Science.gov

Sample records for afar triple junction

  1. New geodetic measurements in central Afar constraining the Arabia-Somalia-Nubia triple junction kinematics

    NASA Astrophysics Data System (ADS)

    Doubre, C.; Deprez, A.; Masson, F.; Socquet, A.; Lewi, E.; Grandin, R.; Calais, E.; Wright, T. J.; Bendick, R. O.; Pagli, C.; Peltzer, G.; de Chabalier, J. B.; Ibrahim Ahmed, S.

    2014-12-01

    The Afar Depression is an extraordinary submerged laboratory where the crustal mechanisms involved in the active rifting process can be studied. But the crustal movements at the regional scale are complicated by being the locus of the meeting of three divergent plate boundaries: the oceanic spreading ridges of the Red Sea and the Aden Ridge and the intra-continental East-African Rift (EAR). We present here the first GPS measurements conducted in a new network in Central Afar, complementing existing networks in Eritrea, around the Manda-Harraro 2005-2010 active segment, in the Northern part of the EAR and in Djibouti. Even if InSAR data were appropriate for mapping the deformation field, the results are difficult to interpret for analyzing the regional kinematics because of the atmospheric conditions, the lack of complete data catalogue, the acquisition configuration and the small velocity variations. Therefore, our measurements in the new sites are crucial to obtain an accurate velocity field over the whole depression, and focus specifically on the spatial organization of the deformation to characterize the tripe junction. These first results show that a small part of the motion of the Somalia plate with respect to the Nubia plate or the Arabia plate (2-3 mm/yr) occurs south of the Tadjura Gulf and East of the Adda-do segment in Southern Afar. The complex kinematic pattern involves a clockwise rotation of this Southeastern part of the Afar rift and can be related to the significant seismic activity regularly recorded in the region of Jigjiga (northern Somalia-Ethiopia border). The western continuation of the Aden Ridge into Afar extends West of the Asal rift segment and does not reach the young active segment of Manda-Inakir (MI). A slow gradient of velocity is observed across the Dobi Graben and across the large systems of faults between Lake Abhe and the MI rift segment. A striking change of the velocity direction occurs in the region of Assaïta, west of Lake

  2. Hydrous upwelling across the mantle transition zone beneath the Afar Triple Junction

    NASA Astrophysics Data System (ADS)

    Thompson, D. A.; Kendall, J. M.; Hammond, J. O. S.; Stuart, G. W.; Helffrich, G. R.; Keir, D.; Ayele, A.; Goitom, B.

    2014-12-01

    The upwelling of material from the lower mantle to the base of the lithosphere is hypothesised as being a primary geodynamic process and the mechanisms that drive upwelling (e.g. thermal vs. compositional buoyancy) are key to our understanding of whole mantle convection. We address these issues with new seismic data from recent deployments located on the Afar Triple Junction. The detailed images of deep structure beneath this large igneous province illuminate features that give insights into the nature of upwelling from the deep mantle. A seismic low velocity layer directly above the mantle transition zone, interpreted as a stable melt layer, along with a prominent 520 km discontinuity suggest the presence of a hydrous upwelling. Coincident with these features is a tomographically determined low velocity feature within the mantle transition zone, and relatively uniform transition zone thickness associated with this implies little variation in temperature. This suggests that upwelling is driven by compositional as opposed to thermal buoyancy. The results are consistent with volatile rich, chemically distinct upwellings rising from a heterogenous lower mantle source within the African Superplume.

  3. Current Deformation in Central Afar and Triple Junction Kinematics Deduced from GPS and InSAR Measurements

    NASA Astrophysics Data System (ADS)

    Cécile, Doubre; Aline, Déprez; Frédéric, Masson; Anne, Socquet; Elias, Lewi; Raphael, Grandin; Alexandre, Nercessian; Patrice, Ulrich; Jean-Bernard, De Chabalier; Ibrahim, Saad; Ahmadine, Abayazid; Gilles, Peltzer; Arthur, Delorme; Eric, Calais; Tim, Wright

    2016-11-01

    Kinematics of divergent boundaries and Rift-Rift-Rift junctions are classically studied using long-term geodetic observations. Since significant magma-related displacements are expected, short-term deformation provides important constraints on the crustal mechanisms involved both in active rifting and in transfer of extensional deformation between spreading axes. Using InSAR and GPS data, we analyze the surface deformation in the whole Central Afar region in detail, focusing on both the extensional deformation across the Quaternary magmato-tectonic rift segments, and on the zones of deformation transfer between active segments and spreading axes. The largest deformation occurs across the two recently activated Asal-Ghoubbet (AG) and MH-D magmato-tectonic segments with very high strain rates, whereas the other Quaternary active segments do not concentrate any large strain, suggesting that these rifts are either sealed during inter-dyking periods or not mature enough to remain a plate boundary. Outside of these segments, the GPS horizontal velocity field shows a regular gradient following a clockwise rotation of the displacements from the Southeast to the East of Afar, with respect to Nubia. Very few shallow creeping structures can be identified as well in the InSAR data. However, using these data together with the strain rate tensor and the rotations rates deduced from GPS baselines, the present-day strain field over Central Afar is consistent with the main tectonic structures, and therefore with the long-term deformation. We investigate the current kinematics of the triple junction included in our GPS data set by building simple block models. The deformation in Central Afar can be described by adding a central micro-block evolving separately from the three surrounding plates. In this model, the northern block boundary corresponds to a deep EW-trending trans-tensional dislocation, locked from the surface to 10-13 km and joining at depth the active spreading axes of

  4. Current deformation in Central Afar and triple junction kinematics deduced from GPS and InSAR measurements

    NASA Astrophysics Data System (ADS)

    Doubre, Cécile; Déprez, Aline; Masson, Frédéric; Socquet, Anne; Lewi, Elias; Grandin, Raphaël; Nercessian, Alexandre; Ulrich, Patrice; De Chabalier, Jean-Bernard; Saad, Ibrahim; Abayazid, Ahmadine; Peltzer, Gilles; Delorme, Arthur; Calais, Eric; Wright, Tim

    2017-02-01

    Kinematics of divergent boundaries and Rift-Rift-Rift junctions are classically studied using long-term geodetic observations. Since significant magma-related displacements are expected, short-term deformation provides important constraints on the crustal mechanisms involved both in active rifting and in transfer of extensional deformation between spreading axes. Using InSAR and GPS data, we analyse the surface deformation in the whole Central Afar region in detail, focusing on both the extensional deformation across the Quaternary magmato-tectonic rift segments, and on the zones of deformation transfer between active segments and spreading axes. The largest deformation occurs across the two recently activated Asal-Ghoubbet (AG) and Manda Hararo-Dabbahu (MH-D) magmato-tectonic segments with very high strain rates, whereas the other Quaternary active segments do not concentrate any large strain, suggesting that these rifts are either sealed during interdyking periods or not mature enough to remain a plate boundary. Outside of these segments, the GPS horizontal velocity field shows a regular gradient following a clockwise rotation of the displacements from the Southeast to the East of Afar, with respect to Nubia. Very few shallow creeping structures can be identified as well in the InSAR data. However, using these data together with the strain rate tensor and the rotations rates deduced from GPS baselines, the present-day strain field over Central Afar is consistent with the main tectonic structures, and therefore with the long-term deformation. We investigate the current kinematics of the triple junction included in our GPS data set by building simple block models. The deformation in Central Afar can be described by adding a central microblock evolving separately from the three surrounding plates. In this model, the northern block boundary corresponds to a deep EW-trending trans-tensional dislocation, locked from the surface to 10-13 km and joining at depth the

  5. Assessment of Late Quaternary strain partitioning in the Afar Triple Junction: Dobe and Hanle grabens, Ethiopia and Djibouti

    NASA Astrophysics Data System (ADS)

    Polun, S. G.; Stockman, M. B.; Hickcox, K.; Horrell, D.; Tesfaye, S.; Gomez, F. G.

    2015-12-01

    As the only subaerial exposure of a ridge - ridge - ridge triple junction, the Afar region of Ethiopia and Djibouti offers a rare opportunity to assess strain partitioning within this type of triple junction. Here, the plate boundaries do not link discretely, but rather the East African rift meets the Red Sea and Gulf of Aden rifts in a zone of diffuse normal faulting characterized by a lack of magmatic activity, referred to as the central Afar. An initial assessment of Late Quaternary strain partitioning is based on faulted landforms in the Dobe - Hanle graben system in Ethiopia and Djibouti. These two extensional basins are connected by an imbricated accommodation zone. Several fault scarps occur within terraces formed during the last highstand of Lake Dobe, around 5 ka - they provide a means of calibrating a numerical model of fault scarp degradation. Additional timing constraints will be provided by pending exposure ages. The spreading rates of both grabens are equivalent, however in Dobe graben, extension is partitioned 2:1 between northern, south dipping faults and the southern, north dipping fault. Extension in Hanle graben is primarily focused on the north dipping Hanle fault. On the north margin of Dobe graben, the boundary fault bifurcates, where the basin-bordering fault displays a significantly higher modeled uplift rate than the more distal fault, suggesting a basinward propagation of faulting. On the southern Dobe fault, surveyed fault scarps have ages ranging from 30 - 5 ka with uplift rates of 0.71, 0.47, and 0.68 mm/yr, suggesting no secular variation in slip rates from the late Plestocene through the Holocene. These rates are converted into horizontal stretching estimates, which are compared with regional strain estimated from velocities of relatively sparse GPS data.

  6. Tectonics of the Afar triple junction from InSAR and GPS derived strain maps and seismicity

    NASA Astrophysics Data System (ADS)

    Pagli, Carolina; Ebinger, Cynthia; Yun, Sang-Ho; Keir, Derek; Wang, Hua

    2016-04-01

    Strain and seismicity show us the mode by which deformation is accommodated in rifting continents. Here we present a combined analysis of InSAR and GPS derived strain maps and seismicity to understand the tectonics of the current Afar triple junction plate boundary zone. Our results show that that the plate spreading motion is accommodated in different ways in the Red Sea Rift after jumping southeastward along the Gulf of Aden Rift. At the Red Sea Rift, extension and shear are coupled with seismicity, occurring both along-rift but also in areas off-rift. In the Gulf of Aden Rift extension and normal faulting occur in the central parts of the rifts while at the rifts tips strike-slip earthquakes are observed. The extensional strains occur over a broad zone encompassing several overlapping rifts. Conversely the strike-slip earthquakes are focused along a narrow EW trending lineament. The pattern suggests that the recent history of magmatic intrusions in the Red Sea Rift still dominates the plate boundary deformation inducing earthquakes even in areas off-rift and with no previous faults mapped. On the other hand, in the Gulf of Aden Rift our strain and seismicity maps are consistent mainly with extensional tectonics occurring over an exceptionally broad zone (over 200 km). We interpret the strike-slip earthquakes observed at the rift tips as the result of shearing at the rifts tips where the extension terminates against continental lithosphere.

  7. Indian Ocean Triple Junction

    SciTech Connect

    Tapscott, C.R.; Patriat, P.; Fisher, R.L.; Sclater, J.G.; Hoskins, H.; Parsons, B.

    1980-09-10

    The boundaries of three major plates (Africa, India, and Antarctica) meet in a triple junction in the Indian Ocean near 25 /sup 0/S, 70 /sup 0/E. Using observed bathymetry and magnetic anomalies, we locate the junction to within 5 km and show that it is a ridge-ridge-ridge type. Relative plate motion is N60 /sup 0/E at 50 mm/yr (full rate) across the Central Indian Ridge, N47 /sup 0/E at 60 mm/yr across the Southeast Indian Ridge, and N3 /sup 0/W at 15 mm/yr across te Southwest Indian Ridge; the observed velocity triangle is closed. Poles of instantaneous relative plate motion are determined for all plate pairs. The data in the South Atlantic and Indian oceans are consistent with a rigid African plate without significant internal deformation. Two of the ridges at the triple junction are normal midocean spreading centers with well-defined median valleys. The Southwest Indian Ridge, however, has a peculiar morphology near the triple junction, that of an elongate triangular deep, with the triple junction at its apex. The floor of the deep represents crust formed at the Southwest Indian Ridge, and the morphology is a consequence of the evolution of the triple junction and is similar to that at the Galapagos Triple Junction. Though one cannot determine with precision the stability conditions at the triple junction, the development of the junction over the last 10 m.y. can be mapped, and the topographic expressions of the triple junction traces may be detected on the three plates.

  8. Electrostatic Modeling of Vacuum Insulator Triple Junctions

    SciTech Connect

    Tully, L K; Goerz, D A; Houck, T L; Javedani, J B

    2006-10-25

    Triple junctions are often initiation points for insulator flashover in pulsed power devices. The two-dimensional finite-element TriComp [1] modeling software suite was utilized for its electrostatic field modeling package to investigate electric field behavior in the anode and cathode triple junctions of a high voltage vacuum-insulator interface. TriComp enables simple extraction of values from a macroscopic solution for use as boundary conditions in a subset solution. Electric fields computed with this zoom capability correlate with theoretical analysis of the anode and cathode triple junctions within submicron distances for nominal electrode spacing of 1.0 cm. This paper will discuss the iterative zoom process with TriComp finite-element software and the corresponding theoretical verification of the results.

  9. Geometrical theory of triple junctions of CSL boundaries.

    PubMed

    Gertsman, V Y

    2001-07-01

    When three grain boundaries having misorientations generating coincidence site lattices (CSLs) meet at a triple junction, a common (triple-junction) CSL is formed. A theory is developed as a set of theorems establishing the relationships between the geometrical parameters of the grain-boundary and triple-junction CSLs. Application of the theory is demonstrated in detail for the case of the cubic crystal system. It is also shown how the theory can be extended to an arbitrary crystal lattice.

  10. Formation and stability of ridge-ridge-ridge triple junctions in rheologically realistic lithosphere model

    NASA Astrophysics Data System (ADS)

    Gerya, Taras; Burov, Evgueni

    2015-04-01

    -branch junction formation and evolution by using high-resolution 3D numerical mechanical experiments that take into account realistic thermo-rheological structure and rheology of the lithosphere. We find that two major types of quadruple and triple junctions are formed under bi-directional or multidirectional far-field stress field: (i) plate rifting junctions are formed by the initial plate fragmentation and can be subsequently re-arranged into (ii) oceanic spreading junctions controlled by the new oceanic crust accretion. In particular, we document initial formation and destabilization of quadruple R-R-R-R junctions as initial plate rifting structures under bi-directional extension. In most cases, quadruple plate rifting junctions rapidly (typically within 1-2 Myr) evolve towards formation of two diverging triple oceanic spreading junctions connected by a linear spreading center lengthening with time. This configuration remains stable over long time scales. However, under certain conditions, quadruple junctions may also remain relatively stable. Asymmetric stretching results in various configurations, for example formation of "T-junctions" with trans-extensional components and combination of fast and slow spreading ridges. Combined with plume impingement, this scenario evolves in realistic patterns closely resembling observed plate dynamics. In particular, opening of the Red Sea and of the Afar rift system find a logical explanation within a single model. Numerical experiments also suggest that several existing oceanic spreading junctions form as the result of plate motions rearrangements after which only one of two plates spreading along the ridge become subjected to bi-directional spreading.

  11. Seismic Migration Imaging of the Lithosphere beneath the Afar Rift System, East Africa

    NASA Astrophysics Data System (ADS)

    Lee, T. T. Y.; Chen, C. W.; Rychert, C.; Harmon, N.

    2015-12-01

    The Afar Rift system in east Africa is an ideal natural laboratory for investigating the incipient continental rifting, an essential component of plate tectonics. The Afar Rift is situated at the triple junction of three rifts, namely the southern Red Sea Rift, Gulf of Aden Rift and Main Ethiopian Rift (MER). The ongoing continental rifting at Afar transitions to seafloor spreading toward the southern Red Sea. The tectonic evolution of Afar is thought to be influenced by a mantle plume, but how the plume affects and interacts with the Afar lithosphere remains elusive. In this study, we use array seismic data to produce high-resolution migration images of the Afar lithosphere from scattered teleseismic wavefields to shed light on the lithospheric structure and associated tectonic processes. Our preliminary results indicate the presence of lithospheric seismic discontinuities with depth variation across the Afar region. Beneath the MER axis, we detect a pronounced discontinuity at 55 km depth, characterized by downward fast-to-slow velocity contrast, which appears to abruptly deepen to 75 km depth to the northern flank of MER. This discontinuity may be interpreted as the lithosphere-asthenosphere boundary. Beneath the Ethiopian Plateau, on the other hand, a dipping structure with velocity increase is identified at 70-90 km depth. Further synthesis of observations from seismic tomography, receiver functions, and seismic anisotropy in the Afar region will offer better understanding of tectonic significance of the lithospheric discontinuities.

  12. Quaternary Evolution of Karliova Triple Junction

    NASA Astrophysics Data System (ADS)

    Sançar, Taylan; Zabcı, Cengiz; Akyüz, H. Serdar

    2013-04-01

    The arguments to explain Quaternary evolution of Karlıova Triple Junction (KTJ) depends upon two different analogue models. The compressional type of Prandtl Cell Model (PCM) and 60 km wide shear zone with concomitant counter clockwise block rotation used to modelled for west and east of the KTJ respectively. The data for the model of west of the KTJ acquired by extensive field studies, and quantified geomorphic features. Compressional PCM put forward that behavior of slip lines controlled by boundary faults. But the model is not enough to explain slip distribution, age relation of them. At west of the KTJ boundary faults presented by eastern most segments of the North Anatolian Fault Zone (NAFZ) and the East Anatolian Fault Zone (EAFZ). Slip lines, however, presented by Bahçeli and Toklular faults. Both field studies and morphometric analyses undisputedly set forth that there are two different fault types between the NAFZ and EAFZ. The most strain loaded fault type, which are positioned near the NAFZ, start as a strike-slip fault and when it turn to SE its sense of motion change to oblique normal due to changing orientation of principal stress axes. The new orientation of stress axes exposed in the field as a special kind of caprock -cuesta-. The younger slip lines formed very close to junction point and accommodate less slip. Even though slip trajectories started from the boundary faults in compressional PCM, at the west of KTJ, right lateral trajectories more clearly formed close the NAFZ and left lateral trajectories, relatively less strain loaded fault type, are poorly formed close the EAFZ . We think that, this differences between KTJ and compressional PCM result from the distinction of velocity of boundary faults. East of the KTJ governed by completely different mechanism. The region controlled two main fault systems. The Varto Fault Zone (VFZ), the eastern branch of the KTJ, and Murat Fault (MF) delimited the region from north and south respectively. The

  13. Grain boundary and triple junction diffusion in nanocrystalline copper

    SciTech Connect

    Wegner, M. Leuthold, J.; Peterlechner, M.; Divinski, S. V.; Song, X.; Wilde, G.

    2014-09-07

    Grain boundary and triple junction diffusion in nanocrystalline Cu samples with grain sizes, 〈d〉, of ∼35 and ∼44 nm produced by spark plasma sintering were investigated by the radiotracer method using the {sup 63}Ni isotope. The measured diffusivities, D{sub eff}, are comparable with those determined previously for Ni grain boundary diffusion in well-annealed, high purity, coarse grained, polycrystalline copper, substantiating the absence of a grain size effect on the kinetic properties of grain boundaries in a nanocrystalline material at grain sizes d ≥ 35 nm. Simultaneously, the analysis predicts that if triple junction diffusion of Ni in Cu is enhanced with respect to the corresponding grain boundary diffusion rate, it is still less than 500⋅D{sub gb} within the temperature interval from 420 K to 470 K.

  14. Velocity selection problem in the presence of the triple junction.

    PubMed

    Brener, E A; Hüter, C; Pilipenko, D; Temkin, D E

    2007-09-07

    Melting of a bicrystal along the grain boundary is discussed. A triple junction plays a crucial role in the velocity selection problem in this case. In some range of the parameters an entirely analytical solution of this problem is given. This allows us to present a transparent picture of the structure of the selection theory. We also discuss the selection problem in the case of the growth of a "eutectoid dendrite."

  15. Geochemical evidence of mantle reservoir evolution during progressive rifting along the western Afar margin

    NASA Astrophysics Data System (ADS)

    Rooney, Tyrone O.; Mohr, Paul; Dosso, Laure; Hall, Chris

    2013-02-01

    The Afar triple junction, where the Red Sea, Gulf of Aden and African Rift System extension zones converge, is a pivotal domain for the study of continental-to-oceanic rift evolution. The western margin of Afar forms the southernmost sector of the western margin of the Red Sea rift where that margin enters the Ethiopian flood basalt province. Tectonism and volcanism at the triple junction had commenced by ˜31 Ma with crustal fissuring, diking and voluminous eruption of the Ethiopian-Yemen flood basalt pile. The dikes which fed the Oligocene-Quaternary lava sequence covering the western Afar rift margin provide an opportunity to probe the geochemical reservoirs associated with the evolution of a still active continental margin. 40Ar/39Ar geochronology reveals that the western Afar margin dikes span the entire history of rift evolution from the initial Oligocene flood basalt event to the development of focused zones of intrusion in rift marginal basins. Major element, trace element and isotopic (Sr-Nd-Pb-Hf) data demonstrate temporal geochemical heterogeneities resulting from variable contributions from the Afar plume, depleted asthenospheric mantle, and African lithosphere. The various dikes erupted between 31 Ma and 22 Ma all share isotopic signatures attesting to a contribution from the Afar plume, indicating this initial period in the evolution of the Afar margin was one of magma-assisted weakening of the lithosphere. From 22 Ma to 12 Ma, however, diffuse diking during continued evolution of the rift margin facilitated ascent of magmas in which depleted mantle and lithospheric sources predominated, though contributions from the Afar plume persisted. After 10 Ma, magmatic intrusion migrated eastwards towards the Afar rift floor, with an increasing fraction of the magmas derived from depleted mantle with less of a lithospheric signature. The dikes of the western Afar margin reveal that magma generation processes during the evolution of this continental rift margin

  16. Stress field during early magmatism in the Ali Sabieh Dome, Djibouti, SE Afar rift

    NASA Astrophysics Data System (ADS)

    Sue, Christian; Le Gall, Bernard; Daoud, Ahmed Mohamed

    2014-09-01

    The so-called Ali Sabieh range, SE Afar rift, exhibits an atypical antiform structure occurring in the overall extensional tectonic context of the Afar triple junction. We dynamically analyzed the brittle deformation of this specific structural high using four different methods in order to better constrain the tectonic evolution of this key-area in the Afar depression. Paleostress inversions appear highly consistent using the four methods, which a posteriori validates this approach. Computed paleostress fields document two major signals: an early E-W extensional field, and a later transcurrent field, kinematically consistent with the previous one. The Ali Sabieh range may have evolved continuously during Oligo-Miocene times from large-scale extensional to transcurrent tectonism, as the result of probable local stress permutation between σ1 and σ2 stress axes.

  17. Plate kinematics of the Afro-Arabian Rift System with emphasis on the Afar Depression, Ethiopia

    NASA Astrophysics Data System (ADS)

    Bottenberg, Helen Carrie

    This work utilizes the Four-Dimensional Plates (4DPlates) software, and Differential Interferometric Synthetic Aperture Radar (DInSAR) to examine plate-scale, regional-scale and local-scale kinematics of the Afro-Arabian Rift System with emphasis on the Afar Depression in Ethiopia. First, the 4DPlates is used to restore the Red Sea, the Gulf of Aden, the Afar Depression and the Main Ethiopian Rift to development of a new model that adopts two poles of rotation for Arabia. Second, the 4DPlates is used to model regional-scale and local-scale kinematics within the Afar Depression. Most plate reconstruction models of the Afro-Arabian Rift System relies on considering the Afar Depression as a typical rift-rift-rift triple junction where the Arabian, Somali and Nubian (African) plates are separating by the Red Sea, the Gulf of Aden and the Main Ethiopian Rift suggesting the presence of "sharp and rigid" plate boundaries. However, at the regional-scale the Afar kinematics are more complex due to stepping of the Red Sea propagator and the Gulf of Aden propagator onto Afar as well as the presence of the Danakil, Ali Sabieh and East Central Block "micro-plates". This study incorporates the motion of these micro-plates into the regional-scale model and defined the plate boundary between the Arabian and the African plates within Afar as likely a diffused zone of extensional strain within the East Central Block. Third, DInSAR technology is used to create ascending and descending differential interferograms from the Envisat Advanced Synthetic Aperture Radar (ASAR) C-Band data for the East Central Block to image active crustal deformation related to extensional tectonics and volcanism. Results of the DInSAR study indicate no strong strain localization but rather a diffused pattern of deformation across the entire East Central Block.

  18. Annealing Behavior at Triple Junctions in High-Purity Aluminum After Slight Cold Rolling

    NASA Astrophysics Data System (ADS)

    Yin, Wenhong; Wang, Weiguo; Fang, Xiaoying; Qin, Congxiang

    2017-02-01

    High-purity polycrystalline aluminum samples with a typical grain size of approximately 30 μm were slightly cold-rolled with a thickness reduction of 15%, and then, off-line in situ electron backscatter diffraction was used to identify the annealing behavior at triple junctions during annealing at 400 °C. The results show that recrystallization nuclei are developed at some triple junctions during annealing. High-angle grain boundaries migrate from harder grains to softer grains at the triple junctions leading to the formation of nuclei. All such nuclei show Σ3 orientation relationships with the parent grains, and the bounded Σ3 boundaries are found to be incoherent. During further annealing, these nuclei are consumed by other growing grains, indicating that their presence is just a release of the strain concentration at the triple junctions.

  19. The State of Stress in the Afar Region From Inversion of Earthquake Focal Mechanisms

    NASA Astrophysics Data System (ADS)

    Hagos, L.; Lund, B.; Roberts, R.

    2006-12-01

    The state of stress in the Afar region, where the Arabian, Nubian, and Somalian plates meet, is investigated by inversion of earthquake focal mechanisms. Based on earlier studies in the region, we compiled a catalogue of 93 earthquakes, M > 4, with focal mechanisms, spanning the time period from 1969 to present. From this data set we select three clusters suitable for inversion: one along the EW trending Gulf of Aden and Tadjoura rift, one in central Afar, and one on the western margin of the Afar depression. Using the grid-search based inversion of Lund and Slunga (1999), we assess how the choice of fault plane from the nodal planes affect the results and include known fault data where possible. The resulting stress states show an overall normal faulting stress regime. This especially pronounced in the cluster on the western margin of the Afar depression, whereas the southern two clusters have more oblique stress states with significant strike-slip components. The estimated directions of the minimum principal stress vary from NE on the Danakil -Somalia plate boundary to an approximate EW direction at the western margin of the Afar depression. Although the data is scarce, we discuss the temporal consistency of the stress field through the studied time period. The broad zone of active extensional deformation at the Afar Depression, a triple junction where the Red Sea, the Gulf of Aden and the Main Ethiopian rift systems meet, constitutes a complicated tectonic region and we discuss our results in this context. We also compare the stress estimates to available deformation data in the region.

  20. An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%.

    PubMed

    Chen, Chun-Chao; Chang, Wei-Hsuan; Yoshimura, Ken; Ohya, Kenichiro; You, Jingbi; Gao, Jing; Hong, Zirou; Yang, Yang

    2014-08-27

    Tandem solar cells have the potential to improve photon conversion efficiencies (PCEs) beyond the limits of single-junction devices. In this study, a triple-junction tandem design is demonstrated by employing three distinct organic donor materials having bandgap energies ranging from 1.4 to 1.9 eV. Through optical modeling, balanced photon absorption rates are achieved and, thereby, the photo-currents are matched among the three subcells. Accordingly, an efficient triple-junction tandem organic solar cell can exhibit a record-high PCE of 11.5%.

  1. Transition from slab to slabless: Results from the 1993 Mendocino triple junction seismic experiment

    USGS Publications Warehouse

    Beaudoin, B.C.; Godfrey, N.J.; Klemperer, S.L.; Lendl, C.; Trehu, A.M.; Henstock, T.J.; Levander, A.; Holl, J.E.; Meltzer, A.S.; Luetgert, J.H.; Mooney, W.D.

    1996-01-01

    Three seismic refraction-reflection profiles, part of the Mendocino triple junction seismic experiment, allow us to compare and contrast crust and upper mantle of the North American margin before and after it is modified by passage of the Mendocino triple junction. Upper crustal velocity models reveal an asymmetric Great Valley basin overlying Sierran or ophiolitic rocks at the latitude of Fort Bragg, California, and overlying Sierran or Klamath rocks near Redding, California. In addition, the upper crustal velocity structure indicates that Franciscan rocks underlie the Klamath terrane east of Eureka, California. The Franciscan complex is, on average, laterally homogeneous and is thickest in the triple junction region. North of the triple junction, the Gorda slab can be traced 150 km inboard from the Cascadia subduction zone. South of the triple junction, strong precritical reflections indicate partial melt and/or metamorphic fluids at the base of the crust or in the upper mantle. Breaks in these reflections are correlated with the Maacama and Bartlett Springs faults, suggesting that these faults extend at least to the mantle. We interpret our data to indicate tectonic thickening of the Franciscan complex in response to passage of the Mendocino triple junction and an associated thinning of these rocks south of the triple junction due to assimilation into melt triggered by upwelling asthenosphere. The region of thickened Franciscan complex overlies a zone of increased scattering, intrinsic attenuation, or both, resulting from mechanical mixing of lithologies and/or partial melt beneath the onshore projection of the Mendocino fracture zone. Our data reveal that we have crossed the southern edge of the Gorda slab and that this edge and/or the overlying North American crust may have fragmented because of the change in stress presented by the edge.

  2. Mapping the evolving strain field during continental breakup from crustal anisotropy in the Afar Depression

    PubMed Central

    Keir, Derek; Belachew, M.; Ebinger, C.J.; Kendall, J.-M.; Hammond, J.O.S.; Stuart, G.W.; Ayele, A.; Rowland, J.V.

    2011-01-01

    Rifting of the continents leading to plate rupture occurs by a combination of mechanical deformation and magma intrusion, yet the spatial and temporal scales over which these alternate mechanisms localize extensional strain remain controversial. Here we quantify anisotropy of the upper crust across the volcanically active Afar Triple Junction using shear-wave splitting from local earthquakes to evaluate the distribution and orientation of strain in a region of continental breakup. The pattern of S-wave splitting in Afar is best explained by anisotropy from deformation-related structures, with the dramatic change in splitting parameters into the rift axis from the increased density of dyke-induced faulting combined with a contribution from oriented melt pockets near volcanic centres. The lack of rift-perpendicular anisotropy in the lithosphere, and corroborating geoscientific evidence of extension dominated by dyking, provide strong evidence that magma intrusion achieves the majority of plate opening in this zone of incipient plate rupture. PMID:21505441

  3. Active Forearc Response to CO-NZ-CA Triple Junction Migration, Southern Central America

    NASA Astrophysics Data System (ADS)

    Morell, K.; Fisher, D.; Gardner, T. W.

    2007-12-01

    Southeast migration of the CO-NZ-CA triple junction at a rate of ~55 mm/yr results in an abrupt increase in convergence rate, slab thickness and subduction direction within the upper plate of the Central American convergent margin. At the triple junction, an active transform fault (the dextral Panama Fracture Zone) subducts beneath the Caribbean plate at the Middle America Trench, and juxtaposes the thick, orthogonal and shallow subduction of the Cocos plate against the thin, oblique and steeper subduction of the Nazca plate. New bedrock geology, Quaternary mapping and Ar/Ar dates of fluvial and volcanic deposits inboard of the triple junction provide evidence that both the outer and inner forearc of this system is actively responding to the dynamic changes presented by triple junction migration. Our results confirm that the Fila Costeña, a thin-skinned inner forearc thrust belt, is active and likely propagating in concert with triple junction migration. Mapping within the area overriding the Panama Fracture Zone indicates that thrusting develops only in those areas experiencing Cocos subduction; the thrust belt dies out coincident with the on-shore projection of the Panama Fracture Zone, and balanced cross-sections indicate a lateral gradient in the amount of shortening near the termination of the thrust belt. Along-strike variations in drainage basin morphometry suggest that drainage divides of the Fila Costeña are propagating to the southeast with the triple junction, resulting in hook-shaped drainage patterns and asymmetric basin shapes. A survey of a flight of 3-4 fluvial terraces along the Río Chiriquí Viejo indicates recent thrusting along a prominent thrust fault of the Fila Costeña. These terraces are also inset into multiple lahar flows with an upper surface tentatively constrained at ~507 ka based on an Ar/Ar hornblende plateau age. Recent work indicates that this thrust fault displaces surficial lahar deposits, suggesting that it must have become

  4. The Environmental Performance at Low Intensity, Low Temperature (LILT) of High Efficiency Triple Junction Solar Cells

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Mueller, Robert; Davis, Gregory; Distefano, Salvador

    2004-01-01

    A number of JPL missions, either active or in the p l d g stages, require the accurate LILT flew intensity - low temperate) climate of triple-junction solar. Although triple ignition LILT performance was reported as recently as 2002, there has been an evolutionary advance in cell technology by both U.S. space cell manufacturers that, for mission design purposes, effectively obsoletes the earlier data. As a result, JPL initiated a program to develop a database for the LILT performance of the new high performance triple junction solar cells. JPL obtained Emcore Advanced triple Juntion CIC assemblies and Spectrolab Ultra Triple Junction CIC assemblies. These cells were tested at temperature-intensity ranges designed to cover applications between 1 and 5.18 AU solar distances. 1 MeV electron irradiation from 25 E14 to 1 El5 w were performed on the cells to evaluate the combined effect of particulate radiation and LILT conditions. The effect of LILT conditions was observed to incur an increase in the variation of cell performances such that at simulted 5.18 AU conditions the average performance was approximately 30% with the best cells measuring between 32 and 34% efficiency. The 30% average efficiency compares with approximately 25% average efficiency measured on earlier technology triple junction solar cells.

  5. Preliminary Low Temperature Electron Irradiation of Triple Junction Solar Cells

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Mueller, Robert L.; Scrivner, Roy L.; Helizon, Roger S.

    2007-01-01

    For many years extending solar power missions far from the sun has been a challenge not only due to the rapid falloff in solar intensity (intensity varies as inverse square of solar distance) but also because some of the solar cells in an array may exhibit a LILT (low intensity low temperature) degradation that reduces array performance. Recent LILT tests performed on commercial triple junction solar cells have shown that high performance can be obtained at solar distances as great as approx. 5 AU1. As a result, their use for missions going far from the sun has become very attractive. One additional question that remains is whether the radiation damage experienced by solar cells under low temperature conditions will be more severe than when measured during room temperature radiation tests where thermal annealing may take place. This is especially pertinent to missions such as the New Frontiers mission Juno, which will experience cell irradiation from the trapped electron environment at Jupiter. Recent testing2 has shown that low temperature proton irradiation (10 MeV) produces cell degradation results similar to room temperature irradiations and that thermal annealing does not play a factor. Although it is suggestive to propose the same would be observed for low temperature electron irradiations, this has not been verified. JPL has routinely performed radiation testing on commercial solar cells and has also performed LILT testing to characterize cell performance under far sun operating conditions. This research activity was intended to combine the features of both capabilities to investigate the possibility of any room temperature annealing that might influence the measured radiation damage. Although it was not possible to maintain the test cells at a constant low temperature between irradiation and electrical measurements, it was possible to obtain measurements with the cell temperature kept well below room temperature. A fluence of 1E15 1MeV electrons was

  6. Death and Transfiguration of a Triple Junction in the South Atlantic

    PubMed

    Ligi; Bonatti; Bortoluzzi; Carrara; Fabretti; Penitenti; Gilod; Peyve; Skolotnev; Turko

    1997-04-11

    Three major lithospheric plates-Antarctic, South American, and African-meet in the South Atlantic near Bouvet Island where the Mid-Atlantic Ridge (MAR), the Southwest Indian Ridge (SWIR), and the American Antarctic Ridge converge toward a fast evolving triple junction. A major magmatic pulse has recently built a new, swollen segment of the SWIR (Spiess Ridge) that is propagating toward the MAR at a rate of 4 to 5 centimeters per year, disrupting a former ridge-ridge-ridge (RRR) triple junction. A new triple junction will be established about 70 kilometers to the north when the propagating SWIR/Spiess segment will impact with the MAR, probably within the next 1 million years. The American Antarctic Ridge will take advantage of the MAR/SWIR duel by capturing an approximately 70-kilometer stretch of MAR, whereas the Antarctic plate will increase its size.

  7. Computer simulation study of grain boundary and triple junction distributions in microstructures formed by multiple twinning

    SciTech Connect

    Gertsman, V.Y. |; Tangri, K.

    1995-06-01

    Microstructures formed as a result of multiple twinning have been simulated by means of computer modeling. Grain boundary misorientation (character) and triple junction distributions have been studied with the emphasis on the effect of initial texture and multiple twinning process. Although grain boundary distributions are similar in all the microstructures modeled, sharp initial texture leads to a somewhat enhanced amount of {Sigma}3 boundaries and to a considerable increase in the number of triple junctions containing two {Sigma}3 boundaries. The impact of these parameters on the material susceptibility to intergranular crack propagation has been analyzed and implications for grain boundary engineering has been discussed.

  8. Simulation of the Mars surface solar spectra for optimized performance of triple junction solar cells

    NASA Technical Reports Server (NTRS)

    Edmondson, Kenneth M.; Joslin, David E.; Fetzer, Chris M.; King, Richard R.; Karam, Nasser H.; Mardesich, Nick; Stella, Paul M.; Rapp, Donald; Mueller, Robert

    2005-01-01

    The unparalleled success of the Mars Exploration Rovers (MER) powered by GaInP/GaAs/Ge triple-junction solar cells has demonstrated a lifetime for the rovers that exceeded the baseline mission duration by more than a factor of five.

  9. Modeling Radiation Effects on a Triple Junction Solar Cell using Silvaco ATLAS

    DTIC Science & Technology

    2012-06-01

    Indium - Gallium -Phosphide and Germanium solar cells . The effects of...32. 37 Figure 32. InGaP/GaAs/Ge Solar Cell . From [37]. The indium gallium phosphide (InGaP) material creates the least current but the highest...Phosphide, and Gallium Arsenide solar cells individually and together in a triple junction cell is presented in this thesis. A discussion on

  10. Nano-analysis of grain boundary and triple junction transport in nanocrystalline Ni/Cu.

    PubMed

    Reda Chellali, Mohammed; Balogh, Zoltan; Schmitz, Guido

    2013-09-01

    Nanocrystalline materials are distinguished by a high density of structural defects and grain boundaries. Due to the small grain size, a particular defect of the grain boundary topology, the so-called triple junction takes a dominant role for grain growth and atomic transport. We demonstrate by atom probe tomography that triple junctions in nanocrystalline Cu have 100-300 times higher diffusivity of Ni than standard high angle grain boundaries. Also, a previously unexpected systematic variation of the grain boundary width with temperature is detected. The impurity segregation layer at the grain boundaries grows from the 0.7 nm at 563 K to 2.5 nm at 643 K. This variation is clearly not controlled by simple bulk diffusion. Taking this effect into consideration, the activation energies for Ni diffusion in triple junctions and grain boundaries in Cu can be determined to be (83 ± 10) and (120 ± 15) kJ/mol, respectively. Thus, triple junctions are distinguished by considerably lower activation energy with respect to grain boundaries.

  11. The recent history of the Galapagos triple junction preserved on the Pacific plate

    NASA Astrophysics Data System (ADS)

    Smith, Deborah K.; Schouten, Hans; Montési, Laurent; Zhu, Wenlu

    2013-06-01

    At the Galapagos triple junction, the Cocos and Nazca plates are broken by a succession of transient rifts north and south of the Cocos-Nazca (C-N) Rift. Modeling has suggested that each rift initiated at the East Pacific Rise (EPR), its location controlled by the distance of the C-N Rift tip from the EPR. Evidence on the Pacific plate confirms that each transient rift formed a true RRR triple junction with the EPR and clarifies the history of the region. At ˜1.5 Ma the triple junctions began jumping rapidly toward the C-N Rift suggesting that the C-N Rift tip moved closer to the EPR. Pacific abyssal hills became broad and shallow indicating enhanced magma supply to the region. At ˜1.4 Ma, the Galapagos microplate developed when extension became fixed on the southern transient rift to form the South scarp of the future Dietz rift basin. Lavas flooded the area and a Galapagos-Nazca magmatic spreading center initiated at the EPR. We suggest that a hotspot was approaching the southern triple junction from the west. The hotspot crossed to the Nazca plate ˜1.25 Ma. Dietz seamount formed within the young spreading center, dikes intruded Dietz rift basin, and eruptions built volcanic ridges. Since ˜0.8 Ma magmatic spreading has jumped northward twice, most recently to Dietz volcanic ridge. Amagmatic extension to the east has formed the large North scarp of Dietz rift basin. Northward jumping of the southern triple junction has maintained the microplate boundary close to the proposed hotspot.

  12. Migration of grain boundaries and triple junctions in high-purity aluminum during annealing after slight cold rolling

    SciTech Connect

    Yin, Wenhong; Wang, Weiguo; Fang, Xiaoying; Qin, Congxiang; Xing, Xiaoguang

    2015-09-15

    Grain orientations and grain boundary migrations near triple junctions in a high purity aluminum were analyzed by electron back scattered diffraction. The results indicate that there are good correlations between the Schmid factors or Taylor factors and the misorientation values of point to original point in grains near the triple junctions in a slightly deformed sample. Grains with higher Schmid factors or lower Taylor factors typically correspond to higher misorientation values near the triple junctions. In a subsequent annealing at 400 °C, both grain boundaries and triple junctions migrate, but the former leave ghost lines. During such migration, a grain boundary grows from the grain with lower Schmid factor (higher Taylor factor) into the grain with higher Schmid factor (lower Taylor factor). Usually, the amount of migration of a grain boundary is considerably greater than that of a triple junction, and the grain boundary becomes more curved after migration. These observations indicate that the triple junctions have drag effects on grain boundary migration. - Highlights: • Polycrystalline aluminum with fine grains about 30 μm were used. • Off-line in situ EBSD was used to identify TJs before and after annealing. • Grains with higher SFs have higher misorientation values near TJs after deformation. • Grain boundaries grow from hard grains into soft grains during annealing. • Triple junctions have drag effects on grain boundaries migration.

  13. Photovoltaic characteristics of each subcell evaluated in situ in a triple-junction solar cell

    NASA Astrophysics Data System (ADS)

    Huang, Tzu-Hsuan; Lo, Hao; Lo, Chieh; Wu, Meng-Chyi; Lour, Wen-Shiung

    2016-12-01

    New manufacturing processes were proposed to evaluate important photovoltaic properties of each subcell in an InGaP/InGaAs/Ge triple-junction solar cell. In addition to the triple-junction cell, an InGaAs/Ge double-junction cell and a Ge single-junction cell were also fabricated and employed for evaluation. The key merit of the double-junction cell is that semiconductor layers of forming InGaP top subcell are retained as a dummy top subcell. Thus, the InGaAs middle subcells in both triple- and double-junction cells will receive the same light spectrum. Similarly, the Ge single-junction cell is fabricated with dummy top and middle subcells as light filters. Open-circuit voltage, short-circuit current, conversion efficiency, and current mismatched ratio were measured for evaluating and optimizing each subcell. It is found that Open-circuit voltages are 1.295, 0.967, and 0.212 V for the InGaP, InGaAs, and Ge subcells with temperature coefficients of -2.5, -1.99, and -1.87 mV/°C. Thus the Ge subcell no longer acts a real solar cell at temperature over ∼140 °C. Besides, effect of ambient temperature on short circuit currents of all as-fabricated solar cells is not relevant. The current mismatched ratios are 18.6-20% at temperature ranged from 25 °C to 80 °C. A low efficiency of ∼18.7% is due partly to the poor current match. However, the processing concept proposed is useful as a method of matching currents among the subcells.

  14. 2D modeling of silicon based thin film dual and triple junction solar cells

    NASA Astrophysics Data System (ADS)

    Xiao, Y. G.; Uehara, K.; Lestrade, M.; Li, Z. Q.; Li, Z. M. S.

    2009-08-01

    Based on Crosslight APSYS, thin film amorphous Si (a-Si:H)/microcrystalline (μc-Si) dual-junction (DJ) and a- Si:H/amorphous SiGe:H (a-SiGe:H)/μc-Si triple-junction (TJ) solar cells are modeled. Basic physical quantities like band diagrams, optical absorption and generation are obtained. Quantum efficiency and I-V curves for individual junctions are presented for current matching analyses. The whole DJ and TJ cell I-V curves are also presented and the results are discussed with respect to the top surface ZnO:Al TCO layer affinity. The interface texture effect is modeled with FDTD (finite difference time domain) module and results for top junction are presented. The modeling results give possible clues to achieve high efficiency for DJ and TJ thin film solar cells.

  15. The Cape Mendocino, California, earthquakes of April 1992: Subduction at the triple junction

    USGS Publications Warehouse

    Oppenheimer, D.; Beroza, G.; Carver, G.; Dengler, L.; Eaton, J.; Gee, L.; Gonzalez, F.; Jayko, A.; Li, W.H.; Lisowski, M.; Magee, M.; Marshall, G.; Murray, M.; McPherson, R.; Romanowicz, B.; Satake, K.; Simpson, R.; Somerville, P.; Stein, R.; Valentine, D.

    1993-01-01

    The 25 April 1992 magnitude 7.1 Cape Mendocino thrust earthquake demonstrated that the North America-Gorda plate boundary is seismogenic and illustrated hazards that could result from much larger earthquakes forecast for the Cascadia region. The shock occurred just north of the Mendocino Triple Junction and caused strong ground motion and moderate damage in the immediate area. Rupture initiated onshore at a depth of 10.5 kilometers and propagated up-dip and seaward. Slip on steep faults in the Gorda plate generated two magnitude 6.6 aftershocks on 26 April. The main shock did not produce surface rupture on land but caused coastal uplift and a tsunami. The emerging picture of seismicity and faulting at the triple junction suggests that the region is likely to continue experiencing significant seismicity.

  16. Enhanced Conversion Efficiency of III–V Triple-junction Solar Cells with Graphene Quantum Dots

    PubMed Central

    Lin, Tzu-Neng; Santiago, Svette Reina Merden S.; Zheng, Jie-An; Chao, Yu-Chiang; Yuan, Chi-Tsu; Shen, Ji-Lin; Wu, Chih-Hung; Lin, Cheng- An J.; Liu, Wei-Ren; Cheng, Ming-Chiang; Chou, Wu-Ching

    2016-01-01

    Graphene has been used to synthesize graphene quantum dots (GQDs) via pulsed laser ablation. By depositing the synthesized GQDs on the surface of InGaP/InGaAs/Ge triple-junction solar cells, the short-circuit current, fill factor, and conversion efficiency were enhanced remarkably. As the GQD concentration is increased, the conversion efficiency in the solar cell increases accordingly. A conversion efficiency of 33.2% for InGaP/InGaAs/Ge triple-junction solar cells has been achieved at the GQD concentration of 1.2 mg/ml, corresponding to a 35% enhancement compared to the cell without GQDs. On the basis of time-resolved photoluminescence, external quantum efficiency, and work-function measurements, we suggest that the efficiency enhancement in the InGaP/InGaAs/Ge triple-junction solar cells is primarily caused by the carrier injection from GQDs to the InGaP top subcell. PMID:27982073

  17. Enhanced Conversion Efficiency of III-V Triple-junction Solar Cells with Graphene Quantum Dots.

    PubMed

    Lin, Tzu-Neng; Santiago, Svette Reina Merden S; Zheng, Jie-An; Chao, Yu-Chiang; Yuan, Chi-Tsu; Shen, Ji-Lin; Wu, Chih-Hung; Lin, Cheng-An J; Liu, Wei-Ren; Cheng, Ming-Chiang; Chou, Wu-Ching

    2016-12-16

    Graphene has been used to synthesize graphene quantum dots (GQDs) via pulsed laser ablation. By depositing the synthesized GQDs on the surface of InGaP/InGaAs/Ge triple-junction solar cells, the short-circuit current, fill factor, and conversion efficiency were enhanced remarkably. As the GQD concentration is increased, the conversion efficiency in the solar cell increases accordingly. A conversion efficiency of 33.2% for InGaP/InGaAs/Ge triple-junction solar cells has been achieved at the GQD concentration of 1.2 mg/ml, corresponding to a 35% enhancement compared to the cell without GQDs. On the basis of time-resolved photoluminescence, external quantum efficiency, and work-function measurements, we suggest that the efficiency enhancement in the InGaP/InGaAs/Ge triple-junction solar cells is primarily caused by the carrier injection from GQDs to the InGaP top subcell.

  18. Enhanced Conversion Efficiency of III–V Triple-junction Solar Cells with Graphene Quantum Dots

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Neng; Santiago, Svette Reina Merden S.; Zheng, Jie-An; Chao, Yu-Chiang; Yuan, Chi-Tsu; Shen, Ji-Lin; Wu, Chih-Hung; Lin, Cheng-An J.; Liu, Wei-Ren; Cheng, Ming-Chiang; Chou, Wu-Ching

    2016-12-01

    Graphene has been used to synthesize graphene quantum dots (GQDs) via pulsed laser ablation. By depositing the synthesized GQDs on the surface of InGaP/InGaAs/Ge triple-junction solar cells, the short-circuit current, fill factor, and conversion efficiency were enhanced remarkably. As the GQD concentration is increased, the conversion efficiency in the solar cell increases accordingly. A conversion efficiency of 33.2% for InGaP/InGaAs/Ge triple-junction solar cells has been achieved at the GQD concentration of 1.2 mg/ml, corresponding to a 35% enhancement compared to the cell without GQDs. On the basis of time-resolved photoluminescence, external quantum efficiency, and work-function measurements, we suggest that the efficiency enhancement in the InGaP/InGaAs/Ge triple-junction solar cells is primarily caused by the carrier injection from GQDs to the InGaP top subcell.

  19. Transition Fault and the Yakutat-Pacific-North American Triple Junction

    NASA Astrophysics Data System (ADS)

    Gulick, S. P.; Christeson, G. L.; Norton, I. O.; Pavlis, T. L.; Reece, R.; van Avendonk, H.; Worthington, L. L.

    2011-12-01

    In the Gulf of Alaska the Pacific Plate, Yakutat Terrane, and North American Plate interact in a complexly deformed zone on the continental slope near Kayak Island. This zone can be viewed as a fault-trench-trench (FTT) triple junction that can only be stable if the two trench segments are aligned. In this case the trench segments are: the deformation front along which the Pacific Plate subducts beneath North America (the Aleutian Trench) and the deformation front along which the Yakutat Terrane subducts at a more westerly direction (when compared to the Pacific subduction) beneath North America (the Pamplona Zone). These two deformation fronts are, to a first order, locally aligned. The complex member of the system is the Transition Fault which is a long-lived strike-slip fault separating the 15-30 km thick Yakutat oceanic plateau crust from the 5-7 km thick Pacific Plate crust, which is itself deforming along the north-south trending Gulf of Alaska Shear Zone (GASZ). A series of seismic reflection profiles crossing the Transition Fault allow us to examine the evolution of deformation as a function of proximity to the triple junction. East of the triple junction and the GASZ, the Transition Fault is a single near vertical strike-slip zone. Moving west to the area where the GASZ interacts with the Transition Fault, three seismic profiles show that the Fault bifurcates into a southern transpressional strand with a few 100 meters of seafloor relief and a northern strike-slip dominated strand. West of the GASZ and within the region proximal to the triple junction, two seismic lines show that the Transition Fault is expressed as a southern transpressional structure with significant amounts shortening (seafloor expression increased to ~1.8 km) and a northern dominantly strike-slip fault with minor transpression. Mapping the top of basement shows that the southern arm lies within and deforms the Pacific oceanic crust with the top of ocean crust reflection to the north

  20. Simulation of the Mars Surface Solar Spectra for Optimized Performance of Triple-Junction Solar Cells

    NASA Technical Reports Server (NTRS)

    Edmondson, Kenneth M.; Joslin, David E.; Fetzer, Chris M.; King, RIchard R.; Karam, Nasser H.; Mardesich, Nick; Stella, Paul M.; Rapp, Donald; Mueller, Robert

    2007-01-01

    The unparalleled success of the Mars Exploration Rovers (MER) powered by GaInP/GaAs/Ge triple-junction solar cells has demonstrated a lifetime for the rovers that exceeded the baseline mission duration by more than a factor of five. This provides confidence in future longer-term solar powered missions on the surface of Mars. However, the solar cells used on the rovers are not optimized for the Mars surface solar spectrum, which is attenuated at shorter wavelengths due to scattering by the dusty atmosphere. The difference between the Mars surface spectrum and the AM0 spectrum increases with solar zenith angle and optical depth. The recent results of a program between JPL and Spectrolab to optimize GaInP/GaAs/Ge solar cells for Mars are presented. Initial characterization focuses on the solar spectrum at 60-degrees zenith angle at an optical depth of 0.5. The 60-degree spectrum is reduced to 1/6 of the AM0 intensity and is further reduced in the blue portion of the spectrum. JPL has modeled the Mars surface solar spectra, modified an X-25 solar simulator, and completed testing of Mars-optimized solar cells previously developed by Spectrolab with the modified X-25 solar simulator. Spectrolab has focused on the optimization of the higher efficiency Ultra Triple-Junction (UTJ) solar cell for Mars. The attenuated blue portion of the spectrum requires the modification of the top sub-cell in the GaInP/GaAs/Ge solar cell for improved current balancing in the triple-junction cell. Initial characterization confirms the predicted increase in power and current matched operation for the Mars surface 60-degree zenith angle solar spectrum.

  1. Determining the Sula block kinematics in the triple junction area in Indonesia by GPS

    NASA Astrophysics Data System (ADS)

    Walpersdorf, Andrea; Vigny, Christophe; Manurung, P.; Subarya, C.; Sutisna, S.

    1998-11-01

    The point of convergence of the Eurasian, Philippine and Australian plates is situated adjacent to the island of Sulawesi, Indonesia. The relative plate velocities are estimated by NUVEL1 to be 7 to 9 cm yr- 1. The complex tectonic mechanism of the triple junction has been studied over a two-year period in the course of the GEODYSSEA Southeast Asian Project. The GPS investigations concentrate on measurements of both the Sulawesi (eastern Indonesia) part of the inter-regional GEODYSSEA network and a local subnetwork on Sulawesi. Motions derived using data from the subnetwork confirm what the results of the inter-regional GEODYSSEA network have suggested; that is, that current deformation is high, and there are distinct deformation domains in the study area on Sulawesi. The tectonic mechanism of the triple junction has been analysed using a rigid microblock model. The triple junction area can best be interpreted as a headland of the Australian Plate deflected by its collision with the Philippine Plate, thereby identifying the driving forces of the current deformation. The northern part is dominated by the Sula domain, which shows clockwise rotation. To the south, it is connected to the Australian Plate by an ensemble of microblocks undergoing counter-clockwise rotation. In addition to the above, our tectonic model permits the determination of the local influence of two large earthquakes (M=7.8, 1996 January 1 and M=7.0, 1996 July 22) on the motion of the station Tomini (north Sulawesi). More observations and a denser GPS network are planned in order to study the behaviour of the Palu-Koro Fault, the main fault on the western limit of the Sula block.

  2. Dicke-Josephson effect in a cross-typed triple-quantum-dot junction

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Qi; Yi, Guang-Yu; Gong, Wei-Jiang

    2016-12-01

    We investigate the Dicke-Josephson effect in a superconductor/triple-quantum-dot/superconductor junction in which the central dot is coupled to the superconductors. It is found that the Dicke effect can modulate the Josephson effect in a nontrivial way. In the noninteracting case, the Dicke effect induces a subpeak in the supercurrent spectrum around the energy zero point. When intradot interactions are taken into account, the role of the Dicke effect changes completely. Namely, it tends to suppress the π-phase current near the position of electron-hole symmetry. With the increase of the Coulomb strength, it has an opportunity to reverse the current direction. We thus conclude that the Dicke-Josephson effect is also an important part in describing the Josephson effect in coupled-dot junctions.

  3. Crustal shear-wave splitting from local earthquakes in the Hengill triple junction, southwest Iceland

    USGS Publications Warehouse

    Evans, J.R.; Foulger, G.R.; Julian, B.R.; Miller, A.D.

    1996-01-01

    The Hengill region in SW Iceland is an unstable ridge-ridge-transform triple junction between an active and a waning segment of the mid-Atlantic spreading center and a transform that is transgressing southward. The triple junction contains active and extinct spreading segments and a widespread geothermal area. We evaluated shear-wave birefringence for locally recorded upper-crustal earthquakes using an array of 30 three-component digital seismographs. Fast-polarization directions, ??, are mostly NE to NNE, subparallel to the spreading axis and probably caused by fissures and microcracks related to spreading. However, there is significant variability in ?? throughout the array. The lag from fast to slow S is not proportional to earthquake depth (ray length), being scattered at all depths. The average wave-speed difference between qS1 and qS2 in the upper 2-5 km of the crust is 2-5%. Our results suggest considerable heterogeneity or strong S scattering.

  4. Improved vacuum surface flashover performance of polymer insulators by the use of unique triple junction designs

    SciTech Connect

    Smith, J.D.; Kahaian, D.J.; Honig, E.M.; Montoya, R.E.; Rosocha, L.A.; Allen, G.R. ); Aaron, W.F. III . Plasma Lab.)

    1991-01-01

    Previous research and theories about surface flashover in vacuum indicate that the triple junction region plays a critical role in the insulator flashover process. To attempt to improve upon the performance of the standard 45-degree frustum insulator, three different insulator geometries with modified triple junction regions were investigated. Two samples of each geometry, each 2 cm thick, were tested to obtain the flashover voltage levels in a low 10{sup {minus}5} Torr vacuum using a 1.2-microsecond risetime voltage pulse. Each sample was tested five times with 20 shots per test for a total of 200 shots per geometry. Test results and comparisons of the flashover voltage levels for the four geometries are presented. One geometry showed an improvement in flashover voltage of about 40% over the standard 45-degree frustum. It also showed significantly less susceptibility to low-voltage flashover due to surface damage, suggesting a correlation between surface damage and the development of conductive paths along the surface.

  5. Detailed physics based modeling of triple-junction InGaP/GaAs/Ge solar cell

    NASA Astrophysics Data System (ADS)

    Fedoseyev, Alexandre; Bald, Timothy; Raman, Ashok; Hubbard, Seth; Forbes, David; Freundlich, Alexandre

    2014-03-01

    Space exploration missions and space electronic equipment require improvements in solar cell efficiency and radiation hardness. Triple-junction photovoltaic (TJ PV) cell is one of the most widely used PV for space missions due to it high efficiency. A proper models and simulation techniques are needed to speed-up the development on novel solar cell devices and reduce the related expenses. In this paper we have developed a detailed 3D TCAD model of a TJ PV cell, and calibrated the various (not accurately known) physical parameters to match experimental data, such as dark and light JV, external quantum efficiency (EQE) . A detailed model of triple-junction InGaP/GaAs/Ge solar cell has been developed and implemented in CFDRC's 3D NanoTCAD simulator. The model schematic, materials, layer thicknesses, doping levels and meshing are discussed. This triple-junction model is based on the experimental measurements of a Spectrolab triple-junction cell by [1] with material layer thicknesses provided by Rochester Institute of Technology [2]. This model of the triple-junction solar cell is primarily intended to simulate the external quantum efficiency, JV and other characteristics of a physical cell. Simulation results of light JV characteristics and EQE are presented. The calculated performance parameters compare well against measured experimental data [1]. Photovoltaic performance parameters (Jsc, Voc, Jm, Vm, FF, and Efficiency) can also be simulated using the presented model. This TCAD model is to be used to design an enhanced TJ PV with increased efficiency and radiation tolerance. Keywords: photovoltaic cell, triple-junction, numerical modeling, TCAD, dark and light JV.

  6. Metal-oxide-junction, triple point cathodes in a relativistic magnetron

    SciTech Connect

    Jordan, N. M.; Gilgenbach, R. M.; Hoff, B. W.; Lau, Y. Y.

    2008-06-15

    Triple point, defined as the junction of metal, dielectric, and vacuum, is the location where electron emission is favored in the presence of a sufficiently strong electric field. To exploit triple point emission, metal-oxide-junction (MOJ) cathodes consisting of dielectric ''islands'' over stainless steel substrates have been fabricated. The two dielectrics used are hafnium oxide (HfO{sub x}) for its high dielectric constant and magnesium oxide (MgO) for its high secondary electron emission coefficient. The coatings are deposited by ablation-plasma-ion lithography using a KrF laser (0-600 mJ at 248 nm) and fluence ranging from 3 to 40 J/cm{sup 2}. Composition and morphology of deposited films are analyzed by scanning electron microscopy coupled with x-ray energy dispersive spectroscopy, as well as x-ray diffraction. Cathodes are tested on the Michigan Electron Long-Beam Accelerator with a relativistic magnetron, at parameters V=-300 kV, I=1-15 kA, and pulse lengths of 0.3-0.5 {mu}s. Six variations of the MOJ cathode are tested, and are compared against five baseline cases. It is found that particulate formed during the ablation process improves the electron emission properties of the cathodes by forming additional triple points. Due to extensive electron back bombardment during magnetron operation, secondary electron emission also may play a significant role. Cathodes exhibit increases in current densities of up to 80 A/cm{sup 2}, and up to 15% improvement in current start up time, as compared to polished stainless steel cathodes.

  7. Seismicity and crustal structure at the Mendocino triple junction, Northern California

    SciTech Connect

    Dicke, M.

    1998-12-01

    A high level of seismicity at the Mendocino triple junction in Northern California reflects the complex active tectonics associated with the junction of the Pacific, North America, and Gorda plates. To investigate seismicity patterns and crustal structure, 6193 earthquakes recorded by the Northern California Seismic Network (NCSN) are relocated using a one-dimensional crustal velocity model. A near vertical truncation of the intense seismic activity offshore Cape Mendocino follows the strike of the Mattole Canyon fault and is interpreted to define the Pacific plate boundary. Seismicity along this boundary displays a double seismogenic layer that is attributed to interplate activity with the North America plate and Gorda plate. The interpretation of the shallow seismogenic zone as the North America - Pacific plate boundary implies that the Mendocino triple junction is situated offshore at present. Seismicity patterns and focal mechanisms for events located within the subducting Gorda pl ate are consistent with internal deformation on NE-SW and NW-SE trending rupture planes in response to north-south compression. Seismic sections indicate that the top of the Gorda plate locates at a depth of about 18 Km beneath Cape Mendocino and dips gently east-and southward. Earthquakes that are located in the Wadati-Benioff zone east of 236{sup o}E show a change to an extensional stress regime indicative of a slab pull force. This slab pull force and scattered seismicity within the contractional forearc region of the Cascadia subduction zone suggest that the subducting Gorda plate and the overriding North America plate are strongly coupled. The 1992 Cape Mendocino thrust earthquake is believed to have ruptured a blind thrust fault in the forearc region, suggesting that strain is accumulating that must ultimately be released in a potential M 8+ subduction earthquake.

  8. Block rotation and continental extension in Afar: A comparison to oceanic microplate systems

    NASA Astrophysics Data System (ADS)

    Acton, Gary D.; Stein, Seth; Engeln, Joseph F.

    1991-06-01

    The reorganization of oceanic spreading centers separating major plates often appears to occur by a process in which discrete microplates form and evolve by rift propagation. To see whether such microplate behavior has implications for continental rifting, we investigate the application of a microplate model to the Afar region at the Nubia-Somalia-Arabia triple junction. Studies of marine magnetic anomalies, volcanic ages, bathymetry, and seismicity suggest that the westward propagating Gulf of Aden spreading center has propagated into eastern Afar within the past 2 m.y., causing rifting and extension within the continent. We derive constraints on the extension history from the geometry and timing of rift formation and from paleomagnetic data indicating that Pliocene to Pleistocene age rocks have undergone a clockwise rotation of ˜11°. We suggest that the history of rifting, the rotation, and several other features of the regional geology can be described by combining features of an oceanic microplate model and the concept of rift localization previously proposed for Afar. In this scenario, motion occurring on several rifts within an extensional zone preceding the propagating spreading center is gradually transferred to a single rift. While motion is transferred, the overlap region between the growing and dying rifts acts as one or more microplates or blocks that rotate relative to the surrounding major plates. The rifting history and rotations in eastern Afar are thus related to the rift propagation and localization that occurs as the plate boundary evolves. Provided the constraints we use are appropriate, our model better describes the regional kinematics than alternative block models including one based on "bookshelf" faulting. If the tectonics of Afar are typical for continental breakup, they have interesting implications for the geometry of passive margins. In particular, asymmetric rifted margins can be produced if the final location of the rift axis is not

  9. Degradation modeling of InGaP/GaAs/Ge triple-junction solar cells irradiated by protons

    NASA Astrophysics Data System (ADS)

    Maximenko, S. I.; Lumb, M. P.; Messenger, S. R.; Hoheisel, R.; Affouda, C.; Scheiman, D.; Gonzalez, M.; Lorentzen, J.; Jenkins, P. P.; Walters, R. J.

    2014-03-01

    Experimental results on triple-junction solar cells irradiated by 3 MeV proton irradiation to very high damage levels are presented. The minority carrier transport properties were obtained through quantum efficiency and EBIC measurements and an analytical drift-diffusion solver was used in understanding the results for different degradation levels where multiple damage mechanisms are evident.

  10. Triple junction orogeny: tectonic evolution of the Pan-African Northern Damara Belt, Namibia

    NASA Astrophysics Data System (ADS)

    Lehmann, Jérémie; Saalmann, Kerstin; Naydenov, Kalin V.; Milani, Lorenzo; Charlesworth, Eugene G.; Kinnaird, Judith A.; Frei, Dirk; Kramers, Jan D.; Zwingmann, Horst

    2014-05-01

    Trench-trench-trench triple junctions are generally geometrically and kinematically unstable and therefore can result at the latest stages in complicated collisional orogenic belts. In such geodynamic sites, mechanism and timescale of deformations that accommodate convergence and final assembly of the three colliding continental plates are poorly studied. In western Namibia, Pan-African convergence of three cratonic blocks led to pene-contemporaneous closure of two highly oblique oceanic domains and formation of the triple junction Damara Orogen where the NE-striking Damara Belt abuts to the west against the NNW-striking Kaoko-Gariep Belt. Detailed description of structures and microstructures associated with remote sensing analysis, and dating of individual deformation events by means of K-Ar, Ar-Ar (micas) and U-Pb (zircon) isotopic studies from the Northern Damara Belt provide robust constraints on the tectonic evolution of this palaeo-triple junction orogeny. There, passive margin sequences of the Neoproterozoic ocean were polydeformed and polymetamorphosed to the biotite zone of the greenschist facies to up to granulite facies and anatexis towards the southern migmatitic core of the Central Damara Belt. Subtle relict structures and fold pattern analyses reveal the existence of an early D1 N-S shortening event, tentatively dated between ~635 Ma and ~580 Ma using published data. D1 structures were almost obliterated by pervasive and major D2 E-W coaxial shortening, related to the closure of the Kaoko-Gariep oceanic domain and subsequent formation of the NNW-striking Kaoko-Gariep Belt to the west of the study area. Early, km-scale D1 E-W trending steep folds were refolded during this D2 event, producing either Type I or Type II fold interference patterns visible from space. The D2 E-W convergence could have lasted until ~533 Ma based on published and new U-Pb ages. The final D3 NW-SE convergence in the northernmost Damara Belt produced a NE-striking deformation

  11. Triple junction magmatism: a geochemical study of Neogene volcanic rocks in western California

    USGS Publications Warehouse

    Johnson, C.M.; O'Neil, J.R.

    1984-01-01

    Inception of volcanism at late Oligocene to Recent centers in the eastern Coast Ranges of California (ECR suite) regularly decreases in age northward and is correlated with the northward migration of the transform-transform-trench Mendocino triple junction (MTJ). Miocene volcanism in the southern California basin (SCB suite) is spatially and temporally associated with the transform-ridge-trench Rivera triple junction (RTJ). The tholeiitic to calc-alkaline rocks in both suites were erupted through older trench melange while arc magmatism was occurring several hundred kilometers to the east. Therefore they are not related to subduction zone magmatism, but instead to interactions of the MTJ and RTJ with the continental margin. The ECR rocks, dominantly intermediate to silicic in composition, have relatively high ??18O values up to 11.3, 87Sr 86Sr ratios up to 0.7055, as well as relatively high Th contents, suggesting that crustal anatexis played a dominant role in their generation. Coupled crystal fractionation and crustal assimilation by an initially basaltic magma cannot explain the high ??18O values and 87Sr 86Sr ratios because greater than 95% of the basalt would need to crystallize. In contrast, the SCB rocks, dominantly mafic to intermediate in composition, have relatively low ??18O values down to 5.2 and 87Sr 86Sr ratios down to 0.7025 suggesting that these rocks were derived dominantly from a mantle source. Whether crustal anatexis occurs is determined largely by the type of stress a triple junction imposes upon the continental margin. Both the MTJ and RTJ are associated with high heat flow and magma fluxes from the mantle. The transform-transform-trench MTJ is associated with locally variable mild extension to compression and therefore allows pooling of basaltic magma in the crust to initiate crustal melting. The high rates of continental extension associated with the transform-ridge-trench RTJ prevents such pooling of magma. The space created by decoupling

  12. Tectonics and evolution of the Juan Fernandez microplate at the Pacific-Nazca-Antarctic triple junction

    NASA Technical Reports Server (NTRS)

    Anderson-Fontana, S.; Larson, R. L.; Engein, J. F.; Lundgren, P.; Stein, S.

    1986-01-01

    Magnetic and bathymetric profiles derived from the R/V Endeavor survey and focal mechanism studies for earthquakes on two of the Juan Fernandez microplate boundaries are analyzed. It is observed that the Nazca-Juan Fernandez pole is in the northern end of the microplate since the magnetic lineation along the East Ridge of the microplate fans to the south. The calculation of the relative motion of the Juan Fernandez-Pacific-Nazca-Antarctic four-plate system using the algorithm of Minster et al. (1974) is described. The development of tectonic and evolutionary models of the region is examined. The tectonic model reveals that the northern boundary of the Juan Fernandez microplate is a zone of compression and that the West Ridge and southwestern boundary are spreading obliquely; the evolutionary model relates the formation of the Juan Fernandez microplate to differential spreading rates at the triple junction.

  13. On the relationship between {Sigma}3{sup n} boundaries meeting at a triple junction

    SciTech Connect

    Gertsman, V.Y. |; Tangri, K.

    1995-05-15

    Recently, microstructures with the dominance of {Sigma}3{sup n} grain boundaries have attracted considerable attention by researchers. Such microstructures are rather common in different recrystallized materials with relatively low stacking fault energy: f.c.c. metals and alloys, semiconductors with a diamond structure, and intermetallics with an L1{sub o} and L1{sub 2} structures. {Sigma}3{sup n} boundaries are formed mainly by multiple twinning, therefore microstructures consisting entirely of such boundaries are sometimes called ``twin-related``. These microstructures are thought to be of paramount significance for grain boundary engineering, i.e. for developing materials resistant to intergranular degradation such as grain boundary fracture and intergranular stress corrosion. The objective of this note is to clarify some vague matters pertaining to the relation between {Sigma} boundaries meeting at a triple junction.

  14. Inverted GaInP/(In)GaAs/InGaAs Triple-Junction Solar Cells with Low-Stress Metamorphic Bottom Junctions: Preprint

    SciTech Connect

    Geisz, J. F.; Kurtz, S. R.; Wanlass, M. W.; Ward, J. S.; Duda, A.; Friedman, D. J.; Olson, J. M.; McMahon, W. E.; Moriarty, T. E.; Kiehl, J. T.; Romero, M. J.; Norman, A. G.; Jones, K. M.

    2008-05-01

    We demonstrate high efficiency performance in two ultra-thin, Ge-free III-V semiconductor triple-junction solar cell device designs grown in an inverted configuration. Low-stress metamorphic junctions were engineered to achieve excellent photovoltaic performance with less than 3 x 106 cm-2 threading dislocations. The first design with band gaps of 1.83/1.40/1.00 eV, containing a single metamorphic junction, achieved 33.8% and 39.2% efficiencies under the standard one-sun global spectrum and concentrated direct spectrum at 131 suns, respectively. The second design with band gaps of 1.83/1.34/0.89 eV, containing two metamorphic junctions achieved 33.2% and 40.1% efficiencies under the standard one-sun global spectrum and concentrated direct spectrum at 143 suns, respectively.

  15. Efficient enhancement of hydrogen production by Ag/Cu2O/ZnO tandem triple-junction photoelectrochemical cell

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Ren, Feng; Shen, Shaohua; Fu, Yanming; Chen, Chao; Liu, Chang; Xing, Zhuo; Liu, Dan; Xiao, Xiangheng; Wu, Wei; Zheng, Xudong; Liu, Yichao; Jiang, Changzhong

    2015-03-01

    Highly efficient semiconductor photoelectrodes for solar hydrogen production through photocatalytic water splitting are a promising and challenge solution to solve the energy problems. In this work, Ag/Cu2O/ZnO tandem triple-junction photoelectrode was designed and prepared. An increase of 11 times of photocurrent is achieved in the Ag/Cu2O/ZnO photoelectrode comparing to that of the Cu2O film. The high performance of the Ag/Cu2O/ZnO film is due to the optimized design of the tandem triple-junction structure, where the localized surface Plasmon resonance of Ag and the hetero-junctions efficiently absorb solar energy, produce, and separate electron-hole pairs in the photocathode.

  16. Performance of High-Efficiency Advanced Triple-Junction Solar Panels for the LILT Mission Dawn

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.; Sharma, Surya; Buitrago, Oscar; Sharps, Paul R.; Blok, Ron; Kroon, Martin; Jalink, Cees; Harris, Robin; Stella, Paul; Distefano, Sal

    2005-01-01

    NASA's Discovery Mission Dawn is designed to (LILT) conditions. operate within the solar system's Asteroid belt, where the large distance from the sun creates a low-intensity, low-temperature (LILT) condition. To meet the mission power requirements under LlLT conditions, very high-efficiency multi-junction solar cells were selected to power the spacecraft to be built by Orbital Sciences Corporation (OSC) under contract with JPL. Emcore's InGaP/InGaAs/Ge advanced triple-junction (ATJ) solar cells, exhibiting an average air mass zero (AMO) efficiency of greater than 27.6% (one-sun, 28 C), were used to populate the solar panels [1]. The two solar array wings, to be built by Dutch Space, with 5 large- area panels each (total area of 36.4 sq. meters) are projected to produce between 10.3 kWe and 1.3 kWe of end-of life (EOL) power in the 1.0 to 3.0 AU range, respectively. The details of the solar panel design, testing and power analysis are presented.

