian Ocean near Madingley Rise, 2600 km away from the Ethiopian traps. In order to demonstrate that these tephra layers are related to the Ethiopian traps, a high-resolution study of sites 709 and 711 was undertaken, involving magnetostratigraphy and nannofossil stratigraphy, together with isotopic and geochemical characterization of the tephra. Geochemical analyses and isotope ratios of the glass shards indicate the same acid continental source for these tephras which is compatible with the Ethiopian signature. Moreover, Hole 711A provides a reliable magnetostratigraphy for the Oligocene (Chrons 13-9). The tephra layers occur in the interval spanning Chrons C11n.2n-C11n.1n which agrees with the positions of acidic layers in the traps. Calcareous nannofossil stratigraphy confirms the magnetostratigraphic interpretation, with the NP23/24 zonal boundary occurring within the interval containing the tephra layers. Hole 709B supports the results from Hole 711A. Thus, the Ethiopian traps can be correlated to the geomagnetic polarity timescale. Our results confirm an earlier proposal that the onset of Ethiopian traps-related emissions is synchronous with the Oi2 oxygen isotope event.
NASA Astrophysics Data System (ADS)
Arboleda Zapata, M. D. J., Sr.; Arzate-Flores, J.; Guevara Betancourt, R. E., Sr.
2017-12-01
The Jalisco Block is a continental microplate produced by the extension along three large structures: the Tepic-Zacoalco rift (TZR), the Colima rift (CR) and the Chapala rift that converge in a triple junction 50 km southwest of Guadalajara, Mexico, with orientation NW-SE, N-S, and E-W respectively. The present study focuses on investigating the deep structure of the north Colima and eastern Zacoalco grabens close to the Guadalajara triple junction (GTJ). This is a first study of its type that provide insight on the grabens structures and crustal characteristics underneath. We measured along two magnetotellurics (MT) profiles that cut perpendicularly the TZR (profile ZAC), and the northern CR (profile SAY) comprising a total of 24 broad band MT soundings. The ZAC profile has 11 stations and has a NE orientation, and the SAY profile has 14 station aligned E-W. Standard processing and editing procedures were completed, and distortion analysis was applied to the data set in order to define the dimensionality and electric strike of the separated profiles. Static shift was corrected using geology information to distinguish the different types of soundings and later averaging for those soundings located over the same lithology. The Bahr dimensionality parameters showed that the medium is mainly 3D for the SAY profile and 2D for the ZAC profile; furthermore, the regional geoelectric strike azimuth calculated with Bahr methodology were -4° and -48° respectively, with good concordance with the main surface structures. The tipper analysis permitted validated these results, as the real induction vectors were nearly perpendicular to main fault structures. All soundings were rotated to the respective regional strike and a 2D simultaneous inversion of the transverse electric (TE) mode, the transvers magnetic (TM) mode and the Tipper was completed. The RMS fitting error yield 3.2% for ZAC profile and 3.7% for SAY profile. Both profiles show a shallow conductive zone at north of the Colima Rift and the south of the Zacoalco rift, which are interpreted as lacustrine and fluvial sediments having maximum thickness of 1.5 and 1.0 km respectively. The profiles show a faulted resistive upper crust, 35 to 40 km thick, that is reliably correlated with mapped surface structures and consistent with two types of extensional processes.
Xu, Liming; Dan, Mo; Shao, Anliang; Cheng, Xiang; Zhang, Cuiping; Yokel, Robert A; Takemura, Taro; Hanagata, Nobutaka; Niwa, Masami; Watanabe, Daisuke
2015-01-01
Background Silver nanoparticles (Ag-NPs) can enter the brain and induce neurotoxicity. However, the toxicity of Ag-NPs on the blood–brain barrier (BBB) and the underlying mechanism(s) of action on the BBB and the brain are not well understood. Method To investigate Ag-NP suspension (Ag-NPS)-induced toxicity, a triple coculture BBB model of rat brain microvascular endothelial cells, pericytes, and astrocytes was established. The BBB permeability and tight junction protein expression in response to Ag-NPS, NP-released Ag ions, and polystyrene-NP exposure were investigated. Ultrastructural changes of the microvascular endothelial cells, pericytes, and astrocytes were observed using transmission electron microscopy (TEM). Global gene expression of astrocytes was measured using a DNA microarray. Results A triple coculture BBB model of primary rat brain microvascular endothelial cells, pericytes, and astrocytes was established, with the transendothelial electrical resistance values >200 Ω·cm2. After Ag-NPS exposure for 24 hours, the BBB permeability was significantly increased and expression of the tight junction (TJ) protein ZO-1 was decreased. Discontinuous TJs were also observed between microvascular endothelial cells. After Ag-NPS exposure, severe mitochondrial shrinkage, vacuolations, endoplasmic reticulum expansion, and Ag-NPs were observed in astrocytes by TEM. Global gene expression analysis showed that three genes were upregulated and 20 genes were downregulated in astrocytes treated with Ag-NPS. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the 23 genes were associated with metabolic processes, biosynthetic processes, response to stimuli, cell death, the MAPK pathway, and so on. No GO term and KEGG pathways were changed in the released-ion or polystyrene-NP groups. Ag-NPS inhibited the antioxidant defense of the astrocytes by increasing thioredoxin interacting protein, which inhibits the Trx system, and decreasing Nr4a1 and Dusp1. Meanwhile, Ag-NPS induced inflammation and apoptosis through modulation of the MAPK pathway or B-cell lymphoma-2 expression or mTOR activity in astrocytes. Conclusion These results draw our attention to the importance of Ag-NP-induced toxicity on the neurovascular unit and provide a better understanding of its toxicological mechanisms on astrocytes. PMID:26491287
NASA Astrophysics Data System (ADS)
Nelson, George T.; Juang, Bor-Chau; Slocum, Michael A.; Bittner, Zachary S.; Laghumavarapu, Ramesh B.; Huffaker, Diana L.; Hubbard, Seth M.
2017-12-01
Growth of GaSb with low threading dislocation density directly on GaAs may be possible with the strategic strain relaxation of interfacial misfit arrays. This creates an opportunity for a multi-junction solar cell with access to a wide range of well-developed direct bandgap materials. Multi-junction cells with a single layer of GaSb/GaAs interfacial misfit arrays could achieve higher efficiency than state-of-the-art inverted metamorphic multi-junction cells while forgoing the need for costly compositionally graded buffer layers. To develop this technology, GaSb single junction cells were grown via molecular beam epitaxy on both GaSb and GaAs substrates to compare homoepitaxial and heteroepitaxial GaSb device results. The GaSb-on-GaSb cell had an AM1.5g efficiency of 5.5% and a 44-sun AM1.5d efficiency of 8.9%. The GaSb-on-GaAs cell was 1.0% efficient under AM1.5g and 4.5% at 44 suns. The lower performance of the heteroepitaxial cell was due to low minority carrier Shockley-Read-Hall lifetimes and bulk shunting caused by defects related to the mismatched growth. A physics-based device simulator was used to create an inverted triple-junction GaInP/GaAs/GaSb model. The model predicted that, with current GaSb-on-GaAs material quality, the not-current-matched, proof-of-concept cell would provide 0.5% absolute efficiency gain over a tandem GaInP/GaAs cell at 1 sun and 2.5% gain at 44 suns, indicating that the effectiveness of the GaSb junction was a function of concentration.
NASA Astrophysics Data System (ADS)
Sibrant, A.; Davaille, A.; Marques, F. O.; Hildenbrand, A.
2014-12-01
Born 200 Ma ago, the central Atlantic presents nowadays a large low seismic velocity anomaly in the lower mantle, a cluster of "hot" spots (Azores, Cape Verde, Madeira, Canary, Great Meteor), a mid-ocean ridge, and a triple junction located in the Azores. We carried out laboratory experiments to examine the possible links between mantle instabilities, plate boundary migration, and the development of the volcanism on various spatial and temporal scales. Coupled with the current knowledge of these volcanic areas (tomography, tectonics and K/Ar dating), our fluid mechanics experiments suggest that: (1) The Azores, as Canary, Cape Verde, Madeira Islands and Great Meteor seamounts might be the surface expression of a cluster of mantle instabilities rising from the top of a large thermochemical dome located in the lower mantle. However, such secondary plumes present a strong time-dependence 5-40 Myr time scale. (2) These secondary instabilities could be sufficiently weak to adapt their motions to the pre-existing force balance, and morphology and mechanical properties of the lithosphere. Based on current knowledge and modelling, we present a scenario of the Central Atlantic area evolution in the last 100 Ma combining a triple junction and decompression melting-generated buoyant material (i.e. such in volatiles and/or temperature) under a cooling and thickening lithosphere.
The Role of Water Vapor and Dissociative Recombination Processes in Solar Array Arc Initiation
NASA Technical Reports Server (NTRS)
Galofar, J.; Vayner, B.; Degroot, W.; Ferguson, D.
2002-01-01
Experimental plasma arc investigations involving the onset of arc initiation for a negatively biased solar array immersed in low-density plasma have been performed. Previous studies into the arc initiation process have shown that the most probable arcing sites tend to occur at the triple junction involving the conductor, dielectric and plasma. More recently our own experiments have led us to believe that water vapor is the main causal factor behind the arc initiation process. Assuming the main component of the expelled plasma cloud by weight is water, the fastest process available is dissociative recombination (H2O(+) + e(-) (goes to) H* + OH*). A model that agrees with the observed dependency of arc current pulse width on the square root of capacitance is presented. A 400 MHz digital storage scope and current probe was used to detect arcs at the triple junction of a solar array. Simultaneous measurements of the arc trigger pulse, the gate pulse, the arc current and the arc voltage were then obtained. Finally, a large number of measurements of individual arc spectra were obtained in very short time intervals, ranging from 10 to 30 microseconds, using a 1/4 a spectrometer coupled with a gated intensified CCD. The spectrometer was systematically tuned to obtain optical arc spectra over the entire wavelength range of 260 to 680 nanometers. All relevant atomic lines and molecular bands were then identified.
A Magnetic Survey Of The MTJ(Mangatolu Triple Junction) Caldera On Lau Basin
NASA Astrophysics Data System (ADS)
Kwak, J.; Won, J.; Park, C.; Ko, Y.; Kim, C.; Jeong, E.; Yu, S.
2006-12-01
We have performed a magnetic survey to understand magnetic distribution and characteristics of the MTJ(Mangatolu Triple Junction) caldera. MTJ caldera(15°25'S, 174°00'W) is located between MTJ northeast extending branch which connects to the northeast Tonga trench[Wright et al, 2000] and the main line of Tofua volcanic arc. The caldera results from coupling between the crust of the Tonga microplate and the subducting Pacific plate[Macleod, 1996]. The MTJ is characterized severe deformation and neovolcanism[Parson and Tiffin, 1993], and has been reoriented during the Brunhes Chron[Zellmer et al, 2001]. Generally, low magnetization at crust is highly correlated with active hydrothermal vent field. The acidic and corrosive fluids that constitute marine hydrothermal vent systems can quickly alter or replace the iron-rich magnetic minerals, which reduce the magnetic remanence of the crustal rocks, in some cases to zero. Magnetic field data were observed by using high sensitivity proton magnetometer which is towed 300m behind the ship(R/V Onnuri). The data were first merged with the ship navigation. Then magnetic field was inverted for crustal magnetization using Parker[1974] inversion approach, which takes bathymetry into account assuming a constant layer thickness and then sufficient annihilator is added to magnetization solution to balance the positive and reverse polarity amplitudes. In this study, all inversions are calculated assuming a 500m source thickness.
A new model for the development of the active Afar volcanic margin
NASA Astrophysics Data System (ADS)
Pik, Raphaël; Stab, Martin; Bellahsen, Nicolas; Leroy, Sylvie
2016-04-01
Volcanic passive margins, that represent more than the three quarters of continental margins worldwide, are privileged witnesses of the lithospheric extension processes thatform new oceanic basins. They are characterized by voluminous amounts of underplated, intruded and extruded magmas, under the form of massive lavas prisms (seaward-dipping reflectors, or SDR) during the course of thinning and stretching of the lithosphere, that eventually form the ocean-continent transition. The origin and mechanisms of formation of these objects are still largely debated today. We have focussed our attention in the last few years on the Afar volcanic province which represents an active analogue of such volcanic margins. We explored the structural and temporal relationships that exist between the development of the major thinning and stretching structures and the magmatic production in Central Afar. Conjugate precise fieldwork analysis along with lavas geochronology allowed us to revisit the timing and style of the rift formation, since the early syn-rift period of time in the W-Afar marginal area to present days. Extension is primarily accommodated over a wide area at the surface since the very initial periods of extension (~ 25 Ma) following the emplacement of Oligocene CFBs. We propose in our reconstruction of central Afar margin history that extension has been associated with important volumes of underplated mafic material that compensate crustal thinning. This has been facilitated by major crustal-scale detachments that help localize the thinning and underplating at depth. In line with this 'magmatic wide-rift' mode of extension, we demonstrate that episodic extension steps alternate with more protracted magmatic phases. The production of syn-rift massive flood basalts (~ 4 Ma) occurs after early thinning of both the crust and the lithosphere, which suggests that SDR formation, is controlled by previous tectonic event. We determined how the melting regime evolved in response to the deformation of the lithosphere, through a petrological and geochemical study of the pre- to syn-rift lavas and concluded that the lithospheric mantle experienced the combined effect of post-plume cooling, but also thinning during the Miocene. This is accompanied by the early channelization of the plume head into narrower zones, which helped focus extension at the future volcanic margins location. The anomalous mantle potential temperature increased during the very last localization phase (< 1 Ma), which leads us to argue in favor of the focussed activity of a plume stem below the volcanic margin, instead of purely passive adiabatic decompression. Our new interpretation of the regional isotopic signatures of lavas depicts a clear framework of the Afar plume and lithospheric mantle relationships to on going extension and segmentation of these margins, and allow us to propose new contrasted models for their development.
III-V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration
NASA Astrophysics Data System (ADS)
Cariou, Romain; Benick, Jan; Feldmann, Frank; Höhn, Oliver; Hauser, Hubert; Beutel, Paul; Razek, Nasser; Wimplinger, Markus; Bläsi, Benedikt; Lackner, David; Hermle, Martin; Siefer, Gerald; Glunz, Stefan W.; Bett, Andreas W.; Dimroth, Frank
2018-04-01
Silicon dominates the photovoltaic industry but the conversion efficiency of silicon single-junction solar cells is intrinsically constrained to 29.4%, and practically limited to around 27%. It is possible to overcome this limit by combining silicon with high-bandgap materials, such as III-V semiconductors, in a multi-junction device. Significant challenges associated with this material combination have hindered the development of highly efficient III-V/Si solar cells. Here, we demonstrate a III-V/Si cell reaching similar performances to standard III-V/Ge triple-junction solar cells. This device is fabricated using wafer bonding to permanently join a GaInP/GaAs top cell with a silicon bottom cell. The key issues of III-V/Si interface recombination and silicon's weak absorption are addressed using poly-silicon/SiOx passivating contacts and a novel rear-side diffraction grating for the silicon bottom cell. With these combined features, we demonstrate a two-terminal GaInP/GaAs//Si solar cell reaching a 1-sun AM1.5G conversion efficiency of 33.3%.
TRPV2 expression in rat oral mucosa.
Shimohira, Daiji; Kido, Mizuho A; Danjo, Atsushi; Takao, Tomoka; Wang, Bing; Zhang, Jing-Qi; Yamaza, Takayoshi; Masuko, Sadahiko; Goto, Masaaki; Tanaka, Teruo
2009-10-01
The oral mucosa is a highly specialised, stratified epithelium that confers protection from infection and physical, chemical and thermal stimuli. The non-keratinised junctional epithelium surrounds each tooth like a collar and is easily attacked by foreign substances from the oral sulcus. We found that TRPV2, a temperature-gated channel, is highly expressed in junctional epithelial cells, but not in oral sulcular epithelial cells or oral epithelial cells. Dual or triple immunolabelling with immunocompetent cell markers also revealed TRPV2 expression in Langerhans cells and in dendritic cells and macrophages. Electron microscopy disclosed TRPV2 immunoreactivity in the unmyelinated and thinly myelinated axons within the connective tissue underlying the epithelium. TRPV2 labelling was also observed in venule endothelial cells. The electron-dense immunoreaction in junctional epithelial cells, macrophages and neural axons occurred on the plasma membrane, on invaginations of the plasma membrane and in vesicular structures. Because TRPV2 has been shown to respond to temperature, hypotonicity and mechanical stimuli, gingival cells expressing TRPV2 may act as sensor cells, detecting changes in the physical and chemical environment, and may play a role in subsequent defence mechanisms.
NASA Astrophysics Data System (ADS)
Harrington, J.; Peltzer, G.; Leprince, S.; Ayoub, F.; Kasser, M.
2011-12-01
We present new measurements of the surface deformation associated with the rifting event of 1978 in the Asal-Ghoubbet rift, Republic of Djibouti. The Asal-Ghoubbet rift forms a component of the Afar Depression, a broad extensional region at the junction between the Nubia, Arabia, and Somalia plates, which apart from Iceland, is the only spreading center located above sea-level. The 1978 rifting event was marked by a 2-month sequence of small to moderate earthquakes (Mb ~3-5) and a fissural eruption of the Ardukoba Volcano. Deformation in the Asal rift associated with the event included the reactivation of the main bordering faults and the development of numerous open fissures on the rift floor. The movement of the rift shoulders, measured using ground-based geodesy, showed up to 2.5 m of opening in the N40E direction. Our data include historical aerial photographs from 1962 and 1984 (less than 0.8 m/pixel) along the northern border fault, three KH-9 Hexagon(~8 m/pixel) satellite images from 1973, and recently acquired ASTER (15 m/pixel) and SPOT5 (2.5 m/pixel) data. The measurements are made by correlating pre- and post-event images using the COSI-Corr (Co-registration of Optically Sensed Images and Correlation) software developed at Caltech. The ortho-rectification of the images is done with a mosaic of a 10 m resolution digital elevation model, made by French Institut Geographique National (IGN), and the SRTM and GDEM datasets. Correlation results from the satellite images indicate 2-3 meters of opening across the rift. Preliminary results obtained using the 1962 and 1984 aerial photographs indicate that a large fraction of the opening occurred on or near Fault γ, which borders the rift to the North. These preliminary results are largely consistent with the ground based measurements made after the event. A complete analysis of the aerial photograph coverage will provide a better characterization of the spatial distribution of the deformation throughout the rift.
NASA Astrophysics Data System (ADS)
Browne, S. E.; Fairhead, J. D.
1983-05-01
A regional compilation of published and unpublished gravity data for Central Africa is presented and reveals the presence of a major rift system, called here, the Central African Rift System. It is proposed that the junction area between the Ngaoundere and Abu Gabra rift arms in Western Sudan forms an incipient intraplate, triple-junction with the as yet unfractured, but domally uplifted and volcanically active, Darfur swell. It is only the Darfur swell that shows any similarities to the uplift and rift history of East Africa. The other two rifts arms are considered to be structurally similar to the early stages of passive margin development and thus reflect more closely the initial processes of continental fragmentation than the structures associated with rifting in East Africa.
Layered Crustal and Mantle Structure and Anisotropy beneath the Afar Depression and Malawi Rift Zone
NASA Astrophysics Data System (ADS)
Reed, Cory Alexander
Although a wealth of geophysical data sets have been acquired within the vicinity of continental rift zones, the mechanisms responsible for the breakup of stable continental lithosphere are ambiguous. Eastern Africa is host to the largest contemporary rift zone on Earth, and is thus the most prominent site with which to investigate the processes which govern the rupture of continental lithosphere. The studies herein represent teleseismic analyses of the velocity and thermomechanical structure of the crust and mantle beneath the Afar Depression and Malawi Rift Zone (MRZ) of the East African Rift System. Within the Afar Depression, the first densely-spaced receiver function investigation of crustal thickness and inferred velocity attenuation across the Tendaho Graben is conducted, and the largest to-date study of the topography of the mantle transition zone (MTZ) beneath NE Africa is provided, which reveals low upper-mantle velocities beneath the Afar concordant with a probable mantle plume traversing the MTZ beneath the western Ethiopian Plateau. In the vicinity of the MRZ, a data set comprised of 35 seismic stations is employed that was deployed over a two year period from mid-2012 to mid-2014, belonging to the SAFARI (Seismic Arrays For African Rift Initiation) experiment. Accordingly, the first MTZ topography and shear wave splitting analyses were conducted in the region. The latter reveals largely plate motion-parallel anisotropy that is locally modulated by lithospheric thickness abnormalities adjacent to the MRZ, while the former reveals normal MTZ thicknesses and shallow discontinuities that support the presence of a thick lithospheric keel within the MRZ region. These evidences strongly argue for the evolution of the MRZ via passive rifting mechanisms absent lower-mantle influences.
Tschopp, Rea; Bekele, Shiferaw; Moti, Tesfaye; Young, Douglas; Aseffa, Abraham
2015-06-15
This cross-sectional study investigated the prevalence of brucellosis and bovine tuberculosis (BTB) in local cattle and goat breeds of Oromo and Afar pastoralist communities living in two distinct parts around the Awash National Park. A questionnaire survey was carried out to assess information on husbandry, milk consumption habits, and on knowledge-attitude-practice regarding both diseases. Among a total of 771 animals from all sites tested by comparative intradermal tuberculin test (CIDT) none were BTB reactors with the >4mm cut-off. Using the >2mm cut-off, individual apparent prevalence was 0.9% (95%CI: 0.23-3.56%) in cattle and 0.7% (95%CI: 0.12-3.45%) in goats. Herd prevalence in Oromia and Afar sites was 0% and 66.7% respectively in goats and 16.7% and 50% in cattle. Among the 327 animals tested by enzyme linked immunoassay for brucellosis, 4.8% (95%CI: 1.2-17.1%) of cattle and 22.8% (95%CI: 5.98-29.5%) of goats were reactors. Highest individual prevalence of both diseases was found in Afar settlements with brucellosis being as high as 50%. Respondent ethnicity was the only risk factor for brucellosis positivity in goats in the univariable risk factor analysis. Knowledge about the diseases was poor. Raw goat milk was regularly consumed by women and children, putting them at risk for brucellosis. This study highlighted an increased prevalence gradient of BTB and brucellosis from West to East along the study sites with high brucellosis individual prevalence and abortion rates among Afar settlements in particular. Copyright © 2015 Elsevier B.V. All rights reserved.
First Evidence of Epithermal Gold Occurrences in the SE Afar Rift, Republic of Djibouti
NASA Astrophysics Data System (ADS)
Moussa, Nima; Fouquet, Yves; Caminiti, Antoine Marie; Le Gall, Bernard; Rolet, Joel; Bohn, Marcel; Etoubleau, Joel; Delacourt, Christophe; Jalludin, Mohamed
2010-05-01
The Republic of Djibouti, located at the SE part of the Afar volcanic Triangle, is characterized by intense tectonic and bimodal volcanic activity, and is emplaced over an earlier magmatic rift system, as old as 25-30 Ma. Each magmatic event is accompanied by hydrothermal activity. Few works have been so far published on hydrothermal mineralization in the Afar area. Mineralization generally occur as veins and are mainly associated with acidic volcanic intrusions along the fractures at the edges of grabens established during the last 4 Ma. Eighty samples from hydrothermal quartz ± carbonate veins and breccias were studied on 9 different sites representative of 4 main volcanic events ranging in age from early Miocene up to Present. Gold was found in excess of 200 ppb in 30% of the samples. Mineralogical analyses based on optical reflected light microscopy, X-Ray diffractometry, X-Ray fluorescence, inductively coupled plasma mass spectroscopy and electron microprobe, led us to identify two types of gold mineralization (i) native gold, electrum, hessite and sulfides (chalcopyrite, pyrite, bornite, ± sphalerite, and galena) in massive quartz breccias and banded chalcedony, (ii) gold, electrum, hematite, magnetite, trace minerals (argentite) and adularia in banded chalcedony. Another group without gold is characterized by quartz, pyrite ± goethite. Secondary minerals are characterized by goethite, native silver and native copper. Arsenic is enriched in pyrite in samples with a high gold content. The bimodal volcanism, the occurrence of adularia, the native gold and electrum in banded silica veins, are classically observed in neutral epithermal systems. The discovery of this type of mineralization in a recent-active continental rift system supplies new insights about hydrothermal processes associated with volcanic activity in a spreading context. Keywords: Republic of Djibouti, Afar Triangle, Hydrothermal, Epithermal system, Gold
Anisotropic surface wave tomography in the Horn of Africa.
NASA Astrophysics Data System (ADS)
Sicilia, D.; Montagner, J. P.; Debayle, E.; Leveque, J. J.; Cara, M.; Lepine, J. C.; Beucler, E.; Sebai, A.
2003-04-01
One of the largest continental hotspot is located in the Afar Depression, in East of Africa. It has been advocated to be the surface expression of the South-West African Superswell, which is the antipode of the Pacific Superswell in the framework of the mantle degree 2 pattern. We performed an anisotropic surface wave tomography in the Horn of Africa in order to image the seismic structure beneath the region. Data were collected from the permanent IRIS and GEOSCOPE networks and from the PASSCAL experiment in Tanzania and Saudi Arabia. We supplemented our data base with a French deployment of 5 portable broadband stations surrounding the Afar Hotspot. Path average phase velocities are obtained using a method based on a least-squares minimization (Beucler et al., 2002). The data are corrected from the effect of the crust according to the a priori 3SMAC model (Nataf et Ricard, 1996). 3D-models of velocity, radial and azimuthal anisotropies are inverted for. We find low velocities beneath the Red Sea, the Gulf of Aden, the South East of the Tanzania Craton, the Hotspot and Central Africa. High velocities are present in the eastern Arabia and the Tanzania Craton. These results are in agreement with the anisotropic model of Debayle et al.(2002). The flow pattern can be derived from fast axis directions of seismic anisotropy. The anisotropy model beneath Afar displays a complex pattern, in which the hotspot seems to play a perturbating role. The azimuthal anisotropy shows that the Afar plume might be interpreted as feeding other hotspots in central Africa. The directions of fast axis are in good agreement with the results of previous SKS studies performed in the region (Gao et al., 1997; Wolfe et al., 1999; Barruol and Ismail, 2001).
Study of p-type and intrinsic materials for amorphous silicon based solar cells
NASA Astrophysics Data System (ADS)
Du, Wenhui
This dissertation summarizes the research work on the investigation and optimization of high efficiency hydrogenated amorphous silicon (a-Si:H) based thin film n-i-p single-junction and multi-junction solar cells, deposited using radio frequency (RF) and very high frequency (VHF) plasma enhanced chemical vapor deposition (PECVD) techniques. The fabrication and characterization of high quality p-type and intrinsic materials for a-Si:H based solar cells have been systematically and intensively studied. Hydrogen dilution, substrate temperature, gas flow rate, RF- or VHF-power density, and films deposition time have been optimized to obtain "on-the-edge" materials. To understand the material structure of the silicon p-layer providing a high Voc a-Si:H solar cell, hydrogenated amorphous, protocrystalline, and nanocrystalline silicon p-layers have been prepared using RF-PECVD and characterized by Raman spectroscopy and high resolution transmission electronic microscopy (HRTEM). It was found that the optimum Si:H p-layer for n-i-p a-Si:H solar cells is composed of fine-grained nanocrystals with crystallite sizes in the range of 3-5 nm embedded in an amorphous network. Using the optimized p-layer, an a-Si:H single-junction solar cell with a very high Voc value of 1.042 V and a FF value of 0.74 has been obtained. a-Si:H, a-SiGe:H and nc-Si:H i-layers have been prepared using RF- and VHF-PECVD techniques and monitored by different optical and electrical characterizations. Single-junction a-Si:H, a-SiGe and nc-Si:H cells have been developed and optimized. Intermediate bandgap a-SiGe:H solar cells achieved efficiencies over 12.5%. On the basis of optimized component cells, we achieved a-Si:Hla-SiGe:H tandem solar cells with efficiencies of ˜12.9% and a-Si:H/a-SiGe:H/a-SiGe:H triple-junction cells with efficiencies of ˜12.03%. VHF-PECVD technique was used to increase the deposition rates of the narrow bandgap materials. The deposition rate for a-SiGe:H i-layer attained 9 A/sec and the solar cell had a V oc of 0.588 V, Jsc of 20.4 mA/cm2, FF of 0.63, and efficiency of 7.6%. Preliminary research on the preparation of a-Si:Hlnc-Si:H tandem solar cells and a-Si:Hla-SiGe:Hlnc-Si:H triple-junction cells has also been undertaken using VHF nc-Si:H bottom cells with deposition rates of 6 A/sec. All I-V measurements were carried out under AM1.5G (100 MW/cm2) and the cell area was 0.25 cm2.
Pulling the rug out from under California: Seismic images of the Mendocino Triple Junction region
Tréhu, Anne M.
1995-01-01
In 1993 and 1994 a network of large-aperture seismic profiles was collected to image the crustal and upper-mantle structure beneath northern California and the adjacent continental margin. The data include approximately 650 km of onshore seismic refraction/reflection data, 2000 km of off-shore multichannel seismic (MCS) reflection data, and simultaneous onshore and offshore recording of the MCS airgun source to yield large-aperture data. Scientists from more than 12 institutions were involved in data acquisition.
NASA Astrophysics Data System (ADS)
Oproglidis, T. A.; Karatsori, T. A.; Barraud, S.; Ghibaudo, G.; Dimitriadis, C. A.
2018-04-01
In this work, we extend our analytical compact model for nanoscale junctionless triple-gate (JL TG) MOSFETs, capturing carrier transport from drift-diffusion to quasi-ballistic regime. This is based on a simple formulation of the low-field mobility extracted from experimental data using the Y-function method, taking into account the ballistic carrier motion and an increased carrier scattering in process-induced defects near the source/drain regions. The case of a Schottky junction in non-ideal ohmic contact at the drain side was also taken into account by modifying the threshold voltage and ideality factor of the JL transistor. The model is validated with experimental data for n-channel JL TG MOSFETs with channel length varying from 95 down to 25 nm. It can be easily implemented as a compact model for use in Spice circuit simulators.
NASA Astrophysics Data System (ADS)
Mao, Kun; Qiao, Ming; Zhang, WenTong; Zhang, Bo; Li, Zhaoji
2014-11-01
This paper proposes a 700 V narrow channel region triple-RESURF (reduced surface field) n-type junction field-effect transistor (NCT-nJFET). Compared to traditional structures, low pinch-off voltage (VP) with unobvious drain-induced barrier lowering (DIBL) effect and large saturated current (IDsat) are achieved. This is because p-type buried layer (Pbury) and PWELL are introduced to shape narrow n-type channel in JFET channel region. DIBL sensitivity (SDIBL) is firstly introduced in this paper to analyze the DIBL effect of high-voltage long-channel JFET. Ultra-high breakdown voltage is obtained by triple RESURF technology. Experimental results show that proposed NCT-nJFET achieves 24-V VP, 3.5% SDIBL, 2.3-mA IDsat, 800-V OFF-state breakdown voltage (OFF-BV) and 650-V ON-state breakdown voltage when VGS equals 0 V (ON-BV).
A LREE-depleted component in the Afar plume: Further evidence from Quaternary Djibouti basalts
NASA Astrophysics Data System (ADS)
Daoud, Mohamed A.; Maury, René C.; Barrat, Jean-Alix; Taylor, Rex N.; Le Gall, Bernard; Guillou, Hervé; Cotten, Joseph; Rolet, Joël
2010-02-01
Major, trace element and isotopic (Sr, Nd, Pb) data and unspiked K-Ar ages are presented for Quaternary (0.90-0.95 Ma old) basalts from the Hayyabley volcano, Djibouti. These basalts are LREE-depleted (La n/Sm n = 0.76-0.83), with 87Sr/ 86Sr ratios ranging from 0.70369 to 0.70376, and rather homogeneous 143Nd/ 144Nd ( ɛNd = + 5.9-+ 7.3) and Pb isotopic compositions ( 206Pb/ 204Pb = 18.47-18.55, 207Pb/ 204Pb = 15.52-15.57, 208Pb/ 204Pb = 38.62-38.77). They are very different from the underlying enriched Tadjoura Gulf basalts, and from the N-MORB erupted from the nascent oceanic ridges of the Red Sea and Gulf of Aden. Their compositions closely resemble those of (1) depleted Quaternary Manda Hararo basalts from the Afar depression in Ethiopia and (2) one Oligocene basalt from the Ethiopian Plateau trap series. Their trace element and Sr, Nd, Pb isotope systematics suggest the involvement of a discrete but minor LREE-depleted component, which is probably an intrinsic part of the Afar plume.
NASA Astrophysics Data System (ADS)
Castillo, P. R.; Hilton, D. R.; Halldorsson, S. A.; Wang, R.
2012-12-01
The ultimate source of heat and magmatism associated with continental rifting in the East African Rift System (EARS) is generally viewed to be the African Superplume, but there is continuing debate on the surface expression of this large anomalous feature, which originates in the lower mantle. Previous studies have demonstrated an insignificant role for crustal contamination thereby identifying a single mantle plume signature in Quaternary basalts from the Main Ethiopian Rift in the northern EARS. This is designated to be the Afar plume and is characterized by, e.g., 3He/4He >15 RA, 206Pb/204Pb = 19.5 and 87Sr/86Sr = 0.7035 [Rooney et al., J. Pet. 53, 2012]. In contrast, the signature of plume(s) in the southern EARS is less constrained. Rogers et al. [EPSL 176, 2000] proposed a plume in the sub-lithospheric Kenyan mantle with characteristically lower 43Nd/144Nd than the Afar plume whereas Furman [JAES 48, 2007] advocated a high μ [HIMU] plume based primarily on the high 206Pb/204Pb ratios of lavas in all areas within and south of the Turkana Depression: both models assume a 3He/4He lower than the Afar plume. Here we report the trace element and Sr-Nd-Pb isotopic composition of basaltic lavas from the Rungwe Volcanic Province (RVP) in the southern extreme of the Western Rift previously identified as a high 3He/4He locality (~15 RA; [Hilton et al., GRL 38, 2011]). Trace element analyses are within the previously reported range of lava compositions that include a relatively large lithospheric component. More importantly, we identify correlations among incompatible trace element and isotopic ratios (e.g., 3He/4He vs 206Pb/204Pb, Rb/Sr, Nb/Ta; 87Sr/86Sr vs 208Pb/204Pb). Our new results suggest the presence of a distinct, high 3He/4He mantle source beneath RVP that is more radiogenic (e.g., 206Pb/204Pb up to ~19.8; 87Sr/86Sr up to 0.7055) than the Afar mantle plume. There is also very little or no HIMU signature in RPV basalts based on their high Sr and low Nd isotopic ratios.
Evolution of Northeast Atlantic Magmatic Continental Margins from an Ethiopian-Afar Perspective
NASA Astrophysics Data System (ADS)
England, R. W.; Cornwell, D. G.; Ramsden, A. M.
2014-12-01
One of the major problems interpreting the evolution of magmatic continental margins is that the structure which should record the pre-magmatic evolution of the rift and which potentially influences the character of the rifting process is partially or completely obscured by thick basalt lava flows and sills. A limited number of deep reflection seismic profiles acquired with tuned seismic sources have penetrated the basalts and provide an image of the pre-magmatic structure, otherwise the principle data are lower resolution wide-angle/refraction profiles and potential field models which have greater uncertainties associated with them. In order to sidestep the imaging constraints we have examined the Ethiopian - Afar rift system to try to understand the rifting process. The Main Ethiopian rift contains an embryonic magmatic passive margin dominated by faulting at the margins of the rift and en-echelon magmatic zones at the centre. Further north toward Afar the rift becomes in-filled with extensive lava flows fed from fissure systems in the widening rift zone. This rift system provides, along its length, a series of 'snapshots' into the possible tectonic evolution of a magmatic continental margin. Deep seismic profiles crossing the NE Atlantic margins reveal ocean dipping reflector sequences (ODRS) overlying extended crust and lower crustal sill complexes of intruded igneous rock, which extend back beneath the continental margin. The ODRS frequently occur in fault bounded rift structures along the margins. We suggest, by analogy to the observations that can be made in the Ethiopia-Afar rift that these fault bounded basins largely form at the embryonic rift stage and are then partially or completely filled with lavas fed from fissures which are now observed as the ODRS. Also in the seismic profiles we identify volcanic constructs on the ODRS which we interpret as the equivalent of the present day fissure eruptions seen in Afar. The ocean ward dip on the ODRS is predominantly the result of post-eruption differential subsidence, as opposed to syn-eruption extension. The timing of intrusion of the lower crustal sill complexes remains unclear but they are most likely to have been emplaced as the supply of magma increased, which implies they are a late stage addition.
Istopically Defined Source Reservoirs of Primitive Magmas in the East African Rift.
NASA Astrophysics Data System (ADS)
Rooney, T. O.; Furman, T.; Hanan, B.
2005-12-01
Extension within the East African Rift is a function of the interaction between plume-driven uplift and far-field stresses associated with plate tectonic processes. Geochemical and isotopic investigation of primitive basalts from the Main Ethiopian Rift (MER) reveals systematic spatial variations in the contributions from distinct and identifiable source reservoirs that, in turn help identify the mechanisms by which along-axis rifting has progressed. The Sr-Nd-Pb isotopic characteristics of MER basalts can be described by a three-component mixing model involving the long-lived Afar plume, a depleted mantle component similar to the source region for Gulf of Aden MORB from east of 48° E and a reservoir that is likely lithospheric (sub-continental mantle lithosphere, magmatic underplate or lower crust). Quaternary basalts in the central MER exhibit a systematic decrease in plume influence southward from 9.5° N to 8° N, i.e., away from the modern surface expression of the Afar plume in Djibouti and Erta 'Ale. The composition of the Afar plume component is comparable to the "C" mantle reservoir. This southward decrease in plume influence is coupled with an increase in the influence of the lithospheric and depleted mantle components. Linear arrays observed within Pb-Pb isotopic space at each eruptive center require distinctive ratio of lithospheric + depleted mantle components mixing with variable amounts of the "C"-like plume component. This isotopic evidence suggests the depleted mantle and lithosphere mixed prior to the generation of the recent magmas. To the south, the Sr-Nd-Pb isotopic compositions of Turkana (Kenya) rift basalts record a mix of a similar "C"-like plume component and a fourth HIMU-like source component. Low 3He/4He values observed in the HIMU-dominated lavas from Turkana contrast with the higher ratios found in basalts associated with the "C"-like Afar plume. Further analysis of "C"-HIMU lavas at Turkana is required to fully constrain the He isotopic signatures. Thus, along-axis patterns in Quaternary EARS magmatism are compatible with two "C"-like plumes with contributions from the upper mantle and chemically distinct lithospheric components. Alternatively, a single "C"-like plume can account for these relationships. In the single plume scenario, the HIMU source component present in the 30 Ma Turkana lavas may represent melting of metasomatised lithosphere, derived from the accretion of island-arc-backarc basins during Pan-African events (e.g. Schilling et al., 1992). The recent plume-dominated activity in Turkana and Afar are separated by a region characterized by waning plume influence and a greater contribution from the depleted mantle. This intermediate zone, which is located in the south-central MER represents the modern site of contact between the northward propagating Kenya / Turkana Rift and the southward propagating Afar Rift zone.
InAlAs photovoltaic cell design for high device efficiency
Smith, Brittany L.; Bittner, Zachary S.; Hellstroem, Staffan D.; ...
2017-04-17
This study presents a new design for a single-junction InAlAs solar cell, which reduces parasitic absorption losses from the low band-gap contact layer while maintaining a functional window layer by integrating a selective etch stop. The etch stop is then removed prior to depositing an anti-reflective coating. The final cell had a 17.9% efficiency under 1-sun AM1.5 with an anti-reflective coating. Minority carrier diffusion lengths were extracted from external quantum efficiency data using physics-based device simulation software yielding 170 nm in the n-type emitter and 4.6 um in the p-type base, which is more than four times the diffusion lengthmore » previously reported for a p-type InAlAs base. In conclusion, this report represents significant progress towards a high-performance InAlAs top cell for a triple-junction design lattice-matched to InP.« less
Cell chip temperature measurements in different operation regimes of HCPV modules
NASA Astrophysics Data System (ADS)
Rumyantsev, V. D.; Chekalin, A. V.; Davidyuk, N. Yu.; Malevskiy, D. A.; Pokrovskiy, P. V.; Sadchikov, N. A.; Pan'chak, A. N.
2013-09-01
A new method has been developed for accurate measurements of the solar cell temperature in maximum power point (MPP) operation regime in comparison with that in open circuit (OC) regime (TMPP and TOC). For this, an electronic circuit has been elaborated for fast variation of the cell load conditions and for voltage measurements, so that VOC values could serve as an indicator of TMPP at the first moment after the load disconnection. The method was verified in indoor investigations of the single-junction AlGaAs/GaAs cells under CW laser irradiation, where different modifications of the heat spreaders were involved. PV modules of the "SMALFOC" design (Small-size concentrators; Multijunction cells; "All-glass" structure; Lamination technology; Fresnel Optics for Concentration) with triple-junction InGaP/GaAs/Ge cells were examined outdoors to evaluate temperature regimes of their operation.
NASA Astrophysics Data System (ADS)
Silva, Pedro F.; Henry, Bernard; Marques, Fernando O.; Hildenbrand, Anthony; Lopes, Ana; Madureira, Pedro; Madeira, José; Nunes, João C.; Roxerová, Zuzana
2018-02-01
The morphology of volcanic oceanic islands results from the interplay between constructive and destructive processes, and tectonics. In this study, the analysis of the paleomagnetic directions obtained on well-dated volcanic rocks is used as a tool to assess tilting related to tectonics and large-scale volcano instability along the Pico-Faial linear volcanic ridge (Azores Triple Junction, Central-North Atlantic). For this purpose, 530 specimens from 46 lava flows and one dyke from Pico and Faial islands were submitted to thermal and alternating magnetic fields demagnetizations. Detailed rock magnetic analyses, including thermomagnetic analyses and classical high magnetic field experiments revealed titanomagnetites with different Ti-content as the primary magnetic carrier, capable of recording stable remanent magnetizations. In both islands, the paleomagnetic analysis yields a Characteristic Remanent Magnetization, which presents island mean direction with normal and reversed polarities in agreement with the islands location and the age of the studied lava flows, indicating a primary thermo-remanent magnetization. Field observations and paleomagnetic data show that lava flows were emplaced on pre-existing slopes and were later affected by significant tilting. In Faial Island, magmatic inflation and normal faults making up an island-scale graben, can be responsible for the tilting. In Pico Island, inflation related to magma intrusion during flow emplacement can be at the origin of the inferred tilting, whereas gradual downward movement of the SE flank by slumping processes appears mostly translational.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trull, T.W.; Kurz, M.D.; Perfit, M.R.
In order to assess the nature and spatial extent of subduction contributions to arc volcanism, Sr and He isotopic compositions are measured for dredged volcanic rocks from the Woodlark Basin in the western Pacific. {sup 87}Sr/{sup 86}Sr ratios increase geographically, from ocean ridge values (.7025-.7029) at the Woodlark Spreading Center to island arc ratios (.7035-.7039) in the Solomon Islands forearc, with intermediate values near the triple junction where the Woodlark Spreading Center subducts beneath the Solomon Islands. {sup 3}He/{sup 4}He ratios are also more radiogenic in the forearc (6.9 {plus minus} .2 R{sub a} at active Kavachi volcano) than alongmore » the spreading center, where values typical of major ocean ridges were found (8.2 - 9.3 R{sub a}). Very low {sup 3}He/{sup 4}He ratios occur in many triple junction rocks (.1 to 5 R{sub a}), but consideration of He isotopic differences between crushing and melting analyses suggests that the low ratios were caused by atmospheric (1 R{sub a}) and radiogenic ({approx} 0.2 R{sub a}) helium addition after eruption. Variations in unaltered, magnetic {sup 3}He/{sup 4}He, and {sup 87}Sr/{sup 86}Sr ratios are best explained by subduction-related fluid or silicate melt contributions to the magma source region, perhaps from ancient Pacific lithosphere. However, mantle volatiles dominate the generation of Woodlark Basin rocks despite extensive subduction in the region.« less
High Voltage Solar Concentrator Experiment with Implications for Future Space Missions
NASA Technical Reports Server (NTRS)
Mehdi, Ishaque S.; George, Patrick J.; O'Neill, Mark; Matson, Robert; Brockschmidt, Arthur
2004-01-01
This paper describes the design, development, fabrication, and test of a high performance, high voltage solar concentrator array. This assembly is believed to be the first ever terrestrial triple-junction-cell solar array rated at over 1 kW. The concentrator provides over 200 W/square meter power output at a nominal 600 Vdc while operating under terrestrial sunlight. Space-quality materials and fabrication techniques were used for the array, and the 3005 meter elevation installation below the Tropic of Cancer allowed testing as close as possible to space deployment without an actual launch. The array includes two concentrator modules, each with a 3 square meter aperture area. Each concentrator module uses a linear Fresnel lens to focus sunlight onto a photovoltaic receiver that uses 240 series-connected triple-junction solar cells. Operation of the two receivers in series can provide 1200 Vdc which would be adequate for the 'direct drive' of some ion engines or microwave transmitters in space. Lens aperture width is 84 cm and the cell active width is 3.2 cm, corresponding to a geometric concentration ratio of 26X. The evaluation includes the concentrator modules, the solar cells, and the materials and techniques used to attach the solar cells to the receiver heat sink. For terrestrial applications, a finned aluminum extrusion was used for the heat sink for the solar cells, maintaining a low cell temperature so that solar cell efficiency remains high.
Ridge-trench collision in Archean and Post-Archean crustal growth: Evidence from southern Chile
NASA Technical Reports Server (NTRS)
Nelson, E. P.; Forsythe, R. D.
1988-01-01
The growth of continental crust at convergent plate margins involves both continuous and episodic processes. Ridge-trench collision is one episodic process that can cause significant magmatic and tectonic effects on convergent plate margins. Because the sites of ridge collision (ridge-trench triple junctions) generally migrate along convergent plate boundaries, the effects of ridge collision will be highly diachronous in Andean-type orogenic belts and may not be adequately recognized in the geologic record. The Chile margin triple junction (CMTJ, 46 deg S), where the actively spreading Chile rise is colliding with the sediment-filled Peru-Chile trench, is geometrically and kinematically the simplest modern example of ridge collision. The south Chile margin illustrates the importance of the ridge-collision tectonic setting in crustal evolution at convergent margins. Similarities between ridge-collision features in southern Chile and features of Archean greenstone belts raise the question of the importance of ridge collision in Archean crustal growth. Archean plate tectonic processes were probably different than today; these differences may have affected the nature and importance of ridge collision during Archean crustal growth. In conclusion, it is suggested that smaller plates, greater ridge length, and/or faster spreading all point to the likelihood that ridge collision played a greater role in crustal growth and development of the greenstone-granite terranes during the Archean. However, the effects of modern ridge collision, and the processes involved, are not well enough known to develop specific models for the Archean ridge collison.
NASA Astrophysics Data System (ADS)
Moussa, N.; Boiron, M. C.; Grassineau, N.; Fouquet, Y.; Le Gall, B.; Mohamed, J.
2015-12-01
The Afar rift results from the interaction of a number of actively-propagating tectono-magmatic axes. Recent field investigations in the SE Afar rift have emphasized the importance of hydrothermal system in rift-related volcanic complexes. Mineralization occur as gold-silver bearing veins and are associated with felsic volcanism. Late carbonate veins barren of sulfides and gold are common. The morphologies and textures of quartz show crustiform colloform banding, massive and breccias. Microthermometric measurements were made on quartz-hosted two phases (liquid + vapor) inclusions; mean homogenization temperature range from 150°C to 340°C and ice-melting temperatures range from -0.2° to 1.6°C indicating that inclusion solutions are dilute and contain 0.35 to 2.7 equivalent wt. % NaCl. Furthermore, δ18O and δ13C values from calcite range from 3.7 to 26.6 ‰ and -7.5 to 0.3‰, respectively. The presence of platy calcite and adularia indicate that boiling condition existed. This study shows that precious-metal deposition mainly occurred from hydrothermal fluids at 200°C at around 300 and 450 m below the present-day surface in a typical low-sulphidation epithermal environment.
2010-01-21
substituted by Hf in the TaSi2 phase, indicating that this silicide has a great solubility for the group IV metals . At the triple point junctions Ta5Si3...Mathis Müller for his precious help in TEM specimens’ preparations . FA8655-09-M-4002 40 References 1. L. E. Toth: Transition Metal Carbides and...Transition Metal Disilicides,’ Acta Mater., 44, 3035 (1996). 21. H. Pastor and R. Meyer: An Investigation of the Effect of Additions of Metal Silicides
Biosensing using long-range surface plasmon waveguides
NASA Astrophysics Data System (ADS)
Krupin, Oleksiy; Khodami, Maryam; Fan, Hui; Wong, Wei Ru; Mahamd Adikan, Faisal Rafiq; Berini, Pierre
2017-05-01
Long-range surface plasmon waveguides, and their application to various transducer architectures for amplitude- or phase-sensitive biosensing, are discussed. Straight and Y-junction waveguides are used for direct intensity-based detection, whereas Bragg gratings and single-, dual- and triple-output Mach Zehnder interferometers are used for phasebased detection. In either case, multiple-output biosensors which provide means for referencing are very useful to eliminate common perturbations and drift. Application of the biosensors to disease detection in complex fluids is discussed. Application to biomolecular interaction analysis and kinetics extraction is also discussed.
Modeling Radiation Effects on a Triple Junction Solar Cell using Silvaco ATLAS
2012-06-01
circuit voltage can then be calculated from ln 1 Loc t S IV V I (4.3) where IS is the reverse saturation current, and Vt is the...orbiting electronic equipment. The first orbit of interest is the low Earth orbit ( LEO ). LEO encompasses any orbit within 650 kilometers of the...Light Beams #Solving #Meshing mesh width=200000 #X-Mesh: Surface=500 um2 = 1/200000 cm2 x.mesh loc =-250 spac=50 x.mesh loc =0 spac=10
Preliminary low temperature electron irradiation of triple junction solar cells
NASA Technical Reports Server (NTRS)
Stella, Paul M.; Mueller, Robert L.; Scrivner, Roy L.; Helizon, Roger S.
