Sample records for affect biogeochemical processes

  1. Climate change effects on watershed hydrological and biogeochemical processes

    EPA Science Inventory

    Projected changes in climate are widely expected to alter watershed processes. However, the extent of these changes is difficult to predict because complex interactions among affected hydrological and biogeochemical processes will likely play out over many decades and spatial sc...

  2. Diel biogeochemical processes and their effect on the aqueous chemistry of streams: A review

    USGS Publications Warehouse

    Nimick, David A.; Gammons, Christopher H.; Parker, Stephen R.

    2011-01-01

    This review summarizes biogeochemical processes that operate on diel, or 24-h, time scales in streams and the changes in aqueous chemistry that are associated with these processes. Some biogeochemical processes, such as those producing diel cycles of dissolved O2 and pH, were the first to be studied, whereas processes producing diel concentration cycles of a broader spectrum of chemical species including dissolved gases, dissolved inorganic and organic carbon, trace elements, nutrients, stable isotopes, and suspended particles have received attention only more recently. Diel biogeochemical cycles are interrelated because the cyclical variations produced by one biogeochemical process commonly affect another. Thus, understanding biogeochemical cycling is essential not only for guiding collection and interpretation of water-quality data but also for geochemical and ecological studies of streams. Expanded knowledge of diel biogeochemical cycling will improve understanding of how natural aquatic environments function and thus lead to better predictions of how stream ecosystems might react to changing conditions of contaminant loading, eutrophication, climate change, drought, industrialization, development, and other factors.

  3. A soil-landscape framework for understanding spatial and temporal variability in biogeochemical processes in catchments

    NASA Astrophysics Data System (ADS)

    McGuire, K. J.; Bailey, S. W.; Ross, D. S.

    2017-12-01

    Heterogeneity in biophysical properties within catchments challenges how we quantify and characterize biogeochemical processes and interpret catchment outputs. Interactions between the spatiotemporal variability of hydrological states and fluxes and soil development can spatially structure catchments, leading to a framework for understanding patterns in biogeochemical processes. In an upland, glaciated landscape at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire, USA, we are embracing the structure and organization of soils to understand the spatial relations between runoff production zones, distinct soil-biogeochemical environments, and solute retention and release. This presentation will use observations from the HBEF to demonstrate that a soil-landscape framework is essential in understanding the spatial and temporal variability of biogeochemical processes in this catchment. Specific examples will include how laterally developed soils reveal the location of active runoff production zones and lead to gradients in primary mineral dissolution and the distribution of weathering products along hillslopes. Soil development patterns also highlight potential carbon and nitrogen cycling hotspots, differentiate acidic conditions, and affect the regulation of surface water quality. Overall, this work demonstrates the importance of understanding the landscape-level structural organization of soils in characterizing the variation and extent of biogeochemical processes that occur in catchments.

  4. Evaluating the fate of six common pharmaceuticals using a reactive transport model: insights from a stream tracer test.

    PubMed

    Riml, Joakim; Wörman, Anders; Kunkel, Uwe; Radke, Michael

    2013-08-01

    Quantitative information regarding the capacity of rivers to self-purify pharmaceutical residues is limited. To bridge this knowledge gap, we present a methodology for quantifying the governing processes affecting the fate of pharmaceuticals in streaming waters and, especially, to evaluate their relative significance for tracer observations. A tracer test in Säva Brook, Sweden was evaluated using a coupled physical-biogeochemical model framework containing surface water transport together with a representation of transient storage in slow/immobile zones of the stream, which are presumably important for the retention and attenuation of pharmaceuticals. To assess the key processes affecting the environmental fate of the compounds, we linked the uncertainty estimates of the reaction rate coefficients to the relative influence of transformation and sorption that occurred in different stream environments. The hydrological and biogeochemical contributions to the fate of the pharmaceuticals were decoupled, and the results indicate a moderate hydrological retention in the hyporheic zone as well as in the densely vegetated parts of the stream. Biogeochemical reactions in these transient storage zones further affected the fate of the pharmaceuticals, and we found that sorption was the key process for bezafibrate, metoprolol, and naproxen, while primary transformation was the most important process for clofibric acid and ibuprofen. Conversely, diclofenac was not affected by sorption or transformation. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Surface Ocean-Lower Atmosphere Studies: SOLAS

    NASA Astrophysics Data System (ADS)

    Wanninkhof, R.; Dickerson, R.; Barber, R.; Capone, D. G.; Duce, R.; Erickson, D.; Keene, W. C.; Lenschow, D.; Matrai, P. A.; McGillis, W.; McGillicuddy, D.; Penner, J.; Pszenny, A.

    2002-05-01

    The US Surface Ocean - Lower Atmosphere Study (US SOLAS) is a component of an international program (SOLAS) with an overall goal: to achieve a quantitative understanding of the key biogeochemical-physical interactions between the ocean and atmosphere, and of how this coupled system affects and is affected by climateand environmental change. There is increasing evidence that the biogeochemical cycles containing the building blocks of life such as carbon, nitrogen, and sulfur have been perturbed. These changes result in appreciable impacts and feedbacks in the SOLA region. The exact nature of the impacts and feedbacks are poorly constrained because of sparse observations, in particular relating to the connectivity and interrelationships between the major biogeochemical cycles and their interaction with physical forcing. It is in these areas that the research and the interdisciplinary research approaches advocated in US SOLAS will provide high returns. The research in US SOLAS will be heavily focused on process studies of the natural variability of key processes, anthropogenic perturbation of the processes, and the positive and negative feedbacks the processes will have on the biogeochemical cycles in the SOLA region. A major objective is to integrate the process study findings with the results from large-scale observations and with small and large- scale modeling and remote sensing efforts to improve our mechanistic understanding of large scale biogeochemical and physical phenomena and feedbacks. US SOLAS held an open workshop in May 2001 to lay the groundwork for the SOLAS program in the United States. Resulting highlights and issues will be summarized around 4 major themes: (1) Boundary-layer Physics, (2) Dynamics of long-lived climate relevant compounds, (3) Dynamics of short-lived climate relevant compounds, and (4) Atmospheric effects on marine biogeochemical processes. Comprehensive reports from the working groups of U.S. SOLAS, and the international science plan which served as overall guidance, can be found at We will explore possible dedicated, interdisciplinary ocean-atmosphere projects as examples of the critical interconnectivity of atmospheric, interfacial, and upper ocean processes to study phenomena of critical importance in understanding the earth's system.

  6. Quantifying Hydro-biogeochemical Model Sensitivity in Assessment of Climate Change Effect on Hyporheic Zone Processes

    NASA Astrophysics Data System (ADS)

    Song, X.; Chen, X.; Dai, H.; Hammond, G. E.; Song, H. S.; Stegen, J.

    2016-12-01

    The hyporheic zone is an active region for biogeochemical processes such as carbon and nitrogen cycling, where the groundwater and surface water mix and interact with each other with distinct biogeochemical and thermal properties. The biogeochemical dynamics within the hyporheic zone are driven by both river water and groundwater hydraulic dynamics, which are directly affected by climate change scenarios. Besides that, the hydraulic and thermal properties of local sediments and microbial and chemical processes also play important roles in biogeochemical dynamics. Thus for a comprehensive understanding of the biogeochemical processes in the hyporheic zone, a coupled thermo-hydro-biogeochemical model is needed. As multiple uncertainty sources are involved in the integrated model, it is important to identify its key modules/parameters through sensitivity analysis. In this study, we develop a 2D cross-section model in the hyporheic zone at the DOE Hanford site adjacent to Columbia River and use this model to quantify module and parametric sensitivity on assessment of climate change. To achieve this purpose, We 1) develop a facies-based groundwater flow and heat transfer model that incorporates facies geometry and heterogeneity characterized from a field data set, 2) derive multiple reaction networks/pathways from batch experiments with in-situ samples and integrate temperate dependent reactive transport modules to the flow model, 3) assign multiple climate change scenarios to the coupled model by analyzing historical river stage data, 4) apply a variance-based global sensitivity analysis to quantify scenario/module/parameter uncertainty in hierarchy level. The objectives of the research include: 1) identifing the key control factors of the coupled thermo-hydro-biogeochemical model in the assessment of climate change, and 2) quantify the carbon consumption in different climate change scenarios in the hyporheic zone.

  7. Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma

    USGS Publications Warehouse

    Cozzarelli, Isabelle M.; Böhlke, John Karl; Masoner, Jason R.; Breit, George N.; Lorah, Michelle M.; Tuttle, Michele L.W.; Jaeschke, Jeanne B.

    2011-01-01

    Leachate from municipal landfills can create groundwater contaminant plumes that may last for decades to centuries. The fate of reactive contaminants in leachate-affected aquifers depends on the sustainability of biogeochemical processes affecting contaminant transport. Temporal variations in the configuration of redox zones downgradient from the Norman Landfill were studied for more than a decade. The leachate plume contained elevated concentrations of nonvolatile dissolved organic carbon (NVDOC) (up to 300 mg/L), methane (16 mg/L), ammonium (650 mg/L as N), iron (23 mg/L), chloride (1030 mg/L), and bicarbonate (4270 mg/L). Chemical and isotopic investigations along a 2D plume transect revealed consumption of solid and aqueous electron acceptors in the aquifer, depleting the natural attenuation capacity. Despite the relative recalcitrance of NVDOC to biodegradation, the center of the plume was depleted in sulfate, which reduces the long-term oxidation capacity of the leachate-affected aquifer. Ammonium and methane were attenuated in the aquifer relative to chloride by different processes: ammonium transport was retarded mainly by physical interaction with aquifer solids, whereas the methane plume was truncated largely by oxidation. Studies near plume boundaries revealed temporal variability in constituent concentrations related in part to hydrologic changes at various time scales. The upper boundary of the plume was a particularly active location where redox reactions responded to recharge events and seasonal water-table fluctuations. Accurately describing the biogeochemical processes that affect the transport of contaminants in this landfill-leachate-affected aquifer required understanding the aquifer's geologic and hydrodynamic framework.

  8. A dynamic organic soil biogeochemical model for simulating the effects of wildfire on soil environmental conditions and carbon dynamics of black spruce forests

    Treesearch

    Shuhua Yi; A. David McGuire; Eric Kasischke; Jennifer Harden; Kristen Manies; Michelle Mack; Merritt Turetsky

    2010-01-01

    Ecosystem models have not comprehensively considered how interactions among fire disturbance, soil environmental conditions, and biogeochemical processes affect ecosystem dynamics in boreal forest ecosystems. In this study, we implemented a dynamic organic soil structure in the Terrestrial Ecosystem Model (DOS-TEM) to investigate the effects of fire on soil temperature...

  9. Coupled hydrological and biogeochemical processes controlling variability of nitrogen species in streamflow during autumn in an upland forest

    Treesearch

    Stephen D. Sebestyen; James B. Shanley; Elizabeth W. Boyer; Carol Kendall; Daniel H. Doctor

    2014-01-01

    Autumn is a season of dynamic change in forest streams of the northeastern United States due to effects of leaf fall on both hydrology and biogeochemistry. Few studies have explored how interactions of biogeochemical transformations, various nitrogen sources, and catchment flow paths affect stream nitrogen variation during autumn. To provide more information on this...

  10. Guiding Biogeochemical Campaigns with High Resolution Altimetry: Waiting for the SWOT Mission

    NASA Astrophysics Data System (ADS)

    d'Ovidio, Francesco; Zhou, Meng; Park, Young Hyang; Nencioli, Francesco; Resplandy, Laure; Doglioli, Andrea; Petrenko, Anne; Blain, Stephane; Queguiner, Bernard

    2013-09-01

    Biogeochemical processes in the ocean are strongly affected by the horizontal mesoscale ( 10-100 km) and submesoscale (1-10 km) circulation. Eddies and filaments can create strong dishomogeneity, either amplifying small-scale diffusion processes (mixing) or creating tracer reservoirs. This variability has a direct effect on the biogeochemical budgets - controlling for instances tracer fluxes across climatological fronts, or part of the vertical exchanges. This variability also provides a challenge to in situ studies, because sites few tens of kms or few weeks apart may be representative of very different situations. Here we discuss how altimetry observation can be exploited in order to track in near- real-time transport barriers and mixing regions and guide a biogeochemical adaptative sampling strategy. As a case study, we focus on the recent KEOPS2 campaign (Kerguelen region, October-November 2012) which employed Lagrangian diagnostics of a specifically designed high resolution, regional altimetric product produced by CLS (with support from CNES) analyzed with several Lagrangian diagnostics. Such approach anticipates possible uses of incoming high resolution altimetry data for biogeochemical studies.

  11. Genome-to-Watershed Predictive Understanding of Terrestrial Environments

    NASA Astrophysics Data System (ADS)

    Hubbard, S. S.; Agarwal, D.; Banfield, J. F.; Beller, H. R.; Brodie, E.; Long, P.; Nico, P. S.; Steefel, C. I.; Tokunaga, T. K.; Williams, K. H.

    2014-12-01

    Although terrestrial environments play a critical role in cycling water, greenhouse gasses, and other life-critical elements, the complexity of interactions among component microbes, plants, minerals, migrating fluids and dissolved constituents hinders predictive understanding of system behavior. The 'Sustainable Systems 2.0' project is developing genome-to-watershed scale predictive capabilities to quantify how the microbiome affects biogeochemical watershed functioning, how watershed-scale hydro-biogeochemical processes affect microbial functioning, and how these interactions co-evolve with climate and land-use changes. Development of such predictive capabilities is critical for guiding the optimal management of water resources, contaminant remediation, carbon stabilization, and agricultural sustainability - now and with global change. Initial investigations are focused on floodplains in the Colorado River Basin, and include iterative model development, experiments and observations with an early emphasis on subsurface aspects. Field experiments include local-scale experiments at Rifle CO to quantify spatiotemporal metabolic and geochemical responses to O2and nitrate amendments as well as floodplain-scale monitoring to quantify genomic and biogeochemical response to natural hydrological perturbations. Information obtained from such experiments are represented within GEWaSC, a Genome-Enabled Watershed Simulation Capability, which is being developed to allow mechanistic interrogation of how genomic information stored in a subsurface microbiome affects biogeochemical cycling. This presentation will describe the genome-to-watershed scale approach as well as early highlights associated with the project. Highlights include: first insights into the diversity of the subsurface microbiome and metabolic roles of organisms involved in subsurface nitrogen, sulfur and hydrogen and carbon cycling; the extreme variability of subsurface DOC and hydrological controls on carbon and nitrogen cycling; geophysical identification of floodplain hotspots that are useful for model parameterization; and GEWaSC demonstration of how incorporation of identified microbial metabolic processes improves prediction of the larger system biogeochemical behavior.

  12. Water, Carbon, and Nutrient Cycling Following Insect-induced Tree Mortality: How Well Do Plot-scale Observations Predict Ecosystem-Scale Response?

    NASA Astrophysics Data System (ADS)

    Brooks, P. D.; Barnard, H. R.; Biederman, J. A.; Borkhuu, B.; Edburg, S. L.; Ewers, B. E.; Gochis, D. J.; Gutmann, E. D.; Harpold, A. A.; Hicke, J. A.; Pendall, E.; Reed, D. E.; Somor, A. J.; Troch, P. A.

    2011-12-01

    Widespread tree mortality caused by insect infestations and drought has impacted millions of hectares across western North America in recent years. Although previous work on post-disturbance responses (e.g. experimental manipulations, fire, and logging) provides insight into how water and biogeochemical cycles may respond to insect infestations and drought, we find that the unique nature of these drivers of tree mortality complicates extrapolation to larger scales. Building from previous work on forest disturbance, we present a conceptual model of how temporal changes in forest structure impact the individual components of energy balance, hydrologic partitioning, and biogeochemical cycling and the interactions among them. We evaluate and refine this model using integrated observations and process modeling on multiple scales including plot, stand, flux tower footprint, hillslope, and catchment to identify scaling relationships and emergent patterns in hydrological and biogeochemical responses. Our initial results suggest that changes in forest structure at point or plot scales largely have predictable effects on energy, water, and biogeochemical cycles that are well captured by land surface, hydrological, and biogeochemical models. However, observations from flux towers and nested catchments suggest that both the hydrological and biogeochemical effects observed at tree and plot scales may be attenuated or exacerbated at larger scales. Compensatory processes are associated with attenuation (e.g. as transpiration decreases, evaporation and sublimation increase), whereas both attenuation and exacerbation may result from nonlinear scaling behavior across transitions in topography and ecosystem structure that affect the redistribution of energy, water, and solutes. Consequently, the effects of widespread tree mortality on ecosystem services of water supply and carbon sequestration will likely depend on how spatial patterns in mortality severity across the landscape affect large-scale hydrological partitioning.

  13. Preface [to special section on recent Loch Vale Watershed research

    USGS Publications Warehouse

    Baron, Jill S.; Williams, Mark W.

    2000-01-01

    Catchment-scale intensive and extensive research conducted over the last decade shows that our understanding of the biogeochemical and hydrologic processes in subalpine and alpine basins is not yet sufficiently mature to model and predict how biogeochemical transformations and surface water quality will change in response to climatic or human-driven changes in energy, water, and chemicals. A better understanding of these processes is needed for input to decision-making regulatory agencies and federal land managers. In recognition of this problem the National Research Council [1998] has identified as a critical research need an improved understanding of how global change will affect biogeochemical interactions with the hydrologic cycle and biogeochemical controls over the transport of water, nutrients, and materials from land to freshwater ecosystems. Improved knowledge of alpine and subalpine ecosystems is particularly important since high-elevation catchments are very sensitive to small changes in the flux of energy, chemicals, and water. Furthermore, alpine ecosystems may act as early warning indicators for ecosystem changes at lower elevations.

  14. Dynamic Biological Functioning Important for Simulating and Stabilizing Ocean Biogeochemistry

    NASA Astrophysics Data System (ADS)

    Buchanan, P. J.; Matear, R. J.; Chase, Z.; Phipps, S. J.; Bindoff, N. L.

    2018-04-01

    The biogeochemistry of the ocean exerts a strong influence on the climate by modulating atmospheric greenhouse gases. In turn, ocean biogeochemistry depends on numerous physical and biological processes that change over space and time. Accurately simulating these processes is fundamental for accurately simulating the ocean's role within the climate. However, our simulation of these processes is often simplistic, despite a growing understanding of underlying biological dynamics. Here we explore how new parameterizations of biological processes affect simulated biogeochemical properties in a global ocean model. We combine 6 different physical realizations with 6 different biogeochemical parameterizations (36 unique ocean states). The biogeochemical parameterizations, all previously published, aim to more accurately represent the response of ocean biology to changing physical conditions. We make three major findings. First, oxygen, carbon, alkalinity, and phosphate fields are more sensitive to changes in the ocean's physical state. Only nitrate is more sensitive to changes in biological processes, and we suggest that assessment protocols for ocean biogeochemical models formally include the marine nitrogen cycle to assess their performance. Second, we show that dynamic variations in the production, remineralization, and stoichiometry of organic matter in response to changing environmental conditions benefit the simulation of ocean biogeochemistry. Third, dynamic biological functioning reduces the sensitivity of biogeochemical properties to physical change. Carbon and nitrogen inventories were 50% and 20% less sensitive to physical changes, respectively, in simulations that incorporated dynamic biological functioning. These results highlight the importance of a dynamic biology for ocean properties and climate.

  15. Aeolian processes and the bioshpere: Interactions and feedback loops

    USDA-ARS?s Scientific Manuscript database

    Aeolian processes affect landform evolution, biogeochemical cycles, regional climate, human health, and desertification. The entrainment, transport and deposition of aeolian sediments are recognized as major drivers in the dynamics of the earth system and there is a growing interest in the scientif...

  16. Microbial extracellular enzymes in biogeochemical cycling of ecosystems.

    PubMed

    Luo, Ling; Meng, Han; Gu, Ji-Dong

    2017-07-15

    Extracellular enzymes, primarily produced by microorganisms, affect ecosystem processes because of their essential roles in degradation, transformation and mineralization of organic matter. Extracellular enzymes involved in the cycling of carbon (C), nitrogen (N) and phosphorus (P) have been widely investigated in many different ecosystems, and several enzymes have been recognized as key components in regulating C storage and nutrient cycling. In this review, it was the first time to summarize the specific extracellular enzymes related to C storage and nutrient cycling for better understanding the important role of microbial extracellular enzymes in biogeochemical cycling of ecosystems. Subsequently, ecoenzymatic stoichiometry - the relative ratio of extracellular enzyme, has been reviewed and further provided a new perspective for understanding biogeochemical cycling of ecosystems. Finally, the new insights of using microbial extracellular enzyme in indicating biogeochemical cycling and then protecting ecosystems have been suggested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Synchronicity of long-term nitrate patterns in forested catchments across the northeastern U.S.

    EPA Science Inventory

    Nitrogen movement through minimally-disturbed catchments can be affected by a variety of biogeochemical processes, climatic effects, hydrology and in-stream or in-lake processes. These combine to create dizzying complexity in long-term and seasonal nitrate patterns, with adjacen...

  18. A New Biogeochemical Computational Framework Integrated within the Community Land Model

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Li, H.; Liu, C.; Huang, M.; Leung, L.

    2012-12-01

    Terrestrial biogeochemical processes, particularly carbon cycle dynamics, have been shown to significantly influence regional and global climate changes. Modeling terrestrial biogeochemical processes within the land component of Earth System Models such as the Community Land model (CLM), however, faces three major challenges: 1) extensive efforts in modifying modeling structures and rewriting computer programs to incorporate biogeochemical processes with increasing complexity, 2) expensive computational cost to solve the governing equations due to numerical stiffness inherited from large variations in the rates of biogeochemical processes, and 3) lack of an efficient framework to systematically evaluate various mathematical representations of biogeochemical processes. To address these challenges, we introduce a new computational framework to incorporate biogeochemical processes into CLM, which consists of a new biogeochemical module with a generic algorithm and reaction database. New and updated biogeochemical processes can be incorporated into CLM without significant code modification. To address the stiffness issue, algorithms and criteria will be developed to identify fast processes, which will be replaced with algebraic equations and decoupled from slow processes. This framework can serve as a generic and user-friendly platform to test out different mechanistic process representations and datasets and gain new insight on the behavior of the terrestrial ecosystems in response to climate change in a systematic way.

  19. Biogeochemical Coupling between Ocean and Sea Ice

    NASA Astrophysics Data System (ADS)

    Wang, S.; Jeffery, N.; Maltrud, M. E.; Elliott, S.; Wolfe, J.

    2016-12-01

    Biogeochemical processes in ocean and sea ice are tightly coupled at high latitudes. Ongoing changes in Arctic and Antarctic sea ice domain likely influence the coupled system, not only through physical fields but also biogeochemical properties. Investigating the system and its changes requires representation of ocean and sea ice biogeochemical cycles, as well as their coupling in Earth System Models. Our work is based on ACME-HiLAT, a new offshoot of the Community Earth System Model (CESM), including a comprehensive representation of marine ecosystems in the form of the Biogeochemical Elemental Cycling Module (BEC). A full vertical column sea ice biogeochemical module has recently been incorporated into the sea ice component. We have further introduced code modifications to couple key growth-limiting nutrients (N, Si, Fe), dissolved and particulate organic matter, and phytoplankton classes that are important in polar regions between ocean and sea ice. The coupling of ocean and sea ice biology-chemistry will enable representation of key processes such as the release of important climate active constituents or seeding algae from melting sea ice into surface waters. Sensitivity tests suggest sea ice and ocean biogeochemical coupling influences phytoplankton competition, biological production, and the CO2 flux. Sea ice algal seeding plays an important role in determining phytoplankton composition of Arctic early spring blooms, since different groups show various responses to the seeding biomass. Iron coupling leads to increased phytoplankton biomass in the Southern Ocean, which also affects carbon uptake via the biological pump. The coupling of macronutrients and organic matter may have weaker influences on the marine ecosystem. Our developments will allow climate scientists to investigate the fully coupled responses of the sea ice-ocean BGC system to physical changes in polar climate.

  20. Toxic Compounds in Our Food: Arsenic Uptake By Rice and Potential Mitigation By Silicon

    NASA Astrophysics Data System (ADS)

    Seyfferth, A.; Gill, R.; Penido, E.

