Science.gov

Sample records for affect biogeochemical processes

  1. Biogeochemical processes and buffering capacity concurrently affect acidification in a seasonally hypoxic coastal marine basin

    NASA Astrophysics Data System (ADS)

    Hagens, M.; Slomp, C. P.; Meysman, F. J. R.; Seitaj, D.; Harlay, J.; Borges, A. V.; Middelburg, J. J.

    2014-11-01

    Coastal areas are impacted by multiple natural and anthropogenic processes and experience stronger pH fluctuations than the open ocean. These variations can weaken or intensify the ocean acidification signal induced by increasing atmospheric pCO2. The development of eutrophication-induced hypoxia intensifies coastal acidification, since the CO2 produced during respiration decreases the buffering capacity of the hypoxic bottom water. To assess the combined ecosystem impacts of acidification and hypoxia, we quantified the seasonal variation in pH and oxygen dynamics in the water column of a seasonally stratified coastal basin (Lake Grevelingen, the Netherlands). Monthly water column chemistry measurements were complemented with estimates of primary production and respiration using O2 light-dark incubations, in addition to sediment-water fluxes of dissolved inorganic carbon (DIC) and total alkalinity (TA). The resulting dataset was used to set up a proton budget on a seasonal scale. Temperature-induced seasonal stratification combined with a high community respiration was responsible for the depletion of oxygen in the bottom water in summer. The surface water showed strong seasonal variation in process rates (primary production, CO2 air-sea exchange), but relatively small seasonal pH fluctuations (0.46 units on the total hydrogen ion scale). In contrast, the bottom water showed less seasonality in biogeochemical rates (respiration, sediment-water exchange), but stronger pH fluctuations (0.60 units). This marked difference in pH dynamics could be attributed to a substantial reduction in the acid-base buffering capacity of the hypoxic bottom water in the summer period. Our results highlight the importance of acid-base buffering in the pH dynamics of coastal systems and illustrate the increasing vulnerability of hypoxic, CO2-rich waters to any acidifying process.

  2. Biogeochemical processes and buffering capacity concurrently affect acidification in a seasonally hypoxic coastal marine basin

    NASA Astrophysics Data System (ADS)

    Hagens, M.; Slomp, C. P.; Meysman, F. J. R.; Seitaj, D.; Harlay, J.; Borges, A. V.; Middelburg, J. J.

    2015-03-01

    Coastal areas are impacted by multiple natural and anthropogenic processes and experience stronger pH fluctuations than the open ocean. These variations can weaken or intensify the ocean acidification signal induced by increasing atmospheric pCO2. The development of eutrophication-induced hypoxia intensifies coastal acidification, since the CO2 produced during respiration decreases the buffering capacity in any hypoxic bottom water. To assess the combined ecosystem impacts of acidification and hypoxia, we quantified the seasonal variation in pH and oxygen dynamics in the water column of a seasonally stratified coastal basin (Lake Grevelingen, the Netherlands). Monthly water-column chemistry measurements were complemented with estimates of primary production and respiration using O2 light-dark incubations, in addition to sediment-water fluxes of dissolved inorganic carbon (DIC) and total alkalinity (TA). The resulting data set was used to set up a proton budget on a seasonal scale. Temperature-induced seasonal stratification combined with a high community respiration was responsible for the depletion of oxygen in the bottom water in summer. The surface water showed strong seasonal variation in process rates (primary production, CO2 air-sea exchange), but relatively small seasonal pH fluctuations (0.46 units on the total hydrogen ion scale). In contrast, the bottom water showed less seasonality in biogeochemical rates (respiration, sediment-water exchange), but stronger pH fluctuations (0.60 units). This marked difference in pH dynamics could be attributed to a substantial reduction in the acid-base buffering capacity of the hypoxic bottom water in the summer period. Our results highlight the importance of acid-base buffering in the pH dynamics of coastal systems and illustrate the increasing vulnerability of hypoxic, CO2-rich waters to any acidifying process.

  3. Biogeochemical Processes in Microbial Ecosystems

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.

    2001-01-01

    The hierarchical organization of microbial ecosystems determines process rates that shape Earth's environment, create the biomarker sedimentary and atmospheric signatures of life, and define the stage upon which major evolutionary events occurred. In order to understand how microorganisms have shaped the global environment of Earth and, potentially, other worlds, we must develop an experimental paradigm that links biogeochemical processes with ever-changing temporal and spatial distributions of microbial populations and their metabolic properties. Additional information is contained in the original extended abstract.

  4. Climate change effects on watershed hydrological and biogeochemical processes

    EPA Science Inventory

    Projected changes in climate are widely expected to alter watershed processes. However, the extent of these changes is difficult to predict because complex interactions among affected hydrological and biogeochemical processes will likely play out over many decades and spatial sc...

  5. A Conceptual Model of Coupled Biogeochemical and Hydrogeological Processes Affected by In Situ Cr(VI) Bioreduction in Groundwater at Hanford 100H Site

    NASA Astrophysics Data System (ADS)

    Faybishenko, B.; Long, P. E.; Hazen, T. C.; Hubbard, S. S.; Williams, K. H.; Peterson, J. E.; Chen, J.; Volkova, E. V.; Newcomer, D. R.; Resch, C. T.; Cantrell, K.; Conrad, M. S.; Brodie, E. L.; Joyner, D. C.; Borglin, S. E.; Chakraborty, R. C.

    2007-05-01

    The overall objective of this presentation is to demonstrate a conceptual multiscale, multidomain model of coupling of biogeochemical and hydrogeological processes during bioremediation of Cr(VI) contaminated groundwater at Hanford 100H site. A slow release polylactate, Hydrogen Release Compound (HRCTM), was injected in Hanford sediments to stimulate immobilization of Cr(VI). The HRC injection induced a 2-order-of- magnitude increase in biomass and the onset of reducing biogeochemical conditions [e.g., redox potential decreased from +240 to -130 mV and dissolved oxygen (DO) was completely removed]. A three-well system, comprised of an injection well and upgradient and downgradient monitoring wells, was used for conducting the in situ biostimulation, one regional flow (no-pumping) tracer test, and five pumping tests along with the Br-tracer injection. Field measurements were conducted using a Br ion-selective electrode and a multiparameter flow cell to collect hourly data on temperature, pH, redox potential, electrical conductivity, and DO. Groundwater sampling was conducted by pumping through specially designed borehole water samplers. Cross-borehole radar tomography and seismic measurements were carried out to assess the site background lithological heterogeneity and the migration pathways of HRC byproducts through groundwater after the HRC injection. Several alternative approaches, including conventional and fractional advective dispersion equations and geostatistical analysis, were used to characterize hydraulic and biogeochemical transport parameters. The results of a joint inversion of cross-borehole geophysical tomography and flow-rate measurements in boreholes indicate the presence of a bimodal distribution of hydraulic conductivity for Hanford sediments. The Br- concentration double-peak BTCs curves indicate that HRC injection caused an increase in the tracer travel time (mainly in the low-permeability zone) over the period of observations of about 2 years

  6. Biogeochemical processes underpin ecosystem services

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elemental cycling is critical to the function of ecosystems and delivery of key ecosystem services because many of these elements are essential nutrients or detrimental toxicants that directly affect the health of organisms and ecosystems. A team of authors from North Carolina State University and ...

  7. Diel biogeochemical processes in terrestrial waters

    USGS Publications Warehouse

    Compiled and Edited by Nimick, David A.; Gammons, Christopher H.

    2011-01-01

    Many biogeochemical processes in rivers and lakes respond to the solar photocycle and produce persistent patterns of measureable phenomena that exhibit a day-night, or 24-h, cycle. Despite a large body of recent literature, the mechanisms responsible for these diel fluctuations are widely debated, with a growing consensus that combinations of physical, chemical, and biological processes are involved. These processes include streamflow variation, photosynthesis and respiration, plant assimilation, and reactions involving photochemistry, adsorption and desorption, and mineral precipitation and dissolution. Diel changes in streamflow and water properties such as temperature, pH, and dissolved oxygen concentration have been widely recognized, and recently, diel studies have focused more widely by considering other constituents such as dissolved and particulate trace metals, metalloids, rare earth elements, mercury, organic matter, dissolved inorganic carbon (DIC), and nutrients. The details of many diel processes are being studied using stable isotopes, which also can exhibit diel cycles in response to microbial metabolism, photosynthesis and respiration, or changes in phase, speciation, or redox state. In addition, secondary effects that diel cycles might have, for example, on biota or in the hyporheic zone are beginning to be considered. This special issue is composed primarily of papers presented at the topical session "Diurnal Biogeochemical Processes in Rivers, Lakes, and Shallow Groundwater" held at the annual meeting of the Geological Society of America in October 2009 in Portland, Oregon. This session was organized because many of the growing number of diel studies have addressed just a small part of the full range of diel cycling phenomena found in rivers and lakes. This limited focus is understandable because (1) fundamental aspects of many diel processes are poorly understood and require detailed study, (2) the interests and expertise of individual

  8. An approach to quantify sources, seasonal change, and biogeochemical processes affecting metal loading in streams: Facilitating decisions for remediation of mine drainage

    USGS Publications Warehouse

    Kimball, B.A.; Runkel, R.L.; Walton-Day, K.

    2010-01-01

    Historical mining has left complex problems in catchments throughout the world. Land managers are faced with making cost-effective plans to remediate mine influences. Remediation plans are facilitated by spatial mass-loading profiles that indicate the locations of metal mass-loading, seasonal changes, and the extent of biogeochemical processes. Field-scale experiments during both low- and high-flow conditions and time-series data over diel cycles illustrate how this can be accomplished. A low-flow experiment provided spatially detailed loading profiles to indicate where loading occurred. For example, SO42 - was principally derived from sources upstream from the study reach, but three principal locations also were important for SO42 - loading within the reach. During high-flow conditions, Lagrangian sampling provided data to interpret seasonal changes and indicated locations where snowmelt runoff flushed metals to the stream. Comparison of metal concentrations between the low- and high-flow experiments indicated substantial increases in metal loading at high flow, but little change in metal concentrations, showing that toxicity at the most downstream sampling site was not substantially greater during snowmelt runoff. During high-flow conditions, a detailed temporal sampling at fixed sites indicated that Zn concentration more than doubled during the diel cycle. Monitoring programs must account for diel variation to provide meaningful results. Mass-loading studies during different flow conditions and detailed time-series over diel cycles provide useful scientific support for stream management decisions.

  9. Global Biology Research Program: Biogeochemical Processes in Wetlands

    NASA Technical Reports Server (NTRS)

    Bartlett, D. S. (Editor)

    1984-01-01

    The results of a workshop examining potential NASA contributions to research on wetland processes as they relate to global biogeochemical cycles are summarized. A wetlands data base utilizing remotely sensed inventories, studies of wetland/atmosphere exchange processes, and the extrapolation of local measurements to global biogeochemical cycling processes were identified as possible areas for NASA support.

  10. Biogeochemical Processes Regulating the Mobility of Uranium in Sediments

    SciTech Connect

    Belli, Keaton M.; Taillefert, Martial

    2016-07-01

    This book chapters reviews the latest knowledge on the biogeochemical processes regulating the mobility of uranium in sediments. It contains both data from the literature and new data from the authors.

  11. Diel biogeochemical processes and their effect on the aqueous chemistry of streams: A review

    USGS Publications Warehouse

    Nimick, David A.; Gammons, Christopher H.; Parker, Stephen R.

    2011-01-01

    This review summarizes biogeochemical processes that operate on diel, or 24-h, time scales in streams and the changes in aqueous chemistry that are associated with these processes. Some biogeochemical processes, such as those producing diel cycles of dissolved O2 and pH, were the first to be studied, whereas processes producing diel concentration cycles of a broader spectrum of chemical species including dissolved gases, dissolved inorganic and organic carbon, trace elements, nutrients, stable isotopes, and suspended particles have received attention only more recently. Diel biogeochemical cycles are interrelated because the cyclical variations produced by one biogeochemical process commonly affect another. Thus, understanding biogeochemical cycling is essential not only for guiding collection and interpretation of water-quality data but also for geochemical and ecological studies of streams. Expanded knowledge of diel biogeochemical cycling will improve understanding of how natural aquatic environments function and thus lead to better predictions of how stream ecosystems might react to changing conditions of contaminant loading, eutrophication, climate change, drought, industrialization, development, and other factors.

  12. A General Simulator for Reaction-Based Biogeochemical Processes

    SciTech Connect

    Fang, Yilin; Yabusaki, Steven B.; Yeh, George

    2006-02-01

    As more complex biogeochemical situations are being investigated (e.g., evolving reactivity, passivation of reactive surfaces, dissolution of sorbates), there is a growing need for biogeochemical simulators to flexibly and facilely address new reaction forms and rate laws. This paper presents an approach that accommodates this need to efficiently simulate general biogeochemical processes, while insulating the user from additional code development. The approach allows for the automatic extraction of fundamental reaction stoichiometry and thermodynamics from a standard chemistry database, and the symbolic entry of arbitrarily complex user-specified reaction forms, rate laws, and equilibria. The user-specified equilibrium and kinetic reactions (i.e., reactions not defined in the format of the standardized database) are interpreted by the Maple symbolic mathematical software package. FORTRAN 90 code is then generated by Maple for (1) the analytical Jacobian matrix (if preferred over the numerical Jacobian matrix) used in the Newton-Raphson solution procedure, and (2) the residual functions for user-specified equilibrium expressions and rate laws. Matrix diagonalization eliminates the need to conceptualize the system of reactions as a tableau, while identifying a minimum rank set of basis species with enhanced numerical convergence properties. The newly generated code, which is designed to operate in the BIOGEOCHEM biogeochemical simulator, is then compiled and linked into the BIOGEOCHEM executable. With these features, users can avoid recoding the simulator to accept new equilibrium expressions or kinetic rate laws, while still taking full advantage of the stoichiometry and thermodynamics provided by an existing chemical database. Thus, the approach introduces efficiencies in the specification of biogeochemical reaction networks and eliminates opportunities for mistakes in preparing input files and coding errors. Test problems are used to demonstrate the features of

  13. Polychlorinated Biphenyls as Probes of Biogeochemical Processes in Rivers

    USGS Publications Warehouse

    Fitzgerald, S.A.; Steuer, J.J.

    1997-01-01

    A field study was conducted to investigate the use of PCB (polychlorinated biphenyl) congener and homolog assemblages as tracers of biogeochemical processes in the Milwaukee and Manitowoc Rivers in southeastern Wisconsin from 1993 to 1995. PCB congeners in the dissolved and suspended particle phases, along with various algal indicators (algal carbon and pigments), were quantitated in the water seasonally. In addition, PCB congener assemblages were determined seasonally in surficial bed sediments. Biogeochemical processes investigated included: determination of the source of suspended particles and bottom sediments by comparison with known Aroclor mixtures, water-solid partitioning, and algal uptake of PCBs. Seasonal differences among the PCB assemblages were observed mainly in the dissolved phase, somewhat less in the suspended particulate phase, and not at all in the bed sediments.

  14. 239,240Pu/137Cs ratios in the water column of the North Pacific: a proxy of biogeochemical processes.

    PubMed

    Hirose, Katsumi; Aoyama, Michio; Povinec, Pavel P

    2009-03-01

    Anthropogenic radionuclides in seawater have been used as transient tracers of processes in the marine environment. Especially, plutonium in seawater is considered to be a valuable tracer of biogeochemical processes due to its particle-reactive properties. However, its behavior in the ocean is also affected by physical processes such as advection, mixing and diffusion. Here we introduce Pu/(137)Cs ratio as a proxy of biogeochemical processes and discuss its trends in the water column of the North Pacific Ocean. We observed that the (239,240)Pu/(137)Cs ratio in seawater exponentially increased with increasing depth (depth range: 100-1000 m). This finding suggests that the profiles of the (239,240)Pu/(137)Cs ratios in shallower waters directly reflect biogeochemical processes in the water column. A half-regeneration depth deduced from the curve fitting the observed data, showed latitudinal and longitudinal distributions, also related to biogeochemical processes in the water column.

  15. Biogeochemical redox processes and their impact on contaminant dynamics

    USGS Publications Warehouse

    Borch, Thomas; Kretzschmar, Ruben; Kappler, Andreas; Van Cappellen, Philippe; Ginder-Vogel, Matthew; Campbell, Kate M.

    2010-01-01

    Life and element cycling on Earth is directly related to electron transfer (or redox) reactions. An understanding of biogeochemical redox processes is crucial for predicting and protecting environmental health and can provide new opportunities for engineered remediation strategies. Energy can be released and stored by means of redox reactions via the oxidation of labile organic carbon or inorganic compounds (electron donors) by microorganisms coupled to the reduction of electron acceptors including humic substances, iron-bearing minerals, transition metals, metalloids, and actinides. Environmental redox processes play key roles in the formation and dissolution of mineral phases. Redox cycling of naturally occurring trace elements and their host minerals often controls the release or sequestration of inorganic contaminants. Redox processes control the chemical speciation, bioavailability, toxicity, and mobility of many major and trace elements including Fe, Mn, C, P, N, S, Cr, Cu, Co, As, Sb, Se, Hg, Tc, and U. Redox-active humic substances and mineral surfaces can catalyze the redox transformation and degradation of organic contaminants. In this review article, we highlight recent advances in our understanding of biogeochemical redox processes and their impact on contaminant fate and transport, including future research needs.

  16. Silicon biogeochemical processes in a large river (Cauvery, India)

    NASA Astrophysics Data System (ADS)

    Kameswari Rajasekaran, Mangalaa; Arnaud, Dapoigny; Jean, Riotte; Sarma Vedula, V. S. S.; Nittala, S. Sarma; Sankaran, Subramanian; Gundiga Puttojirao, Gurumurthy; Keshava, Balakrishna; Cardinal, Damien

    2016-04-01

    Silicon (Si), one of the key nutrients for diatom growth in ocean, is principally released during silicate weathering on continents and then exported by rivers. Phytoplankton composition is determined by the availability of Si relative to other nutrients, mainly N and P, which fluxes in estuarine and coastal systems are affected by eutrophication due to land use and industrialization. In order to understand the biogeochemical cycle of Si and its supply to the coastal ocean, we studied a tropical monsoonal river from Southern India (Cauvery) and compare it with other large and small rivers. Cauvery is the 7th largest river in India with a basin covering 85626 sq.km. The major part of the basin (˜66%) is covered by agriculture and inhabited by more than 30 million inhabitants. There are 96 dams built across the basin. As a consequence, 80% of the historical discharge is diverted, mainly for irrigation (Meunier et al. 2015). This makes the Cauvery River a good example of current anthropogenic pressure on silicon biogeochemical cycle. We measured amorphous silica contents (ASi) and isotopic composition of dissolved silicon (δ30Si-DSi) in the Cauvery estuary, including freshwater end-member and groundwater as well as along a 670 km transect along the river course. Other Indian rivers and estuaries have also been measured, including some less impacted by anthropogenic pressure. The average Cauvery δ30Si signature just upstream the estuary is 2.21±0.15 ‰ (n=3) which is almost 1‰ heavier than the groundwater isotopic composition (1.38±0.03). The δ30Si-DSi of Cauvery water is also almost 1‰ heavier than the world river supply to the ocean estimated so far and 0.4‰ heavier than other large Indian rivers like Ganges (Frings et al 2015) and Krishna. On the other hand, the smaller watersheds (Ponnaiyar, Vellar, and Penna) adjacent to Cauvery also display heavy δ30Si-DSi. Unlike the effect of silicate weathering, the heavy isotopic compositions in the river

  17. Nitrogen and Sulfur Deposition Effects on Forest Biogeochemical Processes.

    NASA Astrophysics Data System (ADS)

    Goodale, C. L.

    2014-12-01

    Chronic atmospheric deposition of nitrogen and sulfur have widely ranging biogeochemical consequences in terrestrial ecosystems. Both N and S deposition can affect plant growth, decomposition, and nitrous oxide production, with sometimes synergistic and sometimes contradictory responses; yet their separate effects are rarely isolated and their interactive biogeochemical impacts are often overlooked. For example, S deposition and consequent acidification and mortality may negate stimulation of plant growth induced by N deposition; decomposition can be slowed by both N and S deposition, though through different mechanisms; and N2O production may be stimulated directly by N and indirectly by S amendments. Recent advances in conceptual models and whole-ecosystem experiments provide novel means for disentangling the impacts of N and S in terrestrial ecosystems. Results from a new whole-ecosystem N x S- addition experiment will be presented in detail, examining differential response of tree and soil carbon storage to N and S additions. These results combine with observations from a broad array of long-term N addition studies, atmospheric deposition gradients, stable isotope tracer studies, and model analyses to inform the magnitude, controls, and stability of ecosystem C storage in response to N and S addition.

  18. Key biogeochemical factors affecting soil carbon storage in Posidonia meadows

    NASA Astrophysics Data System (ADS)

    Serrano, Oscar; Ricart, Aurora M.; Lavery, Paul S.; Mateo, Miguel Angel; Arias-Ortiz, Ariane; Masque, Pere; Rozaimi, Mohammad; Steven, Andy; Duarte, Carlos M.

    2016-08-01

    Biotic and abiotic factors influence the accumulation of organic carbon (Corg) in seagrass ecosystems. We surveyed Posidonia sinuosa meadows growing in different water depths to assess the variability in the sources, stocks and accumulation rates of Corg. We show that over the last 500 years, P. sinuosa meadows closer to the upper limit of distribution (at 2-4 m depth) accumulated 3- to 4-fold higher Corg stocks (averaging 6.3 kg Corg m-2) at 3- to 4-fold higher rates (12.8 g Corg m-2 yr-1) compared to meadows closer to the deep limits of distribution (at 6-8 m depth; 1.8 kg Corg m-2 and 3.6 g Corg m-2 yr-1). In shallower meadows, Corg stocks were mostly derived from seagrass detritus (88 % in average) compared to meadows closer to the deep limit of distribution (45 % on average). In addition, soil accumulation rates and fine-grained sediment content (< 0.125 mm) in shallower meadows (2.0 mm yr-1 and 9 %, respectively) were approximately 2-fold higher than in deeper meadows (1.2 mm yr-1 and 5 %, respectively). The Corg stocks and accumulation rates accumulated over the last 500 years in bare sediments (0.6 kg Corg m-2 and 1.2 g Corg m-2 yr-1) were 3- to 11-fold lower than in P. sinuosa meadows, while fine-grained sediment content (1 %) and seagrass detritus contribution to the Corg pool (20 %) were 8- and 3-fold lower than in Posidonia meadows, respectively. The patterns found support the hypothesis that Corg storage in seagrass soils is influenced by interactions of biological (e.g., meadow productivity, cover and density), chemical (e.g., recalcitrance of Corg stocks) and physical (e.g., hydrodynamic energy and soil accumulation rates) factors within the meadow. We conclude that there is a need to improve global estimates of seagrass carbon storage accounting for biogeochemical factors driving variability within habitats.

  19. Deriving forest fire ignition risk with biogeochemical process modelling☆

    PubMed Central

    Eastaugh, C.S.; Hasenauer, H.

    2014-01-01

    Climate impacts the growth of trees and also affects disturbance regimes such as wildfire frequency. The European Alps have warmed considerably over the past half-century, but incomplete records make it difficult to definitively link alpine wildfire to climate change. Complicating this is the influence of forest composition and fuel loading on fire ignition risk, which is not considered by purely meteorological risk indices. Biogeochemical forest growth models track several variables that may be used as proxies for fire ignition risk. This study assesses the usefulness of the ecophysiological model BIOME-BGC's ‘soil water’ and ‘labile litter carbon’ variables in predicting fire ignition. A brief application case examines historic fire occurrence trends over pre-defined regions of Austria from 1960 to 2008. Results show that summer fire ignition risk is largely a function of low soil moisture, while winter fire ignitions are linked to the mass of volatile litter and atmospheric dryness. PMID:26109905

  20. Temporal dynamics of biogeochemical processes at the Norman Landfill site

    USGS Publications Warehouse

    Arora, Bhavna; Mohanty, Binayak P.; McGuire, Jennifer T.; Cozzarelli, Isabelle M.

    2013-01-01

    The temporal variability observed in redox sensitive species in groundwater can be attributed to coupled hydrological, geochemical, and microbial processes. These controlling processes are typically nonstationary, and distributed across various time scales. Therefore, the purpose of this study is to investigate biogeochemical data sets from a municipal landfill site to identify the dominant modes of variation and determine the physical controls that become significant at different time scales. Data on hydraulic head, specific conductance, δ2H, chloride, sulfate, nitrate, and nonvolatile dissolved organic carbon were collected between 1998 and 2000 at three wells at the Norman Landfill site in Norman, OK. Wavelet analysis on this geochemical data set indicates that variations in concentrations of reactive and conservative solutes are strongly coupled to hydrologic variability (water table elevation and precipitation) at 8 month scales, and to individual eco-hydrogeologic framework (such as seasonality of vegetation, surface-groundwater dynamics) at 16 month scales. Apart from hydrologic variations, temporal variability in sulfate concentrations can be associated with different sources (FeS cycling, recharge events) and sinks (uptake by vegetation) depending on the well location and proximity to the leachate plume. Results suggest that nitrate concentrations show multiscale behavior across temporal scales for different well locations, and dominant variability in dissolved organic carbon for a closed municipal landfill can be larger than 2 years due to its decomposition and changing content. A conceptual framework that explains the variability in chemical concentrations at different time scales as a function of hydrologic processes, site-specific interactions, and/or coupled biogeochemical effects is also presented.

  1. Temporal dynamics of biogeochemical processes at the Norman Landfill site

    NASA Astrophysics Data System (ADS)

    Arora, Bhavna; Mohanty, Binayak P.; McGuire, Jennifer T.; Cozzarelli, Isabelle M.

    2013-10-01

    The temporal variability observed in redox sensitive species in groundwater can be attributed to coupled hydrological, geochemical, and microbial processes. These controlling processes are typically nonstationary, and distributed across various time scales. Therefore, the purpose of this study is to investigate biogeochemical data sets from a municipal landfill site to identify the dominant modes of variation and determine the physical controls that become significant at different time scales. Data on hydraulic head, specific conductance, δ2H, chloride, sulfate, nitrate, and nonvolatile dissolved organic carbon were collected between 1998 and 2000 at three wells at the Norman Landfill site in Norman, OK. Wavelet analysis on this geochemical data set indicates that variations in concentrations of reactive and conservative solutes are strongly coupled to hydrologic variability (water table elevation and precipitation) at 8 month scales, and to individual eco-hydrogeologic framework (such as seasonality of vegetation, surface-groundwater dynamics) at 16 month scales. Apart from hydrologic variations, temporal variability in sulfate concentrations can be associated with different sources (FeS cycling, recharge events) and sinks (uptake by vegetation) depending on the well location and proximity to the leachate plume. Results suggest that nitrate concentrations show multiscale behavior across temporal scales for different well locations, and dominant variability in dissolved organic carbon for a closed municipal landfill can be larger than 2 years due to its decomposition and changing content. A conceptual framework that explains the variability in chemical concentrations at different time scales as a function of hydrologic processes, site-specific interactions, and/or coupled biogeochemical effects is also presented.

  2. Characterization of Coupled Hydrologic-Biogeochemical Processes Using Geophysical Data

    SciTech Connect

    Hubbard, Susan

    2005-06-01

    Biogeochemical and hydrological processes are naturally coupled and variable over a wide range of spatial and temporal scales. Many remediation approaches also induce dynamic transformations in natural systems, such as the generation of gases, precipitates and biofilms. These dynamic transformations are often coupled and can reduce the hydraulic conductivity of the geologic materials, making it difficult to introduce amendments or to perform targeted remediation. Because it is difficult to predict these transformations, our ability to develop effective and sustainable remediation conditions at contaminated sites is often limited. Further complicating the problem is the inability to collect the necessary measurements at a high enough spatial resolution yet over a large enough volume for understanding field-scale transformations.

  3. Biogeochemical factors affecting the presence of 210Po in groundwater

    USGS Publications Warehouse

    Seiler, R.L.; Stillings, L.L.; Cutler, N.; Salonen, L.; Outola, I.

    2011-01-01

    The discovery of natural 210Po enrichment at levels exceeding 500 mBq/L in numerous domestic wells in northern Nevada, USA, led to a geochemical investigation of the processes responsible for its mobilization. 210Po activities in 63 domestic and public-supply wells ranged from below 1 mBq/L to 6590 ± 590 mBq/L, among the highest reported levels in the USA. There is little spatial or depth variability in 210Pb activity in study-area sediments and mobilization of a few percent of the 210Po in the sediments would account for all of the 210Po in water. Stable-isotope measurements indicate SO4 reduction has occurred in all 210Po contaminated wells. Sulfide species are not accumulating in the groundwater in much of Lahontan Valley, probably because of S cycling involving microbial SO4 reduction, abiotic oxidation of H2S to S0 by Mn(IV), followed by microbial disproportionation of S0 to H2S and SO4. The high pH, Ca depletion, MnCO3 saturation, and presence of S0 in Lahontan Valley groundwater may be consequences of the anaerobic S cycling. Consistent with data from naturally-enriched wells in Florida, 210Po activities begin to decrease when aqueous sulfide species begin to accumulate. This may be due to formation and precipitation of PoS, however, Eh–pH diagrams suggest PoS would not be stable in study-area groundwater. An alternative explanation for the study area is that H2S accumulation begins when anaerobic S cycling stops because Mn oxides are depleted and their reduction is no longer releasing 210Po. Common features of 210Po-enriched groundwater were identified by comparing the radiological and geochemical data from Nevada with data from naturally-enriched wells in Finland, and Florida and Maryland in the USA. Values of pH ranged from 9 in Nevada wells, indicating that pH is not critical in determining whether 210Po is present. Where U is present in the sediments, the data suggest 210Po levels may be elevated in aquifers with (1) SO4-reducing waters with low H2S

  4. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications

    NASA Astrophysics Data System (ADS)

    Boano, F.; Harvey, J. W.; Marion, A.; Packman, A. I.; Revelli, R.; Ridolfi, L.; Wörman, A.

    2014-12-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed.

  5. Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications

    USGS Publications Warehouse

    Boano, Fulvio; Harvey, Judson W.; Marion, Andrea; Packman, Aaron I.; Revelli, Roberto; Ridolfi, Luca; Anders, Wörman

    2014-01-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed."

  6. Electric currents couple spatially separated biogeochemical processes in marine sediment.

    PubMed

    Nielsen, Lars Peter; Risgaard-Petersen, Nils; Fossing, Henrik; Christensen, Peter Bondo; Sayama, Mikio

    2010-02-25

    Some bacteria are capable of extracellular electron transfer, thereby enabling them to use electron acceptors and donors without direct cell contact. Beyond the micrometre scale, however, no firm evidence has previously existed that spatially segregated biogeochemical processes can be coupled by electric currents in nature. Here we provide evidence that electric currents running through defaunated sediment couple oxygen consumption at the sediment surface to oxidation of hydrogen sulphide and organic carbon deep within the sediment. Altering the oxygen concentration in the sea water overlying the sediment resulted in a rapid (<1-h) change in the hydrogen sulphide concentration within the sediment more than 12 mm below the oxic zone, a change explicable by transmission of electrons but not by diffusion of molecules. Mass balances indicated that more than 40% of total oxygen consumption in the sediment was driven by electrons conducted from the anoxic zone. A distinct pH peak in the oxic zone could be explained by electrochemical oxygen reduction, but not by any conventional sets of aerobic sediment processes. We suggest that the electric current was conducted by bacterial nanowires combined with pyrite, soluble electron shuttles and outer-membrane cytochromes. Electrical communication between distant chemical and biological processes in nature adds a new dimension to our understanding of biogeochemistry and microbial ecology.

  7. Monsoon-Driven Biogeochemical Processes in the Arabian Sea

    DTIC Science & Technology

    2005-08-03

    ton-detritus ( NPZD ) ecosystem formulation, Ryabchenko et al. (1998) utilized a more complex ecosystem model that specifically included the microbial...of these observations and the first large- scale physical-biogeochemical modeling attempts, a pre-JGOFS understanding of the Arabian Sea emerged...viewing Wide Field-of-View Sensor ocean color measurements. Analyses of these new data and coupled physical-biogeochemical models have already

  8. Relating hydraulic conductivity and hyporheic zone biogeochemical processing to conserve and restore river ecosystem services.

    PubMed

    Mendoza-Lera, Clara; Datry, Thibault

    2017-02-01

    River management practices commonly attempt to improve habitat and ecological functioning (e.g. biogeochemical processing or retention of pollutants) by restoring hydrological exchange with the hyporheic zone (i.e. hyporheic flow) in an effort to increase mass transfer of solutes (nutrients, carbon and electron acceptors such as oxygen or nitrate). However, even when hyporheic flow is increased, often no significant changes in biogeochemical processing are detected. Some of these apparent paradox result from the simplistic assumption that there is a direct relationship between hyporheic flow and biogeochemical processing. We propose an alternative conceptual model that hyporheic flow is non-linearly related with biogeochemical processing. Based on the different solute mass transfer and area available for colonization among hydraulic conductivities, we hypothesize that biogeochemical processing in the hyporheic zone follows a Gaussian function depending on hyporheic hydraulic conductivity. After presenting the conceptual model and its domain of application, we discuss the potential implications, notably for river restoration and further hyporheic research.

  9. Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloroethylene Co-Metabolism

    SciTech Connect

    Rick Colwell; Corey Radtke; Mark Delwiche; Deborah Newby; Lynn Petzke; Mark Conrad; Eoin Brodie; Hope Lee; Bob Starr; Dana Dettmers; Ron Crawford; Andrzej Paszczynski; Nick Bernardini; Ravi Paidisetti; Tonia Green

    2006-06-01

    Chlorinated solvent wastes (e.g., trichloroethene or TCE) often occur as diffuse subsurface plumes in complex geological environments where coupled processes must be understood in order to implement remediation strategies. Monitored natural attenuation (MNA) warrants study as a remediation technology because it minimizes worker and environment exposure to the wastes and because it costs less than other technologies. However, to be accepted MNA requires different ?lines of evidence? indicating that the wastes are effectively destroyed. We are studying the coupled biogeochemical processes that dictate the rate of TCE co-metabolism first in the medial zone (TCE concentration: 1,000 to 20,000 ?g/L) of a plume at the Idaho National Laboratory?s Test Area North (TAN) site and then at Paducah or the Savannah River Site. We will use flow-through in situ reactors (FTISR) to investigate the rate of methanotrophic co-metabolism of TCE and the coupling of the responsible biological processes with the dissolved methane flux and groundwater flow velocity. TCE co-metabolic rates at TAN are being assessed and interpreted in the context of enzyme activity, gene expression, and cellular inactivation related to intermediates of TCE co-metabolism. By determining the rate of TCE co-metabolism at different groundwater flow velocities, we will derive key modeling parameters for the computational simulations that describe the attenuation, and thereby refine such models while assessing the contribution of microbial co-metabolism relative to other natural attenuation processes. This research will strengthen our ability to forecast the viability of MNA at DOE and other sites contaminated with chlorinated hydrocarbons.

  10. Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloroethylene Co-Metabolism

    SciTech Connect

    Colwell, Frederick; Radtke, Corey; Newby, Deborah; Delwiche, Mark; Crawf, Ronald L.; Paszczynski, Andrzej; Strap, Janice; Conrad, Mark; Brodic, Eoin; Starr, Robert; Lee, Hope

    2006-04-05

    Chlorinated solvent wastes (e.g., trichloroethene or TCE) often occur as diffuse subsurface plumes in complex geological environments where coupled processes must be understood in order to implement remediation strategies. Monitored natural attenuation (MNA) warrants study as a remediation technology because it minimizes worker and environment exposure to the wastes and because it costs less than other technologies. However, to be accepted MNA requires 'lines of evidence' indicating that the wastes are effectively destroyed. Our research will study the coupled biogeochemical processes that dictate the rate of TCE co-metabolism in contaminated aquifers first at the Idaho National Laboratory and then at Paducah or the Savannah River Site, where natural attenuation of TCE is occurring. We will use flow-through in situ reactors to investigate the rate of methanotrophic co-metabolism of TCE and the coupling of the responsible biological processes with the dissolved methane flux and groundwater flow velocity. We will use new approaches (e.g., stable isotope probing, enzyme activity probes, real-time reverse transcriptase polymerase chain reaction, proteomics) to assay the TCE co-metabolic rates, and interpret these rates in the context of enzyme activity, gene expression, and cellular inactivation related to intermediates of TCE co-metabolism. By determining the rate of TCE co-metabolism at different methane concentrations and groundwater flow velocities, we will derive key modeling parameters for the computational simulations that describe the attenuation, and thereby refine such models while assessing the contribution of microbial relative to other natural attenuation processes. This research will strengthen our ability to forecast the viability of MNA at DOE and other sites that are contaminated with chlorinated hydrocarbons.

  11. South Florida wetlands ecosystem; biogeochemical processes in peat

    USGS Publications Warehouse

    Orem, William; ,

    1996-01-01

    The South Florida wetlands ecosystem is an environment of great size and ecological diversity (figs. 1 and 2). The landscape diversity and subtropical setting of this ecosystem provide a habitat for an abundance of plants and wildlife, some of which are unique to South Florida. South Florida wetlands are currently in crisis, however, due to the combined effects of agriculture, urbanization, and nearly 100 years of water management. Serious problems facing this ecosystem include (1) phosphorus contamination producing nutrient enrichment, which is causing changes in the native vegetation, (2) methylmercury contamination of fish and other wildlife, which poses a potential threat to human health, (3) changes in the natural flow of water in the region, resulting in more frequent drying of wetlands, loss of organic soils, and a reduction in freshwater flow to Florida Bay, (4) hypersalinity, massive algal blooms, and seagrass loss in parts of Florida Bay, and (5) a decrease in wildlife populations, especially those of wading birds. This U.S. Geological Survey (USGS) project focuses on the role of organic-rich sediments (peat) of South Florida wetlands in regulating the concentrations and impact of important chemical species in the environment. The cycling of carbon, nitrogen, phosphorus, and sulfur in peat is an important factor in the regulation of water quality in the South Florida wetlands ecosystem. These elements are central to many of the contamination issues facing South Florida wetlands, such as nutrient enrichment, mercury toxicity, and loss of peat. Many important chemical and biological reactions occur in peat and control the fate of chemical species in wetlands. Wetland scientists often refer to these reactions as biogeochemical processes, because they are chemical reactions usually mediated by microorganisms in a geological environment. An understanding of the biogeochemical processes in peat of South Florida wetlands will provide a basis for evaluating the

  12. Hydrological Perturbations Drive Biogeochemical Processes in Experimental Soil Columns from the Norman Landfill Site

    NASA Astrophysics Data System (ADS)

    Arora, B.; Mohanty, B. P.; McGuire, J. T.

    2010-12-01

    Fate and transport of contaminants in saturated and unsaturated zones is governed by biogeochemical processes that are complex and non-linearly coupled to each other. A fundamental understanding of the interactions between transport and reaction processes is essential to better characterize contaminant movement in the subsurface. The objectives of this study are to: i) develop quantitative relationships between hydrological (initial and boundary conditions, hydraulic conductivity ratio, and soil layering), geochemical (mineralogy, surface area, redox potential, and organic matter) and microbiological factors (MPN) that alter the biogeochemical processes, and ii) characterize the effect of hydrologic perturbations on coupled processes occurring at the column scale. The perturbations correspond to rainfall intensity, duration of wet and dry conditions, and water chemistry (pH). Soils collected from two locations with significantly different geochemistry at the Norman landfill site are used in this study. Controlled flow experiments were conducted on: i) two homogeneous soil columns, ii) a layered soil column, iii) a soil column with embedded clay lenses, and iv) a soil column with embedded clay lenses and one central macropore. Experimental observations showed enhanced biogeochemical activity at the interface of the layered and lensed columns over the texturally homogeneous soil columns. Multivariate statistical analysis showed that the most important processes were microbial reduction of Fe(III) and SO42-, and oxidation of reduced products in the columns. Modeling results from HP1 indicate least redox activity in the homogeneous sand column while the structurally heterogeneous columns utilize oxygen and nitrate from recharge as well as iron sulfide minerals already present in the columns as electron acceptors. Furthermore, the interface of the layered and lensed soil columns acts as a hotspot of biogeochemical activity due to increased transport timescale as a

  13. Spatio-temporal evolution of biogeochemical processes at a landfill site

    NASA Astrophysics Data System (ADS)

    Arora, B.; Mohanty, B. P.; McGuire, J. T.

    2011-12-01

    Predictions of fate and transport of contaminants are strongly dependent on spatio-temporal variability of soil hydraulic and geochemical properties. This study focuses on time-series signatures of hydrological and geochemical properties at different locations within the Norman landfill site. Norman Landfill is a closed municipal landfill site with prevalent organic contamination. Monthly data at the site include specific conductance, δ18O, δ2H, dissolved organic carbon (DOC) and anions (chloride, sulfate, nitrate) from 1998-2006. Column scale data on chemical concentrations, redox gradients, and flow parameters are also available on daily and hydrological event (infiltration, drainage, etc.) scales. Since high-resolution datasets of contaminant concentrations are usually unavailable, Wavelet and Fourier analyses were used to infer the dominance of different biogeochemical processes at different spatio-temporal scales and to extract linkages between transport and reaction processes. Results indicate that time variability controls the progression of reactions affecting biodegradation of contaminants. Wavelet analysis suggests that iron-sulfide reduction reactions had high seasonal variability at the site, while fermentation processes dominated at the annual time scale. Findings also suggest the dominance of small spatial features such as layered interfaces and clay lenses in driving biogeochemical reactions at both column and landfill scales. A conceptual model that caters to increased understanding and remediating structurally heterogeneous variably-saturated media is developed from the study.

  14. Biotic Interactions in Microbial Communities as Modulators of Biogeochemical Processes: Methanotrophy as a Model System

    PubMed Central

    Ho, Adrian; Angel, Roey; Veraart, Annelies J.; Daebeler, Anne; Jia, Zhongjun; Kim, Sang Yoon; Kerckhof, Frederiek-Maarten; Boon, Nico; Bodelier, Paul L. E.

    2016-01-01

    Microbial interaction is an integral component of microbial ecology studies, yet the role, extent, and relevance of microbial interaction in community functioning remains unclear, particularly in the context of global biogeochemical cycles. While many studies have shed light on the physico-chemical cues affecting specific processes, (micro)biotic controls and interactions potentially steering microbial communities leading to altered functioning are less known. Yet, recent accumulating evidence suggests that the concerted actions of a community can be significantly different from the combined effects of individual microorganisms, giving rise to emergent properties. Here, we exemplify the importance of microbial interaction for ecosystem processes by analysis of a reasonably well-understood microbial guild, namely, aerobic methane-oxidizing bacteria (MOB). We reviewed the literature which provided compelling evidence for the relevance of microbial interaction in modulating methane oxidation. Support for microbial associations within methane-fed communities is sought by a re-analysis of literature data derived from stable isotope probing studies of various complex environmental settings. Putative positive interactions between active MOB and other microbes were assessed by a correlation network-based analysis with datasets covering diverse environments where closely interacting members of a consortium can potentially alter the methane oxidation activity. Although, methanotrophy is used as a model system, the fundamentals of our postulations may be applicable to other microbial guilds mediating other biogeochemical processes. PMID:27602021

  15. CALIBRATION OF SUBSURFACE BATCH AND REACTIVE-TRANSPORT MODELS INVOLVING COMPLEX BIOGEOCHEMICAL PROCESSES

    EPA Science Inventory

    In this study, the calibration of subsurface batch and reactive-transport models involving complex biogeochemical processes was systematically evaluated. Two hypothetical nitrate biodegradation scenarios were developed and simulated in numerical experiments to evaluate the perfor...

  16. Integrating turbulent flow, biogeochemical, and poromechanical processes in rippled coastal sediment (Invited)

    NASA Astrophysics Data System (ADS)

    Cardenas, M. B.; Cook, P. L.; Jiang, H.; Traykovski, P.

    2010-12-01

    Coastal sediments are the locus of multiple coupled processes. Turbulent flow associated with waves and currents induces porewater flow through sediment leading to fluid exchange with the water column. This porewater flow is determined by the hydraulic and elastic properties of the sediment. Porewater flow also ultimately controls biogeochemical reactions in the sediment whose rates depend on delivery of reactants and export of products. We present results from numerical modeling studies directed at integrating these processes with the goal of shedding light on these complex environments. We show how denitrification rates inside ripples are largest at intermediate permeability which represents the optimal balance of reactant delivery and anoxic conditions. It is clear that nutrient cycling and distribution within the sediment is strongly dependent on the character of the multidimensional flow field inside of sediment. More recent studies illustrate the importance of the elastic properties of the saturated sediment on modulating fluid exchange between the water column and the sediment when pressure fluctuations along the sediment-water interface occur at the millisecond scale. Pressure fluctuations occur at this temporal scale due to turbulence and associated shedding of vortices due to the ripple geometry. This suggests that biogeochemical cycling may also be affected by these high-frequency elastic effects. Future studies should be directed towards this and should take advantage of modeling tools such as those we present.

  17. Affective processing requires awareness.

    PubMed

    Lähteenmäki, Mikko; Hyönä, Jukka; Koivisto, Mika; Nummenmaa, Lauri

    2015-04-01

    Studies using backward masked emotional stimuli suggest that affective processing may occur outside visual awareness and imply primacy of affective over semantic processing, yet these experiments have not strictly controlled for the participants' awareness of the stimuli. Here we directly compared the primacy of affective versus semantic categorization of biologically relevant stimuli in 5 experiments (n = 178) using explicit (semantic and affective discrimination; Experiments 1-3) and implicit (semantic and affective priming; Experiments 4-5) measures. The same stimuli were used in semantic and affective tasks. Visual awareness was manipulated by varying exposure duration of the masked stimuli, and subjective level of stimulus awareness was measured after each trial using a 4-point perceptual awareness scale. When participants reported no awareness of the stimuli, semantic and affective categorization were at chance level and priming scores did not differ from zero. When participants were even partially aware of the stimuli, (a) both semantic and affective categorization could be performed above chance level with equal accuracy, (b) semantic categorization was faster than affective categorization, and (c) both semantic and affective priming were observed. Affective categorization speed was linearly dependent on semantic categorization speed, suggesting dependence of affective processing on semantic recognition. Manipulations of affective and semantic categorization tasks revealed a hierarchy of categorization operations beginning with basic-level semantic categorization and ending with superordinate level affective categorization. We conclude that both implicit and explicit affective and semantic categorization is dependent on visual awareness, and that affective recognition follows semantic categorization.

  18. Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon

    NASA Astrophysics Data System (ADS)

    Neubauer, S. C.; Franklin, R. B.; Berrier, D. J.

    2013-12-01

    Environmental perturbations in wetlands affect the integrated plant-microbial-soil system, causing biogeochemical responses that can manifest at local to global scales. The objective of this study was to determine how saltwater intrusion affects carbon mineralization and greenhouse gas production in coastal wetlands. Working with tidal freshwater marsh soils that had experienced ~ 3.5 yr of in situ saltwater additions, we quantified changes in soil properties, measured extracellular enzyme activity associated with organic matter breakdown, and determined potential rates of anaerobic carbon dioxide (CO2) and methane (CH4) production. Soils from the field plots treated with brackish water had lower carbon content and higher C : N ratios than soils from freshwater plots, indicating that saltwater intrusion reduced carbon availability and increased organic matter recalcitrance. This was reflected in reduced activities of enzymes associated with the hydrolysis of cellulose and the oxidation of lignin, leading to reduced rates of soil CO2 and CH4 production. The effects of long-term saltwater additions contrasted with the effects of short-term exposure to brackish water during three-day laboratory incubations, which increased rates of CO2 production but lowered rates of CH4 production. Collectively, our data suggest that the long-term effect of saltwater intrusion on soil CO2 production is indirect, mediated through the effects of elevated salinity on the quantity and quality of autochthonous organic matter inputs to the soil. In contrast, salinity, organic matter content, and enzyme activities directly influence CH4 production. Our analyses demonstrate that saltwater intrusion into tidal freshwater marshes affects the entire process of carbon mineralization, from the availability of organic carbon through its terminal metabolism to CO2 and/or CH4, and illustrate that long-term shifts in biogeochemical functioning are not necessarily consistent with short

  19. Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon

    NASA Astrophysics Data System (ADS)

    Neubauer, S. C.; Franklin, R. B.; Berrier, D. J.

    2013-07-01

    Environmental perturbations in wetlands affect the integrated plant-microbial-soil system, causing biogeochemical responses that can manifest at local to global scales. The objective of this study was to determine how saltwater intrusion affects carbon mineralization and greenhouse gas production in coastal wetlands. Working with tidal freshwater marsh soils that had experienced roughly 3.5 yr of in situ saltwater additions, we quantified changes in soil properties, measured extracellular enzyme activity associated with organic matter breakdown, and determined potential rates of anaerobic carbon dioxide (CO2) and methane (CH4) production. Soils from the field plots treated with brackish water had lower carbon content and higher C : N ratios than soils from freshwater plots, indicating that saltwater intrusion reduced carbon availability and increased organic matter recalcitrance. This was reflected in reduced activities of enzymes associated with the hydrolysis of cellulose and the oxidation of lignin, leading to reduced rates of soil CO2 and CH4 production. The effects of long-term saltwater additions contrasted with the effects of short-term exposure to brackish water during three-day laboratory incubations, which increased rates of CO2 production but lowered rates of CH4 production. Collectively, our data suggest that the long-term effect of saltwater intrusion on soil CO2 production is indirect, mediated through the effects of elevated salinity on the quantity and quality of autochthonous organic matter inputs to the soil. In contrast, salinity, organic matter content, and enzyme activities directly influence CH4 production. Our analyses demonstrate that saltwater intrusion into tidal freshwater marshes affects the entire process of carbon mineralization, from the availability of organic carbon through its terminal metabolism to CO2 and/or CH4, and illustrate that long-term shifts in biogeochemical functioning are not necessarily consistent with short

  20. Exploring the Influence of Topography on Belowground C Processes Using a Coupled Hydrologic-Biogeochemical Model

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Davis, K. J.; Eissenstat, D. M.; Kaye, J. P.; Duffy, C.; Yu, X.; He, Y.

    2014-12-01

    Belowground carbon processes are affected by soil moisture and soil temperature, but current biogeochemical models are 1-D and cannot resolve topographically driven hill-slope soil moisture patterns, and cannot simulate the nonlinear effects of soil moisture on carbon processes. Coupling spatially-distributed physically-based hydrologic models with biogeochemical models may yield significant improvements in the representation of topographic influence on belowground C processes. We will couple the Flux-PIHM model to the Biome-BGC (BBGC) model. Flux-PIHM is a coupled physically-based land surface hydrologic model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Because PIHM is capable of simulating lateral water flow and deep groundwater, Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. The coupled Flux-PIHM-BBGC model will be tested at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). The abundant observations, including eddy covariance fluxes, soil moisture, groundwater level, sap flux, stream discharge, litterfall, leaf area index, above ground carbon stock, and soil carbon efflux, make SSHCZO an ideal test bed for the coupled model. In the coupled model, each Flux-PIHM model grid will couple a BBGC cell. Flux-PIHM will provide BBGC with soil moisture and soil temperature information, while BBGC provides Flux-PIHM with leaf area index. Preliminary results show that when Biome- BGC is driven by PIHM simulated soil moisture pattern, the simulated soil carbon is clearly impacted by topography.

  1. Biogeochemical cycles of Chernobyl-born radionuclides in the contaminated forest ecosystems: long-term dynamics of the migration processes

    NASA Astrophysics Data System (ADS)

    Shcheglov, Alexey; Tsvetnova, Ol'ga; Klyashtorin, Alexey

    2013-04-01

    Biogeochemical migration is a dominant factor of the radionuclide transport through the biosphere. In the early XX century, V.I. Vernadskii, a Russian scientist known, noted about a special role living things play in transport and accumulation of natural radionuclide in various environments. The role of biogeochemical processes in migration and redistribution of technogenic radionuclides is not less important. In Russia, V. M. Klechkovskii and N.V. Timofeev-Ressovskii showed some important biogeochemical aspects of radionuclide migration by the example of global fallout and Kyshtym accident. Their followers, R.M. Alexakhin, M.A. Naryshkin, N.V. Kulikov, F.A. Tikhomirov, E.B. Tyuryukanova, and others also contributed a lot to biogeochemistry of radionuclides. In the post-Chernobyl period, this area of knowledge received a lot of data that allowed building the radioactive element balance and flux estimation in various biogeochemical cycles [Shcheglov et al., 1999]. Regrettably, many of recent radioecological studies are only focused on specific radionuclide fluxes or pursue some applied tasks, missing the holistic approach. Most of the studies consider biogeochemical fluxes of radioactive isotopes in terms of either dose estimation or radionuclide migration rates in various food chains. However, to get a comprehensive picture and develop a reliable forecast of environmental, ecological, and social consequences of radioactive pollution in a vast contaminated area, it is necessary to investigate all the radionuclide fluxes associated with the biogeochemical cycles in affected ecosystems. We believe such an integrated approach would be useful to study long-term environmental consequences of the Fukushima accident as well. In our long-term research, we tried to characterize the flux dynamics of the Chernobyl-born radionuclides in the contaminated forest ecosystems and landscapes as a part of the integrated biogeochemical process. Our field studies were started in June of

  2. Isotope biogeochemical assessment of natural biodegradation processes in open cast pit mining landscapes

    NASA Astrophysics Data System (ADS)

    Jeschke, Christina; Knöller, Kay; Koschorreck, Matthias; Ussath, Maria; Hoth, Nils

    2014-05-01

    laboratory experiments, we tested reactive materials that may speed up the process of bacterial sulfate reduction. In in-situ experiments, we quantified nitrification rates. Based on the results, we are able to suggest promising technical measures that enhance natural attenuation processes at mine dump site and in mining lakes. The natural water cycle in lignite mining landscapes is heavily impacted by human activities. Basically, nature is capable of cleaning itself to a certain extent after mining activities stopped. However, it is our responsibility to support biogeochemical processes to make them more efficient and more sustainable. Isotopic monitoring proved to be an excellent tool for assessing the relevance and performance of different re-cultivation measures for a positive long-term development of the water quality in large-scale aquatic systems affected by the impact of lignite mining.

  3. A Virtual Soil System to Study Macroscopic Manifestation of Pore-Scale Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Liu, C.; Fang, Y.; Shang, J.; Bailey, V. L.

    2012-12-01

    Mechanistic soil biogeochemical processes occur at the pore-scale that fundamentally control the moisture and CO2 fluxes at the soil and atmosphere interface. This presentation will present an on-going research to investigate pore-scale moisture migration and biogeochemical processes of organic carbon degradation, and their macroscopic manifestation in soils. Soil cores collected from Rattlesnake Mountain in southeastern Washington, USA, where a field experiment was conducted to investigate dynamic response of soil biogeochemistry to changing climate conditions, were used as an example for this study. The cores were examined using computerized x-ray tomography (XCT) to determine soil pore structures. The XCT imaging, together with various measurements of soil properties such as porosity, moisture content, organic carbon, biochemistry, etc are used to establish a virtual soil core with a high spatial resolution (~20um). The virtual soil system is then used to simulate soil moisture migration and organic carbon degradation, to identify important physical and biogeochemical factors controlling macroscopic moisture and CO2 fluxes in response to changing climate conditions, and to develop and evaluate pragmatic biogeochemical process models for larger scale applications. Core-scale measurements of CO2 flux and moisture change are used for development and validation of the process models.

  4. Switchgrass influences soil biogeochemical processes in dryland region of the Pacific Northwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass and other perennial grasses have been promoted as biomass crops for production of renewable fuels. The objective of this study was to evaluate the effect of biomass removal on soil biogeochemical processes. A three year field study consisting of three levels of net primary productivity (...

  5. Dynamic interactions of ecohydrological and biogeochemical processes in water-stressed environments

    NASA Astrophysics Data System (ADS)

    Wang, L.; Manzoni, S.; Ravi, S.; Riveros-Iregui, D. A.; Caylor, K. K.

    2015-12-01

    Water is the essential reactant, catalyst, or medium for many biogeochemical reactions and flows. The coupling between hydrological and biogeochemical processes is particularly evident in drylands, but also in areas with strong seasonal precipitation patterns or in mesic systems during droughts. Moreover, this coupling is apparent at all levels in the ecosystems - from soil microbial cells to whole plants to landscapes. A holistic approach is essential to fully understand function and processes in water-limited ecosystems and to predict their responses to environmental change. We examine some of the mechanisms responsible for microbial and vegetation responses to moisture inputs in water-limited ecosystems through a synthesis of existing literature and we also summarize the modeling advances in addressing these interactions. This paper focuses on three opportunities to advance coupled hydrological and biogeochemical research: (1) improved quantitative understanding of mechanisms linking hydrological and biogeochemical variations in drylands, (2) experimental and theoretical approaches that describe linkages between hydrology and biogeochemistry (particularly across scales), and (3) the use of these tools and insights to address critical dryland issues of societal relevance.

  6. Identifying microorganisms responsible for ecologically significant biogeochemical processes.

    PubMed

    Madsen, Eugene L

    2005-05-01

    Throughout evolutionary time, and each day in every habitat throughout the globe, microorganisms have been responsible for maintaining the biosphere. Despite the crucial part that they play in the cycling of nutrients in habitats such as soils, sediments and waters, only rarely have the microorganisms actually responsible for key processes been identified. Obstacles that have traditionally impeded fundamental microbial ecology inquiries are now yielding to technical advancements that have important parallels in medical microbiology. The pace of new discoveries that document ecological processes and their causative agents will no doubt accelerate in the near future, and might assist in ecosystem management.

  7. Modelling of transport and biogeochemical processes in pollution plumes: literature review and model development

    NASA Astrophysics Data System (ADS)

    Brun, Adam; Engesgaard, Peter

    2002-01-01

    A literature survey shows how biogeochemical (coupled organic and inorganic reaction processes) transport models are based on considering the complete biodegradation process as either a single- or as a two-step process. It is demonstrated that some two-step process models rely on the Partial Equilibrium Approach (PEA). The PEA assumes the organic degradation step, and not the electron acceptor consumption step, is rate limiting. This distinction is not possible in one-step process models, where consumption of both the electron donor and acceptor are treated kinetically. A three-dimensional, two-step PEA model is developed. The model allows for Monod kinetics and biomass growth, features usually included only in one-step process models. The biogeochemical part of the model is tested for a batch system with degradation of organic matter under the consumption of a sequence of electron acceptors. A second paper [J. Hydrol. 256 (2002) 230-249], reports the application of the model to a field study of biogeochemical transport processes in a landfill plume in Denmark (Vejen).

  8. Modeling biogeochemical processes of phosphorus for global food supply.

    PubMed

    Dumas, Marion; Frossard, Emmanuel; Scholz, Roland W

    2011-08-01

    Harvests of crops, their trade and consumption, soil erosion, fertilization and recycling of organic waste generate fluxes of phosphorus in and out of the soil that continuously change the worldwide spatial distribution of total phosphorus in arable soils. Furthermore, due to variability in the properties of the virgin soils and the different histories of agricultural practices, on a planetary scale, the distribution of total soil phosphorus is very heterogeneous. There are two key relationships that determine how this distribution and its change over time affect crop yields. One is the relationship between total soil phosphorus and bioavailable soil phosphorus and the second is the relationship between bioavailable soil phosphorus and yields. Both of these depend on environmental variables such as soil properties and climate. We propose a model in which these relationships are described probabilistically and integrated with the dynamic feedbacks of P cycling in the human ecosystem. The model we propose is a first step towards evaluating the large-scale effects of different nutrient management scenarios. One application of particular interest is to evaluate the vulnerability of different regions to an increased scarcity in P mineral fertilizers. Another is to evaluate different regions' deficiency in total soil phosphorus compared with the level at which they could sustain their maximum potential yield without external mineral inputs of phosphorus but solely by recycling organic matter to close the nutrient cycle.

  9. Biogeochemical processes driving mercury cycling in estuarine ecosystems

    NASA Astrophysics Data System (ADS)

    Schartup, A. T.

    2015-12-01

    Mercury (Hg) is a naturally occurring element that has been enriched in the environment through human activities, particularly in the coastal zone. Bioaccumulation of methylmercury (MeHg) in marine fishposes health risks for fish-consuming populations and is a worldwide health concern. A broader understanding of major environmental processes controlling Hg cycling and MeHg production and bioaccumulation in estuaries is therefore needed. Recent fieldwork and modeling show diverse sources of MeHg production in estuaries. We present geochemical modeling results for Hg and MeHg acrossmultiple estuaries with contrasting physical, chemical and biological characteristics. We report new measurements of water column and sediment mercury speciation and methylation data from the subarctic (Lake Melville, Labrador Canada) and temperate latitudes (Long Island Sound, Delaware Bay, Chesapeake Bay). We find that benthic sediment is a relatively small source of MeHg to the water column in all systems. Water column methylation drives MeHg levels in Lake Melville, whereas in more impacted shallow systems such as Chesapeake Bay and Long Island Sound, external inputs and sediment resuspension are more dominant. All systems are a net source of MeHg to the ocean through tidal exchange. In light of these inter-system differences, we will evaluate timescales of coastal ecosystem responses to changes in Hg loading that can help predict potential responses to future perturbations.

  10. Connections between physical, optical and biogeochemical processes in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Xiu, Peng; Chai, Fei

    2014-03-01

    A new biogeochemical model has been developed and coupled to a three-dimensional physical model in the Pacific Ocean. With the explicitly represented dissolved organic pools, this new model is able to link key biogeochemical processes with optical processes. Model validation against satellite and in situ data indicates the model is robust in reproducing general biogeochemical and optical features. Colored dissolved organic matter (CDOM) has been suggested to play an important role in regulating underwater light field. With the coupled model, physical and biological regulations of CDOM in the euphotic zone are analyzed. Model results indicate seasonal variability of CDOM is mostly determined by biological processes, while the importance of physical regulation manifests in the annual mean terms. Without CDOM attenuating light, modeled depth-integrated primary production is about 10% higher than the control run when averaged over the entire basin, while this discrepancy is highly variable in space with magnitudes reaching higher than 100% in some locations. With CDOM dynamics integrated in physical-biological interactions, a new mechanism by which physical processes affect biological processes is suggested, namely, physical transport of CDOM changes water optical properties, which can further modify underwater light field and subsequently affect the distribution of phytoplankton chlorophyll. This mechanism tends to occur in the entire Pacific basin but with strong spatial variability, implying the importance of including optical processes in the coupled physical-biogeochemical model. If ammonium uptake is sufficient to permit utilization of DOM, that is, UB∗⩾-U{U}/{U}-{(1-r_b)}/{RB}, then bacteria uptake of DOM has the form of FB=(1-r_b){U}/{RB}, bacteria respiration, SB=r_b×U, remineralization by bacteria, EB=UC{UN}/{UC}-{(1-r_b)}/{RB}. If EB > 0, then UB = 0; otherwise, UB = -EB. If there is insufficient ammonium, that is, UB∗<-U{U}/{U}-{(1-r_b)}/{RB}, then

  11. Geo- and biogeochemical processes in a heliothermal hypersaline lake

    NASA Astrophysics Data System (ADS)

    Zachara, John M.; Moran, James J.; Resch, Charles T.; Lindemann, Stephen R.; Felmy, Andrew R.; Bowden, Mark E.; Cory, Alexandra B.; Fredrickson, James K.

    2016-05-01

    precipitation in the mixolimnion and metalimnion, but the absence of calcareous sediments at depth suggests dissolution and recycling during winter months. Dissolved carbon concentrations [dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC)] increased with depth, reaching ∼0.04 mol/L at the metalimnion-monimolimnion boundary. DIC concentrations were seasonally variable in the mixolimnion and metalimnion, and were influenced by calcium carbonate precipitation. DOC concentrations mimicked those of conservative salts (e.g., Na+-Cl-) in the mixolimnion and metalimnion, but decreased in the monimolimnion where mass loss by anaerobic microbial processes is implied. Biogenic reduced solutes originating in monimolimnion (H2S and CH4) were biologically oxidized in the metalimnion as they were not observed in more shallow lake waters. Multi-year solute inventory calculations indicated that Hot Lake is a stable, albeit seasonally and annually dynamic feature, with inorganic solutes cycled between lake waters and sediments depending on annual recharge, temperature, and lake water dilution state. With its extreme geochemical and thermal regime, Hot Lake functions as analog of early earth and extraterrestrial life environments.

  12. Geo- and Biogeochemical Processes in a Heliothermal Hypersaline Lake

    SciTech Connect

    Zachara, John M.; Moran, James J.; Resch, Charles T.; Lindemann, Stephen R.; Felmy, Andrew R.; Bowden, Mark E.; Cory, Alexandra B.; Fredrickson, Jim K.

    2016-03-17

    exchange, and lower winter lake temperatures. Solubility calculations indicated seasonal biogenic and thermogenic aragonite precipitation in the upper and lower mixolimnion, but the absence of calcareous sediments at depth suggested dissolution and recycling during winter months. Carbon concentrations were high in Hot Lake (e.g., 0 to 450 mg/L for both DOC and DIC) and increased with depth. DIC concentrations were variable and influenced by calcium carbonate precipitation, but DOC concentrations remained constant except in the monimolimnion where mass loss by anaerobic microbial processes was implied. Biogenic reduced solutes originating in monimolimnion (H2S and CH4) appeared to be biologically oxidized in the metalimnion as they were not observed in more shallow lake waters. Multi-year solute inventory calculations indicated that Hot Lake is a stable, albeit seasonally and annually dynamic feature, with inorganic solutes cycled between lake waters and sediments depending on annual recharge, temperature, and lake water dilution state. Hot Lake with its extreme geochemical and thermal regime functions as analogue of early earth and extraterrestrial life environments.

  13. High resolution modelling of the biogeochemical processes in the eutrophic Loire River (France)

    NASA Astrophysics Data System (ADS)

    Minaudo, Camille; Moatar, Florentina; Curie, Florence; Gassama, Nathalie; Billen, Gilles

    2016-04-01

    A biogeochemical model was developed, coupling a physically based water temperature model (T-NET) with a semi-mechanistic biogeochemical model (RIVE, used in ProSe and Riverstrahler models) in order to assess at a fine temporal and spatial resolution the biogeochemical processes in the eutrophic Middle Loire hydrosystem (≈10 000 km², 3361 river segments). The code itself allows parallelized computing, which decreased greatly the calculation time (5 hours for simulating 3 years hourly). We conducted a daily survey during the period 2012-2014 at 2 sampling stations located in the Middle Loire of nutrients, chlorophyll pigments, phytoplankton and physic-chemical variables. This database was used as both input data (upstream Loire boundary) and validation data of the model (basin outlet). Diffuse and non-point sources were assessed based on a land cover analysis and WWTP datasets. The results appeared very sensible to the coefficients governing the dynamic of suspended solids and of phosphorus (sorption/desorption processes) within the model and some parameters needed to be estimated numerically. Both the Lagrangian point of view and fluxes budgets at the seasonal and event-based scale evidenced the biogeochemical functioning of the Loire River. Low discharge levels set up favorable physical conditions for phytoplankton growth (long water travel time, limited water depth, suspended particles sedimentation). Conversely, higher discharge levels highly limited the phytoplankton biomass (dilution of the colony, washing-out, limited travel time, remobilization of suspended sediments increasing turbidity), and most biogeochemical species were basically transferred downstream. When hydrological conditions remained favorable for phytoplankton development, P-availability was the critical factor. However, the model evidenced that most of the P in summer was recycled within the water body: on one hand it was assimilated by the algae biomass, and on the other hand it was

  14. Biogeochemical hotspots within forested landscapes: quantifying the functional role of vernal pools in ecosystem processes

    NASA Astrophysics Data System (ADS)

    Capps, K. A.; Rancatti, R.; Calhoun, A.; Hunter, M.

    2013-12-01

    Biogeochemical hotspots are characterized as small areas within a landscape matrix that show comparably high chemical reaction rates relative to surrounding areas. For small, natural features to generate biogeochemical hotspots within a landscape, their contribution to nutrient dynamics must be significant relative to nutrient demand of the surrounding landscape. In northeastern forests in the US, vernal pools are abundant, small features that typically fill in spring with snow melt and precipitation and dry by the end of the summer. Ephemeral flooding alters soil moisture and the depth of the oxic/anoxic boundary in the soil, which may affect leaf-litter decomposition rates and nutrient dynamics including denitrification. Additionally, pool-breeding organisms may influence nutrient dynamics via consumer-driven nutrient remineralization. We studied the effects of vernal pools on rates of leaf-litter decomposition and denitrification in forested habitats in Maine. Our results indicate leaf-litter decomposition and denitrification rates in submerged habitats of vernal pools were greater than in upland forest habitat. Our data also suggest pool-breeding organisms, such as wood frogs, may play an important role in nutrient dynamics within vernal pools. Together, the results suggest vernal pools may function as biogeochemical hotspots within forested landscapes.

  15. Potential effects of climate change and variability on watershed biogeochemical processes and water quality in Northeast Asia.

    PubMed

    Park, Ji-Hyung; Duan, Lei; Kim, Bomchul; Mitchell, Myron J; Shibata, Hideaki

    2010-02-01

    An overview is provided of the potential effects of climate change on the watershed biogeochemical processes and surface water quality in mountainous watersheds of Northeast (NE) Asia that provide drinking water supplies for large populations. We address major 'local' issues with the case studies conducted at three watersheds along a latitudinal gradient going from northern Japan through the central Korean Peninsula and ending in southern China. Winter snow regimes and ground snowpack dynamics play a crucial role in many ecological and biogeochemical processes in the mountainous watersheds across northern Japan. A warmer winter with less snowfall, as has been projected for northern Japan, will alter the accumulation and melting of snowpacks and affect hydro-biogeochemical processes linking soil processes to surface water quality. Soils on steep hillslopes and rich in base cations have been shown to have distinct patterns in buffering acidic inputs during snowmelt. Alteration of soil microbial processes in response to more frequent freeze-thaw cycles under thinner snowpacks may increase nutrient leaching to stream waters. The amount and intensity of summer monsoon rainfalls have been increasing in Korea over recent decades. More frequent extreme rainfall events have resulted in large watershed export of sediments and nutrients from agricultural lands on steep hillslopes converted from forests. Surface water siltation caused by terrestrial export of sediments from these steep hillslopes is emerging as a new challenge for water quality management due to detrimental effects on water quality. Climatic predictions in upcoming decades for southern China include lower precipitation with large year-to-year variations. The results from a four-year intensive study at a forested watershed in Chongquing province showed that acidity and the concentrations of sulfate and nitrate in soil and surface waters were generally lower in the years with lower precipitation, suggesting year

  16. Modelling of transport and biogeochemical processes in pollution plumes: Vejen landfill, Denmark

    NASA Astrophysics Data System (ADS)

    Brun, Adam; Engesgaard, Peter; Christensen, Thomas H.; Rosbjerg, Dan

    2002-01-01

    A biogeochemical transport code is used to simulate leachate attenuation, biogeochemical processes, and development of redox zones in a pollution plume downstream of the Vejen landfill in Denmark. Calibration of the degradation parameters resulted in a good agreement with the observed distribution in the plume of a number of species, such as dissolved organic carbon (DOC), Fe 2+, NO 3-, HCO 3-, SO 42-, CH 4, and pH. The simulated redox zones agree with observations confirming that the Fe-reducing zone played an important role in the attenuation of the DOC plume. Effective first-order rate constants for every redox zone were determined giving DOC half-lives ranging from 100 to 1-2 days going from the methanogenic to the aerobic zone. The order of decrease in DOC half-lives from the anaerobic to the aerobic zone corresponds to findings at other landfills.