  17. Triple-Junction Hybrid Tandem Solar Cells with Amorphous Silicon and Polymer-Fullerene Blends

    PubMed Central

    Kim, Taehee; Kim, Hyeok; Park, Jinjoo; Kim, Hyungchae; Yoon, Youngwoon; Kim, Sung-Min; Shin, Chonghoon; Jung, Heesuk; Kim, Inho; Jeong, Doo Seok; Kim, Honggon; Kim, Jin Young; Kim, BongSoo; Ko, Min Jae; Son, Hae Jung; Kim, Changsoon; Yi, Junsin; Han, Seunghee; Lee, Doh-Kwon

    2014-01-01

    Organic-inorganic hybrid tandem solar cells attract a considerable amount of attention due to their potential for realizing high efficiency photovoltaic devices at a low cost. Here, highly efficient triple-junction (TJ) hybrid tandem solar cells consisting of a double-junction (DJ) amorphous silicon (a-Si) cell and an organic photovoltaic (OPV) rear cell were developed. In order to design the TJ device in a logical manner, a simulation was carried out based on optical absorption and internal quantum efficiency. In the TJ architecture, the high-energy photons were utilized in a more efficient way than in the previously reported a-Si/OPV DJ devices, leading to a significant improvement in the overall efficiency by means of a voltage gain. The interface engineering such as tin-doped In2O3 deposition as an interlayer and its UV-ozone treatment resulted in the further improvement in the performance of the TJ solar cells. As a result, a power conversion efficiency of 7.81% was achieved with an open-circuit voltage of 2.35 V. The wavelength-resolved absorption profile provides deeper insight into the detailed optical response of the TJ hybrid solar cells. PMID:25412648

  18. Regional kinematic models for the development of the Afar depression

    NASA Astrophysics Data System (ADS)

    Redfield, T. F.; Wheeler, W. H.; Often, M.

    2003-04-01

    Few reconstructions of the Afar rift combine plate kinematics with analyses of the rift basin evolution. The Afar rift is a highly-extended region of continental to transitional oceanic crust lying at the junction of the Red Sea, Gulf of Aden and Ethiopian rifts. Here, we present a new Afar reconstruction taking into account plate kinematics, crustal thinning and magmatic construction. We use a regional plate reconstruction incorporating Nubia, Arabia, Somalia and Danakil to constrain the regional-scale extension and subsidence of the rift and relative movement of Danakil. The plate model is temporally and spatially well constrained at the onset of rifting (ca. 20 Ma) and from sea-floor spreading anomalies in the Red Sea (ca. 6 Ma-present) and Gulf of Aden (ca. 10 Ma-present). The Red Sea pre-rift fit is constrained by piercing points along the Red Sea margins (Sultan et al. 1993). We model the Late Oligocene to present-day evolution of the Afar crust by volume balance using a crustal model based on published topographic and depth-to-Moho interpretations as well as volume estimates of extrusive and sedimentary rocks. Errors stemming from plate boundary uncertainties are small in relation to the reconstructed volume. We partition Afar magmatism into pre-extensional and syn-extensional volumes. From thermal modeling and flexural considerations we infer that the regional-scale subsidence of the Afar depression was virtually complete by Mid Pliocene time. Our model supports the interpretation that the escarpments bounding the Afar Depression achieved nearly their present height (ca. 3 km) by the Late Miocene. Erosional considerations suggest the Late Miocene escarpments were steeper than they are today. Our model does not support the interpretation found in the paleo-anthropological literature that Late Miocene and Pliocene vertical movements were sufficiently large (ca. 2 km) to cause small fault blocks such as Hadar to migrate through climatic temperature zones

  19. Observation of Ge bottom cells in InGaP/InGaAs/Ge triple-junction solar cells

    NASA Astrophysics Data System (ADS)

    Jung, Haeyong; Jung, Sang Hyun; Kim, Chang Zoo; Jun, Dong Hwan; Kang, Ho Kwan; Kim, Hogyoung

    2014-10-01

    After growing InGaP/InGaAs/Ge triple-junction solar cells, we prepared two different Ge cells by etching down to the GaAs buffer layer (sample A) and the AlGaAs layer (sample B). Then, the photovoltaic properties of these two Ge cells were investigated under various light concentrations in order to find the factors affecting the overall performance of the triple-junction solar cells. Under concentrated light, the open-circuit voltage ( V OC ), fill factor and conversion efficiency were higher for sample A than for sample B. The external quantum efficiency was shown to have a slightly higher value for sample A. Both the tunnel junction layer and the top contact resistance increased the series resistance, which also provided defects acting as leakage path. A comparison to previous works suggests that the conversion efficiency of Ge bottom, if present, is degraded marginally after the growth of the full structure of triple-junction solar cells.

  20. A triple junction trace beneath Reunion Island? Insight from marine magnetic anomalies

    NASA Astrophysics Data System (ADS)

    Bissessur, D.; Dyment, J.; Deplus, C.; Yatheesh, V.

    2009-04-01

    Reunion Island is the most recent expression of a hotspot which formed the Deccan Trap flood basalt, the Chagos-Laccadives Ridge, the southern part of the Mascarene Plateau, Mauritius and Reunion Islands. Both Mauritius and Reunion islands are isolated structures which have formed on the pre-existing oceanic lithosphere of the Mascarene Basin, an oceanic basin created by seafloor spreading between anomalies 34 and 27 (83-60 Ma). The location of Mauritius and Reunion islands may reflect either a preferential rise of hotspot material through pre-existing structures of the oceanic lithosphere or the discontinuous activity of a weakening hotspot. We address this question using bathymetric and magnetic data collected by R/V L'Atalante in 2006 as part of cruise FOREVER (FORmation and Evolution of the Volcanic Edifice of Reunion), complemented by other data in the area. We apply crossover error analysis to correct data from different cruises for time variations not considered by the IGRF model and build a magnetic anomaly map. This map displays coherent magnetic anomalies over most of the area. Anomalies 28 to 20 are identified in the Madagascar Basin, east of the Mascarene Islands. Conjugate sequences of anomalies 31 to 27 (on the northern flank) and 34 to 27 (on the southern flank) are recognized west of the Mascarene Islands, on the conjugate flanks of the Mascarene fossil spreading centre. In the Mascarene Island compartment, the seafloor spreading anomalies can be deciphered under most of the Reunion Island edifice (radius 100 km) with only an inner zone of radius 50 km showing shorter wavelength anomalies related to the volcanic structures of the island. The seafloor spreading lineations show two orientations, N120°E-N140°E and N90°E-N110°E in the central and eastern part of the compartment, respectively. We interpret these different orientations as reflecting the presence of the trace of the Indian Ocean Triple Junction (IOTJ, between India, Africa, and

  1. GPS Velocity Field at the Western Tip of the Aden Ridge ; Implications for Rifting and the Arabia-Somalia-Nubia Triple Junction Dynamics

    NASA Astrophysics Data System (ADS)

    Doubre, C.; Socquet, A.; Masson, F.; Cressot, C.; Mohamed, K.; Vigny, C.; Ruegg, J.

    2010-12-01

    Due to the presence of magma and a complex thermal structure, the dynamics of divergent plate boundaries are complicated, with microseismicity (ML<4) contributing very little to the total moment release. For the last 35 years several geodetic campaigns have been conducted at the western tip of the Aden Ridge propagating on land into Afar (Republic of Djibouti). The first segment above water, the Asal Rift, experienced a seismo-volcanic event in 1978, which was the first rifting episode, along with the 1978-1985 Icelandic Krafla event, to be monitored by terrestrial geodetic measurements. These measurements revealed the opening of two 1-2 m-wide dykes in the rift inner floor. Since then, terrestrial and spatial geodetic monitoring shows that the rift kept opening, during the post-rifting period, at a rate largely exceeding the plates’ motions. This significant opening rate is decreasing with time to tend, three decades after the rifting event, to the far-field opening rate. We present here the results of the GPS measurements of a 45 site network covering the Tadjoura-Asal Rift System, previously made every two years from 1995 to 2003, and repeated in 2010. The calculated 1999-2010 horizontal velocity field is very homogeneous with a quasi-constant N045° direction with respect to Somalia and a regular increase from the southern to the northern margin of the Asal Rift clearly controlled by a few normal faults, and reaching a maximum of 12.5 mm/yr. A non-negligible part of the Arabia-Somalia divergent movement (1 to 2 mm/yr) is observed south of this rift, which sheds light on the role of the active normal faults bounding the asymmetrical Gaggadé Basin and therefore brings important constraints on the location of the Red Sea Ridge-Aden Ridge-East African Rift triple junction. Since the last 2003 campaign, the lack of micro-seismicity within the Asal Rift seems to be associated with a ˜2 mm/yr decrease of the opening rate deduced from the GPS time series analysis

  2. Crustal Deformation Field Around Rift Zone In Southeastern Afar Derived From Jers-1/in-sar

    NASA Astrophysics Data System (ADS)

    Ozawa, T.; Nogi, Y.; Shibuya, K.

    Afar is one of the major active rift zones recognized on the ground and located around the triple junction of Arabia, Somalia and Nubian plates. Afar is one of the major rift zones recognized on the ground. The crustal deformation of Afar has been deduced from paleomagnetism, geology and seismology by many scientists. The current crustal deformation must be detected by geodetic measurements. Ruegg et al. (J. Geophys. Res., 1984) showed the crustal deformation across the Asal-Ghoubbet rift with rate of about 60 mm/yr extension derived from triangulation and trilateration. Walpersdorf et al. (J. Geodyn., 1999) show the opening between South Djibouti and Yemen with rate of 16 mm/yr by GPS surveys. Denser observations are required for detailed crustal deformation, however it is difficult to construct such observation network because of harsh environment. The geodetic application of remote sensing is useful in this region, and we apply JERS-1 SAR interferometry in southeastern Afar, which is one of the most active deformation area. In this study, we use six SAR scenes observed from 1996/5/20 to 1997/5/7, and generate five interferograms; these repeat cycles are 88 (2 pairs), 176, 264, 352 days. First, we generate the digital elevation model (DEM) from two 88 repeat cycle pairs applying the multiple pass SAR interferometry method by Kwok and Fahnestock (IEEE Trans. Geosci. Remote Sensing, 1996). Next, the topographic fringes of all pairs are removed using the DEM. The crustal deformation derived from SAR interferometry increases with expanding repeat cycle. Finally, the velocity field is estimated by fitting to linear trend for each pixel. The spreading rate of Asal-Ghoubbet rift derived from SAR interferometry is good agreement with that by Ruegg et al. (J. Geophys. Res., 1984). We can see the crustal deformation with the subsidence sense in the west of Asal-Ghoubbet rift. This suggests that the extension is distinguished in this area. The subsidence sense deformation

  3. Volcano-tectonic evolution of the Western Afar margin: new geochronological and structural data

    NASA Astrophysics Data System (ADS)

    Stab, Martin; Pik, Raphael; Bellahsen, Nicolas; Leroy, Sylvie; Ayalew, Dereje; Denèle, Yoann

    2013-04-01

    The rift system in NW-Afar (Ethiopia) is part of the Nubia-Somalia-Arabia triple junction located above the Afar hot spot active mainly since Oligocene times. It represents a unique natural laboratory for field study of superficial and deep lithospheric structure and process interactions during the transition between rifting and oceanic spreading in magma-rich setting. Most past field studies in Afar focused on the recognition and correlation of Afar's volcano-stratigraphic record and led to models of margin development that stress out the major trends of volcanic structures and give accordingly the following chronological "big picture". (1) 2km-thick flood basalt province emplaced at ca. 30 Ma due to hot spot activity over Jurassic to Permian sedimentary rocks and basement. (2) Rifting started around 25-20 Ma with half graben and great escarpment formation along with localization of volcanic activity in highly faulted narrower basins followed by lithospheric flexure. (3) The deformation migrated toward the rift centre with the emplacement around 8-5 Ma of bi-modal volcanics later faulted. (4) A second pulse of flood-basalt, the so-called Stratoid series, started at 4 Ma, until 1 Ma. In this contribution, we present new structural field data and lavas (U-Th/He) datings along a cross-section from the marginal graben to the Manda-Hararo active rift axis. In the newly explored Sullu Adu ranges, which were previously thought to be made of 8 Ma Dahla Basalts Fm., we mapped normal faults arrays affecting a complex magmatic series. We dated highly tilted 30 Ma pre-rift basic and silicic volcanic rocks that are unconformably overlain by syn-rift volcanics (25 to 8 Ma). This pattern is in some places either masked by unconformable thick stratoid cover or strongly eroded by dense river drainage. However, it is preserved enough to suggest a lower-than-expected extension ratio and/or the presence of major normal faults controlling seaward-dipping reflectors (SDR) emplacement

  4. High Current ESD Test of Advanced Triple Junction Solar Array Coupon

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie

    2014-01-01

    Testing was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by Space Systems Loral, LLC (SSL). The ATJ coupon was a small, 4-cell, two-string configuration of flight-type design that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge (ESD) testing at two string voltages (100 V, 150 V) and four string currents (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 micro-seconds to 2.75 milli-seconds. All TSAs occurred at a string voltage of 150 V. Post-ESD functional testing showed that no degradation occurred due to the TSA events. These test results point to a robust design for application to a high-current, high-power mission.

  5. Can plasmonic Al nanoparticles improve absorption in triple junction solar cells?

    PubMed

    Yang, L; Pillai, S; Green, M A

    2015-07-03

    Plasmonic nanoparticles located on the illuminated surface of a solar cell can perform the function of an antireflection layer, as well as a scattering layer, facilitating light-trapping. Al nanoparticles have recently been proposed to aid photocurrent enhancements in GaAs photodiodes in the wavelength region of 400-900 nm by mitigating any parasitic absorption losses. Because this spectral region corresponds to the top and middle sub-cell of a typical GaInP/GaInAs/Ge triple junction solar cell, in this work, we investigated the potential of similar periodic Al nanoparticles placed on top of a thin SiO2 spacer layer that can also serve as an antireflection coating at larger thicknesses. The particle period, diameter and the thickness of the oxide layers were optimised for the sub-cells using simulations to achieve the lowest reflection and maximum external quantum efficiencies. Our results highlight the importance of proper reference comparison, and unlike previously published results, raise doubts regarding the effectiveness of Al plasmonic nanoparticles as a suitable front-side scattering medium for broadband efficiency enhancements when compared to standard single-layer antireflection coatings. However, by embedding the nanoparticles within the dielectric layer, they have the potential to perform better than an antireflection layer and provide enhanced response from both the sub-cells.

  6. Can plasmonic Al nanoparticles improve absorption in triple junction solar cells?

    PubMed Central

    Yang, L.; Pillai, S.; Green, M. A.

    2015-01-01

    Plasmonic nanoparticles located on the illuminated surface of a solar cell can perform the function of an antireflection layer, as well as a scattering layer, facilitating light-trapping. Al nanoparticles have recently been proposed to aid photocurrent enhancements in GaAs photodiodes in the wavelength region of 400–900 nm by mitigating any parasitic absorption losses. Because this spectral region corresponds to the top and middle sub-cell of a typical GaInP/GaInAs/Ge triple junction solar cell, in this work, we investigated the potential of similar periodic Al nanoparticles placed on top of a thin SiO2 spacer layer that can also serve as an antireflection coating at larger thicknesses. The particle period, diameter and the thickness of the oxide layers were optimised for the sub-cells using simulations to achieve the lowest reflection and maximum external quantum efficiencies. Our results highlight the importance of proper reference comparison, and unlike previously published results, raise doubts regarding the effectiveness of Al plasmonic nanoparticles as a suitable front-side scattering medium for broadband efficiency enhancements when compared to standard single-layer antireflection coatings. However, by embedding the nanoparticles within the dielectric layer, they have the potential to perform better than an antireflection layer and provide enhanced response from both the sub-cells. PMID:26138405

  7. Tension, cell shape and triple-junction angle anisotropy in the Drosophila germband

    NASA Astrophysics Data System (ADS)

    Lacy, Monica; Hutson, M. Shane; Meyer, Christian; McDonald, Xena

    In the field of tissue mechanics, the embryonic development of Drosophila melanogaster offers many opportunities for study. One of Drosophila's most crucial morphogenetic stages is the retraction of an epithelial tissue called the germband. During retraction, the segments of the retracting germband, as well as the individual germband cells, elongate in response to forces from a connected tissue, the amnioserosa. Modeling of this elongation, based on tissue responses to laser wounding, has plotted the internal germband tension against the external amnioserosa stress, creating a phase space to determine points and regions corresponding to stable elongation. Although the resulting fits indicate a necessary opposition of internal and external forces, they are inconclusive regarding the exact balance. We will present results testing the model predictions by measuring cell shapes and the correlations between cell-edge directions and triple-junction angles. These measures resolve the ambiguity in pinpointing the internal-external force balance for each germband segment. Research was supported by NIH Grant Numbers 1R01GM099107 and 1R21AR068933.

  8. The Blow Up Method for Brakke Flows: Networks Near Triple Junctions

    NASA Astrophysics Data System (ADS)

    Tonegawa, Yoshihiro; Wickramasekera, Neshan

    2016-09-01

    We introduce a parabolic blow-up method to study the asymptotic behavior of a Brakke flow of planar networks (that is a 1-dimensional Brakke flow in a two dimensional region) weakly close in a space-time region to a static multiplicity 1 triple junction J. We show that such a network flow is regular in a smaller space-time region, in the sense that it consists of three curves coming smoothly together at a single point at 120{^{circ}} angles, staying smoothly close to J and moving smoothly. Using this result and White's stratification theorem, we deduce that whenever a Brakke flow of networks in a space-time region {{mathcal {R}}} has no static tangent flow with density {{≥q}2}, there exists a closed subset {{Σ subset {mathcal {R}}}} of parabolic Hausdorff dimension at most 1 such that the flow is classical in {{mathcal {R}}backslashΣ}, that is near every point in {{mathcal {R}}backslashΣ}, the flow, if non-empty, consists of either an embedded curve moving smoothly or three embedded curves meeting smoothly at a single point at 120{^{circ}} angles and moving smoothly. In particular, such a flow is classical at all times except for a closed set of times of ordinary Hausdorff dimension at most {1/2}.

  9. Self-powered and broadband photodetectors based on graphene/ZnO/silicon triple junctions

    NASA Astrophysics Data System (ADS)

    Cheng, Ching-Cheng; Zhan, Jun-Yu; Liao, Yu-Ming; Lin, Tai-Yuan; Hsieh, Ya-Ping; Chen, Yang-Fang

    2016-08-01

    A self-powered photodetector with ultrahigh sensitivity, fast photoresponse, and wide spectral detectivity covering from 1000 nm to 400 nm based on graphene/ZnO/Si triple junctions has been designed, fabricated, and demonstrated. In this device, graphene serves as a transparent electrode as well as an efficient collection layer for photogenerated carriers due to its excellent tunability of Fermi energy. The ZnO layer acts as an antireflection layer to trap the incident light and enhance the light absorption. Furthermore, the insertion of the ZnO layer in between graphene and Si layers can create build-in electric field at both graphene/ZnO and ZnO/Si interfaces, which can greatly enhance the charge separation of photogenerated electron and hole pairs. As a result, the sensitivity and response time can be significantly improved. It is believed that our methodology for achieving a high-performance self-powered photodetector based on an appropriate design of band alignment and optical parameters can be implemented to many other material systems, which can be used to generate unique optoelectronic devices for practical applications.

  10. Structural stability and energetics of grain boundary triple junctions in face centered cubic materials

    NASA Astrophysics Data System (ADS)

    Adlakha, I.; Solanki, K. N.

    2015-03-01

    We present a systematic study to elucidate the role of triple junctions (TJs) and their constituent grain boundaries on the structural stability of nanocrystalline materials. Using atomistic simulations along with the nudge elastic band calculations, we explored the atomic structural and thermodynamic properties of TJs in three different fcc materials. We found that the magnitude of excess energy at a TJ was directly related to the atomic density of the metal. Further, the vacancy binding and migration energetics in the vicinity of the TJ were examined as they play a crucial role in the structural stability of NC materials. The resolved line tension which takes into account the stress buildup at the TJ was found to be a good measure in predicting the vacancy binding tendency near the TJ. The activation energy for vacancy migration along the TJ was directly correlated with the measured excess energy. Finally, we show that the resistance for vacancy diffusion increased for TJs with larger excess stored energy and the defect mobility at some TJs is slower than their constituent GBs. Hence, our results have general implications on the diffusional process in NC materials and provide new insight into stabilizing NC materials with tailored TJs.

  11. Pattern formation during diffusional transformations in the presence of triple junctions and elastic effects.

    PubMed

    Brener, E A; Boussinot, G; Hüter, C; Fleck, M; Pilipenko, D; Spatschek, R; Temkin, D E

    2009-11-18

    We compare different scenarios for dendritic melting of alloys with respect to the front propagation velocity. In contrast to conventional dendritic growth, selection can here be also due to the presence of a grain boundary or coherence strains, and the propagation speed is higher. The most favorable situation is partial melting, where two parabolic fronts, one melting and one solidifying interface, are moving together, since the process is then determined by diffusion in the thin liquid layer. There, and also in phase field simulations of melting in peritectic and eutectic systems, we observe a rotation of the triple junction relative to the growth direction. Finally, we discuss the role of elastic effects due to density and structural differences on solid-state phase transformations, and we find that they significantly alter the selection principles. In particular, we obtain free dendritic growth even with isotropic surface tension. This is investigated by Green's function methods and a phase field approach for growth in a channel and illustrated for the formation of a twin phase.

  12. The nature, distribution, and origin of gas hydrate in the Chile Triple Junction region

    USGS Publications Warehouse

    Brown, K.M.; Bangs, N.L.; Froelich, P.N.; Kvenvolden, K.A.

    1996-01-01

    A bottom simulating reflector (BSR) is regionally distributed throughout much of the Chile Triple Junction (CTJ) region. Downhole temperature and logging data collected during Ocean Drilling Program (ODP) Leg 141 suggest that the seismic BSR is generated by low seismic velocities associated with the presence of a few percent free gas in a ??? 10 m thick zone just beneath the hydrate-bearing zone. The data also indicate that the temperature and pressure at the BSR best corresponds to the seawater/methane hydrate stability field. The origin of the large amounts of methane required to generate the hydrates is, however, problematic. Low total organic carbon contents and low alkalinities argue against significant in situ biogenic methanogenesis, but additional input from thermogenic sources also appears to be precluded. Increasing thermal gradients, associated with the approach of the spreading ridge system, may have caused the base of the hydrate stability field to migrate 300 m upwards in the sediments. We propose that the upward migration of the base of the stability field has concentrated originally widely dispersed hydrate patches into the more continuous hydrate body we see today. The methane can be concentrated if the gas hydrates can form from dissolved methane, transported into the hydrate zone via diffusion or fluid advection. A strong gradient may exist in dissolved methane concentration across the BSR leading to the steady reabsorbtion of the free gas zone during the upward migration of the BSR even in the absence of fluid advection.

  13. The progress of large area GaInP2/GaAs/Ge triple junction cell development at Spectrolab

    NASA Technical Reports Server (NTRS)

    Chiang, P. K.; Krut, D.; Cavicchi, B. T.

    1995-01-01

    In this paper we report the successful fabrication of large area, monolithic triple junction, n on p, GaInP2/GaAs/Ge cells. The highest open circuit voltage and cell efficiency (cell area: 4.078 sq cm) were measured at 2.573 V and 23.3%, respectively, under 1 sun, AMO illumination. To our knowledge, this is the highest single crystal, monolithic, two terminal triple junction cell efficiency demonstrated. In addition, excellent uniformity across a 3 inch diameter Ge substrates has also been achieved. An average cell efficiency of 22.8% across the 3 inch diameter wafer has been measured. We have also successfully fabricated welded cell-interconnect-cover (CIC) assemblies using these triple junction devices. The highest CIC efficiency was 23.2% (bare cell efficiency was 23.3%). The average efficiency for 25 CICs was 21.8%, which is very comparable to the 22.0% average bare cell efficiency before they were fabricated into the CICs. Finally, we have measured temperature coefficient and 1 MeV electron irradiation data. These will be presented in the paper.

  14. A passive and active seismic experiment near the Boso triple junction in the far northwestern part of the Pacific plate

    NASA Astrophysics Data System (ADS)

    Yamada, T.; Mochizuki, K.; Shinohara, M.; Machida, Y.; Shinbo, T.; Nakahigashi, K.; Yagi, T.; Abe, H.; Hashimoto, S.; Shoji, W.; Sato, T.; Mizuno, M.; Uehira, K.; Hino, R.; Murai, Y.; Oguma, K.

    2011-12-01

    The Pacific Plate subducts beneath northeastern Japan along the Japan Trench and beneath the Izu-Bonin-Mariana arc along the Mariana Trench. The Boso triple junction is located at between the Japan Trench and the Mariana Trench, and the southeastern end of the Sagami Trough where the Philippine Sea Plate subducts beneath northeastern Japan. It is thus a trench-trench-trench type triple junction. For the purpose of understanding the interaction between three plates and its effect to the Pacific Plate, we have performed a passive and active seismic experiment near the Boso triple junction in the far northwestern part of the Pacific plate. We deployed 10 Ocean Bottom Seismometers (OBSs) equipped with a three-componet 1Hz geophone mounted on gimbabl systems on KH09-3 cruise of R/V Hakuho-maru on July 2009, and recovered the OBSs by using M/V Shinchou-maru on October 2010.During the KH09-3 cruise, we shot by using an airgun array (6000 cubic inch in total) during 18 hours on three profiles. We obtained 442days' seismic data from July 29, 2009 to October 13, 2010 in the experiment. More than 2000 earthquakes were detected, and the foci form some clusters.

  15. Seismic anisotropy beneath Cascadia and the Mendocino triple junction: Interaction of the subducting slab with mantle flow

    NASA Astrophysics Data System (ADS)

    Eakin, Caroline M.; Obrebski, Mathias; Allen, Richard M.; Boyarko, Devin C.; Brudzinski, Michael R.; Porritt, Robert

    2010-09-01

    Mantle flow associated with the Cascadia subduction zone and the Mendocino Triple Junction is poorly characterized due to a lack of shear wave splitting studies compared to other subduction zones. To fill this gap data was obtained from the Mendocino and FACES seismic networks that cover the region with dense station spacing. Over a period of 11-18 months, 50 suitable events were identified from which shear wave splitting parameters were calculated. Here we present stacked splitting results at 63 of the stations. The splitting pattern is uniform trench normal (N67°E) throughout Cascadia with an average delay time of 1.25 s. This is consistent with subduction and our preferred interpretation is entrained mantle flow beneath the slab. The observed pattern and interpretation have implications for mantle dynamics that are unique to Cascadia compared to other subduction zones worldwide. The uniform splitting pattern seen throughout Cascadia ends at the triple junction where the fast directions rotate almost 90°. Immediately south of the triple junction the fast direction rotates from NW-SE near the coast to NE-SW in northeastern California. This rotation beneath northern California is consistent with flow around the southern edge of the subducting Gorda slab.

  16. Seismic Anisotropy beneath Cascadia and the Mendocino Triple Junction: Interaction of the Subducting Slab with Mantle Flow

    NASA Astrophysics Data System (ADS)

    Eakin, C. M.; Obrebski, M. J.; Allen, R. M.; Boyarko, D. C.; Brudzinski, M. R.; Humphreys, E.; Levander, A.; O'Driscoll, L.; Porritt, R. W.; Zhai, Y.

    2009-12-01

    Mantle flow associated with the Cascadia subduction zone and the Mendocino Triple Junction is poorly characterized due to a lack of shear wave splitting studies compared to other subduction zones. To fill this gap data was obtained from the Mendocino and FACES seismic networks that cover the region with dense station spacing. Over a period of 11-18 months, 50 suitable events were identified from which shear wave splitting parameters were calculated. Here we present stacked splitting results at 63 of the stations. The splitting pattern is uniform trench normal (N67°E) throughout Cascadia with an average delay time of 1.25 seconds. This is consistent with subduction and our preferred interpretation is entrained mantle flow beneath the slab. The observed pattern and interpretation have implications for mantle dynamics that are unique to Cascadia compared to other subduction zones worldwide. The uniformity of the splitting directions along Cascadia ends at the triple junction where the fast directions rotate almost 90°. Immediately south of the triple junction the fast direction rotates from NW-SE near the coast to NE-SW in northeastern California. This rotation beneath northern California is consistent with flow around the southern edge of the subducting Gorda as predicted by numerical and laboratory models of slab rollback.

  17. Arc/Forearc Lengthening at Plate Triple Junctions and the Formation of Ophiolitic Soles

    NASA Astrophysics Data System (ADS)

    Casey, John; Dewey, John

    2013-04-01

    The principal enigma of large obducted ophiolite slabs is that they clearly must have been generated by some form of organized sea-floor spreading/plate-accretion, such as may be envisioned for the oceanic ridges, yet the volcanics commonly have arc affinity (Miyashiro) with boninites (high-temperature/low-pressure, high Mg and Si andesites), which are suggestive of a forearc origin. PT conditions under which boninites and metamorphic soles form and observations of modern forearc systems lead us to the conclusion that ophiolite formation is associated with overidding plate spreading centers that intersect the trench to form ridge-trench-trench of ridge-trench-tranform triple junctions. The spreading centers extend and lengthen the forearc parallel to the trench and by definition are in supra-subduction zone (SSZ) settings. Many ophiolites likewise have complexly-deformed associated mafic-ultramafic assemblages that suggest fracture zone/transform t along their frontal edges, which in turn has led to models involving the nucleation of subduction zones on fracture zones or transpressional transforms. Hitherto, arc-related sea-floor-spreading has been considered to be either pre-arc (fore-arc boninites) or post-arc (classic Karig-style back arc basins that trench-parallell split arcs). Syn-arc boninites and forearc oceanic spreading centers that involve a stable ridge/trench/trench triple or a ridge-trench-transform triple junction, the ridge being between the two upper plates, are consistent with large slab ophiolite formation in a readied obduction settting. The direction of subduction must be oblique with a different sense in the two subduction zones and the oblique subduction cannot be partitioned into trench orthogonal and parallel strike-slip components. As the ridge spreads, new oceanic lithosphere is created within the forearc, the arc and fore-arc lengthen significantly, and a syn-arc ophiolite forearc complex is generated by this mechanism. The ophiolite

  18. Speculation on Mendocino Triple Junction Evolution: Instability and Interactions of Multiple San Andreas Fault System Strands

    NASA Astrophysics Data System (ADS)

    Wakabayashi, J.

    2006-12-01

    Instability of the Mendocino triple junction (MTJ) results from non-colinearity of the San Andreas fault system (SAFS) and the Cascadia subduction zone. How this instability drives the evolution of the triple junction depends in part on how one depicts the MTJ. The "textbook" way represents the SAFS as a single fault with N40W strike, the average strike of the northern part SAFS. This geometry predicts the opening of a gap in the MTJ region, but this conflicts with observations of focused shortening and uplift in MTJ area instead of extension. An alternative uses current local MTJ geometry. This departs from the "textbook" because the San Andreas fault (SAF) bends right from about N40W to N5W in the offshore reach between Pt. Arena and Pt. Delgada. Because this strike is more northerly than that of Cascadia, this geometry predicts shortening in the MTJ area. The N40W-N5W bend in the SAF is a releasing bend, predicting transtension in the area south of the active shortening. The multiple strands of the SAFS, including the SAF and several strands to the east of it (I will call the latter the eastern faults) may also generate complexity in the MTJ area. San Andreas-age dextral faults are not present north of the MTJ. In the northern SAFS, 230-250 km of slip associated with the eastern faults, must transfer or have transferred westward to the MTJ, otherwise there would be slip incompatibilities along the eastern faults with zero displacement at their northern tips and a large displacements to the south. Transfer of slip from the eastern faults to the MTJ is a restraining (left) slip transfer or step-over, but the observed amount of exhumation and shortening MTJ area falls short of that predicted by any model that would transfer the slip of the eastern faults in one area. The eastern faults die out northward as well-defined faults. This may be because the northern tips of the eastern faults are propagating northward, while slip transfers to the MTJ that migrates at

  19. High Current ESD Test of Advanced Triple Junction Solar Array Coupon

    NASA Technical Reports Server (NTRS)

    Wright, K. H.; Schneider, T. A.; Vaughn, J. A.; Hoang, B.; Wong, F.

    2014-01-01

    A test was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by SSL. The ATJ coupon was a small, 4-cell, two-string configuration that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The coupon has many attributes of the flight design; e.g., substrate structure with graphite face sheets, integrated by-pass diodes, cell interconnects, RTV grout, wire routing, etc. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge testing at two string voltages (100 V, 150 V) and four array current (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 µs to 2.9 ms. All TSAs occurred at a string voltage of 150 V. Post-test Large Area Pulsed Solar Simulator (LAPSS), Dark I-V, and By-Pass Diode tests showed that no degradation occurred due to the TSA events. In addition, the post-test insulation resistance measured was > 50 G-ohms between cells and substrate. These test results indicate a robust design for application to a high-current, high-power mission application.

  20. Development of a High Efficiency UVR/IRR Coverglass for Triple Junction Solar Cells

    NASA Technical Reports Server (NTRS)

    Russell, John; Jones, Glenn; Hall, James

    2007-01-01

    Cover glasses have been a necessary and integral part of space solar arrays since their inception. The main function of the cover glass is to protect the underlying solar cell from the harsh radiation environment of space. They are formed either from fused silica or specially formulated ceria doped glass types that are resistant to radiation damage, for example Pilkington's CMX, CMG, CMO. Solar cells have steadily increased in performance over the past years, from Silicon cells through textured Silicon cells to GaAs cells and the multijunction cells of today. The optimum coverglass solution for each of these cells has been different. The glass itself has also evolved. In some cases it has had its expansion coefficient matched to the cell substrate material, and in addition, added value has been derived from the application of thin film optical coatings to the coverglass. In the majority of cases this has taken the form of a single layer of MgF2 which acts as an antireflection coating. There are also conductive coatings to address electrostatic discharge issues (ESD) and Ultra Violet Reflective (UVR) and Infrared Reflective (IRR) coatings designed for thermal enhancement. Each type of coating can be applied singly or in combination. This paper describes a new type of UVR/IRR (or blue red reflector BRR) specifically designed for triple junction solar cells. For space applications, where radiation is the principal mechanism for removing heat from the satellite, it is the emittance and solar absorptance that primarily determine the temperature of the array. It is therefore essential that any coatings designed to have an effect on the temperature by reducing the solar absorption have a minimal effect on the overall emittance.

  1. High Current ESD Test of Advanced Triple Junction Solar Array Coupon

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie

    2014-01-01

    Testing was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by Space Systems/Loral, LLC (SSL). The ATJ coupon was a small, 4-cell, two-string configuration that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The coupon has many attributes of the flight design; e.g., substrate structure with graphite face sheets, integrated by-pass diodes, cell interconnects, RTV grout, wire routing, etc. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge (ESD) testing at two string voltages (100 V, 150 V) and four array currents (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 micro-seconds to 2.75 milli-seconds. All TSAs occurred at a string voltage of 150 V. Post-test Large Area Pulsed Solar Simulator (LAPSS), Dark I-V, and By-Pass Diode tests showed that no degradation occurred due to the TSA events. In addition, the post-test insulation resistance measured was > 50 G-ohms between cells and substrate. These test results indicate a robust design for application to a high-current, high-power mission.

  2. High Current ESD Test of Advanced Triple Junction Solar Array Coupon

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie

    2015-01-01

    A test was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by SSL. The ATJ coupon was a small, 4-cell, two-string configuration that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The coupon has many attributes of the flight design; e.g., substrate structure with graphite face sheets, integrated by-pass diodes, cell interconnects, RTV grout, wire routing, etc. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge testing at two string voltages (100 V, 150 V) and four array current (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 micros to 2.9 ms. All TSAs occurred at a string voltage of 150 V. Post-test Large Area Pulsed Solar Simulator (LAPSS), Dark I-V, and By-Pass Diode tests showed that no degradation occurred due to the TSA events. In addition, the post-test insulation resistance measured was > 50 G-ohms between cells and substrate. These test results indicate a robust design for application to a high-current, high-power mission application.

  3. Denudation and topographic responses of coastal drainages near the Mendocino Triple Junction region (MTJ), northern California

    NASA Astrophysics Data System (ADS)

    Moon, S.; Merritts, D. J.; Snyder, N. P.; Sanquini, A.; Fosdick, J. C.; Hilley, G. E.

    2015-12-01

    Earth's surface forms by interactions among surface processes, tectonics, climate, and underlying lithology. In an equilibrium landscape where denudation rates equal uplift rates, topography reflects the response of surface processes to spatial variations in uplift rates, climate, and rock erodibility. The Mendocino Triple Junction region (MTJ) in northern California has been investigated as a possible example of a dynamic equilibrium landscape. The region has formed in response to a range in uplift rates that spans an order of magnitude, with highest uplift rates closest to the MTJ. However, no study has explicitly shown that dynamic equilibrium exists between basin-wide denudation and rock uplift rates in the MTJ region. In this study, we measure 10Be- and 26Al-derived denudation rates from coastal drainage basins, and compare them with uplift rates inferred from marine terraces that were formed and preserved by uplift during the last ~305 ka. Denudation rates from a slowly uplifting zone range from 0.2-0.4 mm/yr, which are consistent with rock uplift rates over 305 ka. However, in the northern transition zone and King Range rapid uplift zone, denudation rates are potentially less than recent uplift rates inferred for the past ~72 ka, but close to previous uplift rates from 96-305 ka. This difference is likely related to a lagged response of hillslopes and tributaries to changes in uplift rates, and/or the uncertainties in rate estimates. Topographic analyses based on a high resolution Digital Elevation Model (DEM) also show potential disequilibrium features in the tributaries and hillslopes within drainage basins near the MTJ. This study suggests that measurements of both denudation and uplift rates are crucial in assessing the equilibrium state of landscapes and in understanding the topographic features made by surface and tectonic processes.

  4. Numerical modelling of triple-junction tectonics at Karlıova, Eastern Turkey, with implications for regional magma transport

    NASA Astrophysics Data System (ADS)

    Karaoğlu, Özgür; Browning, John; Bazargan, Mohsen; Gudmundsson, Agust

    2016-10-01

    Few places on Earth are as tectonically active as the Karlıova region of eastern Turkey. In this region, complex interactions between the Arabian, Eurasian and Anatolian plates occur at the Karlıova Triple Junction (KTJ). The relationship between tectonics and magma propagation in triple-junction tectonic settings is poorly understood. Here we present new field and numerical results on the mechanism of magma propagation at the KTJ. We explore the effects of crustal heterogeneity and anisotropy, in particular the geometry and mechanical properties of many faults and layers, on magma propagation paths under a variety of tectonic loadings. We propose that two major volcanic centres in the area, the Turnadağ volcano and the Varto caldera, are both fed by comparatively shallow magma chambers at depths of about 8 km, which, in turn, are fed by a single, much larger and deeper reservoir at about 15-18 km depth. By contrast, the nearby Özenç volcanic area is fed directly by the deeper reservoir. We present a series of two-dimensional and three-dimensional numerical models showing that the present tectonic stresses encourage magma-chamber rupture and dyke injection. The results show that inversion tectonics encourages the formation of magma paths as potential feeder dykes. Our three-dimensional models allow us to explore the local stresses induced by complex loading conditions at the Karlıova triple junction, using an approach that can in future be applied to other similar tectonic regions. The numerical results indicate a great complexity in the potential magma (dyke) paths, resulting from local stresses generated by interaction between mechanical layers, major faults, and magma chambers. In particular, the results suggest three main controls on magma path formation and eventual eruptions at KTJ: (1) the geometry and attitude of the associated faults; (2) the heterogeneity and anisotropy of the crust; and (3) mechanical (stress) interactions between deep and shallow

  5. Pinning fault zone strength using small earthquakes in the Mendocino triple junction region recorded by a dense OBS array

    NASA Astrophysics Data System (ADS)

    Chen, X.; McGuire, J. J.

    2014-12-01

    The Mendocino triple junction contains a diversity of fault types including plate boundary strike-slip and thrust faults as well as intraplate faults within the subducting oceanic mantle that are expected to operate under significantly different rheological conditions. We analyze the data from the Cascadia Initiative's Year-2 focused OBS array deployed at the triple junction region. We detect over 1000 earthquakes with magnitude ranging from 1 to 4.5 from Sep 2012 to Feb 2013. Locations refined with waveform cross-correlation arrival time measurements delineate two sub-parallel faults trending NW-SE revealing the complex geometry of the triple junction, as well as a intraplate fault possibly related to the 2010 M6.5 earthquake in the subducted Gorda plate. We are performing a joint inversion for 3D structure and hypocenter locations to further refine the image of the triple junction fault systems. Our primary focus is on examining earthquake rupture mechanics in this complex fault network. Strength envelope calculations predict that the faults within the subducting Gorda plate support differential stress levels that are 1-2 orders of magnitude larger than what is typically assumed for the thrust interface. To determine if this contrast is reflected in the data, we estimate apparent stress for the M>2 earthquakes on the three types of faults. We compute displacement spectra using 2.56s time window from the picked arrival. Spectra with signal-to-noise ratio > 3 between 4 to 10 Hz are saved for further analysis. For the saved spectra, we apply two approaches using EGF method: (1) single event-pair deconvolution, where we select best-similar event pairs using relative locations derived from waveform cross-correlation, (2) iterative stacking deconvolution, where we solve for a event term, a station term and a path term using all the event-station pairs. Once the target event source spectrum is obtained, we compute the stress drop and apparent stress using the

  6. Results from an International Measurement Round Robin of III-V Triple Junction Solar Cells under Air Mass Zero

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Scheiman, Chris; Goodbody, Chris; Baur, Carsten; Sharps, Paul; Imaizumi, Mitsuru; Yoo, Henry; Sahlstrom, Ted; Walters, Robert; Lorentzen, Justin; Nocerino, John; Khan, Osman; Cravens, Robert; Valles, Juan; Toporow, Chantal; Gomez, Trinidad,; Bazan, Loreto Pazos; Bailey, Sheila

    2006-01-01

    This paper reports the results of an international measurement round robin of monolithic, triple-junction, GaInP/GaAs/Ge space solar cells. Eight laboratories representing national labs, solar cell vendors and space solar cell consumers, measured cells using in-house reference cells and compared those results to measurements made where each lab used the same set of reference cells. The results show that most of the discrepancy between laboratories is likely due to the quality of the standard cells rather than the measurement system or solar simulator used.

  7. Upper plate contraction north of the migrating Mendocino triple junction northern California: Implications for partitioning of strain

    USGS Publications Warehouse

    McCrory, P.A.

    2000-01-01

    Geologic measurement of permanent contraction across the Cascadia subduction margin constrains one component of the tectonic deformation along the convergent plate boundary, the component critical for the seismic hazard assessment of crustal faults. A comprehensive survey of active faults in onshore subduction margin rocks at the southern end of the Cascadia subduction zone indicates that these thrust faults accommodate ??10 mm/yr of convergence oriented 020??-045??. Seismotectonic models of subduction zones typically assign this upper plate strain to the estimate of aseismic slip on the megathrust. Geodetic models include this permanent crustal strain within estimates of elastic strain accumulation on the megathrust. Both types of models underestimate the seismic hazard associated with crustal faults. Subtracting the observed contraction from the plate convergence rate (40-50 mm/yr; directed 040??-055??) leaves 30-40 mm/yr of convergence to be partitioned between slip on the megathrust, contraction within the southern Juan de Fuca plate, and crustal contraction outside the subduction complex rocks. This simple estimate of slip partitioning neglects the discrepancy between the plate convergence and contraction directions in the vicinity of the Mendocino triple junction. The San Andreas and Cascadia limbs of the Mendocino triple junction are not collinear. The eastern edge of the broad San Andreas boundary is ??85 km east of the Cascadia subduction boundary, and across this zone the Pacific plate converges directly with the North America plate. The skewed orientation of crustal structures just north of the leading edge of the Pacific plate suggests that they are deforming in a hybrid stress field resulting from both Juan de Fuca-North America motion and Pacific-North America motion. The composite convergence direction (50 mm/yr: directed 023??) is consistent with the compressive stress axis (020??) inferred from focal mechanisms of crustal earthquakes in the

  8. The effect of the optical system on the electrical performance of III-V concentrator triple junction solar cells

    NASA Astrophysics Data System (ADS)

    Schultz, R. D.; van Dyk, E. E.; Vorster, F. J.

    2016-01-01

    High Concentrated Photovoltaic (H-CPV) technologies utilize relatively inexpensive reflective and refractive optical components for concentration to achieve high energy yield. The electrical performance of H-CPV systems is, however, dependent on the properties and configuration of the optical components. The focus of this paper is to summarize the effect of the properties of the optical system on the electrical performance of a Concentrator Triple Junction (CTJ) InGaP/InGaAs/Ge cell. Utilizing carefully designed experiments that include spectral measurements and intensity profiles in the optical plane of the CTJ cell, the influence of photon absorption, Fresnel lens properties and chromatic aberration created by the optical system on the electrical performance of a CTJ cell is shown. From the results obtained, it is concluded that good characterization and understanding of the optical system's properties may add to improved design of future multi-junction devices.

  9. Three-dimensional crustal structure for the Mendocino Triple Junction region from local earthquake travel times

    SciTech Connect

    Verdonck, D.; Zandt, G.

    1994-12-10

    The large-scale, three-dimensional geometry of the Mendocino Triple Junction at Cape Mendocino, California, was investigated by inverting nearly 19,000 P wave arrival times from over 1400 local earthquakes to estimate the three-dimensional velocity structure and hypocentral parameters. A velocity grid 175 km (N-S) by 125 km (E-W) centered near Garberville, California, was constructed with 25 km horizontal and 5 km vertical node spacing. The model was well resolved near Cape Mendocino, where the earthquakes and stations are concentrated. At about 40.6{degrees}N latitude a high-velocity gradient between 6.5 and 7.5 km/s dips gently to the south and east from about 15 km depth near the coast. Relocated hypocenters concentrate below this high gradient which the authors interpret as the oceanic crust of the subducted Gorda Plate. Therefore the depth to the top of the Gorda Plate near Cape Mendocino is interpreted to be {approximately} 15 km. The Gorda Plate appears intact and dipping {approximately}8{degrees} eastward due to subduction and flexing downward 6{degrees}-12{degrees} to the south. Both hypocenters and velocity structure suggest that the southern edge of the plate intersects the coastline at 40.3{degrees}N latitude and maintains a linear trend 15{degrees} south of east to at least 123{degrees}W longitude. The top of a large low-velocity region at 20-30 km depth extends about 50 km N-S and 75 km E-W (roughly between Garberville and Covelo) and is located above and south of the southern edge of the Gorda Plate. The authors interpret this low velocity area to be locally thickened crust (8-10 km) due to either local compressional forces associated with north-south compression caused by the northward impingement of the rigid Pacific Plate or by underthrusting of the base of the accretionary subduction complex at the southern terminous of the Cascadia Subduction Zone. 66 refs., 11 figs., 3 tabs.

  10. Lower plate deformation at the Chile Triple Junction from the paleomagnetic record (45°30'S-46°S)

    NASA Astrophysics Data System (ADS)

    Lagabrielle, Yves; Bourgois, Jacques; Dyment, Jerôme; Pelletier, Bernard

    2015-08-01

    During the Chile Triple Junction (CTJ) cruise, geophysical surveys were conducted between 45°S and 48°S, in the region of the Chile Triple Junction (CTJ), where the Nazca and Antarctica Plates are subducting beneath the South American Plate. Near the CTJ, the South Chile Rise (SCR), which separates the Nazca and Antarctica lower plates, consists of three spreading segments trending ~N160°, separated by a series of parallel fracture zones. The active spreading centers of the three segments consist of grabens with various widths and depths, bounded by steep fault scarps. We provide robust data showing that the SCR recorded remote and long-term effects of ridge subduction far from the subduction front. Magnetic profiles, multibeam bathymetric, and seismic data were acquired at intervals of 13 km along a N80°E direction across the SCR during the CTJ cruise of R/V L'Atalante. Deformation of the oceanic lithosphere includes (1) a segmentation of the spreading axes along strike, (2) some ridge jumps, and (3) local constriction and changes in trend of the fracture zone valleys. Off-axis volcanism is observed in places that may suggest a link with an abnormal stress field induced by ridge subduction. The tectonic and volcanic anomalies, which occurred in response to the subduction of the SCR1 axis, may be correlated with geochemical anomalies and slab fragmentation recognized by previous works.

  11. Effect of triple junctions on deformation twinning in a nanostructured Cu–Zn alloy: A statistical study using transmission Kikuchi diffraction

    PubMed Central

    Liu, Silu; Ma, Xiaolong; Li, Lingzhen; Zhang, Liwen; Trimby, Patrick W; Liao, Xiaozhou; Li, Yusheng

    2016-01-01

    Scanning electron microscopy transmission Kikuchi diffraction is able to identify twins in nanocrystalline material, regardless of their crystallographic orientation. In this study, it was employed to characterize deformation twins in Cu/10 wt % Zn processed by high-pressure torsion. It was found that in 83% of grains containing twins, at least one twin intersects with a triple junction. This suggests that triple junctions could have promoted the nucleation of deformation twins. It should be cautioned that this technique might be unable to detect extremely small nanoscale twins thinner than its step size. PMID:28144500

  12. Charge separation in subcells of triple-junction solar cells revealed by time-resolved photoluminescence spectroscopy.

    PubMed

    Tex, David M; Imaizumi, Mitsuru; Kanemitsu, Yoshihiko

    2015-11-30

    We measure the excitation-wavelength and power dependence of time-resolved photoluminescence (PL) from the top InGaP subcell in a InGaP/GaAs/Ge triple-junction solar cell. The wavelength-dependent data reveals that the PL decays are governed by charge separation. A fast single-exponential PL decay is observed at low excitation power densities, which is the charge separation under short-circuit condition. Under strong excitation a bi-exponential PL decay is observed. Its slow component appears at early times, followed by a faster component at late times. The slow decay is the carrier recombination of the subcell. The following fast component is the charge separation process under reduced built-in potential near the operating point. The subcells electrical conversion efficiency close to the operating point is evaluated using this decay time constant.

  13. Innovative InGaP/InGaAs/Ge Triple Junction Solar Cells for the Future Russian Missions

    NASA Astrophysics Data System (ADS)

    Ficcadenti, M.; Campesato, R.; Casale, M.; Gabetta, G.; Gori, G.; Kagan, M.; Kholev, B. A.; Ivanov, V.

    2014-08-01

    InGaP/InGaAs/Ge triple junction solar cells with a size of 26.5 cm2, thickness of 140± 20 μm and AM0 efficiency class 30% (CTJ30), have been manufactured and qualified following the ESA ECSS E ST20-08 standard [1].These solar cells are going to power the Kvant constellations named Meteor M and Kanopus.The next generation of Russian spacecraft requires more specific power, for this reason new solar cell approaches based on III-V on silicon and ultrathin substrates are under development. The main advantage of these technologies lie in the possibility to strongly decrease the weight and the cost of the III-V solar cells for space applications.

  14. In Situ Irradiation and Measurement of Triple Junction Solar Cells at Low Intensity, Low Temperature (LILT) Conditions

    NASA Technical Reports Server (NTRS)

    Harris, R.D.; Imaizumi, M.; Walters, R.J.; Lorentzen, J.R.; Messenger, S.R.; Tischler, J.G.; Ohshima, T.; Sato, S.; Sharps, P.R.; Fatemi, N.S.

    2008-01-01

    The performance of triple junction InGaP/(In)GaAs/Ge space solar cells was studied following high energy electron irradiation at low temperature. Cell characterization was carried out in situ at the irradiation temperature while using low intensity illumination, and, as such, these conditions reflect those found for deep space, solar powered missions that are far from the sun. Cell characterization consisted of I-V measurements and quantum efficiency measurements. The low temperature irradiations caused substantial degradation that differs in some ways from that seen after room temperature irradiations. The short circuit current degrades more at low temperature while the open circuit voltage degrades more at room temperature. A room temperature anneal after the low temperature irradiation produced a substantial recovery in the degradation. Following irradiation at both temperatures and an extended room temperature anneal, quantum efficiency measurement suggests that the bulk of the remaining damage is in the (In)GaAs sub-cell

  15. Investigation of room-temperature wafer bonded GaInP/GaAs/InGaAsP triple-junction solar cells

    NASA Astrophysics Data System (ADS)

    Yang, Wen-xian; Dai, Pan; Ji, Lian; Tan, Ming; Wu, Yuan-yuan; Uchida, Shiro; Lu, Shu-long; Yang, Hui

    2016-12-01

    We report on the fabrication of III-V compound semiconductor multi-junction solar cells using the room-temperature wafer bonding technique. GaInP/GaAs dual-junction solar cells on GaAs substrate and InGaAsP single junction solar cell on InP substrate were separately grown by all-solid state molecular beam epitaxy (MBE). The two cells were then bonded to a triple-junction solar cell at room-temperature. A conversion efficiency of 30.3% of GaInP/GaAs/InGaAsP wafer-bonded solar cell was obtained at 1-sun condition under the AM1.5G solar simulator. The result suggests that the room-temperature wafer bonding technique and MBE technique have a great potential to improve the performance of multi-junction solar cell.

  16. Tectonic controls on the Karlıova triple junction (Turkey): Implications for tectonic inversion and the initiation of volcanism

    NASA Astrophysics Data System (ADS)

    Karaoğlu, Özgür; Selçuk, Azad Sağlam; Gudmundsson, Agust

    2017-01-01

    Few places on Earth are tectonically as active as the Karlıova region of eastern Turkey which comprises a triple junction (KTJ). Triple junctions result in complex kinematic and mechanical interactions within the lithosphere generating tectonic inversions and uplift, extensive seismicity and volcanism. Here we present new data, and summarize existing data, on the tectonic evolution of the KTJ in eastern Turkey over the past 6 Ma. In particular, we present a kinematic model for the KTJ and the surrounding area as well as new structural maps. The deformation or strain rate has varied over this 6 million year period. The maximum strain rate occurred between 6 Ma and 3 Ma, a period that coincides with the initiation of activity in Varto Volcano. We suggest that increased strain rate and the initiation of activity at the Varto Volcano may be tectonically related. Subsequent to its formation, the Varto Volcano was dissected by active faults associated with the Varto Fault Zone, including reverse, normal and strike-slip faults. During the past 3 Ma, however, the KTJ area was deformed dominantly through dextral crustal movements associated to right-lateral faults. This deformation resulted in the development of a NE-SW-trending extensional/transtensional regime, together with a complementary NW-SE-trending contractional regime. In the past 6 Ma the east end of the KTJ has been subjected to incremental deformation. This deformation has resulted in many episodes of faulting during (i) ongoing shortening phases driven by a regional-scale thrust tectonic regime, and (ii) local-scale transtensional phases caused by westward extrusion.

  17. Late Pliocene - Early Pleistocene geologic history of Eastern Ledi-Geraru, Ethiopia: implications for the evolution of the southern Afar Depression and hominin paleoenvironments

    NASA Astrophysics Data System (ADS)

    DiMaggio, E.; Arrowsmith, R.; Campisano, C. J.; Reed, K.; Deino, A.

    2012-12-01

    During the late Pliocene and early Pleistocene (~ 3-2.5 Ma), the Afar region of Ethiopia was undergoing major structural reorganization (e.g., change in extension direction, increased spreading rate) leading to significant landscape modification. Concurrent with these changes in paleogeography, regional trends towards a cooler and drier climate coincide with a clustering of first appearance and extinction events in the faunal record, including the diversification of the early hominin genus Australopithecus and the emergence of our own genus, Homo. However, sediments that span the 3 to 2.5 Ma interval are sparse in eastern Africa, and are especially rare at paleoanthropological sites in the Afar. Here we present new geologic mapping results that indicate extensive deposits of late Pliocene sediments in a previously unmapped region of the lower Awash Valley referred to as the Eastern Ledi-Geraru (ELG). Numerous interbedded airfall tephras enable geochemical comparisons to the existing regional tephrostratigraphic framework as well as high precision 40Ar/39Ar dating of tephras with suitable feldspars. Feldspars from 8 such tephra deposits span the time period of 3.0 to 2.8 Ma, providing the first glimpse of depositional environments and associated landscapes that existed at that time. Geologic mapping and stratigraphic analysis shows that over a 100 meter thick section of lacustrine to fluvial sediments are exposed along faulted basalt flows following both the Red Sea Rift and Main Ethiopian Rift structural trends. We interpret the geology at ELG to reflect a northeastern migration of paleo Lake Hadar, possibly into a series of smaller basins responding to the migration of the triple junction, a thinning lithosphere, and an increased period of volcanism. Combined with recently collected paleontological assemblages this work provides an opportunity to test proposed links between biotic events, global/regional climate change, and local tectonic events during a critical

  18. Efficient enhancement of hydrogen production by Ag/Cu{sub 2}O/ZnO tandem triple-junction photoelectrochemical cell

    SciTech Connect

    Liu, Ying; Ren, Feng Chen, Chao; Liu, Chang; Xing, Zhuo; Liu, Dan; Xiao, Xiangheng; Wu, Wei; Zheng, Xudong; Liu, Yichao; Jiang, Changzhong; Shen, Shaohua; Fu, Yanming

    2015-03-23

    Highly efficient semiconductor photoelectrodes for solar hydrogen production through photocatalytic water splitting are a promising and challenge solution to solve the energy problems. In this work, Ag/Cu{sub 2}O/ZnO tandem triple-junction photoelectrode was designed and prepared. An increase of 11 times of photocurrent is achieved in the Ag/Cu{sub 2}O/ZnO photoelectrode comparing to that of the Cu{sub 2}O film. The high performance of the Ag/Cu{sub 2}O/ZnO film is due to the optimized design of the tandem triple-junction structure, where the localized surface Plasmon resonance of Ag and the hetero-junctions efficiently absorb solar energy, produce, and separate electron-hole pairs in the photocathode.

  19. Dynamics of plume-triple junction interaction: Results from a series of three-dimensional numerical models and implications for the formation of oceanic plateaus

    NASA Astrophysics Data System (ADS)

    Dordevic, Mladen; Georgen, Jennifer

    2016-03-01

    Mantle plumes rising in the vicinity of mid-ocean ridges often generate anomalies in melt production and seafloor depth. This study investigates the dynamical interactions between a mantle plume and a ridge-ridge-ridge triple junction, using a parameter space approach and a suite of steady state, three-dimensional finite element numerical models. The top domain boundary is composed of three diverging plates, with each assigned half-spreading rates with respect to a fixed triple junction point. The bottom boundary is kept at a constant temperature of 1350°C except where a two-dimensional, Gaussian-shaped thermal anomaly simulating a plume is imposed. Models vary plume diameter, plume location, the viscosity contrast between plume and ambient mantle material, and the use of dehydration rheology in calculating viscosity. Importantly, the model results quantify how plume-related anomalies in mantle temperature pattern, seafloor depth, and crustal thickness depend on the specific set of parameters. To provide an example, one way of assessing the effect of conduit position is to calculate normalized area, defined to be the spatial dispersion of a given plume at specific depth (here selected to be 50 km) divided by the area occupied by the same plume when it is located under the triple junction. For one particular case modeled where the plume is centered in an intraplate position 100 km from the triple junction, normalized area is just 55%. Overall, these models provide a framework for better understanding plateau formation at triple junctions in the natural setting and a tool for constraining subsurface geodynamical processes and plume properties.

  20. Development of 1.25 eV InGaAsN for triple junction solar cells

    SciTech Connect

    LI,N.Y.; SHARPS,P.R.; HILLS,J.S.; HOU,H.; CHANG,PING-CHIH; BACA,ALBERT G.

    2000-05-16

    Development of next generation high efficiency space monolithic multifunction solar cells will involve the development of new materials lattice matched to GaAs. One promising material is 1.05 eV InGaAsN, to be used in a four junction GaInP{sub 2}/GaAs/InGaAsN/Ge device. The AMO theoretical efficiency of such a device is 38--42%. Development of the 1.05 eV InGaAsN material for photovoltaic applications, however, has been difficult. Low electron mobilities and short minority carrier lifetimes have resulted in short minority carrier diffusion lengths. Increasing the nitrogen incorporation decreases the minority carrier lifetime. The authors are looking at a more modest proposal, developing 1.25 eV InGaAsN for a triple junction GaInP{sub 2}/InGaAsN/Ge device. The AMO theoretical efficiency of this device is 30--34%. Less nitrogen and indium are required to lower the bandgap to 1.25 eV and maintain the lattice matching to GaAs. Hence, development and optimization of the 1.25 eV material for photovoltaic devices should be easier than that for the 1.05 eV material.

  1. Development of high stable-efficiency, triple-junction a-Si alloy solar cells. Annual subcontract report, July 18, 1994--July 17, 1995

    SciTech Connect

    Deng, X.

    1996-02-01

    This report describes work performed by Energy Conversion Devices, Inc. (ECD) under a 3-year, cost-shared amorphous silicon (a-Si) research program to develop advanced technologies and to demonstrate stable 14%-efficient, triple-junction a-Si alloy solar cells. The technologies developed under the program will then be incorporated into ECD`s continuous roll-to-roll deposition process to further enhance ECD`s photovoltaic manufacturing technology. In ECD`s solar cell design, triple-junction a-Si alloy solar cells are deposited onto stainless-steel substrates coated with Ag/ZnO back-reflector layers. This type of cell design enabled ECD to use a continuous roll- to-roll deposition process to manufacture a-Si PV materials in high volume at low cost. Using this cell design, ECD previously achieved 13.7% initial solar cell efficiency using the following features: (1) a triple-junction, two-band-gap, spectrum-splitting solar cell design; (2) a microcrystalline silicon p-layer; (3) a band-gap-profiled a- SiGe alloy as the bottom cell i-layer; (4) a high-performance AgZnO back-reflector; and (5) a high-performance tunnel junction between component cells. ECD also applied the technology into its 2-MW/yr a- Si production line and achieved the manufacturing of 4-ft{sup 2} PV modules with 8% stable efficiency. During this program, ECD is also further advancing its existing PV technology toward the goal of 14% stable solar cells by performing the following four tasks: (1) improving the stability of the intrinsic a-Si alloy materials; (2) improving the quality of low-band-gap a-SiGe alloy; (3) improving p{sup +} window layers, and (4) developing high stable-efficiency triple-junction a-Si alloy solar cells.

  2. Development of high, stable-efficiency triple-junction a-Si alloy solar cells. Final technical report

    SciTech Connect

    Deng, X.; Jones, S.J.; Liu, T.; Izu, M.

    1998-04-01

    This report summarizes Energy Conversion Devices, Inc.`s (ECD) research under this program. ECD researchers explored the deposition of a-Si at high rates using very-high-frequency plasma MHz, and compared these VHF i-layers with radio-frequency (RF) plasma-deposited i-layers. ECD conducted comprehensive research to develop a {mu}c-Si p{sup +} layer using VHF deposition process with the objectives of establishing a wider process window for the deposition of high-quality p{sup +} materials and further enhancing their performance of a-Si solar cells by improving its p-layers. ECD optimized the deposition of the intrinsic a-Si layer and the boron-doped {mu}c-Si p{sup +} layer to improve the V{sub oc}. Researchers deposited wide-bandgap a-Si films using high hydrogen dilution; investigated the deposition of the ZnO layer (for use in back-reflector) using a sputter deposition process involving metal Zn targets; and obtained a baseline fabrication for single-junction a-Si n-i-p devices with 10.6% initial efficiency and a baseline fabrication for triple-junction a-Si devices with 11.2% initial efficiency. ECD researchers also optimized the deposition parameters for a-SiGe with high Ge content; designed a novel structure for the p-n tunnel junction (recombination layer) in a multiple-junction solar cell; and demonstrated, in n-i-p solar cells, the improved stability of a-Si:H:F materials when deposited using a new fluorine precursor. Researchers investigated the use of c-Si(n{sup +})/a-Si alloy/Pd Schottky barrier device as a tool for the effective evaluation of photovoltaic performance on a-Si alloy materials. Through alterations in the deposition conditions and system hardware, researchers improved their understanding for the deposition of uniform and high-quality a-Si and a-SiGe films over large areas. ECD researchers also performed extensive research to optimize the deposition process of the newly constructed 5-MW back-reflector deposition machine.

  3. Seismic structure at the Kairei Hydrothermal vent field near the Rodriguez Triple Junction in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Takata, H.; Sato, T.; Imai, Y.; Mori, T.; Noguchi, Y.; Kono, A.; Yamada, T.; Shinohara, M.

    2014-12-01

    Central Indian Ridge is located at the north of the Rodriguez Triple Junction and shows slow-intermediate spreading rate. The Kairei hydrothermal Field (KHF) was discovered in the first segment of Central Indian Ridge near the Rodriguez Triple Junction. The vent fluid which is extruding at the KHF has higher H2 content compared with other hydrothermal vent fluid in the world. Although The KHF itself exists above a basaltic rock massif, gabbro and mafic rocks were discovered on the seafloor around the KHF. These deep-seated rocks may contribute to the high H2concentration of the Kairei vent fluid .To understand how gabbro and mafic rocks are uplifted and exhumed on the seafloor, we conducted a seismic refraction/reflection survey using ocean bottom seismograms (OBSs). We conducted the seismic refraction/reflection survey from January 27 to March 19 in 2013 using S/V Yokosuka of Jamstec. In the experiment, we used 21 OBSs, an air gun (G.I.gun) and a single channel steamer cable. We obtained 5 survey lines NNW-SSE direction parallel to the ridge axis, 5 lines E-W direction and 5 lines NNE-SSW direction. In addition to these lines, we acquired other 5 lines passing through the point above the KHF or Yokoniwa Rise, which is the north of the KHF. In analysis of refraction data, firstly, we estimated 2D velocity model under survey lines, which are parallel to the ridge axis, using the progressive model development method developed by Sato and Kennett (2000). Then, we constructed a 3D initial model and run the 3D tomographic method developed by Zelt and Barton (1998). The 1D velocity profile of the KHF seems to be similar to that of mid ocean ridges such as Mid Atlantic Ridge, East Pacific Rise. Seismic velocities under the KHF and Yokoniwa Rise reach about 6km/s at depth of 1~2 km below seafloor, probably indicating uplift of deep-seated rocks. In this presentation we will show 3D seismic structure of this area.

  4. Wide-angle seismic constraints on the evolution of the deep San Andreas plate boundary by Mendocino triple junction migration

    USGS Publications Warehouse

    Hole, J.A.; Beaudoin, B.C.; Henstock, T.J.

    1998-01-01

    Recent wide-angle seismic observations that constrain the existence and structure of a mafic layer in the lower crust place strong constraints on the evolution of the San Andreas plate boundary system in northern and central California. Northward migration of the Mendocino Triple Junction and the subducted Juan de Fuca lithospheric slab creates a gap under the continent in the new strike-slip system. This gap must be filled by either asthenospheric upwelling or a northward migrating slab attached to the Pacific plate. Both processes emplace a mafic layer, either magmatic underplating or oceanic crust, beneath the California Coast Ranges. A slab of oceanic lithosphere attached to the Pacific plate is inconsistent with the seismic observation that the strike-slip faults cut through the mafic layer to the mantle, detaching the layer from the Pacific plate. The layer could only be attached to the Pacific plate if large vertical offsets and other complex structures observed beneath several strike-slip faults are original oceanic structures that are not caused by the faults. Otherwise, if oceanic slabs exist beneath California, they do not migrate north to fill the growing slab gap. The extreme heat pulse created by asthenospheric upwelling is inconsistent with several constraints from the seismic data, including a shallower depth to the slab gap than is predicted by heat flow models, seismic velocity and structure that are inconsistent with melting or metamorphism of the overlying silicic crust, and a high seismic velocity in the upper mantle. Yet either the Pacific slab model or the asthenospheric upwelling model must be correct. While the mafic material in the lower crust could have been emplaced prior to triple junction migration, the deeper slab gap must still be filled. A preexisting mafic layer does not reduce the inconsistencies of the Pacific slab model. Such material could, however, compensate for the decrease in mafic magma that would be produced if

  5. Lithosphere/Asthenosphere Structure beneath the Mendocino Triple Junction from the Analysis of Surface Wave, Ambient Noise, and Receiver Functions

    NASA Astrophysics Data System (ADS)

    Liu, K.; Zhai, Y.; Levander, A.; Porritt, R. W.; Allen, R. M.; Schmandt, B.; Humphreys, E.; O'Driscoll, L.

    2010-12-01

    We have developed a 3-D shear velocity model using finite-frequency Rayleigh wave phase velocity dispersion, PdS receiver functions, and ambient noise tomography to better understand the complex lithosphere/asthenosphere structures in the Mendocino Triple Junction (MTJ) region. Using approximately 100 events (July 2007-December 2008) recorded by the stations of the Flexible Array Mendocino Experiment (FAME), the USArray Transportable Array (TA) network, and the Berkeley Digital Seismograph network, we have obtained the phase velocities (20-100s) from the finite-frequency Rayleigh wave tomography, which agrees well with the ambient noise tomography results (7-40 s, Porritt & Allen, 2010) in the overlapping period range. We subsequently inverted for a 3-D Vs model on a 0.25°x0.25° grid from the combined dispersion datasets, constrained by interface depths from the PdS receiver functions (Zhai & Levander, 2010). The resulting crustal and upper mantle Vs model (~150 km) reveals strong lateral heterogeneity in the subduction and transform regimes of the Mendocino Triple Junction region where the Gorda, Pacific, and North American plates intersect. The subducting Gorda slab is well-imaged as an eastward-dipping high-velocity anomaly to ~100 km depth. At the same depth to the east we observe a large-scale low velocity zone, which is the mantle wedge beneath the North American Plate. The southern edge of the Gorda plate (SEDGE) is imaged at 80-100 km depth and is in excellent agreement with measurements made from PdS receiver functions, body-wave tomography (Schmandt & Humphreys, 2010; Obrebski et al., 2010), and active source studies. At depths greater than 80 km, we interpret low velocities under the Cascadia subduction zone as the asthenosphere below the Gorda plate, in agreement with measured LAB depths from RFs. South of the SEDGE shallow strong low-velocities appear beneath the transform region, which we interpret as the asthenosphere in the slab-gap region left by

  6. InGaP/GaAs/InGaAsP triple junction solar cells grown using solid-source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sugaya, T.; Makita, K.; Mizuno, H.; Mochizuki, T.; Oshima, R.; Matsubara, K.; Okano, Y.; Niki, S.

    2015-09-01

    We report mechanically stacked InGaP (1.9 eV)/GaAs (1.42 eV)/InGaAsP (1.0 eV) triple junction solar cells fabricated with an advanced bonding technique using Pd nanoparticle arrays. High quality InGaP/GaAs tandem top and InGaAsP bottom cells are grown on GaAs and InP substrates, respectively using solid-source molecular beam epitaxy (MBE). The InGaAsP bottom cell has an open circuit voltage (Voc) of 0.49 V, which indicates that high performance InGaAsP solar cells can be fabricated using solid-source MBE. A fabricated triple junction solar cell has a high efficiency of 25.6% with a high Voc of 2.66 V.

  7. Growth and Strain Evaluation of InGaP/InGaAs/Ge Triple-Junction Solar Cell Structures

    NASA Astrophysics Data System (ADS)

    Alhomoudi, Ibrahim A.

    2016-10-01

    Metalorganic chemical vapor deposition (MOCVD) has been used for development of photovoltaic (PV) structures that enable enhanced efficiency for triple-junction solar cell (TJSC) devices. The in-plane strain, lattice match, surface defects, surface morphology, compositional uniformity, threading dislocations (TDs), and depth profile of each layer of the TJSC structure have been examined. The heteroepitaxial layers were found to be near lattice matched to the substrate with excellent coherence between the layers. The analysis explained that the indium gallium phosphide (InGaP) and indium gallium arsenide (InGaAs) layers on germanium (Ge) substrate are a strained structure with purely tetragonal crystalline phase, which indicates that the TJSC structural layers could maintain high crystalline quality. The biaxial in-plane strain in each layer of the TJSC structure is compressive and varies in magnitude for each layer in the structure, being strongly influenced by the Ge substrate and the multiple epilayers of the PV structure. Transmission electron microscopy (TEM) results show no TDs observed over a region with area of 500 nm2, with surface defect density less than 1 × 108 cm-2. No evidence of stacking faults and no visible defects of antiphase domains (APDs) at interfaces were observed, indicating adequate nucleation of epitaxial layers on the substrate and on subsequent growth layers. Furthermore, secondary-ion mass spectrometry (SIMS) analysis showed no significant Ge diffusion from the substrate into the TJSC structure.

  8. Landslides, threshold slopes, and the survival of relict terrain in the wake of the Mendocino Triple Junction

    NASA Astrophysics Data System (ADS)

    Bennett, Georgina; Miller, Scott; Roering, Joshua; Schmidt, David

    2016-04-01

    Establishing the coupled fluvial-hillslope response to uplift is critical for interpreting sediment fluxes, stream channel characteristics, hazard potential and topographic development. Threshold-slope models purport that landslide fluxes obtain a balance with river incision in response to rapid rock uplift, but a lack of observations and constraints in most settings prevents us from quantifying the process-linkages required for channels and hillslopes to adjust to tectonic forcing. We mapped landslides and knickpoints and extracted topographic metrics across the northern Californian Coast ranges, where the landscape is responding to a wave of rapid uplift related to the migration of the Mendocino Triple Junction (MTJ). We find a tightly coupled channel-landslide-hillslope response to uplift from catchment to regional scales. Locally, landslide erosion rates estimated from historical air photo analyses approach 1 mm yr-1, consistent with published cosmogenic nuclide and suspended sediment erosion rates as well as modeled isostatic uplift associated with crustal thickening proximal to the MTJ. Landslides are concentrated along channel reaches downstream of migrating knickpoints generated by base level fall at channel outlets and hillslope gradients and relief become invariant with the onset of significant landslide erosion. Following passage of the MTJ, this coupled response becomes inhibited by subsidence due to crustal thinning and landslide-derived coarse sediment delivery that suppresses catchment-wide channel incision and knickpoint migration. As a result, substantial portions of the landscape escape comprehensive adjustment to increased uplift and retain the signature of a gentle and slow-eroding relict landscape.

  9. Terrace Formation in the Upper Headwater Region of the Mattole River Watershed Across the Mendocino Triple Junction, Northwest California

    NASA Astrophysics Data System (ADS)

    Robinson, M.; Flanagan, S., II; Hemphill-Haley, M. A.

    2015-12-01

    The Mattole River, in northwestern California, is located in a tectonically active and geologically complex area, the Mendocino triple junction (MTJ), where the North American, Pacific and Gorda plates meet. The Mattole River does not follow the classic river "concave-up" profile. Instead, the river headwaters have wide valleys of low gradient fill, cut and strath terraces with deeply incised active channels. In fact, the river has a "convex-up" profile with a low gradient headwater leading to a higher gradient midcourse. Terrace formation in the upper headwater region of the Mattole River records times of disequilibrium of channel profile and incision as the river responds to changes that are, in large part, due to the passage of the northwardly migrating, thermally buoyant MTJ. In order to investigate the distribution and relative ages of terraces, detailed surveys of terrace surfaces and bedrock strath positions were conducted along four headwater tributaries: Thompson Creek, Baker Creek, Lost River and Ancestor Creek. Additionally, across the terraces, hand borings were excavated to bedrock to provide a three dimensional image of terrace thickness. Terrace morphology and stratigraphy provide information on terrace forming mechanisms and timing. This study includes high-resolution geomorphic data regarding the relation of Mattole headwater terraces to the MTJ, as well as provides more temporal information about the fluvial system's response to the ongoing northward migration of the MTJ.