    2014-12-01

    Arsenic is a ubiquitous element in soils worldwide and has the potential to negatively impact human and ecosystem health under certain biogeochemical conditions. While arsenic is relatively immobile in most oxidized soils due to a high affinity for soil solids, arsenic becomes mobilized under reduced soil conditions due to the reductive dissolution of iron(III) oxides thereby releasing soil-bound arsenic. Since arsenic is a well-known carcinogen, this plant-soil process has the potential to negatively impact the lives of billions of rice consumers worldwide upon plant uptake and grain storage of released arsenic. Moreover, arsenic uptake by rice is excacerbated by the use of As-laden groundwater for rice irrigation. One proposed strategy to decrease arsenic uptake by rice plants is via an increase in dissolved silicon in paddy soil solution (pore-water), since silicic acid and arsenous acid share an uptake pathway. However, several soil processes that influence arsenic cycling may be affected by silicon including desorption from bulk soil, formation and mineralogy of iron(III) oxide plaque, and adsorption/desorption onto/from iron plaque; the effect of silicon on these soil processes will ultimately dictate the effectiveness of altered dissolved silicon in decreasing arsenic uptake at the root, which in turn dictates the concentration of arsenic found in grains. Furthermore, the source of silicon may impact carbon cycling and, in particular, methane emissions. Here, impacts of altered dissolved silicon on processes that affect rhizospheric biogeochemical cycling of arsenic and subsequent plant-uptake, and how it influences other biogeochemical cycles such as carbon and iron are investigated. We show that silicon can decrease arsenic uptake and grain storage under certain conditions, and that altered silicon affects the type of iron (III) oxide that comprises iron plaque.

  1. One multi-media environmental system with linkage between meteorology/ hydrology/ air quality models and water quality model

    NASA Astrophysics Data System (ADS)

    Tang, C.; Lynch, J. A.; Dennis, R. L.

    2016-12-01

    The biogeochemical processing of nitrogen and associated pollutants is driven by meteorological and hydrological processes in conjunction with pollutant loading. There are feedbacks between meteorology and hydrology that will be affected by land-use change and climate change. Changes in meteorology will affect pollutant deposition. It is important to account for those feedbacks and produce internally consistent simulations of meteorology, hydrology, and pollutant loading to drive the (watershed/water quality) biogeochemical models. In this study, the ecological response to emission reductions in streams in the Potomac watershed was evaluated. Firstly, we simulated the deposition by using the fully coupled Weather Research & Forecasting (WRF) model and the Community Multiscale Air Quality (CAMQ) model; secondly, we created the hydrological data by the offline linked Variable Infiltration Capacity (VIC) model and the WRF model. Lastly, we investigated the water quality by one comprehensive/environment model, namely the linkage of CMAQ, WRF, VIC and the Model of Acidification of Groundwater In Catchment (MAGIC) model from 2002 to 2010.The simulated results (such as NO3, SO4, and SBC) fit well to the observed values. The linkage provides a generally accurate, well-tested tool for evaluating sensitivities to varying meteorology and environmental changes on acidification and other biogeochemical processes, with capability to comprehensively explore strategic policy and management design.

  2. Geographical Distribution and Sources of Nutrients in Atmospheric Aerosol Over the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Uematsu, M.

    2016-12-01

    The Pacific Ocean, the world's largest (occupying about 30% of the Earth's total surface area) has several distinguishing biogeochemical features. In the western Pacific, dust particles originating from arid and semi-arid regions in Asia and Australia are transported to the north and south, respectively. Biomass burning emissions from Southeast Asia are exported to the tropical Pacific, and anthropogenic substances flowing out of Asia and Eurasia spread both regionally and globally. Over high primary productive areas such as the subarctic North Pacific, the equatorial Pacific and the Southern Ocean, biogenic gasses are released to the atmosphere and transported to other areas. These processes may affect cloud and rainfall patterns, air quality, and the radiative balance of downwind regions. The deposition of atmospheric aerosols containing iron and other essential nutrients is important for biogeochemical cycles in the oceans because this source of nutrients helps sustain primary production and affects food-web structure; these effects in turn influence the chemical properties of marine atmosphere. From an atmospheric chemistry standpoint, sea-salt aerosols produced by strong winds and marine biogenic gases emitted from highly productive waters affect the physicochemical characteristics of marine aerosols. As phytoplankton populations are patchy and atmospheric processes sporadic, the interactions between atmospheric chemical constituents and marine biota vary for different regions as well as seasonally and over longer timescales. To address these and other emerging issues, and more generally to better understand the important biogeochemical processes and interactions occurring over the open oceans, more long-term recurrent research cruises with standardized atmospheric shipboard measurements will be needed in the future.

  3. NUTRIENT DYNAMICS IN RELATION TO GEOMORPHOLOGY OF RIVERINE WETLANDS

    EPA Science Inventory

    Variation in water depth and soil properties associated with geomorphic structures can affect riverine wetland nutrient dynamics by altering biogeochemical processes. We examined the seasonal influence of soils and geomorphology on nutrient forms and concentrations in riverine we...

  4. Biogeochemical Cycles of Carbon and Sulfur

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The elements carbon (C) and sulfur (S) interact with each other across a network of elemental reservoirs that are interconnected by an array of physical, chemical and biological processes. These networks are termed the biogeochemical C and S cycles. The compounds of C are highly important, not only as organic matter, but also as atmospheric greenhouse gases, pH buffers in seawater, oxidation-reduction buffers virtually everywhere, and key magmatic constituents affecting plutonism and volcanism. The element S assumes important roles as an oxidation-reduction partner with C and Fe in biological systems, as a key constituent in magmas and volcanic gases, and as a major influence upon pH in certain environments. This presentation describes the modern biogeochemical C and S cycles. Measurements are described whereby stable isotopes can help to infer the nature and quantitative significance of biological and geological processes involved in the C and S cycles. This lecture also summarizes the geological and climatologic aspects of the ancient C and S cycles, as well as the planetary and extraterrestrial processes that influenced their evolution over millions to billions of years.

  5. Wetland eco-engineering: measuring and modeling feedbacks of oxidation processes between plants and clay-rich material

    NASA Astrophysics Data System (ADS)

    Saaltink, Rémon; Dekker, Stefan C.; Griffioen, Jasper; Wassen, Martin J.

    2016-09-01

    Interest is growing in using soft sediment as a foundation in eco-engineering projects. Wetland construction in the Dutch lake Markermeer is an example: here, dredging some of the clay-rich lake-bed sediment and using it to construct wetland will soon begin. Natural processes will be utilized during and after construction to accelerate ecosystem development. Knowing that plants can eco-engineer their environment via positive or negative biogeochemical plant-soil feedbacks, we conducted a 6-month greenhouse experiment to identify the key biogeochemical processes in the mud when Phragmites australis is used as an eco-engineering species. We applied inverse biogeochemical modeling to link observed changes in pore water composition to biogeochemical processes. Two months after transplantation we observed reduced plant growth and shriveling and yellowing of foliage. The N : P ratios of the plant tissue were low, and these were affected not by hampered uptake of N but by enhanced uptake of P. Subsequent analyses revealed high Fe concentrations in the leaves and roots. Sulfate concentrations rose drastically in our experiment due to pyrite oxidation; as reduction of sulfate will decouple Fe-P in reducing conditions, we argue that plant-induced iron toxicity hampered plant growth, forming a negative feedback loop, while simultaneously there was a positive feedback loop, as iron toxicity promotes P mobilization as a result of reduced conditions through root death, thereby stimulating plant growth and regeneration. Given these two feedback mechanisms, we propose the use of Fe-tolerant species rather than species that thrive in N-limited conditions. The results presented in this study demonstrate the importance of studying the biogeochemical properties of the situated sediment and the feedback mechanisms between plant and soil prior to finalizing the design of the eco-engineering project.

  6. Biogeochemical zonation of sulfur during the discharge of groundwater to lake in desert plateau (Dakebo Lake, NW China).

    PubMed

    Su, Xiaosi; Cui, Geng; Wang, Huang; Dai, Zhenxue; Woo, Nam-Chil; Yuan, Wenzhen

    2018-06-01

    As one of the important elements of controlling the redox system within the hyporheic and hypolentic zone, sulfur is involved in a series of complex biogeochemical processes such as carbon cycle, water acidification, formation of iron and manganese minerals, redox processes of trace metal elements and a series of important ecological processes. Previous studies on biogeochemistry of the hyporheic and hypolentic zones mostly concentrated on nutrients of nitrogen and phosphorus, heavy metals and other pollutants. Systematic study of biogeochemical behavior of sulfur and its main controlling factors within the lake hypolentic zone is very urgent and important. In this paper, a typical desert plateau lake, Dakebo Lake in northwestern China, was taken for example within which redox zonation and biogeochemical characteristics of sulfur affected by hydrodynamic conditions were studied based on not only traditional hydrochemical analysis, but also environmental isotope evidence. In the lake hypolentic zone of the study area, due to the different hydrodynamic conditions, vertical profile of sulfur species and environmental parameters differ at the two sites of the lake (western side and center). Reduction of sulfate, deposition and oxidation of sulfide, dissolution and precipitation of sulfur-bearing minerals occurred are responded well to Eh, dissolved oxygen, pH, organic carbon and microorganism according to which the lake hypolentic zone can be divided into reduced zone containing H 2 S, reduced zone containing no H 2 S, transition zone and oxidized zone. The results of this study provide valuable insights for understanding sulfur conversion processes and sulfur biogeochemical zonation within a lake hypolentic zone in an extreme plateau arid environment and for protecting the lake-wetland ecosystem in arid and semiarid regions.

  7. A review of ion and metal pollutants in urban green water infrastructures.

    PubMed

    Kabir, Md Imran; Daly, Edoardo; Maggi, Federico

    2014-02-01

    In urban environments, the breakdown of chemicals and pollutants, especially ions and metal compounds, can be favoured by green water infrastructures (GWIs). The overall aim of this review is to set the basis to model GWIs using deterministic approaches in contrast to empirical ones. If a better picture of chemicals and pollutant input and an improved understanding of hydrological and biogeochemical processes affecting these pollutants were known, GWIs could be designed to efficiently retain these pollutants for site-specific meteorological patterns and pollutant load. To this end, we surveyed the existing literature to retrieve a comprehensive dataset of anions and cations, and alkaline and transition metal pollutants incoming to urban environments. Based on this survey, we assessed the pollution load and ecological risk indexes for metals. The existing literature was then surveyed to review the metal retention efficiency of GWIs, and possible biogeochemical processes related to inorganic metal compounds were proposed that could be integrated in biogeochemical models of GWIs. © 2013.

  8. The role of forcing agents on biogeochemical variability along the southwestern Adriatic coast: The Gulf of Manfredonia case study

    NASA Astrophysics Data System (ADS)

    Specchiulli, Antonietta; Bignami, Francesco; Marini, Mauro; Fabbrocini, Adele; Scirocco, Tommaso; Campanelli, Alessandra; Penna, Pierluigi; Santucci, Angela; D'Adamo, Raffaele

    2016-12-01

    This study investigates how multiple forcing factors such as rivers, surface marine circulation and winds affect hydrology and biogeochemical processes in the Gulf of Manfredonia and the seas around the Gargano peninsula, in the south-western Adriatic Sea. The study adopted an integrated approach, using in situ and remote sensing data, as well as the output of current models. The data reveal variability in the area's hydrography induced by local freshwater sources, the Western Adriatic Current (WAC) flowing from the north along the Italian coast, and the current patterns under different wind regimes. Specifically, exchange with offshore waters in the gulf induces variability in salinity and biogeochemical content, even within the same season, i.e. winter, in our case. This strong dependence on physical and biogeochemical factors makes the Manfredonia-Gargano ecosystem vulnerable to climate change, which could compromise its important role as a nursery area for the Adriatic Sea.

  9. Interactive effects of global climate change and pollution on marine microbes: the way ahead.

    PubMed

    Coelho, Francisco J R C; Santos, Ana L; Coimbra, Joana; Almeida, Adelaide; Cunha, Angela; Cleary, Daniel F R; Calado, Ricardo; Gomes, Newton C M

    2013-06-01

    Global climate change has the potential to seriously and adversely affect marine ecosystem functioning. Numerous experimental and modeling studies have demonstrated how predicted ocean acidification and increased ultraviolet radiation (UVR) can affect marine microbes. However, researchers have largely ignored interactions between ocean acidification, increased UVR and anthropogenic pollutants in marine environments. Such interactions can alter chemical speciation and the bioavailability of several organic and inorganic pollutants with potentially deleterious effects, such as modifying microbial-mediated detoxification processes. Microbes mediate major biogeochemical cycles, providing fundamental ecosystems services such as environmental detoxification and recovery. It is, therefore, important that we understand how predicted changes to oceanic pH, UVR, and temperature will affect microbial pollutant detoxification processes in marine ecosystems. The intrinsic characteristics of microbes, such as their short generation time, small size, and functional role in biogeochemical cycles combined with recent advances in molecular techniques (e.g., metagenomics and metatranscriptomics) make microbes excellent models to evaluate the consequences of various climate change scenarios on detoxification processes in marine ecosystems. In this review, we highlight the importance of microbial microcosm experiments, coupled with high-resolution molecular biology techniques, to provide a critical experimental framework to start understanding how climate change, anthropogenic pollution, and microbiological interactions may affect marine ecosystems in the future.

  10. Interactive effects of global climate change and pollution on marine microbes: the way ahead

    PubMed Central

    Coelho, Francisco J R C; Santos, Ana L; Coimbra, Joana; Almeida, Adelaide; Cunha, Ângela; Cleary, Daniel F R; Calado, Ricardo; Gomes, Newton C M

    2013-01-01

    Global climate change has the potential to seriously and adversely affect marine ecosystem functioning. Numerous experimental and modeling studies have demonstrated how predicted ocean acidification and increased ultraviolet radiation (UVR) can affect marine microbes. However, researchers have largely ignored interactions between ocean acidification, increased UVR and anthropogenic pollutants in marine environments. Such interactions can alter chemical speciation and the bioavailability of several organic and inorganic pollutants with potentially deleterious effects, such as modifying microbial-mediated detoxification processes. Microbes mediate major biogeochemical cycles, providing fundamental ecosystems services such as environmental detoxification and recovery. It is, therefore, important that we understand how predicted changes to oceanic pH, UVR, and temperature will affect microbial pollutant detoxification processes in marine ecosystems. The intrinsic characteristics of microbes, such as their short generation time, small size, and functional role in biogeochemical cycles combined with recent advances in molecular techniques (e.g., metagenomics and metatranscriptomics) make microbes excellent models to evaluate the consequences of various climate change scenarios on detoxification processes in marine ecosystems. In this review, we highlight the importance of microbial microcosm experiments, coupled with high-resolution molecular biology techniques, to provide a critical experimental framework to start understanding how climate change, anthropogenic pollution, and microbiological interactions may affect marine ecosystems in the future. PMID:23789087

  11. Using continuous underway isotope measurements to map water residence time in hydrodynamically complex tidal environments

    USGS Publications Warehouse

    Downing, Bryan D.; Bergamaschi, Brian; Kendall, Carol; Kraus, Tamara; Dennis, Kate J.; Carter, Jeffery A.; von Dessonneck, Travis

    2016-01-01

    Stable isotopes present in water (δ2H, δ18O) have been used extensively to evaluate hydrological processes on the basis of parameters such as evaporation, precipitation, mixing, and residence time. In estuarine aquatic habitats, residence time (τ) is a major driver of biogeochemical processes, affecting trophic subsidies and conditions in fish-spawning habitats. But τ is highly variable in estuaries, owing to constant changes in river inflows, tides, wind, and water height, all of which combine to affect τ in unpredictable ways. It recently became feasible to measure δ2H and δ18O continuously, at a high sampling frequency (1 Hz), using diffusion sample introduction into a cavity ring-down spectrometer. To better understand the relationship of τ to biogeochemical processes in a dynamic estuarine system, we continuously measured δ2H and δ18O, nitrate and water quality parameters, on board a small, high-speed boat (5 to >10 m s–1) fitted with a hull-mounted underwater intake. We then calculated τ as is classically done using the isotopic signals of evaporation. The result was high-resolution (∼10 m) maps of residence time, nitrate, and other parameters that showed strong spatial gradients corresponding to geomorphic attributes of the different channels in the area. The mean measured value of τ was 30.5 d, with a range of 0–50 d. We used the measured spatial gradients in both τ and nitrate to calculate whole-ecosystem uptake rates, and the values ranged from 0.006 to 0.039 d–1. The capability to measure residence time over single tidal cycles in estuaries will be useful for evaluating and further understanding drivers of phytoplankton abundance, resolving differences attributable to mixing and water sources, explicitly calculating biogeochemical rates, and exploring the complex linkages among time-dependent biogeochemical processes in hydrodynamically complex environments such as estuaries.

  12. Biogeochemical cycles of Chernobyl-born radionuclides in the contaminated forest ecosystems: long-term dynamics of the migration processes

    NASA Astrophysics Data System (ADS)

    Shcheglov, Alexey; Tsvetnova, Ol'ga; Klyashtorin, Alexey

    2013-04-01

    Biogeochemical migration is a dominant factor of the radionuclide transport through the biosphere. In the early XX century, V.I. Vernadskii, a Russian scientist known, noted about a special role living things play in transport and accumulation of natural radionuclide in various environments. The role of biogeochemical processes in migration and redistribution of technogenic radionuclides is not less important. In Russia, V. M. Klechkovskii and N.V. Timofeev-Ressovskii showed some important biogeochemical aspects of radionuclide migration by the example of global fallout and Kyshtym accident. Their followers, R.M. Alexakhin, M.A. Naryshkin, N.V. Kulikov, F.A. Tikhomirov, E.B. Tyuryukanova, and others also contributed a lot to biogeochemistry of radionuclides. In the post-Chernobyl period, this area of knowledge received a lot of data that allowed building the radioactive element balance and flux estimation in various biogeochemical cycles [Shcheglov et al., 1999]. Regrettably, many of recent radioecological studies are only focused on specific radionuclide fluxes or pursue some applied tasks, missing the holistic approach. Most of the studies consider biogeochemical fluxes of radioactive isotopes in terms of either dose estimation or radionuclide migration rates in various food chains. However, to get a comprehensive picture and develop a reliable forecast of environmental, ecological, and social consequences of radioactive pollution in a vast contaminated area, it is necessary to investigate all the radionuclide fluxes associated with the biogeochemical cycles in affected ecosystems. We believe such an integrated approach would be useful to study long-term environmental consequences of the Fukushima accident as well. In our long-term research, we tried to characterize the flux dynamics of the Chernobyl-born radionuclides in the contaminated forest ecosystems and landscapes as a part of the integrated biogeochemical process. Our field studies were started in June of 1986 (less than two months after the accident) and have been continued up to now, focused on the most common forest ecosystems scattered over the contaminated areas of Russian Federation and Ukraine. A comprehensive analysis of the 137Cs and 90Sr biogeochemical fluxes shows that downward radionuclide fluxes (those directed from tree crowns to the soil) dominated over the upward fluxes (from the soil to forest vegetation) in the first years after the accident. Currently, the biological cycle in the contaminated ecosystems is a main factor impeding further vertical migration of long-lived radionuclides from upper soil layers to the ground water. The role of biota as a retardation factor depends on landscape type as well. In accumulative landscapes (with positive material balance), biota plays leading role in radionuclide retardation, while in eluvial landscapes (with the negative balance) soil absorbing complex serves as the dominant barrier for radionuclides leaching down the soil profile. The manifestation of both soil- and biota-driven factors depends on the radionuclide chemical speciation in the initial fallout. The latter factor is most important for 137Cs, yet less manifested for 90Sr. Among the biota components, fungi and forest vegetation are of particular importance for 137Cs and 90Sr accumulation, respectively. In summary, biogeochemical cycles of 137Cs and 90Sr in the investigated forest ecosystems serve as main factors impeding the radionuclide migration from the fallout to ground water. Larger-scale landscape factors determine the radionuclide flux intensity in the biogeochemical cycles and affect the radionuclide spatial variability in the contaminated biota components.

  13. Carbon Dynamics and Export from Flooded Wetlands: A Modeling Approach

    EPA Science Inventory

    Described in this article is development and validation of a process based model for carbon cycling in flooded wetlands, called WetQual-C. The model considers various biogeochemical interactions affecting C cycling, greenhouse gas emissions, organic carbon export and retention. ...

  14. Biogeochemical processes underpin ecosystem services

    USDA-ARS?s Scientific Manuscript database

    Elemental cycling is critical to the function of ecosystems and delivery of key ecosystem services because many of these elements are essential nutrients or detrimental toxicants that directly affect the health of organisms and ecosystems. A team of authors from North Carolina State University and ...

  15. A generic biogeochemical module for Earth system models: Next Generation BioGeoChemical Module (NGBGC), version 1.0

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Huang, M.; Liu, C.; Li, H.; Leung, L. R.

    2013-11-01

    Physical and biogeochemical processes regulate soil carbon dynamics and CO2 flux to and from the atmosphere, influencing global climate changes. Integration of these processes into Earth system models (e.g., community land models (CLMs)), however, currently faces three major challenges: (1) extensive efforts are required to modify modeling structures and to rewrite computer programs to incorporate new or updated processes as new knowledge is being generated, (2) computational cost is prohibitively expensive to simulate biogeochemical processes in land models due to large variations in the rates of biogeochemical processes, and (3) various mathematical representations of biogeochemical processes exist to incorporate different aspects of fundamental mechanisms, but systematic evaluation of the different mathematical representations is difficult, if not impossible. To address these challenges, we propose a new computational framework to easily incorporate physical and biogeochemical processes into land models. The new framework consists of a new biogeochemical module, Next Generation BioGeoChemical Module (NGBGC), version 1.0, with a generic algorithm and reaction database so that new and updated processes can be incorporated into land models without the need to manually set up the ordinary differential equations to be solved numerically. The reaction database consists of processes of nutrient flow through the terrestrial ecosystems in plants, litter, and soil. This framework facilitates effective comparison studies of biogeochemical cycles in an ecosystem using different conceptual models under the same land modeling framework. The approach was first implemented in CLM and benchmarked against simulations from the original CLM-CN code. A case study was then provided to demonstrate the advantages of using the new approach to incorporate a phosphorus cycle into CLM. To our knowledge, the phosphorus-incorporated CLM is a new model that can be used to simulate phosphorus limitation on the productivity of terrestrial ecosystems. The method presented here could in theory be applied to simulate biogeochemical cycles in other Earth system models.

  16. Overview of the 1988 GCE/CASE/WATOX Studies of biogeochemical cycles in the North Atlantic region

    NASA Astrophysics Data System (ADS)

    Pszenny, Alexander A. P.; Galloway, James N.; Artz, Richard S.; Boatman, Joseph F.

    1990-06-01

    The 1988 Global Change Expedition/Coordinated Air-Sea Experiment/Western Atlantic Ocean Experiment (GCE/CASE/WATOX) was a multifaceted research program designed to study atmospheric and oceanic processes affecting the biogeochemical cycles of carbon, nitrogen, sulfur, and trace metals in the North Atlantic Ocean region. Field work included (1) a 49-day research cruise aboard NOAA ship Mt. Mitchell (Global Change Expedition) from Norfolk, Virginia, to Bermuda, Iceland, the Azores, and Barbados, (2) eight flights of the NOAA King Air research aircraft, four off the Virginia Capes and four near Bermuda (CASE/WATOX), and (3) a research cruise aboard the yacht Fleurtie near Bermuda (WATOX). Objectives of GCE/CASE/WATOX were (1) to examine processes controlling the mesoscale distributions of productivity, chlorophyll, and phytoplankton growth rates in Atlantic surface waters, (2) to identify factors controlling the distribution of ozone in the North Atlantic marine boundary layer, and (3) to estimate the contributions of sources on surrounding continents to the biogeochemical cycles of sulfur, nitrogen, and trace metals over the North Atlantic region during the boreal summer season. The individual papers in this and the next two issues of Global Biogeochemical Cycles provide details on the results and analyses of the individual measurement efforts. This paper provides a brief overview of GCE/CASE/WATOX.