  17. Cyclic biogeochemical processes and nitrogen fate beneath a subtropical stormwater infiltration basin.

    PubMed

    O'Reilly, Andrew M; Chang, Ni-Bin; Wanielista, Martin P

    2012-05-15

    A stormwater infiltration basin in north-central Florida, USA, was monitored from 2007 through 2008 to identify subsurface biogeochemical processes, with emphasis on N cycling, under the highly variable hydrologic conditions common in humid, subtropical climates. Cyclic variations in biogeochemical processes generally coincided with wet and dry hydrologic conditions. Oxidizing conditions in the subsurface persisted for about one month or less at the beginning of wet periods with dissolved O(2) and NO(3)(-) showing similar temporal patterns. Reducing conditions in the subsurface evolved during prolonged flooding of the basin. At about the same time O(2) and NO(3)(-) reduction concluded, Mn, Fe and SO(4)(2-) reduction began, with the onset of methanogenesis one month later. Reducing conditions persisted up to six months, continuing into subsequent dry periods until the next major oxidizing infiltration event. Evidence of denitrification in shallow groundwater at the site is supported by median NO(3)(-)-N less than 0.016 mg L(-1), excess N(2) up to 3 mg L(-1) progressively enriched in δ(15)N during prolonged basin flooding, and isotopically heavy δ(15)N and δ(18)O of NO(3)(-) (up to 25‰ and 15‰, respectively). Isotopic enrichment of newly infiltrated stormwater suggests denitrification was partially completed within two days. Soil and water chemistry data suggest that a biogeochemically active zone exists in the upper 1.4m of soil, where organic carbon was the likely electron donor supplied by organic matter in soil solids or dissolved in infiltrating stormwater. The cyclic nature of reducing conditions effectively controlled the N cycle, switching N fate beneath the basin from NO(3)(-) leaching to reduction in the shallow saturated zone. Results can inform design of functionalized soil amendments that could replace the native soil in a stormwater infiltration basin and mitigate potential NO(3)(-) leaching to groundwater by replicating the biogeochemical

  18. Cyclic biogeochemical processes and nitrogen fate beneath a subtropical stormwater infiltration basin

    USGS Publications Warehouse

    O'Reilly, Andrew M.; Chang, Ni-Bin; Wanielista, Martin P.

    2012-01-01

    A stormwater infiltration basin in north–central Florida, USA, was monitored from 2007 through 2008 to identify subsurface biogeochemical processes, with emphasis on N cycling, under the highly variable hydrologic conditions common in humid, subtropical climates. Cyclic variations in biogeochemical processes generally coincided with wet and dry hydrologic conditions. Oxidizing conditions in the subsurface persisted for about one month or less at the beginning of wet periods with dissolved O2 and NO3- showing similar temporal patterns. Reducing conditions in the subsurface evolved during prolonged flooding of the basin. At about the same time O2 and NO3- reduction concluded, Mn, Fe and SO42- reduction began, with the onset of methanogenesis one month later. Reducing conditions persisted up to six months, continuing into subsequent dry periods until the next major oxidizing infiltration event. Evidence of denitrification in shallow groundwater at the site is supported by median NO3-–N less than 0.016 mg L-1, excess N2 up to 3 mg L-1 progressively enriched in δ15N during prolonged basin flooding, and isotopically heavy δ15N and δ18O of NO3- (up to 25‰ and 15‰, respectively). Isotopic enrichment of newly infiltrated stormwater suggests denitrification was partially completed within two days. Soil and water chemistry data suggest that a biogeochemically active zone exists in the upper 1.4 m of soil, where organic carbon was the likely electron donor supplied by organic matter in soil solids or dissolved in infiltrating stormwater. The cyclic nature of reducing conditions effectively controlled the N cycle, switching N fate beneath the basin from NO3- leaching to reduction in the shallow saturated zone. Results can inform design of functionalized soil amendments that could replace the native soil in a stormwater infiltration basin and mitigate potential NO3- leaching to groundwater by replicating the biogeochemical conditions under the observed basin.

  19. Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes.

    PubMed

    Gadd, G M

    1999-01-01

    The production of organic acids by fungi has profound implications for metal speciation, physiology and biogeochemical cycles. Biosynthesis of oxalic acid from glucose occurs by hydrolysis of oxaloacetate to oxalate and acetate catalysed by cytosolic oxaloacetase, whereas on citric acid, oxalate production occurs by means of glyoxylate oxidation. Citric acid is an intermediate in the tricarboxylic acid cycle, with metals greatly influencing biosynthesis: growth limiting concentrations of Mn, Fe and Zn are important for high yields. The metal-complexing properties of these organic acids assist both essential metal and anionic (e.g. phosphate) nutrition of fungi, other microbes and plants, and determine metal speciation and mobility in the environment, including transfer between terrestrial and aquatic habitats, biocorrosion and weathering. Metal solubilization processes are also of potential for metal recovery and reclamation from contaminated solid wastes, soils and low-grade ores. Such 'heterotrophic leaching' can occur by several mechanisms but organic acids occupy a central position in the overall process, supplying both protons and a metal-complexing organic acid anion. Most simple metal oxalates [except those of alkali metals, Fe(III) and Al] are sparingly soluble and precipitate as crystalline or amorphous solids. Calcium oxalate is the most important manifestation of this in the environment and, in a variety of crystalline structures, is ubiquitously associated with free-living, plant symbiotic and pathogenic fungi. The main forms are the monohydrate (whewellite) and the dihydrate (weddelite) and their formation is of significance in biomineralization, since they affect nutritional heterogeneity in soil, especially Ca, P, K and Al cycling. The formation of insoluble toxic metal oxalates, e.g. of Cu, may confer tolerance and ensure survival in contaminated environments. In semi-arid environments, calcium oxalate formation is important in the formation and

  20. EFFECT OF NUTRIENT LOADING ON BIOGEOCHEMICAL AND MICROBIAL PROCESSES IN A NEW ENGLAND HIGH SALT MARSH, SPARTINA PATNES, (AITON MUHL)

    EPA Science Inventory

    Coastal marshes represent an important transitional zone between uplands and estuaries and can assimilate nutrient inputs from uplands. We examined the effects of nitrogen (N) and phosphorus (P) fertilization on biogeochemical and microbial processes during the summer growing sea...

  1. Biogeochemical processes on tree islands in the greater everglades: Initiating a new paradigm

    USGS Publications Warehouse

    Wetzel, P.R.; Sklar, Fred H.; Coronado, C.A.; Troxler, T.G.; Krupa, S.L.; Sullivan, P.L.; Ewe, S.; Price, R.M.; Newman, S.; Orem, W.H.

    2011-01-01

    Scientists' understanding of the role of tree islands in the Everglades has evolved from a plant community of minor biogeochemical importance to a plant community recognized as the driving force for localized phosphorus accumulation within the landscape. Results from this review suggest that tree transpiration, nutrient infiltration from the soil surface, and groundwater flow create a soil zone of confluence where nutrients and salts accumulate under the head of a tree island during dry periods. Results also suggest accumulated salts and nutrients are flushed downstream by regional water flows during wet periods. That trees modulate their environment to create biogeochemical hot spots and strong nutrient gradients is a significant ecological paradigm shift in the understanding of the biogeochemical processes in the Everglades. In terms of island sustainability, this new paradigm suggests the need for distinct dry-wet cycles as well as a hydrologic regime that supports tree survival. Restoration of historic tree islands needs further investigation but the creation of functional tree islands is promising. Copyright ?? 2011 Taylor & Francis Group, LLC.

  2. Comparing soil biogeochemical processes in novel and natural boreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Quideau, S. A.; Swallow, M. J. B.; Prescott, C. E.; Grayston, S. J.; Oh, S.-W.

    2013-08-01

    Emulating the variability that exists in the natural landscape prior to disturbance should be a goal of soil reconstruction and land reclamation efforts following resource extraction. Long-term ecosystem sustainability within reclaimed landscapes can only be achieved with the re-establishment of biogeochemical processes between reconstructed soils and plants. In this study, we assessed key soil biogeochemical attributes (nutrient availability, organic matter composition, and microbial communities) in reconstructed, novel, anthropogenic ecosystems, covering different reclamation treatments following open-cast mining for oil extraction. We compared the attributes to those present in a range of natural soils representative of mature boreal forest ecosystems in the same area of Northern Alberta. Soil nutrient availability was determined in situ with resin probes, organic matter composition was described with 13C nuclear magnetic resonance spectroscopy and soil microbial community structure was characterized using phospholipid fatty acid analysis. Significant differences among natural ecosystems were apparent in nutrient availability and seemed more related to the dominant tree cover than to soil type. When analyzed together, all natural forests differed significantly from the novel ecosystems, in particular with respect to soil organic matter composition. However, there was some overlap between the reconstructed soils and some of the natural ecosystems in nutrient availability and microbial communities, but not in organic matter characteristics. Hence, our results illustrate the importance of considering the range of natural landscape variability and including several soil biogeochemical attributes when comparing novel, anthropogenic ecosystems to the mature ecosystems that constitute ecological targets.

  3. Comparing soil biogeochemical processes in novel and natural boreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Quideau, S. A.; Swallow, M. J. B.; Prescott, C. E.; Grayston, S. J.; Oh, S.-W.

    2013-04-01

    Emulating the variability that exists in the natural landscape prior to disturbance should be a goal of soil reconstruction and land reclamation efforts following resource extraction. Long-term ecosystem sustainability within reclaimed landscapes can only be achieved with the re-establishment of biogeochemical processes between reconstructed soils and plants. In this study, we assessed key soil biogeochemical attributes (nutrient availability, organic matter composition, and microbial communities) in reconstructed, novel, anthropogenic ecosystems covering different reclamation treatments following open-cast mining for oil extraction. We compared the attributes to those present in a range of natural soils representative of mature boreal forest ecosystems in the same area of northern Alberta. Soil nutrient availability was determined in situ with resin probes, organic matter composition was described with 13C nuclear magnetic resonance spectroscopy and soil microbial community structure was characterized using phospholipid fatty acid analysis. Significant differences among natural ecosystems were apparent in nutrient availability and seemed more related to the dominant tree cover than to soil type. When analyzed together, all natural forests differed significantly from the novel ecosystems, in particular with respect to soil organic matter composition. However, there was some overlap between the reconstructed soils and some of the natural ecosystems in nutrient availability and microbial communities, but not in organic matter characteristics. Hence, our results illustrate the importance of considering the range of natural landscape variability, and including several soil biogeochemical attributes when comparing novel, anthropogenic ecosystems to the mature ecosystems that constitute ecological targets.

  4. Soil property control of biogeochemical processes beneath two subtropical stormwater infiltration basins

    USGS Publications Warehouse

    O'Reilly, Andrew M.; Wanielista, Martin P.; Chang, Ni-Bin; Harris, Willie G.; Xuan, Zhemin

    2012-01-01

    Substantially different biogeochemical processes affecting nitrogen fate and transport were observed beneath two stormwater infiltration basins in north-central Florida. Differences are related to soil textural properties that deeply link hydroclimatic conditions with soil moisture variations in a humid, subtropical climate. During 2008, shallow groundwater beneath the basin with predominantly clayey soils (median, 41% silt+clay) exhibited decreases in dissolved oxygen from 3.8 to 0.1 mg L-1 and decreases in nitrate nitrogen (NO3-–N) from 2.7 mg L-1 to -1, followed by manganese and iron reduction, sulfate reduction, and methanogenesis. In contrast, beneath the basin with predominantly sandy soils (median, 2% silt+clay), aerobic conditions persisted from 2007 through 2009 (dissolved oxygen, 5.0–7.8 mg L-1), resulting in NO3-–N of 1.3 to 3.3 mg L-1 in shallow groundwater. Enrichment of d15N and d18O of NO3- combined with water chemistry data indicates denitrification beneath the clayey basin and relatively conservative NO3- transport beneath the sandy basin. Soil-extractable NO3-–N was significantly lower and the copper-containing nitrite reductase gene density was significantly higher beneath the clayey basin. Differences in moisture retention capacity between fine- and coarse-textured soils resulted in median volumetric gas-phase contents of 0.04 beneath the clayey basin and 0.19 beneath the sandy basin, inhibiting surface/subsurface oxygen exchange beneath the clayey basin. Results can inform development of soil amendments to maintain elevated moisture content in shallow soils of stormwater infiltration basins, which can be incorporated in improved best management practices to mitigate NO3- impacts.

  5. Soil property control of biogeochemical processes beneath two subtropical stormwater infiltration basins.

    PubMed

    O'Reilly, Andrew M; Wanielista, Martin P; Chang, Ni-Bin; Harris, Willie G; Xuan, Zhemin

    2012-01-01

    Substantially different biogeochemical processes affecting nitrogen fate and transport were observed beneath two stormwater infiltration basins in north-central Florida. Differences are related to soil textural properties that deeply link hydroclimatic conditions with soil moisture variations in a humid, subtropical climate. During 2008, shallow groundwater beneath the basin with predominantly clayey soils (median, 41% silt+clay) exhibited decreases in dissolved oxygen from 3.8 to 0.1 mg L and decreases in nitrate nitrogen (NO-N) from 2.7 mg L to <0.016 mg L, followed by manganese and iron reduction, sulfate reduction, and methanogenesis. In contrast, beneath the basin with predominantly sandy soils (median, 2% silt+clay), aerobic conditions persisted from 2007 through 2009 (dissolved oxygen, 5.0-7.8 mg L), resulting in NO-N of 1.3 to 3.3 mg L in shallow groundwater. Enrichment of δN and δO of NO combined with water chemistry data indicates denitrification beneath the clayey basin and relatively conservative NO transport beneath the sandy basin. Soil-extractable NO-N was significantly lower and the copper-containing nitrite reductase gene density was significantly higher beneath the clayey basin. Differences in moisture retention capacity between fine- and coarse-textured soils resulted in median volumetric gas-phase contents of 0.04 beneath the clayey basin and 0.19 beneath the sandy basin, inhibiting surface/subsurface oxygen exchange beneath the clayey basin. Results can inform development of soil amendments to maintain elevated moisture content in shallow soils of stormwater infiltration basins, which can be incorporated in improved best management practices to mitigate NO impacts.

  6. Technical note: Sampling and processing of mesocosm sediment trap material for quantitative biogeochemical analysis

    NASA Astrophysics Data System (ADS)

    Boxhammer, Tim; Bach, Lennart T.; Czerny, Jan; Riebesell, Ulf

    2016-05-01

    Sediment traps are the most common tool to investigate vertical particle flux in the marine realm. However, the spatial and temporal decoupling between particle formation in the surface ocean and particle collection in sediment traps at depth often handicaps reconciliation of production and sedimentation even within the euphotic zone. Pelagic mesocosms are restricted to the surface ocean, but have the advantage of being closed systems and are therefore ideally suited to studying how processes in natural plankton communities influence particle formation and settling in the ocean's surface. We therefore developed a protocol for efficient sample recovery and processing of quantitatively collected pelagic mesocosm sediment trap samples for biogeochemical analysis. Sedimented material was recovered by pumping it under gentle vacuum through a silicon tube to the sea surface. The particulate matter of these samples was subsequently separated from bulk seawater by passive settling, centrifugation or flocculation with ferric chloride, and we discuss the advantages and efficiencies of each approach. After concentration, samples were freeze-dried and ground with an easy to adapt procedure using standard lab equipment. Grain size of the finely ground samples ranged from fine to coarse silt (2-63 µm), which guarantees homogeneity for representative subsampling, a widespread problem in sediment trap research. Subsamples of the ground material were perfectly suitable for a variety of biogeochemical measurements, and even at very low particle fluxes we were able to get a detailed insight into various parameters characterizing the sinking particles. The methods and recommendations described here are a key improvement for sediment trap applications in mesocosms, as they facilitate the processing of large amounts of samples and allow for high-quality biogeochemical flux data.

  7. Technical Note: Sampling and processing of mesocosm sediment trap material for quantitative biogeochemical analysis

    NASA Astrophysics Data System (ADS)

    Boxhammer, T.; Bach, L. T.; Czerny, J.; Riebesell, U.

    2015-11-01

    Sediment traps are the most common tool to investigate vertical particle flux in the marine realm. However, the spatial decoupling between particle formation and collection often handicaps reconciliation of these two processes even within the euphotic zone. Pelagic mesocosms have the advantage of being closed systems and are therefore ideally suited to study how processes in natural plankton communities influence particle formation and settling in the ocean's surface. We therefore developed a protocol for efficient sample recovery and processing of quantitatively collected pelagic mesocosm sediment trap samples. Sedimented material was recovered by pumping it under gentle vacuum through a silicon tube to the sea surface. The particulate matter of these samples was subsequently concentrated by passive settling, centrifugation or flocculation with ferric chloride and we discuss the advantages of each approach. After concentration, samples were freeze-dried and ground with an easy to adapt procedure using standard lab equipment. Grain size of the finely ground samples ranges from fine to coarse silt (2-63 μm), which guarantees homogeneity for representative subsampling, a widespread problem in sediment trap research. Subsamples of the ground material were perfectly suitable for a variety of biogeochemical measurements and even at very low particle fluxes we were able to get a detailed insight on various parameters characterizing the sinking particles. The methods and recommendations described here are a key improvement for sediment trap applications in mesocosms, as they facilitate processing of large amounts of samples and allow for high-quality biogeochemical flux data.

  8. Biogeochemical processes governing natural pyrite oxidation and release of acid metalliferous drainage.

    PubMed

    Chen, Ya-ting; Li, Jin-tian; Chen, Lin-xing; Hua, Zheng-shuang; Huang, Li-nan; Liu, Jun; Xu, Bi-bo; Liao, Bin; Shu, Wen-sheng

    2014-05-20

    The oxidative dissolution of sulfide minerals (principally pyrite) is responsible for the majority of acid metalliferous drainage from mine sites, which represents a significant environmental problem worldwide. Understanding the complex biogeochemical processes governing natural pyrite oxidation is critical not only for solving this problem but also for understanding the industrial bioleaching of sulfide minerals. To this end, we conducted a simulated experiment of natural pyrite oxidative dissolution. Pyrosequencing analysis of the microbial community revealed a distinct succession across three stages. At the early stage, a newly proposed genus, Tumebacillus (which can use sodium thiosulfate and sulfite as the sole electron donors), dominated the microbial community. At the midstage, Alicyclobacillus (the fifth most abundant genus at the early stage) became the most dominant genus, whereas Tumebacillus was still ranked as the second most abundant. At the final stage, the microbial community was dominated by Ferroplasma (the tenth most abundant genus at the early stage). Our geochemical and mineralogical analyses indicated that exchangeable heavy metals increased as the oxidation progressed and that some secondary sulfate minerals (including jarosite and magnesiocopiapite) were formed at the final stage of the oxidation sequence. Additionally, we propose a comprehensive model of biogeochemical processes governing the oxidation of sulfide minerals.

  9. Characterizing biogeochemical processes in the hyporheic zone using flume experiments and reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Quick, A. M.; Reeder, W. J.; Farrell, T. B.; Feris, K. P.; Tonina, D.; Benner, S. G.

    2015-12-01

    The hyporheic zones of streams are hotspots of biogeochemical cycling, where reactants from surface water and groundwater are continually brought into contact with microbial populations on the surfaces of stream sediments and reaction products are removed by hyporheic flow and degassing. Using large flume experiments we have documented the complex redox dynamics associated with dune-scale hyporheic flow. Observations, coupled with reactive transport modeling, provide insight into how flow dictates spatio-temporal distribution of redox reactions and the associated consumption and production of reactants and products. Dune hyporheic flow was experimentally produced by maintaining control over flow rates, slopes, sediment grain size, bedform geomorphology, and organic carbon content. An extensive in-situ monitoring array combined with sampling events over time elucidated redox-sensitive processes including constraints on the spatial distribution and magnitude of aerobic respiration, organic carbon consumption, sulfide deposition, and denitrification. Reactive transport modeling reveals further insight into the influence of system geometry and reaction rate. As an example application of the model, the relationship between residence times and reaction rates may be used to generate Damköhler numbers that are related to biogeochemical processes, such as the potential of streambed morphology and nitrate loading to influence production of the greenhouse gas nitrous oxide via incomplete denitrification.

  10. Advances in Coupling of Kinetics and Molecular Scale Tools to Shed Light on Soil Biogeochemical Processes

    SciTech Connect

    Sparks, Donald

    2014-09-02

    Biogeochemical processes in soils such as sorption, precipitation, and redox play critical roles in the cycling and fate of nutrients, metal(loid)s and organic chemicals in soil and water environments. Advanced analytical tools enable soil scientists to track these processes in real-time and at the molecular scale. Our review focuses on recent research that has employed state-of-the-art molecular scale spectroscopy, coupled with kinetics, to elucidate the mechanisms of nutrient and metal(loid) reactivity and speciation in soils. We found that by coupling kinetics with advanced molecular and nano-scale tools major advances have been made in elucidating important soil chemical processes including sorption, precipitation, dissolution, and redox of metal(loids) and nutrients. Such advances will aid in better predicting the fate and mobility of nutrients and contaminants in soils and water and enhance environmental and agricultural sustainability.

  11. Molecular organic tracers of biogeochemical processes in a saline meromictic lake (Ace Lake)

    NASA Astrophysics Data System (ADS)

    Schouten, S.; Rijpstra, W. I. C.; Kok, M.; Hopmans, E. C.; Summons, R. E.; Volkman, J. K.; Sinninghe Damsté, J. S.

    2001-05-01

    The chemical structures, distribution and stable carbon isotopic compositions of lipids in a sediment core taken in meromictic Ace Lake (Antarctica) were analyzed to trace past biogeochemical cycling. Biomarkers from methanogenic archaea, methanotrophic bacteria and photosynthetic green sulfur bacteria were unambiguously assigned using organic geochemical understanding and by reference to what is known about the lake's present-day ecosystem. For instance, saturated and unsaturated 2,6,10,15,19-pentamethylicosane, archaeol and sn2-hydroxyarchaeol were derived from methanogenic archaea. Carotenoid analysis revealed chlorobactene and isorenieratene derived from the green-colored and brown-colored strains of the green sulfur bacteria (Chlorobiaceae); isotopic analyses showed that they were 13C-enriched. Phytenes appear to be derived from photoautotrophs that use the Calvin-Benson cycle, while phytane has a different source, possibly within the archaea. The most 13C-depleted compounds (ca. -55‰) identified were 4-methyl-5α-cholest-8(14)-en-3β-ol, identified using an authentic standard, and co-occurring 4-methylsteradienes: these originate from the aerobic methanotrophic bacterium Methylosphaera hansonii. Lipids of photoautotrophic origin, steranes and alkenones, are relatively depleted (ca. -28 to -36‰) whilst archaeal biomarkers are relatively enriched in 13C (ca. -17 to -25‰). The structural and carbon isotope details of sedimentary lipids thus revealed aspects of in situ biogeochemical processes such as methane generation and oxidation and phototrophic sulfide oxidation.

  12. Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biogeochemical processes

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Freeman, K. H.; Popp, B. N.; Hoham, C. H.

    1990-01-01

    Patterns of isotopic fractionation in biogeochemical processes are reviewed and it is suggested that isotopic fractionations will be small when substrates are large. If so, isotopic compositions of biomarkers will reflect those of their biosynthetic precursors. This prediction is tested by consideration of results of analyses of geoporphyrins and geolipids from the Greenhorn Formation (Cretaceous, Western Interior Seaway of North America) and the Messel Shale (Eocene, lacustrine, southern Germany). It is shown (i) that isotopic compositions of porphyrins that are related to a common source, but which have been altered structurally, cluster tightly and (ii) that isotopic differences between geolipids and porphyrins related to a common source are equal to those observed in modern biosynthetic products. Both of these observations are consistent with preservation of biologically controlled isotopic compositions during diagenesis. Isotopic compositions of individual compounds can thus be interpreted in terms of biogeochemical processes in ancient depositional environments. In the Cretaceous samples, isotopic compositions of n-alkanes are covariant with those of total organic carbon, while delta values for pristane and phytane are covariant with those of porphyrins. In this unit representing an open marine environment, the preserved acyclic polyisoprenoids apparently derive mainly from primary material, while the extractable, n-alkanes derive mainly from lower levels of the food chain. In the Messel Shale, isotopic compositions of individual biomarkers range from -20.9 to -73.4% vs PDB. Isotopic compositions of specific compounds can be interpreted in terms of origin from methylotrophic, chemautotrophic, and chemolithotrophic microorganisms as well as from primary producers that lived in the water column and sediments of this ancient lake.

  13. Evidence of linked biogeochemical and hydrological processes in homogeneous and layered vadose zone systems

    NASA Astrophysics Data System (ADS)

    McGuire, J. T.; Hansen, D. J.; Mohanty, B. P.

    2010-12-01

    Understanding chemical fate and transport in the vadose zone is critical to protect groundwater resources and preserve ecosystem health. However, prediction can be challenging due to the dynamic hydrologic and biogeochemical nature of the vadose zone. Additional controls on hydrobiogeochemical processes are added by subsurface structural heterogeneity. This study uses repacked soil column experiments to quantify linkages between microbial activity, geochemical cycling and hydrologic flow. Three “short” laboratory soil columns were constructed to evaluate the effects of soil layering: a homogenized medium-grained sand, homogenized organic-rich loam, and a sand-over-loam layered column. In addition, two “long” columns were constructed using either gamma-irradiated (sterilized) or untreated sediments to evaluate the effects of both soil layers and the presence of microorganisms. The long columns were packed identically; a medium-grained sand matrix with two vertically separated and horizontally offset lenses of organic-rich loam. In all 5 columns, downward and upward infiltration of water was evaluated to simulate rainfall and rising water table events respectively. In-situ colocated probes were used to measure soil water content, matric potential, Eh, major anions, ammonium, Fe2+, and total sulfide. Enhanced biogeochemical cycling was observed in the short layered column versus the short, homogeneous columns, and enumerations of iron and sulfate reducing bacteria were 1-2 orders of magnitude greater. In the long columns, microbial activity caused mineral bands and produced insoluble gases that impeded water flow through the pores of the sediment. Capillary barriers, formed around the lenses due to soil textural differences, retarded water flow rates through the lenses. This allowed reducing conditions to develop, evidenced by the production of Fe2+ and S2-. At the fringes of the lenses, Fe2+ oxidized to form Fe(III)-oxide bands that further retarded water

  14. Spatial dynamics of biogeochemical processes in the St. Louis River freshwater estuary

    EPA Science Inventory

    In the Great Lakes, river-lake transition zones within freshwater estuaries are hydrologically and biogeochemically dynamic areas that regulate nutrient and energy fluxes between rivers and Great Lakes. The goal of our study was to characterize the biogeochemical properties of th...

  15. Evaluation of Boundless Biogeochemical Cycle through Development of Process-Based Eco-Hydrological and Biogeochemical Cycle Model to Incorporate Terrestrial-Aquatic Continuum

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Maksyutov, S. S.

    2014-12-01

    Inland water might act as important transport pathway for continental biogeochemical cycle although its contribution has remained uncertain yet due to a paucity of data (Battin et al. 2009). The author has developed process-based National Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama, 2008a-b, 2010, 2011a-b, 2012a-c, 2013; Nakayama and Fujita, 2010; Nakayama and Hashimoto, 2011; Nakayama and Shankman, 2013a-b; Nakayama and Watanabe, 2004, 2006, 2008a-b; Nakayama et al., 2006, 2007, 2010, 2012), which incorporates surface-groundwater interactions, includes up- and down-scaling processes between local-regional-global scales, and can simulate iteratively nonlinear feedback between hydrologic-geomorphic-ecological processes. Because NICE incorporates 3-D groundwater sub-model and expands from previous 1- or 2-D or steady state, the model can simulate the lateral transport pronounced at steeper-slope or riparian/floodplain with surface-groundwater connectivity. River discharge and groundwater level simulated by NICE agreed reasonably with those in previous researches (Niu et al., 2007; Fan et al., 2013) and extended to clarify lateral subsurface also has important role on global hydrologic cycle (Nakayama, 2011b; Nakayama and Shankman, 2013b) though the resolution was coarser. NICE was further developed to incorporate biogeochemical cycle including reaction between inorganic and organic carbons in terrestrial and aquatic ecosystems. The missing role of carbon cycle simulated by NICE, for example, CO2 evasion from inland water (global total flux was estimated as about 1.0 PgC/yr), was relatively in good agreement in that estimated by empirical relation using previous pCO2 data (Aufdenkampe et al., 2011; Laruelle et al., 2013). The model would play important role in identification of greenhouse gas balance of the biosphere and spatio-temporal hot spots, and bridging gap between top-down and bottom-up approaches (Cole et al. 2007; Frei et al. 2012).

  16. Positive affect and psychobiological processes.

    PubMed

    Dockray, Samantha; Steptoe, Andrew

    2010-09-01

    Positive affect has been associated with favourable health outcomes, and it is likely that several biological processes mediate the effects of positive mood on physical health. There is converging evidence that positive affect activates the neuroendocrine, autonomic and immune systems in distinct and functionally meaningful ways. Cortisol, both total output and the awakening response, has consistently been shown to be lower among individuals with higher levels of positive affect. The beneficial effects of positive mood on cardiovascular function, including heart rate and blood pressure, and the immune system have also been described. The influence of positive affect on these psychobiological processes is independent of negative affect, suggesting that positive affect may have characteristic biological correlates. The duration and conceptualisation of positive affect may be important considerations in understanding how different biological systems are activated in association with positive affect. The association of positive affect and psychobiological processes has been established, and these biological correlates may be partly responsible for the protective effects of positive affect on health outcomes.

  17. Coupled modeling of transport and biogeochemical processes in aquifers - Model requirements, strength and limitations

    NASA Astrophysics Data System (ADS)

    Mayer, K.

    2003-12-01

    Microbially mediated geochemical changes in aquifers may trigger a series of secondary reactions that include aqueous and surface complexation, ion exchange, and mineral dissolution-precipitation. Due to the coupled nature and the multitude of processes involved it is often difficult to identify the reactions controlling the system's overall evolution. Numerical models can be a useful component for identifying gaps and inconsistencies in conceptual models and for performing a more quantitative investigation of these systems. Suitable computer codes must allow for a general description of transport and reaction processes to facilitate the investigation of site-specific conditions. In recent years significant advances have been made in terms of model generality and applicability. Major advances include the consideration of mass balance equations for reactants and reaction products, the integration of biodegradation and thermodynamic models, and the development of novel approaches for simulating biogeochemical processes and reactive transport under variably saturated conditions. MIN3P is one of the codes capable of simulating coupled biogeochemical and hydrological processes on an increasingly mechanistic level. The simulation of column experiments and a hypothetical case study at the field scale illustrate how reactive transport modeling can be used. Modeling column experiments can be particularly fruitful, because detailed data can be collected to support the mechanistic approach. However, analysis of conceptual models is also beneficial on the field scale. The case study considered here describes natural attenuation of a petroleum hydrocarbon spill in an unconfined aquifer by multiple electron acceptors. The simulations also consider geochemical reactions triggered by contaminant degradation including the re-oxidation of reaction products during transport away from the source area. Comparing the results to contaminant plumes described in the literature suggests

  18. Reactive transport modelling of biogeochemical processes and carbon isotope geochemistry inside a landfill leachate plume

    NASA Astrophysics Data System (ADS)

    van Breukelen, Boris M.; Griffioen, Jasper; Röling, Wilfred F. M.; van Verseveld, Henk W.

    2004-06-01

    The biogeochemical processes governing leachate attenuation inside a landfill leachate plume (Banisveld, the Netherlands) were revealed and quantified using the 1D reactive transport model PHREEQC-2. Biodegradation of dissolved organic carbon (DOC) was simulated assuming first-order oxidation of two DOC fractions with different reactivity, and was coupled to reductive dissolution of iron oxide. The following secondary geochemical processes were required in the model to match observations: kinetic precipitation of calcite and siderite, cation exchange, proton buffering and degassing. Rate constants for DOC oxidation and carbonate mineral precipitation were determined, and other model parameters were optimized using the nonlinear optimization program PEST by means of matching hydrochemical observations closely (pH, DIC, DOC, Na, K, Ca, Mg, NH 4, Fe(II), SO 4, Cl, CH 4, saturation index of calcite and siderite). The modelling demonstrated the relevance and impact of various secondary geochemical processes on leachate plume evolution. Concomitant precipitation of siderite masked the act of iron reduction. Cation exchange resulted in release of Fe(II) from the pristine anaerobic aquifer to the leachate. Degassing, triggered by elevated CO 2 pressures caused by carbonate precipitation and proton buffering at the front of the plume, explained the observed downstream decrease in methane concentration. Simulation of the carbon isotope geochemistry independently supported the proposed reaction network.

  19. Reactive transport modelling of biogeochemical processes and carbon isotope geochemistry inside a landfill leachate plume.

    PubMed

    van Breukelen, Boris M; Griffioen, Jasper; Röling, Wilfred F M; van Verseveld, Henk W

    2004-06-01

    The biogeochemical processes governing leachate attenuation inside a landfill leachate plume (Banisveld, the Netherlands) were revealed and quantified using the 1D reactive transport model PHREEQC-2. Biodegradation of dissolved organic carbon (DOC) was simulated assuming first-order oxidation of two DOC fractions with different reactivity, and was coupled to reductive dissolution of iron oxide. The following secondary geochemical processes were required in the model to match observations: kinetic precipitation of calcite and siderite, cation exchange, proton buffering and degassing. Rate constants for DOC oxidation and carbonate mineral precipitation were determined, and other model parameters were optimized using the nonlinear optimization program PEST by means of matching hydrochemical observations closely (pH, DIC, DOC, Na, K, Ca, Mg, NH4, Fe(II), SO4, Cl, CH4, saturation index of calcite and siderite). The modelling demonstrated the relevance and impact of various secondary geochemical processes on leachate plume evolution. Concomitant precipitation of siderite masked the act of iron reduction. Cation exchange resulted in release of Fe(II) from the pristine anaerobic aquifer to the leachate. Degassing, triggered by elevated CO2 pressures caused by carbonate precipitation and proton buffering at the front of the plume, explained the observed downstream decrease in methane concentration. Simulation of the carbon isotope geochemistry independently supported the proposed reaction network.

  20. Variability of atmospheric greenhouse gases as a biogeochemical processing signal at regional scale in a karstic ecosystem

    NASA Astrophysics Data System (ADS)

    Borràs, Sílvia; Vazquez, Eusebi; Morguí, Josep-Anton; Àgueda, Alba; Batet, Oscar; Cañas, Lídia; Curcoll, Roger; Grossi, Claudia; Nofuentes, Manel; Occhipinti, Paola; Rodó, Xavier

    2015-04-01

    The South-eastern area of the Iberian Peninsula is an area where climatic conditions reach extreme climatic conditions during the year, and is also heavily affected by the ENSO and NAO. The Natural Park of Cazorla, Segura de la Sierra and Las Villas is located in this region, and it is the largest protected natural area in Spain (209920 Ha). This area is characterized by important climatic and hydrologic contrasts: although the mean annual precipitation is 770 nm, the karstic soils are the main cause for water scarcity during the summer months, while on the other hand it is in this area where the two main rivers of Southern Spain, the Segura and the Guadalquivir, are born. The protected area comprises many forested landscapes, karstic areas and reservoirs like Tranco de Beas. The temperatures during summer are high, with over 40°C heatwaves occurring each year. But during the winter months, the land surface can be covered by snow for periods of time up until 30 days. The ENSO and NAO influences cause also an important inter annual climatic variability in this area. Under the ENSO, autumnal periods are more humid while the following spring is drier. In this area vegetal Mediterranean communities are dominant. But there are also a high number of endemic species and derelict species typical of temperate climate. Therefore it is a protected area with high specific diversity. Additionally, there is an important agricultural activity in the fringe areas of the Natural Park, mainly for olive production, while inside the Park this activity is focused on mountain wheat production. Therefore the diverse vegetal communities and landscapes can easily be under extreme climatic pressures, affecting in turn the biogeochemical processes at the regional scale. The constant, high-frequency monitoring of greenhouse gases (GHG) (CO2 and CH4) integrates the biogeochemical signal of changes in this area related to the carbon cycle at the regional scale, capturing the high diversity of

  1. The effect of gold mining and processing on biogeochemical cycles in Muteh area, Isfahan province, Iran

    NASA Astrophysics Data System (ADS)

    Keshavarzi, B.; Moore, F.

    2009-04-01

    The environmental impacts of gold mining and processing on geochemical and biogeochemical cycles in Muteh region located northwest of Esfahan province and northeast of Golpaygan city is investigated. For this purpose systematic sampling was carried out in, rock, soil, water, and sediment environments along with plant, livestocks and human hair samples. Mineralogical and Petrological studies show that ore mineral such as pyrite and arsenopyrite along with fluorine-bearing minerals like tremolite, actinolite, biotite and muscovite occur in green schist, amphibolite and lucogranitic rocks in the area. The hydrochemistry of the analysed water samples indicate that As and F display the highest concentrations among the analysed elements. Indeed arsenic has the highest concentration in both topsoil and subsoil samples when compared with other potentially toxic elements. Anthropogenic activity also have it s greatest effect on increasing arsenic concentration among the analysed samples. The concentration of the majority of the analysed elements in the shoots and leaves of two local plants of the region i.e Artemesia and Penagum is higher than their concentration in the roots. Generally speaking, Artemesia has a greater tendency for bioaccumulating heavy metals. The results of cyanide analysis in soil samples show that cyanide concentration in the soils near the newly built tailing dam is much higher than that in the vicinity of the old tailing dam. The high concentration of fluorine in the drinking water of the Muteh village is the main reason of the observed dental fluorosis symptoms seen in the inhabitants. One of the two drinking water wells which is located near the metamorphic complex and supplies part of the tap water in the village, probably has the greatest impact in this regard. A decreasing trend in fluorine concentration is illustrated with increasing distance from the metamorphic complex. Measurements of As concentration in human hair specimens indicate that As

  2. A flexible numerical component to simulate surface runoff transport and biogeochemical processes through dense vegetation

    NASA Astrophysics Data System (ADS)

    Munoz-Carpena, R.; Perez-Ovilla, O.

    2012-12-01

    Methods to estimate surface runoff pollutant removal using dense vegetation buffers (i.e. vegetative filter strips) usually consider a limited number of factors (i.e. filter length, slope) and are in general based on empirical relationships. When an empirical approach is used, the application of the model is limited to those conditions of the data used for the regression equations. The objective of this work is to provide a flexible numerical mechanistic tool to simulate dynamics of a wide range of surface runoff pollutants through dense vegetation and their physical, chemical and biological interactions based on equations defined by the user as part of the model inputs. A flexible water quality model based on the Reaction Simulation Engine (RSE) modeling component is coupled to a transport module based on the traditional Bubnov -Galerkin finite element method to solve the advection-dispersion-reaction equation using the alternating split-operator technique. This coupled transport-reaction model is linked to the VFSMOD-W (http://abe.ufl.edu/carpena/vfsmod) program to mechanistically simulate mobile and stabile pollutants through dense vegetation based on user-defined conceptual models (differential equations written in XML language as input files). The key factors to consider in the creation of a conceptual model are the components in the buffer (i.e. vegetation, soil, sediments) and how the pollutant interacts with them. The biogeochemical reaction component was tested successfully with laboratory and field scale experiments. One of the major advantages when using this tool is that the pollutant transport and removal thought dense vegetation is related to physical and biogeochemical process occurring within the filter. This mechanistic approach increases the range of use of the model to a wide range of pollutants and conditions without modification of the core model. The strength of the model relies on the mechanistic approach used for simulating the removal of

  3. Bio-mineralization and potential biogeochemical processes in bauxite deposits: genetic and ore quality significance

    NASA Astrophysics Data System (ADS)

    Laskou, Magdalini; Economou-Eliopoulos, Maria

    2013-08-01

    The Parnassos-Ghiona bauxite deposit in Greece of karst type is the 11th largest bauxite producer in the world. The mineralogical, major and trace-element contents and δ18O, δ12C, δ34S isotopic compositions of bauxite ores from this deposit and associated limestone provide valuable evidence for their origin and biogeochemical processes resulting in the beneficiation of low grade bauxite ores. The organic matter as thin coal layers, overlying the bauxite deposits, within limestone itself (negative δ12C isotopic values) and the negative δ34S values in sulfides within bauxite ores point to the existence of the appropriate circumstances for Fe bio-leaching and bio-mineralization. Furthermore, a consortium of microorganisms of varying morphological forms (filament-like and spherical to lenticular at an average size of 2 μm), either as fossils or presently living and producing enzymes, is a powerful factor to catalyze the redox reactions, expedite the rates of metal extraction and provide alternative pathways for metal leaching processes resulting in the beneficiation of bauxite ore.

  4. Quantifying Linkages between Biogeochemical Processes in a Contaminated Aquifer-Wetland System Using Multivariate Statistics and HP1

    NASA Astrophysics Data System (ADS)

    Arora, B.; Mohanty, B. P.; McGuire, J. T.

    2009-12-01

    Fate and transport of contaminants in saturated and unsaturated zones in the subsurface is controlled by complex biogeochemical processes such as precipitation, sorption-desorption, ion-exchange, redox, etc. In dynamic systems such as wetlands and anaerobic aquifers, these processes are coupled and can interact non-linearly with each other. Variability in measured hydrological, geochemical and microbiological parameters thus corresponds to multiple processes simultaneously. To infer the contributing processes, it is important to eliminate correlations and to identify inter-linkages between factors. The objective of this study is to develop quantitative relationships between hydrological (initial and boundary conditions, hydraulic conductivity ratio, and soil layering), geochemical (mineralogy, surface area, redox potential, and organic matter) and microbiological factors (MPN) that alter the biogeochemical processes at the column scale. Data used in this study were collected from controlled flow experiments in: i) two homogeneous soil columns, ii) a layered soil column, iii) a soil column with embedded clay lenses, and iv) a soil column with embedded clay lenses and one central macropore. The soil columns represent increasing level of soil structural heterogeneity to better mimic the Norman Landfill research site. The Norman Landfill is a closed municipal facility with prevalent organic contamination. The sources of variation in the dataset were explored using multivariate statistical techniques and dominant biogeochemical processes were obtained using principal component analysis (PCA). Furthermore, artificial neural networks (ANN) coupled with HP1 was used to develop mathematical rules identifying different combinations of factors that trigger, sustain, accelerate/decelerate, or discontinue the biogeochemical processes. Experimental observations show that infiltrating water triggers biogeochemical processes in all soil columns. Similarly, slow release of water

  5. Determination of dominant biogeochemical processes in a contaminated aquifer-wetland system using multivariate statistical analysis

    USGS Publications Warehouse

    Baez-Cazull, S. E.; McGuire, J.T.; Cozzarelli, I.M.; Voytek, M.A.

    2008-01-01

    Determining the processes governing aqueous biogeochemistry in a wetland hydrologically linked to an underlying contaminated aquifer is challenging due to the complex exchange between the systems and their distinct responses to changes in precipitation, recharge, and biological activities. To evaluate temporal and spatial processes in the wetland-aquifer system, water samples were collected using cm-scale multichambered passive diffusion samplers (peepers) to span the wetland-aquifer interface over a period of 3 yr. Samples were analyzed for major cations and anions, methane, and a suite of organic acids resulting in a large dataset of over 8000 points, which was evaluated using multivariate statistics. Principal component analysis (PCA) was chosen with the purpose of exploring the sources of variation in the dataset to expose related variables and provide insight into the biogeochemical processes that control the water chemistry of the system. Factor scores computed from PCA were mapped by date and depth. Patterns observed suggest that (i) fermentation is the process controlling the greatest variability in the dataset and it peaks in May; (ii) iron and sulfate reduction were the dominant terminal electron-accepting processes in the system and were associated with fermentation but had more complex seasonal variability than fermentation; (iii) methanogenesis was also important and associated with bacterial utilization of minerals as a source of electron acceptors (e.g., barite BaSO4); and (iv) seasonal hydrological patterns (wet and dry periods) control the availability of electron acceptors through the reoxidation of reduced iron-sulfur species enhancing iron and sulfate reduction. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  6. The influence of biogeochemical processes on the pH dynamics in the seasonally hypoxic saline Lake Grevelingen, The Netherlands

    NASA Astrophysics Data System (ADS)

    Hagens, Mathilde; Slomp, Caroline; Meysman, Filip; Borges, Alberto; Middelburg, Jack

    2013-04-01

    Coastal areas experience more pronounced short-term fluctuations in pH than the open ocean due to higher rates of biogeochemical processes such as primary production, respiration and nitrification. These processes and changes therein can mask or amplify the ocean acidification signal induced by increasing atmospheric pCO2. Coastal acidification can be enhanced when eutrophication-induced hypoxia develops. This is because the carbon dioxide produced during respiration leads to a decrease in the buffering capacity of the hypoxic bottom water. Saline Lake Grevelingen (SW Netherlands) has limited water exchange with the North Sea and experiences seasonal bottom water hypoxia, which differs in severity interannually. Hence this lake provides an ideal site to study how coastal acidification is affected by seasonal hypoxia. We examined the annual cycle of the carbonate system in Lake Grevelingen in 2012 and how biogeochemical processes in the water column impact it. Monthly measurements of all carbonate system parameters (DIC, pH, fCO2 and TA), suspended matter, oxygen and nutrients were accompanied by measurements of primary production and respiration using O2 light-dark incubations. Primary production was also estimated every season using 14C-incubations and monthly via 13C-labeling of phospholipid-derived fatty acids (PLFA). Finally, incubations to estimate nitrification and NH4 uptake using 15N-enriched ammonium were carried out seasonally. Preliminary results show that the hypoxic period was rather short in 2012. During stratification and hypoxia, pH varied by up to 0.75 units between the oxic surface water and the hypoxic bottom water. Consistency calculations of the carbonate system reveal that pH is best computed using DIC and TA and that there is no significant difference between TA measured on filtered (0.45 μm) and unfiltered samples. Primary production rates were highest in summer and range up to 800 mmol C/m2/d. Nitrification rates varied between 73

  7. Biogeochemical processes controlling density stratification in an iron-meromictic lake

    NASA Astrophysics Data System (ADS)

    Nixdorf, E.; Boehrer, B.

    2015-06-01

    Biogeochemical processes and mixing regime of a lake can control each other mutually. The prominent case of iron meromixis is investigated in Waldsee near Doebern, a small lake that originated from surface mining of lignite. From a four years data set of monthly measured electrical conductivity profiles, we calculated summed conductivity as a quantitative variable reflecting the amount of electro-active substances in the entire lake. Seasonal variations followed changing chemocline height. Coinciding changes of electrical conductivities in the monimolimnion indicated that a considerable share of substances, precipitated by the advancing oxygenated epilimnion, re-dissolved in the remaining anoxic deep waters and contributed considerably to the density stratification. In addition, we constructed a lab experiment, in which aeration of monimolimnetic waters removed iron compounds and organic material. Precipitates could be identified by visual inspection. Introduced air bubbles ascended through the water column and formed a water mass similar to the mixolimnetic Waldsee water. The remaining less dense water remained floating on the nearly unchanged monimolimnetic water. In conclusion, iron meromixis as seen in Waldsee did not require two different sources of incoming waters, but the inflow of iron rich deep groundwater and the aeration through the lake surface were fully sufficient.

  8. Seasonal Variation in Floodplain Biogeochemical Processing in a Restored Headwater Stream.

    PubMed

    Jones, C Nathan; Scott, Durelle T; Guth, Christopher; Hester, Erich T; Hession, W Cully

    2015-11-17

    Stream and river restoration activities have recently begun to emphasize the enhancement of biogeochemical processing within river networks through the restoration of river-floodplain connectivity. It is generally accepted that this practice removes pollutants such as nitrogen and phosphorus because the increased contact time of nutrient-rich floodwaters with reactive floodplain sediments. Our study examines this assumption in the floodplain of a recently restored, low-order stream through five seasonal experiments. During each experiment, a floodplain slough was artificially inundated for 3 h. Both the net flux of dissolved nutrients and nitrogen uptake rate were measured during each experiment. The slough was typically a source of dissolved phosphorus and dissolved organic matter, a sink of NO3(-), and variable source/sink of ammonium. NO3(-) uptake rates were relatively high when compared to riverine uptake, especially during the spring and summer experiments. However, when scaled up to the entire 1 km restoration reach with a simple inundation model, less than 0.5-1.5% of the annual NO3(-) load would be removed because of the short duration of river-floodplain connectivity. These results suggest that restoring river-floodplain connectivity is not necessarily an appropriate best management practice for nutrient removal in low-order streams with legacy soil nutrients from past agricultural landuse.

  9. Linking Food Webs and Biogeochemical Processes in Wetlands: Insights From Sulfur Isotopes

    NASA Astrophysics Data System (ADS)

    Stricker, C. A.; Guntenspergen, G. R.; Rye, R. O.

    2005-05-01

    To better understand the transfer of nutrients into prairie wetland food webs we have investigated the cycling of S (via S isotope systematics and geochemistry) in a prairie wetland landscape by characterizing sources (ground water, interstitial water, surface water) and processes in a small catchment comprised of four wetlands in eastern South Dakota. We focused on S to derive process information that is not generally available from carbon isotopes alone. The wetlands chosen for study spanned a considerable range in SO4 concentration (0.1-13.6 mM), which corresponded with landscape position. Ground water δ34SSO4 values remained relatively constant (mean = -13.2 per mil) through time. However, δ34SSO4 values of wetland surface waters ranged from -2.9 to -30.0 per mil (CDT) and were negatively correlated with SO4 concentrations (p<0.05). The isotopic variability of surface water SO4 resulted from mixing with re-oxidized sulfides associated with recently flushed wetland soils. The δ34S signatures of wetland primary (Gastropoda: Stagnicola elodes) and secondary (Odonata: Anax sp.) consumers were significantly related to surface water δ34SSO4 values (p<0.05) suggesting that food web components were responding to changes in the isotopic composition of the S source. Both primary and secondary consumer δ34S signatures differed between wetlands (ANOVA, p<0.05). These data illustrate the complexity of S cycling in prairie wetlands and the influence of wetland hydrologic and biogeochemical processes on prairie wetland food webs. Additionally, this work has demonstrated that sulfur isotopes can provide unique source and process information that cannot be derived from traditional carbon and nitrogen isotope studies.

  10. Understanding system disturbance and ecosystem services in restored saltmarshes: Integrating physical and biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Spencer, K. L.; Harvey, G. L.

    2012-06-01

    Coastal saltmarsh ecosystems occupy only a small percentage of Earth's land surface, yet contribute a wide range of ecosystem services that have significant global economic and societal value. These environments currently face significant challenges associated with climate change, sea level rise, development and water quality deterioration and are consequently the focus of a range of management schemes. Increasingly, soft engineering techniques such as managed realignment (MR) are being employed to restore and recreate these environments, driven primarily by the need for habitat (re)creation and sustainable coastal flood defence. Such restoration schemes also have the potential to provide additional ecosystem services including climate regulation and waste processing. However, these sites have frequently been physically impacted by their previous land use and there is a lack of understanding of how this 'disturbance' impacts the delivery of ecosystem services or of the complex linkages between ecological, physical and biogeochemical processes in restored systems. Through the exploration of current data this paper determines that hydrological, geomorphological and hydrodynamic functioning of restored sites may be significantly impaired with respects to natural 'undisturbed' systems and that links between morphology, sediment structure, hydrology and solute transfer are poorly understood. This has consequences for the delivery of seeds, the provision of abiotic conditions suitable for plant growth, the development of microhabitats and the cycling of nutrients/contaminants and may impact the delivery of ecosystem services including biodiversity, climate regulation and waste processing. This calls for a change in our approach to research in these environments with a need for integrated, interdisciplinary studies over a range of spatial and temporal scales incorporating both intensive and extensive research design.

  11. Cumulative Significance of Hyporheic Exchange and Biogeochemical Processing in River Networks

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; Gomez-Velez, J. D.

    2014-12-01

    Biogeochemical reactions in rivers that decrease excessive loads of nutrients, metals, organic compounds, etc. are enhanced by hydrologic interactions with microbially and geochemically active sediments of the hyporheic zone. The significance of reactions in individual hyporheic flow paths has been shown to be controlled by the contact time between river water and sediment and the intrinsic reaction rate in the sediment. However, little is known about how the cumulative effects of hyporheic processing in large river basins. We used the river network model NEXSS (Gomez-Velez and Harvey, submitted) to simulate hyporheic exchange through synthetic river networks based on the best available models of network topology, hydraulic geometry and scaling of geomorphic features, grain size, hydraulic conductivity, and intrinsic reaction rates of nutrients and metals in river sediment. The dimensionless reaction significance factor, RSF (Harvey et al., 2013) was used to quantify the cumulative removal fraction of a reactive solute by hyporheic processing. SF scales reaction progress in a single pass through the hyporheic zone with the proportion of stream discharge passing through the hyporheic zone for a specified distance. Reaction progress is optimal where the intrinsic reaction timescale in sediment matches the residence time of hyporheic flow and is less efficient in longer residence time hyporheic flow as a result of the decreasing proportion of river flow that is processed by longer residence time hyporheic flow paths. In contrast, higher fluxes through short residence time hyporheic flow paths may be inefficient because of the repeated surface-subsurface exchanges required to complete the reaction. Using NEXSS we found that reaction efficiency may be high in both small streams and large rivers, although for different reasons. In small streams reaction progress generally is dominated by faster pathways of vertical exchange beneath submerged bedforms. Slower exchange

  12. The value of automated high-frequency nutrient monitoring in inference of biogeochemical processes, temporal variability and trends

    NASA Astrophysics Data System (ADS)

    Bieroza, Magdalena; Heathwaite, Louise

    2013-04-01

    Stream water quality signals integrate catchment-scale processes responsible for delivery and biogeochemical transformation of the key biotic macronutrients (N, C, P). This spatial and temporal integration is particularly pronounced in the groundwater-dominated streams, as in-stream nutrient dynamics are mediated by the processes occurring within riparian and hyporheic ecotones. In this paper we show long-term high-frequency in-stream macronutrient dynamics from a small agricultural catchment located in the North West England. Hourly in-situ measurements of total and reactive phosphorus (Systea, IT), nitrate (Hach Lange, DE) and physical water quality parameters (turbidity, specific conductivity, dissolved oxygen, temperature, pH; WaterWatch, UK) were carried out on the lowland, gaining reach of the River Leith. High-frequency data show complex non-linear nutrient concentration-discharge relationships. The dominance of hysteresis effects suggests the presence of a temporally varying apportionment of allochthonous and autochthonous nutrient sources. Varying direction, magnitude and dynamics of the hysteretic responses between storm events is driven by the variation in the contributing source areas and shows the importance of the coupling of catchment-scale, in-stream, riparian and hyporheic biogeochemical cycles. The synergistic effect of physical (temperature-driven, the hyporheic exchange controlled by diffusion) and biogeochemical drivers (stream and hyporheic metabolism) on in-stream nutrient concentrations manifests itself in observed diurnal patterns. As inferred from the high-frequency nutrient monitoring, the diurnal dynamics are of the greatest importance under baseflow conditions. Understanding the role and relative importance of these processes can be difficult due to spatial and temporal heterogeneity of the key mechanisms involved. This study shows the importance of in-situ, fine temporal resolution, automated monitoring approaches in providing evidence

  13. Linking Inundation Patterns and Dynamics in a Permafrost Landscape to Hydrologic, Thermal, Biogeochemical and Ecosystem Processes

    NASA Astrophysics Data System (ADS)

    Wilson, C. J.; Hinzman, L. D.; Iwahana, G.; Lara, M. J.; Liljedahl, A.; Painter, S. L.; Romanovsky, V. E.; Wullschleger, S. D.

    2014-12-01

    The Arctic coastal plain is characterized by multi-scale geomorphic features including thaw lakes, drained thaw lake basins, and clusters of ice wedge polygons composed of troughs, centers, and rims. The topographic and subsurface properties of these features control the lateral and vertical drainage pathways of snow melt and precipitation as well as the spatial and temporal dynamics of standing water in the landscape. The Next Generation Ecosystem Experiment, NGEE-Arctic, project combines multi-scale in-situ and remote surface and subsurface observations that quantify the interactions between landscape structure, hydrology, the carbon cycle and energy balance of Arctic permafrost environments, with the aim of improving representation of Arctic ecosystem processes in global climate models. Data and models from the project show distinct relationships exist between the hydro-geomorphic features mapped on the ground and observed in remote sensing imagery, and the measured in-situ thermal, biogeochemical and ecosystem responses coincident with those features. The relationships between micro-topographic setting, snow distribution, inundation, subsurface temperature and thaw depth observed at the NGEE Barrow field sites are now well reproduced in process resolving models such as Pflotran and the Arctic Terrestrial Simulator. Current modeling efforts are investigating how topographically controlled thermal-hydrologic dynamics impact the carbon cycle. The next challenge is to scale these relationships for application in a global climate model grid cell to enable pan-Arctic predictions of future change, including the change in topography and inundation resulting from thawing permafrost and melting ground ice. NGEE-Arctic is funded by the DOE Office of Science, Biological and Environmental Research program.

  14. A general paradigm to model reaction-based biogeochemical processes in batch systems

    NASA Astrophysics Data System (ADS)

    Fang, Yilin; Yeh, Gour-Tsyh; Burgos, William D.

    2003-04-01

    This paper presents the development and illustration of a numerical model of reaction-based geochemical and biochemical processes with mixed equilibrium and kinetic reactions. The objective is to provide a general paradigm for modeling reactive chemicals in batch systems, with expectations that it is applicable to reactive chemical transport problems. The unique aspects of the paradigm are to simultaneously (1) facilitate the segregation (isolation) of linearly independent kinetic reactions and thus enable the formulation and parameterization of individual rates one reaction by one reaction when linearly dependent kinetic reactions are absent, (2) enable the inclusion of virtually any type of equilibrium expressions and kinetic rates users want to specify, (3) reduce problem stiffness by eliminating all fast reactions from the set of ordinary differential equations governing the evolution of kinetic variables, (4) perform systematic operations to remove redundant fast reactions and irrelevant kinetic reactions, (5) systematically define chemical components and explicitly enforce mass conservation, (6) accomplish automation in decoupling fast reactions from slow reactions, and (7) increase the robustness of numerical integration of the governing equations with species switching schemes. None of the existing models to our knowledge has included these scopes simultaneously. This model (BIOGEOCHEM) is a general computer code to simulate biogeochemical processes in batch systems from a reaction-based mechanistic standpoint, and is designed to be easily coupled with transport models. To make the model applicable to a wide range of problems, programmed reaction types include aqueous complexation, adsorption-desorption, ion-exchange, oxidation-reduction, precipitation-dissolution, acid-base reactions, and microbial mediated reactions. In addition, user-specified reaction types can be programmed into the model. Any reaction can be treated as fast/equilibrium or slow

  15. [Microbiological and biogeochemical processes in a pockmark of the Gdansk depression, Baltic Sea].

    PubMed

    Pimenov, N V; Ul'ianova, M O; Kanapatski, T A; Sivkov, V V; Ivanov, M V

    2008-01-01

    Comprehensive microbiological and biogeochemical investigation of a pockmark within one of the sites of gas-saturated sediments in the Gdansk depression, Baltic Sea was carried out during the 87th voyage of the Professor Shtokman research vessel. Methane content in the near-bottom water and in the underlying sediments indicates stable methane flow from the sediment into the water. In the 10-m water layer above the pockmark, apart from methane anomalies, elevated numbers of microorganisms and enhanced rates of dark CO2 fixation (up to 1.15 micromol C/(1 day)) and methane oxidation (up to 2.14 nmol CH4/(1 day)) were revealed. Lightened isotopic composition of suspended organic matter also indicates high activity of the near-bottom microbial community. Compared to the background stations, methane content in pockmark sediments increased sharply from the surface to 40-60 ml/dm3 in the 20-30cm horizon. High rates of bacterial sulfate reduction (SR) were detected throughout the core (0-40 cm); the maximum of 74 micromol/(dm3 day) was located in subsurface horizons (15-20 cm). The highest rates of anaerobic methane oxidation (AMO), up to 80 micromol/(dm3 day), were detected in the same horizon. Good coincidence of the AMO and SR profiles with stoichiometry close to 1:1 is evidence in favor of a close relation between these processes performed by a consortium of methanotrophic archaea and sulfate-reducing bacteria. Methane isotopic composition in subsurface sediments of the pockmark (from -53.0 to -56.5% per hundred) does not rule out the presence of methane other than the biogenic methane from the deep horizons of the sedimentary cover.

  16. Assessment of the GHG Reduction Potential from Energy Crops Using a Combined LCA and Biogeochemical Process Models: A Review

    PubMed Central

    Jiang, Dong; Hao, Mengmeng; Wang, Qiao; Huang, Yaohuan; Fu, Xinyu

    2014-01-01

    The main purpose for developing biofuel is to reduce GHG (greenhouse gas) emissions, but the comprehensive environmental impact of such fuels is not clear. Life cycle analysis (LCA), as a complete comprehensive analysis method, has been widely used in bioenergy assessment studies. Great efforts have been directed toward establishing an efficient method for comprehensively estimating the greenhouse gas (GHG) emission reduction potential from the large-scale cultivation of energy plants by combining LCA with ecosystem/biogeochemical process models. LCA presents a general framework for evaluating the energy consumption and GHG emission from energy crop planting, yield acquisition, production, product use, and postprocessing. Meanwhile, ecosystem/biogeochemical process models are adopted to simulate the fluxes and storage of energy, water, carbon, and nitrogen in the soil-plant (energy crops) soil continuum. Although clear progress has been made in recent years, some problems still exist in current studies and should be addressed. This paper reviews the state-of-the-art method for estimating GHG emission reduction through developing energy crops and introduces in detail a new approach for assessing GHG emission reduction by combining LCA with biogeochemical process models. The main achievements of this study along with the problems in current studies are described and discussed. PMID:25045736

  17. Assessment of the GHG reduction potential from energy crops using a combined LCA and biogeochemical process models: a review.

    PubMed

    Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Wang, Qiao; Huang, Yaohuan; Fu, Xinyu

    2014-01-01

    The main purpose for developing biofuel is to reduce GHG (greenhouse gas) emissions, but the comprehensive environmental impact of such fuels is not clear. Life cycle analysis (LCA), as a complete comprehensive analysis method, has been widely used in bioenergy assessment studies. Great efforts have been directed toward establishing an efficient method for comprehensively estimating the greenhouse gas (GHG) emission reduction potential from the large-scale cultivation of energy plants by combining LCA with ecosystem/biogeochemical process models. LCA presents a general framework for evaluating the energy consumption and GHG emission from energy crop planting, yield acquisition, production, product use, and postprocessing. Meanwhile, ecosystem/biogeochemical process models are adopted to simulate the fluxes and storage of energy, water, carbon, and nitrogen in the soil-plant (energy crops) soil continuum. Although clear progress has been made in recent years, some problems still exist in current studies and should be addressed. This paper reviews the state-of-the-art method for estimating GHG emission reduction through developing energy crops and introduces in detail a new approach for assessing GHG emission reduction by combining LCA with biogeochemical process models. The main achievements of this study along with the problems in current studies are described and discussed.

  18. A Unified Multi-scale Model for Cross-Scale Evaluation and Integration of Hydrological and Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Liu, C.; Yang, X.; Bailey, V. L.; Bond-Lamberty, B. P.; Hinkle, C.

    2013-12-01

    Mathematical representations of hydrological and biogeochemical processes in soil, plant, aquatic, and atmospheric systems vary with scale. Process-rich models are typically used to describe hydrological and biogeochemical processes at the pore and small scales, while empirical, correlation approaches are often used at the watershed and regional scales. A major challenge for multi-scale modeling is that water flow, biogeochemical processes, and reactive transport are described using different physical laws and/or expressions at the different scales. For example, the flow is governed by the Navier-Stokes equations at the pore-scale in soils, by the Darcy law in soil columns and aquifer, and by the Navier-Stokes equations again in open water bodies (ponds, lake, river) and atmosphere surface layer. This research explores whether the physical laws at the different scales and in different physical domains can be unified to form a unified multi-scale model (UMSM) to systematically investigate the cross-scale, cross-domain behavior of fundamental processes at different scales. This presentation will discuss our research on the concept, mathematical equations, and numerical execution of the UMSM. Three-dimensional, multi-scale hydrological processes at the Disney Wilderness Preservation (DWP) site, Florida will be used as an example for demonstrating the application of the UMSM. In this research, the UMSM was used to simulate hydrological processes in rooting zones at the pore and small scales including water migration in soils under saturated and unsaturated conditions, root-induced hydrological redistribution, and role of rooting zone biogeochemical properties (e.g., root exudates and microbial mucilage) on water storage and wetting/draining. The small scale simulation results were used to estimate effective water retention properties in soil columns that were superimposed on the bulk soil water retention properties at the DWP site. The UMSM parameterized from smaller

  19. Identifying biogeochemical processes beneath stormwater infiltration ponds in support of a new best management practice for groundwater protection

    USGS Publications Warehouse

    O'Reilly, Andrew M.; Chang, Ni-Bin; Wanielista, Martin P.; Xuan, Zhemin; Schirmer, Mario; Hoehn, Eduard; Vogt, Tobias

    2011-01-01

     When applying a stormwater infiltration pond best management practice (BMP) for protecting the quality of underlying groundwater, a common constituent of concern is nitrate. Two stormwater infiltration ponds, the SO and HT ponds, in central Florida, USA, were monitored. A temporal succession of biogeochemical processes was identified beneath the SO pond, including oxygen reduction, denitrification, manganese and iron reduction, and methanogenesis. In contrast, aerobic conditions persisted beneath the HT pond, resulting in nitrate leaching into groundwater. Biogeochemical differences likely are related to soil textural and hydraulic properties that control surface/subsurface oxygen exchange. A new infiltration BMP was developed and a full-scale application was implemented for the HT pond. Preliminary results indicate reductions in nitrate concentration exceeding 50% in soil water and shallow groundwater beneath the HT pond.

  20. Experimental study and steady-state simulation of biogeochemical processes in laboratory columns with aquifer material

    NASA Astrophysics Data System (ADS)

    Amirbahman, Aria; Schönenberger, René; Furrer, Gerhard; Zobrist, Jürg

    2003-07-01

    Packed bed laboratory column experiments were performed to simulate the biogeochemical processes resulting from microbially catalyzed oxidation of organic matter. These included aerobic respiration, denitrification, and Mn(IV), Fe(III) and SO 4 reduction processes. The effects of these reactions on the aqueous- and solid-phase geochemistry of the aquifer material were closely examined. The data were used to model the development of alkalinity and pH along the column. To study the independent development of Fe(III)- and SO 4-reducing environments, two columns were used. One of the columns (column 1) contained small enough concentrations of SO 4 in the influent to render the reduction of this species unimportant to the geochemical processes in the column. The rate of microbially catalyzed reduction of Mn(IV) changed with time as evidenced by the variations in the initial rate of Mn(II) production at the head of the column. The concentration of Mn in both columns was controlled by the solubility of rhodochrosite (MnCO 3(S)). In the column where significant SO 4 reduction took place (column 2), the concentration of dissolved Fe(II) was controlled by the solubility of FeS. In column 1, where SO 4 reduction was not important, maximum dissolved Fe(II) concentrations were controlled by the solubility of siderite (FeCO 3(S)). Comparison of solid-phase and aqueous-phase data suggests that nearly 20% of the produced Fe(II) precipitates as siderite in column 1. The solid-phase analysis also indicates that during the course of experiment, approximately 20% of the total Fe(III) hydroxides and more than 70% of the amorphous Fe(III) hydroxides were reduced by dissimilatory iron reduction. The most important sink for dissolved S(-II) produced by the enzymatic reduction of SO 4 was its direct reaction with solid-phase Fe(III) hydroxides leading initially to the formation of FeS. Compared to this pathway, precipitation as FeS did not constitute an important sink for S(-II) in column

  1. The genetic potential for key biogeochemical processes in Arctic frost flowers and young sea ice revealed by metagenomic analysis.

    PubMed

    Bowman, Jeff S; Berthiaume, Chris T; Armbrust, E Virginia; Deming, Jody W

    2014-08-01

    Newly formed sea ice is a vast and biogeochemically active environment. Recently, we reported an unusual microbial community dominated by members of the Rhizobiales in frost flowers at the surface of Arctic young sea ice based on the presence of 16S gene sequences related to these strains. Here, we use metagenomic analysis of two samples, from a field of frost flowers and the underlying young sea ice, to explore the metabolic potential of this surface ice community. The analysis links genes for key biogeochemical processes to the Rhizobiales, including dimethylsulfide uptake, betaine glycine turnover, and halocarbon production. Nodulation and nitrogen fixation genes characteristic of terrestrial root-nodulating Rhizobiales were generally lacking from these metagenomes. Non-Rhizobiales clades at the ice surface had genes that would enable additional biogeochemical processes, including mercury reduction and dimethylsulfoniopropionate catabolism. Although the ultimate source of the observed microbial community is not known, considerations of the possible role of eolian deposition or transport with particles entrained during ice formation favor a suspended particle source for this microbial community.

  2. Introduction: SIPEX-2: A study of sea-ice physical, biogeochemical and ecosystem processes off East Antarctica during spring 2012

    NASA Astrophysics Data System (ADS)

    Meiners, Klaus M.; Golden, Ken M.; Heil, Petra; Lieser, Jan L.; Massom, Rob; Meyer, Bettina; Williams, Guy D.

    2016-09-01

    This editorial introduces a suite of articles resulting from the second Sea Ice Physics and Ecosystems eXperiment (SIPEX-2) voyage by presenting some background information on the study area and Antarctic sea-ice conditions, and summarising the key findings from the project. Using the Australian icebreaker RV Aurora Australis, SIPEX-2 was conducted in the area between 115-125°E and 62-66°S off East Antarctica during September to November 2012. This region had been sampled during two previous experiments, i.e. ARISE in 2003 (Massom et al., 2006a) and SIPEX in 2007 (Worby et al., 2011a). The 2012 voyage combined traditional and newly developed sampling methods with satellite and other data to measure sea-ice physical properties and processes on large scales, which provided context for biogeochemical and ecological case studies. The specific goals of the SIPEX-2 project were to: (i) measure the spatial variability in sea-ice and snow-cover properties over small- to regional-length scales; (ii) improve understanding of sea-ice kinematic processes; and (iii) advance knowledge of the links between sea-ice physical characteristics, sea-ice biogeochemical cycling and ice-associated food-web dynamics. Our field-based activities were designed to inform modelling approaches and to improve our capability to assess impacts of predicted changes in Antarctic sea ice on Southern Ocean biogeochemical cycles and ecosystem function.

  3. Regional scale hydrological and biogeochemical processes controlling high biodiversity of a groundwater fed alkaline fen

    NASA Astrophysics Data System (ADS)

    van der Zee, Sjoerd E. A. T. M.; (D. G.) Cirkel, Gijsbert; (J. P. M) witte, Flip

    2014-05-01

    The high floral biodiversity of groundwater fed fens and mesotrophic grasslands depends on the different chemical signatures of the shallow rainwater fed topsoil water and the slightly deeper geochemically affected groundwater. The relatively abrupt gradients between these two layers of groundwater enable the close proximity of plants that require quite different site factors and have different rooting depths. However, sulphur inflow into such botanically interesting areas is generally perceived as a major threat to biodiversity. Although in Europe atmospheric deposition of sulphur has decreased considerably over the last decades, groundwater pollution by sulphate may still continue due to pyrite oxidation in soil as a result of excessive fertilisation. Inflowing groundwater rich in sulphate can change biogeochemical cycling in nutrient-poor wetland ecosystems because of 'so called' internal eutrophication as well as the accumulation of dissolved sulphide, which is phytotoxic. Complementary to conventions, we propose that upwelling sulphate rich groundwater may, in fact, promote the conservation of rare and threatened alkaline fens: excessive fertilisation and pyrite oxidation also produces acidity, which invokes calcite dissolution, and increased alkalinity and hardness of the inflowing groundwater. For a very species-rich wetland nature reserve, we show that sulphate is reduced and effectively precipitated as iron sulphides, when this calcareous and sulphate rich groundwater flows upward through the organic soil of the investigated nature reserve. Also, we show that sulphate reduction occurs simultaneously with an increase in alkalinity production, which in our case results in active calcite precipitation in the soil. In spite of the occurring sulphate reduction, we found no evidence for internal eutrophication. Extremely low phosphorous concentration in the pore water could be attributed to a high C:P ratio of soil organic matter and co-precipitation with

  4. Relaxation Biodynamics: Experimental Studies and Modeling of Biogeochemical Processes in Northern Terrestrial Ecosystems

    NASA Astrophysics Data System (ADS)

    Panikov, N. S.; Pankratov, T.