  10. Upper plate responses to active spreading ridge/transform subduction: The tectonics, basin evolution, and seismicity of the Taita area, Chile Triple Junction

    SciTech Connect

    Flint, S.; Prior, D. ); Styles, P.; Murdie, R. ); Agar, S.; Turner, P. )

    1993-02-01

    Integrated field geophysical, structural and stratigraphic studies are attempting to elucidate the mechanisms and consequences of the Late Miocene-present day subduction of the Chile Ridge triple junction system. Preliminary data indicate a shallow plane of seismicity at about 15 km to 20 km depth below the Taitao peninsula. The depths correspond to the predicted depth range of subducted upper ocean crust. The calculated Bouguer anomaly map cannot be explained by the upper plate geology, suggesting that gravity is influenced by heterogeneities in the subducting oceanic plate. Seismic data imply that a subducted transform system underlying the inner Taitao Peninsula is still an active structure. A series of Middle-Late Tertiary sedimentary basins lie inboard of the triple junction. Within the Cosmelli basin, abrupt marine to continental facies transitions give clear evidence of base level changes. The amount of basinward shift of facies across sequence boundaries gets progressively greater up stratigraphy, indicating progressively greater base level changes. The lower part of the basin fill is folded and then thrusted eastward as a series of imbricates, while the overlying, greater thickness of fluvial sediments are only gently tilted westwards. We provisionally interpret this geometry to indicate that the early basin fill was deforming due to contractional tectonics while the later basin fill was being deposited. This complex basin history may reflect initiation and development of triple junction subduction.

  11. Association of the 1886 Charleston, South Carolina, earthquake and seismicity near Summervile with a 12º bend in the East Coast fault system and triple-fault junctions

    USGS Publications Warehouse

    Marple, R.; Miller, R.

    2006-01-01

    Seismic-reflection data were integrated with other geophysical, geologic, and seismicity data to better determine the location and nature of buried faults in the Charleston, South Carolina, region. Our results indicate that the 1886 Charleston, South Carolina, earthquake and seismicity near Summerville are related to local stresses caused by a 12?? bend in the East Coast fault system (ECFS) and two triple-fault junctions. One triple junction is formed by the intersection of the northwest-trending Ashley River fault with the two segments of the ECFS north and south of the bend. The other triple junction is formed by the intersection of the northeast-trending Summerville fault and a newly discovered northwest-trending Berkeley fault with the ECFS about 10 km north of the bend. The Summerville fault is a northwest-dipping border fault of the Triassic-age Jedburg basin that is undergoing reverse-style reactivation. This reverse-style reactivation is unusual because the Summerville fault parallels the regional stress field axis, suggesting that the reactivation is from stresses applied by dextral motion on the ECFS. The southwest-dip and reverse-type motion of the Berkeley fault are interpreted from seismicity data and a seismic-reflection profile in the western part of the study area. Our results also indicate that the East Coast fault system is a Paleozoic basement fault and that its reactivation since early Mesozoic time has fractured through the overlying allochthonous terranes.

  12. Orientation dependence of void growth at triple junction of grain boundaries in nanoscale tricrystal nickel film subjected to uniaxial tensile loading

    NASA Astrophysics Data System (ADS)

    Zhang, Yanqiu; Jiang, Shuyong; Zhu, Xiaoming; Sun, Dong

    2016-11-01

    Molecular dynamics simulation was performed in order to investigate the dependence of void growth on crystallographic orientation at the triple junction of grain boundaries in nanoscale tricrystal nickel film subjected to uniaxial tensile loading. The nucleation, the emission and the transmission of Shockley partial dislocations play a predominant role in the growth of void at the triple junction of grain boundaries. The orientation factors of various slip systems are calculated according to Schmid law. The slip systems activated in a grain of tricrystal nickel film basically conform to Schmid law which is completely suitable for a single crystal. The activated slip systems play an important role in plastic deformation of nanoscale tricrystal nickel film subjected to uniaxial tensile loading. The slip directions exhibit great difference among the activated slip systems such that the void is caused to be subjected to various stress conditions, which further leads to the difference in void growth among the tricrystal nickel films with different orientation distributions. It can be concluded that the grain orientation distribution has a significant influence on void growth at the triple junction of grain boundaries.

  13. Tectonics and geology of spreading ridge subduction at the Chile Triple Junction: a synthesis of results from Leg 141 of the Ocean Drilling Program

    USGS Publications Warehouse

    Behrmann, J.H.; Lewis, S.D.; Cande, S.C.

    1994-01-01

    An active oceanic spreading ridge is being subducted beneath the South American continent at the Chile Triple Junction. This process has played a major part in the evolution of most of the continental margins that border the Pacific Ocean basin. A combination of high resolution swath bathymetric maps, seismic reflection profiles and drillhole and core data from five sites drilled during Ocean Drilling Program (ODP) Leg 141 provide important data that define the tectonic, structural and stratigraphic effects of this modern example of spreading ridge subduction. A change from subduction accretion to subduction erosion occurs along-strike of the South American forearc. This change is prominently expressed by normal faulting, forearc subsidence, oversteepening of topographic slopes and intensive sedimentary mass wasting, overprinted on older signatures of sediment accretion, overthrusting and uplift processes in the forearc. Data from drill sites north of the triple junction (Sites 859-861) show that after an important phase of forearc building in the early to late Pliocene, subduction accretion had ceased in the late Pliocene. Since that time sediment on the downgoing oceanic Nazca plate has been subducted. Site 863 was drilled into the forearc in the immediate vicinity of the triple junction above the subducted spreading ridge axis. Here, thick and intensely folded and faulted trench slope sediments of Pleistocene age are currently involved in the frontal deformation of the forearc. Early faults with thrust and reverse kinematics are overprinted by later normal faults. The Chile Triple Junction is also the site of apparent ophiolite emplacement into the South American forearc. Drilling at Site 862 on the Taitao Ridge revealed an offshore volcanic sequence of Plio-Pleistocene age associated with the Taitao Fracture Zone, adjacent to exposures of the Pliocene-aged Taitao ophiolite onshore. Despite the large-scale loss of material from the forearc at the triple junction

  14. Middle Miocene paleotemperature anomalies within the Franciscan Complex of northern California: Thermo-tectonic responses near the Mendocino triple junction

    USGS Publications Warehouse

    Underwood, M.B.; Shelton, K.L.; McLaughlin, R.J.; Laughland, M.M.; Solomon, R.M.

    1999-01-01

    This study documents three localities in the Franciscan accretionary complex of northern California, now adjacent to the San Andreas fault, that were overprinted thermally between 13.9 and 12.2 Ma: Point Delgada-Shelter Cove (King Range terrane); Bolinas Ridge (San Bruno Mountain terrane); and Mount San Bruno (San Bruno Mountain terrane). Vein assemblages of quartz, carbonate, sulfide minerals, and adularia were precipitated locally in highly fractured wall rock. Vitrinite reflectance (Rm) values and illite crystallinity decrease away from the zones of metalliferous veins, where peak wall-rock temperatures, as determined from Rm, were as high as 315??C. The ??18O values of quartz and calcite indicate that two separate types of fluid contributed to vein precipitation. Higher ??18O fluids produced widespread quartz and calcite veins that are typical of the regional paleothermal regime. The widespread veins are by-products of heat conduction and diffuse fluid flow during zeolite and prehnite-pumpellyite-grade metamorphism, and we interpret their paleofluids to have evolved through dehydration reactions and/or extensive isotopic exchange with accreted Franciscan rocks. Lower ??18O fluids, in contrast, evolved from relatively high temperature exchange between seawater (or meteoric water) and basaltic and/or sedimentary host rocks; focused flow of those fluids resulted in local deposition of the metalliferous veins. Heat sources for the three paleothermal anomalies remain uncertain and may have been unrelated to one another. Higher temperature metalliferous fluids in the King Range terrane could have advected either from a site of ridge-trench interaction north of the Mendocino fracture zone or from a "slabless window" in the wake of the northward migrating Mendocino triple junction. A separate paradox involves the amount of Quaternary offset of Franciscan basement rocks near Shelter Cove by on-land faults that some regard as the main active trace of the San Andreas

  15. Seismic structure of the southern Cascadia subduction zone and accretionary prism north of the Mendocino triple junction

    USGS Publications Warehouse

    Gulick, S.P.S.; Meltzer, A.M.; Clarke, S.H.

    1998-01-01

    Four multichannel-seismic reflection profiles, collected as part of the Mendocino triple junction seismic experiment, image the toe of the southern Cascadia accretionary prism. Today, 250-600 m of sediment is subducting with the Gorda plate, and 1500-3200 m is accreting to the northern California margin. Faults imaged west and east of the deformation front show mixed structural vergence. A north-south trending, 20 km long portion of the central margin is landward vergent for the outer 6-8 km of the toe of the prism. This region of landward vergence exhibits no frontal thrust, is unusually steep and narrow, and is likely caused by a seaward-dipping backstop close to the deformation front. The lack of margin-wide preferred seaward vergence and wedge-taper analysis suggests the prism has low basal shear stress. The three southern lines image wedge-shaped fragments of oceanic crust 1.1-7.3 km in width and 250-700 m thick near the deformation front. These wedges suggest shortening and thickening of the upper oceanic crust. Discontinuities in the seafloor west of the prism provide evidence for mass wasting in the form of slump blocks and debris fans. The southernmost profile extends 75 km west of the prism imaging numerous faults that offset both the Gorda basin oceanic crust and overlying sediments. These high-angle faults, bounding basement highs, are interpreted as strike-slip faults reactivating structures originally formed at the spreading ridge. Northeast or northwest trending strike-slip faults within the basin are consistent with published focal mechanism solutions and are likely caused by north-south Gorda-Pacific plate convergence. Copyright 1998 by the American Geophysical Union.

  16. Middle Miocene swift migration of the TTT triple junction and rapid crustal growth in southwest Japan: A review

    NASA Astrophysics Data System (ADS)

    Kimura, Gaku; Hashimoto, Yoshitaka; Kitamura, Yujin; Yamaguchi, Asuka; Koge, Hiroaki

    2014-07-01

    We review recent progress in geological and geophysical investigation in SW Japan, Nankai Trough, and Philippine Sea Plate (PSP), and propose a hypothesis for the Miocene tectonics in SW Japan driven by middle Miocene swift migration of the TTT (trench-trench-trench) triple junction. The new hypothesis is based on the new interpretations as follows. Near-trench magmatism in the outer zone of SW Japan is ascribed to a collision of proto-Izu arc in addition to the previous model of an oceanic ridge of the Shikoku Basin and hot PSP subduction. The indentation structures at Capes Ashizuri, Muroto in Shikoku, and Shiono on the Kii Peninsula were previously explained by "kink folding" due to recent E-W compression. We alternatively suppose the collision of the active arc or topographic peaks such as seamounts inferred from geological and experimental observations. The main crustal component in SW Japan is suggested to be of igneous plutonic rocks rather than the previous interpretation of Cretaceous to Tertiary accretionary complexes. This is typically illustrated in the outer zone to the north of Capes Ashizuri, Muroto, and Shiono from geophysical observation of gravity anomalies, velocity and resistivity, together with geological estimations of caldera age and the size of its root pluton. Episodic crustal growth due to intrusion of igneous rock and subduction of the PSP may have stopped after approximately 12 Ma and restarted at approximately 6 Ma. Our emphasis for this gap is a cessation and resurgence of subduction rather than the previous interpretation, i.e., decreasing of subduction rate.

  17. Formation of hydrothermal deposits at Kings Triple Junction, northern Lau back-arc basin, SW Pacific: The geochemical perspectives

    NASA Astrophysics Data System (ADS)

    Paropkari, Anil L.; Ray, Durbar; Balaram, V.; Surya Prakash, L.; Mirza, Imran H.; Satyanarayana, M.; Gnaneshwar Rao, T.; Kaisary, Sujata

    2010-04-01

    An inactive hydrothermal field was discovered near Kings Triple Junction (KTJ) in northern Lau back-arc basin during 19th cruise of R/V Akademik Mstislav Keldysh in 1990. The field consisted of a large elongated basal platform 'the pedestal' with several 'small' chimneys on its periphery and one 'main mound' superposed over it. The surrounding region is carpeted with lava pillows having ferromanganese 'precipitate' as infillings. The adjoining second field consisted of small chimney like growths termed as 'Christmas Tree' Field. The basal pedestal, the peripheral chimneys and small 'Christmas Tree' like growths (samples collected by MIR submersibles), though parts of the same hydrothermal field, differ significantly in their mineralogy and elemental composition indicating different history of formation. The pedestal slab consisting of chalcopyrite and pyrite as major minerals and rich in Cu is likely to have formed at higher temperatures than sphalerite dominated peripheral chimney. Extremely low concentration of high field strength elements (e.g. Zr, Hf, Nb and Ta) and enrichment of light REE in these sulfides indicate prominent influence of aqueous arc-magma, rich in subduction components. The oxide growths in the 'Christmas Tree' Field have two distinct layers, Fe rich orange-red basal part which seems to have formed at very low temperature as precipitates from diffused hydrothermal flows from the seafloor whereas Mn rich black surface coating is formed from hydrothermal fluids emanated from the seafloor during another episode of hydrothermal activity. Perhaps this is for the first time such unique hydrothermal oxide growths are being reported in association with hydrothermal system. Here, we discuss the possible processes responsible for the formation of these different hydrothermal deposits based on their mineralogy and geochemistry.

  18. Analysis of Holocene Marine Terraces, Cape Mendocino to Mattole River, Northern California: Interpretations and Implications to Mendocino Triple Junction Tectonics

    NASA Astrophysics Data System (ADS)

    Crawford, B.; Hemphill-Haley, M. A.; Vermeer, J.; Michalak, M.

    2015-12-01

    The southern terminus of the Cascadia subduction zone (CSZ) of the Pacific Northwest terminates at the Mendocino Triple Junction, a region of elevated seismicity. Here, episodic, tectonically driven uplift is likely responsible for the formation of a suite of Holocene-aged marine terraces. In 1992, a M 7.1 thrust mainshock and two ~M 6.5 aftershocks occurred ~ 4 km offshore of Cape Mendocino resulting in ~1.4 m of uplift, measured from intertidal species stranded upon uplifted wave-cut platforms (Carver et al., 1994; Merritts, 1996). Using high resolution LiDAR data (NOAA, 2012), we constructed a detailed map of the uplifted 1992 wavecut platform and 9 adjacent higher terrace surfaces between Cape Mendocino and the mouth of the Mattole River. The risers associated with these surfaces are between 1 and 3 m high, similar to that of the 1992 event. This work offers insight into the upper plate crustal response to seismic events and inter-seismic periods in the tectonically complex southern end of the CSZ. By relating the elevations of the shoreline angles of these terraces to an established sea level curve (Gibbs, 1986) and a single absolute age on one terrace (Merritts, 1996) we estimate their ages of formation as all less than 6 ka. Eustatic sea level in the last 6 ka has been fairly stable indicating that these terraces formed during co-seismic uplift events. Marine terrace formation requires relative sea level stability thus there is no indication of vertical interseismic deformation along this portion of the subduction zone. This late Holocene behavior differs from other portions of the CSZ to the north where interseismic recovery has been documented. The presence of multiple, relatively small terrace risers in the last 6 ka suggests this portion of the subduction zone may rupture in smaller events on the megathrust or subsidiary faults.

  19. Triple and Quadruple Junctions Thermophotovoltaic Devices Lattice Matched to InP

    NASA Technical Reports Server (NTRS)

    Bhusal, L.; Freundlich, A.

    2007-01-01

    Thermophotovoltaic (TPV) conversion of IR radiation emanating from a radioisotope heat source is under consideration for deep space exploration. Ideally, for radiator temperatures of interest, the TPV cell must convert efficiently photons in the 0.4-0.7 eV spectral range. Best experimental data for single junction cells are obtained for lattice-mismatched 0.55 eV InGaAs based devices. It was suggested, that a tandem InGaAs based TPV cell made by monolithically combining two or more lattice mismatched InGaAs subcells on InP would result in a sizeable efficiency improvement. However, from a practical standpoint the implementation of more than two subcells with lattice mismatch systems will require extremely thick graded layers (defect filtering systems) to accommodate the lattice mismatch between the sub-cells and could detrimentally affect the recycling of the unused IR energy to the emitter. A buffer structure, consisting of various InPAs layers, is incorporated to accommodate the lattice mismatch between the high and low bandgap subcells. There are evidences that the presence of the buffer structure may generate defects, which could extend down to the underlying InGaAs layer. The unusual large band gap lowering observed in GaAs(1-x)N(x) with low nitrogen fraction [1] has sparked a new interest in the development of dilute nitrogen containing III-V semiconductors for long-wavelength optoelectronic devices (e.g. IR lasers, detector, solar cells) [2-7]. Lattice matched Ga1-yInyNxAs1-x on InP has recently been investigated for the potential use in the mid-infrared device applications [8], and it could be a strong candidate for the applications in TPV devices. This novel quaternary alloy allows the tuning of the band gap from 1.42 eV to below 1 eV on GaAs and band gap as low as 0.6eV when strained to InP, but it has its own limitations. To achieve such a low band gap using the quaternary Ga1-yInyNxAs1-x, either it needs to be strained on InP, which creates further

  20. Evolution of the Gorda Escarpment, San Andreas fault and Mendocino triple junction from multichannel seismic data collected across the northern Vizcaino block, offshore northern California

    USGS Publications Warehouse

    Godfrey, N.J.; Meltzer, A.S.; Klemperer, S.L.; Trehu, A.M.; Leitner, B.; Clarke, S.H.; Ondrus, A.

    1998-01-01

    The Gorda Escarpment is a north facing scarp immediately south of the Mendocino transform fault (the Gorda/Juan de Fuca-Pacific plate boundary) between 126??W and the Mendocino triple junction. It elevates the seafloor at the northern edge of the Vizcaino block, part of the Pacific plate, ??? 1.5 km above the seafloor of the Gorda/Juan de Fuca plate to the north. Stratigraphy interpreted from multichannel seismic data across and close to the Gorda Escarpment suggests that the escarpment is a relatively recent pop-up feature caused by north-south compression across the plate boundary. Close to 126??W. the Vizcaino block acoustic basement shallows and is overlain by sediments that thin north toward the Gorda Escarpment. These sediments are tilted south and truncated at the seafloor. By contrast, in a localized region at the eastern end of the Gorda Escarpment, close to the Mendocino triple junction, the top of acoustic basement dips north and is overlain by a 2-km-thick wedge of pre-11 Ma sedimentary rocks that thickens north, toward the Gorda Escarpment. This wedge of sediments is restricted to the northeast corner of the Vizcaino block. Unless the wedge of sediments was a preexisting feature on the Vizcaino block before it was transferred from the North American to the Pacific plate, the strong spatial correlation between the sedimentary wedge and the triple junction suggests the entire Vizcaino block, with the San Andreas at its eastern boundary, has been part of the Pacific plate since significantly before 11 Ma.

  1. Late Cenozoic migration of the Caribbean-North America-Cocos triple junction: the zipper and pull-up models (Guatemala)

    NASA Astrophysics Data System (ADS)

    Authemayou, Christine; Brocard, Gilles; Teyssier, Christian; Simon-Labric, Thibaut; Noe Chiquín, E.; Guttiérrez, Axel; Morán, Sergio; Suski, Barbara; Cosenza, Beatriz; Holliger, Klaus

    2013-04-01

    Our study deals with the crustal deformation produced by the migration of a triple plate junction implying a subduction zone and a transform fault system separating two continental plates. We have chosen the Caribbean-North America-Cocos triple junction as a case study. The Polochic-Motagua fault system are part of the sinistral transform boundary between the North American and Caribbean plates. To the west, these system interact with the subduction zone of the Cocos plate. The linearity of the subduction zone is explained by a mechanically strong oceanic plate that does not tear in the triple junction implying intra-continental deformation. Structural and geomorphic data allow us to propose two tectonic models involving the progressive capture of southern North American blocks by the trailing edge of the Caribbean plate (pull-up tectonics) and a progressive suturing of fault-bounded blocks to the trailing edge of the Caribbean plate associated with a continuous forearc sliver along the two continental plates (zipper model). As a result, the forearc sliver helps maintain a linear subduction zone along the trailing edge of the Caribbean plate. The Late Quaternary activity of the Polochic transform fault have been constrained by determining the active structure geometry and quantifying recent displacement rates. Slip rates have been estimated from offsets of Quaternary volcanic markers and alluvial fan using in situ cosmogenic 36Cl exposure dating. Holocene left-lateral slip rate and Mid-Pleistocene vertical slip-rate have been estimated to 4.8 ± 2.3 mm/y and 0.3 ± 0.06 mm/y, respectively, on the central part of the Polochic fault. The non-negligible vertical motion participates in the uplift of the block north of the fault in agreement with the proposed pull-up model.

  2. Measuring earthquake source parameters in the Mendocino triple junction region using a dense OBS array: Implications for fault strength variations

    NASA Astrophysics Data System (ADS)

    Chen, Xiaowei; McGuire, Jeffrey J.

    2016-11-01

    Subduction zones produce earthquakes on a set of faults that operate under a wide variety of conditions resulting from considerable variations in depth, temperature, rock type, and fluid pressure. These variations likely lead to variation in the stress levels that drives particular earthquakes and that in turn effects the magnitude of seismic shaking they produce. In the Mendocino Triple Junction (MTJ) region, intraplate faults within the mantle of the subducting plate fail regularly in energetic earthquakes while the adjacent thrust interface of the Cascadia subduction zone remains seismically quiet despite the likelihood that it operates at much lower levels of stress and strength. In 2012, as part of the Cascadia Initiative community experiment, an ocean bottom seismometer (OBS) array was deployed in the MTJ area, providing unusually dense data covering both the inter- and intra-plate earthquakes. Combining these data with onshore networks, we detect and relocate 1137 earthquakes with a three dimensional velocity model. We perform detailed spectral and time domain analysis to study variations in earthquake source properties between the different types of faults. We observe a wide variability of stress drops and systematic lateral and depth variations in the earthquake source spectra resulting from the different types of tectonic fault systems in this region: intraplate faults within the subducted oceanic mantle, the Mendocino transform plate boundary fault, and the thrust interface of the Cascadia subduction zone. Some of the depth variability of source spectra can be explained by the expected increase in rupture velocity with depth. However, the overall variation in stress drop estimates is consistent with the highest stress drop earthquakes occurring in the depth range predicted by strength envelopes. Moreover, the earthquakes in the vicinity of the thrust interface, likely including some within the subducted oceanic crust, show clearly lower stress drops and

  3. Catastrophic flank collapses and slumping in Pico Island during the last 130 kyr (Pico-Faial ridge, Azores Triple Junction)

    NASA Astrophysics Data System (ADS)

    Costa, A. C. G.; Hildenbrand, A.; Marques, F. O.; Sibrant, A. L. R.; Santos de Campos, A.

    2015-09-01

    The Pico Island constitutes the easternmost sub-aerial domain of a steep WNW-ESE volcanic ridge, which has developed within the Nubia-Eurasia diffuse plate boundary (Azores Triple Junction). The island comprises three volcanic systems, from older to younger: the Topo Volcano, the Fissural System, and the Pico Stratovolcano. From a high-resolution Digital Elevation Model (10 m), and new bathymetric, stratigraphic, structural, and high-precision K-Ar data, we reconstruct the main successive stages of growth and partial destruction of the island over the last 200 kyr. We especially concentrate on the central sector of the island, which has recorded gradual movements through slumping and catastrophic flank collapses since ca. 130 kyr. The remmants of the Topo Volcano are partly exposed on Pico's SE flank, and are here dated between 186 ± 5 and 115 ± 4 ka. Topo was significantly destroyed by N- and S-directed large-scale flank collapses between ca. 125 and 70 ka. On Pico's N flank, collapse seems to have removed all the unstable material, but in the S the collapse structure is composite, including a major flank collapse and a remnant slump complex that is still active. A first episode of deformation occurred between ca. 125 and 115 ka along the master fault of the slump. Between ca. 115 and 69 ka, most of the unstable material was removed by a major flank collapse, leaving behind a still considerable volume of unstable material that comprises the active slump. This first collapse was catastrophic and generated a large debris deposit recognized on the high-resolution bathymetry, with a minimum run-out of ca. 17 km. The scar was partially filled by volcanic products erupted from volcanic cones developed within the slump depression, and possibly also from the early WNW-ESE Fissural System. Subsequent deformation in the slump area affected in part the filling units, leading to the individualization of secondary curved faults. Younger volcanic products have gradually

  4. Brittle deformation along the Gulf of Alaska margin in response to Paleocene-Eocene triple junction migration: in Sisson

    USGS Publications Warehouse

    Haeussler, Peter J.; Bradley, Dwight C.; Goldfarb, Richard J.

    2003-01-01

    A spreading center was subducted diachronously along a 2200 km segment of what is now the Gulf of Alaska margin between 61 and 50 Ma, and left in its wake near-trench intrusions and high-T, low-P metamorphic rocks. Gold-quartz veins and dikes, linked to ridge subduction by geochronological and relative timing evidence, provide a record of brittle deformation during and after passage of the ridge. The gold-quartz veins are typically hosted by faults, and their regional extent indicates there was widespread deformation of the forearc above the slab window at the time of ridge subduction. Considerable variability in the strain pattern was associated with the slab window and the trailing plate. A diffuse network of dextral, sinistral, and normal faults hosted small lode-gold deposits (<50,000 oz) in south-central Alaska, whereas crustal-scale dextral faults in southeastern Alaska are spatially associated with large gold deposits (up to 800,000 oz).We interpret the gold-quartz veins as having formed above an eastward-migrating slab window, where the forearc crust responded to the diminishing influence of the forward subducting plate, the increasing influence of the trailing plate, and the thermal pulse and decreased basal friction from the slab window. In addition, extensional deformation of the forearc resulted from the diverging motions of the two oceanic plates at the margins of the slab window. Factors that complicate interpretations of fault kinematics and near-trench dike orientations include a change in plate motions at ca. 52 Ma, northward translation of the accretionary complex, oroclinal bending of the south-central Alaska margin, and subduction of transform segments. We find the pattern of syn-ridge subduction faulting in southern Alaska is remarkably similar to brittle faults near the Chile triple junction and to earthquake focal mechanisms in the Woodlark basin - the two modern sites of ridge subduction. Therefore, extensional and strike-slip deformation

  5. Crust and Upper mantle heterogeneity in the Mendocino Triple Junction from teleseismic P-to-S scattered waves

    NASA Astrophysics Data System (ADS)

    Zhai, Y.; MacKenzie, J. M.; Levander, A.; Cao, A.; Porritt, R. W.; Allen, R. M.

    2010-12-01

    We have generated a 3D PdS receiver function (RF) common conversion point (CCP) stacked image volume to examine lithospheric structure in the Mendocino Triple Junction (MTJ) region. The image volume was made from 186 earthquakes recorded at 111 broadband stations of the Flexible Array Mendocino Experiment (FAME), the Berkeley Digital Seismic Network and the USArray Transportable Array. The data were depth mapped and laterally migrated incorporating using a layered earth model with 3D traveltime corrections determined from teleseismic P-and S-tomography models (Schmandt and Humphreys, 2010; Obrebski et al., 2010). The top and bottom of the subducting Gorda slab are identified by the top of oceanic crust/Moho and the lithosphere-asthenosphere Boundary (LAB), giving a thickness for the Gorda slab of ~ 40 km, comparable to that predicted by the half-space cooling model. The slab window in the transform regime has a complex structure, but its top can be traced continuously to the Gorda LAB, providing strong evidence that Coast Range volcanism results from subslab flow into the transform regime. The LAB is shallowest beneath the Clear Lake volcano field and the Lake Pillsbury pull-apart basin, the latter a site of active basalt diking previously imaged seismically (Levander et al. 1998, Hayes et al., 2006). Under the western part of the northern Great Valley, the Moho signal is absent, likely due to the hydration and serpentinization of the upper mantle during the subduction of the Gorda slab ~2Ma, as has been recognized further north in Cascadia (Bostock et al., 2002; Blakely et al., 2005). In the “mantle wedge” region where two Cascadia volcanoes are still active within ~ 200 years, the LAB is shallow, and the mantle wedge under Mt.’s Shasta and Lassen has a characteristic vertically and laterally heterogeneous signature. We have developed a 3D code for Generalized Radon Transform (GRT) inversion of PdS receiver functions based on the Born approximation. The code

  6. Seismically imaging the Afar plume

    NASA Astrophysics Data System (ADS)

    Hammond, J. O.; Kendall, J. M.; Bastow, I. D.; Stuart, G. W.; Keir, D.; Ayele, A.; Ogubazghi, G.; Ebinger, C. J.; Belachew, M.

    2011-12-01

    Plume related flood basalt volcanism in Ethiopia has long been cited to have instigated continental breakup in northeast Africa. However, to date seismic images of the mantle beneath the region have not produced conclusive evidence of a plume-like structure. As a result the nature and even existence of a plume in the region and its role in rift initiation and continental rupture are debated. Previous seismic studies using regional deployments of sensors in East-Africa show that low seismic velocities underlie northeast Africa, but their resolution is limited to the top 200-300km of the Earth. Thus, the connection between the low velocities in the uppermost mantle and those imaged in global studies in the lower mantle is unclear. We have combined new data from Afar, Ethiopia with 6 other regional experiments and global network stations across Ethiopia, Eritrea, Djibouti and Yemen, to produce high-resolution models of upper mantle P- and S- wave velocities to the base of the transition zone. Relative travel time tomographic inversions show that the top 100km is dominated by focussed low velocity zones, likely associated with melt in the lithosphere/uppermost asthenosphere. Below these depths a broad SW-NE oriented sheet like upwelling extends down to the top of the transition zone. Within the transition zone two focussed sharp-sided low velocity regions exist: one beneath the Western Ethiopian plateau outside the rift valley, and the other beneath the Afar depression. The nature of the transition zone anomalies suggests that small upwellings may rise from a broader low velocity plume-like feature in the lower mantle. This interpretation is supported by numerical and analogue experiments that suggest the 660km phase change and viscosity jump may impede flow from the lower to upper mantle creating a thermal boundary layer at the base of the transition zone. This allows smaller, secondary upwellings to initiate and rise to the surface. Our images of secondary upwellings

  7. A kinematic model for the development of the Afar Depression and its paleogeographic implications

    NASA Astrophysics Data System (ADS)

    Redfield, T. F.; Wheeler, W. H.; Often, M.

    2003-11-01

    The Afar Depression is a highly extended region of continental to transitional oceanic crust lying at the junction of the Red Sea, the Gulf of Aden and the Ethiopian rifts. We analyze the evolution of the Afar crust using plate kinematics and published crustal models to constrain the temporal and volumetric evolution of the rift basin. Our reconstruction constrains the regional-scale initial 3D geometry and subsequent extension and is well calibrated at the onset of rifting (˜20 Ma) and from the time of earliest documented sea-floor spreading anomalies (˜6 Ma Red Sea; ˜10 Ma Gulf of Aden). It also suggests the Danakil block is a highly extended body, having undergone between ˜200% and ˜400% stretch. Syn-rift sedimentary and magmatic additions to the crust are taken from the literature. Our analysis reveals a discrepancy: either the base of the crust has not been properly imaged, or a (plume-related?) process has somehow caused bulk removal of crustal material since extension began. Inferring subsidence history from thermal modeling and flexural considerations, we conclude subsidence in Afar was virtually complete by Mid Pliocene time. Our analysis contradicts interpretations of late (post 3 Ma) large (˜2 km) subsidence of the Hadar area near the Ethiopian Plateau, suggesting paleoclimatic data record regional, not local, climate change. Tectonic reconstruction (supported by paleontologic and isotopic data) suggests that a land bridge connected Africa and Arabia, via Danakil, up to the Early to Middle Pliocene. The temporal constraints on land bridge and escarpment morphology constrain Afar paleogeography, climate, and faunal migration routes. These constraints (particularly the development of geographic isolation) are fundamentally important for models evaluating and interpreting biologic evolution in the Afar, including speciation and human origins.

  8. Compound biomimetic structures for efficiency enhancement of Ga₀.₅In₀.₅P/GaAs/Ge triple-junction solar cells.

    PubMed

    Hung, Mu-Min; Han, Hau-Vei; Hong, Chung-Yu; Hong, Kuo-Hsuan; Yang, Tung-Ting; Yu, Peichen; Wu, Yu-Rue; Yeh, Hong-Yih; Huang, Hong-Cheng

    2014-03-10

    Biomimetic nanostructures have shown to enhance the optical absorption of Ga₀.₅In₀.₅P/GaAs/Ge triple junction solar cells due to excellent antireflective (AR) properties that, however, are highly dependent on their geometric dimensions. In practice, it is challenging to control fabrication conditions which produce nanostructures in ideal periodic arrangements and with tapered side-wall profiles, leading to sacrificed AR properties and solar cell performance. In this work, we introduce compound biomimetic nanostructures created by depositing a layer of silicon dioxide (SiO₂) on top of titanium dioxide (TiO₂) nanostructures for triple junction solar cells. The device exhibits photogenerated current and power conversion efficiency that are enhanced by ~8.9% and ~6.4%, respectively, after deposition due to their improved antireflection characteristics. We further investigate and verify the optical properties of compound structures via a rigorous coupled wave analysis model. The additional SiO₂ layer not only improves the geometric profile, but also serves as a double-layer dielectric coating. It is concluded that the compound biomimetic nanostructures exhibit superior AR properties that are relatively insensitive to fabrication constraints. Therefore, the compound approach can be widely adopted for versatile optoelectronic devices and applications.

  9. Compound biomimetic structures for efficiency enhancement of Ga(0.5)In(0.5)P/GaAs/Ge triple-junction solar cells.

    PubMed

    Hung, Mu-Min; Han, Hau-Vei; Hong, Chung-Yu; Hong, Kuo-Hsuan; Yang, Tung-Ting; Yu, Peichen; Wu, Yu-Rue; Yeh, Hong-Yih; Huang, Hong-Cheng

    2014-03-10

    Biomimetic nanostructures have shown to enhance the optical absorption of Ga(0.5)In(0.5)P/GaAs/Ge triple junction solar cells due to excellent antireflective (AR) properties that, however, are highly dependent on their geometric dimensions. In practice, it is challenging to control fabrication conditions which produce nanostructures in ideal periodic arrangements and with tapered side-wall profiles, leading to sacrificed AR properties and solar cell performance. In this work, we introduce compound biomimetic nanostructures created by depositing a layer of silicon dioxide (SiO(2)) on top of titanium dioxide (TiO(2)) nanostructures for triple junction solar cells. The device exhibits photogenerated current and power conversion efficiency that are enhanced by ~8.9% and ~6.4%, respectively, after deposition due to their improved antireflection characteristics. We further investigate and verify the optical properties of compound structures via a rigorous coupled wave analysis model. The additional SiO(2) layer not only improves the geometric profile, but also serves as a double-layer dielectric coating. It is concluded that the compound biomimetic nanostructures exhibit superior AR properties that are relatively insensitive to fabrication constraints. Therefore, the compound approach can be widely adopted for versatile optoelectronic devices and applications.

  10. Results of some initial space qualification testing on triple junction a-Si and CuInSe2 thin film solar cells

    NASA Technical Reports Server (NTRS)

    Mueller, Robert L.; Anspaugh, Bruce E.

    1993-01-01

    A series of environmental tests were completed on one type of triple junction a-Si and two types of CuInSe2 thin film solar cells. The environmental tests include electron irradiation at energies of 0.7, 1.0, and 2.0 MeV, proton irradiation at energies of 0.115, 0.24, 0.3, 0.5, 1.0, and 3.0 MeV, post-irradiation annealing at temperatures between 20 C and 60 C, long term exposure to air mass zero (AM0) photons, measurement of the cells as a function of temperature and illumination intensity, and contact pull strength tests. As expected, the cells are very resistant to electron and proton irradiation. However, when a selected cell type is exposed to low energy protons designed to penetrate to the junction region, there is evidence of more significant damage. A significant amount of recovery was observed after annealing in several of the cells. However, it is not permanent and durable, but merely a temporary restoration, later nullified with additional irradiation. Contact pull strengths measured on the triple junction a-Si cells averaged 667 grams, and pull strengths measured on the Boeing CuInSe2 cells averaged 880 grams. Significant degradation of all cell types was observed after exposure to a 580 hour photon degradation test, regardless of whether the cells had been unirradiated or irradiated (electrons or protons). Although one cell from one manufacturer lost approximately 60 percent of its power after the photon test, several other cells from this manufacturer did not degrade at all.

  11. Channel response to tectonic forcing: field analysis of stream morphology and hydrology in the Mendocino triple junction region, northern California

    NASA Astrophysics Data System (ADS)

    Snyder, Noah P.; Whipple, Kelin X.; Tucker, Gregory E.; Merritts, Dorothy J.

    2003-07-01

    An empirical calibration of the shear stress model for bedrock incision is presented, using field and hydrologic data from a series of small, coastal drainage basins near the Mendocino triple junction in northern California. Previous work comparing basins from the high uplift zone (HUZ, uplift rates around 4 mm/year) to ones in the low uplift zone (LUZ, ˜0.5 mm/year) indicates that the HUZ channels are about twice as steep for a given drainage area. This observation suggests that incision processes are more effective in the HUZ. It motivates a detailed field study of channel morphology in the differing tectonic settings to test whether various factors that are hypothesized to influence incision rates (discharge, channel width, lithology, sediment load) change in response to uplift or otherwise differ between the HUZ and LUZ. Analysis of regional stream gaging data for mean annual discharge and individual floods yields a linear relationship between discharge and drainage area. Increased orographic precipitation in the HUZ accounts for about a twofold increase in discharge in this area, corresponding to an assumed increase in the erosional efficiency of the streams. Field measurements of channel width indicate a power-law relationship between width and drainage area with an exponent of ˜0.4 and no significant change in width between the uplift rate zones, although interpretation is hampered by a difference in land use between the zones. The HUZ channel width dataset reveals a scaling break interpreted to be the transition between colluvial- and fluvial-dominated incision processes. Assessments of lithologic resistance using a Schmidt hammer and joint surveys show that the rocks of the study area should be fairly similar in their susceptibility to erosion. The HUZ channels generally have more exposed bedrock than those in the LUZ, which is consistent with protection by sediment cover inhibiting incision in the LUZ. However, this difference is likely the result of a

  12. The role of strike-slip faulting in the evolution of the Afar Depression from remote sensing data fusion, field investigation and radar interferometry

    NASA Astrophysics Data System (ADS)

    Thurmond, Allison Kennedy

    Remote sensing data integration, field studies and radar interferometry has proven to be an effective combination in evaluating the evolution of the Afar Depression, specifically, the interplay of normal and strike-slip faulting within the East Central Block. The Afar triple junction is a ˜200,000 km2 region of diffuse but complex deformation where the Red Sea, the Gulf of Aden, and the Ethiopian Main Rift meet. The Gulf of Aden and Red Sea rifts are currently propagating into the Afar Depression creating a ˜120 km long and ˜100 km wide overlap zone, known as the East Central Block. Field studies and fault plane solutions of seismic activity within the East Central Block have shown evidence of strike-slip movement along dominantly NW-trending faults. However, integrated radar and optical remote sensing data shows dextral, map-scale kink structures within the Tendaho Graben. Field studies provided additional evidence for dextral displacement along NE- to NNE-trending faults in the Tendaho Graben. Dextral strike-slip movement along NE- to NNE-trending faults are explained as tear zones within regions of localized lithospheric weakness as faulted blocks adjust to clockwise rotation of micro-blocks within the East Central Block. Differential Interferometric Synthetic Aperture Radar (DInSAR) characterizes the strain deformation within the East Central Block. Unwrapped interferograms and displacement maps show relative deformation patterns within and across micro-blocks that support a component of clockwise rotation about a vertical axis. Steep phase shifts along NW-trending faults with and without topographic expression indicate a change in the strain accommodation from preexisting fault scarps to newly formed fault planes. Steep phase shifts delineate NE-trending faults which exist within individual micro-blocks supporting tear zones as a means of accommodating the strain of clockwise rotating fault blocks. This work suggests that dextral strike-slip movement along

  13. Investigation of the radiation resistance of triple-junction a-Si:H alloy solar cells irradiated with 1.00 MeV protons

    NASA Technical Reports Server (NTRS)

    Lord, Kenneth R., II; Walters, Michael R.; Woodyard, James R.

    1993-01-01

    The effect of 1.00 MeV proton irradiation on hydrogenated amorphous silicon alloy triple-junction solar cells is reported for the first time. The cells were designed for radiation resistance studies and included 0.35 cm(sup 2) active areas on 1.0 by 2.0 cm(sup 2) glass superstrates. Three cells were irradiated through the bottom contact at each of six fluences between 5.10E12 and 1.46E15 cm(sup -2). The effect of the irradiations was determined with light current-voltage measurements. Proton irradiation degraded the cell power densities from 8.0 to 98 percent for the fluences investigated. Annealing irradiated cells at 200 C for two hours restored the power densities to better than 90 percent. The cells exhibited radiation resistances which are superior to cells reported in the literature for fluences less than 1E14 cm(sup -2).

  14. A Review on Forearc Ophiolite Obduction, Adakite-Like Generation, and Slab Window Development at the Chile Triple Junction Area: Uniformitarian Framework for Spreading-Ridge Subduction

    NASA Astrophysics Data System (ADS)

    Bourgois, Jacques; Lagabrielle, Yves; Martin, Hervé; Dyment, Jérôme; Frutos, Jose; Cisternas, Maria Eugenia

    2016-10-01

    This paper aggregates the main basic data acquired along the Chile Triple Junction (CTJ) area (45°-48°S), where an active spreading center is presently subducting beneath the Andean continental margin. Updated sea-floor kinematics associated with a comprehensive review of geologic, geochemical, and geophysical data provide new constraints on the geodynamics of this puzzling area. We discuss: (1) the emplacement mode for the Pleistocene Taitao Ridge and the Pliocene Taitao Peninsula ophiolite bodies. (2) The occurrence of these ophiolitic complexes in association with five adakite-like plutonic and volcanic centers of similar ages at the same restricted locations. (3) The inferences from the co-occurrence of these sub-coeval rocks originating from the same subducting oceanic lithosphere evolving through drastically different temperature-pressure ( P- T) path: low-grade greenschist facies overprint and amphibolite-eclogite transition, respectively. (4) The evidences that document ridge-jump events and associated microplate individualization during subduction of the SCR1 and SCR-1 segments: the Chonos and Cabo Elena microplates, respectively. The ridge-jump process associated with the occurrence of several closely spaced transform faults entering subduction is controlling slab fragmentation, ophiolite emplacement, and adakite-like production and location in the CTJ area. Kinematic inconsistencies in the development of the Patagonia slab window document an 11- km westward jump for the SCR-1 spreading segment at ~6.5-to-6.8 Ma. The SCR-1 spreading center is relocated beneath the North Patagonia Icefield (NPI). We argue that the deep-seated difference in the dynamically sustained origin of the high reliefs of the North and South Patagonia Icefield (NPI and SPI) is asthenospheric convection and slab melting, respectively. The Chile Triple Junction area provides the basic constraints to define the basic signatures for spreading-ridge subduction beneath an Andean

  15. Enhancing the Photocurrent of Top-Cell by Ellipsoidal Silver Nanoparticles: Towards Current-Matched GaInP/GaInAs/Ge Triple-Junction Solar Cells

    PubMed Central

    Bai, Yiming; Yan, Lingling; Wang, Jun; Su, Lin; Yin, Zhigang; Chen, Nuofu; Liu, Yuanyuan

    2016-01-01

    A way to increase the photocurrent of top-cell is crucial for current-matched and highly-efficient GaInP/GaInAs/Ge triple-junction solar cells. Herein, we demonstrate that ellipsoidal silver nanoparticles (Ag NPs) with better extinction performance and lower fabrication temperature can enhance the light harvest of GaInP/GaInAs/Ge solar cells compared with that of spherical Ag NPs. In this method, appropriate thermal treatment parameters for Ag NPs without inducing the dopant diffusion of the tunnel-junction plays a decisive role. Our experimental and theoretical results confirm the ellipsoidal Ag NPs annealed at 350 °C show a better extinction performance than the spherical Ag NPs annealed at 400 °C. The photovoltaic conversion efficiency of the device with ellipsoidal Ag NPs reaches 31.02%, with a nearly 5% relative improvement in comparison with the device without Ag NPs (29.54%). This function of plasmonic NPs has the potential to solve the conflict of sufficient light absorption and efficient carrier collection in GaInP top-cell devices.

  16. Enhancing the Photocurrent of Top-Cell by Ellipsoidal Silver Nanoparticles: Towards Current-Matched GaInP/GaInAs/Ge Triple-Junction Solar Cells.

    PubMed

    Bai, Yiming; Yan, Lingling; Wang, Jun; Su, Lin; Yin, Zhigang; Chen, Nuofu; Liu, Yuanyuan

    2016-05-25

    A way to increase the photocurrent of top-cell is crucial for current-matched and highly-efficient GaInP/GaInAs/Ge triple-junction solar cells. Herein, we demonstrate that ellipsoidal silver nanoparticles (Ag NPs) with better extinction performance and lower fabrication temperature can enhance the light harvest of GaInP/GaInAs/Ge solar cells compared with that of spherical Ag NPs. In this method, appropriate thermal treatment parameters for Ag NPs without inducing the dopant diffusion of the tunnel-junction plays a decisive role. Our experimental and theoretical results confirm the ellipsoidal Ag NPs annealed at 350 °C show a better extinction performance than the spherical Ag NPs annealed at 400 °C. The photovoltaic conversion efficiency of the device with ellipsoidal Ag NPs reaches 31.02%, with a nearly 5% relative improvement in comparison with the device without Ag NPs (29.54%). This function of plasmonic NPs has the potential to solve the conflict of sufficient light absorption and efficient carrier collection in GaInP top-cell devices.

  17. Triple-junction solar cell performance under Fresnel-based concentrators taking into account chromatic aberration and off-axis operation

    NASA Astrophysics Data System (ADS)

    Espinet-González, P.; Mohedano, R.; García, I.; Zamora, P.; Rey-Stolle, I.; Benitez, P.; Algora, C.; Cvetkovic, A.; Hernández, M.; Chaves, J.; Miñano, J. C.; Li, Y.

    2012-10-01

    Concentration photovoltaic (CPV) systems might produce quite uneven irradiance distributions (both on their level and on their spectral distribution) on the solar cell. This effect can be even more evident when the CPV system is slightly off-axis, since they are often designed to assure good uniformity only at normal incidence. The non-uniformities both in absolute irradiance and spectral content produced by the CPV systems, can originate electrical losses in multi-junction solar cells (MJSC). This works is focused on the integration of ray-tracing methods for simulating the irradiance and spectrum maps produced by different optic systems throughout the solar cell surface, with a 3D fully distributed circuit model which simulates the electrical behavior of a state-of-the-art triple-junction solar cell under the different light distributions obtained with ray-tracing. In this study four different CPV system (SILO, XTP, RTP, and FK) comprising Fresnel lenses concentrating sunlight onto the same solar cell are modeled when working on-axis and 0.6 degrees off-axis. In this study the impact of non-uniformities on a CPV system behavior is revealed. The FK outperforms other Fresnel-based CPV systems in both on-axis and off-axis conditions.

  18. Comparative investigation of InGaP/InGaAs/Ge triple-junction solar cells using different Te-doped InGaP layers in tunnel junctions

    NASA Astrophysics Data System (ADS)

    Jung, Sang Hyun; Kim, Chang Zoo; Kim, Youngjo; Jun, Dong Hwan; Kang, Ho Kwan; Kim, Hogyoung

    2016-03-01

    Heavily tellurium (Te)-doped InGaP layers in tunnel junctions (TJs) grown by using metalorganic chemical vapor deposition (MOCVD) were investigated to improve the device performance of InGaP/InGaAs/Ge triple-junction solar cells. Three different doping techniques were employed to grow the Te-doped InGaP layers in the TJ; Te doping, Te and Si co-doping and Te pre-doping. Compared to other samples, the external quantum efficiency (EQE) profiles in the InGaP top cell were found to be higher for the sample with Te pre-doping. Under a concentrated light condition, higher fill factor (FF) and conversion efficiency were also observed for the sample with Te pre-doping. These indicate that the crystalline qualities of the upper TJ, composed of a p-GaAs/n-InGaP TJ, and the InGaP top cell were improved by using the Te pre-doping method.

  19. The Relationships of Upper Plate Ridge-Trench-Trench and Ridge-Trench-Transform Triple Junction Evolution to Arc Lengthening, Subduction Zone initiation and Ophiolitic Forearc Obduction

    NASA Astrophysics Data System (ADS)

    Casey, J.; Dewey, J. F.

    2013-12-01

    The principal enigma of large obducted ophiolite slabs is that they clearly must have been generated by some form of organized sea-floor spreading/plate-accretion, such as may be envisioned for the oceanic ridges, yet the volcanics commonly have arc affinity (Miyashiro) with boninites (high-temperature/low-pressure, high Mg and Si andesites), which are suggestive of a forearc origin. PT conditions under which boninites and metamorphic soles form and observations of modern forearc systems lead us to the conclusion that ophiolite formation is associated with overriding plate spreading centers that intersect the trench to form ridge-trench-trench of ridge-trench-tranform triple junctions. The spreading centers extend and lengthen the forearc parallel to the trench and by definition are in supra-subduction zone (SSZ) settings. Many ophiolites likewise have complexly-deformed associated mafic-ultramafic assemblages that suggest fracture zone/transform along their frontal edges, which in turn has led to models involving the nucleation of subduction zones on fracture zones or transpressional transforms. Hitherto, arc-related sea-floor-spreading has been considered to be either pre-arc (fore-arc boninites) or post-arc (classic Karig-style back arc basins that trench-parallel split arcs). Syn-arc boninites and forearc oceanic spreading centers that involve a stable ridge/trench/trench triple or a ridge-trench-transform triple junction, the ridge being between the two upper plates, are consistent with large slab ophiolite formation in an obduction-ready settting. The direction of subduction must be oblique with a different sense in the two subduction zones and the oblique subduction cannot be partitioned into trench orthogonal and parallel strike-slip components. As the ridge spreads, new oceanic lithosphere is created within the forearc, the arc and fore-arc lengthen significantly, and a syn-arc ophiolite forearc complex is generated by this mechanism. The ophiolite ages

  20. Study of the electrical parameters degradation of GaAs sub-cells for triple junction space solar cells by computer simulation

    NASA Astrophysics Data System (ADS)

    Cappelletti, M. A.; Casas, G. A.; Morales, D. M.; Hasperue, W.; Blancá, E. L. Peltzer y.

    2016-11-01

    In this paper, a theoretical study of the electrical parameters degradation of different n-type GaAs sub-cells for InGaP/GaAs/Ge triple junction solar cells irradiated with 1 and 5 MeV electrons has been performed by means of computer simulation. Effects of base carrier concentration upon the maximum power point, short-circuit current, open circuit voltage, diffusion current, recombination current and series resistance of these devices have been researched using the displacement damage dose method, the one-dimensional PC1D device modeling program and a home-made numerical code based on genetic algorithms. The radiative recombination lifetime, damage constant for minority-carrier lifetime and carrier removal rate models for GaAs sub-cells have been used in the simulations. An analytical model has been proposed, which is useful to describe the radiation-induced degradation of diffusion current, recombination current and series resistance. Results obtained in this work can be used to predict the radiation resistance of solar cells over a wide range of energies.

  1. Internal luminescence efficiencies in InGaP/GaAs/Ge triple-junction solar cells evaluated from photoluminescence through optical coupling between subcells.

    PubMed

    Tex, David M; Imaizumi, Mitsuru; Akiyama, Hidefumi; Kanemitsu, Yoshihiko

    2016-12-08

    In-situ characterization is one of the most powerful techniques to improve material quality and device performance. Especially in view of highly efficient tandem solar cells this is an important issue for improving the cost-performance ratio. Optical techniques are suitable characterization methods, since they are non-destructing and contactless. In this work, we measured the power dependence of photoluminescence (PL) from the InGaP and GaAs subcells of an industry-standard triple-junction solar cell. High luminescence yields enhance the luminescence coupling, which was directly verified by time-resolved PL measurements. We present a new method to determine the internal luminescence efficiencies of InGaP and GaAs subcells with the aid of luminescence coupling. High luminescence efficiencies of 90% for GaAs and more than 20% for InGaP were found, which suggest that the material quality of the grown GaAs layer is excellent while the intrinsic luminescence limit of InGaP is still not reached even for high excitation conditions. The PL method is useful for probing the intrinsic material properties of the subcells in flat band condition, without influence of transport. Since no calibration of absolute PL is required, a fast screening of the material quality is possible, which should be extremely helpful for the solar cell industry.

  2. Electrochemically synthesized broadband antireflective and hydrophobic GaOOH nanopillars for III-V InGaP/GaAs/Ge triple-junction solar cell applications.

    PubMed

    Leem, Jung Woo; Lee, Hee Kwan; Jun, Dong-Hwan; Heo, Jonggon; Park, Won-Kyu; Park, Jin-Hong; Yu, Jae Su

    2014-03-10

    We report the efficiency enhancement of III-V InGaP/GaAs/ Ge triple-junction (TJ) solar cells using a novel structure, i.e., vertically-oriented gallium oxide hydroxide (GaOOH) nanopillars (NPs), as an antireflection coating. The optical reflectance properties of rhombus-shaped GaOOH NPs, which were synthesized by a simple, low-cost, and large-scalable electrochemical deposition method, were investigated, together with a theoretical analysis using the rigorous coupled-wave analysis method. For the GaOOH NPs, the solar weighted reflectance of ~8.5% was obtained over a wide wavelength range of 300-1800 nm and their surfaces exhibited a high water contact angle of ~130° (i.e., hydrophobicity). To simply demonstrate the feasibility of device applications, the GaOOH NPs were incorporated into a test-grown InGaP/GaAs/Ge TJ solar cell structure. For the InGaP/GaAs/Ge TJ solar cell with broadband antireflective GaOOH NPs, the conversion efficiency (η) of ~16.47% was obtained, indicating an increased efficiency by 3.47% compared to the bare solar cell (i.e., η~13%).

  3. Internal luminescence efficiencies in InGaP/GaAs/Ge triple-junction solar cells evaluated from photoluminescence through optical coupling between subcells

    PubMed Central

    Tex, David M.; Imaizumi, Mitsuru; Akiyama, Hidefumi; Kanemitsu, Yoshihiko

    2016-01-01

    In-situ characterization is one of the most powerful techniques to improve material quality and device performance. Especially in view of highly efficient tandem solar cells this is an important issue for improving the cost-performance ratio. Optical techniques are suitable characterization methods, since they are non-destructing and contactless. In this work, we measured the power dependence of photoluminescence (PL) from the InGaP and GaAs subcells of an industry-standard triple-junction solar cell. High luminescence yields enhance the luminescence coupling, which was directly verified by time-resolved PL measurements. We present a new method to determine the internal luminescence efficiencies of InGaP and GaAs subcells with the aid of luminescence coupling. High luminescence efficiencies of 90% for GaAs and more than 20% for InGaP were found, which suggest that the material quality of the grown GaAs layer is excellent while the intrinsic luminescence limit of InGaP is still not reached even for high excitation conditions. The PL method is useful for probing the intrinsic material properties of the subcells in flat band condition, without influence of transport. Since no calibration of absolute PL is required, a fast screening of the material quality is possible, which should be extremely helpful for the solar cell industry. PMID:27929037

  4. Theoretical modeling and optimization of III-V GaInP/GaAs/Ge monolithic triple-junction solar cells

    NASA Astrophysics Data System (ADS)

    Leem, Jung Woo; Yu, Jae Su; Kim, Jong Nam; Noh, Sam Kyu

    2014-05-01

    We design and optimize monolithic III-V GaInP/GaAs/Ge triple-junction (TJ) solar cells by using a commercial software Silvaco ATLAS simulator to obtain the maximum short-circuit current density J sc . The maximum J sc , which is a current matching value between the GaInP top and GaAs middle subcells, can be determined by varying the base thicknesses of the GaInP top and GaAs middle subcells. From the numerical simulation results, a matched maximum J sc value of 13.92 mA/cm2 is obtained at base thicknesses of 0.57 μm and 3 μm for the GaInP top and GaAs middle subcells, respectively, under 1-sun air mass 1.5 global spectrum illumination, leading to a high power conversion efficiency of 30.72%. The open-circuit voltage and the fill factor are 2.55 V and 86.55%, respectively. For the optimized cell structure, the external quantum efficiency and the photogeneration rate distributions are also investigated. To obtain efficient antireflection coatings (ARCs), we perform optical reflectance calculations by using a rigorous coupled-wave analysis method. For this, a silicon oxide/titanium oxide double-layer is used as an ARC on the TJ solar cell.

  5. Internal luminescence efficiencies in InGaP/GaAs/Ge triple-junction solar cells evaluated from photoluminescence through optical coupling between subcells

    NASA Astrophysics Data System (ADS)

    Tex, David M.; Imaizumi, Mitsuru; Akiyama, Hidefumi; Kanemitsu, Yoshihiko

    2016-12-01

    In-situ characterization is one of the most powerful techniques to improve material quality and device performance. Especially in view of highly efficient tandem solar cells this is an important issue for improving the cost-performance ratio. Optical techniques are suitable characterization methods, since they are non-destructing and contactless. In this work, we measured the power dependence of photoluminescence (PL) from the InGaP and GaAs subcells of an industry-standard triple-junction solar cell. High luminescence yields enhance the luminescence coupling, which was directly verified by time-resolved PL measurements. We present a new method to determine the internal luminescence efficiencies of InGaP and GaAs subcells with the aid of luminescence coupling. High luminescence efficiencies of 90% for GaAs and more than 20% for InGaP were found, which suggest that the material quality of the grown GaAs layer is excellent while the intrinsic luminescence limit of InGaP is still not reached even for high excitation conditions. The PL method is useful for probing the intrinsic material properties of the subcells in flat band condition, without influence of transport. Since no calibration of absolute PL is required, a fast screening of the material quality is possible, which should be extremely helpful for the solar cell industry.

  6. Large-area triple-junction a-Si alloy production scaleup. Annual subcontract report, 17 March 1993--18 March 1994

    SciTech Connect

    Oswald, R.; Morris, J.

    1994-11-01

    The objective of this subcontract over its three-year duration is to advance Solarex`s photovoltaic manufacturing technologies, reduce its a-Si:H module production costs, increase module performance and expand the Solarex commercial production capacity. Solarex shall meet these objectives by improving the deposition and quality of the transparent front contact, by optimizing the laser patterning process, scaling-up the semiconductor deposition process, improving the back contact deposition, scaling-up and improving the encapsulation and testing of its a-Si:H modules. In the Phase 2 portion of this subcontract, Solarex focused on improving deposition of the front contact, investigating alternate feed stocks for the front contact, maximizing throughput and area utilization for all laser scribes, optimizing a-Si:H deposition equipment to achieve uniform deposition over large-areas, optimizing the triple-junction module fabrication process, evaluating the materials to deposit the rear contact, and optimizing the combination of isolation scribe and encapsulant to pass the wet high potential test. Progress is reported on the following: Front contact development; Laser scribe process development; Amorphous silicon based semiconductor deposition; Rear contact deposition process; Frit/bus/wire/frame; Materials handling; and Environmental test, yield and performance analysis.

  7. Exposed guyot from the afar rift, ethiopia.

    PubMed

    Bonatti, E; Tazieff, H

    1970-05-29

    A series of originally submarine volcanoes has been found in the Afar Depression. Some of the volcanic structures are morphologically similar to oceanic guyots. One of them consists of strata of finely fragmented and pulverized basaltic glass. The fragmentation of the lava is probably the result of stream explosions taking place during the submarine eruption. The flat top of this guyot is considered to be a constructional feature; by analogy, it is suggested that not all oceanic guyots are necessarily the result of wave truncation of former volcanic islands.

  8. A brief Oligocene period of flood volcanism in Yemen: Implications for the duration and rate of continental flood volcanism at the Afro-Arabian triple junction

    USGS Publications Warehouse

    Baker, J.; Snee, L.; Menzies, M.

    1996-01-01

    -Gulf of Aden rifting. The sequence of events - surface uplift (?), flood magmatism and subsequent upper crustal extension - in Yemen is consistent with the involvement of a mantle plume at the Afro-Arabian triple junction. However, the overall eruption rate for this flood volcanic province is only 0.03 km3/yr, much slower than that postulated for other plume-related provinces such as the Deccan or Siberian Traps, but perhaps comparable to the Parana??-Etendeka province, which also contains significant amounts of rhyolitic volcanic products like those of Yemen-Ethiopia. The highly variable eruption rates in individual provinces must reflect the very different character of individual plumes, or the control of lithospheric structure and plate tectonic stresses on the surface manifestations of plumes. The long duration of CFV and large amounts of rhyolitic volcanism at the Afro-Arabian triple junction may be attributed to the relatively slow separation of the African and Arabian plates compared with, for example, the rifting of India and the Deccan Traps.

  9. Manganese distribution in the water column near the Azores Triple Junction along the Mid-Atlantic Ridge and in the Azores domain

    NASA Astrophysics Data System (ADS)

    Aballéa, Martine; Radford-Knoery, J.; Appriou, P.; Bougault, H.; Charlou, J. L.; Donval, J. P.; Etoubleau, J.; Fouquet, Y.; German, C. R.; Miranda, M.

    1998-08-01

    As part of a multidisciplinary research effort aimed at quantifying mid-ocean ridge processes near the Azores, we conducted a survey of the water column above the mid-Atlantic Ridge (MAR) in the vicinity of the Azores Triple Junction. Manganese is a tracer of hydrothermal activity intimately related to mid-ocean ridge processes. This paper reports on 23 vertical depth profiles that were analyzed for total dissolvable manganese (TDM). TDM inputs attributable to hydrothermal circulation could be observed along the MAR in all of the southern Amar (36°15'N), Famous (36°45'N), and Lucky Strike (37°03'N and 37°17'N) segments and south of the Kurchatov fracture zone (40°10'N). To date, seafloor observations of hydrothermal activity on the seabed have been confirmed at Lucky Strike (37°17'N) and at the Rainbow site (36°14'N). Large-scale TDM distribution features along the axial valley of the MAR include a decrease in TDM concentrations from south to north (36°N to 38°30'N), followed by an increase to 40°N. In the basins within the Azores archipelago, we found the lowest TDM background levels of this study (0.4-0.6 nmol l -1) and, based on our data, no firm evidence for hydrothermal inputs of TDM. In the MAR axial valley, we observe both a more elevated TDM background (0.5-1.0 nmol l -1) and evidence for probable hydrothermal TDM inputs. This suggests that hydrothermal inputs contribute to a low-level chronic TDM plume throughout the axial valley of the MAR between 36° and 40°N.

  10. Morphology and growth history of Delgada Fan: implications for the Neogene evolution of Point Arena Basin and the Mendocino Triple Junction

    USGS Publications Warehouse

    Drake, D.E.; Cacchione, D.A.; Gardner, J.V.; McCulloch, D.S.; Masson, D.

    1989-01-01

    Long-range side scan (GLORIA) sonographs and seismic reflection data acquired during a survey of the western US Exclusive Economic Zone in 1984, coupled with information from Deep Sea Drilling Project sites, provide new insights into the growth and evolution of the Delgada Fan. Construction of the fan commenced in the latest Miocene (~6 Ma) following the filling of the Neogene Point Arena Basin. The large size of the fan is incompatible with the small present-day supply of sediment to the canyon system. The GLORIA data show the Delgada Fan to be a hybrid-type fan, exhibiting characteristics of both elongate and radial fans. The morphology and volume of the fan, along with evidence for a decline in accumulation rates on the lower fan during the Quaternary period, suggest that the fan experienced an early growth phase (latest Miocene and Pliocene) characterized by relatively rapid progradation of elongate fan lobes followed by a period (Quaternary) of slower growth that has featured a shift of depocenters to sites closer to the canyons and a transition to distributary channels bordered by less prominent levees and overbank deposits. We examine the growth of Delgada Fan in relation to the Neogene evolution of the North American-Pacific plate boundary using a series of paleogeographic reconstructions based on recently published time displacement histories of the Mendocino triple junction (MTJ), the San Andreas fault (SAF), and the Pacific plate, upon which the fan rests. The time displacement curves for the SAF and the MTJ suggest that the MTJ and Mendocino Fracture Zone overtook and passed Point Arena Basin at about 10 Ma when the basin lay immediately southwest of the present San Francisco Bay area. We suggest that the MTJ joined the SAF at approximately that time and location, thus making the SAF the master fault in the transform system. -from Authors

  11. Evolution of the Rodgers Creek–Maacama right-lateral fault system and associated basins east of the northward-migrating Mendocino Triple Junction, northern California

    USGS Publications Warehouse

    McLaughlin, Robert J.; Sarna-Wojcicki, Andrei M.; Wagner, David L.; Fleck, Robert J.; Langenheim, V.E.; Jachens, Robert C.; Clahan, Kevin; Allen, James R.

    2012-01-01

    The Rodgers Creek–Maacama fault system in the northern California Coast Ranges (United States) takes up substantial right-lateral motion within the wide transform boundary between the Pacific and North American plates, over a slab window that has opened northward beneath the Coast Ranges. The fault system evolved in several right steps and splays preceded and accompanied by extension, volcanism, and strike-slip basin development. Fault and basin geometries have changed with time, in places with younger basins and faults overprinting older structures. Along-strike and successional changes in fault and basin geometry at the southern end of the fault system probably are adjustments to frequent fault zone reorganizations in response to Mendocino Triple Junction migration and northward transit of a major releasing bend in the northern San Andreas fault. The earliest Rodgers Creek fault zone displacement is interpreted to have occurred ca. 7 Ma along extensional basin-forming faults that splayed northwest from a west-northwest proto-Hayward fault zone, opening a transtensional basin west of Santa Rosa. After ca. 5 Ma, the early transtensional basin was compressed and extensional faults were reactivated as thrusts that uplifted the northeast side of the basin. After ca. 2.78 Ma, the Rodgers Creek fault zone again splayed from the earlier extensional and thrust faults to steeper dipping faults with more north-northwest orientations. In conjunction with the changes in orientation and slip mode, the Rodgers Creek fault zone dextral slip rate increased from ∼2–4 mm/yr 7–3 Ma, to 5–8 mm/yr after 3 Ma. The Maacama fault zone is shown from several data sets to have initiated ca. 3.2 Ma and has slipped right-laterally at ∼5–8 mm/yr since its initiation. The initial Maacama fault zone splayed northeastward from the south end of the Rodgers Creek fault zone, accompanied by the opening of several strike-slip basins, some of which were later uplifted and compressed

  12. Analysis of geometry of volcanoes and faults in Terceira Island (Azores): Evidence for reactivation tectonics at the EUR/AFR plate boundary in the Azores triple junction

    NASA Astrophysics Data System (ADS)

    Navarro, A.; Lourenço, N.; Chorowicz, J.; Miranda, J. M.; Catalão, J.

    2009-02-01

    Canaries or the Hawaii islands chain, probably due to the tectonic complexity promoted by the Azores Triple Junction instability through time.

  13. Future earthquake source faults on deep sea-floor around the Boso triple plate junction revealed by tectonic geomorphology using 3D images produced from 150 meter grid DEM

    NASA Astrophysics Data System (ADS)

    Goto, H.; Nakata, T.; Watanabe, M.; Suzuki, Y.; Izumi, N.; Nishizawa, A.; Horiuchi, D.; Kido, Y. N.

    2013-12-01

    Boso triple junction, which is the only example of a triple trench junction on earth, is located off the southeast of Boso peninsula, where the Izu-Bonin trench meets with the Japan trench and the Sagami trench. Boso submarine canyon, which is extended to Katsuuma basin about 7000m deep, forms an incised meander along the north side of Sagami trough. Taito spur separate Katsuuma basin from Bando abyssal basin about 9000m deep, where Japan trench meet with Isu-Bonin trench. In this paper, we present detailed stereo-paired topographic images produced from 0.002 degree (about 150m) DBEM (Digital Bathymetry Model), which processed from the depth sounding data obtained by Japan Coast Guard and JAMSTEC around Boso triple junction. It enables us to observe submarine geomorphology easily and precisely. We identified submarine active faults and other tectonic features related to subduction by using the similar standard for air-photo interpretation of inland active faults. We made more precise submarine active tectonic geomorphological map around Boso triple junction than that by previous workers. Numerous distinct faults on the so-called outer rise associated with subduction of Pacific plate are regarded as normal faulting as widely accepted. While the normal faults on the outer rise are parallel to the trench in the southern part of the Japan trench and the northern part of the Izu-Bonin trench, these normal faults around the east of the triple junction with NNW-SSE extend slightly oblique to the trench. The western margin of Bando abyssal basin is bounded by the thrust faults, which form east-facing 200-500m-high convex scarps associated with raised basin floor to the west of the scarp. These faults also deform Mogi submarine fan surface and uplift to the west along the extension of the scarp. The antecedent valley is extended for about 10km across Taito spur that is an active anticlinal ridge about 1000m high. Katsuura basin is surrounded by terraced former basin floor

  14. Tectonics of the Afar Depression: A review and synthesis

    NASA Astrophysics Data System (ADS)

    Beyene, Alebachew; Abdelsalam, Mohamed G.

    2005-01-01

    This article outlines geomorphological and tectonic elements of the Afar Depression, and discusses its evolution. A combination of far-field stress, due to the convergence of the Eurasian and Arabian plates along the Zagros Orogenic Front, and uplift of the Afar Dome due to a rising mantle plume reinforced each other to break the lithosphere of the Arabian-Nubian Shield. Thermal anomalies beneath the Arabian-Nubian Shield in the range of 150 °C-200 °C, induced by a rising plume that mechanically and thermally eroded the base of the mantle lithosphere and generated pulses of prodigious flood basalt since ˜30 Ma. Subsequent to the stretching and thinning the Afar Dome subsided to form the Afar Depression. The fragmentation of the Arabian-Nubian Shield led to the separation of the Nubian, Arabian and Somalian Plates along the Gulf of Aden, the Red Sea and the Main Ethiopian Rift. The rotation of the intervening Danakil, East-Central, and Ali-Sabieh Blocks defined major structural trends in the Afar Depression. The Danakil Block severed from the Nubian plate at ˜20 Ma, rotated anti-clockwise, translated from lower latitude and successively moved north, left-laterally with respect to Nubia. The westward propagating Gulf of Aden rift breached the Danakil Block from the Ali-Sabieh Block at ˜2 Ma and proceeded along the Gulf of Tajura into the Afar Depression. The propagation and overlap of the Red Sea and the Gulf of Aden along the Manda Hararo-Gobaad and Asal-Manda Inakir rifts caused clockwise rotation of the East-Central Block. Faulting and rifting in the southern Red Sea, western Gulf of Aden and northern Main Ethiopian Rift superimposed on Afar. The Afar Depression initiated as diffused extension due to far-field stress and area increase over a dome elevated by a rising plume. With time, the lithospheric extension intensified, nucleated in weak zones, and developed into incipient spreading centers.

  15. Mantle Heterogeneity and Mixing Beneath the Bouvet Triple Junction Region: Hf Isotope Constraints from the Westernmost Southwest Indian Ridge (0-11deg.E)

    NASA Astrophysics Data System (ADS)

    Janney, P. E.; le Roex, A. P.

    2013-12-01

    We have undertaken new Hf (and supplementary Sr, Nd and Pb) isotope and trace element measurements of MORB from the westernmost Southwest Indian Ridge (SWIR; 0 to 11 deg. E) in order to clarify mixing relationships and the effect of the Bouvet and other local hot spots on the composition of the upper mantle beneath the Bouvet Triple Junction (BTJ) region. The new data are fully consistent with the findings of previous studies (le Roex et al., J. Petrol., 1983; Kurz et al., GCA, 1998) that isotopic heterogeneity in this region is largely explained by mixing between a moderately depleted mantle source (i.e., ɛHf ≈ +14, ɛNd ≈ +9, 87Sr/86Sr ≈ 0.7026; 206Pb/204Pb ≈ 18.5) and an enriched component isotopically similar to Bouvet OIB. Unlike the pattern expressed by He isotopes (Kurz et al., GCA, 1998; Georgen et al., EPSL, 2003) the strength of the Bouvet hot spot signature in terms of Hf-Sr-Nd-Pb isotope ratios is not well correlated with distance from Bouvet Island along ridge, except in the most general sense. Some MORB from 0-11E do approach the Hf-Sr-Nd-Pb isotopic composition of Bouvet OIB. However, the most extreme isotopic compositions (with ɛHf values that are slightly lower than, and Nd and Pb isotope compositions that are equivalent to, those of Bouvet OIB), are actually found in MORB from the 11-16E oblique spreading segment of the SWIR (le Roex et al., CMP, 1992; Janney et al., J. Petrol., 2005), located further from Bouvet Island than the segments at 0-11E. The lack of a strong correlation between the radiogenic isotope ratios of SWIR MORB and proximity to the Bouvet hot spot in this region supports the notion that local conditions of melting of a lithologically heterogeneous mixture of enriched, Bouvet hot spot-derived and depleted mantle materials plays the dominant role in controlling the radiogenic isotope composition of western SWIR MORB (le Roex et al., CMP, 1992; Salters & Dick, Nature, 2002). The depleted mantle present beneath the western

  16. Anisotropic Signature of the Afar plume in the Upper Mantle.

    NASA Astrophysics Data System (ADS)

    Sicilia, D.; Montagner, J.; Debayle, E.; Leveque, J.; Cara, M.; Lepine, J.

    2002-12-01

    Plumes remain enigmatic geological objects and it is still unclear how they are formed and whether they act independently from plate tectonics. The role of plumes in mantle dynamics can be investigated by studying their interaction with lithosphere and crust and their perturbations on flow pattern in the mantle. The flow pattern can be derived from seismic anisotropy. An anisotropic surface wave tomography in the Horn of Africa was performed. The choice of the experiment in the Horn of Africa is motivated by the the presence of the Afar hotspot, one of the biggest continental hotspot. In the framework of the mantle degree 2 pattern, the Afar hotspot is the antipode of the Pacific superswell, but its origin at depth and its geodynamic importance are still debated. Data were collected from the permanent IRIS and GEOSCOPE networks and from the PASSCAL experiment in Tanzania and Saudi Arabia. We completed our data base with a French deployment of portable broadband stations surrounding the Afar Hotspot. Path average phase velocities are obtained by using a method based on a least-squares minimization (Beucler et al.,2002). A correction of the data is applied according to the a priori 3SMAC model (Nataf and Ricard, 1996). 3D-models of velocity, radial and azimuthal anisotropies are inverted for. Down to 250km, low velocities are found beneath the Red Sea, the Gulf of Aden, the South East of the Tanzania Craton, the Afar hotspot. High velocities are present in the eastern Arabia and the Tanzania Craton. These results are in agreement with the isotropic model of Debayle et al. (2002). The anisotropy model beneath Afar displays a complex pattern. The azimuthal anisotropy shows that the Afar plume might be interpreted as feeding other hotspots in central Africa. Deeper in the asthenosphere, a wide stem of positive radial anisotropy (VSH > VSV) comes up, where we might expect the reverse sign. The same observation was made below Iceland (Gaherty, 2001) and Hawaii (Montagner

  17. Radial Anisotropy beneath the Main Ethiopian Rift and Afar Depression

    NASA Astrophysics Data System (ADS)

    Accardo, N. J.; Gaherty, J. B.; Jin, G.; Shillington, D. J.