  17. Measuring biogeochemical responses to pulses of water

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-05-01

    Hydrologic pulses, temporary increases in water inputs such as bouts of precipitation, can affect biogeochemical processes in ecosystems by providing water and nutrient resources. However, ecosystem responses to the water vary. Harms and Grimm conducted experiments to determine how hydrologic pulses and existing moisture conditions interact to affect the biogeochemistry of desert floodplains. During dry and monsoon seasons at their study site in the floodplains of the San Pedro River in Arizona, the researchers experimentally added pulses of water and then measured emissions of several trace gases that are indicators of biological processes. They found that the size of the added hydrologic pulse strongly interacted with existing soil moisture conditions in determining emissions of some trace gases. For instance, following dry conditions, pulses of water stimulated carbon dioxide, methane, and nitric oxide emissions, with larger water pulses stimulating more emissions. However, when soil was already wet, the addition of water pulses had less effect on the emission of these gases. (Journal of Geophysical Research-Biogeosciences, doi:10.1029/2011JG001775, 2012)

  18. Modelling the fate of six common pharmaceuticals in a small stream: quantification of attenuation and retention in different stream-specific environments

    NASA Astrophysics Data System (ADS)

    Riml, Joakim; Wörman, Anders; Kunkel, Uwe; Radke, Michael

    2013-04-01

    Detection of pharmaceutical residues in streaming waters is common in urbanized areas. Although the occurrence and source of these micropollutants is known, their behavior in these aquatic ecosystems is still only partly understood. Specifically, quantitative information of biogeochemical processes in stream-specific environments where predominant reactions occur is often missing. In an attempt to address this knowledge gap, we performed simultaneous tracer tests in Säva Brook, Sweden, with bezafibrate, clofibric acid, diclofenac, ibuprofen, metoprolol and naproxen, as well as with the more inert solutes uranine and Rhodamine WT. The breakthrough curves at five successive sampling stations along a 16 km long stream reach were evaluated using a coupled physical-biogeochemical model framework containing surface water transport together with a representation of transient storage in slow/immobile zones of the stream. The multi-tracer experiment opens for decoupling of hydrological and biogeochemical contribution to the fate, and by linking impact and sensitivity analyses to relative significance of model parameters the most important processes for each contaminant were elucidated. Specifically for Säva Brook, the proposed methodology revealed that the pharmaceutical-contaminated stream water remained in the storage zones for times corresponding to 5-25% of the flow time of the stream. Furthermore, the results indicate a great variability in terms of predominant biogeochemical processes between the different contaminants. Rapid reactions occurring in the transient storage zone attenuated both ibuprofen and clofibric acid, and we conclude that a major degradation pathway for these contaminants was biodegradation in the hyporheic zone. In contrast, bezafibrate, metoprolol, and naproxen were mainly affected by sorption both in the storage zone and the main channel, while diclofenac displayed negligible effects of biogeochemical reactions.

  19. HYDROLOGIC FLOWPATHS INFLUENCE INORGANIC AND ORGANIC NUTRIENT LEACHING IN A FOREST SOIL

    EPA Science Inventory

    Hydrologic pathways through soil affect element leaching by determining the relative importance of biogeochemical processes such as sorption and decomposition. We used stable hydrogen isotopes of water (δD) to examine the influence of flowpaths on soil solution chemistry in a mat...

  20. Demonstrating the Value of Fine-resolution Optical Data for Minimising Aliasing Impacts on Biogeochemical Models of Surface Waters

    NASA Astrophysics Data System (ADS)

    Chappell, N. A.; Jones, T.; Young, P.; Krishnaswamy, J.

    2015-12-01

    There is increasing awareness that under-sampling may have resulted in the omission of important physicochemical information present in water quality signatures of surface waters - thereby affecting interpretation of biogeochemical processes. For dissolved organic carbon (DOC) and nitrogen this under-sampling can now be avoided using UV-visible spectroscopy measured in-situ and continuously at a fine-resolution e.g. 15 minutes ("real time"). Few methods are available to extract biogeochemical process information directly from such high-frequency data. Jones, Chappell & Tych (2014 Environ Sci Technol: 13289-97) developed one such method using optically-derived DOC data based upon a sophisticated time-series modelling tool. Within this presentation we extend the methodology to quantify the minimum sampling interval required to avoid distortion of model structures and parameters that describe fundamental biogeochemical processes. This shifting of parameters which results from under-sampling is called "aliasing". We demonstrate that storm dynamics at a variety of sites dominate over diurnal and seasonal changes and that these must be characterised by sampling that may be sub-hourly to avoid aliasing. This is considerably shorter than that used by other water quality studies examining aliasing (e.g. Kirchner 2005 Phys Rev: 069902). The modelling approach presented is being developed into a generic tool to calculate the minimum sampling for water quality monitoring in systems driven primarily by hydrology. This is illustrated with fine-resolution, optical data from watersheds in temperate Europe through to the humid tropics.

  1. Characterizing multiple timescales of stream and storage zone interaction that affect solute fate and transport in streams

    USGS Publications Warehouse

    Choi, Jungyill; Harvey, Judson W.; Conklin, Martha H.

    2000-01-01

    The fate of contaminants in streams and rivers is affected by exchange and biogeochemical transformation in slowly moving or stagnant flow zones that interact with rapid flow in the main channel. In a typical stream, there are multiple types of slowly moving flow zones in which exchange and transformation occur, such as stagnant or recirculating surface water as well as subsurface hyporheic zones. However, most investigators use transport models with just a single storage zone in their modeling studies, which assumes that the effects of multiple storage zones can be lumped together. Our study addressed the following question: Can a single‐storage zone model reliably characterize the effects of physical retention and biogeochemical reactions in multiple storage zones? We extended an existing stream transport model with a single storage zone to include a second storage zone. With the extended model we generated 500 data sets representing transport of nonreactive and reactive solutes in stream systems that have two different types of storage zones with variable hydrologic conditions. The one storage zone model was tested by optimizing the lumped storage parameters to achieve a best fit for each of the generated data sets. Multiple storage processes were categorized as possessing I, additive; II, competitive; or III, dominant storage zone characteristics. The classification was based on the goodness of fit of generated data sets, the degree of similarity in mean retention time of the two storage zones, and the relative distributions of exchange flux and storage capacity between the two storage zones. For most cases (>90%) the one storage zone model described either the effect of the sum of multiple storage processes (category I) or the dominant storage process (category III). Failure of the one storage zone model occurred mainly for category II, that is, when one of the storage zones had a much longer mean retention time (ts ratio > 5.0) and when the dominance of storage capacity and exchange flux occurred in different storage zones. We also used the one storage zone model to estimate a “single” lumped rate constant representing the net removal of a solute by biogeochemical reactions in multiple storage zones. For most cases the lumped rate constant that was optimized by one storage zone modeling estimated the flux‐weighted rate constant for multiple storage zones. Our results explain how the relative hydrologic properties of multiple storage zones (retention time, storage capacity, exchange flux, and biogeochemical reaction rate constant) affect the reliability of lumped parameters determined by a one storage zone transport model. We conclude that stream transport models with a single storage compartment will in most cases reliably characterize the dominant physical processes of solute retention and biogeochemical reactions in streams with multiple storage zones.

  2. Simultaneous determination of multiple soil enzyme activities for soil health-biogeochemical indexes

    USDA-ARS?s Scientific Manuscript database

    Enzyme activities (EAs) are soil health indicators of changes in decomposition processes due to management and the crop(s) affecting the quantity and quality of plant residues and nutrients entering the soil. More commonly assessed soil EAs can provide information of reactions where plant available ...

  3. ELEVATED CO2 AND TEMPERATURE ALTER THE RESPONSE OF PINUS PONDEROSA TO OZONE: A SIMULATION ANALYSIS

    EPA Science Inventory

    Forests regulate numerous biogeochemical cycles, storing and cycling large quantities of carbon, water, and nutrients, however, there is concern how climate change, elevated CO2 and tropospheric O3 will affect these processes. We investigated the potential impact of O3 in combina...

  4. Generating 30-m land surface albedo by integrating landsat and MODIS data for understanding the disturbance evolution

    USDA-ARS?s Scientific Manuscript database

    Land cover changes affect climate through both biogeochemical (carbon-cycle) impacts and biogeophysical processes such as changes in surface albedo, temperature, evapotranspiration, atmospheric water vapor, and cloud cover. Recent studies have examined both the greenhouse gas and biophysical consequ...

  5. Generating 30-m land surface albedo by integrating landsat and MODIS data for understanding the disturbance

    USDA-ARS?s Scientific Manuscript database

    Land cover change affects climate through both biogeochemical (carbon-cycle) impacts and biogeophysical processes such as changes in surface albedo, temperature, evapotranspiration, atmospheric water vapor, and cloud cover. Previous studies have highlighted that forest loss in high latitudes could c...

  6. BIOGEOCHEMICAL PROCESSES CONTROLLING MIDDAY FERROUS IRON MAXIMA IN STREAM WATERS AFFECTED BY ACID ROCK DRAINAGE. (R829640)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  7. Incorporating microbes into large-scale biogeochemical models

    NASA Astrophysics Data System (ADS)

    Allison, S. D.; Martiny, J. B.

    2008-12-01

    Micro-organisms, including Bacteria, Archaea, and Fungi, control major processes throughout the Earth system. Recent advances in microbial ecology and microbiology have revealed an astounding level of genetic and metabolic diversity in microbial communities. However, a framework for interpreting the meaning of this diversity has lagged behind the initial discoveries. Microbial communities have yet to be included explicitly in any major biogeochemical models in terrestrial ecosystems, and have only recently broken into ocean models. Although simplification of microbial communities is essential in complex systems, omission of community parameters may seriously compromise model predictions of biogeochemical processes. Two key questions arise from this tradeoff: 1) When and where must microbial community parameters be included in biogeochemical models? 2) If microbial communities are important, how should they be simplified, aggregated, and parameterized in models? To address these questions, we conducted a meta-analysis to determine if microbial communities are sensitive to four environmental disturbances that are associated with global change. In all cases, we found that community composition changed significantly following disturbance. However, the implications for ecosystem function were unclear in most of the published studies. Therefore, we developed a simple model framework to illustrate the situations in which microbial community changes would affect rates of biogeochemical processes. We found that these scenarios could be quite common, but powerful predictive models cannot be developed without much more information on the functions and disturbance responses of microbial taxa. Small-scale models that explicitly incorporate microbial communities also suggest that process rates strongly depend on microbial interactions and disturbance responses. The challenge is to scale up these models to make predictions at the ecosystem and global scales based on measurable parameters. We argue that meeting this challenge will require a coordinated effort to develop a series of nested models at scales ranging from the micron to the globe in order to optimize the tradeoff between model realism and feasibility.

  8. Constructing wetlands: measuring and modeling feedbacks of oxidation processes between plants and clay-rich material

    NASA Astrophysics Data System (ADS)

    Saaltink, Rémon; Dekker, Stefan C.; Griffioen, Jasper; Wassen, Martin J.

    2016-04-01

    Interest is growing in using soft sediment as a building material in eco-engineering projects. Wetland construction in the Dutch lake Markermeer is an example: here the option of dredging some of the clay-rich lake-bed sediment and using it to construct 10.000 ha of wetland will soon go under construction. Natural processes will be utilized during and after construction to accelerate ecosystem development. Knowing that plants can eco-engineer their environment via positive or negative biogeochemical plant-soil feedbacks, we conducted a six-month greenhouse experiment to identify the key biogeochemical processes in the mud when Phragmites australis is used as an eco-engineering species. We applied inverse biogeochemical modeling to link observed changes in pore water composition to biogeochemical processes. Two months after transplantation we observed reduced plant growth and shriveling as well as yellowing of foliage. The N:P ratios of plant tissue were low and were affected not by hampered uptake of N but by enhanced uptake of P. Plant analyses revealed high Fe concentrations in the leaves and roots. Sulfate concentrations rose drastically in our experiment due to pyrite oxidation; as reduction of sulfate will decouple Fe-P in reducing conditions, we argue that plant-induced iron toxicity hampered plant growth, forming a negative feedback loop, while simultaneously there was a positive feedback loop, as iron toxicity promotes P mobilization as a result of reduced conditions through root death, thereby stimulating plant growth and regeneration. Given these two feedback mechanisms, we propose that when building wetlands from these mud deposits Fe-tolerant species are used rather than species that thrive in N-limited conditions. The results presented in this study demonstrate the importance of studying the biogeochemical properties of the building material and the feedback mechanisms between plant and soil prior to finalizing the design of the eco-engineering project.

  9. Global Biology Research Program: Biogeochemical Processes in Wetlands

    NASA Technical Reports Server (NTRS)

    Bartlett, D. S. (Editor)

    1984-01-01

    The results of a workshop examining potential NASA contributions to research on wetland processes as they relate to global biogeochemical cycles are summarized. A wetlands data base utilizing remotely sensed inventories, studies of wetland/atmosphere exchange processes, and the extrapolation of local measurements to global biogeochemical cycling processes were identified as possible areas for NASA support.

  10. A generic biogeochemical module for earth system models

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Huang, M.; Liu, C.; Li, H.-Y.; Leung, L. R.

    2013-06-01

    Physical and biogeochemical processes regulate soil carbon dynamics and CO2 flux to and from the atmosphere, influencing global climate changes. Integration of these processes into earth system models (e.g. community land models - CLM), however, currently faces three major challenges: (1) extensive efforts are required to modify modeling structures and to rewrite computer programs to incorporate new or updated processes as new knowledge is being generated, (2) computational cost is prohibitively expensive to simulate biogeochemical processes in land models due to large variations in the rates of biogeochemical processes, and (3) various mathematical representations of biogeochemical processes exist to incorporate different aspects of fundamental mechanisms, but systematic evaluation of the different mathematical representations is difficult, if not impossible. To address these challenges, we propose a new computational framework to easily incorporate physical and biogeochemical processes into land models. The new framework consists of a new biogeochemical module with a generic algorithm and reaction database so that new and updated processes can be incorporated into land models without the need to manually set up the ordinary differential equations to be solved numerically. The reaction database consists of processes of nutrient flow through the terrestrial ecosystems in plants, litter and soil. This framework facilitates effective comparison studies of biogeochemical cycles in an ecosystem using different conceptual models under the same land modeling framework. The approach was first implemented in CLM and benchmarked against simulations from the original CLM-CN code. A case study was then provided to demonstrate the advantages of using the new approach to incorporate a phosphorus cycle into the CLM model. To our knowledge, the phosphorus-incorporated CLM is a new model that can be used to simulate phosphorus limitation on the productivity of terrestrial ecosystems.

  11. Network analysis reveals multiscale controls on streamwater chemistry

    Treesearch

    Kevin J. McGuire; Christian E. Torgersen; Gene E. Likens; Donald C. Buso; Winsor H. Lowe; Scott W. Bailey

    2014-01-01

    By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in...

  12. An approach to determine multiple enzyme activities in the same soil sample for soil health-biogeochemical indexes

    USDA-ARS?s Scientific Manuscript database

    Enzyme activities (EAs) are soil health indicators of changes in decomposition processes due to management and the crop(s) affecting the quantity and quality of plant residues and nutrients entering the soil. More commonly assessed soil EAs can provide information of reactions where plant available ...

  13. EFFECTS OF ELEVATED CO2 AND TEMPERATURE ON THE RESPONSE OF PONDEROSA PINE TO OZONE: A SIMULATION ANALYSIS

    EPA Science Inventory

    Forests regulate numerous biogeochemical cycles, storing and cycling carbon, water, and nutrients, however, there is concern how climate change, elevated CO2 and tropospheric O3 will affect these processes. We investigated the potential impact of increased O3 in combination wit...

  14. Environmental Regulation of Microbial Community Structure

    NASA Technical Reports Server (NTRS)

    Bebout, Leslie; DesMarais, D.; Heyenga, G.; Nelson, F.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Most naturally occurring microbes live in complex microbial communities consisting of thousands of phylotypes of microorganisms living in close proximity. Each of these draws nutrients from the environment and releases metabolic waste products, which may in turn serve as substrates for other microbial groups. Gross environmental changes, such as irradiance level, hydrodynamic flow regime, temperature or water chemistry can directly affect the productivity of some community members, which in turn will affect other dependent microbial populations and rate processes. As a first step towards the development of "standard" natural communities of microorganisms for a variety of potential NASA applications, we are measuring biogeochemical cycling in artificially structured communities of microorganisms, created using natural microbial mat communities as inoculum. The responses of these artificially assembled communities of microorganisms to controlled shifts in ecosystem incubation conditions is being determined. This research requires close linking of environmental monitoring, with community composition in a closed and controlled incubation setting. We are developing new incubation chamber designs to allow for this integrated approach to examine the interplay between environmental conditions, microbial community composition and biogeochemical processes.

  15. The Water, Energy, and Biogeochemical Model (WEBMOD): A TOPMODEL application developed within the Modular Modeling System

    NASA Astrophysics Data System (ADS)

    Webb, R. M.; Wolock, D. M.; Linard, J. I.; Wieczorek, M. E.

    2004-12-01

    Process-based flow and transport simulation models can help increase understanding of how hydrologic flow paths affect biogeochemical mixing and reactions in watersheds. This presentation describes the Water, Energy, and Biogeochemical Model (WEBMOD), a new model designed to simulate water and chemical transport in both pristine and agricultural watersheds. WEBMOD simulates streamflow using TOPMODEL algorithms and also simulates irrigation, canopy interception, snowpack, and tile-drain flow; these are important processes for successful multi-year simulations of agricultural watersheds. In addition, the hydrologic components of the model are linked to the U.S. Geological Survey's (USGS) geochemical model PHREEQC such that solute chemistry for the hillslopes and streams also are computed. Model development, execution, and calibration take place within the USGS Modular Modeling System. WEBMOD is being validated at ten research watersheds. Five of these watersheds are nearly pristine and comprise the USGS Water, Energy, and Biogeochemical Budget (WEBB) Program field sites: Loch Vale, Colorado; Trout Lake, Wisconsin; Sleepers River, Vermont; Panola Mountain, Georgia; and the Luquillo Experimental Forest, Puerto Rico. The remaining five watersheds contain intensely cultivated fields being studied by USGS National Water Quality Assessment Program: Merced River, California; Granger Drain, Washington; Maple Creek, Nebraska; Sugar Creek, Indiana; and Morgan Creek, Delaware. Model calibration improved understanding of observed variations in soil moisture, solute concentrations, and stream discharge at the five WEBB watersheds and is now being set up to simulate the processes at the five agricultural watersheds that are now ending their first year of data collection.

  16. Dispersal-Based Microbial Community Assembly Decreases Biogeochemical Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Emily B.; Stegen, James C.

    Ecological mechanisms influence relationships among microbial communities, which in turn impact biogeochemistry. In particular, microbial communities are assembled by deterministic (e.g., selection) and stochastic (e.g., dispersal) processes, and the relative balance of these two process types is hypothesized to alter the influence of microbial communities over biogeochemical function. We used an ecological simulation model to evaluate this hypothesis, defining biogeochemical function generically to represent any biogeochemical reaction of interest. We assembled receiving communities under different levels of dispersal from a source community that was assembled purely by selection. The dispersal scenarios ranged from no dispersal (i.e., selection-only) to dispersal ratesmore » high enough to overwhelm selection (i.e., homogenizing dispersal). We used an aggregate measure of community fitness to infer a given community’s biogeochemical function relative to other communities. We also used ecological null models to further link the relative influence of deterministic assembly to function. We found that increasing rates of dispersal decrease biogeochemical function by increasing the proportion of maladapted taxa in a local community. Niche breadth was also a key determinant of biogeochemical function, suggesting a tradeoff between the function of generalist and specialist species. Finally, we show that microbial assembly processes exert greater influence over biogeochemical function when there is variation in the relative contributions of dispersal and selection among communities. Taken together, our results highlight the influence of spatial processes on biogeochemical function and indicate the need to account for such effects in models that aim to predict biogeochemical function under future environmental scenarios.« less

  17. Dispersal-Based Microbial Community Assembly Decreases Biogeochemical Function

    DOE PAGES

    Graham, Emily B.; Stegen, James C.

    2017-11-01

    Ecological mechanisms influence relationships among microbial communities, which in turn impact biogeochemistry. In particular, microbial communities are assembled by deterministic (e.g., selection) and stochastic (e.g., dispersal) processes, and the relative balance of these two process types is hypothesized to alter the influence of microbial communities over biogeochemical function. We used an ecological simulation model to evaluate this hypothesis, defining biogeochemical function generically to represent any biogeochemical reaction of interest. We assembled receiving communities under different levels of dispersal from a source community that was assembled purely by selection. The dispersal scenarios ranged from no dispersal (i.e., selection-only) to dispersal ratesmore » high enough to overwhelm selection (i.e., homogenizing dispersal). We used an aggregate measure of community fitness to infer a given community’s biogeochemical function relative to other communities. We also used ecological null models to further link the relative influence of deterministic assembly to function. We found that increasing rates of dispersal decrease biogeochemical function by increasing the proportion of maladapted taxa in a local community. Niche breadth was also a key determinant of biogeochemical function, suggesting a tradeoff between the function of generalist and specialist species. Finally, we show that microbial assembly processes exert greater influence over biogeochemical function when there is variation in the relative contributions of dispersal and selection among communities. Taken together, our results highlight the influence of spatial processes on biogeochemical function and indicate the need to account for such effects in models that aim to predict biogeochemical function under future environmental scenarios.« less

  18. Biotic Interactions in Microbial Communities as Modulators of Biogeochemical Processes: Methanotrophy as a Model System

    PubMed Central

    Ho, Adrian; Angel, Roey; Veraart, Annelies J.; Daebeler, Anne; Jia, Zhongjun; Kim, Sang Yoon; Kerckhof, Frederiek-Maarten; Boon, Nico; Bodelier, Paul L. E.

    2016-01-01

    Microbial interaction is an integral component of microbial ecology studies, yet the role, extent, and relevance of microbial interaction in community functioning remains unclear, particularly in the context of global biogeochemical cycles. While many studies have shed light on the physico-chemical cues affecting specific processes, (micro)biotic controls and interactions potentially steering microbial communities leading to altered functioning are less known. Yet, recent accumulating evidence suggests that the concerted actions of a community can be significantly different from the combined effects of individual microorganisms, giving rise to emergent properties. Here, we exemplify the importance of microbial interaction for ecosystem processes by analysis of a reasonably well-understood microbial guild, namely, aerobic methane-oxidizing bacteria (MOB). We reviewed the literature which provided compelling evidence for the relevance of microbial interaction in modulating methane oxidation. Support for microbial associations within methane-fed communities is sought by a re-analysis of literature data derived from stable isotope probing studies of various complex environmental settings. Putative positive interactions between active MOB and other microbes were assessed by a correlation network-based analysis with datasets covering diverse environments where closely interacting members of a consortium can potentially alter the methane oxidation activity. Although, methanotrophy is used as a model system, the fundamentals of our postulations may be applicable to other microbial guilds mediating other biogeochemical processes. PMID:27602021

  19. Emergent Archetype Hydrological-Biogeochemical Response Patterns in Heterogeneous Catchments

    NASA Astrophysics Data System (ADS)

    Jawitz, J. W.; Gall, H. E.; Rao, P.

    2013-12-01

    What can spatiotemporally integrated patterns observed in stream hydrologic and biogeochemical signals generated in response to transient hydro-climatic and anthropogenic forcing tell us about the interactions between spatially heterogeneous soil-mediated hydrological and biogeochemical processes? We seek to understand how the spatial structure of solute sources coupled with hydrologic responses affect observed concentration-discharge (C-Q) patterns. These patterns are expressions of the spatiotemporal structure of solute loads exported from managed catchments, and their likely ecological consequences manifested in receiving water bodies (e.g., wetlands, rivers, lakes, and coastal waters). We investigated the following broad questions: (1) How does the correlation between flow-generating areas and biogeochemical source areas across a catchment evolve under stochastic hydro-climatic forcing? (2) What are the feasible hydrologic and biogeochemical responses that lead to the emergence of the observed archetype C-Q patterns? and; (3) What implications do these coupled dynamics have for catchment monitoring and implementation of management practices? We categorize the observed temporal signals into three archetypical C-Q patterns: dilution; accretion, and constant concentration. We introduce a parsimonious stochastic model of heterogeneous catchments, which act as hydrologic and biogeochemical filters, to examine the relationship between spatial heterogeneity and temporal history of solute export signals. The core concept of the modeling framework is considering the types and degree of spatial correlation between solute source zones and flow generating zones, and activation of different portions of the catchments during rainfall events. Our overarching hypothesis is that each of the archetype C-Q patterns can be generated by explicitly linking landscape-scale hydrologic responses and spatial distributions of solute source properties within a catchment. The model simulations reproduce the three major C-Q patterns observed in published data, offering valuable insight into coupled catchment processes. The findings have important implications for effective catchment management for water quality improvement, and stream monitoring strategies.