    2001-12-01

    Relaxation phenomenon in physics and chemistry stands for delay between the application of an external stress to a system and its response. When an equilibrated nuclear, atomic or molecular system is subjected to an abrupt physical change (sudden rise in temperature or pressure), it takes time for the system to re-equilibrate under the new conditions. This period (relaxation time) can provide a powerful insight into mechanisms of chemical reaction. Our intention is to extend such approach to analysis of the complex biological phenomena related mainly to microbial growth and activity in the soil. We will show how this information can be used for better understanding the biogeochemical processes in northern terrestrial ecosystems such as aerobic and anaerobic decomposition of organic matter, gas (CO2 and CH4) emission to atmosphere, migration and transformation of biogenic elements, etc. The major source of experimental data is laboratory soil incubation under controlled environmental conditions with abrupt changes in one of the key parameters: temperature (including the water-to-ice phase transition), soil moisture, light (illumination of planted soil), supply of organic substrate and mineral nutrients. The state of biological component before and after abrupt changes was followed by continuous recording of gas (CO2, CH4) exchange rate and (in some special experiments), chemical analysis of the soil solution, and the characterization of soil community (microbial and plants biomass, species composition, change of life forms, etc.) The obtained dynamic data were fit to simulation models (sets of differential equations) describing the C- and energy flow through the studied microcosm systems. The comparison of predicted and observed relaxation dynamics allowed us to discard wrong assumptions on the nature of regulatory mechanisms involved in the functioning of the soil community. Finally, the conclusions derived from the lab experiments are projected to field

  5. Using Bathymodiolus tissue stable isotope signatures to infer biogeochemical process at hydrocarbon seeps

    NASA Astrophysics Data System (ADS)

    Feng, D.; Kiel, S.; Qiu, J.; Yang, Q.; Zhou, H.; Peng, Y.; Chen, D.

    2015-12-01

    Here we use stable isotopes of carbon, nitrogen and sulfur in the tissue of two bathymodiolin mussel species with different chemotrophic symbionts (methanotrophs in B. platifrons and sulfide-oxidizers in B. aduloides) to gain insights into the biogeochemical processes at an active site in 1120 m depth on the Formosa Ridge, called Site F. Because mussels with methanotrophic symbionts acquire the isotope signature of the used methane, the average δ13C values of B. platifrons (-70.3‰; n=36) indicates a biogenic methane source at Site F, consistent with the measured carbon isotope signature of methane (-61.1‰ to -58.7‰) sampled 1.5 m above the mussel beds. The only small offset between the δ13C signatures of the ascending methane and the authigenic carbonate at site F (as low as -55.3‰) suggests only minor mixing of the pore water with marine bicarbonate, which in turn may be used as an indicator for advective rather than diffusive seepage at this site. B. aduloides has much higher average δ13C values of -34.4‰ (n=9), indicating inorganic carbon (DIC) dissolved in epibenthic bottom water as its main carbon source. The DIC was apparently marine bicarbonate with a small contribution of 13C-depleted carbon from locally oxidized methane. The δ34S values of the two mussel species indicate that they used two different sulfur sources. B. platifrons (average δ34S = +6.4±2.6‰; n=36) used seawater sulfate mixed with isotopically light re-oxidized sulfide from the sulfate-dependent anaerobic oxidation of methane (AOM), while the sulfur source of B. aduloides (δ34S = -8.0±3.1‰; n=9) was AOM-derived sulfide used by its symbionts. δ15N values differed between the mussels, with B. platifrons having a wider range of on average slightly lower values (mean = +0.5±0.7‰, n=36) than B. aduloides (mean = +1.1±0.0‰). These values are significantly lower than δ15N values of South China Sea deep-sea sediments (+5‰ to +6‰), indicating that the organic nitrogen

  6. Three-dimensional approach using two coupled models for description of hydrological and biogeochemical processes at the catchment scale

    NASA Astrophysics Data System (ADS)

    Plesca, Ina; Kraft, Philipp; Haas, Edwin; Klatt, Steffen; Butterbach-Bahl, Klaus; Frede, Hans-Georg; Breuer, Lutz

    2014-05-01

    Hydrological and biogeochemical transport through changing landscapes has been well described during the past years in literature. However, the uncertainties of combined water quality and water quantity models are still challenging, both due to a lack in process understanding as well to spatiotemporal heterogeneity of environmental conditions driving the processes. In order to reduce the uncertainty in water quality and runoff predictions at the catchment scale, a variety of different model approaches from empirical-conceptual to fully physical and process based models have been developed. In this study we present a new modelling approach for the investigation of hydrological processes and nutrient cycles, with a focus on nitrogen in a small catchment from Hessen, Germany. A hydrological model based on the model toolbox Catchment Modelling Framework (CMF) has been coupled with the process based biogeochemical model LandscapeDNDC. States, fluxes and parameters are exchanged between the models at high temporal and spatial resolution using the Python scripting language in order to obtain a 3-dimensional model application. The transport of water and nutrients through the catchment is modelled using a 3D Richards/Darcy approach for subsurface fluxes, a kinematic wave approach for surface runoff and a Penman-Monteith based calculation of evapotranspiration. Biogeochemical processes are modelled by Landscape-DNDC, including plant growth and biomass allocation, organic matter mineralisation, nitrification, denitrification and associated nitrous oxide emissions. The interactions and module connectivity between the two coupled models, as well as the model application on a 3.7 km² catchment with the runoff results and nitrogen quantification will be presented in this study.

  7. Afforestation alters the composition of functional genes in soil and biogeochemical processes in South American grasslands.

    PubMed

    Berthrong, Sean T; Schadt, Christopher W; Piñeiro, Gervasio; Jackson, Robert B

    2009-10-01

    Soil microbes are highly diverse and control most soil biogeochemical reactions. We examined how microbial functional genes and biogeochemical pools responded to the altered chemical inputs accompanying land use change. We examined paired native grasslands and adjacent Eucalyptus plantations (previously grassland) in Uruguay, a region that lacked forests before European settlement. Along with measurements of soil carbon, nitrogen, and bacterial diversity, we analyzed functional genes using the GeoChip 2.0 microarray, which simultaneously quantified several thousand genes involved in soil carbon and nitrogen cycling. Plantations and grassland differed significantly in functional gene profiles, bacterial diversity, and biogeochemical pool sizes. Most grassland profiles were similar, but plantation profiles generally differed from those of grasslands due to differences in functional gene abundance across diverse taxa. Eucalypts decreased ammonification and N fixation functional genes by 11% and 7.9% (P < 0.01), which correlated with decreased microbial biomass N and more NH(4)(+) in plantation soils. Chitinase abundance decreased 7.8% in plantations compared to levels in grassland (P = 0.017), and C polymer-degrading genes decreased by 1.5% overall (P < 0.05), which likely contributed to 54% (P < 0.05) more C in undecomposed extractable soil pools and 27% less microbial C (P < 0.01) in plantation soils. In general, afforestation altered the abundance of many microbial functional genes, corresponding with changes in soil biogeochemistry, in part through altered abundance of overall functional gene types rather than simply through changes in specific taxa. Such changes in microbial functional genes correspond with altered C and N storage and have implications for long-term productivity in these soils.

  8. Afforestation alters the composition of functional genes in soil and biogeochemical processes in South American grasslands

    SciTech Connect

    Berthrong, Sean T; Schadt, Christopher Warren; Pineiro, Gervasio; Jackson, Robert B

    2009-01-01

    Soil microbes are highly diverse and control most soil biogeochemical reactions. We examined how microbial functional genes and biogeochemical pools responded to the altered chemical inputs accompanying land use change. We examined paired native grasslands and adjacent Eucalyptus plantations (previously grassland) in Uruguay, a region that lacked forests before European settlement. Along with measurements of soil carbon, nitrogen, and bacterial diversity, we analyzed functional genes using the GeoChip 2.0 microarray, which simultaneously quantified several thousand genes involved in soil carbon and nitrogen cycling. Plantations and grassland differed significantly in functional gene profiles, bacterial diversity, and biogeochemical pool sizes. Most grassland profiles were similar, but plantation profiles generally differed from those of grasslands due to differences in functional gene abundance across diverse taxa. Eucalypts decreased ammonification and N fixation functional genes by 11% and 7.9% (P < 0.01), which correlated with decreased microbial biomass N and more NH{sub 4}{sup +} in plantation soils. Chitinase abundance decreased 7.8% in plantations compared to levels in grassland (P = 0.017), and C polymer-degrading genes decreased by 1.5% overall (P < 0.05), which likely contributed to 54% (P < 0.05) more C in undecomposed extractable soil pools and 27% less microbial C (P < 0.01) in plantation soils. In general, afforestation altered the abundance of many microbial functional genes, corresponding with changes in soil biogeochemistry, in part through altered abundance of overall functional gene types rather than simply through changes in specific taxa. Such changes in microbial functional genes correspond with altered C and N storage and have implications for long-term productivity in these soils.

  9. Integrating functional diversity, food web processes, and biogeochemical carbon fluxes into a conceptual approach for modeling the upper ocean in a high-CO2 world

    NASA Astrophysics Data System (ADS)

    Legendre, Louis; Rivkin, Richard B.

    2005-09-01

    Marine food webs influence climate by channeling carbon below the permanent pycnocline, where it can be sequestered. Because most of the organic matter exported from the euphotic zone is remineralized within the "upper ocean" (i.e., the water column above the depth of sequestration), the resulting CO2 would potentially return to the atmosphere on decadal timescales. Thus ocean-climate models must consider the cycling of carbon within and from the upper ocean down to the depth of sequestration, instead of only to the base of the euphotic zone. Climate-related changes in the upper ocean will influence the diversity and functioning of plankton functional types. In order to predict the interactions between the changing climate and the ocean's biology, relevant models must take into account the roles of functional biodiversity and pelagic ecosystem functioning in determining the biogeochemical fluxes of carbon. We propose the development of a class of models that consider the interactions, in the upper ocean, of functional types of plankton organisms (e.g., phytoplankton, heterotrophic bacteria, microzooplankton, large zooplankton, and microphagous macrozooplankton), food web processes that affect organic matter (e.g., synthesis, transformation, and remineralization), and biogeochemical carbon fluxes (e.g., photosynthesis, calcification, respiration, and deep transfer). Herein we develop a framework for this class of models, and we use it to make preliminary predictions for the upper ocean in a high-CO2 world, without and with iron fertilization. Finally, we suggest a general approach for implementing our proposed class of models.

  10. Spatial patterns in soil biogeochemical process rates along a Louisiana wetland salinity gradient in the Barataria Bay estuarine system

    NASA Astrophysics Data System (ADS)

    Roberts, B. J.; Rich, M. W.; Sullivan, H. L.; Bledsoe, R.; Dawson, M.; Donnelly, B.; Marton, J. M.

    2014-12-01

    Louisiana has the highest rates of coastal wetland loss in the United States. In addition to being lost, Louisiana wetlands experience numerous other environmental stressors including changes in salinity regime (both increases from salt water intrusion and decreases from the creation of river diversions) and climate change induced changes in vegetation (e.g. the northward expansion of Avicennia germinans (black mangrove) into salt marshes). In this study, we examined how these changes might influence biogeochemical process rates important in regulating carbon balance and the cycling, retention, and removal of nutrients in Louisiana wetlands. Specifically, we measured net soil greenhouse gas fluxes and collected cores for the determination of rates of greenhouse gas production, denitrification potential, nitrification potential, iron reduction, and phosphorus sorption from surface (0-5cm) and subsurface (10-15cm) depths for three plots in each of 4 sites along the salinity gradient: a freshwater marsh site, a brackish (7 ppt) marsh site, a salt marsh (17 ppt), and a Avicennia germinans stand (17 ppt; adjacent to salt marsh site) in the Barataria Bay estuarine system. Most biogeochemical processes displayed similar spatial patterns with salt marsh rates being lower than rates in freshwater and/or brackish marsh sites and not having significantly different rates than in Avicennia germinans stands. Rates in surface soils were generally higher than in subsurface soils. These patterns were generally consistent with spatial patterns in soil properties with soil water content, organic matter quantity and quality, and extractable nutrients generally being higher in freshwater and brackish marsh sites than salt marsh and Avicennia germinans sites, especially in surface soils. These spatial patterns suggest that the ability of coastal wetlands to retain and remove nutrients might change significantly in response to future climate changes in the region and that these

  11. Biogeochemical processes governing exposure and uptake of organic pollutant compounds in aquatic organisms.

    PubMed Central

    Farrington, J W

    1991-01-01

    This paper reviews current knowledge of biogeochemical cycles of pollutant organic chemicals in aquatic ecosystems with a focus on coastal ecosystems. There is a bias toward discussing chemical and geochemical aspects of biogeochemical cycles and an emphasis on hydrophobic organic compounds such as polynuclear aromatic hydrocarbons, polychlorinated biphenyls, and chlorinated organic compounds used as pesticides. The complexity of mixtures of pollutant organic compounds, their various modes of entering ecosystems, and their physical chemical forms are discussed. Important factors that influence bioavailability and disposition (e.g., organism-water partitioning, uptake via food, food web transfer) are reviewed. These factors include solubilities of chemicals; partitioning of chemicals between solid surfaces, colloids, and soluble phases; variables rates of sorption, desorption; and physiological status of organism. It appears that more emphasis on considering food as a source of uptake and bioaccumulation is important in benthic and epibenthic ecosystems when sediment-associated pollutants are a significant source of input to an aquatic ecosystem. Progress with mathematical models for exposure and uptake of contaminant chemicals is discussed briefly. PMID:1904812

  12. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system

    PubMed Central

    Anantharaman, Karthik; Brown, Christopher T.; Hug, Laura A.; Sharon, Itai; Castelle, Cindy J.; Probst, Alexander J.; Thomas, Brian C.; Singh, Andrea; Wilkins, Michael J.; Karaoz, Ulas; Brodie, Eoin L.; Williams, Kenneth H.; Hubbard, Susan S.; Banfield, Jillian F.

    2016-01-01

    The subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earth's biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complete strain-resolved genomes that represent the majority of known bacterial phyla as well as 47 newly discovered phylum-level lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to 36% of organisms detected in the system are used to document the distribution of pathways in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in simple consortia, we find that few organisms within the community can conduct multiple sequential redox transformations. As environmental conditions change, different assemblages of organisms are selected for, altering linkages among the major biogeochemical cycles. PMID:27774985

  13. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system

    NASA Astrophysics Data System (ADS)

    Anantharaman, Karthik; Brown, Christopher T.; Hug, Laura A.; Sharon, Itai; Castelle, Cindy J.; Probst, Alexander J.; Thomas, Brian C.; Singh, Andrea; Wilkins, Michael J.; Karaoz, Ulas; Brodie, Eoin L.; Williams, Kenneth H.; Hubbard, Susan S.; Banfield, Jillian F.

    2016-10-01

    The subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earth's biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complete strain-resolved genomes that represent the majority of known bacterial phyla as well as 47 newly discovered phylum-level lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to 36% of organisms detected in the system are used to document the distribution of pathways in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in simple consortia, we find that few organisms within the community can conduct multiple sequential redox transformations. As environmental conditions change, different assemblages of organisms are selected for, altering linkages among the major biogeochemical cycles.

  14. Rn as a geochemical tool for estimating residence times in the hyporheic zone and its application to biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Gilfedder, Benjamin; Dörner, Sebastian; Ebertshäuser, Marlene Esther; Glaser, Barbara; Klug, Maria; Pittroff, Marco; Pieruschka, Ines; Waldemer, Carolin

    2014-05-01

    The hyporheic zone is at the interface between groundwater and surface water systems. It is also often a geochemical and redox boundary between typically reduced groundwater and oxic surface water. It experiences dynamic physical and chemical conditions as both groundwater fluxes and surface water levels vary in time and space. This can be particularly important for processes such as biogeochemical processing of nutrients and carbon. There has recently been an increasing focus on coupling residence times of surface water in the hyporheic zone with biogeochemical reactions. While geochemical profiles can be readily measured using established geochemical sampling techniques (e.g. peepers), quantifying surface water residence times and flow paths within the hyporheic zone is more elusive. The nobel gas radon offers a method for quantification of surface water residence times in the hyporheic zone. Radon activities are typically low in surface waters due to degassing to the atmosphere and decay. However once the surface water flows into the hyporheic zone radon accumulates along the flow path due to emanation from the sediments. Using simple analytical equations the water residence time can be calculated based on the difference between measured 222Rn activities and 222Rn activities at secular equilibrium, with a maximum limit of about 20 days (depending on measurement precision). Rn is particularly suited to residence time measurements in the hyporheic zone since it does not require addition of tracers to the stream nor does it require complex simulations and assumptions (such as 1D vertical flow) as for temperature measurements. As part of the biogeochemistry course at the University of Bayreuth, we have investigated the coupling of redox processes and water residence times in the hyporheic zone using 222Rn as a tracer for residence time. Of particular interest were nitrate and sulfate reduction and methane and CO2 production. Measurements were made in a sandy section

  15. Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes

    USGS Publications Warehouse

    Alexander, R.B.; Böhlke, J.K.; Boyer, E.W.; David, M.B.; Harvey, J.W.; Mulholland, P.J.; Seitzinger, S.P.; Tobias, C.R.; Tonitto, C.; Wollheim, W.M.

    2009-01-01

    The importance of lotic systems as sinks for nitrogen inputs is well recognized. A fraction of nitrogen in streamflow is removed to the atmosphere via denitrification with the remainder exported in streamflow as nitrogen loads. At the watershed scale, there is a keen interest in understanding the factors that control the fate of nitrogen throughout the stream channel network, with particular attention to the processes that deliver large nitrogen loads to sensitive coastal ecosystems. We use a dynamic stream transport model to assess biogeochemical (nitrate loadings, concentration, temperature) and hydrological (discharge, depth, velocity) effects on reach-scale denitrification and nitrate removal in the river networks of two watersheds having widely differing levels of nitrate enrichment but nearly identical discharges. Stream denitrification is estimated by regression as a nonlinear function of nitrate concentration, streamflow, and temperature, using more than 300 published measurements from a variety of US streams. These relations are used in the stream transport model to characterize nitrate dynamics related to denitrification at a monthly time scale in the stream reaches of the two watersheds. Results indicate that the nitrate removal efficiency of streams, as measured by the percentage of the stream nitrate flux removed via denitrification per unit length of channel, is appreciably reduced during months with high discharge and nitrate flux and increases during months of low-discharge and flux. Biogeochemical factors, including land use, nitrate inputs, and stream concentrations, are a major control on reach-scale denitrification, evidenced by the disproportionately lower nitrate removal efficiency in streams of the highly nitrate-enriched watershed as compared with that in similarly sized streams in the less nitrate-enriched watershed. Sensitivity analyses reveal that these important biogeochemical factors and physical hydrological factors contribute nearly

  16. Sulfur Cycling-Related Biogeochemical Processes of Arsenic Mobilization in the Western Hetao Basin, China: Evidence from Multiple Isotope Approaches.

    PubMed

    Guo, Huaming; Zhou, Yinzhu; Jia, Yongfeng; Tang, Xiaohui; Li, Xiaofeng; Shen, Mengmeng; Lu, Hai; Han, Shuangbao; Wei, Chao; Norra, Stefan; Zhang, Fucun

    2016-12-06

    The role of sulfur cycling in arsenic behavior under reducing conditions is not well-understood in previous investigations. This study provides observations of sulfur and oxygen isotope fractionation in sulfate and evaluation of sulfur cycling-related biogeochemical processes controlling dissolved arsenic groundwater concentrations using multiple isotope approaches. As a typical basin hosting high arsenic groundwater, the western Hetao basin was selected as the study area. Results showed that, along the groundwater flow paths, groundwater δ(34)SSO4, δ(18)OSO4, and δ(13)CDOC increased with increases in arsenic, dissolved iron, hydrogen sulfide and ammonium concentrations, while δ(13)CDIC decreased with decreasing Eh and sulfate/chloride. Bacterial sulfate reduction (BSR) was responsible for many of these observed changes. The δ(34)SSO4 indicated that dissolved sulfate was mainly sourced from oxidative weathering of sulfides in upgradient alluvial fans. The high oxygen-sulfur isotope fractionation ratio (0.60) may result from both slow sulfate reduction rates and bacterial disproportionation of sulfur intermediates (BDSI). Data indicate that both the sulfide produced by BSR and the overall BDSI reduce arsenic-bearing iron(III) oxyhydroxides, leading to the release of arsenic into groundwater. These results suggest that sulfur-related biogeochemical processes are important in mobilizing arsenic in aquifer systems.

  17. Introduction to Indian Ocean biogeochemical processes and ecological variability: Current understanding and emerging perspectives

    NASA Astrophysics Data System (ADS)

    Wiggert, Jerry D.; Hood, Raleigh R.; Naqvi, S. Wajih A.; Brink, Kenneth H.; Smith, Sharon L.

    Despite a history of exploration dating back to the classical era and its leading role as a pathway for trade and cultural exchange for the great civilizations of those times, the Indian Ocean has consistently been subject to less attention in the modern era in terms of oceanographic enquiry. The cornerstone of the Sustained Indian Ocean Biogeochemical and Ecosystem Research (SIBER) initiative has been to promote more frequent and persistent research activities that encompass the entire Indian Ocean basin and to facilitate international cooperation to realize these objectives. This volume's chapters are derived from the plenary talks given by the attendees of the first SIBER conference and are a blend of current knowledge reviews and new results. Thus this collection of papers represents an interdisciplinary contribution to the Indian Ocean literature by the leading members of the Indian Ocean research community.

  18. Hybrid Multiscale Simulation of Hydrologic and Biogeochemical Processes in the River-Groundwater Interaction Zone

    NASA Astrophysics Data System (ADS)

    Yang, X.; Scheibe, T. D.; Chen, X.; Hammond, G. E.; Song, X.

    2015-12-01

    The zone in which river water and groundwater mix plays an important role in natural ecosystems as it regulates the mixing of nutrients that control biogeochemical transformations. Subsurface heterogeneity leads to local hotspots of microbial activity that are important to system function yet difficult to resolve computationally. To address this challenge, we are testing a hybrid multiscale approach that couples models at two distinct scales, based on field research at the U. S. Department of Energy's Hanford Site. The region of interest is a 400 x 400 x 20 m macroscale domain that intersects the aquifer and the river and contains a contaminant plume. However, biogeochemical activity is high in a thin zone (mud layer, <1 m thick) immediately adjacent to the river. This microscale domain is highly heterogeneous and requires fine spatial resolution to adequately represent the effects of local mixing on reactions. It is not computationally feasible to resolve the full macroscale domain at the fine resolution needed in the mud layer, and the reaction network needed in the mud layer is much more complex than that needed in the rest of the macroscale domain. Hence, a hybrid multiscale approach is used to efficiently and accurately predict flow and reactive transport at both scales. In our simulations, models at both scales are simulated using the PFLOTRAN code. Multiple microscale simulations in dynamically defined sub-domains (fine resolution, complex reaction network) are executed and coupled with a macroscale simulation over the entire domain (coarse resolution, simpler reaction network). The objectives of the research include: 1) comparing accuracy and computing cost of the hybrid multiscale simulation with a single-scale simulation; 2) identifying hot spots of microbial activity; and 3) defining macroscopic quantities such as fluxes, residence times and effective reaction rates.

  19. Biogeochemical processes controlling aquatic quality during drying and rewetting events in a Mediterranean non-perennial river reach.

    PubMed

    Skoulikidis, Nikolaos Th; Vardakas, Leonidas; Amaxidis, Yorgos; Michalopoulos, Panagiotis

    2017-01-01

    Desiccation and re-flooding processes play a key role on hydrological features of non-perennial rivers. This study addresses the effects of these processes on the aquatic quality and unravels underlying biogeochemical processes of an intermittent river reach in southern Greece containing a spring-fed pool. Combined spatio-temporal sampling for physicochemical parameters, major ions and nutrients and high frequency automatic monitoring during a hydrological year (2010-2011) indicate that during the dry period, solute variation was controlled by "concentration" processes (i.e. evaporative concentration and high dissolved ion input from base flow sources). Metabolic and "concentration" processes appear intensified during desiccation and water temperature rise. Photosynthesis induced carbonate precipitation, while respiration increased with gradual desiccation, but did not cause carbonate dissolution. In certain cases, photosynthesis and respiration may have occurred simultaneously as a result of differing microhabitat metabolism within the same water body. However, during the entire desiccation cycle, autotrophic production exceeded respiration resulting in relatively high oxygen concentrations, even during the night. With increasing desiccation, a rise in nutrient assimilation occurred as well as ammonification and/or desorption of ammonium from sediments, with simultaneous loss of nitrate. During initial floods, flushing of carbonate phases was not significant. In contrast, initial flood events were characterized by the dissolution of very soluble salts, i.e. epsomite-type (MgSO4∗7H2O) and gypsum (CaSO4∗2H2O). Regarding sediment transport and nutrients, a 1000-times increase of suspended sediments was observed during re-flooding, while the nutrient quality degraded, particularly for N-species. Results of the current research may serve to better understand the links of hydrological and biogeochemical processes in non-perennial rivers and streams towards their

  20. Autonomous Studies of Coupled Physical-Biogeochemical Processes- Lessons from NAB08 and Prospects for the Future

    NASA Astrophysics Data System (ADS)

    Lee, Craig; D'Asaro, Eric; Perry, Mary Jane

    2013-04-01

    Motivated by the increasing application of autonomous sensors to physical, biological and biogeochemical investigations at the submesoscale, we examine techniques developed during the 2008 North Atlantic Bloom Experiment (NAB08), review successes, failures, and lessons learned, and offer perspectives on how these approaches might evolve in response to near-term shifts in scientific goals and technological advances. NAB08 exploited the persistence of autonomous platforms coupled with the extensive capabilities of a ship-based sampling program to investigate the patch-scale physics, biogeochemistry and community dynamics of a spring phytoplankton bloom. Autonomous platforms (Seagliders following a heavily-instrumented Lagrangian float) collected measurements in a quasi-Lagrangian frame, beginning before bloom initiation and extending well past its demise. This system of autonomous instruments resolved variability at the patch scale while also providing the persistence needed to follow bloom evolution. Biological and biogeochemical measurements were conducted from R/V Knorr during the bloom. An aggressive protocol for sensor calibration and proxy building bridged the ship-based and autonomous efforts, leveraging the intensive but sparse ship-based measurements onto the much more numerous autonomous observations. The combination of sampling in the patch-following frame, persistent, autonomous surveys and focused, aggressive calibration and proxy building produced robust, quantitative estimates of physical and biogeochemical processes. For example, budgets of nitrate, dissolved oxygen and particulate organic carbon (POC) following the patch were used to estimate net community production (NCP) and apparent POC export. Net community production was 805 mmol C?m-2 during the main bloom, with apparent POC export of 564 mmol C?m-2 and 282 mmol C?m-2 lost due to net respiration (70%) and apparent export (30%) on the day following bloom termination. Thus, POC export of roughly

  1. Statistical evaluation of biogeochemical variables affecting spatiotemporal distributions of multiple free metal ion concentrations in an urban estuary.

    PubMed

    Dong, Zhao; Lewis, Christopher G; Burgess, Robert M; Coull, Brent; Shine, James P

    2016-05-01

    Free metal ion concentrations have been recognized as a better indicator of metal bioavailability in aquatic environments than total dissolved metal concentrations. However, our understanding of the determinants of free ion concentrations, especially in a metal mixture, is limited, due to underexplored techniques for measuring multiple free metal ions simultaneously. In this work, we performed statistical analyses on a large dataset containing repeated measurements of free ion concentrations of Cu, Zn, Pb, Ni, and Cd, the most commonly measured metals in seawater, at five inshore locations in Boston Harbor, previously collected using an in-situ equilibrium-based multi-metal free ion sampler, the 'Gellyfish'. We examined correlations among these five metals by season, and evaluated effects of 10 biogeochemical variables on free ion concentrations over time and location through multivariate regressions. We also explored potential clustering among the five metals through a principal component analysis. We found significant correlations among metals, with varying patterns over season. Our regression results suggest that instead of dissolved metals, pH, salinity, temperature and rainfall were the most significant determinants of free metal ion concentrations. For example, a one-unit decrease in pH was associated with a 2.2 (Cd) to 99 (Cu) times increase in free ion concentrations. This work is among the first to reveal key contributors to spatiotemporal variations in free ion concentrations, and demonstrated the usefulness of the Gellyfish sampler in routine sampling of free ions within metal mixtures and in generating data for statistical analyses.

  2. Ozone and Nitrogen Deposition as Modifiers of Biogeochemical Fluxes and Processes in California Forests

    NASA Astrophysics Data System (ADS)

    Fenn, M. E.

    2011-12-01

    The combined effects of ozone and N deposition results in major perturbations of C and N cycling in forests of southern and central California. Increased shoot:root ratios of the major trees species, N-stimulation of aboveground growth, and premature foliar abscission result in greater aboveground C and N pools. Fire suppression exacerbates these perturbations and provides the opportunity for chronic N deposition to further increase the stand densification problem. Long-term litter decomposition rates are retarded by N enrichment which contributes further to litter accumulation in the forest floor. Stage 3 of N saturation in California mixed conifer forests occurs as chronic N deposition, in conjunction with co-occurring ozone effects, decreases fine root biomass, interferes with stomatal control, and increases the susceptibility of ponderosa pine trees to drought stress and bark beetle attack, leading to increased stand mortality. Hot moments of N transfers from canopy to the forest floor occur during precipitation events that follow long dry periods, but particularly during fog events. During initial soil wet up, pulses of NO and N2O emissions from the forest floor occur. Streamwater losses of nitrate are highest following storms preceded by dry periods, but also during peak runoff, typically in February and March. However, major losses of accumulated N occur during and after fire events. However, ecosystem N budgets, biogeochemical modeling studies and experimental burns in N-saturated chaparral catchments in southern California demonstrate that symptoms of N excess are not easily reversed by N release in and following fire. Even with decreased N deposition, momentum for elevated N losses from California forests would likely continue, driven by actively nitrifying soils and increased N content of litter and soil organic matter. Initial studies show that during peak runoff, as much as 20-40% of runoff nitrate in some catchments is throughput of unassimilated

  3. The role of perched aquifers in hydrological connectivity and biogeochemical processes in vernal pool landscapes, Central Valley, California

    NASA Astrophysics Data System (ADS)

    Cable Rains, Mark; Fogg, Graham E.; Harter, Thomas; Dahlgren, Randy A.; Williamson, Robert J.

    2006-03-01

    Relatively little is known about the role of perched aquifers in hydrological, biogeochemical, and biological processes of vernal pool landscapes. The objectives of this study are to introduce a perched aquifer concept for vernal pool formation and maintenance and to examine the resulting hydrological and biogeochemical phenomena in a representative catchment with three vernal pools connected to one another and to a seasonal stream by swales. A combined hydrometric and geochemical approach was used. Annual rainfall infiltrated but perched on a claypan/duripan, and this perched groundwater flowed downgradient toward the seasonal stream. The upper layer of soil above the claypan/duripan is 0.6 m in thickness in the uplands and 0.1 m in thickness in the vernal pools. Some groundwater flowed through the vernal pools when heads in the perched aquifer exceeded 0.1 m above the claypan/duripan. Perched groundwater discharge accounted for 30-60% of the inflow to the vernal pools during and immediately following storm events. However, most perched groundwater flowed under or around the vernal pools or was recharged by annual rainfall downgradient of the vernal pools. Most of the perched groundwater was discharged to the outlet swale immediately upgradient of the seasonal stream, and most water discharging from the outlet swale to the seasonal stream was perched groundwater that had not flowed through the vernal pools. Therefore, nitrate-nitrogen concentrations were lower (e.g. 0.17 to 0.39 mg l-1) and dissolved organic carbon concentrations were higher (e.g. 5.97 to 3.24 mg l-1) in vernal pool water than in outlet swale water discharging to the seasonal stream. Though the uplands, vernal pools, and seasonal stream are part of a single surface-water and perched groundwater system, the vernal pools apparently play a limited role in controlling landscape-scale water quality.

  4. Stormwater sediment and bioturbation influences on hydraulic functioning, biogeochemical processes, and pollutant dynamics in laboratory infiltration systems.

    PubMed

    Nogaro, Geraldine; Mermillod-Blondin, Florian

    2009-05-15

    Stormwater sediments that accumulate at the surface of infiltration basins reduce infiltration efficiencies by physical clogging and produce anoxification in the subsurface. The present study aimed to quantify the influence of stormwater sediment origin (urban vs industrial catchments) and the occurrence of bioturbators (tubificid worms) on the hydraulic functioning, aerobic/anaerobic processes, and pollutant dynamics in stormwater infiltration systems. In laboratory sediment columns, effects of stormwater sediments and tubificids were examined on hydraulic conductivity, microbial processes, and pollutant releases. Significant differences in physical (particle size distribution) and chemical characteristics betoveen the two stormwater sediments led to distinct effects of these sediments on hydraulic and biogeochemical processes. Bioturbation by tubificid worms could increase the hydraulic conductivity in stormwater infiltration columns, but this effect depended on the characteristics of the stormwater sediments. Bioturbation-driven increases in hydraulic conductivity stimulated aerobic microbial processes and enhanced vertical fluxes of pollutants in the sediment layer. Our results showed that control of hydraulic functioning by stormwater sediment characteristics and/ or biological activities (such as bioturbation) determined the dynamics of organic matter and pollutants in stormwater infiltration devices.

  5. Biogeochemical and hydrologic processes controlling mercury cycling in Great Salt Lake, Utah

    NASA Astrophysics Data System (ADS)

    Naftz, D.; Kenney, T.; Angeroth, C.; Waddell, B.; Darnall, N.; Perschon, C.; Johnson, W. P.

    2006-12-01

    Great Salt Lake (GSL), in the Western United States, is a terminal lake with a highly variable surface area that can exceed 5,100 km2. The open water and adjacent wetlands of the GSL ecosystem support millions of migratory waterfowl and shorebirds from throughout the Western Hemisphere, as well as a brine shrimp industry with annual revenues exceeding 70 million dollars. Despite the ecologic and economic significance of GSL, little is known about the biogeochemical cycling of mercury (Hg) and no water-quality standards currently exist for this system. Whole water samples collected since 2000 were determined to contain elevated concentrations of total Hg (100 ng/L) and methyl Hg (33 ng/L). The elevated levels of methyl Hg are likely the result of high rates of SO4 reduction and associated Hg methylation in persistently anoxic areas of the lake at depths greater than 6.5 m below the water surface. Hydroacoustic equipment deployed in this anoxic layer indicates a "conveyor belt" flow system that can distribute methyl Hg in a predominantly southerly direction throughout the southern half of GSL (fig. 1, URL: http://users.o2wire.com/dnaftz/Dave/AGU-abs-figs- AUG06.pdf). Periodic and sustained wind events on GSL may result in transport of the methyl Hg-rich anoxic water and bottom sediments into the oxic and biologically active regions. Sediment traps positioned above the anoxic brine interface have captured up to 6 mm of bottom sediment during cumulative wind-driven resuspension events (fig. 2, URL:http://users.o2wire.com/dnaftz/Dave/AGU-abs-figs-AUG06.pdf). Vertical velocity data collected with hydroacoustic equipment indicates upward flow > 1.5 cm/sec during transient wind events (fig. 3, URL:http://users.o2wire.com/dnaftz/Dave/AGU-abs-figs-AUG06.pdf). Transport of methyl Hg into the oxic regions of GSL is supported by biota samples. The median Hg concentration (wet weight) in brine shrimp increased seasonally from the spring to fall time period and is likely a

  6. Affect, Behavioural Schemas and the Proving Process

    ERIC Educational Resources Information Center

    Selden, Annie; McKee, Kerry; Selden, John

    2010-01-01

    In this largely theoretical article, we discuss the relation between a kind of affect, behavioural schemas and aspects of the proving process. We begin with affect as described in the mathematics education literature, but soon narrow our focus to a particular kind of affect--nonemotional cognitive feelings. We then mention the position of feelings…

  7. Coupled hydrological and biogeochemical processes controlling variability of nitrogen species in streamflow during autumn in an upland forest

    NASA Astrophysics Data System (ADS)

    Sebestyen, Stephen D.; Shanley, James B.; Boyer, Elizabeth W.; Kendall, Carol; Doctor, Daniel H.

    2014-02-01

    Autumn is a season of dynamic change in forest streams of the northeastern United States due to effects of leaf fall on both hydrology and biogeochemistry. Few studies have explored how interactions of biogeochemical transformations, various nitrogen sources, and catchment flow paths affect stream nitrogen variation during autumn. To provide more information on this critical period, we studied (1) the timing, duration, and magnitude of changes to stream nitrate, dissolved organic nitrogen (DON), and ammonium concentrations; (2) changes in nitrate sources and cycling; and (3) source areas of the landscape that most influence stream nitrogen. We collected samples at higher temporal resolution for a longer duration than typical studies of stream nitrogen during autumn. This sampling scheme encompassed the patterns and extremes that occurred during base flow and stormflow events of autumn. Base flow nitrate concentrations decreased by an order of magnitude from 5.4 to 0.7 µmol L-1 during the week when most leaves fell from deciduous trees. Changes to rates of biogeochemical transformations during autumn base flow explained the low nitrate concentrations; in-stream transformations retained up to 72% of the nitrate that entered a stream reach. A decrease of in-stream nitrification coupled with heterotrophic nitrate cycling were primary factors in the seasonal nitrate decline. The period of low nitrate concentrations ended with a storm event in which stream nitrate concentrations increased by 25-fold. In the ensuing weeks, peak stormflow nitrate concentrations progressively decreased over closely spaced, yet similarly sized events. Most stormflow nitrate originated from nitrification in near-stream areas with occasional, large inputs of unprocessed atmospheric nitrate, which has rarely been reported for nonsnowmelt events. A maximum input of 33% unprocessed atmospheric nitrate to the stream occurred during one event. Large inputs of unprocessed atmospheric nitrate show

  8. Coupled hydrological and biogeochemical processes controlling variability of nitrogen species in streamflow during autumn in an upland forest

    USGS Publications Warehouse

    Sebestyen, Stephen D.; Shanley, James B.; Boyer, Elizabeth W.; Kendall, Carol; Doctor, Daniel H.

    2014-01-01

    Autumn is a season of dynamic change in forest streams of the northeastern United States due to effects of leaf fall on both hydrology and biogeochemistry. Few studies have explored how interactions of biogeochemical transformations, various nitrogen sources, and catchment flow paths affect stream nitrogen variation during autumn. To provide more information on this critical period, we studied (1) the timing, duration, and magnitude of changes to stream nitrate, dissolved organic nitrogen (DON), and ammonium concentrations; (2) changes in nitrate sources and cycling; and (3) source areas of the landscape that most influence stream nitrogen. We collected samples at higher temporal resolution for a longer duration than typical studies of stream nitrogen during autumn. This sampling scheme encompassed the patterns and extremes that occurred during base flow and stormflow events of autumn. Base flow nitrate concentrations decreased by an order of magnitude from 5.4 to 0.7 µmol L−1 during the week when most leaves fell from deciduous trees. Changes to rates of biogeochemical transformations during autumn base flow explained the low nitrate concentrations; in-stream transformations retained up to 72% of the nitrate that entered a stream reach. A decrease of in-stream nitrification coupled with heterotrophic nitrate cycling were primary factors in the seasonal nitrate decline. The period of low nitrate concentrations ended with a storm event in which stream nitrate concentrations increased by 25-fold. In the ensuing weeks, peak stormflow nitrate concentrations progressively decreased over closely spaced, yet similarly sized events. Most stormflow nitrate originated from nitrification in near-stream areas with occasional, large inputs of unprocessed atmospheric nitrate, which has rarely been reported for nonsnowmelt events. A maximum input of 33% unprocessed atmospheric nitrate to the stream occurred during one event. Large inputs of unprocessed atmospheric nitrate

  9. Impact of long-term drainage on hydrogeological and biogeochemical processes near a drainage ditch in a Canadian peatland

    NASA Astrophysics Data System (ADS)

    Kopp, B.; Fleckenstein, J.; Blodau, C.

    2009-04-01

    Little is known about long-term effects of climate change on hydrogeological and biogeochemical processes in northern peatlands. A drainage ditch in the Mer Bleue Bog, Canada which has been established around 100 years ago, was investigated as natural analogue for long-term drying due to climate change. To examine the effects of the hydrological manipulation, several piezometer nests were installed across a transect from an open bog, across the drainage ditch into a now forested bog. Forest growth likely started after lowering of the groundwater table. Piezometer nests were installed in 200, 60, 30, 15 m distance from the drainage ditch on each side; three nests were installed across the drainage ditch. Piezometers were inserted into 0.25, 0.75, 1.0, 2.0 and 3.0 m depth. Pore water samples were taken on three occasions during the study period in summer 2008 and contents of carbondioxide (CO2), methane (CH4), dissolved organic carbon (DOC), main anions and DOC quality were analysed. Water levels in each piezometer were measured every two to nine days and logger were inserted in two piezometer (depth 0.75m and 2.0m) at the 200 m sites which allowed continuous monitoring of hydraulic potentials. By ground water modelling (using the MODFLOW pre- and post-processor Groundwater Vistas) differences in ground water patterns will be elucidated. First results show higher concentrations of CO2, alongside with high concentrations of DOC and low concentrations of CH4 in the forested area, especially in the upper most 0.75 m, compared to the open bog. Together with low hydraulic conductivities (Kf) and a lower water table in the forested area, this indicates higher mineralization rates and higher decomposed peat. High chloride (Cl-) concentrations, stemming from under-lying marine clay, in the forested area suggest that lower water tables together with greater evapotranspiration (ET) result in an increased upwelling of ground water. Highest concentrations of CO2 and CH4 were

  10. Relating hyporheic fluxes, residence times, and redox-sensitive biogeochemical processes upstream of beaver dams

    USGS Publications Warehouse

    Briggs, Martin A.; Lautz, Laura; Hare, Danielle K.

    2013-01-01

    ¨hler number seemed to overestimate the actual transition as indicated by multiple secondary electron acceptors, illustrating the gradient nature of anaerobic transition. Temporal flux variability in low-flux morphologies generated a much greater range in hyporheic redox conditions compared to high-flux zones, and chemical responses to changing flux rates were consistent with those predicted from the empirical relationship between redox condition and residence time. The Raz tracer revealed that hyporheic flow paths have strong net aerobic respiration, particularly at higher residence time, but this reactive exchange did not affect the net stream signal at the reach scale.

  11. U(VI) reduction at the nano, meso and meter scale: concomitant transition from simpler to more complex biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Veeramani, H.; Hochella, M. F.

    2012-12-01

    Reduction of aqueous hexavalent U(VI) to the sparingly soluble nanoparticulate mineral uraninite [UO2] represents a promising strategy for the in situ immobilization of uranium in contaminated subsurface sediments and groundwater. Studies related to uranium reduction have been extensively carried out at various scales ranging from nano to meso to the meter scale with varying degrees of success. While nanoscale processes involving simple two-electron transfer reactions such as enzymatic microbial U(VI) reduction results in biogenic UO2 formation, mesoscale processes involving minerals and U(VI) are a step up in complexity and have shown varying results ranging from partial uranium reduction to the formation of mixed U(IV)/U(V) species. Although nano- and meso-scale biogeochemical processes have been helpful in predicting the contaminant dynamics at the meter scale, their occurrence is not necessarily apparent in soils and aquifers given the enormous volume of contaminated groundwater to be remediated, among other factors. The formation and long-term stability of biologically reduced uranium at the meter scale is also determined in addition by the complex interplay of aqueous geochemistry, hydrology, soil and sediment mineralogy and microbial community dynamics. For instance, indigenous subsurface microbes often encounter multiple electron acceptors in heterogeneous environments during biostimulation and can catalyze the formation of various reactive biogenic minerals. In such cases, abiotic interactions between U(VI) and reactive biogenic minerals is potentially important because the success of a remediation strategy is contingent upon the speciation of reduced uranium. This presentation will give an overview of uranium reduction ranging from simple nanoscale biological processes to increasingly complex meso and meter scale processes involving abiotic interactions between aqueous uranium and nano-biogenic minerals and the effect of mineralogy and aqueous

  12. Benthic biological and biogeochemical patterns and processes across an oxygen minimum zone (Pakistan margin, NE Arabian Sea)

    NASA Astrophysics Data System (ADS)

    Cowie, Gregory L.; Levin, Lisa A.

    2009-03-01

    Oxygen minimum zones (OMZs) impinging on continental margins present sharp gradients ideal for testing environmental factors thought to influence C cycling and other benthic processes, and for identifying the roles that biota play in these processes. Here we introduce the objectives and initial results of a multinational research program designed to address the influences of water depth, the OMZ (˜150-1300 m), and organic matter (OM) availability on benthic communities and processes across the Pakistan Margin of the Arabian Sea. Hydrologic, sediment, and faunal characterizations were combined with in-situ and shipboard experiments to quantify and compare biogeochemical processes and fluxes, OM burial efficiency, and the contributions of benthic communities, across the OMZ. In this introductory paper, we briefly review previous related work in the Arabian Sea, building the rationale for integrative biogeochemical and ecological process studies. This is followed by a summary of individual volume contributions and a brief synthesis of results. Five primary stations were studied, at 140, 300, 940, 1200 and 1850 m water depth, with sampling in March-May (intermonsoon) and August-October (late-to-postmonsoon) 2003. Taken together, the contributed papers demonstrate distinct cross-margin gradients, not only in oxygenation and sediment OM content, but in benthic community structure and function, including microbial processes, the extent of bioturbation, and faunal roles in C cycling. Hydrographic studies demonstrated changes in the intensity and extent of the OMZ during the SW monsoon, with a shoaling of the upper OMZ boundary that engulfed the previously oxygenated 140-m site. Oxygen profiling and microbial process rate determinations demonstrated dramatic differences in oxygen penetration and consumption across the margin, and in the relative importance of anaerobic processes, but surprisingly little seasonal change. A broad maximum in sediment OM content occurred on

  13. Integrated Biogeochemical and Hydrologic Processes Driving Arsenic Release from Shallow Sediments to Groundwaters of the Mekong Delta

    SciTech Connect

    Kocar, Benjamin D.; Polizzotto, Matthew L.; Benner, Shawn G.; Ying, Samantha C.; Ung, Mengieng; Ouch, Kagna; Samreth, Sopheap; Suy, Bunseang; Phan, Kongkea; Sampson, Michael; Fendorf, Scott

    2008-11-01

    Arsenic is contaminating the groundwater of Holocene aquifers throughout South and Southeast Asia. To examine the biogeochemical and hydrological processes influencing dissolved concentrations and transport of As within soils/sediments in the Mekong River delta, a ~50 km₂ field site was established near Phnom Penh, Cambodia, where aqueous As concentrations are dangerously high and where groundwater retrieval for irrigation is minimal. Dissolved As concentrations vary spatially, ranging up to 1300 µg/L in aquifer groundwater and up to 600 µg/L in surficial clay pore water. Groundwaters with high As concentrations are reducing with negligible dissolved O₂ and high concentrations of Fe(II), NH⁺₄ , and dissolved organic C. Within near-surface environments, these conditions are most pronounced in sediments underlying permanent wetlands, often found within oxbow channels near the Mekong River. There, labile C, co-deposited with As-bearing Fe (hydr)oxides under reducing conditions, drives the reductive mobilization (inclusive of Fe and As reduction) of As. Here, conditions are described under which As is mobilized from these sediments, and near-surface As release is linked to aquifer contamination over long time periods (100s to 1000s of years). Site biogeochemistry is coupled with extensive hydrologic measurements, and, accordingly, a comprehensive interpretation of spatial As release and transport within a calibrated hydraulic flow-field is provided of an As-contaminated aquifer that is representative of those found throughout South and Southeast Asia.

  14. Generalized total least squares to characterize biogeochemical processes of the ocean

    NASA Astrophysics Data System (ADS)

    Guglielmi, Véronique; Goyet, Catherine; Touratier, Franck; El Jai, Marie

    2017-01-01

    The chemical composition of the global ocean is governed by biological, chemical, and physical processes. These processes interact with each other so that the concentrations of carbon, oxygen, nitrogen (mainly from nitrate, nitrite, ammonium), and phosphorous (mainly from phosphate), vary in constant proportions, referred to as the Redfield ratios. We construct here the generalized total least squares estimator of these ratios. The significance of our approach is twofold; it respects the hydrological characteristics of the studied areas, and it can be applied identically in any area where enough data are available. The tests applied to Atlantic Ocean data highlight a variability of the Redfield ratios, both with geographical location and with depth. This variability emphasizes the importance of local and accurate estimates of Redfield ratios.

  15. Potential for real-time understanding of coupled hydrologic and biogeochemical processes in stream ecosystems: Future integration of telemetered data with process models for glacial meltwater streams

    NASA Astrophysics Data System (ADS)

    McKnight, Diane M.; Cozzetto, Karen; Cullis, James D. S.; Gooseff, Michael N.; Jaros, Christopher; Koch, Joshua C.; Lyons, W. Berry; Neupauer, Roseanna; Wlostowski, Adam

    2015-08-01

    While continuous monitoring of streamflow and temperature has been common for some time, there is great potential to expand continuous monitoring to include water quality parameters such as nutrients, turbidity, oxygen, and dissolved organic material. In many systems, distinguishing between watershed and stream ecosystem controls can be challenging. The usefulness of such monitoring can be enhanced by the application of quantitative models to interpret observed patterns in real time. Examples are discussed primarily from the glacial meltwater streams of the McMurdo Dry Valleys, Antarctica. Although the Dry Valley landscape is barren of plants, many streams harbor thriving cyanobacterial mats. Whereas a daily cycle of streamflow is controlled by the surface energy balance on the glaciers and the temporal pattern of solar exposure, the daily signal for biogeochemical processes controlling water quality is generated along the stream. These features result in an excellent outdoor laboratory for investigating fundamental ecosystem process and the development and validation of process-based models. As part of the McMurdo Dry Valleys Long-Term Ecological Research project, we have conducted field experiments and developed coupled biogeochemical transport models for the role of hyporheic exchange in controlling weathering reactions, microbial nitrogen cycling, and stream temperature regulation. We have adapted modeling approaches from sediment transport to understand mobilization of stream biomass with increasing flows. These models help to elucidate the role of in-stream processes in systems where watershed processes also contribute to observed patterns, and may serve as a test case for applying real-time stream ecosystem models.

  16. Development of advanced process-based model towards evaluation of boundless biogeochemical cycles in terrestrial-aquatic continuum

    NASA Astrophysics Data System (ADS)

    Nakayama, Tadanobu; Maksyutov, Shamil

    2014-05-01

    Recent research shows inland water may play some role in continental biogeochemical cycling though its contribution has remained uncertain due to a paucity of data (Battin et al. 2009). The author has developed process-based National Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama, 2008a-b, 2010, 2011a-b, 2012a-c, 2013; Nakayama and Fujita, 2010; Nakayama and Hashimoto, 2011; Nakayama and Shankman, 2013a-b; Nakayama and Watanabe, 2004, 2006, 2008a-b; Nakayama et al., 2006, 2007, 2010, 2012), which incorporates surface-groundwater interactions, includes up- and down-scaling processes between local, regional and global scales, and can simulate iteratively nonlinear feedback between hydrologic, geomorphic, and ecological processes. In this study, NICE was extended to evaluate global hydrologic cycle by using various global datasets. The simulated result agreed reasonably with that in the previous research (Fan et al., 2013) and extended to clarify further eco-hydrological process in global scale. Then, NICE was further developed to incorporate the biogeochemical cycle including the reaction between inorganic and organic carbons (DOC, POC, DIC, pCO2, etc.) in the biosphere (terrestrial and aquatic ecosystems including surface water and groundwater). The model simulated the carbon cycle, for example, CO2 evasion from inland water in global scale, which is relatively in good agreement in that estimated by empirical relation using the previous pCO2 data (Aufdenkampe et al., 2011; Global River Chemistry Database, 2013). This simulation system would play important role in identification of full greenhouse gas balance of the biosphere and spatio-temporal hot spots in boundless biogeochemical cycle (Cole et al. 2007; Frei et al. 2012). References; Aufdenkampe, A.K., et al., Front. Ecol. Environ., doi:10.1890/100014, 2011. Battin, T.J., et al., Nat. Geosci., 2, 598-600, 2009. Cole, J.J. et al., Ecosystems, doi:10.1007/s10021-006-9013-8, 2007. Fan, Y. et al

  17. New HYDRUS Modules for Simulating Preferential Flow, Colloid-Facilitated Contaminant Transport, and Various Biogeochemical Processes in Soils

    NASA Astrophysics Data System (ADS)

    Simunek, J.; Sejna, M.; Jacques, D.; Langergraber, G.; Bradford, S. A.; van Genuchten, M. Th.

    2012-04-01

    We have dramatically expanded the capabilities of the HYDRUS (2D/3D) software package by developing new modules to account for processes not available in the standard HYDRUS version. These new modules include the DualPerm, C-Hitch, HP2/3, Wetland, and Unsatchem modules. The dual-permeability modeling approach of Gerke and van Genuchten [1993] simulating preferential flow and transport is implemented into the DualPerm module. Colloid transport and colloid-facilitated solute transport, the latter often observed for many contaminants, such as heavy metals, radionuclides, pharmaceuticals, pesticides, and explosives [Šimůnek et al., 2006] are implemented into the C-Hitch module. HP2 and HP3 are the two and three-dimensional alternatives of the HP1 module, currently available with HYDRUS-1D [Jacques and Šimůnek, 2005], that couple HYDRUS flow and transport routines with the generic geochemical model PHREEQC of Parkhurst and Appelo [1999]. The Wetland module includes two alternative approaches (CW2D of Langergraber and Šimůnek [2005] and CWM1 of Langergraber et al. [2009]) for modeling aerobic, anaerobic, and anoxic biogeochemical processes in natural and constructed wetlands. Finally, the Unsatchem module simulates the transport and reactions of major ions in a soil profile. Brief descriptions and an application of each module will be presented. Except for HP3, all modules simulate flow and transport processes in two-dimensional transport domains. All modules are fully supported by the HYDRUS graphical user interface. Further development of these modules, as well as of several other new modules (such as Overland), is still envisioned. Continued feedback from the research community is encouraged.

  18. Distinguishing biogeochemical processes influencing phosphorus dynamics in oxidizing and desiccating mud deposits from a freshwater wetland system

    NASA Astrophysics Data System (ADS)

    Saaltink, Rémon; Dekker, Stefan C.; Wassen, Martin J.; Griffioen, Jasper

    2015-04-01

    Focus and aim: Currently, lake Markermeer (680 km2) provides poor environmental conditions for the development of flora and fauna due to a thick fluffy layer that prevails at the lake's bed. To improve the conditions in the lake, large wetlands will be built from this fluffy layer, possibly mixed with sand or with the underlying Southern Sea deposit. The aim of this study is to distinguish biogeochemical processes influencing phosphorus dynamics in porewater during oxidation and desiccation of mud deposits from this lake. We focus on three important aspects that potentially influence these processes: granulometry, sediment type and modification by plants. Material and methods: A greenhouse experiment was conducted with three types of sediment that potentially will function as building material for the islands: fluffy mud (FM), sandy mud (SM) and Southern Sea deposit (SSD). Reed (Phragmites australis) was planted in half of the pots to distinguish influence by plants. For six months, the porewater-, soil- and plant quality was monitored to determine important biogeochemical processes. Variables measured from the porewater include: Cl-, NO2-, NO3-, PO43- and SO42- (IC); Ca, Fe, K, Mn, Na, P, Si, Sr (ICP-OES); as well as Fe2+, pH, alkalinity and EC. A phosphorus fractionation was carried out on the sediment to determine the phosphorus pools and the major elements of the sediments were determined following an aqua regia destruction using ICP-OES. Plant tissue was analysed for N, P, K and C content as well as the above- and belowground biomass. Results and discussion: It was found that sulfate production was the most important process influencing phosphorus availability in these soils. Due to oxidation processes in the mud, sulfate (SO42-) concentrations rose drastically in porewater from 100 ppm at the beginning of the experiment to well over 2000 ppm at the end of the experiment. This effect was strongest in SSD soils, likely due to higher presence of pyrite that gets

  19. The Precambrian Biogeochemical Carbon Isotopic Record: Contributions of Thermal Versus Biological Processes

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Superplumes offer a new approach for understanding global C cycles. Isotopes help to discern the impacts of geological, environmental and biological processes ujpun the evolution of these cycles. For example, C-13/C-12 values of coeval sedimentary organics and carbonates give global estimates of the fraction of C buried as organics (Forg), which today lies near 0.2. Before Oxygenic photosynthesis arose, our biosphere obtained reducing power for biosynthesis solely from thermal volatiles and rock alteration. Thus Forg was dominated by the mantle redox state, which has remained remarkably constant for greater than Gy. Recent data confirm that the long-term change in Forg had been small, indicating that the mantle redox buffer remains important even today. Oxygenic photosynthesis enabled life to obtain additional reducing power by splitting the water molecule. Accordingly, biological organic production rose above the level constrained by the mantle-derived flux of reduced species. For example, today, chemoautotrophs harvesting energy from hydrothermal emanations can synthesize at most between 0.2 x 10(exp 12) and 2x 10(exp 12) mol C yr-1 of organic C globally. In contrast, global photosynthetic productivity is estimated at 9000 x 10(exp 12) mol C yr-1. Occasionally photosynthetic productivity did contribute to dramatically -elevated Forg values (to 0.4 or more) as evidenced by very high carbonate C-13/C-12. The interplay between biological, tectonic and other environmental factors is illustrated by the mid-Archean to mid-Proterozoic isotopic record. The relatively constant C-13/C-12 values of Archean carbonates support the view that photosynthetically-driven Forg increases were not yet possible. In contrast, major excursions in C-13/C-12, and thus also in Forg, during the early Proterozoic confirmed the global importance of oxygenic photosynthesis by that time. Remarkably, the superplume event at 1.9 Ga did not trigger another major Forg increase, despite the

  20. Inorganic carbon cycling and biogeochemical processes in an Arctic inland sea (Hudson Bay)

    NASA Astrophysics Data System (ADS)

    Burt, William J.; Thomas, Helmuth; Miller, Lisa A.; Granskog, Mats A.; Papakyriakou, Tim N.; Pengelly, Leah

    2016-08-01

    The distributions of carbonate system parameters in Hudson Bay, which not only receives nearly one-third of Canada's river discharge but is also subject to annual cycles of sea-ice formation and melt, indicate that the timing and magnitude of freshwater inputs play an important role in carbon biogeochemistry and acidification in this unique Arctic ecosystem. This study uses basin-wide measurements of dissolved inorganic carbon (DIC) and total alkalinity (TA), as well as stable isotope tracers (δ18O and δ13CDIC), to provide a detailed assessment of carbon cycling processes within the bay. Surface distributions of carbonate parameters reveal the particular importance of freshwater inputs in the southern portion of the bay. Based on TA, we surmise that the deep waters in the Hudson Bay are largely of Pacific origin. Riverine TA end-members vary significantly both regionally and with small changes in near-surface depths, highlighting the importance of careful surface water sampling in highly stratified waters. In an along-shore transect, large increases in subsurface DIC are accompanied by equivalent decreases in δ13CDIC with no discernable change in TA, indicating a respiratory DIC production on the order of 100 µmol kg-1 DIC during deep water circulation around the bay.

  1. Microbial Analysis of Australian Dry Lake Cores; Analogs For Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Nguyen, A. V.; Baldridge, A. M.; Thomson, B. J.

    2014-12-01

    Lake Gilmore in Western Australia is an acidic ephemeral lake that is analogous to Martian geochemical processes represented by interbedded phyllosilicates and sulfates. These areas demonstrate remnants of a global-scale change on Mars during the late Noachian era from a neutral to alkaline pH to relatively lower pH in the Hesperian era that continues to persist today. The geochemistry of these areas could possibly be caused by small-scale changes such as microbial metabolism. Two approaches were used to determine the presence of microbes in the Australian dry lake cores: DNA analysis and lipid analysis. Detecting DNA or lipids in the cores will provide evidence of living or deceased organisms since they provide distinct markers for life. Basic DNA analysis consists of extraction, amplification through PCR, plasmid cloning, and DNA sequencing. Once the sequence of unknown DNA is known, an online program, BLAST, will be used to identify the microbes for further analysis. The lipid analysis approach consists of phospholipid fatty acid analysis that is done by Microbial ID, which will provide direct identification any microbes from the presence of lipids. Identified microbes are then compared to mineralogy results from the x-ray diffraction of the core samples to determine if the types of metabolic reactions are consistent with the variation in composition in these analog deposits. If so, it provides intriguing implications for the presence of life in similar Martian deposits.

  2. Impact of depositional and biogeochemical processes on small scale variations in nodule abundance in the Clarion-Clipperton Fracture Zone

    NASA Astrophysics Data System (ADS)

    Mewes, K.; Mogollón, J. M.; Picard, A.; Rühlemann, C.; Kuhn, T.; Nöthen, K.; Kasten, S.

    2014-09-01

    Manganese nodules of the Clarion-Clipperton Fracture Zone (CCFZ) in the NE Pacific Ocean are highly enriched in Ni, Cu, Co, Mo and rare-earth elements, and thus may be the subject of future mining operations. Elucidating the depositional and biogeochemical processes that contribute to nodule formation, as well as the respective redox environment, in both water column and sediment, supports our ability to locate future nodule deposits and to evaluate the potential ecological and environmental effects of future deep-sea mining. For these purposes we studied the local hydrodynamics and pore-water geochemistry with respect to the nodule coverage at four sites in the eastern CCFZ. Furthermore, we carried out selective leaching experiments at these sites in order to assess the potential mobility of Mn in the solid phase, and compared them with the spatial variations in sedimentation rates. We found that the oxygen penetration depth is 180-300 cm at all four sites, while reduction of Mn and NO3- is only significant below the oxygen penetration depth at sites with small or no nodules on the sediment surface. At the site without nodules, potential microbial respiration rates, determined by incubation experiments using 14C-labeled acetate, are slightly higher than at sites with nodules. Leaching experiments showed that surface sediments covered with big or medium-sized nodules are enriched in mobilizable Mn. Our deep oxygen measurements and pore-water data suggest that hydrogenetic and oxic-diagenetic processes control the present-day nodule growth at these sites, since free manganese from deeper sediments is unable to reach the sediment surface. We propose that the observed strong lateral contrasts in nodule size and abundance are sensitive to sedimentation rates, which in turn, are controlled by small-scale variations in seafloor topography and bottom-water current intensity.

  3. New insights into biogeochemical processing gained from sub-daily river monitoring

    NASA Astrophysics Data System (ADS)

    Halliday, S. J.; Wade, A. J.; Skeffington, R. A.; Bowes, M.; Palmer-Felgate, E.; Loewenthal, M.; Jarvie, H.; Neal, C.; Reynolds, B.; Gozzard, E.; Newman, J.

    2012-12-01

    This talk will focus on the insights obtained from sub-daily hydrochemical monitoring for a sustained time periods (> 1 year), at multiple sites within a catchment and across different catchment types. Sub-daily instream hydrochemical dynamics were investigated, using non-stationary time-series analysis techniques, for two catchments representative of upland and lowland UK. The River Hafren at Plynlimon, mid-Wales drains an upland catchment where half the land cover is unmanaged moorland and the other half is first generation plantation forestry. The Hafren was monitored at two sites on a 7-hourly basis, between March 2007 and January 2009, using a Xian automatic sampler. The River Enborne, Berkshire, southeast England, is a rural lowland catchment, impacted by agricultural runoff, and septic tank and sewage treatment works discharges. The Enborne was monitored on an hourly basis between November 2009 and February 2012, using in situ field deployable analytical equipment to measure: Total Reactive Phosphorus (TRP: Systea Micromac C), Nitrate (Hach-Lange Nitratax), pH, dissolved oxygen, conductivity and water temperature (YSI 6600 Multi-parameter sonde). The results reveal complex diurnal patterns which exhibit seasonal changes in phase and amplitude, and are influenced by both flow conditions and nutrient sources. The comparison of the upland and lowland nitrate time series highlights how the different nitrogen sources within each system results in marked differences in the seasonal and diurnal dynamics, with a seasonal maximum in winter and a single peak diurnal cycle in the upland system, compared to a summer maximum and a two peak diurnal cycle in the lowland system. The analysis of TRP and nitrate concentrations in the Enborne catchment, in combination with flow, pH, dissolved oxygen, conductivity and water temperature, allowed the main processes controlling the observed sub-daily nutrient dynamics to be investigated. The different monitoring approaches adopted

  4. Effect of bottom water oxygenation on oxygen consumption and benthic biogeochemical processes at the Crimean Shelf (Black Sea)

    NASA Astrophysics Data System (ADS)

    Lichtschlag, A.; Janssen, F.; Wenzhöfer, F.; Holtappels, M.; Struck, U.; Jessen, G.; Boetius, A.

    2012-04-01

    Hypoxia occurs where oxygen concentrations fall below a physiological threshold of many animals, usually defined as <63 µmol L-1. Oxygen depletion can be caused by anthropogenic influences, such as global warming and eutrophication, but as well occurs naturally due to restricted water exchange in combination with high nutrient loads (e.g. upwelling). Bottom-water oxygen availability not only influences the composition of faunal communities, but is also one of the main factors controlling sediment-water exchange fluxes and organic carbon degradation in the sediment, usually shifting processes towards anaerobic mineralization pathways mediated by microorganisms. The Black Sea is one of the world's largest meromictic marine basins with an anoxic water column below 180m. The outer shelf edge, where anoxic waters meet the seafloor, is an ideal natural laboratory to study the response of benthic ecosystems to hypoxia, including benthic biogeochemical processes. During the MSM 15/1 expedition with the German research vessel MARIA S. MERIAN, the NW area of the Black Sea (Crimean Shelf) was studied. The study was set up to investigate the influence of bottom water oxygenation on, (1) the respective share of fauna-mediated oxygen uptake, microbial respiration, or re-oxidation of reduced compounds formed in the deeper sediments for the total oxygen flux and (2) on the efficiency of benthic biogeochemical cycles. During our study, oxygen consumption and pathways of organic carbon degradation were estimated from benthic chamber incubations, oxygen microprofiles measured in situ, and pore water and solid phase profiles measured on retrieved cores under oxic, hypoxic, and anoxic water column conditions. Benthic oxygen fluxes measured in Crimean Shelf sediments in this study were comparable to fluxes from previous in situ and laboratory measurements at similar oxygen concentrations (total fluxes -8 to -12 mmol m-2 d-1; diffusive fluxes: -2 to -5 mmol m-2 d-1) with oxygen

  5. Final Progress Report: Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloroethylene Cometabolism

    SciTech Connect

    Crawford, Ronald L; Paszczynski, Andrzej J

    2010-02-19

    Our goal within the overall project is to demonstrate the presence and abundance of methane monooxygenases (MMOs) enzymes and their genes within the microbial community of the Idaho National Laboratory (INL) Test Area North (TAN) site. MMOs are thought to be the primary catalysts of natural attenuation of trichloroethylene (TCE) in contaminated groundwater at this location. The actual presence of the proteins making up MMO complexes would provide direct evidence for its participation in TCE degradation. The quantitative estimation of MMO genes and their translation products (sMMO and pMMO proteins) and the knowledge about kinetics and substrate specificity of MMOs will be used to develop mathematical models of the natural attenuation process in the TAN aquifer. The model will be particularly useful in prediction of TCE degradation rate in TAN and possibly in the other DOE sites. Bacteria known as methanotrophs produce a set of proteins that assemble to form methane monooxygenase complexes (MMOs), enzymes that oxidize methane as their natural substrate, thereby providing a carbon and energy source for the organisms. MMOs are also capable of co-metabolically transforming chlorinated solvents like TCE into nontoxic end products such as carbon dioxide and chloride. There are two known forms of methane monooxygenase, a membrane-bound particulate form (pMMO) and a cytoplasmic soluble form (sMMO). pMMO consists of two components, pMMOH (a hydroxylase comprised of 47-, 27-, and 24-kDa subunits) and pMMOR (a reductase comprised of 63 and 8-kDa subunits). sMMO consists of three components: a hydroxylase (protein A-250 kDa), a dimer of three subunits (α2β2γ2), a regulatory protein (protein B-15.8 kDa), and a reductase (protein C-38.6 kDa). All methanotrophs will produce a methanol dehydrogenase to channel the product of methane oxidation (methanol) into the central metabolite formaldehyde. University of Idaho (UI) efforts focused on proteomic analyses using mass

  6. Metals in benthic macrofauna and biogeochemical factors affecting their trophic transfer to wild fish around fish farm cages.

    PubMed

    Kalantzi, I; Papageorgiou, N; Sevastou, K; Black, K D; Pergantis, S A; Karakassis, I

    2014-02-01

    Benthic macroinvertebrates and wild fish aggregating in the vicinity of four Mediterranean fish farms were sampled. Concentrations of metals and other elements were measured in macrofaunal taxa and in fish tissues (muscle, liver, gills, bone, gonad, stomach, intestine, and stomach content). Biological and geochemical characteristics play an important role in metal accumulation in benthic invertebrates, and consequently in metal transfer to higher trophic levels. Macroinvertebrates accumulated lower concentrations of most metals and elements than their respective sediment, except As, P, Na, Zn and Cd. Elemental concentrations of benthic organisms increased with increasing sediment metal content, except Cd, and with % silt, refractory organic matter and chlorophyll-a of sediment due to the influence of sediment geochemistry on metal bioavailability. Tolerant species were found to accumulate higher concentrations of most metals and elements, except for Cd, than equilibrium species. The ecological and morphological characteristics of the benthic invertebrates can affect the bioaccumulation of metals and elements in macrobenthos. Hg and P were found to increase their concentrations from zoobenthos to wild fish aggregating around fish cages feeding on macrofauna.

  7. Biogeochemical Processes Related to Metal Removal and Toxicity Reduction in the H-02 Constructed Wetland, Savannah River Site

    NASA Astrophysics Data System (ADS)

    Burgess, E. A.; Mills, G. L.; Harmon, M.; Samarkin, V.

    2011-12-01

    The H-02 wetland system was designed to treat building process water and storm water runoff from multiple sources associated with the Tritium Facility at the DOE-Savannah River Site, Aiken, SC. The wetland construction included the addition of gypsum (calcium sulfate) to foster a sulfate-reducing bacterial population. Conceptually, the wetland functions as follows: ? Cu and Zn initially bind to both dissolved and particulate organic detritus within the wetland. ? A portion of this organic matter is subsequently deposited into the surface sediments within the wetland. ? The fraction of Cu and Zn that is discharged in the wetland effluent is organically complexed, less bioavailable, and consequently, less toxic. ? The Cu and Zn deposited in the surface sediments are eventually sequestered into insoluble sulfide minerals in the wetland. Development of the H-02 system has been closely monitored; sampling began in August 2007, shortly after its construction. This monitoring has included the measurement of water quality parameters, Cu and Zn concentrations in surface water and sediments, as well as, characterization of the prokaryotic (e.g., bacterial) component of wetland biogeochemical processes. Since the beginning of the study, the mean influent Cu concentration was 31.5±12.1 ppb and the mean effluent concentration was 11.9±7.3 ppb, corresponding to an average Cu removal of 64%. Zn concentrations were more variable, averaging 39.2±13.8 ppb in the influent and 25.7±21.3 ppb in the effluent. Average Zn removal was 52%. The wetland also ameliorated high pH values associated with influent water to values similar to those measured at reference sites. Seasonal variations in DOC concentration corresponded to seasonal variations in Cu and Zn removal efficiency. The concentration of Cu and Zn in the surface layer of the sediments has increased over the lifetime of the wetland and, like removal efficiency, demonstrated seasonal variation. Within its first year, the H-02

  8. Investigating the Role of Biogeochemical Processes in the Northern High Latitudes on Global Climate Feedbacks Using an Efficient Scalable Earth System Model

    SciTech Connect

    Jain, Atul K.

    2016-09-14

    The overall objectives of this DOE funded project is to combine scientific and computational challenges in climate modeling by expanding our understanding of the biogeophysical-biogeochemical processes and their interactions in the northern high latitudes (NHLs) using an earth system modeling (ESM) approach, and by adopting an adaptive parallel runtime system in an ESM to achieve efficient and scalable climate simulations through improved load balancing algorithms.

  9. Synchronous DOM and dissolved phosphorus release in riparian soil waters: linking water table fluctuations and biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Gruau, G.; Dupas, R.; Humbert, G.; GU, S.; Jeanneau, L.; Fovet, O.; Denis, M.; Gascuel-Odoux, C.; Jaffrezic, A.; Faucheux, M.; Gilliet, N.; Hamon, Y.; Petitjean, P.