2005-01-01
JPL has routinely performed radiation testing on commercial solar cells and has also performed LILT testing to characterize cell performance under far sun operating conditions. This research activity was intended to combine the features of both capabilities to investigate the possibility of any room temperature annealing that might influence the measured radiation damage. Although it was not possible to maintain the test cells at a constant low temperature between irradiation and electrical measurements, it was possible to obtain measurements with the cell temperature kept well below room temperature.
NASA Astrophysics Data System (ADS)
Vicente de Gouveia, S.; Besse, J.; Frizon de Lamotte, D.; Greff-Lefftz, M.; Lescanne, M.; Gueydan, F.; Leparmentier, F.
2018-04-01
Rifts are often associated with ancient traces of hotspots, which are supposed to participate to the weakening of the lithosphere. We investigated the expected past trajectories followed by three hotspots (Afar, East-Africa and Lake-Victoria) located around the Red Sea. We used a hotspot reference frame to compute their location with respect to time, which is then compared to mantle tomography interpretations and geological features. Their tracks are frequently situated under continental crust, which is known to strongly filter plume activity. We looked for surface markers of their putative ancient existence, such as volcanism typology, doming, and heat-flow data from petroleum wells. Surface activity of the East-Africa hotspot is supported at 110 Ma, 90 Ma and 30 Ma by uplift, volcanic activity and rare gas isotopic signatures, reminiscent of a deep plume origin. The analysis of heat-flow data from petroleum wells under the Arabian plate shows a thermal anomaly that may correspond to the past impact of the Afar hotspot. According to derived hotspot trajectories, the Afar hotspot, situated (at 32 Ma) 1000 km north-east of the Ethiopian-Yemen traps, was probably too far away to be accountable for them. The trigger of the flood basalts would likely be linked to the East-Africa hotspot. The Lake-Victoria hotspot activity appears to have been more recent, attested only by Cenozoic volcanism in an uplifted area. Structural and thermal weakening of the lithosphere may have played a major role in the location of the rift systems. The Gulf of Aden is located on inherited Mesozoic extensional basins between two weak zones, the extremity of the Carlsberg Ridge and the present Afar triangle, previously impacted by the East-Africa hotspot. The Red Sea may have opened in the context of extension linked to Neo-Tethys slab-pull, along the track followed by the East Africa hotspot, suggesting an inherited thermal weakening.
Luizza, Matthew; Wakie, Tewodros; Evangelista, Paul; Jarnevich, Catherine S.
2016-01-01
The threats posed by invasive plants span ecosystems and economies worldwide. Local knowledge of biological invasions has proven beneficial for invasive species research, but to date no work has integrated this knowledge with species distribution modeling for invasion risk assessments. In this study, we integrated pastoral knowledge with Maxent modeling to assess the suitable habitat and potential impacts of invasive Cryptostegia grandiflora Robx. Ex R.Br. (rubber vine) in Ethiopia’s Afar region. We conducted focus groups with seven villages across the Amibara and Awash-Fentale districts. Pastoral knowledge revealed the growing threat of rubber vine, which to date has received limited attention in Ethiopia, and whose presence in Afar was previously unknown to our team. Rubber vine occurrence points were collected in the field with pastoralists and processed in Maxent with MODIS-derived vegetation indices, topographic data, and anthropogenic variables. We tested model fit using a jackknife procedure and validated the final model with an independent occurrence data set collected through participatory mapping activities with pastoralists. A Multivariate Environmental Similarity Surface analysis revealed areas with novel environmental conditions for future targeted surveys. Model performance was evaluated using area under the receiver-operating characteristic curve (AUC) and showed good fit across the jackknife models (average AUC = 0.80) and the final model (test AUC = 0.96). Our results reveal the growing threat rubber vine poses to Afar, with suitable habitat extending downstream of its current known location in the middle Awash River basin. Local pastoral knowledge provided important context for its rapid expansion due to acute changes in seasonality and habitat alteration, in addition to threats posed to numerous endemic tree species that provide critical provisioning ecosystem services. This work demonstrates the utility of integrating local ecological knowledge with species distribution modeling for early detection and targeted surveying of recently established invasive species.
Anisotropic structure of the African upper mantle from Rayleigh and Love wave tomography
NASA Astrophysics Data System (ADS)
Sebai, Amal; Stutzmann, Eléonore; Montagner, Jean-Paul; Sicilia, Déborah; Beucler, Eric
2006-04-01
The geodynamics of the mantle below Africa is not well understood and anisotropy tomography can provide new insight into the coupling between the African plate and the underlying mantle convection. In order to study the anisotropic structure of the upper mantle beneath Africa, we have measured phase velocities of 2900 Rayleigh and 1050 Love waves using the roller-coaster algorithm [Beucler, E., Stutzmann, E., Montagner, J.-P., 2003. Surface-wave higher mode phase velocity measurments, using a roller-coaster type algorithm. Geophys. J. Int. 155 (1), 289-307]. These phase velocities have been inverted to obtain a new tomographic model that gives access to isotropic S V-wave velocity perturbations, azimuthal and radial anisotropies. Isotropic S V-wave velocity maps have a lateral resolution of 500 km. Anisotropy parameters have a lateral resolution of 1000 km which is uniform over Africa for azimuthal anisotropy but decreases at the West and South of Africa for radial anisotropy. At shallow depth, azimuthal anisotropy varies over horizontal distances much smaller than the continent scale. At 280 km depth, azimuthal anisotropy is roughly N-S, except in the Afar area, which might indicate differential motion between the African plate and the underlying mantle. The three cratons of West Africa, Congo and Kalahari are associated with fast velocities and transverse anisotropy that decrease very gradually down to 300 km depth. On the other hand, we observe a significant change in the direction and amplitude of azimuthal anisotropy at about 180 km depth, which could be the signature of the root of these cratons. The Tanzania craton is a shallower structure than the other African cratons and the slow velocities (-2%) observed on the maps at 180 and 280 km depth could be the signature of hot material such as a plume head below the craton. This slow velocity anomaly extends toward the Afar and azimuthal anisotropy fast directions are N-S at 180 km depth, indicating a possible interaction between the Tanzania small plume and the Afar. The Afar plume is associated with a very slow velocity anomaly (-6%) which extens below the Red sea, the Gulf of Aden and the Ethiopian rift at 80 km depth. The Afar plume can be observed down to our deepest depth (300 km) and is associated with radial anisotropy smaller than elsewhere in Africa, suggesting active upwelling. Azimuthal anisotropy directions change with increasing depth, being N-S below the Red sea and Gulf of Aden at 80 km depth and E-W to NE-SW at 180 km depth. The Afar plume is not connected with the smaller hotspots of Central Africa, which are associated either with shallow slow velocities for Mt Cameroon or with no particular velocity anomaly and N-S azimuthal anisotropy for the hotspots of Tibesti, Darfur and Hoggar. A shallow origin for these hotspots is in agreement with their normal 3He/4He ratio and with their location in a region that had been weakened by the rifting of West and Central Africa.
The Afar rift zone deformation dynamics retrieved through phase and amplitude SAR data
NASA Astrophysics Data System (ADS)
Casu, F.; Pagli, C.; Paglia, L.; Wang, H.; Wright, T. J.; Lanari, R.
2011-12-01
The Dabbahu rift segment of the Afar depression has been active since 2005 when a 2.5 km3 dyke intrusion and hundreds of earthquakes marked the onset a rifting episode which continues to date. Since 2003, the Afar depression has been repeatedly imaged by the ENVISAT satellite, generating a large SAR archive which allow us to study the ongoing deformation processes and the dynamics of magma movements. We combine sets of small baseline interferograms through the advanced DInSAR algorithm referred to as Small BAseline Subset (SBAS), and we generate both ground deformation maps and time series along the satellite Line-Of-Sight (LOS), with accuracies on the order of 5 mm. The main limitation of DInSAR applications is that large and rapid deformations, such as those caused by dyke intrusions and eruptions in Afar, cannot be fully measured. The phase information often degrades and some areas of the interferograms are affected by high fringe rates, leading to difficulties in the phase unwrapping, and/or to complete loss of coherence due to significant misregistration errors. This limitation can be overcome by exploiting the SAR image amplitude information instead of the phase, and by calculating the Pixel-Offset (PO) field of a given SAR image pair, for both range and azimuth directions. Moreover, after computing the POs for each image pair, it is possible to combine them, following the same rationale of the SBAS technique, to finally retrieve the offset-based deformation time series. Such technique, named PO-SBAS, permits to retrieve the deformation field in areas affected by very large displacements at an accuracy that, for ENVISAT data, correspond to 30cm and 15 cm for the range and azimuth, respectively. In this work, we study the Afar rift region deformations by using both the phase and amplitude information of several sets of SAR images acquired from ascending and descending ENVISAT tracks. In particular, we use the phase information to construct dense and accurate deformation maps and time series in areas not affected by large displacements. While in areas where the deformation gradient causes loss of coherence, we retrieve the displacement field through the amplitude information. This approach allows us to obtain a spatially detailed deformation map of the study area. In addition, by combining ascending and descending data we reconstruct the vertical and East-West components of deformation field. Furthermore, in areas affected by large deformations, we can also retrieve the full 3D deformation field, by using the North-South displacement component obtained from the azimuth PO information. Distinct sources of deformations interact in Afar. Fault movements and magma chamber deflation have accompanied dyke intrusions but quantifying each contribution to the total deformation has been challenging, also due to loss of coherence in the central part of the rift. Here we combined the phase and amplitude information in order to retrieve the full deformation field of repeated intrusions. This allows us to better constrain the fault movements that occur as the dyke propagates as well as the magma movements from individual magma chambers.
Borgogno, Franco
2014-12-01
In this paper the author discusses two points regarding Ferenczi's views of psychoanalysis. The first concerns the fact that analysts, like their patients, "come from afar" (a concept of Borgogno, 2011). The second, closely linked to the first, has to do with Ferenczi's belief that psychoanalytical knowledge is not intellectual but visceral, seeing that if analysts are to truly understand their patients they must first "take on" their suffering in such a way as to "become the patient." The author follows Ferenczi's progression along these two points through his whole oeuvre, from his first psychoanalytical writings to the Clinical Diary (1932a) of the last year of his life.
NASA Astrophysics Data System (ADS)
Tapponnier, P.; Dyment, J.; Zinger, M. A.; Franken, D.; Afifi, A. M.; Wyllie, A.; Ali, H. G.; Hanbal, I.
2013-12-01
A new marine geophysical survey on the Saudi Arabian side of the Red Sea confirms early inferences that ~ 2/3 of the eastern Red Sea is floored by oceanic crust. Most seismic profiles south of 24°N show a strongly reflective, landward-deepening volcanic basement up to ~ 100 km east of the axial ridge, beneath thick evaporitic deposits. This position of the Ocean-Continent Boundary (OCB) is consistent with gravity measurements. The low amplitudes and long wavelengths of magnetic anomalies older than Chrons 1-3 can be accounted for by low-pass filtering due to thick sediments. Seafloor-spreading throughout the Red Sea started around 15 Ma, as in the western Gulf of Aden. Its onset was coeval with the activation of the Aqaba/Levant transform and short-cutting of the Gulf of Suez. The main difference between the southern and northern Red Sea lies not in the nature of the crust but in the direction and modulus of the plate motion rate. The ~ 30° counterclockwise strike change and halving of the spreading rate (~ 16 to ~ 8 mm/yr) between the Hermil (17°N) and Suez triple junctions results in a shift from slow (≈ North Atlantic) to highly oblique, ultra-slow (≈ Southwest Indian) ridge type. The obliquity of spreading in the central and northern basins is taken up by transform discontinuities that stop ~ 40 km short of the coastline, at the OCB. Three large transform fault systems (Jeddah, Zabargad, El Akhawein) nucleated as continental transfer faults reactivating NNE-trending Proterozoic shear zones. The former two systems divide the Red Sea into three main basins. Between ~15 and ~5 Ma, for about 10 million years, thick evaporites were deposited directly on top of oceanic crust in deep water, as the depositional environment, modulated by climate, became restricted by the Suez and Afar/Bab-el-Mandeb volcano-tectonic 'flood-gates.' The presence of these thick deposits (up to ~ 8 km) suffices to account for the difference between the Red Sea and the Gulf of Aden. Widespread salt tectonics was triggered by the flow of large evaporite sheets and salt glaciers toward the ridge axis. Such flow was more pervasive in the north, where slower spreading resulted in a deeper trough, and was guided by the rugged topography of the oceanic seafloor. The Red Sea may represent the best model for comparably deep evaporitic basins along the Earth's passive margins, particularly in the South Atlantic.
Arc/Forearc Lengthening at Plate Triple Junctions and the Formation of Ophiolitic Soles
NASA Astrophysics Data System (ADS)
Casey, John; Dewey, John
2013-04-01
The principal enigma of large obducted ophiolite slabs is that they clearly must have been generated by some form of organized sea-floor spreading/plate-accretion, such as may be envisioned for the oceanic ridges, yet the volcanics commonly have arc affinity (Miyashiro) with boninites (high-temperature/low-pressure, high Mg and Si andesites), which are suggestive of a forearc origin. PT conditions under which boninites and metamorphic soles form and observations of modern forearc systems lead us to the conclusion that ophiolite formation is associated with overidding plate spreading centers that intersect the trench to form ridge-trench-trench of ridge-trench-tranform triple junctions. The spreading centers extend and lengthen the forearc parallel to the trench and by definition are in supra-subduction zone (SSZ) settings. Many ophiolites likewise have complexly-deformed associated mafic-ultramafic assemblages that suggest fracture zone/transform t along their frontal edges, which in turn has led to models involving the nucleation of subduction zones on fracture zones or transpressional transforms. Hitherto, arc-related sea-floor-spreading has been considered to be either pre-arc (fore-arc boninites) or post-arc (classic Karig-style back arc basins that trench-parallell split arcs). Syn-arc boninites and forearc oceanic spreading centers that involve a stable ridge/trench/trench triple or a ridge-trench-transform triple junction, the ridge being between the two upper plates, are consistent with large slab ophiolite formation in a readied obduction settting. The direction of subduction must be oblique with a different sense in the two subduction zones and the oblique subduction cannot be partitioned into trench orthogonal and parallel strike-slip components. As the ridge spreads, new oceanic lithosphere is created within the forearc, the arc and fore-arc lengthen significantly, and a syn-arc ophiolite forearc complex is generated by this mechanism. The ophiolite ages along arc-strike; a distinctive diachronous MORB-like to boninitic to arc volcanic stratigraphy develops vertically in the forearc and eruption centers progressively migrate from the forearc back to the main arc massif with time. Dikes in the ophiolite are highly oblique to the trench (as are back-arc magnetic anomalies. Boninites and high-mg andesites are generated in the fore-arc under the aqueous, low pressure/high temperature, regime at the ridge above the instantaneously developed subducting and dehydrating slab. Subducted slab refrigeration of the hanging wall ensues and accretion of MORB metabasites to the hanging wall of the subduction channel initiates. Mafic protolith garnet/two pyroxene granulites to greenschists accrete and form the inverted P and T metamorphic sole prior to obduction. Sole accretion of lithosphere begins at about 1000°C and the full retrogressive sole may be fully formed within ten to fifteen million years of accretion, at which time low grade subduction melanges accrete. Obduction of the SSZ forearc ophiolite with its subjacent metamorphic sole occurs whenever the oceanic arc attempts subduction of a stable buoyant continental or back arc margin.
High Current ESD Test of Advanced Triple Junction Solar Array Coupon
NASA Technical Reports Server (NTRS)
Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie
2015-01-01
A test was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by SSL. The ATJ coupon was a small, 4-cell, two-string configuration that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The coupon has many attributes of the flight design; e.g., substrate structure with graphite face sheets, integrated by-pass diodes, cell interconnects, RTV grout, wire routing, etc. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge testing at two string voltages (100 V, 150 V) and four array current (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 micros to 2.9 ms. All TSAs occurred at a string voltage of 150 V. Post-test Large Area Pulsed Solar Simulator (LAPSS), Dark I-V, and By-Pass Diode tests showed that no degradation occurred due to the TSA events. In addition, the post-test insulation resistance measured was > 50 G-ohms between cells and substrate. These test results indicate a robust design for application to a high-current, high-power mission application.
High Current ESD Test of Advanced Triple Junction Solar Array Coupon
NASA Technical Reports Server (NTRS)
Wright, K. H.; Schneider, T. A.; Vaughn, J. A.; Hoang, B.; Wong, F.
2014-01-01
A test was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by SSL. The ATJ coupon was a small, 4-cell, two-string configuration that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The coupon has many attributes of the flight design; e.g., substrate structure with graphite face sheets, integrated by-pass diodes, cell interconnects, RTV grout, wire routing, etc. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge testing at two string voltages (100 V, 150 V) and four array current (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 µs to 2.9 ms. All TSAs occurred at a string voltage of 150 V. Post-test Large Area Pulsed Solar Simulator (LAPSS), Dark I-V, and By-Pass Diode tests showed that no degradation occurred due to the TSA events. In addition, the post-test insulation resistance measured was > 50 G-ohms between cells and substrate. These test results indicate a robust design for application to a high-current, high-power mission application.
High Current ESD Test of Advanced Triple Junction Solar Array Coupon
NASA Technical Reports Server (NTRS)
Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie
2014-01-01
Testing was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by Space Systems/Loral, LLC (SSL). The ATJ coupon was a small, 4-cell, two-string configuration that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The coupon has many attributes of the flight design; e.g., substrate structure with graphite face sheets, integrated by-pass diodes, cell interconnects, RTV grout, wire routing, etc. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge (ESD) testing at two string voltages (100 V, 150 V) and four array currents (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 micro-seconds to 2.75 milli-seconds. All TSAs occurred at a string voltage of 150 V. Post-test Large Area Pulsed Solar Simulator (LAPSS), Dark I-V, and By-Pass Diode tests showed that no degradation occurred due to the TSA events. In addition, the post-test insulation resistance measured was > 50 G-ohms between cells and substrate. These test results indicate a robust design for application to a high-current, high-power mission.
Plate deformation at depth under northern California: Slab gap or stretched slab?
ten Brink, Uri S.; Shimizu, N.; Molzer, P.C.
1999-01-01
Plate kinematic interpretations for northern California predict a gap in the underlying subducted slab caused by the northward migration of the Pacific-North America-Juan de Fuca triple junction. However, large-scale decompression melting and asthenospheric upwelling to the base of the overlying plate within the postulated gap are not supported by geophysical and geochemical observations. We suggest a model for the interaction between the three plates which is compatible with the observations. In this 'slab stretch' model the Juan de Fuca plate under coastal northern California deforms by stretching and thinning to fill the geometrical gap formed in the wake of the northward migrating Mendocino triple junction. The stretching is in response to boundary forces acting on the plate. The thinning results in an elevated geothermal gradient, which may be roughly equivalent to a 4 Ma oceanic lithosphere, still much cooler than that inferred by the slab gap model. We show that reequilibration of this geothermal gradient under 20-30 km thick overlying plate can explain the minor Neogene volcanic activity, its chemical composition, and the heat flow. In contrast to northern California, geochemical and geophysical consequences of a 'true' slab gap can be observed in the California Inner Continental Borderland offshore Los Angeles, where local asthenospheric upwelling probably took place during the Miocene as a result of horizontal extension and rotation of the overlying plate. The elevated heat flow in central California can be explained by thermal reequilibration of the stalled Monterey microplate under the Coast Ranges, rather than by a slab gap or viscous shear heating in the mantle.
Gai, Boju; Sun, Yukun; Lim, Haneol; Chen, Huandong; Faucher, Joseph; Lee, Minjoo L; Yoon, Jongseung
2017-01-24
Large-scale deployment of GaAs solar cells in terrestrial photovoltaics demands significant cost reduction for preparing device-quality epitaxial materials. Although multilayer epitaxial growth in conjunction with printing-based materials assemblies has been proposed as a promising route to achieve this goal, their practical implementation remains challenging owing to the degradation of materials properties and resulting nonuniform device performance between solar cells grown in different sequences. Here we report an alternative approach to circumvent these limitations and enable multilayer-grown GaAs solar cells with uniform photovoltaic performance. Ultrathin single-junction GaAs solar cells having a 300-nm-thick absorber (i.e., emitter and base) are epitaxially grown in triple-stack releasable multilayer assemblies by molecular beam epitaxy using beryllium as a p-type impurity. Microscale (∼500 × 500 μm 2 ) GaAs solar cells fabricated from respective device layers exhibit excellent uniformity (<3% relative) of photovoltaic performance and contact properties owing to the suppressed diffusion of p-type dopant as well as substantially reduced time of epitaxial growth associated with ultrathin device configuration. Bifacial photon management employing hexagonally periodic TiO 2 nanoposts and a vertical p-type metal contact serving as a metallic back-surface reflector together with specialized epitaxial design to minimize parasitic optical losses for efficient light trapping synergistically enable significantly enhanced photovoltaic performance of such ultrathin absorbers, where ∼17.2% solar-to-electric power conversion efficiency under simulated AM1.5G illumination is demonstrated from 420-nm-thick single-junction GaAs solar cells grown in triple-stack epitaxial assemblies.
NASA Astrophysics Data System (ADS)
Devès, Maud H.; Tait, Stephen R.; King, Geoffrey C. P.; Grandin, Raphaël
2014-05-01
Since the late 1970s, most earth scientists have discounted the plausibility of melting by shear-strain heating because temperature-dependent creep rheology leads to negative feedback and self-regulation. This paper presents a new model of distributed shear-strain heating that can account for the genesis of large volumes of magmas in both the crust and the mantle of the lithosphere. The kinematic (geometry and rates) frustration associated with incompatible fault junctions (e.g. triple-junction) prevents localisation of all strain on the major faults. Instead, deformation distributes off the main faults forming a large process zone that deforms still at high rates under both brittle and ductile conditions. The increased size of the shear-heated region minimises conductive heat loss, compared with that commonly associated with narrow shear zones, thus promoting strong heating and melting under reasonable rheological assumptions. Given the large volume of the heated zone, large volumes of melt can be generated even at small melt fractions.
Viscoplastic fracture transition of a biopolymer gel.
Frieberg, Bradley R; Garatsa, Ray-Shimry; Jones, Ronald L; Bachert, John O; Crawshaw, Benjamin; Liu, X Michael; Chan, Edwin P
2018-06-13
Physical gels are swollen polymer networks consisting of transient crosslink junctions associated with hydrogen or ionic bonds. Unlike covalently crosslinked gels, these physical crosslinks are reversible thus enabling these materials to display highly tunable and dynamic mechanical properties. In this work, we study the polymer composition effects on the fracture behavior of a gelatin gel, which is a thermoreversible biopolymer gel consisting of denatured collagen chains bridging physical network junctions formed from triple helices. Below the critical volume fraction for chain entanglement, which we confirm via neutron scattering measurements, we find that the fracture behavior is consistent with a viscoplastic type process characterized by hydrodynamic friction of individual polymer chains through the polymer mesh to show that the enhancement in fracture scales inversely with the squared of the mesh size of the gelatin gel network. Above this critical volume fraction, the fracture process can be described by the Lake-Thomas theory that considers fracture as a chain scission process due to chain entanglements.
Active zones of mammalian neuromuscular junctions: formation, density, and aging.
Nishimune, Hiroshi
2012-12-01
Presynaptic active zones are synaptic vesicle release sites that play essential roles in the function and pathology of mammalian neuromuscular junctions (NMJs). The molecular mechanisms of active zone organization use presynaptic voltage-dependent calcium channels (VDCCs) in NMJs as scaffolding proteins. VDCCs interact extracellularly with the muscle-derived synapse organizer, laminin β2 and interact intracellularly with active zone-specific proteins, such as Bassoon, CAST/Erc2/ELKS2alpha, ELKS, Piccolo, and RIMs. These molecular mechanisms are supported by studies in P/Q- and N-type VDCCs double-knockout mice, and they are consistent with the pathological conditions of Lambert-Eaton myasthenic syndrome and Pierson syndrome, which are caused by autoantibodies against VDCCs or by a laminin β2 mutation. During normal postnatal maturation, NMJs maintain the density of active zones, while NMJs triple their size. However, active zones become impaired during aging. Propitiously, muscle exercise ameliorates the active zone impairment in aged NMJs, which suggests the potential for therapeutic strategies. © 2012 New York Academy of Sciences.
Lightweight IMM PV Flexible Blanket Assembly
NASA Technical Reports Server (NTRS)
Spence, Brian
2015-01-01
Deployable Space Systems (DSS) has developed an inverted metamorphic multijunction (IMM) photovoltaic (PV) integrated modular blanket assembly (IMBA) that can be rolled or z-folded. This IMM PV IMBA technology enables a revolutionary flexible PV blanket assembly that provides high specific power, exceptional stowed packaging efficiency, and high-voltage operation capability. DSS's technology also accommodates standard third-generation triple junction (ZTJ) PV device technologies to provide significantly improved performance over the current state of the art. This SBIR project demonstrated prototype, flight-like IMM PV IMBA panel assemblies specifically developed, designed, and optimized for NASA's high-voltage solar array missions.
Results from a 14-month hydroacoustic monitoring of the three mid-oceanic ridges in the Indian Ocean
NASA Astrophysics Data System (ADS)
Royer, J.-Y.; Dziak, R. P.; Delatre, M.; Chateau, R.; Brachet, C.; Haxel, J. H.; Matsumoto, H.; Goslin, J.; Brandon, V.; Bohnenstielh, D. R.
2009-04-01
From October 2006 to January 2008, an hydroacoustic experiment in the Indian Ocean was carried out by the CNRS/University of Brest and NOAA/Oregon State University to monitor the low-level seismic activity associated with the three contrasting spreading ridges and deforming zones in the Indian Ocean. Three autonomous hydrophones were moored in the SOFAR channel by R/V Marion Dufresne for 14 months in the Madagascar Basin, and northeast and southwest of Amsterdam Island, complementing the two permanent hydroacoustic stations of the Comprehensive nuclear-Test-Ban Treaty Organization (CTBTO) located near Diego Garcia Island and off Cape Leeuwin. The three instruments successfully collected 14 month of continuous acoustic records. Combined with the records from the permanent stations, the array detected 1780 acoustic events consisting mostly of earthquake generated T-waves, but also of iceberg tremors from Wilkes Land, Antarctica. Within the triangle defined by the temporary array, the three ridges exhibit contrasting seismicity patterns. Along the Southeast Indian ridge (SEIR), the 272 acoustic events (vs 24 events in the NEIC catalog) occur predominantly along the transform faults ; only one ridge segment (76˚E) displays a continuous activity for 10 months. Along the Central Indian Ridge (CIR), seismicity is distributed along fracture zones and ridge segments (269 events vs 45 NEIC events), with two clusters of events near the triple junction (24-25S) and south of Marie-Celeste FZ (18.5S). Along the Southwest Indian Ridge (SWIR), the 222 events (vs 31 NEIC events) are distributed along the ridge segments with a larger number of events west of Melville FZ and a cluster at 58E. The immediate vicinity of the Rodrigues triple junction shows periods of quiescence and of intense activity. Some large earthquakes (Mb>5) near the triple junction (SEIR and CIR) seem to be preceded by several acoustic events that may be precursors. Finally, off-ridge seismicity is mostly detected in the southern part of the Central Indian Basin as a result of the intraplate deformation between the Capricorn and Australian plates. Other signals of interest are identified such as a 6-week long series of broadband (1-125 Hz) explosive signals detected only by the instrument located between Kerguelen and Amsterdam islands, many cryogenic tremors easily recognizable from their varying tones and harmonics, some of which can be precisely located off the Antarctic shelf, and finally whale calls attributed to four different whale species. This vocal activity is found to be highly seasonal, occurring mainly from April to October with subspecies variations. Detailed analyses of this unique data set are still underway.
The Radar Effects of Perchlorate-Doped Ice in the Martian Polar Layered Deposits
NASA Astrophysics Data System (ADS)
Stillman, D.; Winebrenner, D. P.; Grimm, R. E.; Pathare, A.
2010-12-01
The presence of perchlorate in soil at near-polar latitudes on Mars suggests that dust in the ice of the North Polar Layered Deposits (NPLD) may introduce perchlorate impurities to that ice. Because eutectic temperatures of perchlorate salts range as low as 206 K (for magnesium perchlorate), perchlorate doping of NPLD ice may result in grain-scale liquid veins and softening of ice rheology at temperatures comparable to those computed for the base of the NPLD in the present climate. Any such softening would be important for understanding how processes including ice flow have shaped the NPLD. Observable consequences of such softening, or of the combination of perchlorate doping and temperatures that could cause softening, are thus similarly important. In particular, the dielectric properties of perchlorate-laden ice in a temperature gradient will change relatively rapidly at the point in the gradient near the eutectic temperature. Here we investigate the radar reflectivity of such a eutectic transition in ice with a model in which perchlorate concentration is constant and temperature varies linearly with depth in the ice. We have conducted measurements of the complex permittivity of Mg and Na perchlorate-doped ice over a range of temperatures (183 - 273 K) and concentrations. Below the eutectic temperature, the perchlorate-doped ice has electrical properties similar to that of choride-doped ice. However, above the eutectic temperature, some of the ice melts forming liquid at triple junctions. At concentrations above 3 mM, the liquid at triple junctions become connected forming brine channels, which greatly increase the dc conductivity and radar attenuation. At concentrations below 3 mM, the liquid at triple junctions are not connected and do not affect the dc conductivity. However, the liquid H2O molecules are able to rotate their permanent dipole at radar frequencies, thus causing an increase in radar attenuation. The MARSIS and SHARAD attenuation rates increase with temperature as the strength of the loss increases with a greater amount of liquid water even though the relaxation frequency (maximum loss) shifts to higher frequencies. We combine our electrical property measurements with a model for radar reflection from a continuously-varying dielectric profile. Because the change in permittivity occurs over a range of depths depending on the value of the temperature gradient, radar detectability of the eutectic transition depends on the radar frequency as well as gradient and concentration values. We compute expected radar echo strengths for MARSIS and SHARAD and depths relative to the bed at which transitions may be expected, to address whether information of direct rheological relevance may be available from those instruments.
Hidden Earthquake Potential in Plate Boundary Transition Zones
NASA Astrophysics Data System (ADS)
Furlong, Kevin P.; Herman, Matthew; Govers, Rob
2017-04-01
Plate boundaries can exhibit spatially abrupt changes in their long-term tectonic deformation (and associated kinematics) at triple junctions and other sites of changes in plate boundary structure. How earthquake behavior responds to these abrupt tectonic changes is unclear. The situation may be additionally obscured by the effects of superimposed deformational signals - juxtaposed short-term (earthquake cycle) kinematics may combine to produce a net deformational signal that does not reflect intuition about the actual strain accumulation in the region. Two examples of this effect are in the vicinity of the Mendocino triple junction (MTJ) along the west coast of North America, and at the southern end of the Hikurangi subduction zone, New Zealand. In the region immediately north of the MTJ, GPS-based observed crustal displacements (relative to North America (NAm)) are intermediate between Pacific and Juan de Fuca (JdF) motions. With distance north, these displacements rotate to become more aligned with JdF - NAm displacements, i.e. to motions expected along a coupled subduction interface. The deviation of GPS motions from the coupled subduction interface signal near the MTJ has been previously interpreted to reflect clock-wise rotation of a coastal, crustal block and/or reduced coupling at the southern Cascadia margin. The geologic record of crustal deformation near the MTJ reflects the combined effects of northward crustal shortening (on geologic time scales) associated with the MTJ Crustal Conveyor (Furlong and Govers, 1999) overprinted onto the subduction earthquake cycle signal. With this interpretation, the Cascadia subduction margin appears to be well-coupled along its entire length, consistent with paleo-seismic records of large earthquake ruptures extending to its southern limit. At the Hikurangi to Alpine Fault transition in New Zealand, plate interactions switch from subduction to oblique translation as a consequence of changes in lithospheric structure of the Pacific plate (without a triple junction). Here, the short-term, earthquake-cycle signal recorded by GPS shows a reduction in plate motion-directed displacements, which has been interpreted to reflect reduced coupling along the southernmost segment. However, this signal records both the subduction interface coupling effects related to the megathrust earthquake cycle and the shear deformation produced by the extensive right-lateral shear of the Marlborough Fault system (MFS). This superposition of deformation signals combine to mask a strongly coupled interface. The relevance of this effect is seen in the recent (November 2016) Kaikoura earthquake ,which appears to have both ruptured the megathrust interface and produced strike slip displacements on upper-plate crustal faults. These effects seen at these locations and elsewhere may cause misinterpretations of short-term deformation signals in terms of the longer term tectonic behavior of the plate boundary, missing a significant component of the earthquake potential.
Study of the deformation in Central Afar using InSAR NSBAS chain
NASA Astrophysics Data System (ADS)
Deprez, A.; Doubre, C.; Grandin, R.; Saad, I.; Masson, F.; Socquet, A.
2013-12-01
The Afar Depression (East Africa) connects all three continental plates of Arabia, Somalia and Nubia plates. For over 20 Ma, the divergent motion of these plates has led to the formation of large normal faults building tall scarps between the high plateaus and the depression, and the development of large basins and an incipient seafloor spreading along a series of active volcano-tectonic rift segments within the depression. The space-time evolution of the active surface deformation over the whole Afar region remains uncertain. Previous tectonic and geodetic studies confirm that a large part of the current deformation is concentrated along these segments. However, the amount of extension accommodated by other non-volcanic basins and normal faulting remains unclear, despite significant micro-seismic activity. Due to the active volcanism, large transient displacements related to dyking sequence, notably in the Manda Hararo rift (2005-2010), increase the difficulty to characterize the deformation field over simple time and space scales. In this study, we attempt to obtain a complete inventory of the deformation within the whole Afar Depression and to understand the associated phenomena, which occurred in this singular tectonic environment. We study in particular, the behavior of the structures activated during the post-dyking stage of the rift segments. For this purpose, we conduct a careful processing of a large set of SAR ENVISAT images over the 2004-2010 period, we also use previous InSAR results and GPS data from permanent stations and from campaigns conducted in 1999, 2003, 2010, 2012 within a GPS network particularly dense along the Asal-Ghoubbet segment. In one hand, in the western part of Afar, the far-field response of the 2005-2010 dyke sequence appears to be the dominant surface motion on the mean velocity field. In an other hand, more eastward across the Asal-Ghoubbet rift, strong gradients of deformation are observed. The time series analysis of both InSAR and GPS data allow us to (1) point out the role of volcano activity on the localization of the extensive deformation within these rifts, (2) describe the temporal evolution of the mostly aseismic fault slips, and eventually (3) characterize the behavior of the crust after the dyking events in relation to visco-elastic relaxation. Moreover, we analyze several interesting small patches of localized deformation revealing transient displacements by combining time series results and seismic data collected by the Arta Geophysical Observatory in Djibouti. In particular, a specific clear deformation pattern on the northern margin of the Tadjoura Bay could be associated with a seismic swarm, probably resulting from the occurrence of an offshore dyking event sequence along the immerged Tadjoura rift segment.
Plate break-up geometry in SE-Afar
NASA Astrophysics Data System (ADS)
Geoffroy, Laurent; Le Gall, Bernard; Daoud, Mohamed
2014-05-01
New structural data acquired in Djibouti strongly support the view of a magma-rich to magma-poor pair of conjugate margins developed in SE Afar since at least 9 Ma. Our model is illustrated by a crustal-scale transect that emphasizes the role of a two-stage extensional detachment fault system, with opposing senses of motion through time. The geometry and kinematics of this detachment fault pattern are mainly documented from lavas and fault dip data extracted from remote sensing imagery (Landsat ETM+, and corresponding DEM), further calibrated by field observations. Although expressed by opposite fault geometries, the two successive extensional events evidenced here are part of a two-stage continental extensional tear-system associated with the ongoing propagation of the Aden-Tadjoura oceanic axis to the NW. A flip-flop evolution of detachment faults accommodating lithosphere divergence has recently been proposed for the development of the Indian Ocean and continental margins (Sauter et al., 2013). However, the SE Afar evolution further suggests a radical and sudden change in lithosphere behavior during extension, from a long-term and widespread magmatic stage to a syn-sedimentary break-up stage where mantle melting concentrates along the future oceanic axis. Of special interest is the fact that a late and rapid stage of non-magmatic extension led to break-up, whose geometry triggered the location of the break-up axis and earliest oceanic accretion. New structural data acquired in Djibouti strongly support the view of a magma-rich to magma-poor pair of conjugate margins developed in SE Afar since at least 9 Ma. Our model is illustrated by a crustal-scale transect that emphasizes the role of a two-stage extensional detachment fault system, with opposing senses of motion through time. The geometry and kinematics of this detachment fault pattern are mainly documented from lavas and fault dip data extracted from remote sensing imagery (Landsat ETM+, and corresponding DEM), further calibrated by field observations. Although expressed by opposite fault geometries, the two successive extensional events evidenced here are part of a two-stage continental extensional tear-system associated with the ongoing propagation of the Aden-Tadjoura oceanic axis to the NW. A flip-flop evolution of detachment faults accommodating lithosphere divergence has recently been proposed for the development of the Indian Ocean and continental margins (Sauter et al., 2013). However, the SE Afar evolution further suggests a radical and sudden change in lithosphere behavior during extension, from a long-term and widespread magmatic stage to a syn-sedimentary break-up stage where mantle melting concentrates along the future oceanic axis. Of special interest is the fact that a late and rapid stage of non-magmatic extension led to break-up, whose geometry triggered the location of the break-up axis and earliest oceanic accretion.
NASA Astrophysics Data System (ADS)
Coulié, E.; Quidelleur, X.; Gillot, P.-Y.; Courtillot, V.; Lefèvre, J.-C.; Chiesa, S.
2003-02-01
It is now generally accepted that continental flood basalt (CFB) volcanism bears a strong relationship with continental breakup. The Ethiopian Afar plume has been linked to the opening of the Afar depression. Propagation of the Red Sea and Gulf of Aden rifts within the depression, still an ongoing process, has rifted away the Ethiopian and Yemenite trap sequences. They are in some locations more than 2 km thick and comprise a wide range of volcanic products, from tholeiitic basalts, in the lower part, to more acidic material in the upper part. Recent studies have established that the bulk of trap volcanism erupted about 30 Ma ago over a period of 1 Myr in the Ethiopian sections, while ages obtained on the Yemenite sections seem more distributed through time. Here, for the first time in a single study, we present geochronological results obtained for basalts and more evolved products for both Ethiopian and Yemenite traps. This approach eliminates inter-laboratory biases and discrepancies in the ages of standards, and imposes better constraints on the eruptive chronology of this CFB province. In addition, both the K-Ar and 40Ar/ 39Ar techniques have been applied simultaneously, in order to demonstrate that similar ages are indeed obtained for undisturbed samples. The two dating techniques used here yield concordant ages for most samples. On both sides of the Afar depression, our results support that the onset of basaltic volcanism is coeval, with undistinguishable ages of 30.6±0.4 and 30.2±0.4 Ma obtained from Ethiopia and Yemen, respectively. Most of the basaltic lava pile has been erupted in less than 1 Myr, but acidic volcanism seems more spread out through time. It is coeval with basalts in northern Ethiopia but extends to about 26 Ma in Yemen, as already recognized. A younger rhyolitic episode, probably related to the major 20 Ma phase of opening of the Red Sea and Gulf of Aden, as expressed in the Afar depression, is also observed in Yemen and central Ethiopia.
Crustal Structure of the Flood Basalt Province of Ethiopia from Constrained 3-D Gravity Inversion
NASA Astrophysics Data System (ADS)
Mammo, Tilahun
2013-12-01
The Oligocene Afar mantle plume resulted in the eruption of a large volume of basaltic magma, including major sequences of rhyolitic ignimbrites, in a short span of time across Ethiopia. In order to assess the impact of these magmatic processes on the crust and to investigate the general crustal configuration beneath the Ethiopian plateau, northern part of the Main Ethiopian Rift and the Afar depression, analysis and modeling of the gravity field have been conducted. The Bouguer gravity map is dominated by long-wavelength anomalies that primarily arise from the isostatic compensation of the topography. Consequently, anomalies within the crust/upper mantle are masked and quantitative interpretation becomes difficult. The long-wavelength anomalies are approximated using admittance technique and subsequently removed from the Bouguer anomalies to obtain the residual isostatic anomalies. The residual map contains both short- and intermediate-wavelength anomalies related to geologic and tectonic features. The long-wavelength regional isostatic field is used to map the crust-mantle interface and the results are in good agreement with those determined by other geophysical methods. Seismic constrained gravity inversion was performed on the isostatic residual field and series of three-dimensional models have been constructed for the structures of the crust and upper mantle beneath the uplifted and rifted flood basalt province of northern Ethiopia. The inversion results have shown that the NW plateau has thick crust that rests on normal lithospheric mantle. Afar, On the other hand, is marked by thin stretched crust resting on a low-density upper mantle indicating a hotter thermal regime and partial melt. No lithospheric mantle is observed beneath Afar. The models further indicate the presence of an extensive sub-crustal thick (~12 km on average) and high-density (~3.06 gm/cc) mafic accreted igneous layer of fractionated cumulate (magmatic underplating) beneath the NW plateau. The study suggests that the underplate was fundamental to the accretion process and may have played a role in compensating most of the plateau uplift and in localizing stresses.
Comparing the composition of the earliest basalts erupted by the Iceland and Afar mantle plumes.
NASA Astrophysics Data System (ADS)
Stuart, Finlay M.
2013-04-01
The first basalts erupted by mantle plumes are typically generated by mantle melting at temperatures 200-300°C higher than average ambient mantle. This is consistent with the derivation of from a thermal boundary layer at the core-mantle boundary. Mantle plume temperatures decrease with time, likely as large plume heads give way to thin plume conduits. Consequently the early, hot plume basalts are a window into the deep mantle. At it's simplest they provide a test of whether the discrete plume source regions are primordial mantle that have been isolated since soon after Earth accretion, or have substantial contributions from subducted slabs. Here I present new isotopic and trace element determinations of the earliest picritic basalts from the ~30 Ma Afar plume in Ethiopia. They will be compared with similar material from the ~60 Ma proto-Iceland plume (PIP) in an effort to test prevailing models regarding the source of mantle plumes. The extremely primordial nature of the helium in the PIP picrites (3He/4He ~ 50 Ra) contrasts with much lower values of the Ethiopian flood basalt province (~21 Ra). The Iceland plume 3He/4He has decreased (linearly) with time, mirroring the secular cooling of the Iceland mantle plume identified by decreasing MgO and FeO in primary melts. In 60 million years the Iceland plume 3He/4He is still higher than the maximum Afar plume value. The Sr-Nd-Pb isotopic composition of the high 3He/4He Ethiopian flood basalt province picrites are remarkably homogenous (e.g. 87Sr/86Sr = 0.70396-0.70412; 206Pb/204Pb = 18.82-19.01). In comparison the PIP picrites have ranges that span nearly the global range of E-MORB and N-MORB. The Afar and proto-Iceland mantle plumes are clearly not initiated in a single deep mantle domain with the same depletion/enrichment and degassing histories, and the same scale of heterogeneity. This implies that there is more than one plume source region/mechanism that is capable of generating comparable volumes of basalt melt at Earth surface.
NASA Astrophysics Data System (ADS)
Mercier, F.; Samaniego, B.; Soriano, T.; Beaufils, G.; Fernandez Lisbona, E.; Dettlaff, K.; Jensen, H.
2014-08-01
The thermal / electrical imbalance phenomenon on the satellite solar arrays is a common issue inherent to the negative thermal voltage coefficient of the triple junction cells, which is usually already taken into account with basic precautions on the solar panel layout.In the frame of the ESA TRP study "Investigation on Solar Array thermal and electrical imbalance phenomenon on power systems equipped with Maximum Power Point Tracker (MPPT)" performed by Airbus Defence & Space (former Astrium Toulouse and Ottobrunn) and TERMA, in-depth analyses were conducted for the first time to better understand and characterize the secondary maximum power point phenomenon for various representative mission cases, whether in Earth vicinity or not. With the help of a newly developed detailed thermo-electrical coupled solver and a wide range of solar cell characterizations in flux and temperature, multiple sets of simulations were run to simulate realistic solar panel characteristics.The study showed that no secondary false maximum power point can be created on the solar panel characteristic IV curve for missions around Earth vicinity, at the sole exception of critical shadowing cases. Furthermore, the same conclusions apply for missions up to Mars orbit. The only potential threats come from the missions further than Mars (typically Jupiter missions) where various very high heterogeneities could lead to multiple maxima. This is deeply linked to the LILT (low illumination low temperature) conditions applied to the current solar cell triple junction characteristics and shape. Moreover, thermo-electrical imbalances that do not create secondary power point can still seriously grieve the solar array power output performances. This power loss can however be accurately assessed by the newly developed solver in support of in-development missions like Juice.
NASA Astrophysics Data System (ADS)
Cabello, O. A.; Meltzer, A.; Sandvol, E. A.; Yepes, H.; Ruiz, M. C.; Barrientos, S. E.; Willemann, R. J.
2011-12-01
During July 2011, a Pan-American Advanced Studies Institute, "New Frontiers in Seismological Research: Sustainable Networks, Earthquake Source Parameters, and Earth Structure" was conducted in Quito Ecuador with participants from the US, Central, and South America, and the Caribbean at early stages in their scientific careers. This advanced studies institute was imparted by fifteen volunteer senior faculty and investigators from the U.S. and the Americas. The curriculum addressed the importance of developing and maintaining modern seismological observatories, reviewed the principles of sustainable network operations, and explored recent advances in the analysis of seismological data in support of basic research, education, and hazard mitigation. An additional goal was to develop future international research collaborations. The Institute engaged graduate students, post-doctoral students, and new faculty from across the Americas in an interactive collaborative learning environment including modules on double-difference earthquake location and tomography, regional centroid-moment tensors, and event-based and ambient noise surface wave dispersion and tomography. Under the faculty guidance, participants started promising research projects about surface wave tomography in southeastern Brazil, near the Chilean triple junction, in central Chilean Andes, at the Peru-Chile border, within Peru, at a volcano in Ecuador, in the Caribbean Sea region, and near the Mendocino triple junction. Other participants started projects about moment tensors of earthquakes in or near Brazil, Chile and Argentina, Costa Rica, Ecuador, Puerto Rico, western Mexico, and northern Mexico. In order to track the progress of the participants and measure the overall effectiveness of the Institute a reunion is planned where the PASI alumni will present the result of their research that was initiated in Quito
Development of a High Efficiency UVR/IRR Coverglass for Triple Junction Solar Cells
NASA Technical Reports Server (NTRS)
Russell, John; Jones, Glenn; Hall, James
2007-01-01
Cover glasses have been a necessary and integral part of space solar arrays since their inception. The main function of the cover glass is to protect the underlying solar cell from the harsh radiation environment of space. They are formed either from fused silica or specially formulated ceria doped glass types that are resistant to radiation damage, for example Pilkington's CMX, CMG, CMO. Solar cells have steadily increased in performance over the past years, from Silicon cells through textured Silicon cells to GaAs cells and the multijunction cells of today. The optimum coverglass solution for each of these cells has been different. The glass itself has also evolved. In some cases it has had its expansion coefficient matched to the cell substrate material, and in addition, added value has been derived from the application of thin film optical coatings to the coverglass. In the majority of cases this has taken the form of a single layer of MgF2 which acts as an antireflection coating. There are also conductive coatings to address electrostatic discharge issues (ESD) and Ultra Violet Reflective (UVR) and Infrared Reflective (IRR) coatings designed for thermal enhancement. Each type of coating can be applied singly or in combination. This paper describes a new type of UVR/IRR (or blue red reflector BRR) specifically designed for triple junction solar cells. For space applications, where radiation is the principal mechanism for removing heat from the satellite, it is the emittance and solar absorptance that primarily determine the temperature of the array. It is therefore essential that any coatings designed to have an effect on the temperature by reducing the solar absorption have a minimal effect on the overall emittance.
NASA Astrophysics Data System (ADS)
Lupton, J. E.; Price, A. A.; Jackson, M. G.; Arculus, R. J.; Nebel, O.
2016-12-01
The submarine volcanic rocks of the northern Lau Basin exhibit a complex pattern in helium and radiogenic isotope ratios attributed to the interplay of depleted upper mantle, arc, and hotspot components. The seafloor lavas of the NW Lau Spreading Center (NWLSC) and Rochambeau Rifts have elevated 3He/4He ratios (12 - 28 Ra) indicating that a mantle plume component, possibly from Samoa, has influenced this extensional zone (Lupton et al., 2009). However, this hotspot helium is absent in the NE Lau Basin, which has MOR-type helium ( 8 Ra). We have analyzed helium isotope ratios in 40 additional submarine samples collected on the 2012 cruise of the R/V Southern Surveyor which extend the geographic coverage farther west into the Fiji Basin. To the west of the NWLSC, several samples from the Futuna Volcanic Zone and the Futuna Spreading Center have elevated 3He/4He in the range of 12 - 20.9 Ra, presumably related to the same OIB influence detected along the nearby NW Lau backarc spreading system. Surprisingly, the NE Fiji Triple Junction 1000 km to the west of the NWLSC, also has elevated 3He/4He up to 14.4 Ra. When radiogenic isotopes (Sr, Nd, Hf) are added to the picture, samples from the Futuna Volcanic Zone and from the NE Fiji Triple Junction fall on a mixing trend between depleted MORB mantle and FOZO, as do samples from the Rochambeau Rifts and NWLSC. However, this trend is distinct from that of Samoa proper, suggesting that only a restricted (FOZO) portion of the Samoan plume is responsible for the elevated 3He/4He in the northern Lau and Fiji basins.
NASA Astrophysics Data System (ADS)
Byrnes, J. S.; Bezada, M.