  20. Targeted quantification of functional enzyme dynamics in environmental samples for microbially mediated biogeochemical processes: Targeted quantification of functional enzyme dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Minjing; Gao, Yuqian; Qian, Wei-Jun

    Microbially mediated biogeochemical processes are catalyzed by enzymes that control the transformation of carbon, nitrogen, and other elements in environment. The dynamic linkage between enzymes and biogeochemical species transformation has, however, rarely been investigated because of the lack of analytical approaches to efficiently and reliably quantify enzymes and their dynamics in soils and sediments. Herein, we developed a signature peptide-based technique for sensitively quantifying dissimilatory and assimilatory enzymes using nitrate-reducing enzymes in a hyporheic zone sediment as an example. Moreover, the measured changes in enzyme concentration were found to correlate with the nitrate reduction rate in a way different frommore » that inferred from biogeochemical models based on biomass or functional genes as surrogates for functional enzymes. This phenomenon has important implications for understanding and modeling the dynamics of microbial community functions and biogeochemical processes in environments. Our results also demonstrate the importance of enzyme quantification for the identification and interrogation of those biogeochemical processes with low metabolite concentrations as a result of faster enzyme-catalyzed consumption of metabolites than their production. The dynamic enzyme behaviors provide a basis for the development of enzyme-based models to describe the relationship between the microbial community and biogeochemical processes.« less

  1. The interplay between estuarine transport and biogeochemical processes in determining the nutrient conditions in bottom layers of non-tidal Gulf of Finland

    NASA Astrophysics Data System (ADS)

    Kõuts, Mariliis; Raudsepp, Urmas; Maljutenko, Ilja

    2017-04-01

    In coastal areas, especially estuaries, spatial distribution and seasonal cycling of chemical and biological variables is largely determined by local biogeochemical processes and water transport of different properties. In tidal estuaries, however, biogeochemical processes are affected by tides as frequent water exchange alters nutrient and oxygen concentrations. In wide and deep non-tidal estuary-type marginal seas spatial distribution and seasonal cycling are determined by the mixture of water transport and local biogeochemistry. The Baltic Sea is a stratified water basin where halocline divides the water column into two parts: upper layer, which is horizontally uniform in terms of distribution of chemical and biological parameters, and has clear seasonal cycle; and bottom part, where nutrient and oxygen dynamics is more complex. There water transport and sediment-water interface fluxes play a major role. Our prime focus is the Gulf of Finland in the Baltic Sea. It is a wide, non-tidal and stratified sub-basin known for its high nutrient concentrations and severe oxygen deficiency in summer. We modelled the Baltic Sea (including Gulf of Finland) using ERGOM, a biogeochemical model coupled with circulation model GETM. Seasonal cycling and water circulation were observed with a 40-year simulation from 1966 to 2006. Our results show that in shallow areas above halocline the seasonal cycle of phytoplankton, nutrients and oxygen concentrations is uniform in space. Water circulation does not create inhomogeneous distribution pattern of biogeochemical parameters and their seasonal cycle. The circulation in the Gulf of Finland is strongly modulated by the seasonality of estuarine transport. Below the halocline saline low-oxygen and nutrient-rich water is transported from the open Baltic Proper to the Gulf of Finland in spring and early summer. This results in the highest nutrient concentrations and the poorest oxygen conditions by the end of August. In the shallow area nutrients have high concentrations in March-April before the spring bloom of diatoms starts. Low oxygen and nutrient concentrations are observed at the end of August. There is a qualitative difference of nutrient dynamics between shallow and deep layers but quantification of the role of transport and local biogeochemical processes is still challenging.

  2. Modeling hyporheic zone processes

    USGS Publications Warehouse

    Runkel, Robert L.; McKnight, Diane M.; Rajaram, Harihar

    2003-01-01

    Stream biogeochemistry is influenced by the physical and chemical processes that occur in the surrounding watershed. These processes include the mass loading of solutes from terrestrial and atmospheric sources, the physical transport of solutes within the watershed, and the transformation of solutes due to biogeochemical reactions. Research over the last two decades has identified the hyporheic zone as an important part of the stream system in which these processes occur. The hyporheic zone may be loosely defined as the porous areas of the stream bed and stream bank in which stream water mixes with shallow groundwater. Exchange of water and solutes between the stream proper and the hyporheic zone has many biogeochemical implications, due to differences in the chemical composition of surface and groundwater. For example, surface waters are typically oxidized environments with relatively high dissolved oxygen concentrations. In contrast, reducing conditions are often present in groundwater systems leading to low dissolved oxygen concentrations. Further, microbial oxidation of organic materials in groundwater leads to supersaturated concentrations of dissolved carbon dioxide relative to the atmosphere. Differences in surface and groundwater pH and temperature are also common. The hyporheic zone is therefore a mixing zone in which there are gradients in the concentrations of dissolved gasses, the concentrations of oxidized and reduced species, pH, and temperature. These gradients lead to biogeochemical reactions that ultimately affect stream water quality. Due to the complexity of these natural systems, modeling techniques are frequently employed to quantify process dynamics.

  3. Impacts of mesoscale eddies on biogeochemical cycles in the South China Sea

    NASA Astrophysics Data System (ADS)

    Xiu, P.; Chai, F.; Guo, M.

    2016-02-01

    Biogeochemical cycles associated with mesoscale eddies in the South China Sea (SCS) are investigated by using satellite surface chlorophyll concentration, altimeter data, satellite sea surface temperature, and a coupled physical-biogeochemical Pacific Ocean model (ROMS-CoSiNE) simulation for the period from 1991 to 2007. Considering the annual mean, composite analysis reveals that cyclonic eddies are associated with higher concentrations of nutrients, phytoplankton and zooplankton while the anticyclonic eddies are with lower concentrations compared with surrounding waters, which is generally controlled by the eddy pumping mechanism. Dipole structures of vertical fluxes with net upward motion in cyclonic eddies and net downward motion in anticyclonic eddies are also revealed. During the lifetime of an eddy, the evolutions of physical, biological, and chemical structures are not linearly coupled at the eddy core where plankton grow and composition of the community depend not only on the physical and chemical processes but also on the adjustments by the predator-prey relationship. Considering the seasonal variability, we find eddy pumping mechanisms are generally dominant in winter and eddy advection effects are dominant in summer. Over the space, variability of chlorophyll to the west of Luzon Strait and off northwest of Luzon Island are mainly controlled by eddy pumping mechanism. In regions off the Vietnam coast, chlorophyll distributions are generally associated with horizontal eddy advection. This research highlights different mesoscale mechanisms affecting biological structures that can potentially disturb ocean biogeochemical cycling processes in the South China Sea.

  4. PLFA profiling of microbial community structure and seasonal shifts in soils of a Douglas-fir chronosequence

    Treesearch

    Jennifer Moore-Kucera; Richard P. Dick

    2008-01-01

    The impact and frequency of forest harvesting could significantly affect soil microbial community (SMC) structure and functioning. The ability of soil microorganisms to perform biogeochemical processes is critical for sustaining forest productivity and has a direct impact on decomposition dynamics and carbon storage potential. The Wind River Canopy Crane Research...

  5. Climate change and watershed mercury export in a Coastal Plain watershed

    Treesearch

    Heather Golden; Christopher D. Knightes; Paul A. Conrads; Toby D. Feaster; Gary M. Davis; Stephen T. Benedict; Paul M. Bradley

    2016-01-01

    Future changes in climatic conditions may affect variations in watershed processes (e.g., hydrological, biogeochemical) and surface water quality across a wide range of physiographic provinces, ecosystems, and spatial scales. How such climatic shifts will impact watershed mercury (Hg) dynamics and hydrologically-driven Hg transport is a significant concern.

  6. Searching for Biogeochemical Cycles on Mars

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.

    1997-01-01

    The search for life on Mars clearly benefits from a rigorous, yet broad, definition of life that compels us to consider all possible lines of evidence for a martian biosphere. Recent studies in microbial ecology illustrate that the classic definition of life should be expanded beyond the traditional definition of a living cell. The traditional defining characteristics of life are threefold. First, life is capable of metabolism, that is, it performs chemical reactions that utilize energy and also synthesize its cellular constituents. Second, life is capable of self-replication. Third, life can evolve in order to adapt to environmental changes. An expanded, ecological definition of life also recognizes that life is a community of organisms that must interact with their nonliving environment through processes called biogeochemical cycles. This regenerative processing maintains, in an aqueous conditions, a dependable supply of nutrients and energy for growth. In turn, life can significantly affect those processes that control the exchange of materials between the atmosphere, ocean, and upper crust. Because metabolic processes interact directly with the environment, they can alter their surroundings and thus leave behind evidence of life. For example, organic matter is produced from single-carbon-atom precursors for the biosynthesis of cellular constituents. This leads to a reservoir of reduced carbon in sediments that, in turn, can affect the oxidation state of the atmosphere. The harvesting of chemical energy for metabolism often employs oxidation-reduction reactions that can alter the chemistry and oxidation state of the redox-sensitive elements carbon, sulfur, nitrogen, iron, and manganese. Have there ever been biogeochemical cycles on Mars? Certain key planetary processes can offer clues. Active volcanism provides reduced chemical species that biota can use for organic synthesis. Volcanic carbon dioxide and methane can serve as greenhouse gases. Thus the persistence of volcanism on Mars may well have influenced the persistence of a martian biosphere. The geologic processing of the crust can affect the availability of nutrients and also control the deposition of minerals that could have served as a medium for the preservation of fossil information. Finally, the activity of liquid water is crucial to life. Was there ever an Earth-like hydrologic cycle with rainfall? Has aqueous activity instead been restricted principally to hydrothermal activity below the surface? To what extent did the inorganic chemistry driven by sunlight and hydrothermal activity influence organic chemistry (prebiotic chemical evolution)? This paper addresses these and other key questions.

  7. Landscape Conservation of Aquatic Habitats Promotes Watershed-scale Biological, Biogeochemical, and Hydrological Functions

    EPA Science Inventory

    Wetlands are exceptionally productive landscape features that provide critical habitat for endemic species, threatened/endangered and migratory animals, store floodwaters and maintain baseflows in stream systems, recharge groundwaters, and biogeochemically and physically affect n...

  8. Modeling potential interactions of acid deposition and climate change at four watersheds in Shenandoah National Park, VA using the dynamic biogeochemical model PnET-BGC

    NASA Astrophysics Data System (ADS)

    Robison, A.; Scanlon, T. M.; Cosby, B. J.; Webb, J. R.; Hayhoe, K.; Galloway, J. N.

    2013-12-01

    The ecological threat imposed by acid deposition on watersheds in the eastern U.S. has, to a certain extent, been alleviated by the passage of the Clean Air Act and subsequent amendments. At the same time, as climate change continues to emerge as a global issue affecting temperature regimes and hydrological cycling among many other variables, new concerns are developing for these watershed ecosystems. Considering that climate change and acid deposition do not influence watersheds independently, there is an opportunity and need to examine both the potential interactions and the impacts of these two biogeochemical drivers. Long-term monitoring of four streams in Shenandoah National Park, VA has provided a favorable setting for analyzing this interaction. Deposition of both sulfur and nitrogen has significantly decreased over the past 30 years in the region. Meanwhile, all four streams have warmed significantly over the past 20-33 years at an average rate of 0.07 oC yr-1, a trend that is closely tied to atmospheric warming rather than changes in hydrology. We applied a dynamic biogeochemical model (PnET-BGC) to these four watersheds to a) investigate how climate change will affect watershed response to reduced acid deposition; b) identify the key processes through which this interaction will be manifested; and c) examine how differences in watershed characteristics (e.g. bedrock and soil properties) affect the response to these two biogeochemical drivers. Included in model application are statistically downscaled climate projections of temperature maximums and minimums, precipitation, and solar radiation. Results will be used to assess the relative impact of these climate variables in regulating stream acid-base status. This study will also provide insight into the future ecological health of these ecosystems, primarily through examination of aquatic habitat suitability based on temperature and acidity.

  9. A spatially explicit hydro-ecological modeling framework (BEPS-TerrainLab V2.0): Model description and test in a boreal ecosystem in Eastern North America

    NASA Astrophysics Data System (ADS)

    Govind, Ajit; Chen, Jing Ming; Margolis, Hank; Ju, Weimin; Sonnentag, Oliver; Giasson, Marc-André

    2009-04-01

    SummaryA spatially explicit, process-based hydro-ecological model, BEPS-TerrainLab V2.0, was developed to improve the representation of ecophysiological, hydro-ecological and biogeochemical processes of boreal ecosystems in a tightly coupled manner. Several processes unique to boreal ecosystems were implemented including the sub-surface lateral water fluxes, stratification of vegetation into distinct layers for explicit ecophysiological representation, inclusion of novel spatial upscaling strategies and biogeochemical processes. To account for preferential water fluxes common in humid boreal ecosystems, a novel scheme was introduced based on laboratory analyses. Leaf-scale ecophysiological processes were upscaled to canopy-scale by explicitly considering leaf physiological conditions as affected by light and water stress. The modified model was tested with 2 years of continuous measurements taken at the Eastern Old Black Spruce Site of the Fluxnet-Canada Research Network located in a humid boreal watershed in eastern Canada. Comparison of the simulated and measured ET, water-table depth (WTD), volumetric soil water content (VSWC) and gross primary productivity (GPP) revealed that BEPS-TerrainLab V2.0 simulates hydro-ecological processes with reasonable accuracy. The model was able to explain 83% of the ET, 92% of the GPP variability and 72% of the WTD dynamics. The model suggests that in humid ecosystems such as eastern North American boreal watersheds, topographically driven sub-surface baseflow is the main mechanism of soil water partitioning which significantly affects the local-scale hydrological conditions.

  10. Biogeochemical cycling and chemical fluxes in a managed northern forested wetland, Michigan, USA

    Treesearch

    James McLaughlin; Emily Calhoon; Margaret Gale; Martin Jurgensen; Carl Trettin

    2011-01-01

    Forest harvesting and subsequent regeneration treatments may cause changes in soil and solution chemistry that adversely affect forest productivity and environmental quality. The objective of this study was to assess soil carbon (C), nitrogen (N), and base cation pools and fluxes, and to construct a hydrogen ion (H+) mass balance to identify major processes controlling...

  11. Strong spatial variability in trace gas dynamics following experimental drought in a humid tropical forest

    Treesearch

    Tana Wood; W. L. Silver

    2012-01-01

    [1] Soil moisture is a key driver of biogeochemical processes in terrestrial ecosystems, strongly affecting carbon (C) and nutrient availability as well as trace gas production and consumption in soils. Models predict increasing drought frequency in tropical forest ecosystems, which could feed back on future climate change directly via effects on trace gasdynamics and...

  12. [Effects of global change on soil fauna diversity: A review].

    PubMed

    Wu, Ting-Juan

    2013-02-01

    Terrestrial ecosystem consists of aboveground and belowground components, whose interaction affects the ecosystem processes and functions. Soil fauna plays an important role in biogeochemical cycles. With the recognizing of the significance of soil fauna in ecosystem processes, increasing evidences demonstrated that global change has profound effects on soil faunima diversity. The alternation of land use type, the increasing temperature, and the changes in precipitation pattern can directly affect soil fauna diversity, while the increase of atmospheric CO2 concentration and nitrogen deposition can indirectly affect the soil fauna diversity by altering plant community composition, diversity, and nutrient contents. The interactions of different environmental factors can co-affect the soil fauna diversity. To understand the effects of different driving factors on soil fauna diversity under the background of climate change would facilitate us better predicting how the soil fauna diversity and related ecological processes changed in the future.

  13. Long-term ERT monitoring of biogeochemical changes of an aged hydrocarbon contamination.

    PubMed

    Caterina, David; Flores Orozco, Adrian; Nguyen, Frédéric

    2017-06-01

    Adequate management of contaminated sites requires information with improved spatio-temporal resolution, in particular to assess bio-geochemical processes, such as the transformation and degradation of contaminants, precipitation of minerals or changes in groundwater geochemistry occurring during and after remediation procedures. Electrical Resistivity Tomography (ERT), a geophysical method sensitive to pore-fluid and pore-geometry properties, permits to gain quasi-continuous information about subsurface properties in real-time and has been consequently widely used for the characterization of hydrocarbon-impacted sediments. However, its application for the long-term monitoring of processes accompanying natural or engineered bioremediation is still difficult due to the poor understanding of the role that biogeochemical processes play in the electrical signatures. For in-situ studies, the task is further complicated by the variable signal-to-noise ratio and the variations of environmental parameters leading to resolution changes in the electrical images. In this work, we present ERT imaging results for data collected over a period of two years on a site affected by a diesel fuel contamination and undergoing bioremediation. We report low electrical resistivity anomalies in areas associated to the highest contaminant concentrations likely due transformations of the contaminant due to microbial activity and accompanying release of metabolic products. We also report large seasonal variations of the bulk electrical resistivity in the contaminated areas in correlation with temperature and groundwater level fluctuations. However, the amplitude of bulk electrical resistivity variations largely exceeds the amplitude expected given existing petrophysical models. Our results suggest that the variations in electrical properties are mainly controlled by microbial activity which in turn depends on soil temperature and hydrogeological conditions. Therefore, ERT can be suggested as a promising tool to track microbial activity during bioremediation even though further research is still needed to completely understand the bio-geochemical processes involved and their impact on electrical signatures. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Long-term ERT monitoring of biogeochemical changes of an aged hydrocarbon contamination

    NASA Astrophysics Data System (ADS)

    Caterina, David; Flores Orozco, Adrian; Nguyen, Frédéric

    2017-06-01

    Adequate management of contaminated sites requires information with improved spatio-temporal resolution, in particular to assess bio-geochemical processes, such as the transformation and degradation of contaminants, precipitation of minerals or changes in groundwater geochemistry occurring during and after remediation procedures. Electrical Resistivity Tomography (ERT), a geophysical method sensitive to pore-fluid and pore-geometry properties, permits to gain quasi-continuous information about subsurface properties in real-time and has been consequently widely used for the characterization of hydrocarbon-impacted sediments. However, its application for the long-term monitoring of processes accompanying natural or engineered bioremediation is still difficult due to the poor understanding of the role that biogeochemical processes play in the electrical signatures. For in-situ studies, the task is further complicated by the variable signal-to-noise ratio and the variations of environmental parameters leading to resolution changes in the electrical images. In this work, we present ERT imaging results for data collected over a period of two years on a site affected by a diesel fuel contamination and undergoing bioremediation. We report low electrical resistivity anomalies in areas associated to the highest contaminant concentrations likely due transformations of the contaminant due to microbial activity and accompanying release of metabolic products. We also report large seasonal variations of the bulk electrical resistivity in the contaminated areas in correlation with temperature and groundwater level fluctuations. However, the amplitude of bulk electrical resistivity variations largely exceeds the amplitude expected given existing petrophysical models. Our results suggest that the variations in electrical properties are mainly controlled by microbial activity which in turn depends on soil temperature and hydrogeological conditions. Therefore, ERT can be suggested as a promising tool to track microbial activity during bioremediation even though further research is still needed to completely understand the bio-geochemical processes involved and their impact on electrical signatures.

  15. Biogeochemical cycling in the ocean. Part 1: Introduction to the effects of upwelling along the west coast of North America

    NASA Technical Reports Server (NTRS)

    Howe, John T.

    1986-01-01

    Coastal upwelling is examined as it relates to the cycling of chemical species in coastal waters along the west coast of North America. The temporal and spatial features of upwelling phenomena in the Eastern boundary regions of the North Pacific Ocean are presented and discussed in terms of upwelling episodes. Climate conditions affecting upwelling include: thermal effects, wind-induced shear stress which moves surface layers, and the curl of the wind stress vector which is thought to affect the extent and nature of upwelling and the formation of offshore convergent downwelling fronts. These effects and the interaction of sunlight and upwelled nutrients which result in a biological bloom in surface waters is modeled analytically. The roles of biological and chemical species, including the effects of predation, are discussed in that context, and relevant remote sensing and in situ observations are presented. Climatological, oceanographic, biological, physical, chemical events, and processes that pertain to biogeochemical cycling are presented and described by a set of partial differential equations. Simple preliminary results are obtained and are compared with data. Thus a fairly general framework has been laid where the many facets of biogeochemical cycling in coastal upwelled waters can be examined in their relationship to one another, and to the whole, to whatever level of detail or approximation is warranted or desired.

  16. Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon

    NASA Astrophysics Data System (ADS)

    Neubauer, S. C.; Franklin, R. B.; Berrier, D. J.

    2013-07-01

    Environmental perturbations in wetlands affect the integrated plant-microbial-soil system, causing biogeochemical responses that can manifest at local to global scales. The objective of this study was to determine how saltwater intrusion affects carbon mineralization and greenhouse gas production in coastal wetlands. Working with tidal freshwater marsh soils that had experienced roughly 3.5 yr of in situ saltwater additions, we quantified changes in soil properties, measured extracellular enzyme activity associated with organic matter breakdown, and determined potential rates of anaerobic carbon dioxide (CO2) and methane (CH4) production. Soils from the field plots treated with brackish water had lower carbon content and higher C : N ratios than soils from freshwater plots, indicating that saltwater intrusion reduced carbon availability and increased organic matter recalcitrance. This was reflected in reduced activities of enzymes associated with the hydrolysis of cellulose and the oxidation of lignin, leading to reduced rates of soil CO2 and CH4 production. The effects of long-term saltwater additions contrasted with the effects of short-term exposure to brackish water during three-day laboratory incubations, which increased rates of CO2 production but lowered rates of CH4 production. Collectively, our data suggest that the long-term effect of saltwater intrusion on soil CO2 production is indirect, mediated through the effects of elevated salinity on the quantity and quality of autochthonous organic matter inputs to the soil. In contrast, salinity, organic matter content, and enzyme activities directly influence CH4 production. Our analyses demonstrate that saltwater intrusion into tidal freshwater marshes affects the entire process of carbon mineralization, from the availability of organic carbon through its terminal metabolism to CO2 and/or CH4, and illustrate that long-term shifts in biogeochemical functioning are not necessarily consistent with short-term disturbance-type responses.

  17. Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon

    NASA Astrophysics Data System (ADS)

    Neubauer, S. C.; Franklin, R. B.; Berrier, D. J.

    2013-12-01

    Environmental perturbations in wetlands affect the integrated plant-microbial-soil system, causing biogeochemical responses that can manifest at local to global scales. The objective of this study was to determine how saltwater intrusion affects carbon mineralization and greenhouse gas production in coastal wetlands. Working with tidal freshwater marsh soils that had experienced ~ 3.5 yr of in situ saltwater additions, we quantified changes in soil properties, measured extracellular enzyme activity associated with organic matter breakdown, and determined potential rates of anaerobic carbon dioxide (CO2) and methane (CH4) production. Soils from the field plots treated with brackish water had lower carbon content and higher C : N ratios than soils from freshwater plots, indicating that saltwater intrusion reduced carbon availability and increased organic matter recalcitrance. This was reflected in reduced activities of enzymes associated with the hydrolysis of cellulose and the oxidation of lignin, leading to reduced rates of soil CO2 and CH4 production. The effects of long-term saltwater additions contrasted with the effects of short-term exposure to brackish water during three-day laboratory incubations, which increased rates of CO2 production but lowered rates of CH4 production. Collectively, our data suggest that the long-term effect of saltwater intrusion on soil CO2 production is indirect, mediated through the effects of elevated salinity on the quantity and quality of autochthonous organic matter inputs to the soil. In contrast, salinity, organic matter content, and enzyme activities directly influence CH4 production. Our analyses demonstrate that saltwater intrusion into tidal freshwater marshes affects the entire process of carbon mineralization, from the availability of organic carbon through its terminal metabolism to CO2 and/or CH4, and illustrate that long-term shifts in biogeochemical functioning are not necessarily consistent with short-term disturbance-type responses.

  18. Former land-use and tree species affect nitrogen oxide emissions from a tropical dry forest.

    Treesearch

    Heather Erickson; Eric A. Davidson; Michael Keller

    2002-01-01

    Species composition in successional dry forests in the tropics varies widely, but the effect of this variation on biogeochemical processes is not well known. We examined fluxes of N oxides (nitrous and nitric oxide), soil N cycling, and litter chemistry (C/N ratio) in four successional dry forests on similar soils in western Puerto Rico with differing species...

  19. Effects of augmentation of coarse particulate organic matter on metabolism and nutrient retention in hyporheic sediments

    Treesearch

    C.L. Crenshaw; H.M. Valett; J.R. Webster

    2002-01-01

    1. Metabolic and biogeochemical processes in hyporheic zones may depend on inputs of coarse particulate organic matter. Our research focused on how differing quantity and quality of organic matter affects metabolism and nutrient retention in the hyporheic zone of a first-order Appalachian stream. 2. Sixteen plots were established on a tributary of Hugh White Creek, NC...

  20. Linking Seasonal Variations in the Spectral Slope of Chromophoric Dissolved Organic Matter (CDOM) with Apparent Oxygen Utilization and Excess Nitrogen (DINxs) in the North Atlantic Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    McDonald, N.; Barnes, R.; Nelson, N. B.