    2015-12-01

    Riparian zones are often viewed as hot spots controlling N, C, P and Fe cycling and export in catchments. Groundwater and surface water flowpaths converge in these zones, and encounter the most reactive, organic-rich, uppermost soil horizons, while being at the same time zones in which soil moisture conditions temporarily fluctuate due to changes in water table depth, which can trigger biogeochemical processes. One well documented example is the process of denitrification which can remove N from riparian groundwater due to the anaerobic reduction of nitrate by soil organic matter. However, the role of riparian zones on the cycling of other nutrients such as dissolved organic matter (DOM) and dissolved P (DP) is much less well documented. In this study, we evaluated this role by using time series of DOM and DP concentrations obtained on the Kervidy-Naizin catchment, a temperate agricultural headwater catchment controlled by shallow groundwater. Over 2 years, groundwater DOM and DP were monitored fortnightly both in the riparian zones and at the bottom of hillslope domains. Two periods of synchronous DOM and DP release were evidenced, the first corresponding to the rise of the water table after the dry summer period, the second being concomitant of the installation of reducing conditions. The reductive dissolution of soil Fe oxyhydroxides initiated by the prolonged soil water saturation caused the second peak, a process which was, however, strongly temporarily and spatially variable at the catchment scale, being dependent on i) the local topographic slope and ii) the annual rainfall amount and frequency. As regard the first peak, it was due either to the flushing by the water table of DOM and DP accumulated during the summer period, or to the release of microbial DOM and DP due to microbial biomass killing by osmotic shock. This study argues for the existence of coupled and complex DOM and DP release processes in the riparian zones of shallow groundwater dominated

  10. Carbon Characteristics and Biogeochemical Processes of Uranium Accumulating Organic Matter Rich Sediments in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Boye, K.; Noel, V.; Tfaily, M. M.; Dam, W. L.; Bargar, J.; Fendorf, S. E.

    2015-12-01

    Uranium plume persistence in groundwater aquifers is a problem on several former ore processing sites on floodplains in the upper Colorado River Basin. Earlier observations by our group and others at the Old Rifle Site, CO, have noted that U concentrations are highest in organic rich, fine-grained, and, therefore, diffusion limited sediment material. Due to the constantly evolving depositional environments of floodplains, surficial organic matter may become buried at various stages of decomposition, through sudden events such as overbank flooding and through the slower progression of river meandering. This creates a discontinuous subsurface distribution of organic-rich sediments, which are hotspots for microbial activity and thereby central to the subsurface cycling of contaminants (e.g. U) and biologically relevant elements (e.g. C, N, P, Fe). However, the organic matter itself is poorly characterized. Consequently, little is known about its relevance in driving biogeochemical processes that control U fate and transport in the subsurface. In an investigation of soil/sediment cores from five former uranium ore processing sites on floodplains distributed across the Upper Colorado River Basin we confirmed consistent co-enrichment of U with organic-rich layers in all profiles. However, using C K-edge X-ray Absorption Spectroscopy (XAS) coupled with Fourier-Transformed Ion-Cyclotron-Resonance Mass-Spectroscopy (FT-ICR-MS) on bulk sediments and density-separated organic matter fractions, we did not detect any chemical difference in the organic rich sediments compared to the surrounding coarser-grained aquifer material within the same profile, even though there were differences in organic matter composition between the 5 sites. This suggests that U retention and reduction to U(IV) is independent of C chemical composition on the bulk scale. Instead it appears to be the abundance of organic matter in combination with a limited O2 supply in the fine-grained material that

  11. Biogeochemical processes controlling the mobility of major ions and trace metals in aquitard sediments beneath an oil sand tailing pond: Laboratory studies and reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Holden, A. A.; Haque, S. E.; Mayer, K. U.; Ulrich, A. C.

    2013-08-01

    Increased production and expansion of the oil sand industry in Alberta are of great benefit to the economy, but they carry major environmental challenges. The volume of fluid fine tailings requiring storage is 840 × 106 m3 and growing, making it imperative that we better understand the fate and transport of oil sand process-affected water (OSPW) seepage from these facilities. Accordingly, the current study seeks to characterize both a) the potential for major ion and trace element release, and b) the principal biogeochemical processes involved, as tailing pond OSPW infiltrates into, and interacts with, underlying glacial till sediments prior to reaching down gradient aquifers or surface waters. Objectives were addressed through a series of aqueous and solid phase experiments, including radial diffusion cells, an isotope analysis, X-ray diffraction, and sequential extractions. The diffusion cells were also simulated in a reactive transport framework to elucidate key reaction processes. The experiments indicate that the ingress and interaction of OSPW with the glacial till sediment-pore water system will result in: a mitigation of ingressing Na (retardation), displacement and then limited precipitation of exchangeable Ca and Mg (as carbonates), sulfate reduction and subsequent precipitation of the produced sulfides, as well as biodegradation of organic carbon. High concentrations of ingressing Cl (~ 375 mg L- 1) and Na (~ 575 mg L- 1) (even though the latter is delayed, or retarded) are expected to migrate through the till and into the underlying sand channel. Trace element mobility was influenced by ion exchange, oxidation-reduction, and mineral phase reactions including reductive dissolution of metal oxyhydroxides — in accordance with previous observations within sandy aquifer settings. Furthermore, although several trace elements showed the potential for release (Al, B, Ba, Cd, Mn, Pb, Si, Sr), large-scale mobilization is not supported. Thus, the present

  12. Biogeochemical processes controlling the mobility of major ions and trace metals in aquitard sediments beneath an oil sand tailing pond: laboratory studies and reactive transport modeling.

    PubMed

    Holden, A A; Haque, S E; Mayer, K U; Ulrich, A C

    2013-08-01

    Increased production and expansion of the oil sand industry in Alberta are of great benefit to the economy, but they carry major environmental challenges. The volume of fluid fine tailings requiring storage is 840×10(6) m(3) and growing, making it imperative that we better understand the fate and transport of oil sand process-affected water (OSPW) seepage from these facilities. Accordingly, the current study seeks to characterize both a) the potential for major ion and trace element release, and b) the principal biogeochemical processes involved, as tailing pond OSPW infiltrates into, and interacts with, underlying glacial till sediments prior to reaching down gradient aquifers or surface waters. Objectives were addressed through a series of aqueous and solid phase experiments, including radial diffusion cells, an isotope analysis, X-ray diffraction, and sequential extractions. The diffusion cells were also simulated in a reactive transport framework to elucidate key reaction processes. The experiments indicate that the ingress and interaction of OSPW with the glacial till sediment-pore water system will result in: a mitigation of ingressing Na (retardation), displacement and then limited precipitation of exchangeable Ca and Mg (as carbonates), sulfate reduction and subsequent precipitation of the produced sulfides, as well as biodegradation of organic carbon. High concentrations of ingressing Cl (~375 mg L(-1)) and Na (~575 mg L(-1)) (even though the latter is delayed, or retarded) are expected to migrate through the till and into the underlying sand channel. Trace element mobility was influenced by ion exchange, oxidation-reduction, and mineral phase reactions including reductive dissolution of metal oxyhydroxides - in accordance with previous observations within sandy aquifer settings. Furthermore, although several trace elements showed the potential for release (Al, B, Ba, Cd, Mn, Pb, Si, Sr), large-scale mobilization is not supported. Thus, the present

  13. ASSESSMENT OF INTRINSIC BIOREMEDIATION OF A COAL-TAR AFFECTED AQUIFER USING TWO-DIMENSIONAL REACTIVE TRANSPORT AND BIOGEOCHEMICAL MASS BALANCE APPROACHES

    EPA Science Inventory

    Expedited site characterization and groundwater monitoring using direct-push technology and conventional monitoring wells were conducted at a former manufactured gas plant site. Biogeochemical data and heterotrophic plate counts support the presence of microbially mediated remedi...

  14. A Conceptual model of coupled biogeochemical and hydrogeologicalprocesses affected by in situ Cr(VI) bioreduction in groundwater atHanford 100H Site

    SciTech Connect

    Faybishenko, B.; Long, P.E.; Hazen, T.C.; Hubbard, S.S.; Williams, K.H.; Peterson, J.E.; Chen, J.; Volkova, E.V.; Newcomer, D.R.; Resch, C.T.; Cantrell, K.; Conrad, M.S.; Brodie, E.L.; Joyner, D.C.; Borglin, S.E.; Chakraborty, R.C.

    2006-09-06

    The overall objective of this presentation is to demonstratea conceptual multiscale, multidomain model of coupling of biogeochemicaland hydrogeological processes during bioremediation of Cr(VI)contaminated groundwater at Hanford 100H site. A slow releasepolylactate, Hydrogen Release Compound (HRCTM), was injected in Hanfordsediments to stimulate immobilization of Cr(VI). The HRC injectioninduced a 2-order-of-magnitude increase in biomass and the onset ofreducing biogeochemical conditions [e.g., redox potential decreased from+240 to -130 mV and dissolved oxygen (DO) was completely removed]. Athree-well system, comprised of an injection well and upgradient anddowngradient monitoring wells, was used for conducting the in situbiostimulation, one regional flow (no-pumping) tracer test, and fivepumping tests along with the Br-tracer injection. Field measurements wereconducted using a Br ion-selective electrode and a multiparameter flowcell to collect hourly data on temperature, pH, redox potential,electrical conductivity, and DO. Groundwater sampling was conducted bypumping through specially designed borehole water samplers.Cross-borehole radar tomography and seismic measurements were carried outto assess the site background lithological heterogeneity and themigration pathways of HRC byproducts through groundwater after the HRCinjection.

  15. Affect intensity and processing fluency of deterrents.

    PubMed

    Holman, Andrei

    2013-01-01

    The theory of emotional intensity (Brehm, 1999) suggests that the intensity of affective states depends on the magnitude of their current deterrents. Our study investigated the role that fluency--the subjective experience of ease of information processing--plays in the emotional intensity modulations as reactions to deterrents. Following an induction phase of good mood, we manipulated both the magnitude of deterrents (using sets of photographs with pre-tested potential to instigate an emotion incompatible with the pre-existent affective state--pity) and their processing fluency (normal vs. enhanced through subliminal priming). Current affective state and perception of deterrents were then measured. In the normal processing conditions, the results revealed the cubic effect predicted by the emotional intensity theory, with the initial affective state being replaced by the one appropriate to the deterrent only in participants exposed to the high magnitude deterrence. In the enhanced fluency conditions the emotional intensity pattern was drastically altered; also, the replacement of the initial affective state occurred at a lower level of deterrence magnitude (moderate instead of high), suggesting the strengthening of deterrence emotional impact by enhanced fluency.

  16. Cognitive and Affective Processes Underlying Career Change

    ERIC Educational Resources Information Center

    Muja, Naser; Appelbaum, Steven H.

    2012-01-01

    Purpose: Aligning social identity and career identity has become increasingly complex due to growth in the pursuit of meaningful careers that offer very long-term personal satisfaction and stability. This paper aims to explore the complex cognitive and affective thought process involved in the conscious planning of voluntary career change.…

  17. Microphysical Processes Affecting the Pinatubo Volcanic Plume

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Houben, Howard; Young, Richard; Turco, Richard; Zhao, Jingxia

    1996-01-01

    In this paper we consider microphysical processes which affect the formation of sulfate particles and their size distribution in a dispersing cloud. A model for the dispersion of the Mt. Pinatubo volcanic cloud is described. We then consider a single point in the dispersing cloud and study the effects of nucleation, condensation and coagulation on the time evolution of the particle size distribution at that point.

  18. Stress modulation of cognitive and affective processes.

    PubMed

    Campeau, Serge; Liberzon, Israel; Morilak, David; Ressler, Kerry

    2011-09-01

    This review summarizes the major discussion points of a symposium on stress modulation of cognitive and affective processes, which was held during the 2010 workshop on the neurobiology of stress (Boulder, CO, USA). The four discussants addressed a number of specific cognitive and affective factors that are modulated by exposure to acute or repeated stress. Dr David Morilak discussed the effects of various repeated stress situations on cognitive flexibility, as assessed with a rodent model of attentional set-shifting task, and how performance on slightly different aspects of this test is modulated by different prefrontal regions through monoaminergic neurotransmission. Dr Serge Campeau summarized the findings of several studies exploring a number of factors and brain regions that regulate habituation of various autonomic and neuroendocrine responses to repeated audiogenic stress exposures. Dr Kerry Ressler discussed a body of work exploring the modulation and extinction of fear memories in rodents and humans, especially focusing on the role of key neurotransmitter systems including excitatory amino acids and brain-derived neurotrophic factor. Dr Israel Liberzon presented recent results on human decision-making processes in response to exogenous glucocorticoid hormone administration. Overall, these discussions are casting a wider framework on the cognitive/affective processes that are distinctly regulated by the experience of stress and some of the brain regions and neurotransmitter systems associated with these effects.

  19. Biogeochemical processing of nutrients in groundwater-fed stream during baseflow conditions - the value of fluorescence spectroscopy and automated high-frequency nutrient monitoring

    NASA Astrophysics Data System (ADS)

    Bieroza, Magdalena; Heathwaite, Louise

    2014-05-01

    Recent research in groundwater-dominated streams indicates that organic matter plays an important role in nutrient transformations at the surface-groundwater interface known as the hyporheic zone. Mixing of water and nutrient fluxes in the hyporheic zone controls in-stream nutrients availability, dynamics and export to downstream reaches. In particular, benthic sediments can form adsorptive sinks for organic matter and reactive nutrients (nitrogen and phosphorus) that sustain a variety of hyporheic processes e.g. denitrification, microbial uptake. Thus, hyporheic metabolism can have an important effect on both quantity (concentration) and quality (labile vs. refractory character) of organic matter. Here high-frequency nutrient monitoring combined with spectroscopic analysis was used to provide insights into biogeochemical processing of a small, agricultural stream in the NE England subject to diffuse nutrient pollution. Biogeochemical data were collected hourly for a week at baseflow conditions when in-stream-hyporheic nutrient dynamics have the greatest impact on stream health. In-stream nutrients (total phosphorus, reactive phosphorus, nitrate nitrogen) and water quality parameters (turbidity, specific conductivity, pH, temperature, dissolved oxygen, redox potential) were measured in situ hourly by an automated bank-side laboratory. Concurrent hourly autosamples were retrieved daily and analysed for nutrients and fine sediments including spectroscopic analyses of dissolved organic matter - excitation-emission matrix (EEM) fluorescence spectroscopy and ultraviolet-visible (UV-Vis) absorbance spectroscopy. Our results show that organic matter can potentially be utilised as a natural, environmental tracer of the biogeochemical processes occurring at the surface-groundwater interface in streams. High-frequency spectroscopic characterisation of in-stream organic matter can provide useful quantitative and qualitative information on fluxes of reactive nutrients in

  20. Contributions of physical and biogeochemical processes to phytoplankton biomass enhancement in the surface and subsurface layers during the passage of Typhoon Damrey

    NASA Astrophysics Data System (ADS)

    Pan, Shanshan; Shi, Jie; Gao, Huiwang; Guo, Xinyu; Yao, Xiaohong; Gong, Xiang

    2017-01-01

    In this study, a one-dimensional physical-biogeochemical coupled model was established to investigate the responses of the upper ocean to Typhoon Damrey in the basin area of the South China Sea. The surface chlorophyll a concentration (Chl a) increased rapidly from 0.07 to 0.17 mg m-3 when the typhoon arrived and then gradually reached a peak of 0.61 mg m-3 after the typhoon's passage. The subsurface Chl a decreased from 0.34 to 0.17 mg m-3 as the typhoon arrived and then increased gradually to 0.71 mg m-3. Analyses of model results indicated that the initial rapid increase in the surface Chl a and the decrease in the subsurface Chl a were caused mainly by physical process (vertical mixing), whereas the subsequent gradual increases in the Chl a in both the surface and subsurface layers were due mainly to biogeochemical processes (net growth of phytoplankton). The gradual increase in the Chl a lasted for longer in the subsurface layer than in the surface layer. Typhoon Damrey yielded an integrated primary production (IPP) of 6.5 × 103 mg C m-2 ( 14% of the annual IPP in this region).

  1. Will a changed element composition of rainfall - due to climate change - affect the biogeochemical cycle of montane forest soils in Southern Ecuador?

    NASA Astrophysics Data System (ADS)

    Wullaert, H.; Peña, J. L.; González, E.; Valarezo, C.; Wilcke, W.

    2009-04-01

    Increasing biomass burning, fertilization and industrialization in tropical areas will generally lead to a greater N deposition in the Tropics including the northern Andean forests in the coming decades. In previous work, we detected extra Ca deposition from the atmosphere in the northern Andes originating from Sahara dust during a pronounced la Niña event. Therefore, the possible shortening of the El Niño Southern Oscillation might result in more frequent Ca input into the northern Andean forests. We quantify biogeochemical processes in a tropical montane forest in southern Ecuador at 2000 m a.s.l. in response to N and Ca additions to simulate elevated N and Ca deposition from the atmosphere. Four replicate experimental plots under native forest were fertilized with either 50 kg N or 10 kg Ca ha-1 y-1 with urea (46%) and CaCl2.2H2O, respectively, distributed between two dates per year and the effects were compared with non-fertilized control plots. We collected litter percolate with zero-tension lysimeters, soil solution with suction cups at 0.15 and 0.30 m, rainfall and throughfall. Samples were analyzed for concentrations of total N, nitrate, ammonium, dissolved organic nitrogen (DON) and Ca. Two months after the first fertilization, nitrogen addition mainly stimulates microbial activity where in a priming effect ammonium is transferred to nitrate and soil organic matter is mineralised, resulting in increased DON concentrations. This stimulation would also release other nutrients than N which in turn enhance tree growth. Total nitrogen concentration in litter leachate increased slightly after N fertilization from 1.75 mg/l to 1.8 mg/l, which represents about 1.5% of the total applied N. In contrast, the low Ca concentrations in litter leachate doubled from 0.10 mg/l to 0.20 mg/l after Ca addition, which on yearly basis would represent about 15% of the total applied Ca. From these preliminary results we conclude that (i) both added N and Ca are net retained in

  2. Up-scaling of process-based eco-hydrology model to global scale for identification of hot spots in boundless biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Maksyutov, S. S.

    2013-12-01

    Recent research shows inland water may play some role in continental biogeochemical cycling though its contribution has remained uncertain due to a paucity of data (Battin et al. 2009). The author has developed process-based National Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama, 2008a-b, 2010, 2011a-b, 2012a-c, 2013; Nakayama and Fujita, 2010; Nakayama and Hashimoto, 2011; Nakayama and Shankman, 2013a-b; Nakayama and Watanabe, 2004, 2006, 2008a-b; Nakayama et al., 2006, 2007, 2010, 2012), which includes surface-groundwater interactions and down-scaling process from regional to local simulation with finer resolution, and can simulate iteratively nonlinear feedback between hydrologic, geomorphic, and ecological processes in east Asia. In this study, NICE was further extended to implement map factor and non-uniform grid through up-scaling process of coordinate transformation from rectangular to longitude-latitude system applicable to global scale. This improved model was applied to several basins in Eurasia to evaluate the impact of coordinate transformation on eco-hydrological changes. Simulated eco-hydrological process after up-scaling corresponded reasonably to that in the original there after evaluating the effect of different latitude. Then, the model was expanded to evaluate global hydrologic cycle by using various global datasets. The simulated result agreed reasonably with that in the previous research (Fan et al., 2013) and extended to clarify further eco-hydrological process in global scale. This simulation system would play important role in identification of spatio-temporal hot spots in boundless biogeochemical cycle along terrestrial-aquatic continuum for global environmental change (Cole et al. 2007; Battin et al. 2009; Frei et al. 2012).

  3. Final Report DE-SC0006997; PI Sharp; Coupled Biological and Micro-XAS/XRF Analysis of In Situ Uranium Biogeochemical Processes

    SciTech Connect

    Sharp, Jonathan O.

    2016-03-30

    Project Overview: The impact of the original seed award was substantially increased by leveraging a postdoctoral fellowship (Marie Curie Postdoctoral Fellowship) and parallel funds from (A) synergistic project supported by NSF and (B) with DOE collaborators (PI’s Ranville and Williams) as well as no-cost extension that greatly increased the impact and publications associated with the project. In aligning with SBR priorities, the project’s focus was extended more broadly to explore coupled biogeochemical analysis of metal (im)mobilization processes beyond uranium with a foundation in integrating microbial ecology with geochemical analyses. This included investigations of arsenic and zinc during sulfate reducing conditions in addition to direct microbial reduction of metals. Complimentary work with NSF funding and collaborative DOE interactions further increased the project scope to investigate metal (im)mobilization coupled to biogeochemical perturbations in forest ecosystems with an emphasis on coupled carbon and metal biogeochemistry. In total, the project was highly impactful and resulted in 9 publications and directly supported salary/tuition for 3 graduate students at various stages of their academic careers as well as my promotion to Associate Professor. In going forward, findings provided inspiration for a two subsequent proposals with collaborators at Lawrence Berkeley Laboratory and others that are currently in review (as of March 2016).

  4. Biogeochemical Cycles of Carbon and Sulfur

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The elements carbon (C) and sulfur (S) interact with each other across a network of elemental reservoirs that are interconnected by an array of physical, chemical and biological processes. These networks are termed the biogeochemical C and S cycles. The compounds of C are highly important, not only as organic matter, but also as atmospheric greenhouse gases, pH buffers in seawater, oxidation-reduction buffers virtually everywhere, and key magmatic constituents affecting plutonism and volcanism. The element S assumes important roles as an oxidation-reduction partner with C and Fe in biological systems, as a key constituent in magmas and volcanic gases, and as a major influence upon pH in certain environments. This presentation describes the modern biogeochemical C and S cycles. Measurements are described whereby stable isotopes can help to infer the nature and quantitative significance of biological and geological processes involved in the C and S cycles. This lecture also summarizes the geological and climatologic aspects of the ancient C and S cycles, as well as the planetary and extraterrestrial processes that influenced their evolution over millions to billions of years.

  5. Eutrophication-induced acidification of coastal waters in the northern Gulf of Mexico: Insights into origin and processes from a coupled physical-biogeochemical model

    NASA Astrophysics Data System (ADS)

    Laurent, Arnaud; Fennel, Katja; Cai, Wei-Jun; Huang, Wei-Jen; Barbero, Leticia; Wanninkhof, Rik

    2017-01-01

    Nutrient inputs from the Mississippi/Atchafalaya River system into the northern Gulf of Mexico promote high phytoplankton production and lead to high respiration rates. Respiration coupled with water column stratification results in seasonal summer hypoxia in bottom waters on the shelf. In addition to consuming oxygen, respiration produces carbon dioxide (CO2), thus lowering the pH and acidifying bottom waters. Here we present a high-resolution biogeochemical model simulating this eutrophication-driven acidification and investigate the dominant underlying processes. The model shows the recurring development of an extended area of acidified bottom waters in summer on the northern Gulf of Mexico shelf that coincides with hypoxic waters. Not reported before, acidified waters are confined to a thin bottom boundary layer where the production of CO2 by benthic metabolic processes is dominant. Despite a reduced saturation state, acidified waters remain supersaturated with respect to aragonite.

  6. Reappraisal of soil C storage processes. The controversy on structural diversity of humic substances as biogeochemical driver for soil C fluxes

    NASA Astrophysics Data System (ADS)

    Almendros, Gonzalo; Gonzalez-Vila, Francisco J.; Gonzalez-Perez, Jose Antonio; Knicker, Heike

    2016-04-01

    The functional relationships between the macromolecular structure of the humic substances (HS) and a series of biogeochemical processes related with the C sequestration performance in soils have been recently questioned. In this communication we collect recent data from a wide array of different ecosystems where the C storage in soils has been studied and explained as a possible cause-to-effect relationship or has been found significantly correlated (multivariate statistical models) with a series of structural characteristics of humic materials. The study of humic materials has methodological analytical limitations that are derived from its complex, chaotic and not completely understood structure, that reflects its manifold precursors as well as the local impact of environmental/depositional factors. In this work we attempt to design an exploratory, multiomic approach based on the information provided by the molecular characterization of the soil organic matter (SOM). Massive data harvesting was carried out of statistical variables, to infer biogeochemical proxies (spectroscopic, chromatographic, mass spectrometric quantitative descriptors). The experimental data were acquired from advanced instrumental methodologies, viz, analytical pyrolysis, compound-specific stable isotope analysis (CSIA), derivative infrared (FTIR) spectroscopy, solid-state C-13 and N-15 nuclear magnetic resonance (NMR) and mass spectrometry (MS) data after direct injection (thermoevaporation), previous pyrolysis, or ion averaging of specific m/z ranges from classical GC/MS chromatograms. In the transversal exploratory analysis of the multianalytical information, the data were coded for on-line processing in a stage in which there is no need for interpretation, in molecular or structural terms, of the quantitative data consisting of e.g., peak intensities, signal areas, chromatographic (GC) total abundances, etc. A series of forecasting chemometric approaches (aiming to express SOM

  7. Modeling biogeochemical processes in subterranean estuaries: Effect of flow dynamics and redox conditions on submarine groundwater discharge of nutrients

    NASA Astrophysics Data System (ADS)

    Spiteri, Claudette; Slomp, Caroline P.; Tuncay, Kagan; Meile, Christof

    2008-02-01

    A two-dimensional density-dependent reactive transport model, which couples groundwater flow and biogeochemical reactions, is used to investigate the fate of nutrients (NO3-, NH4+, and PO4) in idealized subterranean estuaries representing four end-members of oxic/anoxic aquifer and seawater redox conditions. Results from the simplified model representations show that the prevalent flow characteristics and redox conditions in the freshwater-seawater mixing zone determine the extent of nutrient removal and the input of nitrogen and phosphorus to coastal waters. At low to moderate groundwater velocities, simultaneous nitrification and denitrification can lead to a reversal in the depth of freshwater NO3- and NH4+-PO4 plumes, compared to their original positions at the landward source. Model results suggest that autotrophic denitrification pathways with Fe2+ or FeS2 may provide an important, often overlooked link between nitrogen and phosphorus biogeochemistry through the precipitation of iron oxides and subsequent binding of phosphorus. Simulations also highlight that deviations of nutrient data from conservative mixing curves do not necessarily indicate nutrient removal.

  8. Assessment of intrinsic bioremediation of a coal-tar-affected aquifer using two-dimensional reactive transport and biogeochemical mass balance approaches

    SciTech Connect

    Rogers, S.W.; Ong, S.K.; Stenback, G.A.; Golchin, J.; Kjartanson, B.H.

    2007-01-15

    Expedited site characterization and groundwater monitoring using direct-push technology and conventional monitoring wells were conducted at a former manufactured gas plant site. Biogeochemical data and heterotrophic plate counts support the presence of microbially mediated remediation. By superimposing solutions of a two-dimensional reactive transport analytical model, first-order degradation rate coefficients (day{sup -1}) of various compounds for the dissolved-phase plume were estimated (i.e., benzene (0.0084), naphthalene (0.0058), and acenaphthene (0.0011)). The total mass transformed by aerobic respiration, nitrate reduction, and sulfate reduction around the free-phase coal-tar dense-nonaqueous-phase-liquid region and in the plume was estimated to be approximately 4.5 kg/y using a biogeochemical mass-balance approach. The total mass transformed using the degradation rate coefficients was estimated to be approximately 3.6 kg/y. Results showed that a simple two-dimensional analytical model and a biochemical mass balance with geochemical data from expedited site characterization can be useful for rapid estimation of mass-transformation rates.

  9. Impact of dust on biogeochemical processes in the East Mediterranean Sea, lessons from on-board microcosm and land-based mesocosm experiments

    NASA Astrophysics Data System (ADS)

    Herut, Barak; Pitta, Paraskevi; Mihalopoulos, Nikos; Tsagaraki, Tatiana; Rahav, Eyal; Berman-Frank, Ilana; Psarra, Stella; Giannakourou, Antonia; Tsiola, Anastasia; Shi, Zongbo; Tanaka, Tsuneo; Kocak, Mustafa; Yucel, Nebil; Liu, Hongbin; Louiza Pedrotti, Maria; Tsapakis, Manolis; Violaki, Kalliopi; Fernandez, MariLuz; Meador, Travis; Panagiotopoulos, Christos

    2014-05-01

    Recent on-board microcosm and land-based mesocosm experiments in the oligotrophic Eastern Mediterranean Sea (EMS) indicates a significant role of Mediterranean aerosols as a net supplier of macro and micro nutrients (N, P, Fe and other trace metals) to the Low Nutrient Low Chlorophyll EMS. In such ultra-oligotrophic environment the leachable nutrients from dry atmospheric inputs add significant quantities of nutrients and become rapidly (<2hrs) bioavailable influencing substantially biogeochemical processes. Experimental additions triggered an increase in several of the performed rate and state variables as bacterial production and abundance, primary production rates and chlorophyll a (or other phytopigments), abundance of certain pico and nanophytoplankton groups and nitrogen fixation rates. Understanding these relationships is important to follow the pathways of N, P (and C) into the EMS food web and the future climate- and human-induced changes in the EMS.

  10. Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of a uranium-contaminated aquifer

    SciTech Connect

    Flores-Orozco, Adrian; Williams, Kenneth H.; Long, Philip E.; Hubbard, Susan S.; Kemna, Andreas

    2011-07-07

    Experiments at the Department of Energy’s Rifle Integrated Field Research Challenge (IFRC) site near Rifle, Colorado (USA) have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally-invasive and spatially-extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days) of acetate injection. A thorough raw-data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power-law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IRFC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate reducing microorganism. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer – a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants, such as uranium.

  11. Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of an uranium-contaminated aquifer

    NASA Astrophysics Data System (ADS)

    Flores Orozco, AdriáN.; Williams, Kenneth H.; Long, Philip E.; Hubbard, Susan S.; Kemna, Andreas

    2011-09-01

    Experiments at the Department of Energy's Integrated Field Research Challenge (IFRC) site near Rifle, Colorado, have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally invasive and spatially extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days) of acetate injection. A thorough raw data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IFRC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate-reducing microorganisms. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer, a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants such as uranium.

  12. Biogeochemical Processes leading to release of As and Mn in the groundwaters of Murshidabad District of West Bengal, India

    NASA Astrophysics Data System (ADS)

    Johannesson, K. H.; Datta, S.; Vega, M.; Berube, M.

    2015-12-01

    Elevated concentrations of both manganese (Mn) and arsenic (As) have been observed in the groundwaters of Murshidabad, in eastern India. Mn, a postulated neurotoxin is known to cause neuromuscular problems, inhibition of neurological development particularly in children. The health impacts from higher bioavailable proportions of As is well known in being a Class I carcinogen. The discovery of this additional contaminant in the already As afflicted regions of SE Asia poses serious implications for millions of inhabitants. The current study aims to address three objectives in understanding biogeochemical cycling of Mn and As in groundwaters: i) the occurrence and overall distribution (lateral and temporal) of groundwater Mn and As; ii) characterization of the dissolved organic matter and microbial content and the resultant effects that are imposed on dissolved As and Mn; and iii) the relationship between Mn, As, and various other inorganic constituents and their impact on the subsequent release of Mn, on top of As. A three year time series of chemical data for the dissolved constituents from six villages in Murshidabad will be presented. Hariharpara, Beldanga, Naoda villages contain reducing groundwaters (mean Mn: 0.93mg/L); Nabagram, Kandi, Khidirpore demonstrate oxidizing aquifers (Mn: 0.74mg/L). Eighty-three percent of the wells surveyed contain Mn levels that exceed the recommended WHO limit of 0.4 mg/L. Dissolved As within the same locations show a range from <10μg/L to ~4000 μg/L. DOC values demonstrate a positive correlation with Mn in reducing and a negative correlation in oxidizing environments. The reducing aquifers are also high in As and DOC, indicating that the microbially mediated reductive dissolution of As-sorbed onto Fe-Mn mineral phases is probable. Fluorescence analyses of dissolved OM, solidphase modeling of Mn speciation are being combined in this study for more insight into the mechanisms of Mn release and its relation if any to As release.

  13. Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of a uranium-contaminated aquifer

    SciTech Connect

    Orozco, A. Flores; Williams, K.H.; Long, P.E.; Hubbard, S.S.; Kemna, A.

    2011-04-01

    Experiments at the Department of Energy's Rifle Integrated Field Research Challenge (IFRC) site near Rifle, Colorado (USA) have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally-invasive and spatially-extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days) of acetate injection. A thorough raw-data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power-law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IRFC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate reducing microorganism. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer - a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants, such as uranium.

  14. Emergent Archetype Hydrological-Biogeochemical Response Patterns in Heterogeneous Catchments

    NASA Astrophysics Data System (ADS)

    Jawitz, J. W.; Gall, H. E.; Rao, P.

    2013-12-01

    What can spatiotemporally integrated patterns observed in stream hydrologic and biogeochemical signals generated in response to transient hydro-climatic and anthropogenic forcing tell us about the interactions between spatially heterogeneous soil-mediated hydrological and biogeochemical processes? We seek to understand how the spatial structure of solute sources coupled with hydrologic responses affect observed concentration-discharge (C-Q) patterns. These patterns are expressions of the spatiotemporal structure of solute loads exported from managed catchments, and their likely ecological consequences manifested in receiving water bodies (e.g., wetlands, rivers, lakes, and coastal waters). We investigated the following broad questions: (1) How does the correlation between flow-generating areas and biogeochemical source areas across a catchment evolve under stochastic hydro-climatic forcing? (2) What are the feasible hydrologic and biogeochemical responses that lead to the emergence of the observed archetype C-Q patterns? and; (3) What implications do these coupled dynamics have for catchment monitoring and implementation of management practices? We categorize the observed temporal signals into three archetypical C-Q patterns: dilution; accretion, and constant concentration. We introduce a parsimonious stochastic model of heterogeneous catchments, which act as hydrologic and biogeochemical filters, to examine the relationship between spatial heterogeneity and temporal history of solute export signals. The core concept of the modeling framework is considering the types and degree of spatial correlation between solute source zones and flow generating zones, and activation of different portions of the catchments during rainfall events. Our overarching hypothesis is that each of the archetype C-Q patterns can be generated by explicitly linking landscape-scale hydrologic responses and spatial distributions of solute source properties within a catchment. The model

  15. Biogeochemical and Hydrological Heterogeneity and Emergent Archetypical Catchment Response Patterns

    NASA Astrophysics Data System (ADS)

    Jawitz, J. W.; Gall, H. E.; Rao, P. S.

    2014-12-01

    What can stream hydrologic and biogeochemical signals tell us about interactions among spatially heterogeneous hydrological and biogeochemical processes at the catchment-scale? We seek to understand how the spatial structure of solute sources coupled with both stationary and nonstationary hydroclimatic drivers affect observed archetypes of concentration-discharge (C-Q) patterns. These response patterns are the spatially integrated expressions of the spatiotemporal structure of solutes exported from managed catchments, and can provide insight into likely ecological consequences of receiving water bodies (e.g., wetlands, rivers, lakes, and coastal waters). We investigated the following broad questions: (1) How does the spatial correlation between the structure of flow-generating areas and biogeochemical source areas across a catchment evolve under stochastic hydro-climatic forcing? (2) What are the feasible hydrologic and biogeochemical responses that lead to the emergence of archetypical C-Q patterns? and; (3) What implications do these coupled dynamics have for catchment monitoring and implementation of management practices? We categorize the observed temporal signals into three archetypical C-Q patterns: dilution; accretion, and constant concentration. We applied a parsimonious stochastic model of heterogeneous catchments, which act as hydrologic and biogeochemical filters, to examine the relationship between spatial heterogeneity and temporal history of solute export signals. The core concept of the modeling framework is considering the type and degree of spatial correlation between solute source zones and flow generating zones, and activation of different portions of the catchments during rainfall events. Our overarching hypothesis is that each archetype C-Q pattern can be generated by explicitly linking landscape-scale hydrologic responses and spatial distributions of solute source properties within a catchment. We compared observed multidecadal data to

  16. What are the greenhouse gas observing system requirements for reducing fundamental biogeochemical process uncertainty? Amazon wetland CH4 emissions as a case study

    NASA Astrophysics Data System (ADS)

    Bloom, A. Anthony; Lauvaux, Thomas; Worden, John; Yadav, Vineet; Duren, Riley; Sander, Stanley P.; Schimel, David S.

    2016-12-01

    Understanding the processes controlling terrestrial carbon fluxes is one of the grand challenges of climate science. Carbon cycle process controls are readily studied at local scales, but integrating local knowledge across extremely heterogeneous biota, landforms and climate space has proven to be extraordinarily challenging. Consequently, top-down or integral flux constraints at process-relevant scales are essential to reducing process uncertainty. Future satellite-based estimates of greenhouse gas fluxes - such as CO2 and CH4 - could potentially provide the constraints needed to resolve biogeochemical process controls at the required scales. Our analysis is focused on Amazon wetland CH4 emissions, which amount to a scientifically crucial and methodologically challenging case study. We quantitatively derive the observing system (OS) requirements for testing wetland CH4 emission hypotheses at a process-relevant scale. To distinguish between hypothesized hydrological and carbon controls on Amazon wetland CH4 production, a satellite mission will need to resolve monthly CH4 fluxes at a ˜ 333 km resolution and with a ≤ 10 mg CH4 m-2 day-1 flux precision. We simulate a range of low-earth orbit (LEO) and geostationary orbit (GEO) CH4 OS configurations to evaluate the ability of these approaches to meet the CH4 flux requirements. Conventional LEO and GEO missions resolve monthly ˜ 333 km Amazon wetland fluxes at a 17.0 and 2.7 mg CH4 m-2 day-1 median uncertainty level. Improving LEO CH4 measurement precision by 2 would only reduce the median CH4 flux uncertainty to 11.9 mg CH4 m-2 day-1. A GEO mission with targeted observing capability could resolve fluxes at a 2.0-2.4 mg CH4 m-2 day-1 median precision by increasing the observation density in high cloud-cover regions at the expense of other parts of the domain. We find that residual CH4 concentration biases can potentially reduce the ˜ 5-fold flux CH4 precision advantage of a GEO mission to a ˜ 2-fold

  17. Do unconscious processes affect educational institutions?

    PubMed

    Hinshelwood, R D

    2009-10-01

    In this article I discuss the way that aspects of school and teaching have unconscious roots. Where anxiety about the process, for teachers and children, is high then there is the risk that unconscious defensive processes may occur resulting in institutionalized phenomena. These take the form of cultural attitudes and common practices which may not necessarily enhance the work and in some cases may actively interfere.

  18. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of carbon dynami...

  19. Dilution, Not Load, Affects Distractor Processing

    ERIC Educational Resources Information Center

    Wilson, Daryl E.; Muroi, Miya; MacLeod, Colin M.

    2011-01-01

    Lavie and Tsal (1994) proposed that spare attentional capacity is allocated involuntarily to the processing of irrelevant stimuli, thereby enabling interference. Under this view, when task demands increase, spare capacity should decrease and distractor interference should decrease. In support, Lavie and Cox (1997) found that increasing perceptual…

  20. Sound Affects the Speed of Visual Processing

    ERIC Educational Resources Information Center

    Keetels, Mirjam; Vroomen, Jean

    2011-01-01

    The authors examined the effects of a task-irrelevant sound on visual processing. Participants were presented with revolving clocks at or around central fixation and reported the hand position of a target clock at the time an exogenous cue (1 clock turning red) or an endogenous cue (a line pointing toward 1 of the clocks) was presented. A…

  1. Biogeochemical factors affecting the distribution, speciation, and transport of Hg species in the Deûle and Lys Rivers (Northern France).

    PubMed

    Daye, Mirna; Kadlecova, Milada; Ouddane, Baghdad

    2015-02-01

    The Deûle River is a highly polluted River by heavy metals caused by the historical discharges of ore minerals from the former ore smelter "Metaleurop." The potential mercury (Hg) pollution in the Deûle River implicates the importance of Hg distribution study in the river. As well as to configure the different biogeochemical factors that control the distribution and the potential transport of Hg to distant places. Four different sites were studied as follows: D-A (Deûle River, a site located upstream the river), D-B (Deûle River, a site located near a Zn, Pb, Cu, and Ni smelter that closed in 2003), L-C (Lys River, a site located upstream the confluence of the Deûle River with Lys River), and L-D (downstream the rivers confluence). Different Hg analyses were performed including total mercury in sediment (HgTS), methylmercury (MeHg) in sediment, total mercury in pore water (HgTPW), total mercury in surface water (HgTD), and total suspended particulate Hg in water (HgTP). HgTS decreases downstream from the Deûle River sites with a mean value of 11 ± 0.34 mg/kg to Lys River site (L-D) with a mean value of 0.53 ± 0.02 mg/kg at the confluence. The unaffected side of the Lys River, localized before the confluence (L-C), is characterized by low HgTS of an average value of 0.042 ± 0.003 mg/kg and high % MeHg reaching 4.2 %. Whereas, the highly contaminated Deûle sites are designated by low % MeHg with an average value of 0.053 %. Low pristine environments like that found in L-C site with more favorable biogeochemical conditions of lower concentrations of HgTS, sulfides, and Corg host more active biotic methylation than that of the highly polluted Deûle sites with high concentrations of HgTS and sulfides concentrations. Methylation in D-B (the closet site to Metaleurop smelter) is an old and recent methylation activity that has contributed to MeHg accumulation in the sediments as opposed to the exclusive recent events of methylation in Lys sites. Me

  2. Low temperature alteration processes affecting ultramafic bodies

    USGS Publications Warehouse

    Nesbitt, H.W.; Bricker, O.P.

    1978-01-01

    At low temperatures, in the presence of an aqueous solution, olivine and orthopyroxene are not stable relative to the hydrous phases brucite, serpentine and talc. Alteration of dunite and peridotite to serpentine or steatite bodies must therefore proceed via non-equilibrium processes. The compositions of natural solutions emanating from dunites and peridotites demonstrate that the dissolution of forsterite and/or enstatite is rapid compared with the precipitation of the hydrous phases; consequently, dissolution of anhydrous minerals controls the chemistry of such solutions. In the presence of an aqueous phase, precipitation of hydrous minerals is the rate-controlling step. Brucite-bearing and -deficient serpentinites alter at low temperature by non-equilibrium processes, as evidenced by the composition of natural solutions from these bodies. The solutions approach equilibrium with the least stable hydrous phase and, as a consequence, are supersaturated with other hydrous phases. Dissolution of the least stable phase is rapid compared to precipitation of other phases, so that the dissolving mineral controls the solution chemistry. Non-equilibrium alteration of anhydrous ultramafic bodies continues until at least one anhydrous phase equilibrates with brucite, chrysotile or talc. The lowest temperature (at a given pressure) at which this happens is defined by the reaction: 3H2O + 2Mg2SiO4 ??? Mg3Si2O5(OH)4 + Mg(OH)2 (Johannes, 1968, Contrib. Mineral. Petrol. 19, 309-315) so that non-equilibrium alteration may occur well into greenschist facies metamorphic conditions. ?? 1978.

  3. Mapping pan-Arctic CH4 emissions using an adjoint method by integrating process-based wetland and lake biogeochemical models and atmospheric CH4 concentrations

    NASA Astrophysics Data System (ADS)

    Tan, Z.; Zhuang, Q.; Henze, D. K.; Frankenberg, C.; Dlugokencky, E. J.; Sweeney, C.; Turner, A. J.

    2015-12-01

    Understanding CH4 emissions from wetlands and lakes are critical for the estimation of Arctic carbon balance under fast warming climatic conditions. To date, our knowledge about these two CH4 sources is almost solely built on the upscaling of discontinuous measurements in limited areas to the whole region. Many studies indicated that, the controls of CH4 emissions from wetlands and lakes including soil moisture, lake morphology and substrate content and quality are notoriously heterogeneous, thus the accuracy of those simple estimates could be questionable. Here we apply a high spatial resolution atmospheric inverse model (nested-grid GEOS-Chem Adjoint) over the Arctic by integrating SCIAMACHY and NOAA/ESRL CH4 measurements to constrain the CH4 emissions estimated with process-based wetland and lake biogeochemical models. Our modeling experiments using different wetland CH4 emission schemes and satellite and surface measurements show that the total amount of CH4 emitted from the Arctic wetlands is well constrained, but the spatial distribution of CH4 emissions is sensitive to priors. For CH4 emissions from lakes, our high-resolution inversion shows that the models overestimate CH4 emissions in Alaskan costal lowlands and East Siberian lowlands. Our study also indicates that the precision and coverage of measurements need to be improved to achieve more accurate high-resolution estimates.

  4. Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR

    USGS Publications Warehouse

    Boss, E.S.; Collier, R.; Larson, G.; Fennel, K.; Pegau, W.S.

    2007-01-01

    Spectral inherent optical properties (IOPs) have been measured at Crater Lake, OR, an extremely clear sub-alpine lake. Indeed Pure water IOPs are major contributors to the total IOPs, and thus to the color of the lake. Variations in the spatial distribution of IOPs were observed in June and September 2001, and reflect biogeochemical processes in the lake. Absorption by colored dissolved organic material increases with depth and between June and September in the upper 300 m. This pattern is consistent with a net release of dissolved organic materials from primary and secondary production through the summer and its photo-oxidation near the surface. Waters fed by a tributary near the lake's rim exhibited low levels of absorption by dissolved organic materials. Scattering is mostly dominated by organic particulate material, though inorganic material is found to enter the lake from the rim following a rain storm. Several similarities to oceanic oligotrophic regions are observed: (a) The Beam attenuation correlates well with particulate organic material (POM) and the relationship is similar to that observed in the open ocean. (b) The specific absorption of colored dissolved organic material has a value similar to that of open ocean humic material. (c) The distribution of chlorophyll with depth does not follow the distribution of particulate organic material due to photo-acclimation resulting in a subsurface pigment maximum located about 50 m below the POM maximum. ?? 2007 Springer Science+Business Media B.V.

  5. Cloud Processed CCN Affect Cloud Microphysics

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.; Noble, S. R., Jr.; Tabor, S. S.

    2015-12-01

    Variations in the bimodality/monomodality of CCN spectra (Hudson et al. 2015) exert opposite effects on cloud microphysics in two aircraft field projects. The figure shows two examples, droplet concentration, Nc, and drizzle liquid water content, Ld, against classification of CCN spectral modality. Low ratings go to balanced separated bimodal spectra, high ratings go to single mode spectra, strictly monomodal 8. Intermediate ratings go merged modes, e.g., one mode a shoulder of another. Bimodality is caused by mass or hygroscopicity increases that go only to CCN that made activated cloud droplets. In the Ice in Clouds Experiment-Tropical (ICE-T) small cumuli with lower Nc, greater droplet mean diameters, MD, effective radii, re, spectral widths, σ, cloud liquid water contents, Lc, and Ld were closer to more bimodal (lower modal ratings) below cloud CCN spectra whereas clouds with higher Nc, smaller MD, re, σ, and Ld were closer to more monomodal CCN (higher modal ratings). In polluted stratus clouds of the MArine Stratus/Stratocumulus Experiment (MASE) clouds that had greater Nc, and smaller MD, re, σ, Lc, and Ld were closer to more bimodal CCN spectra whereas clouds with lower Nc, and greater MD, re, σ, Lc, and Ld were closer to more monomodal CCN. These relationships are opposite because the dominant ICE-T cloud processing was coalescence whereas chemical transformations (e.g., SO2 to SO4) were dominant in MASE. Coalescence reduces Nc and thus also CCN concentrations (NCCN) when droplets evaporate. In subsequent clouds the reduced competition increases MD and σ, which further enhance coalescence and drizzle. Chemical transformations do not change Nc but added sulfate enhances droplet and CCN solubility. Thus, lower critical supersaturation (S) CCN can produce more cloud droplets in subsequent cloud cycles, especially for the low W and effective S of stratus. The increased competition reduces MD, re, and σ, which inhibit coalescence and thus reduce drizzle

  6. Searching for Biogeochemical Cycles on Mars

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.

    1997-01-01

    The search for life on Mars clearly benefits from a rigorous, yet broad, definition of life that compels us to consider all possible lines of evidence for a martian biosphere. Recent studies in microbial ecology illustrate that the classic definition of life should be expanded beyond the traditional definition of a living cell. The traditional defining characteristics of life are threefold. First, life is capable of metabolism, that is, it performs chemical reactions that utilize energy and also synthesize its cellular constituents. Second, life is capable of self-replication. Third, life can evolve in order to adapt to environmental changes. An expanded, ecological definition of life also recognizes that life is a community of organisms that must interact with their nonliving environment through processes called biogeochemical cycles. This regenerative processing maintains, in an aqueous conditions, a dependable supply of nutrients and energy for growth. In turn, life can significantly affect those processes that control the exchange of materials between the atmosphere, ocean, and upper crust. Because metabolic processes interact directly with the environment, they can alter their surroundings and thus leave behind evidence of life. For example, organic matter is produced from single-carbon-atom precursors for the biosynthesis of cellular constituents. This leads to a reservoir of reduced carbon in sediments that, in turn, can affect the oxidation state of the atmosphere. The harvesting of chemical energy for metabolism often employs oxidation-reduction reactions that can alter the chemistry and oxidation state of the redox-sensitive elements carbon, sulfur, nitrogen, iron, and manganese. Have there ever been biogeochemical cycles on Mars? Certain key planetary processes can offer clues. Active volcanism provides reduced chemical species that biota can use for organic synthesis. Volcanic carbon dioxide and methane can serve as greenhouse gases. Thus the

  7. Studies of dynamical processes affecting global climate

    SciTech Connect

    Keller, C.; Cooper, D.; Eichinger, W.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development project at the Los Alamos National Laboratory (LANL). The main objective was, by a combined theoretical and observational approach, to develop improved models of dynamic processes in the oceans and atmosphere and to incorporate them into large climate codes, chiefly in four main areas: numerical physics, chemistry, water vapor, and ocean-atmosphere interactions. Main areas of investigation included studies of: cloud parameterizations for global climate codes, Lidar and the planetary boundary layer, chemistry, climate variability using coupled ocean-atmospheric models, and numerical physical methods. This project employed a unique approach that included participation of a number of University of California faculty, postdoctoral fellows and graduate students who collaborated with Los Alamos research staff on specific tasks, thus greatly enhancing the research output. Overall accomplishments during the sensing of the atmospheric planetary were: (1) first two- and three-dimensional remote sensing of the atmospheric planetary boundary layer using Lidars, (2) modeling of 20-year cycle in both pressure and sea surface temperatures in North Pacific, (3) modeling of low frequency internal variability, (4) addition of aerosols to stratosphere to simulate Pinatubo effect on ozone, (5) development of fast, comprehensive chemistry in the troposphere for urban pollution studies, (6) new prognostic cloud parameterization in global atmospheric code remedied problems with North Pacific atmospheric circulation and excessive equatorial precipitation, (7) development of a unique aerosol analysis technique, the aerosol time-of-flight mass spectrometer (ATOFMS), which allows real-time analysis of the size and chemical composition of individual aerosol particles, and (8) numerical physics applying Approximate Inertial Manifolds to ocean circulation. 14 refs., 6 figs.

  8. Elaboration Likelihood and the Counseling Process: The Role of Affect.

    ERIC Educational Resources Information Center

    Stoltenberg, Cal D.; And Others

    The role of affect in counseling has been examined from several orientations. The depth of processing model views the efficiency of information processing as a function of the extent to which the information is processed. The notion of cognitive processing capacity states that processing information at deeper levels engages more of one's limited…

  9. Cognitive control modulates preferential sensory processing of affective stimuli.

    PubMed

    Steinhauser, Marco; Flaisch, Tobias; Meinzer, Marcus; Schupp, Harald T

    2016-10-01

    Adaptive human behavior crucially relies on the ability of the brain to allocate resources automatically to emotionally significant stimuli. This ability has consistently been demonstrated by studies showing preferential processing of affective stimuli in sensory cortical areas. It is still unclear, however, whether this putatively automatic mechanism can be modulated by cognitive control processes. Here, we use functional magnetic resonance imaging (fMRI) to investigate whether preferential processing of an affective face distractor is suppressed when an affective distractor has previously elicited a response conflict in a word-face Stroop task. We analyzed this for three consecutive stages in the ventral stream of visual processing for which preferential processing of affective stimuli has previously been demonstrated: the striate area (BA 17), category-unspecific extrastriate areas (BA 18/19), and the fusiform face area (FFA). We found that response conflict led to a selective suppression of affective face processing in category-unspecific extrastriate areas and the FFA, and this effect was accompanied by changes in functional connectivity between these areas and the rostral anterior cingulate cortex. In contrast, preferential processing of affective face distractors was unaffected in the striate area. Our results indicate that cognitive control processes adaptively suppress preferential processing of affective stimuli under conditions where affective processing is detrimental because it elicits response conflict.

  10. Biogeochemical cycling and remote sensing

    NASA Technical Reports Server (NTRS)

    Peterson, D. L.

    1985-01-01

    Research is underway at the NASA Ames Research Center that is concerned with aspects of the nitrogen cycle in terrestrial ecosystems. An interdisciplinary research group is attempting to correlate nitrogen transformations, processes, and productivity with variables that can be remotely sensed. Recent NASA and other publications concerning biogeochemical cycling at global scales identify attributes of vegetation that could be related or explain the spatial variation in biologically functional variables. These functional variables include net primary productivity, annual nitrogen mineralization, and possibly the emission rate of nitrous oxide from soils.

  11. Biogeochemical factors which regulate the formation and fate of sulfide in wetlands

    NASA Technical Reports Server (NTRS)

    Hines, Mark E.; Lyons, W. Berry; Gaudette, H. E.

    1992-01-01

    Coastal wetland areas occupy a small percentage of the terrestrial environment yet are extremely productive regions which support rapid rates of belowground bacterial activity. Wetlands appear to be significant as biogenic sources of gaseous sulfur, carbon, and nitrogen. These gases are important as tracers of man's activities, and they influence atmospheric chemistry. The interactions among wetland biogeochemical processes regulate the anaerobic production of reduced gases and influence the fate of these volatiles. Therefore, spatial and temporal variations in hydrology, salinity, temperature and specification, and growth of vegetation affect the type and magnitude of gas emissions thus hindering predictive estimates of gas flux. Our research is divided into two major components, the first is the biogeochemical characterization of a selected tidal wetland area in terms of factors likely to regulate sulfide flux; the second is a direct measurement of gaseous sulfur flux as related to changes in these biogeochemical conditions. Presently, we are near completion of phase one.

  12. Modeling intrinsic bioremediation for interpret observable biogeochemical footprints of BTEX biodegradation: the need for fermentation and abiotic chemical processes.

    PubMed

    Maurer, Max; Rittmann, Bruce E

    2004-12-01

    The intrinsic bioremediation of BTEX must be documented by the stoichiometric consumption and production of several other compounds, called 'footprints' of the biodegradation reaction. Although footprints of BTEX biodegradation are easy to identify from reaction stoichiometry, they can be confounded by the stepwise nature of the biodegradation reactions and by several abiotic chemical reactions that also produce or consume the footprints. In order to track the footprints for BTEX biodegradation, the following reactions need to be considered explicitly: (1) fermentation and methanogenesis as separate processes, (2) precipitation and dissolution of calcite, (3) precipitation and dissolution of amorphous iron monosulfide (FeS), (4) conversion of FeS into the thermodynamically stable pyrite (FeS2) with loss of sulfide and abiotic formation of H2, and (5) reductive dissolution of solid iron(III) by oxidation of sulfide. We critically review the research that underlies why these mechanisms must be included and how to describe them quantitatively. A companion manuscript develops and applies a mathematical model that includes these reactions.

  13. Effects of physical and biogeochemical processes on aquatic ecosystems at the groundwater-surface water interface: An evaluation of a sulfate-impacted wild rice stream in Minnesota (USA)

    NASA Astrophysics Data System (ADS)

    Ng, G. H. C.; Yourd, A. R.; Myrbo, A.; Johnson, N.

    2015-12-01

    Significant uncertainty and variability in physical and biogeochemical processes at the groundwater-surface water interface complicate how surface water chemistry affects aquatic ecosystems. Questions surrounding a unique 10 mg/L sulfate standard for wild rice (Zizania sp.) waters in Minnesota are driving research to clarify conditions controlling the geochemistry of shallow sediment porewater in stream- and lake-beds. This issue raises the need and opportunity to carry out in-depth, process-based analysis into how water fluxes and coupled C, S, and Fe redox cycles interact to impact aquatic plants. Our study builds on a recent state-wide field campaign that showed that accumulation of porewater sulfide from sulfate reduction impairs wild rice, an annual grass that grows in shallow lakes and streams in the Great Lakes region of North America. Negative porewater sulfide correlations with organic C and Fe quantities also indicated that lower redox rates and greater mineral precipitation attenuate sulfide. Here, we focus on a stream in northern Minnesota that receives high sulfate loading from iron mining activity yet maintains wild rice stands. In addition to organic C and Fe effects, we evaluate the degree to which streambed hydrology, and in particular groundwater contributions, accounts for the active biogeochemistry. We collect field measurements, spanning the surrounding groundwater system to the stream, to constrain a reactive-transport model. Observations from seepage meters, temperature probes, and monitoring wells delineate upward flow that may lessen surface water impacts below the stream. Geochemical analyses of groundwater, porewater, and surface water samples and of sediment extractions reveal distinctions among the different domains and stream banks, which appear to jointly control conditions in the streambed. A model based on field conditions can be used to evaluate the relative the importance and the spatiotemporal scales of diverse flux and

  14. Biogeochemical and microbial seasonal dynamics between water column and sediment processes in a productive mountain lake: Georgetown Lake, MT, USA

    NASA Astrophysics Data System (ADS)

    Parker, Stephen R.; West, Robert F.; Boyd, Eric S.; Feyhl-Buska, Jayme; Gammons, Christopher H.; Johnston, Tyler B.; Williams, George P.; Poulson, Simon R.

    2016-08-01

    This manuscript details investigations of a productive, mountain freshwater lake and examines the dynamic relationship between the chemical and stable isotopes and microbial composition of lake bed sediments with the geochemistry of the lake water column. A multidisciplinary approach was used in order to better understand the lake water-sediment interactions including quantification and sequencing of microbial 16S rRNA genes in a sediment core as well as stable isotope analysis of C, S, and N. One visit included the use of a pore water sampler to gain insight into the composition of dissolved solutes within the sediment matrix. Sediment cores showed a general decrease in total C with depth which included a decrease in the fraction of organic C combined with an increase in the fraction of inorganic C. One sediment core showed a maximum concentration of dissolved organic C, dissolved inorganic C, and dissolved methane in pore water at 4 cm depth which corresponded with a sharp increase in the abundance of 16S rRNA templates as a proxy for the microbial population size as well as the peak abundance of a sequence affiliated with a putative methanotroph. The isotopic separation between dissolved inorganic and dissolved organic carbon is consistent with largely aerobic microbial processes dominating the upper water column, while anaerobic microbial activity dominates the sediment bed. Using sediment core carbon concentrations, predictions were made regarding the breakdown and return of stored carbon per year from this temperate climate lake with as much as 1.3 Gg C yr-1 being released in the form of CO2 and CH4.

  15. Genome-Enabled Modeling of Biogeochemical Processes Predicts Metabolic Dependencies that Connect the Relative Fitness of Microbial Functional Guilds

    NASA Astrophysics Data System (ADS)

    Brodie, E.; King, E.; Molins, S.; Karaoz, U.; Steefel, C. I.; Banfield, J. F.; Beller, H. R.; Anantharaman, K.; Ligocki, T. J.; Trebotich, D.

    2015-12-01

    Pore-scale processes mediated by microorganisms underlie a range of critical ecosystem services, regulating carbon stability, nutrient flux, and the purification of water. Advances in cultivation-independent approaches now provide us with the ability to reconstruct thousands of genomes from microbial populations from which functional roles may be assigned. With this capability to reveal microbial metabolic potential, the next step is to put these microbes back where they belong to interact with their natural environment, i.e. the pore scale. At this scale, microorganisms communicate, cooperate and compete across their fitness landscapes with communities emerging that feedback on the physical and chemical properties of their environment, ultimately altering the fitness landscape and selecting for new microbial communities with new properties and so on. We have developed a trait-based model of microbial activity that simulates coupled functional guilds that are parameterized with unique combinations of traits that govern fitness under dynamic conditions. Using a reactive transport framework, we simulate the thermodynamics of coupled electron donor-acceptor reactions to predict energy available for cellular maintenance, respiration, biomass development, and enzyme production. From metagenomics, we directly estimate some trait values related to growth and identify the linkage of key traits associated with respiration and fermentation, macromolecule depolymerizing enzymes, and other key functions such as nitrogen fixation. Our simulations were carried out to explore abiotic controls on community emergence such as seasonally fluctuating water table regimes across floodplain organic matter hotspots. Simulations and metagenomic/metatranscriptomic observations highlighted the many dependencies connecting the relative fitness of functional guilds and the importance of chemolithoautotrophic lifestyles. Using an X-Ray microCT-derived soil microaggregate physical model combined

  16. Integrated water system simulation by considering hydrological and biogeochemical processes: model development, with parameter sensitivity and autocalibration

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Shao, Q. X.; Ye, A. Z.; Xing, H. T.; Xia, J.

    2016-02-01

    Integrated water system modeling is a feasible approach to understanding severe water crises in the world and promoting the implementation of integrated river basin management. In this study, a classic hydrological model (the time variant gain model: TVGM) was extended to an integrated water system model by coupling multiple water-related processes in hydrology, biogeochemistry, water quality, and ecology, and considering the interference of human activities. A parameter analysis tool, which included sensitivity analysis, autocalibration and model performance evaluation, was developed to improve modeling efficiency. To demonstrate the model performances, the Shaying River catchment, which is the largest highly regulated and heavily polluted tributary of the Huai River basin in China, was selected as the case study area. The model performances were evaluated on the key water-related components including runoff, water quality, diffuse pollution load (or nonpoint sources) and crop yield. Results showed that our proposed model simulated most components reasonably well. The simulated daily runoff at most regulated and less-regulated stations matched well with the observations. The average correlation coefficient and Nash-Sutcliffe efficiency were 0.85 and 0.70, respectively. Both the simulated low and high flows at most stations were improved when the dam regulation was considered. The daily ammonium-nitrogen (NH4-N) concentration was also well captured with the average correlation coefficient of 0.67. Furthermore, the diffuse source load of NH4-N and the corn yield were reasonably simulated at the administrative region scale. This integrated water system model is expected to improve the simulation performances with extension to more model functionalities, and to provide a scientific basis for the implementation in integrated river basin managements.

  17. Hydrologic and Biogeochemical Processes as Controls on the Quantity and Chemical Quality of Dissolved Organic Carbon Across Multiple Spatial Scales in the Colorado River

    NASA Astrophysics Data System (ADS)

    Miller, M.

    2012-12-01

    Longitudinal patterns in dissolved organic carbon (DOC) loads and chemical quality were described in the Colorado River from the headwaters in the Rocky Mountains to the United States-Mexico border from 1994-2011. Watershed- and reach-scale climate, land use, river discharge and hydrologic modification conditions that contribute to patterns in DOC were also identified. Principal components analysis (PCA) identified site-specific precipitation and reach-scale discharge as being correlated with sites in the upper basin, where there were increases in DOC load from the upstream to downstream direction. In the lower basin, where DOC load decreased from upstream to downstream, sites were correlated with site-specific temperature and reach-scale population, urban land use, and hydrologic modification. In the reaches containing Lakes Powell and Mead, the two largest reservoirs in the United States, DOC quantity decreased, terrestrially-derived aromatic DOC was degraded and/or autochthonous less aromatic DOC was produced. Taken together these results suggest that longitudinal patterns in the relatively unregulated upper basin are influenced by watershed inputs of water and DOC; whereas DOC patterns in the lower basin are reflective of a balance between watershed contribution of water and DOC to the river, and loss of water and DOC due to hydrologic modification and/or biogeochemical processes. These findings suggest that alteration of constituent fluxes in rivers that are highly regulated may overshadow watershed processes that would control fluxes in comparable unregulated rivers. Further, these results provide a foundation for detailed assessments of factors controlling the transport and chemical quality of DOC in the Colorado River.

  18. Biogeochemical and hydrological processes controlling the transport and fate of 1,2-dibromoethane (EDB) in soil and ground water, central Florida

    USGS Publications Warehouse

    Katz, Brian G.

    1993-01-01

    Widespread contamination of ground water in central Florida by 1,2-dibromoethane (EDB) has resulted because of its heavy usage as a soil fumigant during a 20-year period, its relatively high aqueous solubility, and the low sorption capacity of the highly permeable sandy soils lacking organic matter. Two models were used to improve understanding of biogeochemical and hydrological processes that control the transport and fate of EDB in soil and ground water. First, a mass-balance model was developed to estimate the max-imum concentration of EDB in ground water resulting from known application rates of EDB. Key processes that were quantified in the model included volatilization, diffusion of EDB vapor in soils, partitioning between aqueous and gaseous phases, sorption of EDB vapor on organic carbon and soil particles, chemical and biological degradation reactions, and nonreversible binding of EDB to soils. Model calculations using an EDB half-life of 0.65 year closely reproduced the maximum observed concentrations in ground water, 37 and 0.22 micrograms per liter, at downgradient sites in two study areas in central Florida. Maximum concentrations of EDB in ground water also were estimated in a second model that incorporated an analytical solution to the three-dimensional advection-dispersion equation for instantaneous point sources of EDB entering the flow systems in the two study areas. The model used an EDB half-life of 0.65 year (obtained from the mass-balance calculations), mean ground-water flow velocities of 0.6 to 1 meter per day, coefficients of longitudinal hydro-dynamic dispersion of 0.6 to 1.0 square meter per day, and coefficients of transverse hydrodynamic dispersion of 0.1 square meter per day. Peak concentrations of EDB in ground water calculated from the analytical model agreed closely with observed peak concentrations measured from 1983 through 1987.

  19. DayCent-Chem Simulations of Ecological and Biogeochemical Processes of Eight Mountain Ecosystems in the United States

    USGS Publications Warehouse

    Hartman, Melannie D.; Baron, Jill S.; Clow, David W.; Creed, Irena F.; Driscoll, Charles T.; Ewing, Holly A.; Haines, Bruce D.; Knoepp, Jennifer; Lajtha, Kate; Ojima, Dennis S.; Parton, William J.; Renfro, Jim; Robinson, R. Bruce; Van Miegroet, Helga; Weathers, Kathleen C.; Williams, Mark W.

    2009-01-01

    deposition as a result of dry and fog inputs. The uncertainties related to weathering reactions, deposition, soil cation exchange capacity, and groundwater contributions influenced how well the simulated acid neutralizing capacity (ANC) and pH estimates compared to observed values. Daily discharge was well represented by the model for most sites. The chapters of this report describe the parameterization for each site and summarize model results for ecosystem variables, stream discharge, and stream chemistry. This intersite comparison exercise provided insight about important and possibly not well understood processes.

  20. Isotopic composition of nitrate and particulate organic matter in a pristine dam reservoir of western India: implications for biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Bardhan, Pratirupa; Naqvi, Syed Wajih Ahmad; Karapurkar, Supriya G.; Shenoy, Damodar M.; Kurian, Siby; Naik, Hema

    2017-02-01

    Isotopic composition of nitrate (δ15N and δ18O) and particulate organic matter (POM; δ15N and δ13C) were measured in the Tillari Reservoir, located at the foothills of the Western Ghats, Maharashtra, western India. The reservoir, which is stratified during spring-summer and autumn seasons but gets vertically mixed during the southwest monsoon (SWM) and winter, is characterized by diverse redox nitrogen transformations in space and time. The δ15N and δ18O values of nitrate were low (δ15N = 2-10 ‰, δ18O = 5-8 ‰) during normoxic conditions but increased gradually (the highest at δ15N = 27 ‰, δ18O = 29 ‰) when anoxic conditions facilitated denitrification in the hypolimnion during spring-early summer. Once nitrate was fully utilized and sulfidic conditions set in, NH4+ became the dominant inorganic N species, with δ15N ranging from 1.3 to 2.6 ‰. Low δ15N (˜ -5 ‰) and δ13C (-37 to -32 ‰) of POM co-occurring with high NH4+ and CH4 in sulfidic bottom waters were probably the consequence of microbial chemosynthesis. Assimilation of nitrate in the epilimnion was the major controlling process on the N isotopic composition of POM (δ15N = 2-6 ‰). Episodic low δ15N values of POM (-2 to 0 ‰) during early summer, coinciding with the absence of nitrate, might arise from N fixation, although further work is required to confirm the hypothesis. δ13C POM in the photic zone ranged between -29 and -27 ‰ for most parts of the year. The periods of mixing were characterized by uniform δ15N-NO3- and δ18O-NO3- at all depths. Higher POM (particulate organic carbon, POC, as well as particulate organic nitrogen, PON) contents and C / N values with lower δ13C POM during the SWM point to allochthonous inputs. Overall, this study, the first of its kind in the Indian subcontinent, provides an insight into biogeochemistry of Indian reservoirs, using stable carbon and nitrogen isotopes as a tool, where the monsoons play an important role in controlling vertical

  1. Estimating impacts of lichens and bryophytes on global biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Porada, Philipp; Weber, Bettina; Elbert, Wolfgang; Pöschl, Ulrich; Kleidon, Axel

    2014-02-01

    Lichens and bryophytes may significantly affect global biogeochemical cycles by fixation of nitrogen and biotic enhancement of surface weathering rates. Most of the studies suggesting these effects, however, are either conceptual or rely on upscaling of regional estimates to obtain global numbers. Here we use a different method, based on estimates of net carbon uptake, to quantify the impacts of lichens and bryophytes on biogeochemical cycles at the global scale. We focus on three processes, namely, nitrogen fixation, phosphorus uptake, and chemical weathering. Our estimates have the form of potential rates, which means that we quantify the amount of nitrogen and phosphorus needed by the organisms to build up biomass, also accounting for resorption and leaching of nutrients. Subsequently, we use potential phosphorus uptake on bare ground to estimate chemical weathering by the organisms, assuming that they release weathering agents to obtain phosphorus. The predicted requirement for nitrogen ranges from 3.5 to 34 Tgyr-1 and for phosphorus it ranges from 0.46 to 4.6 Tgyr-1. Estimates of chemical weathering are between 0.058 and 1.1 km3 yr-1 of rock. These values seem to have a realistic order of magnitude, and they support the notion that lichens and bryophytes have the potential to play an important role for biogeochemical cycles.

  2. Impact of biogeochemical processes on small scale variations in manganese nodule abundance in the Clarion-Clipperton Fracture Zone

    NASA Astrophysics Data System (ADS)

    Mewes, K. J.; Picard, A.; Mogollón, J. M.; Nöthen, K.; Rühlemann, C.; Kuhn, T.; Eisenhauer, A.; Kasten, S.

    2012-12-01

    Manganese nodules of the Clarion Clipperton Fracture Zone (CCFZ) in the equatorial east Pacific Ocean have been the subject of extensive studies in the past (i.e. Halbach et al., 1988). They are considered as a potential source for nonferrous metals. During RV Sonne cruise SO-205 in spring 2010 to the eastern part of the German manganese nodule license area, located in the east of the CCFZ, we recovered sediments with a box corer, multiple corer and piston corer at three sites with nodules on top of the sediment and one site without nodules. These samples were geochemically analyzed to elucidate whether diagenetic processes contribute to manganese nodule growth. High-resolution oxygen measurements at all sites revealed an average oxygen penetration depth of 2-3 m. This finding is in contrast to previous studies, which suggested oxic sediments over several tens of meters (Müller et al., 1988). Microbial activity rates were investigated in the oxic sediments. Highest activity was determined at the site without nodule coverage. Pore water analyses show that sites with large to medium-sized nodules on the sediment surface do not contain free manganese and exhibit no nitrate reduction. In contrast, sediments from nearby locations without nodules or medium to small-sized nodules on the sediment surface show an increase in Mn2+ and a decrease in NO3- pore-water concentrations with depth. This result suggests that at present suboxic diagenesis does not contribute to manganese nodule growth. Sedimentation rates are low at stations with larger nodules (0.35 cm kyr-1) and almost twice as high (~ 0.6cm kyr-1) at stations without or with smaller nodules. The organic carbon (OC) contents in the surface sediments at all stations are about 0.5 weight %. A reaction transport model was used to derive parameters, such as the depositional flux of organic matter, that control the geochemical conditions at the investigated sites. We propose that these small-scale regional differences

  3. Inferring Group Processes from Computer-Mediated Affective Text Analysis

    SciTech Connect

    Schryver, Jack C; Begoli, Edmon; Jose, Ajith; Griffin, Christopher

    2011-02-01

    Political communications in the form of unstructured text convey rich connotative meaning that can reveal underlying group social processes. Previous research has focused on sentiment analysis at the document level, but we extend this analysis to sub-document levels through a detailed analysis of affective relationships between entities extracted from a document. Instead of pure sentiment analysis, which is just positive or negative, we explore nuances of affective meaning in 22 affect categories. Our affect propagation algorithm automatically calculates and displays extracted affective relationships among entities in graphical form in our prototype (TEAMSTER), starting with seed lists of affect terms. Several useful metrics are defined to infer underlying group processes by aggregating affective relationships discovered in a text. Our approach has been validated with annotated documents from the MPQA corpus, achieving a performance gain of 74% over comparable random guessers.

  4. Interacting Physical and Biological Processes Affecting Nutrient Transport Through Human Dominated Landscapes

    NASA Astrophysics Data System (ADS)

    Finlay, J. C.