2017-12-01
Melt can be retained in the mantle at triple junctions between grain boundaries, be spread in thin films along two-grain boundaries, or be organized by shear into elongate melt-rich bands. Which of these geometries is most prevalent is unknown. This ambiguity makes the interpretation of anomalous seismic velocities and quality factors difficult, since different geometries would result in different mechanical effects. Here, we compare observations of seismic attenuation beneath the Salton Trough and the Snake River Plain; two regions where the presence of melt has been inferred. The results suggest that seismic attenuation is diagnostic of melt geometry. We measure the relative attenuation of P waves from deep focus earthquakes using a time-domain method. Even though the two regions are underlain by comparably strong low-velocity anomalies, their attenuation signature is very different. The upper mantle beneath the Salton Trough is sufficiently attenuating that the presence of melt must lower Qp, while attenuation beneath the Snake River Plain is not anomalous with respect to surrounding regions. These seemingly contradictory results can be reconciled if different melt geometries characterize each region. SKS splitting from the Salton Trough suggests that melt is organized into melt-rich bands, while this is not the case for the Snake River Plain. We infer that beneath the Snake River Plain melt is retained at triple junctions between grain boundaries, a geometry that is not predicted to cause seismic attenuation. More elongate geometries beneath the Salton Trough may cause seismic attenuation via the melt-squirt mechanism. In light of these results, we conclude that prior observations of low seismic velocities with somewhat high quality factors beneath the East Pacific Rise and Southern California suggest that melt does not organize into elongate bands across much of the asthenosphere.
Gulick, S.P.S.; Meltzer, A.M.; Clarke, S.H.
1998-01-01
Four multichannel-seismic reflection profiles, collected as part of the Mendocino triple junction seismic experiment, image the toe of the southern Cascadia accretionary prism. Today, 250-600 m of sediment is subducting with the Gorda plate, and 1500-3200 m is accreting to the northern California margin. Faults imaged west and east of the deformation front show mixed structural vergence. A north-south trending, 20 km long portion of the central margin is landward vergent for the outer 6-8 km of the toe of the prism. This region of landward vergence exhibits no frontal thrust, is unusually steep and narrow, and is likely caused by a seaward-dipping backstop close to the deformation front. The lack of margin-wide preferred seaward vergence and wedge-taper analysis suggests the prism has low basal shear stress. The three southern lines image wedge-shaped fragments of oceanic crust 1.1-7.3 km in width and 250-700 m thick near the deformation front. These wedges suggest shortening and thickening of the upper oceanic crust. Discontinuities in the seafloor west of the prism provide evidence for mass wasting in the form of slump blocks and debris fans. The southernmost profile extends 75 km west of the prism imaging numerous faults that offset both the Gorda basin oceanic crust and overlying sediments. These high-angle faults, bounding basement highs, are interpreted as strike-slip faults reactivating structures originally formed at the spreading ridge. Northeast or northwest trending strike-slip faults within the basin are consistent with published focal mechanism solutions and are likely caused by north-south Gorda-Pacific plate convergence. Copyright 1998 by the American Geophysical Union.
Nürnberg, Dennis J.; Mariscal, Vicente; Bornikoel, Jan; Nieves-Morión, Mercedes; Krauß, Norbert; Herrero, Antonia
2015-01-01
ABSTRACT Many filamentous cyanobacteria produce specialized nitrogen-fixing cells called heterocysts, which are located at semiregular intervals along the filament with about 10 to 20 photosynthetic vegetative cells in between. Nitrogen fixation in these complex multicellular bacteria depends on metabolite exchange between the two cell types, with the heterocysts supplying combined-nitrogen compounds but dependent on the vegetative cells for photosynthetically produced carbon compounds. Here, we used a fluorescent tracer to probe intercellular metabolite exchange in the filamentous heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. We show that esculin, a fluorescent sucrose analog, is incorporated by a sucrose import system into the cytoplasm of Anabaena cells. The cytoplasmic esculin is rapidly and reversibly exchanged across vegetative-vegetative and vegetative-heterocyst cell junctions. Our measurements reveal the kinetics of esculin exchange and also show that intercellular metabolic communication is lost in a significant fraction of older heterocysts. SepJ, FraC, and FraD are proteins located at the intercellular septa and are suggested to form structures analogous to gap junctions. We show that a ΔsepJ ΔfraC ΔfraD triple mutant shows an altered septum structure with thinner septa but a denser peptidoglycan layer. Intercellular diffusion of esculin and fluorescein derivatives is impaired in this mutant, which also shows a greatly reduced frequency of nanopores in the intercellular septal cross walls. These findings suggest that FraC, FraD, and SepJ are important for the formation of junctional structures that constitute the major pathway for feeding heterocysts with sucrose. PMID:25784700
NASA Astrophysics Data System (ADS)
Pakhanov, N. A.; Andreev, V. M.; Shvarts, M. Z.; Pchelyakov, O. P.
2018-03-01
Multi-junction solar cells based on III-V compounds are the most efficient converters of solar energy to electricity and are widely used in space solar arrays and terrestrial photovoltaic modules with sunlight concentrators. All modern high-efficiency III-V solar cells are based on the long-developed triple-junction III-V GaInP/GaInAs/Ge heterostructure and have an almost limiting efficiency for a given architecture — 30 and 41.6% for space and terrestrial concentrated radiations, respectively. Currently, an increase in efficiency is achieved by converting from the 3-junction to the more efficient 4-, 5-, and even 6-junction III-V architectures: growth technologies and methods of post-growth treatment of structures have been developed, new materials with optimal bandgaps have been designed, and crystallographic parameters have been improved. In this review, we consider recent achievements and prospects for the main directions of research and improvement of architectures, technologies, and materials used in laboratories to develop solar cells with the best conversion efficiency: 35.8% for space, 38.8% for terrestrial, and 46.1% for concentrated sunlight. It is supposed that by 2020, the efficiency will approach 40% for direct space radiation and 50% for concentrated terrestrial solar radiation. This review considers the architecture and technologies of solar cells with record-breaking efficiency for terrestrial and space applications. It should be noted that in terrestrial power plants, the use of III-V SCs is economically advantageous in systems with sunlight concentrators.
A one-million-year-old Homo cranium from the Danakil (Afar) Depression of Eritrea.
Abbate, E; Albianelli, A; Azzaroli, A; Benvenuti, M; Tesfamariam, B; Bruni, P; Cipriani, N; Clarke, R J; Ficcarelli, G; Macchiarelli, R; Napoleone, G; Papini, M; Rook, L; Sagri, M; Tecle, T M; Torre, D; Villa, I
1998-06-04
One of the most contentious topics in the study of human evolution is that of the time, place and mode of origin of Homo sapiens. The discovery in the Northern Danakil (Afar) Depression, Eritrea, of a well-preserved Homo cranium with a mixture of characters typical of H. erectus and H. sapiens contributes significantly to this debate. The cranium was found in a succession of fluvio-deltaic and lacustrine deposits and is associated with a rich mammalian fauna of early to early-middle Pleistocene age. A magnetostratigraphic survey indicates two reversed and two normal magnetozones. The layer in which the cranium was found is near the top of the lower normal magnetozone, which is identified as the Jaramillo subchron. Consequently, the human remains can be dated at approximately 1 million years before present.
Jackson, Ruth; Hailemariam, Assefa
2016-09-01
Women's preference to give birth at home is deeply embedded in Ethiopian culture. Many women only go to health facilities if they have complications during birth. Health Extension Workers (HEWs) have been deployed to improve the utilization of maternal health services by bridging the gap between communities and health facilities. This study examined the barriers and facilitators for HEWs as they refer women to mid-level health facilities for birth. A qualitative study was conducted in three regions: Afar Region, Southern Nations Nationalities and People's Region and Tigray Region between March to December 2014. Interviews and focus group discussions were conducted with 45 HEWs, 14 women extension workers (employed by Afar Pastoralist Development Association, Afar Region) and 11 other health workers from health centers, hospitals or health offices. Data analysis was done based on collating the data and identifying key themes. Barriers to health facilities included distance, lack of transportation, sociocultural factors and disrespectful care. Facilitators for facility-based deliveries included liaising with Health Development Army (HDA) leaders to refer women before their expected due date or if labour starts at home; the introduction of ambulance services; and, provision of health services that are culturally more acceptable for women. HEWs can effectively refer more women to give birth in health facilities when the HDA is well established, when health staff provide respectful care, and when ambulance is available at any time.
Wakie, Tewodros; Evangelista, Paul H.; Jarnevich, Catherine S.; Laituri, Melinda
2014-01-01
We used correlative models with species occurrence points, Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices, and topo-climatic predictors to map the current distribution and potential habitat of invasive Prosopis juliflora in Afar, Ethiopia. Time-series of MODIS Enhanced Vegetation Indices (EVI) and Normalized Difference Vegetation Indices (NDVI) with 250 m2 spatial resolution were selected as remote sensing predictors for mapping distributions, while WorldClim bioclimatic products and generated topographic variables from the Shuttle Radar Topography Mission product (SRTM) were used to predict potential infestations. We ran Maxent models using non-correlated variables and the 143 species-occurrence points. Maxent generated probability surfaces were converted into binary maps using the 10-percentile logistic threshold values. Performances of models were evaluated using area under the receiver-operating characteristic (ROC) curve (AUC). Our results indicate that the extent of P. juliflora invasion is approximately 3,605 km2 in the Afar region (AUC = 0.94), while the potential habitat for future infestations is 5,024 km2 (AUC = 0.95). Our analyses demonstrate that time-series of MODIS vegetation indices and species occurrence points can be used with Maxent modeling software to map the current distribution of P. juliflora, while topo-climatic variables are good predictors of potential habitat in Ethiopia. Our results can quantify current and future infestations, and inform management and policy decisions for containing P. juliflora. Our methods can also be replicated for managing invasive species in other East African countries.
Avraham, Hava Karsenty; Jiang, Shuxian; Fu, Yigong; Nakshatri, Harikrishna; Ovadia, Haim; Avraham, Shalom
2014-02-01
Although the incidence of breast cancer metastasis (BCM) in brain has increased significantly in triple-negative breast cancer (TNBC), the mechanisms remain elusive. Using in vivo mouse models for BCM in brain, we observed that TNBC cells crossed the blood-brain barrier (BBB), lodged in the brain microvasculature and remained adjacent to brain microvascular endothelial cells (BMECs). Breaching of the BBB in vivo by TNBCs resulted in increased BBB permeability and changes in ZO-1 and claudin-5 tight junction (TJ) protein structures. Angiopoietin-2 expression was elevated in BMECs and was correlated with BBB disruption. Secreted Ang-2 impaired TJ structures and increased BBB permeability. Treatment of mice with the neutralizing Ang-2 peptibody trebananib prevented changes in the BBB integrity and BMEC destabilization, resulting in inhibition of TNBC colonization in brain. Thus, Ang-2 is involved in initial steps of brain metastasis cascade, and inhibitors for Ang-2 may serve as potential therapeutics for brain metastasis. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Research from Afar: Considerations for Conducting an Off-Site Research Project.
ERIC Educational Resources Information Center
Williams, Reg Arthur; Hagerty, Bonnie M.; Hoyle, Kenneth; Yousha, Steven M.; Abdoo, Yvonne; Andersen, Curt; Engler, Dorothy
1999-01-01
Critical elements in the success of off-site research projects include the following: negotiation, attention to personnel issues, communication, participation of research subjects, data management, and concern for privacy issues. (SK)
Sweetkind, Donald S.; Rytuba, James J.; Langenheim, V.E.; Fleck, Robert J.
2011-01-01
The volcanic fields in the California Coast Ranges north of San Francisco Bay are temporally and spatially associated with the northward migration of the Mendocino triple junction and the transition from subduction and associated arc volcanism to a slab window tectonic environment. Our geochemical analyses from the Sonoma volcanic field highlight the geochemical diversity of these volcanic rocks, allowing us to clearly distinguish these volcanic rocks from those of the roughly coeval ancestral Cascades magmatic arc to the west, and also to compare rocks of the Sonoma volcanic field to rocks from other slab window settings.
Electron microscopy of a Gd-Ba-Cu-O superconductor
NASA Technical Reports Server (NTRS)
Ramesh, R.; Thomas, G.; Meng, R. L.; Hor, P. H.; Chu, C. W.
1989-01-01
An electron microscopy study has been carried out to characterize the microstructure of a sintered Gd-Ba-Cu-O superconductor alloy. The GdBa2Cu3O(7-x) phase in the oxygen annealed sample is orthorhombic, while in the vacuum annealed sample it is tetragonal. It is shown that the details of the fine structure in the 001-line zone axis convergent beam patterns can be used to distinguish between the orthorhombic form and the tetragonal form. In addition to this matrix phase, an amorphous phase is frequently observed at the triple grain junctions. Gd-rich inclusions have been observed inside the matrix phase.
Realization of compact, passively-cooled, high-flux photovoltaic prototypes
NASA Astrophysics Data System (ADS)
Feuermann, Daniel; Gordon, Jeffrey M.; Horne, Steve; Conley, Gary; Winston, Roland
2005-08-01
The materialization of a recent conceptual advance in high-flux photovoltaic concentrators into first-generation prototypes is reported. Our design strategy includes a tailored imaging dual-mirror (aplanatic) system, with a tapered glass rod that enhances concentration and accommodates larger optical errors. Designs were severely constrained by the need for ultra-compact (minimal aspect ratio) modules, simple passive heat rejection, liberal optical tolerances, incorporating off-the-shelf commercial solar cells, and pragmatic considerations of affordable fabrication technologies. Each unit has a geometric concentration of 625 and irradiates a single square 100 mm2 triple-junction high-efficiency solar cell at a net flux concentration of 500.
By-Pass Diode Temperature Tests of a Solar Array Coupon under Space Thermal Environment Conditions
NASA Technical Reports Server (NTRS)
Wright, Kenneth H.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie; Wu, Gordon
2016-01-01
By-Pass diodes are a key design feature of solar arrays and system design must be robust against local heating, especially with implementation of larger solar cells. By-Pass diode testing was performed to aid thermal model development for use in future array designs that utilize larger cell sizes that result in higher string currents. Testing was performed on a 56-cell Advanced Triple Junction solar array coupon provided by SSL. Test conditions were vacuum with cold array backside using discrete by-pass diode current steps of 0.25 A ranging from 0 A to 2.0 A.
Li, Tiantian; Zhang, Qixing; Ni, Jian; Huang, Qian; Zhang, Dekun; Li, Baozhang; Wei, Changchun; Yan, Baojie; Zhao, Ying; Zhang, Xiaodan
2017-03-29
We used silver nanoparticles (Ag-NPs) embedded in the p-type semiconductor layer of hydrogenated amorphous silicon (a-Si:H) solar cells in the Schottky barrier contact design to modify the interface between aluminum-doped ZnO (ZnO:Al, AZO) and p-type hydrogenated amorphous silicon carbide (p-a-SiC:H) without plasmonic absorption. The high work function of the Ag-NPs provided a good channel for the transport of photogenerated holes. A p-type nanocrystalline SiC:H layer was used to compensate for the real surface defects and voids on the surface of Ag-NPs to reduce recombination at the AZO/p-type layer interface, which then enhanced the photovoltage of single-junction a-Si:H solar cells to values as high as 1.01 V. The Ag-NPs were around 10 nm in diameter and thermally stable in the p-type a-SiC:H film at the solar-cell process temperature. We will also show that a wide range of photovoltages between 1.01 and 2.89 V could be obtained with single-, double-, and triple-junction solar cells based on the single-junction a-Si:H solar cells with tunable high photovoltage. These solar cells are suitable photocathodes for solar water-splitting applications.
The origin of strike-slip tectonics in continental rifts
NASA Astrophysics Data System (ADS)
Ebinger, C. J.; Pagli, C.; Yun, S. H.; Keir, D.; Wang, H.
2016-12-01
Although continental rifts are zones of lithospheric extension, strike-slip tectonics is also accommodated within rifts and its origin remains controversial. Here we present a combined analysis of recent seismicity, InSAR and GPS derived strain maps to reveal that the plate motion in Afar is accommodated primarily by extensional tectonics in all rift arms and lacks evidences of regional scale bookshelf tectonics. However in the rifts of central Afar we identify crustal extension and normal faulting in the central part of the rifts but strike-slip earthquakes at the rift tips. We investigate if strike-slip can be the result of Coulomb stress changes induced by recent dyking but models do not explain these earthquakes. Instead we explain strike-slips as shearing at the tips of a broad zone of spreading where extension terminates against unstretched lithosphere. Our results demonstrate that plate spreading can develop both strike-slip and extensional tectonics in the same rifts.
Caring from Afar: Asian H1B Migrant Workers and Aging Parents.
Lee, Yeon-Shim; Chaudhuri, Anoshua; Yoo, Grace J
2015-09-01
With the growth in engineering/technology industries, the United States has seen an increase in the arrival of highly skilled temporary migrant workers on H1B visas from various Asian countries. Limited research exists on how these groups maintain family ties from afar including caring for aging parents. This study explores the experiences and challenges that Asian H1B workers face when providing care from a distance. A total of 21 Chinese/Taiwanese, Korean, and Indian H1B workers participated in in-depth qualitative interviews. Key findings indicate that despite distance, caring relationships still continue through regular communications, financial remittances, and return visits, at the same time creating emotional, psychological, and financial challenges for the workers. Findings highlight the need for further research in understanding how the decline of aging parent's health impacts the migrants' adjustment and health in the United States.
NASA Astrophysics Data System (ADS)
Imai, Shigeru; Ito, Masato
2018-06-01
In this paper, anomalous single-electron transfer in common-gate quadruple-dot turnstile devices with asymmetric junction capacitances is revealed. That is, the islands have the same total number of excess electrons at high and low gate voltages of the swing that transfers a single electron. In another situation, two electrons enter the islands from the source and two electrons leave the islands for the source and drain during a gate voltage swing cycle. First, stability diagrams of the turnstile devices are presented. Then, sequences of single-electron tunneling events by gate voltage swings are investigated, which demonstrate the above-mentioned anomalous single-electron transfer between the source and the drain. The anomalous single-electron transfer can be understood by regarding the four islands as “three virtual islands and a virtual source or drain electrode of a virtual triple-dot device”. The anomalous behaviors of the four islands are explained by the normal behavior of the virtual islands transferring a single electron and the behavior of the virtual electrode.
Underwood, M.B.; Shelton, K.L.; McLaughlin, R.J.; Laughland, M.M.; Solomon, R.M.
1999-01-01
This study documents three localities in the Franciscan accretionary complex of northern California, now adjacent to the San Andreas fault, that were overprinted thermally between 13.9 and 12.2 Ma: Point Delgada-Shelter Cove (King Range terrane); Bolinas Ridge (San Bruno Mountain terrane); and Mount San Bruno (San Bruno Mountain terrane). Vein assemblages of quartz, carbonate, sulfide minerals, and adularia were precipitated locally in highly fractured wall rock. Vitrinite reflectance (Rm) values and illite crystallinity decrease away from the zones of metalliferous veins, where peak wall-rock temperatures, as determined from Rm, were as high as 315??C. The ??18O values of quartz and calcite indicate that two separate types of fluid contributed to vein precipitation. Higher ??18O fluids produced widespread quartz and calcite veins that are typical of the regional paleothermal regime. The widespread veins are by-products of heat conduction and diffuse fluid flow during zeolite and prehnite-pumpellyite-grade metamorphism, and we interpret their paleofluids to have evolved through dehydration reactions and/or extensive isotopic exchange with accreted Franciscan rocks. Lower ??18O fluids, in contrast, evolved from relatively high temperature exchange between seawater (or meteoric water) and basaltic and/or sedimentary host rocks; focused flow of those fluids resulted in local deposition of the metalliferous veins. Heat sources for the three paleothermal anomalies remain uncertain and may have been unrelated to one another. Higher temperature metalliferous fluids in the King Range terrane could have advected either from a site of ridge-trench interaction north of the Mendocino fracture zone or from a "slabless window" in the wake of the northward migrating Mendocino triple junction. A separate paradox involves the amount of Quaternary offset of Franciscan basement rocks near Shelter Cove by on-land faults that some regard as the main active trace of the San Andreas plate boundary. Contouring of vitrinite reflectance values to the north of an area affected by A.D. 1906 surface rupture indicates that the maximum dextral offset within the interior of the King Range terrane is only 2.5 km. If this fault extends inland, and if it has been accommodating most of the strike-slip component of San Andreas offset at a rate of 3-4 cm/yr, then its activity began only 83-62 ka. This interpretation would also mean that a longer term trace of the San Andreas fault must be nearby, either offshore or along the northeast boundary of the King Range terrane. An offshore fault trace would be consistent with peak heating of King Range strata north of the Mendocino triple junction. Conversely, shifting the fault to the east would be compatible with a slabless window heat source and long-distance northward translation of the King Range terrane after peak heating.
Evolution of the East African rift: Drip magmatism, lithospheric thinning and mafic volcanism
NASA Astrophysics Data System (ADS)
Furman, Tanya; Nelson, Wendy R.; Elkins-Tanton, Linda T.
2016-07-01
The origin of the Ethiopian-Yemeni Oligocene flood basalt province is widely interpreted as representing mafic volcanism associated with the Afar mantle plume head, with minor contributions from the lithospheric mantle. We reinterpret the geochemical compositions of primitive Oligocene basalts and picrites as requiring a far more significant contribution from the metasomatized subcontinental lithospheric mantle than has been recognized previously. This region displays the fingerprints of mantle plume and lithospheric drip magmatism as predicted from numerical models. Metasomatized mantle lithosphere is not dynamically stable, and heating above the upwelling Afar plume caused metasomatized lithosphere with a significant pyroxenite component to drip into the asthenosphere and melt. This process generated the HT2 lavas observed today in restricted portions of Ethiopia and Yemen now separated by the Red Sea, suggesting a fundamental link between drip magmatism and the onset of rifting. Coeval HT1 and LT lavas, in contrast, were not generated by drip melting but instead originated from shallower, dominantly anhydrous peridotite. Looking more broadly across the East African Rift System in time and space, geochemical data support small volume volcanic events in Turkana (N. Kenya), Chyulu Hills (S. Kenya) and the Virunga province (Western Rift) to be derived ultimately from drip melting. The removal of the gravitationally unstable, metasomatized portion of the subcontinental lithospheric mantle via dripping is correlated in each case with periods of rapid uplift. The combined influence of thermo-mechanically thinned lithosphere and the Afar plume together thus controlled the locus of continental rift initiation between Africa and Arabia and provide dynamic support for the Ethiopian plateau.
Seismicity During Continental Breakup in the Red Sea Rift of Northern Afar
NASA Astrophysics Data System (ADS)
Illsley-Kemp, Finnigan; Keir, Derek; Bull, Jonathan M.; Gernon, Thomas M.; Ebinger, Cynthia; Ayele, Atalay; Hammond, James O. S.; Kendall, J.-Michael; Goitom, Berhe; Belachew, Manahloh
2018-03-01
Continental rifting is a fundamental component of plate tectonics. Recent studies have highlighted the importance of magmatic activity in accommodating extension during late-stage rifting, yet the mechanisms by which crustal thinning occurs are less clear. The Red Sea rift in Northern Afar presents an opportunity to study the final stages of continental rifting as these active processes are exposed subaerially. Between February 2011 and February 2013 two seismic networks were installed in Ethiopia and Eritrea. We locate 4,951 earthquakes, classify them by frequency content, and calculate 31 focal mechanisms. Results show that seismicity is focused at the rift axis and the western marginal graben. Rift axis seismicity accounts for ˜64% of the seismic moment release and exhibits a swarm-like behavior. In contrast, seismicity at the marginal graben is characterized by high-frequency earthquakes that occur at a constant rate. Results suggest that the rift axis remains the primary locus of seismicity. Low-frequency earthquakes, indicative of magmatic activity, highlight the presence of a magma complex ˜12 km beneath Alu-Dalafilla at the rift axis. Seismicity at the marginal graben predominantly occurs on westward dipping, antithetic faults. Focal mechanisms show that this seismicity is accommodating E-W extension. We suggest that the seismic activity at the marginal graben is either caused by upper crustal faulting accommodating enhanced crustal thinning beneath Northern Afar or as a result of flexural faulting between the rift and plateau. This seismicity is occurring in conjunction with magmatic extension at the rift axis, which accommodates the majority of long-term extension.
Stanger, Dylan E; Abdulla, Alym H; Wong, Frank T; Alipour, Sina; Bressler, Brian L; Wood, David A; Webb, John G
2017-08-01
The aim of this study was to identify the incidence of upper gastrointestinal bleeding (UGIB) in the postprocedural period following transcatheter aortic valve replacement (TAVR). As TAVR moves into intermediate- and low-risk patients, it has become increasingly important to understand its extracardiac complications. The patient population undergoing TAVR have clinical and demographic characteristics that place them at significant risk of UGIB. Practical aspects of TAVR, including use of antithrombotic therapy, further increase risk of UGIB. A retrospective single-center evaluation of 841 patients who underwent TAVR between January 2005 and August 2014 was performed in conjunction with analysis of referral patterns to the gastroenterology service for UGIB at the same site. The overall risk of UGIB following TAVR was found to be 2.0% (n = 17/841). Additionally, the risk of UGIB in patients receiving triple antithrombotic therapy was found to be 10-fold greater than patients not receiving triple antithrombotic therapy (11.8% vs 1.0%). Endoscopy findings demonstrated five high-risk esophageal lesions including erosive esophageal ulcers, visible vessels at the GE junction, erosions at distal esophagus, and an actively bleeding esophageal ring that had been intubated through by the transesophageal echocardiography (TEE) probe. This large cohort study demonstrates that TAVR is associated with a moderate risk of severe UGIB. The results of this study suggest that patients on triple antithrombotic therapy are at highest risk for severe UGIB. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Toward an understanding of disequilibrium dihedral angles in mafic rocks
Holness, Marian B.; Humphreys, Madeleine C.S.; Sides, Rachel; Helz, Rosalind T.; Tegner, Christian
2012-01-01
The median dihedral angle at clinopyroxene-plagioclase-plagioclase junctions in mafic rocks, Θcpp, is generally lower than equilibrium (109˚ {plus minus} 2˚). Observation of a wide range of mafic bodies demonstrates that previous work on systematic variations of Θcpp is incorrect in several important respects. Firstly, the spatial distribution of plagioclase compositional zoning demonstrates that the final geometry of three-grain junctions, and hence Θcpp, is formed during solidification (the igneous process): sub-solidus textural modification in most dolerites and gabbros, previously thought to be the dominant control on Θcpp, is insignificant. Θcpp is governed by mass transport constraints, the inhibiting effects of small pore size on crystallization, and variation in relative growth rates of pyroxene and plagioclase. During rapid cooling, pyroxene preferentially fills wider pores while the narrower pores remain melt-filled, resulting in an initial value of Θcpp of 78˚, rather than 60˚ which would be expected if all melt-filled pores were filled with pyroxene. Lower cooling rates create a higher initial Θcpp due to changes in relative growth rates of the two minerals at the nascent three-grain junction. Low Θcpp (associated with cuspate clinopyroxene grains at triple junctions) can also be diagnostic of infiltration of previously melt-free rocks by late-stage evolved liquids (the metasomatic process). Modification of Θcpp by sub-solidus textural equilibration (the metamorphic process) is only important for fine-grained mafic rocks such as chilled margins and intra-plutonic chill zones. In coarse-grained gabbros from shallow crustal intrusions the metamorphic process occurs only in the centres of oikocrysts, associated with rounding of chadacrysts.
Uppermost mantle velocity from Pn tomography in the Gulf of Aden
NASA Astrophysics Data System (ADS)
Corbeau, Jordane; Rolandone, Frédérique; Leroy, Sylvie; Al-Lazki, Ali; Keir, Derek; Stuart, Graham; Stork, Anna
2013-04-01
We present an analysis of Pn traveltimes to determine lateral variations of velocity in the uppermost mantle and crustal thickness beneath the Gulf of Aden and its margins. No detailed tomographic image of the entire Gulf of Aden was available. Previous tomographic studies covered the eastern Gulf of Aden and were thus incomplete or at a large scale with a too low resolution to see the lithospheric structures. From 1990 to 2010, 49206 Pn arrivals were selected from the International Seismological Center catalogue. We also used temporary networks : YOCMAL (Young Conjugate Margins Laboratory) networks with broadband stations located in Oman, Yemen and Socotra from 2003 to 2011, and Djibouti network from 2009 to 2011. From these networks we picked Pn arrivals and selected 4110 rays. Using a least-squares tomographic code (Hearn, 1996), these data were analyzed to solve for velocity variations in the mantle lithosphere. We perform different inversions for shorter and longer ray path data sets in order to separate the shallow and deep structure within the mantle lid. In the upper lid, zones of low velocity (7.7 km/s) around Sanaa, Aden, Afar, and along the Gulf of Aden are related to active volcanism. Off-axis volcanism and a regional melting anomaly in the Gulf of Aden area may be connected to the Afar plume, and explained by the model of channeling material away from the Afar plume along ridge-axis. Our study validates the channeling model and shows that the influence of the Afar hotspot may extend much farther eastwards along the Aden and Sheba ridges into the Gulf of Aden than previously believed. Still in the upper lid, high Pn velocities (>8,2 km/s) are observed in Yemen and may be related to the presence of a magmatic underplating under the volcanic margin of Aden and under the Red Sea margins. In the lower lid, zones of low velocities are spatially located differently than in the upper lid. On the Oman margin, a low velocity zone (7.6 km/s) suggests deep partial melting. The Pn velocity below Socotra island is slower, whereas a high velocity zone is observed north of the Sheba ridge. The hot material may have flowed through Alula-Fartak transform zone towards Socotra.
Forward Technology Solar Cell Experiment First On-Orbit Data
NASA Technical Reports Server (NTRS)
Walters, R. J.; Garner, J. C.; Lam, S. N.; Vazquez, J. A.; Braun, W. R.; Ruth, R. E.; Warner, J. H.; Lorentzen, J. R.; Messenger, S. R.; Bruninga, R.;
2007-01-01
This paper presents first on orbit measured data from the Forward Technology Solar Cell Experiment (FTSCE). FTSCE is a space experiment housed within the 5th Materials on the International Space Station Experiment (MISSE-5). MISSE-5 was launched aboard the Shuttle return to flight mission (STS-114) on July 26, 2005 and deployed on the exterior of the International Space Station (ISS). The experiment will remain in orbit for nominally one year, after which it will be returned to Earth for post-flight testing and analysis. While on orbit, the experiment is designed to measure a 36 point current vs. voltage (IV) curve on each of the experimental solar cells, and the data is continuously telemetered to Earth. The experiment also measures the solar cell temperature and the orientation of the solar cells to the sun. A range of solar cell technologies are included in the experiment including state-of-the-art triple junction InGaP/GaAs/Ge solar cells from several vendors, thin film amorphous Si and CuIn(Ga)Se2 cells, and next-generation technologies like single-junction GaAs cells grown on Si wafers and metamorphic InGaP/InGaAs/Ge triple-junction cells. In addition to FTSCE, MISSE-5 also contains a Thin-Film Materials experiment. This is a passive experiment that will provide data on the effect of the space environment on more than 200 different materials. FTSCE was initially conceived in response to various on-orbit and ground test anomalies associated with space power systems. The Department of Defense (DoD) required a method of rapidly obtaining on orbit validation data for new space solar cell technologies, and NRL was tasked to devise an experiment to meet this requirement. Rapid access to space was provided by the MISSE Program which is a NASA Langley Research Center program. MISSE-5 is a completely self-contained experiment system with its own power generation and storage system and communications system. The communications system, referred to as PCSat, transmits and receives in the Amateur Radio band providing a node on the Amateur Radio Satellite Service. This paper presents an overview of the various aspects of MISSE-5 and a sample of the first measured on orbit data.
Network of Porosity Formed in Ultrafine-Grained Copper Produced by Equal Channel Angular Pressing
NASA Astrophysics Data System (ADS)
Ribbe, Jens; Baither, Dietmar; Schmitz, Guido; Divinski, Sergiy V.
2009-04-01
Radiotracer experiments on diffusion of Ni63 and Rb86 in severely deformed commercially pure copper (8 passes of equal channel angular pressing) reveal unambiguously the existence of ultrafast transport paths. A fraction of these paths remains in the material even after complete recrystallization. Scanning electron microscopy and focused ion beam techniques are applied. Deep grooves are found which are related to original high-energy interfaces. In-depth sectioning near corresponding triple junctions reveals clearly multiple microvoids or microcracks caused by the severe deformation. Long-range tracer penetration over tens of micrometers proves that these submicrometer-large defects are connected by highly diffusive paths and that they appear with significant frequency.
48 CFR 5108.070 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... accompanying Industrial Preparedness Program Production Capacity Survey (DD Form 1519 TEST). The firm is... is contractually bound by inclusion of AFARS 5152.208-9001 in their contract to maintain production capacity for a negotiated length of time, to conduct subcontractor planning, and to produce specified...
48 CFR 5108.070 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... accompanying Industrial Preparedness Program Production Capacity Survey (DD Form 1519 TEST). The firm is... is contractually bound by inclusion of AFARS 5152.208-9001 in their contract to maintain production capacity for a negotiated length of time, to conduct subcontractor planning, and to produce specified...
48 CFR 5108.070 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... accompanying Industrial Preparedness Program Production Capacity Survey (DD Form 1519 TEST). The firm is... is contractually bound by inclusion of AFARS 5152.208-9001 in their contract to maintain production capacity for a negotiated length of time, to conduct subcontractor planning, and to produce specified...
48 CFR 5108.070 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... accompanying Industrial Preparedness Program Production Capacity Survey (DD Form 1519 TEST). The firm is... is contractually bound by inclusion of AFARS 5152.208-9001 in their contract to maintain production capacity for a negotiated length of time, to conduct subcontractor planning, and to produce specified...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Netter, Judy
2015-07-28
Interest in High Concentration Photovoltaics (HCPV) for terrestrial applications has significantly grown in recent years. A major driver behind this growth trend is the availability of high efficiency multi-junction (MJ) cells that promise reliable operation under high concentrations (500 to 1000 suns). The primary impact of HCPV on the solar electricity cost is the dramatic reduction in cell cost. For terrestrial HCPV systems, operating at concentrations ≥ 500 suns, the expensive MJ cells are marginally affordable. Most recently, triple-junction test cells have achieved a conversion efficiency of over 40% under concentrated sunlight. Photovoltaic Cavity Converter (PVCC) is a multi-bandgap, highmore » concentration PV device developed by United Innovations, Inc., under subcontract to NREL. The lateral- (2- dimensional) structure of PVCC, as opposed to vertical multi-junction (MJ) structure, helps to circumvent most of the developmental challenges MJ technology has yet to overcome. This CRADA will allow the continued development of this technology by United Innovations. This project was funded by the California Energy Commission and is the second phase of a twopart demonstration program. The key advantage of the design was the use of a PVCC as the receiver. PVCCs efficiently process highly concentrated solar radiation into electricity by recycling photons that are reflected from the surface of the cells. Conventional flat, twodimensional receivers cannot recycle photons and the reflected photons are lost to the conversion process.« less
NASA Astrophysics Data System (ADS)
Almadani, Sattam Abdulkareem
The dissertation utilizes a set of sophisticated computer programs developed at the Geophysics group at Missouri S&T to characterize crustal properties beneath the Afar Depression in Ethiopia where extensional tectonics dominates. In this study, measurements of crustal thickness (H), crustal mean V p/Vs [which is related to Poisson's ratio (sigma)], and the sharpness of the Moho (R) were determined using teleseismic data from 18 broadband seismic sensors that we deployed along a profile of 250 km long with a station spacing of ˜ 10 km. The stations had been recording continuously for an entire year from December 2009 until December 2010. The measurements were determined by stacking P-to-S converted waves (PmS) and their multiples (PPmS and PSmS). Results suggest that the average crustal thickness beneath the Afar Depression is about 28.56+/-0.28 km and the crust is characterized by large Vp/Vs of 1.93+/-0.017 and smaller-than-normal overall stacking amplitude of the P-to-S converted phases beneath most stations. Our results suggest that the crust beneath the entire study area is significantly thinned and extensively intruded by mafic dikes, representing a transitional stage between continental and ocean crust. The Tendaho Graben has the thinnest and most mafic crust, which is also supported by the observation of gravity data which suggest that the active magmatic areas are characterized by higher gravity anomalies while the thicker crusts have smaller and negative anomalies. Thus, the crust beneath the center of the Tendaho Graben is likely to be oceanic-type, and becomes progressively more continental away from the center.
NASA Astrophysics Data System (ADS)
Lindsey, N.; Ebinger, C. J.; Pritchard, M. E.; Cote, D. M.
2010-12-01
Knowledge of how the continental lithosphere accommodates strain in an active rift setting is essential to both earthquake and volcanic hazard analyses. Far-field and impinging mantle plumes drive extension within the fault-bounded rift systems of East Africa. Our study aims to evaluate models of distributed strain and localized strain between multiple rigid plates using earthquake catalogs and existing constraints, including high resolution DEMs that reveal the spatial distribution of young faults across the broad uplifts of eastern and southern Africa. We determine cumulative seismic moment release within 0.5 degree bins across the Afro-Arabian rift system using the entire NEIC earthquake catalog (1973-present), and compare these results to geodetic estimates of strain and extensional velocity. The small bin size permits comparison of strain with geological factors, including geological terrain, border fault distribution, and the presence or absence of volcanism. Our results highlight the significance of magmatism in strain accommodation across the rift system, and suggest that some strain and magmatism occur within ‘rigid blocks’, such as the Tanzania craton. Throughout the Afro-Arabian rift system, seismic moment release lags geodetic moment release by a factor of 2, consistent with aseismic creep deformation. However, our comparisons indicate that aseismic deformation accounts for a much higher percent of geodetic moment release: approximately 90% in the Main Ethiopian and Eastern rifts, and >97% in the Afar rift zone where incipient seafloor spreading occurs. The time-averaged strain distributions match the estimates from intense seismo-volcanic rifting episodes in Afar, indicating the data base is representative of longer-term patterns in Afar. We see no systematic variation in interbasinal accommodation zones or rift segment offsets, arguing against the development of transform-like structures prior to plate rupture.
NASA Astrophysics Data System (ADS)
George, R. M.; Rogers, N. W.
2002-09-01
Southern Ethiopian flood basalts erupted in two episodes: the pre-rift Amaro and Gamo transitional tholeiites (45-35 million years) followed by the syn-extensional Getra-Kele alkali basalts (19-11 million years). These two volcanic episodes are distinct in both trace element and isotope ratios (Zr/Nb ratios in Amaro/Gamo lavas fall between 7 and 14, and 3-4.7 in the Getra-Kele lavas whereas 206Pb/204Pb ratios fall between 18-19 and 18.9-20, respectively). The distinctive chemistries of the two eruptive phases record the tapping of two distinct source regions: a mantle plume source for the Amaro/Gamo phase and an enriched continental mantle lithosphere source for the Getra-Kele phase. Isotope and trace element variations within the Amaro/Gamo lavas reflect polybaric fractional crystallisation initiated at high pressures accompanied by limited crustal contamination. We show that clinopyroxene removal at high (0.5 GPa) crustal pressures provides an explanation for the common occurrence of transitional tholeiites in Ethiopia relative to other, typically tholeiitic flood basalt provinces. The mantle plume signature inferred from the most primitive Amaro basalts is isotopically distinct from that contributing to melt generation in central Ethiopian and Afar. This, combined with Early Tertiary plate reconstructions and similarities with Kenyan basalts farther south, lends credence to derivation of these melts from the Kenyan plume rather than the Afar mantle plume. The break in magmatism between 35 and 19 Ma is consistent with the northward movement away from the Kenya plume predicted from plate tectonic reconstructions. In this model the Getra-Kele magmatism is a response to heating of carbonatitically metasomatised lithosphere by the Afar mantle plume beneath southern Ethiopia at this time.
The 2011 eruption of Nabro volcano, Eritrea: perspectives on magmatic processes from melt inclusions
NASA Astrophysics Data System (ADS)
Donovan, Amy; Blundy, Jon; Oppenheimer, Clive; Buisman, Iris
2018-01-01
The 2011 eruption of Nabro volcano, Eritrea, produced one of the largest volcanic sulphur inputs to the atmosphere since the 1991 eruption of Mt. Pinatubo, yet has received comparatively little scientific attention. Nabro forms part of an off-axis alignment, broadly perpendicular to the Afar Rift, and has a history of large-magnitude explosive silicic eruptions, as well as smaller more mafic ones. Here, we present and analyse extensive petrological data obtained from samples of trachybasaltic tephra erupted during the 2011 eruption to assess the pre-eruptive magma storage system and explain the large sulphur emission. We show that the eruption involved two texturally distinct batches of magma, one of which was more primitive and richer in sulphur than the other, which was higher in water (up to 2.5 wt%). Modelling of the degassing and crystallisation histories demonstrates that the more primitive magma rose rapidly from depth and experienced degassing crystallisation, while the other experienced isobaric cooling in the crust at around 5 km depth. Interaction between the two batches occurred shortly before the eruption. The eruption itself was likely triggered by recharge-induced destabilisation of vertically extensive mush zone under the volcano. This could potentially account for the large volume of sulphur released. Some of the melt inclusions are volatile undersaturated, and suggest that the original water content of the magma was around 1.3 wt%, which is relatively high for an intraplate setting, but consistent with seismic studies of the Afar plume. This eruption was smaller than some geological eruptions at Nabro, but provides important insights into the plumbing systems and dynamics of off-axis volcanoes in Afar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Yinkai; Cheng, Tian -Le; Wen, You -Hai
Microstructure evolution plays an important role in the performance degradation of SOFC electrodes. In this work, we propose a much improved phase field model to simulate the microstructure evolution in the electrodes of solid oxide fuel cell. We demonstrate that the tunability of the interfacial energy in this model has been significantly enhanced. Parameters are set to fit for the interfacial energies of a typical Ni-YSZ anode, an LSM-YSZ cathode and an artificial reference electrode, respectively. The contact angles at various triple junctions and the microstructure evolutions in two dimensions are calibrated to verify the model. As a demonstration ofmore » the capabilities of the model, three dimensional microstructure evolutions are simulated applying the model to the three different electrodes. The time evolutions of grain size and triple phase boundary density are analyzed. In addition, a recently proposed bound charge successive approximation algorithm is employed to calculate the effective conductivity of the electrodes during microstructure evolution. Furthermore, the effective conductivity of all electrodes are found to decrease during the microstructure evolution, which is attributed to the increased tortuosity and the loss of percolated volume fraction of the electrode phase.« less
Lei, Yinkai; Cheng, Tian -Le; Wen, You -Hai
2017-02-13
Microstructure evolution plays an important role in the performance degradation of SOFC electrodes. In this work, we propose a much improved phase field model to simulate the microstructure evolution in the electrodes of solid oxide fuel cell. We demonstrate that the tunability of the interfacial energy in this model has been significantly enhanced. Parameters are set to fit for the interfacial energies of a typical Ni-YSZ anode, an LSM-YSZ cathode and an artificial reference electrode, respectively. The contact angles at various triple junctions and the microstructure evolutions in two dimensions are calibrated to verify the model. As a demonstration ofmore » the capabilities of the model, three dimensional microstructure evolutions are simulated applying the model to the three different electrodes. The time evolutions of grain size and triple phase boundary density are analyzed. In addition, a recently proposed bound charge successive approximation algorithm is employed to calculate the effective conductivity of the electrodes during microstructure evolution. Furthermore, the effective conductivity of all electrodes are found to decrease during the microstructure evolution, which is attributed to the increased tortuosity and the loss of percolated volume fraction of the electrode phase.« less
Barber, F Alan
2016-05-01
To compare the structural healing and clinical outcomes of triple-loaded single-row with suture-bridging double-row repairs of full-thickness rotator cuff tendons when both repair constructs are augmented with platelet-rich plasma fibrin membrane. A prospective, randomized, consecutive series of patients diagnosed with full-thickness rotator cuff tears no greater than 3 cm in anteroposterior length were treated with a triple-loaded single-row (20) or suture-bridging double-row (20) repair augmented with platelet-rich plasma fibrin membrane. The primary outcome measure was cuff integrity by magnetic resonance imaging (MRI) at 12 months postoperatively. Secondary clinical outcome measures were American Shoulder and Elbow Surgeons, Rowe, Simple Shoulder Test, Constant, and Single Assessment Numeric Evaluation scores. The mean MRI interval was 12.6 months (range, 12-17 months). A total of 3 of 20 single-row repairs and 3 of 20 double-row repairs (15%) had tears at follow-up MRI. The single-row group had re-tears in 1 single tendon repair and 2 double tendon repairs. All 3 tears failed at the original attachment site (Cho type 1). In the double-row group, re-tears were found in 3 double tendon repairs. All 3 tears failed medial to the medial row near the musculotendinous junction (Cho type 2). All clinical outcome measures were significantly improved from the preoperative level (P < .0001), but there was no statistical difference between groups postoperatively. There is no MRI difference in rotator cuff tendon re-tear rate at 12 months postsurgery between a triple-loaded single-row repair or a suture-bridging double-row repair when both are augmented with platelet-rich plasma fibrin membrane. No difference could be demonstrated between these repairs on clinical outcome scores. I, Prospective randomized study. Copyright © 2016 Arthroscopy Association of North America. All rights reserved.
NASA Astrophysics Data System (ADS)
Schilling, Jean-Guy; Kingsley, Richard H.; Hanan, Barry B.; McCully, Brian L.
1992-07-01
The rare-earth-element concentrations and Nd, Sr, and Pb isotopic compositions of the basalts in the Gulf of Aden are described and related to asthenospheric and lithospheric interactions with a thermal toruslike plume. Specific attention is given to the spatial and temporal traits of the mantle sources, and isotopic and geochemical data are used to determine the extent to which basaltic volcanism is derived from a mantle plume, the mantle lithosphere, and upwelling of the depleted atmosphere. The impingement and dispersion of a plume head is confirmed beneath the Afar region, and the geological record shows continental stretching and rifting prior to the impingement in the outskirts of the Horn of Africa. The data suggest that the isotopic variations along the Gulf of Aden/Red Sea/Ethiopia Rift system can be explained by the interaction of a thermal toruslike plume with the depleted asthenosphere and the overlying continental mantle lithosphere.
NASA Astrophysics Data System (ADS)
Leybourne, Bruce; Smoot, Christian; Longhinos, Biju
2014-05-01
Interplanetary Magnetic Field (IMF) coupling to south polar magnetic ring currents transfers induction energy to the Southern Geostream ringing Antarctica and underlying its encircling mid-ocean ridge structure. Magnetic reconnection between the southward interplanetary magnetic field and the magnetic field of the earth is the primary energy transfer mechanism between the solar wind and the magnetosphere. Induced telluric currents focused within joule spikes along Geostreams heat the southern Pacific. Alignment of the Australian Antarctic Discordance to other tectonic vortexes along the Western Pacific Rim, provide electrical connections to Earths core that modulate global telluric currents. The Banda Sea Triple Junction, a mantle vortex north of Australia, and the Lake Baikal Continental Rift vortex in the northern hemisphere modulate atmospheric Jetstream patterns gravitationally linked to internal density oscillations induced by these telluric currents. These telluric currents are driven by solar magnetic power, rotation and orbital dynamics. A solar rotation 40 day power spectrum in polarity controls north-south migration of earthquakes along the Western Pacific Rim and manifest as the Madden Julian Oscillation a well-documented climate cycle. Solar plasma turbulence cycles related to Hale flares trigger El Nino Southern Oscillations (ENSO's), while solar magnetic field strength frequencies dominate global warming and cooling trends indexed to the Pacific Decadal Oscillation. These Pacific climate anomalies are solar-electro-tectonically modulated via coupling to tropical geostream vortex streets. Particularly the section along the Central Pacific Megatrend connecting the Banda Sea Triple Junction (up welling mantle vortex) north of Australia with the Easter Island & Juan Fernandez twin rotating micro-plates (twin down welling mantle vortexes) along the East Pacific Rise modulating ENSO. Solar eruptions also enhance the equatorial ring current located approximately at the boundary of the plasmasphere and the outer magnetosphere. Induction power of geo-magnetic storms, are linked to ring current strength, and depend on the speed of solar eruptions, along with the dynamic pressure, strength and orientation of the IMF.
NASA Astrophysics Data System (ADS)
Clifton, Amy E.; Sigmundsson, Freysteinn; Feigl, Kurt L.; Guðmundsson, Gunnar; Árnadóttir, Thóra
2002-06-01
The Hengill triple junction, SW Iceland, is subjected to both tectonic extension and shear, causing seismicity related to strike-slip and normal faulting. Between 1994 and 1998, the area experienced episodic swarms of enhanced seismicity culminating in a ML=5.1 earthquake on June 4, 1998 and a ML=5 earthquake on November 13, 1998. Geodetic measurements, using Global Positioning System (GPS), leveling and Synthetic Aperture Radar Interferometry (InSAR) detected maximum uplift of 2 cm/yr and expansion between the Hrómundartindur and Grensdalur volcanic systems. A number of faults in the area generated meter-scale surface breaks. Geographic Information System (GIS) software has been used to integrate structural, field and geophysical data to determine how the crust failed, and to evaluate how much of the recent activity focused on zones of pre-existing weaknesses in the crust. Field data show that most surface effects can be attributed to the June 4, 1998 earthquake and have occurred along or adjacent to old faults. Surface effects consist of open gashes in soil, shattering of lava flows, rockfall along scarps and within old fractures, loosened push-up structures and landslides. Seismicity in 1994-1998 was distributed asymmetrically about the center of uplift, with larger events migrating toward the main fault of the June 4, 1998 earthquake. Surface effects are most extensive in the area of greatest structural complexity, where N- and E-trending structures related to the transform boundary intersect NE-trending structures related to the rift zone. InSAR, GPS, and field observations have been used in an attempt to constrain slip along the trace of the fault that failed on June 4, 1998. Geophysical and field data are consistent with an interpretation of distributed slip along a segmented right-lateral strike-slip fault, with slip decreasing southward along the fault plane. We suggest a right step or right bend between fault segments to explain local deformation near the fault.
DOE Office of Scientific and Technical Information (OSTI.GOV)
I. J. van Rooyen; E. Olivier; J. H Neethlin
Electron microscopy examinations of selected coated particles from the first advanced gas reactor experiment (AGR-1) at Idaho National Laboratory (INL) provided important information on fission product distribution and chemical composition. Furthermore, recent research using STEM analysis led to the discovery of Ag at SiC grain boundaries and triple junctions. As these Ag precipitates were nano-sized, high resolution transmission electron microscopy (HRTEM) examination was used to provide more information at the atomic level. This paper describes some of the first HRTEM results obtained by examining a particle from Compact 4-1-1, which was irradiated to an average burnup of 19.26% fissions permore » initial metal atom (FIMA), a time average, volume-averaged temperature of 1072°C; a time average, peak temperature of 1182°C and an average fast fluence of 4.13 x 1021 n/cm2. Based on gamma analysis, it is estimated that this particle may have released as much as 10% of its available Ag-110m inventory during irradiation. The HRTEM investigation focused on Ag, Pd, Cd and U due to the interest in Ag transport mechanisms and possible correlation with Pd, Ag and U previously found. Additionally, Compact 4-1-1 contains fuel particles fabricated with a different fuel carrier gas composition and lower deposition temperatures for the SiC layer relative to the Baseline fabrication conditions, which are expected to reduce the concentration of SiC defects resulting from uranium dispersion. Pd, Ag, and Cd were found to co-exist in some of the SiC grain boundaries and triple junctions whilst U was found to be present in the micron-sized precipitates as well as separately in selected areas at grain boundaries. This study confirmed the presence of Pd both at inter- and intragranular positions; in the latter case specifically at stacking faults. Small Pd nodules were observed at a distance of about 6.5 micron from the inner PyC/SiC interface.« less
Haeussler, Peter J.; Bradley, Dwight C.; Goldfarb, Richard J.