    2014-12-01

    The Main Ethiopian Rift (MER) and Afar uniquely capture the final stages of transition from continental rifting in the broader East African Rift System to incipient seafloor spreading above a mantle hotspot. Studies of the region increasingly point to magmatism as a controlling factor on continental extension. However, the character and depth extent of these melt products remain contentious. Radial anisotropy derived from surface waves provides a unique diagnostic constraint on the presence of oriented melt pockets versus broader oriented anisotropic fabrics. This study investigates the thermal and radially anisotropic structure beneath the broader MER and Afar to resolve the magmatic character of the region and ultimately to understand the role of magmatism in present day rift development. We utilize 104 stations from 4 collocated arrays in the MER/Afar region to constrain radial anisotropy within the upper mantle via the inversion of Love- and Rayleigh-wave observations between 25 and 100 s period. We employ a multi-channel cross-correlation algorithm to obtain inter-station phase and amplitude information. The multi-channel phase observations are inverted for dynamic phase velocity across the array, which are then corrected for focusing and multipathing using the amplitude observations via Helmholtz tomography. We jointly invert Love- and Rayleigh-wave structural phase velocity measurements employing crustal constraints from co-located active source experiments to obtain estimates of Vsv and Vsh between 50 - 170 km depth. Preliminary results readily reveal the distinct shear velocity structure beneath the MER and Afar. Within the MER, shear velocity structure suggests pronounced low velocities accompanied by strong anisotropy between 80 - 140 km depth beneath the western Ethiopian plateau and rift valley. Within Afar, shear velocity structure is more varied with the slowest velocities found at shallow depths (less than 70 km depth), accompanied by weak

  18. Seismic Observations From the Afar Rift Dynamics Project: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Hammond, J. O.; Guidarelli, M.; Belachew, M.; Keir, D.; Ayele, A.; Ebinger, C.; Stuart, G.; Kendall, J.

    2008-12-01

    Following the 2005 Dabbahu rifting event in Afar, 9 broadband seismometers were installed around the active rift segment to study the microseismicity associated with this and subsequent dyking events. These recorded more than one year of continuous data. In March 2007, 41 stations were deployed throughout Afar and the adjacent rift flanks as part of a large multi-national, collaboration involving universities and organisations from the UK, US and Ethiopia. This abstract describes the crustal and upper mantle structure results of the first 19 months of data. Bulk crustal structure has been determined using the H-k stacking of receiver functions and thickness varies from ~45 km on the rift margins to ~16 km beneath the northeastern Afar stations. Estimates of Vp/Vs show normal continental crust values (1.7-1.8) on the rift margins, and very high values (2.0-2.2) in Afar. A study of seismic noise interferometry is in early stages, but inversions using 20 s Green's function estimates, with some control from regional surface waves, show evidence for thin crustal regions around the recently rifted Dabbahu segment. To improve our understanding of the physical and compositional properties of the crust and locate regions of high attenuation (an indicator of melt), we determine attenuation (Q) using t* values measured from spectra of P wave arrivals. We present whole path attenuation from source to receiver, which will provide a starting point for a future tomographic inversion. SKS-wave splitting results show sharp changes over small lateral distances (40° over <30 km), with fast directions overlying the Dabbahu segment aligning parallel with the recent diking. This supports ideas of melt dominated anisotropy beneath the Ethiopian rift. Seismic tomography inversions show that in the top 150 km low velocities mimic the trend of the seismicity in Afar. The low velocity anomalies extend from the main Ethiopian rift NE, towards Djibouti, and from Djibouti NW towards the

  19. Upper Mantle Structure beneath Afar: inferences from surface waves.

    NASA Astrophysics Data System (ADS)

    Sicilia, D.; Montagner, J.; Debayle, E.; Lepine, J.; Leveque, J.; Cara, M.; Ataley, A.; Sholan, J.

    2001-12-01

    The Afar hotspot is related to one of the most important plume from a geodynamic point of view. It has been advocated to be the surface expression of the South-West African Superswell. Below the lithosphere, the Afar plume might feed other hotspots in central Africa (Hadiouche et al., 1989; Ebinger & Sleep, 1998). The processes of interaction between crust, lithosphere and plume are not well understood. In order to gain insight into the scientific issue, we have performed a surface-wave tomography covering the Horn of Africa. A data set of 1404 paths for Rayleigh waves and 473 paths for Love waves was selected in the period range 45-200s. They were collected from the permanent IRIS and GEOSCOPE networks and from the PASSCAL experiment, in Tanzania and Saudi Arabia. Other data come from the broadband stations deployed in Ethiopia and Yemen in the framework of the French INSU program ``Horn of Africa''. The results presented here come from a path average phase velocities obtained with a method based on a least-squares minimization (Beucler et al., 2000). The local phase velocity distribution and the azimuthal anisotropy were simultaneously retrieved by using the tomographic technique of Montagner (1986). A correction of the data is applied according to the crustal structure of the 3SMAC model (Nataf & Ricard, 1996). We find low velocities down to 200 km depth beneath the Red Sea, the Gulf of Aden, Afars, the Ethiopian Plateau and southern Arabia. High velocities are present in the eastern Arabia and the Tanzania Craton. The anisotropy beneath Afar seems to be complex, but enables to map the flow pattern at the interface lithosphere-asthenosphere. The results presented here are complementary to those obtained by Debayle et al. (2001) at upper-mantle transition zone depths using waveform inversion of higher Rayle igh modes.

  20. Governance, Identity, and Counterinsurgency: Evidence from Ramadi and Tal Afar

    DTIC Science & Technology

    2013-03-01

    See Seymour M. Lipset, Political Man, Garden City, NY: Anchor Books, 1963; Arendt Lijphart, Democracy in Plural Societ- ies: A Comparative...Brave Rifles at Tall Afar, Septem- ber 2005,” in William G. Robertson , ed., In Contact! Case Studies from the Long War, Volume I, Ft. Leavenworth, KS...Lijphart, Arend. Democracy in Plural Societies, New Haven, CT: Yale University Press, 1977. Lipset, Seymour M. Political Man, Garden City, NY: Anchor Books

  1. InGaAs/AlAs triple-barrier p-i-n junction diode for realizing superlattice-based FET for steep slope

    NASA Astrophysics Data System (ADS)

    Yukimachi, Atsushi; Miyamoto, Yasuyuki

    2016-11-01

    The subthreshold slope of a conventional FET is over 60 mV/dec at room temperature. One of the proposed devices capable of overcoming this limitation is a superlattice FET (SLFET). In this study, we determined the feasibility of an SLFET experimentally. To overcome the limitations of conventional FETs, we proposed a “leaned” superlattice structure for an FET. With the help of calculations, we fabricated InGaAs/AlAs triple-barrier p-i-n diodes instead of FETs. By using measurements recorded at room and low temperatures, we confirmed the change in slope at the expected bias through calculations.

  2. New Crustal Thickness for Djibouti, Afar, Using Seismic Techniques

    NASA Astrophysics Data System (ADS)

    Dugda, Mulugeta; Bililign, Solomon

    2008-10-01

    Crustal thickness and Poisson's ratio for the seismic station ATD in Djibouti, Afar, has been investigated using two seismic techniques (H-κ stacking of receiver functions and a joint inversion of receiver functions and surface wave group velocities). Both techniques give consistent results of crustal thickness 23±1.5 km and Poisson's ratio 0.31±0.02. We also determined a mean P-wave velocity (Vp) of ˜6.2 km/s but ˜6.9-7.0 km/s below a 2 - 5 km thick low velocity layer at the surface. Previous studies of crustal structure for Djibouti reported that the crust is 6 to 11 km thick while our study shows that the crust beneath Djibouti is between 20 and 25 km. This study argues that the crustal thickness values reported for Djibouti for the last 3 decades were not consistent with the reports for the other neighboring region in central and eastern Afar. Our results for ATD in Djibouti, however, are consistent with the reports of crustal thickness in many other parts of central and eastern Afar. We attribute this difference to how the Moho (the crust-mantle discontinuity) is defined (an increase of Vp to 7.4 km/s in this study vs. 6.9 km/s in previous studies).

  3. Investigation of GaInAs strain reducing layer combined with InAs quantum dots embedded in Ga(In)As subcell of triple junction GaInP/Ga(In)As/Ge solar cell.

    PubMed

    Li, Senlin; Bi, Jingfeng; Li, Mingyang; Yang, Meijia; Song, Minghui; Liu, Guanzhou; Xiong, Weiping; Li, Yang; Fang, Yanyan; Chen, Changqing; Lin, Guijiang; Chen, Wenjun; Wu, Chaoyu; Wang, Duxiang

    2015-01-01

    The InAs/GaAs quantum dots structure embedded in GaInP/Ga(In)As/Ge triple junction solar cell with and without Ga0.90In0.10As strain reducing layer was investigated. Conversion efficiency of 33.91% at 1,000 suns AM 1.5D with Ga0.90In0.10As strain reducing layer was demonstrated. A 1.19% improvement of the conversion efficiency was obtained via inserting the Ga0.90In0.10As strain reducing layer. The main contribution of this improvement was from the increase of the short-circuit current, which is caused by the reduction of the Shockley-Read-Hall recombination centers. Consequently, there was a decrease in open circuit voltage due to the lower thermal activation energy of confined carriers in Ga0.9In0.1As than GaAs and a reduction in the effective band gap of quantum dots.

  4. The Afar Depression: interpretation of the 1960-2000 earthquakes

    NASA Astrophysics Data System (ADS)

    Hofstetter, R.; Beyth, M.

    2003-11-01

    We studied the seismic activity of the Afar Depression (AD) and adjacent regions during the period 1960-2000. We define seven distinct seismogenic regions using geological, tectonic and seismological data. Based on the frequency-magnitude relationships we obtain b-values of about 1 for the different regions. The pattern of the distribution of the location of epicentres fits with the known active fault zone in the AD and the axial volcanic ridges. The Bab el Mandab area and the Danakil-Aysha'a blocks are less active. For 125 intermediate to strong earthquakes the seismic moment and source parameters were calculated. The results of the fault plane solutions for the Afar Depression indicate mainly strike-slip and normal sense of movement originating from fault planes striking NW-SE. These results indicate a clockwise block rotation described previously as a bookshelf model in central AD. There are a few right-lateral faults east of Massawa with E-W-striking fault planes. At the southern Red Sea, north of the Danakil block, the mixed focal mechanisms, with axial plane striking NW-SE, comprise several reverse faulting, strike-slip motion and normal faulting. Right-lateral movement was also calculated for a cluster of seismic events between the Manda Hararo and Alyata volcanic ridges along NW-SE-striking faults. Along the N-S-striking faults in the escarpment, at the western Afar margins, there are two distinct clusters of epicentres. The strong earthquakes at the southern cluster exhibit normal or strike-slip motions. The intermediate to small earthquakes in the northern cluster exhibit reverse and strike-slip motions. Mainly normal faults were calculated along NE-SW-striking faults of the Ethiopian East African Rift. Estimates of the seismic efficiency suggest that the maximal values are about 50 per cent or less, implying that most of the motion is taken aseismically.

  5. Probing the age and temperature of rifting in Afar

    NASA Astrophysics Data System (ADS)

    Armitage, John; Goes, Saskia; Ferguson, David; Hammond, James; Calais, Eric

    2014-05-01

    Rifting along the southern part of the Red Sea margin in NE Africa (leading to formation of Afar) has been closely associated with magmatic activity since the initiation of extension at around ~ 25Ma. Numerous active volcanoes are currently found along rift zones here and magma intrusion into the crust has potentially accommodated significant amounts of extension. This extensive present-day volcanism has been linked to elevated mantle temperature, perhaps due to a thermal plume, or as a consequence of passive flow in the mantle beneath the extending lithosphere. Geochemical evidence for basaltic lavas erupted in Afar have been used to suggest that mantle temperatures are in the range 1370 to 1490°C, and that the region is currently experiencing late stage rifting. Analysis of changes in shear wave seismic velocities and relative travel time tomography suggests mantle temperatures are within a similar range, yet the region has greater similarities to a young spreading centre. The range in potential temperature estimates is however very large, with different implications for the volcanic history of the region and hence timing of break-up. Rather than focusing a single observable, we use a relatively straight forward model of extension and decompression melting to predict the seismic-velocity and attenuation structure of the asthenosphere and lithosphere, synthetic receiver functions as a result of this seismic structure, crustal thickness as a result of decompression and finally the melt composition. From this combined study we find that melt composition and seismic structure are dependent on both temperature and time. If mantle potential temperature is 1350°C then both the seismic structure and melt composition can be matched if the duration of extension is more than 30 Myr. However this is longer than the estimated duration of extension from plate reconstructions, and given the low rate of extension in Afar, this cold model only generates up to 5 km of igneous

  6. Plate break-up geometry in SE-Afar

    NASA Astrophysics Data System (ADS)

    Geoffroy, Laurent; Le Gall, Bernard; Daoud, Mohamed

    2014-05-01

    New structural data acquired in Djibouti strongly support the view of a magma-rich to magma-poor pair of conjugate margins developed in SE Afar since at least 9 Ma. Our model is illustrated by a crustal-scale transect that emphasizes the role of a two-stage extensional detachment fault system, with opposing senses of motion through time. The geometry and kinematics of this detachment fault pattern are mainly documented from lavas and fault dip data extracted from remote sensing imagery (Landsat ETM+, and corresponding DEM), further calibrated by field observations. Although expressed by opposite fault geometries, the two successive extensional events evidenced here are part of a two-stage continental extensional tear-system associated with the ongoing propagation of the Aden-Tadjoura oceanic axis to the NW. A flip-flop evolution of detachment faults accommodating lithosphere divergence has recently been proposed for the development of the Indian Ocean and continental margins (Sauter et al., 2013). However, the SE Afar evolution further suggests a radical and sudden change in lithosphere behavior during extension, from a long-term and widespread magmatic stage to a syn-sedimentary break-up stage where mantle melting concentrates along the future oceanic axis. Of special interest is the fact that a late and rapid stage of non-magmatic extension led to break-up, whose geometry triggered the location of the break-up axis and earliest oceanic accretion. New structural data acquired in Djibouti strongly support the view of a magma-rich to magma-poor pair of conjugate margins developed in SE Afar since at least 9 Ma. Our model is illustrated by a crustal-scale transect that emphasizes the role of a two-stage extensional detachment fault system, with opposing senses of motion through time. The geometry and kinematics of this detachment fault pattern are mainly documented from lavas and fault dip data extracted from remote sensing imagery (Landsat ETM+, and corresponding

  7. Electrostatic Modeling of Vacuum Insulator Triple Junctions

    SciTech Connect

    Tully, L K; White, A D; Goerz, D A; Javedani, J B; Houck, T L

    2007-08-13

    A comprehensive matrix of 60 tests was designed to explore the effect of calcium chloride vs. sodium chloride and the ratio R of nitrate concentration over chloride concentration on the repassivation potential of Alloy 22. Tests were conducted using the cyclic potentiodynamic polarization (CPP) technique at 75 C and at 90 C. Results show that at a ratio R of 0.18 and higher nitrate was able to inhibit the crevice corrosion in Alloy 22 induced by chloride. Current results fail to show in a consistent way a different effect on the repassivation potential of Alloy 22 for calcium chloride solutions than for sodium chloride solutions.

  8. Strain distribution across magmatic margins during the breakup stage: Seismicity patterns in the Afar rift zone

    NASA Astrophysics Data System (ADS)

    Brown, C.; Ebinger, C. J.; Belachew, M.; Gregg, T.; Keir, D.; Ayele, A.; Aronovitz, A.; Campbell, E.

    2008-12-01

    Fault patterns record the strain history along passive continental margins, but geochronological constraints are, in general, too sparse to evaluate these patterns in 3D. The Afar depression in Ethiopia provides a unique setting to evaluate the time and space relations between faulting and magmatism across an incipient passive margin that formed above a mantle plume. The margin comprises a high elevation flood basalt province with thick, underplated continental crust, a narrow fault-line escarpment underlain by stretched and intruded crust, and a broad zone of highly intruded, mafic crust lying near sealevel. We analyze fault and seismicity patterns across and along the length of the Afar rift zone to determine the spatial distribution of strain during the final stages of continental breakup, and its relation to active magmatism and dike intrusions. Seismicity data include historic data and 2005-2007 data from the collaborative US-UK-Ethiopia Afar Geodynamics Project that includes the 2005-present Dabbahu rift episode. Earthquake epicenters cluster within discrete, 50 km-long magmatic segments that lack any fault linkage. Swarms also cluster along the fault-line scarp between the unstretched and highly stretched Afar rift zone; these earthquakes may signal release of stresses generated by large lateral density contrasts. We compare Coulomb static stress models with focal mechanisms and fault kinematics to discriminate between segmented magma intrusion and crank- arm models for the central Afar rift zone.

  9. Spectral analysis of dike-induced earthquakes in Afar, Ethiopia

    NASA Astrophysics Data System (ADS)

    Tepp, Gabrielle; Ebinger, Cynthia J.; Yun, Sang-Ho

    2016-04-01

    Shallow dike intrusions may be accompanied by fault slip above the dikes, a superposition which complicates seismic and geodetic data analyses. The diverse volcano-tectonic and low-frequency local earthquakes accompanying the 2005-2010 large-volume dike intrusions in the Dabbahu-Manda Hararo rift (Afar), some with fault displacements of up to 3 m at the surface, provide an opportunity to examine the relations among the earthquakes, dike intrusions, and surface ruptures. We apply the frequency index (FI) method to characterize the spectra of swarm earthquakes from six of the dikes. These earthquakes often have broad spectra with multiple peaks, making the usual peak frequency classification method unreliable. Our results show a general bimodal character with high FI earthquakes associated with deeper dikes (top > 3 km subsurface) and low FI earthquakes associated with shallow dikes, indicating that shallow dikes result in earthquakes with more low-frequency content and larger-amplitude surface waves. Low FI earthquakes are more common during dike emplacement, suggesting that interactions between the dike and faults may lead to lower FI. Taken together, likely source processes for low FI earthquakes are shallow hypocenters (<3 km) possibly with surface rupture, slow rupture velocities, and interactions with dike fluids. Strong site effects also heavily influence the earthquake spectral content. Additionally, our results suggest a continuum of spectral responses, implying either that impulsive volcano-tectonic earthquakes and the unusual, emergent earthquakes have similar source processes or that simple spectral analyses, such as FI, cannot distinguish different source processes.

  10. Paleoanthropology. Late Pliocene fossiliferous sedimentary record and the environmental context of early Homo from Afar, Ethiopia.

    PubMed

    DiMaggio, Erin N; Campisano, Christopher J; Rowan, John; Dupont-Nivet, Guillaume; Deino, Alan L; Bibi, Faysal; Lewis, Margaret E; Souron, Antoine; Garello, Dominique; Werdelin, Lars; Reed, Kaye E; Arrowsmith, J Ramón

    2015-03-20

    Sedimentary basins in eastern Africa preserve a record of continental rifting and contain important fossil assemblages for interpreting hominin evolution. However, the record of hominin evolution between 3 and 2.5 million years ago (Ma) is poorly documented in surface outcrops, particularly in Afar, Ethiopia. Here we present the discovery of a 2.84- to 2.58-million-year-old fossil and hominin-bearing sediments in the Ledi-Geraru research area of Afar, Ethiopia, that have produced the earliest record of the genus Homo. Vertebrate fossils record a faunal turnover indicative of more open and probably arid habitats than those reconstructed earlier in this region, which is in broad agreement with hypotheses addressing the role of environmental forcing in hominin evolution at this time. Geological analyses constrain depositional and structural models of Afar and date the LD 350-1 Homo mandible to 2.80 to 2.75 Ma.

  11. Nanotube junctions

    DOEpatents

    Crespi, Vincent Henry; Cohen, Marvin Lou; Louie, Steven Gwon Sheng; Zettl, Alexander Karlwalter

    2003-01-01

    The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

  12. Nanotube junctions

    DOEpatents

    Crespi, Vincent Henry; Cohen, Marvin Lou; Louie, Steven Gwon; Zettl, Alexander Karlwalte

    2004-12-28

    The present invention comprises a new nanoscale metal-semiconductor, semiconductor-semiconductor, or metal-metal junction, designed by introducing topological or chemical defects in the atomic structure of the nanotube. Nanotubes comprising adjacent sections having differing electrical properties are described. These nanotubes can be constructed from combinations of carbon, boron, nitrogen and other elements. The nanotube can be designed having different indices on either side of a junction point in a continuous tube so that the electrical properties on either side of the junction vary in a useful fashion. For example, the inventive nanotube may be electrically conducting on one side of a junction and semiconducting on the other side. An example of a semiconductor-metal junction is a Schottky barrier. Alternatively, the nanotube may exhibit different semiconductor properties on either side of the junction. Nanotubes containing heterojunctions, Schottky barriers, and metal-metal junctions are useful for microcircuitry.

  13. Afar-wide Crustal Strain Field from Multiple InSAR Tracks

    NASA Astrophysics Data System (ADS)

    Pagli, C.; Wright, T. J.; Wang, H.; Calais, E.; Bennati Rassion, L. S.; Ebinger, C. J.; Lewi, E.

    2010-12-01

    Onset of a rifting episode in the Dabbahu volcanic segment, Afar (Ethiopia), in 2005 renewed interest in crustal deformation studies in the area. As a consequence, an extensive geodetic data set, including InSAR and GPS measurements have been acquired over Afar and hold great potential towards improving our understanding of the extensional processes that operate during the final stages of continental rupture. The current geodetic observational and modelling strategy has focused on detailed, localised studies of dyke intrusions and eruptions mainly in the Dabbahu segment. However, an eruption in the Erta ‘Ale volcanic segment in 2008, and cluster of earthquakes observed in the Tat Ale segment, are testament to activity elsewhere in Afar. Here we make use of the vast geodetic dataset available to obtain strain information over the whole Afar depression. A systematic analysis of all the volcanic segments, including Dabbahu, Manda-Hararo, Alayta, Tat ‘Ale Erta Ale and the Djibouti deformation zone, is undertaken. We use InSAR data from multiple tracks together with available GPS measurements to obtain a velocity field model for Afar. We use over 300 radar images acquired by the Envisat satellite in both descending and ascending orbits, from 12 distinct tracks in image and wide swath modes, spanning the time period from October 2005 to present time. We obtain the line-of-sight deformation rates from each InSAR track using a network approach and then combine the InSAR velocities with the GPS observations, as suggested by Wright and Wang (2010) following the method of England and Molnar (1997). A mesh is constructed over the Afar area and then we solve for the horizontal and vertical velocities on each node. The resultant full 3D Afar-wide velocity field shows where current strains are being accumulated within the various volcanic segments of Afar, the width of the plate boundary deformation zone and possible connections between distinct volcanic segments on a

  14. the role of magmatism and segmentation in the structural evolution of the Afar Rift

    NASA Astrophysics Data System (ADS)

    Stab, Martin; Bellahsen, Nicolas; Pik, Raphaël; Quidelleur, Xavier; Ayalew, Dereje; Leroy, Sylvie

    2015-04-01

    A common issue at volcanic passive margins (VPM) is the lack of observation of the structures that accommodate stretching and thinning. Indeed, the most distal parts and the Ocean-Continent Transition is often masked by thick seaward-dipping reflectors (SDR) sequences. Some current challenges are then to know if the observed thinning fit the divergence (thinning vs dyking); and what is the rheological effect of magma supply that re-thickens the crust during extension? In the Central Afar magmatic rift (Ethiopia), the structures related to rifting since Oligocene are cropping out onshore and are well preserved. We present here a new structural model based on field data and lavas (U-Th/He and K/Ar) datings along a balanced cross-section of the Central Afar Western Margin. We mapped continent-ward normal fault array affecting highly tilted trapp series (29-30 Ma) unconformably overlain by tilted Oligo-Miocene (25-7 Ma) acid series. The main extensional and necking/thinning event took place during the end of this Miocene magmatic episode. The Pliocene flood basalt (Stratoid series) is erupted over an already thinned crust. The bulk extension for the Afar Western Margin is ß ~ 2.50. Our main findings are: - Oligo-Miocene deformation in Central Afar appears to be largely distributed through space and time ("magmatic wide rift"). It has been accommodated in a 200-300 km wide strip being a diffuse incipient plate boundary during the whole rifting history until the formation of present-day magmatic segments. There is a period of tectonic quiescence accompanied with few magma erupted at the surface between 25 Ma and 7 Ma. We suggest that tectonic and magmatic activity was focused at that time on the highly faulted Danakil block and Southern Red Sea, away from our study zone. - ß ~ 2.50 is higher than the thinning factor of ~1.30 observed in geophysical studies. We propose that the continental crust in Central Afar has been re-thickened during extension by the syn

  15. The 3rd ACR in TAL’AFAR: Challenges and Adaptations

    DTIC Science & Technology

    2008-01-08

    raisins, and cucumbers , usually served in the local diet with grilled lamb and unleavened bread. Tal’Afar contains 18 distinctly named neighbor...affairs and strategic/tactical studies , revealed dozens of articles between 2004 and 2006 on conventional vs. counterinsurgency warfare and on

  16. Volatile Organic Compound Emission from Quercus suber, Quercus canariensis, and its hybridisation product Quercus afares

    NASA Astrophysics Data System (ADS)

    Welter, S.; Bracho Nuñez, A.; Staudt, M.; Kesselmeier, J.

    2009-04-01

    Oaks represent one of the most important plant genera in the Northern hemisphere and include many intensively VOC emitting species. The major group constitutes the isoprene emitters, but also monoterpene emitters and non-emitters can be found. These variations in the oak species might partly be due to their propensity for inter- and intraspecific hybridisation. This study addresses the foliar VOC production of the former hybridisation product the deciduous Quercus afares and its parents, two very distant species: the evergreen monoterpene emitter Quercus suber and the deciduous isoprene emitter Quercus canariensis. The measurements were performed in Southern France, applying two different methods. Plants were investigated in situ in the field with a portable gas exchange measuring system as well as in the laboratory on cut branches with an adapted enclosure system. Quercus afares was found to be a monoterpene emitting species. However, the monoterpene emission was lower and the composition different to that of Quercus suber. Whereas Quercus suber trees belonged to the pinene type most individuals of Quercus afares were identified to represent a limonene type. Quercus canariensis emitted besides high amounts of isoprene also linalool and (Z)-3-hexenylacetate. Emissions from Quercus suber and Quercus afares were higher in the field measurements than in the laboratory on cut branches whereas Quercus canariensis exhibited lower isoprene emissions from cut branches. The results demonstrate the need of further emission studies on a plant species level.

  17. Josephson junction

    DOEpatents

    Wendt, J.R.; Plut, T.A.; Martens, J.S.

    1995-05-02

    A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material. 10 figs.

  18. Josephson junction

    DOEpatents

    Wendt, Joel R.; Plut, Thomas A.; Martens, Jon S.

    1995-01-01

    A novel method for fabricating nanometer geometry electronic devices is described. Such Josephson junctions can be accurately and reproducibly manufactured employing photolithographic and direct write electron beam lithography techniques in combination with aqueous etchants. In particular, a method is described for manufacturing planar Josephson junctions from high temperature superconducting material.

  19. Gap junctions.

    PubMed

    Goodenough, Daniel A; Paul, David L

    2009-07-01

    Gap junctions are aggregates of intercellular channels that permit direct cell-cell transfer of ions and small molecules. Initially described as low-resistance ion pathways joining excitable cells (nerve and muscle), gap junctions are found joining virtually all cells in solid tissues. Their long evolutionary history has permitted adaptation of gap-junctional intercellular communication to a variety of functions, with multiple regulatory mechanisms. Gap-junctional channels are composed of hexamers of medium-sized families of integral proteins: connexins in chordates and innexins in precordates. The functions of gap junctions have been explored by studying mutations in flies, worms, and humans, and targeted gene disruption in mice. These studies have revealed a wide diversity of function in tissue and organ biology.

  20. Gap Junctions

    PubMed Central

    Goodenough, Daniel A.; Paul, David L.

    2009-01-01

    Gap junctions are aggregates of intercellular channels that permit direct cell–cell transfer of ions and small molecules. Initially described as low-resistance ion pathways joining excitable cells (nerve and muscle), gap junctions are found joining virtually all cells in solid tissues. Their long evolutionary history has permitted adaptation of gap-junctional intercellular communication to a variety of functions, with multiple regulatory mechanisms. Gap-junctional channels are composed of hexamers of medium-sized families of integral proteins: connexins in chordates and innexins in precordates. The functions of gap junctions have been explored by studying mutations in flies, worms, and humans, and targeted gene disruption in mice. These studies have revealed a wide diversity of function in tissue and organ biology. PMID:20066080

  1. Modes of rifting in magma-rich settings: Tectono-magmatic evolution of Central Afar

    NASA Astrophysics Data System (ADS)

    Stab, Martin; Bellahsen, Nicolas; Pik, Raphaël.; Quidelleur, Xavier; Ayalew, Dereje; Leroy, Sylvie

    2016-01-01

    Recent research in Afar (northern Ethiopia) has largely focused on the formation of the present-day ocean-continent transition at active segments (e.g., Manda Hararo). However, the Oligo-Miocene history of extension, from the onset of rifting at ~25 Ma to the eruption of the massive Stratoïd flood basalts at ~4 Ma, remains poorly constrained. Here we present new structural data and radiometric dating from Central Afar, obtained along a zone stretching from the undeformed Oligocene Ethiopian plateau to the Manda Hararo and Tat'Ale active volcanic segments. Basaltic and rhyolitic formations were mapped in two key areas corresponding to the proximal and distal parts of a half-rift. We present a balanced composite cross section of Central Afar, reconstructed using our new data and previously published geophysical data on the crustal structure. Our main findings are as follows: (1) Extension during the Mio-Pliocene corresponds to a "wide rift" style of rifting. (2) The lower crust has been underplated/intruded and rethickened during rifting by magmatic injection. (3) Our restoration points to the existence of midcrustal shear zones that have helped to distribute extension in the upper crust and to localize extension at depth in a necking zone. Moreover, we suggest that there is a close relationship between the location of a shear zone and the underplated/intruded material. In magma-rich environments such as Central Afar, breakup should be achieved once the initial continental crust has been completely replaced by the newly, magmatically accreted crust. Consequently, and particularly in Afar, crustal thickness is not necessarily indicative of breakup but instead reflects differences in tectono-magmatic regimes.

  2. Gap Junctions

    PubMed Central

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik

    2013-01-01

    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031

  3. Magmato-tectonic Evolution of Asal Rift, Afar Depression

    NASA Astrophysics Data System (ADS)

    Pinzuti, P.; Manighetti, I.; Humler, E.

    2001-12-01

    We investigate the relationships between magmatic and tectonic activities during rifting, taking the example of Asal, one of the most recent and active rifts of Afar. We sampled and performed combined geochemical (major and trace elements) and paleomagnetic analyses of the successive basaltic lava flows (total: 48) exposed in three of the highest ( ~30-80 m) normal fault escarpments, on either side of the rift inner floor and of the Fieale volcano. Previous dating suggests that lava emplaced in the rift from ~300 ka on, and the piles we analyzed between ~110 and 90 ka. The chemical analyses (48 samples) reveal that all lava was poured out from the same shallow (< a few km) reservoir. Each pile is made of two to four distinct flow sets, each ~10 to 50 m-high and having slightly, hence rapidly evolved through low pressure crystallization. The chemical evolution from one flow set to the next suggests re-feeding of the reservoir (or slight cooling of the mantle). The paleomagnetic analyses (190 samples) reveal that each flow set was erupted very rapidly, as a pulse, in less than a ~thousand years. By contrast, the entire flow piles have properly recorded the secular variation of the magnetic field, including the Blake excursion. It results that, at least between ~110 and 90 ka, the magmatic activity occurred by pulses rapidly pouring out large volumes of lavas every 10+/-5 ka. At the sites analyzed, the lava accumulated during each pulse at a rate of ~1-5 cm/yr, much larger than the fault slip rates. One might conclude that flows continuously covered up and erased tectonic features during rifting. However, the long time-span which separates the initiation of the present rift faults ( ~50+/-20 ka) from the latest lava flows (on rift shoulders, ~90 ka) implies that these faults did not exist before, with the possible exception of those bounding the present inner floor. Rifting therefore occurred through dominant magmatic activity, at least from ~300 to 50 ka, when normal

  4. Bookshelf faulting and horizontal block rotations between overlapping rifts in southern Afar

    SciTech Connect

    Tapponnier, P.; Armijo, R.; Manighetti, I.; Courtillot, V. )

    1990-01-01

    Lateral slip on initially rift-parallel normal faults may be a particularly efficient mechanism to accommodate strain between overlapping oceanic rifts. It occurs in southern Afar, where clockwise block rotations result from distributed dextral shear between the overlapping Ghoubbet Asal-Manda Inakir and Manda Hararo-Abhe Bad rifts. Faulting observed during the 1969, Serdo earthquakes and on SPOT images is consistent with the shear being taken up by left-lateral slip on steep NW-SE striking faults, which formed as normal faults before extensional strain became localized in the two rifts. This bookshelf faulting accounts quantitatively for the 14.5{degree} {plus minus}7.5{degree} rotation documented by paleomagnetism in the 1.8 {plus minus}0.4 Ma old Afar stratoid basalts, given the 17.5 {plus minus}5 mm/yr rate of separation between Arabia and Somalia.

  5. Re-evaluation of focal depths and source mechanisms of selected earthquakes in the Afar depression

    NASA Astrophysics Data System (ADS)

    Hagos, L.; Shomali, H.; Roberts, R.

    2006-10-01

    We present a stepwise inversion procedure to assess the focal depth and model earthquake source complexity of seven moderate-sized earthquakes (6.2 >Mw > 5.1) that occurred in the Afar depression and the surrounding region. The Afar depression is a region of highly extended and intruded lithosphere, and zones of incipient seafloor spreading. A time-domain inversion of full moment tensor was performed to model direct P and SH waves of teleseismic data. Waveform inversion of the selected events estimated focal depths in the range of 17-22 km, deeper than previously published results. This suggests that the brittle-ductile transition zone beneath parts of the Afar depression extends more than 22 km. The effect of near-source velocity structure on the moment tensor elements was also investigated and was found to respond little to the models considered. Synthetic tests indicate that the size of the estimated, non-physical, non-isotropic source component is rather sensitive to incorrect depth estimation. The dominant double couple part of the moment tensor solutions for most of the events indicates that their occurrence is mainly due to shearing. Parameters associated with source directivity (rupture velocity and azimuth) were also investigated. Re-evaluation of the analysed events shows predominantly normal faulting consistent with the relative plate motions in the region.

  6. A new model for the development of the active Afar volcanic margin

    NASA Astrophysics Data System (ADS)

    Pik, Raphaël; Stab, Martin; Bellahsen, Nicolas; Leroy, Sylvie

    2016-04-01

    Volcanic passive margins, that represent more than the three quarters of continental margins worldwide, are privileged witnesses of the lithospheric extension processes thatform new oceanic basins. They are characterized by voluminous amounts of underplated, intruded and extruded magmas, under the form of massive lavas prisms (seaward-dipping reflectors, or SDR) during the course of thinning and stretching of the lithosphere, that eventually form the ocean-continent transition. The origin and mechanisms of formation of these objects are still largely debated today. We have focussed our attention in the last few years on the Afar volcanic province which represents an active analogue of such volcanic margins. We explored the structural and temporal relationships that exist between the development of the major thinning and stretching structures and the magmatic production in Central Afar. Conjugate precise fieldwork analysis along with lavas geochronology allowed us to revisit the timing and style of the rift formation, since the early syn-rift period of time in the W-Afar marginal area to present days. Extension is primarily accommodated over a wide area at the surface since the very initial periods of extension (~ 25 Ma) following the emplacement of Oligocene CFBs. We propose in our reconstruction of central Afar margin history that extension has been associated with important volumes of underplated mafic material that compensate crustal thinning. This has been facilitated by major crustal-scale detachments that help localize the thinning and underplating at depth. In line with this 'magmatic wide-rift' mode of extension, we demonstrate that episodic extension steps alternate with more protracted magmatic phases. The production of syn-rift massive flood basalts (~ 4 Ma) occurs after early thinning of both the crust and the lithosphere, which suggests that SDR formation, is controlled by previous tectonic event. We determined how the melting regime evolved in

  7. Seismic Imaging of the crust and upper mantle beneath Afar, Ethiopia

    NASA Astrophysics Data System (ADS)

    Hammond, J. O.; Kendall, J. M.; Stuart, G. W.; Ebinger, C. J.

    2009-12-01

    In March 2007 41 seismic stations were deployed in north east Ethiopia. These stations recorded until October 2009, whereupon the array was condensed to 13 stations. Here we show estimates of crustal structure derived from receiver functions and upper mantle velocity structure, derived from tomography and shear-wave splitting using the first 2.5 years of data. Bulk crustal structure has been determined by H-k stacking receiver functions. Crustal Thickness varies from ~45km on the rift margins to ~16km beneath the northeastern Afar stations. Estimates of Vp/Vs show normal continental crust values (1.7-1.8) on the rift margins, and very high values (2.0-2.2) in Afar, similar to results for the Main Ethiopian Rift (MER). This supports ideas of high levels of melt in the crust beneath the Ethiopian Rift. Additionally, we use a common conversion point migration technique to obtain high resolution images of crustal structure beneath the region. Both techniques show a linear region of thin crust (~16km) trending north-south, the same trend as the Red Sea rift. SKS-wave splitting results show a general north east-south west fast direction in the MER, systematically rotating to a more north-south fast direction towards the Red Sea. Additionally, stations close to the recent Dabbahu diking episode show sharp lateral changes over small lateral distances (40° over <30km), with fast directions overlying the Dabbahu segment aligning parallel with the recent diking. This supports ideas of melt dominated anisotropy beneath the Ethiopian rift. The magnitude of splitting in this region is smaller than that seen at the MER, suggesting a thinner region of melt, or less focused melt is causing the anisotropy. Seismic tomography inversions show that in the top 150km low velocities highlight plate boundaries. The low velocity anomalies extend from the main Ethiopian rift NE, towards Djibouti, and from Djibouti NW towards the Dabbahu segment The lowest velocities exist on the rift

  8. Crustal Structure of the Gulf of Aden Continental Margins, from Afar to Oman, by Ambient Noise Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Korostelev, F.; Weemstra, C.; Boschi, L.; Leroy, S. D.; Ren, Y.; Stuart, G. W.; Keir, D.; Rolandone, F.; Ahmed, A.; Al Ganad, I.; Khanbari, K. M.; Doubre, C.; Hammond, J. O. S.; Kendall, J. M.

    2014-12-01

    Continental rupture processes under mantle plume influence are still poorly known although extensively studied. The Gulf of Aden presents volcanic margins to the west, where they are influenced by the Afar hotspot, and non volcanic margins east of longitude 46° E. We imaged the crustal structure of the Gulf of Aden continental margins from Afar to Oman to evaluate the role of the Afar plume on the evolution of the passive margin and its extent towards the East. We use Ambient Noise Seismic Tomography to better understand the architecture and processes along the Gulf of Aden. This recent method, developed in the last decade, allows us to study the seismic signal propagating between two seismic stations. Ambient Noise Seismic Tomography is thus free from artifacts related to the distribution of earthquakes. We collected continuous records from about 200 permanent or temporary stations since 1999 to compute Rayleigh phase velocity maps over the Gulf of Aden.

  9. The Yolla Bolly junction revisited

    SciTech Connect

    Blake, M.C.; Jayko, A.S. ); Jones, D.L. . Dept. of Geology and Geophysics); Engebretson, D.C. . Dept. of Geology)

    1993-04-01

    West of Red Bluff, California, rocks of the northern Coast Ranges, Klamath-Sierra Nevada, and Great Valley provinces come together at what has been called the Yolla Bolly junction. Mapping of the Red Bluff and Willows 1:100,000 quadrangles has greatly clarified the enigmatic features of this complex area. Terranes of the Klamath Mountains and their Cretaceous sedimentary cover have been thrust northwestward over the Elder Creek terrane and Franciscan rocks, north of the left-lateral Cold Fork fault zone. The Condrey Mountain window (Franciscan Pickett Peak terrane) provides a measure of the magnitude of this thrusting (ca 90 km). South of the Cold Fork fault zone, the Franciscan and Elder Creek terranes were driven southeastward as tectonic wedges onto Sierran-Klamath basement. Timing of this scissor-tectonics is not constrained near the junction, but further north in southwest Oregon, Lower Eocene strata were deformed by overthrusting of the Klamath block whereas Upper Eocene strata overlap the thrust, indicating that thrusting occurred between about 52 and 60 Ma. Plate reconstructions for this time interval indicate the close proximity of the Kula-Farallon-North America triple junction and that old (ca 100 m.y.) Farallon lithosphere was being subducted north of the junction whereas to the south, very young (ca 10 m.y.) Kula plate was presumably obducted onto North America.

  10. The development of extension and magmatism in the Red Sea rift of Afar

    NASA Astrophysics Data System (ADS)

    Keir, Derek; Bastow, Ian D.; Pagli, Carolina; Chambers, Emma L.

    2013-11-01

    Despite the importance of continental breakup in plate tectonics, precisely how extensional processes such as brittle faulting, ductile plate stretching, and magma intrusion evolve in space and time during the development of new ocean basins remains poorly understood. The rifting of Arabia from Africa in the Afar depression is an ideal natural laboratory to address this problem since the region exposes subaerially the tectonically active transition from continental rifting to incipient seafloor spreading. We review recent constraints on along-axis variations in rift morphology, crustal and mantle structure, the distribution and style of ongoing faulting, subsurface magmatism and surface volcanism in the Red Sea rift of Afar to understand processes ultimately responsible for the formation of magmatic rifted continental margins. Our synthesis shows that there is a fundamental change in rift morphology from central Afar northward into the Danakil depression, spatially coincident with marked thinning of the crust, an increase in the volume of young basalt flows, and subsidence of the land towards and below sea-level. The variations can be attributed to a northward increase in proportion of extension by ductile plate stretching at the expense of magma intrusion. This is likely in response to a longer history of localised heating and weakening in a narrower rift. Thus, although magma intrusion accommodates strain for a protracted period during rift development, the final stages of breakup are dominated by a phase of plate stretching with a shift from intrusive to extrusive magmatism. This late-stage pulse of decompression melting due to plate thinning may be responsible for the formation of seaward dipping reflector sequences of basalts and sediments, which are ubiquitous at magmatic rifted margins worldwide.

  11. First Evidence of Epithermal Gold Occurrences in the SE Afar Rift, Republic of Djibouti

    NASA Astrophysics Data System (ADS)

    Moussa, Nima; Fouquet, Yves; Caminiti, Antoine Marie; Le Gall, Bernard; Rolet, Joel; Bohn, Marcel; Etoubleau, Joel; Delacourt, Christophe; Jalludin, Mohamed

    2010-05-01

    The Republic of Djibouti, located at the SE part of the Afar volcanic Triangle, is characterized by intense tectonic and bimodal volcanic activity, and is emplaced over an earlier magmatic rift system, as old as 25-30 Ma. Each magmatic event is accompanied by hydrothermal activity. Few works have been so far published on hydrothermal mineralization in the Afar area. Mineralization generally occur as veins and are mainly associated with acidic volcanic intrusions along the fractures at the edges of grabens established during the last 4 Ma. Eighty samples from hydrothermal quartz ± carbonate veins and breccias were studied on 9 different sites representative of 4 main volcanic events ranging in age from early Miocene up to Present. Gold was found in excess of 200 ppb in 30% of the samples. Mineralogical analyses based on optical reflected light microscopy, X-Ray diffractometry, X-Ray fluorescence, inductively coupled plasma mass spectroscopy and electron microprobe, led us to identify two types of gold mineralization (i) native gold, electrum, hessite and sulfides (chalcopyrite, pyrite, bornite, ± sphalerite, and galena) in massive quartz breccias and banded chalcedony, (ii) gold, electrum, hematite, magnetite, trace minerals (argentite) and adularia in banded chalcedony. Another group without gold is characterized by quartz, pyrite ± goethite. Secondary minerals are characterized by goethite, native silver and native copper. Arsenic is enriched in pyrite in samples with a high gold content. The bimodal volcanism, the occurrence of adularia, the native gold and electrum in banded silica veins, are classically observed in neutral epithermal systems. The discovery of this type of mineralization in a recent-active continental rift system supplies new insights about hydrothermal processes associated with volcanic activity in a spreading context. Keywords: Republic of Djibouti, Afar Triangle, Hydrothermal, Epithermal system, Gold

  12. Multiple mantle upwellings through the transition zone beneath the Afar Depression?

    NASA Astrophysics Data System (ADS)

    Hammond, J. O.; Kendall, J. M.; Stuart, G. W.; Thompson, D. A.; Ebinger, C. J.; Keir, D.; Ayele, A.; Goitom, B.; Ogubazghi, G.

    2012-12-01

    Previous seismic studies using regional deployments of sensors in East-Africa show that low seismic velocities underlie Africa, but their resolution is limited to the top 200-300km of the Earth. Thus, the connection between the low velocities in the uppermost mantle and those imaged in global studies in the lower mantle is unclear. We have combined new data from Afar, Ethiopia with 7 other regional experiments and global network stations across Kenya, Ethiopia, Eritrea, Djibouti and Yemen, to produce high-resolution models of upper mantle P- and S-wave velocities to the base of the transition zone. Relative travel time tomographic inversions show that within the transition zone two focussed sharp-sided low velocity regions exist: one beneath the Western Ethiopian plateau outside the rift valley, and the other beneath the Afar depression. Estimates of transition zone thickness suggest that this is unlikely to be an artefact of mantle discontinuity topography as a transition zone of normal thickness underlies the majority of Afar and surrounding regions. However, a low velocity layer is evident directly above the 410 discontinuity, co-incident with some of the lowest seismic velocities suggesting that smearing of a strong low velocity layer of limited depth extent may contribute to the tomographic models in north-east Afar. The combination of seismic constraints suggests that small low temperature (<50K) upwellings may rise from a broader low velocity plume-like feature in the lower mantle. This interpretation is supported by numerical and analogue experiments that suggest the 660km phase change and viscosity jump may impede flow from the lower to upper mantle creating a thermal boundary layer at the base of the transition zone. This allows smaller, secondary upwellings to initiate and rise to the surface. These, combined with possible evidence of melt above the 410 discontinuity can explain the seismic velocity models. Our images of secondary upwellings suggest that

  13. Study of the deformation in Central Afar using InSAR NSBAS chain

    NASA Astrophysics Data System (ADS)

    Deprez, A.; Doubre, C.; Grandin, R.; Saad, I.; Masson, F.; Socquet, A.

    2013-12-01

    The Afar Depression (East Africa) connects all three continental plates of Arabia, Somalia and Nubia plates. For over 20 Ma, the divergent motion of these plates has led to the formation of large normal faults building tall scarps between the high plateaus and the depression, and the development of large basins and an incipient seafloor spreading along a series of active volcano-tectonic rift segments within the depression. The space-time evolution of the active surface deformation over the whole Afar region remains uncertain. Previous tectonic and geodetic studies confirm that a large part of the current deformation is concentrated along these segments. However, the amount of extension accommodated by other non-volcanic basins and normal faulting remains unclear, despite significant micro-seismic activity. Due to the active volcanism, large transient displacements related to dyking sequence, notably in the Manda Hararo rift (2005-2010), increase the difficulty to characterize the deformation field over simple time and space scales. In this study, we attempt to obtain a complete inventory of the deformation within the whole Afar Depression and to understand the associated phenomena, which occurred in this singular tectonic environment. We study in particular, the behavior of the structures activated during the post-dyking stage of the rift segments. For this purpose, we conduct a careful processing of a large set of SAR ENVISAT images over the 2004-2010 period, we also use previous InSAR results and GPS data from permanent stations and from campaigns conducted in 1999, 2003, 2010, 2012 within a GPS network particularly dense along the Asal-Ghoubbet segment. In one hand, in the western part of Afar, the far-field response of the 2005-2010 dyke sequence appears to be the dominant surface motion on the mean velocity field. In an other hand, more eastward across the Asal-Ghoubbet rift, strong gradients of deformation are observed. The time series analysis of both In

  14. Surface Deformation Associated With a Historical Diking Event in Afar From Correlation of Space and Air-Borne Optical Images

    NASA Astrophysics Data System (ADS)

    Harrington, J.; Peltzer, G.; Leprince, S.; Ayoub, F.; Kasser, M.

    2011-12-01

    We present new measurements of the surface deformation associated with the rifting event of 1978 in the Asal-Ghoubbet rift, Republic of Djibouti. The Asal-Ghoubbet rift forms a component of the Afar Depression, a broad extensional region at the junction between the Nubia, Arabia, and Somalia plates, which apart from Iceland, is the only spreading center located above sea-level. The 1978 rifting event was marked by a 2-month sequence of small to moderate earthquakes (Mb ~3-5) and a fissural eruption of the Ardukoba Volcano. Deformation in the Asal rift associated with the event included the reactivation of the main bordering faults and the development of numerous open fissures on the rift floor. The movement of the rift shoulders, measured using ground-based geodesy, showed up to 2.5 m of opening in the N40E direction. Our data include historical aerial photographs from 1962 and 1984 (less than 0.8 m/pixel) along the northern border fault, three KH-9 Hexagon(~8 m/pixel) satellite images from 1973, and recently acquired ASTER (15 m/pixel) and SPOT5 (2.5 m/pixel) data. The measurements are made by correlating pre- and post-event images using the COSI-Corr (Co-registration of Optically Sensed Images and Correlation) software developed at Caltech. The ortho-rectification of the images is done with a mosaic of a 10 m resolution digital elevation model, made by French Institut Geographique National (IGN), and the SRTM and GDEM datasets. Correlation results from the satellite images indicate 2-3 meters of opening across the rift. Preliminary results obtained using the 1962 and 1984 aerial photographs indicate that a large fraction of the opening occurred on or near Fault γ, which borders the rift to the North. These preliminary results are largely consistent with the ground based measurements made after the event. A complete analysis of the aerial photograph coverage will provide a better characterization of the spatial distribution of the deformation throughout the rift.

  15. Shear zone junctions: Of zippers and freeways

    NASA Astrophysics Data System (ADS)

    Passchier, Cees W.; Platt, John P.

    2017-02-01

    Ductile shear zones are commonly treated as straight high-strain domains with uniform shear sense and characteristic curved foliation trails, bounded by non-deforming wall rock. Many shear zones, however, are branched, and if movement on such branches is contemporaneous, the resulting shape can be complicated and lead to unusual shear sense arrangement and foliation geometries in the wall rock. For Y-shaped shear zone triple junctions with three joining branches and transport direction at a high angle to the branchline, only eight basic types of junction are thought to be stable and to produce significant displacement. The simplest type, called freeway junctions, have similar shear sense in all three branches. The other types show joining or separating behaviour of shear zone branches similar to the action of a zipper. Such junctions may have shear zone branches that join to form a single branch (closing zipper junction), or a single shear zone that splits to form two branches, (opening zipper junction). All categories of shear zone junctions show characteristic foliation patterns and deflection of markers in the wall rock. Closing zipper junctions are unusual, since they form a non-active zone with opposite deflection of foliations in the wall rock known as an extraction fault or wake. Shear zipper junctions can form domains of overprinting shear sense along their flanks. A small and large field example are given from NE Spain and Eastern Anatolia. The geometry of more complex, 3D shear zone junctions with slip parallel and oblique to the branchline is briefly discussed.

  16. Along-rift Variations in Deformation and Magmatism in the Ethiopian and Afar Rift Systems

    NASA Astrophysics Data System (ADS)

    Keir, D.; Bastow, I. D.; Corti, G.; Mazzarini, F.; Rooney, T. O.

    2015-12-01

    The geological record at rifts and margins worldwide often reveals along-strike variations in volumes of extruded and intruded igneous rocks. These variations may be the result of asthenospheric heterogeneity, variations in rate, and timing of extension; alternatively, preexisting plate architecture and/or the evolving kinematics of extension during breakup may exert first-order control on magmatism. The Ethiopian and Afar Rift systems provide an excellent opportunity to address this since it exposes, along strike, several sectors of asynchronous rift development from continental rifting in the south to incipient oceanic spreading in the north. Here we perform studies of distribution and style of volcanism and faulting along strike in the MER and Afar. We also incorporate synthesis of geophysical, geochemical, and petrological constraints on magma generation and emplacement in order to discriminate between tectonic and mantle geodynamic controls on the geological record of a newly forming magmatic rift. Along-rift changes in extension by magma intrusion and plate stretching, and the three-dimensional focusing of melt where the rift dramatically narrows each influence igneous intrusion, volcanism and subsidence history. In addition, rift obliquity plays an important role in localizing intrusion into the crust beneath en echelon volcanic segments. Along-strike variations in volumes and types of igneous rocks found at rifted margins thus likely carry information about the development of strain during rifting, as well as the physical state of the convecting mantle at the time of breakup.

  17. Magmatic Plumbing at an Incipient Oceanic Spreading Centre: Evidence From Local Earthquake Data in Northern Afar

    NASA Astrophysics Data System (ADS)

    Illsley-Kemp, F.; Keir, D.; Bull, J. M.; Ayele, A.; Hammond, J. O. S.; Kendal, M. J.; Gallacher, R. J.; Gernon, T.; Goitom, B.

    2015-12-01

    The transition from continental breakup to seafloor spreading is characterised by voluminous intrusive and extrusive magmatic activity, focused along narrow rift segments. The manner in which this magma is stored and transported within the crust is poorly constrained. It is difficult to answer these questions by studying previously rifted continental margins, as the area of transition is buried deep beneath volcanic and sedimentary sequences. Northern Afar presents a unique opportunity to resolve this problem, as it exposes subaerially the magma-rich transition from continental rifting to an oceanic spreading centre. The region therefore acts as a laboratory in which the geological signatures of continental breakup can be investigated unambiguously. For two years, between 2011 and 2013, a seismic network of 20 seismic stations was deployed in the area. Presented here are the hypocentral locations and local magnitudes of over 4500 earthquakes. Seismicity is focused along the western border fault and at active volcanic centres. Magma pathways beneath active volcanoes are clearly defined by seismicity spanning the entire crust. The data allows for the development of a calibrated local magnitude scale for northern Afar and provides an insight into the nature of seismic attenuation in the uppermost mantle. I discuss the implications that these results have on our understanding of the distribution of extension, melt storage and migration and upper mantle processes during the last stages of continental rifting.

  18. A LREE-depleted component in the Afar plume: Further evidence from Quaternary Djibouti basalts

    NASA Astrophysics Data System (ADS)

    Daoud, Mohamed A.; Maury, René C.; Barrat, Jean-Alix; Taylor, Rex N.; Le Gall, Bernard; Guillou, Hervé; Cotten, Joseph; Rolet, Joël

    2010-02-01

    Major, trace element and isotopic (Sr, Nd, Pb) data and unspiked K-Ar ages are presented for Quaternary (0.90-0.95 Ma old) basalts from the Hayyabley volcano, Djibouti. These basalts are LREE-depleted (La n/Sm n = 0.76-0.83), with 87Sr/ 86Sr ratios ranging from 0.70369 to 0.70376, and rather homogeneous 143Nd/ 144Nd ( ɛNd = + 5.9-+ 7.3) and Pb isotopic compositions ( 206Pb/ 204Pb = 18.47-18.55, 207Pb/ 204Pb = 15.52-15.57, 208Pb/ 204Pb = 38.62-38.77). They are very different from the underlying enriched Tadjoura Gulf basalts, and from the N-MORB erupted from the nascent oceanic ridges of the Red Sea and Gulf of Aden. Their compositions closely resemble those of (1) depleted Quaternary Manda Hararo basalts from the Afar depression in Ethiopia and (2) one Oligocene basalt from the Ethiopian Plateau trap series. Their trace element and Sr, Nd, Pb isotope systematics suggest the involvement of a discrete but minor LREE-depleted component, which is probably an intrinsic part of the Afar plume.

  19. Distribution of brucellosis among small ruminants in the pastoral region of Afar, eastern Ethiopia.

    PubMed

    Ashenafi, F; Teshale, S; Ejeta, G; Fikru, R; Laikemariam, Y

    2007-12-01

    A cross-sectional study was conducted in the pastoral region of Afar, in eastern and central Ethiopia, to determine the distribution of brucellosis in small ruminants. Between December 2005 and June 2006, 1,568 serum samples were taken: 563 samples from sheep and 1,005 from goats. One hundred and forty-seven of these (9.4%) tested positive using the Rose Bengal plate test (RBPT), and 76 (4.8%) also tested positive by the complement fixation test (CFT). Brucellosis was detected in all five administrative zones of the region. The difference in prevalence (P) among the zones was not statistically significant (P > 0.05). The seroprevalence of Brucella infection was found to be 5.8% (n = 58) in goats and 3.2% (n = 18) in sheep. A prevalence rate of 5.3% was observed in adult animals and 1.6% in younger sheep and goats. Caprine species (chi2 = 5.56) and adult goats and sheep (chi2 = 4.84) were found to be at higher risk of Brucella infection (P < 0.05). No statistically significant difference was found between males and females (chi2 = 2.57, P > 0.05). The study showed that small-ruminant brucellosis is a widely distributed disease in Afar. The authors recommend the implementation of well-organised disease control and prevention methods to mitigate the economic losses and public health hazard caused by the disease.

  20. The AfaR small RNA controls expression of the AfaD-VIII invasin in pathogenic Escherichia coli strains

    PubMed Central

    Pichon, Christophe; du Merle, Laurence; Lequeutre, Isabelle; Le Bouguénec, Chantal

    2013-01-01

    Pathogenic Escherichia coli strains carrying the afa-8 gene cluster are frequently associated with extra-intestinal infections in humans and animals. The afa-8 A to E genes determine the formation of an afimbrial adhesive sheath consisting of the AfaD-VIII invasin and the AfaE-VIII adhesin at the bacterial cell surface. This structure is thought to be required for host colonization. We characterized a new gene encoding the small RNA AfaR, which is transcribed in cis from the complementary strand of the 3′ untranslated region of the afaD messenger RNA, within the afaD–afaE intercistronic region. AfaR is a trans-acting Hfq-dependent antisense small RNA that binds the 5′ untranslated region of the afaD messenger RNA, initiating several ribonuclease E-dependent cleavages, thereby downregulating production of the AfaD-VIII invasin. AfaR transcription is dependent on σE, a member of the stress response family of extracytoplasmic alternative sigma factors. We found that the AfaR-dependent regulatory pathway was controlled by temperature, allowing the production of the AfaD-VIII invasin at temperatures above 37°C. Our findings suggest that the entry of afa-8-positive pathogenic E. coli strains into epithelial cells is tightly regulated by the AfaR small RNA. PMID:23563153

  1. Zipper and freeway shear zone junctions

    NASA Astrophysics Data System (ADS)

    Passchier, Cees; Platt, John

    2016-04-01

    Ductile shear zones are usually presented as isolated planar high-strain domains in a less deformed wall rock, characterised by shear sense indicators such as characteristic deflected foliation traces. Many shear zones, however, form branched systems and if movement on such branches is contemporaneous, the resulting geometry can be complicated and lead to unusual fabric geometries in the wall rock. For Y-shaped shear zone junctions with three simultaneously operating branches, and with slip directions at a high angle to the branch line, eight basic types of shear zone triple junctions are possible, divided into three groups. The simplest type, called freeway junctions, have similar shear sense on all three branches. If shear sense is different on the three branches, this can lead to space problems. Some of these junctions have shear zone branches that join to form a single branch, named zipper junctions, or a single shear zone which splits to form two, known as wedge junctions. Closing zipper junctions are most unusual, since they form a non-active high-strain zone with opposite deflection of foliations. Shear zipper and shear wedge junctions have two shear zones with similar shear sense, and one with the opposite sense. All categories of shear zone junctions show characteristic flow patterns in the shear zone and its wall rock. Shear zone junctions with slip directions normal to the branch line can easily be studied, since ideal sections of shear sense indicators lie in the plane normal to the shear zone branches and the branch line. Expanding the model to allow slip oblique and parallel to the branch line in a full 3D setting gives rise to a large number of geometries in three main groups. Slip directions can be parallel on all branches but oblique to the branch line: two slip directions can be parallel and a third oblique, or all three branches can have slip in different directions. Such more complex shear zone junctions cannot be studied to advantage in a

  2. A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells

    PubMed Central

    Guo, Fei; Li, Ning; Fecher, Frank W.; Gasparini, Nicola; Quiroz, Cesar Omar Ramirez; Bronnbauer, Carina; Hou, Yi; Radmilović, Vuk V.; Radmilović, Velimir R.; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J.

    2015-01-01

    The multi-junction concept is the most relevant approach to overcome the Shockley–Queisser limit for single-junction photovoltaic cells. The record efficiencies of several types of solar technologies are held by series-connected tandem configurations. However, the stringent current-matching criterion presents primarily a material challenge and permanently requires developing and processing novel semiconductors with desired bandgaps and thicknesses. Here we report a generic concept to alleviate this limitation. By integrating series- and parallel-interconnections into a triple-junction configuration, we find significantly relaxed material selection and current-matching constraints. To illustrate the versatile applicability of the proposed triple-junction concept, organic and organic-inorganic hybrid triple-junction solar cells are constructed by printing methods. High fill factors up to 68% without resistive losses are achieved for both organic and hybrid triple-junction devices. Series/parallel triple-junction cells with organic, as well as perovskite-based subcells may become a key technology to further advance the efficiency roadmap of the existing photovoltaic technologies. PMID:26177808

  3. A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells.

    PubMed

    Guo, Fei; Li, Ning; Fecher, Frank W; Gasparini, Nicola; Ramirez Quiroz, Cesar Omar; Bronnbauer, Carina; Hou, Yi; Radmilović, Vuk V; Radmilović, Velimir R; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J

    2015-07-16

    The multi-junction concept is the most relevant approach to overcome the Shockley-Queisser limit for single-junction photovoltaic cells. The record efficiencies of several types of solar technologies are held by series-connected tandem configurations. However, the stringent current-matching criterion presents primarily a material challenge and permanently requires developing and processing novel semiconductors with desired bandgaps and thicknesses. Here we report a generic concept to alleviate this limitation. By integrating series- and parallel-interconnections into a triple-junction configuration, we find significantly relaxed material selection and current-matching constraints. To illustrate the versatile applicability of the proposed triple-junction concept, organic and organic-inorganic hybrid triple-junction solar cells are constructed by printing methods. High fill factors up to 68% without resistive losses are achieved for both organic and hybrid triple-junction devices. Series/parallel triple-junction cells with organic, as well as perovskite-based subcells may become a key technology to further advance the efficiency roadmap of the existing photovoltaic technologies.

  4. A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Guo, Fei; Li, Ning; Fecher, Frank W.; Gasparini, Nicola; Quiroz, Cesar Omar Ramirez; Bronnbauer, Carina; Hou, Yi; Radmilović, Vuk V.; Radmilović, Velimir R.; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J.

    2015-07-01

    The multi-junction concept is the most relevant approach to overcome the Shockley-Queisser limit for single-junction photovoltaic cells. The record efficiencies of several types of solar technologies are held by series-connected tandem configurations. However, the stringent current-matching criterion presents primarily a material challenge and permanently requires developing and processing novel semiconductors with desired bandgaps and thicknesses. Here we report a generic concept to alleviate this limitation. By integrating series- and parallel-interconnections into a triple-junction configuration, we find significantly relaxed material selection and current-matching constraints. To illustrate the versatile applicability of the proposed triple-junction concept, organic and organic-inorganic hybrid triple-junction solar cells are constructed by printing methods. High fill factors up to 68% without resistive losses are achieved for both organic and hybrid triple-junction devices. Series/parallel triple-junction cells with organic, as well as perovskite-based subcells may become a key technology to further advance the efficiency roadmap of the existing photovoltaic technologies.

  5. Receiver function imaging of the onset of melting, implications for volcanism beneath the Afar Rift in contrast to hotspot environments

    NASA Astrophysics Data System (ADS)

    Rychert, C. A.; Harmon, N.; Hammond, J. O.; Laske, G.; Kendall, J.; Ebinger, C. J.; Shearer, P. M.; Bastow, I. D.; Keir, D.; Ayele, A.; Belachew, M.; Stuart, G. W.

    2012-12-01

    Heating, melting, and stretching destroy continents at volcanic rifts. Mantle plumes are often invoked to thermally weaken the continental lithosphere and accommodate rifting through the influx of magma. However the relative effects of mechanical stretching vs. melt infiltration and weakening are not well quantified during the evolution of rifting. S-to-p (Sp) imaging beneath the Afar Rift and hotspot regions such as Hawaii provides additional constraints. We use data from the Ethiopia/Kenya Broadband Seismic Experiment (EKBSE), the Ethiopia Afar Geophysical Lithospheric Experiment (EAGLE), a new UK/US led deployment of 46 stations in the Afar depression and surrounding area, and the PLUME experiment. We use two methodologies to investigate structure and locate robust features: 1) binning by conversion point and then simultaneous deconvolution in the frequency domain, and 2) extended multitaper followed by migration and stacking. We image a lithosphere-asthenosphere boundary at ~75 km beneath the flank of the Afar Rift vs. its complete absence beneath the rift, where the mantle lithosphere has been totally destroyed. Instead a strong velocity increase with depth at ~75 km depth matches geodynamic model predictions for a drop in melt percentage at the onset of decompression melting. The shallow depth of the onset of melting is consistent with a mantle potential temperature = 1350 - 1400°C, i.e., typical for adiabatic decompression melting. Therefore although a plume initially destroyed the mantle lithosphere, its influence directly beneath Afar today is minimal. Volcanism continues via adiabatic decompression melting assisted by strong melt buoyancy effects. This contrasts with a similar feature at much deeper depth, ~150 km, just west of Hawaii, where a deep thermal plume is hypothesized to impinge on the lithosphere. Improved high resolution imaging of rifting, ridges, and hotspots in a variety of stages and tectonic settings will increase constraints on the

  6. Mode of rifting in magmatic-rich setting: Tectono-magmatic evolution of the Central Afar rift system

    NASA Astrophysics Data System (ADS)

    Stab, Martin; Bellahsen, Nicolas; Pik, Raphaël; Leroy, Sylvie; Ayalew, Dereje

    2014-05-01

    Observation of deep structures related to break-up processes at volcanic passive margins (VPM) is often a troublesome exercise: thick pre- to syn-breakup seaward-dipping reflectors (SDR) usually mask the continent-ocean boundary and hide the syn-rift tectonic structures that accommodate crustal stretching and thinning. Some of the current challenges are about clarifying 1) if tectonic stretching fits the observed thinning and 2) what is the effect of continuous magma supply and re-thickening of the crust during extension from a rheological point of view? The Afar region in Ethiopia is an ideal natural laboratory to address those questions, as it is a highly magmatic rift that is probably close enough to breakup to present some characteristics of VPM. Moreover, the structures related to rifting since Oligocene are out-cropping, onshore and well preserved. In this contribution, we present new structural field data and lavas (U-Th/He) datings along a cross-section from the Ethiopian Plateau, through the marginal graben down to the Manda-Hararo active rift axis. We mapped continent-ward normal fault array affecting highly tilted trapp series unconformably overlain by tilted Miocene (25-7 Ma) acid series. The main extensional and necking/thinning event took place during the end of this Miocene magmatic episode. It is itself overlain by flat lying Pliocene series, including the Stratoid. Balanced cross-sections of those areas allow us to constrain a surface stretching factor of about 2.1-2.9. Those findings have the following implications: - High beta factor constrained from field observations is at odd with thinning factor of ~1.3 predicted by seismic and gravimetric studies. We propose that the continental crust in Central Afar has been re-thickened by the emplacement of underplated magma and SDR. - The deformation in Central Afar appears to be largely distributed through space and time. It has been accommodated in a 200-300 km wide strip being a diffuse incipient

  7. Prevalence of child malnutrition in agro-pastoral households in Afar Regional State of Ethiopia.

    PubMed

    Fentaw, Rabia; Bogale, Ayalneh; Abebaw, Degnet

    2013-04-01

    Based on data generated from 180 randomly selected households with children age under five years old in Aysaita district of Afar region of Ethiopia, this study explored prevalence of malnutrition and scrutinized household characteristics, maternal characteristics, specifics of the child and economic variables associated with child malnutrition. The height-for-age Z-scores (HAZ), weight-for-height Z-scores (WHZ) and weight-for-age Z-scores (WAZ) were used to measure the extent of stunting, wasting and underweight, respectively. The results revealed that prevalence of long term nutritional imbalance and malnutrition status indicator (i.e. stunting) was 67.8%. The short term measure (wasting) was found to be 12.8% and underweight was found to be 46.1%. Moreover, children in households which are headed by women, and characterized by more dependency ratio, less access to assets, health services and institutions are more likely to be undernourished.

  8. Prevalence of child malnutrition in agro-pastoral households in Afar Regional State of Ethiopia

    PubMed Central

    Fentaw, Rabia; Abebaw, Degnet

    2013-01-01

    Based on data generated from 180 randomly selected households with children age under five years old in Aysaita district of Afar region of Ethiopia, this study explored prevalence of malnutrition and scrutinized household characteristics, maternal characteristics, specifics of the child and economic variables associated with child malnutrition. The height-for-age Z-scores (HAZ), weight-for-height Z-scores (WHZ) and weight-for-age Z-scores (WAZ) were used to measure the extent of stunting, wasting and underweight, respectively. The results revealed that prevalence of long term nutritional imbalance and malnutrition status indicator (i.e. stunting) was 67.8%. The short term measure (wasting) was found to be 12.8% and underweight was found to be 46.1%. Moreover, children in households which are headed by women, and characterized by more dependency ratio, less access to assets, health services and institutions are more likely to be undernourished. PMID:23610605

  9. Magmatism on rift flanks: Insights from ambient noise phase velocity in Afar region

    NASA Astrophysics Data System (ADS)

    Korostelev, Félicie; Weemstra, Cornelis; Leroy, Sylvie; Boschi, Lapo; Keir, Derek; Ren, Yong; Molinari, Irene; Ahmed, Abdulhakim; Stuart, Graham W.; Rolandone, Frédérique; Khanbari, Khaled; Hammond, James O. S.; Kendall, J. M.; Doubre, Cécile; Ganad, Ismail Al; Goitom, Berhe; Ayele, Atalay

    2015-04-01

    During the breakup of continents in magmatic settings, the extension of the rift valley is commonly assumed to initially occur by border faulting and progressively migrate in space and time toward the spreading axis. Magmatic processes near the rift flanks are commonly ignored. We present phase velocity maps of the crust and uppermost mantle of the conjugate margins of the southern Red Sea (Afar and Yemen) using ambient noise tomography to constrain crustal modification during breakup. Our images show that the low seismic velocities characterize not only the upper crust beneath the axial volcanic systems but also both upper and lower crust beneath the rift flanks where ongoing volcanism and hydrothermal activity occur at the surface. Magmatic modification of the crust beneath rift flanks likely occurs for a protracted period of time during the breakup process and may persist through to early seafloor spreading.

  10. Caring from Afar: Asian H1B Migrant Workers and Aging Parents.

    PubMed

    Lee, Yeon-Shim; Chaudhuri, Anoshua; Yoo, Grace J

    2015-09-01

    With the growth in engineering/technology industries, the United States has seen an increase in the arrival of highly skilled temporary migrant workers on H1B visas from various Asian countries. Limited research exists on how these groups maintain family ties from afar including caring for aging parents. This study explores the experiences and challenges that Asian H1B workers face when providing care from a distance. A total of 21 Chinese/Taiwanese, Korean, and Indian H1B workers participated in in-depth qualitative interviews. Key findings indicate that despite distance, caring relationships still continue through regular communications, financial remittances, and return visits, at the same time creating emotional, psychological, and financial challenges for the workers. Findings highlight the need for further research in understanding how the decline of aging parent's health impacts the migrants' adjustment and health in the United States.

  11. Paleoanthropology. Early Homo at 2.8 Ma from Ledi-Geraru, Afar, Ethiopia.

    PubMed

    Villmoare, Brian; Kimbel, William H; Seyoum, Chalachew; Campisano, Christopher J; DiMaggio, Erin N; Rowan, John; Braun, David R; Arrowsmith, J Ramón; Reed, Kaye E

    2015-03-20

    Our understanding of the origin of the genus Homo has been hampered by a limited fossil record in eastern Africa between 2.0 and 3.0 million years ago (Ma). Here we report the discovery of a partial hominin mandible with teeth from the Ledi-Geraru research area, Afar Regional State, Ethiopia, that establishes the presence of Homo at 2.80 to 2.75 Ma. This specimen combines primitive traits seen in early Australopithecus with derived morphology observed in later Homo, confirming that dentognathic departures from the australopith pattern occurred early in the Homo lineage. The Ledi-Geraru discovery has implications for hypotheses about the timing and place of origin of the genus Homo.

  12. Late Miocene hominin teeth from the Gona Paleoanthropological Research Project area, Afar, Ethiopia.

    PubMed

    Simpson, Scott W; Kleinsasser, Lynnette; Quade, Jay; Levin, Naomi E; McIntosh, William C; Dunbar, Nelia; Semaw, Sileshi; Rogers, Michael J

    2015-04-01

    Since 2000, significant collections of Latest Miocene hominin fossils have been recovered from Chad, Kenya, and Ethiopia. These fossils have provided a better understanding of earliest hominin biology and context. Here, we describe five hominin teeth from two periods (ca. 5.4 Million-years-ago and ca. 6.3 Ma) that were recovered from the Adu-Asa Formation in the Gona Paleoanthropological Research Project area in the Afar, Ethiopia that we assign to either Hominina, gen. et sp. indet. or Ardipithecus kadabba. These specimens are compared with extant African ape and other Latest Miocene and Early Pliocene hominin teeth. The derived morphology of the large, non-sectorial maxillary canine and mandibular third premolar links them with later hominins and they are phenetically distinguishable and thus phyletically distinct from extant apes.

  13. Constraining timescales of focused magmatic accretion and extension in the Afar crust using lava geochronology.

    PubMed

    Ferguson, David J; Calvert, Andrew T; Pyle, David M; Blundy, Jon D; Yirgu, Gezahegn; Wright, Tim J

    2013-01-01

    As continental rift zones mature the tectonic and volcanic processes associated with crustal extension become confined to narrow magmatic rift zones, reminiscent of oceanic spreading ridges. The formation of these rift zones and the development of ocean-ridge type topography is a significant milestone in rift evolution as it signifies the localization of crustal extension and rift-related volcanism. Here we show that lavas, which erupted since ~200 ka along part of the on-land Red Sea rift system in Afar, Ethiopia, have a consistent age-progression from the rift axis outwards, indicating that axial dyke intrusion has been the primary mechanism of segment growth and that focused magmatic accretion and extension in the crust have remained stable here over this period. Our results suggest that as this rift segment has formed, in thinned and intruded continental crust, the time-averaged surface opening rate has closely approximated the total extension rate between Africa and Arabia.