    2015-12-01

    Human activities increasingly dominate biogeochemical cycles of limiting nutrients on Earth. Urban and agricultural landscapes represent the largest sources of excess nutrients that drive water quality degradation. The physical structure of both urban and agricultural watersheds has been extensively modified, and these changes have large impacts on water and nutrient transport. Despite strong physical controls over nutrient transport in human dominated landscapes, biological processes play important roles in determining the fates of both nitrogen and phosphorus. This talk uses examples from research in urban and agricultural watersheds in the Midwestern USA to illustrate interactions of physical and biological controls over nutrient cycles that have shifted nitrogen (N) and phosphorus (P) sources and cycling in unexpected ways in response to management changes. In urban watersheds, efforts to improve water quality have been hindered by legacy sources of phosphorus added to storm water through transport to drainage systems by vegetation. Similarly, reductions in field erosion in agricultural watersheds have not led to major reductions in phosphorus transport, because of continued release of biological sources of P. Where management of phosphorus has been most effective in reducing eutrophication of lakes, decreases in N removal processes have led to long term increases in N concentration and transport. Together, these examples show important roles for biological processes affecting nutrient movement in highly modified landscapes. Consideration of the downstream physical and biological responses of management changes are thus critical toward identification of actions that will most effectively reduce excess nutrients watersheds and coastal zones.

  5. Cretaceous-Palaeogene experiments in Biogeochemical Resilience

    NASA Astrophysics Data System (ADS)

    Penman, D. E.; Henehan, M. J.; Hull, P. M.; Planavsky, N.; Schmidt, D. N.; Rae, J. W. B.; Thomas, E.; Huber, B. T.

    2015-12-01

    Human activity is altering biogeochemical cycles in the ocean. While ultimately anthropogenic forcings may be brought under control, it is still unclear whether tipping points may exist beyond which human-induced changes to biogeochemical cycles become irreversible. We use the Late Cretaceous and the Cretaceous-Palaeogene (K-Pg) boundary interval as an informative case study. Over this interval, two carbon cycle perturbations (gradual flood basalt volcanism and abrupt bolide impact) occurred within a short time window, allowing us to investigate the resilience of biogeochemical cycles to different pressures applied to the same initial boundary conditions on very different time scales. We demonstrate that relatively gradual emission of CO2 from the Deccan large igneous province was efficiently mitigated within the limits of existing biogeochemical processes. However, the rapid extinction of pelagic calcifying organisms at the K-Pg boundary due to the Chicxulub bolide impact had more profound effects, and caused lasting (> 1 million years) changes to biogeochemical cycles. By combining sedimentological observations with boron isotope-based pH reconstructions over these events, we document two potentially useful partial analogues for best and worst case scenarios for anthropogenic global change. We suggest that if current ocean acidification results in the mass extinction of marine pelagic calcifiers, we may cause profound changes to the Earth system that will persist for 100,000s to millions of years.

  6. Implicit Processing of Visual Emotions Is Affected by Sound-Induced Affective States and Individual Affective Traits

    PubMed Central

    Quarto, Tiziana; Blasi, Giuseppe; Pallesen, Karen Johanne; Bertolino, Alessandro; Brattico, Elvira

    2014-01-01

    The ability to recognize emotions contained in facial expressions are affected by both affective traits and states and varies widely between individuals. While affective traits are stable in time, affective states can be regulated more rapidly by environmental stimuli, such as music, that indirectly modulate the brain state. Here, we tested whether a relaxing or irritating sound environment affects implicit processing of facial expressions. Moreover, we investigated whether and how individual traits of anxiety and emotional control interact with this process. 32 healthy subjects performed an implicit emotion processing task (presented to subjects as a gender discrimination task) while the sound environment was defined either by a) a therapeutic music sequence (MusiCure), b) a noise sequence or c) silence. Individual changes in mood were sampled before and after the task by a computerized questionnaire. Additionally, emotional control and trait anxiety were assessed in a separate session by paper and pencil questionnaires. Results showed a better mood after the MusiCure condition compared with the other experimental conditions and faster responses to happy faces during MusiCure compared with angry faces during Noise. Moreover, individuals with higher trait anxiety were faster in performing the implicit emotion processing task during MusiCure compared with Silence. These findings suggest that sound-induced affective states are associated with differential responses to angry and happy emotional faces at an implicit stage of processing, and that a relaxing sound environment facilitates the implicit emotional processing in anxious individuals. PMID:25072162

  7. Implicit processing of visual emotions is affected by sound-induced affective states and individual affective traits.

    PubMed

    Quarto, Tiziana; Blasi, Giuseppe; Pallesen, Karen Johanne; Bertolino, Alessandro; Brattico, Elvira

    2014-01-01

    The ability to recognize emotions contained in facial expressions are affected by both affective traits and states and varies widely between individuals. While affective traits are stable in time, affective states can be regulated more rapidly by environmental stimuli, such as music, that indirectly modulate the brain state. Here, we tested whether a relaxing or irritating sound environment affects implicit processing of facial expressions. Moreover, we investigated whether and how individual traits of anxiety and emotional control interact with this process. 32 healthy subjects performed an implicit emotion processing task (presented to subjects as a gender discrimination task) while the sound environment was defined either by a) a therapeutic music sequence (MusiCure), b) a noise sequence or c) silence. Individual changes in mood were sampled before and after the task by a computerized questionnaire. Additionally, emotional control and trait anxiety were assessed in a separate session by paper and pencil questionnaires. Results showed a better mood after the MusiCure condition compared with the other experimental conditions and faster responses to happy faces during MusiCure compared with angry faces during Noise. Moreover, individuals with higher trait anxiety were faster in performing the implicit emotion processing task during MusiCure compared with Silence. These findings suggest that sound-induced affective states are associated with differential responses to angry and happy emotional faces at an implicit stage of processing, and that a relaxing sound environment facilitates the implicit emotional processing in anxious individuals.

  8. Spatio-temporal dynamics of biogeochemical processes and air-sea CO2 fluxes in the Western English Channel based on two years of FerryBox deployment

    NASA Astrophysics Data System (ADS)

    Marrec, P.; Cariou, T.; Latimier, M.; Macé, E.; Morin, P.; Vernet, M.; Bozec, Y.

    2014-12-01

    From January 2011 to January 2013, a FerryBox system was installed on a Voluntary Observing Ship (VOS), which crossed the Western English Channel (WEC) between Roscoff (France) and Plymouth (UK) up to 3 times a day. The FerryBox continuously measured sea surface temperature (SST), sea surface salinity (SSS), dissolved oxygen (DO), fluorescence and partial pressure of CO2 (from April 2012) along the ferry track. Sensors were calibrated based on 714 bimonthly surface samplings with precisions of 0.016 for SSS, 3.3 μM for DO, 0.40 μg L- 1 for Chlorophyll-a (Chl-a) (based on fluorescence measurements) and 5.2 μatm for pCO2. Over the 2 years of deployment (900 crossings), we reported 9% of data lost due to technical issues and quality checked data was obtained to allow investigation of the dynamics of biogeochemical processes related to air-sea CO2 fluxes in the WEC. Based on this unprecedented high-frequency dataset, the physical structure of the WEC was assessed using SST anomalies and the presence of a thermal front was observed around the latitude 49.5°N, which divided the WEC in two main provinces: the seasonally stratified northern WEC (nWEC) and the all-year well-mixed southern WEC (sWEC). These hydrographical properties strongly influenced the spatial and inter-annual distributions of phytoplankton blooms, which were mainly limited by nutrients and light availability in the nWEC and the sWEC, respectively. Air-sea CO2 fluxes were also highly related to hydrographical properties of the WEC between late April and early September 2012, with the sWEC a weak source of CO2 to the atmosphere of 0.9 mmol m- 2 d- 1, whereas the nWEC acted as a sink for atmospheric CO2 of 6.9 mmol m- 2 d- 1. The study of short time-scale dynamics of air-sea CO2 fluxes revealed that an intense and short (less than 10 days) summer bloom in the nWEC contributed to 29% of the CO2 sink during the productive period, highlighting the necessity for high frequency observations in coastal

  9. Ocean Circulation and Biogeochemical responses to Typhoons

    NASA Astrophysics Data System (ADS)

    Huang, S. M.; Oey, L. Y.; Lin, P. L.; Liu, K. K.

    2014-12-01

    Typhoons produce vertical and horizontal mixing in the ocean and impact biogeochemical response. The goal of this study is to examine the fundamental processes involved in the physical and biogeochemical changes occurring in an ocean basin traversed by a zonally moving typhoon. The study employs an idealized typhoon wind field with varying intensities and translation speeds over a rectangular ocean basin. The model is based on the mpiPOM which is coupled to an NPZD biogeochemical model. The results show north-south asymmetric responses depending on the translation speeds of the typhoon, due to (1) the different intensities of inertial oscillation, (2) mixing caused by symmetric instability, and (3) re-stratification by mixed-layer baroclinic instability along the typhoon track.

  10. Improving Intercomparability of Marine Biogeochemical Time Series

    NASA Astrophysics Data System (ADS)

    Benway, Heather M.; Telszewski, Maciej; Lorenzoni, Laura

    2013-04-01

    Shipboard biogeochemical time series represent one of the most valuable tools scientists have to quantify marine elemental fluxes and associated biogeochemical processes and to understand their links to changing climate. They provide the long, temporally resolved data sets needed to characterize ocean climate, biogeochemistry, and ecosystem variability and change. However, to monitor and differentiate natural cycles and human-driven changes in the global oceans, time series methodologies must be transparent and intercomparable when possible. To review current shipboard biogeochemical time series sampling and analytical methods, the International Ocean Carbon Coordination Project (IOCCP; http://www.ioccp.org/) and the Ocean Carbon and Biogeochemistry Program (http://www.us-ocb.org/) convened an international ocean time series workshop at the Bermuda Institute for Ocean Sciences.

  11. 129I/(127)I as a new environmental tracer or geochronometer for biogeochemical or hydrodynamic processes in the hydrosphere and geosphere: the central role of organo-iodine.

    PubMed

    Santschi, Peter H; Schwehr, Kathleen A

    2004-04-05

    Iodine is a biophilic element, with several short-lived isotopes (e.g. (131)I, t(1/2)=8 days), one long-lived isotope, (129)I (t(1/2)=15.6 million years) and one stable isotope, (127)I. The inventory of (129)I in surface environments has been overwhelmed by anthropogenic releases over the past 50 years. Iodine and its isotopes are important for a number of reasons: (1) The largest fraction of the short-term and long-term dose from accidental releases and fallout from atomic bomb tests was from iodine isotopes. (2) (129)I is one of the two long-lived nuclides with highest mobility in stored radioactive waste. (3) (129)I could provide the scientific community with a new geochemical tracer and new geochronological applications in environmental science. (4) A better assessment of iodine deficiency disorders, mineralization in exploration geochemistry, and the transfer of volatile organic greenhouse-active and ozone-destroying iodine species from the oceans to the atmosphere is needed. One of the most promising future applications for the (129)I/(127)I ratio is not only as a new geochronometer, but also as a new source tracer for terrestrial organic matter with ages of 50 years or less. This is especially attractive, since radiocarbon can be, at times, an ambiguous chronometer for the 50-year time-scale, whereas (129)I concentrations during this time are overwhelming previous levels by orders of magnitude. Iodine is to a significant extent involved in the cycle of organic matter in all surface environments. Its biophilic nature is demonstrated by a relative enrichment of iodine in seaweed and dissolved macromolecular organic matter. Because of the close coupling of iodine and organic carbon cycles, our understanding of the underlying molecular mechanisms of the processes regulating iodination reactions in aquatic systems is still limited. The binding of iodine by organic matter has the potential to modify the transport, bioavailability and transfer of iodine isotopes to

  12. Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma

    USGS Publications Warehouse

    Cozzarelli, Isabelle M.; Bohlke, Johnkarl F.; Masoner, Jason R.; Breit, George N.; Lorah, Michelle M.; Tuttle, Michele L.W.; Jaeschke, Jeanne B.

    2011-01-01

    Leachate from municipal landfills can create groundwater contaminant plumes that may last for decades to centuries. The fate of reactive contaminants in leachate-affected aquifers depends on the sustainability of biogeochemical processes affecting contaminant transport. Temporal variations in the configuration of redox zones downgradient from the Norman Landfill were studied for more than a decade. The leachate plume contained elevated concentrations of nonvolatile dissolved organic carbon (NVDOC) (up to 300 mg/L), methane (16 mg/L), ammonium (650 mg/L as N), iron (23 mg/L), chloride (1030 mg/L), and bicarbonate (4270 mg/L). Chemical and isotopic investigations along a 2D plume transect revealed consumption of solid and aqueous electron acceptors in the aquifer, depleting the natural attenuation capacity. Despite the relative recalcitrance of NVDOC to biodegradation, the center of the plume was depleted in sulfate, which reduces the long-term oxidation capacity of the leachate-affected aquifer. Ammonium and methane were attenuated in the aquifer relative to chloride by different processes: ammonium transport was retarded mainly by physical interaction with aquifer solids, whereas the methane plume was truncated largely by oxidation. Studies near plume boundaries revealed temporal variability in constituent concentrations related in part to hydrologic changes at various time scales. The upper boundary of the plume was a particularly active location where redox reactions responded to recharge events and seasonal water-table fluctuations. Accurately describing the biogeochemical processes that affect the transport of contaminants in this landfill-leachate-affected aquifer required understanding the aquifer's geologic and hydrodynamic framework.

  13. Affective value and associative processing share a cortical substrate.

    PubMed

    Shenhav, Amitai; Barrett, Lisa Feldman; Bar, Moshe

    2013-03-01

    The brain stores information in an associative manner so that contextually related entities are connected in memory. Such associative representations mediate the brain's ability to generate predictions about which other objects and events to expect in a given context. Likewise, the brain encodes and is able to rapidly retrieve the affective value of stimuli in our environment. That both contextual associations and affect serve as building blocks of numerous mental functions often makes interpretation of brain activation ambiguous. A critical brain region where such activation has often resulted in equivocal interpretation is the medial orbitofrontal cortex (mOFC), which has been implicated separately in both affective and associative processing. To characterize its role more unequivocally, we tested whether activity in the mOFC was most directly attributable to affective processing, associative processing, or a combination of both. Subjects performed an object recognition task while undergoing fMRI scans. Objects varied independently in their affective valence and in their degree of association with other objects (associativity). Analyses revealed an overlapping sensitivity whereby the left mOFC responded both to increasingly positive affective value and to stronger associativity. These two properties individually accounted for mOFC response, even after controlling for their interrelationship. The role of the mOFC is either general enough to encompass associations that link stimuli both with reinforcing outcomes and with other stimuli or abstract enough to use both valence and associativity in conjunction to inform downstream processes related to perception and action. These results may further point to a fundamental relationship between associativity and positive affect.

  14. Benthic processes affecting contaminant transport in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Kuwabara, James S.; Topping, Brent R.; Carter, James L.; Carlson, Rick A; Parchaso, Francis; Fend, Steven V.; Stauffer-Olsen, Natalie; Manning, Andrew J.; Land, Jennie M.

    2016-09-30

    Executive SummaryMultiple sampling trips during calendar years 2013 through 2015 were coordinated to provide measurements of interdependent benthic processes that potentially affect contaminant transport in Upper Klamath Lake (UKL), Oregon. The measurements were motivated by recognition that such internal processes (for example, solute benthic flux, bioturbation and solute efflux by benthic invertebrates, and physical groundwater-surface water interactions) were not integrated into existing management models for UKL. Up until 2013, all of the benthic-flux studies generally had been limited spatially to a number of sites in the northern part of UKL and limited temporally to 2–3 samplings per year. All of the benthic invertebrate studies also had been limited to the northern part of the lake; however, intensive temporal (weekly) studies had previously been completed independent of benthic-flux studies. Therefore, knowledge of both the spatial and temporal variability in benthic flux and benthic invertebrate distributions for the entire lake was lacking. To address these limitations, we completed a lakewide spatial study during 2013 and a coordinated temporal study with weekly sampling of benthic flux and benthic invertebrates during 2014. Field design of the spatially focused study in 2013 involved 21 sites sampled three times as the summer cyanobacterial bloom developed (that is, May 23, June 13, and July 3, 2013). Results of the 27-week, temporally focused study of one site in 2014 were summarized and partitioned into three periods (referred to herein as pre-bloom, bloom and post-bloom periods), each period involving 9 weeks of profiler deployments, water column and benthic sampling. Partitioning of the pre-bloom, bloom, and post-bloom periods were based on water-column chlorophyll concentrations and involved the following date intervals, respectively: April 15 through June 10, June 17 through August 13, and August 20 through October 16, 2014. To examine

  15. fMRI Scanner Noise Interaction with Affective Neural Processes

    PubMed Central

    Skouras, Stavros; Gray, Marcus; Critchley, Hugo; Koelsch, Stefan

    2013-01-01

    The purpose of the present study was the investigation of interaction effects between functional MRI scanner noise and affective neural processes. Stimuli comprised of psychoacoustically balanced musical pieces, expressing three different emotions (fear, neutral, joy). Participants (N=34, 19 female) were split into two groups, one subjected to continuous scanning and another subjected to sparse temporal scanning that features decreased scanner noise. Tests for interaction effects between scanning group (sparse/quieter vs continuous/noisier) and emotion (fear, neutral, joy) were performed. Results revealed interactions between the affective expression of stimuli and scanning group localized in bilateral auditory cortex, insula and visual cortex (calcarine sulcus). Post-hoc comparisons revealed that during sparse scanning, but not during continuous scanning, BOLD signals were significantly stronger for joy than for fear, as well as stronger for fear than for neutral in bilateral auditory cortex. During continuous scanning, but not during sparse scanning, BOLD signals were significantly stronger for joy than for neutral in the left auditory cortex and for joy than for fear in the calcarine sulcus. To the authors' knowledge, this is the first study to show a statistical interaction effect between scanner noise and affective processes and extends evidence suggesting scanner noise to be an important factor in functional MRI research that can affect and distort affective brain processes. PMID:24260420

  16. Are you in the mood? Therapist affect and psychotherapy process.

    PubMed

    Chui, Harold; Hill, Clara E; Kline, Kathryn; Kuo, Patty; Mohr, Jonathan J

    2016-07-01

    Studies on therapist factors have mostly focused on therapist traits rather than states such as affect. Research related to therapist affect has often looked at therapist baseline well-being or therapist reactions, but not both. Fifteen therapists and 51 clients rated pre- and postsession affect, as well as postsession working alliance and session quality, for 1,172 sessions of individual psychotherapy at a community clinic. Therapists' affect became more positive when clients were initially positive and when clients became more positive over the session, and became more negative when clients were initially negative and when clients became more negative over the session. Furthermore, when therapists were initially positive in affect and when therapists became more positive over the session, clients rated the session quality to be high. Conversely, when therapists were initially negative in affect and when therapists became more negative over the session, clients rated the session quality and working alliance low. On open-ended questions, therapists reported mood shifts in 67% of sessions (63% positive, 50% negative). Positive affect change was attributed to collaborating with the client, perceiving the client to be engaged, or being a good therapist. Negative affect change was attributed to having a difficult client, perceiving the client to be in distress, or being a poor therapist. Thus, therapist state affect at presession and change in affect across a session may independently contribute to the process and outcome of therapy sessions. The examination of within-therapist variables over the course of therapy may further our understanding of therapist factors. (PsycINFO Database Record

  17. How current ginning processes affect fiber length uniformity index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a need to develop cotton ginning methods that improve fiber characteristics that are compatible with the newer and more efficient spinning technologies. A literature search produced recent studies that described how current ginning processes affect HVI fiber length uniformity index. Resul...

  18. Developing Worksheet Based on Science Process Skills: Factors Affecting Solubility

    ERIC Educational Resources Information Center

    Karsli, Fethiye; Sahin, Cigdem

    2009-01-01

    The purpose of this study is to develop a worksheet about the factors affecting solubility, which could be useful for the prospective science teachers (PST) to remind and regain their science process skills (SPS). The pilot study of the WS was carried out with 32 first grade PST during the 2007-2008 academic year in the education department at…

  19. The role of forcing agents on biogeochemical variability along the southwestern Adriatic coast: The Gulf of Manfredonia case study

    NASA Astrophysics Data System (ADS)

    Specchiulli, Antonietta; Bignami, Francesco; Marini, Mauro; Fabbrocini, Adele; Scirocco, Tommaso; Campanelli, Alessandra; Penna, Pierluigi; Santucci, Angela; D'Adamo, Raffaele

    2016-12-01

    This study investigates how multiple forcing factors such as rivers, surface marine circulation and winds affect hydrology and biogeochemical processes in the Gulf of Manfredonia and the seas around the Gargano peninsula, in the south-western Adriatic Sea. The study adopted an integrated approach, using in situ and remote sensing data, as well as the output of current models. The data reveal variability in the area's hydrography induced by local freshwater sources, the Western Adriatic Current (WAC) flowing from the north along the Italian coast, and the current patterns under different wind regimes. Specifically, exchange with offshore waters in the gulf induces variability in salinity and biogeochemical content, even within the same season, i.e. winter, in our case. This strong dependence on physical and biogeochemical factors makes the Manfredonia-Gargano ecosystem vulnerable to climate change, which could compromise its important role as a nursery area for the Adriatic Sea.

  20. [Effects of global climate change on the ecological characteristics and biogeochemical significance of marine viruses--A review].

    PubMed

    Yang, Yunlan; Cai, Lanlan; Zhang, Rui

    2015-09-04

    As the most abundance biological agents in the oceans, viruses can influence the physiological and ecological characteristics of host cells through viral infections and lysis, and affect the nutrient and energy cycles of the marine food chain. Thus, they are the major players in the ocean biogeochemical processes. The problems caused by global climate changes, such as sea-surface warming, acidification, nutrients availability, and deoxygenation, have the potential effects on marine viruses and subsequently their ecological and biogeochemical function in the ocean. Here, we reviewed the potential impacts of global climate change on the ecological characteristics (e. g. abundance, distribution, life cycle and the host-virus interactions) and biogeochemical significance (e. g. carbon cycling) of marine viruses. We proposed that marine viruses should not be ignored in the global climate change study.

  1. Biogeochemical evolution of sulfide ore mine tailings profiles under semi-arid climate

    NASA Astrophysics Data System (ADS)

    Chorover, J.

    2014-12-01

    Mining represents a principal form of earth surface disturbance in the anthropocene. Weathering reactions that ensue following tailings deposition are strongly affected by climatic forcing and tailings composition, and these also affect the weathering-induced transformations of the associated mineral assemblages and metal(loid) contaminants. The presence or absence of plants and associated microbiota can have a profound influence on these weathering trajectories. We employed field, laboratory and modeling approaches to resolve the impact of (bio)geochemical weathering reactions on the transformation of mine tailings parent materials into soil over the time following mining cessation. Using controlled experiments, we have evaluated the impacts of plants and associated rhizosphere microbiota on these reactions, hydrologic fluxes, and the molecular speciation of mining derived contaminants. Plant establishment is shown to alter site ecohydrology and biogeochemical weathering processes leading to distinctly different weathering products and patterns.

  2. Hydro-biogeochemical Controls on Geophysical Signatures (Invited)

    NASA Astrophysics Data System (ADS)

    Atekwana, E. A.

    2013-12-01

    Geophysical techniques such as seismic, magnetic and electrical techniques have historically played a major role in oil exploration. Their main use has been for delineation basin geometry, structures and hydrocarbon traps and for understanding the subsurface stratigraphy. Their use for investigating microbial processes has only recently been recognized over the last decade resulting in the development of biogeophysics as a frontier research area which bridges the fields of environmental microbiology, biogeochemistry, geomicrobiology. Recent biogeophysical studies have demonstrated the potential of geophysical technologies to (1) probe the presence of microbial cells and biofilms in subsurface geologic media, (2) investigate the interactions between microorganisms and subsurface geologic media, (3) assess biogeochemical transformations, biomineralization, and biogeochemical reaction rates, and (4) investigate the alteration of physical properties of subsurface geologic media induced by microorganisms. The unique properties of geophysical datasets (e.g. non-invasive data acquisition, spatially continuous properties retrieved) make them attractive for probing microbial processes affecting fate and transport of contaminants. This presentation will provide an updated understanding of major controls on geophysical signatures by highlighting some of the important advancements in biogeophysical studies at hydrocarbon contaminated environments. Important challenges that provide an opportunity for further research in this new field will also be examined.

  3. Humans process dog and human facial affect in similar ways.

    PubMed

    Schirmer, Annett; Seow, Cui Shan; Penney, Trevor B

    2013-01-01

    Humans share aspects of their facial affect with other species such as dogs. Here we asked whether untrained human observers with and without dog experience are sensitive to these aspects and recognize dog affect with better-than-chance accuracy. Additionally, we explored similarities in the way observers process dog and human expressions. The stimulus material comprised naturalistic facial expressions of pet dogs and human infants obtained through positive (i.e., play) and negative (i.e., social isolation) provocation. Affect recognition was assessed explicitly in a rating task using full face images and images cropped to reveal the eye region only. Additionally, affect recognition was assessed implicitly in a lexical decision task using full faces as primes and emotional words and pseudowords as targets. We found that untrained human observers rated full face dog expressions from the positive and negative condition more accurately than would be expected by chance. Although dog experience was unnecessary for this effect, it significantly facilitated performance. Additionally, we observed a range of similarities between human and dog face processing. First, the facial expressions of both species facilitated lexical decisions to affectively congruous target words suggesting that their processing was equally automatic. Second, both dog and human negative expressions were recognized from both full and cropped faces. Third, female observers were more sensitive to affective information than were male observers and this difference was comparable for dog and human expressions. Together, these results extend existing work on cross-species similarities in facial emotions and provide evidence that these similarities are naturally exploited when humans interact with dogs.

  4. Humans Process Dog and Human Facial Affect in Similar Ways

    PubMed Central

    Schirmer, Annett; Seow, Cui Shan; Penney, Trevor B.

    2013-01-01

    Humans share aspects of their facial affect with other species such as dogs. Here we asked whether untrained human observers with and without dog experience are sensitive to these aspects and recognize dog affect with better-than-chance accuracy. Additionally, we explored similarities in the way observers process dog and human expressions. The stimulus material comprised naturalistic facial expressions of pet dogs and human infants obtained through positive (i.e., play) and negative (i.e., social isolation) provocation. Affect recognition was assessed explicitly in a rating task using full face images and images cropped to reveal the eye region only. Additionally, affect recognition was assessed implicitly in a lexical decision task using full faces as primes and emotional words and pseudowords as targets. We found that untrained human observers rated full face dog expressions from the positive and negative condition more accurately than would be expected by chance. Although dog experience was unnecessary for this effect, it significantly facilitated performance. Additionally, we observed a range of similarities between human and dog face processing. First, the facial expressions of both species facilitated lexical decisions to affectively congruous target words suggesting that their processing was equally automatic. Second, both dog and human negative expressions were recognized from both full and cropped faces. Third, female observers were more sensitive to affective information than were male observers and this difference was comparable for dog and human expressions. Together, these results extend existing work on cross-species similarities in facial emotions and provide evidence that these similarities are naturally exploited when humans interact with dogs. PMID:24023954

  5. Positive affect and psychobiological processes relevant to health.

    PubMed

    Steptoe, Andrew; Dockray, Samantha; Wardle, Jane

    2009-12-01

    Empirical evidence suggests that there are marked associations between positive psychological states and health outcomes, including reduced cardiovascular disease risk and increased resistance to infection. These observations have stimulated the investigation of behavioral and biological processes that might mediate protective effects. Evidence linking positive affect with health behaviors has been mixed, though recent cross-cultural research has documented associations with exercising regularly, not smoking, and prudent diet. At the biological level, cortisol output has been consistently shown to be lower among individuals reporting positive affect, and favorable associations with heart rate, blood pressure, and inflammatory markers such as interleukin-6 have also been described. Importantly, these relationships are independent of negative affect and depressed mood, suggesting that positive affect may have distinctive biological correlates that can benefit health. At the same time, positive affect is associated with protective psychosocial factors such as greater social connectedness, perceived social support, optimism, and preference for adaptive coping responses. Positive affect may be part of a broader profile of psychosocial resilience that reduces risk of adverse physical health outcomes.

  6. Microflora of Processed Cheese and the Factors Affecting It.

    PubMed

    Buňková, Leona; Buňka, František

    2015-09-11

    The basic raw materials for the production of processed cheese are natural cheese which is treated by heat with the addition of emulsifying salts. From a point of view of the melting temperatures used (and the pH-value of the product), the course of processed cheese production can be considered "pasteurisation of cheese". During the melting process, the majority of vegetative forms of microorganisms, including bacteria of the family Enterobacteriaceae, are inactivated. The melting temperatures are not sufficient to kill the endospores, which survive the process but they are often weakened. From a microbiological point of view, the biggest contamination problem of processed cheese is caused by gram-positive spore-forming rod-shaped bacteria of the genera Bacillus, Geobacillus and Clostridium. Other factors affecting the shelf-life and quality of processed cheese are mainly the microbiological quality of the raw materials used, strict hygienic conditions during the manufacturing process as well as the type of packaging materials and storage conditions. The quality of processed cheese is not only dependent on the ingredients used but also on other parameters such as the value of water activity of the processed cheese, its pH-value, the presence of salts and emulsifying salts and the amount of fat in the product.

  7. Spelling-to-sound correspondences affect acronym recognition processes.

    PubMed

    Playfoot, David; Izura, Cristina

    2015-01-01

    A large body of research has examined the factors that affect the speed with which words are recognized in lexical decision tasks. Nothing has yet been reported concerning the important factors in differentiating acronyms (e.g., BBC, HIV, NASA) from nonwords. It appears that this task poses little problem for skilled readers, in spite of the fact that acronyms have uncommon, even illegal, spellings in English. We used regression techniques to examine the role of a number of lexical and nonlexical variables known to be important in word processing in relation to lexical decision for acronym targets. Findings indicated that acronym recognition is affected by age of acquisition and imageability. In a departure from findings in word recognition, acronym recognition was not affected by frequency. Lexical decision responses for acronyms were also affected by the relationship between spelling and sound-a pattern not usually observed in word recognition. We argue that the complexity of acronym recognition means that the process draws phonological information in addition to semantics.

  8. Processes affecting the oceanic distributions of dissolved calcium and alkalinity

    SciTech Connect

    Shiller, A.M.; Gieskes, J.M.

    1980-05-20

    Recent studies of the CO/sub 2/ system have suggested that chemical processes in addition to the dissolution and precipitation of calcium carbonate affect the oceanic calcium and alkalinity distributions. Calcium and alkalinity data from the North Pacific have been examined both by using the simple physical-chemical model of previous workers and by a study involving the broader oceanographic context of these data. The simple model is shown to be an inadequate basis for these studies. Although a proton flux associated with organic decomposition may affect the alkalinity, previously reported deviations of calcium-alkalinity correlations from expected trends appear to be related to boundary processes that have been neglected rather than to this proton flux. The distribution of calcium in the surface waters of the Pacific Ocean is examined.

  9. Biogeochemical processes in an urban, restored wetland of San Francisco Bay, California, 2007-2009; methods and data for plant, sediment and water parameters

    USGS Publications Warehouse

    Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark C.; Agee, Jennifer L.; Kieu, Le H.; Kakouros, Evangelos; Erikson, Li H.; Ward, Kristen

    2010-01-01

    The restoration of 18 acres of historic tidal marsh at Crissy Field has had great success in terms of public outreach and visibility, but less success in terms of revegetated marsh sustainability. Native cordgrass (Spartina foliosa) has experienced dieback and has failed to recolonize following extended flooding events during unintended periodic closures of its inlet channel, which inhibits daily tidal flushing. We examined the biogeochemical impacts of these impoundment events on plant physiology and on sulfur and mercury chemistry to help the National Park Service land managers determine the relative influence of these inlet closures on marsh function. In this comparative study, we examined key pools of sulfur, mercury, and carbon compounds both during and between closure events. Further, we estimated the net hydrodynamic flux of methylmercury and total mercury to and from the marsh during a 24-hour diurnal cycle. This report documents the methods used and the data generated during the study.

  10. Biogeochemical Cycles in Degraded Lands

    NASA Technical Reports Server (NTRS)

    Davidson, Eric A.; Vieira, Ima Celia G.; ReisdeCarvalho, Claudio Jose; DeanedeAbreuSa, Tatiana; deSouzaMoutinho, Paulo R.; Figueiredo, Ricardo O.; Stone, Thomas A.

    2004-01-01

    The objectives of this project were to define and describe the types of landscapes that fall under the broad category of "degraded lands" and to study biogeochemical cycles across this range of degradation found in secondary forests. We define degraded land as that which has lost part of its capacity of renovation of a productive ecosystem, either in the context of agroecosystems or as native communities of vegetation. This definition of degradation permits evaluation of biogeochemical constraints to future land uses.

  11. Biogeochemical Cycles in Degraded Lands

    NASA Technical Reports Server (NTRS)

    Davidson, Eric A.; Vieira, Ima Celia G.; ReisdeCarvalho, Claudio Jose; DeaneDeAbreuSa, Tatiana; deSpozaMoutinho, Paulo R.; Figueiredo, Ricardo O.; Stone, Thomas A.

    2003-01-01

    The objectives of this project were to define and describe the types of landscapes that fall under the broad category of "degraded lands" and to study biogeochemical cycles across this range of degradation found in secondary forests. We define degraded land as that which has lost part of its capacity of renovation of a productive ecosystem, either in the context of agroecosystems or as native communities of vegetation. This definition of degradation permits evaluation of biogeochemical constraints to future land uses.

  12. Basin-wide modification of dynamical and biogeochemical processes by the positive phase of the Indian Ocean dipole during the SeaWiFS era

    NASA Astrophysics Data System (ADS)

    Wiggert, Jerry D.; Vialard, Jérôme; Behrenfeld, Michael J.

    Characterizing how the Indian Ocean dipole (IOD) modifies typical basin-wide dynamical variability has been vigorously pursued over the past decade. Along with this dynamic response, a clear biological impact has been revealed in the ocean color data acquired by remote sensing platforms such as Sea-viewing Wide Field-of-View Sensor (SeaWiFS). The signature feature illustrating IOD alteration of typical spatiotemporal chlorophyll variability is the phytoplankton bloom that first appears in September along the eastern boundary of the IO in tropical waters that are normally highly oligotrophic. Positive chlorophyll anomalies (CLa) are also apparent in the southeastern Bay of Bengal, while negative anomalies are observed over much of the Arabian Sea. Moreover, in situ measurements obtained by the R/V Suroit as part of the Cirene cruise during the 2006/2007 IOD reveal anomalous subsurface biochemical distributions in the southern tropical IO that are not reflected in SeaWiFS data. Despite the clear basin-wide influence of IOD events on biological variability, the accompanying influence on biogeochemical cycling that must occur has received little attention. Here, the dynamical signatures apparent in remote sensing fields for the two positive-phase IODs of the SeaWiFS era are used to illuminate how these events are similar or distinct. A corresponding comparison of IOD-engendered surface CLa is performed, with the dynamical fields providing the framework for interpreting the mechanisms underlying the biological response. Then, results from a newly developed net primary production algorithm are presented that provide the first characterization of how biogeochemical fluxes throughout the IO are altered by IOD occurrence

  13. Electrophysiological Differences in the Processing of Affect Misattribution

    PubMed Central

    Hashimoto, Yohei; Minami, Tetsuto; Nakauchi, Shigeki

    2012-01-01

    The affect misattribution procedure (AMP) was proposed as a technique to measure an implicit attitude to a prime image [1]. In the AMP, neutral symbols (e.g., a Chinese pictograph, called the target) are presented, following an emotional stimulus (known as the prime). Participants often misattribute the positive or negative affect of the priming images to the targets in spite of receiving an instruction to ignore the primes. The AMP effect has been investigated using behavioral measures; however, it is difficult to identify when the AMP effect occurs in emotional processing—whether the effect may occur in the earlier attention allocation stage or in the later evaluation stage. In this study, we examined the neural correlates of affect misattribution, using event-related potential (ERP) dividing the participants into two groups based on their tendency toward affect misattribution. The ERP results showed that the amplitude of P2 was larger for the prime at the parietal location in participants showing a low tendency to misattribution than for those showing a high tendency, while the effect of judging neutral targets amiss according to the primes was reflected in the late processing of targets (LPP). In addition, the topographic pattern analysis revealed that EPN-like component to targets was correlated with the difference of AMP tendency as well as P2 to primes and LPP to targets. Taken together, the mechanism of the affective misattribution was closely related to the attention allocation processing. Our findings provide neural evidence that evaluations of neutral targets are misattributed to emotional primes. PMID:23145097

  14. Application of ultrasound processed images in space: assessing diffuse affectations

    NASA Astrophysics Data System (ADS)

    Pérez-Poch, A.; Bru, C.; Nicolau, C.

    The purpose of this study was to evaluate diffuse affectations in the liver using texture image processing techniques. Ultrasound diagnose equipments are the election of choice to be used in space environments as they are free from hazardous effects on health. However, due to the need for highly trained radiologists to assess the images, this imaging method is mainly applied on focal lesions rather than on non-focal ones. We have conducted a clinical study on 72 patients with different degrees of chronic hepatopaties and a group of control of 18 individuals. All subjects' clinical reports and results of biopsies were compared to the degree of affectation calculated by our computer system , thus validating the method. Full statistical results are given in the present paper showing a good correlation (r=0.61) between pathologist's report and analysis of the heterogenicity of the processed images from the liver. This computer system to analyze diffuse affectations may be used in-situ or via telemedicine to the ground.

  15. Processes affecting the remediation of chromium-contaminated sites.

    PubMed Central

    Palmer, C D; Wittbrodt, P R

    1991-01-01

    The remediation of chromium-contaminated sites requires knowledge of the processes that control the migration and transformation of chromium. Advection, dispersion, and diffusion are physical processes affecting the rate at which contaminants can migrate in the subsurface. Heterogeneity is an important factor that affects the contribution of each of these mechanisms to the migration of chromium-laden waters. Redox reactions, chemical speciation, adsorption/desorption phenomena, and precipitation/dissolution reactions control the transformation and mobility of chromium. The reduction of CrVI to CrIII can occur in the presence of ferrous iron in solution or in mineral phases, reduced sulfur compounds, or soil organic matter. At neutral to alkaline pH, the CrIII precipitates as amorphous hydroxides or forms complexes with organic matter. CrIII is oxidized by manganese dioxide, a common mineral found in many soils. Solid-phase precipitates of hexavalent chromium such as barium chromate can serve either as sources or sinks for CrVI. Adsorption of CrVI in soils increases with decreasing chromium concentration, making it more difficult to remove the chromium as the concentration decreases during pump-and-treat remediation. Knowledge of these chemical and physical processes is important in developing and selecting effective, cost-efficient remediation designs for chromium-contaminated sites. PMID:1935849

  16. Agricultural management affects evolutionary processes in a migratory songbird

    USGS Publications Warehouse

    Perlut, N.G.; Freeman-Gallant, C. R.; Strong, A.M.; Donovan, T.M.; Kilpatrick, C.W.; Zalik, N.J.

    2008-01-01

    Hay harvests have detrimental ecological effects on breeding songbirds, as harvesting results in nest failure. Importantly, whether harvesting also affects evolutionary processes is not known. We explored how hay harvest affected social and genetic mating patterns, and thus, the overall opportunity for sexual selection and evolutionary processes for a ground-nesting songbird, the Savannah sparrow (Passerculus sandwichensis). On an unharvested field, 55% of females were in polygynous associations, and social polygyny was associated with greater rates of extra-pair paternity (EPP). In this treatment, synchrony explained variation in EPP rates, as broods by more synchronous females had more EPP than broods by asynchronous females. In contrast, on a harvested field, simultaneous nest failure caused by haying dramatically decreased the overall incidence of EPP by increasing the occurrence of social monogamy and, apparently, the ability of polygynous males to maintain paternity in their own nests. Despite increased social and genetic monogamy, these haying-mediated changes in mating systems resulted in greater than twofold increase in the opportunity for sexual selection. This effect arose, in part, from a 30% increase in the variance associated with within-pair fertilization success, relative to the unharvested field. This effect was caused by a notable increase (+110%) in variance associated with the quality of social mates following simultaneous nest failure. Because up to 40% of regional habitat is harvested by early June, these data may demonstrate a strong population-level effect on mating systems, sexual selection, and consequently, evolutionary processes. ?? 2008 The Authors.

  17. Determination of processes affecting groundwater quality in the coastal aquifer beneath Puri city, India: a multivariate statistical approach.

    PubMed

    Mohapatra, P K; Vijay, R; Pujari, P R; Sundaray, S K; Mohanty, B P

    2011-01-01

    Variability of groundwater quality parameters is linked to various processes such as weathering, organic matter degradation, aerobic respiration, iron reduction, mineral dissolution and precipitation, cation exchange and mixing of salt water with fresh water. Multivariate statistical analyses such as principal component analysis (PCA) and hierarchical cluster analysis (HCA) were applied to the standardized data set of eleven groundwater quality parameters (i.e. pH, Ca2+, Mg2+, Na+, K+, Fe3+, alkalinity, NO3-, Cl-, SO4(2-), TDS) collected during the post-monsoon and the summer seasons in order to elicit hydrologic and biogeochemical processes affecting water quality in the unconfined aquifer beneath Puri city in eastern India. The application of PCA resulted in four factors explaining 73% variance in post-monsoon and 81% variance in summer. The HCA using Ward's method and squared Euclidean distance measure classified the parameters into four clusters based on their similarities. PCA and HCA allowed interpretation of processes. During both post-monsoon and summer seasons, anthropogenic pollution and organic matter degradation/Fe(III) reduction were found dominant due to contribution from on-site sanitation in septic tanks and soak pits in the city. Cation exchange and mineral precipitation were possible causes for increase in Na+ and decrease in Ca2+ concentration in summer. Fresh water recharge during monsoon and Sea water intrusion in summer are attributed as significant hydrologic processes to variations of the groundwater quality at the study site.

  18. Restoration of biogeochemical function in mangrove forests

    USGS Publications Warehouse

    McKee, K.L.; Faulkner, P.L.

    2000-01-01

    Forest structure of mangrove restoration sites (6 and 14 years old) at two locations (Henderson Creek [HC] and Windstar [WS]) in southwest Florida differed from that of mixed-basin forests (>50 years old) with which they were once contiguous. However, the younger site (HC) was typical of natural, developing forests, whereas the older site (WS) was less well developed with low structural complexity. More stressful physicochemical conditions resulting from incomplete tidal flushing (elevated salinity) and variable topography (waterlogging) apparently affected plant survival and growth at the WS restoration site. Lower leaf fall and root production rates at the WS restoration site, compared with that at HC were partly attributable to differences in hydroedaphic conditions and structural development. However, leaf and root inputs at each restoration site were not significantly different from that in reference forests within the same physiographic setting. Macrofaunal consumption of tethered leaves also did not differ with site history, but was dramatically higher at HC compared with WS, reflecting local variation in leaf litter processing rates, primarily by snails (Melampus coffeus). Degradation of leaves and roots in mesh bags was slow overall at restoration sites, however, particularly at WS where aerobic decomposition may have been more limited. These findings indicate that local or regional factors such as salinity regime act together with site history to control primary production and turnover rates of organic matter in restoration sites. Species differences in senescent leaf nitrogen content and degradation rates further suggest that restoration sites dominated by Laguncularia racemosa and Rhizophora mangle should exhibit slower recycling of nutrients compared with natural basin forests where Avicennia germinans is more abundant. Structural development and biogeochemical functioning of restored mangrove forests thus depend on a number of factors, but site

  19. Affective and executive network processing associated with persuasive antidrug messages.

    PubMed

    Ramsay, Ian S; Yzer, Marco C; Luciana, Monica; Vohs, Kathleen D; MacDonald, Angus W

    2013-07-01

    Previous research has highlighted brain regions associated with socioemotional processes in persuasive message encoding, whereas cognitive models of persuasion suggest that executive brain areas may also be important. The current study aimed to identify lateral prefrontal brain areas associated with persuasive message viewing and understand how activity in these executive regions might interact with activity in the amygdala and medial pFC. Seventy adolescents were scanned using fMRI while they watched 10 strongly convincing antidrug public service announcements (PSAs), 10 weakly convincing antidrug PSAs, and 10 advertisements (ads) unrelated to drugs. Antidrug PSAs compared with nondrug ads more strongly elicited arousal-related activity in the amygdala and medial pFC. Within antidrug PSAs, those that were prerated as strongly persuasive versus weakly persuasive showed significant differences in arousal-related activity in executive processing areas of the lateral pFC. In support of the notion that persuasiveness involves both affective and executive processes, functional connectivity analyses showed greater coactivation between the lateral pFC and amygdala during PSAs known to be strongly (vs. weakly) convincing. These findings demonstrate that persuasive messages elicit activation in brain regions responsible for both emotional arousal and executive control and represent a crucial step toward a better understanding of the neural processes responsible for persuasion and subsequent behavior change.

  20. Biogeochemical factors which regulate the formation and fate of sulfide in wetlands

    NASA Technical Reports Server (NTRS)

    Hines, Mark E.; Lyons, W. Berry; Gaudette, H. E.

    1985-01-01

    Coastal wetland areas occupy a small percentage of the terrestrial environment yet are extremely productive regions which support rapid rates of below ground bacterial activity. Wetlands appear to be significant as biogenic sources of gaseous sulfur, carbon, and nitrogen. These gases are important as tracers of man's activities, and they influence atmospheric chemistry. The interactions among wetland biogeochemical processes regulate the anaerobic production of reduced gases and influence the fate of these volatiles. Therefore, spatial and temporal variations in hydrology, salinity, temperature, and speciation and growth of vegetation affect the type and magnitude of gas emissions thus hindering predictive estimates of gas flux. The research is divided into two major parts, the first is the biogeochemical characterization of a selected tidal wetland area in terms of factors likely to regulate sulfide flux; the second is a direct measurement of gaseous sulfur flux as related to changes in these biogeochemical conditions. Variant factors affecting sulfide flux include the wetlands' tidal range, seasonal salinity, and other hydrological conditions, grass species and plant growth, soil composition, and microbial activity.

  1. Hemispheric processing of memory is affected by sleep.

    PubMed

    Monaghan, Padraic; Shaw, John J; Ashworth-Lord, Anneliese; Newbury, Chloe R

    2017-04-01

    Sleep is known to affect learning and memory, but the extent to which it influences behavioural processing in the left and right hemispheres of the brain is as yet unknown. We tested two hypotheses about lateralised effects of sleep on recognition memory for words: whether sleep reactivated recent experiences of words promoting access to the long-term store in the left hemisphere (LH), and whether sleep enhanced spreading activation differentially in semantic networks in the hemispheres. In Experiment 1, participants viewed lists of semantically related words, then slept or stayed awake for 12h before being tested on seen, unseen but related, or unrelated words presented to the left or the right hemisphere. Sleep was found to promote word recognition in the LH, and to spread activation equally within semantic networks in both hemispheres. Experiment 2 ensured that the results were not due to time of day effects influencing cognitive performance.

  2. Processes Controlling Temporal Changes in Agriculturally-Affected Groundwater

    NASA Astrophysics Data System (ADS)

    Burow, K. R.; Belitz, K.; Jurgens, B. C.

    2014-12-01

    The National Water Quality Assessment (NAWQA) program of the U.S. Geological Survey includes assessment of groundwater-quality changes with time. To better understand changes at a national scale, NAWQA has implemented smaller scale flow-path studies to evaluate the processes affecting these changes. Flow path studies are designed to sample groundwater of different ages. Wells are sampled for a suite of constituents, including tracers of groundwater age. In the 1990s, a 4.6 km transect of monitoring wells was installed near Fresno in the southern Central Valley of California. The region is dominated by intensive agriculture. The wells were sampled in 1994-95, 2003, and 2013 to provide data on changes in water quality and groundwater age. In 2013, the flow path was extended to a regional scale (30 km) by using existing production wells. Preliminary interpretation of the local-scale flow path indicates that nitrate concentrations in the upper 25 m of the aquifer are higher than the USEPA Maximum Contaminant Level (MCL) for drinking water and variably increase or decrease with time. At intermediate depths (25-40 m), nitrate concentrations are lower and show small to moderate increases. The legacy pesticide 1,2-dibromo-3-chloropropane (DBCP) is degrading at a half-life of about 4-6 years. DBCP is present above the MCL at intermediate depths even though it is has been banned from use for more than 30 years. Both nitrate and DBCP appear to be moving vertically downward through the aquifer. Whereas uranium concentrations are generally below the MCL in the local-scale flow path, concentrations increase along the regional transect, with concentrations nearly an order of magnitude above the MCL in some wells. Further evaluation of processes affecting these constituents (such as source, redox, and mobilization factors) will provide important insight that can be applied to other regions and will assist local water managers.

  3. Biogeochemical drivers of phosphatase activity in salt marsh sediments

    NASA Astrophysics Data System (ADS)

    Freitas, Joana; Duarte, Bernardo; Caçador, Isabel

    2014-10-01

    Although nitrogen has become a major concern for wetlands scientists dealing with eutrophication problems, phosphorous represents another key element, and consequently its biogeochemical cycling has a crucial role in eutrophication processes. Microbial communities are a central component in trophic dynamics and biogeochemical processes on coastal systems, since most of the processes in sediments are microbial-mediated due to enzymatic action, including the mineralization of organic phosphorus carried out by acid phosphatase activity. In the present work, the authors investigate the biogeochemical sediment drivers that control phosphatase activities. Authors also aim to assess biogeochemical factors' influence on the enzyme-mediated phosphorous cycling processes in salt marshes. Plant rhizosediments and bare sediments were collected and biogeochemical features, including phosphatase activities, inorganic and organic phosphorus contents, humic acids content and pH, were assessed. Acid phosphatase was found to give the highest contribution for total phosphatase activity among the three pH-isoforms present in salt marsh sediments, favored by acid pH in colonized sediments. Humic acids also appear to have an important role inhibiting phosphatase activity. A clear relation of phosphatase activity and inorganic phosphorous was also found. The data presented reinforces the role of phosphatase in phosphorous cycling.

  4. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data

    SciTech Connect

    Chen, Min; Zhuang, Qianlai; Cook, D.; Coulter, Richard L.; Pekour, Mikhail S.; Scott, Russell L.; Munger, J. W.; Bible, Ken

    2011-08-31

    Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI) and carbon flux data of AmeriFlux to conduct such a study. We first modify the gross primary production (GPP) modeling in TEM by incorporating EVI and LSWI to account for the effects of the changes of canopy photosynthetic capacity, phenology and water stress. Second, we parameterize and verify the new version of TEM with eddy flux data. We then apply the model to the conterminous United States over the period 2000-2005 at a 0.05-0.05 spatial resolution. We find that the new version of TEM made improvement over the previous version and generally captured the expected temporal and spatial patterns of regional carbon dynamics. We estimate that regional GPP is between 7.02 and 7.78 PgC yr{sup -1} and net primary production (NPP) ranges from 3.81 to 4.38 Pg Cyr{sup -1} and net ecosystem production (NEP) varies within 0.08- 0.73 PgC yr{sup -1} over the period 2000-2005 for the conterminous United States. The uncertainty due to parameterization is 0.34, 0.65 and 0.18 PgC yr{sup -1} for the regional estimates of GPP, NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Our study provides a new independent and more adequate measure of carbon fluxes for the conterminous United States, which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon management and climate.

  5. Quantification of Terrestrial Ecosystem Carbon Dynamics in the Conterminous United States Combining a Process-Based Biogeochemical Model and MODIS and AmeriFlux data

    SciTech Connect

    Chen, Min; Zhuang, Qianlai; Cook, David R.; Coulter, Richard L.; Pekour, Mikhail S.; Scott, Russell L.; Munger, J. W.; Bible, Ken

    2011-09-21

    Satellite remote sensing provides continuous temporal and spatial information of terrestrial 24 ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical 25 models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate 26 quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution 27 Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), Land Surface Water Index 28 (LSWI) and carbon flux data of AmeriFlux to conduct such a study. We first modify the gross primary 29 production (GPP) modeling in TEM by incorporating EVI and LSWI to account for the effects of the 30 changes of canopy photosynthetic capacity, phenology and water stress. Second, we parameterize and 31 verify the new version of TEM with eddy flux data. We then apply the model to the conterminous 32 United States over the period 2000-2005 at a 0.05o ×0.05o spatial resolution. We find that the new 33 version of TEM generally captured the expected temporal and spatial patterns of regional carbon 34 dynamics. We estimate that regional GPP is between 7.02 and 7.78 Pg C yr-1 and net primary 35 production (NPP) ranges from 3.81 to 4.38 Pg C yr-1 and net ecosystem production (NEP) varies 36 within 0.08-0.73 Pg C yr-1 over the period 2000-2005 for the conterminous United States. The 37 uncertainty due to parameterization is 0.34, 0.65 and 0.18 Pg C yr-1 for the regional estimates of GPP, 38 NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 39 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Our study provides a 40 new independent and more adequate measure of carbon fluxes for the conterminous United States, 41 which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon 42 management and climate.

  6. Using Halogens (Cl, Br, F, I) and Stable Isotopes of Water (δ18O, δ2H) to Trace Hydrological and Biogeochemical Processes in Prairie Wetlands

    NASA Astrophysics Data System (ADS)

    Levy, Z. F.; Lu, Z.; Mills, C. T.; Goldhaber, M. B.; Rosenberry, D. O.; Mushet, D.; Siegel, D. I.; Fiorentino, A. J., II; Gade, M.; Spradlin, J.

    2014-12-01

    Prairie pothole wetlands are ubiquitous features of the Great Plains of North America, and important habitat for amphibians and migratory birds. The salinity of proximal wetlands varies highly due to groundwater-glacial till interactions, which influence wetland biota and associated ecosystem functions. Here we use halogens and stable isotopes of water to fingerprint hydrological and biogeochemical controls on salt cycling in a prairie wetland complex. We surveyed surface, well, and pore waters from a groundwater recharge wetland (T8) and more saline closed (P1) and open (P8) basin discharge wetlands in the Cottonwood Lake Study Area (ND) in August/October 2013 and May 2014. Halogen concentrations varied over a broad range throughout the study area (Cl = 2.2 to 170 mg/L, Br = 13 to 2000 μg/L, F = < 30 (MDL) to 740 μg/L, I = 1 to 538 μg/L). The Cl/Br molar ratios were higher (171 to 574) at the recharge wetland, indicating meteoric sources, and had a tighter and lower range (33 to 320) at the down-gradient sites. The Cl/I molar ratios of waters throughout the site had a wide range (32 to 26,000). Lowest values occurred at the upgradient shore of P1 (32 to 43) due to low Cl concentrations and the center of P1 (196 to 213) where pore water of weathered till underlying 1.2 m of organic-rich sediment and silty clay soil is enriched in I to ~500 µg/L. Stable isotopes of water showed that evaporation-enriched pond water (δ18O = -9.5 to -2.71 ‰) mixes with shallow groundwater in the top 0.6 m of fringing wetland soils and 1.2 m of the substrate in the center of P1. Our results suggest endogenous sources for Br and I within the prairie landscape that may be controlled by biological mechanisms or weathering of shale from glacial till.

  7. How processing digital elevation models can affect simulated water budgets.

    PubMed

    Kuniansky, Eve L; Lowery, Mark A; Campbell, Bruce G

    2009-01-01

    For regional models, the shallow water table surface is often used as a source/sink boundary condition, as model grid scale precludes simulation of the water table aquifer. This approach is appropriate when the water table surface is relatively stationary. Since water table surface maps are not readily available, the elevation of the water table used in model cells is estimated via a two-step process. First, a regression equation is developed using existing land and water table elevations from wells in the area. This equation is then used to predict the water table surface for each model cell using land surface elevation available from digital elevation models (DEM). Two methods of processing DEM for estimating the land surface for each cell are commonly used (value nearest the cell centroid or mean value in the cell). This article demonstrates how these two methods of DEM processing can affect the simulated water budget. For the example presented, approximately 20% more total flow through the aquifer system is simulated if the centroid value rather than the mean value is used. This is due to the one-third greater average ground water gradients associated with the centroid value than the mean value. The results will vary depending on the particular model area topography and cell size. The use of the mean DEM value in each model cell will result in a more conservative water budget and is more appropriate because the model cell water table value should be representative of the entire cell area, not the centroid of the model cell.

  8. Barley cultivar, kernel composition, and processing affect the glycemic index.

    PubMed

    Aldughpassi, Ahmed; Abdel-Aal, El-Sayed M; Wolever, Thomas M S

    2012-09-01

    Barley has a low glycemic index (GI), but it is unknown whether its GI is affected by variation in carbohydrate composition in different cultivars and by food processing and food form. To examine the effect of these factors on GI, 9 barley cultivars varying in amylose and β-glucan content were studied in 3 experiments in separate groups of 10 healthy participants. In Expt. 1, 3 barley cultivars underwent 2 levels of processing: hull removal [whole-grain (WG)] and bran, germ, and crease removal [white pearled (WP)]. GI varied by cultivar (CDC Fibar vs. AC Parkhill, [mean ± SEM]: 26 ± 3 vs. 53 ± 4, respectively; P < 0.05) and pearling (WG vs. WP: 26 ± 4 vs. 35 ± 3, respectively; P < 0.05) with no cultivar × pearling interaction. In Expt. 2, the GI of 7 WG cultivars ranged from 21 ± 4 to 36 ± 8 (P = 0.09). In Expt. 3, WG and WP AC Parkhill and Celebrity cultivars were ground and made into wet pasta. The GI of AC Parkhill pasta (69 ± 3) was similar to that of Celebrity pasta (64 ± 4) but, unlike in Expt. 1, the GI of WP pasta (61 ± 3) was less than that of WG pasta (72 ± 4) (P < 0.05). Pooled data from Expts. 1 and 2 showed that GI was correlated with total fiber (r = -0.75, P = 0.002) but not with measures of starch characteristics. We conclude that the GI of barley is influenced by cultivar, processing, and food form but is not predicted by its content of amylose or other starch characteristics.

  9. Recent directions taken in water, energy, and biogeochemical budgets research

    USGS Publications Warehouse

    Lins, Harry F.

    1994-01-01

    Understanding and predicting global change is a major scientific focus of the late 20th century. Although atmospheric scientists have made substantial progress in developing models that account for many components of the climate system, significant progress is needed in understanding processes associated with the exchange of water, energy, and carbon between terrestrial systems and the atmosphere.To strengthen terrestrial process research, especially research associated with the interactions of water, energy, gases, nutrients, and vegetation, the U.S. Geological Survey initiated an intensive study of Water, Energy, and Biogeochemical Budgets (WEBB). WEBB is aimed at improving understanding of processes controlling terrestrial water, energy, and biogeochemical fluxes, their interactions, and their relations to climatic variables; and the ability to predict continental water, energy, and biogeochemical budgets over a range of spatial and temporal scales.

  10. Positive affect and psychosocial processes related to health.

    PubMed

    Steptoe, Andrew; O'Donnell, Katie; Marmot, Michael; Wardle, Jane

    2008-05-01

    Positive affect is associated with longevity and favourable physiological function. We tested the hypothesis that positive affect is related to health-protective psychosocial characteristics independently of negative affect and socio-economic status. Both positive and negative affect were measured by aggregating momentary samples collected repeatedly over 1 day, and health-related psychosocial factors were assessed by questionnaire in a sample of 716 men and women aged 58-72 years. Positive affect was associated with greater social connectedness, emotional and practical support, optimism and adaptive coping responses, and lower depression, independently of age, gender, household income, paid employment, smoking status, and negative affect. Negative affect was independently associated with negative relationships, greater exposure to chronic stress, depressed mood, pessimism, and avoidant coping. Positive affect may be beneficial for health outcomes in part because it is a component of a profile of protective psychosocial characteristics.

  11. Carbon sources and biogeochemical processes in Monticchio maar lakes, Mt Vulture volcano (southern Italy): New geochemical constrains of active degassing of mantle derived fluids

    NASA Astrophysics Data System (ADS)

    Caracausi, A.; Nuccio, P. M.; Favara, R.; Grassa, F.

    2012-04-01

    Since the catastrophic releases of carbon dioxide from the African volcanic lakes Nyos and Monoun in the 1980s, the scientific community draw attention towards all those crater lakes able to accumulate massive amount of CO2, which could be catastrophically released following overturn of their deep waters. This implies a quantification of the gas accumulation rate into the lakes and the knowledge of recharge processes and their evolution in time. In fact the gaseous recharge in a lake occurs at alarming rates, when an active degassing of hazardous nature volatiles occurs into the lakes and the structure and dynamic of the lake permit the accumulation of gases into the water. The Monticchio lakes, LPM and LGM, occupies two maar craters formed during the last volcanic activity of Mt. Vulture occurred ˜ 140 000 years ago. LPM is a permanently stratified lake, with a thick deep volume of stagnant water and a shallower layer affected by seasonal overturn. On the contrary LGM is a monomittic lake with a complete overturn of the water during winter time. The major dissolved volatiles are methane and CO2. Dissolved helium is in trace amounts and its isotopic signature ranges between 6.1 and 5.3 Ra (Ra is the atmospheric 3He/4He isotopic ratio). These values are within the range of those measured in the olivine fluid inclusions (both of mantle xenoliths and dispersed in the pyroclastics) of LPM maar ejecta. During three years of investigations we observed that dissolved methane in the deep waters of LGM drastically decreases in wintertime as consequence of the complete overturn of the water. The isotopic signature of methane in the deepest portions of LGM (both sediment and water) is quite stable with time and highlights a biogenic origin, being produced both by acetate fermentation and by CO2-reduction in variable proportions. In contrast, a higher contribution of methane produced via CO2 reduction characterizes sediments at shallower depths. At LPM, there is a great

  12. Factors Influencing Phosphorous Cycling in Biogeochemical 'Hot Spots'

    NASA Astrophysics Data System (ADS)

    Saia, S. M.; Walter, M. T.; Buda, A. R.; Carrick, H. J.; Regan, J. M.

    2015-12-01

    Anthropogenic alteration of the phosphorus (P) cycle has led to subsequent soil and water quality issues. For example, P build up in soils due to historic fertilizer application may become biologically available and exacerbate eutrophication and anoxia in nearby water bodies. In the humid Northeastern United States, storm runoff transports P and also stimulates biogeochemical processes, these locations are termed biogeochemical 'hot spots'. Many studies have looked at nitrogen and carbon cycling in biogeochemical hot spots but few have focused on P. We hypothesize the periodic wetting and drying of biogeochemical hot spots promotes a combination of abiotic and biotic processes that influence the mobility of P. To test this hypothesis, we took monthly soil samples (5 cm deep) from May to October in forest, pasture, and cropped land near Ithaca, NY. In-situ measurements taken with each sample included volumetric soil moisture and soil temperature. We also analyzed samples for 'runoff generated' phosphate, nitrate, and sulfate (from 0.01 M CaCl2 extraction), Fe(II), percent organic matter, pH, as well as oxalate extractable and total P, Al, and Fe. We used linear mixed effects models to test how runoff generated phosphate concentrations vary with soil moisture and whether other environmental factors strengthen/weaken this relationship. The knowledge gained from this study will improve our understanding of P cycling in biogeochemical hot spots and can be used to improve the effectiveness of agricultural management practices in the Northeastern United States.

  13. Morphological, hydrological, biogeochemical and ecological changes and challenges in river restoration - the Thur River case study

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Luster, J.; Linde, N.; Perona, P.; Mitchell, E. A. D.; Barry, D. A.; Hollender, J.; Cirpka, O. A.; Schneider, P.; Vogt, T.; Radny, D.; Durisch-Kaiser, E.

    2014-06-01

    River restoration can enhance river dynamics, environmental heterogeneity and biodiversity, but the underlying processes governing the dynamic changes need to be understood to ensure that restoration projects meet their goals, and adverse effects are prevented. In particular, we need to comprehend how hydromorphological variability quantitatively relates to ecosystem functioning and services, biodiversity as well as ground- and surface water quality in restored river corridors. This involves (i) physical processes and structural properties, determining erosion and sedimentation, as well as solute and heat transport behavior in surface water and within the subsurface; (ii) biogeochemical processes and characteristics, including the turnover of nutrients and natural water constituents; and (iii) ecological processes and indicators related to biodiversity and ecological functioning. All these aspects are interlinked, requiring an interdisciplinary investigation approach. Here, we present an overview of the recently completed RECORD (REstored CORridor Dynamics) project in which we combined physical, chemical, and biological observations with modeling at a restored river corridor of the perialpine Thur River in Switzerland. Our results show that river restoration, beyond inducing morphologic changes that reshape the river bed and banks, triggered complex spatial patterns of bank infiltration, and affected habitat type, biotic communities and biogeochemical processes. We adopted an interdisciplinary approach of monitoring the continuing changes due to restoration measures to address the following questions: How stable is the morphological variability established by restoration? Does morphological variability guarantee an improvement in biodiversity? How does morphological variability affect biogeochemical transformations in the river corridor? What are some potential adverse effects of river restoration? How is river restoration influenced by catchment-scale hydraulics

  14. A framework to assess biogeochemical response to ecosystem disturbance using nutrient partitioning ratios

    USGS Publications Warehouse

    Kranabetter, J. Marty; McLauchlan, Kendra K.; Enders, Sara K.; Fraterrigo, Jennifer M.; Higuera, Philip E.; Morris, Jesse L.; Rastetter, Edward B.; Barnes, Rebecca; Buma, Brian; Gavin, Daniel G.; Gerhart, Laci M.; Gillson, Lindsey; Hietz, Peter; Mack, Michelle C.; McNeil, Brenden; Perakis, Steven

    2016-01-01

    Disturbances affect almost all terrestrial ecosystems, but it has been difficult to identify general principles regarding these influences. To improve our understanding of the long-term consequences of disturbance on terrestrial ecosystems, we present a conceptual framework that analyzes disturbances by their biogeochemical impacts. We posit that the ratio of soil and plant nutrient stocks in mature ecosystems represents a characteristic site property. Focusing on nitrogen (N), we hypothesize that this partitioning ratio (soil N: plant N) will undergo a predictable trajectory after disturbance. We investigate the nature of this partitioning ratio with three approaches: (1) nutrient stock data from forested ecosystems in North America, (2) a process-based ecosystem model, and (3) conceptual shifts in site nutrient availability with altered disturbance frequency. Partitioning ratios could be applied to a variety of ecosystems and successional states, allowing for improved temporal scaling of disturbance events. The generally short-term empirical evidence for recovery trajectories of nutrient stocks and partitioning ratios suggests two areas for future research. First, we need to recognize and quantify how disturbance effects can be accreting or depleting, depending on whether their net effect is to increase or decrease ecosystem nutrient stocks. Second, we need to test how altered disturbance frequencies from the present state may be constructive or destructive in their effects on biogeochemical cycling and nutrient availability. Long-term studies, with repeated sampling of soils and vegetation, will be essential in further developing this framework of biogeochemical response to disturbance.

  15. Processes Affecting Nitrogen Speciation in a Karst Aquifer

    NASA Astrophysics Data System (ADS)

    Mahler, B. J.; Musgrove, M.; Wong, C. I.

    2011-12-01

    Like many karst aquifers, the Barton Springs segment of the Edwards aquifer, in central Texas, is in an area undergoing rapid growth in population, and there is concern as to how increased amounts of wastewater might affect groundwater quality. We measured concentrations and estimated loads of nitrogen (N) species in recharge to and discharge from the Barton Springs segment of the Edwards aquifer, central Texas, to evaluate processes affecting the transport and fate of N species in groundwater. Water samples were collected during 17 months (November 2008-March 2010) from five streams that contribute about 85% of recharge to the aquifer segment and from Barton Springs, the principal point of discharge from the segment. The sampling period spanned a range of climatic conditions from exceptional drought to above-normal rainfall. Samples were analyzed for N species (organic N + ammonia, ammonia, nitrate + nitrite, nitrite); loads of organic N and nitrate were estimated with LOADEST, a regression-based model that uses a time series of streamflow and measured constituent concentrations to estimate constituent loads. Concentrations of organic nitrogen and dissolved oxygen were higher and concentrations of nitrate were lower in surface water than in spring discharge, consistent with conversion of organic nitrogen to nitrate and associated consumption of dissolved oxygen in the aquifer. During the period of the study, the estimated load of organic N in recharge from streams (average daily load [adl] of 39 kg/d) was about 10 times that in Barton Springs discharge (adl of 9.4 kg/d), whereas the estimated load of nitrate in recharge from streams (adl of 123 kg/d) was slightly less than that in Barton Springs discharge (adl of 148 kg/d). The total average N load in recharge from streams and discharge from Barton Springs was not significantly different (adl of 162 and 157 kg/d, respectively), indicating that surface-water recharge can account for all of the N in Barton Springs

  16. Astronomical Forcing of Salt Marsh Biogeochemical Cascades

    NASA Astrophysics Data System (ADS)

    Morris, J. T.; Sundberg, K.

    2008-12-01

    Astronomically forced changes in the hydroperiod of a salt marsh affect the rate of marsh primary production leading to a biogeochemical cascade. For example, salt marsh primary production and biogeochemical cycles in coastal salt marshes are sensitive to the 18.6-year lunar nodal cycle, which alters the tidal amplitude by about 5 cm. For marshes that are perched high in the tidal frame, a relatively small increase in tidal amplitude and flooding lowers sediment salinity and stimulates primary production. Porewater sulfide concentrations are positively correlated with tidal amplitude and vary on the same cycle as primary production. Soluble reactive phosphate and ammonium concentrations in pore water also vary on this 18.6- year cycle. Phosphate likely responds to variation in the reaction of sulfide with iron-phosphate compounds, while the production of ammonium in sediments is coupled to the activity of diazotrophs that are carbon- limited and, therefore, are regulated by primary productivity. Ammonium also would accumulate when sulfides block nitrification. These dependencies work as a positive feedback between primary production and nutrient supply and are predictive of the near-term effects of sea-level rise.

  17. Biogeochemical modeling at mass extinction boundaries

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.; Caldeira, K. G.

    1991-01-01

    The causes of major mass extinctions is a subject of considerable interest to those concerned with the history and evolution of life on earth. The primary objectives of the proposed plan of research are: (1) to develop quantitative time-dependent biogeochemical cycle models, coupled with an ocean atmosphere in order to improve the understanding of global scale physical, chemical, and biological processes that control the distribution of elements important for life at times of mass extinctions; and (2) to develop a comprehensive data base of the best available geochemical, isotopic, and other relevant geologic data from sections across mass extinction boundaries. These data will be used to constrain and test the biogeochemical model. These modeling experiments should prove useful in: (1) determining the possible cause(s) of the environmental changes seen at bio-event boundaries; (2) identifying and quantifying little-known feedbacks among the oceans, atmosphere, and biosphere; and (3) providing additional insights into the possible responses of the earth system to perturbations of various timescales. One of the best known mass extinction events marks the Cretaceous/Tertiary (K/T) boundary (66 Myr ago). Data from the K/T boundary are used here to constrain a newly developed time-dependent biogeochemical cycle model that is designed to study transient behavior of the earth system. Model results predict significant fluctuations in ocean alkalinity, atmospheric CO2, and global temperatures caused by extinction of calcareous plankton and reduction in the sedimentation rates of pelagic carbonates and organic carbon. Oxygen-isotome and other paleoclimatic data from K/T time provide some evidence that such climatic fluctuations may have occurred, but stabilizing feedbacks may have acted to reduce the ocean alkalinity and carbon dioxide fluctuations.

  18. Sources and Processes Affecting Particulate Matter Pollution over North China

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Shao, J.; Lu, X.; Zhao, Y.; Gong, S.; Henze, D. K.

    2015-12-01

    Severe fine particulate matter (PM2.5) pollution over North China has received broad attention worldwide in recent years. Better understanding the sources and processes controlling pollution over this region is of great importance with urgent implications for air quality policy. We will present a four-dimensional variational (4D-Var) data assimilation system using the GEOS-Chem chemical transport model and its adjoint model at 0.25° × 0.3125° horizontal resolution, and apply it to analyze the factors affecting PM2.5 concentrations over North China. Hourly surface observations of PM2.5 and sulfur dioxide (SO2) from the China National Environmental Monitoring Center (CNEMC) can be assimilated into the model to evaluate and constrain aerosol (primary and precursors) emissions. Application of the data assimilation system to the APEC period (the Asia-Pacific Economic Cooperation summit; 5-11 November 2014) shows that 46% of the PM2.5 pollution reduction during APEC ("The APEC Blue") can be attributed to meteorology conditions and the rest 54% to emission reductions due to strict emission controls. Ammonia emissions are shown to significantly contribute to PM2.5 over North China in the fall. By converting sulfuric acid and nitric acid to longer-lived ammonium sulfate and ammonium nitrate aerosols, ammonia plays an important role in promoting their regional transport influences. We will also discuss the pathways and mechanisms of external long-range transport influences to the PM2.5 pollution over North China.