2003-01-01
A spreading center was subducted diachronously along a 2200 km segment of what is now the Gulf of Alaska margin between 61 and 50 Ma, and left in its wake near-trench intrusions and high-T, low-P metamorphic rocks. Gold-quartz veins and dikes, linked to ridge subduction by geochronological and relative timing evidence, provide a record of brittle deformation during and after passage of the ridge. The gold-quartz veins are typically hosted by faults, and their regional extent indicates there was widespread deformation of the forearc above the slab window at the time of ridge subduction. Considerable variability in the strain pattern was associated with the slab window and the trailing plate. A diffuse network of dextral, sinistral, and normal faults hosted small lode-gold deposits (<50,000 oz) in south-central Alaska, whereas crustal-scale dextral faults in southeastern Alaska are spatially associated with large gold deposits (up to 800,000 oz).We interpret the gold-quartz veins as having formed above an eastward-migrating slab window, where the forearc crust responded to the diminishing influence of the forward subducting plate, the increasing influence of the trailing plate, and the thermal pulse and decreased basal friction from the slab window. In addition, extensional deformation of the forearc resulted from the diverging motions of the two oceanic plates at the margins of the slab window. Factors that complicate interpretations of fault kinematics and near-trench dike orientations include a change in plate motions at ca. 52 Ma, northward translation of the accretionary complex, oroclinal bending of the south-central Alaska margin, and subduction of transform segments. We find the pattern of syn-ridge subduction faulting in southern Alaska is remarkably similar to brittle faults near the Chile triple junction and to earthquake focal mechanisms in the Woodlark basin - the two modern sites of ridge subduction. Therefore, extensional and strike-slip deformation above slab windows may be a common occurrence.
NASA Astrophysics Data System (ADS)
Gong, Jianhua; McGuire, Jeffrey J.
2018-01-01
The interactions between the North American, Pacific, and Gorda plates at the Mendocino Triple Junction (MTJ) create one of the most seismically active regions in North America. The earthquakes rupture all three plate boundaries but also include considerable intraplate seismicity reflecting the strong internal deformation of the Gorda plate. Understanding the stress levels that drive these ruptures and estimating the locking state of the subduction interface are especially important topics for regional earthquake hazard assessment. However owing to the lack of offshore seismic and geodetic instruments, the rupture process of only a few large earthquakes near the MTJ have been studied in detail and the locking state of the subduction interface is not well constrained. In this paper, first, we use the second moments inversion method to study the rupture process of the January 28, 2015 Mw 5.7 earthquake on the Mendocino transform fault that was unusually well recorded by both onshore and offshore strong motion instruments. We estimate the rupture dimension to be approximately 6 km by 3 km corresponding to a stress drop of ∼4 MPa for a crack model. Next we investigate the frictional state of the subduction interface by simulating the afterslip that would be expected there as a result of the stress changes from the 2015 earthquake and a 2010 Mw 6.5 intraplate earthquake within the subducted Gorda plate. We simulate afterslip scenarios for a range of depths of the downdip end of the locked zone defined as the transition to velocity strengthening friction and calculate the corresponding surface deformation expected at onshore GPS monuments. We can rule out a very shallow downdip limit owing to the lack of a detectable signal at onshore GPS stations following the 2010 earthquake. Our simulations indicate that the locking depth on the slab surface is at least 14 km, which suggests that the next M8 earthquake rupture will likely reach the coastline and strong shaking should be expected there.
NASA Astrophysics Data System (ADS)
Chadwick, J.; Turner, A.; Collins, E.
2015-12-01
The Woodlark Spreading Center (WSC) to the east of Papua New Guinea separates the Indo-Australian plate and Solomon Sea microplate. At its eastern terminus, the WSC is being subducted at the New Britain trench, forming a triple junction near the New Georgia Group arc in the Solomon Islands. Previous studies have shown that lavas recovered from greater than 100 km from the trench on the WSC are N-MORB, but closer to the trench they have arc-like Sr-Nd-Pb isotopic ratios, enrichments in LILE, and depletions in HFSE. In the complex triple junction area of the WSC on the Simbo and Ghizo Ridges, island arc tholeiites to medium-K calc-alkaline andesites and dacites have been recovered, many with trace element and isotopic characteristics that are similar to the true arc lavas in the New Georgia Group on the other side of the trench. We suggest that subduction-modified arc mantle migrates through slab windows created by the subduction of the WSC as the plates continue to diverge after subduction. This transfer of mantle across the plate boundary leads to variable mixing between arc and N-MORB end-members, forming the hybrid to arc-like lavas recovered on the WSC. To test this hypothesis and to characterize the end-member compositions, we have analyzed melt inclusions in olivine, pyroxene, and plagioclase phenocrysts in Simbo and Ghizo Ridge lava samples. Major elements were analyzed using the electron microprobe facility at Fayetteville State University and volatiles were analyzed on the ion probe facility at Woods Hole Oceanographic Institution. The melt inclusions show a wide diversity of magmas from basalts to dacites, and mixing modeling shows that most Woodlark Spreading Center lava compositions are explained by mixing between the most extreme mafic (MORB) and felsic (arc) inclusion compositions.
NASA Astrophysics Data System (ADS)
Olierook, Hugo K. H.; Merle, Renaud E.; Jourdan, Fred
2017-06-01
The link between the Kerguelen large igneous province and several moderately-voluminous magmatic domains emplaced on continental crust near the relict triple junction of eastern Gondwana remains tentative. In particular, linking Sr-Nd-Pb isotopic ratios of the 90,000 km2 submerged Naturaliste Plateau at the relict triple junction of eastern Gondwana to the Kerguelen LIP were difficult due to previous age estimates of ca. 100 Ma. Sericite hydrothermal plateau ages as old as 127.6 ± 0.6 Ma indicate that the volcanism on the plateau began at or prior to ca. 128 Ma, which is > 25 m.y. older than previous estimations. These ages are closely matched by the then-nearby ca. 140-130 Ma Comei, 137-130 Ma Bunbury, 124 Ma Wallaby Plateau and 118-117 Ma Rajmahal-Bengal-Sylhet magmatic provinces. The Sr-Nd-Pb isotopic characteristics of the majority of these ca. 140-117 Ma circum-eastern Gondwana magmatic provinces display only source contributions from the depleted asthenosphere and lithosphere with negligible contribution from the Kerguelen mantle plume. The Comei Province shows a direct plume-related melt signature, probably because it sits directly in the center of the modeled plume head position at 140-130 Ma. We suggest that the Kerguelen mantle plume provided the additional heat necessary to melt the asthenosphere and lithosphere of the circum-eastern Gondwanan magmatic provinces. Only after the motion of the Kerguelen plume head into the nascent Indian Ocean at ca. 100-95 Ma does a significant melt contribution from the Kerguelen mantle plume become evident in the isotopic signature, a signal that persists until the present-day. Despite differences in source contributions over time, it is clear that the Kerguelen mantle plume is necessary for the production of all the circum-eastern Gondwana magmatic domains, which we propose should be referred to as the Greater Kerguelen Large Igneous Province.
NASA Astrophysics Data System (ADS)
Rogowitz, Anna; Grasemann, Bernhard
2014-05-01
Grain boundary sliding (GBS) is an important grain size sensitive deformation mechanism that is often associated with extreme strain localization and superplasticity. Another mechanism has to operate simultaneously to GBS in order to prevent overlaps and voids between sliding grains. One of the most common accommodating mechanisms is diffusional creep but, recently, dislocation creep has been reported to operate simultaneous to GBS. Due to the formation of a flanking structure in nearly pure calcite marble on Syros (Cyclades, Greece) at lower greenschist facies conditions, an extremely fine grained ultramylonite developed. The microstructure of the layer is characterized by (1) calcite grains with an average grain size of 3.6 µm (developed by low temperature/high strain rate grain boundary migration recrystallization, BLG), (2) grain boundary triple junctions with nearly 120° angles and (3) small cavities preferentially located at triple junctions and at grain boundaries in extension. These features suggest that the dominant deformation mechanism was GBS. In order to get more information on the accommodation mechanism detailed microstructural and textural analyses have been performed on a FEI Quanta 3D FEG instrument equipped with an EDAX Digiview IV EBSD camera. The misorientation distribution curves for correlated and uncorrelated grains follow almost perfect the calculated theoretical curve for a random distribution, which is typical for polycrystalline material deformed by GBS. However, the crystallographic preferred orientation indicates that dislocation creep might have operated simultaneously. We also report Zener-Stroh cracks resulting from dislocation pile up, indicating that dislocation movement was active. We, therefore, conclude that the dominant deformation mechanism was dislocation creep accommodated grain boundary sliding. This is consistent with the observed grain size range that plots at the field boundary between grain size insensitive and grain size sensitive creep, in a deformation mechanism map for calcite.
NASA Astrophysics Data System (ADS)
Melo, Elis Almeida; Magnabosco, Rodrigo
2017-11-01
The aim of this work is to study the influence of the heterogeneous nucleation site quantity, observed in different ferrite and austenite grain size samples, on the phase transformations that result in intermetallic phases in a UNS S31803 duplex stainless steel (DSS). Solution treatment was conducted for 1, 24, 96, or 192 hours at 1373 K (1100 °C) to obtain different ferrite and austenite grain sizes. After solution treatment, isothermal aging treatments for 5, 8, 10, 20, 30, or 60 minutes at 1123 K (850 °C) were performed to verify the influence of different amounts of heterogeneous nucleation sites in the kinetics of intermetallic phase formation. The sample solution treated for 1 hour, with the highest surface area between matrix phases, was the one that presented, after 60 minutes at 1123 K (850 °C), the smaller volume fraction of ferrite (indicative of greater intermetallic phase formation), higher volume of sigma (that was present in coral-like and compact morphologies), and chi phase. It was not possible to identify which was the first nucleated phase, sigma or chi. It was also observed that the phase formation kinetics is higher for the sample solution treated for 1 hour. It was evidenced that, from a certain moment on, the chi phase begins to be consumed due to the sigma phase formation, and the austenite/ferrite interface presents higher S V for all solution treatment times. It was also observed that intermetallic phases form preferably in austenite-ferrite interfaces, although the higher occupation rate occurs at triple junction ferrite-ferrite-ferrite. It was verified that there was no saturation of nucleation sites in any interface type nor triple junction, and the equilibrium after 1 hour of aging at 1123 K (850 °C) was not achieved. It was then concluded that sigma phase formation is possibly controlled by diffusional processes, without saturation of nucleation sites.
Source Parameters and Rupture Directivities of Earthquakes Within the Mendocino Triple Junction
NASA Astrophysics Data System (ADS)
Allen, A. A.; Chen, X.
2017-12-01
The Mendocino Triple Junction (MTJ), a region in the Cascadia subduction zone, produces a sizable amount of earthquakes each year. Direct observations of the rupture properties are difficult to achieve due to the small magnitudes of most of these earthquakes and lack of offshore observations. The Cascadia Initiative (CI) project provides opportunities to look at the earthquakes in detail. Here we look at the transform plate boundary fault located in the MTJ, and measure source parameters of Mw≥4 earthquakes from both time-domain deconvolution and spectral analysis using empirical Green's function (EGF) method. The second-moment method is used to infer rupture length, width, and rupture velocity from apparent source duration measured at different stations. Brune's source model is used to infer corner frequency and spectral complexity for stacked spectral ratio. EGFs are selected based on their location relative to the mainshock, as well as the magnitude difference compared to the mainshock. For the transform fault, we first look at the largest earthquake recorded during the Year 4 CI array, a Mw5.72 event that occurred in January of 2015, and select two EGFs, a Mw1.75 and a Mw1.73 located within 5 km of the mainshock. This earthquake is characterized with at least two sub-events, with total duration of about 0.3 second and rupture length of about 2.78 km. The earthquake is rupturing towards west along the transform fault, and both source durations and corner frequencies show strong azimuthal variations, with anti-correlation between duration and corner frequency. The stacked spectral ratio from multiple stations with the Mw1.73 EGF event shows deviation from pure Brune's source model following the definition from Uchide and Imanishi [2016], likely due to near-field recordings with rupture complexity. We will further analyze this earthquake using more EGF events to test the reliability and stability of the results, and further analyze three other Mw≥4 earthquakes within the array.
Cornish, Peter V; Hennig, Mirko; Giedroc, David P
2005-09-06
The molecular determinants of stimulation of -1 programmed ribosomal frameshifting (-1 PRF) by RNA pseudoknots are poorly understood. Sugarcane yellow leaf virus (ScYLV) encodes a 28-nt mRNA pseudoknot that promotes -1 PRF between the P1 (protease) and P2 (polymerase) genes in plant luteoviruses. The solution structure of the ScYLV pseudoknot reveals a well ordered loop 2 (L2) that exhibits continuous stacking of A20 through C27 in the minor groove of the upper stem 1 (S1), with C25 flipped out of the triple-stranded stack. Five consecutive triple base pairs flank the helical junction where the 3' nucleotide of L2, C27, adopts a cytidine 27 N3-cytidine 14 2'-OH hydrogen bonding interaction with the C14-G7 base pair. This interaction is isosteric with the adenosine N1-2'-OH interaction in the related mRNA from beet western yellows virus (BWYV); however, the ScYLV and BWYV mRNA structures differ in their detailed L2-S1 hydrogen bonding and L2 stacking interactions. Functional analyses of ScYLV/BWYV chimeric pseudoknots reveal that the ScYLV RNA stimulates a higher level of -1 PRF (15 +/- 2%) relative to the BWYV pseudoknot (6 +/- 1%), a difference traced largely to the identity of the 3' nucleotide of L2 (C27 vs. A25 in BWYV). Strikingly, C27A ScYLV RNA is a poor frameshift stimulator (2.0%) and is destabilized by approximately 1.5 kcal x mol(-1) (pH 7.0, 37 degrees C) with respect to the wild-type pseudoknot. These studies establish that the precise network of weak interactions nearest the helical junction in structurally similar pseudoknots make an important contribution to setting the frameshift efficiency in mRNAs.
Cornish, Peter V.; Hennig, Mirko; Giedroc, David P.
2005-01-01
The molecular determinants of stimulation of –1 programmed ribosomal frameshifting (–1 PRF) by RNA pseudoknots are poorly understood. Sugarcane yellow leaf virus (ScYLV) encodes a 28-nt mRNA pseudoknot that promotes –1 PRF between the P1 (protease) and P2 (polymerase) genes in plant luteoviruses. The solution structure of the ScYLV pseudoknot reveals a well ordered loop 2 (L2) that exhibits continuous stacking of A20 through C27 in the minor groove of the upper stem 1 (S1), with C25 flipped out of the triple-stranded stack. Five consecutive triple base pairs flank the helical junction where the 3′ nucleotide of L2, C27, adopts a cytidine 27 N3-cytidine 14 2′-OH hydrogen bonding interaction with the C14-G7 base pair. This interaction is isosteric with the adenosine N1–2′-OH interaction in the related mRNA from beet western yellows virus (BWYV); however, the ScYLV and BWYV mRNA structures differ in their detailed L2–S1 hydrogen bonding and L2 stacking interactions. Functional analyses of ScYLV/BWYV chimeric pseudoknots reveal that the ScYLV RNA stimulates a higher level of –1 PRF (15 ± 2%) relative to the BWYV pseudoknot (6 ± 1%), a difference traced largely to the identity of the 3′ nucleotide of L2 (C27 vs. A25 in BWYV). Strikingly, C27A ScYLV RNA is a poor frameshift stimulator (2.0%) and is destabilized by ≈1.5 kcal·mol–1 (pH 7.0, 37°C) with respect to the wild-type pseudoknot. These studies establish that the precise network of weak interactions nearest the helical junction in structurally similar pseudoknots make an important contribution to setting the frameshift efficiency in mRNAs. PMID:16123125
Strong Ground Motion Analysis and Afterslip Modeling of Earthquakes near Mendocino Triple Junction
NASA Astrophysics Data System (ADS)
Gong, J.; McGuire, J. J.
2017-12-01
The Mendocino Triple Junction (MTJ) is one of the most seismically active regions in North America in response to the ongoing motions between North America, Pacific and Gorda plates. Earthquakes near the MTJ come from multiple types of faults due to the interaction boundaries between the three plates and the strong internal deformation within them. Understanding the stress levels that drive the earthquake rupture on the various types of faults and estimating the locking state of the subduction interface are especially important for earthquake hazard assessment. However due to lack of direct offshore seismic and geodetic records, only a few earthquakes' rupture processes have been well studied and the locking state of the subducted slab is not well constrained. In this study we first use the second moment inversion method to study the rupture process of the January 28, 2015 Mw 5.7 strike slip earthquake on Mendocino transform fault using strong ground motion records from Cascadia Initiative community experiment as well as onshore seismic networks. We estimate the rupture dimension to be of 6 km by 3 km and a stress drop of 7 MPa on the transform fault. Next we investigate the frictional locking state on the subduction interface through afterslip simulation based on coseismic rupture models of this 2015 earthquake and a Mw 6.5 intraplate eathquake inside Gorda plate whose slip distribution is inverted using onshore geodetic network in previous study. Different depths for velocity strengthening frictional properties to start at the downdip of the locked zone are used to simulate afterslip scenarios and predict the corresponding surface deformation (GPS) movements onshore. Our simulations indicate that locking depth on the slab surface is at least 14 km, which confirms that the next M8 earthquake rupture will likely reach the coastline and strong shaking should be expected near the coast.
Özdem, Ceylan; Brass, Marcel; Van der Cruyssen, Laurens; Van Overwalle, Frank
2017-04-01
Neuroimaging research has demonstrated that the temporo-parietal junction (TPJ) is activated when unexpected stimuli appear in spatial reorientation tasks as well as during thinking about the beliefs of other people triggered by verbal scenarios. While the role of potential common component processes subserved by the TPJ has been extensively studied to explain this common activation, the potential confounding role of input modality (spatial vs. verbal) has been largely ignored. To investigate the role of input modality apart from task processes, we developed a novel spatial false belief task based on moving shapes. We explored the overlap in TPJ activation across this novel task and traditional tasks of spatial reorientation (Posner) and verbal belief (False Belief vs. Photo stories). The results show substantial overlap across the same spatial input modality (both reorientation and false belief) as well as across the common task process (verbal and spatial belief), but no triple overlap. This suggests the potential for an overarching function of the TPJ, with some degree of specialization in different subregions due to modality, function and connectivity. The results are discussed with respect to recent theoretical models of the TPJ.
Wang, Liancheng; Cheng, Yan; Liu, Zhiqiang; Yi, Xiaoyan; Zhu, Hongwei; Wang, Guohong
2016-01-20
Graphene transparent conductive electrode (TCE) applications in nitride light emitting diodes (LEDs) are still limited by the large contact resistance and interface barrier between graphene and p-GaN. We propose a hybrid tunnel junction (TJ)-graphene TCE approach for nitride lateral LEDs theoretically and experimentally. Through simulation using commercial advanced physical models of semiconductor devices (APSYS), we found that low tunnel resistance can be achieved in the n(+)-GaN/u-InGaN/p(+)-GaN TJ, which has a lower tunneling barrier and an enhanced electric field due to the polarization effect. Graphene TCEs and hybrid graphene-TJ TCEs are then modeled. The designed hybrid TJ-graphene TCEs show sufficient current diffusion length (Ls), low introduced series resistance, and high transmittance. The assembled TJ LED with the triple-layer graphene (TLG) TCEs show comparable optoelectrical performance (3.99 V@20 mA, LOP = 10.8 mW) with the reference LED with ITO TCEs (3.36 V@20 mA, LOP = 12.6 mW). The experimental results further prove that the TJ-graphene structure can be successfully incorporated as TCEs for lateral nitride LEDs.
Present Status and Future Prospects of Silicon Thin-Film Solar Cells
NASA Astrophysics Data System (ADS)
Konagai, Makoto
2011-03-01
In this report, an overview of the recent status of photovoltaic (PV) power generation is first presented from the viewpoint of reducing CO2 emission. Next, the Japanese roadmap for the research and development (R&D) of PV power generation and the progress in the development of various solar cells are explained. In addition, the present status and future prospects of amorphous silicon (a-Si) thin-film solar cells, which are expected to enter the stage of full-scale practical application in the near future, are described. For a-Si single-junction solar cells, the conversion efficiency of their large-area modules has now reached 6-8%, and their practical application to megawatt solar systems has started. Meanwhile, the focus of R&D has been shifting to a-Si and microcrystalline silicon (µc-Si) tandem solar cells. Thus far, a-Si/µc-Si tandem solar cell modules with conversion efficiency exceeding 13% have been reported. In addition, triple-junction solar cells, whose target year for practical application is 2025 or later, are introduced, as well as innovative thin-film full-spectrum solar cells, whose target year of realization is 2050.
NASA Astrophysics Data System (ADS)
Fulmek, P. L.; Haumer, P.; Wenzl, F. P.; Nemitz, W.; Nicolics, J.
2017-03-01
Estimating the junction temperature and its dynamic behavior in dependence of various operating conditions is an important issue, since these properties influence the optical characteristics as well as the aging processes of a light-emitting diode (LED). Particularly for high-power LEDs and pulsed operation, the dynamic behavior and the resulting thermal cycles are of interest. The forward voltage method relies on the existence of a time-independent unique triple of forward-voltage, forward-current, and junction temperature. These three figures should as well uniquely define the optical output power and spectrum, as well as the loss power of the LED, which is responsible for an increase of the junction temperature. From transient FEM-simulations one may expect an increase of the temperature of the active semiconductor layer of some 1/10 K within the first 10 μs. Most of the well-established techniques for junction temperature measurement via forward voltage method evaluate the measurement data several dozens of microseconds after switching on or switching off and estimate the junction temperature by extrapolation towards the time of switching. In contrast, the authors developed a measurement procedure with the focus on the first microseconds after switching. Besides a fast data acquisition system, a precise control of the switching process is required, i.e. a precisely defined current pulse amplitude with fast rise-time and negligible transient by-effects. We start with a short description of the measurement setup and the newly developed control algorithm for the generation of short current pulses. The thermal characterization of the LED chip during the measurement procedures is accomplished by an IR thermography system and transient finite element simulations. The same experimental setup is used to investigate the optical properties of the LED in an Ulbricht-sphere. Our experiments are performed on InGaN LED chips mounted on an Al based insulated metal substrate (IMS), giving a comprehensive picture of the transient behavior of the forward voltage of this type of high power LED.
Massive increase in visual range preceded the origin of terrestrial vertebrates
MacIver, Malcolm A.; Schmitz, Lars; Mugan, Ugurcan; Murphey, Todd D.; Mobley, Curtis D.
2017-01-01
The evolution of terrestrial vertebrates, starting around 385 million years ago, is an iconic moment in evolution that brings to mind images of fish transforming into four-legged animals. Here, we show that this radical change in body shape was preceded by an equally dramatic change in sensory abilities akin to transitioning from seeing over short distances in a dense fog to seeing over long distances on a clear day. Measurements of eye sockets and simulations of their evolution show that eyes nearly tripled in size just before vertebrates began living on land. Computational simulations of these animal’s visual ecology show that for viewing objects through water, the increase in eye size provided a negligible increase in performance. However, when viewing objects through air, the increase in eye size provided a large increase in performance. The jump in eye size was, therefore, unlikely to have arisen for seeing through water and instead points to an unexpected hybrid of seeing through air while still primarily inhabiting water. Our results and several anatomical innovations arising at the same time suggest lifestyle similarity to crocodiles. The consequent combination of the increase in eye size and vision through air would have conferred a 1 million-fold increase in the amount of space within which objects could be seen. The “buena vista” hypothesis that our data suggest is that seeing opportunities from afar played a role in the subsequent evolution of fully terrestrial limbs as well as the emergence of elaborated action sequences through planning circuits in the nervous system. PMID:28270619
ERIC Educational Resources Information Center
Hamilton, Kendra
2006-01-01
Imam Yahya Hendi came from afar--the occupied Palestinian Territories--to become, in 1999, the first full-time Muslim chaplain serving at a university in the United States. He is now the chaplain at Georgetown University. Rumee Ahmed, appointed earlier this year as Brown University's first Muslim chaplain, had a significantly shorter trip, moving…
Contemporary Economic Debate in Britain: A View from Afar.
ERIC Educational Resources Information Center
Edwards, Ron; Millnow, Alex
1992-01-01
Seeks to explain economists' differences of opinion, through the example of contemporary British economic debate. Observes that part of the explanation lies in the complexity of economic issues. Argues that the more important factor lies in economists' ideological differences. Contrasts the views of the libertarian and market interventionist…
Promises from Afar: A Model of International Student Psychological Contract in Business Education
ERIC Educational Resources Information Center
Bordia, Sarbari; Bordia, Prashant; Restubog, Simon Lloyd D.
2015-01-01
Despite their significant presence in western business schools, the needs and experiences of international students have not been adequately reflected in the business education literature. We draw upon psychological contract theory--used to understand employer-employee relationships--to develop a novel theoretical model on the international…
Bridging Some Intercultural Gaps: Methodological Reflections from Afar
ERIC Educational Resources Information Center
Kama, Amit
2006-01-01
Identity formation and self construction are inherently cultural phenomena. Although it may seem that human psychology--e.g., basic traits, tendencies, "characteristics," or even the definition of self--are universal and ahistorical, this essentialist view is quite erroneous and needs to be recognized and avoided. The task of studying one's…
Recent Progress on the Stretched Lens Array (SLA)
NASA Technical Reports Server (NTRS)
O'Neill, Markl; McDanal, A. J.; Piszczor, Michael; George, Patrick; Eskenazi, Michael; Botke, Matthew; Edwards, David; Hoppe, David; Brandhorst, Henry
2005-01-01
At the last Space Photovoltaic Research and Technology Conference, SPRAT XVII, held during the fateful week of 9/11/01, our team presented a paper on the early developments related to the new Stretched Lens Array (SLA), including its evolution from the successful SCARLET array on the NASA/JPL Deep Space 1 spacecraft. Within the past two years, the SLA team has made significant progress in the SLA technology, including the successful fabrication and testing of a complete four-panel prototype solar array wing (Fig. 1). The prototype wing verified the mechanical and structural design of the rigid-panel SLA approach, including multiple successful demonstrations of automatic wing deployment. One panel in the prototype wing included four fully functional photovoltaic receivers, employing triple-junction solar cells.
Distribution of Pd, Ag & U in the SiC Layer of an Irradiated TRISO Fuel Particle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas M. Lillo; Isabella J. van Rooyen
2014-08-01
The distribution of silver, uranium and palladium in the silicon carbide (SiC) layer of an irradiated TRISO fuel particle was studied using samples extracted from the SiC layer using focused ion beam (FIB) techniques. Transmission electron microscopy in conjunction with energy dispersive x-ray spectroscopy was used to identify the presence of the specific elements of interest at grain boundaries, triple junctions and precipitates in the interior of SiC grains. Details on sample fabrication, errors associated with measurements of elemental migration distances and the distances migrated by silver, palladium and uranium in the SiC layer of an irradiated TRISO particle frommore » the AGR-1 program are reported.« less
Multijunction Solar Cell Development and Production at Spectrolab
NASA Technical Reports Server (NTRS)
Fetzer, Chris; King, R. R.; Law, D. C.; Edmondson, K. M.; Isshiki, T.; Haddad, M.; Zhang, X.; Boisvert, J. C.; Joslin, D. E.; Karam, N. H.
2007-01-01
Development of multijunction space solar cells is much like that for any high technology product. New products face two major pressures from the market: improving performance while maintaining heritage. This duality of purpose is not new and has been represented since ancient times by the Roman god Janus.[1] This deity was typically represented as two faces on a single head: one facing forward and the other to the rear. The image of Janus has been used as symbolism for many combined forces of dual purpose, such as the balance in life between beginnings and endings, or between art and science. For our purposes, Janus represents our design philosophy balance between looking to the future for improvement while simultaneously blending past heritage. In the space photovoltaics industry there are good reasons for both purposes. Looking to the past, a product must have a space flight heritage to gain widespread use. The main reason being that this is an unforgiving business. Spacecraft are expensive to build, launch and operate. Typically once a satellite is launched, in-field service for a power systems problem is near impossible.[2Balanced with this is looking forward. New missions typically require more power than previous programs or attempt new objectives such as a new orbit. And there is always the cost pressure for both the satellite itself as well as the launch costs. Both of which push solar technology to improve power density at a lower cost. The consequence of this balance in a high-risk environment is that space PV develops as a series of infrequent large technology steps or generational changes interspersed with more frequent small technology steps or evolutionary changes. Figure 1 gives a bit of clarification on this point. It depicts the historical progress in space solar cells tracked by efficiency against first launch date for most major products introduced by Spectrolab. The first generation is the Si-based technology reaching a peak values near 15% AM0 (herein denoted for max. power, AM0, 1.353 W/cm2, 28 C). The GaAs single junction device generation supplanted this technology with first flight of GaAs on GaAs substrate in 1982.[3] More recently this generation has been supplanted by the multijunction solar cell GaInP/GaAs/Ge generation. The first launch of a commercial satellite powered by multijunction technology was in 1997 (Hughes HS 601HP) using solar arrays based on Spectrolab s dual junction (DJ) cells. The cells at that time were an impressive 21.5% efficient at beginning-of-life (BOL).[4] Eight years later, the multijunction device has evolved through several versions. The incorporation of an active Ge subcell formed the Triple Junction (TJ) product line at 25.1% efficient, on orbit since November 2001. The evolution of the TJ into the Improved Triple Junction (ITJ) at 26.8% efficient has been on orbit since June of 2002.[5
Development of metal matrix composite gridlines for space photovoltaics
NASA Astrophysics Data System (ADS)
Abudayyeh, Omar Kamal
Space vehicles today are primarily powered by multi-junction photovoltaic cells due to their high efficiency and high radiation hardness in the space environment. While multi-junction solar cells provide high efficiency, microcracks develop in the crystalline semiconductor due to a variety of reasons, including: growth defects, film stress due to lattice constant mismatch, and external mechanical stresses introduced during shipping, installation, and operation. These microcracks have the tendency to propagate through the different layers of the semiconductor reaching the metal gridlines of the cell, resulting in electrically isolated areas from the busbar region, ultimately lowering the power output of the cell and potentially reducing the lifetime of the space mission. Pre-launch inspection are often expensive and difficult to perform, in which individual cells and entire modules must be replaced. In many cases, such microcracks are difficult to examine even with a thorough inspection. While repairs are possible pre-launch of the space vehicle, and even to some extent in low-to-earth missions, they are virtually impossible for deep space missions, therefore, efforts to mitigate the effects of these microcracks have substantial impact on the cell performance and overall success of the space mission. In this effort, we have investigated the use of multi-walled carbon nanotubes as mechanical reinforcement to the metal gridlines capable of bridging gaps generated in the underlying semiconductor while providing a redundant electrical conduction pathway. The carbon nanotubes are embedded in a silver matrix to create a metal matrix composite, which are later integrated onto commercial triple-junction solar cells.
A Newton-Raphson Method Approach to Adjusting Multi-Source Solar Simulators
NASA Technical Reports Server (NTRS)
Snyder, David B.; Wolford, David S.
2012-01-01
NASA Glenn Research Center has been using an in house designed X25 based multi-source solar simulator since 2003. The simulator is set up for triple junction solar cells prior to measurements b y adjusting the three sources to produce the correct short circuit current, lsc, in each of three AM0 calibrated sub-cells. The past practice has been to adjust one source on one sub-cell at a time, iterating until all the sub-cells have the calibrated Isc. The new approach is to create a matrix of measured lsc for small source changes on each sub-cell. A matrix, A, is produced. This is normalized to unit changes in the sources so that Ax(delta)s = (delta)isc. This matrix can now be inverted and used with the known Isc differences from the AM0 calibrated values to indicate changes in the source settings, (delta)s = A ·'x.(delta)isc This approach is still an iterative one, but all sources are changed during each iteration step. It typically takes four to six steps to converge on the calibrated lsc values. Even though the source lamps may degrade over time, the initial matrix evaluation i s not performed each time, since measurement matrix needs to be only approximate. Because an iterative approach is used the method will still continue to be valid. This method may become more important as state-of-the-art solar cell junction responses overlap the sources of the simulator. Also, as the number of cell junctions and sources increase, this method should remain applicable.
Simon-Lukasik, Kristine V.; Persikov, Anton V.; Brodsky, Barbara; Ramshaw, John A. M.; Laws, William R.; Alexander Ross, J. B.; Ludescher, Richard D.
2003-01-01
We report tryptophan fluorescence measurements of emission intensity, iodide quenching, and anisotropy that describe the environment and dynamics at X and Y sites in stable collagen-like peptides of sequence (Gly-X-Y)n. About 90% of tryptophans at both sites have similar solvent exposed fluorescence properties and a lifetime of 8.5–9 ns. Analysis of anisotropy decays using an associative model indicates that these long lifetime populations undergo rapid depolarizing motion with a 0.5 ns correlation time; however, the extent of fast motion at the Y site is considerably less than the essentially unrestricted motion at the X site. About 10% of tryptophans at both sites have a shorter (∼3 ns) lifetime indicating proximity to a protein quenching group; these minor populations are immobile on the peptide surface, depolarizing only by overall trimer rotation. Iodide quenching indicates that tryptophans at the X site are more accessible to solvent. Side chains at X sites are more solvent accessible and considerably more mobile than residues at Y sites and can more readily fluctuate among alternate intermolecular interactions in collagen fibrils. This fluorescence analysis of collagen-like peptides lays a foundation for studies on the structure, dynamics, and function of collagen and of triple-helical junctions in gelatin gels. PMID:12524302
From Afar to Zulu: A Dictionary of African Cultures.
ERIC Educational Resources Information Center
Haskins, Jim; Biondi, Joann
This resource provides information on over 30 of Africa's most populous and well-known ethnic groups. The text concisely describes the history, traditions, environment, social structure, religion, and daily lifestyles of these diverse cultures. Each entry opens with a map outlining the area populated by the group and a list of key data regarding…
Curriculum and the American Rural School.
ERIC Educational Resources Information Center
Feldmann, Doug
This book begins by tracing the history of curriculum development and the subjugation of rural school districts to curriculum decisions made from afar and tailored to urban needs. Local and teacher interpretation of the formal curriculum gave rise to the enacted curriculum, or that which was actually taught in classrooms. But for rural schools,…
Support from Afar: Using Chemical Safety Information on the Internet.
ERIC Educational Resources Information Center
Stuart, Ralph
One of the major challenges facing people committed to Teaching Safety in High Schools, Colleges, and Universities is keeping up with both the wide range of relevant technical information about potential hazards (ranging from fire protection to chemical hazards to biological issues) and the ever-changing world of safety regulations and standards.…
What China Inc. Can Learn from American Universities
ERIC Educational Resources Information Center
Fallows, James
2012-01-01
From afar, the boom in China's higher education system seems to be one more indication of its ceaseless rise overall. Potentially it is the most significant sign, since a China that could rival the existing American and Western-democratic dominance of the world's research and educational establishment might enjoy many other advantages as well.…
Retroflexion of Voiced Stops: Data from Dhao, Thulung, Afar and German
ERIC Educational Resources Information Center
Hamann, Silke; Fuchs, Susanne
2010-01-01
The present article illustrates that the specific articulatory requirements for voiced alveolar or dental stops can cause tongue tip retraction and tongue mid lowering and thus retroflexion of voiced front coronals. This retroflexion is shown to have occurred diachronically in the three typologically unrelated languages Dhao (Malayo-Polynesian),…
NASA Astrophysics Data System (ADS)
Ayele, A.; Keir, D.; Wright, T. J.; Ebinger, C. J.; Stuart, G. W.; Neuberg, J.
2009-12-01
The advent of digital and broadband seismic stations helped to capture the complex dynamics of earthquakes and volcanic sources processes ranging from high frequency microfractures to ultra long period transient signals. The September 2005 dike in the Afar depression of Ethiopia demonstrated to be one of the rare events of its kind to demonstrate the complex interaction of ambient tectonic stress, volcanic processes and dike intrusions. Unusually long period tremor in the range 18-20 seconds is observed by seismic stations located from ~ 350-700 km distance on 25 September, 2006 at about 14:00:00 GMT. This tremor sustain for about 30 minutes at FURI station. This time is coincident with the major emplacement phase of the dike beneath the Ado Ale Volcanic Complex (AVC before the small felsic eruption at Da’Ure in the afternoon of September 26, 2005. This tremor sustain for about 30 minutes at FURI station. The preliminary interpretation of this observation is postulated to be a highly pressurized magma source/reservoir breaking into the channel and its interaction with its deformable rock walls.
Mapping Distribution and Forecasting Invasion of Prosopis juliflora in Ethiopia's Afar Region
NASA Astrophysics Data System (ADS)
West, A. M.; Wakie, T.; Luizza, M.; Evangelista, P.
2014-12-01
Invasion of non-native species is among the most critical threats to natural ecosystems and economies world-wide. Mesquite (which includes some 45 species) is an invasive deciduous tree which is known to have an array of negative impacts on ecosystems and rural livelihoods in arid and semi-arid regions around the world, dominating millions of hectares of land in Asia, Africa, Australia and the Americas. In Ethiopia, Prosopis juliflora (the only reported mesquite) is the most pervasive plant invader, threatening local livelihoods and the country's unique biodiversity. Due to its rapid spread and persistence, P. juliflora has been ranked as one of the leading threats to traditional land use, exceeded only by drought and conflict. This project utilized NASA's Earth Observing System (EOS) data and species distribution modeling to map current infestations of P. juliflora in the Afar region of northeastern Ethiopia, and forecast its suitable habitat across the entire country. This project provided a time and cost-effective strategy for conducting risk assessments of invasive mesquite and subsequent monitoring and mitigation efforts by land managers and local communities.
NASA Astrophysics Data System (ADS)
Arrajehi, Abdullah; McClusky, Simon; Reilinger, Robert; Daoud, Mohamed; Alchalbi, Abdulmutaleb; Ergintav, Semih; Gomez, Francisco; Sholan, Jamal; Bou-Rabee, Firyal; Ogubazghi, Ghebrebrhan; Haileab, Biniam; Fisseha, Shimelles; Asfaw, Laike; Mahmoud, Salah; Rayan, Ali; Bendik, Rebecca; Kogan, Lewis
2010-06-01
Five years of continuously recording GPS observations in the Kingdom of Saudi Arabia together with new continuous and survey-mode GPS observations broadly distributed across the Arabian Peninsula provide the basis for substantially improved estimates of present-day motion and internal deformation of the Arabian plate. We derive the following relative, geodetic Euler vectors (latitude (°N), longitude (°E), rate (°/Myr, counterclockwise)) for Arabia-Nubia (31.7 ± 0.2, 24.6 ± 0.3, 0.37 ± 0.01), Arabia-Somalia (22.0 ± 0.5, 26.2 ± 0.5, 0.40 ± 0.01), Arabia-India (18.0 ± 3.8, 87.6 ± 3.3, 0.07 ± 0.01), Arabia-Sinai (35.7 ± 0.8, 17.1 ± 5.0, 0.15 ± 0.04), and Arabia-Eurasia (27.5 ± 0.1, 17.6 ± 0.3, 0.404 ± 0.004). We use these Euler vectors to estimate present-day stability of the Arabian plate, the rate and direction of extension across the Red Sea and Gulf of Aden, and slip rates along the southern Dead Sea fault south of the Lebanon restraining bend (4.5-4.7 ± 0.2 mm/yr, left lateral; 0.8-1.1 ± 0.3 mm/yr extension) and the Owens fracture zone (3.2-2.5 ± 0.5 mm/yr, right lateral, increasing from north to south; 1-2 mm/yr extension). On a broad scale, the Arabian plate has no resolvable internal deformation (weighted root mean square of residual motions for Arabia equals 0.6 mm/yr), although there is marginally significant evidence for N-S shortening in the Palmyride Mountains, Syria at ≤ 1.5 mm/yr. We show that present-day Arabia plate motion with respect to Eurasia is consistent within uncertainties (i.e., ±10%) with plate tectonic estimates since the early Miocene when Arabia separated from Nubia. We estimate the time of Red Sea and Gulf of Aden rifting from present-day Arabia motion, plate tectonic evidence for a 70% increase in Arabia-Nubia relative motion at 13 Ma, and the width of the Red Sea and Gulf of Aden and find that rifting initiated roughly simultaneously (±2.2 Myr) along the strike of the Red Sea from the Gulf of Suez to the Afar Triple Junction, as well as along the West Gulf of Aden at 24 ± 2.2 Ma. Based on the present kinematics, we hypothesize that the negative buoyancy of the subducted ocean lithosphere beneath the Makran and the Zagros fold-thrust belt is the principle driver of Arabia-Eurasia convergence and that resisting forces associated with Arabia-Eurasia continental collision have had little impact on plate motion.
Kusky, Timothy M.; Bradley, Dwight C.; Donely, D. Thomas; Rowley, David; Haeussler, Peter J.
2003-01-01
A belt of Paleogene near-trench plutons known as the Sanak-Baranof belt intruded the southern Alaska convergent margin. A compilation of isotopic ages of these plutons shows that they range in age from 61 Ma in the west to ca. 50 Ma in the east. This migrating pulse of magmatism along the continental margin is consistent with North Pacific plate reconstructions that suggests the plutons were generated by migration of a trench-ridge-trench triple junction along the margin. On the Kenai Peninsula the regional lower greenschist metamorphic grade of the turbiditic host rocks, texture of the plutons, contact-metamorphic assemblage, and isotopic and fluid inclusion studies suggest that the plutons were emplaced at pressures of 1.5–3.0 kbars (5.2–10.5 km) into a part of the accretionary wedge with an ambient temperature of 210–300 °C. The presence of kyanite, garnet, and cordierite megacrysts in the plutons indicates that the melts were generated at a depth greater than 20 km and minimum temperature of 650 °C. These megacrysts are probably xenocrystic remnants of a restitic or contact metamorphic phase entrained by the melt during intrusion. However, it is also possible that they are primary magmatic phases crystallized from the peraluminous melt.Plutons of the Sanak-Baranof belt serve as time and strain markers separating kinematic regimes that predate and postdate ridge subduction. Pre-ridge subduction structures are interpreted to be related to the interaction between the leading oceanic plate and the Chugach terrane. These include regional thrust faults, NE-striking map-scale folds with associated axial planar foliation, type-1 mélanges, and an arrayof faults within the contact aureole indicating shortening largely accommodated by layer-parallel extension. Syn-ridge subduction features include the plutons, dikes, and ductile shear zones within contact aureoles with syn-kinematic metamorphic mineral growth and foliation development. Many of the studied plutons have sheeted margins and appear to have intruded along extensional jogs in margin-parallel strike-slip faults, whereas others form significant angles with the main faults and may have been influenced by minor faults of other orientations. Some of the plutons of the Sanak-Baranof belt have their long axes oriented parallel to faults of an orthorhombic fault set, implying that these faults may have provided a conduit for magma emplacement. This orthorhombic set of late faults is interpreted to have initially formed during the ridge subduction event, and continued to be active for a short time after passage of the triple junction. ENE-striking dextral faults of this orthorhombic fault system exhibit mutually crosscutting relationships with Eocene dikes related to ridge subduction, and mineralized strike-slip and normal faults of this system have yielded 40Ar/39Ar ages identical to near-trench intrusives related to ridge subduction. Movement on the orthorhombic fault system accommodated exhumation of deeper levels of the southern Alaska accretionary wedge, which is interpreted as a critical taper adjustment to subduction of younger oceanic lithosphere during ridge subduction. These faults therefore accommodate both deformation of the wedge and assisted emplacement of near-trench plutons. Structures that crosscut the plutons and aureoles include the orthorhombic fault set and dextral strike-slip faults, reflecting a new kinematic regime established after ridge subduction, during underthrusting of the trailing oceanic plate with new dextral-oblique convergence vectors with the overriding plate. The observation that the orthorhombic fault set both cuts and is cut by Eocene intrusives demonstrates the importance of these faults for magma emplacement in the forearc.A younger, ca. 35 Ma suite of plutons intrudes the Chugach terrane in the Prince William Sound region, and their intrusion geometry was strongly influenced by pre-existing faults developed during ridge subduction. The generation of these plutons may be related to the sudden northward migration of the triple junction at ca. 40–33 Ma, as the ridge was being subducted nearly parallel to the trench during this interval. These younger plutons are used to provide additional constraints on the structural evolution of the wedge. Late- to post-ridge subduction fabrics include a pressure solution cleavage and additional movement on the orthorhombic fault system. After triple junction migration, subduction of the trailing oceanic plate involved a significant component of dextral transpression and northward translation of the Chugach terrane. This change in kinematics is recorded by very late gouge-filled dextral faults in the late structures of the accretionary prism.
NASA Astrophysics Data System (ADS)
Campisano, C. J.; Dimaggio, E. N.; Arrowsmith, J. R.; Kimbel, W. H.; Reed, K. E.; Robinson, S. E.; Schoville, B. J.
2008-12-01
Understanding the geographic, temporal, and environmental contexts of human evolution requires the ability to compare wide-ranging datasets collected from multiple research disciplines. Paleoanthropological field- research projects are notoriously independent administratively even in regions of high transdisciplinary importance. As a result, valuable opportunities for the integration of new and archival datasets spanning diverse archaeological assemblages, paleontological localities, and stratigraphic sequences are often neglected, which limits the range of research questions that can be addressed. Using geoinformatic tools we integrate spatial, temporal, and semantically disparate paleoanthropological and geological datasets from the Hadar sedimentary basin of the Afar Rift, Ethiopia. Applying newly integrated data to investigations of fossil- rich sediments will provide the geospatial framework critical for addressing fundamental questions concerning hominins and their paleoenvironmental context. We present a preliminary cyberinfrastructure for data management that will allow scientists, students, and interested citizens to interact with, integrate, and visualize data from the Afar region. Examples of our initial integration efforts include generating a regional high-resolution satellite imagery base layer for georeferencing, standardizing and compiling multiple project datasets and digitizing paper maps. We also demonstrate how the robust datasets generated from our work are being incorporated into a new, digital module for Arizona State University's Hadar Paleoanthropology Field School - modernizing field data collection methods, on-the-fly data visualization and query, and subsequent analysis and interpretation. Armed with a fully fused database tethered to high-resolution satellite imagery, we can more accurately reconstruct spatial and temporal paleoenvironmental conditions and efficiently address key scientific questions, such as those regarding the relative importance of internal and external ecological, climatological, and tectonic forcings on evolutionary change in the fossil record. In close association with colleagues working in neighboring project areas, this work advances multidisciplinary and collaborative research, training, and long-range antiquities conservation in the Hadar region.
New heat flow measurements in Oman and the thermal state of the Arabian Shield and Platform
NASA Astrophysics Data System (ADS)
Rolandone, Frédérique; Lucazeau, Francis; Leroy, Sylvie; Mareschal, Jean-Claude; Jorand, Rachel; Goutorbe, Bruno; Bouquerel, Hélène
2013-03-01
The present-day thermal regime of the Arabian plate is affected by the dynamics of the Afar plume and the rifting of the Red Sea and the Gulf of Aden. The Arabian plate is a Precambrian Shield and its thermal regime, before the plume and rifting activities, should be similar to that of other Precambrian Shields with a thick lithosphere. This is consistent with low heat-flow values measured in Saudi Arabia (35-44 mWm- 2), but not with recent measurements in Jordan that show higher heat flow (56-66 mWm- 2). We have conducted measurements in the eastern Arabian plate to obtain 10 new heat-flux values. We also derived 20 heat-flux values from oil exploration wells. Our measurements show that surface heat flux is uniformly low (45 mWm- 2) in the eastern Arabian Shield and is consistent with low crustal heat production (0.7 μWm- 3). A steady-state geotherm for the Arabian platform that intersects the isentropic temperature profile at a depth of 150 km is consistent with the seismic observations. Differences in heat flow between the eastern (60 mWm- 2) and the western (45 mWm- 2) parts of Arabia reflect differences in crustal heat production as well as a higher mantle heat flux in the west. Seismic tomography studies of the mantle beneath Arabia show this east-west contrast. The lithospheric thickness for the Arabian plate is 150 km, and the progressive thinning near the Red Sea is caused by the thermal erosion of the plume. The Afar plume mostly affects the base of the Arabian lithosphere along the Red Sea and the western part of the Gulf of Aden by channeling magmas from the asthenosphere through the rift. The continental domain is not affected by rifting in the Gulf of Aden. The main thermal effect of the Arabian plate is probably the channeling of the Afar plume to the North.
NASA Astrophysics Data System (ADS)
Reed, C. A.; Gao, S. S.; Liu, K. H.; Yu, Y.
2016-06-01
The Afar Depression and its adjacent areas are underlain by an upper mantle marked by some of the world's largest negative velocity anomalies, which are frequently attributed to the thermal influences of a lower-mantle plume. In spite of numerous studies, however, the existence of a plume beneath the area remains enigmatic, partially due to inadequate quantities of broad-band seismic data and the limited vertical resolution at the mantle transition zone (MTZ) depth of the techniques employed by previous investigations. In this study, we use an unprecedented quantity (over 14 500) of P-to-S receiver functions (RFs) recorded by 139 stations from 12 networks to image the 410 and 660 km discontinuities and map the spatial variation of the thickness of the MTZ. Non-linear stacking of the RFs under a 1-D velocity model shows robust P-to-S conversions from both discontinuities, and their apparent depths indicate the presence of an upper-mantle low-velocity zone beneath the entire study area. The Afar Depression and the northern Main Ethiopian Rift are characterized by an apparent 40-60 km depression of both MTZ discontinuities and a normal MTZ thickness. The simplest and most probable interpretation of these observations is that the apparent depressions are solely caused by velocity perturbations in the upper mantle and not by deeper processes causing temperature or hydration anomalies within the MTZ. Thickening of the MTZ on the order of 15 km beneath the southern Arabian Plate, southern Red Sea and western Gulf of Aden, which comprise the southward extension of the Afro-Arabian Dome, could reflect long-term hydration of the MTZ. A 20 km thinning of the MTZ beneath the western Ethiopian Plateau is observed and interpreted as evidence for a possible mantle plume stem originating from the lower mantle.