    2016-02-01

    The optically active or chromophoric fraction of dissolved organic matter (CDOM) is a topic of much interest to researchers due to its role in many biogeochemical processes in the global oceans. As CDOM effectively regulates the underwater light field, its influences on photosynthesis and primary productivity are significant. Despite recognition of its importance in biogeochemical cycles in natural waters, its chemical composition remains nebulous, due to photochemical processes, as well as spatial and temporal variations in composition. Understanding of CDOM composition and links to ocean processes is especially complex in pelagic, oligotrophic waters such as the North Atlantic Subtropical Gyre. In this region, minimum CDOM concentrations have been observed and it is decoupled from both dissolved organic carbon (DOC) and from net primary production (NPP). As CDOM absorbance has been shown to influence estimates of NPP from remote sensing models in the subtropical gyres, and as it has the potential to serve as an invaluable tracer of ocean DOM cycling, a better understanding of links between the optical properties of CDOM and biogeochemical processes in the subtropical gyres is crucial. In this study, monthly depth profiles of CDOM absorbance (between 1m and 3000m) were measured for a period of five years at the Bermuda Atlantic Timeseries Site (BATS) in the North Atlantic Subtropical Gyre to investigate seasonal variations and periodicity in CDOM optical properties. From this data, the spectral slope ratio (Sr) was calculated according to Helms et. al, 2008. Sr can be a useful tool in eliciting information about molecular weight, diagenetic state and microbial processes affecting CDOM composition, especially when coupled with other diagnostic parameters. In this study multivariate analysis techniques were utilized to examine links between Sr and ancillary parameters including apparent oxygen utilization (AOU) and excess nitrogen (DINxs) both of which can be a useful indicator of specific biogeochemical processes in the ocean. Results showed distinct seasonality in CDOM optical properties in conjunction with biological parameters and provide preliminary evidence that CDOM could be used as a proxy for organic carbon removal through the microbial loop.

  1. Biogeochemical Processes Regulating the Mobility of Uranium in Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belli, Keaton M.; Taillefert, Martial

    This book chapters reviews the latest knowledge on the biogeochemical processes regulating the mobility of uranium in sediments. It contains both data from the literature and new data from the authors.

  2. Disturbance decouples biogeochemical cycles across forests of the southeastern US

    Treesearch

    Ashley D. Keiser; Jennifer D. Knoepp; Mark A. Bradford

    2016-01-01

    Biogeochemical cycles are inherently linked through the stoichiometric demands of the organisms that cycle the elements. Landscape disturbance can alter element availability and thus the rates of biogeochemical cycling. Nitrification is a fundamental biogeochemical process positively related to plant productivity and nitrogen loss from soils to aquatic systems, and the...

  3. Using stable isotopes to assess surface water source dynamics and hydrological connectivity in a high-latitude wetland and permafrost influenced landscape

    NASA Astrophysics Data System (ADS)

    Ala-aho, P.; Soulsby, C.; Pokrovsky, O. S.; Kirpotin, S. N.; Karlsson, J.; Serikova, S.; Vorobyev, S. N.; Manasypov, R. M.; Loiko, S.; Tetzlaff, D.

    2018-01-01

    Climate change is expected to alter hydrological and biogeochemical processes in high-latitude inland waters. A critical question for understanding contemporary and future responses to environmental change is how the spatio-temporal dynamics of runoff generation processes will be affected. We sampled stable water isotopes in soils, lakes and rivers on an unprecedented spatio-temporal scale along a 1700 km transect over three years in the Western Siberia Lowlands. Our findings suggest that snowmelt mixes with, and displaces, large volumes of water stored in the organic soils and lakes to generate runoff during the thaw season. Furthermore, we saw a persistent hydrological connection between water bodies and the landscape across permafrost regions. Our findings help to bridge the understanding between small and large scale hydrological studies in high-latitude systems. These isotope data provide a means to conceptualise hydrological connectivity in permafrost and wetland influenced regions, which is needed for an improved understanding of future biogeochemical changes.

  4. Functional Enzyme-Based Approach for Linking Microbial Community Functions with Biogeochemical Process Kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Minjing; Qian, Wei-jun; Gao, Yuqian

    The kinetics of biogeochemical processes in natural and engineered environmental systems are typically described using Monod-type or modified Monod-type models. These models rely on biomass as surrogates for functional enzymes in microbial community that catalyze biogeochemical reactions. A major challenge to apply such models is the difficulty to quantitatively measure functional biomass for constraining and validating the models. On the other hand, omics-based approaches have been increasingly used to characterize microbial community structure, functions, and metabolites. Here we proposed an enzyme-based model that can incorporate omics-data to link microbial community functions with biogeochemical process kinetics. The model treats enzymes asmore » time-variable catalysts for biogeochemical reactions and applies biogeochemical reaction network to incorporate intermediate metabolites. The sequences of genes and proteins from metagenomes, as well as those from the UniProt database, were used for targeted enzyme quantification and to provide insights into the dynamic linkage among functional genes, enzymes, and metabolites that are necessary to be incorporated in the model. The application of the model was demonstrated using denitrification as an example by comparing model-simulated with measured functional enzymes, genes, denitrification substrates and intermediates« less

  5. Spatial dynamics of biogeochemical processes in the St. Louis River freshwater estuary

    EPA Science Inventory

    In the Great Lakes, river-lake transition zones within freshwater estuaries are hydrologically and biogeochemically dynamic areas that regulate nutrient and energy fluxes between rivers and Great Lakes. The goal of our study was to characterize the biogeochemical properties of th...

  6. Recent directions taken in water, energy, and biogeochemical budgets research

    USGS Publications Warehouse

    Lins, Harry F.

    1994-01-01

    Understanding and predicting global change is a major scientific focus of the late 20th century. Although atmospheric scientists have made substantial progress in developing models that account for many components of the climate system, significant progress is needed in understanding processes associated with the exchange of water, energy, and carbon between terrestrial systems and the atmosphere.To strengthen terrestrial process research, especially research associated with the interactions of water, energy, gases, nutrients, and vegetation, the U.S. Geological Survey initiated an intensive study of Water, Energy, and Biogeochemical Budgets (WEBB). WEBB is aimed at improving understanding of processes controlling terrestrial water, energy, and biogeochemical fluxes, their interactions, and their relations to climatic variables; and the ability to predict continental water, energy, and biogeochemical budgets over a range of spatial and temporal scales.

  7. Quantifying Linkages between Biogeochemical Processes in a Contaminated Aquifer-Wetland System Using Multivariate Statistics and HP1

    NASA Astrophysics Data System (ADS)

    Arora, B.; Mohanty, B. P.; McGuire, J. T.

    2009-12-01

    Fate and transport of contaminants in saturated and unsaturated zones in the subsurface is controlled by complex biogeochemical processes such as precipitation, sorption-desorption, ion-exchange, redox, etc. In dynamic systems such as wetlands and anaerobic aquifers, these processes are coupled and can interact non-linearly with each other. Variability in measured hydrological, geochemical and microbiological parameters thus corresponds to multiple processes simultaneously. To infer the contributing processes, it is important to eliminate correlations and to identify inter-linkages between factors. The objective of this study is to develop quantitative relationships between hydrological (initial and boundary conditions, hydraulic conductivity ratio, and soil layering), geochemical (mineralogy, surface area, redox potential, and organic matter) and microbiological factors (MPN) that alter the biogeochemical processes at the column scale. Data used in this study were collected from controlled flow experiments in: i) two homogeneous soil columns, ii) a layered soil column, iii) a soil column with embedded clay lenses, and iv) a soil column with embedded clay lenses and one central macropore. The soil columns represent increasing level of soil structural heterogeneity to better mimic the Norman Landfill research site. The Norman Landfill is a closed municipal facility with prevalent organic contamination. The sources of variation in the dataset were explored using multivariate statistical techniques and dominant biogeochemical processes were obtained using principal component analysis (PCA). Furthermore, artificial neural networks (ANN) coupled with HP1 was used to develop mathematical rules identifying different combinations of factors that trigger, sustain, accelerate/decelerate, or discontinue the biogeochemical processes. Experimental observations show that infiltrating water triggers biogeochemical processes in all soil columns. Similarly, slow release of water from low permeability clay lenses sustain biogeochemical cycling for a longer period of time than in homogeneous soil columns. Preliminary results indicate: i) certain variables (anion, cation concentrations, etc.) do not follow normal or lognormal distributions even at the column scale, ii) strong correlations exist between parameters related to redox geochemistry (pH with S2- concentrations), and iii) PCA can identify dominant processes (e.g. iron and sulfate reduction) occurring in the system by grouping together causative variables (e.g. dominant TEAPs).

  8. Spatially explicit simulation of hydrologically controlled carbon and nitrogen cycles and associated feedback mechanisms in a boreal ecosystem

    NASA Astrophysics Data System (ADS)

    Govind, Ajit; Chen, Jing Ming; Ju, Weimin

    2009-06-01

    Ecosystem models that simulate biogeochemical processes usually ignore hydrological controls that govern them. It is quite possible that topographically driven water fluxes significantly influence the spatial distribution of C sources and sinks because of their large contribution to the local water balance. To investigate this, we simulated biogeochemical processes along with the associated feedback mechanisms in a boreal ecosystem using a spatially explicit hydroecological model, boreal ecosystem productivity simulator (BEPS)-TerrainLab V2.0, that has a tight coupling of ecophysiological, hydrological, and biogeochemical processes. First, the simulated dynamics of snowpack, soil temperature, net ecosystem productivity (NEP), and total ecosystem respiration (TER) were validated with high-frequency measurements for 2 years. The model was able to explain 80% of the variability in NEP and 84% of the variability in TER. Further, we investigated the influence of topographically driven subsurface base flow on soil C and N cycling and on the spatiotemporal patterns of C sources and sinks using three hydrological modeling scenarios that differed in hydrological conceptualizations. In general, the scenarios that had nonexplicit hydrological representation overestimated NEP, as opposed to the scenario that had an explicit (realistic) representation. The key processes controlling the NEP differences were attributed to the combined effects of variations in photosynthesis (due to changes in stomatal conductance and nitrogen (N) availability), heterotrophic respiration, and autotrophic respiration, all of which occur simultaneously affecting NEP. Feedback relationships were also found to exacerbate the differences. We identified six types of NEP differences (biases), of which the most commonly found was due to an underestimation of the existing C sources, highlighting the vulnerability of regional-scale ecosystem models that ignore hydrological processes.

  9. CALIBRATION OF SUBSURFACE BATCH AND REACTIVE-TRANSPORT MODELS INVOLVING COMPLEX BIOGEOCHEMICAL PROCESSES

    EPA Science Inventory

    In this study, the calibration of subsurface batch and reactive-transport models involving complex biogeochemical processes was systematically evaluated. Two hypothetical nitrate biodegradation scenarios were developed and simulated in numerical experiments to evaluate the perfor...

  10. Snowmelt induced hydrologic perturbations drive dynamic microbiological and geochemical behaviors across a shallow riparian aquifer

    NASA Astrophysics Data System (ADS)

    Danczak, Robert; Yabusaki, Steven; Williams, Kenneth; Fang, Yilin; Hobson, Chad; Wilkins, Michael

    2016-05-01

    Shallow riparian aquifers represent hotspots of biogeochemical activity in the arid western US. While these environments provide extensive ecosystem services, little is known of how natural environmental perturbations influence subsurface microbial communities and associated biogeochemical processes. Over a six-month period we tracked the annual snowmelt-driven incursion of groundwater into the vadose zone of an aquifer adjacent to the Colorado River, leading to increased dissolved oxygen (DO) concentrations in the normally suboxic saturated zone. Strong biogeochemical heterogeneity was measured across the site, with abiotic reactions between DO and sulfide minerals driving rapid DO consumption and mobilization of redox active species in reduced aquifer regions. Conversely, extensive DO increases were detected in less reduced sediments. 16S rRNA gene surveys tracked microbial community composition within the aquifer, revealing strong correlations between increases in putative oxygen-utilizing chemolithoautotrophs and heterotrophs and rising DO concentrations. The gradual return to suboxic aquifer conditions favored increasing abundances of 16S rRNA sequences matching members of the Microgenomates (OP11) and Parcubacteria (OD1) that have been strongly implicated in fermentative processes. Microbial community stability measurements indicated that deeper aquifer locations were relatively less affected by geochemical perturbations, while communities in shallower locations exhibited the greatest change. Reactive transport modeling of the geochemical and microbiological results supported field observations, suggesting that a predictive framework can be applied to develop a greater understanding of such environments.

  11. Linking Stoichiometric Homeostasis of Microorganisms with Soil Phosphorus Dynamics in Wetlands Subjected to Microcosm Warming

    PubMed Central

    Wang, Hang; Li, HongYi; Zhang, ZhiJian; Muehlbauer, Jeffrey D.; He, Qiang; Xu, XinHua; Yue, ChunLei; Jiang, DaQian

    2014-01-01

    Soil biogeochemical processes and the ecological stability of wetland ecosystems under global warming scenarios have gained increasing attention worldwide. Changes in the capacity of microorganisms to maintain stoichiometric homeostasis, or relatively stable internal concentrations of elements, may serve as an indicator of alterations to soil biogeochemical processes and their associated ecological feedbacks. In this study, an outdoor computerized microcosm was set up to simulate a warmed (+5°C) climate scenario, using novel, minute-scale temperature manipulation technology. The principle of stoichiometric homeostasis was adopted to illustrate phosphorus (P) biogeochemical cycling coupled with carbon (C) dynamics within the soil-microorganism complex. We hypothesized that enhancing the flux of P from soil to water under warming scenarios is tightly coupled with a decrease in homeostatic regulation ability in wetland ecosystems. Results indicate that experimental warming impaired the ability of stoichiometric homeostasis (H) to regulate biogeochemical processes, enhancing the ecological role of wetland soil as an ecological source for both P and C. The potential P flux from soil to water ranged from 0.11 to 34.51 mg m−2 d−1 in the control and 0.07 to 61.26 mg m−2 d−1 in the warmed treatment. The synergistic function of C-P acquisition is an important mechanism underlying C∶P stoichiometric balance for soil microorganisms under warming. For both treatment groups, strongly significant (p<0.001) relationships fitting a negative allometric power model with a fractional exponent were found between n-HC∶P (the specialized homeostatic regulation ability as a ratio of soil highly labile organic carbon to dissolved reactive phosphorus in porewater) and potential P flux. Although many factors may affect soil P dynamics, the n-HC∶P term fundamentally reflects the stoichiometric balance or interactions between the energy landscape (i.e., C) and flow of resources (e.g., N and P), and can be a useful ecological tool for assessing potential P flux in ecosystems. PMID:24475045

  12. Biogeochemical Cycles of Carbon and Sulfur on Early Earth (and on Mars?)

    NASA Technical Reports Server (NTRS)

    DesMarais, D. J.

    2004-01-01

    The physical and chemical interactions between the atmosphere, hydrosphere, geosphere and biosphere can be examined for elements such as carbon (C) and sulfur (S) that have played central roles for both life and the environment. The compounds of C are highly important, not only as organic matter, but also as atmospheric greenhouse gases, pH buffers in seawater, oxidation-reduction buffers virtually everywhere, and key magmatic constituents affecting plutonism and volcanism. S assumes important roles as an oxidation-reduction partner with C and Fe in biological systems, as a key constituent in magmas and volcanic gases, and as a major influence upon pH in certain environments. These multiple roles of C and S interact across a network of elemental reservoirs interconnected by physical, chemical and biological processes. These networks are termed biogeochemical C and S cycles.

  13. A Framework to Assess Biogeochemical Response to Ecosystem Disturbance Using Nutrient Partitioning Ratios

    Treesearch

    J. Marty Kranabetter; Kendra K. McLauchlan; Sara K. Enders; Jennifer M. Fraterrigo; Philip E. Higuera; Jesse L. Morris; Edward B. Rastetter; Rebecca Barnes; Brian Buma; Daniel G. Gavin; Laci M. Gerhart; Lindsey Gillson; Peter Hietz; Michelle C. Mack; Brenden McNeil; Steven Perakis

    2016-01-01

    Disturbances affect almost all terrestrial ecosystems, but it has been difficult to identify general principles regarding these influences. To improve our understanding of the long-term consequences of disturbance on terrestrial ecosystems, we present a conceptual framework that analyzes disturbances by their biogeochemical impacts. We posit that the ratio of...

  14. Tropospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Mohnen, V.

    1984-01-01

    The fundamental processes that control the chemical composition and cycles of the global troposphere and how these processes and properties affect the physical behavior of the atmosphere are examined. The long-term information needs for tropospheric chemistry are: to be able to predict tropospheric responses to perturbations, both natural and anthropogenic, of these cycles, and to provide the information required for the maintenance and effective future management of the atmospheric component of our global life support system. The processes controlling global tropospheric biogeochemical cycles include: the input of trace species into the troposphere, their long-range transport and distribution as affected by the mean wind and vertical venting, their chemical transformations, including gas to particle conversion, leading to the appearance of aerosols or aqueous phase reactions inside cloud droplets, and their removal from the troposphere via wet (precipitation) and dry deposition.

  15. The Good, the Bad and the Ugly - Interacting Physical, Biogeochemical and Biolological Controls of Nutrient Cycling at Ecohydrological Interfaces

    NASA Astrophysics Data System (ADS)

    Krause, S.; Baranov, V. A.; Lewandowski, J.; Blaen, P. J.; Romeijn, P.

    2016-12-01

    The interfaces between streams, lakes and their bed sediments have for a long time been in the research focus of ecohydrologists, aquatic ecologists and biogeochemists. While over the past decades, critical understanding has been gained of the spatial patterns and temporal dynamics in nutrient cycling at sediment-freshwater interfaces, important question remain as to the actual drivers (physical, biogeochemical and biological) of the often observed hot spots and hot moments of nutrient cycling at these highly reactive systems. This study reports on a combination of laboratory manipulation, artificial stream and field experiments from reach to river network scales to investigate the interplay of physical, biogeochemical and biological drivers of interface nutrient cycling under the impact of and resilience to global environmental change. Our results indicate that biogeochemical hotspots at sediment-freshwater interfaces were controlled not only by reactant mixing ratios and residence time distributions, but strongly affected by patterns in streambed physical properties and bioavailability of organic carbon. Lab incubation experiments revealed that geology, and in particular organic matter content strongly controlled the magnitude of enhanced streambed greenhouse gas production caused by increasing water temperatures. While these findings help to improve our understanding of physical and biogeochemical controls on nutrient cycling, we only start to understand to what degree biological factors can enhance these processes even further. We found that for instance chironomid or brittle star facilitated bioturbation in has the potential to substantially enhance freshwater or marine sediment pore-water flow and respiration. We revealed that ignorance of these important biologically controls on physical exchange fluxes can lead to critical underestimation of whole system respiration and its increase under global environmental change.

  16. Nitrogen and Sulfur Deposition Effects on Forest Biogeochemical Processes.

    NASA Astrophysics Data System (ADS)

    Goodale, C. L.

    2014-12-01

    Chronic atmospheric deposition of nitrogen and sulfur have widely ranging biogeochemical consequences in terrestrial ecosystems. Both N and S deposition can affect plant growth, decomposition, and nitrous oxide production, with sometimes synergistic and sometimes contradictory responses; yet their separate effects are rarely isolated and their interactive biogeochemical impacts are often overlooked. For example, S deposition and consequent acidification and mortality may negate stimulation of plant growth induced by N deposition; decomposition can be slowed by both N and S deposition, though through different mechanisms; and N2O production may be stimulated directly by N and indirectly by S amendments. Recent advances in conceptual models and whole-ecosystem experiments provide novel means for disentangling the impacts of N and S in terrestrial ecosystems. Results from a new whole-ecosystem N x S- addition experiment will be presented in detail, examining differential response of tree and soil carbon storage to N and S additions. These results combine with observations from a broad array of long-term N addition studies, atmospheric deposition gradients, stable isotope tracer studies, and model analyses to inform the magnitude, controls, and stability of ecosystem C storage in response to N and S addition.

  17. Biogeochemistry of hypersaline microbial mats illustrates the dynamics of modern microbial ecosystems and the early evolution of the biosphere

    NASA Technical Reports Server (NTRS)

    Des Marais, David J.

    2003-01-01

    Photosynthetic microbial mats are remarkably complete self-sustaining ecosystems at the millimeter scale, yet they have substantially affected environmental processes on a planetary scale. These mats may be direct descendents of the most ancient biological communities in which even oxygenic photosynthesis might have developed. Photosynthetic mats are excellent natural laboratories to help us to learn how microbial populations associate to control dynamic biogeochemical gradients.

  18. Warming up, turning sour, losing breath: ocean biogeochemistry under global change.

    PubMed

    Gruber, Nicolas

    2011-05-28

    In the coming decades and centuries, the ocean's biogeochemical cycles and ecosystems will become increasingly stressed by at least three independent factors. Rising temperatures, ocean acidification and ocean deoxygenation will cause substantial changes in the physical, chemical and biological environment, which will then affect the ocean's biogeochemical cycles and ecosystems in ways that we are only beginning to fathom. Ocean warming will not only affect organisms and biogeochemical cycles directly, but will also increase upper ocean stratification. The changes in the ocean's carbonate chemistry induced by the uptake of anthropogenic carbon dioxide (CO(2)) (i.e. ocean acidification) will probably affect many organisms and processes, although in ways that are currently not well understood. Ocean deoxygenation, i.e. the loss of dissolved oxygen (O(2)) from the ocean, is bound to occur in a warming and more stratified ocean, causing stress to macro-organisms that critically depend on sufficient levels of oxygen. These three stressors-warming, acidification and deoxygenation-will tend to operate globally, although with distinct regional differences. The impacts of ocean acidification tend to be strongest in the high latitudes, whereas the low-oxygen regions of the low latitudes are most vulnerable to ocean deoxygenation. Specific regions, such as the eastern boundary upwelling systems, will be strongly affected by all three stressors, making them potential hotspots for change. Of additional concern are synergistic effects, such as ocean acidification-induced changes in the type and magnitude of the organic matter exported to the ocean's interior, which then might cause substantial changes in the oxygen concentration there. Ocean warming, acidification and deoxygenation are essentially irreversible on centennial time scales, i.e. once these changes have occurred, it will take centuries for the ocean to recover. With the emission of CO(2) being the primary driver behind all three stressors, the primary mitigation strategy is to reduce these emissions. © 2011 The Royal Society

  19. Exploring the Influence of Topography on Belowground C Processes Using a Coupled Hydrologic-Biogeochemical Model

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Davis, K. J.; Eissenstat, D. M.; Kaye, J. P.; Duffy, C.; Yu, X.; He, Y.

    2014-12-01

    Belowground carbon processes are affected by soil moisture and soil temperature, but current biogeochemical models are 1-D and cannot resolve topographically driven hill-slope soil moisture patterns, and cannot simulate the nonlinear effects of soil moisture on carbon processes. Coupling spatially-distributed physically-based hydrologic models with biogeochemical models may yield significant improvements in the representation of topographic influence on belowground C processes. We will couple the Flux-PIHM model to the Biome-BGC (BBGC) model. Flux-PIHM is a coupled physically-based land surface hydrologic model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Because PIHM is capable of simulating lateral water flow and deep groundwater, Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. The coupled Flux-PIHM-BBGC model will be tested at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). The abundant observations, including eddy covariance fluxes, soil moisture, groundwater level, sap flux, stream discharge, litterfall, leaf area index, above ground carbon stock, and soil carbon efflux, make SSHCZO an ideal test bed for the coupled model. In the coupled model, each Flux-PIHM model grid will couple a BBGC cell. Flux-PIHM will provide BBGC with soil moisture and soil temperature information, while BBGC provides Flux-PIHM with leaf area index. Preliminary results show that when Biome- BGC is driven by PIHM simulated soil moisture pattern, the simulated soil carbon is clearly impacted by topography.

  20. Biogeochemical Cycles for Combining Chemical Knowledge and ESD Issues in Greek Secondary Schools Part I: Designing the Didactic Materials

    ERIC Educational Resources Information Center

    Koutalidi, Sophia; Scoullos, Michael

    2016-01-01

    Biogeochemical cycles support all anthropogenic activities and are affected by them, therefore they are intricately interlinked with global environmental and socioeconomic issues. Elements of these cycles that are already included in the science/chemical curriculum and textbooks intended for formal education in Greek secondary schools were…

  1. Stream nitrate responses to hydrological forcing and climate change in northern forests of the USA (Invited)

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Campbell, J. L.; Shanley, J. B.; Pourmokhtarian, A.; Driscoll, C. T.; Boyer, E. W.