  19. Addiction Motivation Reformulated: An Affective Processing Model of Negative Reinforcement

    ERIC Educational Resources Information Center

    Baker, Timothy B.; Piper, Megan E.; McCarthy, Danielle E.; Majeskie, Matthew R.; Fiore, Michael C.

    2004-01-01

    This article offers a reformulation of the negative reinforcement model of drug addiction and proposes that the escape and avoidance of negative affect is the prepotent motive for addictive drug use. The authors posit that negative affect is the motivational core of the withdrawal syndrome and argue that, through repeated cycles of drug use and…

  20. Recycled Fiber Properties as Affected by Contaminants and Removal Processes.

    DTIC Science & Technology

    Five materials were applied to either a kraft pulp furnish or to a kraft paper and were removed by conventional removal processes. Uncontaminated... kraft paper subjected to the same removal processes determined that the process, not the contaminant, was responsible for changes in sheet properties

  1. Processing of Affective Speech Prosody Is Impaired in Asperger Syndrome

    ERIC Educational Resources Information Center

    Korpilahti, Pirjo; Jansson-Verkasalo, Eira; Mattila, Marja-Leena; Kuusikko, Sanna; Suominen, Kalervo; Rytky, Seppo; Pauls, David L.; Moilanen, Irma

    2007-01-01

    Many people with the diagnosis of Asperger syndrome (AS) show poorly developed skills in understanding emotional messages. The present study addressed discrimination of speech prosody in children with AS at neurophysiological level. Detection of affective prosody was investigated in one-word utterances as indexed by the N1 and the mismatch…

  2. Coupled Biogeochemical Processes Governing the Stability of Bacteriogenic Uraninite and Release of U(VI) in Heterogeneous Media: Molecular to Meter Scales

    SciTech Connect

    Bargar, John R.

    2006-11-15

    In-situ reductive biotransformation of subsurface U(VI) to U(IV) (as ?UO2?) has been proposed as a bioremediation method to immobilize uranium at contaminated DOE sites. The chemical stability of bacteriogenic ?UO2? is the seminal issue governing its success as an in-situ waste form in the subsurface. The structure and properties of chemically synthesized UO2+x have been investigated in great detail. It has been found to exhibit complex structural disorder, with nonstoichiometry being common, hence the designation ?UO2+x?, where 0 < x < 0.25. Little is known about the structures and properties of the important bacteriogenic analogs, which are believed to occur as nanoparticles in the environment. Chemically synthesized UO2+x exhibits an open fluorite structure and is known to accommodate significant doping of divalent cations. The extent to which bacteriogenic UO2+x incorporates common ground water cations (e.g., Ca2+) has not been investigated, and little is known about nonstoichiometry and structure defects in the bacteriogenic material. Particle size, nonstoichiometry, and doping may significantly alter the reactivity, and hence stability, of bacteriogenic UO2+x in the subsurface. The presence of associated sulfide minerals, and solid phase oxidants such as bacteriogenic Mn oxides may also affect the longevity of bacteriogenic UO2 in the subsurface.

  3. An evaluation of physical and biogeochemical processes regulating the oxygen minimum zone in the water column of the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Sarma, V. V. S. S.

    2002-12-01

    Monthly oxygen budgets for the intermediate waters (100-1000 m) of the Bay of Bengal were constructed based on Modular Ocean Model (MOM) and oxygen data. The model results reveal that the oxygen levels in the oxygen minimum zone (OMZ) of the Bay of Bengal are controlled by physical and the associated biological processes. It results in maintaining low oxygen levels, with no significant seasonal variability, in the subsurface layer throughout the year. Low oxygen levels in the OMZ are sustained during the period of increased supply of organic matter through river runoff by enhanced supply of oxygen by the physical pump and vice versa. Thus, low oxygen levels in the OMZ are maintained by supply of oxygen by the physical pump to meet the demands of the biological processes. The inconsistency observed among oxygen consumption rates derived based on the present oxygen budget, carbon regeneration rate, and oxygen consumption rates computed based on electron transport system technique could be due to inadequate knowledge of seasonal and spatial variability in oxygen consumption in the latter two estimates. The residence time of intermediate waters (OMZ) of Bay of Bengal was computed to be 12 years.

  4. How Word Frequency Affects Morphological Processing in Monolinguals and Bilinguals

    ERIC Educational Resources Information Center

    Lehtonen, Minna; Laine, Matti

    2003-01-01

    The present study investigated processing of morphologically complex words in three different frequency ranges in monolingual Finnish speakers and Finnish-Swedish bilinguals. By employing a visual lexical decision task, we found a differential pattern of results in monolinguals vs. bilinguals. Monolingual Finns seemed to process low frequency and…

  5. Integrating the Affective Domain into the Instructional Design Process

    DTIC Science & Technology

    1992-03-01

    domains. Yet, instructional design models and practices have focused primarily on the acquisition of knowledge and psychomotor skills . Concern for the...the skills involved in the reactive and interactive domains are as amenable to the general principles of instruction as are cognitive and psychomotor ... skills . He also sees a parallel between the automation of affective domain skills (reflexive, conditioned activity versus behavior resulting from a

  6. The NEON Aquatic Network: Expanding the Availability of Biogeochemical Data

    NASA Astrophysics Data System (ADS)

    Vance, J. M.; Bohall, C.; Fitzgerald, M.; Utz, R.; Parker, S. M.; Roehm, C. L.; Goodman, K. J.; McLaughlin, B.

    2013-12-01

    Aquatic ecosystems are facing unprecedented pressure from climate change and land-use practices. Invasive species, whether plant, animal, insect or microbe present additional threat to aquatic ecosystem services. There are significant scientific challenges to understanding how these forces will interact to affect aquatic ecosystems, as the flow of energy and materials in the environment is driven by multivariate and non-linear biogeochemical cycles. The National Ecological Observatory Network (NEON) will collect and provide observational data across multiple scales. Sites were selected to maximize representation of major North American ecosystems using a multivariate geographic clustering method that partitioned the continental US, AK, HI, and Puerto Rico into 20 eco-climatic domains. The NEON data collection systems and methods are designed to yield standardized, near real-time data subjected to rigorous quality controls prior to public dissemination through an online data portal. NEON will collect data for 30 years to facilitate spatial-temporal analysis of environmental responses and drivers of ecosystem change, ranging from local through continental scales. Here we present the NEON Aquatic Network, a multi-parameter network consisting of a combination of in situ sensor and observational data. This network will provide data to examine biogeochemical, biological, hydrologic and geomorphic metrics at 36 sites, which are a combination of small 1st/2nd order wadeable streams, large rivers and lakes. A typical NEON Aquatic site will host up to two in-stream sensor sets designed to collect near-continuous water quality data (e.g. pH/ORP, temperature, conductivity, dissolved oxygen, CDOM) along with up to 8 shallow groundwater monitoring wells (level, temp., cond.), and a local meteorological station (e.g. 2D wind speed, PAR, barometric pressure, temperature, net radiation). These coupled sensor suites will be complemented by observational data (e.g. water

  7. Drying process strongly affects probiotics viability and functionalities.

    PubMed

    Iaconelli, Cyril; Lemetais, Guillaume; Kechaou, Noura; Chain, Florian; Bermúdez-Humarán, Luis G; Langella, Philippe; Gervais, Patrick; Beney, Laurent

    2015-11-20

    Probiotic formulations are widely used and are proposed to have a variety of beneficial effects, depending on the probiotic strains present in the product. The impact of drying processes on the viability of probiotics is well documented. However, the impact of these processes on probiotics functionality remains unclear. In this work, we investigated variations in seven different bacterial markers after various desiccation processes. Markers were composed of four different viability evaluation (combining two growth abilities and two cytometric measurements) and in three in vitro functionalities: stimulation of IL-10 and IL-12 production by PBMCs (immunomodulation) and bacterial adhesion to hexadecane. We measured the impact of three drying processes (air-drying, freeze-drying and spray-drying), without the use of protective agents, on three types of probiotic bacteria: Bifidobacterium bifidum, Lactobacillus plantarum and Lactobacillus zeae. Our results show that the bacteria respond differently to the three different drying processes, in terms of viability and functionality. Drying methods produce important variations in bacterial immunomodulation and hydrophobicity, which are correlated. We also show that adherence can be stimulated (air-drying) or inhibited (spray-drying) by drying processes. Results of a multivariate analysis show no direct correlation between bacterial survival and functionality, but do show a correlation between probiotic responses to desiccation-rewetting and the process used to dry the bacteria.

  8. Stimulus characteristics affect humor processing in individuals with Asperger syndrome.

    PubMed

    Samson, Andrea C; Hegenloh, Michael

    2010-04-01

    The present paper aims to investigate whether individuals with Asperger syndrome (AS) show global humor processing deficits or whether humor comprehension and appreciation depends on stimulus characteristics. Non-verbal visual puns, semantic and Theory of Mind cartoons were rated on comprehension, funniness and the punchlines were explained. AS individuals did not differ to the control group in humor appreciation of visual puns. However, they had difficulty understanding and appreciating Theory of Mind cartoons and provided mentalistic explanations less frequently than controls suggesting that humor processing is strongly related to the cognitive requirements that the stimuli pose on the perceiver. Furthermore, AS individuals referred in all conditions more frequently to non-joke relevant details. Therefore, humor processing is also influenced by their detail-oriented processing style.

  9. Process Formulations And Curing Conditions That Affect Saltstone Properties

    SciTech Connect

    Reigel, M. M.; Pickenheim, B. R.; Daniel, W. E.

    2012-09-28

    The first objective of this study was to analyze saltstone fresh properties to determine the feasibility of reducing the formulation water to premix (w/p) ratio while varying the amount of extra water and admixtures used during processing at the Saltstone Production Facility (SPF). The second part of this study was to provide information for understanding the impact of curing conditions (cure temperature, relative humidity (RH)) and processing formulation on the performance properties of cured saltstone.

  10. Effect of Biogeochemical Redox Processes on the Fate and Transport of As and U at an Abandoned Uranium Mine Site: an X-ray Absorption Spectroscopy Study

    SciTech Connect

    Troyer, Lyndsay D.; Stone, James J.; Borch, Thomas

    2014-01-28

    Although As can occur in U ore at concentrations up to 10 wt-%, the fate and transport of both U and As at U mine tailings have not been previously investigated at a watershed scale. The major objective of this study was to determine primary chemical and physical processes contributing to transport of both U and As to a down gradient watershed at an abandoned U mine site in South Dakota. Uranium is primarily transported by erosion at the site, based on decreasing concentrations in sediment with distance from the tailings. equential extractions and U X-ray absorption near-edge fine structure (XANES) fitting indicate that U is immobilised in a near-source sedimentation pond both by prevention of sediment transport and by reduction of UVI to UIV. In contrast to U, subsequent release of As to the watershed takes place from the pond partially due to reductive dissolution of Fe oxy(hydr)oxides. However, As is immobilised by adsorption to clays and Fe oxy(hydr)oxides in oxic zones and by formation of As–sulfide mineral phases in anoxic zones down gradient, indicated by sequential extractions and As XANES fitting. This study indicates that As should be considered during restoration of uranium mine sites in order to prevent transport.

  11. Final Project Report - Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloriethylene Co-Metabolism: Co-Metabolic Enzyme Activity Probes and Modeling Co-Metabolism and Attenuation

    SciTech Connect

    Starr, Robert C; Orr, Brennon R; Lee, M Hope; Delwiche, Mark

    2010-02-26

    Trichloroethene (TCE) (also known as trichloroethylene) is a common contaminant in groundwater. TCE is regulated in drinking water at a concentration of 5 µg/L, and a small mass of TCE has the potential to contaminant large volumes of water. The physical and chemical characteristics of TCE allow it to migrate quickly in most subsurface environments, and thus large plumes of contaminated groundwater can form from a single release. The migration and persistence of TCE in groundwater can be limited by biodegradation. TCE can be biodegraded via different processes under either anaerobic or aerobic conditions. Anaerobic biodegradation is widely recognized, but aerobic degradation is less well recognized. Under aerobic conditions, TCE can be oxidized to non hazardous conditions via cometabolic pathways. This study applied enzyme activity probes to demonstrate that cometabolic degradation of TCE occurs in aerobic groundwater at several locations, used laboratory microcosm studies to determine aerobic degradation rates, and extrapolated lab-measured rates to in situ rates based on concentrations of microorganisms with active enzymes involved in cometabolic TCE degradation. Microcosms were constructed using basalt chips that were inoculated with microorganisms to groundwater at the Idaho National Laboratory Test Area North TCE plume by filling a set of Flow-Through In Situ Reactors (FTISRs) with chips and placing the FTISRs into the open interval of a well for several months. A parametric study was performed to evaluate predicted degradation rates and concentration trends using a competitive inhibition kinetic model, which accounts for competition for enzyme active sites by both a growth substrate and a cometabolic substrate. The competitive inhibition kinetic expression was programmed for use in the RT3D reactive transport package. Simulations of TCE plume evolution using both competitive inhibition kinetics and first order decay were performed.

  12. Nitrogen and carbon flow from rock to water: Regulation through soil biogeochemical processes, Mokelumne River watershed, California, and Grand Valley, Colorado

    USGS Publications Warehouse

    Holloway, J.M.; Smith, R.L.

    2005-01-01

    Soil denitrification is an ecologically important nitrogen removal mechanism that releases to the atmosphere the greenhouse gas N2O, an intermediate product from the reduction of NO3- to N 2. In this study we evaluate the relationship between soil carbon and denitrification potential in watersheds with bedrock acting as a nonpoint source of nitrogen, testing the hypothesis that nitrate leaching to stream water is in part regulated by denitrification. Two sites, one in a Mediterranean climate and the other in an arid climate, were investigated to understand the interplay between carbon and denitrification potential. Both sites included carbonaceous bedrock with relatively high nitrogen concentrations (> 1,000 mg N kg-1) and had low background nitrogen concentrations in surface and groundwater. There was a net accumulation of carbon and nitrogen in soil relative to the corresponding bedrock, with the exception of carbonaceous shale from the arid site. There the concentration of carbon in the soil (15,620 mg C kg-1) was less than the shale parent (22,460 mg C kg-1), consistent with the bedrock being a source of soil carbon. Rates of denitrification potential (0.5-83 ??g N kg-1 hr-1) derived from laboratory incubations appeared to be related to the ratio of dissolved organic carbon and nitrate extracted from soils. These data indicate that microbial processes such as denitrification can help maintain background nitrogen concentrations to tens of ??M N in relatively undisturbed ecosystems when nitrogen inputs from weathering bedrock are accompanied by sufficient organic carbon concentrations to promote microbial nitrogen transformations.

  13. Respiration, metabolic balance, and attention in affective picture processing.

    PubMed

    Gomez, Patrick; Shafy, Samiha; Danuser, Brigitta

    2008-05-01

    The respiratory behavior during affective states is not completely understood. We studied breathing pattern responses to picture series in 37 participants. We also measured end-tidal pCO2 (EtCO2) to determine if ventilation is in balance with metabolic demands and spontaneous eye-blinking to investigate the link between respiration and attention. Minute ventilation (MV) and inspiratory drive increased with self-rated arousal. These relationships reflected increases in inspiratory volume rather than shortening of the time parameters. EtCO2 covaried with pleasantness but not arousal. Eye-blink rate decreased with increasing unpleasantness in line with a negativity bias in attention. This study confirms that respiratory responses to affective stimuli are organized to a certain degree along the dimensions of valence and arousal. It shows, for the first time, that during picture viewing, ventilatory increases with increasing arousal are in balance with metabolic activity and that inspiratory volume is modulated by arousal. MV emerges as the most reliable respiratory index of self-perceived arousal.

  14. Selenium source identification and biogeochemical processes controlling selenium in surface water and biota, Kendrick Reclamation Project, Wyoming, U.S.A.

    USGS Publications Warehouse

    Naftz, D.L.; See, R.B.; Ramirez, P.

    1993-01-01

    The major tributaries draining the Kendrick Reclamation Project (KRP) account for an average of 52% of the total Se load measured in the North Platte River downstream from Casper, Wyoming. The Casper Creek drainage basin contributed the largest Se load of the five tributary sites to the North Platte River. The 4-d average Se concentration in water samples from one site in the part of the North Platte River that receives irrigation return flows exceeded the 5 ??g/l U.S. Environmental Protection Agency's aquatic life criterion five time during a 50-d monitoring period in 1989. In agreement with the water-quality data, muscle and liver tissue rom rainbow trout collected from the same part of the North Platte River had Se concentrations exceeding levels known to cause reproductive failure and chronic Se poisoning. On the basis of Se: Cl, 18O/16O and D/H ratios in water from Goose and Rasmus Lee Lakes (closed-basin systems), the large Se concentrations in those lakes were derived by natural evaporation of irrigation water without leaching of soluble forms of Se from soil or rocks. Water samples from Thirtythree Mile Reservoir and Illco Pond (flow-through systems) showed considerable enrichment in Se over evaporative concentration, presumably due to leaching and desorption of Se from soil and rock. The Se: Cl ratios of irrigation drain water collected from the KRP indicate that leaching and desorption of soluble forms of Se from soils and rocks are the dominant processes in drain water. Results of a Wilcoxon matched-pairs test for 43 paired drain-water samples collected during June and August 1988, indicated there is a statistically larger concentration of Se (0.01 significance level) during the June sampling period. The larger concentrations of Se and other chemical constitutents during the early part of the irrigation season probably were due to dissolution of seleniferous salts that have accumulated in soils within the KRP since the last irrigation season. The large

  15. Biogeochemical cycling in the Strait of Georgia.

    PubMed

    Johannessen, S C; Macdonald, R W; Burd, B; van Roodselaar, A

    2008-12-01

    The papers in this special issue present the results of a five-year project to study sedimentary biogeochemical processes in the Strait of Georgia, with special emphasis on the near-field of a large municipal outfall. Included in this special issue are overviews of the sedimentology, benthic biology, status of siliceous sponge reefs and distribution of organic carbon in the water column. Other papers address the cycling of contaminants (PCBs, PBDEs) and redox metals in the sediment, a method to map the extent of the influence of municipal effluent from staining on benthic bivalves, and the relationships among geochemical conditions and benthic abundance and diversity. The latter set of papers addresses the role of municipal effluent as a pathway of organic carbon and other contaminants into the Strait of Georgia and the effect of the effluent on benthic geochemistry and biology.

  16. Psychometric Characteristics of the EEAA (Scale of Affective Strategies in the Learning Process)

    ERIC Educational Resources Information Center

    Villardón-Gallego, Lourdes; Yániz, Concepción

    2014-01-01

    Introduction: Affective strategies for coping with affective states linked to the learning process may be oriented toward controlling emotions or toward controlling motivation. Both types affect performance, directly and indirectly. The objective of this research was to design an instrument for measuring the affective strategies used by university…

  17. Distal Prosodic Context Affects Word Segmentation and Lexical Processing

    ERIC Educational Resources Information Center

    Dilley, Laura C.; McAuley, J. Devin

    2008-01-01

    Three experiments investigated the role of distal (i.e., nonlocal) prosody in word segmentation and lexical processing. In Experiment 1, prosodic characteristics of the initial five syllables of eight-syllable sequences were manipulated; the final portions of these sequences were lexically ambiguous (e.g., "note bookworm", "notebook worm"). Distal…

  18. Stimulus Characteristics Affect Humor Processing in Individuals with Asperger Syndrome

    ERIC Educational Resources Information Center

    Samson, Andrea C.; Hegenloh, Michael

    2010-01-01

    The present paper aims to investigate whether individuals with Asperger syndrome (AS) show global humor processing deficits or whether humor comprehension and appreciation depends on stimulus characteristics. Non-verbal visual puns, semantic and Theory of Mind cartoons were rated on comprehension, funniness and the punchlines were explained. AS…

  19. Factors Affecting the Processing of Epoxy Film Adhesives

    NASA Technical Reports Server (NTRS)

    Pike, R. A.

    1985-01-01

    The increasing awareness that adhesive performance is controlled not only by the condition of the adherend surface but also the condition or state of the adhesive and the process parameters used during fabrication is expected to result in improved reliability, as well as bond performance. The critical process variables which have been found to control adhesive bond formation and ultimate bond strength in 250F and 350F curing epoxy adhesives are described in terms of fabrication parameters and adhesive characteristics. These include the heat-up rate and cure temperature during processing and the adhesive moisture content and age condition (degree of advancement). The diagnostic methods used to delineate the effects of these process variables on adhesive performance are illustrated. These are dielectric, thermomechanical (TMA) and dynamic mechanical (DMA) analyses. Correlation of test results with measured mechanical tensile lap shear strengths of bonded joints is presented and the results briefly discussed in terms of the additives and hardeners used in the adhesive systems.

  20. Can Process Portfolios Affect Students' Writing Self-Efficacy?

    ERIC Educational Resources Information Center

    Nicolaidou, Iolie

    2012-01-01

    Can process portfolios that support students in goal setting, reflection, self-evaluation and feedback have a positive impact on students' writing self-efficacy? This article presents the findings of a yearlong study conducted in three 4th grade elementary classes in Cyprus where paper-based and web-based portfolios were implemented to help…

  1. Global Change: A Biogeochemical Perspective

    NASA Technical Reports Server (NTRS)

    Mcelroy, M.

    1983-01-01

    A research program that is designed to enhance our understanding of the Earth as the support system for life is described. The program change, both natural and anthropogenic, that might affect the habitability of the planet on a time scale roughly equal to that of a human life is studied. On this time scale the atmosphere, biosphere, and upper ocean are treated as a single coupled system. The need for understanding the processes affecting the distribution of essential nutrients--carbon, nitrogen, phosphorous, sulfur, and water--within this coupled system is examined. The importance of subtle interactions among chemical, biological, and physical effects is emphasized. The specific objectives are to define the present state of the planetary life-support system; to ellucidate the underlying physical, chemical, and biological controls; and to provide the body of knowledge required to assess changes that might impact the future habitability of the Earth.

  2. Biogeochemical controls on metal behaviour in freshwater environments

    NASA Astrophysics Data System (ADS)

    Warren, Lesley A.; Haack, Elizabeth A.

    2001-08-01

    The biogeochemical controls on metal behaviour in aqueous environments involve complex linkages of biological, principally bacterially driven, and geochemical processes, which occur at both microscopic and macroscopic scales. The framework of aqueous surface chemistry and aquatic geochemistry continues to provide the foundations of the emerging paradigm: (1) metal behaviour (e.g., transport, toxicity, bioaccumulation) is governed by solid-solution reactions; (2) pH, ionic strength, redox potential, the types and concentrations of solution elements, and solid surfaces all interact to determine metal behaviour in any given system; (3) metal sorption reactions show both metal ion and solid surface specificity; (4) sorption reactions are dynamic and reversible; and (5) processes are at sufficient pseudo-equilibrium or dynamic steady state that thermodynamics can be applied to describe such reactions. Reactions controlling metal behaviour are increasingly modelled, with some success, using a variety of geochemical modelling approaches all based on this framework. However, not yet considered in the majority of these thermodynamic treatments of metal dynamics is that these reactions are highly influenced by biological factors, which will affect their location, magnitude and rate. The extent of this influence will be largely driven by microbial ecology, and thus, a fundamental identification and mechanistic understanding of how these factors will drive the geochemistry of a particular system is required. The lack of substantive biogeochemical understanding stems from the fact that the field of environmental microbiology, with its crossover to environmental geochemistry, has only recently begun to receive attention. The developing evidence strongly underscores the impact of bacterial reactions for a number of highly relevant processes related to metal dynamics such as solid solution partitioning, mineral precipitation and dissolution reactions, and intense changes in system

  3. How gender-expectancy affects the processing of "them".

    PubMed

    Doherty, Alice; Conklin, Kathy

    2017-04-01

    How sensitive is pronoun processing to expectancies based on real-world knowledge and language usage? The current study links research on the integration of gender stereotypes and number-mismatch to explore this question. It focuses on the use of them to refer to antecedents of different levels of gender-expectancy (low-cyclist, high-mechanic, known-spokeswoman). In a rating task, them is considered increasingly unnatural with greater gender-expectancy. However, participants might not be able to differentiate high-expectancy and gender-known antecedents online because they initially search for plural antecedents (e.g., Sanford & Filik), and they make all-or-nothing gender inferences. An eye-tracking study reveals early differences in the processing of them with antecedents of high gender-expectancy compared with gender-known antecedents. This suggests that participants have rapid access to the expected gender of the antecedent and the level of that expectancy.

  4. Infiltration and runoff generation processes in fire-affected soils

    USGS Publications Warehouse

    Moody, John A.; Ebel, Brian A.

    2014-01-01

    Post-wildfire runoff was investigated by combining field measurements and modelling of infiltration into fire-affected soils to predict time-to-start of runoff and peak runoff rate at the plot scale (1 m2). Time series of soil-water content, rainfall and runoff were measured on a hillslope burned by the 2010 Fourmile Canyon Fire west of Boulder, Colorado during cyclonic and convective rainstorms in the spring and summer of 2011. Some of the field measurements and measured soil physical properties were used to calibrate a one-dimensional post-wildfire numerical model, which was then used as a ‘virtual instrument’ to provide estimates of the saturated hydraulic conductivity and high-resolution (1 mm) estimates of the soil-water profile and water fluxes within the unsaturated zone.Field and model estimates of the wetting-front depth indicated that post-wildfire infiltration was on average confined to shallow depths less than 30 mm. Model estimates of the effective saturated hydraulic conductivity, Ks, near the soil surface ranged from 0.1 to 5.2 mm h−1. Because of the relatively small values of Ks, the time-to-start of runoff (measured from the start of rainfall),  tp, was found to depend only on the initial soil-water saturation deficit (predicted by the model) and a measured characteristic of the rainfall profile (referred to as the average rainfall acceleration, equal to the initial rate of change in rainfall intensity). An analytical model was developed from the combined results and explained 92–97% of the variance of  tp, and the numerical infiltration model explained 74–91% of the variance of the peak runoff rates. These results are from one burned site, but they strongly suggest that  tp in fire-affected soils (which often have low values of Ks) is probably controlled more by the storm profile and the initial soil-water saturation deficit than by soil hydraulic properties.

  5. Factors affecting growth of foodborne pathogens on minimally processed apples.

    PubMed

    Alegre, Isabel; Abadias, Maribel; Anguera, Marina; Oliveira, Marcia; Viñas, Inmaculada

    2010-02-01

    Escherichia coli O157:H7, Salmonella and Listeria innocua increased by more than 2 log(10) units over a 24 h period on fresh-cut 'Golden Delicious' apple plugs stored at 25 and 20 degrees C. L. innocua reached the same final population level at 10 degrees C meanwhile E. coli and Salmonella only increased 1.3 log(10) units after 6 days. Only L. innocua was able to grow at 5 degrees C. No significant differences were observed between the growth of foodborne pathogens on fresh-cut 'Golden Delicious', 'Granny Smith' and 'Shampion' apples stored at 25 and 5 degrees C. The treatment of 'Golden Delicious' and 'Granny Smith' apple plugs with the antioxidants, ascorbic acid (2%) and NatureSeal (6%), did not affect pathogen growth. The effect of passive modified atmosphere packaging (MAP) on the growth of E. coli, Salmonella and L. innocua on 'Golden Delicious' apple slices was also tested. There were no significant differences in growth of pathogens in MAP conditions compared with air packaging of 'Golden Delicious' apple plugs, but the growth of mesophilic and psychrotrophic microorganisms was inhibited. These results highlight the importance of avoiding contamination of fresh-cut fruit with foodborne pathogens and the maintenance of the cold chain during storage until consumption.

  6. Understanding processes affecting mineral deposits in humid environments

    USGS Publications Warehouse

    Seal, Robert R., II; Ayuso, Robert A.

    2011-01-01

    Recent interdisciplinary studies by the U.S. Geological Survey have resulted in substantial progress toward understanding the influence that climate and hydrology have on the geochemical signatures of mineral deposits and the resulting mine wastes in the eastern United States. Specific areas of focus include the release, transport, and fate of acid, metals, and associated elements from inactive mines in temperate coastal areas and of metals from unmined mineral deposits in tropical to subtropical areas; the influence of climate, geology, and hydrology on remediation options for abandoned mines; and the application of radiogenic isotopes to uniquely apportion source contributions that distinguish natural from mining sources and extent of metal transport. The environmental effects of abandoned mines and unmined mineral deposits result from a complex interaction of a variety of chemical and physical factors. These include the geology of the mineral deposit, the hydrologic setting of the mineral deposit and associated mine wastes, the chemistry of waters interacting with the deposit and associated waste material, the engineering of a mine as it relates to the reactivity of mine wastes, and climate, which affects such factors as temperature and the amounts of precipitation and evapotranspiration; these factors, in turn, influence the environmental behavior of mineral deposits. The role of climate is becoming increasingly important in environmental investigations of mineral deposits because of the growing concerns about climate change.

  7. Dopaminergic modulation of memory and affective processing in Parkinson depression.

    PubMed

    Blonder, Lee X; Slevin, John T; Kryscio, Richard J; Martin, Catherine A; Andersen, Anders H; Smith, Charles D; Schmitt, Frederick A

    2013-11-30

    Depression is common in Parkinson's disease and is associated with cognitive impairment. Dopaminergic medications are effective in treating the motor symptoms of Parkinson's disease; however, little is known regarding the effects of dopaminergic pharmacotherapy on cognitive function in depressed Parkinson patients. This study examines the neuropsychological effects of dopaminergic pharmacotherapy in Parkinsonian depression. We compared cognitive function in depressed and non-depressed Parkinson patients at two time-points: following overnight withdrawal and after the usual morning regimen of dopaminergic medications. A total of 28 non-demented, right-handed patients with mild to moderate idiopathic Parkinson's disease participated. Ten of these patients were depressed according to DSM IV criteria. Results revealed a statistically significant interaction between depression and medication status on three measures of verbal memory and a facial affect naming task. In all cases, depressed Parkinson's patients performed significantly more poorly while on dopaminergic medication than while off. The opposite pattern emerged for the non-depressed Parkinson's group. The administration of dopaminergic medication to depressed Parkinson patients may carry unintended risks.

  8. Habitat Complexity in Aquatic Microcosms Affects Processes Driven by Detritivores

    PubMed Central

    Flores, Lorea; Bailey, R. A.; Elosegi, Arturo; Larrañaga, Aitor; Reiss, Julia

    2016-01-01

    Habitat complexity can influence predation rates (e.g. by providing refuge) but other ecosystem processes and species interactions might also be modulated by the properties of habitat structure. Here, we focussed on how complexity of artificial habitat (plastic plants), in microcosms, influenced short-term processes driven by three aquatic detritivores. The effects of habitat complexity on leaf decomposition, production of fine organic matter and pH levels were explored by measuring complexity in three ways: 1. as the presence vs. absence of habitat structure; 2. as the amount of structure (3 or 4.5 g of plastic plants); and 3. as the spatial configuration of structures (measured as fractal dimension). The experiment also addressed potential interactions among the consumers by running all possible species combinations. In the experimental microcosms, habitat complexity influenced how species performed, especially when comparing structure present vs. structure absent. Treatments with structure showed higher fine particulate matter production and lower pH compared to treatments without structures and this was probably due to higher digestion and respiration when structures were present. When we explored the effects of the different complexity levels, we found that the amount of structure added explained more than the fractal dimension of the structures. We give a detailed overview of the experimental design, statistical models and R codes, because our statistical analysis can be applied to other study systems (and disciplines such as restoration ecology). We further make suggestions of how to optimise statistical power when artificially assembling, and analysing, ‘habitat complexity’ by not confounding complexity with the amount of structure added. In summary, this study highlights the importance of habitat complexity for energy flow and the maintenance of ecosystem processes in aquatic ecosystems. PMID:27802267

  9. KINETICS AND MECHANISMS OF SOIL BIOGEOCHEMICAL PROCESSES

    EPA Science Inventory

    The application of kinetic studies to soil chemistry is useful to determine reaction mechanisms and fate of nutrients and environmental contaminants. How deeply one wishes to query the mechanism depends on the detail sought. Reactions that involve chemical species in more than on...

  10. From neurons to epidemics: How trophic coherence affects spreading processes

    NASA Astrophysics Data System (ADS)

    Klaise, Janis; Johnson, Samuel

    2016-06-01

    Trophic coherence, a measure of the extent to which the nodes of a directed network are organised in levels, has recently been shown to be closely related to many structural and dynamical aspects of complex systems, including graph eigenspectra, the prevalence or absence of feedback cycles, and linear stability. Furthermore, non-trivial trophic structures have been observed in networks of neurons, species, genes, metabolites, cellular signalling, concatenated words, P2P users, and world trade. Here, we consider two simple yet apparently quite different dynamical models—one a susceptible-infected-susceptible epidemic model adapted to include complex contagion and the other an Amari-Hopfield neural network—and show that in both cases the related spreading processes are modulated in similar ways by the trophic coherence of the underlying networks. To do this, we propose a network assembly model which can generate structures with tunable trophic coherence, limiting in either perfectly stratified networks or random graphs. We find that trophic coherence can exert a qualitative change in spreading behaviour, determining whether a pulse of activity will percolate through the entire network or remain confined to a subset of nodes, and whether such activity will quickly die out or endure indefinitely. These results could be important for our understanding of phenomena such as epidemics, rumours, shocks to ecosystems, neuronal avalanches, and many other spreading processes.

  11. Simultanagnosia does not affect processes of auditory Gestalt perception.

    PubMed

    Rennig, Johannes; Bleyer, Anna Lena; Karnath, Hans-Otto

    2017-03-23

    Simultanagnosia is a neuropsychological deficit of higher visual processes caused by temporo-parietal brain damage. It is characterized by a specific failure of recognition of a global visual Gestalt, like a visual scene or complex objects, consisting of local elements. In this study we investigated to what extend this deficit should be understood as a deficit related to specifically the visual domain or whether it should be seen as defective Gestalt processing per se. To examine if simultanagnosia occurs across sensory domains, we designed several auditory experiments sharing typical characteristics of visual tasks that are known to be particularly demanding for patients suffering from simultanagnosia. We also included control tasks for auditory working memory deficits and for auditory extinction. We tested four simultanagnosia patients who suffered from severe symptoms in the visual domain. Two of them indeed showed significant impairments in recognition of simultaneously presented sounds. However, the same two patients also suffered from severe auditory working memory deficits and from symptoms comparable to auditory extinction, both sufficiently explaining the impairments in simultaneous auditory perception. We thus conclude that deficits in auditory Gestalt perception do not appear to be characteristic for simultanagnosia and that the human brain obviously uses independent mechanisms for visual and for auditory Gestalt perception.

  12. Sensitivity analysis on parameters and processes affecting vapor intrusion risk.

    PubMed

    Picone, Sara; Valstar, Johan; van Gaans, Pauline; Grotenhuis, Tim; Rijnaarts, Huub

    2012-05-01

    A one-dimensional numerical model was developed and used to identify the key processes controlling vapor intrusion risks by means of a sensitivity analysis. The model simulates the fate of a dissolved volatile organic compound present below the ventilated crawl space of a house. In contrast to the vast majority of previous studies, this model accounts for vertical variation of soil water saturation and includes aerobic biodegradation. The attenuation factor (ratio between concentration in the crawl space and source concentration) and the characteristic time to approach maximum concentrations were calculated and compared for a variety of scenarios. These concepts allow an understanding of controlling mechanisms and aid in the identification of critical parameters to be collected for field situations. The relative distance of the source to the nearest gas-filled pores of the unsaturated zone is the most critical parameter because diffusive contaminant transport is significantly slower in water-filled pores than in gas-filled pores. Therefore, attenuation factors decrease and characteristic times increase with increasing relative distance of the contaminant dissolved source to the nearest gas diffusion front. Aerobic biodegradation may decrease the attenuation factor by up to three orders of magnitude. Moreover, the occurrence of water table oscillations is of importance. Dynamic processes leading to a retreating water table increase the attenuation factor by two orders of magnitude because of the enhanced gas phase diffusion.

  13. Does Signal Degradation Affect Top-Down Processing of Speech?

    PubMed

    Wagner, Anita; Pals, Carina; de Blecourt, Charlotte M; Sarampalis, Anastasios; Başkent, Deniz

    2016-01-01

    Speech perception is formed based on both the acoustic signal and listeners' knowledge of the world and semantic context. Access to semantic information can facilitate interpretation of degraded speech, such as speech in background noise or the speech signal transmitted via cochlear implants (CIs). This paper focuses on the latter, and investigates the time course of understanding words, and how sentential context reduces listeners' dependency on the acoustic signal for natural and degraded speech via an acoustic CI simulation.In an eye-tracking experiment we combined recordings of listeners' gaze fixations with pupillometry, to capture effects of semantic information on both the time course and effort of speech processing. Normal-hearing listeners were presented with sentences with or without a semantically constraining verb (e.g., crawl) preceding the target (baby), and their ocular responses were recorded to four pictures, including the target, a phonological (bay) competitor and a semantic (worm) and an unrelated distractor.The results show that in natural speech, listeners' gazes reflect their uptake of acoustic information, and integration of preceding semantic context. Degradation of the signal leads to a later disambiguation of phonologically similar words, and to a delay in integration of semantic information. Complementary to this, the pupil dilation data show that early semantic integration reduces the effort in disambiguating phonologically similar words. Processing degraded speech comes with increased effort due to the impoverished nature of the signal. Delayed integration of semantic information further constrains listeners' ability to compensate for inaudible signals.

  14. Left Hand Dominance Affects Supra-Second Time Processing

    PubMed Central

    Vicario, Carmelo Mario; Bonní, Sonia; Koch, Giacomo

    2011-01-01

    Previous studies exploring specific brain functions of left- and right-handed subjects have shown variances in spatial and motor abilities that might be explained according to consistent structural and functional differences. Given the role of both spatial and motor information in the processing of temporal intervals, we designed a study aimed at investigating timing abilities in left-handed subjects. To this purpose both left- and right-handed subjects were asked to perform a time reproduction of sub-second vs. supra-second time intervals with their left and right hand. Our results show that during processing of the supra-second intervals left-handed participants sub-estimated the duration of the intervals, independently of the hand used to perform the task, while no differences were reported for the sub-second intervals. These results are discussed on the basis of recent findings on supra-second motor timing, as well as emerging evidence that suggests a linear representation of time with a left-to-right displacement. PMID:22028685

  15. Effects of Privately Owned Land Management Practices on Biogeochemical Cycling

    NASA Astrophysics Data System (ADS)

    Getson, J. M.; Hutyra, L.; Short, A. G.; Templer, P. H.; Kittredge, D.

    2014-12-01

    An increasing fraction of the global population lives in urban settings. Understanding how the human-natural system couple and decouple biogeochemical cycles across urbanization gradients is crucial for human health and environmental sustainability. Natural processes of nutrient deposition, export, uptake, and internal cycling can be disrupted by human activities. Residential landscape management (e.g. composting, leaf litter collection, fertilizer application) interrupts these natural biogeochemical cycles; therefore, it is key to characterize these practices and their impacts. This study looks at private land management practices along a rural to urban gradient in Boston, Massachusetts. We used a mail survey instrument coupled with biogeochemical measurements and remote sensing derived estimates of aboveground biomass to estimate biogeochemical modifications associated with residential landscape management practices. We find parcel size influences management behavior, management practices differ for leaf litter and lawn clippings, and fertilizer application is unrelated to parcel size or degree of urban-ness. These management practices result in nutrient redistribution that differs with residential characteristics.

  16. Incorporating nitrogen fixing cyanobacteria in the global biogeochemical model HAMOCC

    NASA Astrophysics Data System (ADS)

    Paulsen, Hanna; Ilyina, Tatiana; Six, Katharina

    2015-04-01

    Nitrogen fixation by marine diazotrophs plays a fundamental role in the oceanic nitrogen and carbon cycle as it provides a major source of 'new' nitrogen to the euphotic zone that supports biological carbon export and sequestration. Since most global biogeochemical models include nitrogen fixation only diagnostically, they are not able to capture its spatial pattern sufficiently. Here we present the incorporation of an explicit, dynamic representation of diazotrophic cyanobacteria and the corresponding nitrogen fixation in the global ocean biogeochemical model HAMOCC (Hamburg Ocean Carbon Cycle model), which is part of the Max Planck Institute for Meteorology Earth system model (MPI-ESM). The parameterization of the diazotrophic growth is thereby based on available knowledge about the cyanobacterium Trichodesmium spp., which is considered as the most significant pelagic nitrogen fixer. Evaluation against observations shows that the model successfully reproduces the main spatial distribution of cyanobacteria and nitrogen fixation, covering large parts of the tropical and subtropical oceans. Besides the role of cyanobacteria in marine biogeochemical cycles, their capacity to form extensive surface blooms induces a number of bio-physical feedback mechanisms in the Earth system. The processes driving these interactions, which are related to the alteration of heat absorption, surface albedo and momentum input by wind, are incorporated in the biogeochemical and physical model of the MPI-ESM in order to investigate their impacts on a global scale. First preliminary results will be shown.

  17. Biogeochemical patchiness at the sea surface

    NASA Astrophysics Data System (ADS)

    Mahadevan, A.; Campbell, J. W.

    2002-10-01

    The surface distributions of many tracers in the ocean are highly correlated in time and space on meso (~100 km) and smaller scales (Figure 1). However, their characteristic scales of variability differ. Some variables like sea surface chlorophyll (Chl) are very fine-scaled or patchy, while others like sea surface temperature (SST) are not. We characterize the patchiness of a distribution quantitatively by the dependence of the variance V on the length scale L as V ~ Lp; smaller p corresponds to greater patchiness. Using scaling and a numerical model we show that patchiness, p, varies with the characteristic response time τ of the tracer to processes that alter its concentration in the upper ocean as p ~ log τ. This suggests that sea surface Chl is more patchy (has smaller p) than SST at mesoscales because the characteristic time scale of phytoplankton growth in response to the availability of nutrients is less than that for the equilibration of temperature in response to heat fluxes. Similarly, sea surface dissolved oxygen (O2) exhibits more fine-scaled variability than total dissolved inorganic carbon (TCO2) because O2 equilibrates with the atmosphere much more rapidly than TCO2. Tracers that are more patchy require higher resolution to model and sample; the sampling or model grid spacing required scales as exp(-1/log τ). The quantitative relationship between p and τ can be used to relate various biogeochemical distributions, particularly to those that are remotely sensed, and to deduce biogeochemical response times of various tracers or plankton species from the characteristics of their distributions in space or time.

  18. Processes affecting coastal wetland loss in the Louisiana deltaic plain

    USGS Publications Warehouse

    Williams, S. Jeffress; Penland, Shea; Roberts, Harry H.

    1993-01-01

    Nowhere are the problems of coastal wetland loss more serious and dramatic than in the Mississippi River deltaic plain region of south-central Louisiana. In that area, rates of shoreline erosion of 20 m.yr and loss of land area of up to 75 km/yr result from a complex combination of natural (delta switching, subsidence, sea-level rise, storms) and human (flood control, navigation, oil and gas development, land reclamation) factors. The U.S. Geological Survey (USGS), as part of the National Coastal Geology Program, has undertaken joint filed investigations with Federal, State, and university partners. The objective of these long-term studies is to gather and interpret baseline information in order to improve our scientific understanding of the critical processes and responses responsible for creation, maintenance, and deterioration of coastal wetlands.

  19. Visual processing affects the neural basis of auditory discrimination.

    PubMed

    Kislyuk, Daniel S; Möttönen, Riikka; Sams, Mikko

    2008-12-01

    The interaction between auditory and visual speech streams is a seamless and surprisingly effective process. An intriguing example is the "McGurk effect": The acoustic syllable /ba/ presented simultaneously with a mouth articulating /ga/ is typically heard as /da/ [McGurk, H., & MacDonald, J. Hearing lips and seeing voices. Nature, 264, 746-748, 1976]. Previous studies have demonstrated the interaction of auditory and visual streams at the auditory cortex level, but the importance of these interactions for the qualitative perception change remained unclear because the change could result from interactions at higher processing levels as well. In our electroencephalogram experiment, we combined the McGurk effect with mismatch negativity (MMN), a response that is elicited in the auditory cortex at a latency of 100-250 msec by any above-threshold change in a sequence of repetitive sounds. An "odd-ball" sequence of acoustic stimuli consisting of frequent /va/ syllables (standards) and infrequent /ba/ syllables (deviants) was presented to 11 participants. Deviant stimuli in the unisensory acoustic stimulus sequence elicited a typical MMN, reflecting discrimination of acoustic features in the auditory cortex. When the acoustic stimuli were dubbed onto a video of a mouth constantly articulating /va/, the deviant acoustic /ba/ was heard as /va/ due to the McGurk effect and was indistinguishable from the standards. Importantly, such deviants did not elicit MMN, indicating that the auditory cortex failed to discriminate between the acoustic stimuli. Our findings show that visual stream can qualitatively change the auditory percept at the auditory cortex level, profoundly influencing the auditory cortex mechanisms underlying early sound discrimination.

  20. Quantitative evolution of volcanic surfaces affected by erosional processes

    NASA Astrophysics Data System (ADS)

    Lahitte, Pierre; Boillot-Airaksinen, Kim; Germa, Aurélie; Lavigne, Franck

    2016-04-01

    Variations through time of erosion dynamics, a key point to investigate correlation between climates and landform evolution, still remains poorly documented. One of the main issue in this type of study is the difficulty in determining for how long the erosion has operated. For this purpose, volcanic contexts are particularly suitable for defining the temporal dynamics governing erosion since the age of volcanic activity also constrains the age of emplacement of the surface today eroded, and thus the erosion duration. Furthermore, quantitative analysis of river profiles offers the opportunity to discriminate, among the wide variety of geological phenomena influencing erosion, their respective influence. Quantification of erosion processes and constrain of their signature on reliefs can be addressed by a morphometric approach of river profiles in volcanic environment through the analysis of digital topography (DEM). Break in slope zones, the so-called knickpoints, are usually related to a retreat of the point between the relict channel, upstream, and the adjusted channel, downstream. They are induced by either a lithological contrast, a change in the base level, uplift or eustatism, or a rejuvenation of the age of the volcanic surface. The stream long-profile and its watershed is also investigated by their concavity and hypsometric indexes to determine for how long the complexity and its heterogeneity along the valley incision remain visible. The present study focusses on the erosion of volcanoes in the Lesser Antilles, Reunion Island and Lombok Island (Indonesia). All located in tropical environments, these volcanoes offer a wide diversity of age (30 - 0 Ma) and lithology for investigating the respective influence of geological processes that have induced a large variety of shapes and volcanic history that we try to correlate to geometry of river profiles.

  1. Early Social Experience Affects the Development of Eye Gaze Processing

    PubMed Central

    Senju, Atsushi; Vernetti, Angélina; Ganea, Natasa; Hudry, Kristelle; Tucker, Leslie; Charman, Tony; Johnson, Mark H.

    2015-01-01

    Summary Eye gaze is a key channel of non-verbal communication in humans [1, 2, 3]. Eye contact with others is present from birth [4], and eye gaze processing is crucial for social learning and adult-infant communication [5, 6, 7]. However, little is known about the effect of selectively different experience of eye contact and gaze communication on early social and communicative development. To directly address this question, we assessed 14 sighted infants of blind parents (SIBPs) longitudinally at 6–10 and 12–16 months. Face scanning [8] and gaze following [7, 9] were assessed using eye tracking. In addition, naturalistic observations were made when the infants were interacting with their blind parent and with an unfamiliar sighted adult. Established measures of emergent autistic-like behaviors [10] and standardized tests of cognitive, motor, and linguistic development [11] were also collected. These data were then compared with those obtained from a group of infants of sighted parents. Despite showing typical social skills development overall, infants of blind parents allocated less attention to adult eye movements and gaze direction, an effect that increased between 6–10 and 12–16 months of age. The results suggest that infants adjust their use of adults’ eye gaze depending on gaze communication experience from early in life. The results highlight that human functional brain development shows selective experience-dependent plasticity adaptive to the individual’s specific social environment. PMID:26752077

  2. Understanding Biogeochemical Transformations Of Trace Elements In Multi Metal-Rich Geomaterials Under Stimulated Redox Conditions

    EPA Science Inventory

    Natural and anthropogenic influences on hydrological conditions can induce periodic or long-term reduced conditions in geologic materials. Such conditions can cause significant impacts on biogeochemical processes of trace elements in subsurface or near surface environments. The...

  3. Drugs affecting prelamin A processing: Effects on heterochromatin organization

    SciTech Connect

    Mattioli, Elisabetta; Columbaro, Marta; Capanni, Cristina; Santi, Spartaco; D'Apice, M. Rosaria; Novelli, Giuseppe; Riccio, Massimo; Squarzoni, Stefano; Lattanzi, Giovanna

    2008-02-01

    Increasing interest in drugs acting on prelamin A has derived from the finding of prelamin A involvement in severe laminopathies. Amelioration of the nuclear morphology by inhibitors of prelamin A farnesylation has been widely reported in progeroid laminopathies. We investigated the effects on chromatin organization of two drugs inhibiting prelamin A processing by an ultrastructural and biochemical approach. The farnesyltransferase inhibitor FTI-277 and the non-peptidomimetic drug N-acetyl-S-farnesyl-L-cysteine methylester (AFCMe) were administered to cultured control human fibroblasts for 6 or 18 h. FTI-277 interferes with protein farnesylation causing accumulation of non-farnesylated prelamin A, while AFCMe impairs the last cleavage of the lamin A precursor and is expected to accumulate farnesylated prelamin A. FTI-277 caused redistribution of heterochromatin domains at the nuclear interior, while AFCMe caused loss of heterochromatin domains, increase of nuclear size and nuclear lamina thickening. At the biochemical level, heterochromatin-associated proteins and LAP2{alpha} were clustered at the nuclear interior following FTI-277 treatment, while they were unevenly distributed or absent in AFCMe-treated nuclei. The reported effects show that chromatin is an immediate target of FTI-277 and AFCMe and that dramatic remodeling of chromatin domains occurs following treatment with the drugs. These effects appear to depend, at least in part, on the accumulation of prelamin A forms, since impairment of prelamin A accumulation, here obtained by 5-azadeoxycytidine treatment, abolishes the chromatin effects. These results may be used to evaluate downstream effects of FTIs or other prelamin A inhibitors potentially useful for the therapy of laminopathies.

  4. Persistent organic pollutants in Mediterranean seawater and processes affecting their accumulation in plankton.

    PubMed

    Berrojalbiz, Naiara; Dachs, Jordi; Del Vento, Sabino; Ojeda, María José; Valle, María Carmen; Castro-Jiménez, Javier; Mariani, Giulio; Wollgast, Jan; Hanke, Georg

    2011-05-15

    The Mediterranean and Black Seas are unique marine environments subject to important anthropogenic pressures due to riverine and atmospheric inputs of organic pollutants. Here, we report the results obtained during two east-west sampling cruises in June 2006 and May 2007 from Barcelona to Istanbul and Alexandria, respectively, where water and plankton samples were collected simultaneously. Both matrixes were analyzed for hexaclorochyclohexanes (HCHs), hexachlorobenzene (HCB), and 41 polychlorinated biphenyl (PCB) congeners. The comparison of the measured HCB and HCHs concentrations with previously reported dissolved phase concentrations suggests a temporal decline in their concentrations since the 1990s. On the contrary, PCB seawater concentrations did not exhibit such a decline, but show a significant spatial variability in dissolved concentrations with lower levels in the open Western and South Eastern Mediterranean, and higher concentrations in the Black, Marmara, and Aegean Seas and Sicilian Strait. PCB and OCPs (organochlorine pesticides) concentrations in plankton were higher at lower plankton biomass, but the intensity of this trend depended on the compound hydrophobicity (K(OW)). For the more persistent PCBs and HCB, the observed dependence of POP concentrations in plankton versus biomass can be explained by interactions between air-water exchange, particle settling, and/or bioaccumulation processes, whereas degradation processes occurring in the photic zone drive the trends shown by the more labile HCHs. The results presented here provide clear evidence of the important physical and biogeochemical controls on POP occurrence in the marine environment.

  5. Ocean fronts drive marine fishery production and biogeochemical cycling

    PubMed Central

    Woodson, C. Brock; Litvin, Steven Y.

    2015-01-01

    Long-term changes in nutrient supply and primary production reportedly foreshadow substantial declines in global marine fishery production. These declines combined with current overfishing, habitat degradation, and pollution paint a grim picture for the future of marine fisheries and ecosystems. However, current models forecasting such declines do not account for the effects of ocean fronts as biogeochemical hotspots. Here we apply a fundamental technique from fluid dynamics to an ecosystem model to show how fronts increase total ecosystem biomass, explain fishery production, cause regime shifts, and contribute significantly to global biogeochemical budgets by channeling nutrients through alternate trophic pathways. We then illustrate how ocean fronts affect fishery abundance and yield, using long-term records of anchovy–sardine regimes and salmon abundances in the California Current. These results elucidate the fundamental importance of biophysical coupling as a driver of bottom–up vs. top–down regulation and high productivity in marine ecosystems. PMID:25624488

  6. Ocean fronts drive marine fishery production and biogeochemical cycling.

    PubMed

    Woodson, C Brock; Litvin, Steven Y

    2015-02-10

    Long-term changes in nutrient supply and primary production reportedly foreshadow substantial declines in global marine fishery production. These declines combined with current overfishing, habitat degradation, and pollution paint a grim picture for the future of marine fisheries and ecosystems. However, current models forecasting such declines do not account for the effects of ocean fronts as biogeochemical hotspots. Here we apply a fundamental technique from fluid dynamics to an ecosystem model to show how fronts increase total ecosystem biomass, explain fishery production, cause regime shifts, and contribute significantly to global biogeochemical budgets by channeling nutrients through alternate trophic pathways. We then illustrate how ocean fronts affect fishery abundance and yield, using long-term records of anchovy-sardine regimes and salmon abundances in the California Current. These results elucidate the fundamental importance of biophysical coupling as a driver of bottom-up vs. top-down regulation and high productivity in marine ecosystems.

  7. Effects of bark beetle-caused tree mortality on biogeochemical and biogeophysical MODIS products

    NASA Astrophysics Data System (ADS)

    Bright, Benjamin C.; Hicke, Jeffrey A.; Meddens, Arjan J. H.

    2013-07-01

    affect forest-atmosphere exchanges of carbon, water, and energy, thereby influencing weather and climate. Bark beetle outbreaks are one such disturbance type that alters biogeochemical and biogeophysical processes in forests. Few studies have documented bark beetle impacts to leaf area index (LAI), gross primary productivity (GPP), evapotranspiration (ET), land surface temperature (LST), and surface albedo with satellite observations. Our objective was to use Landsat-derived estimates of bark beetle-caused tree mortality and Moderate Resolution Imaging Spectroradiometer (MODIS) land surface products to estimate beetle-caused changes in LAI, GPP, ET, LST, and surface albedo in northern Colorado. Following bark beetle-caused tree mortality, decreases occurred in LAI (0.02-0.80 m2m-2, 1-40%), annual GPP (50-248 gC m-2 yr-1, (5-26%), and daily summer ET (0.20-0.70 mm day-1, 13-44%), whereas increases occurred in August LST (1-3.9 K) and February albedo (0.03-0.09, 19-52%). We found greater responses of these variables in areas of greater mortality severity. The extent and severity of tree mortality in northern Colorado caused substantial changes in land surface variables (9-23%) when averaged across all forested areas of our study area. Our results demonstrate that land surface variables are sensitive to bark beetle-caused tree mortality and that bark beetle outbreaks can significantly impact biogeochemical and biogeophysical processes.

  8. The biogeochemical reactivity of suspended particulate matter at nested sites in the Dee basin, NE Scotland.

    PubMed

    Dawson, J J C; Adhikari, Y R; Soulsby, C; Stutter, M I

    2012-09-15

    Variation in the organic matter content associated with suspended particulate matter (SPM) is an often overlooked component of carbon cycling within freshwater riverine systems. The potential biogeochemical reactivity of particulate organic carbon (POC) that affect its interactions and fate, i.e. respired and lost to the atmosphere along river continua or ultimately exported to estuarine and oceanic pools was assessed. Eleven contrasting sites draining nested catchments (5-1837 km(2)) in the River Dee basin, NE Scotland were sampled during summer 2008 to evaluate spatio-temporal variations in quantity and quality (biogeochemical reactivity) of SPM during relatively low flow conditions. Mean SPM concentrations increased from 0.21 to 1.22 mg L(-1) between the uppermost and lowest mainstem sites. Individually, POC concentrations ranged from 0.08 to 0.55 mg L(-1) and accounted for ca. 3-15% of total aqueous organic carbon transported. The POC content was partitioned into autotrophic (2.78-73.0 mg C g(-1) SPM) and detrital (119-388 mg C g(-1) SPM) biomass carbon content. The particulate respired CO(2)-C as a % of the total carbon associated with SPM, measured by MicroResp™ over 18 h, varied in recalcitrance from 0.49% at peat-dominated sites to 3.20% at the lowermost mainstem site. Significant (p<0.05) relationships were observed between SPM biogeochemical reactivity measures (% respired CO(2)-C; chlorophyll α; bioavailable-phosphorus) and arable and improved grassland area, associated with increasing biological productivity downstream. Compositional characteristics and in-stream processing of SPM appear to be related to contributory land use pressures, that influence SPM characteristics and biogeochemistry (C:N:P stoichiometry) of its surrounding aqueous environment. As moorland influences declined, nutrient inputs from arable and improved grasslands increasingly affected the biogeochemical content and reactivity of both dissolved and particulate matter. This

  9. A generic reaction-based biogeochemical simulator

    SciTech Connect

    Fang, Yilin; Yabusaki, Steven B.; Yeh, Gour T.; C.T. Miller, M.W. Farthing, W.G. Gray, and G.F. Pinder

    2004-06-17

    This paper presents a generic biogeochemical simulator, BIOGEOCHEM. The simulator can read a thermodynamic database based on the EQ3/EQ6 database. It can also read user-specified equilibrium and kinetic reactions (reactions not defined in the format of that in EQ3/EQ6 database) symbolically. BIOGEOCHEM is developed with a general paradigm. It overcomes the requirement in most available reaction-based models that reactions and rate laws be specified in a limited number of canonical forms. The simulator interprets the reactions, and rate laws of virtually any type for input to the MAPLE symbolic mathematical software package. MAPLE then generates Fortran code for the analytical Jacobian matrix used in the Newton-Raphson technique, which are compiled and linked into the BIOGEOCHEM executable. With this feature, the users are exempted from recoding the simulator to accept new equilibrium expressions or kinetic rate laws. Two examples are used to demonstrate the new features of the simulator.

  10. Carbon cycle dynamics in the geologic record: Speleothems as a source for new biogeochemical and paleoclimate information

    NASA Astrophysics Data System (ADS)

    Frappier, A.; Sahagian, D.

    2003-12-01

    Many of the key outstanding questions in paleoclimate and biogeochemical cycles involve terrestrial ecosystems. Caves provide an important depositional environment for sedimentary archives of past and present terrestrial environmental changes. Until recently, the tools available to the research community have been appropriate for coarse resolution studies, but have been inadequate to address other important questions such as: 1. How have climate changes affect ecosystem carbon cycling in the past? 2. What is the role of tropical ecosystems in climate change and the global carbon cycle? 3. How does disturbance affect below ground carbon processing and export to groundwater? Recent developments in the use of speleothems as a tool for carbon cycle and paleoclimate studies have opened the door for a fresh look at these perennial questions. Our recent carbon isotopic study of a speleothem from Belize indicates that terrestrial carbon cycling may be more sensitive to interannual climatic variability such as El Nino-Southern Oscillation (ENSO) than previously thought. In this case, the geologic record has revealed carbon cycle sensitivity to climate forcing that has not been instrumentally observable over the same period. A number of other studies have revealed intriguing correlations between the speleothem carbon isotopic record and various Earth system processes such as millennial scale climate variations and land use history. These results suggest that our understanding of speleothems as a biogeochemical tool remains largely unexplored. In order to better understand the utility of the speleothem carbon isotopic record, we are conducting a modern process study at the Belize cave site. This will enable us to calibrate the record preserved in speleothems for exploration of past carbon cycle behavior. Our initial analysis suggests that speleothems faithfully record variations in terrestrial ecosystem biogeochemical processes that are measurable in real time, and are thus a

  11. The dynamic nature of the stress appraisal process and the infusion of affect.

    PubMed

    Eschleman, Kevin J; Alarcon, Gene M; Lyons, Joseph B; Stokes, Charlene K; Schneider, Tamera

    2012-05-01

    Very little is known about the process in which people reappraise a stressful environment or the factors that may influence this process. In the current study, we address the several limitations to previous research regarding stress reappraisals and explore the role of affect on this process. A total of 320 participants (mean age = 20 years, 60% male) completed an increasingly demanding team-based coordination task. Mood and stress appraisals were assessed at three time points using self-report surveys during four different waves of data collection. The longitudinal design enabled us to assess primary and secondary reappraisals (change in appraisals during the experiment), task-irrelevant affect (affect assessed prior to experiment participation), and task-relevant affect (change in affect experienced during the experiment). Guided by the Transactional Theory of Stress, we argue that the relationship between primary reappraisal and secondary reappraisal is an accurate representation of a dynamic stress appraisal process. We found that participants were more likely to engage in the stress appraisal process when they experienced less task-irrelevant positive affect and greater task-relevant positive affect. Both task-irrelevant and task-relevant negative affect were not found to influence the stress appraisal process.

  12. Modeling the biogeochemical seasonal cycle in the Strait of Gibraltar

    NASA Astrophysics Data System (ADS)

    Ramírez-Romero, E.; Vichi, M.; Castro, M.; Macías, J.; Macías, D.; García, C. M.; Bruno, M.

    2014-11-01

    A physical-biological coupled model was used to estimate the effect of the physical processes at the Strait of Gibraltar over the biogeochemical features of the Atlantic Inflow (AI) towards the Mediterranean Sea. This work was focused on the seasonal variation of the biogeochemical patterns in the AI and the role of the Strait; including primary production and phytoplankton features. As the physical model is 1D (horizontal) and two-layer, different integration methods for the primary production in the Biogeochemical Fluxes Model (BFM) have been evaluated. An approach based on the integration of a production-irradiance function was the chosen method. Using this Plankton Functional Type model (BFM), a simplified phytoplankton seasonal cycle in the AI was simulated. Main results included a principal bloom in spring dominated by nanoflagellates, whereas minimum biomass (mostly picophytoplankton) was simulated during summer. Physical processes occurring in the Strait could trigger primary production and raise phytoplankton biomass (during spring and autumn), mainly due to two combined effects. First, in the Strait a strong interfacial mixing (causing nutrient supply to the upper layer) is produced, and, second, a shoaling of the surface Atlantic layer occurs eastward. Our results show that these phenomena caused an integrated production of 105 g C m- 2 year- 1 in the eastern side of the Strait, and would also modify the proportion of the different phytoplankton groups. Nanoflagellates were favored during spring/autumn while picophytoplankton is more abundant in summer. Finally, AI could represent a relevant source of nutrients and biomass to Alboran Sea, fertilizing the upper layer of this area with 4.95 megatons nitrate year- 1 (79.83 gigamol year- 1) and 0.44 megatons C year- 1. A main advantage of this coupled model is the capability of solving relevant high-resolution processes as the tidal forcing without expensive computing requirements, allowing to assess the

  13. The Southern Ocean biogeochemical divide.

    PubMed

    Marinov, I; Gnanadesikan, A; Toggweiler, J R; Sarmiento, J L

    2006-06-22

    Modelling studies have demonstrated that the nutrient and carbon cycles in the Southern Ocean play a central role in setting the air-sea balance of CO(2) and global biological production. Box model studies first pointed out that an increase in nutrient utilization in the high latitudes results in a strong decrease in the atmospheric carbon dioxide partial pressure (pCO2). This early research led to two important ideas: high latitude regions are more important in determining atmospheric pCO2 than low latitudes, despite their much smaller area, and nutrient utilization and atmospheric pCO2 are tightly linked. Subsequent general circulation model simulations show that the Southern Ocean is the most important high latitude region in controlling pre-industrial atmospheric CO(2) because it serves as a lid to a larger volume of the deep ocean. Other studies point out the crucial role of the Southern Ocean in the uptake and storage of anthropogenic carbon dioxide and in controlling global biological production. Here we probe the system to determine whether certain regions of the Southern Ocean are more critical than others for air-sea CO(2) balance and the biological export production, by increasing surface nutrient drawdown in an ocean general circulation model. We demonstrate that atmospheric CO(2) and global biological export production are controlled by different regions of the Southern Ocean. The air-sea balance of carbon dioxide is controlled mainly by the biological pump and circulation in the Antarctic deep-water formation region, whereas global export production is controlled mainly by the biological pump and circulation in the Subantarctic intermediate and mode water formation region. The existence of this biogeochemical divide separating the Antarctic from the Subantarctic suggests that it may be possible for climate change or human intervention to modify one of these without greatly altering the other.

  14. Characterizing marine particles and their impact on biogeochemical cycles in the GEOTRACES program

    NASA Astrophysics Data System (ADS)

    Anderson, Robert F.; Hayes, Christopher T.

    2015-04-01

    Trace elements and their isotopes (TEIs) are of priority interest in several subdisciplines of oceanography. For example, the vital role of trace element micronutrients in regulating the growth of marine organisms, which, in turn, may influence the structure and composition of marine ecosystems, is now well established (Morel and Price, 2003; Twining and Baines, 2013). Natural distributions of some TEIs have been severely impacted by anthropogenic emissions, leading to substantial perturbations of natural ocean inventories. Pb and Hg, for example, (Lamborg et al., 2002; Schaule and Patterson, 1981), may represent a significant threat to human food supply. Furthermore, much of our knowledge of past variability in the ocean environment, including the ocean's role in climate change, has been developed using TEI proxies archived in marine substrates such as sediments, corals and microfossils. Research in each of these areas relies on a comprehensive knowledge of the distributions of TEIs in the ocean, and on the sensitivity of these distributions to changing environmental conditions. With numerous processes affecting the regional supply and removal of TEIs in the ocean, a comprehensive understanding of the marine biogeochemical cycles of TEIs can be attained only by a global, coordinated, international effort. GEOTRACES, an international program designed to study the marine biogeochemical cycles of trace elements and their isotopes (Anderson et al., 2014; Henderson et al., 2007), aims to achieve these goals.

  15. The microbial engines that drive Earth's biogeochemical cycles.

    PubMed

    Falkowski, Paul G; Fenchel, Tom; Delong, Edward F

    2008-05-23

    Virtually all nonequilibrium electron transfers on Earth are driven by a set of nanobiological machines composed largely of multimeric protein complexes associated with a small number of prosthetic groups. These machines evolved exclusively in microbes early in our planet's history yet, despite their antiquity, are highly conserved. Hence, although there is enormous genetic diversity in nature, there remains a relatively stable set of core genes coding for the major redox reactions essential for life and biogeochemical cycles. These genes created and coevolved with biogeochemical cycles and were passed from microbe to microbe primarily by horizontal gene transfer. A major challenge in the coming decades is to understand how these machines evolved, how they work, and the processes that control their activity on both molecular and planetary scales.

  16. Differences in the dynamics of affective and cognitive processing - An ERP study.

    PubMed

    Mueller, Christina J; Fritsch, Nathalie; Hofmann, Markus J; Kuchinke, Lars

    2017-01-15

    A controversy in emotion research concerns the question of whether affective or cognitive primacy are evident in processing affective stimuli and the factors contributing to each alternative. Using electrophysiological recordings in an adapted visual oddball paradigm allowed tracking the dynamics of affective and cognitive effects. Stimuli consisted of face pictures displaying affective expressions with rare oddballs differing from frequent stimuli in either affective expression, structure (while frequent stimuli were shown frontally these deviants were turned sideways) or they differed on both dimensions, i.e. in affective expression and structure. Results revealed a defined sequence of differences in ERP amplitudes: For stimuli deviating in their affective expression only, P1 modulations ~100ms were evident, while affective differences of structure deviants were not evident before the N170 time window. All three types of deviants differed in P300 amplitudes, indicating integration of affective and structural information. These results encompass evidence for both, cognitive and affective primacy depending on stimulus properties. Specifically affective primacy is only visible when the respective facial features can be extracted with ease. When structural differences make face processing harder, however, cognitive primacy is brought forward.

  17. Study of individual and group affective processes in the crew of a simulated mission to Mars: Positive affectivity as a valuable indicator of changes in the crew affectivity

    NASA Astrophysics Data System (ADS)

    Poláčková Šolcová, Iva; Lačev, Alek; Šolcová, Iva

    2014-07-01

    The success of a long-duration space mission depends on various technical demands as well as on the psychological (cognitive, affective, and motivational) adaptation of crewmembers and the quality of interactions within the crew. We examined the ways crewmembers of a 520-day simulated spaceflight to Mars (held in the Institute for Biomedical Problems, in Moscow) experienced and regulated their moods and emotions. Results show that crewmembers experienced predominantly positive emotions throughout their 520-day isolation and the changes in mood of the crewmembers were asynchronous and balanced. The study suggests that during the simulation, crewmembers experienced and regulated their emotions differently than they usually do in their everyday life. In isolation, crewmembers preferred to suppress and neutralize their negative emotions and express overtly only emotions with positive valence. Although the affective processes were almost invariable throughout the simulation, two periods of time when the level of positive emotions declined were identified. Regarding the findings, the paper suggests that changes in positive affectivity could be a more valuable indicator of human experience in demanding but professional environments than changes in negative affectivity. Finally, the paper discusses the phenomenology of emotions during a real space mission.

  18. 10 years of BAWLing into affective and aesthetic processes in reading: what are the echoes?

    PubMed Central

    Jacobs, Arthur M.; Võ, Melissa L.-H.; Briesemeister, Benny B.; Conrad, Markus; Hofmann, Markus J.; Kuchinke, Lars; Lüdtke, Jana; Braun, Mario

    2015-01-01

    Reading is not only “cold” information processing, but involves affective and aesthetic processes that go far beyond what current models of word recognition, sentence processing, or text comprehension can explain. To investigate such “hot” reading processes, standardized instruments that quantify both psycholinguistic and emotional variables at the sublexical, lexical, inter-, and supralexical levels (e.g., phonological iconicity, word valence, arousal-span, or passage suspense) are necessary. One such instrument, the Berlin Affective Word List (BAWL) has been used in over 50 published studies demonstrating effects of lexical emotional variables on all relevant processing levels (experiential, behavioral, neuronal). In this paper, we first present new data from several BAWL studies. Together, these studies examine various views on affective effects in reading arising from dimensional (e.g., valence) and discrete emotion features (e.g., happiness), or embodied cognition features like smelling. Second, we extend our investigation of the complex issue of affective word processing to words characterized by a mixture of affects. These words entail positive and negative valence, and/or features making them beautiful or ugly. Finally, we discuss tentative neurocognitive models of affective word processing in the light of the present results, raising new issues for future studies. PMID:26089808

  19. Searching for Judy: How Small Mysteries Affect Narrative Processes and Memory

    ERIC Educational Resources Information Center

    Love, Jessica; McKoon, Gail; Gerrig, Richard J.

    2010-01-01

    Current theories of text processing say little about how authors' narrative choices, including the introduction of small mysteries, can affect readers' narrative experiences. Gerrig, Love, and McKoon (2009) provided evidence that 1 type of small mystery--a character introduced without information linking him or her to the story--affects readers'…

  20. Key factors, Soil N Processes, and nitrite accumulation affecting nitrous oxide emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A better understanding of the key factors affecting nitrous oxide (N2O) emission and potential mitigation strategies is essential for sustainable agriculture. The objective of this study was to examine the important factors affecting N2O emissions, soil processes involved, and potential mitigation s...

  1. Simulation of land-atmosphere gaseous exchange using a coupled land surface-biogeochemical model

    NASA Astrophysics Data System (ADS)

    Gu, C.; Riley, W. J.; Perez, T. J.; Pan, L.