Abdu, Jemal; Kahssay, Molla; Gebremedhin, Merhawi
2018-01-01
Poor nutritional status of women has been a serious problem in Ethiopia. Rural women are more likely to be undernourished than urban women. Afar region is the most likely to be undernourished (43.5%). Despite the humanitarian and food aid, food insecurity and maternal underweight are very high in the region. Household food insecurity is not adequately studied in Afar region. The aim of this study was to assess the prevalence of household food insecurity and underweight status and its association among reproductive age women. The study was conducted in Assayita district in June 2015. Community-based cross-sectional study design was used among nonpregnant women. Household data was collected using structured questionnaire. Multistage cluster sampling procedure was applied. Two pastoral and two agropastoral Kebeles have been selected by simple random sampling. Systematic random sampling was used to select respondents. The total sample size was 549 households. Household Food Insecurity Access Scale (HFIAS) and anthropometric data were used to determine food insecurity and underweight, respectively. Multivariate regression models were used to measure associations. Prevalence of HFIAS was 70.4 with a mean of 7.0 (3.6 ± SD); 26.1%, 30.20%, and 14.1% were mild, moderate, and severe food insecurity, respectively. Underweight prevalence (BMI < 18.5) was 41.1% with prevalence of mild, moderate, and severe underweight being 34.5%, 3.9%, and 2.7%, respectively. Age, parity, and having >2 children below five years of age were statistically associated with household food insecurity and maternal underweight. Household food insecurity and maternal underweight were very high. Age, parity, and having ≥2 children below five years of age were associated with household food insecurity. Maternal underweight was associated with maternal age, marital status, parity, number of children below 5 years, household food insecurity, and vocation of the respondents.
NASA Astrophysics Data System (ADS)
Lavayssiere, A.; Rychert, C.; Harmon, N.; Keir, D.; Hammond, J. O. S.; Kendall, J. M.; Leroy, S. D.; Doubre, C.
2017-12-01
The lithosphere is modified during rifting by a combination of mechanical stretching, heating and potentially partial melt. We image the crust and upper mantle discontinuity structure beneath the northern East African Rift System (EARS), a unique tectonically active continental rift exposing along strike the transition from continental rifting in the Main Ethiopian rift (MER) to incipient seafloor spreading in Afar and the Red Sea. S-to-P receiver functions from 182 stations across the northern EARS were generated from 3688 high quality waveforms using a multitaper technique and then migrated to depth using a regional velocity model. Waveform modelling of data stacked in large conversion point bins confirms the depth and strength of imaged discontinuities. We image the Moho at 29.6±4.7 km depth beneath the Ethiopian plateaux with a variability in depth that is possibly due to lower crustal intrusions. The crust is 27.3±3.9 km thick in the MER and thinner in northern Afar, 17.5±0.7 km. The model requires a 3±1.2% reduction in shear velocity with increasing depth at 68.5±1.5 km beneath the Ethiopian plateaux, consistent with the lithosphere-asthenosphere boundary (LAB). We do not resolve a LAB beneath Afar and the MER. This is likely associated with partial melt near the base of the lithosphere, reducing the velocity contrast between the melt-intruded lithosphere and the partially molten asthenosphere. We identify a 4.5±0.7% increase in velocity with depth at 91±3 km beneath the MER. This change in velocity is consistent with the onset of melting found by previous receiver functions and petrology studies. Our results provide independent constraints on the depth of melt production in the asthenosphere and suggest melt percolation through the base of the lithosphere beneath the northernmost East African rift.
Kahsay, Znabu Hadush; Tegegne, Dessie; Mohammed, Ebrahim; Kiros, Getachew
2018-01-01
Use of modern contraceptive methods reduces the risk of unwanted pregnancy, and is influenced by individual-level factors. Willingness to use modern contraceptive methods maybe a useful metric when considering health outcomes as it could predict health behaviors. Therefore, the current study aimed to assess the willingness of women to use modern contraceptives in Afar pastoralist communities. A community-based cross-sectional study was conducted from May 1 to 30, 2016. Three hundred forty-five women of childbearing age (15-49 years) were systematically sampled with proportionate allocation from seven randomly selected kebeles (neighborhoods) in Aballa District of Afar Region, Ethiopia. All women meeting the inclusion criteria in each selected household were interviewed at home using a semi-structured questionnaire. Construct validity was assured using factor analysis. A combination of individual behavioral models were applied in order to measure willingness to use modern contraceptive methods. Multiple logistic regressions were utilized to identify factors associated with willingness to use contraceptive at P-value of less than 0.05. Three hundred twenty-two women participated in the study, for a response rate of 93.3%. The mean age of respondents was 27 (±6) years. About one-third (N = 106, 32.9%) of the participants reported that they were willing to use modern contraceptives. Orthodox Christians (AOR = 4.22, 95% CI 1.94-8.92), women aged 19 or older at first marriage (AOR = 2.89, 95% CI 1.16-7.23), and women who had never experienced a stillbirth (AOR = 3.85, 95%CI 1.37-10.78) were more likely to report being willing to use modern contraceptives. Additionally, perceived severity of an unwanted pregnancy (AOR = 1.71, 95% CI 1.57-1.93) and perceived self-efficacy to use contraceptives (AOR = 1.26, 95% CI 1.17-1.65) were positively associated with the willingness. Women who had never had an abortion were less likely to express willingness to use modern contraceptives (AOR = 0.41, 95% CI 0.19-0.92) and perceived importance of cultural and religious norms (AOR = 0.85, 95% CI 0.62-0.90) was also negatively associated with willingness. The majority of women in this study were not willing to use modern contraceptive methods. A previous pregnancy outcome of stillbirth was associated with reduced willingness, while a prior abortion was associated with increased willingness. Perceived severity of unwanted pregnancy and higher self-efficacy surrounding contraceptive use were strong predictors of increased willingness to use contraceptives. Religious and cultural norms also appear to influence perception towards modern contraception. Thus, involvement of cultural and religious leaders and consideration of a woman's reproductive history are recommended when designing health education messages on contraception for Afar pastoralist women.
3D displacement time series in the Afar rift zone computed from SAR phase and amplitude information
NASA Astrophysics Data System (ADS)
Casu, Francesco; Manconi, Andrea
2013-04-01
Large and rapid deformations, such as those caused by earthquakes, eruptions, and landslides cannot be fully measured by using standard DInSAR applications. Indeed, the phase information often degrades and some areas of the interferograms are affected by high fringe rates, leading to difficulties in the phase unwrapping, and/or to complete loss of coherence due to significant misregistration errors. This limitation can be overcome by exploiting the SAR image amplitude information instead of the phase, and by calculating the Pixel-Offset (PO) field SAR image pairs, for both range and azimuth directions. Moreover, it is possible to combine the PO results by following the same rationale of the SBAS technique, to finally retrieve the offset-based deformation time series. Such technique, named PO-SBAS, permits to retrieve the deformation field in areas affected by very large displacements at an accuracy that, for ENVISAT data, correspond to 30 cm and 15 cm for the range and azimuth, respectively [1]. Moreover, the combination of SBAS and PO-SBAS time series can help to better study and model deformation phenomena characterized by spatial and temporal heterogeneities [2]. The Dabbahu rift segment of the Afar depression has been active since 2005 when a 2.5 km3 dyke intrusion and hundreds of earthquakes marked the onset a rifting episode which continues to date. The ENVISAT satellite has repeatedly imaged the Afar depression since 2003, generating a large SAR archive. In this work, we study the Afar rift region deformations by using both the phase and amplitude information of several sets of SAR images acquired from ascending and descending ENVISAT tracks. We combined sets of small baseline interferograms through the SBAS algorithm, and we generate both ground deformation maps and time series along the satellite Line-Of-Sight (LOS). In areas where the deformation gradient causes loss of coherence, we retrieve the displacement field through the amplitude information. Furthermore, we could also retrieve the full 3D deformation field, by considering the North-South displacement component obtained from the azimuth PO information. The combination of SBAS and PO-SBAS information permits to better retrieve and constrain the full deformation field due to repeated intrusions, fault movements, as well as the magma movements from individual magma chambers. [1] Casu, F., A. Manconi, A. Pepe and R. Lanari, 2011. Deformation time-series generation in areas characterized by large displacement dynamics: the SAR amplitude Pixel-Offset SBAS technique, IEEE Transaction on Geosciences and Remote Sensing. [2] Manconi, A. and F. Casu, 2012. Joint analysis of displacement time series retrieved from SAR phase and amplitude: impact on the estimation of volcanic source parameters, Geophysical Research Letters, doi:10.1029/2012GL052202.
NASA Astrophysics Data System (ADS)
Alemayehu, Melesse; Zhang, Hong-Fu; Aulbach, Sonja
2017-07-01
We present new trace element compositions of amphiboles, Sr-Nd-Hf isotope compositions of clinopyroxenes and mineral modes for spinel peridotite xenoliths that were entrained in a Miocene alkali basalt (Gundeweyn, northwestern Ethiopian plateau), in order to understand the geochemical evolution and variation occurring within the continental lithospheric mantle (CLM) in close proximity to the East African Rift system, and its dynamic implications. With the exception of a single amphibole-bearing sample that is depleted in LREE (La/YbN = 0.45 × Cl), amphiboles in lherzolites and in one harzburgite show variable degrees of LREE enrichment (La/YbN = 2.5-12.1 × Cl) with flat HREE (Dy/YbN = 1.5-2.1 × Cl). Lherzolitic clinoyroxenes have 87Sr/86Sr (0.70227 to 0.70357), 143Nd/144Nd (0.51285 to 0.51346), and 176Hf/177Hf (0.28297 to 0.28360) ranging between depleted lithosphere and enriched mantle. LREE-enriched clinopyroxenes generally have more enriched isotope compositions than depleted ones. While lherzolites with isotope compositions similar to those of the Afar plume result from the most recent metasomatic overprint, isotope compositions more depleted than present-day MORB can be explained by an older melt extraction and/or isotopic rehomogenisation event, possibly related to the Pan-African orogeny. Several generations of amphibole are recognized in accord with this multi-stage evolution. Texturally unequilibrated amphibole occurring within the peridotite matrix and in melt pockets attest to continued hydration and refertilization of the lithospheric mantle subsequent to Oligocene flood basalt magmatism, during which an earlier-emplaced inventory of amphibole was likely largely consumed. However, a single harzburgite contains amphibole with the highest Mg# and lowest TiO2 content, which is interpreted as sampling a volumetrically subordinate mantle region beneath the Ethiopian plateau that was not tapped during flood basalt magmatism. Strikingly, both trace-element enriched and depleted lherzolites have high clinopyroxene and orthopyroxene and low olivine contents (median 15, 24 and 56 vol.%), combined with primitive olivine Mg# (median 89.5), indicating the presence of refertilized mantle beneath Gundeweyn. Despite its fertility and FeO-rich character (hence high inferred density), and impingement by the Afar plume, the CLM beneath the Ethiopian plateau, though apparently thinned through thermochemical erosion, has so far resisted whole-sale delamination or dripping. This is tentatively ascribed to insufficient stress and density contrasts at the periphery of the Afar plume, which reached its greatest thermochemical buoyancy in the Afar region, northeast of Gundeweyn.
Variations in the mantle transition zone beneath the Ethiopian Rift and Afar
NASA Astrophysics Data System (ADS)
Cornwell, D. G.; Hetenyi, G.; Blanchard, T.; Stuart, G. W.
2010-12-01
We use receiver functions calculated on broadband seismological data across Ethiopia to identify and map 3-D changes in the mantle transition zone (MTZ) thickness beneath the Ethiopian rift, Afar and the uplifted Ethiopian Plateau. The MTZ that divides the upper and lower mantle in the Earth is marked by discontinuities whose position and nature is controlled by local temperature and composition. It is commonly assumed that positive temperature anomalies cause an overall thinning of the MTZ by deepening the mineral phase transition of olivine (α-spinel) to wadsleyite (β-spinel) at around 410 km depth and shallowing the mineral phase transition of ringwoodite (γ-spinel) to magnesiowustite-perovskite at around 660 km depth. Such regions of anomalously hot mantle have been interpreted to extend from the core-mantle boundary (e.g. the African Superplume) to the Earth's surface from global tomographic models. Previous studies in Ethiopia or Afar that invoke receiver functions are mainly restricted to illuminating the MTZ beneath permanent seismological stations and, together with a regional receiver function study, all have found difficulty in imaging the discontinuities. They were unable to provide conclusive evidence for a thinned transition zone and could not constrain lateral changes in MTZ thickness that are required to assess whether the African Superplume intersects the MTZ beneath Ethiopia. We use seismological data from permanent stations as well as from four temporary arrays to compute receiver functions. We perform time-to-depth migration using the common conversion point (CCP) method with a regional velocity model that includes the slow mantle anomalies to estimate the depth-to-discontinuties and produce an MTZ thickness map. The signature of both the 410 and the 660 km discontinuities is clearly identified across ~500x500 km2. The 410 is relatively flat at 444±10 km depth throughout the region. The 660 is more perturbed with steep topographic changes and lies at 685±20 km depth. The mean depth of both interfaces being deeper than the respective nominal depths can be related to the low resolution of the global velocity model. However, the 410 is deepened more than the 660, resulting in a regionally thinned MTZ in the area of study by up to 25 km (equivalent of +150°C anomaly in the MTZ). A locally thickened (+13 km) MTZ is observed beneath part of the rift where the Main Ethiopian Rift opens into Afar. We interpret that elevated temperatures caused by the lower mantle African Superplume interacting with the MTZ in this region explains the thinned MTZ. Furthermore, the very slow upper mantle above the MTZ is a result of heat transfer from lower to upper mantle. This raised the mantle temperature, which facilitated the onset of rifting in Ethiopia.
Revascularization of immature mandibular premolar with pulpal necrosis - a case report.
Raju, S Murali Krishna; Yadav, Sarjeev Singh; Kumar M, Sita Rama
2014-09-01
This case report describes the Revascularization of a Permanent Immature Mandibular Premolar with Pulp Necrosis and apical periodontitis. Access opening was done & the canal was disinfected with copious irrigation using 2.5% NaOCl and triple antibiotic paste (Ciprofloxacin, Metronidazole, and Minocycline) as intracanal medicament. After the disinfection protocol is complete, it is followed by revascularization procedure. The apex was mechanically irritated to initiate bleeding into the canal to produce a blood clot to the level just below the level of cementoenamel junction. Mineral trioxide aggregate was placed over the blood clot followed by bonded resin restoration above it. After one year follow up; the patient was asymptomatic, no sinus tract was evident. Apical periodontitis was resolved, and there was radiographic evidence of continuing thickness of dentinal walls.
Novel hybrid III:V concentrator photovoltaic-thermoelectric receiver designs
NASA Astrophysics Data System (ADS)
Sweet, Tracy K. N.; Rolley, Matthew H.; Prest, Martin J.; Min, Gao
2017-09-01
This paper presents the design, manufacture and electrical characterization of novel hybrid III:V Concentrator Photovoltaic-Thermoelectric receivers. Addition of an encapsulating and spectral homogenizing single active surface secondary optic lens increased the solar cell electrical power output from 7.66mW (ALPHA no cooling) to 18.20mW (KAPPA with TE cooling). The effective optical concentration of the optics, based on short circuit current, was x2.4. A linear irradiance vs maximum power receiver output relationship was observed (R2=0.9978), confirming good optical alignment during manufacture and likewise internal current matching of the series-connected triple-junction cell. An in-depth COMSOL model for simulated evaluation of the synergistic thermally-dependent parameters inherent to hybrid devices was built and experimentally validated.
A back-illuminated megapixel CMOS image sensor
NASA Technical Reports Server (NTRS)
Pain, Bedabrata; Cunningham, Thomas; Nikzad, Shouleh; Hoenk, Michael; Jones, Todd; Wrigley, Chris; Hancock, Bruce
2005-01-01
In this paper, we present the test and characterization results for a back-illuminated megapixel CMOS imager. The imager pixel consists of a standard junction photodiode coupled to a three transistor-per-pixel switched source-follower readout [1]. The imager also consists of integrated timing and control and bias generation circuits, and provides analog output. The analog column-scan circuits were implemented in such a way that the imager could be configured to run in off-chip correlated double-sampling (CDS) mode. The imager was originally designed for normal front-illuminated operation, and was fabricated in a commercially available 0.5 pn triple-metal CMOS-imager compatible process. For backside illumination, the imager was thinned by etching away the substrate was etched away in a post-fabrication processing step.
Utilization of fractography in the evaluations of high temperature dynamic fatigue experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breder, K.; Tennery, V.J.; Mroz, T.J.
1996-12-31
The slow crack growth properties of six structural ceramics were measured by dynamic fatigue in air and inert atmospheres over a range of elevated temperatures. The material response varied from no strength degradation as a function of stress and environment to significant strength degradation by slow crack growth (SCG) and by a combination of SCG and creep. The fractographic investigation showed that SCG was evidenced by growth of isolated cracks and often by an intergranular fracture mode, while creep was evidenced by accumulated damage such as void formation and opening of the microstructure at grain boundaries and triple junctions. Formore » the materials in which the strength was unaffected by the stress and environment, the fracture surfaces were essentially indistinguishable from the inert fracture surfaces.« less
Utilization of fractography in the evaluation of high temperature dynamic fatigue experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breder, K.; Wereszczak, A.A.; Tennery, V.J.
1995-12-31
The slow crack growth properties of six structural ceramics were measured by dynamic fatigue in air and inert atmospheres over a range of elevated temperatures. The material response varied from no strength degradation as a function of stress and environment to significant strength degradation by slow crack growth (SCG) and by a combination of SCG and creep. The fractographic investigation showed that SCG was evidenced by growth of isolated cracks and often by an intergranular fracture mode, while creep was evidenced by accumulated damage such as void formation and opening of the microstructure at grain boundaries and triple junctions. Formore » the materials in which the strength was unaffected by the stress and environment, the fracture surfaces were essentially indistinguishable from the inert fracture surfaces.« less
Nanostructured Electrocatalysts for PEM Fuel Cells and Redox Flow Batteries: A Selected Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Yuyan; Cheng, Yingwen; Duan, Wentao
2015-12-04
PEM fuel cells and redox flow batteries are two very similar technologies which share common component materials and device design. Electrocatalysts are the key components in these two devices. In this Review, we discuss recent progress of electrocatalytic materials for these two technologies with a focus on our research activities at Pacific Northwest National Laboratory (PNNL) in the past years. This includes (1) nondestructive functionalization of graphitic carbon as Pt support to improve its electrocatalytic performance, (2) triple-junction of metal–carbon–metal oxides to promote Pt performance, (3) nitrogen-doped carbon and metal-doped carbon (i.e., metal oxides) to improve redox reactions in flowmore » batteries. A perspective on future research and the synergy between the two technologies are also discussed.« less
NASA Astrophysics Data System (ADS)
Zhang, Li; Wang, Meiyu; Yan, Xueliang; Lin, Ye; Shield, Jeffrey
2018-04-01
The effect of adding a low melting point Pr-Cu-Al alloy during spark plasma sintering of melt-spun Nd-Fe-B ribbons is investigated. Regions of coarse grains were reduced and overall grain refinement was observed after the addition of Pr68Cu25Al7, leading to an enhancement of coercivity from 12.7 kOe to 20.4 kOe. Hot deformation of the samples in the spark plasma sintering system resulted in the formation of platelet-like grains, producing crystallographic alignment and magnetic anisotropy. The hot deformation process improved the remanence and energy product but reduced the coercivity. The decrease of coercivity resulted from grain growth and aggregation of Pr and Nd elements at triple-junction phases.
Geologic signature of early Tertiary ridge subduction in Alaska
Bradley, Dwight C.; Kusky, Timothy M.; Haeussler, Peter J.; Goldfarb, Richard J.; Miller, Marti L.; Dumoulin, Julie A.; Nelson, Steven W.; Karl, Susan M.
2003-01-01
A mid-Paleocene to early Eocene encounter between an oceanic spreading center and a subduction zone produced a wide range of geologic features in Alaska. The most striking effects are seen in the accretionary prism (Chugach–Prince William terrane), where 61 to 50 Ma near-trench granitic to gabbroic plutons were intruded into accreted trench sediments that had been deposited only a few million years earlier. This short time interval also saw the genesis of ophiolites, some of which contain syngenetic massive sulfide deposits; the rapid burial of these ophiolites beneath trench turbidites, followed immediately by obduction; anomalous high-T, low-P, near-trench metamorphism; intense ductile deformation; motion on transverse strike-slip and normal faults; gold mineralization; and uplift of the accretionary prism above sea level. The magmatic arc experienced a brief flare-up followed by quiescence. In the Alaskan interior, 100 to 600 km landward of the paleotrench, several Paleocene to Eocene sedimentary basins underwent episodes of extensional subsidence, accompanied by bimodal volcanism. Even as far as 1000 km inboard of the paleotrench, the ancestral Brooks Range and its foreland basin experienced a pulse of uplift that followed about 40 million years of quiescence.All of these events - but most especially those in the accretionary prism - can be attributed with varying degrees of confidence to the subduction of an oceanic spreading center. In this model, the ophiolites and allied ore deposits were produced at the soon-to-be subducted ridge. Near-trench magmatism, metamorphism, deformation, and gold mineralization took place in the accretionary prism above a slab window, where hot asthenosphere welled up into the gap between the two subducted, but still diverging, plates. Deformation took place as the critically tapered accretionary prism adjusted its shape to changes in the bathymetry of the incoming plate, changes in the convergence direction before and after ridge subduction, and changes in the strength of the prism as it was heated and then cooled. In this model, events in the Alaskan interior would have taken place above more distal, deeper parts of the slab window. Extensional (or transtensional) basin subsidence was driven by the two subducting plates that each exerted different tractions on the upper plate. The magmatic lull along the arc presumably marks a time when hydrated lithosphere was not being subducted beneath the arc axis. The absence of a subducting slab also may explain uplift of the Brooks Range and North Slope: Geodynamic models predict that longwavelength uplift of this magnitude will take place far inboard from Andean-type margins when a subducting slab is absent. Precise correlations between events in the accretionary prism and the Alaskan interior are hampered, however, by palinspastic problems. During and since the early Tertiary, margin-parallel strike-slip faulting has offset the near-trench plutonic belt - i.e., the very basis for locating the triple junction and slab window - from its backstop, by an amount that remains controversial.Near-trench magmatism began at 61 Ma at Sanak Island in the west but not until 51 Ma at Baranof Island, 2200 km to the east. A west-to-east age progression suggests migration of a trench-ridge-trench triple junction, which we term the Sanak-Baranof triple junction. Most workers have held that the subducted ridge separated the Kula and Farallon plates. As a possible alternative, we suggest that the ridge may have separated the Kula plate from another oceanic plate to the east, which we have termed the Resurrection plate.
EDITORIAL: Enhance your outlook with Compound Semiconductor
NASA Astrophysics Data System (ADS)
Bedrock, Claire
2007-12-01
An overwhelming proportion of the articles published in this journal come under the heading of applied research. In this field research findings impact tomorrow's products, and so it's important to keep tabs on these developments. Grant applications, for example, can carry extra weight when the potential benefits to industry are outlined alongside the gains to fundamental science. What's more, it's just plain interesting to track how key breakthroughs in understanding can drive improvements in commercial devices. Within our publication group we offer free resources that can help you keep pace with trends in part of this sector. Compound Semiconductor magazine and its associated website, compoundsemiconductor.net, cover III-V, III-N, SiC and SiGe research in academia and industry, alongside all the business news and key manufacturing technology. A high proportion of our authoritative and timely content is exclusive, and you can access it for free by completing a simple registration procedure at compoundsemiconductor.net. Three examples of feature articles published this year in Compound Semiconductor include: • Non-polar GaN reaches tipping point by Steven DenBaars, Shuji Nakamura and Jim Speck from the University of California, Santa Barbara. Although conventional GaN LEDs are a great commercial success, they suffer from an intrinsic weakness—internal electric fields that pull apart the electrons and holes and ultimately limit efficiency. However, this problem can be overcome by growing nitrides on alternate crystal planes. Although early attempts were unsuccessful, due to high defect densities in the epilayers, this is not the case with growth on the latest Mitsubishi substrates that can lead to external quantum efficiencies of 45%. In this article the authors describe the development of their non-polar material, and their promising results for LEDs and laser diodes. • Inverting the triple junction improves efficiency and flexibility by Paul Sharps and Arthur Cornfeld from solar cell producer Emcore and Mark Wanlass from the National Renewable Energy Laboratory. Conventional triple junction solar cells are already deployed for powering satellites and they are starting to win sales for terrestrial power generation. Further improvements to solar efficiency could drive further growth in both of these markets, and one of the most promising designs is the inverted triple junction. The authors describe the details of this approach, which involves growth of lattice-matched GaInP and GaAs, followed by an InGaAs cell. The germanium substrate is then removed to leave a lightweight device capable of delivering more than 30% efficiency in space and almost 40% under high concentration. • Light-emitting diodes hit the centenary milestone by Fred Schubert and Jong Kyu Kim from Rensselaer Polytechnic Institute. Accidents are not always a bad thing. They can also be the moment of discovery, as was the case for Henry Joseph Round who observed the first light emission from a semiconductor diode. Round reported this work in 1907, but it is unlikely that he could foresee the impact that the LED would have over the next century. In this article, the authors trace the evolution of the device, including the development of new materials for red, green, blue and ultimately white emission, and suggest where the next 10 years might take us. Visit compoundsemiconductor.net to read these articles and many others like them.
Baker, J.; Snee, L.; Menzies, M.
1996-01-01
40Ar39Ar dating of mineral separates and whole-rock (WR) samples has established that basaltic continental flood volcanism (CFV) began between 30.9 and 29.2 Ma in northwestern and southwestern Yemen, respectively. Rhyolitic volcanism commenced at 29.3-29.0 Ma throughout Yemen. Lower basaltic lavas were erupted every 10-100 kyr, whereas upper bimodal volcanic units were erupted every 100-500 kyr, which reflects generation of rhyolitic magmas from basalts that resided for longer periods in lithospheric magma chambers than during the early phase of exclusively mafic magmatism. The youngest dated flood volcanic units were erupted between 26.9 and 26.5 Ma throughout Yemen. The duration of preserved CFV defined by 40Ar/39Ar dating (4.4 myr) contrasts with the wide range of WR K-Ar dates previously obtained in Yemen (> 50 myr). 40Ar/39Ar step-heating studies of WR samples has shown that this discrepancy is due to the disturbed Ar systematics of volcanic samples. Most samples have experienced post-crystallization loss of radiogenic Ar and/or contain excess Ar, with only ca. 25% of the WR K-Ar dates within 1-2 myr of true crystallization ages. WR K-Ar data can be screened for reliability using the radiogenic Ar yield and 40K/36Ar ratio, which reflect the Ar retentivity of the sample, the likelihood that alteration has disturbed a sample's Ar systematics, and the susceptibility of the sample to a finite amount of Ar loss or the presence of a finite amount of excess Ar. Examination of existing WR K-Ar data in the Ethiopian part of this flood volcanic province, using these parameters, suggests that much of these data are also misleading. Two phases of flood volcanism are inferred in Ethiopia and Eritrea at 38-30 Ma and ca. 20 Ma. The older phase is equivalent to that in Yemen, and is consistent with the progression in basal volcanic ages obtained in Yemen moving from north to south. The younger phase is related to the onset of upper crustal extension and incipient Red Sea-Gulf of Aden rifting. The sequence of events - surface uplift (?), flood magmatism and subsequent upper crustal extension - in Yemen is consistent with the involvement of a mantle plume at the Afro-Arabian triple junction. However, the overall eruption rate for this flood volcanic province is only 0.03 km3/yr, much slower than that postulated for other plume-related provinces such as the Deccan or Siberian Traps, but perhaps comparable to the Parana??-Etendeka province, which also contains significant amounts of rhyolitic volcanic products like those of Yemen-Ethiopia. The highly variable eruption rates in individual provinces must reflect the very different character of individual plumes, or the control of lithospheric structure and plate tectonic stresses on the surface manifestations of plumes. The long duration of CFV and large amounts of rhyolitic volcanism at the Afro-Arabian triple junction may be attributed to the relatively slow separation of the African and Arabian plates compared with, for example, the rifting of India and the Deccan Traps.
NASA Astrophysics Data System (ADS)
Prarokijjak, Worasak; Soodchomshom, Bumned
2018-04-01
Spin-valley transport and magnetoresistance are investigated in silicene-based N/TB/N/TB/N junction where N and TB are normal silicene and topological barriers. The topological phase transitions in TB's are controlled by electric, exchange fields and circularly polarized light. As a result, we find that by applying electric and exchange fields, four groups of spin-valley currents are perfectly filtered, directly induced by topological phase transitions. Control of currents, carried by single, double and triple channels of spin-valley electrons in silicene junction, may be achievable by adjusting magnitudes of electric, exchange fields and circularly polarized light. We may identify that the key factor behind the spin-valley current filtered at the transition points may be due to zero and non-zero Chern numbers. Electrons that are allowed to transport at the transition points must obey zero-Chern number which is equivalent to zero mass and zero-Berry's curvature, while electrons with non-zero Chern number are perfectly suppressed. Very large magnetoresistance dips are found directly induced by topological phase transition points. Our study also discusses the effect of spin-valley dependent Hall conductivity at the transition points on ballistic transport and reveals the potential of silicene as a topological material for spin-valleytronics.
Abnous, Khalil; Danesh, Noor Mohammad; Ramezani, Mohammad; Taghdisi, Seyed Mohammad; Emrani, Ahmad Sarreshtehdar
2018-08-22
Herein, a novel colorimetric aptasensor was introduced for detection of cocaine based on the formation of three-way junction pockets on the surfaces of gold nanoparticles (AuNPs) and the catalytic activity of the surfaces of AuNPs. Simplicity and detection of cocaine in a short time (only 35 min) are some of the unique features of the proposed sensing strategy. In the presence of cocaine, triple-fragment aptamer (TFA) forms on the surfaces of AuNPs, leading to a significant decrease of the catalytic activity of AuNPs and the color of samples remains yellow. In the absence of target, TFA does not form on the surfaces of AuNPs and 4-Nitrophenol, as a colorimetric agent, has more access to the surfaces of AuNPs, resulting in the reduction of 4-Nitrophenol and the color of sample changes from yellow to colorless. The sensing strategy showed good specificity, a limit of detection (LOD) of 440 pM and a dynamic range over 2-100 nM. The sensing method was also successfully applied to detect cocaine in spiked human serum samples with recovery of 94.71-98.63%. Copyright © 2018 Elsevier B.V. All rights reserved.
Recent progress of Spectrolab high-efficiency space solar cells
NASA Astrophysics Data System (ADS)
Law, Daniel C.; Boisvert, J. C.; Rehder, E. M.; Chiu, P. T.; Mesropian, S.; Woo, R. L.; Liu, X. Q.; Hong, W. D.; Fetzer, C. M.; Singer, S. B.; Bhusari, D. M.; Edmondson, K. M.; Zakaria, A.; Jun, B.; Krut, D. D.; King, R. R.; Sharma, S. K.; Karam, N. H.
2013-09-01
Recent progress in III-V multijunction space solar cell has led to Spectrolab's GaInP/GaAs/Ge triple-junction, XTJ, cells with average 1-sun efficiency of 29% (AM0, 28°C) for cell size ranging from 59 to 72-cm2. High-efficiency inverted metamorphic (IMM) multijunction cells are developed as the next space solar cell architecture. Spectrolab's large-area IMM3J and IMM4J cells have achieved 33% and 34% 1-sun, AM0 efficiencies, respectively. The IMM3J and the IMM4J cells have both demonstrated normalized power retention of 0.86 at 5x1014 e-/cm2 fluence and 0.83 and 0.82 at 1x1015 e-/cm2 fluence post 1-MeV electron radiation, respectively. The IMM cells were further assembled into coverglass-interconnect-cell (CIC) strings and affixed to typical rigid aluminum honeycomb panels for thermal cycling characterization. Preliminary temperature cycling data of two coupons populated with IMM cell strings showed no performance degradation. Spectrolab has also developed semiconductor bonded technology (SBT) where highperformance component subcells were grown on GaAs and InP substrates separately then bonded directly to form the final multijunction cells. Large-area SBT 5-junction cells have achieved a 35.1% efficiency under 1-sun, AM0 condition.
Nürnberg, Dennis J; Mariscal, Vicente; Bornikoel, Jan; Nieves-Morión, Mercedes; Krauß, Norbert; Herrero, Antonia; Maldener, Iris; Flores, Enrique; Mullineaux, Conrad W
2015-03-17
Many filamentous cyanobacteria produce specialized nitrogen-fixing cells called heterocysts, which are located at semiregular intervals along the filament with about 10 to 20 photosynthetic vegetative cells in between. Nitrogen fixation in these complex multicellular bacteria depends on metabolite exchange between the two cell types, with the heterocysts supplying combined-nitrogen compounds but dependent on the vegetative cells for photosynthetically produced carbon compounds. Here, we used a fluorescent tracer to probe intercellular metabolite exchange in the filamentous heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. We show that esculin, a fluorescent sucrose analog, is incorporated by a sucrose import system into the cytoplasm of Anabaena cells. The cytoplasmic esculin is rapidly and reversibly exchanged across vegetative-vegetative and vegetative-heterocyst cell junctions. Our measurements reveal the kinetics of esculin exchange and also show that intercellular metabolic communication is lost in a significant fraction of older heterocysts. SepJ, FraC, and FraD are proteins located at the intercellular septa and are suggested to form structures analogous to gap junctions. We show that a ΔsepJ ΔfraC ΔfraD triple mutant shows an altered septum structure with thinner septa but a denser peptidoglycan layer. Intercellular diffusion of esculin and fluorescein derivatives is impaired in this mutant, which also shows a greatly reduced frequency of nanopores in the intercellular septal cross walls. These findings suggest that FraC, FraD, and SepJ are important for the formation of junctional structures that constitute the major pathway for feeding heterocysts with sucrose. Anabaena and its relatives are filamentous cyanobacteria that exhibit a sophisticated form of prokaryotic multicellularity, with the formation of differentiated cell types, including normal photosynthetic cells and specialized nitrogen-fixing cells called heterocysts. The question of how heterocysts communicate and exchange metabolites with other cells in the filament is key to understanding this form of bacterial multicellularity. Here we provide the first information on the intercellular exchange of a physiologically important molecule, sucrose. We show that a fluorescent sucrose analog can be imported into the Anabaena cytoplasm by a sucrose import system. Once in the cytoplasm, it is rapidly and reversibly exchanged among all of the cells in the filament by diffusion across the septal junctions. Photosynthetically produced sucrose likely follows the same route from cytoplasm to cytoplasm. We identify some of the septal proteins involved in sucrose exchange, and our results indicate that these proteins form structures functionally analogous to metazoan gap junctions. Copyright © 2015 Nürnberg et al.
Questions from Afar: The Influence of Outsideness on Web-Based Conversation
ERIC Educational Resources Information Center
Deed, Craig; Edwards, Anthony; Gomez, Viviana
2015-01-01
This paper defines the metaphor of outsideness in relation to web-based interaction. Outsideness is conceived of as a key influence in online academic conversation. In particular, through the sharing of cultural perspectives, asking questions to resolve doubt, and collaborative writing and re-writing as a basis for shaping ideas through reasoning.…
Virtually Stress Free: Keeping Online Graduate Management Students Healthy from Afar
ERIC Educational Resources Information Center
Martinak, M. Linda
2012-01-01
This article examines stress experienced by graduate management students in an online learning environment. I use qualitative methodology to examine data collected from 32 students in 2 sections of a graduate online course. Findings identify 6 categories of stressors experienced by the students as well as 6 categories of stress relief agents.…
Multimodal Integration of High Resolution EEG and Functional Magnetic Resonance: a Simulation Study
2001-10-25
Luca Romani3, Paolo Maria Rossini2, and Febo Cincotti4 1 Dip. Fisiologia umana e Farmacologia, Università "La Sapienza", Rome, 2 “AFAR", Ospedale...Organization Name(s) and Address(es) Dip. Fisiologia umana e Farmacologia, Università "La Sapienza", Rome Performing Organization Report Number Sponsoring
Lessons from Afar: A Review of www.daisakuikeda.org, Official Website of Daisaku Ikeda
ERIC Educational Resources Information Center
Arauz, Luis
2012-01-01
Daisaku Ikeda (1928- ) is a Buddhist leader, peace builder, school founder, and poet. His own biography and lifework provide a model for how one can transform adversity into alternative opportunities for some of the most disenfranchised students. Scrutinizing Ikeda's official website (www.daisakuikeda.org) reveals an extensive collection of his…
Quad-Chip Double-Balanced Frequency Tripler
NASA Technical Reports Server (NTRS)
Lin, Robert H.; Ward, John S.; Bruneau, Peter J.; Mehdi, Imran; Thomas, Bertrand C.; Maestrini, Alain
2010-01-01
Solid-state frequency multipliers are used to produce tunable broadband sources at millimeter and submillimeter wavelengths. The maximum power produced by a single chip is limited by the electrical breakdown of the semiconductor and by the thermal management properties of the chip. The solution is to split the drive power to a frequency tripler using waveguides to divide the power among four chips, then recombine the output power from the four chips back into a single waveguide. To achieve this, a waveguide branchline quadrature hybrid coupler splits a 100-GHz input signal into two paths with a 90 relative phase shift. These two paths are split again by a pair of waveguide Y-junctions. The signals from the four outputs of the Y-junctions are tripled in frequency using balanced Schottky diode frequency triplers before being recombined with another pair of Y-junctions. A final waveguide branchline quadrature hybrid coupler completes the combination. Using four chips instead of one enables using four-times higher power input, and produces a nearly four-fold power output as compared to using a single chip. The phase shifts introduced by the quadrature hybrid couplers provide isolation for the input and output waveguides, effectively eliminating standing waves between it and surrounding components. This is accomplished without introducing the high losses and expense of ferrite isolators. A practical use of this technology is to drive local oscillators as was demonstrated around 300 GHz for a heterodyne spectrometer operating in the 2-3-THz band. Heterodyne spectroscopy in this frequency band is especially valuable for astrophysics due to the presence of a very large number of molecular spectral lines. Besides high-resolution radar and spectrographic screening applications, this technology could also be useful for laboratory spectroscopy.
The crystal structure of an oligo(U):pre-mRNA duplex from a trypanosome RNA editing substrate
Mooers, Blaine H.M.; Singh, Amritanshu
2011-01-01
Guide RNAs bind antiparallel to their target pre-mRNAs to form editing substrates in reaction cycles that insert or delete uridylates (Us) in most mitochondrial transcripts of trypanosomes. The 5′ end of each guide RNA has an anchor sequence that binds to the pre-mRNA by base-pair complementarity. The template sequence in the middle of the guide RNA directs the editing reactions. The 3′ ends of most guide RNAs have ∼15 contiguous Us that bind to the purine-rich unedited pre-mRNA upstream of the editing site. The resulting U-helix is rich in G·U wobble base pairs. To gain insights into the structure of the U-helix, we crystallized 8 bp of the U-helix in one editing substrate for the A6 mRNA of Trypanosoma brucei. The fragment provides three samples of the 5′-AGA-3′/5′-UUU-3′ base-pair triple. The fusion of two identical U-helices head-to-head promoted crystallization. We obtained X-ray diffraction data with a resolution limit of 1.37 Å. The U-helix had low and high twist angles before and after each G·U wobble base pair; this variation was partly due to shearing of the wobble base pairs as revealed in comparisons with a crystal structure of a 16-nt RNA with all Watson–Crick base pairs. Both crystal structures had wider major grooves at the junction between the poly(U) and polypurine tracts. This junction mimics the junction between the template helix and the U-helix in RNA-editing substrates and may be a site of major groove invasion by RNA editing proteins. PMID:21878548
Ratnayake, Chathura Bathiya Bandara; Escott, Alistair Brian James; Phillips, Anthony Ronald John; Windsor, John Albert
2018-07-01
The thoracic duct (TD) transports lymph drained from the body to the venous system in the neck via the lymphovenous junction. There has been increased interest in the TD lymph (including gut lymph) because of its putative role in the promotion of systemic inflammation and organ dysfunction during acute and critical illness. Minimally invasive TD cannulation has recently been described as a potential method to access TD lymph for investigation. However, marked anatomical variability exists in the terminal segment and the physiology regarding the ostial valve and terminal TD is poorly understood. A systematic review was conducted using three databases from 1909 until May 2017. Human and animal studies were included and data from surgical, radiological and cadaveric studies were retrieved. Sixty-three articles from the last 108 years were included in the analysis. The terminal TD exists as a single duct in its terminal course in 72% of cases and 13% have multiple terminations: double (8.5%), triple (1.8%) and quadruple (2.2%). The ostial valve functions to regulate flow in relation to the respiratory cycle. The patency of this valve found at the lymphovenous junction opening, is determined by venous wall tension. During inspiration, central venous pressure (CVP) falls and the valve cusps collapse to allow antegrade flow of lymph into the vein. During early expiration when CVP and venous wall tension rises, the ostial valve leaflets cover the opening of the lymphovenous junction preventing antegrade lymph flow. During chronic disease states associated with an elevated mean CVP (e.g. in heart failure or cirrhosis), there is a limitation of flow across the lymphovenous junction. Although lymph production is increased in both heart failure and cirrhosis, TD lymph outflow across the lymphovenous junction is unable to compensate for this increase. In conclusion the terminal TD shows marked anatomical variability and TD lymph flow is controlled at the ostial valve, which responds to changes in CVP. This information is relevant to techniques for cannulating the TD, with the aid of minimally invasive methods and high resolution ultrasonography, to enable longitudinal physiology and lymph composition studies in awake patients with both acute and chronic disease. © 2018 Anatomical Society.
NASA Astrophysics Data System (ADS)
Welford, J.; Smith, J.; Hall, J.; Deemer, S.; Srivastava, S.; Sibuet, J.
2009-05-01
In 1992, the Erable project was undertaken by the Geological Survey of Canada and Ifremer to acquire multiple 2-D multichannel seismic reflection profiles in the Newfoundland Basin and along the margins of Flemish Cap. We present four multichannel seismic reflection profiles from the project collected over the southern margin of Flemish Cap and extending into the Newfoundland Basin. These profiles are between and sub- parallel to lines 1 and 2 from the 2000 SCREECH seismic experiment and provide more comprehensive data coverage over the region. We combine these data with the SCREECH seismic profiles, two ODP drill sites, and other geophysical data to map distinct zones of continental, transitional, and oceanic crust in this region. Just as has been evidenced from the mapped crustal boundaries on their conjugate Galicia Bank and Iberian margins, the Flemish Cap and Newfoundland margins show significant along-margin variability in terms of rifting structures and styles. This along-margin variability is superimposed on the overall asymmetry of the conjugate pairs highlighting the complexity of the margins and the importance of considering three- dimensional influences on rifting evolution. In particular, the hypothesized clockwise rotation and southeastward motion of Flemish Cap and the transfer zones that would have accommodated such movement appear to have affected the distribution of extension along the margins as rifting propagated northward. Meanwhile, activity at the North Atlantic triple junction immediately to the east of Flemish Cap may have initiated slow seafloor spreading while rifting was still active to the south as evidenced along the nearby Erable profiles. While simple two-dimensional rifting models may be appropriate for interpreting individual seismic profiles, three-dimensional rifting models are clearly needed to adequately explain the evolution of Flemish Cap and Galicia Bank relative to the margins to the south. These rifting models must incorporate the influences of microplate reorganization on both sides of the North Atlantic as well as transfer zones and the North Atlantic triple junction.
Preliminary Low Temperature Electron Irradiation of Triple Junction Solar Cells
NASA Technical Reports Server (NTRS)
Stella, Paul M.; Mueller, Robert L.; Scrivner, Roy L.; Helizon, Roger S.
2007-01-01
For many years extending solar power missions far from the sun has been a challenge not only due to the rapid falloff in solar intensity (intensity varies as inverse square of solar distance) but also because some of the solar cells in an array may exhibit a LILT (low intensity low temperature) degradation that reduces array performance. Recent LILT tests performed on commercial triple junction solar cells have shown that high performance can be obtained at solar distances as great as approx. 5 AU1. As a result, their use for missions going far from the sun has become very attractive. One additional question that remains is whether the radiation damage experienced by solar cells under low temperature conditions will be more severe than when measured during room temperature radiation tests where thermal annealing may take place. This is especially pertinent to missions such as the New Frontiers mission Juno, which will experience cell irradiation from the trapped electron environment at Jupiter. Recent testing2 has shown that low temperature proton irradiation (10 MeV) produces cell degradation results similar to room temperature irradiations and that thermal annealing does not play a factor. Although it is suggestive to propose the same would be observed for low temperature electron irradiations, this has not been verified. JPL has routinely performed radiation testing on commercial solar cells and has also performed LILT testing to characterize cell performance under far sun operating conditions. This research activity was intended to combine the features of both capabilities to investigate the possibility of any room temperature annealing that might influence the measured radiation damage. Although it was not possible to maintain the test cells at a constant low temperature between irradiation and electrical measurements, it was possible to obtain measurements with the cell temperature kept well below room temperature. A fluence of 1E15 1MeV electrons was selected as representative of a moderately high dose that might be expected for a solar powered mission. Fluences much greater than this would require large increases in array area and mass, compromising the ability of PV to compete with non-solar alternatives.
NASA Technical Reports Server (NTRS)
Beernink, Kevin; Guha, Subhendu; Yang, Jeff; Banerjee, Arindam; Lord, Ken; DeMaggio, Greg; Liu, Frank; Pietka, Ginger; Johnson, Todd; Reinhout, Melanie;
2007-01-01
The availability of low-cost, lightweight and reliable photovoltaic (PV) modules is an important component in reducing the cost of satellites and spacecraft. In addition, future high-power spacecraft will require lightweight PV arrays with reduced stowage volume. In terms of the requirements for low mass, reduced stowage volume, and the harsh space environment, thin film amorphous silicon (a-Si) alloy cells have several advantages over other material technologies (1). The deposition process is relatively simple, inexpensive, and applicable to large area, lightweight, flexible substrates. The temperature coefficient has been found to be between -0.2 and -0.3 %/degC for high-efficiency triple-junction a-Si alloy cells, which is superior for high temperature operation compared to crystalline Si and triple-junction GaAs/InGaP/Ge devices at 0.53 %/degC and 0.45 %/degC, respectively (2). As a result, the reduction in efficiency at high temperature typical in space conditions is less for a-Si alloy cells than for their crystalline counterparts. Additionally, the a-Si alloy cells are relatively insensitive to electron and proton bombardment. We have shown that defects that are created by electrons with energies between 0.2 to 2 MeV with fluence up to 1x10(exp 15) e/sq cm and by protons with energy in the range 0.3 MeV to 5 MeV with fluence up to 1x10(exp 13) p/sq cm can be annealed out at 70 C in less than 50 hours (1). Further, modules incorporating United Solar s a-Si alloy cells have been tested on the MIR space station for 19 months with only minimal degradation (3). For stratospheric applications, such as the high altitude airship, the required PV arrays are typically of considerably higher power than current space arrays. Airships typically have a large area available for the PV, but weight is of critical importance. As a result, low cost and high specific power (W/kg) are key factors for airship PV arrays. Again, thin-film a-Si alloy solar cell technology is well suited to such applications.
NASA Astrophysics Data System (ADS)
Cameron, Milo Louis
The calculated extension (~111 km) across the Woodlark rift is incompatible with the > 130 km needed to exhume the Metamorphic Core Complexes on shallow angle faults (< 30°) using N-S extension in the Woodlark Basin. High resolution bathymetry, seismicity, and seismic reflection data indicate that the Nubara Fault continues west of the Trobriand Trough, intersects the Woodlark spreading center, and forms the northern boundary of the Woodlark plate and the southern boundary of the Trobriand plate. The newly defined Trobriand plate, to the north of this boundary, has moved SW-NE along the right lateral Nubara Fault, creating SW-NE extension in the region bounded by the MCC's of the D'Entrecasteaux Islands and Moresby Seamount. Gravity and bathymetry data extracted along four transect lines were used to model the gravity and flexure across the Nubara Fault boundary. Differences exist in the elastic thickness between the northern and southern parts of the lines at the Metamorphic Core Complexes of Goodenough Island (Te_south = 5.7 x 103 m; Te_north = 6.1 x 103 m) and Fergusson Island (Te_south = 1.2 x 103 m; Te_north = 5.5 x 103 m). Differences in the elastic strength of the lithosphere also exist at Moresby Seamount (Te_south = 4.2 x 103 m; Te_north = 4.7 x 103 m) and Egum Atoll (Te_south =7.5 x 103 m; Te_north = 1.3 x 104 m). The differences between the northern and southern parts of each transect line imply an east-west boundary that is interpreted to be the Nubara Fault. The opening of the Woodlark Basin resulted in the rotation of the Papuan Peninsula and the Woodlark Rise, strike slip motion between the Solomon Sea and the Woodlark Basin at the Nubara Fault, and the formation of the PAC-SOL-WLK; SOL-WLK-TRB triple junctions. The intersection of the Woodlark Spreading Center with the Nubara Fault added the AUS-WLK-TRB triple junction and established the Nubara Fault as the northern boundary of the Woodlark plate.