  14. Upper mantle structure of shear-waves velocities and stratification of anisotropy in the Afar Hotspot region

    NASA Astrophysics Data System (ADS)

    Sicilia, D.; Montagner, J.-P.; Cara, M.; Stutzmann, E.; Debayle, E.; Lépine, J.-C.; Lévêque, J.-J.; Beucler, E.; Sebai, A.; Roult, G.; Ayele, A.; Sholan, J. M.

    2008-12-01

    The Afar area is one of the biggest continental hotspots active since about 30 Ma. It may be the surface expression of a mantle "plume" related to the African Superswell. Central Africa is also characterized by extensive intraplate volcanism. Around the same time (30 Ma), volcanic activity re-started in several regions of the African plate and hotspots such as Darfur, Tibesti, Hoggar and Mount Cameroon, characterized by a significant though modest volcanic production. The interactions of mantle upwelling with asthenosphere, lithosphere and crust remain unclear and seismic anisotropy might help in investigating these complex interactions. We used data from the global seismological permanent FDSN networks (GEOSCOPE, IRIS, MedNet, GEO- FON, etc.), from the temporary PASSCAL experiments in Tanzania and Saudi Arabia and a French deployment of 5 portable broadband stations surrounding the Afar Hotspot. A classical two-step tomographic inversion from surface waves performed in the Horn of Africa with selected Rayleigh wave and Love wave seismograms leads to a 3D-model of both S V velocities and azimuthal anisotropy, as well as radial SH/ SV anisotropy, with a lateral resolution of 500 km. The region is characterized by low shear-wave velocities beneath the Afar Hotspot, the Red Sea, the Gulf of Aden and East of the Tanzania Craton to 400 km depth. High velocities are present in the Eastern Arabia and the Tanzania Craton. The results of this study enable us to rule out a possible feeding of the Central Africa hotspots from the "Afar plume" above 150-200 km. The azimuthal anisotropy displays a complex pattern near the Afar Hotspot. Radial anisotropy, although poorly resolved laterally, exhibits S H slower than S V waves down to about 150 km depth, and a reverse pattern below. Both azimuthal and radial anisotropies show a stratification of anisotropy at depth, corresponding to different physical processes. These results suggest that the Afar hotspot has a different and

  15. Temporal Lorentzian spectral triples

    NASA Astrophysics Data System (ADS)

    Franco, Nicolas

    2014-09-01

    We present the notion of temporal Lorentzian spectral triple which is an extension of the notion of pseudo-Riemannian spectral triple with a way to ensure that the signature of the metric is Lorentzian. A temporal Lorentzian spectral triple corresponds to a specific 3 + 1 decomposition of a possibly noncommutative Lorentzian space. This structure introduces a notion of global time in noncommutative geometry. As an example, we construct a temporal Lorentzian spectral triple over a Moyal-Minkowski spacetime. We show that, when time is commutative, the algebra can be extended to unbounded elements. Using such an extension, it is possible to define a Lorentzian distance formula between pure states with a well-defined noncommutative formulation.

  16. Preliminary low temperature electron irradiation of triple junction solar cells

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Mueller, Robert L.; Scrivner, Roy L.; Helizon, Roger S.

    2005-01-01

    JPL has routinely performed radiation testing on commercial solar cells and has also performed LILT testing to characterize cell performance under far sun operating conditions. This research activity was intended to combine the features of both capabilities to investigate the possibility of any room temperature annealing that might influence the measured radiation damage. Although it was not possible to maintain the test cells at a constant low temperature between irradiation and electrical measurements, it was possible to obtain measurements with the cell temperature kept well below room temperature.

  17. Epithelial adhesive junctions

    PubMed Central

    Capaldo, Christopher T.; Farkas, Attila E.

    2014-01-01

    Epithelial adhesive cell-to-cell contacts contain large, plasma membrane-spanning multiprotein aggregates that perform vital structural and signaling functions. Three prominent adhesive contacts are the tight junction, adherens junction, and the desmosome. Each junction type has unique cellular functions and a complex molecular composition. In this review, we comment on recent and exciting advances in our understanding of junction composition and function. PMID:24592313

  18. A directional nucleation-zipping mechanism for triple helix formation.

    PubMed

    Alberti, Patrizia; Arimondo, Paola B; Mergny, Jean-Louis; Garestier, Thérèse; Hélène, Claude; Sun, Jian-Sheng

    2002-12-15

    A detailed kinetic study of triple helix formation was performed by surface plasmon resonance. Three systems were investigated involving 15mer pyrimidine oligonucleotides as third strands. Rate constants and activation energies were validated by comparison with thermodynamic values calculated from UV-melting analysis. Replacement of a T.A base pair by a C.G pair at either the 5' or the 3' end of the target sequence allowed us to assess mismatch effects and to delineate the mechanism of triple helix formation. Our data show that the association rate constant is governed by the sequence of base triplets on the 5' side of the triplex (referred to as the 5' side of the target oligopurine strand) and provides evidence that the reaction pathway for triple helix formation in the pyrimidine motif proceeds from the 5' end to the 3' end of the triplex according to the nucleation-zipping model. It seems that this is a general feature for all triple helices formation, probably due to the right-handedness of the DNA double helix that provides a stronger base stacking at the 5' than at the 3' duplex-triplex junction. Understanding the mechanism of triple helix formation is not only of fundamental interest, but may also help in designing better triple helix-forming oligonucleotides for gene targeting and control of gene expression.

  19. Wideband rotating junctions

    NASA Astrophysics Data System (ADS)

    Pochernyaev, V. N.

    1993-06-01

    Rotating junctions of coaxial-waveguide and waveguide type with a traveling wave coefficient exceeding 0.8 in a wide frequency range are considered. The design of these junctions is based on a method of the theory of electrodynamic circuits. Numerical results are obtained for rotating junctions of partially filled rectangular waveguide type and their particular cases.

  20. Tephrochronology of rare Plio-Pleistocene fossiferous strata in south-central Afar, Ethiopia

    NASA Astrophysics Data System (ADS)

    DiMaggio, E.; Arrowsmith, R.; Campisano, C. J.; Deino, A. L.

    2013-12-01

    Sedimentary basins in the south and central Afar Depression archive the complex structural, climatic, volcanic, and biologic development of the region during the Pliocene and Pleistocene. The lower Awash Valley in central Afar has long served as a focus for these investigations, including the extensive work conducted to place fossil assemblages (including hominins) into stratigraphic and temporal context. Here we present a detailed analysis of tephra chemistry, correlations, and ages of the newly mapped and fossiliferous area of eastern Ledi-Geraru (ELG) in the lower Awash Valley (~3-2.5 Ma). Our results allow us to construct a tephrostratigraphic framework that provides important constraints for regional studies previously lacking a calibrated sedimentary record spanning 3 to 2.7 Ma. Based on glass chemistry and morphology, 40Ar/39Ar dating of feldspars, and stratigraphic mapping, we identified 23 distinct tephras (8 of which were dated) in >100 m of newly mapped fluvial and lacustrine sediments at ELG. The oldest tuff at ELG (Kuhulta Tuff; 2.994 Ma) is exposed in lake sediments (diatomite) that lie 3-5 m above basalt flows dated to ca. 3 Ma. The youngest ELG tephra (ca. 2.44 Ma) outcrops as a lenticular channel tuff in sediments faulted against older strata (~2.7 Ma). Between these two tephras lies the Gurumaha Tuff (ca. 2.82 Ma) and the Daáma and Bulinan Tuffs (both ca. 2.85 Ma), which provide excellent stratigraphic ties across a distance of 7.5 km, allowing us to document a lateral facies change from lacustrine in northern ELG to more nearshore in the south. These tuffs also confirm the presence of a fossiferous sedimentary record spanning the late Pliocene sedimentary gap in lower Awash Valley stratigraphy (ca. 2.94 - 2.7 Ma). While the youngest and oldest tephras at ELG temporally overlap with dated tephras from the well-described Hadar (3.8 - 2.94 Ma) and Busidima (2.7 - 0.016 Ma) Formations, we have yet to confirm geochemical correlates to any tephra

  1. Rhyolites associated to Ethiopian CFB: Clues for initial rifting at the Afar plume axis

    NASA Astrophysics Data System (ADS)

    Natali, Claudio; Beccaluva, Luigi; Bianchini, Gianluca; Siena, Franca

    2011-12-01

    A comprehensive tectono-magmatic model based on new geochemical and field data is discussed in order to highlight the significance of the high-TiO 2 bimodal picrite basalt/rhyolite association in the north-eastern sector of the Ethiopian Plateau, which is considered to be the axial zone of the 30 Ma Continental Flood Basalt activity related to the Afar plume (Beccaluva et al., 2009). In this area the volcanic sequence consists of approximately 1700 m of high TiO 2 (4-6.5%) picrite basalts, covered by rhyolitic ignimbrites and lavas, with an average thickness of 300 m, which discontinuously extend over an area of nearly 13,500 km 2 (ca. 3600 km 3). Petrogenetic modelling, using rock and mineral chemical data and phase equilibria calculations by PELE and MELTS, indicates that: 1) picrite basalts could generate rhyolitic, sometimes peralkaline, residual melts with persistently high titanium contents (TiO 2 0.4-1.1%; Fluorine 0.2-0.3%; H 2O 2-3%; density ca. 2.4) corresponding to liquid fractions 9-16%; 2) closed system fractional crystallisation processes developed at 0.1-0.3 GPa pressure and 1390-750 °C temperature ranges, under QFM fO 2 conditions; 3) the highest crystallisation rate - involving 10-13% of Fe-Ti oxide removal - in the temperature range 1070-950 °C, represents a transitory (short-lived) fractionation stage, which results in the absence of erupted silica intermediate products (Daly gap). The eruption of low aspect ratio fluorine-rich rhyolitic ignimbrites and lavas capping the basic volcanics implies a rapid change from open- to closed-system tectono-magmatic conditions, which favoured the trapping of parental picrite basalts and their fractionation in upwardly zoned magma chambers. This evolution resulted from the onset of continental rifting, which was accompanied by normal faulting and block tilting, and the formation of shallow - N-S elongated - fissural chambers parallel to the future Afar Escarpment. The eruption of large volumes of rhyolitic

  2. A kinematic model for Afar Depression lithospheric thinning and its implications for hominid evolution: an exercise in plate-tectonic paleoanthropology

    NASA Astrophysics Data System (ADS)

    Redfield, T.; Often, M.; Wheeler, W. H.

    2002-12-01

    We present a detailed Nubia-Arabia-Somalia (NU-AR-SOM) kinematic reconstruction based on magnetic sea floor isochrons in the Gulf of Aden and Red Sea and piercing points along the Red Sea margins. The reconstruction is combined with digital topographic and depth-to-Moho data to constrain in 4D the Late Oligocene to present-day evolution of the Afar supra-Moho crust. Opposite end-member models for crustal evolution are described. We conclude that less than 20% of the present-day Afar supra-Moho crust was constructed by magmatic processes such as diking and underplating. The reconstructions indicate that the greater percentage of crustal thinning (extension) occurred before 6.2 Ma. We model the thinning of the effective elastic lithosphere that accompanied extension, and show that the regional-scale topographic development of the Afar depression was virtually complete by Mid Pliocene time. The plate-tectonic model has paleoanthropological implications. Prior to 6.2 Ma the proximal positions of NU-SOM, AR, and the Danakil block suggest subaerial conditions prevailed between Yemen and Ethiopia. Uninhibited Africa-Eurasia faunal exchange through Afar and Arabia (corroborated by isotopic and paleontologic data) was tectonically permissible until the time of the earliest hominids. Continued stretching caused the Afar land bridge(s) to disappear during Early to Mid Pliocene time. Primitive hominid populations living within the Afar Depression became isolated from AR sometime before ~3.2 Ma. With the plateau becoming less habitable due to long-term Late Neogene cooling, hominids that remained in the Afar Depression were required to adapt to a smaller range that was effectively bounded by the already well-developed NU-SOM escarpments and the newly opened Straits of Bab el Mandeb. The combination of high quality habitat,topographic confinement, and a gradual (tectonic) reduction in range, exacerbated by potentially severe fluctuations in local climate (well documented by land

  3. The diversification of terpene emissions in Mediterranean oaks: lessons from a study of Quercus suber, Quercus canariensis and its hybrid Quercus afares.

    PubMed

    Welter, Saskia; Bracho-Nuñez, Araceli; Mir, Céline; Zimmer, Ina; Kesselmeier, Jürgen; Lumaret, Roselyne; Schnitzler, Jörg-Peter; Staudt, Michael

    2012-09-01

    Interspecific gene flow is common in oaks. In the Mediterranean, this process produced geographical differentiations and new species, which may have contributed to the diversification of the production of volatile terpenes in the oak species of this region. The endemic North African deciduous oak Quercus afares (Pomel) is considered to be a stabilized hybrid between the evergreen Quercus suber (L.) and the deciduous Quercus canariensis (Willd.), presumably being monoterpene and isoprene emitters, respectively. In a common garden experiment, we examined the terpene emission capacities, terpene synthase (TPS) activities and nuclear genetic markers in 52 trees of these three oak species. All but one of the Q. suber and Q. canariensis trees were found to be genetically pure, whereas most Q. afares trees possessed a mixed genotype with a predominance of Q. suber alleles. Analysis of the foliar terpene emissions and TPS activities revealed that all the Q. canariensis trees strongly produced isoprene while all the Q. suber trees were strong monoterpene producers. Quercus afares trees produced monoterpenes as well but at more variable and significantly lower rates, and with a monoterpene pattern different than that observed in Q. suber. Among 17 individuals tested, one Q. afares tree emitted only an insignificant amount of terpenes. No mixed isoprene/monoterpene emitter was detected. Our results suggest that the capacity and pattern of volatile terpene production in Algerian Q. afares populations have strongly diverged from those of its parental species and became quantitatively and qualitatively reduced, including the complete suppression of isoprene production.

  4. Endemic North African Quercus afares Pomel originates from hybridisation between two genetically very distant oak species (Q. suber L. and Q. canariensis Willd.): evidence from nuclear and cytoplasmic markers.

    PubMed

    Mir, C; Toumi, L; Jarne, P; Sarda, V; Di Giusto, F; Lumaret, R

    2006-02-01

    Hybridisation is a potent force in plant evolution, although there are few reported examples of stabilised species that have been created through homoploid hybridisation. We focus here on Quercus afares, an endemic North African species that combines morphological, physiological and ecological traits of both Q. suber and Q. canariensis, two phylogenetically distant species. These two species are sympatric with Q. afares over most of its distribution. We studied two Q. afares populations (one from Algeria and one from Tunisia), as well as several populations of both Q. suber and Q. canariensis sampled both within and outside areas where these species overlap with Q. afares. A genetic analysis was conducted using both nuclear (allozymes) and chloroplastic markers, which shows that Q. afares originates from a Q. suber x Q. canariensis hybridisation. At most loci, Q. afares predominantly possesses alleles from Q. suber, suggesting that the initial cross between Q. suber and Q. canariensis was followed by backcrossing with Q. suber. Other hypotheses that can account for this result, including genetic drift, gene silencing, gene conversion and selection, are discussed. A single Q. suber chlorotype was detected, and all Q. afares individuals displayed this chlorotype, indicating that Q. suber was the maternal parent. Q. afares is genetically, morphologically and ecologically differentiated from its parental species, and can therefore be considered as a stabilised hybrid species.

  5. Geoscience Methods Lead to Paleo-anthropological Discoveries in Afar Rift, Ethiopia

    NASA Astrophysics Data System (ADS)

    WoldeGabriel, Giday; Renne, Paul R.; Hart, William K.; Ambrose, Stanley; Asfaw, Berhane; White, Tim D.

    2004-07-01

    With few exceptions, most of the hominid evolutionary record in Africa is closely associated with the East African Rift System. The exceptions are the South African and Chadian hominids collected from the southern and west-central parts of the continent, respectively. The Middle Awash region stands alone as the most prolific paleoanthropological area ever discovered (Figure 1). Its paleontological record has yielded over 13,000 vertebrate fossils, including several hominid taxa, ranging in age from 5.8 Ma to the present. The uniqueness of the Middle Awash hominid sites lies in their occurrence within long, > 6 Ma volcanic and sedimentary stratigraphic records. The Middle Awash region has yielded the longest hominid record yet available. The region is characterized by distinct geologic features related to a volcanic and tectonic transition zone between the continental Main Ethiopian and the proto-oceanic Afar Rifts. The rift floor is wider-200 km-than other parts of the East African Rift (Figure 1). Moreover, its Quaternary axial rift zone is wide and asymetrically located close to the western margin. The fossil assemblages and the lithostratigraphic records suggest that volcanic and tectonic activities within the broad rift floor and the adjacent rift margins were intense and episodic during the late Neogene rift evolution.

  6. Magma-driven antiform structures in the Afar rift: The Ali Sabieh range, Djibouti

    NASA Astrophysics Data System (ADS)

    Le Gall, Bernard; Daoud, Mohamed Ahmed; Maury, René C.; Rolet, Joël; Guillou, Hervé; Sue, Christian

    2010-06-01

    The Ali Sabieh Range, SE Afar, is an antiform involving Mesozoic sedimentary rocks and synrift volcanics. Previous studies have postulated a tectonic origin for this structure, in either a contractional or extensional regime. New stratigraphic, mapping and structural data demonstrate that large-scale doming took place at an early stage of rifting, in response to a mafic laccolithic intrusion dated between 28 and 20 Ma from new K-Ar age determinations. Our 'laccolith' model is chiefly supported by: (i) the geometry of the intrusion roof, (ii) the recognition of roof pendants in its axial part, and (iii) the mapping relationships between the intrusion, the associated dyke-sill network, and the upper volcanic/volcaniclastic sequences. The laccolith is assumed to have inflated with time, and to have upwardly bent its sedimentary roof rocks. From the architecture of the ˜1 km-thick Mesozoic overburden sequences, ca. 2 km of roof lifting are assumed to have occurred, probably in association with reactivated transverse discontinuities. Computed paleostress tensors indicate that the minimum principal stress axis is consistently horizontal and oriented E-W, with a dominance of extensional versus strike-slip regimes. The Ali Sabieh laccolith is the first regional-scale magma-driven antiform structure reported so far in the Afro-Arabian rift system.

  7. Magmatism on rift flanks: insights from Ambient-Noise Phase-velocity in Afar region

    NASA Astrophysics Data System (ADS)

    Korostelev, Félicie; Weemstra, Cornelis; Leroy, Sylvie; Boschi, Lapo; Ren, Yong; Ahmed, Abdulhakim; Keir, Derek; Stuart, Graham W.; Rolandone, Frédérique; Khanbari, Khaled; Hammond, James O. S.; Kendall, J. Michael; Doubre, Cécile; Ganad, Ismail Al

    2015-04-01

    During the breakup of continent in the presence of magma, strain is commonly assumed to initially occur by border faulting, and progressively migrate in space and time towards axial magma intrusion. Magmatic processes near the rift flanks are commonly ignored. We present phase-velocity maps of the crust and uppermost mantle of the conjugate margins of the southern Red Sea (Afar and Yemen) using ambient noise tomography to constrain crustal modification during breakup. Our images show that the low seismic velocities characterize not only upper crust beneath the axial volcanic systems, but also both upper and lower crust beneath rift flanks where ongoing volcanism and hydrothermal activity occurs at the surface. The results show that magmatic modification of the crust beneath rift flanks likely occurs for a protracted period of time during the breakup process, and may persist through to early seafloor spreading. Since ongoing flank magmatism during breakup impacts the thermal evolution of the lithosphere, it has implications for the subsidence history of the rift.

  8. Mapping Distribution and Forecasting Invasion of Prosopis juliflora in Ethiopia's Afar Region

    NASA Astrophysics Data System (ADS)

    West, A. M.; Wakie, T.; Luizza, M.; Evangelista, P.

    2014-12-01

    Invasion of non-native species is among the most critical threats to natural ecosystems and economies world-wide. Mesquite (which includes some 45 species) is an invasive deciduous tree which is known to have an array of negative impacts on ecosystems and rural livelihoods in arid and semi-arid regions around the world, dominating millions of hectares of land in Asia, Africa, Australia and the Americas. In Ethiopia, Prosopis juliflora (the only reported mesquite) is the most pervasive plant invader, threatening local livelihoods and the country's unique biodiversity. Due to its rapid spread and persistence, P. juliflora has been ranked as one of the leading threats to traditional land use, exceeded only by drought and conflict. This project utilized NASA's Earth Observing System (EOS) data and species distribution modeling to map current infestations of P. juliflora in the Afar region of northeastern Ethiopia, and forecast its suitable habitat across the entire country. This project provided a time and cost-effective strategy for conducting risk assessments of invasive mesquite and subsequent monitoring and mitigation efforts by land managers and local communities.

  9. Chronostratigraphy of the Miocene-Pliocene Sagantole Formation, Middle Awash Valley, Afar rift, Ethiopia

    SciTech Connect

    Renne, P.R. |; WoldeGabriel, G.; Heiken, G.; Hart, W.K.; White, T.D.

    1999-06-01

    The Sagantole Formation comprises more than 200 m of lacustrine, alluvial, and volcaniclastic sediments, plus compositionally bimodal tephras and basaltic lavas, exposed in a domelike horst named the Central Awash Complex in the southwestern Afar rift of Ethiopia. The Sagantole Formation is widely known for abundant vertebrate faunas, including the 4.4 Ma primitive hominid Ardipithecus ramidus. New lithostratigraphic data are used to subdivide the Sagantole Formation into the Kuseralee, Gawto, Haradaso, Aramis, Beidareem, Adgantole, and Belohdelie Members, in ascending order. The members are defined on the basis of lithologic differences and laterally continuous bounding tephras. {sup 40}Ar/{sup 39}Ar dating of 12 intercalated volcanic units firmly establishes the age of the Sagantole Formation to be 5.6 to 3.9 Ma, significantly older than previous proposals based on erroneous correlations. Magnetostratigraphic data reveal eight paleomagnetic polarity zones, which can be correlated unambiguously with the Thvera, Sidufjall, Nunivak, and Cochiti Subchrons of the Gilbert Chron. Thus, by reference to the geomagnetic polarity time scale, seven additional chronological datums can be placed in the Sagantole Formation. With a total of 19 such datums, the age resolution anywhere in the Sagantole Formation is better than {+-}100 k.y., making this the best-dated Miocene-Pliocene succession in Africa.

  10. Mentoring from Afar: Nurse Mentor Challenges in the Canadian Armed Forces.

    PubMed

    Neal, Laura D M

    2015-06-01

    There is an integral connection between leadership, mentoring and professional career progression within the nursing profession. The purpose of this article is to examine recommendations and best practices from the literature and provide a basis to construct a formalized successful mentoring dyad program with guidelines on establishing and maintaining a productive mentoring relationship over long distance. Canadian Armed Forces (CAF) nurses practice within a unique domain both domestically and abroad. The military environment incorporates many aspects of mentoring that could benefit significantly by distance interchange. Supported through examining literature within nursing, CAF publications and other professions along with contrasting successful distance mentoring programs, the findings suggest that a top-down, leadership-driven formal mentoring program could be beneficial to CAF nurses. The literature review outlines definitions of terms for mentorship and distance mentoring or e-mentoring. A cross section of technology is now embedded in all work environments with personal communication devices commonplace. Establishing mentoring relationships from afar is practical and feasible. This article provides a guided discussion for nursing leaders, managers and grassroots nurses to implement mentoring programs over distances. The recommendations and findings of this article could have universal applications to isolated nursing environments outside of Canadian military operational frameworks.

  11. September 2005 mega-dike emplacement in the Manda-Harraro nascent oceanic rift (Afar depression)

    NASA Astrophysics Data System (ADS)

    Ayele, Atalay; Keir, Derek; Ebinger, Cynthia; Wright, Tim J.; Stuart, Graham W.; Buck, W. Roger; Jacques, Eric; Ogubazghi, Ghebrebrhan; Sholan, Jamal

    2009-10-01

    Local and regional seismic data constrain the space-time history of deformation and likely magma sources for the September 2005 diking episode in the Manda-Harraro rift zone of the Afar depression. The results distinguish three centers from which subhorizontal dike propagation progressed: two distinct sources around the Dabbahu-Gab'ho Volcanic Complex (DVC) and the third at the Ado'Ale Volcanic Complex (AVC). The temporal development of seismicity shows that the majority of the dike volume is fed from beneath AVC and migrated laterally with an average rate of 15-30 cm/sec. This dike emplacement at a divergent plate boundary is unusual due to the rapid intrusion of a large volume of magma and the large amount of seismic moment release. We interpret this volcano-tectonic crisis as a complex interaction of multiple magma plumbing sources and lithosphere at a plate boundary under extension. Such repeated episodes will eventually shape the incipient oceanic rift morphology.

  12. Pythagorean Triples from Harmonic Sequences.

    ERIC Educational Resources Information Center

    DiDomenico, Angelo S.; Tanner, Randy J.

    2001-01-01

    Shows how all primitive Pythagorean triples can be generated from harmonic sequences. Use inductive and deductive reasoning to explore how Pythagorean triples are connected with another area of mathematics. (KHR)

  13. Molecular beam epitaxy growth of germanium junctions for multi-junction solar cell applications

    NASA Astrophysics Data System (ADS)

    Masuda, T.; Faucher, J.; Lee, M. L.

    2016-11-01

    We report on the molecular beam epitaxy (MBE) growth and device characteristics of Ge solar cells. Integrating a Ge bottom cell beneath a lattice-matched triple junction stack grown by MBE could enable ultra-high efficiencies without metamorphic growth or wafer bonding. However, a diffused junction cannot be readily formed in Ge by MBE due to the low sticking coefficient of group-V molecules on Ge surfaces. We therefore realized Ge junctions by growth of homo-epitaxial n-Ge on p-Ge wafers within a standard III-V MBE system. We then fabricated Ge solar cells, finding growth temperature and post-growth annealing to be key factors for achieving high efficiency. Open-circuit voltage and fill factor values of ~0.175 V and ~0.59 without a window layer were obtained, both of which are comparable to diffused Ge junctions formed by metal-organic vapor phase epitaxy. We also demonstrate growth of high-quality, single-domain GaAs on the Ge junction, as needed for subsequent growth of III-V subcells, and that the surface passivation afforded by the GaAs layer slightly improves the Ge cell performance.

  14. Overcoming Triple Segregation

    ERIC Educational Resources Information Center

    Gandara, Patricia

    2010-01-01

    Latinos are, after whites, the most segregated student group in the United States, and their segregation is closely tied to poor academic outcomes. Latinos experience a triple segregation: by race/ethnicity, poverty, and language. Racial segregation perpetuates negative stereotypes, reduces the likelihood of a strong teaching staff, and is often…

  15. Theoretical performance of multi-junction solar cells combining III-V and Si materials.

    PubMed

    Mathews, Ian; O'Mahony, Donagh; Corbett, Brian; Morrison, Alan P

    2012-09-10

    A route to improving the overall efficiency of multi-junction solar cells employing conventional III-V and Si photovoltaic junctions is presented here. A simulation model was developed to consider the performance of several multi-junction solar cell structures in various multi-terminal configurations. For series connected, 2-terminal triple-junction solar cells, incorporating an AlGaAs top junction, a GaAs middle junction and either a Si or InGaAs bottom junction, it was found that the configuration with a Si bottom junction yielded a marginally higher one sun efficiency of 41.5% versus 41.3% for an InGaAs bottom junction. A significant efficiency gain of 1.8% over the two-terminal device can be achieved by providing an additional terminal to the Si bottom junction in a 3-junction mechanically stacked configuration. It is shown that the optimum performance can be achieved by employing a four-junction series-connected mechanically stacked device incorporating a Si subcell between top AlGaAs/GaAs and bottom In0.53Ga0.47As cells.

  16. Free electron gas primary thermometer: The bipolar junction transistor

    SciTech Connect

    Mimila-Arroyo, J.

    2013-11-04

    The temperature of a bipolar transistor is extracted probing its carrier energy distribution through its collector current, obtained under appropriate polarization conditions, following a rigorous mathematical method. The obtained temperature is independent of the transistor physical properties as current gain, structure (Homo-junction or hetero-junction), and geometrical parameters, resulting to be a primary thermometer. This proposition has been tested using off the shelf silicon transistors at thermal equilibrium with water at its triple point, the transistor temperature values obtained involve an uncertainty of a few milli-Kelvin. This proposition has been successfully tested in the temperature range of 77–450 K.

  17. The Quaternary volcanic rocks of the northern Afar Depression (northern Ethiopia): Perspectives on petrology, geochemistry, and tectonics

    NASA Astrophysics Data System (ADS)

    Hagos, Miruts; Koeberl, Christian; van Wyk de Vries, Benjamin

    2016-05-01

    The northern Afar Depression is one of the most volcano-tectonically active parts of the East African Rift system, a place where oceanic rifting may be beginning to form an incipient oceanic crust. In its center, over an area that is ∼80 km long and ∼50 km wide, there are seven major NNW-SSE-aligned shield volcanoes/volcanic edifices surrounded by compositionally distinct fissure-fed basalts. The Quaternary lavas in this area range from transitional to tholeiitic basalts, with significant across-axis variation both in mineralogy and chemistry. The variation in the contents of the major elements (TiO2, Al2O3, and Fe2O3), incompatible trace elements (Nd, Hf, Th, Ta), and the contents and ratios of the rare earth elements (REE) (e.g., (La/Yb)n = 5.3-8.9) indicate some variation in the petrogenetic processes responsible for the formation of these basalts. However, the variation in isotopic compositions of the mafic lavas is minimal (87Sr/86Sr = 0.7036-0.7041, 143Nd/144Nd = 0.51286-0.51289), which suggests only one source for all the Danakil Depression basalts. These basalts have isotope and incompatible trace element ratios that overlap with those of the Oligocene High-Ti2 flood basalts from the Ethiopian Plateau, interpreted as being derived from the last phase/tail of the Afar mantle plume source. Moreover, the Ce/Pb, Ba/U ratios indicate that the involvement of continental crust in the petrogenesis of the basaltic rocks is minimal; instead, both depth and degree of melting of the source reservoir underneath the northern Afar Depression played a major role for the production of incompatible element-enriched basalts (e.g., AleBagu Shield basalts) and the incompatible element-depleted tholeiitic basalts (e.g., Erta'Ale and Alu Shield basalts).

  18. Phylogeny of early Australopithecus: new fossil evidence from the Woranso-Mille (central Afar, Ethiopia).

    PubMed

    Haile-Selassie, Yohannes

    2010-10-27

    The earliest evidence of Australopithecus goes back to ca 4.2 Ma with the first recorded appearance of Australopithecus 'anamensis' at Kanapoi, Kenya. Australopithecus afarensis is well documented between 3.6 and 3.0 Ma mainly from deposits at Laetoli (Tanzania) and Hadar (Ethiopia). The phylogenetic relationship of these two 'species' is hypothesized as ancestor-descendant. However, the lack of fossil evidence from the time between 3.6 and 3.9 Ma has been one of its weakest points. Recent fieldwork in the Woranso-Mille study area in the Afar region of Ethiopia has yielded fossil hominids dated between 3.6 and 3.8 Ma. These new fossils play a significant role in testing the proposed relationship between Au. anamensis and Au. afarensis. The Woranso-Mille hominids (3.6-3.8 Ma) show a mosaic of primitive, predominantly Au. anamensis-like, and some derived (Au. afarensis-like) dentognathic features. Furthermore, they show that, as currently known, there are no discrete and functionally significant anatomical differences between Au. anamensis and Au. afarensis. Based on the currently available evidence, it appears that there is no compelling evidence to falsify the hypothesis of 'chronospecies pair' or ancestor-descendant relationship between Au. anamensis and Au. afarensis. Most importantly, however, the temporally and morphologically intermediate Woranso-Mille hominids indicate that the species names Au. afarensis and Au. anamensis do not refer to two real species, but rather to earlier and later representatives of a single phyletically evolving lineage. However, if retaining these two names is necessary for communication purposes, the Woranso-Mille hominids are best referred to as Au. anamensis based on new dentognathic evidence.

  19. First evidence of epithermal gold occurrences in the SE Afar Rift, Republic of Djibouti

    NASA Astrophysics Data System (ADS)

    Moussa, N.; Fouquet, Y.; Le Gall, B.; Caminiti, A. M.; Rolet, J.; Bohn, M.; Etoubleau, J.; Delacourt, C.; Jalludin, M.

    2012-06-01

    The geology of the Republic of Djibouti, in the SE Afar Triangle, is characterized by intense tectonic and bimodal volcanic activity that began as early as 25-30 Ma. Each magmatic event was accompanied by hydrothermal activity. Mineralization generally occurs as gold-silver bearing chalcedony veins and is associated with felsic volcanism. Eighty samples from mineralized hydrothermal chalcedony, quartz ± carbonate veins and breccias were studied from ten sites representing four major volcanic events that range in age from early Miocene to the present. The most recent veins are controlled by fractures at the edges of grabens established during the last 4 Myr. Gold in excess of 200 ppb is present in 30% of the samples, with values up to 16 ppm. Mineralogical compositions allowed us to identify different types of mineralization corresponding to different depths in the hydrothermal system: (1) surface and subsurface mineralization characterized by carbonate chimneys, gypsum, silica cap and quartz ± carbonate veins that are depleted in metals and Au; (2) shallow banded chalcedony ± adularia veins related to boiling that contain up to 16 ppm Au, occurring as native gold and electrum with pyrite, and tetradymite; (3) quartz veins with sulfides, and (4) epidote alteration in the deepest hydrothermal zones. Samples in which pyrite is enriched in As tend to have a high Au content. The association with bimodal volcanism, the occurrence of adularia and the native Au and electrum in banded chalcedony veins are typical of epithermal systems and confirm that this type of mineralization can occur in a young intracontinental rift system.

  20. Magma-maintained rift segmentation at continental rupture in the 2005 Afar dyking episode.

    PubMed

    Wright, Tim J; Ebinger, Cindy; Biggs, Juliet; Ayele, Atalay; Yirgu, Gezahegn; Keir, Derek; Stork, Anna

    2006-07-20

    Seafloor spreading centres show a regular along-axis segmentation thought to be produced by a segmented magma supply in the passively upwelling mantle. On the other hand, continental rifts are segmented by large offset normal faults, and many lack magmatism. It is unclear how, when and where the ubiquitous segmented melt zones are emplaced during the continental rupture process. Between 14 September and 4 October 2005, 163 earthquakes (magnitudes greater than 3.9) and a volcanic eruption occurred within the approximately 60-km-long Dabbahu magmatic segment of the Afar rift, a nascent seafloor spreading centre in stretched continental lithosphere. Here we present a three-dimensional deformation field for the Dabbahu rifting episode derived from satellite radar data, which shows that the entire segment ruptured, making it the largest to have occurred on land in the era of satellite geodesy. Simple elastic modelling shows that the magmatic segment opened by up to 8 m, yet seismic rupture can account for only 8 per cent of the observed deformation. Magma was injected along a dyke between depths of 2 and 9 km, corresponding to a total intrusion volume of approximately 2.5 km3. Much of the magma appears to have originated from shallow chambers beneath Dabbahu and Gabho volcanoes at the northern end of the segment, where an explosive fissural eruption occurred on 26 September 2005. Although comparable in magnitude to the ten year (1975-84) Krafla events in Iceland, seismic data suggest that most of the Dabbahu dyke intrusion occurred in less than a week. Thus, magma intrusion via dyking, rather than segmented normal faulting, maintains and probably initiated the along-axis segmentation along this sector of the Nubia-Arabia plate boundary.

  1. Magmatic cycles pace tectonic and morphological expression of rifting (Afar depression, Ethiopia)

    NASA Astrophysics Data System (ADS)

    Medynski, S.; Pik, R.; Burnard, P.; Dumont, S.; Grandin, R.; Williams, A.; Blard, P.-H.; Schimmelpfennig, I.; Vye-Brown, C.; France, L.; Ayalew, D.; Benedetti, L.; Yirgu, G.

    2016-07-01

    The existence of narrow axial volcanic zones of mid-oceanic ridges testifies of the underlying concentration of both melt distribution and tectonic strain. As a result of repeated diking and faulting, axial volcanic zones therefore represent a spectacular topographic expression of plate divergence. However, the submarine location of oceanic ridges makes it difficult to constrain the interplay between tectonic and magmatic processes in time and space. In this study, we use the Dabbahu-Manda Hararo (DMH) magmatic rift segment (Afar, Ethiopia) to provide quantitative constraints on the response of tectonic processes to variations in magma supply at divergent plate boundaries. The DMH magmatic rift segment is considered an analogue of an oceanic ridge, exhibiting a fault pattern, extension rate and topographic relief comparable to intermediate- to slow-spreading ridges. Here, we focus on the northern and central parts of DMH rift, where we present quantitative slip rates for the past 40 kyr for major and minor normal fault scarps in the vicinity of a recent (September 2005) dike intrusion. The data obtained show that the axial valley topography has been created by enhanced slip rates that occurred during periods of limited volcanism, suggestive of reduced magmatic activity, probably in association with changes in strain distribution in the crust. Our results indicate that the development of the axial valley topography has been regulated by the lifetimes of the magma reservoirs and their spatial distribution along the segment, and thus to the magmatic cycles of replenishment/differentiation (<100 kyr). Our findings are also consistent with magma-induced deformation in magma-rich rift segments. The record of two tectonic events of metric vertical amplitude on the fault that accommodated the most part of surface displacement during the 2005 dike intrusion suggests that the latter type of intrusion occurs roughly every 10 kyr in the northern part of the DMH segment.

  2. The length change of a dislocation junction in FCC-single crystals under stress

    NASA Astrophysics Data System (ADS)

    Kurinnaya, Raisa; Zgolich, Marina; Starenchenko, Vladimir; Sadritdinova, Gulnora

    2016-01-01

    The product of dislocation reactions among dislocations of non-coplanar slip systems are dislocation junctions. The paper presents the study on the length change of dislocation junctions under stress. It is revealed that dislocation junctions can be destructed by merging of triple dislocation nodes at certain inclination angles of the glide dislocation and the forest dislocation to the junction line and the corresponding lengths of free segments of intersecting dislocations. Dislocation junctions formed at an arbitrary intersection of segments of the reacting dislocation are investigated. The geometry of the intersection of segments of reacting dislocations, at which dislocation junctions are not completely destructed under stress but cease to be an obstacle for further motion of the glide dislocation, is determined. Such junctions remain in the shear zone, presenting an obstacle to other glide dislocations. Conditions under which the length of the dislocation junction increases with an increase in the stress exceeding the original length are found. The formed extended barrier becomes too strong for the acting stress. Higher stresses are required in order to destruct it. The probability of completely destructible junctions under stress, the probability of non-destructible junctions that remain in the shear zone and replenish the density of dislocation debris, as well as the probability of formation of long strong junctions, which are barriers capable of limiting the shear zone, are determined.

  3. Fluid inclusion and stable isotopes studies of epithermal gold-bearing veins in the SE Afar Rift (Djibouti)

    NASA Astrophysics Data System (ADS)

    Moussa, N.; Boiron, M. C.; Grassineau, N.; Fouquet, Y.; Le Gall, B.; Mohamed, J.

    2015-12-01

    The Afar rift results from the interaction of a number of actively-propagating tectono-magmatic axes. Recent field investigations in the SE Afar rift have emphasized the importance of hydrothermal system in rift-related volcanic complexes. Mineralization occur as gold-silver bearing veins and are associated with felsic volcanism. Late carbonate veins barren of sulfides and gold are common. The morphologies and textures of quartz show crustiform colloform banding, massive and breccias. Microthermometric measurements were made on quartz-hosted two phases (liquid + vapor) inclusions; mean homogenization temperature range from 150°C to 340°C and ice-melting temperatures range from -0.2° to 1.6°C indicating that inclusion solutions are dilute and contain 0.35 to 2.7 equivalent wt. % NaCl. Furthermore, δ18O and δ13C values from calcite range from 3.7 to 26.6 ‰ and -7.5 to 0.3‰, respectively. The presence of platy calcite and adularia indicate that boiling condition existed. This study shows that precious-metal deposition mainly occurred from hydrothermal fluids at 200°C at around 300 and 450 m below the present-day surface in a typical low-sulphidation epithermal environment.

  4. Mapping current and potential distribution of non-native Prosopis juliflora in the Afar region of Ethiopia

    USGS Publications Warehouse

    Wakie, Tewodros; Evangelista, Paul H.; Jarnevich, Catherine S.; Laituri, Melinda

    2014-01-01

    We used correlative models with species occurrence points, Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices, and topo-climatic predictors to map the current distribution and potential habitat of invasive Prosopis juliflora in Afar, Ethiopia. Time-series of MODIS Enhanced Vegetation Indices (EVI) and Normalized Difference Vegetation Indices (NDVI) with 250 m2 spatial resolution were selected as remote sensing predictors for mapping distributions, while WorldClim bioclimatic products and generated topographic variables from the Shuttle Radar Topography Mission product (SRTM) were used to predict potential infestations. We ran Maxent models using non-correlated variables and the 143 species-occurrence points. Maxent generated probability surfaces were converted into binary maps using the 10-percentile logistic threshold values. Performances of models were evaluated using area under the receiver-operating characteristic (ROC) curve (AUC). Our results indicate that the extent of P. juliflora invasion is approximately 3,605 km2 in the Afar region (AUC = 0.94), while the potential habitat for future infestations is 5,024 km2 (AUC = 0.95). Our analyses demonstrate that time-series of MODIS vegetation indices and species occurrence points can be used with Maxent modeling software to map the current distribution of P. juliflora, while topo-climatic variables are good predictors of potential habitat in Ethiopia. Our results can quantify current and future infestations, and inform management and policy decisions for containing P. juliflora. Our methods can also be replicated for managing invasive species in other East African countries.

  5. Mapping of lithologic and structural units using multispectral imagery. [Afar-Triangle/Ethiopia and adjacent areas (Ethiopian Plateau, Somali Plateau, and parts of Yemen and Saudi Arabia)

    NASA Technical Reports Server (NTRS)

    Kronberg, P. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. ERTS-1 MSS imagery covering the Afar-Triangle/Ethiopia and adjacent regions (Ethiopian Plateau, Somali Plateau, and parts of Yemen and Saudi Arabi) was applied to the mapping of lithologic and structural units of the test area at a scale 1:1,000,000. Results of the geological evaluation of the ERTS-1 imagery of the Afar have proven the usefullness of this type of satellite data for regional geological mapping. Evaluation of the ERTS images also resulted in new aspects of the structural setting and tectonic development of the Afar-Triangle, where three large rift systems, the oceanic rifts of the Red Sea and Gulf of Aden and the continental East African rift system, seem to meet each other. Surface structures mapped by ERTS do not indicate that the oceanic rift of the Gulf of Aden (Sheba Ridge) continues into the area of continental crust west of the Gulf of Tadjura. ERTS data show that the Wonji fault belt of the African rift system does not enter or cut through the central Afar. The Aysha-Horst is not a Horst but an autochthonous spur of the Somali Plateau.

  6. Oocyte triplet pairing for electrophysiological investigation of gap junctional coupling

    PubMed Central

    Hayar, Abdallah; Charlesworth, Amanda; Garcia-Rill, Edgar

    2010-01-01

    Gap junctions formed by expressing connexin subunits in Xenopus oocytes provide a valuable tool for revealing the gating properties of intercellular gap junctions in electrically coupled cells. We describe a new method that consists of simultaneous triple recordings from 3 apposed oocytes expressing exogenous connexins. The advantages of this method is that in one single experiment, one oocyte serves as control while a pair of oocytes, which have been manipulated differently, may be tested for different gap junctional properties. Moreover, we can study simultaneously the gap junctional coupling of 3 different pairs of oocytes in the same preparation. If the experiment consists of testing the effect of a single drug, this approach will reduce the time required, as background coupling in control pairs of oocytes does not need to be measured separately as with the conventional 2 oocyte pairing. The triplet approach also increases confidence that any changes seen in junctional communication are due to the experimental treatment and not variation in the preparation of oocytes or execution of the experiment. In this study, we show the example of testing the gap junctional properties among three oocytes, two of which are expressing rat connexin36. PMID:20230857

  7. Triple mode Cepheid masses

    NASA Technical Reports Server (NTRS)

    King, D. S.; Cox, A. N.; Hodson, S. W.

    1980-01-01

    Unconventional composition structures are proposed to explain the periods of the triple mode Cepheid aC And. A strong Cepheid wind appears to enrich helium in the convection zones down to about 60,000 K or 70,000 K. Then some downward partial mixing occurs to the bottom of a layer with about 1-q = .0005 of the stellar mass. It was found that AC And was not unlike anomalous Cepheids. However, masses of betwen one and two solar masses are suggested and the population is more likely a type two.

  8. Petrological and geochemical data of volcanic rocks from the southern Afar Depression, Ethiopia.

    NASA Astrophysics Data System (ADS)

    Urbanek, Ch.; Faupl, P.; Richter, W.; Seidler, H.

    2003-04-01

    The geological and petrological investigations (FWF Project P15196) in the southern Afar Depression of Ethiopia support an international palaeoanthropological research-team (PAR) under the leadership of Horst Seidler. Mount Galila is the conspicuous centre of the research area [N 9° 44.101', E 40° 27.368'], situated about 20 km E of the NNE-SSW striking, recently active Hertale Graben, which represents a northernmost segment of the Main Ethiopian Rift (MER). Stratigraphically, the fossiliferous lacustrine and fluvial deposits, as well as the intercalated volcanic layers of the Galila area, belong to the "Upper Stratoid Series" (5-1.4 Ma) and will be named the Mount Galila Formation. They are similar to the Awash Group, from which very famous early hominid fossils have been described. In the Mount Galila Fm., 7 main volcanic horizons serve as marker beds comprising basalts, ignimbrites, tuffs and tuffaceous sands. The basalt horizons in the research area represent basaltic lava flows each consisting of one single flow unit c. 5 meters thick with maximum 5 cooling units. A first set of geochemical data from XRF spectrometry comprising main and trace element analysis shows characteristics for the volcanic marker beds as following: The basalts are clearly tholeiitic in the main elements (FeO/MgO/Alk) and show typical trace element distributions (e.g. Zr/Y-Zr; Ti/100-Yx3-Zr) as Within Plate Tholeiit Basalts. All basalt samples contain access 40Ar which can be explained by specific erruption mechanisms that leads to analytical problems for 40Ar/39Ar dating. In the TAS diagram after LeMaitre 1984 the ignimbrites vary at high alkali levels (7-9%) from trachytic to dacitic and rhyolitic composition, whereas at low alkali contents (<7%) they plot into the andesitic field. Compared to the basalts, the geochemistry of the ignimbrites is much more inhomogenous. Tuffs and tuffaceous sands are relevant as marker beds especially for the palaeoanthropological excavations in the

  9. Magmatic cycles pace tectonic and morphological expression of rifting (Afar depression, Ethiopia)

    NASA Astrophysics Data System (ADS)

    Medynski, Sarah; Pik, Raphael; Burnard, Peter; Blard, Pierre-Henri

    2016-04-01

    Dyking and faulting at mid-oceanic ridges are concentrated in narrow axial volcanic zones due to focussing of both melt distribution and tectonic strain along the plate boundary. Due to the predominantly submarine location of oceanic ridges, the interplay between these processes remain poorly constrained in time and space. In this study, we use the Dabbahu-Manda Hararo (DMH) magmatic rift segment (MRS) (Afar, Ethiopia) to answers the long debated chicken-egg question about magmatic and tectonic processes in extensive context: which on comes first, and how those two processes interplay to finally form oceanic ridges? The DMH MRS is an oceanic ridge analogue and here we present quantitative slip rates on major and minor normal fault scarps for the past 40 kyr in the vicinity of a recent (September 2005) dike intrusion. Our data show that the long-term-vertical slip rates of faults that ruptured in 2005 are too low to explain the present rift topography and that the 2005 strain distribution is not the main stress accommodating mechanism in the DMH segment. Instead, we show that the axial valley topography is created by enhanced slip rates which occur only when the amount of magma available in magma reservoirs is limited, thus preventing dykes from reaching the surface. Our results suggest that development of the axial valley topography is regulated by the magma reservoir lifetime and, thus, to the magmatic cycles of replenishment/differentiation (< 100 ky). This implies that in the DMH rift system (with a magma supply typical of an intermediate spreading centre), significant topography of the axial rift valley is transient, and is expressed only when magma available in the reservoirs decreases. The absence of tilting on the rift margins over the last 200 kyr also suggests that amagmatic accommodation of extension is not required over this time period. Extension instead is accommodated by dykes injected laterally from multiple ephemeral reservoirs located along the DMH

  10. Receiver function imaging of the lithosphere-asthenosphere boundary and melt beneath the Afar Rift in comparison to other systems

    NASA Astrophysics Data System (ADS)

    Rychert, Catherine A.; Harmon, Nicholas

    2015-04-01

    Heating, melting, and stretching destroy continents at volcanic rifts. Mantle plumes are often invoked to thermally weaken the continental lithosphere and accommodate rifting through the influx of magma. However the relative effects of mechanical stretching vs. melt infiltration and weakening are not well quantified during the evolution of rifting. S-to-p (Sp) imaging beneath the Afar Rift provides additional constraints. We use two methodologies to investigate structure and locate robust features: 1) binning by conversion point and then simultaneous deconvolution in the frequency domain, and 2) extended multitaper followed by migration and stacking. We image a lithosphere-asthenosphere boundary at ~75 km beneath the flank of the Afar Rift vs. its complete absence beneath the rift. Instead, a strong velocity increase with depth at ~75 km depth is imaged. Beneath the rift axis waveform modeling suggests the lack of a mantle lithosphere with a velocity increase at ~75 km depth. Geodynamic models that include high melt retention and suppress thermal convection easily match the required velocity-depth profile, the velocity increase arising from a drop in melt percentage at the onset of decompression melting. Whereas, models with conservative melt retention that include thermal buoyancy effects cannot reproduce the strong velocity increase. The shallow depth of the onset of melting is consistent with a mantle potential temperature = 1350 - 1400°C, i.e., typical for adiabatic decompression melting. Trace element signatures and geochemical modeling have been used to argue for a thick lithosphere beneath the rift and slightly higher mantle potential temperatures ~1450°C, although overall, given modeling assumptions, the results are not in disagreement. Therefore, although a plume initially destroyed the mantle lithosphere, its influence directly beneath Afar today is not strong. Volcanism continues via adiabatic decompression melting assisted by strong melt buoyancy

  11. Quantum junction solar cells.

    PubMed

    Tang, Jiang; Liu, Huan; Zhitomirsky, David; Hoogland, Sjoerd; Wang, Xihua; Furukawa, Melissa; Levina, Larissa; Sargent, Edward H

    2012-09-12

    Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO(2)); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics.

  12. Teaching Triple Science: GCSE Chemistry

    ERIC Educational Resources Information Center

    Learning and Skills Network (NJ3), 2007

    2007-01-01

    The Department for Children, Schools and Families (DCSF) has contracted with the Learning and Skills Network to support awareness and take-up of Triple Science GCSEs through the Triple Science Support Programme. This publication provides an introduction to teaching and learning approaches for the extension topics within GCSE Chemistry. It…

  13. Teaching Triple Science: GCSE Biology

    ERIC Educational Resources Information Center

    Learning and Skills Network (NJ3), 2007

    2007-01-01

    The Department for Children, Schools and Families (DCSF) has contracted with the Learning and Skills Network to support awareness and take-up of Triple Science GCSEs through the Triple Science Support Programme. This publication provides an introduction to teaching and learning approaches for the extension topics within GCSE Biology. It highlights…

  14. Density of Primitive Pythagorean Triples

    ERIC Educational Resources Information Center

    Killen, Duncan A.

    2004-01-01

    Based on the properties of a Primitive Pythagorean Triple (PPT), a computer program was written to generate, print, and count all PPTs greater than or equal to I[subscript x], where I[subscript x] is an arbitrarily chosen integer. The Density of Primitive Pythagorean Triples may be defined as the ratio of the number of PPTs whose hypotenuse is…

  15. From Binaries to Triples

    NASA Astrophysics Data System (ADS)

    Freismuth, T.; Tokovinin, A.

    2002-12-01

    About 10% of all binary systems are close binaries (P<1000 days). Among those with P<10d, over 40% are known to belong to higher-multiplicity systems (triples, quadruples, etc.). Do ALL close systems have tertiary companions? For a selection of 12 nearby, and apparently "single" close binaries with solar-mass dwarf primary components from the 8-th catalogue of spectroscopic binary orbits, images in the B and R filters were taken at the CTIO 0.9m telescope and suitable tertiary candidates were be identified on color-magnitude diagrams (CMDs). Of the 12 SBs, four were found to have tertiary candidates: HD 67084, HD 120734, HD 93486, and VV Mon. However, none of these candidates were found to be common proper motion companions. Follow up observations using adaptive optics reveal a companion to HD 148704. Future observations are planned.

  16. Triple acting radial seal

    SciTech Connect

    Ebert, Todd A; Carella, John A

    2012-03-13

    A triple acting radial seal used as an interstage seal assembly in a gas turbine engine, where the seal assembly includes an interstage seal support extending from a stationary inner shroud of a vane ring, the interstage seal support includes a larger annular radial inward facing groove in which an outer annular floating seal assembly is secured for radial displacement, and the outer annular floating seal assembly includes a smaller annular radial inward facing groove in which an inner annular floating seal assembly is secured also for radial displacement. A compliant seal is secured to the inner annular floating seal assembly. The outer annular floating seal assembly encapsulates the inner annular floating seal assembly which is made from a very low alpha material in order to reduce thermal stress.

  17. Triple wavelength monitor PDIC

    NASA Astrophysics Data System (ADS)

    Park, Deukhee; Ha, Chang-woo; Shin, Sang-cheol; Kwon, Kyoung-soo; Ko, Joo-yul; Kang, Shin-jae

    2006-08-01

    Recently the demand for high-capacity optical storage systems compatible with CD, DVD, and Blue is growing. We designed the Vertical NIP photodiode with a diameter of 700um and the trans-impedance circuits by using 0.6um BiCMOS process. The measured sensitivity of the photodiode is 0.25, 0.42, and 0.48A/W for 405, 650, and 780nm wavelength lights, respectively. The capacitance of the PD is 4.5pF. Monitor PDIC for detecting triple wavelength lights is presented in this paper. The complete monitor PDIC with the NIP photodiode of 700um in diameter occupies 1900um*1200um. -3dB bandwidth is 110MHz and the temperature drift of output voltage is 3.2%.

  18. Triple-resonant transducers.

    PubMed

    Butler, Stephen C

    2012-06-01

    A detailed analysis is presented of two novel multiple-resonant transducers which produce a wider transmit response than that of a conventional Tonpilz-type transducer. These multi-resonant transducers are Tonpilz-type longitudinal vibrators that produce three coupled resonances and are referred to as triple-resonant transducers (TRTs). One of these designs is a mechanical series arrangement of a tail mass, piezoelectric ceramic stack, central mass, compliant spring, second central mass, second compliant spring, and a piston-radiating head mass. The other TRT design is a mechanical series arrangement of a tail mass, piezoelectric ceramic stack, central mass, compliant spring, and head mass with a quarter-wave matching layer of poly(methyl methacrylate) on the head mass. Several prototype transducer element designs were fabricated that demonstrated proof-of-concept.

  19. Mapping Current and Potential Distribution of Non-Native Prosopis juliflora in the Afar Region of Ethiopia

    PubMed Central

    Wakie, Tewodros T.; Evangelista, Paul H.; Jarnevich, Catherine S.; Laituri, Melinda

    2014-01-01

    We used correlative models with species occurrence points, Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices, and topo-climatic predictors to map the current distribution and potential habitat of invasive Prosopis juliflora in Afar, Ethiopia. Time-series of MODIS Enhanced Vegetation Indices (EVI) and Normalized Difference Vegetation Indices (NDVI) with 250 m2 spatial resolution were selected as remote sensing predictors for mapping distributions, while WorldClim bioclimatic products and generated topographic variables from the Shuttle Radar Topography Mission product (SRTM) were used to predict potential infestations. We ran Maxent models using non-correlated variables and the 143 species- occurrence points. Maxent generated probability surfaces were converted into binary maps using the 10-percentile logistic threshold values. Performances of models were evaluated using area under the receiver-operating characteristic (ROC) curve (AUC). Our results indicate that the extent of P. juliflora invasion is approximately 3,605 km2 in the Afar region (AUC  = 0.94), while the potential habitat for future infestations is 5,024 km2 (AUC  = 0.95). Our analyses demonstrate that time-series of MODIS vegetation indices and species occurrence points can be used with Maxent modeling software to map the current distribution of P. juliflora, while topo-climatic variables are good predictors of potential habitat in Ethiopia. Our results can quantify current and future infestations, and inform management and policy decisions for containing P. juliflora. Our methods can also be replicated for managing invasive species in other East African countries. PMID:25393396

  20. Mapping current and potential distribution of non-native Prosopis juliflora in the Afar region of Ethiopia.

    PubMed

    Wakie, Tewodros T; Evangelista, Paul H; Jarnevich, Catherine S; Laituri, Melinda

    2014-01-01

    We used correlative models with species occurrence points, Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices, and topo-climatic predictors to map the current distribution and potential habitat of invasive Prosopis juliflora in Afar, Ethiopia. Time-series of MODIS Enhanced Vegetation Indices (EVI) and Normalized Difference Vegetation Indices (NDVI) with 250 m2 spatial resolution were selected as remote sensing predictors for mapping distributions, while WorldClim bioclimatic products and generated topographic variables from the Shuttle Radar Topography Mission product (SRTM) were used to predict potential infestations. We ran Maxent models using non-correlated variables and the 143 species- occurrence points. Maxent generated probability surfaces were converted into binary maps using the 10-percentile logistic threshold values. Performances of models were evaluated using area under the receiver-operating characteristic (ROC) curve (AUC). Our results indicate that the extent of P. juliflora invasion is approximately 3,605 km2 in the Afar region (AUC  = 0.94), while the potential habitat for future infestations is 5,024 km2 (AUC  = 0.95). Our analyses demonstrate that time-series of MODIS vegetation indices and species occurrence points can be used with Maxent modeling software to map the current distribution of P. juliflora, while topo-climatic variables are good predictors of potential habitat in Ethiopia. Our results can quantify current and future infestations, and inform management and policy decisions for containing P. juliflora. Our methods can also be replicated for managing invasive species in other East African countries.

  1. Merging Disparate Data Sources Into a Paleoanthropological Geodatabase for Research, Education, and Conservation in the Greater Hadar Region (Afar, Ethiopia)

    NASA Astrophysics Data System (ADS)

    Campisano, C. J.; Dimaggio, E. N.; Arrowsmith, J. R.; Kimbel, W. H.; Reed, K. E.; Robinson, S. E.; Schoville, B. J.

    2008-12-01

    Understanding the geographic, temporal, and environmental contexts of human evolution requires the ability to compare wide-ranging datasets collected from multiple research disciplines. Paleoanthropological field- research projects are notoriously independent administratively even in regions of high transdisciplinary importance. As a result, valuable opportunities for the integration of new and archival datasets spanning diverse archaeological assemblages, paleontological localities, and stratigraphic sequences are often neglected, which limits the range of research questions that can be addressed. Using geoinformatic tools we integrate spatial, temporal, and semantically disparate paleoanthropological and geological datasets from the Hadar sedimentary basin of the Afar Rift, Ethiopia. Applying newly integrated data to investigations of fossil- rich sediments will provide the geospatial framework critical for addressing fundamental questions concerning hominins and their paleoenvironmental context. We present a preliminary cyberinfrastructure for data management that will allow scientists, students, and interested citizens to interact with, integrate, and visualize data from the Afar region. Examples of our initial integration efforts include generating a regional high-resolution satellite imagery base layer for georeferencing, standardizing and compiling multiple project datasets and digitizing paper maps. We also demonstrate how the robust datasets generated from our work are being incorporated into a new, digital module for Arizona State University's Hadar Paleoanthropology Field School - modernizing field data collection methods, on-the-fly data visualization and query, and subsequent analysis and interpretation. Armed with a fully fused database tethered to high-resolution satellite imagery, we can more accurately reconstruct spatial and temporal paleoenvironmental conditions and efficiently address key scientific questions, such as those regarding the

  2. The mantle transition zone beneath the Afar Depression and adjacent regions: implications for mantle plumes and hydration

    NASA Astrophysics Data System (ADS)

    Reed, C. A.; Gao, S. S.; Liu, K. H.; Yu, Y.

    2016-06-01

    The Afar Depression and its adjacent areas are underlain by an upper mantle marked by some of the world's largest negative velocity anomalies, which are frequently attributed to the thermal influences of a lower-mantle plume. In spite of numerous studies, however, the existence of a plume beneath the area remains enigmatic, partially due to inadequate quantities of broad-band seismic data and the limited vertical resolution at the mantle transition zone (MTZ) depth of the techniques employed by previous investigations. In this study, we use an unprecedented quantity (over 14 500) of P-to-S receiver functions (RFs) recorded by 139 stations from 12 networks to image the 410 and 660 km discontinuities and map the spatial variation of the thickness of the MTZ. Non-linear stacking of the RFs under a 1-D velocity model shows robust P-to-S conversions from both discontinuities, and their apparent depths indicate the presence of an upper-mantle low-velocity zone beneath the entire study area. The Afar Depression and the northern Main Ethiopian Rift are characterized by an apparent 40-60 km depression of both MTZ discontinuities and a normal MTZ thickness. The simplest and most probable interpretation of these observations is that the apparent depressions are solely caused by velocity perturbations in the upper mantle and not by deeper processes causing temperature or hydration anomalies within the MTZ. Thickening of the MTZ on the order of 15 km beneath the southern Arabian Plate, southern Red Sea and western Gulf of Aden, which comprise the southward extension of the Afro-Arabian Dome, could reflect long-term hydration of the MTZ. A 20 km thinning of the MTZ beneath the western Ethiopian Plateau is observed and interpreted as evidence for a possible mantle plume stem originating from the lower mantle.

  3. [Activities of Dept. of Geological Sciences, Colorado University

    NASA Technical Reports Server (NTRS)

    Bilham, Roger

    1997-01-01

    Using remotely sensed data and GPS observations we completed a study of neotectonic processes responsible for landscape changes in an area of active extensional deformation and volcanism. The findings from this study describe the extensional processes operating in the region of the Afar triple junction and the northern Ethiopian rift.

  4. Four-junction superconducting circuit

    NASA Astrophysics Data System (ADS)

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.

    2016-06-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit.

  5. Dot junction solar cells

    NASA Technical Reports Server (NTRS)

    Daud, T.; Crotty, G. T.

    1986-01-01

    A design of solar cells with reduced junction area on the cell surface is investigated for reduction of saturation current and increase in open-circuit voltage. Equidiameter dot junctions distributed across the surface of the cell offer an efficient alternative, with variations in dot diameter and in the spacing between dots giving the required variations in the ratio of junction area to total surface area. A simplified analysis for short-circuit current and other cell parameters, which enables cell design optimization, is presented. Experimental solar-cell performance results, as functions of different area ratios, are presented and compared with the model. It is shown that saturation current reduction is possible for achieving efficiencies as high as 18 percent in flat-plate terrestrial applications.

  6. Triple Coincidence Radioxenon Detector

    SciTech Connect

    McIntyre, Justin I.; Aalseth, Craig E.; Bowyer, Ted W.; Hayes, James C.; Heimbigner, Tom R.; Morris, Scott J.; Reeder, Paul L.

    2004-09-22

    The Automated Radioxenon Sampler/Analyzer (ARSA) built by Pacific Northwest National Laboratory (PNNL) is on e of the world’s most sensitive systems for monitoring the four radioxenon isotopes 133Xe, 133mXE, 131mXe and 135Xe. However, due to size, weight and power specifications appropriate to meet treaty-monitoring requirements; the ARSA is unsuitable for rapid deployment using modest transportation means. To transition this technology to a portable unit can be easily and rapidly deployed can be achieved by significant reductions in size, weight and power consumption if concentration were not required. As part of an exploratory effort to reduce both the size of the air sample and the gas processing requirement PNNL has developed an experimental nuclear detector to test and qualify the use of triple coincidence signatures (beta, conversion electron, x-ray) from two of the radioxenon isotopes (135Xe and 133Xe) as well as the more traditional beta-gamma coincidence signatures used by the ARSA system. The additional coincidence requirement allows for reduced passive shielding, and makes it possible for unambiguous detection of 133Xe and 153Xe in the presence of high 222Rn backgrounds. This paper will discuss the experimental setup and the results obtained for a 133Xe sample with and without 222Rn as an interference signature.

  7. Victory Junction Gang Camp

    ERIC Educational Resources Information Center

    Shell, Ryan

    2007-01-01

    This article describes the Victory Junction Gang Camp, a not-for-profit, NASCAR-themed camp for children with chronic medical conditions that serves 24 different disease groups. The mission of the camp is to give children life-changing camping experiences that are exciting, fun, and empowering in a safe and medically sound environment. While doing…

  8. Intercellular junctions in myriapods.

    PubMed

    Dallai, R; Bigliardi, E; Lane, N J

    1990-01-01

    Tissue from the intestinal tract of myriapods, including millipedes, centipedes and pauropods were examined in tracer-impregnated sections and freeze-fracture replicas. The foregut and hindgut of all three classes exhibit pleated septate junctions; these display undulating intercellular ribbons in thin sections. In replicas they show discrete intramembranous particle (IMP) arrays aligned in rows in parallel; with one another. The tissues of the hindgut also possess scalariform junctions, characterized by cross-striated intercellular clefts in sections and IMP-enriched membranes in replicas. Gap junctions occur in all groups, but they are atypical in replicas in that their component IMPs do not always fracture onto the E face, as is characteristic of other arthropods; some IMPs cleave to the P face and others to the E face. The midgut of these organisms exhibits smooth septate junctions with conventional straight septal ribbons and occasional interseptal columns. However the intramembranous appearance in replicas is variable, particularly in centipedes, in that the rows of IMPs in chemically-unfixed propanecryofixed tissues, are prominent and adhere preferentially to the E face, with complementary P face grooves, while in fixed tissues the IMPs are much less distinct and fracture to either P face or E face. They tend not to protrude far beyond the mid-plane of the membrane bilayer and lie in rows which commonly take on the form of a network. Individual rows of the network sometimes curve to run beside a second row, over a short distance, before bending away into another part of the network. The aligned particle rows, which are much more prominent in millipedes, where they frequently lie in close parallel appositions, do not fuse into ridges as often occurs in insect tissues. The myriapod junctions, therefore, are of the same general kind as are found in the gut tract of other arthropod groups, but differ with respect to the subtleties of their intramembranous

  9. The Axum-Adwa basalt-trachyte complex: a late magmatic activity at the periphery of the Afar plume

    NASA Astrophysics Data System (ADS)

    Natali, C.; Beccaluva, L.; Bianchini, G.; Siena, F.

    2013-08-01

    The Axum-Adwa igneous complex consists of a basalt-trachyte (syenite) suite emplaced at the northern periphery of the Ethiopian plateau, after the paroxysmal eruption of the Oligocene (ca 30 Ma) continental flood basalts (CFB), which is related to the Afar plume activity. 40Ar/39Ar and K-Ar ages, carried out for the first time on felsic and basaltic rocks, constrain the magmatic age of the greater part of the complex around Axum to 19-15 Ma, whereas trachytic lavas from volcanic centres NE of Adwa are dated ca 27 Ma. The felsic compositions straddle the critical SiO2-saturation boundary, ranging from normative quartz trachyte lavas east of Adwa to normative (and modal) nepheline syenite subvolcanic domes (the obelisks stones of ancient axumites) around Axum. Petrogenetic modelling based on rock chemical data and phase equilibria calculations by PELE (Boudreau 1999) shows that low-pressure fractional crystallization processes, starting from mildly alkaline- and alkaline basalts comparable to those present in the complex, could generate SiO2-saturated trachytes and SiO2-undersaturated syenites, respectively, which correspond to residual liquid fractions of 17 and 10 %. The observed differentiation processes are consistent with the development of rifting events and formation of shallow magma chambers plausibly located between displaced (tilted) crustal blocks that favoured trapping of basaltic parental magmas and their fractionation to felsic differentiates. In syenitic domes, late- to post-magmatic processes are sometimes evidenced by secondary mineral associations (e.g. Bete Giorgis dome) which overprint the magmatic parageneses, and mainly induce additional nepheline and sodic pyroxene neo-crystallization. These metasomatic reactions were promoted by the circulation of Na-Cl-rich deuteric fluids (600-400 °C), as indicated by mineral and bulk rock chemical budgets as well as by δ18O analyses on mineral separates. The occurrence of this magmatism post-dating the

  10. Dynamics of Rifting in two Active Rift Segments in Afar - Geodetic and Structural Studies - DoRA Project

    NASA Astrophysics Data System (ADS)

    Doubre, C.; Socquet, A.; Masson, F.; Jacques, E.; Grandin, R.; Nercessian, A.; Kassim, M.; Vergne, J.; Diament, M.; Hinderer, J.; Ayele, A.; Lewi, E.; Calais, E.; Peltzer, G.; Toussaint, R.; de Chaballier, J.; Ballu, V. S.; Luck, B.; King, G. C.; Vigny, C.; Cattin, R.; Tiberi, C.; Kidane, T.; Jalludin, M.; Maggi, A.; Dorbath, C.; Manatschal, G.; Schmittbuhl, J.; Le Moigne, N.; Deroussi, S.

    2009-12-01

    The DoRA project aims to conduct complementary studies in two volcano-tectonic rifts in the Afar Depression. In Northern Afar, the Wal’is Dabbahu Rift (WD, Ethiopia) is currently undergoing a major rifting episode. This event started in September 2005 with a significant seismic activity. InSAR data revealed the injection of a 65 km-long mega-dyke that opened by up to 8 m, the slip of numerous normal faults and opening of fissures, and a rhyolitic eruption. Similarly, the Asal-Ghoubbet Rift (AG, Djibouti) was affected in 1978 by a smaller episode of rifting associated with the intrusion of a 2 m wide dyke into the crust. Since then, a large catalog of geodetic data that includes recent InSAR time series reveals the importance of non-steady deformation controlling the rift dynamics. Our goal is to gain an understanding of such volcano-tectonic segments on several time scales, including the dyking period itself and the post-event period. The study of the behavior of the AG Rift during its whole post-rifting period offers an image at t+30 years of the WD segment, while keeping in mind important structural and scale differences. First, we propose to build a complete and accurate set of geodetic data (InSAR, cGPS, GPS), covering the period under study. With a narrow temporal sample window, we will precisely describe the aseismic slip affecting the normal faults of these rifts, the periods of sudden slip and/or slip acceleration but also measure the deformation associated with probable future dyke intrusion. Second, we aim to constrain the origin of these displacements and their relation with mass transfers within the crust. Series of gravity measurements will be pursue or initiated in both rifts. Third, the recording of seismic activity is essential to constrain the relative importance of seismic and aseismic deformation. This will also help to evaluate the thickness of the seismogenic layer. Together with structural data collected during a seismic survey in the AG

  11. Fractional order junctions

    NASA Astrophysics Data System (ADS)

    Machado, J. Tenreiro

    2015-01-01

    Gottfried Leibniz generalized the derivation and integration, extending the operators from integer up to real, or even complex, orders. It is presently recognized that the resulting models capture long term memory effects difficult to describe by classical tools. Leon Chua generalized the set of lumped electrical elements that provide the building blocks in mathematical models. His proposal of the memristor and of higher order elements broadened the scope of variables and relationships embedded in the development of models. This paper follows the two directions and proposes a new logical step, by generalizing the concept of junction. Classical junctions interconnect system elements using simple algebraic restrictions. Nevertheless, this simplistic approach may be misleading in the presence of unexpected dynamical phenomena and requires including additional "parasitic" elements. The novel γ -junction includes, as special cases, the standard series and parallel connections and allows a new degree of freedom when building models. The proposal motivates the search for experimental and real world manifestations of the abstract conjectures.

  12. Thermoelectricity in molecular junctions.

    PubMed

    Reddy, Pramod; Jang, Sung-Yeon; Segalman, Rachel A; Majumdar, Arun

    2007-03-16

    By trapping molecules between two gold electrodes with a temperature difference across them, the junction Seebeck coefficients of 1,4-benzenedithiol (BDT), 4,4'-dibenzenedithiol, and 4,4''-tribenzenedithiol in contact with gold were measured at room temperature to be +8.7 +/- 2.1 microvolts per kelvin (muV/K), +12.9 +/- 2.2 muV/K, and +14.2 +/- 3.2 muV/K, respectively (where the error is the full width half maximum of the statistical distributions). The positive sign unambiguously indicates p-type (hole) conduction in these heterojunctions, whereas the Au Fermi level position for Au-BDT-Au junctions was identified to be 1.2 eV above the highest occupied molecular orbital level of BDT. The ability to study thermoelectricity in molecular junctions provides the opportunity to address these fundamental unanswered questions about their electronic structure and to begin exploring molecular thermoelectric energy conversion.

  13. Constraining melt geometries beneath the Afar Depression, Ethiopia from teleseismic receiver functions: The anisotropic H-κ stacking technique

    NASA Astrophysics Data System (ADS)

    Hammond, J. O. S.

    2014-04-01

    the nature of the crust has long been a goal for seismologists when imaging the Earth. This is particularly true in volcanic regions where imaging melt storage and migration can have important implications for the size and nature of an eruption. Receiver functions and the H-κ stacking (Hκ) technique are often used to constrain crustal thickness (H) and the ratio of P to S wave velocities (κ). In this paper, I show that it is essential to consider anisotropy when performing Hκ. I show that in a medium with horizontally transverse isotropy a strong variation in κ with back azimuth is present, which characterizes the anisotropic medium. In a vertically transverse isotropic medium, no variation in κ with back azimuth is observed, but κ is increased across all back azimuths. Thus, estimates of κ are more difficult to relate to composition than previously thought. I extend these models to melt-induced anisotropy and show that similar patterns are observed, but with more significant variations and increases in κ. Based on these observations, I develop a new anisotropic H-κ stacking technique which inverts Hκ data for melt fraction, aspect ratio, and orientation of melt inclusions. I apply this to data for the Afar Depression and show that melt is stored in interconnected stacked sills in the lower crust, which likely supply the recent volcanic eruptions and dike intrusions. This new technique can be applied to any anisotropic medium where it can provide constraints on the average crustal anisotropy.

  14. Evaluation of circulating cathodic antigen (CCA) strip for diagnosis of urinary schistosomiasis in Hassoba school children, Afar, Ethiopia.