    2009-12-01

    There is a need to understand how climate variability and change affect nutrient delivery to surface waters. We analyzed long-term records of hydrochemical data to explore how the forms, concentrations, and loadings of nitrogen in forest streams throughout the northern USA vary with catchment wetness. We considered projected changes in growing season length and precipitation patterns to simulate future climate scenarios and to assess how stream nitrate loading responds to hydrological forcing under different climate change scenarios. At the Sleepers River Research Watershed in northeastern Vermont, model results suggest that stream nutrient loadings over the next century will respond to hydrological forcing during climate change that affects the amount of water that flows through the landscape. For example, growing season stream water yield (+20%) and nitrate loadings (+57%) increase in response to greater amounts of precipitation (+28%) during a warmer climate with a longer growing season (+43 days). We further explore these findings by presenting model results from a biogeochemical process model (PnET-BGC) to separate changes that are due to biogeochemical cycling and the effects of hydrological forcing. Our findings suggest that nitrogen cycling and transport will intensify during anthropogenic climate forcing, thereby affecting the timing and magnitude of annual stream nutrient loadings in northern forests of the USA.

  2. A framework to assess biogeochemical response to ecosystem disturbance using nutrient partitioning ratios

    USGS Publications Warehouse

    Kranabetter, J. Marty; McLauchlan, Kendra K.; Enders, Sara K.; Fraterrigo, Jennifer M.; Higuera, Philip E.; Morris, Jesse L.; Rastetter, Edward B.; Barnes, Rebecca; Buma, Brian; Gavin, Daniel G.; Gerhart, Laci M.; Gillson, Lindsey; Hietz, Peter; Mack, Michelle C.; McNeil, Brenden; Perakis, Steven

    2016-01-01

    Disturbances affect almost all terrestrial ecosystems, but it has been difficult to identify general principles regarding these influences. To improve our understanding of the long-term consequences of disturbance on terrestrial ecosystems, we present a conceptual framework that analyzes disturbances by their biogeochemical impacts. We posit that the ratio of soil and plant nutrient stocks in mature ecosystems represents a characteristic site property. Focusing on nitrogen (N), we hypothesize that this partitioning ratio (soil N: plant N) will undergo a predictable trajectory after disturbance. We investigate the nature of this partitioning ratio with three approaches: (1) nutrient stock data from forested ecosystems in North America, (2) a process-based ecosystem model, and (3) conceptual shifts in site nutrient availability with altered disturbance frequency. Partitioning ratios could be applied to a variety of ecosystems and successional states, allowing for improved temporal scaling of disturbance events. The generally short-term empirical evidence for recovery trajectories of nutrient stocks and partitioning ratios suggests two areas for future research. First, we need to recognize and quantify how disturbance effects can be accreting or depleting, depending on whether their net effect is to increase or decrease ecosystem nutrient stocks. Second, we need to test how altered disturbance frequencies from the present state may be constructive or destructive in their effects on biogeochemical cycling and nutrient availability. Long-term studies, with repeated sampling of soils and vegetation, will be essential in further developing this framework of biogeochemical response to disturbance.

  3. Investigation of In-situ Biogeochemical Reduction of Chlorinated Solvents in Groundwater by Reduced Iron Minerals

    EPA Science Inventory

    Biogeochemical transformation is a process in which chlorinated solvents are degraded abiotically by reactive minerals formed by, at least in part or indirectly from, anaerobic biological processes. Five mulch biowall and/or vegetable oil-based bioremediation applications for tr...

  4. Deriving forest fire ignition risk with biogeochemical process modelling.

    PubMed

    Eastaugh, C S; Hasenauer, H

    2014-05-01

    Climate impacts the growth of trees and also affects disturbance regimes such as wildfire frequency. The European Alps have warmed considerably over the past half-century, but incomplete records make it difficult to definitively link alpine wildfire to climate change. Complicating this is the influence of forest composition and fuel loading on fire ignition risk, which is not considered by purely meteorological risk indices. Biogeochemical forest growth models track several variables that may be used as proxies for fire ignition risk. This study assesses the usefulness of the ecophysiological model BIOME-BGC's 'soil water' and 'labile litter carbon' variables in predicting fire ignition. A brief application case examines historic fire occurrence trends over pre-defined regions of Austria from 1960 to 2008. Results show that summer fire ignition risk is largely a function of low soil moisture, while winter fire ignitions are linked to the mass of volatile litter and atmospheric dryness.

  5. Deriving forest fire ignition risk with biogeochemical process modelling☆

    PubMed Central

    Eastaugh, C.S.; Hasenauer, H.

    2014-01-01

    Climate impacts the growth of trees and also affects disturbance regimes such as wildfire frequency. The European Alps have warmed considerably over the past half-century, but incomplete records make it difficult to definitively link alpine wildfire to climate change. Complicating this is the influence of forest composition and fuel loading on fire ignition risk, which is not considered by purely meteorological risk indices. Biogeochemical forest growth models track several variables that may be used as proxies for fire ignition risk. This study assesses the usefulness of the ecophysiological model BIOME-BGC's ‘soil water’ and ‘labile litter carbon’ variables in predicting fire ignition. A brief application case examines historic fire occurrence trends over pre-defined regions of Austria from 1960 to 2008. Results show that summer fire ignition risk is largely a function of low soil moisture, while winter fire ignitions are linked to the mass of volatile litter and atmospheric dryness. PMID:26109905

  6. EFFECT OF NUTRIENT LOADING ON BIOGEOCHEMICAL AND MICROBIAL PROCESSES IN A NEW ENGLAND HIGH SALT MARSH, SPARTINA PATNES, (AITON MUHL)

    EPA Science Inventory

    Coastal marshes represent an important transitional zone between uplands and estuaries and can assimilate nutrient inputs from uplands. We examined the effects of nitrogen (N) and phosphorus (P) fertilization on biogeochemical and microbial processes during the summer growing sea...

  7. Characterization of Thermal Refugia and Biogeochemical Hotspots at Sleepers River Watershed, VT

    NASA Astrophysics Data System (ADS)

    Hwang, K.; Chandler, D. G.; Kelleher, C.; Shanley, J. B.; Shaw, S. B.

    2017-12-01

    During low flow, changes in the extent of the channel network in headwater catchments depend on groundwater-surface water interactions, and dictate thermal and biogeochemical heterogeneities. Channel reaches with low temperature may act as refugia for valued species such as brook trout, and warmer reaches with high dissolved organic matter may act as biogeochemical hotspots. Prior studies have found uniform scaling of hydrologic and biogeochemical processes above certain spatial thresholds but sizable heterogeneities in these processes below the threshold. We utilize high resolution measurements of water quality parameters including stream temperature, conductivity and fluorescent dissolved organic matter (fDOM) at tributaries in two catchments of Sleepers River Watershed, Vermont to investigate seasonal and spatial variation of water quality and scaling of stream chemistry within the intensive study area and the larger Sleepers River Watershed. This study leverages findings from various small scale regional studies to identify differences in headwater channel reach behavior in a similar climate across some dissimilar geomorphic units, to inform the identification of thermal refugia and biogeochemical hotspots.

  8. Linking microbial and ecosystem ecology using ecological stoichiometry: a synthesis of conceptual and empirical approaches

    USGS Publications Warehouse

    Hall, E.K.; Maixner, F.; Franklin, O.; Daims, H.; Richter, A.; Battin, T.

    2011-01-01

    Currently, one of the biggest challenges in microbial and ecosystem ecology is to develop conceptual models that organize the growing body of information on environmental microbiology into a clear mechanistic framework with a direct link to ecosystem processes. Doing so will enable development of testable hypotheses to better direct future research and increase understanding of key constraints on biogeochemical networks. Although the understanding of phenotypic and genotypic diversity of microorganisms in the environment is rapidly accumulating, how controls on microbial physiology ultimately affect biogeochemical fluxes remains poorly understood. We propose that insight into constraints on biogeochemical cycles can be achieved by a more rigorous evaluation of microbial community biomass composition within the context of ecological stoichiometry. Multiple recent studies have pointed to microbial biomass stoichiometry as an important determinant of when microorganisms retain or recycle mineral nutrients. We identify the relevant cellular components that most likely drive changes in microbial biomass stoichiometry by defining a conceptual model rooted in ecological stoichiometry. More importantly, we show how X-ray microanalysis (XRMA), nanoscale secondary ion mass spectroscopy (NanoSIMS), Raman microspectroscopy, and in situ hybridization techniques (for example, FISH) can be applied in concert to allow for direct empirical evaluation of the proposed conceptual framework. This approach links an important piece of the ecological literature, ecological stoichiometry, with the molecular front of the microbial revolution, in an attempt to provide new insight into how microbial physiology could constrain ecosystem processes.

  9. Snowmelt Induced Hydrologic Perturbations Drive Dynamic Microbiological and Geochemical Behaviors across a Shallow Riparian Aquifer

    DOE PAGES

    Danczak, Robert E.; Yabusaki, Steven B.; Williams, Kenneth H.; ...

    2016-05-11

    Shallow riparian aquifers represent hotspots of biogeochemical activity in the arid western US. While these environments provide extensive ecosystem services, little is known of how natural environmental perturbations influence subsurface microbial communities and associated biogeochemical processes. Over a 6-month period we tracked the annual snowmelt-driven incursion of groundwater into the vadose zone of an aquifer adjacent to the Colorado River, leading to increased dissolved oxygen (DO) concentrations in the normally suboxic saturated zone. Strong biogeochemical heterogeneity was measured across the site, with abiotic reactions between DO and sulfide minerals driving rapid DO consumption and mobilization of redox active species inmore » reduced aquifer regions. Conversely, extensive DO increases were detected in less reduced sediments. 16S rRNA gene surveys tracked microbial community composition within the aquifer, revealing strong correlations between increases in putative oxygen-utilizing chemolithoautotrophs and heterotrophs and rising DO concentrations. The gradual return to suboxic aquifer conditions favored increasing abundances of 16S rRNA sequences matching members of the Microgenomates (OP11) and Parcubacteria (OD1) that have been strongly implicated in fermentative processes. Microbial community stability measurements indicated that deeper aquifer locations were relatively less affected by geochemical perturbations, while communities in shallower locations exhibited the greatest change. Thus, reactive transport modeling of the geochemical and microbiological results supported field observations, suggesting that a predictive framework can be applied to develop a greater understanding of such environments.« less

  10. Snowmelt Induced Hydrologic Perturbations Drive Dynamic Microbiological and Geochemical Behaviors across a Shallow Riparian Aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danczak, Robert E.; Yabusaki, Steven B.; Williams, Kenneth H.

    Shallow riparian aquifers represent hotspots of biogeochemical activity in the arid western US. While these environments provide extensive ecosystem services, little is known of how natural environmental perturbations influence subsurface microbial communities and associated biogeochemical processes. Over a 6-month period we tracked the annual snowmelt-driven incursion of groundwater into the vadose zone of an aquifer adjacent to the Colorado River, leading to increased dissolved oxygen (DO) concentrations in the normally suboxic saturated zone. Strong biogeochemical heterogeneity was measured across the site, with abiotic reactions between DO and sulfide minerals driving rapid DO consumption and mobilization of redox active species inmore » reduced aquifer regions. Conversely, extensive DO increases were detected in less reduced sediments. 16S rRNA gene surveys tracked microbial community composition within the aquifer, revealing strong correlations between increases in putative oxygen-utilizing chemolithoautotrophs and heterotrophs and rising DO concentrations. The gradual return to suboxic aquifer conditions favored increasing abundances of 16S rRNA sequences matching members of the Microgenomates (OP11) and Parcubacteria (OD1) that have been strongly implicated in fermentative processes. Microbial community stability measurements indicated that deeper aquifer locations were relatively less affected by geochemical perturbations, while communities in shallower locations exhibited the greatest change. Thus, reactive transport modeling of the geochemical and microbiological results supported field observations, suggesting that a predictive framework can be applied to develop a greater understanding of such environments.« less

  11. Contributions of in situ microscopy to the current understanding of stone biodeterioration.

    PubMed

    de Los Ríos, Asunción; Ascaso, Carmen

    2005-09-01

    In situ microscopy consists of simultaneously applying several microscopy techniques without separating the biological component from its habitat. Over the past few years, this strategy has allowed characterization of the biofilms involved in biodeterioration processes affecting stone monuments and has revealed the biogeophysical and biogeochemical impact of the microbiota present. In addition, through in situ microscopy diagnosis, appropriate treatments can be designed to resolve the problems related to microbial colonization of stone monuments.

  12. The Biogeochemical Role of Baleen Whales and Krill in Southern Ocean Nutrient Cycling

    PubMed Central

    Ratnarajah, Lavenia; Bowie, Andrew R.; Lannuzel, Delphine; Meiners, Klaus M.; Nicol, Stephen

    2014-01-01

    The availability of micronutrients is a key factor that affects primary productivity in High Nutrient Low Chlorophyll (HNLC) regions of the Southern Ocean. Nutrient supply is governed by a range of physical, chemical and biological processes, and there are significant feedbacks within the ecosystem. It has been suggested that baleen whales form a crucial part of biogeochemical cycling processes through the consumption of nutrient-rich krill and subsequent defecation, but data on their contribution are scarce. We analysed the concentration of iron, cadmium, manganese, cobalt, copper, zinc, phosphorus and carbon in baleen whale faeces and muscle, and krill tissue using inductively coupled plasma mass spectrometry. Metal concentrations in krill tissue were between 20 thousand and 4.8 million times higher than typical Southern Ocean HNLC seawater concentrations, while whale faecal matter was between 276 thousand and 10 million times higher. These findings suggest that krill act as a mechanism for concentrating and retaining elements in the surface layer, which are subsequently released back into the ocean, once eaten by whales, through defecation. Trace metal to carbon ratios were also higher in whale faeces compared to whale muscle indicating that whales are concentrating carbon and actively defecating trace elements. Consequently, recovery of the great whales may facilitate the recycling of nutrients via defecation, which may affect productivity in HNLC areas. PMID:25469984

  13. The biogeochemical role of baleen whales and krill in Southern Ocean nutrient cycling.

    PubMed

    Ratnarajah, Lavenia; Bowie, Andrew R; Lannuzel, Delphine; Meiners, Klaus M; Nicol, Stephen

    2014-01-01

    The availability of micronutrients is a key factor that affects primary productivity in High Nutrient Low Chlorophyll (HNLC) regions of the Southern Ocean. Nutrient supply is governed by a range of physical, chemical and biological processes, and there are significant feedbacks within the ecosystem. It has been suggested that baleen whales form a crucial part of biogeochemical cycling processes through the consumption of nutrient-rich krill and subsequent defecation, but data on their contribution are scarce. We analysed the concentration of iron, cadmium, manganese, cobalt, copper, zinc, phosphorus and carbon in baleen whale faeces and muscle, and krill tissue using inductively coupled plasma mass spectrometry. Metal concentrations in krill tissue were between 20 thousand and 4.8 million times higher than typical Southern Ocean HNLC seawater concentrations, while whale faecal matter was between 276 thousand and 10 million times higher. These findings suggest that krill act as a mechanism for concentrating and retaining elements in the surface layer, which are subsequently released back into the ocean, once eaten by whales, through defecation. Trace metal to carbon ratios were also higher in whale faeces compared to whale muscle indicating that whales are concentrating carbon and actively defecating trace elements. Consequently, recovery of the great whales may facilitate the recycling of nutrients via defecation, which may affect productivity in HNLC areas.

  14. Benthic hypoxia and early diagenesis in the Black Sea shelf sediments

    NASA Astrophysics Data System (ADS)

    Plante, Audrey; Roevros, Nathalie; Capet, Arthur; Grégoire, Marilaure; Fagel, Nathalie; Chou, Lei

    2017-04-01

    Marine waters of semi-enclosed seas are affected by a major environmental issue which is oxygen depletion in bottom waters. Deoxygenation is one of the most widespread man-induced consequences which can be catastrophic for living species. Between 1970 and 1990, the benthic compartment of the Black Sea underwent modifications due to the occurrence and increase of hypoxia. Indeed, these changes might cause a deterioration of the structure and functioning of the ecosystems. Nowadays, some regions, such as the north-western shelf, are still affected seasonally by this phenomenon. Within the framework of the BENTHOX project, a biogeochemical study focusing on the early diagenesis is conducted in the Black Sea. It aims (1) to obtain a better understanding of the impact of benthic hypoxia on the diagenetic pathways, (2) to contribute to a new dataset of biogeochemical measurements in the sediments including porewaters. During a cruise (Emblas II - May 2016), on board the RV Mare Nigrum, sediment cores were taken at 4 stations on the Ukrainian shelf. Porewaters were extracted on board the ship using Rhizon technique under N2 atmosphere and will be analyzed for dissolved nutrients and major ions. In addition, sediments were sliced and will be determined for major solid phases and trace element contents. A multi-proxies (biological, sedimentological, mineralogical and geochemical) approach will be used to identify the hypoxic events and to reconstruct the history of bottom hypoxia. The results obtained will be presented and discussed with emphasis on the first outcomes and the major biogeochemical processes involved in the early diagenesis.

  15. Linking Metabolism, Elemental Cycles, and Environmental Conditions in the Deep Biosphere: Growth of a Model Extremophile, Archaeoglobus fulgidus, Under High-Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Oliver, G. C. M.; Cario, A.; Rogers, K. L.

    2015-12-01

    A majority of Earth's biosphere is hosted in subsurface environments where global-scale biogeochemical and energy cycles are driven by diverse microbial communities that operate on and are influenced by micro-scale environmental variables. While the subsurface hosts a variety of geochemical and geothermal conditions, elevated pressures are common to all subsurface ecosystems. Understanding how microbes adapt to and thrive in high-pressure environments is essential to linking microbial subsurface processes with global-scale cycles. Here we are using a model extremophile, Archaeoglobus fulgidus, to determine how elevated pressures affect the growth, metabolism, and physiology of subsurface microorganisms. A. fulgidus cycles carbon and sulfur via heterotrophic and autotrophic sulfate reduction in various high temperature and high-pressure niches including shallow marine vents, deep-sea hydrothermal vents, and deep oil reservoirs. Here we report the results of A. fulgidus growth experiments at optimum temperature, 83°C, and pressures up to 600 bars. Exponential growth was observed over the entire pressure range, though growth rates were diminished at 500 and 600 bars compared to ambient pressure experimental controls. At pressures up to 400 bars, cell density yields and growth rates were at least as high as ambient pressure controls. Elevated pressures and extended incubation times stimulated cell flocculation, a common stress response in this strain, and cellular morphology was affected at pressures exceeding 400 bars. These results suggest that A. fulgidus continues carbon, sulfur and energy cycling unaffected by elevated pressures up to 400 bars, representing a variety of subsurface environments. The ability of subsurface organisms to drive biogeochemical cycles at elevated pressures is a critical link between the surface and subsurface biospheres and understanding how species-scale processes operate under these conditions is a vital part of global-scale biogeochemical models.

  16. Differences in net primary production and biogeochemistry between contrasting floodplain forests

    Treesearch

    Erik B. Schilling; B. Graeme Lockaby

    2000-01-01

    A firm understanding of the driving forces controlling variation among wetland forests continues to elude scientists and land managers—specifically the biogeochemical processes controlling vegetation production. Within contrasting wetland forests, insight into the biogeochemical processes driving productivity levels may befound by examining the degree to which nitrogen...

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, Glenn Edward; Yang, Xiaofan; Song, Xuehang

    The groundwater-surface water interaction zone (GSIZ) plays an important role in riverine and watershed ecosystems as the exchange of waters of variable composition and temperature (hydrologic exchange flows) stimulate microbial activity and associated biogeochemical reactions. Variable temporal and spatial scales of hydrologic exchange flows, heterogeneity of the subsurface environment, and complexity of biogeochemical reaction networks in the GSIZ present challenges to incorporation of fundamental process representations and model parameterization across a range of spatial scales (e.g. from pore-scale to field scale). This paper presents a novel hybrid multiscale simulation approach that couples hydrologic-biogeochemical (HBGC) processes between two distinct length scalesmore » of interest.« less

  18. Biogeochemistry Science and Education. Part One: Using Non-Traditional Stable Isotopes as Environmental Tracers. Part Two: Identifying and Measuring Undergraduate Misconceptions in Biogeochemistry

    ERIC Educational Resources Information Center

    Mead, Chris

    2014-01-01

    This dissertation is presented in two sections. First, I explore two methods of using stable isotope analysis to trace environmental and biogeochemical processes. Second, I present two related studies investigating student understanding of the biogeochemical concepts that underlie part one. Fe and Hg are each biogeochemically important elements in…

  19. Dimensionless Numbers For Morphological, Thermal And Biogeochemical Controls Of Hyporheic Processes

    NASA Astrophysics Data System (ADS)

    Bellin, Alberto; Marzadri, Alessandra; Tonina, Daniele

    2013-04-01

    Transport of solutes and heat within the hyporheic zone are interface processes that gained growing attention in the last decade, when several modelling strategies have been proposed, mainly at the local or reach scale. We propose to upscale local hyporheic biogeochemical processes to reach and network scales by means of a Lagrangian modelling framework, which allows to consider the impact of the flow structure on the processes modelled. This analysis shows that geochemical processes can be parametrized through two new Damköhler numbers, DaO, and DaT. DaO = ?up,50-?lim is defined as the ratio between the median hyporheic residence time, ?up,50 and the time of consuming dissolved oxygen to a prescribed threshold concentration, ?lim, below which reductive reactions are activated. It quantifies the biogeochemical status of the hyporheic zone and could be a metric for upscaling local hyporheic biogeochemical processes to reach and river-network scale processes. In addition, ?up,50 is the time scale of hyporheic advection; while ?lim is the representative time scale of biogeochemical reactions and indicates the distance along the streamline, measured as the time needed to travel that distance, that a particle of water travels before the dissolved oxygen concentration declines to [DO]lim, the value at which denitrification is activated. We show that DaO is representative of the redox status and indicates whether the hyporheic zone is a source or a sink of nitrate. Values of DaO larger than 1 indicate prevailing anaerobic conditions, whereas values smaller than 1 prevailing aerobic conditions. Similarly, DaT quantifies the importance of the temperature daily oscillations of the stream water on the hyporheic environment. It is defined as the ratio between ?up,50, and the time limit at which the ratio between the amplitude of the temperature oscillation within the hyporheic zone (evaluated along the streamline) and in the stream water is smaller than e-1. We show that values of DaT > 1 indicate a thermally stable hyporheic zone, where organism metabolism is not influenced by surface water thermal oscillations and biogeochemical reaction rates depend on the mean daily stream water temperature. Values smaller than 1 suggest that organisms need to adapt to the daily thermal variations and biogeochemical reaction rates will depend on the daily fluctuations induced by stream water.

  20. Global simulation of interactions between groundwater and terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Braakhekke, M. C.; Rebel, K.; Dekker, S. C.; Smith, B.; Van Beek, L. P.; Sutanudjaja, E.; van Kampenhout, L.; Wassen, M. J.

    2016-12-01

    In many places in the world ecosystems are influenced by the presence of a shallow groundwater table. In these regions upward water flux due to capillary rise increases soil moisture availability in the root zone, which has strong positive effect on evapotranspiration. Additionally it has important consequences for vegetation dynamics and fluxes of carbon and nitrogen. Under water limited conditions shallow groundwater stimulates vegetation productivity, and soil organic matter decomposition while under saturated conditions groundwater may have a negative effect on these processes due to lack of oxygen. Furthermore, since plant species differ with respect to their root distribution, preference for moisture conditions, and resistance to oxygen stress, shallow groundwater also influences vegetation type. Finally, processes such as denitrification and methane production occur under strictly anaerobic conditions and are thus strongly influenced by moisture availability. Most global hydrological models and several land surface models simulate groundwater table dynamics and their effects on land surface processes. However, these models typically have relatively simplistic representation of vegetation and do not consider changes in vegetation type and structure and are therefore less suitable to represent effects of groundwater on biogeochemical fluxes. Dynamic global vegetation models (DGVMs), describe land surface from an ecological perspective, combining detailed description of vegetation dynamics and structure and biogeochemical processes. These models are thus more appropriate to simulate the ecological and biogeochemical effects of groundwater interactions. However, currently virtually all DGVMs ignore these effects, assuming that water tables are too deep to affect soil moisture in the root zone. We have implemented a tight coupling between the dynamic global ecosystem model LPJ-GUESS and the global hydrological model PCR-GLOBWB. Using this coupled model we aim to study the influence of shallow groundwater on terrestrial ecosystem processes. We will present results of global simulations to demonstrate the effects on C, N, and water fluxes.

  1. Observationally-based Metrics of Ocean Carbon and Biogeochemical Variables are Essential for Evaluating Earth System Model Projections

    NASA Astrophysics Data System (ADS)

    Russell, J. L.; Sarmiento, J. L.