Three dimensional rock microstructures: insights from FIB-SEM tomography
NASA Astrophysics Data System (ADS)
Drury, Martyn; Pennock, Gill; de Winter, Matthijs
2016-04-01
Most studies of rock microstructures investigate two-dimensional sections or thin slices of three dimensional grain structures. With advances of X-ray and electron tomography methods the 3-D microstructure can be(relatively) routinely investigated on scales from a few microns to cm. 3D studies are needed to investigate the connectivity of microstructures and to test the assumptions we use to calculate 3D properties from 2D sections. We have used FIB-SEM tomography to study the topology of melts in synthetic olivine rocks, 3D crystal growth microstructures, pore networks and subgrain structures. The technique uses a focused ion beam to make serial sections with a spacing of tens to hundreds of nanometers. Each section is then imaged or mapped using the electron beam. The 3D geometry of grains and subgrains can be investigated using orientation contrast or EBSD mapping. FIB-SEM tomography of rocks and minerals can be limited by charging of the uncoated surfaces exposed by the ion beam. The newest generation of FIB-SEMs have much improved low voltage imaging capability allowing high resolution charge free imaging. Low kV FIB-SEM tomography is now widely used to study the connectivity of pore networks. In-situ fluids can also be studied using cryo-FIB-SEM on frozen samples, although special freezing techniques are needed to avoid artifacts produced by ice crystallization. FIB-SEM tomography is complementary, in terms of spatial resolution and sampled volume, to TEM tomography and X-ray tomography, and the combination of these methods can cover a wide range of scales. Our studies on melt topology in synthetic olivine rocks with a high melt content show that many grain boundaries are wetted by nanometre scale melt layers that are too thin to resolve by X-ray tomography. A variety of melt layer geometries occur consistent with several mechanisms of melt layer formation. The nature of melt geometries along triple line junctions and quadruple points can be resolved. Quadruple point junctions between four grains cannot be investigated in 2D studies. 3D microstructural studies suggest that triple lines and quadruple points are important sites for the initiation of recrystallization, reaction and fracture.
ERIC Educational Resources Information Center
Mehta, Jal
2013-01-01
Context: No Child Left Behind is only the most recent manifestation of a longstanding American impulse to reform schools through accountability systems created from afar. While research has explored the causes and consequences of No Child Left Behind, this study puts the modern accountability movement in longer historical perspective, seeking to…
ERIC Educational Resources Information Center
De Bolle, Marleen; De Fruyt, Filip; Decuyper, Mieke
2010-01-01
Psychometric properties of the Dutch version of the Affect and Arousal Scales (AFARS) were inspected in a combined clinical and population sample (N = 1,215). The validity of the tripartite structure and the relations between Negative Affect, Positive Affect, and Physiological Hyperarousal (PH) were investigated for boys and girls, younger (8-11…
Visuality, mobility and the cosmopolitan: inhabiting the world from afar.
Szerszynski, Bronislaw; Urry, John
2006-03-01
In earlier publications based on the research discussed in this article (e.g. Szerszynski and Urry 2002), we argued that an emergent culture of cosmopolitanism, refracted into different forms amongst different social groups, was being nurtured by a widespread 'banal globalism'--a proliferation of global symbols and narratives made available through the media and popular culture. In the current article we draw on this and other empirical research to explore the relationship between visuality, mobility and cosmopolitanism. First we describe the multiple forms of mobility that expand people's awareness of the wider world and their capacity to compare different places. We then chart the changing role that visuality has played in citizenship throughout history, noting that citizenship also involves a transformation of vision, an absenting from particular contexts and interests. We explore one particular version of that transformation--seeing the world from afar, especially in the form of images of the earth seen from space--noting how such images conventionally connote both power and alienation. We then draw on another research project, on place and vision, to argue that the shift to a cosmopolitan relationship with place means that humans increasingly inhabit their world only at a distance.
Attempt to develop taste bud models in three-dimensional culture.
Nishiyama, Miyako; Yuki, Saori; Fukano, Chiharu; Sako, Hideyuki; Miyamoto, Takenori; Tomooka, Yasuhiro
2011-09-01
Taste buds are the end organs of taste located in the gustatory papillae, which occur on the surface of the oral cavity. The goal of the present study was to establish a culture model mimicking the lingual taste bud of the mouse. To this end, three cell lines were employed: taste bud-derived cell lines (TBD cell lines), a lingual epithelial cell-derived cell line (20A cell line), and a mesenchymal cell-derived cell line (TMD cell line). TBD cells embedded in collagen gel formed three-dimensional clusters, which had an internal cavity equipped with a tight junction-like structure, a microvilluslike structure, and a laminin-positive layer surrounding the cluster. The cells with this epitheliumlike morphology expressed marker proteins of taste cells: gustducin and NCAM. TBD cells formed a monolayer on collagen gel when they were co-cultured with TMD cells. TBD, 20A, and TMD cell lines were maintained in a triple cell co-culture, in which TBD cells were pre-seeded as aggregates or in suspension on the collagen gel containing TMD cells, and 20A cells were laid over the TBD cells. TBD cells in the triple cell co-culture expressed NCAM. This result suggests that co-cultured TBD cells exhibited a characteristic of Type III taste cells. The culture model would be useful to study morphogenesis and functions of the gustatory organ.
NASA Astrophysics Data System (ADS)
Dugda, Mulugeta Tuji
Crust and upper mantle structure beneath eastern Africa has been investigated using receiver functions and surface wave dispersion measurements to understand the impact of the hotspot tectonism found there on the lithospheric structure of the region. In the first part of this thesis, I applied H-kappa stacking of receiver functions, and a joint inversion of receiver functions and Rayleigh wave group velocities to determine the crustal parameters under Djibouti. The two methods give consistent results. The crust beneath the GEOSCOPE station ATD has a thickness of 23+/-1.5 km and a Poisson's ratio of 0.31+/-0.02. Previous studies give crustal thickness beneath Djibouti to be between 8 and 10 km. I found it necessary to reinterprete refraction profiles for Djibouti from a previous study. The crustal structure obtained for ATD is similar to adjacent crustal structure in many other parts of central and eastern Afar. The high Poisson's ratio and Vp throughout most of the crust indicate a mafic composition, suggesting that the crust in Afar consists predominantly of new igneous rock emplaced during the late synrift stage where extension is accommodated within magmatic segments by diking. In the second part of this thesis, the seismic velocity structure of the crust and upper mantle beneath Ethiopia and Djibouti has been investigated by jointly inverting receiver functions and Rayleigh wave group velocities to obtain new constraints on the thermal structure of the lithosphere. Crustal structure from the joint inversion for Ethiopia and Djibouti is similar to previously published models. Beneath the Main Ethiopian Rift (MER) and Afar, the lithospheric mantle has a maximum shear wave velocity of 4.1-4.2 km/s and extends to a depth of at most 50 km. In comparison to the lithosphere away from the East African Rift System in Tanzania, where the lid extends to depths of ˜100-125 km and has a maximum shear velocity of 4.6 km/s, the mantle lithosphere under the Ethiopian Plateau appears to have been thinned by ˜30-50 km and the maximum shear wave velocity reduced by ˜0.3 km/s. Results from a 1D conductive thermal model suggest that the shear velocity structure of the lithosphere beneath the Ethiopian Plateau can be explained by a plume model, if a plume rapidly thinned the lithosphere by ˜30--50 km at the time of the flood basalt volcanism (c. 30 Ma), and if warm plume material has remained beneath the lithosphere since then. About 45-65% of the 1-1.5 km of plateau uplift in Ethiopia can be attributed to the thermally perturbed lithospheric structure. In the final part of this thesis, the shear-wave velocity structure of the crust and upper mantle beneath Kenya has been obtained from a joint inversion of receiver functions, and Rayleigh wave group and phase velocities. The crustal structure from the joint inversion is consistent with crustal structure published previously by different authors. The lithospheric mantle beneath the East African Plateau in Kenya is similar to the lithosphere under the East African Plateau in Tanzania. Beneath the Kenya Rift, the lithosphere extends to a depth of at most ˜75 km. The lithosphere under the Kenya Plateau is not perturbed when compared to the highly perturbed lithosphere beneath the Ethiopian Plateau. On the other hand, the lithosphere under the Kenya Rift is perturbed as compared to the Kenya Plateau or the rest of the East African Plateau, but is not as perturbed as the lithosphere beneath the Main Ethiopian Rift or the Afar. Although Kenya and Ethiopia have similar uplift and rifting histories, they have different volcanic histories. Much of Ethiopia has been affected by the Afar Flood Basalt volcanism, which may be the cause of this difference in lithospheric structure between these two regions.
Serial sectioning of grain microstructures under junction control: An old problem in a new guise
NASA Astrophysics Data System (ADS)
Zöllner, D.; Streitenberger, P.
2015-04-01
In the present work the importance of 3D and 4D microstructure analyses are shown. To that aim, we study polycrystalline grain microstructures obtained by grain growth under grain boundary, triple line and quadruple point control. The microstructures themselves are obtained by mesoscopic computer simulations, which enjoy a far greater control over the kinetic and thermodynamic parameters affecting grain growth than can be realized experimentally. In extensive simulation studies we find by 3D respectively 4D microstructure analyses that metrical and topological properties of the microstructures depend strongly on the microstructural feature controlling the growth kinetics. However, the differences between the growth kinetics vanish when we look at classical 2D sections of the 3D ensembles making a differentiation of the controlling grain feature near impossible.
Minor groove RNA triplex in the crystal structure of a ribosomal frameshifting viral pseudoknot
NASA Technical Reports Server (NTRS)
Su, L.; Chen, L.; Egli, M.; Berger, J. M.; Rich, A.
1999-01-01
Many viruses regulate translation of polycistronic mRNA using a -1 ribosomal frameshift induced by an RNA pseudoknot. A pseudoknot has two stems that form a quasi-continuous helix and two connecting loops. A 1.6 A crystal structure of the beet western yellow virus (BWYV) pseudoknot reveals rotation and a bend at the junction of the two stems. A loop base is inserted in the major groove of one stem with quadruple-base interactions. The second loop forms a new minor-groove triplex motif with the other stem, involving 2'-OH and triple-base interactions, as well as sodium ion coordination. Overall, the number of hydrogen bonds stabilizing the tertiary interactions exceeds the number involved in Watson-Crick base pairs. This structure will aid mechanistic analyses of ribosomal frameshifting.
Quantifying Low Energy Proton Damage in Multijunction Solar Cells
NASA Technical Reports Server (NTRS)
Messenger, Scott R.; Burke, Edward A.; Walters, Robert J.; Warner, Jeffrey H.; Summers, Geoffrey P.; Lorentzen, Justin R.; Morton, Thomas L.; Taylor, Steven J.
2007-01-01
An analysis of the effects of low energy proton irradiation on the electrical performance of triple junction (3J) InGaP2/GaAs/Ge solar cells is presented. The Monte Carlo ion transport code (SRIM) is used to simulate the damage profile induced in a 3J solar cell under the conditions of typical ground testing and that of the space environment. The results are used to present a quantitative analysis of the defect, and hence damage, distribution induced in the cell active region by the different radiation conditions. The modelling results show that, in the space environment, the solar cell will experience a uniform damage distribution through the active region of the cell. Through an application of the displacement damage dose analysis methodology, the implications of this result on mission performance predictions are investigated.
Seismicity of the Earth 1900-2007, Nazca Plate and South America
Rhea, Susan; Hayes, Gavin P.; Villaseñor, Antonio; Furlong, Kevin P.; Tarr, Arthur C.; Benz, Harley
2010-01-01
The South American arc extends over 7,000 km, from the Chilean triple junction offshore of southern Chile to its intersection with the Panama fracture zone, offshore the southern coast of Panama in Central America. It marks the plate boundary between the subducting Nazca plate and the South America plate, where the oceanic crust and lithosphere of the Nazca plate begin their decent into the mantle beneath South America. The convergence associated with this subduction process is responsible for the uplift of the Andes Mountains, and for the active volcanic chain present along much of this deformation front. Relative to a fixed South America plate the Nazca plate moves slightly north of eastwards at a rate varying from approximately 80 mm/yr in the south to approximately 70mm/yr in the north.
Wang, Ning; Chen, Haijun; He, Hongcai; Norimatsu, Wataru; Kusunoki, Michiko; Koumoto, Kunihito
2013-01-01
Authors reported an effective path to increase the electrical conductivity while to decrease the thermal conductivity, and thus to enhance the ZT value by nano-inclusions. By this method, the ZT value of Nb-doped SrTiO3 was enhanced 9-fold by yttria stabilized zirconia (YSZ) nano-inclusions. YSZ inclusions, located inside grain and in triple junction, can reduce the thermal conductivity by effective interface phonon scattering, enhance the electrical conductivity by promoting the abnormal grain growth, and thus lead to the obvious enhancement of ZT value, which strongly suggests that, it is possible to not only reduce the thermal conductivity, but also increase the electrical conductivity by nano-inclusions with low thermal conductivity. This study will give some useful enlightenment to the preparation of high-performance oxide thermoelectric materials. PMID:24316665
Quantitative analysis and feature recognition in 3-D microstructural data sets
NASA Astrophysics Data System (ADS)
Lewis, A. C.; Suh, C.; Stukowski, M.; Geltmacher, A. B.; Spanos, G.; Rajan, K.
2006-12-01
A three-dimensional (3-D) reconstruction of an austenitic stainless-steel microstructure was used as input for an image-based finite-element model to simulate the anisotropic elastic mechanical response of the microstructure. The quantitative data-mining and data-warehousing techniques used to correlate regions of high stress with critical microstructural features are discussed. Initial analysis of elastic stresses near grain boundaries due to mechanical loading revealed low overall correlation with their location in the microstructure. However, the use of data-mining and feature-tracking techniques to identify high-stress outliers revealed that many of these high-stress points are generated near grain boundaries and grain edges (triple junctions). These techniques also allowed for the differentiation between high stresses due to boundary conditions of the finite volume reconstructed, and those due to 3-D microstructural features.
2016-06-10
Accountability Office, GAO-13-646. 8 Ibid. 9 Ibid. 10 British Broadcast Corporation , “US Shifts on AFRICOM Base Plans,” BBC News, 18 February...integrate from afar with such intricate circumstances in our operating environments. 62 BIBLIOGRAPHY British Broadcast Corporation . “US Shifts On AFRICOM
ERIC Educational Resources Information Center
Baumann, Paul R., Ed.
This teaching guide offers educators glimpses into the value of remote sensing, the process of observing and analyzing the earth from a distance. Remote sensing provides information in forms to see spatial patterns over large areas in a more realistic way than thematic maps and allows a macro-scale look at global problems. The six instructional…
1991-01-01
DEFICIENCY OF GLUCOSE - 6 - PHOSPHATE DEHYDROGENASE (G- 6 ...the prevalence of deficient activity of the enzyme glucose - 6 - phosphate dehydrogenase (G- 6 -PD) among - Ces difficiences enzymatiques sant plus particu...Screening for glucose - 6 - 3 - CaosBy W.H. - Hematologic diseases. In : I lunter’s Tropical phosphate dehydrogenase (G- 6 -PD) deficiency by a simple
Multidisciplinary exploration of the Tendaho Graben geothermal fields
NASA Astrophysics Data System (ADS)
Armadillo, Egidio; Rizzello, Daniele; Verdoya, Massimo; Pasqua, Claudio; Marini, Luigi; Meqbel, Naser; Stimac, Jim; Kebede, Solomon; Mengiste, Andarge; Hailegiorgis, Getenesch; Abera, Fitsum; Mengesha, Kebede
2017-04-01
The NW-SE trending Tendaho Graben is the major extensional feature of the Afar, Ethiopia. Rifting and volcanic activity within the graben occurred mostly between 1.8 and 0.6 Ma, but extended to at least 0.2 Ma. Very recent (0.22- 0.03 Ma) activity is focused along the southern part of the younger and active Manda Hararo Rift, which is included in the north-western part of the graben. Extension gave rise to about 1600 m of vertical displacement (verified by drilling) of the basaltic Afar Stratoid sequence, over a crust with a mean thickness of about 23 km. The infill of graben, overlying the Stratoids, consists of volcanic and sedimentary deposits that have been drilled by six exploratory wells. Within the graben, two main geothermal fields have been explored by intensive geological, geochemical and geophysical surveys over an area that approximately covers a square sector of 40x40 km. Both new and existing data sets have been integrated. The Dubti-Ayrobera system is located along the central axis of the graben. Available data, acquired in the last three decades, comprise more than two thousands gravity and magnetic stations, 229 magnetotelluric stations and structural-geological and geochemical observations. The Alalobeda system is located along the SW flank of the graben, at about 25 km from the Dubti-Ayrobera system and has been very recently studied by means of gravimetric (300 stations), magnetotelluric and TDEM (140 stations) geological and geochemical surveys. The new residual magnetic anomaly map has been used to map the younger normal polarity basalt distribution and infer the location of the unknown main rift axis. The bedrock surface resulting by the 3D inversion of the new residual Bouguer anomaly enlightens the main normal faults hindered by sediments and the secondary structures represented by horsts and grabens. The three-dimensional resistivity models allow mapping the sedimentary infill of the graben, fracture zones in the Afar Stradoids bedrock and the dome-shape structure of the clay cap layer. The 2D and 3D gravimetric, magnetic and resistivity models have been integrated with the structural, geological and geochemical outcomings in order to get an updated conceptual model of the geothermal systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirakhorli, F., E-mail: Fatemeh.mirakhorli.1@ens.e
The post-weld tempered microstructure of hybrid laser-arc welded CA6NM, a cast low carbon martensitic stainless steel, was investigated. The microstructural evolutions from the fusion zone to the base metal were characterized in detail using optical microscopy, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), X-ray diffraction (XRD) and microhardness techniques. The fusion zone, in its post-weld tempered condition, consisted of tempered lath martensite, residual delta-ferrite with various morphologies, reversed austenite and chromium carbides. The reversed austenite, which can be detected through both EBSD and XRD techniques, was found to be finely dispersed along the martensite lath boundaries, particularly at triplemore » junctions. Based on the EBSD analysis, the orientation relationship between the reversed austenite and the adjacent martensite laths seemed to follow the Kurdjumov-Sachs (K-S) model. The results also revealed the presence of the reversed austenite in the different regions of the heat affected zone after post-weld tempering. The microindentation hardness distribution was measured, and correlated to the evolution of the corresponding microstructure across the welds. - Highlights: •The EBSD analysis was performed on hybrid laser-arc welded CA6NM. •The FZ consisted of tempered lath martensite, reversed austenite, carbides and δ ferrite after tempering. •The reversed γ was formed along the α′ lath boundaries, particularly at triple junctions.« less
An innovative deployable solar panel system for Cubesats
NASA Astrophysics Data System (ADS)
Santoni, Fabio; Piergentili, Fabrizio; Donati, Serena; Perelli, Massimo; Negri, Andrea; Marino, Michele
2014-02-01
One of the main Cubesat bus limitations is the available on-board power. The maximum power obtained using body mounted solar panels and advanced triple junction solar cells on a triple unit Cubesat is typically less than 10 W. The Cubesat performance and the mission scenario opened to these small satellite systems could be greatly enhanced by an increase of the available power. This paper describes the design and realization of a modular deployable solar panel system for Cubesats, consisting of a modular hinge and spring system that can be potentially used on-board single (1U), double(2U), triple (3U) and six units (6U) Cubesats. The size of each solar panels is the size of a lateral Cubesat surface. The system developed is the basis for a SADA (Solar Array Drive Assembly), in which a maneuvering capability is added to the deployed solar array in order to follow the apparent motion of the sun. The system design trade-off is discussed, comparing different deployment concepts and architectures, leading to the final selection for the modular design. A prototype of the system has been realized for a 3U Cubesat, consisting of two deployable solar panel systems, made of three solar panels each, for a total of six deployed solar panels. The deployment system is based on a plastic fiber wire and thermal cutters, guaranteeing a suitable level of reliability. A test-bed for the solar panel deployment testing has been developed, supporting the solar array during deployment reproducing the dynamical situation in orbit. The results of the deployment system testing are discussed, including the design and realization of the test-bed, the mechanical stress given to the solar cells by the deployment accelerations and the overall system performance. The maximum power delivered by the system is about 50.4 W BOL, greatly enhancing the present Cubesat solar array performance.
Schoeman, Rogier M; Kemna, Evelien W M; Wolbers, Floor; van den Berg, Albert
2014-02-01
In this article, we present a microfluidic device capable of successive high-yield single-cell encapsulation in droplets, with additional droplet pairing, fusion, and shrinkage. Deterministic single-cell encapsulation is realized using Dean-coupled inertial ordering of cells in a Yin-Yang-shaped curved microchannel using a double T-junction, with a frequency over 2000 Hz, followed by controlled droplet pairing with a 100% success rate. Subsequently, droplet fusion is realized using electrical actuation resulting in electro-coalescence of two droplets, each containing a single HL60 cell, with 95% efficiency. Finally, volume reduction of the fused droplet up to 75% is achieved by a triple pitchfork structure. This droplet volume reduction is necessary to obtain close cell-cell membrane contact necessary for final cell electrofusion, leading to hybridoma formation, which is the ultimate aim of this research. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dynamic changes in cortical tensions in multiple cell types during germband retraction
NASA Astrophysics Data System (ADS)
Hutson, M. Shane; Lacy, Monica E.; McCleery, W. Tyler
The process of germband retraction in Drosophila embryogenesis involves the coordinated mechanics of both germband and amnioserosa cells. These two tissues simultaneously and coordinately uncurl from their interlocking U-like shapes. As tissue-level retraction proceeds, individual cells change shape in stereotypical ways. Using time-lapse confocal images, analysis of dynamic cellular triple-junction angles, and whole-embryo finite-element models, we have quantified dynamic changes in cortical tensions - including their anisotropy - in both germband and amnioserosa cells. We find a strong transition midway through the two-hour course of retraction at which point tensions and anisotropies undergo a near step change. These changes take place among amnioserosa cells, in multiple segments of the germband, and at the interface between these two tissues. Research was supported by NIH Grant Numbers 1R01GM099107 and 1R21AR068933.
High-temperature deformation and microstructural analysis for Si3N4-Sc2O3
NASA Technical Reports Server (NTRS)
Cheong, Deock-Soo; Sanders, William A.
1990-01-01
It was indicated that Si3N4 doped with Sc2O3 may exhibit high temperature mechanical properties superior to Si3N4 systems with various other oxide sintered additives. High temperature deformation of samples was studied by characterizing the microstructures before and after deformation. It was found that elements of the additive, such as Sc and O, exist in small amounts at very thin grain boundary layers and most of them stay in secondary phases at triple and multiple grain boundary junctions. These secondary phases are devitrified as crystalline Sc2Si2O7. Deformation of the samples was dominated by cavitational processes rather than movements of dislocations. Thus the excellent deformation resistance of the samples at high temperature can be attributed to the very small thickness of the grain boundary layers and the crystalline secondary phase.
NASA Technical Reports Server (NTRS)
Fitch, T. J.
1971-01-01
A model for oblique convergence between plates of lithosphere is proposed in which at least a fraction of slip parallel to the plate margin results in transcurrent movements on a nearly vertical fault which is located on the continental side of a zone of plate consumption. In an extreme case of complete decoupling only the component of slip normal to the plate margin can be inferred from underthrusting. Recent movements in the western Sunda region provide the most convincing evidence for decoupling of slip, which in this region is thought to be oblique to the plate margin. A speculative model for convergence along the margins of the Philippine Sea is constructed from an inferred direction of oblique slip in the Philippine region. This model requires that the triple point formed by the junction of the Japanese and Izu-Bonin trenches and the Nankai trough migrate along the Sagami trough.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vishwanath, Suresh; Liu, Xinyu; Rouvimov, Sergei
2016-01-06
Layered materials are an actively pursued area of research for realizing highly scaled technologies involving both traditional device structures as well as new physics. Lately, non-equilibrium growth of 2D materials using molecular beam epitaxy (MBE) is gathering traction in the scientific community and here we aim to highlight one of its strengths, growth of abrupt heterostructures, and superlattices (SLs). In this work we present several of the firsts: first growth of MoTe 2 by MBE, MoSe 2 on Bi 2Se 3 SLs, transition metal dichalcogenide (TMD) SLs, and lateral junction between a quintuple atomic layer of Bi 2Te 3 andmore » a triple atomic layer of MoTe 2. In conclusion, reflected high electron energy diffraction oscillations presented during the growth of TMD SLs strengthen our claim that ultrathin heterostructures with monolayer layer control is within reach.« less
Diffusive and martensitic nucleation kinetics in solid-solid transitions of colloidal crystals
NASA Astrophysics Data System (ADS)
Peng, Yi; Li, Wei; Wang, Feng; Still, Tim; Yodh, Arjun G.; Han, Yilong
2017-05-01
Solid-solid transitions between crystals follow diffusive nucleation, or various diffusionless transitions, but these kinetics are difficult to predict and observe. Here we observed the rich kinetics of transitions from square lattices to triangular lattices in tunable colloidal thin films with single-particle dynamics by video microscopy. Applying a small pressure gradient in defect-free regions or near dislocations markedly transform the diffusive nucleation with an intermediate-stage liquid into a martensitic generation and oscillation of dislocation pairs followed by a diffusive nucleus growth. This transformation is neither purely diffusive nor purely martensitic as conventionally assumed but a combination thereof, and thus presents new challenges to both theory and the empirical criterion of martensitic transformations. We studied how pressure, density, grain boundary, triple junction and interface coherency affect the nucleus growth, shape and kinetic pathways. These novel microscopic kinetics cast new light on control solid-solid transitions and microstructural evolutions in polycrystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Compaan, A. D.; Deng, X.; Bohn, R. G.
2003-10-01
This is the final report covering about 42 months of this subcontract for research on high-efficiency CdTe-based thin-film solar cells and on high-efficiency a-Si-based thin-film solar cells. Phases I and II have been extensively covered in two Annual Reports. For this Final Report, highlights of the first two Phases will be provided and then detail will be given on the last year and a half of Phase III. The effort on CdTe-based materials is led by Prof. Compaan and emphasizes the use of sputter deposition of the semiconductor layers in the fabrication of CdS/CdTe cells. The effort on high-efficiency a-Simore » materials is led by Prof. Deng and emphasizes plasma-enhanced chemical vapor deposition for cell fabrication with major efforts on triple-junction devices.« less
Seismic monitoring in the oceans by autonomous floats.
Sukhovich, Alexey; Bonnieux, Sébastien; Hello, Yann; Irisson, Jean-Olivier; Simons, Frederik J; Nolet, Guust
2015-08-20
Our understanding of the internal dynamics of the Earth is largely based on images of seismic velocity variations in the mantle obtained with global tomography. However, our ability to image the mantle is severely hampered by a lack of seismic data collected in marine areas. Here we report observations made under different noise conditions (in the Mediterranean Sea, the Indian and Pacific Oceans) by a submarine floating seismograph, and show that such floats are able to fill the oceanic data gap. Depending on the ambient noise level, the floats can record between 35 and 63% of distant earthquakes with a moment magnitude M≥6.5. Even magnitudes <6.0 can be successfully observed under favourable noise conditions. The serendipitous recording of an earthquake swarm near the Indian Ocean triple junction enabled us to establish a threshold magnitude between 2.7 and 3.4 for local earthquakes in the noisiest of the three environments.
Design and Implementation of Effective Electrical Power System for Surya Satellite-1
NASA Astrophysics Data System (ADS)
Sulistya, A. H.; Hasbi, W.; Muhida, R.
2018-05-01
Surya Satellite-1 is a nanosatellite developed by students of Surya University. The subject of this paper is the design and implementation of effective electrical power system for Surya Satellite 1. The electrical power system role is to supply other systems of the satellite with appropriate electrical power. First, the requirements of the electrical power system are defined. The architecture of the electrical power system is then designed to build the prototype. The orbit simulation is calculated to predict the power production. When prototype test and simulation data is gained, we make an operation scenario to keep the produced power and the consumed power in balance. The design of the modules of the electrical power system is carried out with triple junction solar cells, lithium ion batteries, maximum power point trackers, charging controllers, power distributions, and protection systems. Finally, the prototypes of the electrical power system are presented.
Seismic monitoring in the oceans by autonomous floats
Sukhovich, Alexey; Bonnieux, Sébastien; Hello, Yann; Irisson, Jean-Olivier; Simons, Frederik J.; Nolet, Guust
2015-01-01
Our understanding of the internal dynamics of the Earth is largely based on images of seismic velocity variations in the mantle obtained with global tomography. However, our ability to image the mantle is severely hampered by a lack of seismic data collected in marine areas. Here we report observations made under different noise conditions (in the Mediterranean Sea, the Indian and Pacific Oceans) by a submarine floating seismograph, and show that such floats are able to fill the oceanic data gap. Depending on the ambient noise level, the floats can record between 35 and 63% of distant earthquakes with a moment magnitude M≥6.5. Even magnitudes <6.0 can be successfully observed under favourable noise conditions. The serendipitous recording of an earthquake swarm near the Indian Ocean triple junction enabled us to establish a threshold magnitude between 2.7 and 3.4 for local earthquakes in the noisiest of the three environments. PMID:26289598
NASA Astrophysics Data System (ADS)
Talantsev, E. F.; Crump, W. P.; Tallon, J. L.
2018-01-01
Proximity-induced superconductivity in single-layer graphene (SLG) and in topological insulators represent almost ideal examples of superconductivity in two dimensions. Fundamental mechanisms governing superconductivity in the 2D limit are of central interest for modern condensed-matter physics. To deduce fundamental parameters of superconductor/graphene/superconductor and superconductor/bismuth selenide/superconductor junctions we investigate the self-field critical currents in these devices using the formalism of the Ambegaokar-Baratoff model. Our central finding is that the induced superconducting state in SLG and bismuth selenide each exhibits gapping on two superconducting bands. Based on recent results obtained on ultra-thin films of natural superconductors, including single-atomic layer of iron selenide, double and triple atomic layers of gallium, and several atomic layer tantalum disulphide, we conclude that a two-band induced superconducting state in SLG and bismuth selenide is part of a wider, more general multiple-band phenomenology of currently unknown origin.
NASA Astrophysics Data System (ADS)
Ulrich, Steve; Veilleux, Jean-François; Landry Corbin, François
2009-01-01
The European Student Moon Orbiter (ESMO) spacecraft is a student-built mini satellite being designed for a mission to the Moon. Designing and launching mini satellites are becoming a current trend in the space sector since they provide an economic way to perform innovative scientific experiments and in-flight demonstration of novel space technologies. The generation, storage, control, and distribution of the electrical power in a mini satellite represents unique challenges to the power engineer since the mass and volume restrictions are very stringent. Regardless of these problems, every subsystem and payload equipment must be operated within their specified voltage band whenever they required to be turned on. This paper presents the preliminary design of a lightweight, compact, and reliable power system for ESMO that can generate 720 W. Some of the key components of the EPS include ultra triple-junction (UTJ) GaAs solar cells controlled by maximum power point trackers, and high efficiency Li-ion secondary batteries recharged in parallel.
Slab tears and intermediate-depth seismicity
Meighan, Hallie E.; ten Brink, Uri S.; Pulliam, Jay
2013-01-01
Active tectonic regions where plate boundaries transition from subduction to strike slip can take several forms, such as triple junctions, acute, and obtuse corners. Well-documented slab tears that are associated with high rates of intermediate-depth seismicity are considered here: Gibraltar arc, the southern and northern ends of the Lesser Antilles arc, and the northern end of Tonga trench. Seismicity at each of these locations occurs, at times, in the form of swarms or clusters, and various authors have proposed that each marks an active locus of tear propagation. The swarms and clusters start at the top of the slab below the asthenospheric wedge and extend 30–60 km vertically downward within the slab. We propose that these swarms and clusters are generated by fluid-related embrittlement of mantle rocks. Focal mechanisms of these swarms generally fit the shear motion that is thought to be associated with the tearing process.
NASA Astrophysics Data System (ADS)
Heinze, K. R.
2002-05-01
The volumetric flux through Deception Pass, Washington will be determined by using tidal height differences between Bowman and Cornet Bays, which are located on the seaward and landward sides of Deception Pass respectively in Deception Pass State Park. Hydrolab sensors for measuring temperature, salinity and fluid depth will be attached to public boat docks in each of these bays. The numerical Puget Sound Regional Synthesis Model, PRISM, will be run with and without the flux through Deception Pass and compared to determine theoretically whether or not the flow through Deception Pass plays a significant role in the circulation of the Whidbey Basin, which could affect the circulation in the northern part of the Main Basin known as the Triple Junction. This could influence water movement near the new sewer outfall that King County is proposing to build in that area.
NASA Astrophysics Data System (ADS)
Hoang, Bao; Wong, Frankie; Redick, Tod; Masui, Hirokazu; Endo, Taishi; Toyoda, Kazuhiro; Cho, Mengu
2011-10-01
A series of electrostatic discharge (ESD) tests was performed on solar array test coupons consisting of Advanced Triple Junction InGaP2/InGaAs/Ge solar cells. The motivation for these tests was to evaluate the effects of ESD on solar array design without room temperature vulcanized (RTV) adhesive grout between the string-to-string parallel gaps. To investigate the threshold of permanently sustained secondary arcs, various combinations of gap width, load voltage and string current were tested in a vacuum chamber equipped with an electron beam gun. This ESD test program included the ESD test circuit with simulated panel coverglass flashover. Although ESD events did not result in permanent sustained arcs, the insulation resistance between strings was found to decrease as the number of secondary arcs accumulated in the gap.
NASA Astrophysics Data System (ADS)
Ricco, Antonio J.; Parra, Macarena; Niesel, David; Piccini, Matthew; Ly, Diana; McGinnis, Michael; Kudlicki, Andrzej; Hines, John W.; Timucin, Linda; Beasley, Chris; Ricks, Robert; McIntyre, Michael; Friedericks, Charlie; Henschke, Michael; Leung, Ricky; Diaz-Aguado, Millan; Kitts, Christopher; Mas, Ignacio; Rasay, Mike; Agasid, Elwood; Luzzi, Ed; Ronzano, Karolyn; Squires, David; Yost, Bruce
2011-02-01
We designed, built, tested, space-qualified, launched, and collected telemetered data from low Earth orbit from Pharma- Sat, a 5.1-kg free flying "nanosatellite" that supported microbial growth in 48 microfluidic wells, dosed microbes with multiple concentrations of a pharmaceutical agent, and monitored microbial growth and metabolic activity using a dedicated 3-color optical absorbance system at each microwell. The PharmaSat nanosatellite comprised a structure approximately 10 x 10 x 35 cm, including triple-junction solar cells, bidirectional communications, power-generation and energy- storage system, and a sealed payload 1.2-L containment vessel that housed the biological organisms along with the fluidic, optical, thermal, sensor, and electronic subsystems. Growth curves for S. cerevisiae (Brewer's yeast) were obtained for multiple concentrations of the antifungal drug voriconazole in the microgravity conditions of low Earth orbit. Corresponding terrestrial control experiments were conducted for comparison.
Diffusive and martensitic nucleation kinetics in solid-solid transitions of colloidal crystals
Peng, Yi; Li, Wei; Wang, Feng; Still, Tim; Yodh, Arjun G.; Han, Yilong
2017-01-01
Solid–solid transitions between crystals follow diffusive nucleation, or various diffusionless transitions, but these kinetics are difficult to predict and observe. Here we observed the rich kinetics of transitions from square lattices to triangular lattices in tunable colloidal thin films with single-particle dynamics by video microscopy. Applying a small pressure gradient in defect-free regions or near dislocations markedly transform the diffusive nucleation with an intermediate-stage liquid into a martensitic generation and oscillation of dislocation pairs followed by a diffusive nucleus growth. This transformation is neither purely diffusive nor purely martensitic as conventionally assumed but a combination thereof, and thus presents new challenges to both theory and the empirical criterion of martensitic transformations. We studied how pressure, density, grain boundary, triple junction and interface coherency affect the nucleus growth, shape and kinetic pathways. These novel microscopic kinetics cast new light on control solid–solid transitions and microstructural evolutions in polycrystals. PMID:28504246
Lightweight Solar Paddle with High Specific Power of 150 W/Kg
NASA Astrophysics Data System (ADS)
Shimazaki, Kazunori; Takahashi, Masato; Imaizumi, Mitsuru; Takamoto, Tatsuya; Ito, Takehiko; Nozaki, Yukishige; Kusawake, Hiroaki
2014-08-01
A lightweight solar paddle using space solar sheet (SSS) is currently being developed, which uses glass-type SSS (G-SSS) comprising InGaP/GaAs/InGaAs triple- junction high-efficiency thin-film solar cells. To avoid damage to the G-SSS due to vibration during launch, we adopted a new architecture on a panel. This panel employed a curved frame-type structure, on which the G-SSS is mounted and test models were manufactured to evaluate the vibration tolerance. The dimensions of the 1.0-cm-thick unit panel were about 1.0 × 1.0 m. Acoustic and sine vibration tests were performed on the model and the results demonstrated the high durability of the curved panel in an acoustic and vibration environments. The specific power of the solar paddle using the curved panel is estimated at approximately 150 W/kg at an array power of about 10 kW.
NASA Astrophysics Data System (ADS)
Phillion, A. B.; Cockcroft, S. L.; Lee, P. D.
2009-07-01
The methodology of direct finite element (FE) simulation was used to predict the semi-solid constitutive behavior of an industrially important aluminum-magnesium alloy, AA5182. Model microstructures were generated that detail key features of the as-cast semi-solid: equiaxed-globular grains of random size and shape, interconnected liquid films, and pores at the triple-junctions. Based on the results of over fifty different simulations, a model-based constitutive relationship which includes the effects of the key microstructure features—fraction solid, grain size and fraction porosity—was derived using regression analysis. This novel constitutive equation was then validated via comparison with both the FE simulations and experimental stress/strain data. Such an equation can now be used to incorporate the effects of microstructure on the bulk semi-solid flow stress within a macro- scale process model.
NASA Astrophysics Data System (ADS)
Wang, Qinyan; Pan, Yuanming; Chen, Nengsong; Li, Xiaoyan; Chen, Haihong
2009-05-01
The Quanji Block, situated close to the triple junction of three major Precambrian terranes in China (i.e., the North China Craton, the Yangtze Block and the Tarim Block), is composed of Precambrian metamorphic crystalline basement and an unmetamorphosed Mesozoic-Paleozoic sedimentary cover; it has been interpreted as a remnant continental fragment. Microtextural relationships, garnet trace element compositions, and monazite CHIME ages in paragneisses, schists and granitic leucosomes show two episodes of regional metamorphism in the Quanji Block basement. The first regional metamorphism and accompaning anatexis took place at ˜1.93 Ga; the second regional metamorphism occurred between ˜1.75 and ˜1.71 Ga. Mineral compositions of the first metamorphism, including those of monazite, were significantly disturbed by the second event. These two regional metamorphic episodes were most likely linked to assembly and breakup of the supercontinent Columbia, respectively.
Disclination mediated dynamic recrystallization in metals at low temperature.
Aramfard, Mohammad; Deng, Chuang
2015-09-16
Recrystallization is one of the most important physical phenomena in condensed matter that has been utilized for materials processing for thousands of years in human history. It is generally believed that recrystallization is thermally activated and a minimum temperature must be achieved for the necessary atomic mechanisms to occur. Here, using atomistic simulations, we report a new mechanism of dynamic recrystallization that can operate at temperature as low as T = 10 K in metals during deformation. In contrast to previously proposed dislocation-based models, this mechanism relies on the generation of disclination quadrupoles, which are special defects that form during deformation when the grain boundary migration is restricted by structural defects such as triple junctions, cracks or obstacles. This mechanism offers an alternative explanation for the grain refinement in metals during severe plastic deformation at cryogenic temperature and may suggest a new method to tailor the microstructure in general crystalline materials.
Disclination mediated dynamic recrystallization in metals at low temperature
Aramfard, Mohammad; Deng, Chuang
2015-01-01
Recrystallization is one of the most important physical phenomena in condensed matter that has been utilized for materials processing for thousands of years in human history. It is generally believed that recrystallization is thermally activated and a minimum temperature must be achieved for the necessary atomic mechanisms to occur. Here, using atomistic simulations, we report a new mechanism of dynamic recrystallization that can operate at temperature as low as T = 10 K in metals during deformation. In contrast to previously proposed dislocation-based models, this mechanism relies on the generation of disclination quadrupoles, which are special defects that form during deformation when the grain boundary migration is restricted by structural defects such as triple junctions, cracks or obstacles. This mechanism offers an alternative explanation for the grain refinement in metals during severe plastic deformation at cryogenic temperature and may suggest a new method to tailor the microstructure in general crystalline materials. PMID:26374603
Iraq: Post-Saddam Governance and Security
2009-05-07
Kurdish-inhabited cities into the KRG, including Khanaqin, Mandali, Sinjar, Makhmour, Akre , Hamdaniya, Tal Afar, Tilkaif, and Shekhan. A June 2008...4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a ...collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 07 MAY 2009 2. REPORT TYPE 3. DATES COVERED
Adaptive Reorganization of German Special Operations Forces
2013-12-01
Accordingly, special operations must be commanded and controlled at the highest level to ensure operations remain synchronized with strategic...Ministry of Defense, “White Papers 2006,” German Ministry of Defense, Berlin 2006, 17. 45.Ibid. 46. Franz Joseph Jung , former Federal Minister of the...makers, wishful thinking, and overcontrol of missions executed from afar.”65 In addition, General Carl Stiner, the second Commander in Chief (CINC) of
Mentoring from Afar: Nurse Mentor Challenges in the Canadian Armed Forces.
Neal, Laura D M
2015-06-01
There is an integral connection between leadership, mentoring and professional career progression within the nursing profession. The purpose of this article is to examine recommendations and best practices from the literature and provide a basis to construct a formalized successful mentoring dyad program with guidelines on establishing and maintaining a productive mentoring relationship over long distance. Canadian Armed Forces (CAF) nurses practice within a unique domain both domestically and abroad. The military environment incorporates many aspects of mentoring that could benefit significantly by distance interchange. Supported through examining literature within nursing, CAF publications and other professions along with contrasting successful distance mentoring programs, the findings suggest that a top-down, leadership-driven formal mentoring program could be beneficial to CAF nurses. The literature review outlines definitions of terms for mentorship and distance mentoring or e-mentoring. A cross section of technology is now embedded in all work environments with personal communication devices commonplace. Establishing mentoring relationships from afar is practical and feasible. This article provides a guided discussion for nursing leaders, managers and grassroots nurses to implement mentoring programs over distances. The recommendations and findings of this article could have universal applications to isolated nursing environments outside of Canadian military operational frameworks. Copyright © 2015 Longwoods Publishing.
Temesgen, Tedla Mulatu; Umer, Jemal Yousuf; Buda, Dawit Seyoum; Haregu, Tilahun Nigatu
2012-01-01
Traditional birth attendants (TBAs) have been a subject of discussion in the provision of maternal and newborn health care. The objective of this study was to assess the role of trained traditional birth attendants in maternal and newborn health care in Afar Regional State of Ethiopia. A qualitative study was used where 21 in-depth interviews and 6 focus group discussions were conducted with health service providers, trained traditional birth attendants, mothers, men, kebele leaders and district health personnel. The findings of this study indicate that trained traditional birth attendants are the backbone of the maternal and child health development in pastoralist communities. However, the current numbers are inadequate and cannot meet the needs of the pastoralist communities including antenatal care, delivery, postnatal care and family planning. In addition to service delivery, all respondents agreed on multiple contributions of trained TBAs, which include counselling, child care, immunisation, postnatal care, detection of complication and other social services. Without deployment of adequate numbers of trained health workers for delivery services, trained traditional birth attendants remain vital for the rural community in need of maternal and child health care services. With close supportive supervision and evaluation of the trainings, the TBAs can greatly contribute to decreasing maternal and newborn mortality rates.
Magma-driven antiform structures in the Afar rift: The Ali Sabieh range, Djibouti
NASA Astrophysics Data System (ADS)
Le Gall, Bernard; Daoud, Mohamed Ahmed; Maury, René C.; Rolet, Joël; Guillou, Hervé; Sue, Christian
2010-06-01
The Ali Sabieh Range, SE Afar, is an antiform involving Mesozoic sedimentary rocks and synrift volcanics. Previous studies have postulated a tectonic origin for this structure, in either a contractional or extensional regime. New stratigraphic, mapping and structural data demonstrate that large-scale doming took place at an early stage of rifting, in response to a mafic laccolithic intrusion dated between 28 and 20 Ma from new K-Ar age determinations. Our 'laccolith' model is chiefly supported by: (i) the geometry of the intrusion roof, (ii) the recognition of roof pendants in its axial part, and (iii) the mapping relationships between the intrusion, the associated dyke-sill network, and the upper volcanic/volcaniclastic sequences. The laccolith is assumed to have inflated with time, and to have upwardly bent its sedimentary roof rocks. From the architecture of the ˜1 km-thick Mesozoic overburden sequences, ca. 2 km of roof lifting are assumed to have occurred, probably in association with reactivated transverse discontinuities. Computed paleostress tensors indicate that the minimum principal stress axis is consistently horizontal and oriented E-W, with a dominance of extensional versus strike-slip regimes. The Ali Sabieh laccolith is the first regional-scale magma-driven antiform structure reported so far in the Afro-Arabian rift system.
Mantle convection patterns reveal the enigma of the Red Sea rifting
NASA Astrophysics Data System (ADS)
Petrunin, Alexey; Kaban, Mikhail; El Khrepy, Sami; Al-Arifi, Nassir
2017-04-01
Initiation and further development of the Red Sea rift (RSR) is usually associated with the Afar plume at the Oligocene-Miocene separating the Arabian plate from the rest of the continent. Usually, the RSR is divided into three parts with different geological, tectonic and geophysical characteristics, but the nature of this partitioning is still debatable. To understand origin and driving forces responsible for the tectonic partitioning of the RSR, we have developed a global mantle convection model based on the refined density model and viscosity distribution derived from tectonic, rheological and seismic data. The global density model of the upper mantle is refined for the Middle East based on the high-resolution 3D model (Kaban et al., 2016). This model based on a joint inversion of the residual gravity and residual topography provides much better constraints on the 3D density structure compared to the global model based on seismic tomography. The refined density model and the viscosity distribution based on a homologous temperature approach provide an initial setup for further numerical calculations. The present-day snapshot of the mantle convection is calculated by using the code ProSpher 3D that allows for strong lateral variations of viscosity (Petrunin et al., 2013). The setup includes weak plate boundaries, while the measured GPS velocities are used to constrain the solution. The resulting mantle flow patterns show clear distinctions among the mantle flow patterns below the three parts of the RSR. According to the modeling results, tectonics of the southern part of the Red Sea is mainly determined by the Afar plume and the Ethiopian rift opening. It is characterized by a divergent mantle flow, which is connected to the East African Rift activity. The rising mantle flow is traced down to the transition zone and continues in the lower mantle for a few thousand kilometers south-west of Afar. The hot mantle anomaly below the central part of the RSR can be explained either by the asthenospheric upwelling due to the Red Sea floor spreading or by a secondary plume rising from the transition zone. According to our model, there is no obvious evidence for a direct connection of the hot anomaly below the central part of the RSR and the Afar plume in the upper mantle. In the northern part of the RSR, we found the ridge-axis aligned downstream flow contradicting the hypothesis of the intra-continental rifting in this area. Likely, the tectonics of this area implies a complex interplay of the Dead Sea transform fault development and the Sinai and Mediterranean tectonics. Kaban, M. K., S. El Khrepy, N. Al-Arifi, M. Tesauro, and W. Stolk (2016), Three dimensional density model of the upper mantle in the Middle East: Interaction of diverse tectonic processes, J. Geophys. Res. Solid Earth, 121, doi:10.1002/2015JB012755. Petrunin, A. G.; Kaban, M. K.; Rogozhina, I.; Trubitsyn, V. (2013). Revising the spectral method as applied to modeling mantle dynamics. Geochemistry Geophysics Geosystems (G3), EDOC: 21048.
The chemical deposition of semiconductor thin-films for photovoltaic devices
NASA Astrophysics Data System (ADS)
Breen, Marc Louis
Initially, possible precursors to metal sulfide films formed by metal-organic chemical vapor deposition (MOCVD), the standard commercial technique for manufacturing photovoltaic semiconductors, were synthesized. Triple-junction GaInP 2/GaAs/Ge solar cells, prepared by this method, were studied to understand how chemical properties and material defects can effect the performance of photovoltaic devices. Finally, novel methods for the low-temperature, solution growth of CdS, CdSe, and CuInSe2 photovoltaic materials were targeted which will reduce manufacturing costs and increase the economic feasibility of solar energy conversion. A series of dialkyldithiocarbamate copper, gallium and indium compounds were studied as possible metal sulfide MOCVD precursors. Metal powders were oxidized by dialkylthiurams in 3- or 4-methylpyridine using standard techniques for handling air and moisture-sensitive compounds. Metal chlorides reacted directly with the sodium dialkyldithiocarbamate salts. In these complexes, the metal was found in a roughly octahedral orientation, surrounded by dithiocarbamate ligands and/or solvent molecules. Triple-junction GaInP2/GaAs/Ge cells were composed of thin-films of GaInP2 and GaAs grown monolithically on top of a germanium substrate. Each layer of semiconductor material had a different bandgap and absorbed a different portion of the solar spectrum, thus improving the overall efficiency of the cell. Work focused on dark current-voltage behavior which is known to limit solar cell open-circuit voltage, fill factor, and conversion efficiency. Cells were studied using microscopic and spectroscopic techniques to correlate the effect of physical defects in the materials with poor performance of the devices as evaluated through current vs. voltage measurements. Films of US and CdSe were readily prepared in solution through an "ion-by-ion" deposition of Cd2+ and S2- (or Se 2-) generated from the slow hydrolysis of thiourea (or dimethylthiourea). The bath chemistry was carefully controlled by the adjustment of pH to slow hydrolysis and with chelating agents to sequester the cadmium ions. Triethanolamine and ethylenediamine were both effective chelators with the latter producing thicker, clearer films. Finally, US films were grown over electrodeposited CuInSe2 to form working photovoltaic devices. In summary, contributions were made which (a) advance current methods for manufacturing photovoltaic semiconductors and (b) offer an alternative route to producing new forms of thin-film solar cell devices.