    2009-12-01

    It is important to develop and evaluate biogeochemical models that on the one hand represent vegetation and soil dynamics and on the other hand provide energy and water fluxes in a temporal resolution suitable for biogeochemical processes. In this study, we present a consistent coupling between a common land surface model (CLM3.0) and a recently developed biogeochemical model (TOUGHREACT-N). The model TOUGHREACT-N (TR-N) is one of the few process-based models that simulate green house gases fluxes by using an implicit scheme to solve the diffusion equations governing soil heat and water fluxes. By coupling with CLM3.0, we have significantly improved TR-N by including realistic representations of surface water, energy, and momentum exchanges, through the use of improved formulations for soil evaporation, plant transpiration, vegetation growth, and plant nitrogen uptake embedded in CLM3.0. The coupled CLMTR-N model is a first step for a full coupling of land surface and biogeochemical processes. The model is evaluated with measurements of soil temperature, soil water content, and N2O and N2 gaseous emission data from fallow, corn, and forest sites in Venezuela. The results demonstrate that the CLMTR-N model simulates realistic diurnal variation of soil temperature, soil water content, and N gaseous fluxes. For example, mean differences between predicted and observed midday near-surface soil water content were 8, 11, and 4 % in July, August, and September. The sensitivity of the biogeochemical processes and resulting N emissions to variation in environmental drivers is high, which indicates the need to calculate biogeochemical processes in, at least, two hourly time steps using dynamically updated (rather than daily averaged) soil environmental conditions. The development in CLMTR-N of such a complex representation of processes will allow us to characterize relevant processes and simplifications appropriate for regional to global-scale coupled biogeochemical and

  2. Biogeochemical Cycles of Carbon and Sulfur on Early Earth (and on Mars?)

    NASA Technical Reports Server (NTRS)

    DesMarais, D. J.

    2004-01-01

    The physical and chemical interactions between the atmosphere, hydrosphere, geosphere and biosphere can be examined for elements such as carbon (C) and sulfur (S) that have played central roles for both life and the environment. The compounds of C are highly important, not only as organic matter, but also as atmospheric greenhouse gases, pH buffers in seawater, oxidation-reduction buffers virtually everywhere, and key magmatic constituents affecting plutonism and volcanism. S assumes important roles as an oxidation-reduction partner with C and Fe in biological systems, as a key constituent in magmas and volcanic gases, and as a major influence upon pH in certain environments. These multiple roles of C and S interact across a network of elemental reservoirs interconnected by physical, chemical and biological processes. These networks are termed biogeochemical C and S cycles.

  3. Interactive Effects of Urban Land Use and Climate Change on Biogeochemical Cycles (Invited)

    NASA Astrophysics Data System (ADS)

    Pouyat, R. V.

    2009-12-01

    Urban land-use change can affect biogeochemical cycles through altered disturbance regimes, landscape management practices (e.g., irrigation and fertilization), built structures, and altered environments (heat island effect, pollution, introduction of non-native species, loss of native species). As a result, the conversion of native to urban ecological systems has been shown to significantly affect carbon, nitrogen, and water cycles at local, regional, and global scales. These changes have created novel habitats and ecosystems, which have no analogue in the history of life. Nonetheless, some of the environmental changes occurring in urban areas are analogous to the changes expected in climate by the end of the century, e.g. atmospheric increase in CO2 and an increase in air temperatures, which can be utilized as a “natural experiment” to investigate global change effects on large scale ecosystem processes. Moreover, as analogues of expected future environments, urban ecological systems may act as reservoirs of plant and animal species for adjoining landscapes that are expected to undergo relatively rapid climate changes in the next 100 years. Urban land-use change by itself may contribute to changes in regional weather patterns and long-term changes in global climate, which will depend on the net effect of converting native systems to urban systems and the comparison of per capita “footprints” between urban, suburban, and rural inhabitants. My objectives are to 1) assess the impact of changes in urban land-use on climate change and in turn how climate change may affect urban biogeochemical cycles and 2) discuss the potential for urban ecosystems to mitigate green house gas emissions.

  4. Thinking Back about a Positive Event: The Impact of Processing Style on Positive Affect.

    PubMed

    Nelis, Sabine; Holmes, Emily A; Palmieri, Rosa; Bellelli, Guglielmo; Raes, Filip

    2015-01-01

    The manner in which individuals recall an autobiographical positive life event has affective consequences. Two studies addressed the processing styles during positive memory recall in a non-clinical sample. Participants retrieved a positive memory, which was self-generated (Study 1, n = 70) or experimenter-chosen (i.e., academic achievement, Study 2, n = 159), followed by the induction of one of three processing styles (between-subjects): in Study 1, a "concrete/imagery" vs. "abstract/verbal" processing style was compared. In Study 2, a "concrete/imagery," "abstract/verbal," and "comparative/verbal" processing style were compared. The processing of a personal memory in a concrete/imagery-based way led to a larger increase in positive affect compared to abstract/verbal processing in Study 1, as well as compared to comparative/verbal thinking in Study 2. Results of Study 2 further suggest that it is making unfavorable verbal comparisons that may hinder affective benefits to positive memories (rather than general abstract/verbal processing per se). The comparative/verbal thinking style failed to lead to improvements in positive affect, and with increasing levels of depressive symptoms it had a more negative impact on change in positive affect. We found no evidence that participant's tendency to have dampening thoughts in response to positive affect in daily life contributed to the affective impact of positive memory recall. The results support the potential for current trainings in boosting positive memories and mental imagery, and underline the search for parameters that determine at times deleterious outcomes of abstract/verbal memory processing in the face of positive information.

  5. The Impact of Affect on Out-Group Judgments Depends on Dominant Information-Processing Styles: Evidence From Incidental and Integral Affect Paradigms.

    PubMed

    Isbell, Linda M; Lair, Elicia C; Rovenpor, Daniel R

    2016-04-01

    Two studies tested the affect-as-cognitive-feedback model, in which positive and negative affective states are not uniquely associated with particular processing styles, but rather serve as feedback about currently accessible processing styles. The studies extend existing work by investigating (a) both incidental and integral affect, (b) out-group judgments, and (c) downstream consequences. We manipulated processing styles and either incidental (Study 1) or integral (Study 2) affect and measured perceptions of out-group homogeneity. Positive (relative to negative) affect increased out-group homogeneity judgments when global processing was primed, but under local priming, the effect reversed (Studies 1 and 2). A similar interactive effect emerged on attributions, which had downstream consequences for behavioral intentions (Study 2). These results demonstrate that both incidental and integral affect do not directly produce specific processing styles, but rather influence thinking by providing feedback about currently accessible processing styles.

  6. Information-Processing and Perceptions of Control: How Attribution Style Affects Task-Relevant Processing

    ERIC Educational Resources Information Center

    Yeigh, Tony

    2007-01-01

    This study investigated the effects of perceived controllability on information processing within Weiner's (1985, 1986) attributional model of learning. Attributional style was used to identify trait patterns of controllability for 37 university students. Task-relevant feedback on an information-processing task was then manipulated to test for…

  7. Biogeochemical cycling in terrestrial ecosystems of the Caatinga Biome.

    PubMed

    Menezes, R S C; Sampaio, E V S B; Giongo, V; Pérez-Marin, A M

    2012-08-01

    The biogeochemical cycles of C, N, P and water, the impacts of land use in the stocks and flows of these elements and how they can affect the structure and functioning of Caatinga were reviewed. About half of this biome is still covered by native secondary vegetation. Soils are deficient in nutrients, especially N and P. Average concentrations of total soil P and C in the top layer (0-20 cm) are 196 mg kg(-1) and 9.3 g kg(-1), corresponding to C stocks around 23 Mg ha(-1). Aboveground biomass of native vegetation varies from 30 to 50 Mg ha(-1), and average root biomass from 3 to 12 Mg ha(-1). Average annual productivities and biomass accumulation in different land use systems vary from 1 to 7 Mg ha(-1) year(-1). Biological atmospheric N2 fixation is estimated to vary from 3 to 11 kg N ha(-1) year-1 and 21 to 26 kg N ha(-1) year(-1) in mature and secondary Caatinga, respectively. The main processes responsible for nutrient and water losses are fire, soil erosion, runoff and harvest of crops and animal products. Projected climate changes in the future point to higher temperatures and rainfall decreases. In face of the high intrinsic variability, actions to increase sustainability should improve resilience and stability of the ecosystems. Land use systems based on perennial species, as opposed to annual species, may be more stable and resilient, thus more adequate to face future potential increases in climate variability. Long-term studies to investigate the potential of the native biodiversity or adapted exotic species to design sustainable land use systems should be encouraged.

  8. The “Musical Emotional Bursts”: a validated set of musical affect bursts to investigate auditory affective processing

    PubMed Central

    Paquette, Sébastien; Peretz, Isabelle; Belin, Pascal

    2013-01-01

    The Musical Emotional Bursts (MEB) consist of 80 brief musical executions expressing basic emotional states (happiness, sadness and fear) and neutrality. These musical bursts were designed to be the musical analog of the Montreal Affective Voices (MAV)—a set of brief non-verbal affective vocalizations portraying different basic emotions. The MEB consist of short (mean duration: 1.6 s) improvisations on a given emotion or of imitations of a given MAV stimulus, played on a violin (10 stimuli × 4 [3 emotions + neutral]), or a clarinet (10 stimuli × 4 [3 emotions + neutral]). The MEB arguably represent a primitive form of music emotional expression, just like the MAV represent a primitive form of vocal, non-linguistic emotional expression. To create the MEB, stimuli were recorded from 10 violinists and 10 clarinetists, and then evaluated by 60 participants. Participants evaluated 240 stimuli [30 stimuli × 4 (3 emotions + neutral) × 2 instruments] by performing either a forced-choice emotion categorization task, a valence rating task or an arousal rating task (20 subjects per task); 40 MAVs were also used in the same session with similar task instructions. Recognition accuracy of emotional categories expressed by the MEB (n:80) was lower than for the MAVs but still very high with an average percent correct recognition score of 80.4%. Highest recognition accuracies were obtained for happy clarinet (92.0%) and fearful or sad violin (88.0% each) MEB stimuli. The MEB can be used to compare the cerebral processing of emotional expressions in music and vocal communication, or used for testing affective perception in patients with communication problems. PMID:23964255

  9. How Does Tele-Mental Health Affect Group Therapy Process? Secondary Analysis of a Noninferiority Trial

    ERIC Educational Resources Information Center

    Greene, Carolyn J.; Morland, Leslie A.; Macdonald, Alexandra; Frueh, B. Christopher; Grubbs, Kathleen M.; Rosen, Craig S.

    2010-01-01

    Objective: Video teleconferencing (VTC) is used for mental health treatment delivery to geographically remote, underserved populations. However, few studies have examined how VTC affects individual or group psychotherapy processes. This study compares process variables such as therapeutic alliance and attrition among participants receiving anger…

  10. Multi-scale interactions affecting transport, storage, and processing of solutes and sediments in stream corridors (Invited)

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; Packman, A. I.

    2010-12-01

    Surface water and groundwater flow interact with the channel geomorphology and sediments in ways that determine how material is transported, stored, and transformed in stream corridors. Solute and sediment transport affect important ecological processes such as carbon and nutrient dynamics and stream metabolism, processes that are fundamental to stream health and function. Many individual mechanisms of transport and storage of solute and sediment have been studied, including surface water exchange between the main channel and side pools, hyporheic flow through shallow and deep subsurface flow paths, and sediment transport during both baseflow and floods. A significant challenge arises from non-linear and scale-dependent transport resulting from natural, fractal fluvial topography and associated broad, multi-scale hydrologic interactions. Connections between processes and linkages across scales are not well understood, imposing significant limitations on system predictability. The whole-stream tracer experimental approach is popular because of the spatial averaging of heterogeneous processes; however the tracer results, implemented alone and analyzed using typical models, cannot usually predict transport beyond the very specific conditions of the experiment. Furthermore, the results of whole stream tracer experiments tend to be biased due to unavoidable limitations associated with sampling frequency, measurement sensitivity, and experiment duration. We recommend that whole-stream tracer additions be augmented with hydraulic and topographic measurements and also with additional tracer measurements made directly in storage zones. We present examples of measurements that encompass interactions across spatial and temporal scales and models that are transferable to a wide range of flow and geomorphic conditions. These results show how the competitive effects between the different forces driving hyporheic flow, operating at different spatial scales, creates a situation

  11. MODELING COUPLED HYDROLOGICAL AND CHEMICAL PROCESSES: LONG-TERM URANIUM TRANSPORT FOLLOWING PHOSPHOROUS-FERTILIZATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contaminants in the vadose zone are affected by the physical processes of water flow, heat movement and multicomponent transport, as well as generally by a range of interacting biogeochemical processes. Coupling these various processes within one integrated numerical simulator provides a process-ba...

  12. Biogeochemical interactions affecting hepatic trace element levels in aquatic birds

    SciTech Connect

    Moeller, G.

    1996-07-01

    Knowledge of elemental interactions is important to the toxicological assessment of wildlife in the geochemical environment. This study determines the concentrations of Al, As, B, Ba, Be, Cd, Cr, Cu, Fe, Pb, Li, Mg, Mn, Hg, Mo, Ni, Se, Ag, V, and Zn in aquatic bird liver, fish liver, whole bivalves, insects, and waters in several aquatic ecosystems in northern California. There is evidence of strong in vivo and environmental interactions, including the observation of manganese as a possible cofactor or indicator in selenium bioaccumulation. The nearest neighbor selenium correlation in aquatic bird liver tissue that results from this work is Cd-Mn-Se-Hg-As. The correlation of liver selenium to manganese in vivo and the result that the majority of the variance in liver selenium concentration is contained in the manganese term of the regression model relating Se to Cd, Mn, and Hg is new knowledge in the study of aquatic birds. A linear relationship between liver selenium and environmental manganese (water and sediment) is found in the data, suggesting a water chemistry compartmentalization or activation of toxicants. Alternatively, the hepatic concentrations of selenium, manganese, and iron suggest induction of enzymes in response to oxidative stress.

  13. Interactive effects of solar UV radiation and climate change on biogeochemical cycling.

    PubMed

    Zepp, R G; Erickson, D J; Paul, N D; Sulzberger, B

    2007-03-01

    This report assesses research on the interactions of UV radiation (280-400 nm) and global climate change with global biogeochemical cycles at the Earth's surface. The effects of UV-B (280-315 nm), which are dependent on the stratospheric ozone layer, on biogeochemical cycles are often linked to concurrent exposure to UV-A radiation (315-400 nm), which is influenced by global climate change. These interactions involving UV radiation (the combination of UV-B and UV-A) are central to the prediction and evaluation of future Earth environmental conditions. There is increasing evidence that elevated UV-B radiation has significant effects on the terrestrial biosphere with implications for the cycling of carbon, nitrogen and other elements. The cycling of carbon and inorganic nutrients such as nitrogen can be affected by UV-B-mediated changes in communities of soil organisms, probably due to the effects of UV-B radiation on plant root exudation and/or the chemistry of dead plant material falling to the soil. In arid environments direct photodegradation can play a major role in the decay of plant litter, and UV-B radiation is responsible for a significant part of this photodegradation. UV-B radiation strongly influences aquatic carbon, nitrogen, sulfur and metals cycling that affect a wide range of life processes. UV-B radiation changes the biological availability of dissolved organic matter to microorganisms, and accelerates its transformation into dissolved inorganic carbon and nitrogen, including carbon dioxide and ammonium. The coloured part of dissolved organic matter (CDOM) controls the penetration of UV radiation into water bodies, but CDOM is also photodegraded by solar UV radiation. Changes in CDOM influence the penetration of UV radiation into water bodies with major consequences for aquatic biogeochemical processes. Changes in aquatic primary productivity and decomposition due to climate-related changes in circulation and nutrient supply occur concurrently with

  14. Design and performance of subgrade biogeochemical reactors.

    PubMed

    Gamlin, Jeff; Downey, Doug; Shearer, Brad; Favara, Paul

    2017-02-18

    Subgrade biogeochemical reactors (SBGRs), also commonly referred to as in situ bioreactors, are a unique technology for treatment of contaminant source areas and groundwater plume hot spots. SBGRs have most commonly been configured for enhanced reductive dechlorination (ERD) applications for chlorinated solvent treatment. However, they have also been designed for other contaminant classes using alternative treatment media. The SBGR technology typically consists of removal of contaminated soil via excavation or large-diameter augers, and backfill of the soil void with gravel and treatment amendments tailored to the target contaminant(s). In most cases SBGRs include installation of infiltration piping and a low-flow pumping system (typically solar-powered) to recirculate contaminated groundwater through the SBGR for treatment. SBGRs have been constructed in multiple configurations, including designs capable of meeting limited access restrictions at heavily industrialized sites, and at sites with restrictions on surface disturbance due to sensitive species or habitat issues. Typical performance results for ERD applications include 85 to 90 percent total molar reduction of chlorinated volatile organic compounds (CVOCs) near the SBGR and rapid clean-up of adjacent dissolved contaminant source areas. Based on a review of the literature and CH2M's field-scale results from over a dozen SBGRs with a least one year of performance data, important site-specific design considerations include: 1) hydraulic residence time should be long enough for sufficient treatment but not too long to create depressed pH and stagnant conditions (e.g., typically between 10 and 60 days), 2) reactor material should balance appropriate organic mulch as optimal bacterial growth media along with other organic additives that provide bioavailable organic carbon, 3) a variety of native bacteria are important to the treatment process, and 4) biologically mediated generation of iron sulfides along with

  15. Affective priming effects of musical sounds on the processing of word meaning.

    PubMed

    Steinbeis, Nikolaus; Koelsch, Stefan

    2011-03-01

    Recent studies have shown that music is capable of conveying semantically meaningful concepts. Several questions have subsequently arisen particularly with regard to the precise mechanisms underlying the communication of musical meaning as well as the role of specific musical features. The present article reports three studies investigating the role of affect expressed by various musical features in priming subsequent word processing at the semantic level. By means of an affective priming paradigm, it was shown that both musically trained and untrained participants evaluated emotional words congruous to the affect expressed by a preceding chord faster than words incongruous to the preceding chord. This behavioral effect was accompanied by an N400, an ERP typically linked with semantic processing, which was specifically modulated by the (mis)match between the prime and the target. This finding was shown for the musical parameter of consonance/dissonance (Experiment 1) and then extended to mode (major/minor) (Experiment 2) and timbre (Experiment 3). Seeing that the N400 is taken to reflect the processing of meaning, the present findings suggest that the emotional expression of single musical features is understood by listeners as such and is probably processed on a level akin to other affective communications (i.e., prosody or vocalizations) because it interferes with subsequent semantic processing. There were no group differences, suggesting that musical expertise does not have an influence on the processing of emotional expression in music and its semantic connotations.

  16. Meditation-induced neuroplastic changes in amygdala activity during negative affective processing.

    PubMed

    Leung, Mei-Kei; Lau, Way K W; Chan, Chetwyn C H; Wong, Samuel S Y; Fung, Annis L C; Lee, Tatia M C

    2017-04-10

    Recent evidence suggests that the effects of meditation practice on affective processing and resilience have the potential to induce neuroplastic changes within the amygdala. Notably, literature speculates that meditation training may reduce amygdala activity during negative affective processing. Nonetheless, studies have thus far not verified this speculation. In this longitudinal study, participants (N = 21, 9 men) were trained in awareness-based compassion meditation (ABCM) or matched relaxation training. The effects of meditation training on amygdala activity were examined during passive viewing of affective and neutral stimuli in a non-meditative state. We found that the ABCM group exhibited significantly reduced anxiety and right amygdala activity during negative emotion processing than the relaxation group. Furthermore, ABCM participants who performed more compassion practice had stronger right amygdala activity reduction during negative emotion processing. The lower right amygdala activity after ABCM training may be associated with a general reduction in reactivity and distress. As all participants performed the emotion processing task in a non-meditative state, it appears likely that the changes in right amygdala activity are carried over from the meditation practice into the non-meditative state. These findings suggest that the distress-reducing effects of meditation practice on affective processing may transfer to ordinary states, which have important implications on stress management.

  17. Influence of COMT genotype and affective distractors on the processing of self-generated thought

    PubMed Central

    Dumontheil, Iroise; Wood, Nicholas W.; Blakemore, Sarah-Jayne

    2015-01-01

    The catechol-O-methyltransferase (COMT) enzyme is a major determinant of prefrontal dopamine levels. The Val158Met polymorphism affects COMT enzymatic activity and has been associated with variation in executive function and affective processing. This study investigated the effect of COMT genotype on the flexible modulation of the balance between processing self-generated and processing stimulus-oriented information, in the presence or absence of affective distractors. Analyses included 124 healthy adult participants, who were also assessed on standard working memory (WM) tasks. Relative to Val carriers, Met homozygotes made fewer errors when selecting and manipulating self-generated thoughts. This effect was partly accounted for by an association between COMT genotype and visuospatial WM performance. We also observed a complex interaction between the influence of affective distractors, COMT genotype and sex on task accuracy: male, but not female, participants showed a sensitivity to the affective distractors that was dependent on COMT genotype. This was not accounted for by WM performance. This study provides novel evidence of the role of dopaminergic genetic variation on the ability to select and manipulate self-generated thoughts. The results also suggest sexually dimorphic effects of COMT genotype on the influence of affective distractors on executive function. PMID:25190703

  18. Affective information processing in pregnancy and postpartum with and without major depression.

    PubMed

    Gollan, Jackie K; Hoxha, Denada; Getch, Sarah; Sankin, Lindsey; Michon, Ruth

    2013-04-30

    Adults with clinical depression exhibit systematic errors in their recognition and interpretation of affective stimuli. This study investigated the extent to which depression and phases of pregnancy and postpartum influence affective processing of positive and negative information, and the extent to which affective information processing in pregnancy predicts depressive symptoms in postpartum. Data were collected from 80 unmedicated women, diagnosed with major depressive disorder (MDD) or with no psychiatric disorder and between ages 18 and 44 years, during 32-36 weeks of pregnancy and during 6-8 weeks postpartum. All completed a Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV) Axis I review, symptom reports, and a computer task measuring affective information processing. Significant group differences were found in which postpartum women with major depression were less responsive to negative stimuli, with lower ratings of intensity and reactions to negative pictorial stimuli, compared with postpartum healthy women. Also, lower ratings of the intensity and reactions to negative stimuli during pregnancy among depressed women predicted postpartum depression severity, even after controlling for depressive severity and affect ratings in pregnancy. Blunted affective reactivity to negative stimuli is a characteristic of depression that was observed among depressed women during pregnancy and postpartum in our study.

  19. Developmental Coordination Disorder Affects the Processing of Action-Related Verbs

    PubMed Central

    Mirabella, Giovanni; Del Signore, Sara; Lakens, Daniel; Averna, Roberto; Penge, Roberta; Capozzi, Flavia

    2017-01-01

    Processing action-language affects the planning and execution of motor acts, which suggests that the motor system might be involved in action-language understanding. However, this claim is hotly debated. For the first time, we compared the processing of action-verbs in children with Developmental Coordination Disorder (DCD), a disease that specifically affects the motor system, with children with a typical development (TD). We administered two versions of a go/no-go task in which verbs expressing either hand, foot or abstract actions were presented. We found that only when the semantic content of a verb has to be retrieved, TD children showed an increase in reaction times if the verb involved the same effector used to give the response. In contrast, DCD patients did not show any difference between verb categories irrespective of the task. These findings suggest that the pathological functioning of the motor system in individuals with DCD also affects language processing. PMID:28119585

  20. Intuitive (in)coherence judgments are guided by processing fluency, mood and affect.

    PubMed

    Sweklej, Joanna; Balas, Robert; Pochwatko, Grzegorz; Godlewska, Małgorzata

    2014-01-01

    Recently proposed accounts of intuitive judgments of semantic coherence assume that processing fluency results in a positive affective response leading to successful assessment of semantic coherence. The present paper investigates whether processing fluency may indicate semantic incoherence as well. In two studies, we employ a new paradigm in which participants have to detect an incoherent item among semantically coherent words. In Study 1, we show participants accurately indicating an incoherent item despite not being able to provide an accurate solution to coherent words. Further, this effect is modified by affective valence of solution words that are not retrieved from memory. Study 2 replicates those results and extend them by showing that mood moderates incoherence judgments independently of affective valence of solutions. The results support processing fluency account of intuitive semantic coherence judgments and show that it is not fluency per se but fluency variations that drive judgments.

  1. The lateralized processing of affect in emotionally labile extraverts and introverts: central and autonomic effects.

    PubMed

    Smith, B D; Kline, R; Lindgren, K; Ferro, M; Smith, D A; Nespor, A

    1995-02-01

    The purpose of the present study was to better understand both the lateralized hemispheric processing of emotion and the differential neural processing of arousal in extraverts and introverts. We preselected right-handed male and female extraverts and introverts who were high in emotional lability. Each subject was exposed to two positive and two negative emotional stimuli under each of three counterbalanced conditions, including affective, cognitive, and neutral, while EEG and electrodermal activity (EDA) were recorded. Results showed that introverts are more aroused and that extraversion interacts with gender to produce differentiated patterns of lateralized neural activity. In addition, affective conditions produced higher levels of arousal than did cognitive or neutral conditions, particularly in the left hemisphere and under negative as opposed to positive stimuli. Finally, the hemispherically differentiated processing of positive and negative stimuli was affected by the contextual conditions under which they were experienced.

  2. Investigating the initial stages of soil formation in glacier forefields using the new biogeochemical model: SHIMMER

    NASA Astrophysics Data System (ADS)

    Bradley, James; Anesio, Alexandre; Arndt, Sandra; Sabacka, Marie; Barker, Gary; Benning, Liane; Blacker, Joshua; Singarayer, Joy; Tranter, Martyn; Yallop, Marian

    2016-04-01

    Glaciers and ice sheets in Polar and alpine regions are retreating in response to recent climate warming, exposing terrestrial ecosystems that have been locked under the ice for thousands of years. Exposed soils exhibit successional characteristics that can be characterised using a chronosequence approach. Decades of empirical research in glacier forefields has shown that soils are quickly colonised by microbes which drive biogeochemical cycling of elements and affect soil properties including nutrient concentrations, carbon fluxes and soil stability (Bradley et al, 2014). The characterisation of these soils is important for our understanding of the cycling of organic matter under extreme environmental and nutrient limiting conditions, and their potential contribution to global biogeochemical cycles. This is particularly important as these new areas will become more geographically expansive with continued ice retreat. SHIMMER (Soil biogeocHemIcal Model of Microbial Ecosystem Response) (Bradley et al, 2015) is a new mathematical model that simulates biogeochemical and microbial dynamics in glacier forefields. The model captures, explores and predicts the growth of different microbial groups (classified by function), and the associated cycling of carbon, nitrogen and phosphorus along a chronosequence. SHIMMER improves typical soil model formulations by including explicit representation of microbial dynamics, and those processes which are shown to be important for glacier forefields. For example, we categorise microbial groups by function to represent the diversity of soil microbial communities, and include the different metabolic needs and physiological pathways of microbial organisms commonly found in glacier forefields (e.g. microbes derived from underneath the glacier, typical soil bacteria, and microbes that can fix atmospheric nitrogen and assimilate soil nitrogen). Here, we present data from a study where we integrated modelling using SHIMMER with empirical

  3. Managing biogeochemical cycles to reduce greenhouse gases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This special issue focuses on terrestrial biogeochemical cycles and their roles in determining current continental-scale budgets and future trends in biogenic greenhouse gases (GHGs) for North America. Understanding the current magnitude and forecasting future trajectories of atmospheric GHG concent...

  4. Marginal Ice Zone: Biogeochemical Sampling with Gliders

    DTIC Science & Technology

    2014-09-30

    Figure 3. Map of 2014 IBRV Araon Arctic cruise study area, indicating CTD, XCTD, sea- ice caps , and helicopter...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Marginal Ice Zone: Biogeochemical Sampling with Gliders...distribution of phytoplankton and particulate organic carbon in the Arctic under the ice and in the marginal ice zone, as well as to understand feedbacks

  5. Biogeochemical cycling in the ocean. Part 1: Introduction to the effects of upwelling along the west coast of North America

    NASA Technical Reports Server (NTRS)

    Howe, John T.

    1986-01-01

    Coastal upwelling is examined as it relates to the cycling of chemical species in coastal waters along the west coast of North America. The temporal and spatial features of upwelling phenomena in the Eastern boundary regions of the North Pacific Ocean are presented and discussed in terms of upwelling episodes. Climate conditions affecting upwelling include: thermal effects, wind-induced shear stress which moves surface layers, and the curl of the wind stress vector which is thought to affect the extent and nature of upwelling and the formation of offshore convergent downwelling fronts. These effects and the interaction of sunlight and upwelled nutrients which result in a biological bloom in surface waters is modeled analytically. The roles of biological and chemical species, including the effects of predation, are discussed in that context, and relevant remote sensing and in situ observations are presented. Climatological, oceanographic, biological, physical, chemical events, and processes that pertain to biogeochemical cycling are presented and described by a set of partial differential equations. Simple preliminary results are obtained and are compared with data. Thus a fairly general framework has been laid where the many facets of biogeochemical cycling in coastal upwelled waters can be examined in their relationship to one another, and to the whole, to whatever level of detail or approximation is warranted or desired.

  6. Modelling benthic biophysical drivers of ecosystem structure and biogeochemical response

    NASA Astrophysics Data System (ADS)

    Stephens, Nicholas; Bruggeman, Jorn; Lessin, Gennadi; Allen, Icarus

    2016-04-01

    The fate of carbon deposited at the sea floor is ultimately decided by biophysical drivers that control the efficiency of remineralisation and timescale of carbon burial in sediments. Specifically, these drivers include bioturbation through ingestion and movement, burrow-flushing and sediment reworking, which enhance vertical particulate transport and solute diffusion. Unfortunately, these processes are rarely satisfactorily resolved in models. To address this, a benthic model that explicitly describes the vertical position of biology (e.g., habitats) and biogeochemical processes is presented that includes biological functionality and biogeochemical response capturing changes in ecosystem structure, benthic-pelagic fluxes and biodiversity on inter-annual timescales. This is demonstrated by the model's ability to reproduce temporal variability in benthic infauna, vertical pore water nutrients and pelagic-benthic solute fluxes compared to in-situ data. A key advance is the replacement of bulk parameterisation of bioturbation by explicit description of the bio-physical processes responsible. This permits direct comparison with observations and determination of key parameters in experiments. Crucially, the model resolves the two-way interaction between sediment biogeochemistry and ecology, allowing exploration of the benthic response to changing environmental conditions, the importance of infaunal functional traits in shaping benthic ecological structure and the feedback the resulting bio-physical processes exert on pore water nutrient profiles. The model is actively being used to understand shelf sea carbon cycling, the response of the benthos to climatic change, food provision and other societal benefits.

  7. Biogeochemical aspects of uranium mineralization, mining, milling, and remediation

    USGS Publications Warehouse

    Campbell, Kate M.; Gallegos, Tanya J.; Landa, Edward R.

    2015-01-01

    Natural uranium (U) occurs as a mixture of three radioactive isotopes: 238U, 235U, and 234U. Only 235U is fissionable and makes up about 0.7% of natural U, while 238U is overwhelmingly the most abundant at greater than 99% of the total mass of U. Prior to the 1940s, U was predominantly used as a coloring agent, and U-bearing ores were mined mainly for their radium (Ra) and/or vanadium (V) content; the bulk of the U was discarded with the tailings (Finch et al., 1972). Once nuclear fission was discovered, the economic importance of U increased greatly. The mining and milling of U-bearing ores is the first step in the nuclear fuel cycle, and the contact of residual waste with natural water is a potential source of contamination of U and associated elements to the environment. Uranium is mined by three basic methods: surface (open pit), underground, and solution mining (in situ leaching or in situ recovery), depending on the deposit grade, size, location, geology and economic considerations (Abdelouas, 2006). Solid wastes at U mill tailings (UMT) sites can include both standard tailings (i.e., leached ore rock residues) and solids generated on site by waste treatment processes. The latter can include sludge or “mud” from neutralization of acidic mine/mill effluents, containing Fe and a range of coprecipitated constituents, or barium sulfate precipitates that selectively remove Ra (e.g., Carvalho et al., 2007). In this chapter, we review the hydrometallurgical processes by which U is extracted from ore, the biogeochemical processes that can affect the fate and transport of U and associated elements in the environment, and possible remediation strategies for site closure and aquifer restoration.This paper represents the fourth in a series of review papers from the U.S. Geological Survey (USGS) on geochemical aspects of UMT management that span more than three decades. The first paper (Landa, 1980) in this series is a primer on the nature of tailings and radionuclide

  8. Using ERPs to investigate valence processing in the affect misattribution procedure.

    PubMed

    von Gunten, Curtis D; Bartholow, Bruce D; Scherer, Laura D

    2017-02-01

    The construct validity of the affect misattribution procedure (AMP) has been challenged by theories proposing that the task does not actually measure affect misattribution. The current study tested the validity of the AMP as a measure of affect misattribution by examining three components of the ERP known to be associated with the allocation of motivated attention. Results revealed that ERP amplitudes varied in response to affectively ambiguous targets as a function of the valence of preceding primes. Furthermore, differences in ERP responses to the targets were largely similar to differences in ERPs elicited by the primes. The existence of valence differentiation in both the prime-locked and the target-locked ERPs, along with the similarity in this differentiation, provides evidence that the affective content of the primes is psychologically registered, and that this content influences the processing of the subsequent, evaluatively ambiguous targets, both of which are required if the priming effects found in the AMP are the result of affect misattribution. However, the behavioral priming effect was uncorrelated with ERP amplitudes, leaving some question as to the locus of this effect in the information-processing system. Findings are discussed in light of the strengths and weaknesses of using ERPs to understand the priming effects in the AMP.

  9. Marine biogeochemical responses to the North Atlantic Oscillation in a coupled climate model

    NASA Astrophysics Data System (ADS)

    Patara, Lavinia; Visbeck, Martin; Masina, Simona; Krahmann, Gerd; Vichi, Marcello

    2011-07-01

    In this study a coupled ocean-atmosphere model containing interactive marine biogeochemistry is used to analyze interannual, lagged, and decadal marine biogeochemical responses to the North Atlantic Oscillation (NAO), the dominant mode of North Atlantic atmospheric variability. The coupled model adequately reproduces present-day climatologies and NAO atmospheric variability. It is shown that marine biogeochemical responses to the NAO are governed by different mechanisms according to the time scale considered. On interannual time scales, local changes in vertical mixing, caused by modifications in air-sea heat, freshwater, and momentum fluxes, are most relevant in influencing phytoplankton growth through light and nutrient limitation mechanisms. At subpolar latitudes, deeper mixing occurring during positive NAO winters causes a slight decrease in late winter chlorophyll concentration due to light limitation and a 10%-20% increase in spring chlorophyll concentration due to higher nutrient availability. The lagged response of physical and biogeochemical properties to a high NAO winter shows some memory in the following 2 years. In particular, subsurface nutrient anomalies generated by local changes in mixing near the American coast are advected along the North Atlantic Current, where they are suggested to affect downstream chlorophyll concentration with 1 year lag. On decadal time scales, local and remote mechanisms act contemporaneously in shaping the decadal biogeochemical response to the NAO. The slow circulation adjustment, in response to NAO wind stress curl anomalies, causes a basin redistribution of heat, freshwater, and biogeochemical properties which, in turn, modifies the spatial structure of the subpolar chlorophyll bloom.

  10. A preliminary comparison of flat affect schizophrenics and brain-damaged patients on measures of affective processing.

    PubMed

    Borod, J C; Alpert, M; Brozgold, A; Martin, C; Welkowitz, J; Diller, L; Peselow, E; Angrist, B; Lieberman, A

    1989-04-01

    Flat affect is a major component of schizophrenia and is often also seen in neurological disorders. A preliminary set of comparisons were conducted to delineate neuropsychological mechanisms underlying flat affect in schizophrenia, and new measures are described for the assessment of affective deficits in clinical populations. Subjects were schizophrenic with flat affect (SZs), right brain-damaged (RBD), Parkinson's Disease (PDs), and normal control (NC) right-handed adults. Subjects were administered affective measures of expression and perception in both facial and vocal channels. For both perceptual and expressive tasks the SZs performed significantly less accurately than the NCs and the PDs but did not differ from the RBDs. This was the case for both face and voice. This finding lends support to the speculation that right hemisphere mechanisms, especially cortical ones, may be compromised among schizophrenics with flat affect.

  11. Combined unilateral lesions of the amygdala and orbital prefrontal cortex impair affective processing in rhesus monkeys.

    PubMed

    Izquierdo, Alicia; Murray, Elisabeth A

    2004-05-01

    The amygdala and orbital prefrontal cortex (PFo) interact as part of a system for affective processing. To assess whether there is a hemispheric functional specialization for the processing of emotion or reward or both in nonhuman primates, rhesus monkeys (Macaca mulatta) with combined lesions of the amygdala and PFo in one hemisphere, either left or right, were compared with unoperated controls on a battery of tasks that tax affective processing, including two tasks that tax reward processing and two that assess emotional reactions. Although the two operated groups did not differ from each other, monkeys with unilateral lesions, left and right, showed altered reward-processing abilities as evidenced by attenuated reinforcer devaluation effects and an impairment in object reversal learning relative to controls. In addition, both operated groups showed blunted emotional reactions to a rubber snake. By contrast, monkeys with unilateral lesions did not differ from controls in their responses to an unfamiliar human (human "intruder"). Although the results provide no support for a hemispheric specialization of function, they yield the novel finding that unilateral lesions of the amygdala-orbitofrontal cortical circuit in monkeys are sufficient to significantly disrupt affective processing.

  12. Facial Affect Processing and Depression Susceptibility: Cognitive Biases and Cognitive Neuroscience

    ERIC Educational Resources Information Center

    Bistricky, Steven L.; Ingram, Rick E.; Atchley, Ruth Ann

    2011-01-01

    Facial affect processing is essential to social development and functioning and is particularly relevant to models of depression. Although cognitive and interpersonal theories have long described different pathways to depression, cognitive-interpersonal and evolutionary social risk models of depression focus on the interrelation of interpersonal…

  13. Processes affecting the transport of nitrogen in groundwater and factors related to slope position

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate (NO3-) pollution of water resources has been a major problem for years, causing contaminated water supplies, harmful effects on human health, and widespread eutrophication of fresh water resources. The main objectives of this study were to: 1) understand the processes affecting NO3- transpor...

  14. City living and urban upbringing affect neural social stress processing in humans.

    PubMed

    Lederbogen, Florian; Kirsch, Peter; Haddad, Leila; Streit, Fabian; Tost, Heike; Schuch, Philipp; Wüst, Stefan; Pruessner, Jens C; Rietschel, Marcella; Deuschle, Michael; Meyer-Lindenberg, Andreas

    2011-06-22

    More than half of the world's population now lives in cities, making the creation of a healthy urban environment a major policy priority. Cities have both health risks and benefits, but mental health is negatively affected: mood and anxiety disorders are more prevalent in city dwellers and the incidence of schizophrenia is strongly increased in people born and raised in cities. Although these findings have been widely attributed to the urban social environment, the neural processes that could mediate such associations are unknown. Here we show, using functional magnetic resonance imaging in three independent experiments, that urban upbringing and city living have dissociable impacts on social evaluative stress processing in humans. Current city living was associated with increased amygdala activity, whereas urban upbringing affected the perigenual anterior cingulate cortex, a key region for regulation of amygdala activity, negative affect and stress. These findings were regionally and behaviourally specific, as no other brain structures were affected and no urbanicity effect was seen during control experiments invoking cognitive processing without stress. Our results identify distinct neural mechanisms for an established environmental risk factor, link the urban environment for the first time to social stress processing, suggest that brain regions differ in vulnerability to this risk factor across the lifespan, and indicate that experimental interrogation of epidemiological associations is a promising strategy in social neuroscience.

  15. Affect and non-uniform characteristics of predictive processing in musical behaviour.

    PubMed

    Schaefer, Rebecca S; Overy, Katie; Nelson, Peter

    2013-06-01

    The important roles of prediction and prior experience are well established in music research and fit well with Clark's concept of unified perception, cognition, and action arising from hierarchical, bidirectional predictive processing. However, in order to fully account for human musical intelligence, Clark needs to further consider the powerful and variable role of affect in relation to prediction error.

  16. Factors Affecting Christian Parents' School Choice Decision Processes: A Grounded Theory Study

    ERIC Educational Resources Information Center

    Prichard, Tami G.; Swezey, James A.

    2016-01-01

    This study identifies factors affecting the decision processes for school choice by Christian parents. Grounded theory design incorporated interview transcripts, field notes, and a reflective journal to analyze themes. Comparative analysis, including open, axial, and selective coding, was used to reduce the coded statements to five code families:…

  17. Affective Cues and Processing Strategy: Color-Coded Examination Forms Influence Performance.

    ERIC Educational Resources Information Center

    Sinclair, Robert C.; Soldat, Alexander S.; Mark, Melvin M.

    1998-01-01

    Argues that external cues provide affective information that influence processing strategy and, therefore, examination performance. Notes the differences in performance for two midterm examinations, identical, except that they were printed on blue and red paper. Discusses a method for appropriately adjusting scores to control for form effects.…

  18. 76 FR 30509 - Court Orders and Legal Processes Affecting Thrift Savings Plan Accounts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... Part 1653 Court Orders and Legal Processes Affecting Thrift Savings Plan Accounts AGENCY: Federal... amendment which subjects TSP accounts to orders issued pursuant to the Mandatory Victims Restitution Act... in which child support orders and MVRA orders are payable. The amendments clarify that these...

  19. Social Information Processing in Children: Specific Relations to Anxiety, Depression, and Affect

    ERIC Educational Resources Information Center

    Luebbe, Aaron M.; Bell, Debora J.; Allwood, Maureen A.; Swenson, Lance P.; Early, Martha C.

    2010-01-01

    Two studies examined shared and unique relations of social information processing (SIP) to youth's anxious and depressive symptoms. Whether SIP added unique variance over and above trait affect in predicting internalizing symptoms was also examined. In Study 1, 215 youth (ages 8-13) completed symptom measures of anxiety and depression and a…

  20. Approaching the Affective Factors of Information Seeking: The Viewpoint of the Information Search Process Model

    ERIC Educational Resources Information Center

    Savolainen, Reijo

    2015-01-01

    Introduction: The article contributes to the conceptual studies of affective factors in information seeking by examining Kuhlthau's information search process model. Method: This random-digit dial telephone survey of 253 people (75% female) living in a rural, medically under-serviced area of Ontario, Canada, follows-up a previous interview study…

  1. Interaction between Task Oriented and Affective Information Processing in Cognitive Robotics

    NASA Astrophysics Data System (ADS)

    Haazebroek, Pascal; van Dantzig, Saskia; Hommel, Bernhard

    There is an increasing interest in endowing robots with emotions. Robot control however is still often very task oriented. We present a cognitive architecture that allows the combination of and interaction between task representations and affective information processing. Our model is validated by comparing simulation results with empirical data from experimental psychology.

  2. A Synthesis of Cognitive and Affective Processes in Social Studies Instruction.

    ERIC Educational Resources Information Center

    Hills, James L.

    Three tasks are described in the development of a Valuing Lexicon: 1) the identification of a hierarchy of cognitive processes; 2) the identification of the affective components; and, 3) the clarification of the relationships between the two. For the purpose of clarifying the development of the lexicon, Krathwohl's hierarchy on what 'valuing'…

  3. Transactional Distance among Open University Students: How Does it Affect the Learning Process?

    ERIC Educational Resources Information Center

    Kassandrinou, Amanda; Angelaki, Christina; Mavroidis, Ilias

    2014-01-01

    This study examines the presence of transactional distance among students, the factors affecting it, as well as the way it influences the learning process of students in a blended distance learning setting in Greece. The present study involved 12 postgraduate students of the Hellenic Open University (HOU). A qualitative research was conducted,…

  4. Investigation of In-situ Biogeochemical Reduction of Chlorinated Solvents in Groundwater by Reduced Iron Minerals

    EPA Science Inventory

    Biogeochemical transformation is a process in which chlorinated solvents are degraded abiotically by reactive minerals formed by, at least in part or indirectly from, anaerobic biological processes. Five mulch biowall and/or vegetable oil-based bioremediation applications for tr...

  5. Facial affect processing deficits in schizophrenia: A meta-analysis of antipsychotic treatment effects

    PubMed Central

    Kempton, Matthew J; Mehta, Mitul A

    2015-01-01

    Social cognition, including emotion processing, is a recognised deficit observed in patients with schizophrenia. It is one cognitive domain which has been emphasised as requiring further investigation, with the efficacy of antipsychotic treatment on this deficit remaining unclear. Nine studies met our criteria for entry into a meta-analysis of the effects of medication on facial affect processing, including data from 1162 patients and six antipsychotics. Overall we found a small, positive effect (Hedge’s g = 0.13, 95% CI 0.05 to 0.21, p = 0.002). In a subgroup analysis this was statistically significant for atypical, but not typical, antipsychotics. It should be noted that the pooled sample size of the typical subgroup was significantly lower than the atypical. Meta-regression analyses revealed that age, gender and changes in symptom severity were not moderating factors. For the small, positive effect on facial affect processing, the clinical significance is questionable in terms of treating deficits in emotion identification in schizophrenia. We show that antipsychotic medications are poor at improving facial affect processing compared to reducing symptoms. This highlights the need for further investigation into the neuropharmacological mechanisms associated with accurate emotion processing, to inform treatment options for these deficits in schizophrenia. PMID:25492885

  6. White wine taste and mouthfeel as affected by juice extraction and processing.

    PubMed

    Gawel, Richard; Day, Martin; Van Sluyter, Steven C; Holt, Helen; Waters, Elizabeth J; Smith, Paul A

    2014-10-15

    The juice used to make white wine can be extracted using various physical processes that affect the amount and timing of contact of juice with skins. The influence of juice extraction processes on the mouthfeel and taste of white wine and their relationship to wine composition were determined. The amount and type of interaction of juice with skins affected both wine total phenolic concentration and phenolic composition. Wine pH strongly influenced perceived viscosity, astringency/drying, and acidity. Despite a 5-fold variation in total phenolics among wines, differences in bitter taste were small. Perceived viscosity was associated with higher phenolics but was not associated with either glycerol or polysaccharide concentration. Bitterness may be reduced by using juice extraction and handling processes that minimize phenolic concentration, but lowering phenolic concentration may also result in wines of lower perceived viscosity.

  7. Attention deficit hyperactivity disorder (ADHD): an affect-processing and thought disorder?

    PubMed

    Günter, Michael

    2014-02-01

    In the literature on child and adolescent psychoanalysis attention deficit hyperactivity disorder (ADHD) is described as complex syndrome with wide-ranging psychodynamic features. Broadly speaking, the disorder is divided into three categories: 1. a disorder in early object relations leading to the development of a maniform defence organization in which object-loss anxieties and depressed affects are not worked through via symbolization but are organized in a body-near manner; 2. a triangulation disorder in which the cathexis of the paternal position is not stable; structures providing little support alternate with excessive arousal, affect regulation is restricted; 3. current emotional stress or a traumatic experience. I suggest taking a fresh look at ADHD from a psychoanalytic vantage point. With respect to the phenomenology of the disorder, the conflict-dynamic approach should be supplemented by a perspective regarding deficits in α-function as constitutive for ADHD. These deficits cause affect-processing and thought disorders compensated for (though not fully) by the symptomatology. At a secondary level, a vicious circle develops through the mutual reinforcement of defective processing of sense data and affects into potential thought content, on the one hand, and secondary, largely narcissistic defence processes on the other. These considerations have major relevance for the improved understanding of ADHD and for psychoanalytic technique.

  8. Protein Molecular Structures, Protein SubFractions, and Protein Availability Affected by Heat Processing: A Review

    SciTech Connect

    Yu,P.

    2007-01-01

    The utilization and availability of protein depended on the types of protein and their specific susceptibility to enzymatic hydrolysis (inhibitory activities) in the gastrointestine and was highly associated with protein molecular structures. Studying internal protein structure and protein subfraction profiles leaded to an understanding of the components that make up a whole protein. An understanding of the molecular structure of the whole protein was often vital to understanding its digestive behavior and nutritive value in animals. In this review, recently obtained information on protein molecular structural effects of heat processing was reviewed, in relation to protein characteristics affecting digestive behavior and nutrient utilization and availability. The emphasis of this review was on (1) using the newly advanced synchrotron technology (S-FTIR) as a novel approach to reveal protein molecular chemistry affected by heat processing within intact plant tissues; (2) revealing the effects of heat processing on the profile changes of protein subfractions associated with digestive behaviors and kinetics manipulated by heat processing; (3) prediction of the changes of protein availability and supply after heat processing, using the advanced DVE/OEB and NRC-2001 models, and (4) obtaining information on optimal processing conditions of protein as intestinal protein source to achieve target values for potential high net absorbable protein in the small intestine. The information described in this article may give better insight in the mechanisms involved and the intrinsic protein molecular structural changes occurring upon processing.

  9. Ecohydrological Interfaces as Dynamic Hotspots of Biogeochemical Cycling

    NASA Astrophysics Data System (ADS)

    Krause, S.

    2015-12-01

    Ecohydrological interfaces, represent the boundaries between water-dependent ecosystems that can alter substantially the fluxes of energy and matter. There is still a critical gap of understanding the organisational principles of the drivers and controls of spatially and temporally variable ecohydrological interface functions. This knowledge gap limits our capacity to efficiently quantify, predict and manage the services provided by complex ecosystems. Many ecohydrological interfaces are characterized by step changes in microbial metabolic activity, steep redox gradients and often even thermodynamic phase shifts, for instance at the interfaces between atmosphere and water or soil matrix and macro-pores interfaces. This paper integrates investigations from point scale microcosm experiments with reach and subcatchment scale tracer experiments and numerical modeling studies to elaborate similarities in the drivers and controls that constitute the enhanced biogeochemical activity of different types of ecohydrologica interfaces across a range of spatial and temporal scales. We therefore combine smart metabolic activity tracers to quantify the impact of bioturbating benthic fauna onto ecosystem respiration and oxygen consumption and investigate at larger scale, how microbial metabolic activity and carbon turnover at the water-sediment interface are controlled by sediment physical and chemical properties as well as water temperatures. Numerical modeling confirmed that experimentally identified hotspots of streambed biogeochemical cycling were controlled by patterns of physical properties such as hydraulic conductivities or bioavailability of organic matter, impacting on residence time distributions and hence reaction times. In contrast to previous research, our investigations thus confirmed that small-scale variability of physical and chemical interface properties had a major impact on biogeochemical processing at the investigated ecohydrological interfaces. Our results

  10. Ecohydrological Interfaces as Dynamic Hotspots of Biogeochemical Cycling

    NASA Astrophysics Data System (ADS)

    Krause, Stefan; Lewandowski, Joerg; Hannah, David; McDonald, Karlie; Folegot, Silvia; Baranov, Victor

    2016-04-01

    Ecohydrological interfaces, represent the boundaries between water-dependent ecosystems that can alter substantially the fluxes of energy and matter. There is still a critical gap of understanding the organisational principles of the drivers and controls of spatially and temporally variable ecohydrological interface functions. This knowledge gap limits our capacity to efficiently quantify, predict and manage the services provided by complex ecosystems. Many ecohydrological interfaces are characterized by step changes in microbial metabolic activity, steep redox gradients and often even thermodynamic phase shifts, for instance at the interfaces between atmosphere and water or soil matrix and macro-pores interfaces. This paper integrates investigations from point scale laboratory microcosm experiments with reach and subcatchment scale tracer experiments and numerical modeling studies to elaborate similarities in the drivers and controls that constitute the enhanced biogeochemical activity of different types of ecohydrologica interfaces across a range of spatial and temporal scales. We therefore combine smart metabolic activity tracers to quantify the impact of bioturbating benthic fauna onto ecosystem respiration and oxygen consumption and investigate at larger scale, how microbial metabolic activity and carbon turnover at the water-sediment interface are controlled by sediment physical and chemical properties as well as water temperatures. Numerical modeling confirmed that experimentally identified hotspots of streambed biogeochemical cycling were controlled by patterns of physical properties such as hydraulic conductivities or bioavailability of organic matter, impacting on residence time distributions and hence reaction times. In contrast to previous research, our investigations thus confirmed that small-scale variability of physical and chemical interface properties had a major impact on biogeochemical processing at the investigated ecohydrological interfaces

  11. Predictability of Biogeochemical Responses in Engineered Watersheds

    NASA Astrophysics Data System (ADS)

    Yaeger, M. A.; Voepel, H. E.; Basu, N. B.; Rao, P. C.; Donner, S. D.; Packman, A. I.

    2009-12-01

    Examining the impacts of large-scale human modifications of watersheds (e.g., land-use intensification for food production; hydrologic modification through extensive tile-drainage, etc.) on the hydrologic and biogeochemical responses, and ecological impacts at various scales has been the focus of monitoring and modeling studies over the past two decades. Complex interactions between hydrology and biogeochemistry and the need to predict responses across scales has led to the development of detailed process-based models that are computationally intensive and calibration-dependent. Our overall hypothesis is that human modifications and intensive management of these watersheds have led to more predictable responses, which are typical of engineered, less-complex systems rather than natural, complex systems. We examined monitoring data for nitrogen, phosphorous, silica and chloride in 25 large watersheds (10,000 km2 to 500,000 km2) in the Mississippi River Basin. This sparse dataset was complemented with nitrogen cycling and hydrology output from a whole-basin terrestrial and aquatic modeling system (IBIS-THMB). These sub-basins have diverse land uses, although agriculture still dominates (from ~30% to ~80%). Despite diversity in soils, geology, rainfall patterns, and land use, a linear relationship was observed between the annual cumulative discharge (Q; m3/yr) and the measured nitrate load (L; kg/yr). The slopes of these linear L-Q plots represent the flow-weighted annual average concentrations (Cf), and a linear L-Q relationship indicates an apparent “chemostatic” response of these large watersheds. Analysis of Mississippi River monitoring data for nitrate and IBIS-THMB simulations revealed that Cf is a strong function of land-use (eg, percent corn) that defines the chemical input function. The scatter around the L-Q plots was small for “endogenous” (generated from internal sources) solutes (eg, silica), intermediate for “hybrid” (contributions from both

  12. Subsurface Biogeochemical Research FY11 Second Quarter Performance Measure

    SciTech Connect

    Scheibe, Timothy D.

    2011-03-31

    The Subsurface Biogeochemical Research (SBR) Long Term Measure for 2011 under the Performance Assessment Rating Tool (PART) measure is to "Refine subsurface transport models by developing computational methods to link important processes impacting contaminant transport at smaller scales to the field scale." The second quarter performance measure is to "Provide a report on computational methods linking genome-enabled understanding of microbial metabolism with reactive transport models to describe processes impacting contaminant transport in the subsurface." Microorganisms such as bacteria are by definition small (typically on the order of a micron in size), and their behavior is controlled by their local biogeochemical environment (typically within a single pore or a biofilm on a grain surface, on the order of tens of microns in size). However, their metabolic activity exerts strong influence on the transport and fate of groundwater contaminants of significant concern at DOE sites, in contaminant plumes with spatial extents of meters to kilometers. This report describes progress and key findings from research aimed at integrating models of microbial metabolism based on genomic information (small scale) with models of contaminant fate and transport in aquifers (field scale).

  13. Global changes in biogeochemical cycles in response to human activities

    NASA Technical Reports Server (NTRS)

    Moore, Berrien, III; Melillo, Jerry

    1994-01-01

    The main objective of our research was to characterize biogeochemical cycles at continental and global scales in both terrestrial and aquatic ecosystems. This characterization applied to both natural ecosystems and those disturbed by human activity. The primary elements of interest were carbon and nitrogen and the analysis sought to quantify standing stocks and dynamic cycling processes. The translocation of major nutrients from the terrestrial landscape to the atmosphere (via trace gases) and to fluvial systems (via leaching, erosional losses, and point source pollution) were of particular importance to this study. Our aim was to develop the first generation of Earth System Models. Our research was organized around the construction and testing of component biogeochemical models which treated terrestrial ecosystem processes, aquatic nutrient transport through drainage basins, and trace gas exchanges at the continental and global scale. A suite of three complementary models were defined within this construct. The models were organized to operate at a 1/2 degree latitude by longitude level of spatial resolution and to execute at a monthly time step. This discretization afforded us the opportunity to understand the dynamics of the biosphere down to subregional scales, while simultaneously placing these dynamics into a global context.

  14. Dust in the Earth system: the biogeochemical linking of land, air and sea

    NASA Astrophysics Data System (ADS)

    Ridgwell, Andy J.

    2002-12-01

    Understanding the response of the Earth's climate system to anthropogenic perturbation has been a pressing priority for society since the late 1980s. However, recent years have seen a major paradigm shift in how such an understanding can be reached. Climate change demands analysis within an integrated 'Earth-system' framework, taken to encompass the suite of interacting physical, chemical, biological and human processes that, in transporting and transforming materials and energy, jointly determine the conditions for life on the whole planet. This is a highly complex system, characterized by multiple nonlinear responses and thresholds, with linkages often between apparently disparate components. The interconnected nature of the Earth system is wonderfully illustrated by the diverse roles played by atmospheric transport of mineral 'dust', particularly in its capacity as a key pathway for the delivery of nutrients essential to plant growth, not only on land, but perhaps more importantly, in the ocean. Dust therefore biogeochemically links land, air and sea. This paper reviews the biogeochemical role of mineral dust in the Earth system and its interaction with climate, and, in particular, the potential importance of both past and possible future changes in aeolian delivery of the micro-nutrient iron to the ocean. For instance, if, in the future, there was to be a widespread stabilization of soils for the purpose of carbon sequestration on land, a reduction in aeolian iron supply to the open ocean would occur. The resultant weakening of the oceanic carbon sink could potentially offset much of the carbon sequestered on land. In contrast, during glacial times, enhanced dust supply to the ocean could have 'fertilized' the biota and driven atmospheric CO2 lower. Dust might even play an active role in driving climatic change; since changes in dust supply may affect climate, and changes in climate, in turn, influence dust, a 'feedback loop' is formed. Possible feedback

  15. Dust in the Earth system: the biogeochemical linking of land, air and sea.

    PubMed

    Ridgwell, Andy J

    2002-12-15

    Understanding the response of the Earth's climate system to anthropogenic perturbation has been a pressing priority for society since the late 1980s. However, recent years have seen a major paradigm shift in how such an understanding can be reached. Climate change demands analysis within an integrated 'Earth-system' framework, taken to encompass the suite of interacting physical, chemical, biological and human processes that, in transporting and transforming materials and energy, jointly determine the conditions for life on the whole planet. This is a highly complex system, characterized by multiple nonlinear responses and thresholds, with linkages often between apparently disparate components. The interconnected nature of the Earth system is wonderfully illustrated by the diverse roles played by atmospheric transport of mineral 'dust', particularly in its capacity as a key pathway for the delivery of nutrients essential to plant growth, not only on land, but perhaps more importantly, in the ocean. Dust therefore biogeochemically links land, air and sea. This paper reviews the biogeochemical role of mineral dust in the Earth system and its interaction with climate, and, in particular, the potential importance of both past and possible future changes in aeolian delivery of the micro-nutrient iron to the ocean. For instance, if, in the future, there was to be a widespread stabilization of soils for the purpose of carbon sequestration on land, a reduction in aeolian iron supply to the open ocean would occur. The resultant weakening of the oceanic carbon sink could potentially offset much of the carbon sequestered on land. In contrast, during glacial times, enhanced dust supply to the ocean could have 'fertilized' the biota and driven atmospheric CO(2) lower. Dust might even play an active role in driving climatic change; since changes in dust supply may affect climate, and changes in climate, in turn, influence dust, a 'feedback loop' is formed. Possible feedback

  16. Extraversion and reward-related processing: probing incentive motivation in affective priming tasks.

    PubMed

    Robinson, Michael D; Moeller, Sara K; Ode, Scott

    2010-10-01

    Based on an incentive motivation theory of extraversion (Depue & Collins, 1999), it was hypothesized that extraverts (relative to introverts) would exhibit stronger positive priming effects in affective priming tasks, whether involving words or pictures. This hypothesis was systematically supported in four studies involving 229 undergraduates. In each of the four studies, and in a subsequent combined analysis, extraversion was positively predictive of positive affective priming effects, but was not predictive of negative affective priming effects. The results bridge an important gap in the literature between biological and trait models of incentive motivation and do so in a way that should be informative to subsequent efforts to understand the processing basis of extraversion as well as incentive motivation.

  17. Molecular biogeochemical provinces in the Atlantic Surface Ocean

    NASA Astrophysics Data System (ADS)

    Koch, B. P.; Flerus, R.; Schmitt-Kopplin, P.; Lechtenfeld, O. J.; Bracher, A.; Cooper, W.; Frka, S.; Gašparović, B.; Gonsior, M.; Hertkorn, N.; Jaffe, R.; Jenkins, A.; Kuss, J.; Lara, R. J.; Lucio, M.; McCallister, S. L.; Neogi, S. B.; Pohl, C.; Roettgers, R.; Rohardt, G.; Schmitt, B. B.; Stuart, A.; Theis, A.; Ying, W.; Witt, M.; Xie, Z.; Yamashita, Y.; Zhang, L.; Zhu, Z. Y.; Kattner, G.

    2010-12-01

    One of the most important aspects to understand marine organic carbon fluxes is to resolve the molecular mechanisms which convert fresh, labile biomolecules into semi-labile and refractory dissolved and particulate organic compounds in the ocean. In this interdisciplinary project, which was performed on a cruise with RV Polarstern, we carried out a detailed molecular characterisation of dissolved organic matter (DOM) on a North-South transect in the Atlantic surface ocean in order to relate the data to different biological, climatic, oceanographic, and meteorological regimes as well as to terrestrial input from riverine and atmospheric sources. Our goal was to achieve a high resolution data set for the biogeochemical characterisation of the sources and reactivity of DOM. We applied ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS), nutrient, trace element, amino acid, and lipid analyses and other biogeochemical measurements for 220 samples from the upper water column (0-200m) and eight deep profiles. Various spectroscopic techniques were applied continuously in a constant sample water flow supplied by a fish system and the moon pool. Radiocarbon dating enabled assessing DOC residence time. Bacterial abundance and production provided a metabolic context for the DOM characterization work and pCO2 concentrations. Combining molecular organic techniques and inductively coupled plasma mass spectrometry (ICP-MS) established an important link between organic and inorganic biogeochemical studies. Multivariate statistics, primarily based on FT-ICR-MS data for 220 samples, allowed identifying geographical clusters which matched ecological provinces proposed previously by Longhurst (2007). Our study demonstrated that marine DOM carries molecular information reflecting the “history” of ocean water masses. This information can be used to define molecular biogeochemical provinces and to improve our understanding of element fluxes in

  18. Rivers and Stable Isotopes as Indicators of Biogeochemical Gradients

    NASA Astrophysics Data System (ADS)

    Barth, J. A.

    2005-12-01

    Consideration of processes on very small (microbe) to large (catchment) scales become increasingly important in biogeochemical gradient work. In this context, rivers are ideal indicators of biogeochemical gradients for large continental scales when geochemical- and discharge data are combined for flux evaluations. If these are further combined with isotope measurements, sources and turnover of water and dissolved constituents can be quantified. An example study is the combination of GIS-, discharge- and water stable isotope data on the in Clyde River basin in Scotland. Here we determined transpiration with an annual average of 0.489 km3 a-1. When combining this rate with the water use efficiency, the CO2 uptake of the entire basin yielded an annual net primary production (NPP) of 185.2 g C m-2. Compared to other temperate areas this is about half the NPP than expected, which is most likely caused by the predominant cover of grasslands. Therefore, agricultural and forest vegetation schemes could influence continental water balances on time scales of years to decades. In another study on the Lagan River in N. Ireland, stable isotope methods were applied to evaluate the role of carbonate versus silicate dissolution. Of these two types of weathering only silicate dissolution withdraws atmospheric CO2 to be stored in the continental crust over long time periods. A downstream evolution with increasing pH- and δ13CDIC values revealed carbonate dissolution despite their minor abundance in the catchment of less than 5 %. This dominant carbonate signal on the riverine carbon cycle outlines the capacity of buffering anthropogenic influences and CO2 turnover. It should be even more pronounced in other rivers where carbonates usually occupy a larger proportion of the basin geology. Future biogeochemical gradient work on rivers should apply particulate and dissolved organic constituent fluxes. This includes more refined compound specific isotope work on selected pollutants such

  19. The biogeochemical role of baleen whales and krill in Southern Ocean nutrient cycling.

    PubMed

    Ratnarajah, Lavenia; Bowie, Andrew R; Lannuzel, Delphine; Meiners, Klaus M; Nicol, Stephen

    2014-01-01

    The availability of micronutrients is a key factor that affects primary productivity in High Nutrient Low Chlorophyll (HNLC) regions of the Southern Ocean. Nutrient supply is governed by a range of physical, chemical and biological processes, and there are significant feedbacks within the ecosystem. It has been suggested that baleen whales form a crucial part of biogeochemical cycling processes through the consumption of nutrient-rich krill and subsequent defecation, but data on their contribution are scarce. We analysed the concentration of iron, cadmium, manganese, cobalt, copper, zinc, phosphorus and carbon in baleen whale faeces and muscle, and krill tissue using inductively coupled plasma mass spectrometry. Metal concentrations in krill tissue were between 20 thousand and 4.8 million times higher than typical Southern Ocean HNLC seawater concentrations, while whale faecal matter was between 276 thousand and 10 million times higher. These findings suggest that krill act as a mechanism for concentrating and retaining elements in the surface layer, which are subsequently released back into the ocean, once eaten by whales, through defecation. Trace metal to carbon ratios were also higher in whale faeces compared to whale muscle indicating that whales are concentrating carbon and actively defecating trace elements. Consequently, recovery of the great whales may facilitate the recycling of nutrients via defecation, which may affect productivity in HNLC areas.

  20. Elevated Preattentive Affective Processing in Individuals with Borderline Personality Disorder: A Preliminary fMRI Study

    PubMed Central

    Baskin-Sommers, Arielle R.; Hooley, Jill M.; Dahlgren, Mary K.; Gönenc, Atilla; Yurgelun-Todd, Deborah A.; Gruber, Staci A.

    2015-01-01

    Background: Emotion dysregulation is central to the clinical conceptualization of borderline personality disorder (BPD), with individuals often displaying instability in mood and intense feelings of negative affect. Although existing data suggest important neural and behavioral differences in the emotion processing of individuals with BPD, studies thus far have only explored reactions to overt emotional information. Therefore, it is unclear if BPD-related emotional hypersensitivity extends to stimuli presented below the level of conscious awareness (preattentively). Methods: Functional magnetic resonance imaging (fMRI) was used to measure neural responses to happy, angry, fearful, and neutral faces presented preattentively, using a backward masked affect paradigm. Given their tendency toward emotional hyperreactivity and altered amygdala and frontal activation, we hypothesized that individuals with BPD would demonstrate a distinct pattern of fMRI responses relative to those without BPD during the viewing of masked affective versus neutral faces in specific regions of interests (ROIs). Results: Results indicated that individuals with BPD demonstrated increases in frontal, cingulate, and amygdalar activation represented by number of voxels activated and demonstrated a different pattern of activity within the ROIs relative to those without BPD while viewing masked affective versus neutral faces. Conclusion: These findings suggest that in addition to the previously documented heightened responses to overt displays of emotion, individuals with BPD also demonstrate differential responses to positive and negative emotions, early in the processing stream, even before conscious awareness. PMID:26696932

  1. No support for dual process accounts of human affective learning in simple Pavlovian conditioning.

    PubMed

    Lipp, Ottmar V; Purkis, Helena M

    2005-02-01

    Dual process accounts of affective learning state that the learning of likes and dislikes reflects a learning mechanism that is distinct from the one reflected in expectancy learning, the learning of signal relationships, and has different empirical characteristics. Affective learning, for example, is said not to be affected by: (a) extinction training; (b) occasion setting; (c) cue competition; and (d) awareness of the CS-US contingencies. These predictions were tested in a series of experiments that employed simple Pavlovian conditioning procedures. Neutral visual pictures of geometric shapes, or tactile conditional stimuli (CS) were paired with aversive electrotactile unconditional stimuli (US). Dependent measures were physiological (skin conductance, blink startle modulation) or verbal (US expectancy, on-line and off-line ratings of CS pleasantness). Different combinations of these dependent measures were employed across different experiments in an attempt to assess affective and expectancy learning simultaneously. Changes in CS pleasantness as indexed by ratings or blink startle modulation were readily observed. However, contrary to the predictions from dual-process accounts, results indicated that acquired CS unpleasantness is subject to extinction, occasion setting, cue competition, and not found in absence of CS-US contingency awareness.

  2. Performance processes within affect-related performance zones: a multi-modal investigation of golf performance.

    PubMed

    van der Lei, Harry; Tenenbaum, Gershon

    2012-12-01

    Individual affect-related performance zones (IAPZs) method utilizing Kamata et al. (J Sport Exerc Psychol 24:189-208, 2002) probabilistic model of determining the individual zone of optimal functioning was utilized as idiosyncratic affective patterns during golf performance. To do so, three male golfers of a varsity golf team were observed during three rounds of golf competition. The investigation implemented a multi-modal assessment approach in which the probabilistic relationship between affective states and both, performance process and performance outcome, measures were determined. More specifically, introspective (i.e., verbal reports) and objective (heart rate and respiration rate) measures of arousal were incorporated to examine the relationships between arousal states and both, process components (i.e., routine consistency, timing), and outcome scores related to golf performance. Results revealed distinguishable and idiosyncratic IAPZs associated with physiological and introspective measures for each golfer. The associations between the IAPZs and decision-making or swing/stroke execution were strong and unique for each golfer. Results are elaborated using cognitive and affect-related concepts, and applications for practitioners are provided.

  3. Advancing the Assessment of Personality Pathology With the Cognitive-Affective Processing System.

    PubMed

    Huprich, Steven K; Nelson, Sharon M

    2015-01-01

    The Cognitive-Affective Processing System (CAPS) is a dynamic and expansive model of personality proposed by Mischel and Shoda (1995) that incorporates dispositional and processing frameworks by considering the interaction of the individual and the situation, and the patterns of variation that result. These patterns of cognition, affect, and behavior are generally defined through the use of if … then statements, and provide a rich understanding of the individual across varying levels of assessment. In this article, we describe the CAPS model and articulate ways in which it can be applied to conceptualizing and assessing personality pathology. We suggest that the CAPS model is an ideal framework that integrates a number of current theories of personality pathology, and simultaneously overcomes a number of limits that have been empirically identified in the past.

  4. Integrative Processing of Touch and Affect in Social Perception: An fMRI Study

    PubMed Central

    Ebisch, Sjoerd J. H.; Salone, Anatolia; Martinotti, Giovanni; Carlucci, Leonardo; Mantini, Dante; Perrucci, Mauro G.; Saggino, Aristide; Romani, Gian Luca; Di Giannantonio, Massimo; Northoff, Georg; Gallese, Vittorio

    2016-01-01

    Social perception commonly employs multiple sources of information. The present study aimed at investigating the integrative processing of affective social signals. Task-related and task-free functional magnetic resonance imaging was performed in 26 healthy adult participants during a social perception task concerning dynamic visual stimuli simultaneously depicting facial expressions of emotion and tactile sensations that could be either congruent or incongruent. Confounding effects due to affective valence, inhibitory top–down influences, cross-modal integration, and conflict processing were minimized. The results showed that the perception of congruent, compared to incongruent stimuli, elicited enhanced neural activity in a set of brain regions including left amygdala, bilateral posterior cingulate cortex (PCC), and left superior parietal cortex. These congruency effects did not differ as a function of emotion or sensation. A complementary task-related functional interaction analysis preliminarily suggested that amygdala activity depended on previous processing stages in fusiform gyrus and PCC. The findings provide support for the integrative processing of social information about others’ feelings from manifold bodily sources (sensory-affective information) in amygdala and PCC. Given that the congruent stimuli were also judged as being more self-related and more familiar in terms of personal experience in an independent sample of participants, we speculate that such integrative processing might be mediated by the linking of external stimuli with self-experience. Finally, the prediction of task-related responses in amygdala by intrinsic functional connectivity between amygdala and PCC during a task-free state implies a neuro-functional basis for an individual predisposition for the integrative processing of social stimulus content. PMID:27242474

  5. How work context affects operating room processes: using data mining and computer simulation to analyze facility and process design.