    PubMed

    Ayele, B; Erko, B; Legesse, M; Hailu, A; Medhin, G

    2008-03-01

    A total of 206 urine samples collected from Hassoba Elementary schoolchildren, Afar, Ethiopia, a low Schistosoma haematobium endemic setting, was diagnosed to evaluate the performance of CCA strip using double references, urine filtration technique and urinalysis dipstick (Combur 1.0 Test) that detect schistosome eggs and blood in urine, respectively. The former was used as a gold standard reference method. Sensitivity, specificity, positive and negative predictive values for the CCA were 52%, 63.8%, 56.7% and 59% respectively, with reference to urine filtration technique whereas these parameters were 50.4%, 62.4%, 55.6% and 57.5% respectively, with reference to Combur 10 Test. 47 S. haematobium egg-positive children were found negative by CCA strip while 38 egg-negative children were found positive by CCA strip. Moreover, among the pre-tests done in duplicate, inconsistent results were also recorded. Assays were also compared with regard to the cost of equipment and reagents, speed and simplicity of use. Though CCA strip was found to be rapid and could be performed with minimal training, it was found to be expensive (US $ 4.95 per test) to use it for large-scale field use even if its diagnostic value would have been satisfactory. Further development and standardization of the CCA strip are required for its applicability for field use. It is also recommended that its cost per strip should be substantially cut down if it is to be used in poor schistosomiasis endemic countries.

  15. Triple gastric peptic ulcer perforation.

    PubMed

    Radojkovic, Milan; Mihajlovic, Suncica; Stojanovic, Miroslav; Stanojevic, Goran; Damnjanovic, Zoran

    2016-03-01

    Patients with advanced or metastatic cancer have compromised nutritional, metabolic, and immune conditions. Nevertheless, little is known about gastroduodenal perforation in cancer patients. Described in the present report is the case of a 41-year old woman with stage IV recurrent laryngeal cancer, who used homeopathic anticancer therapy and who had triple peptic ulcer perforation (PUP) that required surgical repair. Triple gastric PUP is a rare complication. Self-administration of homeopathic anticancer medication should be strongly discouraged when evidence-based data regarding efficacy and toxicity is lacking.

  16. Signatures of topological Josephson junctions

    NASA Astrophysics Data System (ADS)

    Peng, Yang; Pientka, Falko; Berg, Erez; Oreg, Yuval; von Oppen, Felix

    2016-08-01

    Quasiparticle poisoning and diabatic transitions may significantly narrow the window for the experimental observation of the 4 π -periodic dc Josephson effect predicted for topological Josephson junctions. Here, we show that switching-current measurements provide accessible and robust signatures for topological superconductivity which persist in the presence of quasiparticle poisoning processes. Such measurements provide access to the phase-dependent subgap spectrum and Josephson currents of the topological junction when incorporating it into an asymmetric SQUID together with a conventional Josephson junction with large critical current. We also argue that pump-probe experiments with multiple current pulses can be used to measure the quasiparticle poisoning rates of the topological junction. The proposed signatures are particularly robust, even in the presence of Zeeman fields and spin-orbit coupling, when focusing on short Josephson junctions. Finally, we also consider microwave excitations of short topological Josephson junctions which may complement switching-current measurements.

  17. Thioamides in the collagen triple helix†

    PubMed Central

    Newberry, Robert W.; VanVeller, Brett

    2015-01-01

    To probe noncovalent interactions within the collagen triple helix, backbone amides were replaced with a thioamide isostere. This subtle substitution is the first in the collagen backbone that does not compromise thermostability. A triple helix with a thioamide as a hydrogen bond donor was found to be more stable than triple helices assembled from isomeric thiopeptides. PMID:25967743

  18. Thioamides in the collagen triple helix.

    PubMed

    Newberry, Robert W; VanVeller, Brett; Raines, Ronald T

    2015-06-14

    To probe noncovalent interactions within the collagen triple helix, backbone amides were replaced with a thioamide isostere. This subtle substitution is the first in the collagen backbone that does not compromise thermostability. A triple helix with a thioamide as a hydrogen bond donor was found to be more stable than triple helices assembled from isomeric thiopeptides.

  19. An induced junction photovoltaic cell

    NASA Technical Reports Server (NTRS)

    Call, R. L.

    1974-01-01

    Silicon solar cells operating with induced junctions rather than diffused junctions have been fabricated and tested. Induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. Measurements of the response of the inversion layer cell to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. The greater sensitivity occurs because of the shallow junction and the strong electric field at the surface.

  20. GUARD RING SEMICONDUCTOR JUNCTION

    DOEpatents

    Goulding, F.S.; Hansen, W.L.

    1963-12-01

    A semiconductor diode having a very low noise characteristic when used under reverse bias is described. Surface leakage currents, which in conventional diodes greatly contribute to noise, are prevented from mixing with the desired signal currents. A p-n junction is formed with a thin layer of heavily doped semiconductor material disposed on a lightly doped, physically thick base material. An annular groove cuts through the thin layer and into the base for a short distance, dividing the thin layer into a peripheral guard ring that encircles the central region. Noise signal currents are shunted through the guard ring, leaving the central region free from such currents. (AEC)

  1. YBCO Josephson Junction Arrays

    DTIC Science & Technology

    1993-07-14

    Also, CaRuO 3 is chemically compatible with YBa2Cu30 7 and its conductivity does not appear to be strongly dependent on doping or oxygen concentration...barrier conductivity is quite high. The first YBa2Cu30 7 layer and the SrTiO3 layer are deposited first and then patterned with ion milling (to help form...the edge junction will dominate any leakage through the SrTiO3 , thus the integrity of that dielectric will not be a concern here. The integrity of the

  2. Replacing cottonseed meal with ground Prosopis juliflora pods; effect on intake, weight gain and carcass parameters of Afar sheep fed pasture hay basal diet.

    PubMed

    Yasin, Mohammed; Animut, Getachew

    2014-08-01

    The experiment was conducted to determine the supplementary feeding value of ground Prosopis juliflora pod (Pjp) and cottonseed meal (CSM) and their mixtures on feed intake, body weight gain and carcass parameters of Afar sheep fed a basal diet of pasture hay. Twenty-five yearling fat-tailed Afar rams with mean initial live weight 17.24 ± 1.76 kg (mean ± SD) were used in a randomized complete block design. Animals were blocked on their initial body weight. The experiment was conducted for 12 weeks and carcass evaluation followed. Treatments were hay alone ad libitum (T 1) or with 300 g CSM (T 2), 300 g Pjp (T 5), 2:1 ratio (T 3) and 1:2 ratio of CSM : Pjp (T 4). The CP contents of the hay, CSM and Pjp were 10.5, 44.5 and 16.7 %, respectively. Hay DM intake was higher (P < 0.05) for non-supplemented and total DM intake was lower in non-supplemented. Average daily weight gain (ADG) was lower (P < 0.05) for T 1 compared to all supplemented treatments except T 5. Hot carcass weight and rib-eye muscle area also followed the same trend like that of ADG. Compared with feeding hay alone, supplementing with CSM or a mixture of CSM and Pjp appeared to be a better feeding strategy, biologically, for yearling Afar rams.

  3. Integrating local pastoral knowledge, participatory mapping, and species distribution modeling for risk assessment of invasive rubber vine (Cryptostegia grandiflora) in Ethiopia’s Afar region

    USGS Publications Warehouse

    Luizza, Matthew; Wakie, Tewodros; Evangelista, Paul; Jarnevich, Catherine S.

    2016-01-01

    The threats posed by invasive plants span ecosystems and economies worldwide. Local knowledge of biological invasions has proven beneficial for invasive species research, but to date no work has integrated this knowledge with species distribution modeling for invasion risk assessments. In this study, we integrated pastoral knowledge with Maxent modeling to assess the suitable habitat and potential impacts of invasive Cryptostegia grandiflora Robx. Ex R.Br. (rubber vine) in Ethiopia’s Afar region. We conducted focus groups with seven villages across the Amibara and Awash-Fentale districts. Pastoral knowledge revealed the growing threat of rubber vine, which to date has received limited attention in Ethiopia, and whose presence in Afar was previously unknown to our team. Rubber vine occurrence points were collected in the field with pastoralists and processed in Maxent with MODIS-derived vegetation indices, topographic data, and anthropogenic variables. We tested model fit using a jackknife procedure and validated the final model with an independent occurrence data set collected through participatory mapping activities with pastoralists. A Multivariate Environmental Similarity Surface analysis revealed areas with novel environmental conditions for future targeted surveys. Model performance was evaluated using area under the receiver-operating characteristic curve (AUC) and showed good fit across the jackknife models (average AUC = 0.80) and the final model (test AUC = 0.96). Our results reveal the growing threat rubber vine poses to Afar, with suitable habitat extending downstream of its current known location in the middle Awash River basin. Local pastoral knowledge provided important context for its rapid expansion due to acute changes in seasonality and habitat alteration, in addition to threats posed to numerous endemic tree species that provide critical provisioning ecosystem services. This work demonstrates the utility of integrating local ecological

  4. What the Spatial Correlation of He Isotope and Seimic Velocity Anomalies Implies for Rifting and Volatile Sources in Ethiopia and Afar

    NASA Astrophysics Data System (ADS)

    House, B. M.; Hilton, D. R.; Hammond, J. O. S.; Halldorsson, S. A.; Scarsi, P.

    2015-12-01

    Helium isotope ratios higher than the upper mantle value of 8 ± 1RA (RA = air 3He/4He) are unambiguous tracers of deep mantle (plume) volatile input in lavas and geothermal fluids from Ethiopia and Afar. However the significance of the surface distribution of He isotope ratios in terms of plume structure and melt distribution has received little attention. Recent seismic studies of this segment of the East African Rift give greatly improved lateral resolution of velocity anomalies allowing, for the first time, a detailed comparison of He isotope variations and tomographic imaging of melts, which presumably act to supply heat, mass and volatiles to the surface. To produce a detailed map of He isotope ratios of the region, we generated 94 new high quality He measurements of fluid inclusions in mafic phenocrysts from lavas sampled along (and off) the axis of the Main Ethiopian Rift (MER) and Afar. Our contribution nearly doubles the existing dataset. Now, ~95% of the region from Chamo Lake through Afar including flood basalts on the flank of the MER - an area of ~400 000 km2- falls within 90 km of a He isotope measurement. This allows us to compare the spatial distribution of He isotope ratios from young lavas with the pattern of upper mantle S-wave velocity anomalies (Hammond et al. 2013) to determine how regions of low velocity (high melt content) correlate with He isotope ratios. We find that regions of higher 3He/4He ratios - up to 19 RA - correlate with anomalously low velocities at 75 km (i.e. shallow mantle) depth, and sites with low He isotope ratios cluster in higher velocity regions. Sustained upwelling and impingement of a deep mantle plume could explain this spatial correlation; however recent seismic evidence suggests shallow decompression melting accounts for most current volcanism in the MER and Afar (Rychert et al. 2012). Elevated He isotope ratios may therefore reflect shallow remobilization of stalled, undegassed plume material in the absence of a

  5. Transient Collagen Triple-Helix Binding to a Key Metalloproteinase in Invasion and Development

    PubMed Central

    Zhao, Yingchu; Marcink, Thomas C.; Gari, Raghavendar Reddy Sanganna; Marsh, Brendan P.; King, Gavin M.; Stawikowska, Roma; Fields, Gregg B.; Van Doren, Steven R.

    2014-01-01

    SUMMARY Skeletal development and invasion by tumor cells depends on proteolysis of collagen by the pericellular metalloproteinase MT1-MMP. Its hemopexin-like (HPX) domain binds to collagen substrates to facilitate their digestion. Spin labeling and paramagnetic NMR detection have revealed how the HPX domain docks to collagen I-derived triple-helix. Mutations impairing triple-helical peptidase activity corroborate the interface. Saturation transfer difference NMR suggests rotational averaging around the longitudinal axis of the triple-helical peptide. Part of the interface emerges as unique and potentially targetable for selective inhibition. The triple-helix crosses the junction of blades I and II at a 45° angle to the symmetry axis of the HPX domain, placing the scissile Gly~Ile bond near the HPX domain and shifted ~25 Å from MMP-1 complexes. This raises the question of the MT1-MMP catalytic domain folding over the triple-helix during catalysis, a possibility accommodated by the flexibility between domains suggested by AFM images. PMID:25651059

  6. Transient collagen triple helix binding to a key metalloproteinase in invasion and development.

    PubMed

    Zhao, Yingchu; Marcink, Thomas C; Sanganna Gari, Raghavendar Reddy; Marsh, Brendan P; King, Gavin M; Stawikowska, Roma; Fields, Gregg B; Van Doren, Steven R

    2015-02-03

    Skeletal development and invasion by tumor cells depends on proteolysis of collagen by the pericellular metalloproteinase MT1-MMP. Its hemopexin-like (HPX) domain binds to collagen substrates to facilitate their digestion. Spin labeling and paramagnetic nuclear magnetic resonance (NMR) detection have revealed how the HPX domain docks to collagen I-derived triple helix. Mutations impairing triple-helical peptidase activity corroborate the interface. Saturation transfer difference NMR suggests rotational averaging around the longitudinal axis of the triple-helical peptide. Part of the interface emerges as unique and potentially targetable for selective inhibition. The triple helix crosses the junction of blades I and II at a 45° angle to the symmetry axis of the HPX domain, placing the scissile Gly∼Ile bond near the HPX domain and shifted ∼25 Å from MMP-1 complexes. This raises the question of the MT1-MMP catalytic domain folding over the triple helix during catalysis, a possibility accommodated by the flexibility between domains suggested by atomic force microscopy images.

  7. Tephrostratigraphy of the Waki-Mille area of the Woranso-Mille paleoanthropological research project, Afar, Ethiopia.

    PubMed

    Saylor, Beverly Z; Angelini, Joshua; Deino, Alan; Alene, Mulugeta; Fournelle, John H; Haile-Selassie, Yohannes

    2016-04-01

    Tephra geochemistry and (40)Ar/(39)Ar geochronology are reported for the Waki-Mille area in the northwestern part of the Woranso-Mille paleoanthropological project area in the west central Afar region of Ethiopia. Previous studies documented dentognathic fossils that are morphologically intermediate between Australopithecus anamensis and Australopithecus afarensis and some that are attributed to Australopithecus afarensis. Additional dentognathic remains from the study area were assigned to the newly identified species Australopithecus deyiremeda. These fossil hominin taxa were recovered from volcanic and sedimentary strata containing tuffs ranging in age from more than 3.77 million years ago (Ma) to less than 3.469 Ma. One of the tuffs was correlated based on geochemistry, feldspar mineralogy, and age to the Lokochot Tuff of the Omo-Turkana Basin of southern Ethiopia and Kenya. Variations in major and minor element abundances in volcanic glass demarcate ten geochemically distinct tuffs and tuff sequences, including three that are geochemically similar to widespread regional tuffs, specifically the Lomogol, Lokochot, and β- Tulu Bor/Sidi Hakoma tuffs. A new (40)Ar/(39)Ar age for the Waki Tuff, which is geochemically similar to the Lomogol Tuff, is 3.664 ± 0.016 Ma. Other tuffs in the Waki-Mille area are geochemically dissimilar to regional tuffs documented to date. Identification of tuffs based on character, stratigraphic position, and geochemistry refines local stratigraphic correlations and delineates the geographic distributions of precisely dated fossiliferous levels within the Waki-Mille area.

  8. Geologic and geochronologic constraints on the evolution of the Red Sea-Gulf of Aden and Afar depression

    NASA Astrophysics Data System (ADS)

    Berhe, Seife M.

    New KAr age determinations show that the development of Southern Afar since 14 Ma ago involved five stages of tectonism and volcanism at 14-11, 11-10, 9-7, 5-4 and post-1.6 Ma ago; while the major phases of rifting for the Red Sea-Gulf of Aden have been shown by geological and geophysical data to be 25, 14, 10 and 4 Ma ago. It is suggested that since 14 Ma ago, identical periods of volcanism preceded by rifting have affected both areas. Continental breakup in the Red Sea region was initiated along large transcurrent faults followed by extension manifested by normal faulting, block tilting in the brittle crustal region and repeated dyke injection. Two large scale transcurrent faults were identified, the Marda (NW-SE) and the Ambo (ENE-WSW) which, it is suggested, controlled the trends of rifting in the Red Sea and Gulf of Aden, respectively. Structural and geological evidence indicate that these faults have had a relatively long history, since they were active in pre-Jurassic times. Because at least the Ambo fault cuts across the NS trends of the late Proterozoic basement, its orientation must be primarily related to the Phanerozoic rift tectonics. This model avoids overlap of the Arabian plate with the Danakil and Aisha blocks because it involves only limited true oceanic crust. The new age data indicate that the initiation of the Aden and Red Sea rifts was not accompanied by active volcanism on land until the Oligocene-Miocene (30-5 Ma ago). Following that time, volcano-tectonic rifting continued without substantial hiati.

  9. Theoretical efficiency limit for a two-terminal multi-junction "step-cell" using detailed balance method

    NASA Astrophysics Data System (ADS)

    Abdul Hadi, Sabina; Fitzgerald, Eugene A.; Nayfeh, Ammar

    2016-02-01

    Here we present detailed balance efficiency limit for a novel two-terminal dual and triple junction "step-cell" under AM 1.5G and AM 0 incident spectrums. The step-cell is a multi-junction (MJ) solar cell in which part of the top cell is removed, exposing some of the bottom cell area to unfiltered incident light, thus increasing bottom cell's photogenerated current. Optical generation of the bottom cell is modeled in two parts: step part, limited by the bottom cell bandgap, and conventional part, additionally limited by the top cell absorption. Our results show that conventionally designed MJ cell with optimized bandgap combination of 1.64 eV/0.96 eV for dual junction and 1.91 eV/1.37 eV/0.93 eV for triple junction has the highest theoretical efficiency limit. However, the step-cell design provides significant efficiency improvement for cells with non-optimum bandgap values. For example, for 1.41 eV ( ˜GaAs)/Si dual junction under AM 1.5G, efficiency limit increases from ˜21% in a conventional design to 38.7% for optimized step-cell. Similar benefits are observed for three-junction step-cell and for AM 0 spectrum studied here. Step-cell relaxes bandgap requirements for efficient MJ solar cells, providing an opportunity for a wider selection of materials and cost reduction.

  10. Triple helix purification and sequencing

    DOEpatents

    Wang, Renfeng; Smith, Lloyd M.; Tong, Xinchun E.

    1995-01-01

    Disclosed herein are methods, kits, and equipment for purifying single stranded circular DNA and then using the DNA for DNA sequencing purposes. Templates are provided with an insert having a hybridization region. An elongated oligonucleotide has two regions that are complementary to the insert and the oligo is bound to a magnetic anchor. The oligo hybridizes to the insert on two sides to form a stable triple helix complex. The anchor can then be used to drag the template out of solution using a magnet. The system can purify sequencing templates, and if desired the triple helix complex can be opened up to a double helix so that the oligonucleotide will act as a primer for further DNA synthesis.

  11. Triple helix purification and sequencing

    DOEpatents

    Wang, R.; Smith, L.M.; Tong, X.E.

    1995-03-28

    Disclosed herein are methods, kits, and equipment for purifying single stranded circular DNA and then using the DNA for DNA sequencing purposes. Templates are provided with an insert having a hybridization region. An elongated oligonucleotide has two regions that are complementary to the insert and the oligo is bound to a magnetic anchor. The oligo hybridizes to the insert on two sides to form a stable triple helix complex. The anchor can then be used to drag the template out of solution using a magnet. The system can purify sequencing templates, and if desired the triple helix complex can be opened up to a double helix so that the oligonucleotide will act as a primer for further DNA synthesis. 4 figures.

  12. Ion bipolar junction transistors

    PubMed Central

    Tybrandt, Klas; Larsson, Karin C.; Richter-Dahlfors, Agneta; Berggren, Magnus

    2010-01-01

    Dynamic control of chemical microenvironments is essential for continued development in numerous fields of life sciences. Such control could be achieved with active chemical circuits for delivery of ions and biomolecules. As the basis for such circuitry, we report a solid-state ion bipolar junction transistor (IBJT) based on conducting polymers and thin films of anion- and cation-selective membranes. The IBJT is the ionic analogue to the conventional semiconductor BJT and is manufactured using standard microfabrication techniques. Transistor characteristics along with a model describing the principle of operation, in which an anionic base current amplifies a cationic collector current, are presented. By employing the IBJT as a bioelectronic circuit element for delivery of the neurotransmitter acetylcholine, its efficacy in modulating neuronal cell signaling is demonstrated. PMID:20479274

  13. Ion bipolar junction transistors.

    PubMed

    Tybrandt, Klas; Larsson, Karin C; Richter-Dahlfors, Agneta; Berggren, Magnus

    2010-06-01

    Dynamic control of chemical microenvironments is essential for continued development in numerous fields of life sciences. Such control could be achieved with active chemical circuits for delivery of ions and biomolecules. As the basis for such circuitry, we report a solid-state ion bipolar junction transistor (IBJT) based on conducting polymers and thin films of anion- and cation-selective membranes. The IBJT is the ionic analogue to the conventional semiconductor BJT and is manufactured using standard microfabrication techniques. Transistor characteristics along with a model describing the principle of operation, in which an anionic base current amplifies a cationic collector current, are presented. By employing the IBJT as a bioelectronic circuit element for delivery of the neurotransmitter acetylcholine, its efficacy in modulating neuronal cell signaling is demonstrated.

  14. The evolution of triple-star systems

    NASA Astrophysics Data System (ADS)

    Toonen, Silvia; Hamers, Adrian; Portegies Zwart, Simon

    2017-01-01

    While the principles of stellar and binary evolution theory have been accepted for a long time, our understanding of triple-star evolution is lagging behind. It is important to understand these systems, as triples are common in the field. About 15% of low-mass stellar systems are triples, but for high-mass stars the fraction increases to over 50%. At the same time, triple evolution is often invoked to explain exotic systems which cannot be explained easily by binary evolution. Examples are low-mass X-ray binaries, supernova type Ia progenitors and blue stragglers.Modeling triple evolution, however, is challenging as it is a combination of three-body dynamics and stellar evolution. In the past, most studies of three-body systems have focused on purely dynamical aspects without taking stellar evolution into account. However, in recent years, the first interdisciplinary studies have taken place which demonstrate the richness of the interacting regime. Here, I will show the first results of our new code TRES for simulating the evolution of stellar triples, which combines stellar evolution and interactions with three-body dynamics. In this talk, I will give an overview of the evolution of realistic (stellar) triples and I will discuss how triple evolution differs from binary evolution. What are the common evolutionary pathways that triple systems evolve through? Are there any evolutionary pathways open to triples, which are not open to isolated binaries? These are some of the important questions we want to answer.

  15. Feed intake, digestibility, body weight and carcass parameters of Afar rams fed tef (Eragrostis tef) straw supplemented with graded levels of concentrate mix.

    PubMed

    Hagos, Tesfay; Melaku, Solomon

    2009-04-01

    The experiment was conducted at Alamata Agricultural Research Center, Ethiopia using 20 Afar rams with an initial body weight (BW) of 18.2 +/- 1.76 (mean +/- SD) kg. The objectives were to study the effect of supplementation with concentrate mix consisting of wheat bran (WB), noug seed cake (NSC) and sesame seed cake (SSC) at the ratio of 2:1:1 on dry matter (DM) basis, respectively on feed intake, digestibility, BW gain and carcass parameters of Afar rams fed tef (Eragrostis tef) straw basal diet. The experiment was arranged with four treatments and five replications in a randomized complete block design. The treatments included feeding sole tef straw (T1, control), and daily supplementation with the concentrate mix offered at 150 (T2, low), 250 (T3, medium) and 350 (T4, high) g DM per head. Total DM intake, crude protein (CP) digestibility, daily BW gain (P < 0.001), DM and organic matter (OM) digestibility, and carcass parameters (P < 0.05) were higher in the supplemented than in the control treatment. Intake of tef straw reduced as the level of supplementation increased, whereas the contrary was true for CP intake. Performance in carcass parameters was better for the medium compared to the low level of concentrate mix supplementation. Moreover, the medium level of supplementation did not substitute tef straw intake. Therefore, it is concluded that the medium level of concentrate mix supplement maintained the utilization of the roughage feed and resulted in better carcass parameters.

  16. Palaeomagnetism and K-Ar and 40Ar/39Ar ages in the Ali Sabieh area (Republic of Djibouti and Ethiopia): constraints on the mechanism of Aden ridge propagation into southeastern Afar during the last 10 Myr

    NASA Astrophysics Data System (ADS)

    Audin, L.; Quidelleur, X.; Coulié, E.; Courtillot, V.; Gilder, S.; Manighetti, I.; Gillot, P.-Y.; Tapponnier, P.; Kidane, T.

    2004-07-01

    A new detailed palaeomagnetic study of Tertiary volcanics, including extensive K-Ar and 40Ar/39Ar dating, helps constrain the deformation mechanisms related to the opening processes of the Afar depression (Ethiopia and Djibouti). Much of the Afar depression is bounded by 30 Myr old flood basalts and floored by the ca 2 Myr old Stratoid basalts, and evidence for pre-2 Ma deformation processes is accessible only on its borders. K-Ar and 40Ar/39Ar dating of several mineral phases from rhyolitic samples from the Ali Sabieh block shows indistinguishable ages around 20 Myr. These ages can be linked to separation of this block in relation to continental breakup. Different amounts of rotation are found to the north and south of the Holhol fault zone, which cuts across the northern part of the Ali Sabieh block. The southern domain did not record any rotation for the last 8 Myr, whereas the northern domain experienced approximately 12 +/- 9° of clockwise rotation. We propose to link this rotation to the counter-clockwise rotation observed in the Danakil block since 7 Ma. This provides new constraints on the early phases of rifting and opening of the southern Afar depression in connection with the propagation of the Aden ridge. A kinematic model of propagation and transfer of extension within southern Afar is proposed, with particular emphasis on the previously poorly-known period from 10 to 4 Ma.

  17. Witnessing the birth of a new ocean? The first 6 years of the Dabbahu rifting episode, and other activity in Afar

    NASA Astrophysics Data System (ADS)

    Wright, T.; Ayele, A.; Barnie, T.; Belachew, M.; Calais, E.; Field, L.; Hamling, I.; Hammond, J.; Keir, D.

    2012-04-01

    Intense earthquake activity and a small rhyolitic eruption in September 2005 heralded the onset of an unprecedented period of geological activity in the Afar Depression. The seismic activity accompanied dyke intrusion in the upper 10 km of crust along 60 km of the Dabbahu (northern Manda-Hararo) Magmatic Segment (DMS) of the Nubia-Arabia plate boundary, a nascent seafloor spreading centre. InSAR observations of the resulting deformation showed that the initial dyke was up to 8 m thick, with a total volume of 2-2.5 km3. Urgency funding from the UK Natural Environmental Research Council (NERC) and US National Science Foundation (NSF) enabled us to deploy a local array of seismometers in October 2005, continuous GPS instruments in January 2006, and to acquire a dense time series of satellite radar images. The medium-term viability of these instruments was secured with major follow-on funding from NSF and NERC; these projects supported the collection and analysis of additional unique data sets, including data from a broader array of seismic and GPS instruments, magneto-telluric transects of the rift, airborne LiDAR, petrological sampling and micro-gravity work. The combination of these data has allowed us to quantify the processes associated with crustal growth at divergent plate boundaries for the first time. Here, we present a broad overview of geological activity in the Afar depression in the hyperactive 21st century. Activity in the DMS began after September 2000, when Gabho volcano at the north of the segment began uplifting, as its magma chamber, ~3 km below the surface, was replenished. It is likely that the inflation at Gabho ultimately triggered the onset of the Dabbahu rifting episode. The rifting episode began with intense seismicity at the northern end of the DMS, before jumping to the Ado Ale Volcanic Complex at the segment centre. This initial dyking was fed from shallow (~3 km) chambers at Gabho and Dabbahu as well as a deeper (~10 km) source at Ado Ale

  18. Thermopower measurements in molecular junctions.

    PubMed

    Rincón-García, Laura; Evangeli, Charalambos; Rubio-Bollinger, Gabino; Agraït, Nicolás

    2016-08-07

    The measurement of thermopower in molecular junctions offers complementary information to conductance measurements and is becoming essential for the understanding of transport processes at the nanoscale. In this review, we discuss the recent advances in the study of the thermoelectric properties of molecular junctions. After presenting the theoretical background for thermoelectricity at the nanoscale, we review the experimental techniques for measuring the thermopower in these systems and discuss the main results. Finally, we consider the challenges in the application of molecular junctions in viable thermoelectric devices.

  19. Performance evaluation of multi-junction solar cells by spatially resolved electroluminescence microscopy.

    PubMed

    Kong, Lijing; Wu, Zhiming; Chen, Shanshan; Cao, Yiyan; Zhang, Yong; Li, Heng; Kang, Junyong

    2015-01-01

    An electroluminescence microscopy combined with a spectroscopy was developed to visually analyze multi-junction solar cells. Triple-junction solar cells with different conversion efficiencies were characterized by using this system. The results showed that the mechanical damages and material defects in solar cells can be clearly distinguished, indicating a high-resolution imaging. The external quantum efficiency (EQE) measurements demonstrated that different types of defects or damages impacted cell performance in various degrees and the electric leakage mostly degraded the EQE. Meanwhile, we analyzed the relationship between electroluminescence intensity and short-circuit current density J SC. The results indicated that the gray value of the electroluminescence image corresponding to the intensity was almost proportional to J SC. This technology provides a potential way to evaluate the current matching status of multi-junction solar cells.

  20. Energy Efficient Triple IG Automation EEE (Triple-E)

    SciTech Connect

    McGlinchy, Timothy B

    2013-02-28

    GED Integrated Solutions collaborated with US window and door manufactures to investigate, design and verify technical and cost feasibility for producing high performance, high volume, low material and labor cost window, utilizing a modified window design containing a triple insulating glass unit (IGU). This window design approach when combined with a high volume IGU manufacturing system, can produce R5 rated windows for an approximate additional consumer cost of only $4 per square foot when compared to conventional Low-E argon dual pane IG windows, resulting in a verify practical, reliable and affordable high performance window for public use.

  1. InGaP/GaAs Inverted Dual Junction Solar Cells For CPV Applications Using Metal-Backed Epitaxial Lift-Off

    SciTech Connect

    Bauhuis, Gerard J.; Mulder, Peter; Haverkamp, Erik J.; Schermer, John J.; Nash, Lee J.; Fulgoni, Dominic J. F.; Ballard, Ian M.; Duggan, Geoffrey

    2010-10-14

    The epitaxial lift-off (ELO) technique has been combined with inverted III-V PV cell epitaxial growth with the aim of employing thin film PV cells in HCPV systems. In a stepwise approach to the realization of an inverted triple junction on a MELO platform we have first grown a GaAs single junction PV cell to establish the basic layer release process and cell processing steps followed by the growth, fabrication and test of an inverted InGaP/GaAs dual junction structure.

  2. Low geomagnetic field intensity in the Matuyama Chron: palaeomagnetic study of a lava sequence from Afar depression, East Africa

    NASA Astrophysics Data System (ADS)

    Ahn, Hyeon-Seon; Kidane, Tesfaye; Yamamoto, Yuhji; Otofuji, Yo-ichiro

    2016-01-01

    Palaeointensity variation is investigated for an inferred time period spanning from 2.34 to 1.96 Ma. Twenty-nine consecutive lava flows are sampled along cliffs 350 m high generated by normal faulting on the Dobi section of Afar depression, Ethiopia. Magnetostratigraphy and K-Ar measurements indicate a lava sequence of R-N-R-N geomagnetic field polarities in ascending order; the lower normal polarity is identified as the Réunion Subchron. Reliability of palaeomagnetic data is ascertained through careful thermal demagnetization and by the reversal test. The Tsunakawa-Shaw method yielded 70 successful palaeointensity results from 24 lava flows and gave 11 acceptable mean palaeointensities. Reliability in palaeointensity data is ascertained by the similar values obtained by the IZZI-Thellier method and thus 11 reliable mean values are obtained from our combined results. After the older reverse polarity with the field intensity of 19.6 ± 7.8 μT, an extremely low palaeointensity period with an average of 6.4 μT is shown to occur prior to the Réunion Subchron. During the Réunion Subchron, the dipole field strength is shown to have returned to an average of 19.5 μT, followed by second extreme low of 3.6 μT and rejuvenation with 17.1 ± 5.3 μT in the younger reverse polarity. This `W-shape' palaeointensity variation is characterized by occurrences of two extremely weak fields lower than 8 μT prior to and during the Réunion Subchron and a relatively weak time-averaged field of approximately 15 μT. This feature is also found in sedimentary cores from the Ontong Java Plateau and the north Atlantic, indicative of a possibly global geomagnetic field phenomenon rather than a local effect on Ethiopia. Furthermore, we estimate a weak virtual axial dipole moment of 3.66 (±1.85) × 1022 Am2 during early stage of the Matuyama Chron (inferred time period of 2.34-1.96 Ma).

  3. Thermal conductance of superlattice junctions

    SciTech Connect

    Lu, Simon; McGaughey, Alan J. H.

    2015-05-15

    We use molecular dynamics simulations and the lattice-based scattering boundary method to compute the thermal conductance of finite-length Lennard-Jones superlattice junctions confined by bulk crystalline leads. The superlattice junction thermal conductance depends on the properties of the leads. For junctions with a superlattice period of four atomic monolayers at temperatures between 5 and 20 K, those with mass-mismatched leads have a greater thermal conductance than those with mass-matched leads. We attribute this lead effect to interference between and the ballistic transport of emergent junction vibrational modes. The lead effect diminishes when the temperature is increased, when the superlattice period is increased, and when interfacial disorder is introduced, but is reversed in the harmonic limit.

  4. Josephson junction Q-spoiler

    DOEpatents

    Clarke, J.; Hilbert, C.; Hahn, E.L.; Sleator, T.

    1986-03-25

    An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.

  5. Josephson junction Q-spoiler

    DOEpatents

    Clarke, John; Hilbert, Claude; Hahn, Erwin L.; Sleator, Tycho

    1988-01-01

    An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.

  6. Control of Junction Flow

    NASA Astrophysics Data System (ADS)

    Su, T.-C.; Bingham, C.; Kellier, L.

    2001-11-01

    Control for horseshoe vortices resulting from boundary layer separation in front of a structure has long been sought without satisfactory results. Tests were carried out in a water channel with the objective of seeking such a control. The water channel has a test section of .6m wide, .4m deep and 8m long, with an adjustable mean flow speed of up to .5m/s. Flow visualization technique was used to elucidate the flow process. To control the horseshoe vortex a long airfoil of 1cm chord was placed horizontally near the ground upstream of a 10cm thin square plate. It was found that the original horseshoe vortex moved toward and circulated around the airfoil. The junction flow immediately upstream of the obstacle was noticeably steady and free of disturbance. The process was insensitive to the streamwise location of the airfoil, horseshoe's vortical structure, stream speed and acceleration, upstream vortical influx, and magnitude/sign of airfoil's angle of attack. Experimental results with obliquely mounted square cylinder were similar, which demonstrated that controls were effective for all angles of attack.

  7. Triple axis and spins spectrometers

    SciTech Connect

    Trevino, S.F.

    1993-01-01

    In the paper are described the triple axis and spin polarized inelastic neutron scattering (SPINS) spectrometers which are installed at the NIST Cold Neutron Research Facility (CNRF). The general principle of operation of these two instruments is described in sufficient detail to allow the reader to make an informed decision as to their usefulness for his needs. However, it is the intention of the staff at the CNRF to provide the expert resources for their efficient use in any given situation. Thus, the work is not intended as a user manual but rather as a guide into the range of applicability of the two instruments.

  8. Electronic thermometry in tunable tunnel junction

    DOEpatents

    Maksymovych, Petro

    2016-03-15

    A tunable tunnel junction thermometry circuit includes a variable width tunnel junction between a test object and a probe. The junction width is varied and a change in thermovoltage across the junction with respect to the change in distance across the junction is determined. Also, a change in biased current with respect to a change in distance across the junction is determined. A temperature gradient across the junction is determined based on a mathematical relationship between the temperature gradient, the change in thermovoltage with respect to distance and the change in biased current with respect to distance. Thermovoltage may be measured by nullifying a thermoelectric tunneling current with an applied voltage supply level. A piezoelectric actuator may modulate the probe, and thus the junction width, to vary thermovoltage and biased current across the junction. Lock-in amplifiers measure the derivatives of the thermovoltage and biased current modulated by varying junction width.

  9. Octagonal Defects at Carbon Nanotube Junctions

    PubMed Central

    Jaskólski, W.; Pelc, M.; Chico, Leonor; Ayuela, A.

    2013-01-01

    We investigate knee-shaped junctions of semiconductor zigzag carbon nanotubes. Two dissimilar octagons appear at such junctions; one of them can reconstruct into a pair of pentagons. The junction with two octagons presents two degenerate localized states at Fermi energy (EF). The reconstructed junction has only one state near EF, indicating that these localized states are related to the octagonal defects. The inclusion of Coulomb interaction splits the localized states in the junction with two octagons, yielding an antiferromagnetic system. PMID:24089604

  10. Diesel exhaust particles modulate the tight junction protein occludin in lung cells in vitro

    PubMed Central

    Lehmann, Andrea D; Blank, Fabian; Baum, Oliver; Gehr, Peter; Rothen-Rutishauser, Barbara M

    2009-01-01

    Background Using an in vitro triple cell co-culture model consisting of human epithelial cells (16HBE14o-), monocyte-derived macrophages and dendritic cells, it was recently demonstrated that macrophages and dendritic cells create a transepithelial network between the epithelial cells to capture antigens without disrupting the epithelial tightness. The expression of the different tight junction proteins in macrophages and dendritic cells, and the formation of tight junction-like structures with epithelial cells has been demonstrated. Immunofluorescent methods combined with laser scanning microscopy and quantitative real-time polymerase chain reaction were used to investigate if exposure to diesel exhaust particles (DEP) (0.5, 5, 50, 125 μg/ml), for 24 h, can modulate the expression of the tight junction mRNA/protein of occludin, in all three cell types. Results Only the highest dose of DEP (125 μg/ml) seemed to reduce the occludin mRNA in the cells of the defence system however not in epithelial cells, although the occludin arrangement in the latter cell type was disrupted. The transepithelial electrical resistance was reduced in epithelial cell mono-cultures but not in the triple cell co-cultures, following exposure to high DEP concentration. Cytotoxicity was not found, in either epithelial mono-cultures nor in triple cell co-cultures, after exposure to the different DEP concentrations. Conclusion We concluded that high concentrations of DEP (125 μg/ml) can modulate the tight junction occludin mRNA in the cells of the defence system and that those cells play an important role maintaining the epithelial integrity following exposure to particulate antigens in lung cells. PMID:19814802

  11. Triple X female and Turner's syndrome offspring.

    PubMed Central

    Guzmán-Toledano, R; Ayala, A; Zarate, A; Jimenez, M

    1976-01-01

    A mentally retarded young female having 47 chromosomes with a triple X karotype produced a child with Turner's syndrome associated with mental defeciency. To our knowledge this is the first example of a triple X female giving birth to a child with Turner's syndrome. Images PMID:1018311

  12. New triple-helix DNA stabilizing agents.

    PubMed

    Strekowski, Lucjan; Hojjat, Maryam; Wolinska, Ewa; Parker, Alesia N; Paliakov, Ekaterina; Gorecki, Tadeusz; Tanious, Farial A; Wilson, W David

    2005-02-15

    Several substituted quinolin-4-amines and heteroaromatic analogs were synthesized and evaluated for interaction with triplex polydA.2polydT and duplex polydA.polydT by using UV-thermal melting experiments. Excellent triple-helix DNA ligands with high affinity toward T.A.T triplets and triple/duplex selectivity were designed through a rational approach.

  13. Nonunital Spectral Triples Associated to Degenerate Metrics

    NASA Astrophysics Data System (ADS)

    Rennie, A.

    We show that one can define (p,∞)-summable spectral triples using degenerate metrics on smooth manifolds. Furthermore, these triples satisfy Connes-Moscovici's discrete and finite dimension spectrum hypothesis, allowing one to use the Local Index Theorem [1] to compute the pairing with K-theory. We demonstrate this with a concrete example.

  14. Existence Regions of Shock Wave Triple Configurations

    ERIC Educational Resources Information Center

    Bulat, Pavel V.; Chernyshev, Mikhail V.

    2016-01-01

    The aim of the research is to create the classification for shock wave triple configurations and their existence regions of various types: type 1, type 2, type 3. Analytical solutions for limit Mach numbers and passing shock intensity that define existence region of every type of triple configuration have been acquired. The ratios that conjugate…

  15. Modeling Laser Effects on Multi-Junction Solar Cells Using Silvaco ATLAS Software for Spacecraft Power Beaming Applications

    DTIC Science & Technology

    2010-06-01

    devised was meant to achieve the highest efficiency of the solar cell while maintaining the same power output. In a perfect world the system would...CHAMPION CELL - 36.28% Efficiency !! #This model is an explicit InGaP/ GaAs /Ge Triple Junction solar cell with Tunnel Junction KATO OPTM 0.82InGaP...the same output of the cell as experienced under solar illumination, thereby replacing the sun. The original cell boasted 36.29% efficiency under

  16. Influence of the Afar plume on the deep structure of Aden and Red Sea margins - Insight from teleseismic tomography in western Yemen

    NASA Astrophysics Data System (ADS)

    Korostelev, Félicie; Basuyau, Clémence; Leroy, Sylvie; Ahmed, Abdulhakim; Keir, Derek; Stuart, Graham; Rolandone, Frédérique; Ganad, Ismail Al; Khanbari, Khaled

    2013-04-01

    Continental rupture processes under mantle plume influence are still poorly known although extensively studied. The Afar plume has been largely investigated in Ethiopia to study early stages of continental break-up. Here we imaged the lithospheric structure of western continental Yemen to evaluate the role of the Afar plume on the evolution of the continental margin and its extent towards the East. A part of the YOCMAL project (YOung Conjugate MArgins Laboratory) permitted the deployment of twenty-three broadband stations in Yemen (from 2009 to 2010). Using a classical teleseismic tomography (Aki et al., 1974) on these stations together with a permanent GFZ station, we image the relative velocity variations of P-waves in the crust and lithosphere down to 300 km depth, with a maximum lateral resolution of about ~20 km. The model thus obtained shows (1) a dramatic and localized thinning of the crust in the vicinity of the Red Sea and the Gulf of Aden (2) the presence of magmatic underplating related to seaward dipping reflectors under those two volcanic margins (3) two granitic syn-rift intrusions on the border of the great escarpment (4) a low velocity anomaly in which with evidence of partial melting, just below thick Oligocene trapps series and other volcanic events (from 15 Ma to present). This low velocity anomaly could correspond to an abnormally hot mantle and could be responsible for dynamic topography and recent magmatism in western Yemen. (5) Finally, we infer the presence of hot material under the Southwestern corner of Yemen that could be related to Miocene volcanism in Jabal an Nar.

  17. Generic along-strike segmentation of Afar normal faults, East Africa: Implications on fault growth and stress heterogeneity on seismogenic fault planes

    NASA Astrophysics Data System (ADS)

    Manighetti, I.; Caulet, C.; Barros, L.; Perrin, C.; Cappa, F.; Gaudemer, Y.

    2015-02-01

    Understanding how natural faults are segmented along their length can provide useful insights into fault growth processes, stress distribution on fault planes, and earthquake dynamics. We use cumulative displacement profiles to analyze the two largest scales of segmentation of ˜900 normal faults in Afar, East Africa. We build upon a prior study by Manighetti et al. (2009) and develop a new signal processing method aimed at recovering the number, position, displacement, and length of both the major (i.e., longest) and the subordinate, secondary segments within the faults. Regardless of their length, age, geographic location, total displacement, and slip rate, 90% of the faults contain two to five major segments, whereas more than 70% of these major segments are divided into two to four secondary segments. In each hierarchical rank of fault segmentation, most segments have a similar proportional length, whereas the number of segments slightly decreases with fault structural maturity. The along-strike segmentation of the Afar faults is thus generic at its two largest scales. We summarize published fault segment data on 42 normal, reverse, and strike-slip faults worldwide, and find a similar number (two to five) of major and secondary segments across the population. We suggest a fault growth scenario that might account for the generic large-scale segmentation of faults. The observation of a generic segmentation suggests that seismogenic fault planes are punctuated with a deterministic number of large stress concentrations, which are likely to control the initiation, arrest and hence extent and magnitude of earthquake ruptures.

  18. Exceptionally omnidirectional broadband light harvesting scheme for multi-junction concentrator solar cells achieved via ZnO nanoneedles.

    PubMed

    Yeh, Li-Ko; Tian, Wei-Cheng; Lai, Kun-Yu; He, Jr-Hau

    2016-12-14

    GaInP/GaAs/Ge triple-junction concentrator solar cells with significant efficiency enhancement were demonstrated with antireflective ZnO nanoneedles. The novel nanostructure was attained with a Zn(NO3)2-based solution containing vitamin C. Under one sun AM 1.5G solar spectrum, conversion efficiency of the triple-junction device was improved by 23.7% via broadband improvement in short-circuit currents of 3 sub-cells after the coverage by the nanoneedles with a graded refractive index profile. The efficiency enhancement further went up to 45.8% at 100 suns. The performance boost through the nanoneedles also became increasingly pronounced in the conditions of high incident angles and the cloudy weather, e.g. 220.0% of efficiency enhancement was observed at the incident angle of 60°. These results were attributed to the exceptional broadband omnidirectionality of the antireflective nanoneedles.

  19. Exceptionally omnidirectional broadband light harvesting scheme for multi-junction concentrator solar cells achieved via ZnO nanoneedles

    PubMed Central

    Yeh, Li-Ko; Tian, Wei-Cheng; Lai, Kun-Yu; He, Jr-Hau

    2016-01-01

    GaInP/GaAs/Ge triple-junction concentrator solar cells with significant efficiency enhancement were demonstrated with antireflective ZnO nanoneedles. The novel nanostructure was attained with a Zn(NO3)2-based solution containing vitamin C. Under one sun AM 1.5G solar spectrum, conversion efficiency of the triple-junction device was improved by 23.7% via broadband improvement in short-circuit currents of 3 sub-cells after the coverage by the nanoneedles with a graded refractive index profile. The efficiency enhancement further went up to 45.8% at 100 suns. The performance boost through the nanoneedles also became increasingly pronounced in the conditions of high incident angles and the cloudy weather, e.g. 220.0% of efficiency enhancement was observed at the incident angle of 60°. These results were attributed to the exceptional broadband omnidirectionality of the antireflective nanoneedles. PMID:27966621

  20. Exceptionally omnidirectional broadband light harvesting scheme for multi-junction concentrator solar cells achieved via ZnO nanoneedles

    NASA Astrophysics Data System (ADS)

    Yeh, Li-Ko; Tian, Wei-Cheng; Lai, Kun-Yu; He-Hau, Jr.

    2016-12-01

    GaInP/GaAs/Ge triple-junction concentrator solar cells with significant efficiency enhancement were demonstrated with antireflective ZnO nanoneedles. The novel nanostructure was attained with a Zn(NO3)2-based solution containing vitamin C. Under one sun AM 1.5G solar spectrum, conversion efficiency of the triple-junction device was improved by 23.7% via broadband improvement in short-circuit currents of 3 sub-cells after the coverage by the nanoneedles with a graded refractive index profile. The efficiency enhancement further went up to 45.8% at 100 suns. The performance boost through the nanoneedles also became increasingly pronounced in the conditions of high incident angles and the cloudy weather, e.g. 220.0% of efficiency enhancement was observed at the incident angle of 60°. These results were attributed to the exceptional broadband omnidirectionality of the antireflective nanoneedles.

  1. Eight Years of Surface Deformation in the Asal-Ghoubbet Rift (Afar Depression) Observed With SAR Data

    NASA Astrophysics Data System (ADS)

    Doubre, C.; Peltzer, G.; Manighetti, I.; Jacques, E.

    2005-12-01

    The volcano-tectonic Asal-Ghoubbet rift (Djibouti) is the youngest spreading segment of the Aden oceanic ridge propagating inland into the Afar Depression. The deformation in the rift is characterized by magmatic inflation and dilatation (dyking), distributed extension, fissure opening, and normal faulting, contributing to a far field opening velocity of ~1.5 cm/yr. We use radar interferometry data acquired by the Canadian satellite Radarsat on 24-day repeat, descending passes to measure the surface deformation in a 100 km wide region centered on the rift. The data set defines 87 epochs of acquisitions distributed between 1997 and 2005. We combined the SAR data into 354 full-resolution interferograms and solved for incremental displacements between epochs using a least-square approach [Berardino et al., 2002]. The resulting line of sight displacement map time series shows the following features: - A 40 km-wide zone centered on the rift is uplifted as a dome at a steady rate. - The central rift is subsiding with respect to the north and south shoulders. The velocity field shows a marked asymmetry with faster rates occurring along the northern edge of the rift. The mean velocity of the relative movement of the subsiding inner floor with respect to the northern up-lifting shoulder reaches 7 mm/yr. - Subsidence is faster in the north half of the inner floor of the rift and is associated with episodic creep events on normal faults. These includes a slip of 16 mm on the north-dipping δ fault in 2003 and an episode of accelerated creep of 10 mm occurring in 2000 on the γ fault, which is creeping at a steady rate of 3.5 mm/yr. A northern-dipping normal fault is slipping with a mean rate of 1.4 mm/yr and accommodates also the subsidence of the northern part of the inner floor. Unlike other active faults, this one does not coincide with a topographic scarp but shows evidence of surface creep in the velocity field. - The southeastern part of F fault system is the only fault

  2. Earthquake relocations and InSAR analysis following the June 12th 2011 eruption of Nabro volcano, Afar

    NASA Astrophysics Data System (ADS)

    Hamlyn, Joanna; Wright, Tim; Keir, Derek; Neuberg, Jurgen; Grandin, Raphael; Goitom, Berhe; Hammond, James; Kibreab, Alem; Ogubazghi, Ghebrebrhan; Pagli, Carolina; Sansosti, Eugenio

    2014-05-01

    Nabro volcano sits on the southern part of Danakil block to the east of the Afar depression, on the Arabian plate. On the 12th June 2011, Nabro volcano suddenly erupted after being inactive for 10,000 years. The eruption caused a 17-km-long lava flow, a 15-km-high ash cloud, and ranks as one of the largest emissions of SO2 since the Mt. Pinatubo (1991) event. This eruption creates an important opportunity to use seismicity and surface deformation measurements to understand the subsurface magmatic system and deformation of a hazardous, off axis caldera during continental rupture. We installed a network of 8 seismometers around Nabro caldera which began recording on the 31st August and tasked SAR acquisitions from TerraSAR-X (TSX) and Cosmo-SkyMed (CSK) satellites. The SAR images used for this study post date the eruption. We used TSX stripmap mode images from ascending and descending orbits. Using a small baseline approach, we used 25 images acquired between the 1st July 2011 to the 5th October 2012 on descending orbit 046, to create 34 interferograms. We complemented these with 19 images from ascending orbit 130 spanning the 6th July 2011 to the 10th October 2012 from ascending orbit 130, which we used to create 21 interferograms. We produced a velocity ratemap and timeseries using π-RATE showing subsidence of up to 25cm/yr centred on Nabro. We used a Monte-Carlo hybrid downhill simplex technique to invert the dataset and found the best fitting solution as a mogi source at 6.9 ±1.1 km depth, and located at a 13.35 (lat) and 41.69 (long). The time dependence observed is consistent with a viscoelastic relaxation around the magma chamber, following depletion. Concurrent with the TSX acquisitions, CSK imaged the volcano on a descending track between 26th June 2011 and 18th July 2012 within the ASI project SAR4Volcanoes, and 64 images were used to produce 171 interferograms which were inverted to form a timeseries using a SBAS approach. This dataset has an overall

  3. Conducting polyaniline nanowire electrode junction

    NASA Astrophysics Data System (ADS)

    Gaikwad, Sumedh; Bodkhe, Gajanan; Deshmukh, Megha; Patil, Harshada; Rushi, Arti; Shirsat, Mahendra D.; Koinkar, Pankaj; Kim, Yun-Hae; Mulchandani, Ashok

    2015-03-01

    In this paper, a synthesis of conducting polyaniline nanowires electrode junction (CPNEJ) has been reported. Conducting polyaniline nanowires electrode junction on Si/SiO2 substrate (having 3 μm gap between two gold microelectrodes) is prepared. Polyaniline nanowires with diameter (ca. 140 nm to 160 nm) were synthesized by one step electrochemical polymerization using galvanostatic (constant current) technique to bridge this gap. The surface morphology of CPNEJ was studied by scanning electron microscope (SEM). The synthesized CPNEJ is an excellent platform for biosensor applications.

  4. Triple flame structure and diffusion flame stabilization

    NASA Technical Reports Server (NTRS)

    Veynante, D.; Vervisch, L.; Poinsot, T.; Linan, A.; Ruetsch, G.

    1994-01-01

    The stabilization of diffusion flames is studied using asymptotic techniques and numerical tools. The configuration studied corresponds to parallel streams of cold oxidizer and fuel initially separated by a splitter plate. It is shown that stabilization of a diffusion flame may only occur in this situation by two processes. First, the flame may be stabilized behind the flame holder in the wake of the splitter plate. For this case, numerical simulations confirm scalings previously predicted by asymptotic analysis. Second, the flame may be lifted. In this case a triple flame is found at longer distances downstream of the flame holder. The structure and propagation speed of this flame are studied by using an actively controlled numerical technique in which the triple flame is tracked in its own reference frame. It is then possible to investigate the triple flame structure and velocity. It is shown, as suggested from asymptotic analysis, that heat release may induce displacement speeds of the triple flame larger than the laminar flame speed corresponding to the stoichiometric conditions prevailing in the mixture approaching the triple flame. In addition to studying the characteristics of triple flames in a uniform flow, their resistance to turbulence is investigated by subjecting triple flames to different vortical configurations.

  5. Molecular structure of the collagen triple helix.

    PubMed

    Brodsky, Barbara; Persikov, Anton V

    2005-01-01

    The molecular conformation of the collagen triple helix confers strict amino acid sequence constraints, requiring a (Gly-X-Y)(n) repeating pattern and a high content of imino acids. The increasing family of collagens and proteins with collagenous domains shows the collagen triple helix to be a basic motif adaptable to a range of proteins and functions. Its rodlike domain has the potential for various modes of self-association and the capacity to bind receptors, other proteins, GAGs, and nucleic acids. High-resolution crystal structures obtained for collagen model peptides confirm the supercoiled triple helix conformation, and provide new information on hydrogen bonding patterns, hydration, sidechain interactions, and ligand binding. For several peptides, the helix twist was found to be sequence dependent, and such variation in helix twist may serve as recognition features or to orient the triple helix for binding. Mutations in the collagen triple-helix domain lead to a variety of human disorders. The most common mutations are single-base substitutions that lead to the replacement of one Gly residue, breaking the Gly-X-Y repeating pattern. A single Gly substitution destabilizes the triple helix through a local disruption in hydrogen bonding and produces a discontinuity in the register of the helix. Molecular information about the collagen triple helix and the effect of mutations will lead to a better understanding of function and pathology.

  6. Progress in the Development of Metamorphic Multi-Junction III-V Space-Solar Cells at Essential Research Incorporated

    NASA Technical Reports Server (NTRS)

    Sinharoy, Samar; Patton, Martin O.; Valko, Thomas M., Sr.; Weizer, Victor G.

    2002-01-01

    Theoretical calculations have shown that highest efficiency III-V multi-junction solar cells require alloy structures that cannot be grown on a lattice-matched substrate. Ever since the first demonstration of high efficiency metamorphic single junction 1.1 eV and 1.2 eV InGaAs solar cells by Essential Research Incorporated (ERI), interest has grown in the development of multi-junction cells of this type using graded buffer layer technology. ERI is currently developing a dual-junction 1.6 eV InGaP/1.1 eV InGaAs tandem cell (projected practical air-mass zero (AM0), one-sun efficiency of 28%, and 100-sun efficiency of 37.5%) under a Ballistic Missile Defense Command (BMDO) SBIR Phase II program. A second ongoing research effort at ERI involves the development of a 2.1 eV AlGaInP/1.6 eV InGaAsP/1.2 eV InGaAs triple-junction concentrator tandem cell (projected practical AM0 efficiency of 36.5% under 100 suns) under a SBIR Phase II program funded by the Air Force. We are in the process of optimizing the dual-junction cell performance. In case of the triple-junction cell, we have developed the bottom and the middle cell, and are in the process of developing the layer structures needed for the top cell. A progress report is presented in this paper.

  7. Pyrimidine motif triple helix in the Kluyveromyces lactis telomerase RNA pseudoknot is essential for function in vivo.

    PubMed

    Cash, Darian D; Cohen-Zontag, Osnat; Kim, Nak-Kyoon; Shefer, Kinneret; Brown, Yogev; Ulyanov, Nikolai B; Tzfati, Yehuda; Feigon, Juli

    2013-07-02

    Telomerase is a ribonucleoprotein complex that extends the 3' ends of linear chromosomes. The specialized telomerase reverse transcriptase requires a multidomain RNA (telomerase RNA, TER), which includes an integral RNA template and functionally important template-adjacent pseudoknot. The structure of the human TER pseudoknot revealed that the loops interact with the stems to form a triple helix shown to be important for activity in vitro. A similar triple helix has been predicted to form in diverse fungi TER pseudoknots. The solution NMR structure of the Kluyveromyces lactis pseudoknot, presented here, reveals that it contains a long pyrimidine motif triple helix with unexpected features that include three individual bulge nucleotides and a C(+)•G-C triple adjacent to a stem 2-loop 2 junction. Despite significant differences in sequence and base triples, the 3D shape of the human and K. lactis TER pseudoknots are remarkably similar. Analysis of the effects of nucleotide substitutions on cell growth and telomere lengths provides evidence that this conserved structure forms in endogenously assembled telomerase and is essential for telomerase function in vivo.

  8. Simple Electronic Analog of a Josephson Junction.

    ERIC Educational Resources Information Center

    Henry, R. W.; And Others

    1981-01-01

    Demonstrates that an electronic Josephson junction analog constructed from three integrated circuits plus an external reference oscillator can exhibit many of the circuit phenomena of a real Josephson junction. Includes computer and other applications of the analog. (Author/SK)

  9. Tectonic uplift of a middle Wisconsin marine platform near the Mendocino triple junction California.

    USGS Publications Warehouse

    McLaughlin, R.J.; Lajoie, K.R.; Sorg, D.H.; Morrison, S.D.; Wolfe, J.A.

    1983-01-01

    An uplifted wave-cut marine platform eroded across bedrock of the Franciscan Complex at Point Delgada, northern California, is overlain by 0.5 to 5 m of wave-worked pea gravel, which is in turn directly overlain by fluvial gravel and silt deposited as alluvial fans. Fossil wood debris from this horizon yields a 14C date of 44 800 yr. We tentatively correlate this terrace with the middle Wisconsin high sea-level stand at -37m, and if so, the tectonic uplift since middle Wisconsin time has been 44m, and the average rate of uplift has been at least 1.0m/1000 yr. -from Author

  10. The Evolution of the Indian Ocean Triple Junction and the Finite Rotation Problem.

    DTIC Science & Technology

    1980-09-01

    Gondwanaland , J. Geophys. Res. (in press). 24 Parsons, B., and J.G. Sclater, An analysis of the variation of ocean floor bathymetry and heat flow with age, J...219-230. Norton, 1.0., and Sclater, J.G., 1978, A model for the evolution of the Indian Ocean and the breakup of Gondwanaland : Journal of Geophysical

  11. 27 CFR 9.164 - River Junction.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false River Junction. 9.164... River Junction. (a) Name. The name of the viticultural area described in this section is “River Junction.” (b) Approved maps. The appropriate maps for determining the boundaries of the River...

  12. 27 CFR 9.164 - River Junction.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false River Junction. 9.164... River Junction. (a) Name. The name of the viticultural area described in this section is “River Junction.” (b) Approved maps. The appropriate maps for determining the boundaries of the River...

  13. Triple Value Simulation Model Fact Sheet

    EPA Pesticide Factsheets

    The Triple Value Simulation (3VS) is a high-level model that accounts for the complex relationships among economic, social and environmental systems in order to explore scenarios and solutions to improve the health of the Bay.

  14. Triple click reaction strategy for macromolecular diversity.

    PubMed

    Tunca, Umit

    2013-01-11

    This Feature Article focuses on the rapidly emerging concept of the "triple click reactions" towards the design and synthesis of macromolecules with well-defined topology and chemical composition, and also precise molecular weight and narrow molecular weight distribution. The term "triple click reaction" used in this feature article is based on the utilization of three chemically and mechanistically different click reactions for polymer-polymer conjugation and post-modification of the polymers. Three sequential click reactions of which two are identical should not be considered to be triple click reactions. The triple click reaction strategy for polymer conjugation and post-modification of polymers is classified in this article based on the resultant architectures: linear and non-linear structures.

  15. The collagen triple-helix structure.

    PubMed

    Brodsky, B; Ramshaw, J A

    1997-03-01

    Recent advances, principally through the study of peptide models, have led to an enhanced understanding of the structure and function of the collagen triple helix. In particular, the first crystal structure has clearly shown the highly ordered hydration network critical for stabilizing both the molecular conformation and the interactions between triple helices. The sequence dependent nature of the conformational features is also under active investigation by NMR and other techniques. The triple-helix motif has now been identified in proteins other than collagens, and it has been established as being important in many specific biological interactions as well as being a structural element. The nature of recognition and the degree of specificity for interactions involving triple helices may differ from globular proteins. Triple-helix binding domains consist of linear sequences along the helix, making them amenable to characterization by simple model peptides. The application of structural techniques to such model peptides can serve to clarify the interactions involved in triple-helix recognition and binding and can help explain the varying impact of different structural alterations found in mutant collagens in diseased states.

  16. Tight junction proteins: from barrier to tumorigenesis.

    PubMed

    Runkle, E Aaron; Mu, David

    2013-08-28

    The tight junction is a multi-protein complex and is the apical most junctional complex in certain epithelial and endothelial cells. A great deal of attention has been devoted to the understanding of these proteins in contributing to the barrier function - that is, regulating the paracellular flux or permeability between adjacent cells. However, tight junction proteins are now recognized as having functions beyond the barrier. The focus of this review is to discuss the barrier function of the tight junction and to summarize the literature with a focus on the role of tight junction proteins in proliferation, transformation, and metastasis.

  17. Tight Junction Proteins: From Barrier to Tumorigenesis

    PubMed Central

    Runkle, E. Aaron; Mu, David

    2013-01-01

    The tight junction is a multi-protein complex and is the apical most junctional complex in certain epithelial and endothelial cells. A great deal of attention has been devoted to the understanding of these proteins in contributing to the barrier function - that is, regulating the paracellular flux or permeability between adjacent cells. However, tight junction proteins are now recognized as having functions beyond the barrier. The focus of this review is to discuss the barrier function of the tight junction and to summarize the literature with a focus on the role of tight junction proteins in proliferation, transformation, and metastasis. PMID:23743355

  18. Tight Junction Proteins in Human Schwann Cell Autotypic Junctions

    PubMed Central

    Alanne, Maria H.; Pummi, Kati; Heape, Anthony M.; Grènman, Reidar; Peltonen, Juha; Peltonen, Sirkku

    2009-01-01

    Tight junctions (TJs) form physical barriers in various tissues and regulate paracellular transport of ions, water, and molecules. Myelinating Schwann cells form highly organized structures, including compact myelin, nodes of Ranvier, paranodal regions, Schmidt-Lanterman incisures, periaxonal cytoplasmic collars, and mesaxons. Autotypic TJs are formed in non-compacted myelin compartments between adjacent membrane lamellae of the same Schwann cell. Using indirect immunofluorescence and RT-PCR, we analyzed the expression of adherens junction (E-cadherin) and TJ [claudins, zonula occludens (ZO)-1, occludin] components in human peripheral nerve endoneurium, showing clear differences with published rodent profiles. Adult nerve paranodal regions contained E-cadherin, claudin-1, claudin-2, and ZO-1. Schmidt-Lanterman incisures contained E-cadherin, claudin-1, claudin-2, claudin-3, claudin-5, ZO-1, and occludin. Mesaxons contained E-cadherin, claudin-1, claudin-2, claudin-3, ZO-1, and occludin. None of the proteins studied were associated with nodal inter-Schwann cell junctions. Fetal nerve expression of claudin-1, claudin-3, ZO-1, and occludin was predominantly punctate, with a mesaxonal labeling pattern, but paranodal (ZO-1, claudin-3) and Schmidt-Lanterman incisure (claudins-1 and -3) expression profiles typical of compact myelin were visible by gestational week 37. The clear differences observed between human and published rodent nerve profiles emphasize the importance of human studies when translating the results of animal models to human diseases. (J Histochem Cytochem 57:523–529, 2009) PMID:19153196

  19. Seebeck effect in molecular junctions.

    PubMed

    Zimbovskaya, Natalya A

    2016-05-11

    Advances in the fabrication and characterization of nanoscale systems presently allow for a better understanding of their thermoelectric properties. As is known, the building blocks of thermoelectricity are the Peltier and Seebeck effects. In the present work we review results of theoretical studies of the Seebeck effect in single-molecule junctions and similar systems. The behavior of thermovoltage and thermopower in these systems is controlled by several factors including the geometry of molecular bridges, the characteristics of contacts between the bridge and the electrodes, the strength of the Coulomb interactions between electrons on the bridge, and of electron-phonon interactions. We describe the impact of these factors on the thermopower. Also, we discuss a nonlinear Seebeck effect in molecular junctions.

  20. Seebeck effect in molecular junctions

    NASA Astrophysics Data System (ADS)

    Zimbovskaya, Natalya A.

    2016-05-01

    Advances in the fabrication and characterization of nanoscale systems presently allow for a better understanding of their thermoelectric properties. As is known, the building blocks of thermoelectricity are the Peltier and Seebeck effects. In the present work we review results of theoretical studies of the Seebeck effect in single-molecule junctions and similar systems. The behavior of thermovoltage and thermopower in these systems is controlled by several factors including the geometry of molecular bridges, the characteristics of contacts between the bridge and the electrodes, the strength of the Coulomb interactions between electrons on the bridge, and of electron-phonon interactions. We describe the impact of these factors on the thermopower. Also, we discuss a nonlinear Seebeck effect in molecular junctions.

  1. Thermocouple, multiple junction reference oven

    NASA Technical Reports Server (NTRS)

    Leblanc, L. P. (Inventor)

    1981-01-01

    An improved oven for maintaining the junctions of a plurality of reference thermocouples at a common and constant temperature is described. The oven is characterized by a cylindrical body defining a heat sink with axially extended-cylindrical cavity a singularized heating element which comprises a unitary cylindrical heating element consisting of a resistance heating coil wound about the surface of metallic spool with an axial bore defined and seated in the cavity. Other features of the oven include an annular array of radially extended bores defined in the cylindrical body and a plurality of reference thermocouple junctions seated in the bores in uniformly spaced relation with the heating element, and a temperature sensing device seated in the axial bore for detecting temperature changes as they occur in the spool and circuit to apply a voltage across the coil in response to detected drops in temperatures of the spool.

  2. Plume locations and thermal anomalies determined by S-to-P receiver function imaging of the onset of melting: Afar, Hawaii, Galapagos, and Iceland (Invited)

    NASA Astrophysics Data System (ADS)

    Rychert, C.; Harmon, N.; Ebinger, C. J.; Hammond, J. O.; Kendall, J. M.; Laske, G.; Shearer, P. M.

    2013-12-01

    In classical plume theory, thermal anomalies rise vertically to the surface of the Earth. However, seismically imaging plume locations has proven challenging, and several observations and results from geodynamics suggest that plume trajectories may be more complicated than simple vertical upwellings. Here we use S-to-P receiver functions to image upper mantle discontinuity structure beneath volcanically active regions. We image a strong, sharp velocity increase in depth that is likely the base of a melt-rich layer beneath Hawaii, Iceland, Galapagos, and Afar. The discontinuity is likely related to the onset of melting, and is therefore expected deeper in locations of thermal plume anomalies. We use depth variations to constrain plume locations and the magnitude of thermal plume anomalies at asthenospheric depths in these regions. Beneath Hawaii we find a discontinuity at 110 to 155 km depth, deepest 100 km west of Hawaii in the location of slowest shear velocities as constrained by surface waves. Beneath Galapagos the discontinuity is imaged at ~125 to 145 km, deeper in 3 sectors that are coincident with the slowest shear velocity anomalies in the upper 100 km, as constrained by surface waves. One is located in the southwest in a hypothesized plume location. The other two are to the northwest and northeast, possibly illuminating multiple plume diversions related to complex plume-ridge interactions. Beneath Iceland the discontinuity is imaged at 110 - 160 km, deeper in the northeast in the location of hypothesized plume impingement. Beneath the Afar rift the discontinuity is imaged at ~75 km depth, suggesting that the plume is located outside our study region. Overall the maximum discontinuity depths correspond to ~100°C local thermal anomalies, or ~200°C from ambient mantle. In addition, the deepest realizations of the discontinuities are not necessarily located directly beneath surface hotspots. This suggests that either plumes approach the surface at an angle

  3. Thermoelectric efficiency of molecular junctions.

    PubMed

    Perroni, C A; Ninno, D; Cataudella, V

    2016-09-21

    Focus of the review is on experimental set-ups and theoretical proposals aimed to enhance thermoelectric performances of molecular junctions. In addition to charge conductance, the thermoelectric parameter commonly measured in these systems is the thermopower, which is typically rather low. We review recent experimental outcomes relative to several junction configurations used to optimize the thermopower. On the other hand, theoretical calculations provide estimations of all the thermoelectric parameters in the linear and non-linear regime, in particular of the thermoelectric figure of merit and efficiency, completing our knowledge of molecular thermoelectricity. For this reason, the review will mainly focus on theoretical studies analyzing the role of not only electronic, but also of the vibrational degrees of freedom. Theoretical results about thermoelectric phenomena in the coherent regime are reviewed focusing on interference effects which play a significant role in enhancing the figure of merit. Moreover, we review theoretical studies including the effects of molecular many-body interactions, such as electron-vibration couplings, which typically tend to reduce the efficiency. Since a fine tuning of many parameters and coupling strengths is required to optimize the thermoelectric conversion in molecular junctions, new theoretically proposed set-ups are discussed in the conclusions.

  4. Squeezed States in Josephson Junctions.

    NASA Astrophysics Data System (ADS)

    Hu, X.; Nori, F.

    1996-03-01

    We have studied quantum fluctuation properties of Josephson junctions in the limit of large Josephson coupling energy and small charging energy, when the eigenstates of the system can be treated as being nearly localized. We have considered(X. Hu and F. Nori, preprints.) a Josephson junction in a variety of situations, e.g., coupled to one or several of the following elements: a capacitor, an inductor (in a superconducting ring), and an applied current source. By solving an effective Shrödinger equation, we have obtained squeezed vacuum (coherent) states as the ground states of a ``free-oscillating'' (linearly-driven) Josephson junction, and calculated the uncertainties of its canonical momentum, charge, and coordinate, phase. We have also shown that the excited states of the various systems we consider are similar to the number states of a simple harmonic oscillator but with different fluctuation properties. Furthermore, we have obtained the time-evolution operators for these systems. These operators can make it easier to calculate the time-dependence of the expectation values and fluctuations of various quantities starting from an arbitrary initial state.

  5. CPV module design optimization for advanced multi-junction solar cell concepts

    NASA Astrophysics Data System (ADS)

    Steiner, Marc; Kiefel, Peter; Siefer, Gerald; Wiesenfarth, Maike; Dimroth, Frank; Krause, Rainer; Gombert, Andreas; Bett, Andreas W.

    2015-09-01

    A network model for multi-junction solar cells has been combined with ray tracing and finite element simulations of a Fresnel lens in order to interpret experimentally derived measurement results. This combined model reveals a good agreement between simulation and measurement for advanced four-junction solar cells under a Fresnel lens when the cell-to-lens distance was varied. Thus, the effect of fill factor drop caused by distributed series resistance losses due to chromatic aberration is well described by this model. Eventually, this model is used to calculate I-V characteristics of a four-junction cell, as well as of a upright metamorphic and lattice-matched triple-junction solar cell under the illumination profile of a Fresnel lens. A significant fill factor drop at distinct cell-to-lens distances was found for all three investigated solar cell types. In this work we discuss how this fill factor drop can be avoided. It is shown that already a halving of the sheet resistance within one of the lateral conduction layer in the solar cell increases the module efficiency significantly.

  6. Magma influence on propagation of normal faults: Evidence from cumulative slip profiles along Dabbahu-Manda-Hararo rift segment (Afar, Ethiopia)

    NASA Astrophysics Data System (ADS)

    Dumont, Stéphanie; Klinger, Yann; Socquet, Anne; Doubre, Cécile; Jacques, Eric

    2017-02-01

    Measuring displacement-length profiles along normal faults provides crucial information on fault growth processes. Here, based on satellite imagery and topography we analyze 357 normal faults distributed along the active rift of Dabbahu-Manda-Hararo (DMH), Afar, which offers a unique opportunity to investigate the influence of magmatism on fault growth processes. Our measurements reveal a large variety of slip profiles that are not consistent with elastic deformation. Their analysis contributes towards a better understanding of the lateral propagation of faults, especially when nucleation points and existence of barriers are included. Using the fault growth model of Manighetti et al. (2001), we determine the preferred direction of lateral propagation for each fault. Our results suggest that lateral propagation of faults is easier away from areas where magma has been stored for long time at crustal depth, and has thus modified the thermo-mechanical properties of the host-rock. However, these areas correspond also to areas where the initiation of fault growth appears as easiest along the rift. In combining these results with the analysis of rift width and the position of magma reservoirs along DMH rift, we show that fault growth keeps track of the magma presence and/or movement in the crust.

  7. (40)Ar/(39)Ar dating, paleomagnetism, and tephrochemistry of Pliocene strata of the hominid-bearing Woranso-Mille area, west-central Afar Rift, Ethiopia.

    PubMed

    Deino, Alan L; Scott, Gary R; Saylor, Beverly; Alene, Mulugeta; Angelini, Joshua D; Haile-Selassie, Yohannes

    2010-02-01

    (40)Ar/(39)Ar dating of tuffs and mafic lavas, tephra geochemistry, and paleomagnetic reversal stratigraphy have been used to establish the chronostratigraphy of the Pliocene hominid-bearing fossiliferous succession at Woranso-Mille, a paleontological study area in the western part of the central Afar region of Ethiopia. The succession in the northwestern part of the study area ranges in (40)Ar/(39)Ar age from 3.82-3.570 Ma, encompassed by paleomagnetic subchron C2Ar (4.187-3.596 Ma). One of the major tuff units, locally named the Kilaytoli tuff, is correlative on the basis of age and geochemistry to the Lokochot Tuff of the Turkana Basin. A hominid partial skeleton (KSD-VP-1) was found in strata whose precise stratigraphic position and age is still under investigation, but is believed to correspond to the later part of this interval. Woranso-Mille fills a significant gap in the fossil record of northeastern Africa at the time of the lower to middle Pliocene transition, when many extant species lineages of African fauna were established.

  8. Evaluating methods used for fission track dating of tephras: examples from the Afar Depression, Ethiopia, and the Denali fault zone, Alaska

    NASA Astrophysics Data System (ADS)

    Blythe, A. E.; Warfel, T. S.; Phillips, D. J.