    2017-12-01

    The Southern Ocean is central to the climate's response to increasing levels of atmospheric greenhouse gases as it ventilates a large fraction of the global ocean volume. Global coupled climate models and earth system models, however, vary widely in their simulations of the Southern Ocean and its role in, and response to, the ongoing anthropogenic forcing. Due to its complex water-mass structure and dynamics, Southern Ocean carbon and heat uptake depend on a combination of winds, eddies, mixing, buoyancy fluxes and topography. Understanding how the ocean carries heat and carbon into its interior and how the observed wind changes are affecting this uptake is essential to accurately projecting transient climate sensitivity. Observationally-based metrics are critical for discerning processes and mechanisms, and for validating and comparing climate models. As the community shifts toward Earth system models with explicit carbon simulations, more direct observations of important biogeochemical parameters, like those obtained from the biogeochemically-sensored floats that are part of the Southern Ocean Carbon and Climate Observations and Modeling project, are essential. One goal of future observing systems should be to create observationally-based benchmarks that will lead to reducing uncertainties in climate projections, and especially uncertainties related to oceanic heat and carbon uptake.

  2. Does the presence of large down wood at the time of a forest fire impact soil recovery?

    Treesearch

    Jane E. Smith; Laurel A. Kluber; Tara N. Jennings; Donaraye McKay; Greg Brenner; Elizabeth W. Sulzman

    2017-01-01

    Fire may remove or create dead wood aboveground, but it is less clear how high severity burning of soils affects belowground microbial communities and soil processes, and for how long. In this study, we investigated soil fungal and bacterial communities and biogeochemical responses of severely burned ‘‘red” soil and less severely burned ‘‘black” soil from a burned...

  3. Hydrologic indicators of hot spots and hot moments of mercury methylation along river corridors

    NASA Astrophysics Data System (ADS)

    Singer, Michael; Harrison, Lee; Donovan, Patrick; Blum, Joel; Marvin-DiPasquale, Mark

    2016-04-01

    The biogeochemical cycling of metals and other contaminants river-floodplain corridors is controlled by microbial activity is often affected by dynamic redox conditions. Riverine flooding thus has the potential to affect speciation of redox-sensitive metals such as mercury (Hg). Therefore, flow history over a period of decades potentially holds information on past production of bioavailable Hg. We investigate this process within a Northern California river system that has a legacy of industrial-scale 19th century hydraulic gold mining. In the first known application of this methodology, we combine hydraulic modeling, measurements of Hg species in sediment and biota, and first-order calculations to assess the role of river floodplains in producing monomethylmercury (MMHg), which accumulates in local and migratory biota. We identify areas that represent 'hot spots' (frequently inundated areas of floodplains) and 'hot moments' (floodplain areas inundated for consecutive long periods). We show that the probability of MMHg production in each sector of the river system is dependent on the spatial patterns of overbank flow and drainage, which affect its long-term redox history. MMHg bioaccumulation within the aquatic food web may pose a major risk to humans and waterfowl that eat migratory salmonids, which are being encouraged to come up these rivers to spawn, and there appears to be no end to MMHg production under a regime of increasingly common large floods with extended duration. These findings identify river floodplains as periodic, temporary, yet important, loci of biogeochemical transformation in which contaminants may undergo change during limited periods of the historical hydrologic record. We suggest that inundation is the primary driver of MMHg production in river corridors and that the entire flow history must be analyzed in terms of magnitude and frequency of inundation in order to accurately assess biogeochemical risks, rather than merely highlighting the largest floods.

  4. Aeolian Processes and the Biosphere

    NASA Astrophysics Data System (ADS)

    Ravi, Sujith; D'Odorico, Paolo; Breshears, David D.; Field, Jason P.; Goudie, Andrew S.; Huxman, Travis E.; Li, Junran; Okin, Gregory S.; Swap, Robert J.; Thomas, Andrew D.; Van Pelt, Scott; Whicker, Jeffrey J.; Zobeck, Ted M.

    2011-08-01

    Aeolian processes affect the biosphere in a wide variety of contexts, including landform evolution, biogeochemical cycles, regional climate, human health, and desertification. Collectively, research on aeolian processes and the biosphere is developing rapidly in many diverse and specialized areas, but integration of these recent advances is needed to better address management issues and to set future research priorities. Here we review recent literature on aeolian processes and their interactions with the biosphere, focusing on (1) geography of dust emissions, (2) impacts, interactions, and feedbacks, (3) drivers of dust emissions, and (4) methodological approaches. Geographically, dust emissions are highly spatially variable but also provide connectivity at global scales between sources and effects, with “hot spots” being of particular concern. Recent research reveals that aeolian processes have impacts, interactions, and feedbacks at a variety of scales, including large-scale dust transport and global biogeochemical cycles, climate mediated interactions between atmospheric dust and ecosystems, impacts on human health, impacts on agriculture, and interactions between aeolian processes and dryland vegetation. Aeolian dust emissions are driven largely by, in addition to climate, a combination of soil properties, soil moisture, vegetation and roughness, biological and physical crusts, and disturbances. Aeolian research methods span laboratory and field techniques, modeling, and remote sensing. Together these integrated perspectives on aeolian processes and the biosphere provide insights into management options and aid in identifying research priorities, both of which are increasingly important given that global climate models predict an increase in aridity in many dryland systems of the world.

  5. Effects of hydrologic conditions on biogeochemical processes and organic pollutant degradation in salt marsh sediments

    Treesearch

    W. James Catallo

    2000-01-01

    This work addressed the influence of tidal vs. static hydrologic conditions on biogeochemical processes and the transformation of pollutant organic chemicals (eight representative N-, O-, and S-heterocycles (NOSHs) from coal chemicals, crude oils, and pyrogenic mixtures) in salt marsh sediments. The goals were to: (1) determine the effects of static (flooded, drained)...

  6. Rhizosphere Processes Are Quantitatively Important Components of Terrestrial Biogeochemical Cycles: Data & Models

    NASA Astrophysics Data System (ADS)

    Finzi, A.

    2016-12-01

    The rhizosphere is a hot spot and hot moment for biogeochemical cycles. Microbial activity, extracellular enzyme activity and element cycles are greatly enhanced by root derived carbon inputs. As such the rhizosphere may be an important driver of ecosystem responses to global changes such as rising temperatures and atmospheric CO2 concentrations. Empirical research on the rhizosphere is extensive but extrapolation of rhizosphere processes to large spatial and temporal scales is largely uninterrogated. Using a combination of field studies, meta-analysis and numerical models we have found good reason to think that scaling is possible. In this talk I discuss the results of this research and focus on the results of a new modeling effort that explicitly links root distribution and architecture with a model of microbial physiology to assess the extent to which rhizosphere processes may affect ecosystem responses to global change. Results to date suggest that root inputs of C and possibly nutrients (ie, nitrogen) impact the fate of new C inputs to the soil (ie, accumulation or loss) in response to warming and enhanced productivity at elevated CO2. The model also provides qualitative guidance on incorporating the known effects of ectomycorrhizal fungi on decomposition and rates of soil C and N cycling.

  7. Response of hyporheic zones to transient forcing

    NASA Astrophysics Data System (ADS)

    Singh, T.; Wu, L.; Gomez-Velez, J. D.; Krause, S.; Hannah, D. M.; Lewandowski, J.; Nuetzmann, G.

    2017-12-01

    Exchange of water, solutes, and energy between river channels and hyporheic zones (HZs) modulates biogeochemical cycling, regulates stream temperature and impacts ecological structure and function. Numerical modelling of HZ processes is required as field observations are challenging for transient flow. To gain a deeper mechanistic understanding of the effects of transient discharge on hyporheic exchange, we performed a systematic analysis using numerical experiments. In this case, we vary (i) the characteristics of time-varying flood events; (ii) river bedform geometry; (iii) river hydraulic geometry; and (iv) the magnitude and direction of groundwater fluxes (neutral, gaining and losing conditions). We conceptualize the stream bed as a two-dimensional system. Whereby the flow is driven by a dynamically changing head distribution at the water-sediment interface and is modulated by steady groundwater flow. Our model estimates both net values for a single bedform and spatial distributions of (i) the flow field; (ii) mean residence times; and (iii) the concentration of a conservative tracer. A detailed sensitivity analysis was performed by changing channel slope, flood characteristics, groundwater upwelling/downwelling fluxes and biogeochemical time-scales in different bedforms such as ripples, dunes and alternating bars. Results show that change of parameters can have a substantial impact on exchange fluxes which can lead to the expansion, contraction, emergence and/or dissipation of HZs . Our results also reveal that groundwater fluxes have different impacts on HZs during flood events, depending on the channel slope and bedform topography. It is found that topographies with smaller aspect ratios and shallower slopes are more affected by groundwater upwelling/downwelling fluxes during flood events. The analysis of biogeochemical transformations shows that discharge events can potentially affects the efficiencies of nitrate removal. Taking into consideration multiple morphological characteristics along with hydrological controls are important to improve model conceptualizations at the reach and watershed scale.

  8. Dynamics of soil biogeochemical gas emissions shaped by remolded aggregate sizes and carbon configurations under hydration cycles.

    PubMed

    Ebrahimi, Ali; Or, Dani

    2018-01-01

    Changes in soil hydration status affect microbial community dynamics and shape key biogeochemical processes. Evidence suggests that local anoxic conditions may persist and support anaerobic microbial activity in soil aggregates (or in similar hot spots) long after the bulk soil becomes aerated. To facilitate systematic studies of interactions among environmental factors with biogeochemical emissions of CO 2 , N 2 O and CH 4 from soil aggregates, we remolded silt soil aggregates to different sizes and incorporated carbon at different configurations (core, mixed, no addition). Assemblies of remolded soil aggregates of three sizes (18, 12, and 6 mm) and equal volumetric proportions were embedded in sand columns at four distinct layers. The water table level in each column varied periodically while obtaining measurements of soil GHG emissions for the different aggregate carbon configurations. Experimental results illustrate that methane production required prolonged inundation and highly anoxic conditions for inducing measurable fluxes. The onset of unsaturated conditions (lowering water table) resulted in a decrease in CH 4 emissions while temporarily increasing N 2 O fluxes. Interestingly, N 2 O fluxes were about 80% higher form aggregates with carbon placement in center (anoxic) core compared to mixed carbon within aggregates. The fluxes of CO 2 were comparable for both scenarios of carbon sources. These experimental results highlight the importance of hydration dynamics in activating different GHG production and affecting various transport mechanisms about 80% of total methane emissions during lowering water table level are attributed to physical storage (rather than production), whereas CO 2 emissions (~80%) are attributed to biological activity. A biophysical model for microbial activity within soil aggregates and profiles provides a means for results interpretation and prediction of trends within natural soils under a wide range of conditions. © 2017 John Wiley & Sons Ltd.

  9. Polychlorinated Biphenyls as Probes of Biogeochemical Processes in Rivers

    USGS Publications Warehouse

    Fitzgerald, S.A.; Steuer, J.J.

    1997-01-01

    A field study was conducted to investigate the use of PCB (polychlorinated biphenyl) congener and homolog assemblages as tracers of biogeochemical processes in the Milwaukee and Manitowoc Rivers in southeastern Wisconsin from 1993 to 1995. PCB congeners in the dissolved and suspended particle phases, along with various algal indicators (algal carbon and pigments), were quantitated in the water seasonally. In addition, PCB congener assemblages were determined seasonally in surficial bed sediments. Biogeochemical processes investigated included: determination of the source of suspended particles and bottom sediments by comparison with known Aroclor mixtures, water-solid partitioning, and algal uptake of PCBs. Seasonal differences among the PCB assemblages were observed mainly in the dissolved phase, somewhat less in the suspended particulate phase, and not at all in the bed sediments.

  10. Winter climate change effects on soil C and N cycles in urban grasslands.

    PubMed

    Durán, Jorge; Rodríguez, Alexandra; Morse, Jennifer L; Groffman, Peter M

    2013-09-01

    Despite growing recognition of the role that cities have in global biogeochemical cycles, urban systems are among the least understood of all ecosystems. Urban grasslands are expanding rapidly along with urbanization, which is expected to increase at unprecedented rates in upcoming decades. The large and increasing area of urban grasslands and their impact on water and air quality justify the need for a better understanding of their biogeochemical cycles. There is also great uncertainty about the effect that climate change, especially changes in winter snow cover, will have on nutrient cycles in urban grasslands. We aimed to evaluate how reduced snow accumulation directly affects winter soil frost dynamics, and indirectly greenhouse gas fluxes and the processing of carbon (C) and nitrogen (N) during the subsequent growing season in northern urban grasslands. Both artificial and natural snow reduction increased winter soil frost, affecting winter microbial C and N processing, accelerating C and N cycles and increasing soil : atmosphere greenhouse gas exchange during the subsequent growing season. With lower snow accumulations that are predicted with climate change, we found decreases in N retention in these ecosystems, and increases in N2 O and CO2 flux to the atmosphere, significantly increasing the global warming potential of urban grasslands. Our results suggest that the environmental impacts of these rapidly expanding ecosystems are likely to increase as climate change brings milder winters and more extensive soil frost. © 2013 John Wiley & Sons Ltd.

  11. Atmosphere-Ocean Coupling through Trace Gases

    NASA Astrophysics Data System (ADS)

    Tegtmeier, S.; Atlas, E. L.; Krüger, K.; Lennartz, S. T.; Marandino, C. A.; Patra, P. K.; Quack, B.; Schlundt, C.

    2017-12-01

    Halogen- and sulfur-containing trace gases, as well as other volatile organic compounds (VOCs, such as isoprene) from biogeochemical marine sources are important constituents of the ocean and the atmosphere. These compounds exert wide-ranging influence on atmospheric chemical processes and climate interactions, as well as on human health in coastal regions. In their reactive form, they can affect the oxidizing capacity of the air and lead to the formation of new particles or the growth of existing ones. In this contribution, marine derived halogen-, sulfur-, and oxygen-containing compounds will be discussed. Their net flux into the atmosphere and their impact on atmospheric processes is analyzed based on observations and model simulations.

  12. Hydrology

    USGS Publications Warehouse

    Eisenbies, Mark H.; Hughes, W. Brian

    2000-01-01

    Hydrologic process are the main determinants of the type of wetland located on a site. Precipitation, groundwater, or flooding interact with soil properties and geomorphic setting to yield a complex matrix of conditions that control groundwater flux, water storage and discharge, water chemistry, biotic productivity, biodiversity, and biogeochemical cycling. Hydroperiod affects many abiotic factors that in turn determine plant and animal species composition, biodiversity, primary and secondary productivity, accumulation, of organic matter, and nutrient cycling. Because the hydrologic regime has a major influence on wetland functioning, understanding how hydrologic changes influence ecosystem processes is essential, especially in light of the pressures placed on remaining wetlands by society's demands for water resources and by potential global changes in climate.

  13. Impact of Hydrologic Variability on Ecosystem Dynamics and the Sustainable Use of Soil and Water Resources

    NASA Astrophysics Data System (ADS)

    Porporato, A. M.

    2013-05-01

    We discuss the key processes by which hydrologic variability affects the probabilistic structure of soil moisture dynamics in water-controlled ecosystems. These in turn impact biogeochemical cycling and ecosystem structure through plant productivity and biodiversity as well as nitrogen availability and soil conditions. Once the long-term probabilistic structure of these processes is quantified, the results become useful to understand the impact of climatic changes and human activities on ecosystem services, and can be used to find optimal strategies of water and soil resources management under unpredictable hydro-climatic fluctuations. Particular applications regard soil salinization, phytoremediation and optimal stochastic irrigation.

  14. Unravel the submesoscale dynamics of the phytoplanktonic community in the NW Mediterranean Sea by in situ observations: the 2015 OSCAHR cruise

    NASA Astrophysics Data System (ADS)

    Marrec, Pierre; Doglioli, Andrea M.; Grégori, Gérald; Della Penna, Alice; Wagener, Thibaut; Rougier, Gille; Bhairy, Nagib; Dugenne, Mathilde; Lahbib, Soumaya; Thyssen, Melilotus

    2017-04-01

    Submesoscale phenomena have been recently recognized as a key factor in physical-biological-biogeochemical interactions, even if it remains unclear how these processes affect the global state of the ocean. Significant large-scale impacts of submesoscale structures on primary production and influence on the phytoplankton community structure and diversity have also been reported. In the past decade submesoscale dynamics have been predominately studied through the analysis of numerical simulations. Observing the coupled physical and biogeochemical variability at this scale remains challenging due to the ephemeral nature of submesoscale structures. The in-situ study of such structures necessitates multidisciplinary approaches involving in situ observations, remote sensing and modeling. Last progresses in biogeochemical sensor development and advanced methodology including Lagrangian real-time adaptative strategies represent outstanding opportunities. The OSCAHR (Observing Submesoscale Coupling At High Resolution) campaign has been conducted thanks to a multidisciplinary approach in order to improve the understanding of submesoscale processes. An ephemeral submesoscale structure was first identified in the Ligurian Sea in fall 2015 using both satellite and numerical modeling data before the campaign. Afterwards, advanced observing systems for the physical, biological and biogeochemical characterization of the sea surface layer at a high spatial and temporal frequency were deployed during a 10-days cruise. A MVP (Moving Vessel Profiler) was used to obtain high resolution CTD profiles associated to a new pumping system with 1-m vertical resolution. Moreover, along the ship track, in addition to the standard measurements of seawater surface samples (Chl-a, nutrients, O2, SST, SSS …), we deployed an automated flow cytometer for near real-time characterization of phytoplankton functional groups (from micro-phytoplankton down to cyanobacteria). The observed submesoscale feature presented a cyclonic structure with a relatively cold core surrounded by warmer waters. Six phytoplankton groups were identified across the structure with an unprecedented spatial and temporal resolution. According to our observations, we could quantify the influence of the fast established physical structure on the spatial distribution of the phytoplankton functional groups, giving coherence to the observed community structuration. Moreover, the high resolution of our observations allows us to estimate the growth rate of the main phytoplankton groups. Our innovative adaptative strategy with a multidisciplinary and transversal approach provides a deeper understanding of the marine biogeochemical dynamics through the first trophic levels.

  15. Warming intensify CO2 flux and nutrient release from algal wrack subsidies on sandy beaches.

    PubMed

    Lastra, Mariano; López, Jesús; Rodil, Iván F

    2018-04-18

    Algal wrack subsidies underpin most of the food web structure of exposed sandy beaches and are responsible of important biogeochemical processes that link marine and terrestrial ecosystems. The response in decomposition of algal wrack deposits to global warming has not been studied in ocean-exposed sandy beaches to date. With this aim, passive open top chambers (OTCs) were used to increase soil temperature within the range predicted by the IPCC for western Europe (between 0.5 and 1.5°C), following the hypothesis that the biogeochemical processing of macroalgal wrack subsidies would accelerate in response to temperature increase. The effect of temperature manipulation on three target substrates: fresh and aged macroalgae, and bare sand, was tested. Results indicated that a small warming (<0.5°C) affected the wrack decomposition process through traceable increases in soil respiration through CO 2 flux, inorganic nutrients within the interstitial environment (N and P), sediment organic contents measured through the amount of proteins and microbial pool through the total soil DNA. The different responses of soil variables in the studied substrates indicated that the decomposition stage of stranded macroalgae influences the biogeochemical processing of organic matter in sandy beaches. Thus, CO 2 fluxes, releases of organic and inorganic nutrients and microbial activity intensify in aged wrack deposits. Our results predict that expected global warming will increase the release of inorganic nutrients to the coastal ocean by 30% for the N (21 Gg/year) and 5.9% for P (14 Gg/year); that increase for the flow of C to the atmosphere as CO 2 was estimated in 8.2% (523 Gg/year). This study confirms the key role of sandy beaches in recycling ocean-derived organic matter, highlighting their sensitivity to a changing scenario of global warming that predicts significant increases in temperature over the next few decades. © 2018 John Wiley & Sons Ltd.

  16. The significance of GW-SW interactions for biogeochemical processes in sandy streambeds

    NASA Astrophysics Data System (ADS)

    Arnon, Shai; De Falco, Natalie; Fox, Aryeh; Laube, Gerrit; Schmidt, Christian; Fleckenstein, Jan; Boano, Fulvio

    2015-04-01

    Stream-groundwater interactions have a major impact on hyporheic exchange fluxes in sandy streambeds. However, the physical complexity of natural streams has limited our ability to study these types of interactions systematically, and to evaluate their importance to biogeochemical processes and nutrient cycling. In this work we were able to quantify the effect of losing and gaining fluxes on hyporheic exchange and nutrient cycling in homogeneous and heterogeneous streambeds by combining experiments in laboratory flumes and modeling. Tracer experiments for measuring hyporheic exchange were done using dyes and NaCl under various combinations of overlying water velocity and losing or gaining fluxes. Nutrient cycling experiments were conducted after growing a benthic biofilm by spiking with Sodium Benzoate (as a source of labile dissolved organic carbon, DOC) and measuring DOC and oxygen dynamics. The combination of experimental observations and modeling revealed that interfacial transport increases with the streambed hydraulic conductivity and proportional to the square of the overlying water velocity. Hyporheic exchange fluxes under losing and gaining flow conditions were similar, and became smaller when the losing or gaining flux increases. Increasing in streambed hydraulic conductivity led to higher hyporheic fluxes and reduction in the effects of losing and gaining flow conditions to constrain exchange. Despite the evident effect of flow conditions on hyporheic exchange, labile DOC uptake was positively linked to increasing overlying water velocity but was not affected by losing and gaining fluxes. This is because microbial aerobic activity was taking place at the upper few millimeters of the streambed as shown by local oxygen consumption rates, which was measured using microelectrodes. Based on modeling work, it is expected that GW-SW interaction will be more significant for less labile DOC and anaerobic processes. Our results enable us to study systematically the coupling between flow conditions and biogeochemical processes under highly controlled physical and chemical conditions and are expected to improve our understanding of nutrient cycling in streams.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herfort, Lydie; Peterson, Tawnya D.; Prahl, Fredrick G.

    The localized impact of blooms of the mixotrophic ciliate Myrionecta rubra in the Columbia River estuary during 2007-2010 was evaluated with biogeochemical, light microscopy, physiological and molecular data. M. rubra affected surrounding estuarine nutrient cycles, as indicated by high and low concentrations of organic nutrients and inorganic nitrogen, respectively, associated with red waters. M. rubra blooms also altered the energy transfer pattern in patches of the estuarine water that contain the ciliate by creating areas characterized by high primary production and elevated levels of fresh autochthonous particulate organic matter, therefore shifting the trophic status in emergent red water areas ofmore » the estuary from net heterotrophy towards autotrophy. The pelagic estuarine bacterial community structure was unaffected by M. rubra abundance, but red waters of the ciliate do offer a possible link between autotrophic and heterotrophic processes since they were associated with elevated dissolved organic matter and enhanced microbial secondary production. Taken together these findings suggest that M. rubra red waters are biogeochemical hotspots of the Columbia River estuary.« less

  18. The Coral Reef pH-stat: An Important Defense Against Ocean Acidification? (Invited)

    NASA Astrophysics Data System (ADS)

    Andersson, A. J.; Yeakel, K.; Bates, N.; de Putron, S.; Collins, A.

    2013-12-01

    Concerns have been raised on how coral reefs will be affected by ocean acidification (OA), but there are currently no direct predictions on how seawater CO2 chemistry and pH within coral reefs might change in response to OA. Projections of future changes in seawater pH and aragonite saturation state have only been applied to open ocean conditions surrounding coral reef environments rather than the reef systems themselves. The seawater CO2 chemistry within heterogenous coral reef systems can be significantly different from that of the open ocean depending on the residence time, community composition and the major biogeochemical processes occurring on the reef, i.e., net ecosystem organic carbon production and calcification, which combined act to modify the seawater chemistry. We argue that these processes and coral reefs in general could as a pH-stat, partly regulating seawater pH on the reef and offsetting changes in seawater chemistry imposed by ocean acidification. Based on observations from the Bermuda coral reef, we show that a range of anticipated biogeochemical responses of coral reef communities to OA by the end of this century could partially offset changes in seawater pH by an average of 12% to 24%.

  19. Electrochemical analyses of redox-active iron minerals: a review of nonmediated and mediated approaches.

    PubMed

    Sander, Michael; Hofstetter, Thomas B; Gorski, Christopher A

    2015-05-19

    Redox-active minerals are ubiquitous in the environment and are involved in numerous electron transfer reactions that significantly affect biogeochemical processes and cycles as well as pollutant dynamics. As a consequence, research in different scientific disciplines is devoted to elucidating the redox properties and reactivities of minerals. This review focuses on the characterization of mineral redox properties using electrochemical approaches from an applied (bio)geochemical and environmental analytical chemistry perspective. Establishing redox equilibria between the minerals and working electrodes is a major challenge in electrochemical measurements, which we discuss in an overview of traditional electrochemical techniques. These issues can be overcome with mediated electrochemical analyses in which dissolved redox mediators are used to increase the rate of electron transfer and to facilitate redox equilibration between working electrodes and minerals in both amperometric and potentiometric measurements. Using experimental data on an iron-bearing clay mineral, we illustrate how mediated electrochemical analyses can be employed to derive important thermodynamic and kinetic data on electron transfer to and from structural iron. We summarize anticipated methodological advancements that will further contribute to advance an improved understanding of electron transfer to and from minerals in environmentally relevant redox processes.