NASA Astrophysics Data System (ADS)
Ogurtani, Tarik Omer; Celik, Aytac; Oren, Ersin Emre
2010-09-01
A systematic study based on the self-consistent dynamical simulations is presented for the spontaneous evolution of an isolated thin solid droplet (bump) on a rigid substrate, which is driven by the surface drift diffusion induced by the capillary and mismatch stresses. In this study, we mainly focused on the development kinetics of the "Stranski-Krastanow" island type morphology, initiated by the nucleation route rather than the surface roughening scheme. The physicomathematical model, which bases on the irreversible thermodynamics treatment of surfaces and interfaces with singularities [T. O. Ogurtani, J. Chem. Phys. 124, 144706 (2006)], furnishes us to have autocontrol on the otherwise free-motion of the triple junction contour line between the substrate and the droplet without presuming any equilibrium dihedral contract (wetting) angles at the edges. During the development of the bell-shaped Stranski-Krastanow island through the mass accumulation at the central region of the droplet via surface drift diffusion with and/or without growth, the formation of an extremely thin wetting layer is observed. This wetting layer has a thickness of a fraction of a nanometer and covers not only the initial computation domain but also its further extension beyond the original boundaries. We also observed the formation of the multiple islands separated by shallow wetting layers above a certain threshold level of the mismatch strain and/or the size (i.e., volume) of the droplets. This threshold level depends on the initial physicochemical data and the aspect ratio (i.e., shape) of the original droplets. During the course of the simulations, we continuously tracked both the morphology (i.e., the peak height, the extension of the wetting layer beyond the domain boundaries, and the triple junction contact angle) and energetic (the global Helmholtz free energy changes associated with the total strain and surface energy variations) in the system. We observed that the morphology related quantities are reaching certain saturation limits or plateaus, when the growth mode is turned-off. On the other hand, the global Helmholtz free energy showed a steady decrease in time even though the total surface free energy of the droplet reaches a stationary value as expected a priori. Based on these observations and according to the accepted irreversible thermodynamic terminology as coined by celebrated Prigogine, we state that the Stranski-Krastanow type island morphologies are genuine stationary nonequilibrium states.
Iraq: Post-Saddam Governance and Security
2009-07-08
cities into the KRG, including Khanaqin, Mandali, Sinjar, Makhmour, Akre , Hamdaniya, Tal Afar, Tilkaif, and Shekhan. A June 2008 UNAMI report leaned...4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a ...collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 08 JUL 2009 2. REPORT TYPE 3. DATES COVERED
Iraq: Post-Saddam Governance and Security
2009-06-08
Makhmour, Akre , Hamdaniya, Tal Afar, Tilkaif, and Shekhan. A June 2008 UNAMI report leaned toward the Kurds on some of these territories, but with...4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a ...collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 08 JUN 2009 2. REPORT TYPE 3. DATES COVERED
2009-06-03
Ninveveh that UNAMI has been studying include: Khanaqin, Sinjar, Makhmour, Akre , Hamdaniya, Tal Afar, Tilkaif, Mandali, and Shekhan. A June 2008 report...Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection...of information if it does not display a currently valid OMB control number. 1. REPORT DATE 03 JUN 2009 2. REPORT TYPE 3. DATES COVERED 00-00
Blunting the Spear: Why Good People Get Out
2015-03-01
Viewed from afar, it appears audacious and self -serving. Upon closer inspection, this same attitude becomes determinant in a fighter pilot’s...tributions to education in the Royal Netherlands Air Force. The Drew Papers are dedicated to promoting the understanding of air and space power theory and...across the finish line—thank you. I would also like to recognize Ms. Sophie Ryan and Ms. Arden Gale. With- out their help, the statistical analysis and
Beleaguered Muslim Fortresses and Ethiopian Imperial Expansion from the 13th to the 16th Century
2008-06-01
year later Emperor Zara Yakob (r. 1433-1468) took the throne of the Ethiopian Empire.84 Sultan Badlay’s area of control roughly covered the Afar plain...101 Ahmed, 2000: 12; Henze, 79-81; Pankhurst, 1982: 62; Iliffe, 59 (Emperor Zara Yakob as part of...the Christian Empire. On the other hand, throughout that time period, the Christian Emperors, particularly Amda Seyon and Zara Yakob, expanded
NASA Technical Reports Server (NTRS)
Bannert, D.
1972-01-01
Apollo 9 photographs of the region northwest of the Gulf of Tadjura were studied. The occurrence of a large region of basement rocks, probably crystalline in nature, with a strongly faulted overlayer was recognized and has been named the Tadjura uplift. Study of this region is adding detailed knowledge to the literature on the phenomenon of plate drift in the southern Red Sea region.
West margin of North America - A synthesis of recent seismic transects
Fuis, G.S.
1998-01-01
A comparison of the deep structure along nine recent transects of the west margin of North America shows many important similarities and differences. Common tectonic elements identified in the deep structure along these transects include actively subducting oceanic crust, accreted oceanic/arc (or oceanic-like) lithosphere of Mesozoic through Cenozoic ages. Cenozoic accretionary prisms, Mesozoic accretionary prisms, backstops to the Mesozoic prisms, and undivided lower crust. Not all of these elements are present along all transects. In this study, nine transects, including four crossing subduction zones and five crossing transform faults, are plotted at the same scale and vertical exaggeration (V.E. 1:1), using the above scheme for identifying tectonic elements. The four subduction-zone transects contain actively subducting oceanic crust. Cenozoic accretionary prisms, and bodies of basaltic rocks accreted in the Cenozoic, including remnants of a large, oceanic plateau in the Oregon and Vancouver Island transects. Rocks of age and composition (Eocene basalt) similar to the oceanic plateau are currently subducting in southern Alaska, where they are doubled up on top of Pacific oceanic crust and have apparently created a giant asperity, or impediment to subduction. Most of the subduction-zone transects also contain Mesozoic accretionary prisms, and two of them, Vancouver Island and Alaska, also contain thick, technically underplated bodies of late Mesozoic/early Cenozoic oceanic lithosphere, interpreted as fragments of the extinct Kula plate. In the upper crust, most of the five transform-fault transects (all in California) reflect: (1) tectonic wedging of a Mesozoic accretionary prism into a backstop, which includes Mesozoic/early Cenozoic forearc rocks and Mesozoic ophiolitic/arc basement rocks: and (2) shuffling of the subduction margin of California by strike-slip faulting. In the lower crust, they may reflect migration of the Mendocino triple junction northward (seen in rocks east of the San Andreas fault) and cessation of Farallon-plate subduction (seen in rocks west of the San Andreas fault). In northern California, lower-crustal rocks east of the San Andreas fault have oceanic-crustal velocity and thickness and contain patches of high reflectivity. They may represent basaltic rocks magmatically underplated in the wake of the migration of the Mendocino triple junction, or they may represent stalled, subducted fragments of the Farallon/Gorda plate. The latter alternative does not fit the accepted 'slabless window' model for the migration of the triple junction. This lower-crustal layer and the Moho are offset at the San Andreas and Maacama faults. In central California, a similar lower-crustal layer is observed west of the San Andreas fault. West of the continental slope, it is Pacitic oceanic crust, but beneath the continent it may represent either Pacific oceanic crust, stalled, subducted fragments (microplates) of the Farallon plate, or basaltic rocks magmatically underplated during subduction of the Pacific/Farallon ridge or during breakup of the subducted Farallon plate. The transect in southern California is only partly representative of regional structure, as the structure here is 3-dimensional. In the upper crust, a Mesozoic prism has been thrust beneath crystalline basement rocks of the San Gabriel Mountains and Mojave Desert. In the mid-crust, a bright reflective zone is interpreted as a possible 'master' decollement that can be traced from the fold-and-thrust belt of the Los Angeles basin northward to at least the San Andreas fault. A Moho depression beneath the San Gabriel Mountains is consistent with downwelling of lithospheric mantle beneath the Transverse Ranges that appears to be driving the compression across the Transverse Ranges and Los Angeles basin. ?? 1998 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ogawa, Yujiro; Kawamura, Kiichiro; Tsunogae, Toshiaki; Mori, Ryota; Chiba, Tae; Sasaki, Tomoyuki
2010-05-01
Four different types of chaotic formations were recognized by the submersible observation around the Japanese trenches, including the Nankai and Sagami troughs, Boso triple junction, Japan trench, and Izu-Bonin arc, and each type is summarized and discussed in view of comparison to the on land examples, such as from the Franciscan, Shimanto and Miura-Boso belts in the circum Pacifc margins, and the Ankara. The submarine geologies are present actual examples to give us a critical key to understanding the formation processes and emplacement mechanisms for the so-called mélange bodies, either sedimentary, tectonic or diapiric. Some are made of alternated beds of sandstone and mudstone that show broken or block-in-matrix fashion, in most cases in muddy matrix. These are commonly developed on the trench landward slope toe of the Nankai and Sagami troughs and Boso triple junction area as well as the Japan trench slope. One type is from the landward slope, but another type is from the oceanward slopes. The former type is in places calcareous cemented, probably caused by hydraulic fracturing by high pore pressure along the thrust fault and oxidized methane-made carbonate precipitation. They are seen on the feet of the thrust-dominated slope and to be compared to the so-called sedimentary mélanges due to the gravitational sliding, which occur because of tectonically induced steep slopes. Most of such thrusts are related to large subduction type earthquakes, and await for further critical consideration on to the relation to the asperity problem. Some of large scale gravitational collapses may be related to the seamount or ridge subduction to the trench, both in case of accretionary and non-accretionary type margins, the former is for the examples from the Nankai and Sagami troughs and the Boso triple junction, latter for the Japan trench. In all cases on land and under the sea in the trench landward slope, some calcareous breccias are associated with methane-fluid supported animals within injection or diapiric intrusion. On the other hand, in the Nankai prism and the on land Miura-Boso Peninsulas, many examples of sandy matrix supported mudstone breccia are a result of liquefaction and injection of such coarse-grained clastic fragments during the earthquake shake and subsequent landsliding. Those deposits are faulted, folded and injected in various stages, some before accretionary prism incorporation, some after. Some are of sedimentary origin by gravitational process, others tectonic or diapiric, but in most cases thrust duplexes and complex folds are common. The third and fourth are mélanges including igneous, metamorphic and/or ophiolitic rock blocks. They look similar to the on land examples in the Franciscan, Mineoka (Boso, central Japan) and the Ankara, and used to be attributable to the diapiric origin, as those that have been already known as serpenitine mud volcanoes with metamorphic block at the foot of the Izu-Bonin-Mariana forearc. However, such analogue need careful consideration how the rock association would form to the final emplacement. As the fourth new type, we found an example of deep (1.5 to 2 GPa) metamorphic rock blocks of eclogitic conditions from the fault line in the schistose serpentinite (antigorite-dominated) in the middle part of the Izu arc near the Ohmachi seamount. This implies for the incorporation and exhumation of igneous and metamorphic rocks in the island arc setting, and may give an adequate analogue to the specific mélange formation of the Franciscan, Mineoka and Ankara.
How Many Plumes In Africa ? The Geochemical Point of View
NASA Astrophysics Data System (ADS)
Pik, R.; Marty, B.; Hilton, D.
2004-12-01
Since the Oligocene, volcanic activity in Africa was particularly important in the Horn of Africa where ~ 1 million km3 of continental flood basalts (the Ethiopian CFB) erupted 30 Ma ago in a time interval of 1-2 Ma or less. The Afar volcanic province which is still magmatically active is thought to represent the surface expression of a deep mantle plume, a view consistent with ultra-low velocity anomalies at the base of the mantle beneath the African superswell and the Ethiopia-Afar volcanic province. This plume origin is also supported by the occurrence of 3He/4He ratios up to 20 Ra (Ra is the 3He/4He ratio of atmospheric helium) much higher than those of mid-ocean ridge basalts (on average, 8,b1 Ra) and thought to characterize mantle material originating from below the 660 km discontinuity. However, a deep mantle origin for "high 3He" material is currently questioned by some models which rather ascribe a lithospheric or shallow asthenospheric origin for such He component. The origin of this signal can be tested with the distribution of He isotopic signatures and other geochemical tracers among different African volcanic provinces. All these other provinces exhibit 3He/4He ratios that are equal to, or lower than, the mean MORB ratio of 7-9 Ra (Cameroon line: 5-7 Ra; Hoggar: 8 Ra, this work; Darfur 5.4-7.5 Ra; West African rift: 5-8.5 Ra, this work; Comores, 6.5 Ra, this work). Although low 3He/4He ratios in intraplate volcanic provinces could result from crustal recycling in the mantle and remobilisation of recycled crust during plume uprise, the upper range of 3He/4He values within the field of MORB values points to the strong involvement of asthenospheric mantle and limited interactions of magmas with the aged African crust. Furthermore, these "low-3He" volcanic provinces are characterized by strongly alkaline to undersaturated volcanism indicative of low degrees of partial melting and a thermal regime of the asthenosphere cooler than the one that gave rise to transitional to tholeiitic Ethiopian CFBs. These geochemical observations also conflict with models that advocate channelling of the Afar hotspot material by pre-existing tectonic features to account for all these African volcanic provinces.
The Axum-Adwa basalt-trachyte complex: a late magmatic activity at the periphery of the Afar plume
NASA Astrophysics Data System (ADS)
Natali, C.; Beccaluva, L.; Bianchini, G.; Siena, F.
2013-08-01
The Axum-Adwa igneous complex consists of a basalt-trachyte (syenite) suite emplaced at the northern periphery of the Ethiopian plateau, after the paroxysmal eruption of the Oligocene (ca 30 Ma) continental flood basalts (CFB), which is related to the Afar plume activity. 40Ar/39Ar and K-Ar ages, carried out for the first time on felsic and basaltic rocks, constrain the magmatic age of the greater part of the complex around Axum to 19-15 Ma, whereas trachytic lavas from volcanic centres NE of Adwa are dated ca 27 Ma. The felsic compositions straddle the critical SiO2-saturation boundary, ranging from normative quartz trachyte lavas east of Adwa to normative (and modal) nepheline syenite subvolcanic domes (the obelisks stones of ancient axumites) around Axum. Petrogenetic modelling based on rock chemical data and phase equilibria calculations by PELE (Boudreau 1999) shows that low-pressure fractional crystallization processes, starting from mildly alkaline- and alkaline basalts comparable to those present in the complex, could generate SiO2-saturated trachytes and SiO2-undersaturated syenites, respectively, which correspond to residual liquid fractions of 17 and 10 %. The observed differentiation processes are consistent with the development of rifting events and formation of shallow magma chambers plausibly located between displaced (tilted) crustal blocks that favoured trapping of basaltic parental magmas and their fractionation to felsic differentiates. In syenitic domes, late- to post-magmatic processes are sometimes evidenced by secondary mineral associations (e.g. Bete Giorgis dome) which overprint the magmatic parageneses, and mainly induce additional nepheline and sodic pyroxene neo-crystallization. These metasomatic reactions were promoted by the circulation of Na-Cl-rich deuteric fluids (600-400 °C), as indicated by mineral and bulk rock chemical budgets as well as by δ18O analyses on mineral separates. The occurrence of this magmatism post-dating the CFB event, characterized by comparatively lower volume of more alkaline products, conforms to the progressive vanishing of the Afar plume thermal effects and the parallel decrease of the partial melting degrees of the related mantle sources. This evolution is also concomitant with the variation of the tectono-magmatic regime from regional lithospheric extension (CFB eruption) to localized rifting processes that favoured magmatic differentiation.
A Heated Debate: Evidence for Two Thermal Upwellings in East Africa
NASA Astrophysics Data System (ADS)
Rooney, T.; Herzberg, C.; Bastow, I.
2008-12-01
East African Cenozoic magmatism records the thermal influence of one or more long-lived mantle plumes. We present primary magma compositions, mantle potential temperatures (Tp), and mantle melt fractions using PRIMELT2 in order to examine the geographic and historical distribution of upper mantle thermal anomalies in East Africa. Regional magmatism can be divided into an early flood basalt phase in Ethiopia/Yemen (~30 Ma), a longer-lived episode of basaltic magmatism in Kenya and Southern Ethiopia (~45 to 23 Ma), and a more recent phase (~23 Ma to Present) that is coincidental with the development of the East African Rift (EAR). We have carefully selected a total of 54 samples from these time periods, excluding erroneous results derived from lavas with evidence of clinopyroxene fractionation or volatile rich and pyroxenitic sources. Our results show that elevated Tp in the Ethiopian/Yemen flood basalt province (Tp max =1520°C) and in the early Kenya/S. Ethiopia magmatism (Tp max = 1510°C) are virtually identical. Our results indicate that the existing geochemical division between high and low Ti Ethiopia/Yemen flood basalts has a thermal basis: low-Ti lavas are hotter than the high-Ti lavas. Magmatism in the region subsequent to 23 Ma exhibits only minor cooling (Tp max = 1490°C), though more substantial cooling is observed in Turkana, Kenya (60°C) and Yemen (80°C). Rift lavas from Ethiopia exhibit a clear decrease in Tp away from Afar southwestward along the EAR before progressively rising again in Southern Ethiopia towards Turkana. South of Turkana, elevated Tp is observed in the western and eastern branches of the EAR surrounding the Tanzania Craton. The modern spatial distribution of Tp in EAR magmatism indicate two distinct heat sources, one in Afar and another under the Tanzania craton. We suggest that hot mantle plume material from Afar and Turkana (which may or may not merge at depth) is channeled beneath the thinned rift lithosphere and provides a significant thermal input to EAR magmatism resulting in elevated Tp, even in magmas clearly derived from the lithosphere. Our results add to the debate generated by numerous global-scale tomographic inversions that presently do not show consensus as to the number and location of low-velocity upwellings beneath East Africa.
NASA Astrophysics Data System (ADS)
Krienitz, M.-S.; Haase, K. M.; Mezger, K.; van den Bogaard, P.; Thiemann, V.; Shaikh-Mashail, M. A.
2009-04-01
New 40Ar/39Ar ages combined with chemical and Sr, Nd, and Pb isotope data for volcanic rocks from Syria along with published data of Syrian and Arabian lavas constrain the spatiotemporal evolution of volcanism, melting regime, and magmatic sources contributing to the volcanic activity in northern Arabia. Several volcanic phases occurred in different parts of Syria in the last 20 Ma that partly correlate with different tectonic events like displacements along the Dead Sea Fault system or slab break-off beneath the Bitlis suture zone, although the large volume of magmas and their composition suggest that hot mantle material caused volcanism. Low Ce/Pb (<20), Nb/Th (<10), and Sr, Nd, and Pb isotope variations of Syrian lavas indicate the role of crustal contamination in magma genesis, and contamination of magmas with up to 30% of continental crustal material can explain their 87Sr/86Sr. Fractionation-corrected major element compositions and REE ratios of uncontaminated lavas suggest a pressure-controlled melting regime in western Arabia that varies from shallow and high-degree melt formation in the south to increasingly deeper regions and lower extents of the beginning melting process northward. Temperature estimates of calculated primary, crustally uncontaminated Arabian lavas indicate their formation at elevated mantle temperatures (Texcess ˜ 100-200°C) being characteristic for their generation in a plume mantle region. The Sr, Nd, and Pb isotope systematic of crustally uncontaminated Syrian lavas reveal a sublithospheric and a mantle plume source involvement in their formation, whereas a (hydrous) lithospheric origin of lavas can be excluded on the basis of negative correlations between Ba/La and K/La. The characteristically high 206Pb/204Pb (˜19.5) of the mantle plume source can be explained by material entrainment associated with the Afar mantle plume. The Syrian volcanic rocks are generally younger than lavas from the southern Afro-Arabian region, indicating a northward progression of the commencing volcanism since the arrival of the Afar mantle plume beneath Ethiopia/Djibouti some 30 Ma ago. The distribution of crustally uncontaminated high 206Pb/204Pb lavas in Arabia indicates a spatial influence of the Afar plume of ˜2600 km in northward direction with an estimated flow velocity of plume material on the order of 22 cm/a.
Seismically imaging the Afar plume
NASA Astrophysics Data System (ADS)
Hammond, J. O.; Kendall, J. M.; Bastow, I. D.; Stuart, G. W.; Keir, D.; Ayele, A.; Ogubazghi, G.; Ebinger, C. J.; Belachew, M.
2011-12-01
Plume related flood basalt volcanism in Ethiopia has long been cited to have instigated continental breakup in northeast Africa. However, to date seismic images of the mantle beneath the region have not produced conclusive evidence of a plume-like structure. As a result the nature and even existence of a plume in the region and its role in rift initiation and continental rupture are debated. Previous seismic studies using regional deployments of sensors in East-Africa show that low seismic velocities underlie northeast Africa, but their resolution is limited to the top 200-300km of the Earth. Thus, the connection between the low velocities in the uppermost mantle and those imaged in global studies in the lower mantle is unclear. We have combined new data from Afar, Ethiopia with 6 other regional experiments and global network stations across Ethiopia, Eritrea, Djibouti and Yemen, to produce high-resolution models of upper mantle P- and S- wave velocities to the base of the transition zone. Relative travel time tomographic inversions show that the top 100km is dominated by focussed low velocity zones, likely associated with melt in the lithosphere/uppermost asthenosphere. Below these depths a broad SW-NE oriented sheet like upwelling extends down to the top of the transition zone. Within the transition zone two focussed sharp-sided low velocity regions exist: one beneath the Western Ethiopian plateau outside the rift valley, and the other beneath the Afar depression. The nature of the transition zone anomalies suggests that small upwellings may rise from a broader low velocity plume-like feature in the lower mantle. This interpretation is supported by numerical and analogue experiments that suggest the 660km phase change and viscosity jump may impede flow from the lower to upper mantle creating a thermal boundary layer at the base of the transition zone. This allows smaller, secondary upwellings to initiate and rise to the surface. Our images of secondary upwellings suggest that there is no evidence for a plume in the classical sense (i.e. a narrow conduit). Instead, we propose that secondary upwellings rise from the base of the transition zone and connect in the upper mantle. This coupled with measurements of seismic anisotropy suggest that mantle material flows northeast towards Arabia, and may be responsible for the dramatic dynamic topography observed in northeast Africa and western Arabia.
NASA Astrophysics Data System (ADS)
Molnar, Nicolas; Cruden, Alexander; Betts, Peter
2017-04-01
The kinematic evolution of the Danakil Block is well constrained but the processes responsible for the formation of an isolated continental segment around 13 Ma ago with an independent pole of rotation are still matter of debate. We performed three-dimensional analogue experiments of rotational continental extension containing a pre-existing linear weakness zones in the lithospheric mantle to investigate the formation of the Red Sea, including the Danakil Block. We imposed a rotational extensional boundary condition that simulates the progressive anticlockwise rotation of the Arabian Plate with respect to the Nubia Plate over the last 13-15 Ma and we simulated the presence of a narrow thermal anomaly related to the northward channelling of Afar plume by varying the viscosity of the model lithospheric mantle. The results from experiments containing a linear zone of weakness oriented at low angles with respect to the rift axis show that early stages of deformation are characterised by the development of two rift sub-parallel compartments that delimit an intra-rift block in the vicinity of the weak lithosphere boundary zone, which are analogous to the two rift branches that confine the Danakil Block in the southern Red Sea. The imposed rotational boundary condition creates a displacement gradient along the intra-rift block and prevents the nucleation of the early rift compartments to the north of the block, enhancing the formation of an independently rotating intra-rift segment. Comparison with geodetic data supports our modelling results, which are also in agreement with the "crank-arm" model of Sichler (1980. La biellette Danakile: un modèle pour l'évolution géodynamique de l'Afar. Bull. la Société Géologique Fr. 22, 925-933). Additional analogue models of i) orthogonal extension with an identical lithospheric mantle weakness and, ii) rotational extension with a homogeneous lithosphere (i.e., no lithospheric mantle weakness) show no evidence of developing rotating intra-rift segments and therefore suggest that if these processes had acted diachronously, the Danakil Block would not have formed. Based on the modelling results, we hypothesize that the Danakil Block formed as a result of the interaction between northward rift propagation and a north-northeast-trending mantle weakness zone, associated with anticlockwise rotation of the Arabian Plate and simultaneous northward channelling of the Afar plume.
Teklehaymanot, Tilahun
2017-07-05
The Afar people inhabit the sub-arid and arid part of Ethiopia. Recurrent drought and invasive encroaching plants are taking out plants that have cultural importance, and threaten the biodiversity and the associated traditional knowledge. Thus, the aim of the current study is to conduct an ethnobotanical survey and document medicinal and edible plants in Yalo Woreda in Afar regional state. A cross-sectional ethnobotanical study was carried out in eight kebeles of Yalo Woreda from October 2015 to December 2016. One hundred sixty informants were selected using purposive sampling. The data on diseases, medicinal and edible plants were collected using semi-structure interview and group discussion. The statistical methods, informant consensus factor, fidelity level, and preference ranking were conducted to analyze the data. One hundred and six plants were reported; gender and age differences had implication on the number of plants reported by informants. The knowledge of medicinal plants among informants of each kebele was not different (p < 0.5) and was not associated in particular with the religious establishment in the kebeles (informant*kebeles, Eta square = 0.19). Family Fabaceae was the major plant species, and shrubs (44%) were dominant plants reported. Leaf (52.94%) and oral (68%) were primary plant part used for remedy preparation and route of application, respectively. The plants with low fidelity values Indigofera articulata (0.25), Cadaba farinosa (0.22), Cadaba rotundifolia (0.19), and Acalypha fruticosa (0.15) were used to treat the category of diseases with high informant consensus value (0.69). Sixteen edible plants were identified that were consumed during wet and dry seasons. Balanites aegyptiaca, Balanites rotundifolia, and Dobera glabra were 'famine food' that were collected and stored for years. People in Yalo Woreda are more dependent on natural resources of the area for their livelihood. The threat of climatic change and encroaching invasive plants on medicinal and edible plants affects the traditional use of plants in the Yalo Woreda. The conservation of the plants in the home garden and natural habitat and integration of edible plants into agroforestry development programs in sub-arid and arid regions has to be encouraged to conserve plants of medical and economic importance.
Whither Conscription in Singapore
2011-06-10
15 June 2004, http://www.mindef.gov.sg/content/imindef/resources/ speeches /2004/15jun04_speech.print.html?Status=1 (accessed 20 April 2011). 2... Speech , 2002), http://www.nato.int/docu/ speech /2002/s020410a.htm (accessed 20 October 2010). 10Charles C. Moskos, John Allen Williams, and David R...from afar through the media. In a speech by the US Secretary of Defense, Robert Gates, he also remarks that with an all volunteer US military, wars
Faith-Based Diplomacy: A Pathway to Marginalizing Al-Qa’ida
2013-03-01
contrast to the Islamist governments 12 that have risen to power since early 2011. The Muslim Brotherhood in Egypt , for example, has advocated a more...Zarqawi who had been misbehaving, and he says, brother, we notice from afar X, Y, and Z is happening. Based on our experience in Egypt and around the...theory: “Al Qaeda is not a traditional hierarchical organization, with a pyramid -style organizational structure, and it does not exercise full command
NASA Astrophysics Data System (ADS)
Benard, F.; Deville, E.; Le Drezen, E.; Loubrieu, B.; Maltese, L.; Patriat, M.; Roest, W.; Thereau, E.; Umber, M.; Vially, R.
2007-12-01
Marine geophysical data (multibeam and seismic lines) acquired in 2007 (ANTIPLAC survey) in the North-South Americas-Caribbean triple point (Central Atlantic, Barracuda and Tiburon ridges area), provide information about the structure, the tectonic processes and the timing of the deformation in this large diffuse zone of polyphase deformation. The deformation of the plate boundary between the north and south Americas is distributed on several structures located in the Atlantic plain, at the front of the Barbados accretionary prism. In this area of deformation of the Atlantic oceanic lithosphere, the main depressions and transform troughs are filled by Late Pliocene-Pleistocene turbidite sediments, especially in the Barracuda trough, north of Barracuda ridge. These sediments are not issued from the Lesser Antilles volcanic arc but they are sourced from the East, probably by the Orinoco turbidite distal system, through channels transiting in the Atlantic abyssal plain. These Late Pliocene- Quaternary sediments show locally spectacular evidences of syntectonic deformation. It can be shown notably that Barracuda ridge includes a pre-existing transform fault system which has been folded and uplifted very recently during Pleistocene times. This recent deformation has generate relieves up to 2 km high with associated erosion processes notably along the northern flank the Barracuda ridge. The subduction of these recently deformed ridges induces deformation of earlier structures within the Barbados accretionary prism. These asperities within the Atlantic oceanic lithosphere which is subducted in the Lesser Antilles active margin are correlated with the zone of intense seismic activity below the volcanic arc.
Governance, Identity, and Counterinsurgency: Evidence from Ramadi and Tal Afar
2013-03-01
seen as the improvement of governance in the form of effective and efficient ad- ministration of government and public services. How- ever, good...army; they fight the United States, and this is seen as an honorable endeav- or; no central control of resistance groups. • Terrorists - foreigners who...to hold their turf in a war against an enemy who seems to be every- where but is not often seen . The cost has been high: in the last 6 weeks, 21
Defeating the U-boat. Inventing Antisubmarine Warfare (Newport Papers Number 36)
2010-08-01
did not explain how this number had been arrived at but claimed it could be achieved by no more than four cruisers and twelve armed liners in the...cover of darkness, ambush and destroy the largest unarmed liners afloat.33 Aube made clear that unlike in the past, ships, their crews, and cargoes...would not be captured but sunk without warning: “Having fol- lowed the liner from afar, come nightfall, the torpedo-boat will, perfectly silently and
SMART-1 operations experience and lessons learnt
NASA Astrophysics Data System (ADS)
Camino, Octavio; Alonso, Maria; Gestal, Daniel; de Bruin, Jurriaan; Rathsman, Peter; Kugelberg, Joakim; Bodin, Per; Ricken, Sascha; Blake, Rick; Voss, Pablo Pardo; Stagnaro, Luca
2007-06-01
SMART-1 is the first of a series of ESA Small Missions for Advance Research and Technology where elements of the platform and the payload technology have been conceived as a demonstration for future cornerstone missions and an early opportunity for science. SMART-1 has also been an opportunity to experiment with new ways of conducting ground operations taking advantage of both increased satellite autonomy and ground automation tools. The paper will focus on three areas: The accumulated performance of the technology demonstration components since launch as the electrical propulsion engine, the triple-junction solar cells, the lithium-ion batteries, the 32 bit CPU ERC32 Single Chip, the CAN bus, the DTU Star Trackers and the complex on-board autonomy. The changes implemented on-board and on the ground during the lunar phase to increase the data return. The pros and contras in some of the choices made for SMART-1, the developments and solutions implemented to mitigate the problems, the tools developed to automate the operations and the distribution of data.
ISS Local Environment Spectrometers (ISLES)
NASA Technical Reports Server (NTRS)
Krause, Linda Habash; Gilchrist, Brian E.
2014-01-01
In order to study the complex interactions between the space environment surrounding the ISS and the ISS surface materials, we propose to use lowcost, high-TRL plasma sensors on the ISS robotic arm to probe the ISS space environment. During many years of ISS operation, we have been able to condut effective (but not perfect) extravehicular activities (both human and robotic) within the perturbed local ISS space environment. Because of the complexity of the interaction between the ISS and the LEO space environment, there remain important questions, such as differential charging at solar panel junctions (the so-called "triple point" between conductor, dielectric, and space plasma), increased chemical contamination due to ISS surface charging and/or thruster activation, water dumps, etc, and "bootstrap" charging of insulating surfaces. Some compelling questions could synergistically draw upon a common sensor suite, which also leverages previous and current MSFC investments. Specific questions address ISS surface charging, plasma contactor plume expansion in a magnetized drifting plasma, and possible localized contamination effects across the ISS.
NASA Astrophysics Data System (ADS)
Junling, Wang; Rui, Wu; Tiancheng, Yi; Yong, Zheng; Rong, Wang
2018-01-01
Temperature-dependent photoluminescence (PL) measurements were carried out to investigate the irradiation effects of 1.0 MeV electrons on the n+- p GaInP top cell of GaInP/GaAs/Ge triple-junction solar cells in the 10-300 K temperature range. The PL intensities plotted against inverse temperature in an Arrhenius plot shows a thermal quenching behavior from 10 K to 140 K and an unusual negative thermal quenching (NTQ) behavior from 150 K to 300 K. The appearance of the PL thermal quenching with increasing temperature confirms that there is a nonradiative recombination center, i.e., the H2 hole trap located at Ev + 0.55 eV, in the cell after electron irradiation. The PL negative thermal quenching behavior may tentatively be attributed to the intermediate states at an energy level of 0.05 eV within the band gap in GaInP top cell.
The Stretched Lens Array (SLA): An Ultra-Light Photovoltaic Concentrator
NASA Technical Reports Server (NTRS)
ONeill, Mark J.; Pisczor, Michael F.; Eskenazi, Michael I.; McDanal, A. J.; George, Patrick J.; Botke, Matthew M.; Brandhorst, Henry W.; Edwards, David L.; Jaster, Paul A.
2002-01-01
A high-performance, ultralight, photovoltaic concentrator array is being developed for space power. The stretched lens array (SLA) uses stretched-membrane, silicone Fresnel lenses to concentrate sunlight onto triple-junction photovoltaic cells. The cells are mounted to a composite radiator structure. The entire solar array wing, including lenses, photovoltaic cell flex circuits, composite panels, hinges, yoke, wiring harness, and deployment mechanisms, has a mass density of 1.6 kg/sq.m. NASA Glenn has measured 27.4% net SLA panel efficiency, or 375 W/sq.m. power density, at room temperature. At GEO operating cell temperature (80 C), this power density will be 300 W/sq.m., resulting in more than 180 W/kg specific power at the full wing level. SLA is a direct ultralight descendent of the successful SCARLET array on NASA's Deep Space 1 spacecraft. This paper describes the evolution from SCARLET to SLA, summarizes the SLA's key features, and provides performance and mass data for this new concentrator array.
Dengler, L.
1992-01-01
The North Coast region of California in the vicinity of Cape Mendocino is one of the state's most seismically active areas, accounting for 25 percent of seismic energy release in California during the last 50 years. the region is located in a geologically dynamic are surrounding the Mendocino triple junction where three of the Earth's tectonic plates join together ( see preceding article by Sam Clarke). In the historic past the North Coast has been affected by earthquakes occurring on the San Andreas fault system to the south, the Mendocino fault to the southwest, and intraplate earthquakes within both the Gorda and North American plates. More than sixty of these earthquakes have caused damage since the mid-1800's. Recent studies indicate that California's North Coast is also at risk with respect to very large earthquakes (magnitude >8) originating along the Cascadia subduction zone. Although the subduction zone has not generated great earthquakes in historic time, paleoseismic evidence suggests that such earthquakes have been generated by the subduction zone in the recent prehistoric past.
HCMM: Soil moisture in relation to geologic structure and lithology, northern California
NASA Technical Reports Server (NTRS)
Rich, E. I. (Principal Investigator)
1979-01-01
The author has identified the following significant results. First-look qualitative geologic evaluation of day- and night-IR images discloses several en echelon linear features extending throughout the central part of the northern coast range in California, across the Mendocino triple junction and into southern Oregon. Preliminary examination of these features with respect to topographic expression, vegetation, sun angle and azimuth, and atmospheric conditions suggests that they may be related to the intracontinental plate boundary (Lake Mountain Fault zone of Herd) of the Humbolt Plate. The linear features, which cut across several climatic zones and differently vegetated regions are not confined to topographic valleys, but cross the ridges and valleys at varying angles. Lithology within the Great Valley Sequence can be detected on a few of the images; however, preliminary evaluation suggests that the thermal banding observed may be a function of sun azimuth or late-day sun angle. Soil moisture, related to lithologic composition cannot be ruled out at this time.
Rotation and strain rate of Sulawesi from geometrical velocity field
NASA Astrophysics Data System (ADS)
Sarsito, D. A.; Susilo, Simons, W. J. F.; Abidin, H. Z.; Sapiie, B.; Triyoso, W.; Andreas, H.
2017-07-01
One of methods that can be used to determine the tectonic deformation status is rate estimation from geometric rotation and strain using quantitative velocity data from GPS observations. Microplate Sulawesi region located in the zone of triple junction (Eurasia, Australia and Philippine Sea Plates) has very complex tectonic and seismic condition, which is why become very important to know its recent deformation status in order to study neo-tectonic and disaster mitigation. Deformation rate quantification is estimated in two parameters: rotation and geodetic strain rate of each GPS station Delaunay triangle in the study area. The analysis in this study is not done using the grids since there is no rheological information at location that can be used as the interpolation-extrapolation constraints. Our analysis reveals that Sulawesi is characterized by rapid rotation in several different domains and compression-strain pattern that varies depending on the type and boundary conditions of microplate. This information is useful for studying neo tectonic deformation status and earthquake disaster mitigation.
Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%
Jia, Jieyang; Seitz, Linsey C.; Benck, Jesse D.; Huo, Yijie; Chen, Yusi; Ng, Jia Wei Desmond; Bilir, Taner; Harris, James S.; Jaramillo, Thomas F.
2016-01-01
Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage. PMID:27796309
Seismic evidence for widespread serpentinized forearc upper mantle along the Cascadia margin
Brocher, T.M.; Parsons, T.; Trehu, A.M.; Snelson, C.M.; Fisher, M.A.
2003-01-01
Petrologic models suggest that dehydration and metamorphism of subducting slabs release water that serpentinizes the overlying forearc mantle. To test these models, we use the results of controlled-source seismic surveys and earthquake tomography to map the upper mantle along the Cascadia margin forearc. We find anomalously low upper-mantle velocities and/or weak wide-angle reflections from the top of the upper mantle in a narrow region along the margin, compatible with recent teleseismic studies and indicative of a serpentinized upper mantle. The existence of a hydrated forearc upper-mantle wedge in Cascadia has important geological and geophysical implications. For example, shearing within the upper mantle, inferred from seismic reflectivity and consistent with its serpentinite rheology, may occur during aseismic slow slip events on the megathrust. In addition, progressive dehydration of the hydrated mantle wedge south of the Mendocino triple junction may enhance the effects of a slap gap during the evolution of the California margin.
NASA Astrophysics Data System (ADS)
Medghalchi, Setareh; Jamebozorgi, Vahid; Bala Krishnan, Arjun; Vincent, Smobin; Salomon, Steffen; Basir Parsa, Alireza; Pfetzing, Janine; Kostka, Aleksander; Li, Yujiao; Eggeler, Gunther; Li, Tong
2018-05-01
The dependence of the microstructure on the degree of deformation in near-surface regions of a 16MnCr5 gear wheel after 2.1 × 106 loading cycles has been investigated by x-ray diffraction analysis, transmission electron microscopy, and atom probe tomography. Retained austenite and large martensite plates, along with elongated lamella-like cementite, were present in a less deformed region. Comparatively, the heavily deformed region consisted of a nanocrystalline structure with carbon segregation up to 2 at.% at grain boundaries. Spheroid-shaped cementite, formed at the grain boundaries and triple junctions of the nanosized grains, was enriched with Cr and Mn but depleted with Si. Such partitioning of Cr, Mn, and Si was not observed in the elongated cementite formed in the less deformed zone. This implies that rolling contact loading induced severe plastic deformation as well as a pronounced annealing effect in the active contact region of the toothed gear during cyclic loading.
On the failure load and mechanism of polycrystalline graphene by nanoindentation
Sha, Z. D.; Wan, Q.; Pei, Q. X.; Quek, S. S.; Liu, Z. S.; Zhang, Y. W.; Shenoy, V. B.
2014-01-01
Nanoindentation has been recently used to measure the mechanical properties of polycrystalline graphene. However, the measured failure loads are found to be scattered widely and vary from lab to lab. We perform molecular dynamics simulations of nanoindentation on polycrystalline graphene at different sites including grain center, grain boundary (GB), GB triple junction, and holes. Depending on the relative position between the indenter tip and defects, significant scattering in failure load is observed. This scattering is found to arise from a combination of the non-uniform stress state, varied and weakened strengths of different defects, and the relative location between the indenter tip and the defects in polycrystalline graphene. Consequently, the failure behavior of polycrystalline graphene by nanoindentation is critically dependent on the indentation site, and is thus distinct from uniaxial tensile loading. Our work highlights the importance of the interaction between the indentation tip and defects, and the need to explicitly consider the defect characteristics at and near the indentation site in polycrystalline graphene during nanoindentation. PMID:25500732
Heat flow and energetics of the San Andreas fault zone.
Lachenbruch, A.H.; Sass, J.H.
1980-01-01
Approximately 100 heat flow measurements in the San Andreas fault zone indicate 1) there is no evidence for local frictional heating of the main fault trace at any latitude over a 1000-km length from Cape Mendocino to San Bernardino, 2) average heat flow is high (ca.2 HFU, ca.80 mW m-2) throughout the 550-km segment of the Coast Ranges that encloses the San Andreas fault zone in central California; this broad anomaly falls off rapidly toward the Great Valley to the east, and over a 200-km distance toward the Mendocino Triple Junction to the northwest. As others have pointed out, a local conductive heat flow anomaly would be detectable unless the frictional resistance allocated to heat production on the main trace were less than 100 bars. Frictional work allocated to surface energy of new fractures is probably unimportant, and hydrologic convection is not likely to invalidate the conduction assumption, since the heat discharge by thermal springs near the fault is negligible. -Authors
Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30.
Jia, Jieyang; Seitz, Linsey C; Benck, Jesse D; Huo, Yijie; Chen, Yusi; Ng, Jia Wei Desmond; Bilir, Taner; Harris, James S; Jaramillo, Thomas F
2016-10-31
Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage.
NASA Astrophysics Data System (ADS)
Chen, Ting; Luo, Haipeng; Furlong, Kevin P.
2017-05-01
On 1st April 2007 a Mw 8.1 megathrust earthquake occurred in the western Solomon Islands of the Southwest Pacific and generated a regional tsunami with run-up heights of up to 12 m. A Bayesian inversion model is constructed to derive fault dip angle and cumulative co-seismic and early post-seismic slip using coral reef displacement measurements, in which both data misfit and moment magnitude are used as constraints. Results show three shallow, high-slip patches concentrated along the trench from west of Ranongga Island to Rendova Island on a fault plane dipping 20°, and a maximum dip slip of 11.6 m beneath Ranongga Island. Considerable subsidence on Simbo Island outboard of the trench on the subducting plate is not well explained with this model, but may be related to the effects of afterslip and/or Simbo Island's location near the triple junction among the Australia, Woodlark and Pacific plates.
The Case against Mercury as the Angrite Parent Body (APB)
NASA Technical Reports Server (NTRS)
Hutson, M. L.; Ruzicka, A. M.; Mittlefehldt, D. W.
2007-01-01
Angrites are not plausibly from Mercury based on their high FeO contents and ancient ages (e.g., [1]). Rather, the early crystallization ages of angrites argues for a small asteroidal-sized parent body for these meteorites (e.g., [2]). Despite this, recently it has been proposed that Mercury is the APB [3, 4, 5, 6]. Preserved corona and symplectite textures and the presence of 120 triple junctions in NWA 2999 have been cited as requiring a planetary origin [3, 4], with the symplectites in NWA 2999 resulting from rapid decompression during uplift via thrust faults on Mercury [4], and the coronas during subsequent cooling at low pressure. Glasses along grain boundaries and exsolution lamellae possibly indicative of rapid melting and cooling in NWA 4950 are cited as evidence of rapid decompression [6]. To explain the discrepancy between spectral observations of the Mercurian surface and the high FeO contents in angrites, an early (4.5 Ga), collisionally-stripped FeO-rich basaltic surface has been suggested for Mercury [5, 6].
Newly velocity field of Sulawesi Island from GPS observation
NASA Astrophysics Data System (ADS)
Sarsito, D. A.; Susilo, Simons, W. J. F.; Abidin, H. Z.; Sapiie, B.; Triyoso, W.; Andreas, H.
2017-07-01
Sulawesi microplate Island is located at famous triple junction area of the Eurasian, India-Australian, and Philippine Sea plates. Under the influence of the northward moving Australian plate and the westward motion of the Philippine plate, the island at Eastern part of Indonesia is collide and with the Eurasian plate and Sunda Block. Those recent microplate tectonic motions can be quantitatively determine by GNSS-GPS measurement. We use combine GNSS-GPS observation types (campaign type and continuous type) from 1997 to 2015 to derive newly velocity field of the area. Several strategies are applied and tested to get the optimum result, and finally we choose regional strategy to reduce error propagation contribution from global multi baseline processing using GAMIT/GLOBK 10.5. Velocity field are analyzed in global reference frame ITRF 2008 and local reference frame by fixing with respect alternatively to Eurasian plate - Sunda block, India-Australian plate and Philippine Sea plates. Newly results show dense distribution of velocity field. This information is useful for tectonic deformation studying in geospatial era.
Song, Young Min; Jeong, Yonkil; Yeo, Chan Il; Lee, Yong Tak
2012-11-05
We present the effect of broadband antireflective coverglasses (BARCs) with moth eye structures on the power generation capability of a sub-receiver module for concentrated photovoltaics. The period and height of the moth eye structures were designed by a rigorous coupled-wave analysis method in order to cover the full solar spectral ranges without transmission band shrinkage. The BARCs with moth eye structures were prepared by the dry etching of silver (Ag) nanomasks, and the fabricated moth eye structures on coverglass showed strongly enhanced transmittance compared to the bare glass with a flat surface, at wavelengths of 300 - 1800 nm. The BARCs were mounted on InGaP/GaAs/Ge triple-junction solar cells and the power conversion efficiency of this sub-receiver module reached 42.16% for 196 suns, which is a 7.41% boosted value compared to that of a module with bare coverglass, without any detrimental changes of the open circuit voltages (Voc) and fill factor (FF).
Song, Young Min; Jeong, Yonkil; Yeo, Chan Il; Lee, Yong Tak
2012-11-05
We present the effect of broadband antireflective coverglasses (BARCs) with moth eye structures on the power generation capability of a sub-receiver module for concentrated photovoltaics. The period and height of the moth eye structures were designed by a rigorous coupled-wave analysis method in order to cover the full solar spectral ranges without transmission band shrinkage. The BARCs with moth eye structures were prepared by the dry etching of silver (Ag) nanomasks, and the fabricated moth eye structures on coverglass showed strongly enhanced transmittance compared to the bare glass with a flat surface, at wavelengths of 300 - 1800 nm. The BARCs were mounted on InGaP/GaAs/Ge triple-junction solar cells and the power conversion efficiency of this sub-receiver module reached 42.16% for 196 suns, which is a 7.41% boosted value compared to that of a module with bare coverglass, without any detrimental changes of the open circuit voltages (V(oc)) and fill factor (FF).
Kinetic model for dependence of thin film stress on growth rate, temperature, and microstructure
NASA Astrophysics Data System (ADS)
Chason, E.; Shin, J. W.; Hearne, S. J.; Freund, L. B.
2012-04-01
During deposition, many thin films go through a range of stress states, changing from compressive to tensile and back again. In addition, the stress depends strongly on the processing and material parameters. We have developed a simple analytical model to describe the stress evolution in terms of a kinetic competition between different mechanisms of stress generation and relaxation at the triple junction where the surface and grain boundary intersect. The model describes how the steady state stress scales with the dimensionless parameter D/LR where D is the diffusivity, R is the growth rate, and L is the grain size. It also explains the transition from tensile to compressive stress as the microstructure evolves from isolated islands to a continuous film. We compare calculations from the model with measurements of the stress dependence on grain size and growth rate in the steady state regime and of the evolution of stress with thickness for different temperatures.
High-concentration planar microtracking photovoltaic system exceeding 30% efficiency
NASA Astrophysics Data System (ADS)
Price, Jared S.; Grede, Alex J.; Wang, Baomin; Lipski, Michael V.; Fisher, Brent; Lee, Kyu-Tae; He, Junwen; Brulo, Gregory S.; Ma, Xiaokun; Burroughs, Scott; Rahn, Christopher D.; Nuzzo, Ralph G.; Rogers, John A.; Giebink, Noel C.
2017-08-01
Prospects for concentrating photovoltaic (CPV) power are growing as the market increasingly values high power conversion efficiency to leverage now-dominant balance of system and soft costs. This trend is particularly acute for rooftop photovoltaic power, where delivering the high efficiency of traditional CPV in the form factor of a standard rooftop photovoltaic panel could be transformative. Here, we demonstrate a fully automated planar microtracking CPV system <2 cm thick that operates at fixed tilt with a microscale triple-junction solar cell at >660× concentration ratio over a 140∘ full field of view. In outdoor testing over the course of two sunny days, the system operates automatically from sunrise to sunset, outperforming a 17%-efficient commercial silicon solar cell by generating >50% more energy per unit area per day in a direct head-to-head competition. These results support the technical feasibility of planar microtracking CPV to deliver a step change in the efficiency of rooftop solar panels at a commercially relevant concentration ratio.
Wang, Min; Ma, Pengsha; Yin, Min; Lu, Linfeng; Lin, Yinyue; Chen, Xiaoyuan; Jia, Wei; Cao, Xinmin; Chang, Paichun; Li, Dongdong
2017-09-01
Antireflection (AR) at the interface between the air and incident window material is paramount to boost the performance of photovoltaic devices. 3D nanostructures have attracted tremendous interest to reduce reflection, while the structure is vulnerable to the harsh outdoor environment. Thus the AR film with improved mechanical property is desirable in an industrial application. Herein, a scalable production of flexible AR films is proposed with microsized structures by roll-to-roll imprinting process, which possesses hydrophobic property and much improved robustness. The AR films can be potentially used for a wide range of photovoltaic devices whether based on rigid or flexible substrates. As a demonstration, the AR films are integrated with commercial Si-based triple-junction thin film solar cells. The AR film works as an effective tool to control the light travel path and utilize the light inward more efficiently by exciting hybrid optical modes, which results in a broadband and omnidirectional enhanced performance.
Electrical-optical characterization of multijunction solar cells under 2000X concentration
NASA Astrophysics Data System (ADS)
Bonsignore, Gaetano; Gallitto, Aurelio Agliolo; Agnello, Simonpietro; Barbera, Marco; Candia, Roberto; Cannas, Marco; Collura, Alfonso; Dentici, Ignazio; Gelardi, Franco Mario; Cicero, Ugo Lo; Montagnino, Fabio Maria; Paredes, Filippo; Sciortino, Luisa
2014-09-01
In the framework of the FAE "Fotovoltaico ad Alta Efficienza" ("High Efficiency Photovoltaic") Research Project (PO FESR Sicilia 2007/2013 4.1.1.1), we have performed electrical and optical characterizations of commercial InGaP/InGaAs/Ge triple-junction solar cells (1 cm2) mounted on a prototype HCPV module, installed in Palermo (Italy). This system uses a reflective optics based on rectangular off-axis parabolic mirror with aperture 45×45 cm2 leading to a geometrical concentration ratio of 2025. In this study, we report the I-V curve measured under incident power of about 700 W/m2 resulting in an electrical power at maximum point (PMP) of 41.4 W. We also investigated the optical properties by the electroluminescence (EL) spectra of the top (InGaP) and middle (InGaAs) subcells. From the analysis of the experimental data we extracted the bandgap energies of these III-V semiconductors in the range 305÷385 K.