    2015-12-01

    Although fission track geochronology has been successfully used to date volcanic glasses and tephras in several studies, a variety of approaches have been used (see Westgate et al., 2013), and no consensus for a standardized methodology has emerged. As a result, this technique is rarely employed, despite having the potential to date tephras and glasses that cannot be dated by other methods, such as K-Ar dating. We have been evaluating the various approaches used to address the technical issues in fission track dating of tephras, by applying them to standards of known ages, including Moldavite tektite, and Huckleberry and Bishop Tuffs. Some of these issues include track etching and counting protocol, and corrections for the effects of track fading at low temperatures. Track etching is generally done in 24% HF for 75 or more seconds, but the time necessary for optimal etching appears to vary according to sample composition and grain size. To correct for track fading, we are using the diameter correction technique of Sandhu and Westgate (1995). We have obtained tephra samples from two regions, the Afar Depression in Ethiopia, an area with significant early hominid fossils, and the Denali fault zone in Alaska, an area with a complicated tectonic evolution. For both of these regions, we have samples that have been dated by other methods for calibration purposes, and we will explore the application of a Zeta correction to the technique. This underutilized technique can provide powerful constraints on studies of timing in diverse geologic environments.

  9. Formation of Binaries from Triple Systems

    PubMed Central

    Szebehely, Victor

    1972-01-01

    The dynamical behavior of three masses moving under their mutual gravitational attraction in a plane is investigated by a systematic series of numerical experiments. It is shown that in 73% of the cases, a triple system disintegrates in less than 150 time units (corresponding to about 150 crossing times), and a binary is formed with the third star that escapes at hyperbolic velocity. The average time for disintegration is of the order of 109 years for triple stellar systems, as well as for triple galaxies. The statistics of the escaping masses show that the escaping mass is usually, but not always, the smallest in the system. A simple equation, giving the balance between the negative energy stored in the binary and the positive energy necessary for escape, explains the results qualitatively. PMID:16591978

  10. The triple point of sulfur hexafluoride

    NASA Astrophysics Data System (ADS)

    Rourke, P. M. C.

    2016-04-01

    A cryogenic fixed point cell has been filled with high purity (99.999%) sulfur hexafluoride (SF6) and measured in an adiabatic closed-cycle cryostat system. Temperature measurements of the SF6 melting curve were performed using a capsule-type standard platinum resistance thermometer (CSPRT) calibrated over the International Temperature Scale of 1990 (ITS-90) subrange from the triple point of equilibrium hydrogen to the triple point of water. The measured temperatures were corrected by 0.37 mK for the effects of thermometer self-heating, and the liquidus-point temperature estimated by extrapolation to melted fraction F  =  1 of a simple linear regression versus melted fraction F in the range F  =  0.53 to 0.84. Based on this measurement, the temperature of the triple point of sulfur hexafluoride is shown to be 223.555 23(49) K (k  =  1) on the ITS-90. This value is in excellent agreement with the best prior measurements reported in the literature, but with considerably smaller uncertainty. An analysis of the detailed uncertainty budget of this measurement suggests that if the triple point of sulfur hexafluoride were to be included as a defining fixed point of the next revision of the International Temperature Scale, it could do so with a total realization uncertainty of approximately 0.43 mK, slightly larger than the realization uncertainties of the defining fixed points of the ITS-90. Since the combined standard uncertainty of this SF6 triple point temperature determination is dominated by chemical impurity effects, further research exploring gas purification techniques and the influence of specific impurity species on the SF6 triple point temperature may bring the realization uncertainty of SF6 as a fixed point material into the range of the defining fixed points of the ITS-90.

  11. The Dissolution of Double Holliday Junctions

    PubMed Central

    Bizard, Anna H.; Hickson, Ian D.

    2014-01-01

    Double Holliday junctions (dHJS) are important intermediates of homologous recombination. The separate junctions can each be cleaved by DNA structure-selective endonucleases known as Holliday junction resolvases. Alternatively, double Holliday junctions can be processed by a reaction known as “double Holliday junction dissolution.” This reaction requires the cooperative action of a so-called “dissolvasome” comprising a Holliday junction branch migration enzyme (Sgs1/BLM RecQ helicase) and a type IA topoisomerase (Top3/TopoIIIα) in complex with its OB (oligonucleotide/oligosaccharide binding) fold containing accessory factor (Rmi1). This review details our current knowledge of the dissolution process and the players involved in catalyzing this mechanistically complex means of completing homologous recombination reactions. PMID:24984776

  12. Physics and Applications of NIS Junctions

    SciTech Connect

    Ullom, J N

    2001-08-24

    This paper reviews the physics and applications of Normal-Insulator-Superconductor (NIS) tunnel junctions. The current-voltage properties of NIS junctions are diode-like with a strong temperature dependence. Hence, these structures can be used as sensitive thermometers at temperatures well below the energy gap, {Delta}, of the superconducting electrode. For junction voltages comparable to {Delta}/q, current flow removes energy from the normal electrode. This property has been exploited to build refrigerators capable of cooling thin-film circuits from 0.3 K to 0.1 K. Calorimeters and bolometers for the detection of X-rays and millimeter-wave radiation, respectively, have successfully been built from NIS junctions. NIS junctions have also been used to probe the superconducting state. Finally, recent ideas for the use of NIS junctions as simple circuit elements are described.

  13. In vitro formation of gap junction vesicles.

    PubMed

    Goodenough, D A

    1976-02-01

    A method is described that uses trypsin digestion combined with collagenase-hyaluronidase which produces a population of gap junction vesicles. The hexagonal lattice of subunits ("connexons") comprising the gapjunctions appears unaltered by various structural criteria and by buoyant density measurements. The gap junction vesciles are closed by either a single or a double profile of nonjunctional "membrane," which presents a smooth, particle-free fracture face. Horseradish peroxidase and cytochrome c studies have revealed that about 20% of the gap junction vesicles are impermeable to proteins 12,000 daltons or larger. The increased purity of the trypsinized junction preparation suggests that one of the disulfide reduction products of the gap-junction principal protein may be a nonjunctional contaminating peptide. The gap junction appears to be composed of a single 18,000-dalton protein, connexin, which may be reduced to a single 9,000-dalton peak. The number of peptides in this reduced peak are still unknown.

  14. Sequence-specific photoinduced c-fos gene damage mediated by triple stranded-forming oligonucleotide conjugated to psoralen

    NASA Astrophysics Data System (ADS)

    Cao, En-Hua; Wang, Ju-jun; Ma, Wenjian; Qin, Jingfen

    1999-09-01

    A psoralen-oligonucleotide conjugate was designed to photoinduce a cross-link at a specific sequence of c-fos oncogene. Psoralen was attached to its C-3 position of a 20-base mer oligonucleotide, which binds to a synthetic 49 bp duplex containing the c-fos gene polypurine site, where it forms a triple stranded DNA. Upon near-UV-irradiation, the two strand of DNA are crosslinked at the TpA step present at the triple-duplex junction. Results show that the yield of the photoinduce cross- linking reaction is quite high. We treated HeLa cells with above 2-mer oligonucleotide conjugated to psoralen. The expression of c-fos oncogene was significant reduced, no significant effect on the level of c-myc mRNA. These data indicate that such psoralen- oligonucleotide conjugates could be used to selectively control gene expression or to induce sequence-specific damages.

  15. [Gap junctions and cancer: implications and perspectives].

    PubMed

    Mesnil, Marc

    2004-02-01

    Gap junctions are made of intercellular channels which permit the diffusion from cytoplasm to cytoplasm of small hydrophilic molecules (<1,200 Da) such as ions, sugars, amino acids, nucleotides, second messengers (calcium, inositol triphosphate, etc.). Since their discovery in the early sixties, several groups have described the loss of their function in cancer cells. The accumulation of such data led to the hypothesis that gap junctions are involved in the carcinogenesis process. This assumption has been confirmed by data establishing that gap junctional intercellular communication is inhibited by most of the tumor promoters and that the restoration of such a communication, by transfection of cDNAs encoding gap junction proteins (connexins), inhibits the aberrant growth rates of tumorigenic cells. Despite these important informations, several fundamental questions remain still open. First, we do not know how gap junctions mediate such a tumor suppressor effect and whether it may depend either on the cell type or on the connexin type. Moreover, most of the data concerning a possible involvement of gap junctions in carcinogenesis have been obtained from in vitro and animal models. The very few results which have been currently collected from human tumors are not sufficient to have a clear idea concerning the real involvement of gap junctions in sporadic human cancers. These points as well as other unresolved questions about the role of gap junctional intercellular communication in carcinogenesis are mentioned. To bring some answers, some prospects are proposed with the objective to use gap junctions for increasing the effect of anticancer therapies.

  16. Magnetic tunnel junction pattern technique

    NASA Astrophysics Data System (ADS)

    Chen, Eugene; Schwarz, Benjamin; Choi, Chang Ju; Kula, Witold; Wolfman, Jerome; Ounadjela, Kamel; Geha, Sam

    2003-05-01

    We have developed a magnetic tunnel junction (MTJ) pattern technique that involves transforming the magnetic layer above the tunnel barrier in unwanted areas into an insulator, thus providing insulation between different MTJ devices without suffering common tunnel barrier shorting problems. With this technique, 90%-100% yielding MTJ devices have been observed. MTJ results using this process are superior to an etching based process. Switching distribution of patterned magnetic bits is also narrower using this novel technique. Process control and the ability to stop on the tunnel barrier have been demonstrated.

  17. Thermoelectric effects in nanoscale junctions.

    PubMed

    Dubi, Yonatan; Di Ventra, Massimiliano

    2009-01-01

    Despite its intrinsic nonequilibrium origin, thermoelectricity in nanoscale systems is usually described within a static scattering approach which disregards the dynamical interaction with the thermal baths that maintain energy flow. Using the theory of open quantum systems, we show instead that unexpected properties, such as a resonant structure and large sign sensitivity, emerge if the nonequilibrium nature of this problem is considered. Our approach also allows us to define and study a local temperature, which shows hot spots and oscillations along the system according to the coupling of the latter to the electrodes. This demonstrates that Fourier's lawa paradigm of statistical mechanicsis generally violated in nanoscale junctions.

  18. Method for shallow junction formation

    DOEpatents

    Weiner, K.H.

    1996-10-29

    A doping sequence is disclosed that reduces the cost and complexity of forming source/drain regions in complementary metal oxide silicon (CMOS) integrated circuit technologies. The process combines the use of patterned excimer laser annealing, dopant-saturated spin-on glass, silicide contact structures and interference effects creates by thin dielectric layers to produce source and drain junctions that are ultrashallow in depth but exhibit low sheet and contact resistance. The process utilizes no photolithography and can be achieved without the use of expensive vacuum equipment. The process margins are wide, and yield loss due to contact of the ultrashallow dopants is eliminated. 8 figs.

  19. Method for shallow junction formation

    DOEpatents

    Weiner, Kurt H.

    1996-01-01

    A doping sequence that reduces the cost and complexity of forming source/drain regions in complementary metal oxide silicon (CMOS) integrated circuit technologies. The process combines the use of patterned excimer laser annealing, dopant-saturated spin-on glass, silicide contact structures and interference effects creates by thin dielectric layers to produce source and drain junctions that are ultrashallow in depth but exhibit low sheet and contact resistance. The process utilizes no photolithography and can be achieved without the use of expensive vacuum equipment. The process margins are wide, and yield loss due to contact of the ultrashallow dopants is eliminated.

  20. Examining Primary Healthcare Performance through a Triple Aim Lens

    PubMed Central

    Ryan, Bridget L.; Brown, Judith Belle; Glazier, Richard H.; Hutchison, Brian

    2016-01-01

    Purpose: This study sought to apply a Triple Aim framework to the measurement and evaluation of primary healthcare (PHC) team performance. Methods: Triple Aim components were populated with 10 dimensions derived from survey and health administrative data for 17 Family Health Teams (FHTs) in Ontario, Canada. Bivariate analyses and rankings of sites examined the relationships among dimensions and among Triple Aim components. Results: Readily available measures to fully populate the Triple Aim framework were lacking in FHTs. Within sites, there was little consistency in performance across the Triple Aim components (health, patient experience and cost). Conclusions: More and better measures are needed that can be readily used to examine the Triple Aim performance in PHC teams. FHTs, in this study, are partially achieving Triple Aim goals; however, there was a lack of consistency in performance. It is essential to collect appropriate measures and attend to performance across all components of the Triple Aim. PMID:27027790

  1. Dielectric flashover with triple point shielding in a coaxial geometry.

    PubMed

    Benwell, A; Kovaleski, S D; Gahl, J

    2007-11-01

    Increasing performance of vacuum insulator barriers is a common goal in pulsed power. Insulating performance is continually being improved while new methods are developed. Triple point shielding techniques have been shown to increase flashover voltage, but the role of cathode versus anode shielding is still not fully understood. Open circuit flashover characteristics were obtained for a coaxial geometry to view the effects of triple point shielding for this geometry. The tests included applying various combinations of triple point shields on zero and +45 degrees insulators. Shielding was tested at the cathode triple point outside of the dielectric and at the anode triple point inside the dielectric. The role of anode versus cathode triple point shielding was examined. Flashover voltage was observed to increase when either a cathode or anode triple point shield was applied; however, adding a shield to both regions lowered the flashover threshold. Both triple point regions were found to be important and dependent on each other for some coaxial geometries.

  2. Electrodeposited, Transverse Nanowire Electroluminescent Junctions.

    PubMed

    Qiao, Shaopeng; Xu, Qiang; Dutta, Rajen K; Le Thai, Mya; Li, Xiaowei; Penner, Reginald M

    2016-09-27

    The preparation by electrodeposition of transverse nanowire electroluminescent junctions (tn-ELJs) is described, and the electroluminescence (EL) properties of these devices are characterized. The lithographically patterned nanowire electrodeposition process is first used to prepare long (millimeters), linear, nanocrystalline CdSe nanowires on glass. The thickness of these nanowires along the emission axis is 60 nm, and the width, wCdSe, along the electrical axis is adjustable from 100 to 450 nm. Ten pairs of nickel-gold electrical contacts are then positioned along the axis of this nanowire using lithographically directed electrodeposition. The resulting linear array of nickel-CdSe-gold junctions produces EL with an external quantum efficiency, EQE, and threshold voltage, Vth, that depend sensitively on wCdSe. EQE increases with increasing electric field and also with increasing wCdSe, and Vth also increases with wCdSe and, therefore, the electrical resistance of the tn-ELJs. Vth down to 1.8(±0.2) V (for wCdSe ≈ 100 nm) and EQE of 5.5(±0.5) × 10(-5) (for wCdSe ≈ 450 nm) are obtained. tn-ELJs produce a broad EL emission envelope, spanning the wavelength range from 600 to 960 nm.

  3. Revised Reynolds Stress and Triple Product Models

    NASA Technical Reports Server (NTRS)

    Olsen, Michael E.; Lillard, Randolph P.

    2017-01-01

    Revised versions of Lag methodology Reynolds-stress and triple product models are applied to accepted test cases to assess the improvement, or lack thereof, in the prediction capability of the models. The Bachalo-Johnson bump flow is shown as an example for this abstract submission.

  4. Discovering Steiner Triple Systems through Problem Solving

    ERIC Educational Resources Information Center

    Sriraman, Bharath

    2004-01-01

    An attempt to implement problem solving as a teacher of ninth grade algebra is described. The problems selected were not general ones, they involved combinations and represented various situations and were more complex which lead to the discovery of Steiner triple systems.

  5. 49 CFR 380.205 - LCV Triples.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS SPECIAL TRAINING REQUIREMENTS LCV Driver-Training Program § 380.205 LCV Triples. (a) To qualify for the training necessary...

  6. Detecting Triple Systems with Gravitational Wave Observations

    NASA Astrophysics Data System (ADS)

    Meiron, Yohai; Kocsis, Bence; Loeb, Abraham

    2017-01-01

    The Laser Interferometer Gravitational Wave Observatory (LIGO) has recently discovered gravitational waves (GWs) emitted by merging black hole binaries. We examine whether future GW detections may identify triple companions of merging binaries. Such a triple companion causes variations in the GW signal due to: (1) the varying path length along the line of sight during the orbit around the center of mass; (2) relativistic beaming, Doppler, and gravitational redshift; (3) the variation of the “light”-travel time in the gravitational field of the triple companion; and (4) secular variations of the orbital elements. We find that the prospects for detecting a triple companion are the highest for low-mass compact object binaries which spend the longest time in the LIGO frequency band. In particular, for merging neutron star binaries, LIGO may detect a white dwarf or M-dwarf perturber at a signal-to-noise ratio of 8, if it is within 0.4 {R}ȯ distance from the binary and the system is within a distance of 100 Mpc. Stellar mass (supermassive) black hole perturbers may be detected at a factor 5 × (103×) larger separations. Such pertubers in orbit around a merging binary emit GWs at frequencies above 1 mHz detectable by the Laser Interferometer Space Antenna in coincidence.

  7. Fixed Point Problems for Linear Transformations on Pythagorean Triples

    ERIC Educational Resources Information Center

    Zhan, M.-Q.; Tong, J.-C.; Braza, P.

    2006-01-01

    In this article, an attempt is made to find all linear transformations that map a standard Pythagorean triple (a Pythagorean triple [x y z][superscript T] with y being even) into a standard Pythagorean triple, which have [3 4 5][superscript T] as their fixed point. All such transformations form a monoid S* under matrix product. It is found that S*…

  8. Ballistic Graphene Josephson Junctions from the Short to the Long Junction Regimes

    NASA Astrophysics Data System (ADS)

    Borzenets, I. V.; Amet, F.; Ke, C. T.; Draelos, A. W.; Wei, M. T.; Seredinski, A.; Watanabe, K.; Taniguchi, T.; Bomze, Y.; Yamamoto, M.; Tarucha, S.; Finkelstein, G.

    2016-12-01

    We investigate the critical current IC of ballistic Josephson junctions made of encapsulated graphene-boron-nitride heterostructures. We observe a crossover from the short to the long junction regimes as the length of the device increases. In long ballistic junctions, IC is found to scale as ∝exp (-kBT /δ E ). The extracted energies δ E are independent of the carrier density and proportional to the level spacing of the ballistic cavity. As T →0 the critical current of a long (or short) junction saturates at a level determined by the product of δ E (or Δ ) and the number of the junction's transversal modes.

  9. Slit Diaphragms Contain Tight Junction Proteins

    PubMed Central

    Fukasawa, Hirotaka; Bornheimer, Scott; Kudlicka, Krystyna; Farquhar, Marilyn G.

    2009-01-01

    Slit diaphragms are essential components of the glomerular filtration apparatus, as changes in these junctions are the hallmark of proteinuric diseases. Slit diaphragms, considered specialized adherens junctions, contain both unique membrane proteins (e.g., nephrin, podocin, and Neph1) and typical adherens junction proteins (e.g., P-cadherin, FAT, and catenins). Whether slit diaphragms also contain tight junction proteins is unknown. Here, immunofluorescence, immunogold labeling, and cell fractionation demonstrated that rat slit diaphragms contain the tight junction proteins JAM-A (junctional adhesion molecule A), occludin, and cingulin. We found these proteins in the same protein complexes as nephrin, podocin, CD2AP, ZO-1, and Neph1 by cosedimentation, coimmunoprecipitation, and pull-down assays. PAN nephrosis increased the protein levels of JAM-A, occludin, cingulin, and ZO-1 several-fold in glomeruli and loosened their attachment to the actin cytoskeleton. These data extend current information about the molecular composition of slit diaphragms by demonstrating the presence of tight junction proteins, although slit diaphragms lack the characteristic morphologic features of tight junctions. The contribution of these proteins to the assembly of slit diaphragms and potential signaling cascades requires further investigation. PMID:19478094

  10. Dressed fluxon in a Josephson window junction

    NASA Astrophysics Data System (ADS)

    Caputo, Jean Guy; Flytzanis, Nikos; Devoret, Michel

    1994-09-01

    The static fluxon solutions of a Josephson window junction have been studied numerically. We show that the effect of the idle region surrounding the junction is to ``dress'' the fluxon causing its energy to increase. This effect can be predicted accurately by a simple model.

  11. Analysis of Tight Junction Formation and Integrity

    SciTech Connect

    Karakaya, Mahmut; Kerekes, Ryan A; Morrell-Falvey, Jennifer L; Foster, Carmen M; Retterer, Scott T

    2012-01-01

    In this paper, we study segmentation of tight junctions and analyze the formation and integrity of tight junctions in large-scale confocal image stacks, a challenging biological problem because of the low spatial resolution images and the presence of breaks in tight junction structure. We present an automated, three-step processing approach for tight junction analysis. In our approach, we first localize each individual nucleus in the image by using thresholding, morphological filters and active contours. By using each nucleus position as a seed point, we automatically segment the cell body based on the active contour. We then use an intensity-based skeletonization algorithm to generate the boundary regions for each cell, and features are extracted from tight junctions associated with each cell to assess tight junction continuity. Based on qualitative results and quantitative comparisons, we show that we are able to automatically segment tight junctions and compute relevant features that provide a quantitative measure of tight junction formation to which the permeability of the cell monolayer can ultimately be correlated.

  12. Geometry of the Arabia-Somalia Plate Boundary into Afar: Preliminary Results from the Seismic Profile Across the Asal Rift (Djibouti)

    NASA Astrophysics Data System (ADS)

    Vergne, J.; Doubre, C.; Mohamed, K.; Tiberi, C.; Leroy, S.; Maggi, A.

    2010-12-01

    In the Afar Depression, the Asal-Ghoubbet Rift in Djibouti is a young segment on land at the propagating tip of the Aden Ridge. This segment represents an ideal laboratory to observe the mechanisms of extension and the structural evolutions involved, from the continental break-up to the first stage of oceanic spreading. However, we lack first order information about the crustal and upper mantle structure in this region, which for example prevent detailed numerical modeling of the deformations observed at the surface from GPS or InSAR. Moreover the current permanent network is not well suited to precisely constrain the ratio of seismic/aseismic deformation and to characterize the active deformation and the rifting dynamics. Since November 2009 we have maintained a temporary network of 25 seismic stations deployed along a 150 km-long profile. Because we expect rapid variations of the lithospheric structure across the 10 km-wide central part of the rift, we gradually decreased the inter-stations spacing to less than 1 km in the middle section of the profile. In order to obtain a continuous image of the plate boundary, from the topographic surface to the upper mantle, several techniques and methods will be applied: P and S wave receiver functions, tomographies based on body waves, surface waves and seismic noise correlation, anisotropy, and finally a gravity-seismic joint inversion. We present some preliminary results deduced from the receiver functions applied to the data acquired during the first months of the experiment. We migrate several sets of receiver functions computed in various frequency bands to resolve both mantle interfaces and fine scale structures within the thin crust in the center of the rift. These first images confirm a rapid variation of the Moho depth on both sides of the rift and a very complex lithospheric structure in the central section with several low velocity zones within the top 50km that might correspond to magma lenses.

  13. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    SciTech Connect

    Cleland, A.N.

    1991-04-01

    Experiments investigating the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very small capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters; the tunneling rate in the moderately damped (Q {approx} 1) junction is seen to be reduced by a factor of 300 from that predicted for an undamped junction. The phase is seen to be a good quantum-mechanical variable. The experiments on small capacitance tunnel junctions extend the measurements on the larger-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wavefunction has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias. I present the first clear observation of the Coulomb blockade in single junctions. The electrical environment of the tunnel junction, however, strongly affects the behavior of the junction: higher resistance leads are observed to greatly sharpen the Coulomb blockade over that seen with lower resistance leads. I present theoretical descriptions of how the environment influences the junctions; comparisons with the experimental results are in reasonable agreement.

  14. Thermal stability of collagen triple helix.

    PubMed

    Xu, Yujia

    2009-01-01

    Chief among the challenges of characterizing the thermal stability of the collagen triple helix are the lack of the reversibility of the thermal transition and the presence of multiple folding-unfolding steps during the thermal transition which rarely follows the simple two-state, all-or-none mechanism. Despite of the difficulties inherited in the quantitative depiction of the thermal transition of collagen, biophysical studies combined with proteolysis and mutagenesis approaches using full-chain collagens, short synthetic peptides, and recombinant collagen fragments have revealed molecular features of the thermal unfolding of the subdomains of collagen and led to a better understanding of the diverse biological functions of this versatile protein. The subdomain of collagen generally refers to a segment of the long, rope-like triple helical molecule that can unfold cooperatively as an independent unit whose properties (their size, location, and thermal stability) are considered essential for the molecular recognition during the self-assembly of collagen and during the interactions of collagen with other macromolecules. While the unfolding of segments of the triple helix at temperatures below the apparent melting temperature of the molecule has been used to interpret much of the features of the thermal unfolding of full-chain collagens, the thermal studies of short, synthetic peptides have firmly established the molecular basis of the subdomains by clearly demonstrating the close dependence of the thermal stability of a triple helix on the constituent amino acid residues at the X and the Y positions of the characteristic Gly-X-Y repeating sequence patterns of the triple helix. Studies using recombinant collagen fragments further revealed that in the context of the long, linear molecule, the stability of a segment of the triple helix is also modulated by long-range impact of the local interactions such as the interchain salt bridges. Together, the combined approaches

  15. Gauging triple stores with actual biological data

    PubMed Central

    2012-01-01

    Background Semantic Web technologies have been developed to overcome the limitations of the current Web and conventional data integration solutions. The Semantic Web is expected to link all the data present on the Internet instead of linking just documents. One of the foundations of the Semantic Web technologies is the knowledge representation language Resource Description Framework (RDF). Knowledge expressed in RDF is typically stored in so-called triple stores (also known as RDF stores), from which it can be retrieved with SPARQL, a language designed for querying RDF-based models. The Semantic Web technologies should allow federated queries over multiple triple stores. In this paper we compare the efficiency of a set of biologically relevant queries as applied to a number of different triple store implementations. Results Previously we developed a library of queries to guide the use of our knowledge base Cell Cycle Ontology implemented as a triple store. We have now compared the performance of these queries on five non-commercial triple stores: OpenLink Virtuoso (Open-Source Edition), Jena SDB, Jena TDB, SwiftOWLIM and 4Store. We examined three performance aspects: the data uploading time, the query execution time and the scalability. The queries we had chosen addressed diverse ontological or biological questions, and we found that individual store performance was quite query-specific. We identified three groups of queries displaying similar behaviour across the different stores: 1) relatively short response time queries, 2) moderate response time queries and 3) relatively long response time queries. SwiftOWLIM proved to be a winner in the first group, 4Store in the second one and Virtuoso in the third one. Conclusions Our analysis showed that some queries behaved idiosyncratically, in a triple store specific manner, mainly with SwiftOWLIM and 4Store. Virtuoso, as expected, displayed a very balanced performance - its load time and its response time for all the

  16. Double Planet Meets Triple Star

    NASA Astrophysics Data System (ADS)

    2002-08-01

    atmosphere, a large campaign involving more than twenty scientists and engineers from the Paris Observatory and associated institutions [1] was organized to observe the July 20, 2002, event involving an occultation of a star of visual magnitude 11 (i.e., about 100 times fainter than what can be perceived with then unaided eye), referred to as "P126" in McDonald and Elliot's catalogue. In May 2002, preparatory observations showed that star to be double, with the brighter component of the system ( "P126 A" ) being likely to be occulted by Pluto, as seen from South America. However, because of the duplicity, the predictions of exactly where the shadow of Pluto would sweep the ground were uncertain by about 0.1 arcsec in the sky, corresponding to more than 2000 km on the ground. The NACO images ESO PR Photo 21b/02 ESO PR Photo 21b/02 [Preview - JPEG: 400 x 469 pix - 47k] [Normal - JPEG: 800 x 937 pix - 208k] ESO PR Photo 21c/02 ESO PR Photo 21c/02 [Preview - JPEG: 400 x 467 pix - 53k] [Normal - JPEG: 800 x 933 pix - 232k] Caption : PR Photo 21b/02 shows one of the images obtained with the NAOS-CONICA (NACO) adaptive optics (AO) camera mounted on the ESO VLT 8.2-m YEPUN telescope at the Paranal Observatory in connection with a stellar occultation by Pluto on July 20, 2002. The star was found to be triple - the three components (A, B and C), as well as Pluto and its moon, Charon, are indicated in PR Photo 21c/02 for easy orientation. The images are based on data available from the NACO data webpage. See the text for details. In the end, the close approach (an "appulse" in astronomical terminology) of Pluto and P126 A was indeed observed from various sites in South America, with several mobile telescopes and also including major facilities at the ESO La Silla and Paranal Observatories. In particular, unique and very sharp images were obtained with the NAOS-CONICA (NACO) adaptive optics (AO) camera mounted on the ESO VLT 8.2-m YEPUN telescope . One of the NACO images is shown in PR

  17. A rare case of triple thyroid ectopia

    PubMed Central

    Rahalkar, Mukund; Rahalkar, Anand; Solav, Shrikant

    2014-01-01

    Various anomalies of thyro-glossal duct have been described, in which the duct may form a cyst or may present as a solid nodule to form an ectopic gland. The ectopic gland can develop along the tract of the duct to give rise to ectopic lingual, sublingual (pre-hyoid) or sub-hyoid (pyramidal) gland, with or without normal pre-tracheal thyroid gland.There are a few reports of double ectopia of thyroid but triple ectopia of thyroid is extremely rare. We have come across a case of triple thyroid ectopia, i.e., thyroid tissue at three locations along the tract of descent of thyro-glossal duct on CT, which hast been rarely reported in the world literature, and hence this report. PMID:24741526

  18. Asteroid Systems: Binaries, Triples, and Pairs

    NASA Astrophysics Data System (ADS)

    Margot, J.-L.; Pravec, P.; Taylor, P.; Carry, B.; Jacobson, S.

    In the past decade, the number of known binary near-Earth asteroids has more than quadrupled and the number of known large main-belt asteroids with satellites has doubled. Half a dozen triple asteroids have been discovered, and the previously unrecognized populations of asteroid pairs and small main-belt binaries have been identified. The current observational evidence confirms that small (≲20 km) binaries form by rotational fission and establishes that the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect powers the spin-up process. A unifying paradigm based on rotational fission and post-fission dynamics can explain the formation of small binaries, triples, and pairs. Large (>~20 km) binaries with small satellites are most likely created during large collisions.

  19. Triple point in correlated interdependent networks

    NASA Astrophysics Data System (ADS)

    Valdez, L. D.; Macri, P. A.; Stanley, H. E.; Braunstein, L. A.

    2013-11-01

    Many real-world networks depend on other networks, often in nontrivial ways, to maintain their functionality. These interdependent “networks of networks” are often extremely fragile. When a fraction 1-p of nodes in one network randomly fails, the damage propagates to nodes in networks that are interdependent and a dynamic failure cascade occurs that affects the entire system. We present dynamic equations for two interdependent networks that allow us to reproduce the failure cascade for an arbitrary pattern of interdependency. We study the “rich club” effect found in many real interdependent network systems in which the high-degree nodes are extremely interdependent, correlating a fraction α of the higher-degree nodes on each network. We find a rich phase diagram in the plane p-α, with a triple point reminiscent of the triple point of liquids that separates a nonfunctional phase from two functional phases.

  20. Electrostatic control of thermoelectricity in molecular junctions.

    PubMed

    Kim, Youngsang; Jeong, Wonho; Kim, Kyeongtae; Lee, Woochul; Reddy, Pramod

    2014-11-01

    Molecular junctions hold significant promise for efficient and high-power-output thermoelectric energy conversion. Recent experiments have probed the thermoelectric properties of molecular junctions. However, electrostatic control of thermoelectric properties via a gate electrode has not been possible due to technical challenges in creating temperature differentials in three-terminal devices. Here, we show that extremely large temperature gradients (exceeding 1 × 10(9) K m(-1)) can be established in nanoscale gaps bridged by molecules, while simultaneously controlling their electronic structure via a gate electrode. Using this platform, we study prototypical Au-biphenyl-4,4'-dithiol-Au and Au-fullerene-Au junctions to demonstrate that the Seebeck coefficient and the electrical conductance of molecular junctions can be simultaneously increased by electrostatic control. Moreover, from our studies of fullerene junctions, we show that thermoelectric properties can be significantly enhanced when the dominant transport orbital is located close to the chemical potential (Fermi level) of the electrodes. These results illustrate the intimate relationship between the thermoelectric properties and charge transmission characteristics of molecular junctions and should enable systematic exploration of the recent computational predictions that promise extremely efficient thermoelectric energy conversion in molecular junctions.

  1. Microtubules regulate disassembly of epithelial apical junctions

    PubMed Central

    Ivanov, Andrei I; McCall, Ingrid C; Babbin, Brian; Samarin, Stanislav N; Nusrat, Asma; Parkos, Charles A

    2006-01-01

    Background Epithelial tight junction (TJ) and adherens junction (AJ) form the apical junctional complex (AJC) which regulates cell-cell adhesion, paracellular permeability and cell polarity. The AJC is anchored on cytoskeletal structures including actin microfilaments and microtubules. Such cytoskeletal interactions are thought to be important for the assembly and remodeling of apical junctions. In the present study, we investigated the role of microtubules in disassembly of the AJC in intestinal epithelial cells using a model of extracellular calcium depletion. Results Calcium depletion resulted in disruption and internalization of epithelial TJs and AJs along with reorganization of perijunctional F-actin into contractile rings. Microtubules reorganized into dense plaques positioned inside such F-actin rings. Depolymerization of microtubules with nocodazole prevented junctional disassembly and F-actin ring formation. Stabilization of microtubules with either docetaxel or pacitaxel blocked contraction of F-actin rings and attenuated internalization of junctional proteins into a subapical cytosolic compartment. Likewise, pharmacological inhibition of microtubule motors, kinesins, prevented contraction of F-actin rings and attenuated disassembly of apical junctions. Kinesin-1 was enriched at the AJC in cultured epithelial cells and it also accumulated at epithelial cell-cell contacts in normal human colonic mucosa. Furthermore, immunoprecipitation experiments demonstrated association of kinesin-1 with the E-cadherin-catenin complex. Conclusion Our data suggest that microtubules play a role in disassembly of the AJC during calcium depletion by regulating formation of contractile F-actin rings and internalization of AJ/TJ proteins. PMID:16509970

  2. Device Maintains Water At The Triple Point

    NASA Technical Reports Server (NTRS)

    West, J. W.; Burkett, C. G.

    1988-01-01

    Inexpensive device maintains water at 0.01 degree C for 10 weeks or longer. New device consists of four basic assemblies; small, commercial chest freezer containing insulated water tank; insulated copper cell holder; "ice switch" for cycling freezer compressor and externally-mounted air pump for circulation. Access hole in freezer lid allows triple point measurements without opening lid. Modified freezer used to calibrate standard platinum resistance thermomenters.

  3. Triple plasmon resonance of bimetal nanoshell

    SciTech Connect

    Shirzaditabar, Farzad; Saliminasab, Maryam; Arghavani Nia, Borhan

    2014-07-15

    In this paper, light absorption spectra properties of a bimetal multilayer nanoshell based on quasi-static approach are investigated. Comparing with silver-dielectric-silver and silver-dielectric-gold nanoshells, gold-dielectric-silver nanoshells have three intense and separated plasmon peaks which are more suitable for multiplex biosensing. Calculations show that relatively small thickness of outer silver shell and large dielectric constant of middle dielectric layer of gold-dielectric-silver nanoshell are suitable to obtain the triple plasmon resonance.

  4. Triple plasmon resonance of bimetal nanoshell

    NASA Astrophysics Data System (ADS)

    Shirzaditabar, Farzad; Saliminasab, Maryam; Arghavani Nia, Borhan

    2014-07-01

    In this paper, light absorption spectra properties of a bimetal multilayer nanoshell based on quasi-static approach are investigated. Comparing with silver-dielectric-silver and silver-dielectric-gold nanoshells, gold-dielectric-silver nanoshells have three intense and separated plasmon peaks which are more suitable for multiplex biosensing. Calculations show that relatively small thickness of outer silver shell and large dielectric constant of middle dielectric layer of gold-dielectric-silver nanoshell are suitable to obtain the triple plasmon resonance.

  5. Triple Teeth: Report of an Unusual Case

    PubMed Central

    Babaji, Prashant; Prasanth, M. A.; Gowda, Ajith R.; Ajith, Soumya; D'Souza, Henston; Ashok, K. P.

    2012-01-01

    Fusion or synodontia is a union of two or more than two developing teeth. Commonly fusion occurs between teeth of the same dentition, mixed dentition, or between normal and supernumerary teeth. Fused primary teeth present with several clinical problems like caries, periodontal problem, arch asymmetry, delayed eruption, ectopic eruption of succedaneous teeth, aesthetic, and other complications. This paper presents a rare and unusual case of triple teeth in mandibular primary dentition. PMID:23346424

  6. Expression and prognostic value of estrogen receptor β in patients with triple-negative and triple-positive breast cancer.

    PubMed

    Guo, Liying; Zhu, Qianwen; Aisimutuola, Mulati; Yilamu, Dilimina; Liu, Sha; Jakulin, Adina

    2015-06-01

    The aim of the present study was to investigate the expression of estrogen receptor β (ERβ) in triple-negative and triple-positive breast cancer patients, and evaluate its utility as a prognostic factor. Between January 2000 and December 2010, primary tumor tissue samples were collected from 234 subjects, including 107 triple-negative and 127 triple-positive breast cancer patients. The samples were embedded in paraffin and immunohistochemical staining was conducted to determine the expression levels of ERβ. The Kaplan-Meier method was used to analyze patient survival rates. ERβ expression was observed in 38/107 patients (35.5%) with triple-negative breast cancer and 63/127 patients (49.6%) with triple-positive breast cancer. The ERβ expression rate was significantly decreased in the patients with triple-negative breast cancer, as compared with those with triple-positive breast cancer (P=0.03). Analysis of the survival rates indicated that patients with triple-negative breast cancer and positive ERβ expression exhibited poor disease progression-free survival (DFS) compared with those with negative ERβ expression (P=0.021). However, no statistically significant difference was observed in the DFS between the triple-positive breast cancer patients with positive and negative ERβ expression. Therefore, the expression of ERβ varies between triple-negative and triple-positive breast cancer patients. In addition, positive expression of ERβ indicates a poor prognosis in triple-negative breast cancer patients; however, this is not the case for triple-positive breast cancer patients.

  7. A Tulczyjew triple for classical fields

    NASA Astrophysics Data System (ADS)

    Grabowska, Katarzyna

    2012-04-01

    The geometrical structure known as the Tulczyjew triple has proved to be very useful in describing mechanical systems, even those with singular Lagrangians or subject to constraints. Starting from basic concepts of the variational calculus, we construct the Tulczyjew triple for first-order field theory. The important feature of our approach is that we do not postulate ad hoc the ingredients of the theory, but obtain them as unavoidable consequences of the variational calculus. This picture of field theory is covariant and complete, containing not only the Lagrangian formalism and Euler-Lagrange equations but also the phase space, the phase dynamics and the Hamiltonian formalism. Since the configuration space turns out to be an affine bundle, we have to use affine geometry, in particular the notion of the affine duality. In our formulation, the two maps α and β which constitute the Tulczyjew triple are morphisms of double structures of affine-vector bundles. We also discuss the Legendre transformation, i.e. the transition between the Lagrangian and the Hamiltonian formulation of the first-order field theory.

  8. Molecular mechanism of double Holliday junction dissolution

    PubMed Central

    2014-01-01

    Processing of homologous recombination intermediates is tightly coordinated to ensure that chromosomal integrity is maintained and tumorigenesis avoided. Decatenation of double Holliday junctions, for example, is catalysed by two enzymes that work in tight coordination and belong to the same ‘dissolvasome’ complex. Within the dissolvasome, the RecQ-like BLM helicase provides the translocase function for Holliday junction migration, while the topoisomerase III alpha-RMI1 subcomplex works as a proficient DNA decatenase, together resulting in double-Holliday-junction unlinking. Here, we review the available architectural and biochemical knowledge on the dissolvasome machinery, with a focus on the structural interplay between its components. PMID:25061510

  9. Circuit Theory of Unconventional Superconductor Junctions

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Nazarov, Yu. V.; Kashiwaya, S.

    2003-04-01

    We extend the circuit theory of superconductivity to cover transport and proximity effect in mesoscopic systems that contain unconventional superconductor junctions. The approach fully accounts for zero-energy Andreev bound states forming at the surface of unconventional superconductors. As a simple application, we investigate the transport properties of a diffusive normal metal in series with a d-wave superconductor junction. We reveal the competition between the formation of Andreev bound states and proximity effect that depends on the crystal orientation of the junction interface.

  10. Graded junction termination extensions for electronic devices

    NASA Technical Reports Server (NTRS)

    Merrett, J. Neil (Inventor); Isaacs-Smith, Tamara (Inventor); Sheridan, David C. (Inventor); Williams, John R. (Inventor)

    2006-01-01

    A graded junction termination extension in a silicon carbide (SiC) semiconductor device and method of its fabrication using ion implementation techniques is provided for high power devices. The properties of silicon carbide (SiC) make this wide band gap semiconductor a promising material for high power devices. This potential is demonstrated in various devices such as p-n diodes, Schottky diodes, bipolar junction transistors, thyristors, etc. These devices require adequate and affordable termination techniques to reduce leakage current and increase breakdown voltage in order to maximize power handling capabilities. The graded junction termination extension disclosed is effective, self-aligned, and simplifies the implementation process.

  11. Graded junction termination extensions for electronic devices

    NASA Technical Reports Server (NTRS)

    Merrett, J. Neil (Inventor); Isaacs-Smith, Tamara (Inventor); Sheridan, David C. (Inventor); Williams, John R. (Inventor)

    2007-01-01

    A graded junction termination extension in a silicon carbide (SiC) semiconductor device and method of its fabrication using ion implementation techniques is provided for high power devices. The properties of silicon carbide (SiC) make this wide band gap semiconductor a promising material for high power devices. This potential is demonstrated in various devices such as p-n diodes, Schottky diodes, bipolar junction transistors, thyristors, etc. These devices require adequate and affordable termination techniques to reduce leakage current and increase breakdown voltage in order to maximize power handling capabilities. The graded junction termination extension disclosed is effective, self-aligned, and simplifies the implementation process.

  12. Optical coupling from InGaAs subcell to InGaP subcell in InGaP/InGaAs/Ge multi-junction solar cells.

    PubMed

    Shu, G W; Lin, J Y; Jian, H T; Shen, J L; Wang, S C; Chou, C L; Chou, W C; Wu, C H; Chiu, C H; Kuo, H C

    2013-01-14

    Spatially-resolved electroluminescence (EL) images in the triple-junction InGaP/InGaAs/Ge solar cell have been investigated to demonstrate the subcell coupling effect. Upon irradiating the infrared light with an energy below bandgap of the active layer in the top subcell, but above that in the middle subcell, the EL of the top subcell quenches. By analysis of EL intensity as a function of irradiation level, it is found that the coupled p-n junction structure and the photovoltaic effect are responsible for the observed EL quenching. With optical coupling and photoswitching effects in the multi-junction diode, a concept of infrared image sensors is proposed.

  13. Optimization of 3-junction inverted metamorphic solar cells for high-temperature and high-concentration operation

    NASA Astrophysics Data System (ADS)

    Geisz, John F.; Duda, Anna; France, Ryan M.; Friedman, Daniel J.; Garcia, Ivan; Olavarria, Waldo; Olson, Jerry M.; Steiner, Myles A.; Ward, J. Scott; Young, Michelle

    2012-10-01

    Four different band gap combinations of triple-junction inverted metamorphic solar cells are characterized as a function of temperature and concentration up to 120°C and ˜1000 suns. We demonstrate that the standard 1.82/1.40/1.00 eV combination is an excellent choice for typical operating conditions of 1000 suns and 75°C. Improved metal grids and thermal management in such a cell has achieved 42.6% efficiency at 327 suns and 40.9% at 1093 suns at 25°C.

  14. Triple dye plus rubbing alcohol versus triple dye alone for umbilical cord care.

    PubMed

    Suliman, Alawia K; Watts, Heidi; Beiler, Jessica; King, Tonya S; Khan, Sana; Carnuccio, Marybeth; Paul, Ian M

    2010-01-01

    Current practices for umbilical cord care vary across centers, but the evidence regarding these practices and their impact on cord separation, complications, and health care use are limited. The objective of this study was to compare the effect of triple dye alone (brilliant green, crystal violet, and proflavine hemisulfate) versus triple dye plus rubbing alcohol (isopropyl alcohol) twice daily on time to umbilical cord separation, complications, and health care use. For the 90 newborns who completed the study, there were no significant differences between treatment groups for time to cord separation, cord-related morbidities, or cord-related urgent care. Based on these study results, there does not appear to be significant benefit to the addition of twice daily applications of rubbing alcohol to neonatal umbilical cords following triple dye treatment after birth.

  15. Tunnel junction multiple wavelength light-emitting diodes

    DOEpatents

    Olson, Jerry M.; Kurtz, Sarah R.

    1992-01-01

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect.

  16. Tunnel junction multiple wavelength light-emitting diodes

    DOEpatents

    Olson, J.M.; Kurtz, S.R.

    1992-11-24

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect. 5 figs.

  17. Current trends in salivary gland tight junctions

    PubMed Central

    Baker, Olga J.

    2016-01-01

    ABSTRACT Tight junctions form a continuous intercellular barrier between epithelial cells that is required to separate tissue spaces and regulate selective movement of solutes across the epithelium. They are composed of strands containing integral membrane proteins (e.g., claudins, occludin and tricellulin, junctional adhesion molecules and the coxsackie adenovirus receptor). These proteins are anchored to the cytoskeleton via scaffolding proteins such as ZO-1 and ZO-2. In salivary glands, tight junctions are involved in polarized saliva secretion and barrier maintenance between the extracellular environment and the glandular lumen. This review seeks to provide an overview of what is currently known, as well as the major questions and future research directions, regarding tight junction expression, organization and function within salivary glands. PMID:27583188

  18. Presynaptic spike broadening reduces junctional potential amplitude.

    PubMed

    Spencer, A N; Przysiezniak, J; Acosta-Urquidi, J; Basarsky, T A

    1989-08-24

    Presynaptic modulation of action potential duration may regulate synaptic transmission in both vertebrates and invertebrates. Such synaptic plasticity is brought about by modifications to membrane currents at presynaptic release sites, which, in turn, lead to changes in the concentration of cytosolic calcium available for mediating transmitter release. The 'primitive' neuromuscular junction of the jellyfish Polyorchis penicillatus is a useful model of presynaptic modulation. In this study, we show that the durations of action potentials in the motor neurons of this jellyfish are negatively correlated with the amplitude of excitatory junctional potentials. We present data from in vitro voltage-clamp experiments showing that short duration voltage spikes, which elicit large excitatory junctional potentials in vivo, produce larger and briefer calcium currents than do long duration action potentials, which elicit small excitatory junctional potentials.

  19. Chirality effect in disordered graphene ribbon junctions

    NASA Astrophysics Data System (ADS)

    Long, Wen

    2012-05-01

    We investigate the influence of edge chirality on the electronic transport in clean or disordered graphene ribbon junctions. By using the tight-binding model and the Landauer-Büttiker formalism, the junction conductance is obtained. In the clean sample, the zero-magnetic-field junction conductance is strongly chirality-dependent in both unipolar and bipolar ribbons, whereas the high-magnetic-field conductance is either chirality-independent in the unipolar or chirality-dependent in the bipolar ribbon. Furthermore, we study the disordered sample in the presence of magnetic field and find that the junction conductance is always chirality-insensitive for both unipolar and bipolar ribbons with adequate disorders. In addition, the disorder-induced conductance plateaus can exist in all chiral bipolar ribbons provided the disorder strength is moderate. These results suggest that we can neglect the effect of edge chirality in fabricating electronic devices based on the magnetotransport in a disordered graphene ribbon.

  20. Adrenocortical Gap Junctions and Their Functions

    PubMed Central

    Bell, Cheryl L.; Murray, Sandra A.

    2016-01-01

    Adrenal cortical steroidogenesis and proliferation are thought to be modulated by gap junction-mediated direct cell–cell communication of regulatory molecules between cells. Such communication is regulated by the number of gap junction channels between contacting cells, the rate at which information flows between these channels, and the rate of channel turnover. Knowledge of the factors regulating gap junction-mediated communication and the turnover process are critical to an understanding of adrenal cortical cell functions, including development, hormonal response to adrenocorticotropin, and neoplastic dedifferentiation. Here, we review what is known about gap junctions in the adrenal gland, with particular attention to their role in adrenocortical cell steroidogenesis and proliferation. Information and insight gained from electrophysiological, molecular biological, and imaging (immunocytochemical, freeze fracture, transmission electron microscopic, and live cell) techniques will be provided. PMID:27445985

  1. Enhancement at the junction of silver nanorods.

    PubMed

    Gu, Geun Hoi; Suh, Jung Sang

    2008-08-19

    The enhancement of surface enhanced Raman scattering (SERS) at the junction of linearly joined silver nanorods (31 nm in diameter) deposited in the pores of anodic aluminum oxide templates was studied systematically by excitation with a 632.8 nm laser line. The single and joined silver nanorod arrays showed a similar extinction spectrum when their length was the same. Maximum enhancement was observed from the junction system of two nanorods of the same size with a total length of 62 nm. This length also corresponded to the optimum length of single nanorods for SERS by excitation with a 632.8 nm laser line. The enhancement at the junction was approximately 40 times higher than that of the 31 nm single nanorod, while it was 4 times higher than that of the 62 nm single nanorod. The enhancement factor at the junction after oxide removal was approximately 3.9 x 10 (9).

  2. UTE MRI of the Osteochondral Junction

    PubMed Central

    Biswas, Reni; Chen, Karen; Chang, Eric Y.; Chung, Christine B.

    2014-01-01

    The osteochondral junction is composed of numerous tissue components and serves important functions relating to structural stability and proper nutrition in joints such as the knee and spine. Conventional MR techniques have been inadequate at imaging the tissues of the osteochondral junction primarily because of the intrinsically short T2 nature of these tissues, rendering them “invisible” with the standard acquisitions. Ultrashort time to echo (UTE) MR techniques acquire sufficient MR signal of osteochondral tissues, thereby allowing direct evaluation. This article reviews the anatomy of the osteochondral junction of the knee and the spine, technical aspects of UTE MRI, and the application of UTE MRI for evaluation of the osteochondral junction. PMID:25061547

  3. Anaesthesia management in craniovertebral junctional anomalies

    PubMed Central

    Mascarenhas, Oswald

    2016-01-01

    Craniovertebral Junctional (CVJ) anomalies are developmental disorders that affect the skeleton and enclosed neuraxis at the junction of cranium and cervical spine. The high prevalence of airway obstruction and restrictive pulmonary disease in combination with cardiovascular manifestations poses a high anaesthetic risk to these patients. This article provides a discussion of management of anaesthesia in patients with craniovertebral anomalies, the evaluation of risk factors in these patients and their management, including emergency airway issues. PMID:27891026

  4. Heat dissipation in atomic-scale junctions.

    PubMed

    Lee, Woochul; Kim, Kyeongtae; Jeong, Wonho; Zotti, Linda Angela; Pauly, Fabian; Cuevas, Juan Carlos; Reddy, Pramod

    2013-06-13

    Atomic and single-molecule junctions represent the ultimate limit to the miniaturization of electrical circuits. They are also ideal platforms for testing quantum transport theories that are required to describe charge and energy transfer in novel functional nanometre-scale devices. Recent work has successfully probed electric and thermoelectric phenomena in atomic-scale junctions. However, heat dissipation and transport in atomic-scale devices remain poorly characterized owing to experimental challenges. Here we use custom-fabricated scanning probes with integrated nanoscale thermocouples to investigate heat dissipation in the electrodes of single-molecule ('molecular') junctions. We find that if the junctions have transmission characteristics that are strongly energy dependent, this heat dissipation is asymmetric--that is, unequal between the electrodes--and also dependent on both the bias polarity and the identity of the majority charge carriers (electrons versus holes). In contrast, junctions consisting of only a few gold atoms ('atomic junctions') whose transmission characteristics show weak energy dependence do not exhibit appreciable asymmetry. Our results unambiguously relate the electronic transmission characteristics of atomic-scale junctions to their heat dissipation properties, establishing a framework for understanding heat dissipation in a range of mesoscopic systems where transport is elastic--that is, without exchange of energy in the contact region. We anticipate that the techniques established here will enable the study of Peltier effects at the atomic scale, a field that has been barely explored experimentally despite interesting theoretical predictions. Furthermore, the experimental advances described here are also expected to enable the study of heat transport in atomic and molecular junctions--an important and challenging scientific and technological goal that has remained elusive.

  5. Semiconductor tunnel junction with enhancement layer

    DOEpatents

    Klem, John F.; Zolper, John C.

    1997-01-01

    The incorporation of a pseudomorphic GaAsSb layer in a runnel diode structure affords a new degree of freedom in designing runnel junctions for p-n junction device interconnects. Previously only doping levels could be varied to control the tunneling properties. This invention uses the valence band alignment band of the GaAsSb with respect to the surrounding materials to greatly relax the doping requirements for tunneling.

  6. Semiconductor tunnel junction with enhancement layer

    DOEpatents

    Klem, J.F.; Zolper, J.C.

    1997-10-21

    The incorporation of a pseudomorphic GaAsSb layer in a runnel diode structure affords a new degree of freedom in designing runnel junctions for p-n junction device interconnects. Previously only doping levels could be varied to control the tunneling properties. This invention uses the valence band alignment band of the GaAsSb with respect to the surrounding materials to greatly relax the doping requirements for tunneling. 5 figs.

  7. Gravitational wave bursts from cosmic superstrings with Y-junctions

    SciTech Connect

    Binetruy, P.; Bohe, A.; Hertog, T.; Steer, D. A.

    2009-12-15

    Cosmic superstring loops generically contain strings of different tensions that meet at Y-junctions. These loops evolve nonperiodically in time, and have cusps and kinks that interact with the junctions. We study the effect of junctions on the gravitational wave signal emanating from cosmic string cusps and kinks. We find that earlier results on the strength of individual bursts from cusps and kinks on strings without junctions remain largely unchanged, but junctions give rise to additional contributions to the gravitational wave signal coming from strings expanding at the speed of light at a junction and kinks passing through a junction.

  8. Multi-junction solar cell device

    DOEpatents

    Friedman, Daniel J.; Geisz, John F.

    2007-12-18

    A multi-junction solar cell device (10) is provided. The multi-junction solar cell device (10) comprises either two or three active solar cells connected in series in a monolithic structure. The multi-junction device (10) comprises a bottom active cell (20) having a single-crystal silicon substrate base and an emitter layer (23). The multi-junction device (10) further comprises one or two subsequent active cells each having a base layer (32) and an emitter layer (23) with interconnecting tunnel junctions between each active cell. At least one layer that forms each of the top and middle active cells is composed of a single-crystal III-V semiconductor alloy that is substantially lattice-matched to the silicon substrate (22). The polarity of the active p-n junction cells is either p-on-n or n-on-p. The present invention further includes a method for substantially lattice matching single-crystal III-V semiconductor layers with the silicon substrate (22) by including boron and/or nitrogen in the chemical structure of these layers.

  9. Exercise regulation of intestinal tight junction proteins.

    PubMed

    Zuhl, Micah; Schneider, Suzanne; Lanphere, Katherine; Conn, Carole; Dokladny, Karol; Moseley, Pope

    2014-06-01

    Gastrointestinal distress, such as diarrhoea, cramping, vomiting, nausea and gastric pain are common among athletes during training and competition. The mechanisms that cause these symptoms are not fully understood. The stress of heat and oxidative damage during exercise causes disruption to intestinal epithelial cell tight junction proteins resulting in increased permeability to luminal endotoxins. The endotoxin moves into the blood stream leading to a systemic immune response. Tight junction integrity is altered by the phosphoylation state of the proteins occludin and claudins, and may be regulated by the type of exercise performed. Prolonged exercise and high-intensity exercise lead to an increase in key phosphorylation enzymes that ultimately cause tight junction dysfunction, but the mechanisms are different. The purpose of this review is to (1) explain the function and physiology of tight junction regulation, (2) discuss the effects of prolonged and high-intensity exercise on tight junction permeability leading to gastrointestinal distress and (3) review agents that may increase or decrease tight junction integrity during exercise.

  10. Predictive modelling of ferroelectric tunnel junctions

    NASA Astrophysics Data System (ADS)

    Velev, Julian P.; Burton, John D.; Zhuravlev, Mikhail Ye; Tsymbal, Evgeny Y.

    2016-05-01

    Ferroelectric tunnel junctions combine the phenomena of quantum-mechanical tunnelling and switchable spontaneous polarisation of a nanometre-thick ferroelectric film into novel device functionality. Switching the ferroelectric barrier polarisation direction produces a sizable change in resistance of the junction—a phenomenon known as the tunnelling electroresistance effect. From a fundamental perspective, ferroelectric tunnel junctions and their version with ferromagnetic electrodes, i.e., multiferroic tunnel junctions, are testbeds for studying the underlying mechanisms of tunnelling electroresistance as well as the interplay between electric and magnetic degrees of freedom and their effect on transport. From a practical perspective, ferroelectric tunnel junctions hold promise for disruptive device applications. In a very short time, they have traversed the path from basic model predictions to prototypes for novel non-volatile ferroelectric random access memories with non-destructive readout. This remarkable progress is to a large extent driven by a productive cycle of predictive modelling and innovative experimental effort. In this review article, we outline the development of the ferroelectric tunnel junction concept and the role of theoretical modelling in guiding experimental work. We discuss a wide range of physical phenomena that control the functional properties of ferroelectric tunnel junctions and summarise the state-of-the-art achievements in the field.

  11. Graphene tunnel junctions with aluminum oxide barrier

    NASA Astrophysics Data System (ADS)

    Feng, Ying; Trainer, Daniel J.; Chen, Ke

    2016-10-01

    We report a development of graphene tunnel junctions made by chemical vapor deposition grown graphene and sputtered aluminum insulating by an in-situ grown aluminum oxide. The thin oxide layer formed in between the metal layer and the two-dimensional material is a crucial part of a tunnel junction. We characterized surface morphology of oxide layers and studied tunneling spectra of lead and silver tunnel junctions to estimate the quality of the aluminum oxide. The Brinkman-Rowell-Dynes model was applied to fit the conductance-voltage plots to calculate the thickness of oxide layers. Junctions with graphene both on bottom and on top were fabricated and their tunneling properties were characterized after exposure to air for weeks to test time stability. Furthermore, the resistances of graphene tunnel junctions with aluminum oxide formed naturally and in an oxygen atmosphere were studied. Our results demonstrate that in-situ aluminum oxide is an effective barrier for graphene tunnel junctions. The methods of barrier formation enable the realization of more tunnel devices and circuits based on graphene.

  12. Large geodetic time series constraining the spatial distribution and the time evolution of the velocity field at the western tip of the Aden Ridge in Afar

    NASA Astrophysics Data System (ADS)

    Doubre, C.; Deprez, A.; Masson, F.; Socquet, A.; Ulrich, P.; Ibrahim Ahmed, S.; de Chabalier, J. B.; Ahmadine Omar, A.; Vigny, C.; Ruegg, J. C.

    2014-12-01

    We present the results of the last GPS campaign conducted over the Djiboutian part of Eastern Afar. A large and dense geodetic network has been measured regularly since the 90's, and allows an accurate determination of the velocity field associated with the western tip of the Arabia-Somalia divergent plate boundary. Within the Tadjoura Gulf, the Aden ridge consists of a series of 3 en échelon, submerged spreading segments, except for the Asal segment, which is partly above water. The repetition of 6 to 7 measurements together with 6 permanent continuous GNSS stations allow an opportunity to study the spatial distribution of the active extension in relation to these 3 segments, but also to study time variations of the displacements, which are greatly expected to be transitory because of the occurrence of dyking events, small to intermediate seismic events, and volcanic activity. The divergent motion of the two margins of the Gulf occurs at ~15 mm/yr, which is consistent with the long-term estimates of the Arabia-Somalia motion. Across the Asal segment, this value confirms that the effect of the dyking event in 1978 has ended. The velocity gradients show that the deformation is distributed from the southern to the northern rift shoulder. As revealed by the InSAR data however, the along-axis variations of the deformation pattern, i.e. clear superficial active faults in the SE part of the rift and deep opening in the NW part, suggests the remaining influence of the previous dyke intrusions within the segment inner floor. The time series show that the velocity field was more heterogeneous before 2003, when the micro-seismic activity was significant, particularly around the volcanic center. The striking feature of the time evolution of the velocity field consists in the transition from an extension mainly localized across the Asal segment before 2003 to an extension more distributed, implying the influence of the southern Quaternary structures forming the Gaggade and

  13. A Triple Culture Model of the Blood-Brain Barrier Using Porcine Brain Endothelial cells, Astrocytes and Pericytes.

    PubMed

    Thomsen, Louiza Bohn; Burkhart, Annette; Moos, Torben

    2015-01-01

    In vitro blood-brain barrier (BBB) models based on primary brain endothelial cells (BECs) cultured as monoculture or in co-culture with primary astrocytes and pericytes are useful for studying many properties of the BBB. The BECs retain their expression of tight junction proteins and efflux transporters leading to high trans-endothelial electric resistance (TEER) and low passive paracellular permeability. The BECs, astrocytes and pericytes are often isolated from small rodents. Larger species as cows and pigs however, reveal a higher yield, are readily available and have a closer resemblance to humans, which make them favorable high-throughput sources for cellular isolation. The aim of the present study has been to determine if the preferable combination of purely porcine cells isolated from the 6 months old domestic pigs, i.e. porcine brain endothelial cells (PBECs) in co-culture with porcine astrocytes and pericytes, would compare with PBECs co-cultured with astrocytes and pericytes isolated from newborn rats with respect to TEER value and low passive permeability. The astrocytes and pericytes were grown both as contact and non-contact co-cultures as well as in triple culture to examine their effects on the PBECs for barrier formation as revealed by TEER, passive permeability, and expression patterns of tight junction proteins, efflux transporters and the transferrin receptor. This syngenic porcine in vitro BBB model is comparable to triple cultures using PBECs, rat astrocytes and rat pericytes with respect to TEER formation, low passive permeability, and expression of hallmark proteins signifying the brain endothelium (tight junction proteins claudin 5 and occludin, the efflux transporters P-glycoprotein (PgP) and breast cancer related protein (BCRP), and the transferrin receptor).

  14. The emerging role of triple helices in RNA biology.

    PubMed

    Conrad, Nicholas K

    2014-01-01

    The ability of RNA to form sophisticated secondary and tertiary structures enables it to perform a wide variety of cellular functions. One tertiary structure, the RNA triple helix, was first observed in vitro over 50 years ago, but biological activities for triple helices are only beginning to be appreciated. The recent determination of several RNA structures has implicated triple helices in distinct biological functions. For example, the SAM-II riboswitch forms a triple helix that creates a highly specific binding pocket for S-adenosylmethionine. In addition, a triple helix in the conserved pseudoknot domain of the telomerase-associated RNA TER is essential for telomerase activity. A viral RNA cis-acting RNA element called the ENE contributes to the nuclear stability of a viral noncoding RNA by forming a triple helix with the poly(A) tail. Finally, a cellular noncoding RNA, MALAT1, includes a triple helix at its 3'-end that contributes to RNA stability, but surprisingly also supports translation. These examples highlight the diverse roles that RNA triple helices play in biology. Moreover, the dissection of triple helix mechanisms has the potential to uncover fundamental pathways in cell biology.

  15. Determination of the Latent Heats and Triple Point of Perfluorocyclobutane

    ERIC Educational Resources Information Center

    Briggs, A. G.; Strachan, A. N.

    1977-01-01

    Proposes the use of Perfluorocyclobutane in physical chemistry courses to conduct experiments on latent heat, triple point temperatures and pressures, boiling points, and entropy of vaporization. (SL)

  16. Triple-energy contrast enhanced digital mammography

    NASA Astrophysics Data System (ADS)

    Puong, Sylvie; Milioni de Carvalho, Pablo; Muller, Serge

    2010-04-01

    With the injection of iodine, Contrast Enhanced Digital Mammography (CEDM) provides functional information about breast tumour angiogenesis that can potentially help in cancer diagnosis. In order to generate iodine images in which the gray level is proportional to the iodine thickness, temporal and dual-energy approaches have already been considered. The dual-energy method offers the advantage of less patient motion artifacts and better comfort during the exam. However, this approach requires knowledge of the breast thickness at each pixel. Generally, as compression is applied, the breast thickness at each pixel is taken as the compression thickness. Nevertheless, in the breast border region, this assumption is not correct anymore and this causes inaccuracies in the iodine image. Triple-Energy CEDM could overcome these limitations by providing supplemental information in the form of a third image acquired with a different spectrum than the other two. This precludes the need of a priori knowledge of the breast thickness. Moreover, with Triple-Energy CEDM, breast thickness and glandularity maps could potentially be derived. In this study, we first focused on the method to recombine the three images in order to generate the iodine image, analyzing the performance of either quadratic, cubic or conic recombination functions. Then, we studied the optimal acquisition spectra in order to maximize the iodine SDNR in the recombined image for a given target total glandular dose. The concept of Triple-Energy CEDM was validated on simulated textured images and poly-energetic images acquired with a conventional X-ray mammography tube.

  17. Secular Evolution of Hierarchical Triple Star Systems

    NASA Astrophysics Data System (ADS)

    Ford, Eric B.; Kozinsky, Boris; Rasio, Frederic A.

    2000-05-01

    We derive octupole-level secular perturbation equations for hierarchical triple systems, using classical Hamiltonian perturbation techniques. Our equations describe the secular evolution of the orbital eccentricities and inclinations over timescales that are long compared to the orbital periods. By extending previous work done to leading (quadrupole) order to octupole level (i.e., including terms of order α3, where α≡a1/a2<1 is the ratio of semimajor axes), we obtain expressions that are applicable to a much wider range of parameters. In particular, our results can be applied to high-inclination as well as coplanar systems, and our expressions are valid for almost all mass ratios for which the system is in a stable hierarchical configuration. In contrast, the standard quadrupole-level theory of Kozai gives a vanishing result in the limit of zero relative inclination. The classical planetary perturbation theory, while valid to all orders in α, applies only to orbits of low-mass objects orbiting a common central mass, with low eccentricities and low relative inclinations. For triple systems containing a close inner binary, we also discuss the possible interaction between the classical Newtonian perturbations and the general relativistic precession of the inner orbit. In some cases we show that this interaction can lead to resonances and a significant increase in the maximum amplitude of eccentricity perturbations. We establish the validity of our analytic expressions by providing detailed comparisons with the results of direct numerical integrations of the three-body problem obtained for a large number of representative cases. In addition, we show that our expressions reduce correctly to previously published analytic results obtained in various limiting regimes. We also discuss applications of the theory in the context of several observed triple systems of current interest, including the millisecond pulsar PSR B1620-26 in M4, the giant planet in 16 Cygni, and

  18. Charge transport in nanoscale junctions.

    PubMed

    Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas

    2008-09-03

    many particle excitations, new surface states in semiconductor electrodes, various mechanisms for single molecule rectification of the current, inelastic electron spectra and SERS spectroscopy. Three terminal architectures allowing (electrochemical) gating and transistor effects. Electrochemical nanojunctions and gating: intermolecular electron transfer in multi-redox metalloproteins, contact force modulation, characteristic current-noise patterns due to conformational fluctuations, resonance effects and electrocatalysis. Novel architectures: linear coupled quantum-dot-bridged junctions, electrochemical redox mediated transfer in two center systems leading to double maxima current-voltage plots and negative differential resistance, molecular-nanoparticle hybrid junctions and unexpected mesoscopic effects in polymeric wires. Device integration: techniques for creating stable metal/molecule/metal junctions using 'nano-alligator clips' and integration with 'traditional' silicon-based technology. The Guest Editors would like to thank all of the authors and referees of this special issue for their meticulous work in making each paper a valuable contribution to this research area, the early-bird authors for their patience, and Journal of Physics: Condensed Matter editorial staff in Bristol for their continuous support.

  19. Binaries and triples among asteroid pairs

    NASA Astrophysics Data System (ADS)

    Pravec, Petr; Scheirich, Peter; Kušnirák, Peter; Hornoch, Kamil; Galád, Adrián

    2015-08-01

    Despite major achievements obtained during the past two decades, our knowledge of the population and properties of small binary and multiple asteroid systems is still far from advanced. There is a numerous indirect evidence for that most small asteroid systems were formed by rotational fission of cohesionless parent asteroids that were spun up to the critical frequency presumably by YORP, but details of the process are lacking. Furthermore, as we proceed with observations of more and more binary and paired asteroids, we reveal new facts that substantially refine and sometimes change our understanding of the asteroid systems. One significant new finding we have recently obtained is that primaries of many asteroid pairs are actually binary or triple systems. The first such case found is (3749) Balam (Vokrouhlický, ApJL 706, L37, 2009). We have found 9 more binary systems among asteroid pairs within our ongoing NEOSource photometric project since October 2012. They are (6369) 1983 UC, (8306) Shoko, (9783) Tensho-kan, (10123) Fideoja, (21436) Chaoyichi, (43008) 1999 UD31, (44620) 1999 RS43, (46829) 1998 OS14 and (80218) 1999 VO123. We will review their characteristics. These paired binaries as we call them are mostly similar to binaries in the general ("background") population (of unpaired asteroids), but there are a few trends. The paired binaries tend to have larger secondaries with D_2/D_1 = 0.3 to 0.5 and they also tend to be wider systems with 8 of the 10 having orbital periods between 30 and 81 hours, than average among binaries in the general population. There may be also a larger fraction of triples; (3749) Balam is a confirmed triple, having a larger close and a smaller distant satellite, and (8306) Shoko and (10123) Fideoja are suspect triples as they show additional rotational lightcurve components with periods of 61 and 38.8 h that differ from the orbital period of 36.2 and 56.5 h, respectively. The unbound secondaries tend to be of the same size or

  20. The Triple Axis and SPINS Spectrometers

    PubMed Central

    Trevino, S. F.

    1993-01-01

    In this paper are described the triple axis and spin polarized inelastic neutron scattering (SPINS) spectrometers which are installed at the NIST Cold Neutron Research Facility (CNRF). The general principle of operation of these two instruments is described in sufficient detail to allow the reader to make an informed decision as to their usefulness for his needs. However, it is the intention of the staff at the CNRF to provide the expert resources for their efficient use in any given situation. Thus, this work is not intended as a user manual but rather as a guide into the range of applicability of the two instruments. PMID:28053458

  1. The Triple Axis and SPINS Spectrometers.

    PubMed

    Trevino, S F

    1993-01-01

    In this paper are described the triple axis and spin polarized inelastic neutron scattering (SPINS) spectrometers which are installed at the NIST Cold Neutron Research Facility (CNRF). The general principle of operation of these two instruments is described in sufficient detail to allow the reader to make an informed decision as to their usefulness for his needs. However, it is the intention of the staff at the CNRF to provide the expert resources for their efficient use in any given situation. Thus, this work is not intended as a user manual but rather as a guide into the range of applicability of the two instruments.

  2. Vectorized data acquisition and fast triple-correlation integrals for Fluorescence Triple Correlation Spectroscopy.

    PubMed

    Ridgeway, William K; Millar, David P; Williamson, James R

    2013-04-01

    Fluorescence Correlation Spectroscopy (FCS) is widely used to quantitate reaction rates and concentrations of molecules in vitro and in vivo. We recently reported Fluorescence Triple Correlation Spectroscopy (F3CS), which correlates three signals together instead of two. F3CS can analyze the stoichiometries of complex mixtures and detect irreversible processes by identifying time-reversal asymmetries. Here we report the computational developments that were required for the realization of F3CS and present the results as the Triple Correlation Toolbox suite of programs. Triple Correlation Toolbox is a complete data analysis pipeline capable of acquiring, correlating and fitting large data sets. Each segment of the pipeline handles error estimates for accurate error-weighted global fitting. Data acquisition was accelerated with a combination of off-the-shelf counter-timer chips and vectorized operations on 128-bit registers. This allows desktop computers with inexpensive data acquisition cards to acquire hours of multiple-channel data with sub-microsecond time resolution. Off-line correlation integrals were implemented as a two delay time multiple-tau scheme that scales efficiently with multiple processors and provides an unprecedented view of linked dynamics. Global fitting routines are provided to fit FCS and F3CS data to models containing up to ten species. Triple Correlation Toolbox is a complete package that enables F3CS to be performed on existing microscopes.

  3. Vectorized data acquisition and fast triple-correlation integrals for Fluorescence Triple Correlation Spectroscopy

    PubMed Central

    Ridgeway, William K; Millar, David P; Williamson, James R

    2013-01-01

    Fluorescence Correlation Spectroscopy (FCS) is widely used to quantitate reaction rates and concentrations of molecules in vitro and in vivo. We recently reported Fluorescence Triple Correlation Spectroscopy (F3CS), which correlates three signals together instead of two. F3CS can analyze the stoichiometries of complex mixtures and detect irreversible processes by identifying time-reversal asymmetries. Here we report the computational developments that were required for the realization of F3CS and present the results as the Triple Correlation Toolbox suite of programs. Triple Correlation Toolbox is a complete data analysis pipeline capable of acquiring, correlating and fitting large data sets. Each segment of the pipeline handles error estimates for accurate error-weighted global fitting. Data acquisition was accelerated with a combination of off-the-shelf counter-timer chips and vectorized operations on 128-bit registers. This allows desktop computers with inexpensive data acquisition cards to acquire hours of multiple-channel data with sub-microsecond time resolution. Off-line correlation integrals were implemented as a two delay time multiple-tau scheme that scales efficiently with multiple processors and provides an unprecedented view of linked dynamics. Global fitting routines are provided to fit FCS and F3CS data to models containing up to ten species. Triple Correlation Toolbox is a complete package that enables F3CS to be performed on existing microscopes. PMID:23525193

  4. Model Building to Facilitate Understanding of Holliday Junction and Heteroduplex Formation, and Holliday Junction Resolution

    ERIC Educational Resources Information Center

    Selvarajah, Geeta; Selvarajah, Susila

    2016-01-01

    Students frequently expressed difficulty in understanding the molecular mechanisms involved in chromosomal recombination. Therefore, we explored alternative methods for presenting the two concepts of the double-strand break model: Holliday junction and heteroduplex formation, and Holliday junction resolution. In addition to a lecture and…

  5. Recovery and normalization of triple coincidences in PET

    SciTech Connect

    Lage, Eduardo Parot, Vicente; Dave, Shivang R.; Herraiz, Joaquin L.; Moore, Stephen C.; Sitek, Arkadiusz; Park, Mi-Ae; Udías, Jose M.; Vaquero, Juan J.