    PubMed

    Baumgart, André; Denz, Christof; Bender, Hans-Joachim; Schleppers, Alexander

    2009-01-01

    The complexity of the operating room (OR) requires that both structural (eg, department layout) and behavioral (eg, staff interactions) patterns of work be considered when developing quality improvement strategies. In our study, we investigated how these contextual factors influence outpatient OR processes and the quality of care delivered. The study setting was a German university-affiliated hospital performing approximately 6000 outpatient surgeries annually. During the 3-year-study period, the hospital significantly changed its outpatient OR facility layout from a decentralized (ie, ORs in adjacent areas of the building) to a centralized (ie, ORs in immediate vicinity of each other) design. To study the impact of the facility change on OR processes, we used a mixed methods approach, including process analysis, process modeling, and social network analysis of staff interactions. The change in facility layout was seen to influence OR processes in ways that could substantially affect patient outcomes. For example, we found a potential for more errors during handovers in the new centralized design due to greater interdependency between tasks and staff. Utilization of the mixed methods approach in our analysis, as compared with that of a single assessment method, enabled a deeper understanding of the OR work context and its influence on outpatient OR processes.

  6. The ANK3 gene and facial affect processing: An ERP study.

    PubMed

    Zhao, Wan; Zhang, Qiumei; Yu, Ping; Zhang, Zhifang; Chen, Xiongying; Gu, Huang; Zhai, Jinguo; Chen, Min; Du, Boqi; Deng, Xiaoxiang; Ji, Feng; Wang, Chuanyue; Xiang, Yu-Tao; Li, Dawei; Wu, Hongjie; Dong, Qi; Luo, Yuejia; Li, Jun; Chen, Chuansheng

    2016-09-01

    ANK3 is one of the most promising candidate genes for bipolar disorder (BD). A polymorphism (rs10994336) within the ANK3 gene has been associated with BD in at least three genome-wide association studies of BD [McGuffin et al., 2003; Kieseppä, 2004; Edvardsen et al., 2008]. Because facial affect processing is disrupted in patients with BD, the current study aimed to explore whether the BD risk alleles are associated with the N170, an early event-related potential (ERP) component related to facial affect processing. We collected data from two independent samples of healthy individuals (Ns = 83 and 82, respectively) to test the association between rs10994336 and an early event-related potential (ERP) component (N170) that is sensitive to facial affect processing. Repeated-measures analysis of covariance in both samples consistently revealed significant main effects of rs10994336 genotype (Sample I: F (1, 72) = 7.24, P = 0.009; Sample II: F (1, 69) = 11.81, P = 0.001), but no significant interaction of genotype × electrodes (Ps > 0.05) or genotype × emotional conditions (Ps > 0.05). These results suggested that rs10994336 was linked to early ERP component reflecting facial structural encoding during facial affect processing. These results shed new light on the brain mechanism of this risk SNP and associated disorders such as BD. © 2016 Wiley Periodicals, Inc.

  7. Earth's Early Biosphere and the Biogeochemical Carbon Cycle

    NASA Technical Reports Server (NTRS)

    DesMarais, David

    2004-01-01

    Our biosphere has altered the global environment principally by influencing the chemistry of those elements most important for life, e g., C, N, S, O, P and transition metals (e.g., Fe and Mn). The coupling of oxygenic photosynthesis with the burial in sediments of photosynthetic organic matter, and with the escape of H2 to space, has increased the state of oxidation of the Oceans and atmosphere. It has also created highly reduced conditions within sedimentary rocks that have also extensively affected the geochemistry of several elements. The decline of volcanism during Earth's history reduced the flow of reduced chemical species that reacted with photosynthetically produced O2. The long-term net accumulation of photosynthetic O2 via biogeochemical processes has profoundly influenced our atmosphere and biosphere, as evidenced by the O2 levels required for algae, multicellular life and certain modem aerobic bacteria to exist. When our biosphere developed photosynthesis, it tapped into an energy resource that was much larger than the energy available from oxidation-reduction reactions associated with weathering and hydrothermal activity. Today, hydrothermal sources deliver globally (0.13-1.1)x10(exp l2) mol yr(sup -1) of reduced S, Fe(2+), Mn(2+), H2 and CH4; this is estimated to sustain at most about (0.2-2)xl0(exp 12)mol C yr(sup -1) of organic carbon production by chemautotrophic microorganisms. In contrast, global photosynthetic productivity is estimated to be 9000x10(exp 12) mol C yr(sup -1). Thus, even though global thermal fluxes were greater in the distant geologic past than today, the onset of oxygenic photosynthesis probably increased global organic productivity by some two or more orders of magnitude. This enormous productivity materialized principally because oxygenic photosynthesizers unleashed a virtually unlimited supply of reduced H that forever freed life from its sole dependence upon abiotic sources of reducing power such as hydrothermal emanations

  8. Inverse modeling of pan-Arctic methane emissions at high spatial resolution: what can we learn from assimilating satellite retrievals and using different process-based wetland and lake biogeochemical models?

    DOE PAGES

    Tan, Zeli; Zhuang, Qianlai; Henze, Daven K.; ...

    2016-10-12

    Understanding methane emissions from the Arctic, a fast-warming carbon reservoir, is important for projecting future changes in the global methane cycle. Here we optimized methane emissions from north of 60° N (pan-Arctic) regions using a nested-grid high-resolution inverse model that assimilates both high-precision surface measurements and column-average SCanning Imaging Absorption spectroMeter for Atmospheric CHartogrphY (SCIAMACHY) satellite retrievals of methane mole fraction. For the first time, methane emissions from lakes were integrated into an atmospheric transport and inversion estimate, together with prior wetland emissions estimated with six biogeochemical models. In our estimates, in 2005, global methane emissions were in the range ofmore » 496.4–511.5 Tg yr−1, and pan-Arctic methane emissions were in the range of 11.9–28.5 Tg yr−1. Methane emissions from pan-Arctic wetlands and lakes were 5.5–14.2 and 2.4–14.2 Tg yr−1, respectively. Methane emissions from Siberian wetlands and lakes are the largest and also have the largest uncertainty. Our results indicate that the uncertainty introduced by different wetland models could be much larger than the uncertainty of each inversion. We also show that assimilating satellite retrievals can reduce the uncertainty of the nested-grid inversions. The significance of lake emissions cannot be identified across the pan-Arctic by high-resolution inversions, but it is possible to identify high lake emissions from some specific regions. In contrast to global inversions, high-resolution nested-grid inversions perform better in estimating near-surface methane concentrations.« less

  9. Inverse modeling of pan-Arctic methane emissions at high spatial resolution: what can we learn from assimilating satellite retrievals and using different process-based wetland and lake biogeochemical models?

    NASA Astrophysics Data System (ADS)

    Tan, Zeli; Zhuang, Qianlai; Henze, Daven K.; Frankenberg, Christian; Dlugokencky, Ed; Sweeney, Colm; Turner, Alexander J.; Sasakawa, Motoki; Machida, Toshinobu

    2016-10-01

    Understanding methane emissions from the Arctic, a fast-warming carbon reservoir, is important for projecting future changes in the global methane cycle. Here we optimized methane emissions from north of 60° N (pan-Arctic) regions using a nested-grid high-resolution inverse model that assimilates both high-precision surface measurements and column-average SCanning Imaging Absorption spectroMeter for Atmospheric CHartogrphY (SCIAMACHY) satellite retrievals of methane mole fraction. For the first time, methane emissions from lakes were integrated into an atmospheric transport and inversion estimate, together with prior wetland emissions estimated with six biogeochemical models. In our estimates, in 2005, global methane emissions were in the range of 496.4-511.5 Tg yr-1, and pan-Arctic methane emissions were in the range of 11.9-28.5 Tg yr-1. Methane emissions from pan-Arctic wetlands and lakes were 5.5-14.2 and 2.4-14.2 Tg yr-1, respectively. Methane emissions from Siberian wetlands and lakes are the largest and also have the largest uncertainty. Our results indicate that the uncertainty introduced by different wetland models could be much larger than the uncertainty of each inversion. We also show that assimilating satellite retrievals can reduce the uncertainty of the nested-grid inversions. The significance of lake emissions cannot be identified across the pan-Arctic by high-resolution inversions, but it is possible to identify high lake emissions from some specific regions. In contrast to global inversions, high-resolution nested-grid inversions perform better in estimating near-surface methane concentrations.

  10. Soy processing affects metabolism and disposition of dietary isoflavones in ovariectomized BALB/c mice.

    PubMed

    Allred, Clinton D; Twaddle, Nathan C; Allred, Kimberly F; Goeppinger, Tracy S; Churchwell, Mona I; Ju, Young H; Helferich, William G; Doerge, Daniel R

    2005-11-02

    Soy foods and nutritional supplements are widely consumed for potential health benefits. It was previously shown that isoflavone-supplemented diets, which contained equal genistein equivalents, differentially stimulated mammary tumor growth in athymic mice based on the degree of processing. This paper reports plasma pharmacokinetic analysis and metabolite identification using the parental mouse strain fed the same diets, which contained genistin, mixed isoflavones, Novasoy, soy molasses, or soy flour plus mixed isoflavones. Whereas the degree of soy processing did affect several parameters reflecting isoflavone bioavailability and gut microflora metabolism of daidzein to equol, stimulation of tumor growth correlated significantly with only the plasma concentration of aglycon genistein produced by the diets. This conclusion is consistent with the known estrogen agonist activity of genistein aglycon on mammary tumor growth. Conversely, plasma equol concentration was inversely correlated with the degree of soy processing. Although antagonism of genistein-stimulated tumor growth by equol could explain this result, the very low concentration of aglycon equol in plasma (12-fold lower relative to genistein) is inconsistent with any effect. These findings underscore the importance of food processing, which can remove non-nutritive components from soy, on the pharmacokinetics and pharmacodynamics of isoflavones. Such changes in diet composition affect circulating, and presumably target tissue, concentrations of genistein aglycon, which initiates estrogen receptor-mediated processes required for the stimulation of tumor growth in a mouse model for postmenopausal breast cancer.

  11. TMS affects moral judgment, showing the role of DLPFC and TPJ in cognitive and emotional processing

    PubMed Central

    Jeurissen, Danique; Sack, Alexander T.; Roebroeck, Alard; Russ, Brian E.; Pascual-Leone, Alvaro

    2014-01-01

    Decision-making involves a complex interplay of emotional responses and reasoning processes. In this study, we use TMS to explore the neurobiological substrates of moral decisions in humans. To examining the effects of TMS on the outcome of a moral-decision, we compare the decision outcome of moral-personal and moral-impersonal dilemmas to each other and examine the differential effects of applying TMS over the right DLPFC or right TPJ. In this comparison, we find that the TMS-induced disruption of the DLPFC during the decision process, affects the outcome of the moral-personal judgment, while TMS-induced disruption of TPJ affects only moral-impersonal conditions. In other words, we find a double-dissociation between DLPFC and TPJ in the outcome of a moral decision. Furthermore, we find that TMS-induced disruption of the DLPFC during non-moral, moral-impersonal, and moral-personal decisions lead to lower ratings of regret about the decision. Our results are in line with the dual-process theory and suggest a role for both the emotional response and cognitive reasoning process in moral judgment. Both the emotional and cognitive processes were shown to be involved in the decision outcome. PMID:24592204

  12. Using Bayesian Nonparametric Hidden Semi-Markov Models to Disentangle Affect Processes during Marital Interaction

    PubMed Central

    Griffin, William A.; Li, Xun

    2016-01-01

    Sequential affect dynamics generated during the interaction of intimate dyads, such as married couples, are associated with a cascade of effects—some good and some bad—on each partner, close family members, and other social contacts. Although the effects are well documented, the probabilistic structures associated with micro-social processes connected to the varied outcomes remain enigmatic. Using extant data we developed a method of classifying and subsequently generating couple dynamics using a Hierarchical Dirichlet Process Hidden semi-Markov Model (HDP-HSMM). Our findings indicate that several key aspects of existing models of marital interaction are inadequate: affect state emissions and their durations, along with the expected variability differences between distressed and nondistressed couples are present but highly nuanced; and most surprisingly, heterogeneity among highly satisfied couples necessitate that they be divided into subgroups. We review how this unsupervised learning technique generates plausible dyadic sequences that are sensitive to relationship quality and provide a natural mechanism for computational models of behavioral and affective micro-social processes. PMID:27187319

  13. Attentional and affective processing of sexual stimuli in women with hypoactive sexual desire disorder.

    PubMed

    Brauer, Marieke; van Leeuwen, Matthijs; Janssen, Erick; Newhouse, Sarah K; Heiman, Julia R; Laan, Ellen

    2012-08-01

    Hypoactive sexual desire disorder (HSDD) is the most common sexual problem in women. From an incentive motivation perspective, HSDD may be the result of a weak association between sexual stimuli and rewarding experiences. As a consequence, these stimuli may either lose or fail to acquire a positive meaning, resulting in a limited number of incentives that have the capacity to elicit a sexual response. According to current information processing models of sexual arousal, sexual stimuli automatically activate meanings and if these are not predominantly positive, processes relevant to the activation of sexual arousal and desire may be interrupted. Premenopausal U.S. and Dutch women with acquired HSDD (n = 42) and a control group of sexually functional women (n = 42) completed a single target Implicit Association Task and a Picture Association Task assessing automatic affective associations with sexual stimuli and a dot detection task measuring attentional capture by sexual stimuli. Results showed that women with acquired HSDD displayed less positive (but not more negative) automatic associations with sexual stimuli than sexually functional women. The same pattern was found for self-reported affective sex-related associations. Participants were slower to detect targets in the dot detection task that replaced sexual images, irrespective of sexual function status. As such, the findings point to the relevance of affective processing of sexual stimuli in women with HSDD, and imply that the treatment of HSDD might benefit from a stronger emphasis on the strengthening of the association between sexual stimuli and positive meaning and sexual reward.

  14. Water quality and processes affecting dissolved oxygen concentrations in the Blackwater River, Canaan Valley, West Virginia

    USGS Publications Warehouse

    Waldron, M.C.; Wiley, J.B.

    1996-01-01

    The water quality and environmental processes affecting dissolved oxygen were determined for the Blackwater River in Canaan Valley, West Virginia. Canaan Valley is oval-shaped (14 miles by 5 miles) and is located in the Allegheny Mountains at an average elevation of 3,200 feet above sea level. Tourism, population, and real estate development have increased in the past two decades. Most streams in Canaan Valley are a dilute calcium magnesium bicarbonate-type water. Streamwater typicaly was soft and low in alkalinity and dissolved solids. Maximum values for specific conductance, hardness, alkalinity, and dissolved solids occurred during low-flow periods when streamflow was at or near baseflow. Dissolved oxygen concentrations are most sensitive to processes affecting the rate of reaeration. The reaeration is affected by solubility (atmospheric pressure, water temperature, humidity, and cloud cover) and processes that determine stream turbulence (stream depth, width, velocity, and roughness). In the headwaters, photosynthetic dissolved oxygen production by benthic algae can result in supersaturated dissolved oxygen concentrations. In beaver pools, dissolved oxygen consumption from sediment oxygen demand and carbonaceous biochemical oxygen demand can result in dissolved oxygen deficits.

  15. Towards Tunable Consensus Clustering for Studying Functional Brain Connectivity During Affective Processing.

    PubMed

    Liu, Chao; Abu-Jamous, Basel; Brattico, Elvira; Nandi, Asoke K

    2017-03-01

    In the past decades, neuroimaging of humans has gained a position of status within neuroscience, and data-driven approaches and functional connectivity analyses of functional magnetic resonance imaging (fMRI) data are increasingly favored to depict the complex architecture of human brains. However, the reliability of these findings is jeopardized by too many analysis methods and sometimes too few samples used, which leads to discord among researchers. We propose a tunable consensus clustering paradigm that aims at overcoming the clustering methods selection problem as well as reliability issues in neuroimaging by means of first applying several analysis methods (three in this study) on multiple datasets and then integrating the clustering results. To validate the method, we applied it to a complex fMRI experiment involving affective processing of hundreds of music clips. We found that brain structures related to visual, reward, and auditory processing have intrinsic spatial patterns of coherent neuroactivity during affective processing. The comparisons between the results obtained from our method and those from each individual clustering algorithm demonstrate that our paradigm has notable advantages over traditional single clustering algorithms in being able to evidence robust connectivity patterns even with complex neuroimaging data involving a variety of stimuli and affective evaluations of them. The consensus clustering method is implemented in the R package "UNCLES" available on http://cran.r-project.org/web/packages/UNCLES/index.html .

  16. Calibrating a global three-dimensional biogeochemical ocean model (MOPS-1.0)

    NASA Astrophysics Data System (ADS)

    Kriest, Iris; Sauerland, Volkmar; Khatiwala, Samar; Srivastav, Anand; Oschlies, Andreas

    2017-01-01

    Global biogeochemical ocean models contain a variety of different biogeochemical components and often much simplified representations of complex dynamical interactions, which are described by many ( ≈ 10 to ≈ 100) parameters. The values of many of these parameters are empirically difficult to constrain, due to the fact that in the models they represent processes for a range of different groups of organisms at the same time, while even for single species parameter values are often difficult to determine in situ. Therefore, these models are subject to a high level of parametric uncertainty. This may be of consequence for their skill with respect to accurately describing the relevant features of the present ocean, as well as their sensitivity to possible environmental changes. We here present a framework for the calibration of global biogeochemical ocean models on short and long timescales. The framework combines an offline approach for transport of biogeochemical tracers with an estimation of distribution algorithm (Covariance Matrix Adaption Evolution Strategy, CMA-ES). We explore the performance and capability of this framework by five different optimizations of six biogeochemical parameters of a global biogeochemical model, simulated over 3000 years. First, a twin experiment explores the feasibility of this approach. Four optimizations against a climatology of observations of annual mean dissolved nutrients and oxygen determine the extent to which different setups of the optimization influence model fit and parameter estimates. Because the misfit function applied focuses on the large-scale distribution of inorganic biogeochemical tracers, parameters that act on large spatial and temporal scales are determined earliest, and with the least spread. Parameters more closely tied to surface biology, which act on shorter timescales, are more difficult to determine. In particular, the search for optimum zooplankton parameters can benefit from a sound knowledge of

  17. Early neural activation during facial affect processing in adolescents with Autism Spectrum Disorder☆

    PubMed Central

    Leung, Rachel C.; Pang, Elizabeth W.; Cassel, Daniel; Brian, Jessica A.; Smith, Mary Lou; Taylor, Margot J.

    2014-01-01

    Impaired social interaction is one of the hallmarks of Autism Spectrum Disorder (ASD). Emotional faces are arguably the most critical visual social stimuli and the ability to perceive, recognize, and interpret emotions is central to social interaction and communication, and subsequently healthy social development. However, our understanding of the neural and cognitive mechanisms underlying emotional face processing in adolescents with ASD is limited. We recruited 48 adolescents, 24 with high functioning ASD and 24 typically developing controls. Participants completed an implicit emotional face processing task in the MEG. We examined spatiotemporal differences in neural activation between the groups during implicit angry and happy face processing. While there were no differences in response latencies between groups across emotions, adolescents with ASD had lower accuracy on the implicit emotional face processing task when the trials included angry faces. MEG data showed atypical neural activity in adolescents with ASD during angry and happy face processing, which included atypical activity in the insula, anterior and posterior cingulate and temporal and orbitofrontal regions. Our findings demonstrate differences in neural activity during happy and angry face processing between adolescents with and without ASD. These differences in activation in social cognitive regions may index the difficulties in face processing and in comprehension of social reward and punishment in the ASD group. Thus, our results suggest that atypical neural activation contributes to impaired affect processing, and thus social cognition, in adolescents with ASD. PMID:25610782

  18. Early neural activation during facial affect processing in adolescents with Autism Spectrum Disorder.

    PubMed

    Leung, Rachel C; Pang, Elizabeth W; Cassel, Daniel; Brian, Jessica A; Smith, Mary Lou; Taylor, Margot J

    2015-01-01

    Impaired social interaction is one of the hallmarks of Autism Spectrum Disorder (ASD). Emotional faces are arguably the most critical visual social stimuli and the ability to perceive, recognize, and interpret emotions is central to social interaction and communication, and subsequently healthy social development. However, our understanding of the neural and cognitive mechanisms underlying emotional face processing in adolescents with ASD is limited. We recruited 48 adolescents, 24 with high functioning ASD and 24 typically developing controls. Participants completed an implicit emotional face processing task in the MEG. We examined spatiotemporal differences in neural activation between the groups during implicit angry and happy face processing. While there were no differences in response latencies between groups across emotions, adolescents with ASD had lower accuracy on the implicit emotional face processing task when the trials included angry faces. MEG data showed atypical neural activity in adolescents with ASD during angry and happy face processing, which included atypical activity in the insula, anterior and posterior cingulate and temporal and orbitofrontal regions. Our findings demonstrate differences in neural activity during happy and angry face processing between adolescents with and without ASD. These differences in activation in social cognitive regions may index the difficulties in face processing and in comprehension of social reward and punishment in the ASD group. Thus, our results suggest that atypical neural activation contributes to impaired affect processing, and thus social cognition, in adolescents with ASD.

  19. Long-term biogeochemical impacts of liming the ocean

    NASA Astrophysics Data System (ADS)

    Ilyina, T.; Wolf-Gladrow, D.; Munhoven, G.; Heinze, C.

    2011-12-01

    Fossil fuel CO2 emissions result in large-scale long-term perturbations in seawater chemistry. Oceans take up atmospheric CO2, and several geo-engineering approaches have been suggested to mitigate impacts of CO2 emissions and resulting ocean acidification that are based on this property. One of them is to enhance weathering processes to remove atmospheric CO2. This method involves dissolving rocks (i.e. limestone) or adding strong bases (i.e. calcium hydroxide) in the upper ocean and is termed as liming the oceans. The net effect of this approach is to increase ocean alkalinity, thereby increasing the oceanic capacity to store anthropogenic CO2. Another effect of adding alkalinity would be to drive seawater to higher pH values and thus counteract the ongoing ocean acidification. However, whereas adding bases only alter alkalinity of seawater, dissolution of carbonates perturb both, alkalinity and dissolved inorganic carbon budgets. Thus, on longer time scales, these two methods will likely have different biogeochemical effects in the ocean. Here we test enduring implications of the two approaches for marine carbon cycle using the global ocean biogeochemical model HAMOCC. In our model scenarios we add alkalinity in the amounts proportional to fossil fuel emissions. We compare the long-term effectiveness of the two geo-engineering approaches to decrease atmospheric CO2.

  20. Isotopic, petrologic and biogeochemical investigations of banded iron-formations

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Kaufman, A. J.; Klein, C.; Studley, S. A.; Baur, M. E.; Walter, M. R.

    1986-01-01

    It is recognized that the first occurrence of banded iron-formations (BIFs) clearly predates biological oxygenation of the atmosphere-hydrosphere system and that their last occurrences extend beyond plausible dates of pervasive biological oxygenation. For this reason, and because enormous quantities of oxidizing power have been sequestered in them, it is widely thought that these massive, but enigmatic, sediments must encode information about the mechanism and timing of the rise of atmospheric O2. By coupling isotopic analyses of iron-formation carbonates with biogeochemical and petrologic investigations, we are studying (1) the mechanism of initial sedimentation of iron; (2) the role of iron in microbially mediated diagenetic processes in fresh iron-formation sediments; and (3) the logical integration of mechanisms of deposition with observed levels of banding. Thus far, it has been shown that (1) carbonates in BIFs of the Hamersley Group of Western Australia are isotopically inhomogenous; (2) the nature and pattern of isotopic ordering is not consistent with a metamorphic origin for the overall depletion of C-13 observed in the carbonates; (3) if biological, the origin of the C-13 depleted carbonate could be either respiratory or fermentative; (4) iron may have been precipitate d as Fe(3+), then reduced to Fe(2+) within the sediment; and (5) sedimentary biogeochemical systems may have been at least partially closed to mass transport of carbonate species.

  1. Terrestrial biogeochemical cycles: global interactions with the atmosphere and hydrology

    NASA Astrophysics Data System (ADS)

    Schimel, David S.; Kittel, Timothy G. F.; Parton, William J.

    1991-08-01

    Ecosystem scientists have developed a body of theory to predict the behaviour of biogeochemical cycles when exchanges with other ecosystems are small or prescribed. Recent environmental changes make it clear that linkages between ecosystems via atmospheric and hydrological transport have large effects on ecosystem dynamics when considered over time periods of a decade to a century, time scales relevant to contemporary humankind. Our ability to predict behaviour of ecosystems coupled by transport is limited by our ability (1) to extrapolate biotic function to large spatial scales and (2) to measure and model transport. We review developments in ecosystem theory, remote sensing, and geographical information systems (GIS) that support new efforts in spatial modeling. A paradigm has emerged to predict behaviour of ecosystems based on understanding responses to multiple resources (e.g., water, nutrients, light). Several ecosystem models couple primary production to decomposition and nutrient availability using the above paradigm. These models require a fairly small set of environmental variables to simulate spatial and temporal variation in rates of biogeochemical cycling. Simultaneously, techniques for inferring ecosystem behaviour from remotely measured canopy light interception are improving our ability to infer plant activity from satellite observations. Efforts have begun to couple models of transport in air and water to models of ecosystem function. Preliminary work indicates that coupling of transport and ecosystem processes alters the behaviour of earth system components (hydrology, terrestrial ecosystems, and the atmosphere) from that of an uncoupled mode.

  2. Biogeochemical metabolic modeling of methanogenesis by Methanosarcina barkeri

    NASA Astrophysics Data System (ADS)

    Jensvold, Z. D.; Jin, Q.

    2015-12-01

    Methanogenesis, the biological process of methane production, is the final step of natural organic matter degradation. In studying natural methanogenesis, important questions include how fast methanogenesis proceeds and how methanogens adapt to the environment. To address these questions, we propose a new approach - biogeochemical reaction modeling - by simulating the metabolic networks of methanogens. Biogeochemical reaction modeling combines geochemical reaction modeling and genome-scale metabolic modeling. Geochemical reaction modeling focuses on the speciation of electron donors and acceptors in the environment, and therefore the energy available to methanogens. Genome-scale metabolic modeling predicts microbial rates and metabolic strategies. Specifically, this approach describes methanogenesis using an enzyme network model, and computes enzyme rates by accounting for both the kinetics and thermodynamics. The network model is simulated numerically to predict enzyme abundances and rates of methanogen metabolism. We applied this new approach to Methanosarcina barkeri strain fusaro, a model methanogen that makes methane by reducing carbon dioxide and oxidizing dihydrogen. The simulation results match well with the results of previous laboratory experiments, including the magnitude of proton motive force and the kinetic parameters of Methanosarcina barkeri. The results also predict that in natural environments, the configuration of methanogenesis network, including the concentrations of enzymes and metabolites, differs significantly from that under laboratory settings.

  3. Biogeochemical Properties of Eddies in the California Current System

    NASA Astrophysics Data System (ADS)

    Chenillat, Fanny; Franks, Peter J. S.; Combes, Vincent

    2016-04-01

    The California Current System (CCS) is a coastal upwelling system characterized by intense mesoscale activity. This mesoscale activity plays a critical role in modulating biological production and exporting coastal biogeochemical materials offshore. To characterize and quantify the ability of mesoscale eddies to affect local and regional planktonic ecosystems in the CCS, we analyzed a 10-year-long physical-biological model simulation - with 5km horizontal resolution - using eddy detection and tracking to isolate the dynamics in cyclonic and anticyclonic eddies. At any given time, ~8% of the model domain was covered by eddies, and this small area belies ~50% of the cross-shelf biological transport. As they propagate westward across the shelf, cyclonic eddies efficiently transport coastal planktonic organisms, and maintain locally elevated production, Anticyclones, on the other hand, have a limited impact on local production.

  4. Application of a solar UV/chlorine advanced oxidation process to oil sands process-affected water remediation.

    PubMed

    Shu, Zengquan; Li, Chao; Belosevic, Miodrag; Bolton, James R; El-Din, Mohamed Gamal

    2014-08-19

    The solar UV/chlorine process has emerged as a novel advanced oxidation process for industrial and municipal wastewaters. Currently, its practical application to oil sands process-affected water (OSPW) remediation has been studied to treat fresh OSPW retained in large tailings ponds, which can cause significant adverse environmental impacts on ground and surface waters in Northern Alberta, Canada. Degradation of naphthenic acids (NAs) and fluorophore organic compounds in OSPW was investigated. In a laboratory-scale UV/chlorine treatment, the NAs degradation was clearly structure-dependent and hydroxyl radical-based. In terms of the NAs degradation rate, the raw OSPW (pH ∼ 8.3) rates were higher than those at an alkaline condition (pH = 10). Under actual sunlight, direct solar photolysis partially degraded fluorophore organic compounds, as indicated by the qualitative synchronous fluorescence spectra (SFS) of the OSPW, but did not impact NAs degradation. The solar/chlorine process effectively removed NAs (75-84% removal) and fluorophore organic compounds in OSPW in the presence of 200 or 300 mg L(-1) OCl(-). The acute toxicity of OSPW toward Vibrio fischeri was reduced after the solar/chlorine treatment. However, the OSPW toxicity toward goldfish primary kidney macrophages after solar/chlorine treatment showed no obvious toxicity reduction versus that of untreated OSPW, which warrants further study for process optimization.

  5. Applying the Cognitive-Affective Processing Systems Approach to Conceptualizing Rejection Sensitivity

    PubMed Central

    Ayduk, Özlem; Gyurak, Anett

    2009-01-01

    The Cognitive-Affective Processing Systems or CAPS theory (Mischel & Shoda, 1995) was proposed to account for the processes that explain why and how people’s behavior varies stably across situations. Research on Rejection Sensitivity is reviewed as a programmatic attempt to illustrate how personality dispositions can be studied within the CAPS framework. This research reveals an if … then … (e.g., if situation X, he does A, but if situation Y, he does B) pattern of rejection sensitivity such that high rejection sensitive people’s goal to prevent rejection can lead to accommodating behavior; yet, the failure to achieve this goal can lead to aggression, reactivity, and lack of self-concept clarity. These situation–behavior relations or personality signatures reflect a stable activation network of distinctive personality processing dynamics. These dynamics link fears and expectations of rejection, perceptions/attributions of rejection, and affective/behavioral overreactions to perceived rejection. Self-regulatory and attentional mechanisms may interact with these dynamics as buffers against high rejection sensitivity, illustrating how multiple processes within a CAPS network play out in behavior. PMID:19890458

  6. Environmental changes affect the assembly of soil bacterial community primarily by mediating stochastic processes.

    PubMed

    Zhang, Ximei; Johnston, Eric R; Liu, Wei; Li, Linghao; Han, Xingguo

    2016-01-01

    Both 'species fitness difference'-based deterministic processes, such as competitive exclusion and environmental filtering, and 'species fitness difference'-independent stochastic processes, such as birth/death and dispersal/colonization, can influence the assembly of soil microbial communities. However, how both types of processes are mediated by anthropogenic environmental changes has rarely been explored. Here we report a novel and general pattern that almost all anthropogenic environmental changes that took place in a grassland ecosystem affected soil bacterial community assembly primarily through promoting or restraining stochastic processes. We performed four experiments mimicking 16 types of environmental changes and separated the compositional variation of soil bacterial communities caused by each environmental change into deterministic and stochastic components, with a recently developed method. Briefly, because the difference between control and treatment communities is primarily caused by deterministic processes, the deterministic change was quantified as (mean compositional variation between treatment and control) - (mean compositional variation within control). The difference among replicate treatment communities is primarily caused by stochastic processes, so the stochastic change was estimated as (mean compositional variation within treatment) - (mean compositional variation within control). The absolute of the stochastic change was greater than that of the deterministic change across almost all environmental changes, which was robust for both taxonomic and functional-based criterion. Although the deterministic change may become more important as environmental changes last longer, our findings showed that changes usually occurred through mediating stochastic processes over 5 years, challenging the traditional determinism-dominated view.

  7. Drought-induced Changes in Dryland Soil Biogeochemical Cycles

    NASA Astrophysics Data System (ADS)

    Belnap, J.; Darrouzet-Nardi, A.; Duniway, M.; Ferrenberg, S.; Hoover, D. L.; Reed, S.

    2015-12-01

    Approximately 41% of Earth´s terrestrial surface consists of drylands and they are an important biome on all continents. Although dryland biota would be expected to be drought adapted, they can be surprisingly vulnerable to extended dry periods with subsequent consequences for biogeochemical cycles. Biological soil crusts, constituting up to 70% of the living cover in these regions, are important in these cycles. They fix both N and C, providing a significant percentage of regional and global inputs. However, extended drought reduces both types of inputs, as biocrusts are only metabolically active when wet, yet losses continue even when soils are dry. In addition, extended droughts can result in their mortality. The amount of net soil C exchange of biocrusted soils is controversial, but in SE Utah, soil C uptake only occurred when only when soils were wet. As soils are infrequently wet, annual balances were negative during the 2 year study and with future extended droughts or increased temperatures that reduce soil moisture, these losses will become even greater. As with C, N fixation also requires biocrusts be wet and thus inputs decline with extended drought or higher temperatures that both reduce input and result in lichen and cyanobacterial mortality. And similarly, N losses continue even when soils are dry. Loss of biocrust mosses can profoundly alter N cycles. Desert plants are also affected by drought: in plots where experimental drought was imposed, plants had lower photosynthetic rates and higher leaf C:N, which will likely affect productivity and decomposition rates and thus have further impacts on soil biogeochemical cycles.

  8. Catchment hydro-biogeochemical response to forest harvest intensity and spatial pattern

    EPA Science Inventory

    We apply a new model, Visualizing Ecosystems for Land Management Assessment (VELMA), to Watershed 10 (WS10) in the H.J. Andrews Experimental Forest to simulate the effects of harvest intensity and spatial pattern on catchment hydrological and biogeochemical processes. Specificall...

  9. Biogeochemical research priorities for sustainable biofuel and bioenergy feedstock production in the Americas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demands on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustaina...

  10. INTERACTIONS OF CHANGING CLIMATE AND ULTRAVIOLET RADIATION IN AQUATIC AND TERRESTRIAL BIOGEOCHEMICAL CYCLES

    EPA Science Inventory

    During the past decade interest has developed in the interactive effects of climate change and UV radiation on aquatic and terrestrial biogeochemical cycles. This talk used selected case studies to illustrate approaches that are being used to investigate these intriguing processe...

  11. Aeolian processes and the bioshpere: Interactions and feedback loops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aeolian processes affect landform evolution, biogeochemical cycles, regional climate, human health, and desertification. The entrainment, transport and deposition of aeolian sediments are recognized as major drivers in the dynamics of the earth system and there is a growing interest in the scientif...

  12. Role of transportation in the persuasion process: cognitive and affective responses to antidrug narratives.

    PubMed

    Banerjee, Smita C; Greene, Kathryn

    2012-01-01

    This study examined transportation effects of first- and third-person narratives as well as the role of transportation in the persuasion process. In particular, the authors evaluated the role of transportation in affecting cognitive and affective responses. Last, they addressed the relation between (a) cognitive and affective responses and (b) antidrug expectancies. Participants were 500 undergraduate students at a large northern university in the United Kingdom who were randomly assigned to 1 of 2 conditions: first- or third-person narratives on cocaine use. The results demonstrated that there was no difference between first- and third-person narratives in terms of transportation. However, overall, greater transportation was associated with more favorable cognitive responses, and more favorable cognitive response was associated with stronger anticocaine expectancies. In terms of affective responses, results indicated the mediating role of sadness and contentment in the association between transportation and anticocaine expectancies. In particular, increased transportation was associated with greater sadness and lower contentment. Lower sadness and contentment were associated with stronger anticocaine expectancies. Important theoretical and empirical implications are discussed.

  13. The power of emotional valence—from cognitive to affective processes in reading

    PubMed Central

    Altmann, Ulrike; Bohrn, Isabel C.; Lubrich, Oliver; Menninghaus, Winfried; Jacobs, Arthur M.

    2012-01-01

    The comprehension of stories requires the reader to imagine the cognitive and affective states of the characters. The content of many stories is unpleasant, as they often deal with conflict, disturbance or crisis. Nevertheless, unpleasant stories can be liked and enjoyed. In this fMRI study, we used a parametric approach to examine (1) the capacity of increasing negative valence of story contents to activate the mentalizing network (cognitive and affective theory of mind, ToM), and (2) the neural substrate of liking negatively valenced narratives. A set of 80 short narratives was compiled, ranging from neutral to negative emotional valence. For each story mean rating values on valence and liking were obtained from a group of 32 participants in a prestudy, and later included as parametric regressors in the fMRI analysis. Another group of 24 participants passively read the narratives in a three Tesla MRI scanner. Results revealed a stronger engagement of affective ToM-related brain areas with increasingly negative story valence. Stories that were unpleasant, but simultaneously liked, engaged the medial prefrontal cortex (mPFC), which might reflect the moral exploration of the story content. Further analysis showed that the more the mPFC becomes engaged during the reading of negatively valenced stories, the more coactivation can be observed in other brain areas related to the neural processing of affective ToM and empathy. PMID:22754519

  14. Positive affect and health-related neuroendocrine, cardiovascular, and inflammatory processes.

    PubMed

    Steptoe, Andrew; Wardle, Jane; Marmot, Michael

    2005-05-03

    Negative affective states such as depression are associated with premature mortality and increased risk of coronary heart disease, type 2 diabetes, and disability. It has been suggested that positive affective states are protective, but the pathways through which such effects might be mediated are poorly understood. Here we show that positive affect in middle-aged men and women is associated with reduced neuroendocrine, inflammatory, and cardiovascular activity. Positive affect was assessed by aggregating momentary experience samples of happiness over a working day and was inversely related to cortisol output over the day, independently of age, gender, socioeconomic position, body mass, and smoking. Similar patterns were observed on a leisure day. Happiness was also inversely related to heart rate assessed by using ambulatory monitoring methods over the day. Participants underwent mental stress testing in the laboratory, where plasma fibrinogen stress responses were smaller in happier individuals. These effects were independent of psychological distress, supporting the notion that positive well-being is directly related to health-relevant biological processes.

  15. The power of emotional valence-from cognitive to affective processes in reading.

    PubMed

    Altmann, Ulrike; Bohrn, Isabel C; Lubrich, Oliver; Menninghaus, Winfried; Jacobs, Arthur M

    2012-01-01

    The comprehension of stories requires the reader to imagine the cognitive and affective states of the characters. The content of many stories is unpleasant, as they often deal with conflict, disturbance or crisis. Nevertheless, unpleasant stories can be liked and enjoyed. In this fMRI study, we used a parametric approach to examine (1) the capacity of increasing negative valence of story contents to activate the mentalizing network (cognitive and affective theory of mind, ToM), and (2) the neural substrate of liking negatively valenced narratives. A set of 80 short narratives was compiled, ranging from neutral to negative emotional valence. For each story mean rating values on valence and liking were obtained from a group of 32 participants in a prestudy, and later included as parametric regressors in the fMRI analysis. Another group of 24 participants passively read the narratives in a three Tesla MRI scanner. Results revealed a stronger engagement of affective ToM-related brain areas with increasingly negative story valence. Stories that were unpleasant, but simultaneously liked, engaged the medial prefrontal cortex (mPFC), which might reflect the moral exploration of the story content. Further analysis showed that the more the mPFC becomes engaged during the reading of negatively valenced stories, the more coactivation can be observed in other brain areas related to the neural processing of affective ToM and empathy.

  16. Application of ultrasound processed images in space: Quanitative assessment of diffuse affectations

    NASA Astrophysics Data System (ADS)

    Pérez-Poch, A.; Bru, C.; Nicolau, C.

    The purpose of this study was to evaluate diffuse affectations in the liver using texture image processing techniques. Ultrasound diagnose equipments are the election of choice to be used in space environments as they are free from hazardous effects on health. However, due to the need for highly trained radiologists to assess the images, this imaging method is mainly applied on focal lesions rather than on non-focal ones. We have conducted a clinical study on 72 patients with different degrees of chronic hepatopaties and a group of control of 18 individuals. All subjects' clinical reports and results of biopsies were compared to the degree of affectation calculated by our computer system , thus validating the method. Full statistical results are given in the present paper showing a good correlation (r=0.61) between pathologist's report and analysis of the heterogenicity of the processed images from the liver. This computer system to analyze diffuse affectations may be used in-situ or via telemedicine to the ground.

  17. Acetyl-L-carnitine affects nonassociative learning processes in the leech Hirudo medicinalis.

    PubMed

    Ristori, C; Cataldo, E; Zaccardi, M L; Traina, G; Calvani, M; Lombardo, P; Scuri, R; Brunelli, M

    2006-11-03

    Acetyl-L-carnitine is a natural molecule widely distributed in vertebrate and invertebrate nervous system. It is known to have significant effects on neuronal activity playing a role as neuroprotective and anti-nociceptive agent, as well as neuromodulatory factor. About its capability of affecting learning processes the available data are controversial. In the present study, we utilized the simplified model system of the leech Hirudo medicinalis to analyze the effects of acetyl-L-carnitine, assessing whether and how it might affect elementary forms of nonassociative learning processes. In leeches with the head ganglion disconnected from the first segmental ganglion, repetitive application of weak electrical shocks onto the caudal portion of the body wall induces habituation of swim induction whereas brush strokes on the dorsal skin produces sensitization or dishabituation when the nociceptive stimulus is delivered on previously habituated animals. Herein, the effects of different concentrations of acetyl-L-carnitine (2 mM - 0.05 mM) have been tested at different times on both sensitization and dishabituation. The results show that a single treatment of acetyl-L-carnitine blocked the onset of sensitization in a dose- and time-dependent manner. In fact, the most effective concentration able to block this process was 2 mM, which induced its major effects 11 days after the treatment, whereas 0.05 mM was unable to affect the sensitization process at all considered time points. On the contrary, acetyl-L-carnitine did not completely abolish dishabituation at the tested concentrations and at every time point. Finally, acetyl-L-carnitine also impaired the habituation of swim induction, but only 11 days after treatment.

  18. How does context affect intimate relationships? linking external stress and cognitive processes within marriage.

    PubMed

    Neff, Lisa A; Karney, Benjamin R

    2004-02-01

    Stressors external to the marriage frequently affect the way spouses evaluate their marital quality. To date, however, understanding of the interplay between external stress and internal relationship processes has been limited in two ways. First, research has generally examined only the short-term consequences of stress. Second, the mechanisms through which external stressors influence relationship outcomes are unclear. This study addressed both limitations by examining relationship cognitions that may mediate the effects of external stress throughout 4 years of marriage. Analyses confirmed that stressful experiences were associated with the trajectory of marital quality overtime. Furthermore, both the content and the organization of spouses' specific relationship cognitions mediated this effect. That is, stress negatively influenced the nature of spouses' marital perceptions as well as the way spouses interpreted and processed those perceptions. These findings draw attention to ways that the context of relationships shapes and constrains relationship processes.

  19. The association between chronic exposure to video game violence and affective picture processing: an ERP study.

    PubMed

    Bailey, Kira; West, Robert; Anderson, Craig A

    2011-06-01

    Exposure to video game violence (VGV) is known to result in desensitization to violent material and may alter the processing of positive emotion related to facial expressions. The present study was designed to address three questions: (1) Does the association between VGV and positive emotion extend to stimuli other than faces, (2) is the association between VGV and affective picture processing observed with a single presentation of the stimuli, and (3) is the association between VGV and the response to violent stimuli sensitive to the relevance of emotion for task performance? The data revealed that transient modulations of the event-related potentials (ERPs) related to attentional orienting and sustained modulations of the ERPs related to evaluative processing were sensitive to VGV exposure.

  20. Differential leaflet mortality may influence biogeochemical cycling following tropical cyclones.

    PubMed

    Marler, Thomas E; Ferreras, Ulysses

    2014-01-01

    Intensity of tropical cyclones is expected to increase in the coming century, and an improved understanding of their influence on biogeochemical cycles would benefit ecologists and conservationists. We studied the November 2013 Typhoon Haiyan damage to observe that numerous examples of partial leaf necrosis on intact leaves of trees in the Cycadaceae and Arecaceae families resulted, leaving behind a copious amount of arboreal dead leaf material attached to live leaves. The decay process of this form of arboreal litter has not been previously studied. When compared with decay of ground litter or detached litter suspended in the canopy, we predict the decay process of this form of arboreal litter will include increased photooxidation, leaching, and comminution by detritivorous insects and mites; but decreased catabolism of organic molecules by saprophytic organisms.

  1. Redox-induced mobilization of copper, selenium, and zinc in deltaic soils originating from Mississippi (U.S.A.) and Nile (Egypt) River Deltas: A better understanding of biogeochemical processes for safe environmental management.

    PubMed

    Shaheen, Sabry M; Frohne, Tina; White, John R; DeLaune, Ron D; Rinklebe, Jörg

    2017-01-15

    Studies about the mobilization of potentially toxic elements (PTEs) in deltaic soils can be challenging, provide critical information on assessing the potential risk and fate of these elements and for sustainable management of these soils. The impact of redox potential (EH), pH, iron (Fe), manganese (Mn), sulfate (SO4(2-)), chloride (Cl(-)), aliphatic dissolved organic carbon (DOC), and aromatic dissolved organic carbon (DAC) on the mobilization of copper (Cu), selenium (Se), and zinc (Zn) was studied in two soils collected from the Nile and Mississippi Rivers deltaic plains focused on increasing our understanding of the fate of these toxic elements. Soils were exposed to a range of redox conditions stepwise from reducing to oxidizing soil conditions using an automated biogeochemical microcosm apparatus. Concentrations of DOC and Fe were high under reducing conditions as compared to oxidizing conditions in both soils. The proportion of DAC in relation to DOC in solution (aromaticity) was high in the Nile Delta soil (NDS) and low in the Mississippi Delta soil (MDS) under oxidizing conditions. Mobilization of Cu was low under reducing conditions in both soils which was likely caused by sulfide precipitation and as a result of reduction of Cu(2+) to Cu(1+). Mobilization of Se was high under low EH in both soils. Release of Se was positively correlated with DOC, Fe, Mn, and SO4(2-) in the NDS, and with Fe in the MDS. Mobilization of Zn showed negative correlations with EH and pH in the NDS while these correlations were non-significant in the MDS. The release dynamics of dissolved Zn could be governed mainly by the chemistry of Fe and Mn in the NDS and by the chemistry of Mn in the MDS. Our findings suggest that a release of Se and Zn occurs under anaerobic conditions, while aerobic conditions favor the release of Cu in both soils. In conclusion, the release of Cu, Se, and Zn under different reducing and oxidizing conditions in deltaic wetland soils should be taken into

  2. Apparatus for Cold, Pressurized Biogeochemical Experiments

    NASA Technical Reports Server (NTRS)

    Amashukeli, Xenia; Pappalardo, Robert T.; Connon, Stephanie A.; Gleeson, Damhnait F.

    2010-01-01

    A laboratory apparatus has been devised as a means of studying plausible biogeochemical reactions under high-pressure, low-temperature aqueous, anaerobic conditions like those conjectured to prevail in a liquid water ocean on Europa (the fourth largest moon of the planet Jupiter). The experiments to be performed by use of this apparatus are intended to enhance understanding of how life (if any) could originate and evolve in the Europa ocean environment. Inasmuch as terrestrial barophilic, psychrophilic organisms that thrive under anaerobic conditions are used in the experiments, the experiments may also contribute to terrestrial biogeochemistry. The apparatus (see figure) includes a bolt-closure reaction vessel secured inside a refrigerator that maintains a temperature of 4 C. Pressurized water is supplied to the interior of the vessel by a hydrostatic pump, which is attached to the vessel via high-pressure fittings. The terrestrial organisms used in the experiments thus far have been several facultative barophilic, psychrophilic stains of Shewanella bacteria. In the experiments, these organisms have been tested for reduction of ferric ion by growing them in the presence of a ferric food source under optimized terrestrial conditions. The short-term goal of these experiments has been to select Shewanella strains that exhibit iron-reduction capability and test their ability to facilitate biogeochemical reduction of iron under temperature and pressure conditions imitating those in Europa s ocean. It is anticipated, that, once growth under Europa-like conditions has been achieved, the selected Shewanella strains will be used to facilitate biogeochemical reactions of sulfate and carbonate with hydrogen gas. Any disequilibrium of the products with the environment would be interpreted as signifying biogenic activity and the possibility of life in Europa s ocean.

  3. Does the processing fluency of a syllabus affect the forecasted grade and course difficulty?

    PubMed

    Guenther, R Kim

    2012-06-01

    Processing fluency is known to affect a variety of cognitive assessments, but most research has not examined such effects in the context of a real-life experience. In the first experiment, college students, enrolled in either a statistics or cognitive psychology course, read a course syllabus which varied in the clarity of its font and frequency of its vocabulary. Based on the syllabus, students then forecasted their final course grade and the course's difficulty. Despite methodological similarity to other fluency experiments and adequate statistical power, there were no significant differences in forecasts across fluency conditions. Fluency may be discounted in a task which provides information that affects people's lives. This interpretation was bolstered by a second experiment whose participants were students in a statistics course. These students read the cognitive course's syllabus and forecasted better grades and less difficulty in the cognitive course when the font of the syllabus was more clear than unclear.

  4. Perceiving emotions in neutral faces: expression processing is biased by affective person knowledge

    PubMed Central

    Rabovsky, Milena; Abdel Rahman, Rasha

    2015-01-01

    According to a widely held view, basic emotions such as happiness or anger are reflected in facial expressions that are invariant and uniquely defined by specific facial muscle movements. Accordingly, expression perception should not be vulnerable to influences outside the face. Here, we test this assumption by manipulating the emotional valence of biographical knowledge associated with individual persons. Faces of well-known and initially unfamiliar persons displaying neutral expressions were associated with socially relevant negative, positive or comparatively neutral biographical information. The expressions of faces associated with negative information were classified as more negative than faces associated with neutral information. Event-related brain potential modulations in the early posterior negativity, a component taken to reflect early sensory processing of affective stimuli such as emotional facial expressions, suggest that negative affective knowledge can bias the perception of faces with neutral expressions toward subjectively displaying negative emotions. PMID:24948155

  5. Meet the Editor: Global Biogeochemical Cycles

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    Meinrat Andreae was named the editor of the AGU's journal Global Biogeochemical Cycles last year.Andreae, director of the biogeochemistry department at the Max Plank Institute for Chemistry (MPIC), located in Mainz, Germany said that he plans to maintain the journal as a resource that highlights the broad spectrum of interdisciplinary themes that showcase the interactions between the biosphere and the geosphere. “Our special niche is in the field of larger-scale, more integrative studies that have global scope,” he explained.

  6. Modeling potential interactions of acid deposition and climate change at four watersheds in Shenandoah National Park, VA using the dynamic biogeochemical model PnET-BGC

    NASA Astrophysics Data System (ADS)

    Robison, A.; Scanlon, T. M.; Cosby, B. J.; Webb, J. R.; Hayhoe, K.; Galloway, J. N.

    2013-12-01

    The ecological threat imposed by acid deposition on watersheds in the eastern U.S. has, to a certain extent, been alleviated by the passage of the Clean Air Act and subsequent amendments. At the same time, as climate change continues to emerge as a global issue affecting temperature regimes and hydrological cycling among many other variables, new concerns are developing for these watershed ecosystems. Considering that climate change and acid deposition do not influence watersheds independently, there is an opportunity and need to examine both the potential interactions and the impacts of these two biogeochemical drivers. Long-term monitoring of four streams in Shenandoah National Park, VA has provided a favorable setting for analyzing this interaction. Deposition of both sulfur and nitrogen has significantly decreased over the past 30 years in the region. Meanwhile, all four streams have warmed significantly over the past 20-33 years at an average rate of 0.07 oC yr-1, a trend that is closely tied to atmospheric warming rather than changes in hydrology. We applied a dynamic biogeochemical model (PnET-BGC) to these four watersheds to a) investigate how climate change will affect watershed response to reduced acid deposition; b) identify the key processes through which this interaction will be manifested; and c) examine how differences in watershed characteristics (e.g. bedrock and soil properties) affect the response to these two biogeochemical drivers. Included in model application are statistically downscaled climate projections of temperature maximums and minimums, precipitation, and solar radiation. Results will be used to assess the relative impact of these climate variables in regulating stream acid-base status. This study will also provide insight into the future ecological health of these ecosystems, primarily through examination of aquatic habitat suitability based on temperature and acidity.

  7. Transcranial magnetic stimulation to the transverse occipital sulcus affects scene but not object processing.

    PubMed

    Ganaden, Rachel E; Mullin, Caitlin R; Steeves, Jennifer K E

    2013-06-01

    Traditionally, it has been theorized that the human visual system identifies and classifies scenes in an object-centered approach, such that scene recognition can only occur once key objects within a scene are identified. Recent research points toward an alternative approach, suggesting that the global image features of a scene are sufficient for the recognition and categorization of a scene. We have previously shown that disrupting object processing with repetitive TMS to object-selective cortex enhances scene processing possibly through a release of inhibitory mechanisms between object and scene pathways [Mullin, C. R., & Steeves, J. K. E. TMS to the lateral occipital cortex disrupts object processing but facilitates scene processing. Journal of Cognitive Neuroscience, 23, 4174-4184, 2011]. Here we show the effects of TMS to the transverse occipital sulcus (TOS), an area implicated in scene perception, on scene and object processing. TMS was delivered to the TOS or the vertex (control site) while participants performed an object and scene natural/nonnatural categorization task. Transiently interrupting the TOS resulted in significantly lower accuracies for scene categorization compared with control conditions. This demonstrates a causal role of the TOS in scene processing and indicates its importance, in addition to the parahippocampal place area and retrosplenial cortex, in the scene processing network. Unlike TMS to object-selective cortex, which facilitates scene categorization, disrupting scene processing through stimulation of the TOS did not affect object categorization. Further analysis revealed a higher proportion of errors for nonnatural scenes that led us to speculate that the TOS may be involved in processing the higher spatial frequency content of a scene. This supports a nonhierarchical model of scene recognition.

  8. Transcranial Electrical Stimulation over Dorsolateral Prefrontal Cortex Modulates Processing of Social Cognitive and Affective Information

    PubMed Central

    Conson, Massimiliano; Errico, Domenico; Mazzarella, Elisabetta; Giordano, Marianna; Grossi, Dario; Trojano, Luigi

    2015-01-01

    Recent neurofunctional studies suggested that lateral prefrontal cortex is a domain-general cognitive control area modulating computation of social information. Neuropsychological evidence reported dissociations between cognitive and affective components of social cognition. Here, we tested whether performance on social cognitive and affective tasks can be modulated by transcranial direct current stimulation (tDCS) over dorsolateral prefrontal cortex (DLPFC). To this aim, we compared the effects of tDCS on explicit recognition of emotional facial expressions (affective task), and on one cognitive task assessing the ability to adopt another person’s visual perspective. In a randomized, cross-over design, male and female healthy participants performed the two experimental tasks after bi-hemispheric tDCS (sham, left anodal/right cathodal, and right anodal/left cathodal) applied over DLPFC. Results showed that only in male participants explicit recognition of fearful facial expressions was significantly faster after anodal right/cathodal left stimulation with respect to anodal left/cathodal right and sham stimulations. In the visual perspective taking task, instead, anodal right/cathodal left stimulation negatively affected both male and female participants’ tendency to adopt another’s point of view. These findings demonstrated that concurrent facilitation of right and inhibition of left lateral prefrontal cortex can speed-up males’ responses to threatening faces whereas it interferes with the ability to adopt another’s viewpoint independently from gender. Thus, stimulation of cognitive control areas can lead to different effects on social cognitive skills depending on the affective vs. cognitive nature of the task, and on the gender-related differences in neural organization of emotion processing. PMID:25951227

  9. Transcranial Electrical Stimulation over Dorsolateral Prefrontal Cortex Modulates Processing of Social Cognitive and Affective Information.

    PubMed

    Conson, Massimiliano; Errico, Domenico; Mazzarella, Elisabetta; Giordano, Marianna; Grossi, Dario; Trojano, Luigi

    2015-01-01

    Recent neurofunctional studies suggested that lateral prefrontal cortex is a domain-general cognitive control area modulating computation of social information. Neuropsychological evidence reported dissociations between cognitive and affective components of social cognition. Here, we tested whether performance on social cognitive and affective tasks can be modulated by transcranial direct current stimulation (tDCS) over dorsolateral prefrontal cortex (DLPFC). To this aim, we compared the effects of tDCS on explicit recognition of emotional facial expressions (affective task), and on one cognitive task assessing the ability to adopt another person's visual perspective. In a randomized, cross-over design, male and female healthy participants performed the two experimental tasks after bi-hemispheric tDCS (sham, left anodal/right cathodal, and right anodal/left cathodal) applied over DLPFC. Results showed that only in male participants explicit recognition of fearful facial expressions was significantly faster after anodal right/cathodal left stimulation with respect to anodal left/cathodal right and sham stimulations. In the visual perspective taking task, instead, anodal right/cathodal left stimulation negatively affected both male and female participants' tendency to adopt another's point of view. These findings demonstrated that concurrent facilitation of right and inhibition of left lateral prefrontal cortex can speed-up males' responses to threatening faces whereas it interferes with the ability to adopt another's viewpoint independently from gender. Thus, stimulation of cognitive control areas can lead to different effects on social cognitive skills depending on the affective vs. cognitive nature of the task, and on the gender-related differences in neural organization of emotion processing.

  10. Observing functional actions affects semantic processing of tools: evidence of a motor-to-semantic priming.

    PubMed

    De Bellis, Francesco; Ferrara, Antonia; Errico, Domenico; Panico, Francesco; Sagliano, Laura; Conson, Massimiliano; Trojano, Luigi

    2016-01-01

    Recent evidence shows that activation of motor information can favor identification of related tools, thus suggesting a strict link between motor and conceptual knowledge in cognitive representation of tools. However, the involvement of motor information in further semantic processing has not been elucidated. In three experiments, we aimed to ascertain whether motor information provided by observation of actions could affect processing of conceptual knowledge about tools. In Experiment 1, healthy participants judged whether pairs of tools evoking different functional handgrips had the same function. In Experiment 2 participants judged whether tools were paired with appropriate recipients. Finally, in Experiment 3 we again required functional judgments as in Experiment 1, but also included in the set of stimuli pairs of objects having different function and similar functional handgrips. In all experiments, pictures displaying either functional grasping (aimed to use tools) or structural grasping (just aimed to move tools independently from their use) were presented before each stimulus pair. The results demonstrated that, in comparison with structural grasping, observing functional grasping facilitates judgments about tools' function when objects did not imply the same functional manipulation (Experiment 1), whereas worsened such judgments when objects shared functional grasp (Experiment 3). Instead, action observation did not affect judgments concerning tool-recipient associations (Experiment 2). Our findings support a task-dependent influence of motor information on high-order conceptual tasks and provide further insights into how motor and conceptual processing about tools can interact.

  11. Sorting it out: bedding particle size and nesting material processing method affect nest complexity.

    PubMed

    Robinson-Junker, Amy; Morin, Amelia; Pritchett-Corning, Kathleen; Gaskill, Brianna N

    2017-04-01

    As part of routine husbandry, an increasing number of laboratory mice receive nesting material in addition to standard bedding material in their cages. Nesting material improves health outcomes and physiological performance in mice that receive it. Providing usable nesting material uniformly and efficiently to various strains of mice remains a challenge. The aim of this study was to determine how bedding particle size, method of nesting material delivery, and processing of the nesting material before delivery affected nest building in mice of strong (BALB/cAnNCrl) and weak (C3H/HeNCrl) gathering abilities. Our data suggest that processing nesting material through a grinder in conjunction with bedding material, although convenient for provision of bedding with nesting material 'built-in', negatively affects the integrity of the nesting material and subsequent nest-building outcomes. We also found that C3H mice, previously thought to be poor nest builders, built similarly scored nests to those of BALB/c mice when provided with unprocessed nesting material. This was true even when nesting material was mixed into the bedding substrate. We also observed that when nesting material was mixed into the bedding substrate, mice of both strains would sort their bedding by particle size more often than if it were not mixed in. Our findings support the utility of the practice of distributing nesting material mixed in with bedding substrate, but not that of processing the nesting material with the bedding in order to mix them.

  12. Inhomogeneous Point-Processes to Instantaneously Assess Affective Haptic Perception through Heartbeat Dynamics Information

    NASA Astrophysics Data System (ADS)

    Valenza, G.; Greco, A.; Citi, L.; Bianchi, M.; Barbieri, R.; Scilingo, E. P.

    2016-06-01

    This study proposes the application of a comprehensive signal processing framework, based on inhomogeneous point-process models of heartbeat dynamics, to instantaneously assess affective haptic perception using electrocardiogram-derived information exclusively. The framework relies on inverse-Gaussian point-processes with Laguerre expansion of the nonlinear Wiener-Volterra kernels, accounting for the long-term information given by the past heartbeat events. Up to cubic-order nonlinearities allow for an instantaneous estimation of the dynamic spectrum and bispectrum of the considered cardiovascular dynamics, as well as for instantaneous measures of complexity, through Lyapunov exponents and entropy. Short-term caress-like stimuli were administered for 4.3–25 seconds on the forearms of 32 healthy volunteers (16 females) through a wearable haptic device, by selectively superimposing two levels of force, 2 N and 6 N, and two levels of velocity, 9.4 mm/s and 65 mm/s. Results demonstrated that our instantaneous linear and nonlinear features were able to finely characterize the affective haptic perception, with a recognition accuracy of 69.79% along the force dimension, and 81.25% along the velocity dimension.

  13. Inhomogeneous Point-Processes to Instantaneously Assess Affective Haptic Perception through Heartbeat Dynamics Information

    PubMed Central

    Valenza, G.; Greco, A.; Citi, L.; Bianchi, M.; Barbieri, R.; Scilingo, E. P.

    2016-01-01

    This study proposes the application of a comprehensive signal processing framework, based on inhomogeneous point-process models of heartbeat dynamics, to instantaneously assess affective haptic perception using electrocardiogram-derived information exclusively. The framework relies on inverse-Gaussian point-processes with Laguerre expansion of the nonlinear Wiener-Volterra kernels, accounting for the long-term information given by the past heartbeat events. Up to cubic-order nonlinearities allow for an instantaneous estimation of the dynamic spectrum and bispectrum of the considered cardiovascular dynamics, as well as for instantaneous measures of complexity, through Lyapunov exponents and entropy. Short-term caress-like stimuli were administered for 4.3–25 seconds on the forearms of 32 healthy volunteers (16 females) through a wearable haptic device, by selectively superimposing two levels of force, 2 N and 6 N, and two levels of velocity, 9.4 mm/s and 65 mm/s. Results demonstrated that our instantaneous linear and nonlinear features were able to finely characterize the affective haptic perception, with a recognition accuracy of 69.79% along the force dimension, and 81.25% along the velocity dimension. PMID:27357966

  14. Nutritive value of corn silage as affected by maturity and mechanical processing: a contemporary review.

    PubMed

    Johnson, L; Harrison, J H; Hunt, C; Shinners, K; Doggett, C G; Sapienza, D

    1999-12-01

    Stage of maturity at harvest and mechanical processing affect the nutritive value of corn silage. The change in nutritive value of corn silage as maturity advances can be measured by animal digestion and macro in situ degradation studies among other methods. Predictive equations using climatic data, vitreousness of corn grain in corn silage, starch reactivity, gelatinization enthalpy, dry matter (DM) of corn grain in corn silage, and DM of corn silage can be used to estimate starch digestibility of corn silage. Whole plant corn silage can be mechanically processed either pre- or postensiling with a kernel processor mounted on a forage harvester, a recutter screen on a forage harvester, or a stationary roller mill. Mechanical processing of corn silage can improve ensiling characteristics, reduce DM losses during ensiling, and improve starch and fiber digestion as a result of fracturing the corn kernels and crushing and shearing the stover and cobs. Improvements in milk production have ranged from 0.2 to 2.0 kg/d when cows were fed mechanically processed corn silage. A consistent improvement in milk protein yield has also been observed when mechanically processed corn silage has been fed. With the advent of mechanical processors, alternative strategies are evident for corn silage management, such as a longer harvest window.

  15. Thermal processing differentially affects lycopene and other carotenoids in cis-lycopene containing, tangerine tomatoes.

    PubMed

    Cooperstone, Jessica L; Francis, David M; Schwartz, Steven J

    2016-11-01

    Tangerine tomatoes, unlike red tomatoes, accumulate cis-lycopenes instead of the all-trans isomer. cis-Lycopene is the predominating isomeric form of lycopene found in blood and tissues. Our objective was to understand how thermal processing and lipid concentration affect carotenoid isomerisation and degradation in tangerine tomatoes. We conducted duplicated factorial designed experiments producing tangerine tomato juice and sauce, varying both processing time and lipid concentration. Carotenoids were extracted and analysed using high-performance liquid chromatography with photodiode array detection. Phytoene, phytofluene, ζ-carotene, neurosporene, tetra-cis-lycopene, all-trans-lycopene and other-cis-lycopenes were quantified. Tetra-cis-lycopene decreased with increasing heating time and reached 80% of the original level in sauce after processing times of 180min. All-trans-lycopene and other-cis-lycopenes increased with longer processing times. Total carotenoids and total lycopene decreased with increased heating times while phytoene and phytofluene were unchanged. These data suggest limiting thermal processing of tangerine tomato products if delivery of tetra-cis-lycopene is desirable.

  16. How baryonic feedback processes can affect dark matter halos: a stochastic model

    NASA Astrophysics Data System (ADS)

    Freundlich, J.; El-Zant, A.; Combes, F.

    2016-12-01

    Feedback processes from stars and active galactic nuclei result in gas density fluctuations which can contribute to `heating' dark matter haloes, decrease their density at the center and hence form more realistic `cores' than the steep `cusps' predicted by cold dark matter (CDM) simulations. We present a theoretical model deriving this effect from first principles: stochastic density variations in the gas distribution perturb the gravitational potential and hence affect the halo particles. We analytically derive the velocity dispersion imparted to the CDM particles and the corresponding relaxation time, and further perform numerical simulations to show that the assumed process can indeed lead to the formation of a core in an initially cuspy halo within a timescale comparable to the derived relaxation time. This suggests that feedback-induced cusp-core transformations observed in hydrodynamic simulations of galaxy formation may be understood and parametrized in relatively simple terms.

  17. Processes affecting reductive dechlorination of chlorinated solvents by zero-valent iron

    SciTech Connect

    Matheson, L.J.; Tratnyek, P.G.

    1993-12-31

    Zero-valent iron may participate in the reductive dechlorination process by three different mechanisms: direct, electrolytic reduction; reduction by hydrogen produced during the corrosion process; and reduction by dissolved (ferrous) iron that is also produced by corroding iron. The first step of electrolytic reduction is presumably, the transfer of one electron from the metal surface to the organic molecule. This results in an organic anion radical that may then lose a halide anion to give a carbon-centered radical, and oxidized iron, which is eventually released to the solution as Fe{sup 2+}. The goal of this research is to provide a comprehensive survey of the mechanisms that affect the performance of this reactive barrier technology.

  18. Formation and ridging of flaw leads in the eastern Canadian Beaufort Sea. Special Session C06 on: “Physical, biological and biogeochemical processes associated with young thin ice types”

    NASA Astrophysics Data System (ADS)

    Prinsenberg, S. J.

    2009-12-01

    Formation and ridging of flaw leads in the eastern Canadian Beaufort Sea. Simon Prinsenberg1 and Yves Graton2 1Bedford Inst. of Oceanography, Fisheries and Oceans Canada P.O. Box1006, Dartmouth, Nova Scotia, B2Y 4A2, Canada prinsenbergs@mar.dfo-mpo.gc.ca 2Inst. National de la Recherche Scientifique-Eau, INRS-ETE University of Quebec at Quebec City, Quebec yvesgratton@eteinrs.ca During the winter of 2008, the flaw lead south of Banks Island repeatedly opened and closed representing an elongated region where periodically the large ice growth stimulates the densification of the surface layer due to salt rejection and instigates a local circulation pattern that will affect the biological processes of the region. Helicopter-borne sensors were available to monitor the aftermath of one of the rapid closing of the flaw lead into extensive elongated rubble field using a Canadian Ice breaker, CCGS Amundsen, as a logistic base. After the wind reversed a new open flaw lead 20km wide restarting a new flaw lead formation cycle. Ice thickness and surface roughness data were collected from the rubble field and adjacent open flaw lead with an Electromagnetic-Laser system. The strong wind event of April 4-5 2009 generated a large linear 1.5km wide ice rubble field up to 8-10m thick when the 60cm thick, 18km wide flaw lead was crunched into land-fast by the 1.5m thick offshore pack ice. It is expected that during rapid ice growth in a flaw lead, salt rejection increase the density of the surface water layer producing a surface depression (Low) and cyclonic circulation. In contrast at depth, the extra surface dense water produces a high in the horizontal pressure field and anti-cyclonic circulation which remains after the rapid ice growth within the flaw lead stops. One of such remnants may have been observed during the CFL-IPY winter survey.

  19. Oil sands process-affected water impairs feeding by Daphnia magna.

    PubMed

    Lari, Ebrahim; Steinkey, Dylan; Morandi, Garrett; Rasmussen, Joseph B; Giesy, John P; Pyle, Greg G

    2017-05-01

    Growth in extraction of bitumen from oil sands has raised concerns about influences of this industry on surrounding environments. Water clearance rate (a surrogate of feeding rate by Daphnia magna) in water containing D. magna exposed to oil sands process-affected water (OSPW) and its principal components, dissolved component (DC) and suspended particulate matter (SPM), was reduced to 72, 29, and 59% of controls, respectively. This study also examined several possible mechanisms for the observed changes algal cell density (i.e., feeding rate). There was no change in the digestive enzymes trypsin or amylase when D. magna were exposed to DC or SPM; however, exposure to total OSPW reduced trypsin activity. Mandible rolling or post-abdominal rejections, which are indicators of feeding and palatability of food, were not affected by any exposures to OSPW. Beating of thoracic limbs, which provides water flow toward the feeding groove, was reduced by exposure to SPM or total OSPW. Peristaltic activity was reduced by exposure to DC, which then might result in reduced digestion time in D. magna exposed to DC, SPM or whole OSPW. All treatments caused an increase in numbers of intact algae cells in the hindgut and excreted material. These results suggest that both DC and SPM affect feeding of D. magna by impairing actions of the digestive system, but most probably not by reducing rates of ingestion.

  20. 40 CFR 63.1037 - Alternative means of emission limitation: Enclosed-vented process units or affected facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... regulated materials they handle. (2) A schematic of the process unit or affected facility, enclosure, and... limitation: Enclosed-vented process units or affected facilities. 63.1037 Section 63.1037 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION...

  1. 40 CFR 63.1037 - Alternative means of emission limitation: Enclosed-vented process units or affected facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... regulated materials they handle. (2) A schematic of the process unit or affected facility, enclosure, and... limitation: Enclosed-vented process units or affected facilities. 63.1037 Section 63.1037 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION...

  2. 40 CFR 63.1037 - Alternative means of emission limitation: Enclosed-vented process units or affected facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... regulated materials they handle. (2) A schematic of the process unit or affected facility, enclosure, and... limitation: Enclosed-vented process units or affected facilities. 63.1037 Section 63.1037 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION...

  3. 40 CFR 63.1037 - Alternative means of emission limitation: Enclosed-vented process units or affected facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... regulated materials they handle. (2) A schematic of the process unit or affected facility, enclosure, and... limitation: Enclosed-vented process units or affected facilities. 63.1037 Section 63.1037 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION...

  4. 40 CFR 63.1037 - Alternative means of emission limitation: Enclosed-vented process units or affected facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... regulated materials they handle. (2) A schematic of the process unit or affected facility, enclosure, and... limitation: Enclosed-vented process units or affected facilities. 63.1037 Section 63.1037 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION...

  5. The Effect of Intrinsic Motivation on the Affect and Evaluation of the Creative Process among Fine Arts Students

    ERIC Educational Resources Information Center

    Stanko-Kaczmarek, Maja

    2012-01-01

    The main aim of this study was to gain a deeper understanding of the effect of intrinsic motivation on affect, subjective evaluation, and the creative process of young artists. Relations between motivation, affect, and evaluation were treated as a dynamic process and measured several times. The unique contribution of this study is that it…

  6. Compensatory premotor activity during affective face processing in subclinical carriers of a single mutant Parkin allele.

    PubMed

    Anders, Silke; Sack, Benjamin; Pohl, Anna; Münte, Thomas; Pramstaller, Peter; Klein, Christine; Binkofski, Ferdinand

    2012-04-01

    Patients with Parkinson's disease suffer from significant motor impairments and accompanying cognitive and affective dysfunction due to progressive disturbances of basal ganglia-cortical gating loops. Parkinson's disease has a long presymptomatic stage, which indicates a substantial capacity of the human brain to compensate for dopaminergic nerve degeneration before clinical manifestation of the disease. Neuroimaging studies provide evidence that increa