NASA Technical Reports Server (NTRS)
Singh, G.
1973-01-01
An experimental study for creating population differences in the ground states of alkali atoms (Cesium 133) is presented. Studies made on GaAs-junction lasers and the achievement of population inversions among the hyperfine levels in the ground state of Cs 133 by optically pumping it with radiation from a GaAs diode laser. Laser output was used to monitor the populations in the ground state hyperfine levels as well as to perform the hyperfine pumping. A GaAs laser operated at about 77 K was used to scan the 8521 A line of Cs 133. Experiments were performed both with neon-filled and with paraflint-coated cells containing the cesium vapor. Investigations were also made for the development of the triple resonance coherent pulse technique and for the detection of microwave induced hyperfine trasistions by destroying the phase relationships produced by a radio frequency pulse. A pulsed cesium resonance lamp developed, and the lamp showed clean and reproducible switching characteristics.
The Space Technology 5 Power System Design
NASA Technical Reports Server (NTRS)
Stewart, Karen D.; Hernandez-Pellerano, Amri I.
2005-01-01
The Space Technology 5 (ST5) mission is a NASA New Millennium Program (NMP) project that was developed to validate new technologies for future missions and to demonstrate the feasibility of building and launching multiple, miniature spacecraft that can operate as science probes, collecting research quality measurements. The three satellites in the ST5 constellation will be launched into a sun synchronous LEO (Low Earth Orbit) in early 2006. ST5 fits in the 25 kilogram and 24 Watt class of miniature but fully capable spacecraft. The power system design features the use of new technology components and a low voltage power bus. In order to hold the mass and volume low and to qualify new technologies for future use in space, high efficiency triple junction solar cells and a lithium ion battery were baselined into the design. The Power System Electronics (PSE) was designed for a high radiation environment and uses hybrid microcircuits for power switching and over current protection. The ST5 power system architecture and technologies will be presented.
NASA Astrophysics Data System (ADS)
Thomas, Joseph; Sudhakar, M.; Agarwal, Anil; Sankaran, M.; Mudramachary, P.
2008-09-01
The INSAT 4CR spacecraft, the third in the INSAT 4 series of Indian Space Research Organization (ISRO)'s Communication satellite program, is a high power communication satellite in Geo- stationary Earth Orbit (GEO), configured using the ISRO I2K bus. The primary power is provided by two-wing sun tracking, deployable solar array and the eclipse load requirement is supported by two 70 Ah nickel hydrogen batteries. The power output of the solar array is regulated by Sequential Switching Shunt Regulators to 42V±0.5V. The salient feature of the solar array design is that it uses the new generation multi junction solar cells for all the four panels of size 2.54m x 1.525m to meet the higher power requirement with the available array area. The solar panel fabrication process with the Advanced Triple Junction (ATJ) solar cells from M/s. EMCORE, USA, has been demonstrated for the GEO life cycle through qualification coupon fabrication and testing.This paper describes the INSAT 4CR solar array photovoltaic assemblies design, layout optimization and realization of the Flight Model (FM) panels. It focuses on the power generation prediction, electrical performance measurement under Large Area Pulsed Sun Simulator (LAPSS) and verification of the ground level test results. The indigenously built Geostationary Launch Vehicle (GSLV F04) has successfully launched the INSAT 4CR spacecraft into the orbit on September 2nd, 2007. This paper also presents the analysis of telemetry data to validate the initial phase in-orbit performance of the solar array with prediction.
NASA Astrophysics Data System (ADS)
Betton, P. J.; Civetta, L.
1984-11-01
Neodymium isotope and REE analyses of recent volcanic rocks and spinel lherzolite nodules from the Afar area are reported. The 143Nd/ 144Nd ratios of the volcanic rocks range from 0.51286 to 0.51304, similar to the range recorded from Iceland. However, the 87Sr/ 86Sr ratios display a distinctly greater range (0.70328-0.70410) than those reported from the primitive rocks of Iceland. Whole rock samples and mineral separates from the spinel lherzolite nodules exhibit uniform 143Nd/ 144Nd ratios (ca. 0.5129) but varied 87Sr/ 86Sr ratios in the range 0.70427-0.70528. The Sr sbnd Nd isotope variations suggest that the volcanic rocks may have been produced by mixing between two reservoirs with distinct isotopic compositions. Two possible magma reservoirs in this area are the source which produced the "MORB-type" volcanics in the Red Sea and Gulf of Aden and the anomalous source represented by the nodule suite. The isotopic composition of the volcanics is compatible with mixing between these two reservoirs. It is shown that the anomalous source with a high 87Sr/ 86Sr ratio cannot have been produced by simple processes of partial melting and mixing within normal mantle. Instead the high 87Sr/ 86Sr is equated with a fluid phase. A primitive cognate fluid, subducted seawater or altered oceanic lithosphere may have been responsible for the generation of the source with a high 87Sr/ 86Sr ratio.
2013-01-01
Background A cross-sectional study was carried out in four districts of the Afar region in Ethiopia to determine the prevalence of brucellosis in camels, and to identify risky practices that would facilitate the transmission of zoonoses to humans. This study involved testing 461 camels and interviewing 120 livestock owners. The modified Rose Bengal plate test (mRBPT) and complement fixation test (CFT) were used as screening and confirmatory tests, respectively. SPSS 16 was used to analyze the overall prevalence and potential risk factors for seropositivity, using a multivariable logistic regression analysis. Results In the camel herds tested, 5.4% had antibodies against Brucella species, and the district level seroprevalence ranged from 11.7% to 15.5% in camels. The logistic regression model for camels in a herd size > 20 animals (OR = 2.8; 95% CI: 1.16-6.62) and greater than four years of age (OR = 4.9; 95% CI: 1.45-16.82) showed a higher risk of infection when compared to small herds and those ≤ 4 years old. The questionnaire survey revealed that most respondents did not know about the transmission of zoonotic diseases, and that their practices could potentially facilitate the transmission of zoonotic pathogens. Conclusions The results of this study revealed that camel brucellosis is prevalent in the study areas. Therefore, there is a need for implementing control measures and increasing public awareness in the prevention methods of brucellosis. PMID:24344729
Hotspots and superswell beneath Africa inferred from surface wave anisotropic tomography.
NASA Astrophysics Data System (ADS)
Sebai, A.; Stutzmann, E.; Montagner, J.-P.; Sicilia, D.; Beucler, E.
2003-04-01
In order to study the interaction at depth of hotspots with lithosphere and asthenosphere beneath Africa, we have determined an anisotropic tomographic model using Rayleigh and Love waves. We computed phase velocities along 1480 Rayleigh wave and 452 Love wave paths crossing Africa. For each path, fundamental mode and overtone phase velocities are computed in the period range 46-240sec by waveform inversion using the method derived by Beucler at al. (2003). These phase velocities are corrected for the effect of shallow layers and their lateral variations in velocity and anisotropy are then obtained using the method of Montagner (1986). Rayleigh and Love wave phase velocity maps are inverted together with the corresponding errors to obtain the anisotropic 3D S-wave velocity model. In this model, the Afar hotspot corresponds to the strongest negative velocity anomaly. The Tibesti and Darfur hotspots are located close to the Afar zone and the possible connection between the two areas is investigated. At shallow depth, the rift system of West and Central Africa is characterized by a negative velocity anomaly where it is difficult to separate the influence of the Mt Cameroun, Darfur and Tibesti hospots. In the superswell area, the positive anomaly at shallow depth is consistent with the existence of elevated plateaux and high bathymetry suggesting that the superplume is pushing the lithosphere upward. Anisotropy directions are in agreement with the convergence of Africa toward Eurasia with a roughly North-South fast direction.
NASA Astrophysics Data System (ADS)
Blecha, V.
A new Bouguer anomaly map of western part of southern Yemen margin has been compiled. Densities of rock samples from main geological units (Precambrian base- ment, Mesozoic sediments, Tertiary volcanites) have been measured and used for grav- ity modeling. Regional gravity map indicates decrease of thickness of continental crust from volcanites of the Yemen Trap Series towards the coast of the Gulf of Aden. Most remarkable feature in the map of residual anomalies is a positive anomaly over the Dhala graben. The Dhala graben is a prominent geological structure in the area of study trending parallel to the Red Sea axis. Gravity modeling on a profile across the Dhala graben presumes intrusive plutonic rocks beneath the graben. There are two other areas in the southwestern tip of Arabia, which have essentially the same struc- tural position as the Dhala graben: the Jabal Tirf volcanic rift zone in the southern Saudi Arabia and Jabal Hufash extensional zone in northern Yemen. All three areas extend along the line trending parallel to the Red Sea axis with length of about 500 km. The line coincides with the axis of Afar (Danakil) depression after Arabia is shifted and rotated back to Africa. These facts imply conclusion that the Oligocene - Early Miocene magmatic activity on the Jabal Tirf - Dhala lineament is related to the same original deep tectonic zone, forming present-day Afar depression and still active.
Rethinking geochemical feature of the Afar and Kenya mantle plumes and geodynamic implications
NASA Astrophysics Data System (ADS)
Meshesha, Daniel; Shinjo, Ryuichi
2008-09-01
We discuss the spatial and temporal variation in the geochemistry of mantle sources which were sampled by the Eocene to Quaternary mafic magmas in the vicinity of the Afar and Kenya plume upwelling zones, East Africa. Despite the contributions of lithospheric and crustal sources, carefully screened Eocene to Quaternary mafic lavas display wide range of Sr-Nd-Pb isotopic and incompatible trace elemental compositions that can be attributed to significant intraplume heterogeneity. The geochemical variations reflect the involvement of at least four mantle plume components as sources for the northeastern Africa magmatism: (1) isotopically depleted but trace element-enriched component; (2) component characterized by radiogenic Pb isotope signatures (HIMU?); (3) enriched mantle-like component; and (4) high-3He/4He-type (as HT2-type basalts) plume component. The first component disappears in the Miocene-Quaternary magmatism, and the second component is hardly recognized after the eruption of Miocene basalt in southern Ethiopia. Plume-unrelated depleted asthenosphere starts to involve at a nascent stage of seafloor spreading centers in the Red Sea and Gulf of Aden. The other two-plume components have persisted from the late Eocene to present, but their proportions have changed through time and space. We propose a model of multiple impingements of plumelets within the broad upwelling zone connected to the African Superplume in the lower mantle beneath southern Africa. The plumelet contains a matrix of high-3He/4He-type component with blobs, streaks, or ribbons of other components.
The Aysen (Southern Chile) 2007 Seismic Swarm: Volcanic or Tectonic Origin?
NASA Astrophysics Data System (ADS)
Comte, D.; Gallego, A.; Russo, R.; Mocanu, V.; Murdie, R.; Vandecar, J.
2007-05-01
The Aysen seismic swarm began January 23, 2007, with a magnitude 5.2 (USGS) earthquake and, after an apparent decrease in activity, continued with a magnitude 5.6 event on February 26. The swarm is characterized by numerous felt earthquakes of small to moderate magnitude, located at crustal depths beneath the Aysen Canal, a prominent fiord of the Chilean littoral. The region is characterized by the subduction of an active oceanic spreading ridge: the Chile Ridge, the divergent Nazca-Antarctic plate boundary, is currently subducting beneath continental South America along the Chile Trench at approximately 46.5°S, forming a plate triple junction in the vicinity of the Taitao Peninsula, somewhat south and west of the swarm. Also, the Liquine-Ofqui dextral strike- slip fault traverses the Aysen Canal in the vicinity of the swarm. This fault has been interpreted as a 1000 km long dextral intra-arc strike-slip fault zone, consisting of two major strands which extend north from the Chile Margin triple junction. The Liquiñe-Ofqui system is marked by several pull-apart basins along its trace through the area. Seismic activity along the Liquiñe-Ofqui fault zone has been poorly studied to date, largely because teleseismic events clearly related to the fault have been few, and southern hemisphere seismic stations are lacking. However, we deployed a dense temporary broad-band seismic network both onland and on the islands in the Aysen region, which allowed us to capture the initial phases of the swarm on some 20 stations, and to determine the background seismicity patterns in this area for the two years preceding the swarm. The swarm could be caused by several processes: the spatial and depth distribution of the events suggests that they are well correlated with reactivation of the southern end of the Liquiñe-Ofqui fault, as defined by geologic studies and onshore gravity data collected in southern Chile. The swarm may be related to formation of new volcanic center between Volcan Hudson (last erupted 1991) and Volcan Maca. Given uncertainties in the event locations, the 2007 seismic swarm could also result from a combination of tectonic motions on the Liquiñe-Ofqui fault system and magmatic arc activity. The two earthquakes with magnitudes over 5 and the numerous felt earthquake of the swarm clearly indicate that seismic hazard estimations in this previously quiescent region must be re-estimated.
NASA Astrophysics Data System (ADS)
Smith, D. K.; Montesi, L. G.; Schouten, H.; Zhu, W.
2011-12-01
A succession of short-lived, E-W trending cracks at the Galapagos Triple Junction north and south of the Cocos-Nazca (C-N) Rift, has been explained by a simple crack interaction model. The locations of where the cracks initiate are controlled by tensile stresses generated at the East Pacific Rise (EPR) by two interacting cracks: One representing the north-south trending EPR, and the other the large, westward propagating C-N Rift, whose tip is separated from the EPR by a distance D. The model predicts symmetric cracking at the EPR north and south of the C-N Rift tip. Symmetry in the distribution of cracks north and south of the C-N Rift is observed and especially remarkable between 2.5 and 1.5 Ma when the rapid jumping of cracks toward the C-N Rift appears synchronous. The rapid jumping can be explained by decreasing D, which means that the tip of the C-N Rift was moving closer to the EPR. Symmetry of cracking breaks down at 1.5 Ma, however, with the establishment of the Dietz Deep Rift, the southern boundary of the Galapagos microplate. Symmetry of cracking also breaks down on older crust to the east between about 100 35'W and 100 45'W (about 2.6 Ma) where a rapid jumping of cracks toward the C-N Rift is observed in the south cracking region. There is no evidence of similar rapid jumping in the north cracking region. It could be simply that the response to changing the value of D is not always as predicted. It could also be that the shape of the EPR has not always been symmetric about the C-N Rift, as assumed in the model. Currently, an overlapping spreading center with a 15 km east-west offset between the limbs of the EPR has formed at 1 50'N. We assess the importance of the geometry of the EPR on the crack interaction model. The model has been modified to include a ridge offset similar to what is observed today. We find that the region of stress enhancement at the EPR (where cracks initiate) is subdued south of the C-N Rift tip because of the EPR offset. It is possible, therefore, that the asymmetry in cracking observed since about 1.5 Ma may be explained in part by the presence of a ridge offset south of the C-N Rift tip.
Food-web complexity across hydrothermal vents on the Azores triple junction
NASA Astrophysics Data System (ADS)
Portail, Marie; Brandily, Christophe; Cathalot, Cécile; Colaço, Ana; Gélinas, Yves; Husson, Bérengère; Sarradin, Pierre-Marie; Sarrazin, Jozée
2018-01-01
The assessment and comparison of food webs across various hydrothermal vent sites can enhance our understanding of ecological processes involved in the structure and function of biodiversity. The Menez Gwen, Lucky Strike and Rainbow vent fields are located on the Azores triple junction of the Mid-Atlantic Ridge. These fields have distinct depths (from 850 to 2320 m) and geological contexts (basaltic and ultramafic), but share similar faunal assemblages defined by the presence of foundation species that include Bathymodiolus azoricus, alvinocarid shrimp and gastropods. We compared the food webs of 13 faunal assemblages at these three sites using carbon and nitrogen stable isotope analyses (SIA). Results showed that photosynthesis-derived organic matter is a negligible basal source for vent food webs, at all depths. The contribution of methanotrophy versus autotrophy based on Calvin-Benson-Bassham (CBB) or reductive tricarboxylic acid (rTCA) cycles varied between and within vent fields according to the concentrations of reduced compounds (e.g. CH4, H2S). Species that were common to vent fields showed high trophic flexibility, suggesting weak trophic links to the metabolism of chemosynthetic primary producers. At the community level, a comparison of SIA-derived metrics between mussel assemblages from two vent fields (Menez Gwen & Lucky Strike) showed that the functional structure of food webs was highly similar in terms of basal niche diversification, functional specialization and redundancy. Coupling SIA to functional trait approaches included more variability within the analyses, but the functional structures were still highly comparable. These results suggest that despite variable environmental conditions (physico-chemical factors and basal sources) and faunal community structure, functional complexity remained relatively constant among mussel assemblages. This functional similarity may be favoured by the propensity of species to adapt to fluid variations and practise trophic flexibility. Furthermore, the different pools of species at vent fields may play similar functions in the community such as the change in composition does not affect the overall functional structure. Finally, the absence of a relationship between the functional structure and taxonomic diversity as well as the high overlap between species' isotopic niches within communities indicates that co-occuring species may have redundant functions. Therefore, the addition of species within in a functional group does not necessarily lead to more complexity. Overall, this study highlights the complexity of food webs within chemosynthetic communities and emphasizes the need to better characterize species' ecological niches and biotic interactions.
NASA Astrophysics Data System (ADS)
Doubre, C.; Socquet, A.; Masson, F.; Jacques, E.; Grandin, R.; Nercessian, A.; Kassim, M.; Vergne, J.; Diament, M.; Hinderer, J.; Ayele, A.; Lewi, E.; Calais, E.; Peltzer, G.; Toussaint, R.; de Chaballier, J.; Ballu, V. S.; Luck, B.; King, G. C.; Vigny, C.; Cattin, R.; Tiberi, C.; Kidane, T.; Jalludin, M.; Maggi, A.; Dorbath, C.; Manatschal, G.; Schmittbuhl, J.; Le Moigne, N.; Deroussi, S.
2009-12-01
The DoRA project aims to conduct complementary studies in two volcano-tectonic rifts in the Afar Depression. In Northern Afar, the Wal’is Dabbahu Rift (WD, Ethiopia) is currently undergoing a major rifting episode. This event started in September 2005 with a significant seismic activity. InSAR data revealed the injection of a 65 km-long mega-dyke that opened by up to 8 m, the slip of numerous normal faults and opening of fissures, and a rhyolitic eruption. Similarly, the Asal-Ghoubbet Rift (AG, Djibouti) was affected in 1978 by a smaller episode of rifting associated with the intrusion of a 2 m wide dyke into the crust. Since then, a large catalog of geodetic data that includes recent InSAR time series reveals the importance of non-steady deformation controlling the rift dynamics. Our goal is to gain an understanding of such volcano-tectonic segments on several time scales, including the dyking period itself and the post-event period. The study of the behavior of the AG Rift during its whole post-rifting period offers an image at t+30 years of the WD segment, while keeping in mind important structural and scale differences. First, we propose to build a complete and accurate set of geodetic data (InSAR, cGPS, GPS), covering the period under study. With a narrow temporal sample window, we will precisely describe the aseismic slip affecting the normal faults of these rifts, the periods of sudden slip and/or slip acceleration but also measure the deformation associated with probable future dyke intrusion. Second, we aim to constrain the origin of these displacements and their relation with mass transfers within the crust. Series of gravity measurements will be pursue or initiated in both rifts. Third, the recording of seismic activity is essential to constrain the relative importance of seismic and aseismic deformation. This will also help to evaluate the thickness of the seismogenic layer. Together with structural data collected during a seismic survey in the AG Rift, these results will offer crucial constraints on modeling the rifting dynamics in order to test the relative influences of the rheology, the fault/dyke geometry and fluids on the rupture mechanics, the viscous relaxation, dyke intrusion/inflation and aseismic slip and their interactions. Our multidisciplinary approach should provide important new constraints on the dynamics of rifting along divergent plate boundaries, and ultimately, in other geodynamical contexts affected by aseismic fault slip transients.
Results of the 1995 JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1995-01-01
The Jet Propulsion Laboratory (JPL) solar cell calibration program was conceived to produce reference standards for the purpose of accurately setting solar simulator intensities. The concept was to fly solar cells on a high-altitude balloon, to measure their output at altitudes near 120,000 ft (36.6 km), to recover the cells, and to use them as reference standards. The procedure is simple. The reference cell is placed in the simulator beam, and the beam intensity is adjusted until the reference cell reads the same as it read on the balloon. As long as the reference cell has the same spectral response as the cells or panels to be measured, this is a very accurate method of setting the intensity. But as solar cell technology changes, the spectral response of the solar cells changes also, and reference standards using the new technology must be built and calibrated. Until the summer of 1985, there had always been a question as to how much the atmosphere above the balloon modified the solar spectrum. If the modification was significant, the reference cells might not have the required accuracy. Solar cells made in recent years have increasingly higher blue responses, and if the atmosphere has any effect at all, it would be expected to modify the calibration of these newer blue cells much more so than for cells made in the past. JPL has been flying calibration standards on high-altitude balloons since 1963 and continues to organize a calibration balloon flight at least once a year. The 1995 flight was the 48th flight in this series. The 1995 flight incorporated 46 solar cell modules from 7 different participants. The payload included Si, amorphous Si, GaAs, GaAs/Ge, dual junction cells, top and bottom sections of dual junction cells, and a triple junction cell. A new data acquisition system was built for the balloon flights and flown for the first time on the 1995 flight. This system allows the measurement of current-voltage (I-V) curves for 20 modules in addition to measurement of modules with fixed loads as had been done in the past.
Progress in Solving the Elusive Ag Transport Mechanism in TRISO Coated Particles: What is new?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isabella Van Rooyen
2014-10-01
The TRISO particle for HTRs has been developed to an advanced state where the coating withstands internal gas pressures and retains fission products during irradiation and under postulated accidents. However, one exception is Ag that has been found to be released from high quality TRISO coated particles when irradiated and can also during high temperature accident heating tests. Although out- of- pile laboratory tests have never hither to been able to demonstrate a diffusion process of Ag in SiC, effective diffusion coefficients have been derived to successfully reproduce measured Ag-110m releases from irradiated HTR fuel elements, compacts and TRISO particlesmore » It was found that silver transport through SiC does not proceed via bulk volume diffusion. Presently grain boundary diffusion that may be irradiation enhanced either by neutron bombardment or by the presence of fission products such as Pd, are being investigated. Recent studies of irradiated AGR-1 TRISO fuel using scanning transmission electron microscopy (STEM), transmission kukuchi diffraction (TKD) patterns and high resolution transmission electron microscopy (HRTEM) have been used to further the understanding of Ag transport through TRISO particles. No silver was observed in SiC grains, but Ag was identified at triple-points and grain boundaries of the SiC layer in the TRISO particle. Cadmium was also found in some of the very same triple junctions, but this could be related to silver behavior as Ag-110m decays to Cd-110. Palladium was identified as the main constituent of micron-sized precipitates present at the SiC grain boundaries and in most SiC grain boundaries and the potential role of Pd in the transport of Ag will be discussed.« less
2012-05-17
throughout Iraq to cities such as Tal Afar, Baghdad, Mosul, Baqubah, and Ar Ramadi. However, in their attempt to control Anbar Province, al Qaeda in Iraq ...conflicts only grew stronger and by the beginning of 2006, Iraq was on the verge of civil war due to systematic terrorist attacks by al Qaeda in Iraq and...sec. Middle East, http://www.nytimes.com/2011/ 12 /16/world/middleeast/panetta-in-baghdad-for- iraq -military-handover- ceremony.html?pagewanted=all
Arynes and Heteroarynes in the Synthesis of Dibenzocinnolines, Diazaxanthyledenes, and Triptycenes
NASA Astrophysics Data System (ADS)
Suh, Sung-Eun
Arynes are known as useful synthons in organic synthesis. In particular, reactions accompanying multiple arynes have been employed for the construction of arenes and heteroarenes of complex molecules. Employing known reactivity modes of arynes such as cycloadditions, nucleophilic addition, bond insertion, Alder-ene, annulation, desaturation, and polymerization, a wide variety of transformation of reactive starting materials led to the development of novel fluorophores and energy materials, as well as the synthesis of natural products. Harnessing the highly reactive arynes, the triple aryne-tetrazine (TAT) reaction was disclosed as a novel metal-free synthetic method for the preparation of dibenzo[de,g]cinnoline derivatives in a single operation. Dibenzo[de,g]cinnolines have been shown as potential fluorescent probes in cells. For the mechanism, multiple mechanistic steps of the TAT reaction were scrutinized by isolation of intermediates and byproducts as well as a computational study on the transition states and the competitive reactions pathways. A facile two-step synthesis of the reported structure of xylopyridine A was developed from a pyridyne precursor and 2-fluorobenzoic acid utilizing a pyridyne insertion reaction followed by reductive coupling. Simple transformation of the reported xylopyridine A structure have given photoactivatable dyes and specific organelle staining probes in either live or fixed cells and tissues, exhibiting high quantum yields, photostability, cell permeability and low toxicity. On the basis of these results, the synthesis of multistage photoactivatable dyes was designed and studied. Utilization of arynes allowed access to the synthesis of 9-substituted triptycene derivatives which have been recognized as three-way junction binders. Accompanying solid-phase peptide synthesis, the rapid diversification of the triptycene scaffold was achieved for screening in a nucleic acid junction binding assay.
NASA Astrophysics Data System (ADS)
Basak, Anup; Levitas, Valery I.
2018-04-01
A thermodynamically consistent, novel multiphase phase field approach for stress- and temperature-induced martensitic phase transformations at finite strains and with interfacial stresses has been developed. The model considers a single order parameter to describe the austenite↔martensitic transformations, and another N order parameters describing N variants and constrained to a plane in an N-dimensional order parameter space. In the free energy model coexistence of three or more phases at a single material point (multiphase junction), and deviation of each variant-variant transformation path from a straight line have been penalized. Some shortcomings of the existing models are resolved. Three different kinematic models (KMs) for the transformation deformation gradient tensors are assumed: (i) In KM-I the transformation deformation gradient tensor is a linear function of the Bain tensors for the variants. (ii) In KM-II the natural logarithms of the transformation deformation gradient is taken as a linear combination of the natural logarithm of the Bain tensors multiplied with the interpolation functions. (iii) In KM-III it is derived using the twinning equation from the crystallographic theory. The instability criteria for all the phase transformations have been derived for all the kinematic models, and their comparative study is presented. A large strain finite element procedure has been developed and used for studying the evolution of some complex microstructures in nanoscale samples under various loading conditions. Also, the stresses within variant-variant boundaries, the sample size effect, effect of penalizing the triple junctions, and twinned microstructures have been studied. The present approach can be extended for studying grain growth, solidifications, para↔ferro electric transformations, and diffusive phase transformations.
Calcium store refilling and STIM activation in STIM- and Orai-deficient cell lines.
Zheng, Sisi; Zhou, Lijuan; Ma, Guolin; Zhang, Tian; Liu, Jindou; Li, Jia; Nguyen, Nhung T; Zhang, Xiaoyan; Li, Wanjie; Nwokonko, Robert; Zhou, Yandong; Zhao, Fukuan; Liu, Jingguo; Huang, Yun; Gill, Donald L; Wang, Youjun
2018-06-22
Mediated through the combined action of STIM proteins and Orai channels, store-operated Ca 2+ entry (SOCE) functions ubiquitously among different cell types. The existence of multiple STIM and Orai genes has made it difficult to assign specific roles of each STIM and Orai homolog in mediating Ca 2+ signals. Using CRISPR/Cas9 gene editing tools, we generated cells with both STIM or all three Orai homologs deleted and directly monitored store Ca 2+ and Ca 2+ signals. We found that unstimulated, SOCE null KO cells still retain 50~70% of ER Ca 2+ stores of wildtype (wt) cells. After brief exposure to store-emptying conditions, acute refilling of ER Ca 2+ stores was totally blocked in KO cells. However, after 24 h in culture, stores were eventually refilled. Thus, SOCE is critical for immediate refilling of ER Ca 2+ but is dispensable for the maintenance of long-term ER Ca 2+ homeostasis. Using the Orai null background triple Orai-KO cells, we examined the plasma membrane translocation properties of a series of truncated STIM1 variants. FRET analysis reveals that, even though PM tethering of STIM1 expedites the activation of STIM1 by facilitating its oligomerization, migration, and accumulation in ER-PM junctions, it is not required for the conformational switch, oligomerization, and clustering of STIM1. Even without overt puncta formation at ER-PM junctions, STIM1 1-491 and STIM1 1-666 could still rescue SOCE when expressed in STIM KO cells. Thus, ER-PM trapping and clustering of STIM molecules only facilitates the process of SOCE activation, but is not essential for the activation of Orai channels.
Amorphous silicon research. Final technical progress report, 1 August 1994--28 February 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guha, S
1998-05-01
This report describes the status and accomplishments of work performed under this subcontract by United Solar Systems. United Solar researchers explored several new deposition regimes/conditions to investigate their effect on material/device performance. To facilitate optimum ion bombardment during growth, a large parameter space involving chamber pressure, rf power, and hydrogen dilution were investigated. United Solar carried out a series of experiments using discharge modulation at various pulsed-plasma intervals to study the effect of Si-particle incorporation on solar cell performance. Hydrogen dilution during deposition is found to improve both the initial and stable performance of a-Si and a-SiGe alloy cells. Researchersmore » conducted a series of temperature-ramping experiments on samples prepared with high and low hydrogen dilutions to study the effect of hydrogen effusion on solar cell performance. Using an internal photoemission method, the electrical bandgap of a microcrystalline p layer used in high-efficiency solar cells was measured to be 1.6 eV. New measurement techniques were developed to evaluate the interface and bulk contributions of losses to solar cell performance. Researchers replaced hydrogen with deuterium and found deuterated amorphous silicon alloy solar cells exhibit reduced light-induced degradation. The incorporation of a microcrystalline n layer in a multijunction cell is seen to improve cell performance. United Solar achieved a world-record single-junction a-Si alloy stable cell efficiency of 9.2% with an active area of 0.25 cm{sup 2} grown with high hydrogen dilution. They also achieved a world-record triple-junction, stable, active-area cell efficiency of 13.0% with an active area of 0.25 cm{sup 2}.« less
Geodetic measurements and numerical models of the Afar rifting sequence 2005-2010
NASA Astrophysics Data System (ADS)
Ali, T.; Feigl, K.; Calais, E.; Hamling, I. J.; Wright, T. J.
2012-12-01
Rifting episodes are characterized by magma migration and dike intrusions that perturb the stress field within the surrounding lithosphere, inducing viscous flow in the lower crust and upper mantle that leads to observable, transient surface deformation. The Manda Hararo-Dabbahu rifting episode that occurred in the Afar depression between 2005 and 2010 is the first such episode to unfold fully in the era of satellite geodesy, thus providing a unique opportunity to probe the rheology of lithosphere at a divergent plate boundary. GPS and SAR measurements over the region since 2005 show accelerated surface deformation rates during post-diking intervals [Wright et al., Nature Geosci., 2012]. Using these observations in combination with a numerical model, we estimate model parameters that best explain the deformation signal. Our model accounts for three distinct processes: (i) secular plate spreading between Nubian and Arabian plates, (ii) time dependent post-rifting viscoelastic relaxation following the 14 dike intrusions that occurred between 2005 and 2010, including the 60 km long mega dike intrusion of September 2005, and (iii) magma accumulation within crustal reservoirs that feed the dikes. To model the time dependent deformation field, we use the open-source unstructured finite element code, Defmod [Ali, 2011, http://defmod.googlecode.com/]. Using a gradient-based iterative scheme [Ali and Feigl, Geochem. Geophys. Geosyst., 2012], we optimize the fit between observed and modeled deformation to estimate parameters in the model, including the locking depth of the rift zone, geometry and depth of magma reservoirs and rheological properties of lower crust and upper mantle, along with their formal uncertainties.
NASA Astrophysics Data System (ADS)
Ebinger, C. J.; Tiberi, C.; Fowler, M. R.; Hunegnaw, A.
2001-12-01
The southern Afar depression, Africa, is virtually the only area worldwide where the transition from continental rifting to seafloor spreading is exposed onshore. During mid-Miocene to Pleistocene time the rift valley was segmented along its length by long normal faults; since Pleistocene time, faulting and magmatism have jumped to a narrow ca. 60 km-long volcanic mound marked by small faults. These magmatic segments are structurally similar to slow-spreading mid-ocean ridges, yet the rift is floored by continental crust. As part of the Ethiopia Afar Geoscientific Lithospheric Experiment (EAGLE), we examine new and existing Bouguer gravity anomaly data from the rift to study the modification of the lithosphere by extensional and magmatic processes. New and existing Bouguer gravity anomaly data also show an along-axis segmentation of elongate relative positive anomalies that coincide with the magmatic segments. These anomalies are superposed on a regionally eastward increasing field as one approaches true seafloor spreading in the Gulf of Aden, and crustal thickness decreases. Quite remarkably, the magmatic segment boundaries, where data coverage is good, are marked by 15-25 mGal steps. The amplitude of the along-axis steps, as well as their across-axis characteristics, indicate that magmatic intrusion and ca. 2 km relief at the crust-mantle interface contribute to the steps. We use inverse and forward models of gravity data constrained by existing seismic and petrological data to evaluate models for the along-axis steps. EAGLE seismic data will be acquired across and along the magmatic segments to improve our understanding of breakup processes.
EAGLE The controlled source experiment
NASA Astrophysics Data System (ADS)
Maguire, P. K. H.; Eagle Controlled Source Group
2003-04-01
In January 2003, a wide-angle reflection / refraction seismic project was carried out over the north-eastern section of the Main Ethiopian Rift as part of the international EAGLE (Ethiopia Afar Geoscientific Lithospheric Experiment) programme. EAGLE comprises a combination of passive and controlled source seismic experiments to determine the geometry and kinematics of a continental rift immediately prior to break-up, enabling the development of magmatic margin break-up models. A total of ˜900 seismic instruments were deployed along two 450km profiles, one along the axis of the Ethiopian Rift into the south-west corner of Afar; and a second across the rift, extending north and south across the uplifted, flood basalt covered, Ethiopian plateau. The two profiles intersect over the Nazret volcanic segment in the rift. This may be indicative of the transition from continental style rifting in which strain is accommodated on the rift bounding border faults, to a state where strain and magmatism have migrated to a narrow zone within the rift, a necessary pre-cursor to break-up. A further ˜300 instruments were deployed in a 100x100km^2 array around the intersection of the two profiles. A total of 16 borehole and 2 lake shots were fired into the network over a period of four days. The principal objectives of the controlled source project were to examine crustal strain, the distribution of crustal magmatic intrusions, the influence of pre-rift crustal property variations on rift development and also to provide a crustal seismic velocity distribution to improve images of the deep mantle, as well as earthquake locations derived from the EAGLE passive arrays.
First evidence of epithermal gold occurrences in the SE Afar Rift, Republic of Djibouti
NASA Astrophysics Data System (ADS)
Moussa, N.; Fouquet, Y.; Le Gall, B.; Caminiti, A. M.; Rolet, J.; Bohn, M.; Etoubleau, J.; Delacourt, C.; Jalludin, M.
2012-06-01
The geology of the Republic of Djibouti, in the SE Afar Triangle, is characterized by intense tectonic and bimodal volcanic activity that began as early as 25-30 Ma. Each magmatic event was accompanied by hydrothermal activity. Mineralization generally occurs as gold-silver bearing chalcedony veins and is associated with felsic volcanism. Eighty samples from mineralized hydrothermal chalcedony, quartz ± carbonate veins and breccias were studied from ten sites representing four major volcanic events that range in age from early Miocene to the present. The most recent veins are controlled by fractures at the edges of grabens established during the last 4 Myr. Gold in excess of 200 ppb is present in 30% of the samples, with values up to 16 ppm. Mineralogical compositions allowed us to identify different types of mineralization corresponding to different depths in the hydrothermal system: (1) surface and subsurface mineralization characterized by carbonate chimneys, gypsum, silica cap and quartz ± carbonate veins that are depleted in metals and Au; (2) shallow banded chalcedony ± adularia veins related to boiling that contain up to 16 ppm Au, occurring as native gold and electrum with pyrite, and tetradymite; (3) quartz veins with sulfides, and (4) epidote alteration in the deepest hydrothermal zones. Samples in which pyrite is enriched in As tend to have a high Au content. The association with bimodal volcanism, the occurrence of adularia and the native Au and electrum in banded chalcedony veins are typical of epithermal systems and confirm that this type of mineralization can occur in a young intracontinental rift system.
NASA Astrophysics Data System (ADS)
Benoit, Margaret H.; Nyblade, Andrew A.; Owens, Thomas J.; Stuart, Graham
2006-11-01
Ethiopia has been subjected to widespread Cenozoic volcanism, rifting, and uplift associated with the Afar hot spot. The hot spot tectonism has been attributed to one or more thermal upwellings in the mantle, for example, starting thermal plumes and superplumes. We investigate the origin of the hot spot by imaging the S wave velocity structure of the upper mantle beneath Ethiopia using travel time tomography and by examining relief on transition zone discontinuities using receiver function stacks. The tomographic images reveal an elongated low-velocity region that is wide (>500 km) and extends deep into the upper mantle (>400 km). The anomaly is aligned with the Afar Depression and Main Ethiopian Rift in the uppermost mantle, but its center shifts westward with depth. The 410 km discontinuity is not well imaged, but the 660 km discontinuity is shallower than normal by ˜20-30 km beneath most of Ethiopia, but it is at a normal depth beneath Djibouti and the northwestern edge of the Ethiopian Plateau. The tomographic results combined with a shallow 660 km discontinuity indicate that upper mantle temperatures are elevated by ˜300 K and that the thermal anomaly is broad (>500 km wide) and extends to depths ≥660 km. The dimensions of the thermal anomaly are not consistent with a starting thermal plume but are consistent with a flux of excess heat coming from the lower mantle. Such a broad thermal upwelling could be part of the African Superplume found in the lower mantle beneath southern Africa.
2017-03-08
Breast Cancer; Triple Negative Breast Neoplasms; Triple-Negative Breast Neoplasm; Triple-Negative Breast Cancer; Triple Negative Breast Cancer; ER-Negative PR-Negative HER2-Negative Breast Neoplasms; ER-Negative PR-Negative HER2-Negative Breast Cancer
NASA Astrophysics Data System (ADS)
Baker, Joel; Snee, Lawrence; Menzies, Martin
1996-02-01
40Ar/39Ar dating of mineral separates and whole-rock (WR) samples has established that basaltic continental flood volcanism (CFV) began between 30.9 and 29.2 Ma in northwestern and southwestern Yemen, respectively. Rhyolitic volcanism commenced at 29.0-29.3 Ma throughout Yemen. Lower basaltic lavas were erupted every 10-100 kyr, whereas upper bimodal volcanic units were erupted every 100-500 kyr, which reflects generation of rhyolitic magmas from basalts that resided for longer periods in lithospheric magma chambers than during the early phase of exclusively mafic magmatism. The youngest dated flood volcanic units were erupted between 26.9 and 26.5 Ma throughout Yemen. The duration of preserved CFV defined by 40Ar/39Ar dating (4.4 myr) contrasts with the wide range of WR KAr dates previously obtained in Yemen (> 50 myr). 40Ar/39Ar step-heating studies of WR samples has shown that this discrepancy is due to the disturbed Ar systematics of volcanic samples. Most samples have experienced post-crystallization loss of radiogenic Ar and/or contain excess Ar, with only ca. 25% of the WR KAr dates within 1-2 myr of true crystallization ages. WR KAr data can be screened for reliability using the radiogenic Ar yield and 40K/36Ar ratio, which reflect the Ar retentivity of the sample, the likelihood that alteration has disturbed a sample's Ar systematics, and the susceptibility of the sample to a finite amount of Ar loss or the presence of a finite amount of excess Ar. Examination of existing WR KAr data in the Ethiopian part of this flood volcanic province, using these parameters, suggests that much of these data are also misleading. Two phases of flood volcanism are inferred in Ethiopia and Eritrea at 38-30 Ma and ca. 20 Ma. The older phase is equivalent to that in Yemen, and is consistent with the progression in basal volcanic ages obtained in Yemen moving from north to south. The younger phase is related to the onset of upper crustal extension and incipient Red Sea-Gulf of Aden rifting. The sequence of events — surface uplift (?), flood magmatism and subsequent upper crustal extension — in Yemen is consistent with the involvement of a mantle plume at the Afro-Arabian tripe junction. However, the overall eruption rate for this flood volcanic province is only 0.03 km 3/yr, much slower than that postulated for other plume-related provinces such as the Deccan or Siberian Traps, but perhaps comparable to the Paraná-Etendeka province, which also contains significant amounts of rhyolitic volcanic products like those of Yemen-Ethiopia. The highly variable eruption rates in individual provinces must reflect the very different character of individual plumes, or the control of lithospheric structure and plate tectonic stresses on the surface manifestations of plumes. The long duration of CFV and large amounts of rhyolitic volcanism at the Afro-Arabian triple junction may be attributed to the relatively slow separation of the African and Arabian plates compared with, for example, the rifting of India and the Deccan Traps.
Identification of Silver and Palladium in Irradiated TRISO Coated Particles of the AGR-1 Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Rooyen, Y. J.; Lillo, T. M.; Wu, Y. Q.
2014-03-01
Evidence of the release of certain metallic fission product through intact tristructural isotropic (TRISO) particles has been seen for decades around the world, as well as in the recent AGR-1 experiment at Idaho National Laboratory (INL). However, understanding the basic mechanism of transport is still lacking. This understanding is important because the TRISO coating is part of the high temperature gas reactor functional containment and critical for the safety strategy for licensing purposes. Our approach to identify fission products in irradiated AGR-1 TRISO fuel using scanning transmission electron microscopy (STEM), Electron Energy Loss Spectroscopy (EELS) and Energy Filtered TEM (EFTEM),more » has led to first-of-a-kind data at the nano-scale indicating the presence of silver at triple points and grain boundaries of the SiC layer in the TRISO particle. Cadmium was also found in the triple junctions. In this initial study, the silver was only identified in SiC grain boundaries and triple points on the edge of the SiC-IPyC interface up to a depth of approximately 0.5 um. Palladium was identified as the main constituent of micron-sized precipitates present at the SiC grain boundaries. Additionally spherical nano-sized palladium rich precipitates were found inside the SiC grains. These nano-sized Pd precipitates were distributed up to a depth of 5 um away from the SiC-IPyC interlayer. No silver was found in the center of the micron-sized fission product precipitates using these techniques, although silver was found on the outer edge of one of the Pd-U-Si containing precipitates which was facing the IPyC layer. Only Pd-U containing precipitates were identified in the IPyC layer and no silver was identified in the IPyC layer. The identification of silver alongside the grain boundaries and the findings of Pd alongside grain boundaries as well as inside the grains, provide significant knowledge for understanding silver and palladium transport in TIRSO fuel, which has been the topic of international research for the past forty years. Additionally the usefulness of the advanced electron microscopic techniques for TRISO coated particle research is demonstrated in this paper.« less
Boyle, Cynthia L; Sanders, Matthew R; Lutzker, John R; Prinz, Ronald J; Shapiro, Cheri; Whitaker, Daniel J
2015-10-01
The Triple P-Positive Parenting Program is owned by the University of Queensland (UQ). The University through its main technology transfer company UniQuest Pty Limited has licensed Triple P International Pty Ltd to disseminate the program worldwide. Royalties stemming from this dissemination activity are distributed to the Parenting and Family Support Centre, School of Psychology, UQ; Faculty of Health and Behavioural Sciences at UQ; and contributory authors. No author has any share or ownership in Triple P International Pty Ltd. Matthew Sanders is the founder and an author on various Triple P programs and a consultant to Triple P International. Karen Turner is an author of various Triple P programs. Ronald Prinz is a consultant to Triple P International. Cheri Shapiro is a consultant to Triple P America.
Examining Primary Healthcare Performance through a Triple Aim Lens.
Ryan, Bridget L; Brown, Judith Belle; Glazier, Richard H; Hutchison, Brian
2016-02-01
This study sought to apply a Triple Aim framework to the measurement and evaluation of primary healthcare (PHC) team performance. Triple Aim components were populated with 10 dimensions derived from survey and health administrative data for 17 Family Health Teams (FHTs) in Ontario, Canada. Bivariate analyses and rankings of sites examined the relationships among dimensions and among Triple Aim components. Readily available measures to fully populate the Triple Aim framework were lacking in FHTs. Within sites, there was little consistency in performance across the Triple Aim components (health, patient experience and cost). More and better measures are needed that can be readily used to examine the Triple Aim performance in PHC teams. FHTs, in this study, are partially achieving Triple Aim goals; however, there was a lack of consistency in performance. It is essential to collect appropriate measures and attend to performance across all components of the Triple Aim. Copyright © 2016 Longwoods Publishing.
Examining Primary Healthcare Performance through a Triple Aim Lens
Ryan, Bridget L.; Brown, Judith Belle; Glazier, Richard H.; Hutchison, Brian
2016-01-01
Purpose: This study sought to apply a Triple Aim framework to the measurement and evaluation of primary healthcare (PHC) team performance. Methods: Triple Aim components were populated with 10 dimensions derived from survey and health administrative data for 17 Family Health Teams (FHTs) in Ontario, Canada. Bivariate analyses and rankings of sites examined the relationships among dimensions and among Triple Aim components. Results: Readily available measures to fully populate the Triple Aim framework were lacking in FHTs. Within sites, there was little consistency in performance across the Triple Aim components (health, patient experience and cost). Conclusions: More and better measures are needed that can be readily used to examine the Triple Aim performance in PHC teams. FHTs, in this study, are partially achieving Triple Aim goals; however, there was a lack of consistency in performance. It is essential to collect appropriate measures and attend to performance across all components of the Triple Aim. PMID:27027790
NASA Astrophysics Data System (ADS)
Hutchison, William; Mather, Tamsin A.; Pyle, David M.; Boyce, Adrian J.; Gleeson, Matthew L. M.; Yirgu, Gezahegn; Blundy, Jon D.; Ferguson, David J.; Vye-Brown, Charlotte; Millar, Ian L.; Sims, Kenneth W. W.; Finch, Adrian A.
2018-05-01
Magma plays a vital role in the break-up of continental lithosphere. However, significant uncertainty remains about how magma-crust interactions and melt evolution vary during the development of a rift system. Ethiopia captures the transition from continental rifting to incipient sea-floor spreading and has witnessed the eruption of large volumes of silicic volcanic rocks across the region over ∼45 Ma. The petrogenesis of these silicic rocks sheds light on the role of magmatism in rift development, by providing information on crustal interactions, melt fluxes and magmatic differentiation. We report new trace element and Sr-Nd-O isotopic data for volcanic rocks, glasses and minerals along and across active segments of the Main Ethiopian (MER) and Afar Rifts. Most δ18 O data for mineral and glass separates from these active rift zones fall within the bounds of modelled fractional crystallization trajectories from basaltic parent magmas (i.e., 5.5-6.5‰) with scant evidence for assimilation of Pan-African Precambrian crustal material (δ18 O of 7-18‰). Radiogenic isotopes (εNd = 0.92- 6.52; 87Sr/86Sr = 0.7037-0.7072) and incompatible trace element ratios (Rb/Nb <1.5) are consistent with δ18 O data and emphasize limited interaction with Pan-African crust. However, there are important regional variations in melt evolution revealed by incompatible elements (e.g., Th and Zr) and peralkalinity (molar Na2 O +K2 O /Al2O3). The most chemically-evolved peralkaline compositions are associated with the MER volcanoes (Aluto, Gedemsa and Kone) and an off-axis volcano of the Afar Rift (Badi). On-axis silicic volcanoes of the Afar Rift (e.g., Dabbahu) generate less-evolved melts. While at Erta Ale, the most mature rift setting, peralkaline magmas are rare. We find that melt evolution is enhanced in less mature continental rifts (where parental magmas are of transitional rather than tholeiitic composition) and regions of low magma flux (due to reduced mantle melt productivity or where crustal structure inhibits magma ascent). This has important implications for understanding the geotectonic settings that promote extreme melt evolution and, potentially, genesis of economically-valuable mineral deposits in ancient rift-settings. The limited isotopic evidence for assimilation of Pan-African crustal material in Ethiopia suggests that the pre-rift crust beneath the magmatic segments has been substantially modified by rift-related magmatism over the past ∼45 Ma; consistent with geophysical observations. We argue that considerable volumes of crystal cumulate are stored beneath silicic volcanic systems (>100 km3), and estimate that crystal cumulates fill at least 16-30% of the volume generated by crustal extension under the axial volcanoes of the MER and Manda Hararo Rift Segment (MHRS) of Afar. At Erta Ale only ∼1% of the volume generated due to rift extension is filled by cumulates, supporting previous seismic evidence for a greater role of plate stretching in mature rifts at the onset of sea-floor spreading. We infer that ∼45 Ma of magmatism has left little fusible Pan-African material to be assimilated beneath the magmatic segments and the active segments are predominantly composed of magmatic cumulates with δ18 O indistinguishable from mantle-derived melts. We predict that the δ18 O of silicic magmas should converge to mantle values as the rift continues to evolve. Although current data are limited, a comparison with ∼30 Ma ignimbrites (with δ18 O up to 8.9‰) supports this inference, evidencing greater crustal assimilation during initial stages of rifting and at times of heightened magmatic flux.
NASA Astrophysics Data System (ADS)
Weisheng, CUI; Wenzheng, LIU; Jia, TIAN; Xiuyang, CHEN
2018-02-01
At present, spark plugs are used to trigger discharge in pulsed plasma thrusters (PPT), which are known to be life-limiting components due to plasma corrosion and carbon deposition. A strong electric field could be formed in a cathode triple junction (CTJ) to achieve a trigger function under vacuum conditions. We propose an induction-triggered electrode structure on the basis of the CTJ trigger principle. The induction-triggered electrode structure could increase the electric field strength of the CTJ without changing the voltage between electrodes, contributing to a reduction in the electrode breakdown voltage. Additionally, it can maintain the plasma generation effect when the breakdown voltage is reduced in the discharge experiments. The induction-triggered electrode structure could ensure an effective trigger when the ablation distance of Teflon increases, and the magnetic field produced by the discharge current could further improve the plasma density and propagation velocity. The induction-triggered coaxial PPT we propose has a simplified trigger structure, and it is an effective attempt to optimize the micro-satellite thruster.