    2015-03-15

    Purpose: Triple coincidences in positron emission tomography (PET) are events in which three γ-rays are detected simultaneously. These events, though potentially useful for enhancing the sensitivity of PET scanners, are discarded or processed without special consideration in current systems, because there is not a clear criterion for assigning them to a unique line-of-response (LOR). Methods proposed for recovering such events usually rely on the use of highly specialized detection systems, hampering general adoption, and/or are based on Compton-scatter kinematics and, consequently, are limited in accuracy by the energy resolution of standard PET detectors. In this work, the authors propose a simple and general solution for recovering triple coincidences, which does not require specialized detectors or additional energy resolution requirements. Methods: To recover triple coincidences, the authors’ method distributes such events among their possible LORs using the relative proportions of double coincidences in these LORs. The authors show analytically that this assignment scheme represents the maximum-likelihood solution for the triple-coincidence distribution problem. The PET component of a preclinical PET/CT scanner was adapted to enable the acquisition and processing of triple coincidences. Since the efficiencies for detecting double and triple events were found to be different throughout the scanner field-of-view, a normalization procedure specific for triple coincidences was also developed. The effect of including triple coincidences using their method was compared against the cases of equally weighting the triples among their possible LORs and discarding all the triple events. The authors used as figures of merit for this comparison sensitivity, noise-equivalent count (NEC) rates and image quality calculated as described in the NEMA NU-4 protocol for the assessment of preclinical PET scanners. Results: The addition of triple-coincidence events with the

  6. Interaction of the collagen-like tail of asymmetric acetylcholinesterase with heparin depends on triple-helical conformation, sequence and stability.

    PubMed Central

    Deprez, P; Doss-Pepe, E; Brodsky, B; Inestrosa, N C

    2000-01-01

    The collagen-like tail of asymmetric acetylcholinesterase (AChE) contains two heparin-binding domains (HBDs) that interact with heparan sulphate proteoglycans, determining the anchoring of the enzyme at the basal lamina and its specific localization at the neuromuscular junction. Both HBDs are characterized by a cluster of basic residues containing a core with the BBXB consensus sequence (where B represents a basic residue and X a non-basic residue). To study the interaction of such HBDs with heparin we have used synthetic peptides to model the N-terminal and C-terminal sites. CD spectroscopy showed that all peptides are triple-helical at low temperatures, and undergo trimer-to-monomer transitions. Displacement assays of asymmetric AChE bound to heparin were performed using the peptides in both monomeric and triple-helical states. In the monomeric conformation, all the peptides were able to displace low levels of AChE depending on the basic charge content. In the triple-helical conformation, peptides containing the consensus sequence showed a large increase in the ability to displace bound AChE. Results suggest that the specific binding of the collagen-like-tail peptides to heparin depends both on the presence of the core sequence and on the triple-helical conformation. Moreover, BBXB-containing peptides that are less stable are more effective in displacing AChE, suggesting that the interaction region needs a significant amount of structural flexibility to better accommodate the ligand. PMID:10926855

  7. Mergers and obliquities in stellar triples

    SciTech Connect

    Naoz, Smadar; Fabrycky, Daniel C.

    2014-10-01

    Many close stellar binaries are accompanied by a faraway star. The 'eccentric Kozai-Lidov' (EKL) mechanism can cause dramatic inclination and eccentricity fluctuations, resulting in tidal tightening of inner binaries of triple stars. We run a large set of Monte Carlo simulations, including the secular evolution of the orbits, general relativistic precession, and tides, and we determine the semimajor axis, eccentricity, inclination, and spin-orbit angle distributions of the final configurations. We find that the efficiency of forming tight binaries (≲ 16 days) when taking the EKL mechanism into account is ∼21%, and about 4% of all simulated systems ended up in a merger event. These merger events can lead to the formation of blue stragglers. Furthermore, we find that the spin-orbit angle distribution of the inner binaries carries a signature of the initial setup of the system; thus, observations can be used to disentangle close binaries' birth configuration. The resulting inner and outer final orbits' period distributions and their estimated fraction suggest that secular dynamics may be a significant channel for the formation of close binaries in triples and even blue stragglers.

  8. Robust Modeling of Stellar Triples in PHOEBE

    NASA Astrophysics Data System (ADS)

    Conroy, Kyle E.; Prsa, Andrej; Horvat, Martin; Stassun, Keivan G.

    2017-01-01

    The number of known mutually-eclipsing stellar triple and multiple systems has increased greatly during the Kepler era. These systems provide significant opportunities to both determine fundamental stellar parameters of benchmark systems to unprecedented precision as well as to study the dynamical interaction and formation mechanisms of stellar and planetary systems. Modeling these systems to their full potential, however, has not been feasible until recently. Most existing available codes are restricted to the two-body binary case and those that do provide N-body support for more components make sacrifices in precision by assuming no stellar surface distortion. We have completely redesigned and rewritten the PHOEBE binary modeling code to incorporate support for triple and higher-order systems while also robustly modeling data with Kepler precision. Here we present our approach, demonstrate several test cases based on real data, and discuss the current status of PHOEBE's support for modeling these types of systems. PHOEBE is funded in part by NSF grant #1517474.

  9. Kappa Fornaci, A Triple Radio Star

    NASA Astrophysics Data System (ADS)

    Tokovinin, Andrei

    2013-03-01

    Bright and nearby (22 pc) solar-type dwarf κ For (HIP 11072) is a triple system. The close pair of M-type dwarfs Ba,Bb with a tentative period of 3.7 days moves around the main component A on a 26 yr orbit. The mass of the "dark companion" Ba+Bb is comparable to the mass of A, causing large motion of the photo-center. The combined spectro-interferometric orbit of AB is derived, and the relative photometry of the components A and B is given. A weak signature of Ba and Bb is detected in the high-resolution spectra by cross-correlation and by variable emission in the Balmer hydrogen lines. The activity of the M dwarfs, manifested by a previously detected radio flare, is likely maintained by synchronization with their tight orbit. We discuss the frequency of similar hidden triple systems, methods of their detection, and the implications for multiple-star statistics. Based on observations obtained with CHIRON spectrometer at the 1.5 m CTIO telescope operated by SMARTS (NOAO program 2012B-0075), at the SOAR telescope, and at the Gemini Observatory (program GS-2012B-Q-71, PI: M. Hartung).

  10. Triple galaxies and a hidden mass problem

    NASA Technical Reports Server (NTRS)

    Karachentsev, I. D.; Karachentseva, V. E.; Lebedev, V. S.

    1990-01-01

    The authors consider a homogeneous sample of 84 triple systems of galaxies with components brighter than m = 15.7, located in the northern sky and satisfying an isolation criterion with respect to neighboring galaxies in projection. The distributions of basic dynamical parameters for triplets have median values as follows: radial velocity dispersion 133 km/s, mean harmonic radius 63 kpc, absolute magnitude of galaxies M sub B equals -20.38, crossing time tau = 0.04 H(sup minus 1). For different ways of estimation the median mass-to-luminosity ratio is (20 - 30). A comparison of the last value with the ones for single and binary galaxies shows the presence of a virial mass excess for triplets by a factor 4. The mass-to-luminosity ratio is practically uncorrelated with linear size of triplets or with morphological types of their components. We note that a significant part of the virial excess may be explained by the presence of nonisolated triple configurations in the sample, which are produced by debris of more populous groups of galaxies.

  11. KAPPA FORNACI, A TRIPLE RADIO STAR

    SciTech Connect

    Tokovinin, Andrei

    2013-03-15

    Bright and nearby (22 pc) solar-type dwarf {kappa} For (HIP 11072) is a triple system. The close pair of M-type dwarfs Ba,Bb with a tentative period of 3.7 days moves around the main component A on a 26 yr orbit. The mass of the 'dark companion' Ba+Bb is comparable to the mass of A, causing large motion of the photo-center. The combined spectro-interferometric orbit of AB is derived, and the relative photometry of the components A and B is given. A weak signature of Ba and Bb is detected in the high-resolution spectra by cross-correlation and by variable emission in the Balmer hydrogen lines. The activity of the M dwarfs, manifested by a previously detected radio flare, is likely maintained by synchronization with their tight orbit. We discuss the frequency of similar hidden triple systems, methods of their detection, and the implications for multiple-star statistics.

  12. Quantitative Analysis of Triple Mutant Genetic Interactions

    PubMed Central

    Braberg, Hannes; Alexander, Richard; Shales, Michael; Xu, Jiewei; Franks-Skiba, Kathleen E.; Wu, Qiuqin; Haber, James E.; Krogan, Nevan J.

    2014-01-01

    The quantitative analysis of genetic interactions between pairs of gene mutations has proven effective for characterizing cellular functions but can miss important interactions for functionally redundant genes. To address this limitation, we have developed an approach termed Triple Mutant Analysis (TMA). The procedure relies on a query strain that contains two deletions in a pair of redundant or otherwise related genes, that is crossed against a panel of candidate deletion strains to isolate triple mutants and measure their growth. A central feature of TMA is to interrogate mutants that are synthetically sick when two other genes are deleted but interact minimally with either single deletion. This approach has been valuable for discovering genes that restore critical functions when the principle actors are deleted. TMA has also uncovered double mutant combinations that produce severe defects because a third protein becomes deregulated and acts in a deleterious fashion, and it has revealed functional differences between proteins presumed to act together. The protocol is optimized for Singer ROTOR pinning robots, takes 3 weeks to complete, and measures interactions for up to 30 double mutants against a library of 1536 single mutants. PMID:25010907

  13. Clathrin and Cx43 gap junction plaque endoexocytosis

    SciTech Connect

    Nickel, Beth M.; DeFranco, B. Hewa; Gay, Vernon L.; Murray, Sandra A.

    2008-10-03

    In earlier transmission electron microscopic studies, we have described pentilaminar gap junctional membrane invaginations and annular gap junction vesicles coated with short, electron-dense bristles. The similarity between these electron-dense bristles and the material surrounding clathrin-coated pits led us to suggest that the dense bristles associated with gap junction structures might be clathrin. To confirm that clathrin is indeed associated with annular gap junction vesicles and gap junction plaques, quantum dot immuno-electron microscopic techniques were used. We report here that clathrin associates with both connexin 43 (Cx43) gap junction plaques and pentilaminar gap junction vesicles. An important finding was the preferential localization of clathrin to the cytoplasmic surface of the annular or of the gap junction plaque membrane of one of the two contacting cells. This is consistent with the possibility that the direction of gap junction plaque internalization into one of two contacting cells is regulated by clathrin.

  14. Tunnel junctions, cantilevers, and potentials

    NASA Astrophysics Data System (ADS)

    Tanner, Shawn

    We have developed a process for making sub-micrometer dimensional cantilevers, clamped beams, and more complicate electro-mechanical structures that carry integrated electrical leads. Such objects are perhaps useful as test structures for connecting to and measuring the electrical properties of molecular sized objects, as high frequency electromechanical components for radio and microwave frequency applications, and as sensor components for studying the fluctuation physics of small machines. Our process uses two realigned electron-beam lithography steps, a thin film angled deposition system, and differential removal of sacrificial aluminum layers to produce freely suspended sub-micron electromechanical components. We have produced cantilevers and beams on a variety of substrates (silica, silicon, and poly-imide) and have produced insulating, conductive, and multi-layer mechanical structures. We have measured mechanical resonances in the 10 MHz range by electrostatically actuating the cantilevers while in a magnetic field (3500 gauss) and measuring the voltage that results across the front edge of the cantilever. Two structures are fabricated sharing a common ground so that a balanced detection technique can be used to eliminate background signals. Due to the square dependence of the electrostatic force on the voltage, they can be resonated by a drive voltage of 1/2 the natural frequency or at the natural frequency. Two separate attempts have been made to apply these resonators. First, a process was developed to integrate a tunnel junction with the cantilever. These devices can possibly be used for probing small-scale systems such as molecules. We have verified the exponential variation of the tunneling resistance with both substrate flex and electrostatic gating. Second, a novel gate structure was developed to create a double potential well for resonator motion. This is accomplished by placing a multilayer structure in front of the hairpin cantilever consisting two

  15. YBCO step-edge junctions with high IcRn

    NASA Astrophysics Data System (ADS)

    Mitchell, E. E.; Foley, C. P.

    2010-06-01

    Step-edge junctions represent one type of grain boundary Josephson junction employed in high-temperature superconducting junction technology. To date, the majority of results published in the literature focus on [001]-tilt grain boundary junctions (GBJs) produced using bicrystal substrates. We investigate the step morphology and YBCO (yttrium barium copper oxide) film structure of YBCO-based step-edge junctions on MgO [001] substrates which structurally resemble [100]-tilt junctions. High-resolution electron microscopy reveals a clean GBJ interface of width ~ 1 nm and a single junction at the top edge. The dependence of the transport properties on the MgO step-edge and junction morphology is examined at 4.2 K, to enable direct comparison with results for other junction studies such as [001]-tilt and [100]-tilt junctions and building on previously published 77 K data. MgO step-edge junctions show a slower reduction in critical current density with step angle compared with [001]-tilt junctions. For optimized step parameters, transport measurements revealed large critical current and normal resistance (IcRN) products (~3-5 mV), comparable with the best results obtained in other kinds of [100]-tilt GBJs in YBCO at 4.2 K. Junction-based devices such as SQUIDs (superconducting quantum interference devices) and THz imagers show excellent performance when MgO-based step-edge junctions are used.

  16. BROWN DWARF BINARIES FROM DISINTEGRATING TRIPLE SYSTEMS

    SciTech Connect

    Reipurth, Bo; Mikkola, Seppo E-mail: Seppo.Mikkola@utu.fi

    2015-04-15

    Binaries in which both components are brown dwarfs (BDs) are being discovered at an increasing rate, and their properties may hold clues to their origin. We have carried out 200,000 N-body simulations of three identical stellar embryos with masses drawn from a Chabrier IMF and embedded in a molecular core. The bodies are initially non-hierarchical and undergo chaotic motions within the cloud core, while accreting using Bondi–Hoyle accretion. The coupling of dynamics and accretion often leads to one or two dominant bodies controlling the center of the cloud core, while banishing the other(s) to the lower-density outskirts, leading to stunted growth. Eventually each system transforms either to a bound hierarchical configuration or breaks apart into separate single and binary components. The orbital motion is followed for 100 Myr. In order to illustrate 200,000 end-states of such dynamical evolution with accretion, we introduce the “triple diagnostic diagram,” which plots two dimensionless numbers against each other, representing the binary mass ratio and the mass ratio of the third body to the total system mass. Numerous freefloating BD binaries are formed in these simulations, and statistical properties are derived. The separation distribution function is in good correspondence with observations, showing a steep rise at close separations, peaking around 13 AU and declining more gently, reaching zero at separations greater than 200 AU. Unresolved BD triple systems may appear as wider BD binaries. Mass ratios are strongly peaked toward unity, as observed, but this is partially due to the initial assumptions. Eccentricities gradually increase toward higher values, due to the lack of viscous interactions in the simulations, which would both shrink the orbits and decrease their eccentricities. Most newborn triple systems are unstable and while there are 9209 ejected BD binaries at 1 Myr, corresponding to about 4% of the 200,000 simulations, this number has grown to

  17. Brown Dwarf Binaries from Disintegrating Triple Systems

    NASA Astrophysics Data System (ADS)

    Reipurth, Bo; Mikkola, Seppo

    2015-04-01

    Binaries in which both components are brown dwarfs (BDs) are being discovered at an increasing rate, and their properties may hold clues to their origin. We have carried out 200,000 N-body simulations of three identical stellar embryos with masses drawn from a Chabrier IMF and embedded in a molecular core. The bodies are initially non-hierarchical and undergo chaotic motions within the cloud core, while accreting using Bondi-Hoyle accretion. The coupling of dynamics and accretion often leads to one or two dominant bodies controlling the center of the cloud core, while banishing the other(s) to the lower-density outskirts, leading to stunted growth. Eventually each system transforms either to a bound hierarchical configuration or breaks apart into separate single and binary components. The orbital motion is followed for 100 Myr. In order to illustrate 200,000 end-states of such dynamical evolution with accretion, we introduce the “triple diagnostic diagram,” which plots two dimensionless numbers against each other, representing the binary mass ratio and the mass ratio of the third body to the total system mass. Numerous freefloating BD binaries are formed in these simulations, and statistical properties are derived. The separation distribution function is in good correspondence with observations, showing a steep rise at close separations, peaking around 13 AU and declining more gently, reaching zero at separations greater than 200 AU. Unresolved BD triple systems may appear as wider BD binaries. Mass ratios are strongly peaked toward unity, as observed, but this is partially due to the initial assumptions. Eccentricities gradually increase toward higher values, due to the lack of viscous interactions in the simulations, which would both shrink the orbits and decrease their eccentricities. Most newborn triple systems are unstable and while there are 9209 ejected BD binaries at 1 Myr, corresponding to about 4% of the 200,000 simulations, this number has grown to

  18. Semiconductor Lasers Containing Quantum Wells in Junctions

    NASA Technical Reports Server (NTRS)

    Yang, Rui Q.; Qiu, Yueming

    2004-01-01

    In a recent improvement upon In(x)Ga(1-x)As/InP semiconductor lasers of the bipolar cascade type, quantum wells are added to Esaki tunnel junctions, which are standard parts of such lasers. The energy depths and the geometric locations and thicknesses of the wells are tailored to exploit quantum tunneling such that, as described below, electrical resistances of junctions and concentrations of dopants can be reduced while laser performances can be improved. In(x)Ga(1-x)As/InP bipolar cascade lasers have been investigated as sources of near-infrared radiation (specifically, at wavelengths of about 980 and 1,550 nm) for photonic communication systems. The Esaki tunnel junctions in these lasers have been used to connect adjacent cascade stages and to enable transport of charge carriers between them. Typically, large concentrations of both n (electron-donor) and p (electron-acceptor) dopants have been necessary to impart low electrical resistances to Esaki tunnel junctions. Unfortunately, high doping contributes free-carrier absorption, thereby contributing to optical loss and thereby, further, degrading laser performance. In accordance with the present innovation, quantum wells are incorporated into the Esaki tunnel junctions so that the effective heights of barriers to quantum tunneling are reduced (see figure).

  19. Dislocation Multi-junctions and Strain Hardening

    SciTech Connect

    Bulatov, V; Hsiung, L; Tang, M; Arsenlis, A; Bartelt, M; Cai, W; Florando, J; Hiratani, M; Rhee, M; Hommes, G; Pierce, T; Diaz de la Rubia, T

    2006-06-20

    At the microscopic scale, the strength of a crystal derives from the motion, multiplication and interaction of distinctive line defects--dislocations. First theorized in 1934 to explain low magnitudes of crystal strength observed experimentally, the existence of dislocations was confirmed only two decades later. Much of the research in dislocation physics has since focused on dislocation interactions and their role in strain hardening: a common phenomenon in which continued deformation increases a crystal's strength. The existing theory relates strain hardening to pair-wise dislocation reactions in which two intersecting dislocations form junctions tying dislocations together. Here we report that interactions among three dislocations result in the formation of unusual elements of dislocation network topology, termed hereafter multi-junctions. The existence of multi-junctions is first predicted by Dislocation Dynamics (DD) and atomistic simulations and then confirmed by the transmission electron microscopy (TEM) experiments in single crystal molybdenum. In large-scale Dislocation Dynamics simulations, multi-junctions present very strong, nearly indestructible, obstacles to dislocation motion and furnish new sources for dislocation multiplication thereby playing an essential role in the evolution of dislocation microstructure and strength of deforming crystals. Simulation analyses conclude that multi-junctions are responsible for the strong orientation dependence of strain hardening in BCC crystals.

  20. Dislocation multi-junctions and strain hardening.

    PubMed

    Bulatov, Vasily V; Hsiung, Luke L; Tang, Meijie; Arsenlis, Athanasios; Bartelt, Maria C; Cai, Wei; Florando, Jeff N; Hiratani, Masato; Rhee, Moon; Hommes, Gregg; Pierce, Tim G; de la Rubia, Tomas Diaz

    2006-04-27

    At the microscopic scale, the strength of a crystal derives from the motion, multiplication and interaction of distinctive line defects called dislocations. First proposed theoretically in 1934 (refs 1-3) to explain low magnitudes of crystal strength observed experimentally, the existence of dislocations was confirmed two decades later. Much of the research in dislocation physics has since focused on dislocation interactions and their role in strain hardening, a common phenomenon in which continued deformation increases a crystal's strength. The existing theory relates strain hardening to pair-wise dislocation reactions in which two intersecting dislocations form junctions that tie the dislocations together. Here we report that interactions among three dislocations result in the formation of unusual elements of dislocation network topology, termed 'multi-junctions'. We first predict the existence of multi-junctions using dislocation dynamics and atomistic simulations and then confirm their existence by transmission electron microscopy experiments in single-crystal molybdenum. In large-scale dislocation dynamics simulations, multi-junctions present very strong, nearly indestructible, obstacles to dislocation motion and furnish new sources for dislocation multiplication, thereby playing an essential role in the evolution of dislocation microstructure and strength of deforming crystals. Simulation analyses conclude that multi-junctions are responsible for the strong orientation dependence of strain hardening in body-centred cubic crystals.

  1. Regional Dimensions of the Triple Helix Model: Setting the Context

    ERIC Educational Resources Information Center

    Todeva, Emanuela; Danson, Mike

    2016-01-01

    This paper introduces the rationale for the special issue and its contributions, which bridge the literature on regional development and the Triple Helix model. The concept of the Triple Helix at the sub-national, and specifically regional, level is established and examined, with special regard to regional economic development founded on…

  2. "Special Issue": Regional Dimensions of the Triple Helix Model

    ERIC Educational Resources Information Center

    Todeva, Emanuela; Danson, Mike

    2016-01-01

    This paper introduces the rationale for the special issue and its contributions, which bridge the literature on regional development and the Triple Helix model. The concept of the Triple Helix at the sub-national, and specifically regional, level is established and examined, with special regard to regional economic development founded on…

  3. Spin waves in triple-q structures: Application to USb

    SciTech Connect

    Jensen, J.; Bak, P.

    1981-06-01

    The spin-wave spectrum in a system with triple-q magnetic structure is calculated. The spin waves differ distinctly from those in the corresponding single-q structure, but agree with the excitations observed by Lander and Stirling in uranium antimonide (USb). Their experiments thus directly verify that the spins in USb are ordered in the triple-q structure.

  4. Government and Governance of Regional Triple Helix Interactions

    ERIC Educational Resources Information Center

    Danson, Mike; Todeva, Emanuela

    2016-01-01

    This conceptual paper contributes to the discussion of the role of regional government and regional Triple Helix constellations driving economic development and growth within regional boundaries. The impact of regionalism and subsidiarity on regional Triple Helix constellations, and the questions of governmentality, governance and institutional…

  5. A Canonical Trace Associated with Certain Spectral Triples

    NASA Astrophysics Data System (ADS)

    Paycha, Sylvie

    2010-09-01

    In the abstract pseudodifferential setup of Connes and Moscovici, we prove a general formula for the discrepancies of zeta-regularised traces associated with certain spectral triples, and we introduce a canonical trace on operators, whose order lies outside (minus) the dimension spectrum of the spectral triple.

  6. Requirements for a GaAsBi 1 eV sub-cell in a GaAs-based multi-junction solar cell

    NASA Astrophysics Data System (ADS)

    Thomas, T.; Mellor, A.; Hylton, N. P.; Führer, M.; Alonso-Álvarez, D.; Braun, A.; Ekins-Daukes, N. J.; David, J. P. R.; Sweeney, S. J.

    2015-09-01

    Multi-junction solar cells achieve high efficiency by stacking sub-cells of different bandgaps (typically GaInP/GaAs/Ge) resulting in efficiencies in excess of 40%. The efficiency can be improved by introducing a 1 eV absorber into the stack, either replacing Ge in a triple-junction configuration or on top of Ge in a quad-junction configuration. GaAs0.94Bi0.06 yields a direct-gap at 1 eV with only 0.7% strain on GaAs and the feasibility of the material has been demonstrated from GaAsBi photodetector devices. The relatively high absorption coefficient of GaAsBi suggests sufficient current can be generated to match the sub-cell photocurrent from the other sub-cells of a standard multi-junction solar cell. However, minority carrier transport and background doping levels place constraints on both p/n and p-i-n diode configurations. In the possible case of short minority carrier diffusion lengths we recommend the use of a p-i-n diode, and predict the material parameters that are necessary to achieve high efficiencies in a GaInP/GaAs/GaAsBi/Ge quad-junction cell.

  7. Methods for the fabrication of thermally stable magnetic tunnel junctions

    SciTech Connect

    Chang, Y. Austin; Yang, Jianhua J.; Ladwig, Peter F.

    2009-08-25

    Magnetic tunnel junctions and method for making the magnetic tunnel junctions are provided. The magnetic tunnel junctions are characterized by a tunnel barrier oxide layer sandwiched between two ferromagnetic layers. The methods used to fabricate the magnetic tunnel junctions are capable of completely and selectively oxidizing a tunnel junction precursor material using an oxidizing gas containing a mixture of gases to provide a tunnel junction oxide without oxidizing the adjacent ferromagnetic materials. In some embodiments the gas mixture is a mixture of CO and CO.sub.2 or a mixture of H.sub.2 and H.sub.2O.

  8. Control of Collagen Triple Helix Stability by Phosphorylation.

    PubMed

    Acevedo-Jake, Amanda M; Ngo, Daniel H; Hartgerink, Jeffrey D

    2017-03-10

    The phosphorylation of the collagen triple helix plays an important role in collagen synthesis, assembly, signaling, and immune response, although no reports detailing the effect this modification has on the structure and stability of the triple helix exist. Here we investigate the changes in stability and structure resulting from the phosphorylation of collagen. Additionally, the formation of pairwise interactions between phosphorylated residues and lysine is examined. In all tested cases, phosphorylation increases helix stability. When charged-pair interactions are possible, stabilization via phosphorylation can play a very large role, resulting inasmuch as a 13.0 °C increase in triple helix stability. Two-dimensional NMR and molecular modeling are used to study the local structure of the triple helix. Our results suggest a mechanism of action for phosphorylation in the regulation of collagen and also expand upon our understanding of pairwise amino acid stabilization of the collagen triple helix.

  9. Rational design of a triple helix-specific intercalating ligand.

    PubMed

    Escudé, C; Nguyen, C H; Kukreti, S; Janin, Y; Sun, J S; Bisagni, E; Garestier, T; Hélène, C

    1998-03-31

    DNA triple helices offer new perspectives toward oligonucleotide-directed gene regulation. However, the poor stability of some of these structures might limit their use under physiological conditions. Specific ligands can intercalate into DNA triple helices and stabilize them. Molecular modeling and thermal denaturation experiments suggest that benzo[f]pyrido[3, 4-b]quinoxaline derivatives intercalate into triple helices by stacking preferentially with the Hoogsteen-paired bases. Based on this model, it was predicted that a benzo[f]quino[3,4-b]quinoxaline derivative, which possesses an additional aromatic ring, could engage additional stacking interactions with the pyrimidine strand of the Watson-Crick double helix upon binding of this pentacyclic ligand to a triplex structure. This compound was synthesized. Thermal denaturation experiments and inhibition of restriction enzyme cleavage show that this new compound can indeed stabilize triple helices with great efficiency and specificity and/or induce triple helix formation under physiological conditions.

  10. Thermionic refrigeration at CNT-CNT junctions

    NASA Astrophysics Data System (ADS)

    Li, C.; Pipe, K. P.

    2016-10-01

    Monte Carlo (MC) simulation is used to study carrier energy relaxation following thermionic emission at the junction of two van der Waals bonded single-walled carbon nanotubes (SWCNTs). An energy-dependent transmission probability gives rise to energy filtering at the junction, which is predicted to increase the average electron transport energy by as much as 0.115 eV, leading to an effective Seebeck coefficient of 386 μV/K. MC results predict a long energy relaxation length (˜8 μm) for hot electrons crossing the junction into the barrier SWCNT. For SWCNTs of optimal length, an analytical transport model is used to show that thermionic cooling can outweigh parasitic heat conduction due to high SWCNT thermal conductivity, leading to a significant cooling capacity (2.4 × 106 W/cm2).

  11. Junction-side illuminated silicon detector arrays

    DOEpatents

    Iwanczyk, Jan S.; Patt, Bradley E.; Tull, Carolyn

    2004-03-30

    A junction-side illuminated detector array of pixelated detectors is constructed on a silicon wafer. A junction contact on the front-side may cover the whole detector array, and may be used as an entrance window for light, x-ray, gamma ray and/or other particles. The back-side has an array of individual ohmic contact pixels. Each of the ohmic contact pixels on the back-side may be surrounded by a grid or a ring of junction separation implants. Effective pixel size may be changed by separately biasing different sections of the grid. A scintillator may be coupled directly to the entrance window while readout electronics may be coupled directly to the ohmic contact pixels. The detector array may be used as a radiation hardened detector for high-energy physics research or as avalanche imaging arrays.

  12. Studies of silicon PN junction solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1975-01-01

    Silicon pn junction solar cells made with low-resistivity substrates show poorer performance than traditional theory predicts. The purpose of this research was to identify and characterize the physical mechanisms responsible for the discrepancy. Attention was concentrated on the open circuit voltage in shallow junction cells of 0.1 ohm-cm substrate resistivity. A number of possible mechanisms that can occur in silicon devices were considered. Two mechanisms which are likely to be of main importance in explaining the observed low values of open-circuit voltage were found: (1) recombination losses associated with defects introduced during junction formation, and (2) inhomogeneity of defects and impurities across the area of the cell. To explore these theoretical anticipations, various diode test structures were designed and fabricated and measurement configurations for characterizing the defect properties and the areal inhomogeneity were constructed.

  13. Photocurrent Measurements of Carbon Nanotube PN Junctions

    NASA Astrophysics Data System (ADS)

    Gabor, Nathaniel; Zhong, Zhaohui; Bosnick, Ken; Park, Jiwoong; McEuen, Paul

    2007-03-01

    Gated p-n junctions in semiconducting nanotubes have recently drawn much attention for their electronic and optoelectronic characteristics [1,2,3]. We investigate the photocurrent response at a nanotube gated p-n junction using a focused laser illumination source. We find that the photocurrent at zero source-drain bias increases linearly with optical power for the component of light along the length of the nanotube. Scanned photocurrent imaging demonstrates that carrier generation occurs primarily between the p- and n- type segments of the device. Measurements in an optical cryostat down to 4K reveal large photoresponse and step-like structure in the reverse bias photocurrent. These results show that nanotube p-n junctions are highly sensitive, nanoscale photodetectors. [1] J.U. Lee et al, App. Phys. Lett. 85, 145 (2004). [2] J.U. Lee, App. Phys. Lett. 87, 073101 (2005). [3] K. Bosnick et al, App. Phys. Lett. 89, 163121 (2006).

  14. Tunnel junction based memristors as artificial synapses

    PubMed Central

    Thomas, Andy; Niehörster, Stefan; Fabretti, Savio; Shepheard, Norman; Kuschel, Olga; Küpper, Karsten; Wollschläger, Joachim; Krzysteczko, Patryk; Chicca, Elisabetta

    2015-01-01

    We prepared magnesia, tantalum oxide, and barium titanate based tunnel junction structures and investigated their memristive properties. The low amplitudes of the resistance change in these types of junctions are the major obstacle for their use. Here, we increased the amplitude of the resistance change from 10% up to 100%. Utilizing the memristive properties, we looked into the use of the junction structures as artificial synapses. We observed analogs of long-term potentiation, long-term depression and spike-time dependent plasticity in these simple two terminal devices. Finally, we suggest a possible pathway of these devices toward their integration in neuromorphic systems for storing analog synaptic weights and supporting the implementation of biologically plausible learning mechanisms. PMID:26217173

  15. Numerical Investigation of Josephson Junction Structures

    SciTech Connect

    Hristov, I.; Dimova, S.; Boyadjiev, T.

    2009-10-29

    Multilayered long Josephson Junction Structures form an interesting physical system where both nonlinearity and interaction between subsystems play an important role. Such systems allow to study physical effects that do not occur in single Josephson junction.The Sakai-Bodin-Pedersen model--a system of perturbed sine-Gordon equations--is used to study the dynamic states of stacks of inductively coupled long Josephson Junctions (LJJs). The corresponding static problem is numerically investigated as well. In order to study the stability of possible static solutions a Sturm-Liouville problem is generated and solved.The transitions from static to dynamic state and the scenario of these transitions are analyzed depending on the model parameters. Different physical characteristics--current-voltage characteristics, individual instant voltages and internal magnetic fields, are calculated and interpreted.

  16. Brownian refrigeration by hybrid tunnel junctions

    NASA Astrophysics Data System (ADS)

    Peltonen, J. T.; Helle, M.; Timofeev, A. V.; Solinas, P.; Hekking, F. W. J.; Pekola, J. P.

    2011-10-01

    Voltage fluctuations generated in a hot resistor can cause extraction of heat from a colder normal metal electrode of a hybrid tunnel junction between a normal metal and a superconductor. We extend the analysis presented in Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.98.210604 98, 210604 (2007) of this heat rectifying system, bearing resemblance to a Maxwell’s demon. Explicit analytic calculations show that the entropy of the total system is always increasing. We then consider a single-electron transistor configuration with two hybrid junctions in series, and show how the cooling is influenced by charging effects. We analyze also the cooling effect from nonequilibrium fluctuations instead of thermal noise, focusing on the shot noise generated in another tunnel junction. We conclude by discussing limitations for an experimental observation of the effect.

  17. Electronic Properties of Carbon Nanotubes and Junctions

    NASA Technical Reports Server (NTRS)

    Anantram, M. P.; Han, Jie; Yang, Liu; Govindan, T. R.; Jaffe, R.; Saini, Subhash (Technical Monitor)

    1998-01-01

    Metallic and semiconducting Single Wall Carbon Nanotubes (CNT) have recently been characterized using scanning tunneling microscopy (STM) and the manipulation of individual CNT has been demonstrated. These developments make the prospect of using CNT as molecular wires and possibly as electronic devices an even more interesting one. We have been modeling various electronic properties such as the density of states and the transmission coefficient of CNT wires and junctions. These studies involve first calculating the stability of junctions using molecular dynamics simulations and then calculating the electronic properties using a pi-electron tight binding Hamiltonian. We have developed the expertise to calculate the electronic properties of both finite-sized CNT and CNT systems with semi-infinite boundary conditions. In this poster, we will present an overview of some of our results. The electronic application of CNT that is most promising at this time is their use as molecular wires. The conductance can however be greatly reduced because of reflection due to defects and contacts. We have modeled the transmission through CNT in the presence of two types of defects: weak uniform disorder and strong isolated scatterers. We find that the conductance is affected in significantly different manners due to these defects Junctions of CNT have also been imaged using STM. This makes it essential to derive rules for the formation of junctions between tubes of different chirality, study their relative energies and electronic properties. We have generalized the rules for connecting two different CNT and have calculated the transmission and density of states through CNT junctions. Metallic and semiconducting CNT can be joined to form a stable junction and their current versus voltage characteristics are asymmetric. CNT are deformed by the application of external forces including interactions with a substrate or other CNT. In many experiments, these deformation are expected to

  18. Non-invasive microfluidic gap junction assay.

    PubMed

    Chen, Sisi; Lee, Luke P

    2010-03-01

    Gap junctions are protein channels between cells that allow direct electrical and metabolic coupling via the exchange of biomolecules and ions. Their expression, though ubiquitous in most mammalian cell types, is especially important for the proper functioning of cardiac and neuronal systems. Many existing methods for studying gap junction communication suffer from either unquantifiable data or difficulty of use. Here, we measure the extent of dye spread and effective diffusivities through gap junction connected cells using a quantitative microfluidic cell biology platform. After loading dye by hydrodynamic focusing of calcein/AM, dye transfer dynamics into neighboring, unexposed cells can be monitored via timelapse fluorescent microscopy. By using a selective microfluidic dye loading over a confluent layer of cells, we found that high expression of gap junctions in C6 cells transmits calcein across the monolayer with an effective diffusivity of 3.4 x 10(-13) m(2)/s, which are highly coupled by Cx43. We also found that the gap junction blocker 18alpha-GA works poorly in the presence of serum even at high concentrations (50 microM); however, it is highly effective down to 2.5 microM in the absence of serum. Furthermore, when the drug is washed out, dye spread resumes rapidly within 1 min for all doses, indicating the drug does not affect transcriptional regulation of connexins in these Cx43+ cells, in contrast to previous studies. This integrated microfluidic platform enables the in situ monitoring of gap junction communication, yielding dynamic information about intercellular molecular transfer and pharmacological inhibition and recovery.

  19. Rankin triple products and quantum chaos

    NASA Astrophysics Data System (ADS)

    Watson, Thomas Crawford

    2002-01-01

    In this dissertation we demonstrate the chaotic nature of some archetypical quantum dynamical systems, using machinery from analytic number theory. We consider the quantized geodesic flow on finite-volume hyperbolic surfaces G/H , with G⊂SL2R consisting of the norm-1 units of an Eichler order in an indefinite quaternion algebra B over Q . For G=SL2Z , we prove that high-energy bound eigen-states obey the Random Wave conjecture of Berry/Hejhal for third moments. In fact we show that the third moment of a wave's amplitude distribution decays like E-112+e . In the more general case of maximal orders, we reduce an optimal quantitative version of the Quantum Unique Ergodicity conjecture of Rudnick-Sarnak to the Lindelof Hypothesis for particular families of automorphic L-functions. Furthermore, our analysis shows that any lowering of the exponent in the Phragmen-Lindelof convexity bound implies QUE. In the moment problem as well, the maximum non-trivial exponents precisely agree when translated between physical and arithmetical formulations. We accomplish this translation by proving identities expressing triple-correlation integrals of eigenforms in terms of central values of the corresponding Rankin triple-product L-functions. Very general forms of such identities were proved by Harris-Kudla, and in using their method to prove our own classical identities, we have to solve two main problems. The first is to explicitly compute the adjoint of Shimizu's theta lift, which realizes the Jacquet-Langlands correspondence by transferring automorphic forms from GL2 to GO( B). We accomplish this for oldforms and newforms of square-free level, with (possibly imprimitive) neben-characters. As a byproduct of these calculations, we obtain explicit formulas for all relevant GL2 Whittaker functions. These play an important role in our second main problem: evaluation of Garrett/Rallis-Piatetsky-Shapiro local zeta integrals in terms of the standard functorial triple-product L

  20. Structure and function of gap junction proteins: role of gap junction proteins in embryonic heart development.

    PubMed

    Ahir, Bhavesh K; Pratten, Margaret K

    2014-01-01

    Intercellular (cell-to-cell) communication is a crucial and complex mechanism during embryonic heart development. In the cardiovascular system, the beating of the heart is a dynamic and key regulatory process, which is functionally regulated by the coordinated spread of electrical activity through heart muscle cells. Heart tissues are composed of individual cells, each bearing specialized cell surface membrane structures called gap junctions that permit the intercellular exchange of ions and low molecular weight molecules. Gap junction channels are essential in normal heart function and they assist in the mediated spread of electrical impulses that stimulate synchronized contraction (via an electrical syncytium) of cardiac tissues. This present review describes the current knowledge of gap junction biology. In the first part, we summarise some relevant biochemical and physiological properties of gap junction proteins, including their structure and function. In the second part, we review the current evidence demonstrating the role of gap junction proteins in embryonic development with particular reference to those involved in embryonic heart development. Genetics and transgenic animal studies of gap junction protein function in embryonic heart development are considered and the alteration/disruption of gap junction intercellular communication which may lead to abnormal heart development is also discussed.

  1. Complementary junction heterostructure field-effect transistor

    DOEpatents

    Baca, A.G.; Drummond, T.J.; Robertson, P.J.; Zipperian, T.E.

    1995-12-26

    A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits. 10 figs.

  2. Complementary junction heterostructure field-effect transistor

    DOEpatents

    Baca, Albert G.; Drummond, Timothy J.; Robertson, Perry J.; Zipperian, Thomas E.

    1995-01-01

    A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits.

  3. Josephson junctions with alternating critical current density

    SciTech Connect

    Mints, R.G.; Kogan, V.G.

    1997-04-01

    The magnetic-field dependence of the critical current I{sub c}(H) is considered for a short Josephson junction with the critical current density j{sub c} alternating along the tunnel contact. Two model cases, periodic and randomly alternating j{sub c}, are treated in detail. Recent experimental data on I{sub c}(H) for grain-boundary Josephson junctions in YBa{sub 2}Cu{sub 3}O{sub x} are discussed. {copyright} {ital 1997} {ital The American Physical Society}

  4. Fluctuation of heat current in Josephson junctions

    SciTech Connect

    Virtanen, P.; Giazotto, F.

    2015-02-15

    We discuss the statistics of heat current between two superconductors at different temperatures connected by a generic weak link. As the electronic heat in superconductors is carried by Bogoliubov quasiparticles, the heat transport fluctuations follow the Levitov–Lesovik relation. We identify the energy-dependent quasiparticle transmission probabilities and discuss the resulting probability density and fluctuation relations of the heat current. We consider multichannel junctions, and find that heat transport in diffusive junctions is unique in that its statistics is independent of the phase difference between the superconductors.

  5. Resolving Atomic Connectivity in Graphene Nanostructure Junctions.

    PubMed

    Dienel, Thomas; Kawai, Shigeki; Söde, Hajo; Feng, Xinliang; Müllen, Klaus; Ruffieux, Pascal; Fasel, Roman; Gröning, Oliver

    2015-08-12

    We report on the structural characterization of junctions between atomically well-defined graphene nanoribbons (GNRs) by means of low-temperature, noncontact scanning probe microscopy. We show that the combination of simultaneously acquired frequency shift and tunneling current maps with tight binding (TB) simulations allows a comprehensive characterization of the atomic connectivity in the GNR junctions. The proposed approach can be generally applied to the investigation of graphene nanomaterials and their interconnections and is thus expected to become an important tool in the development of graphene-based circuitry.

  6. Geophysical Survey of the 1978 Seismo-volcanic Crisis in the Asal-Ghoubbet Rift (Afar Depression, Djibouti) and the Post-rifting Deformations

    NASA Astrophysics Data System (ADS)

    Doubre, C.; Ruegg, J.; de Chabalier, J.; Vigny, C.; Jacques, E.

    2006-12-01

    In November 1978, a seismo-volcanic crisis occurred in the Asal-Ghoubbet Rift, which is located at the western termination of the oceanic Aden Ridge propagating inland into the Afar Depression and accommodates a large part of the divergent motion of the Arabia and Somalia plates. This episode offered the opportunity to study the rifting process controlling the evolution of a sub-aerial opening segment at the transition from continental break-up to oceanic spreading. This major crustal spreading episode started with two major earthquakes in the subaerial part of the rift (mb=5.3 and 5.0) and was followed by the week-long, basaltic fissure eruption of the Ardukoba at the western tip of the central volcanic chain. The geophysical survey carried out for the crisis was possible by means of the Arta Observatory in Djibouti within the framework of field surveys financed by the French agency CNRS-INSU. This allowed the measurements of the surface breaks (dry open fissures up to 100 m, normal fault throws up to 80 cm), the crustal deformation by geodetic networks and leveling (up to 2m of horizontal widening, 70 cm of inner-floor subsidence), and the evolution of the seismic activity (eastward migration along the Aden Ridge) associated with this rifting event. Elastic modeling shows that both the deformation pattern and the seismic activity can be explained by the aseismic intrusion of two dykes below the rift inner-floor. Subsequently, a continuous geodetic and seismic monitoring has been maintained and shows that the post-dyke injection evolution of the rift is dominated by two distinct periods. During the six first years (1979-1986), high rates of horizontal opening and slip of creeping normal faults accommodate the subsidence of the inner-floor surrimposed to the development of a 25 km-wide uplift. Since 1986-87, the strain rates have decreased and currently reach values consistent with long-term velocities deduced from morpho-tectonic studies. The evolution of the

  7. A proposed route to independent measurements of tight junction conductance at discrete cell junctions

    PubMed Central

    Zhou, Lushan; Zeng, Yuhan; Baker, Lane A; Hou, Jianghui

    2015-01-01

    Direct recording of tight junction permeability is of pivotal importance to many biologic fields. Previous approaches bear an intrinsic disadvantage due to the difficulty of separating tight junction conductance from nearby membrane conductance. Here, we propose the design of Double whole-cell Voltage Clamp - Ion Conductance Microscopy (DVC-ICM) based on previously demonstrated potentiometric scanning of local conductive pathways. As proposed, DVC-ICM utilizes two coordinated whole-cell patch-clamps to neutralize the apical membrane current during potentiometric scanning, which in models described here will profoundly enhance the specificity of tight junction recording. Several potential pitfalls are considered, evaluated and addressed with alternative countermeasures. PMID:26716077

  8. [Triple therapy in chronic obstructive pulmonary disease].

    PubMed

    Baloira, Adolfo

    2010-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the most important respiratory diseases, characterized by its multicomponent complexity, with chronic inflammation, increased airway resistance and exacerbations. Several drugs are currently available for its treatment, which act on distinct targets. Bronchodilators, especially prolonged-action bronchodilators, are the most potent and there are two groups: beta-2 mimetics and anticholinergics. Inhaled corticosteroids are the main anti-inflammatory drugs but have modest efficacy and their use is reserved for patients with severe disease and frequent exacerbations and/or asthma traits. Associating these three drugs can improve symptom control, improve quality of life and reduce the number of exacerbations. The present article reviews the evidence supporting this triple combination, as well as published studies.

  9. Triple flames in microgravity flame spread

    NASA Technical Reports Server (NTRS)

    Wichman, Indrek S.

    1995-01-01

    The purpose of this project is to examine in detail the influence of the triple flame structure on the flame spread problem. It is with an eye to the practical implications that this fundamental research project must be carried out. The microgravity configuration is preferable because buoyancy-induced stratification and vorticity generation are suppressed. A more convincing case can be made for comparing our predictions, which are zero-g, and any projected experiments. Our research into the basic aspects will employ two models. In one, flows of fuel and oxidizer from the lower wall are not considered. In the other, a convective flow is allowed. The non-flow model allows us to develop combined analytical and numerical solution methods that may be used in the more complicated convective-flow model.

  10. [Triple fracture of the shoulder suspensory complex].

    PubMed

    Tamimi Mariño, I; Martin Rodríguez, I; Mora Villadeamigo, J

    2013-01-01

    The superior suspensory complex of the shoulder (SSCS) is a ring shaped structure composed of bones and soft tissues that play a fundamental role in the stability of the shoulder joint. Isolated injuries of the SSCS are relatively common, but injuries that affect 3 components are extremely unusual. We present a triple injury of the SSCS in a 26 year old patient with a Neer type ii clavicular fracture, a Kuhn type iii acromion fracture and an Ogawa type i coracoid fracture. An open reduction and stabilization of the clavicle was performed with 2 Kirschner nails. The acromial fracture was synthesized with 2 cannulated screws, and the coracoid fracture was treated conservatively. After 24 months of follow up the patient had an excellent functional outcome according to the Constat-Murley shoulder score and QuickDASH scoring system, and all the fractures healed correctly.

  11. Omeprazole enhances efficacy of triple therapy in eradicating Helicobacter pylori.

    PubMed Central

    Borody, T J; Andrews, P; Fracchia, G; Brandl, S; Shortis, N P; Bae, H

    1995-01-01

    Triple therapy has been recommended as the most effective treatment for Helicobacter pylori eradication. Despite achieving a comparatively high eradication result, however, around 10% of patients still fail to be cured. Omeprazole can enhance efficacy of single and double antibiotic protocols and is particularly effective when combined with clarithromycin and a nitroimidazole. This study examined the effect of combining triple therapy with omeprazole. A prospective, randomised, unblinded, single centre trial was carried out on consecutive patients with symptoms of dyspepsia and H pylori infection confirmed by rapid urease test, microbiological culture, and histological assessment. Patients were given a five times/day, 12 day course of colloidal bismuth subcitrate chewable tablets (108 mg), tetracycline HCl (250 mg), and metronidazole (200 mg) with either 20 mg omeprazole twice daily (triple therapy+omeprazole) or 40 mg famotidine (triple therapy+famotidine) at night. Compliance and side effects were determined using a standard questionnaire form. One hundred and twenty five of 165 triple therapy+omeprazole patients and 124 of 171 triple therapy+famotidine patients returned for rebiopsy four weeks after completion of treatment. Significantly more triple therapy+omeprazole patients achieved eradication 122 of 125 (97.6%) as assessed by negative urease test, culture, and histological assessment, when compared with 110 of 124 (89%) triple therapy+famotidine patients (p = 0.006; chi 2). There were 30 triple therapy+omeprazole (24%) and 26 triple therapy+famotidine (21%) patients with de novo metronidazole resistant H pylori included in the study. Side effects were mild and infrequent and were comparable in both groups, although pain in duodenal ulcer, gastric ulcer, and oesophagitis patients seemed to subside earlier in those taking omeprazole. Compliance (>95% of drugs taken) was achieved by 98% of patients of both groups. A 12 days regimen of triple therapy with

  12. The triple system KR Comae Berenices

    NASA Astrophysics Data System (ADS)

    Zasche, P.; Uhlář, R.

    2010-09-01

    Aims: We present the detailed analysis of triple system KR Com with different observational techniques - photometry, interferometry, and period variation. Methods: The use of BVR photometry of the close-contact binary KR Com, which is the primary component of a triple system, helps us to better describe the properties of the components. The interferometric data obtained during the last 30 years sufficiently determine the visual orbit, but the use of minima timings of KR Com for the study of period variation together with the visual orbit is a novel approach in this system. Results: Basic physical parameters resulting from the light curve analysis agree well with the previous results from spectroscopy. The temperatures for the primary and secondary component resulted in 5549 and 6072 K, respectively, and the amount of the third light in all filters is about 1/3 of the total luminosity. The distant third component revolves around the common barycenter on 11 yr orbit with a very high eccentricity (0.934) and this movement is also detectable via the period variation, which is clearly visible in the O-C diagram of times of minima observations. The use of minima times for the combined analysis helps us to independently determine the distance to the system (64.02 ± 9.42 pc) and also to confirm the orientation of the orbit in space. Conclusions: New minima observations and also spectroscopy would be very profitable, especially during the next periastron passage in the year 2017. Photometric tables are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/519/A78

  13. Clinicopathological Features of Triple Negative Breast Carcinoma

    PubMed Central

    Reddy, Gowry Maram; Pai, Radha R.

    2017-01-01

    Introduction Breast carcinoma is one of the most common malignancies affecting women in developing countries. Molecular studies of breast carcinoma have classified the tumour based on the immunohistochemical staining into 4 subtypes, such as Luminal A, Luminal B, HER2/neu Positive and Triple Negative Breast Carcinoma (TNBC). TNBCs are reported to have an aggressive behaviour and wide metastasis, leading to selective treatment outcomes. Aim The aim was to study the clinicopathological features such as age, site, tumour size, histopathological type, histologic grade, lymph node status, stage and treatment outcomes of triple negative breast carcinoma. Materials and Methods A retrospective study was conducted on 108 cases of breast carcinoma received during the period of 2 years. The tumour was classified based on immunohistochemical staining into four subtypes. The clinicopathological details, histomorphological and immunohistochemical features of TNBC were studied. Results Of the 108 patients, 34 patients were diagnosed as TNBC. The average age at presentation was 48 years. Most of the cases showed Nottingham Modification of Scarff Bloom-Richardson (NMBR) grade 3 (55.9%) and stage II (67.6%). Ly-mph node metastasis was seen in 50% of cases. Infiltrating ductal carcinoma (not otherwise specified) type (91.2%) was the most common histological type. Among the other subtypes, Luminal A carcinoma was the most common (36.1%), followed by TNBC (31.5%) and HER2/neu positive carcinomas (28.7%). Compared to the other types of tumours, TNBC showed the most frequent distant lymph node metastasis (50%) when compared to luminal A (38.5%), luminal B (25%), HER2/neu positive (48.4%). Unlike the other types of tumours, TNBC were mostly high-grade. Conclusion TNBC have an aggressive behaviour compared to other subtypes with higher NMBR grade, nuclear pleomorphism, high mitotic rate and lymph node metastasis. PMID:28273970

  14. Ballistic bipolar junctions in chemically gated graphene ribbons

    PubMed Central

    Baringhaus, Jens; Stöhr, Alexander; Forti, Stiven; Starke, Ulrich; Tegenkamp, Christoph

    2015-01-01

    The realization of ballistic graphene pn-junctions is an essential task in order to study Klein tunneling phenomena. Here we show that intercalation of Ge under the buffer layer of pre-structured SiC-samples succeeds to make truly nano-scaled pn-junctions. By means of local tunneling spectroscopy the junction width is found to be as narrow as 5 nm which is a hundred times smaller compared to electrically gated structures. The ballistic transmission across the junction is directly proven by systematic transport measurements with a 4-tip STM. Various npn- and pnp-junctions are studied with respect to the barrier length. The pn-junctions are shown to act as polarizer and analyzer with the second junction becoming transparent in case of a fully ballistic barrier. This can be attributed to the almost full suppression of electron transmission through the junction away from normal incidence. PMID:25898259

  15. Gap junction- and hemichannel-independent actions of connexins

    PubMed Central

    Jiang, Jean X.; Gu, Sumin

    2007-01-01

    Connexins have been known to be the protein building blocks of gap junctions and mediate cell–cell communication. In contrast to the conventional dogma, recent evidence suggests that in addition to forming gap junction channels, connexins possess gap junction-independent functions. One important gap junction-independent function for connexins is to serve as the major functional component for hemichannels, the un-apposed halves of gap junctions. Hemichannels, as independent functional units, play roles that are different from that of gap junctions in the cell. The other functions of connexins appear to be gap junction- and hemichannel-independent. Published studies implicate the latter functions of connexins in cell growth, differentiation, tumorigenicity, injury, and apoptosis, although the mechanistic aspects of these actions remain largely unknown. In this review, gap junction- and hemichannel-independent functions of connexins are summarized, and the molecular mechanisms underlying these connexin functions are speculated and discussed. PMID:15955305

  16. "Direct" measurement of sheet resistance in inter-subcell layers of multi-junction solar cells

    NASA Astrophysics Data System (ADS)

    Rumyantsev, Valery D.; Larionov, Valery R.; Pokrovskiy, Pavel V.

    2015-09-01

    The multi-junction cells are sensitive to chromatic aberrations inherent to the lens-type concentrators. At spectrally and spatially inhomogeneous distribution of incident light, considerable lateral currents flow along the inter-subcell layers causing a voltage drop across corresponding sheet resistance and, consequently, a decrease in the cell conversion efficiency. The sheet resistance unit is Ohm-per-square that corresponds to the resistance between two bar-type electrodes on the opposite sides of a thin conductive square. A method of "direct" measurement of this parameter is proposed using lasers for local illumination of the strip-in-shape parts of a rectangular-in-form tested cell. These illuminated parts play a role of electrodes for a lateral current induced by photoexitation. Wavelengths of the lasers have to be chosen to generate photocurrents independently in the neighboring subcells, as well as locally in the upper and lower ones. SPICE model of the method is analyzed and experimental results on the InGaP/InGaAs/Ge triple-junction solar cells are presented.

  17. The effects of complex chemistry on triple flames

    NASA Technical Reports Server (NTRS)

    Echekki, T.; Chen, J. H.

    1996-01-01

    The structure, ignition, and stabilization mechanisms for a methanol (CH3OH)-air triple flame are studied using Direct Numerical Simulations (DNS). The methanol (CH3OH)-air triple flame is found to burn with an asymmetric shape due to the different chemical and transport processes characterizing the mixture. The excess fuel, methanol (CH3OH), on the rich premixed flame branch is replaced by more stable fuels CO and H2, which burn at the diffusion flame. On the lean premixed flame side, a higher concentration of O2 leaks through to the diffusion flame. The general structure of the triple point features the contribution of both differential diffusion of radicals and heat. A mixture fraction-temperature phase plane description of the triple flame structure is proposed to highlight some interesting features in partially premixed combustion. The effects of differential diffusion at the triple point add to the contribution of hydrodynamic effects in the stabilization of the triple flame. Differential diffusion effects are measured using two methods: a direct computation using diffusion velocities and an indirect computation based on the difference between the normalized mixture fractions of C and H. The mixture fraction approach does not clearly identify the effects of differential diffusion, in particular at the curved triple point, because of ambiguities in the contribution of carbon and hydrogen atoms' carrying species.

  18. High voltage series connected tandem junction solar battery

    DOEpatents

    Hanak, Joseph J.

    1982-01-01

    A high voltage series connected tandem junction solar battery which comprises a plurality of strips of tandem junction solar cells of hydrogenated amorphous silicon having one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon, arranged in a tandem configuration, can have the same bandgap or differing bandgaps. The tandem junction strip solar cells are series connected to produce a solar battery of any desired voltage.

  19. Polyphosphonium-based ion bipolar junction transistors

    PubMed Central

    Gabrielsson, Erik O.; Berggren, Magnus

    2014-01-01

    Advancements in the field of electronics during the past few decades have inspired the use of transistors in a diversity of research fields, including biology and medicine. However, signals in living organisms are not only carried by electrons but also through fluxes of ions and biomolecules. Thus, in order to implement the transistor functionality to control biological signals, devices that can modulate currents of ions and biomolecules, i.e., ionic transistors and diodes, are needed. One successful approach for modulation of ionic currents is to use oppositely charged ion-selective membranes to form so called ion bipolar junction transistors (IBJTs). Unfortunately, overall IBJT device performance has been hindered due to the typical low mobility of ions, large geometries of the ion bipolar junction materials, and the possibility of electric field enhanced (EFE) water dissociation in the junction. Here, we introduce a novel polyphosphonium-based anion-selective material into npn-type IBJTs. The new material does not show EFE water dissociation and therefore allows for a reduction of junction length down to 2 μm, which significantly improves the switching performance of the ion transistor to 2 s. The presented improvement in speed as well the simplified design will be useful for future development of advanced iontronic circuits employing IBJTs, for example, addressable drug-delivery devices. PMID:25553192

  20. Radiation comb generation with extended Josephson junctions

    SciTech Connect

    Solinas, P.; Bosisio, R.; Giazotto, F.

    2015-09-21

    We propose the implementation of a Josephson radiation comb generator based on an extended Josephson junction subject to a time dependent magnetic field. The junction critical current shows known diffraction patterns and determines the position of the critical nodes when it vanishes. When the magnetic flux passes through one of such critical nodes, the superconducting phase must undergo a π-jump to minimize the Josephson energy. Correspondingly, a voltage pulse is generated at the extremes of the junction. Under periodic driving, this allows us to produce a comb-like voltage pulses sequence. In the frequency domain, it is possible to generate up to hundreds of harmonics of the fundamental driving frequency, thus mimicking the frequency comb used in optics and metrology. We discuss several implementations through a rectangular, cylindrical, and annular junction geometries, allowing us to generate different radiation spectra and to produce an output power up to 10 pW at 50 GHz for a driving frequency of 100 MHz.

  1. Gallium nitride junction field-effect transistor

    DOEpatents

    Zolper, John C.; Shul, Randy J.

    1999-01-01

    An all-ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorous co-implantation, in selected III-V semiconductor materials.

  2. Gallium nitride junction field-effect transistor

    DOEpatents

    Zolper, J.C.; Shul, R.J.

    1999-02-02

    An ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same are disclosed. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorus co-implantation, in selected III-V semiconductor materials. 19 figs.

  3. Axion mass estimates from resonant Josephson junctions

    NASA Astrophysics Data System (ADS)

    Beck, Christian

    2015-03-01

    Recently it has been proposed that dark matter axions from the galactic halo can produce a small Shapiro step-like signal in Josephson junctions whose Josephson frequency resonates with the axion mass (Beck, 2013). Here we show that the axion field equations in a voltage-driven Josephson junction environment allow for a nontrivial solution where the axion-induced electrical current manifests itself as an oscillating supercurrent. The linear change of phase associated with this nontrivial solution implies the formal existence of a large magnetic field in a tiny surface area of the weak link region of the junction which makes incoming axions decay into microwave photons. We derive a condition for the design of Josephson junction experiments so that they can act as optimum axion detectors. Four independent recent experiments are discussed in this context. The observed Shapiro step anomalies of all four experiments consistently point towards an axion mass of (110±2) μeV. This mass value is compatible with the recent BICEP2 results and implies that Peccei-Quinn symmetry breaking was taking place after inflation.

  4. Polyphosphonium-based ion bipolar junction transistors.

    PubMed

    Gabrielsson, Erik O; Tybrandt, Klas; Berggren, Magnus

    2014-11-01

    Advancements in the field of electronics during the past few decades have inspired the use of transistors in a diversity of research fields, including biology and medicine. However, signals in living organisms are not only carried by electrons but also through fluxes of ions and biomolecules. Thus, in order to implement the transistor functionality to control biological signals, devices that can modulate currents of ions and biomolecules, i.e., ionic transistors and diodes, are needed. One successful approach for modulation of ionic currents is to use oppositely charged ion-selective membranes to form so called ion bipolar junction transistors (IBJTs). Unfortunately, overall IBJT device performance has been hindered due to the typical low mobility of ions, large geometries of the ion bipolar junction materials, and the possibility of electric field enhanced (EFE) water dissociation in the junction. Here, we introduce a novel polyphosphonium-based anion-selective material into npn-type IBJTs. The new material does not show EFE water dissociation and therefore allows for a reduction of junction length down to 2 μm, which significantly improves the switching performance of the ion transistor to 2 s. The presented improvement in speed as well the simplified design will be useful for future development of advanced iontronic circuits employing IBJTs, for example, addressable drug-delivery devices.

  5. Costochondral junction osteomyelitis in 3 septic foals

    PubMed Central

    Cesarini, Carla; Macieira, Susana; Girard, Christiane; Drolet, Richard; d’Anjou, Marc-André; Jean, Daniel

    2011-01-01

    The costochondral junction constitutes a potential site of infection in septic foals and it could be favored by thoracic trauma. Standard radiographs and ultrasonography are useful tools for diagnosis of this condition and ultrasound-guided needle aspiration could permit the definitive confirmation of infection. PMID:22210943

  6. Gap junctional communication during limb cartilage differentiation.

    PubMed

    Coelho, C N; Kosher, R A

    1991-03-01

    The onset of cartilage differentiation in the developing limb bud is characterized by a transient cellular condensation process in which prechondrogenic mesenchymal cells become closely apposed to one another prior to initiating cartilage matrix deposition. During this condensation process intimate cell-cell interactions occur which are necessary to trigger chondrogenic differentiation. In the present study, we demonstrate that extensive cell-cell communication via gap junctions as assayed by the intercellular transfer of lucifer yellow dye occurs during condensation and the onset of overt chondrogenesis in high density micromass cultures prepared from the homogeneous population of chondrogenic precursor cells comprising the distal subridge region of stage 25 embryonic chick wing buds. Furthermore, in heterogeneous micromass cultures prepared from the mesodermal cells of whole stage 23/24 limb buds, extensive gap junctional communication is limited to differentiating cartilage cells, while the nonchondrogenic cells of the cultures that are differentiating into the connective tissue lineage exhibit little or no intercellular communication via gap junctions. These results provide a strong incentive for considering and further investigating the possible involvement of cell-cell communication via gap junctions in the regulation of limb cartilage differentiation.

  7. All-carbon molecular tunnel junctions.

    PubMed

    Yan, Haijun; Bergren, Adam Johan; McCreery, Richard L

    2011-11-30

    This Article explores the idea of using nonmetallic contacts for molecular electronics. Metal-free, all-carbon molecular electronic junctions were fabricated by orienting a layer of organic molecules between two carbon conductors with high yield (>90%) and good reproducibility (rsd of current density at 0.5 V <30%). These all-carbon devices exhibit current density-voltage (J-V) behavior similar to those with metallic Cu top contacts. However, the all-carbon devices display enhanced stability to bias extremes and greatly improved thermal stability. Completed carbon/nitroazobenzene(NAB)/carbon junctions can sustain temperatures up to 300 °C in vacuum for 30 min and can be scanned at ±1 V for at least 1.2 × 10(9) cycles in air at 100 °C without a significant change in J-V characteristics. Furthermore, these all-carbon devices can withstand much higher voltages and current densities than can Cu-containing junctions, which fail upon oxidation and/or electromigration of the copper. The advantages of carbon contacts stem mainly from the strong covalent bonding in the disordered carbon materials, which resists electromigration or penetration into the molecular layer, and provides enhanced stability. These results highlight the significance of nonmetallic contacts for molecular electronics and the potential for integration of all-carbon molecular junctions with conventional microelectronics.

  8. Regulation of Traffic Lights at Road Junctions

    NASA Astrophysics Data System (ADS)

    Cutolo, Alfredo; Manzo, Rosanna; Rarità, Luigi

    2009-08-01

    In this work, we aim to investigate the effects of traffic lights regulation at road junctions, modelled by a fluid dynamic approach. Numerical simulations prove that it is possible to plan some optimization strategies for green and red phases for networks consisting of more nodes.

  9. The dynamic organic p-n junction.

    PubMed

    Matyba, Piotr; Maturova, Klara; Kemerink, Martijn; Robinson, Nathaniel D; Edman, Ludvig

    2009-08-01

    Static p-n junctions in inorganic semiconductors are exploited in a wide range of today's electronic appliances. Here, we demonstrate the in situ formation of a dynamic p-n junction structure within an organic semiconductor through electrochemistry. Specifically, we use scanning kelvin probe microscopy and optical probing on planar light-emitting electrochemical cells (LECs) with a mixture of a conjugated polymer and an electrolyte connecting two electrodes separated by 120 microm. We find that a significant portion of the potential drop between the electrodes coincides with the location of a thin and distinct light-emission zone positioned >30 microm away from the negative electrode. These results are relevant in the context of a long-standing scientific debate, as they prove that electrochemical doping can take place in LECs. Moreover, a study on the doping formation and dissipation kinetics provides interesting detail regarding the electronic structure and stability of the dynamic organic p-n junction, which may be useful in future dynamic p-n junction-based devices.

  10. Triple therapy for the management of COPD: a review.

    PubMed

    Gaebel, Kathryn; McIvor, R Andrew; Xie, Feng; Blackhouse, Gord; Robertson, Diana; Assasi, Nazila; Hernandez, Paul; Goeree, Ron

    2011-06-01

    Triple therapy for COPD consists of a long-acting anti-cholinergic bronchodilator, a long-acting beta-agonist bronchodilator, and an inhaled corticosteroid. Guidelines from the Canadian Thoracic Society advocate triple therapy for some patients with moderate-to-severe COPD. The objective of this review was to evaluate the evidence based clinical efficacy of triple therapy compared to dual bronchodilator therapy (long-acting anti-cholinergic bronchodilator + beta-agonist bronchodilator) or long-acting anti-cholinergic bronchodilator monotherapy for managing COPD. A systematic literature search was conducted to identify relevant clinical evaluations of triple therapy in the management of moderate to severe COPD. Databases searched included: Medline; EMBASE; CINAHL and PubMed (non-Medline records only). Of 2,314 publications, 4 articles evaluated triple therapy for the management of COPD. Hospitalization rates for COPD exacerbations, reported in 2 trials, were significantly reduced with triple therapy compared to long-acting anti-cholinergic bronchodilator monotherapy, with reported relative risks of 0.53 (95% CI: 0.33, 0.86, p = 0.01) and 0.35 (95% CI: 0.16-0.78, p = 0.011). Exacerbation data is inconsistent between the two trials reporting this outcome. Lung function, dyspnea and quality of life data show statistical significant changes with triple therapy compared to long-acting anti-cholinergic bronchodilator monotherapy but the changes do not reach clinical importance. Triple therapy does decrease the number of hospitalizations for severe/acute COPD exacerbations compared with long-acting anti-cholinergic bronchodilator monotherapy. There is insufficient evidence to determine if triple therapy is superior to dual bronchodilator therapy.

  11. Single molecule junction conductance and binding geometry

    NASA Astrophysics Data System (ADS)

    Kamenetska, Maria

    This Thesis addresses the fundamental problem of controlling transport through a metal-organic interface by studying electronic and mechanical properties of single organic molecule-metal junctions. Using a Scanning Tunneling Microscope (STM) we image, probe energy-level alignment and perform STM-based break junction (BJ) measurements on molecules bound to a gold surface. Using Scanning Tunneling Microscope-based break-junction (STM-BJ) techniques, we explore the effect of binding geometry on single-molecule conductance by varying the structure of the molecules, metal-molecule binding chemistry and by applying sub-nanometer manipulation control to the junction. These experiments are performed both in ambient conditions and in ultra high vacuum (UHV) at cryogenic temperatures. First, using STM imaging and scanning tunneling spectroscopy (STS) measurements we explore binding configurations and electronic properties of an amine-terminated benzene derivative on gold. We find that details of metal-molecule binding affect energy-level alignment at the interface. Next, using the STM-BJ technique, we form and rupture metal-molecule-metal junctions ˜104 times to obtain conductance-vs-extension curves and extract most likely conductance values for each molecule. With these measurements, we demonstrated that the control of junction conductance is possible through a choice of metal-molecule binding chemistry and sub-nanometer positioning. First, we show that molecules terminated with amines, sulfides and phosphines bind selectively on gold and therefore demonstrate constant conductance levels even as the junction is elongated and the metal-molecule attachment point is modified. Such well-defined conductance is also obtained with paracyclophane molecules which bind to gold directly through the pi system. Next, we are able to create metal-molecule-metal junctions with more than one reproducible conductance signatures that can be accessed by changing junction geometry. In the

  12. Vectorized data acquisition and fast triple-correlation integrals for Fluorescence Triple Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ridgeway, William K.; Millar, David P.; Williamson, James R.

    2013-04-01

    Fluorescence Correlation Spectroscopy (FCS) is widely used to quantify reaction rates and concentrations of molecules in vitro and in vivo. We recently reported Fluorescence Triple Correlation Spectroscopy (F3CS), which correlates three signals together instead of two. F3CS can analyze the stoichiometries of complex mixtures and detect irreversible processes by identifying time-reversal asymmetries. Here we report the computational developments that were required for the realization of F3CS and present the results as the Triple Correlation Toolbox suite of programs. Triple Correlation Toolbox is a complete data analysis pipeline capable of acquiring, correlating and fitting large data sets. Each segment of the pipeline handles error estimates for accurate error-weighted global fitting. Data acquisition was accelerated with a combination of off-the-shelf counter-timer chips and vectorized operations on 128-bit registers. This allows desktop computers with inexpensive data acquisition cards to acquire hours of multiple-channel data with sub-microsecond time resolution. Off-line correlation integrals were implemented as a two delay time multiple-tau scheme that scales efficiently with multiple processors and provides an unprecedented view of linked dynamics. Global fitting routines are provided to fit FCS and F3CS data to models containing up to ten species. Triple Correlation Toolbox is a complete package that enables F3CS to be performed on existing microscopes. Catalogue identifier: AEOP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOP_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 50189 No. of bytes in distributed program, including test data, etc.: 6135283 Distribution format: tar.gz Programming language: C/Assembly. Computer: Any with GCC and

  13. 30 CFR 57.12007 - Junction box connection procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Junction box connection procedures. 57.12007... Electricity Surface and Underground § 57.12007 Junction box connection procedures. Trailing cable and power-cable connections to junction boxes shall not be made or broken under load....

  14. Overview of the Grand Junction Office from Bluff east of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of the Grand Junction Office from Bluff east of facility. Note Buildings #35. #33 and #31A in lower left of photograph. VIEW WEST - Department of Energy, Grand Junction Office, 2597 B3/4 Road, Grand Junction, Mesa County, CO

  15. Graphene junction field-effect transistor

    NASA Astrophysics Data System (ADS)

    Ou, Tzu-Min; Borsa, Tomoko; van Zeghbroeck, Bart

    2014-03-01

    We have demonstrated for the first time a novel graphene transistor gated by a graphene/semiconductor junction rather than an insulating gate. The transistor operates much like a semiconductor junction Field Effect Transistor (jFET) where the depletion layer charge in the semiconductor modulates the mobile charge in the channel. The channel in our case is the graphene rather than another semiconductor layer. An increased reverse bias of the graphene/n-silicon junction increases the positive charge in the depletion region and thereby reduces the total charge in the graphene. We fabricated individual graphene/silicon junctions as well as graphene jFETs (GjFETs) on n-type (4.5x1015 cm-3) silicon with Cr/Au electrodes and 3 μm gate length. As a control device, we also fabricated back-gated graphene MOSFETs using a 90nm SiO2 on a p-type silicon substrate (1019 cm-3) . The graphene was grown by APCVD on copper foil and transferred with PMMA onto the silicon substrate. The GjFET exhibited an on-off ratio of 3.75, an intrinsic graphene doping of 1.75x1012 cm-2, compared to 1.17x1013 cm-2 in the MOSFET, and reached the Dirac point at 13.5V. Characteristics of the junctions and transistors were measured as a function of temperature and in response to light. Experimental data and a comparison with simulations will be presented.

  16. Multiphase Flow in Micro-fracture Junctions

    NASA Astrophysics Data System (ADS)

    Basagaoglu, H.; Meakin, P.; Succi, S.; Wildenschild, D.

    2005-12-01

    A two-dimensional two-phase lattice-Boltzmann model was used to simulate immiscible fluid flow in four micro-fracture geometries closely related to geological fractured systems: (1) a fracture junction with fractal surfaces embedded in a non-porous matrix; (2) a fracture junction embedded in a heterogeneous porous matrix; (3) a heterogeneous porous medium overlying a fracture with fractal surfaces; and (4) a fracture network with fractal surfaces enclosed by a non-porous medium. The spatio-temporal distributions of fluids in fracture junctions were controlled by interplays between velocity-dependent contact angle dynamics, mediated by surface roughness, and pore-scale gravitational, viscous, and capillary forces. All simulations were conducted with actual physical units. Sensitivities of lateral and vertical spreads of fluids in the fracture junctions to the orientation of fracture junctions (tilted vs. vertical) and the wetting strength of fluids were analyzed via temporal moment analyses for the first two geometries. The simulation results revealed that the receding and advancing contact angles varied strongly with the transient fluid velocity. The patterns and distributions of thin films (continuous vs. discontinuous) on rough fracture walls were largely controlled by the wetting strength of the fluids. The spatio-temporal distributions of fluids were highly sensitive to the domain size and boundary conditions (periodic, no-flow, constant density, and flux-type). Single- and two-sided wetting of fracture aperture walls and long-term entrapment of a nonwetting less-dense fluid by a wetting dense fluid were observed in the simulations. These numerical results are useful for the design of experiments and for analyzing the relative strengths of pore-scale processes in more complex and realistic fracture systems such as those encountered at the Yucca Mountain and Idaho National Laboratory sites.

  17. Effects of Gravity on Triple Flame Propagation and Stability

    NASA Technical Reports Server (NTRS)

    Chen, J.-Y.; Echekki, Tarek; Hugde, Uday

    2001-01-01

    Numerical simulations of 2-D triple flames under gravity force have been implemented to identify the effects of gravity on triple flame structure and propagation properties and to understand the mechanisms of instabilities resulting from both heat release and buoyancy effects. A wide range of gravity conditions, heat release and mixing widths for a scalar mixing layer are computed for downward-propagating (in the same direction with the gravity vector) and upward-propagating (in the opposite direction of the gravity vector) triple flames.

  18. Examples of infinite direct sums of spectral triples

    NASA Astrophysics Data System (ADS)

    Falk, Kevin

    2017-02-01

    We study two ways of summing an infinite family of noncommutative spectral triples. First, we propose a definition of the integration of spectral <