  20. Cross-continental triple oxygen isotope analysis of tropospheric CO2

    NASA Astrophysics Data System (ADS)

    Liang, M. C.; Rangarajan, R.; Newman, S.; Laskar, A. H.

    2016-12-01

    The abundance variations of near surface atmospheric CO2 isotopologues (primarily 16O12C16O, 16O13C16O, 17O12C16O, and 18O12C16O) represent an integrated signal from anthropogenic/biogeochemical processes, including fossil fuel burning, biospheric photosynthesis and respiration, hydrospheric isotope exchange with water, and stratospheric photochemistry. Oxygen isotopes, in particular, are affected by the carbon and water cycles. Being a useful tracer that directly probes governing processes in CO2 biogeochemical cycles, D17O (= ln(1+d17O) - 0.516´ln(1+d18O)) provides an alternative constraint on the strengths of the associated cycles involving CO2. Here, we report more than one year of data obtained from Taiwan (Taipei), South China Sea, and USA (Pasadena, CA and Palos Verdes, CA). On average, the D17O values from these locations are similar and show no significant influence from the 2014-2016 El Nino event, in contrast to what has been reported for the 1997-1998 El Nino from the CO2 data collected from La Jolla, CA. Implications for utilizing the new tracer D17O for carbon cycling studies will be made.

  1. Spatial Distribution of Small Water Body Types in Indiana Ecoregions

    EPA Science Inventory

    Due to their large numbers and biogeochemical activity, small water bodies (SWBs), such as ponds and wetlands, can have substantial cumulative effects on hydrologic and biogeochemical processes. Using updated National Wetland Inventory data, we describe the spatial distribution o...

  2. Development of interactive graphic user interfaces for modeling reaction-based biogeochemical processes in batch systems with BIOGEOCHEM

    NASA Astrophysics Data System (ADS)

    Chang, C.; Li, M.; Yeh, G.

    2010-12-01

    The BIOGEOCHEM numerical model (Yeh and Fang, 2002; Fang et al., 2003) was developed with FORTRAN for simulating reaction-based geochemical and biochemical processes with mixed equilibrium and kinetic reactions in batch systems. A complete suite of reactions including aqueous complexation, adsorption/desorption, ion-exchange, redox, precipitation/dissolution, acid-base reactions, and microbial mediated reactions were embodied in this unique modeling tool. Any reaction can be treated as fast/equilibrium or slow/kinetic reaction. An equilibrium reaction is modeled with an implicit finite rate governed by a mass action equilibrium equation or by a user-specified algebraic equation. A kinetic reaction is modeled with an explicit finite rate with an elementary rate, microbial mediated enzymatic kinetics, or a user-specified rate equation. None of the existing models has encompassed this wide array of scopes. To ease the input/output learning curve using the unique feature of BIOGEOCHEM, an interactive graphic user interface was developed with the Microsoft Visual Studio and .Net tools. Several user-friendly features, such as pop-up help windows, typo warning messages, and on-screen input hints, were implemented, which are robust. All input data can be real-time viewed and automated to conform with the input file format of BIOGEOCHEM. A post-processor for graphic visualizations of simulated results was also embedded for immediate demonstrations. By following data input windows step by step, errorless BIOGEOCHEM input files can be created even if users have little prior experiences in FORTRAN. With this user-friendly interface, the time effort to conduct simulations with BIOGEOCHEM can be greatly reduced.

  3. Concentration-discharge relationships to understand the interplay between hydrological and biogeochemical processes: insights from data analysis and numerical experiments in headwater catchments.

    NASA Astrophysics Data System (ADS)

    De Dreuzy, J. R.; Marçais, J.; Moatar, F.; Minaudo, C.; Courtois, Q.; Thomas, Z.; Longuevergne, L.; Pinay, G.

    2017-12-01

    Integration of hydrological and biogeochemical processes led to emerging patterns at the catchment scale. Monitoring in rivers reflects the aggregation of these effects. While discharge time series have been measured for decades, high frequency water quality monitoring in rivers now provides prominent measurements to characterize the interplay between hydrological and biogeochemical processes, especially to infer the processes that happen in the heterogeneous subsurface. However, we still lack frameworks to relate observed patterns to specific processes, because of the "organized complexity" of hydrological systems. Indeed, it is unclear what controls, for example, patterns in concentration-discharge (C/Q) relationships due to non-linear processes and hysteresis effects. Here we develop a non-intensive process-based model to test how the integration of different landforms (i.e. geological heterogeneities and structures, topographical features) with different biogeochemical reactivity assumptions (e.g. reactive zone locations) can shape the overall water quality time series. With numerical experiments, we investigate typical patterns in high frequency C/Q relationships. In headwater basins, we found that typical hysteretic patterns in C/Q relationships observed in data time series can be attributed to differences in water and solute locations stored across the hillslope. At the catchment scale though, these effects tend to average out by integrating contrasted hillslopes' landforms. Together these results suggest that information contained in headwater water quality monitoring can be used to understand how hydrochemical processes determine downstream conditions.

  4. Biogeochemical Processes in Microbial Ecosystems

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.

    2001-01-01

    The hierarchical organization of microbial ecosystems determines process rates that shape Earth's environment, create the biomarker sedimentary and atmospheric signatures of life, and define the stage upon which major evolutionary events occurred. In order to understand how microorganisms have shaped the global environment of Earth and, potentially, other worlds, we must develop an experimental paradigm that links biogeochemical processes with ever-changing temporal and spatial distributions of microbial populations and their metabolic properties. Additional information is contained in the original extended abstract.

  5. Connections between physical, optical and biogeochemical processes in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Xiu, Peng; Chai, Fei

    2014-03-01

    A new biogeochemical model has been developed and coupled to a three-dimensional physical model in the Pacific Ocean. With the explicitly represented dissolved organic pools, this new model is able to link key biogeochemical processes with optical processes. Model validation against satellite and in situ data indicates the model is robust in reproducing general biogeochemical and optical features. Colored dissolved organic matter (CDOM) has been suggested to play an important role in regulating underwater light field. With the coupled model, physical and biological regulations of CDOM in the euphotic zone are analyzed. Model results indicate seasonal variability of CDOM is mostly determined by biological processes, while the importance of physical regulation manifests in the annual mean terms. Without CDOM attenuating light, modeled depth-integrated primary production is about 10% higher than the control run when averaged over the entire basin, while this discrepancy is highly variable in space with magnitudes reaching higher than 100% in some locations. With CDOM dynamics integrated in physical-biological interactions, a new mechanism by which physical processes affect biological processes is suggested, namely, physical transport of CDOM changes water optical properties, which can further modify underwater light field and subsequently affect the distribution of phytoplankton chlorophyll. This mechanism tends to occur in the entire Pacific basin but with strong spatial variability, implying the importance of including optical processes in the coupled physical-biogeochemical model. If ammonium uptake is sufficient to permit utilization of DOM, that is, UB∗⩾-U{U}/{U}-{(1-r_b)}/{RB}, then bacteria uptake of DOM has the form of FB=(1-r_b){U}/{RB}, bacteria respiration, SB=r_b×U, remineralization by bacteria, EB=UC{UN}/{UC}-{(1-r_b)}/{RB}. If EB > 0, then UB = 0; otherwise, UB = -EB. If there is insufficient ammonium, that is, UB∗<-U{U}/{U}-{(1-r_b)}/{RB}, then bacteria uptake of ammonia is obtained by, UB=UB∗, bacteria uptake of DOM, FB=U+UB, bacteria respiration, SB=RBFB{r_b}/{1-r_b}, remineralization by bacteria, EB=-UB. CDOM photolysis (Bissett et al., 1999a): UVLDOC=a(410)×RtUVLDOC×{PAR(0)}/{410}×exp∫z0Kd(300)dz, UVSDOC=a(410)×RtUVSDOC×{PAR(0)}/{410}×exp∫z0Kd(300)dz, UVLDIC=a(410)×RtUVLDIC×{PAR(0)}/{410}×exp∫z0Kd(300)dz, UVSDIC=a(410)×RtUVSDIC×{PAR(0)}/{410}×exp∫z0Kd(300)dz, a(410)=acdoc∗×CLDOC, a(410)=acdoc∗×CSDOC, Kd(300)=[a(410)+a(410)]×exp[0.0145×(410-300)]+0.154. The dissolution rate for biogenic silica (Jiang et al., 2003): D=(0.19T/25+0.01)×exp(0.069(T-25)). The air-sea flux of CO2 is calculated using the transfer velocity-wind speed relationships from Wanninkhof (1992): air-sea CO flux=0.31U2(660S{()sea-()air}, where U is the wind speed at sea surface and Sc is the Schmidt number for CO2 that can be calculated as: Sc=2073.1-125.62T+3.6276T2-0.043219T3, S is the solubility of CO2 and (pCO2)air is the partial pressure of CO2 in the air. In the model, we set a spatially uniform distribution of (pCO2)air observed at the Mauna Loa Observatory (Keeling et al., 1976).Dissolved oxygen (DO) is modeled using constant oxygen-to-nitrate and oxygen-to-ammonium ratios. At the surface, air-sea exchange of O2 is calculated as: O flux=0.31U2(660(DOsat-DO), where DOsat is the saturation concentration of DO calculated from temperature and salinity. So2 is the Schmidt number for O2 that can be calculated as follows: So2=1638.0-81.83T+1.483T2-0.008004T3.

  6. NIGHTHAWK - A Program for Modeling Saturated Batch and Column Experiments Incorporating Equilibrium and Kinetic Biogeochemistry

    EPA Science Inventory

    NIGHTHAWK simulates the fate and transport of biogeochemically reactive contaminants in the saturated subsurface. Version 1.2 supports batch and one- dimensional advective-dispersive-reactive transport involving a number of biogeochemical processes, including: microbially-mediate...

  7. Spatial Distribution of Small Water Body Types across Indiana Ecoregions

    EPA Science Inventory

    Due to their large numbers and biogeochemical activity, small water bodies (SWB), such as ponds and wetlands, can have substantial cumulative effects on hydrologic, biogeochemical, and biological processes; yet the spatial distributions of various SWB types are often unknown. Usi...

  8. A Unified Multi-scale Model for Cross-Scale Evaluation and Integration of Hydrological and Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Liu, C.; Yang, X.; Bailey, V. L.; Bond-Lamberty, B. P.; Hinkle, C.

    2013-12-01

    Mathematical representations of hydrological and biogeochemical processes in soil, plant, aquatic, and atmospheric systems vary with scale. Process-rich models are typically used to describe hydrological and biogeochemical processes at the pore and small scales, while empirical, correlation approaches are often used at the watershed and regional scales. A major challenge for multi-scale modeling is that water flow, biogeochemical processes, and reactive transport are described using different physical laws and/or expressions at the different scales. For example, the flow is governed by the Navier-Stokes equations at the pore-scale in soils, by the Darcy law in soil columns and aquifer, and by the Navier-Stokes equations again in open water bodies (ponds, lake, river) and atmosphere surface layer. This research explores whether the physical laws at the different scales and in different physical domains can be unified to form a unified multi-scale model (UMSM) to systematically investigate the cross-scale, cross-domain behavior of fundamental processes at different scales. This presentation will discuss our research on the concept, mathematical equations, and numerical execution of the UMSM. Three-dimensional, multi-scale hydrological processes at the Disney Wilderness Preservation (DWP) site, Florida will be used as an example for demonstrating the application of the UMSM. In this research, the UMSM was used to simulate hydrological processes in rooting zones at the pore and small scales including water migration in soils under saturated and unsaturated conditions, root-induced hydrological redistribution, and role of rooting zone biogeochemical properties (e.g., root exudates and microbial mucilage) on water storage and wetting/draining. The small scale simulation results were used to estimate effective water retention properties in soil columns that were superimposed on the bulk soil water retention properties at the DWP site. The UMSM parameterized from smaller scale simulations were then used to simulate coupled flow and moisture migration in soils in saturated and unsaturated zones, surface and groundwater exchange, and surface water flow in streams and lakes at the DWP site under dynamic precipitation conditions. Laboratory measurements of soil hydrological and biogeochemical properties are used to parameterize the UMSM at the small scales, and field measurements are used to evaluate the UMSM.

  9. Reduced-Order Biogeochemical Flux Model for High-Resolution Multi-Scale Biophysical Simulations

    NASA Astrophysics Data System (ADS)

    Smith, Katherine; Hamlington, Peter; Pinardi, Nadia; Zavatarelli, Marco

    2017-04-01

    Biogeochemical tracers and their interactions with upper ocean physical processes such as submesoscale circulations and small-scale turbulence are critical for understanding the role of the ocean in the global carbon cycle. These interactions can cause small-scale spatial and temporal heterogeneity in tracer distributions that can, in turn, greatly affect carbon exchange rates between the atmosphere and interior ocean. For this reason, it is important to take into account small-scale biophysical interactions when modeling the global carbon cycle. However, explicitly resolving these interactions in an earth system model (ESM) is currently infeasible due to the enormous associated computational cost. As a result, understanding and subsequently parameterizing how these small-scale heterogeneous distributions develop and how they relate to larger resolved scales is critical for obtaining improved predictions of carbon exchange rates in ESMs. In order to address this need, we have developed the reduced-order, 17 state variable Biogeochemical Flux Model (BFM-17) that follows the chemical functional group approach, which allows for non-Redfield stoichiometric ratios and the exchange of matter through units of carbon, nitrate, and phosphate. This model captures the behavior of open-ocean biogeochemical systems without substantially increasing computational cost, thus allowing the model to be combined with computationally-intensive, fully three-dimensional, non-hydrostatic large eddy simulations (LES). In this talk, we couple BFM-17 with the Princeton Ocean Model and show good agreement between predicted monthly-averaged results and Bermuda testbed area field data (including the Bermuda-Atlantic Time-series Study and Bermuda Testbed Mooring). Through these tests, we demonstrate the capability of BFM-17 to accurately model open-ocean biochemistry. Additionally, we discuss the use of BFM-17 within a multi-scale LES framework and outline how this will further our understanding of turbulent biophysical interactions in the upper ocean.

  10. Reduced-Order Biogeochemical Flux Model for High-Resolution Multi-Scale Biophysical Simulations

    NASA Astrophysics Data System (ADS)

    Smith, K.; Hamlington, P.; Pinardi, N.; Zavatarelli, M.; Milliff, R. F.

    2016-12-01

    Biogeochemical tracers and their interactions with upper ocean physical processes such as submesoscale circulations and small-scale turbulence are critical for understanding the role of the ocean in the global carbon cycle. These interactions can cause small-scale spatial and temporal heterogeneity in tracer distributions which can, in turn, greatly affect carbon exchange rates between the atmosphere and interior ocean. For this reason, it is important to take into account small-scale biophysical interactions when modeling the global carbon cycle. However, explicitly resolving these interactions in an earth system model (ESM) is currently infeasible due to the enormous associated computational cost. As a result, understanding and subsequently parametrizing how these small-scale heterogeneous distributions develop and how they relate to larger resolved scales is critical for obtaining improved predictions of carbon exchange rates in ESMs. In order to address this need, we have developed the reduced-order, 17 state variable Biogeochemical Flux Model (BFM-17). This model captures the behavior of open-ocean biogeochemical systems without substantially increasing computational cost, thus allowing the model to be combined with computationally-intensive, fully three-dimensional, non-hydrostatic large eddy simulations (LES). In this talk, we couple BFM-17 with the Princeton Ocean Model and show good agreement between predicted monthly-averaged results and Bermuda testbed area field data (including the Bermuda-Atlantic Time Series and Bermuda Testbed Mooring). Through these tests, we demonstrate the capability of BFM-17 to accurately model open-ocean biochemistry. Additionally, we discuss the use of BFM-17 within a multi-scale LES framework and outline how this will further our understanding of turbulent biophysical interactions in the upper ocean.

  11. The Effect of Suspended Sediment Transport and Deposition on Streambed Clogging Under Losing and Gaining Flow Conditions

    NASA Astrophysics Data System (ADS)

    Fox, A.; Packman, A. I.; Preziosi-Ribero, A.; Li, A.; Arnon, S.

    2017-12-01

    Sediment transport and deposition in streams can affect streambed hydraulic characteristics due to clogging, reduce water fluxes through the hyporheic zone, and thus expected to affect biogeochemical processes. Processes affecting deposition of suspended particles were systematically studied under various overlying velocities but without taking into account the interactions with groundwater. This is despite the fact that the interaction with groundwater were shown to play an important role in deposition patterns of fine sediments in field studies. The objective of this study was to evaluate the effect of losing and gaining fluxes on suspended sediment depositional patterns and on hyporheic exchange fluxes. Experiments were conducted in a laboratory flume system (640 cm long and 30 cm wide) that has a capacity to enforce losing or gaining flow conditions. The flume was packed with homogenous sand, while suspended sediment deposition was evaluated by adding kaolinite particles to the water and following the deposition rate by particle disappearance from the bulk water. Consecutive additions of kaolinite were done, while hyporheic exchange fluxes were evaluated by conducting NaCl tracer experiments between each kaolinite additions. Furthermore, dye injections were used to visualize the flow patterns in the streambed using time-lapse photography through the transparent sidewalls of the flume. Hyporheic exchange and particle tracking simulations were done to assess the results of particle deposition and feedbacks between hyporheic flow, particle transport, and streambed clogging. Experimental results showed that the deposition of clay decreases with increasing amount of clay concentration in the sediment. Hyporheic exchange flux decreases linearly with increasing amount of clay added to the system and the region of active hyporheic exchange was confined to the upper part of the sediment. Understanding the particle deposition mechanisms under losing and gaining flow condition are expected to improve our predictive ability to capture the dynamics of streambed characteristics, which has implications to sediment transport, biogeochemical processes and hyporheic ecology.

  12. Rapid alkalization in Lake Inawashiro, Fukushima, Japan: implications for future changes in the carbonate system of terrestrial waters

    NASA Astrophysics Data System (ADS)

    Manaka, T.; Ushie, H.; Araoka, D.; Inamura, A.; Suzuki, A.; Kawahata, H.

    2013-12-01

    The global carbon cycle, one of the important biogeochemical cycles controlling the surface environment of the Earth, has been greatly affected by human activity. Anthropogenic nutrient loading from urban sewage and agricultural runoff has caused eutrophication of aquatic systems. The impact of this eutrophication and consequent photosynthetic activity on CO2 exchange between freshwater systems and the atmosphere is unclear. In this study, we focused on how nutrient loading to lakes affects their carbonate system. Here, we report results of surveys of lakes in Japan at different stages of eutrophication. Alkalization due to photosynthetic activity and decreases in PCO2 had occurred in eutrophic lakes (e.g., Lake Kasumigaura), whereas in an acidotrophic lake (Lake Inawashiro) that was impacted by volcanic hot springs, nutrient loading was changing the pH and carbon cycling. When the influence of volcanic activity was stronger in the past in Lake Inawashiro, precipitation of volcanic-derived iron and aluminum had removed nutrients by co-precipitation. During the last three decades, volcanic activity has weakened and the lake water has become alkalized. We inferred that this rapid alkalization did not result just from the reduction in acid inputs but was also strongly affected by increased photosynthetic activity during this period. Human activities affect many lakes in the world. These lakes may play an important part in the global carbon cycle through their influence on CO2 exchange between freshwater and the atmosphere. Biogeochemical changes and processes in these systems have important implications for future changes in aquatic carbonate systems on land.

  13. Structure of peat soils and implications for biogeochemical processes and hydrological flow

    NASA Astrophysics Data System (ADS)

    Rezanezhad, F.; McCarter, C. P. R.; Gharedaghloo, B.; Kleimeier, C.; Milojevic, T.; Liu, H.; Weber, T. K. D.; Price, J. S.; Quinton, W. L.; Lenartz, B.; Van Cappellen, P.

    2017-12-01

    Permafrost peatlands contain globally important amounts of soil organic carbon and play major roles in global water, nutrient and biogeochemical cycles. The structure of peatland soils (i.e., peat) are highly complex with unique physical and hydraulic properties; where significant, and only partially reversible, shrinkage occurs during dewatering (including water table fluctuations), compression and/or decomposition. These distinct physical and hydraulic properties controls water flow, which in turn affect reactive and non-reactive solute transport (such as, sorption or degradation) and biogeochemical functions. Additionally, peat further attenuates solute migration through molecular diffusion into the inactive pores of Sphagnum dominated peat. These slow, diffusion-limited solute exchanges between the pore regions may give rise to pore-scale chemical gradients and heterogeneous distributions of microbial habitats and activity in peat soils. Permafrost peat plateaus have the same essential subsurface characteristics as other widely organic soil-covered peatlands, where the hydraulic conductivity is related to the degree of decomposition and soil compression. Increasing levels of decomposition correspond with a reduction of effective pore diameter and consequently restrict water and solute flow (by several orders of magnitude in hydraulic conductivity between the ground surface and a depth of 50 cm). In this presentation, we present the current knowledge of key physical and hydraulic properties related to the structure of globally available peat soils and discuss their implications for water storage, flow and the migration of solutes.

  14. Characterizing marine particles and their impact on biogeochemical cycles in the GEOTRACES program

    NASA Astrophysics Data System (ADS)

    Anderson, Robert F.; Hayes, Christopher T.

    2015-04-01

    Trace elements and their isotopes (TEIs) are of priority interest in several subdisciplines of oceanography. For example, the vital role of trace element micronutrients in regulating the growth of marine organisms, which, in turn, may influence the structure and composition of marine ecosystems, is now well established (Morel and Price, 2003; Twining and Baines, 2013). Natural distributions of some TEIs have been severely impacted by anthropogenic emissions, leading to substantial perturbations of natural ocean inventories. Pb and Hg, for example, (Lamborg et al., 2002; Schaule and Patterson, 1981), may represent a significant threat to human food supply. Furthermore, much of our knowledge of past variability in the ocean environment, including the ocean's role in climate change, has been developed using TEI proxies archived in marine substrates such as sediments, corals and microfossils. Research in each of these areas relies on a comprehensive knowledge of the distributions of TEIs in the ocean, and on the sensitivity of these distributions to changing environmental conditions. With numerous processes affecting the regional supply and removal of TEIs in the ocean, a comprehensive understanding of the marine biogeochemical cycles of TEIs can be attained only by a global, coordinated, international effort. GEOTRACES, an international program designed to study the marine biogeochemical cycles of trace elements and their isotopes (Anderson et al., 2014; Henderson et al., 2007), aims to achieve these goals.

  15. Network analysis reveals multiscale controls on streamwater chemistry

    USGS Publications Warehouse

    McGuire, Kevin J.; Torgersen, Christian E.; Likens, Gene E.; Buso, Donald C.; Lowe, Winsor H.; Bailey, Scott W.

    2014-01-01

    By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks.

  16. Network analysis reveals multiscale controls on streamwater chemistry

    PubMed Central

    McGuire, Kevin J.; Torgersen, Christian E.; Likens, Gene E.; Buso, Donald C.; Lowe, Winsor H.; Bailey, Scott W.

    2014-01-01

    By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks. PMID:24753575

  17. Network analysis reveals multiscale controls on streamwater chemistry.

    PubMed

    McGuire, Kevin J; Torgersen, Christian E; Likens, Gene E; Buso, Donald C; Lowe, Winsor H; Bailey, Scott W

    2014-05-13

    By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks.

  18. Understanding Biogeochemical Transformations Of Trace Elements In Multi Metal-Rich Geomaterials Under Stimulated Redox Conditions

    EPA Science Inventory

    Natural and anthropogenic influences on hydrological conditions can induce periodic or long-term reduced conditions in geologic materials. Such conditions can cause significant impacts on biogeochemical processes of trace elements in subsurface or near surface environments. The...

  19. Catchment hydro-biogeochemical response to forest harvest intensity and spatial pattern

    EPA Science Inventory

    We apply a new model, Visualizing Ecosystems for Land Management Assessment (VELMA), to Watershed 10 (WS10) in the H.J. Andrews Experimental Forest to simulate the effects of harvest intensity and spatial pattern on catchment hydrological and biogeochemical processes. Specificall...

  20. Assessment of the GHG Reduction Potential from Energy Crops Using a Combined LCA and Biogeochemical Process Models: A Review

    PubMed Central

    Jiang, Dong; Hao, Mengmeng; Wang, Qiao; Huang, Yaohuan; Fu, Xinyu

    2014-01-01

    The main purpose for developing biofuel is to reduce GHG (greenhouse gas) emissions, but the comprehensive environmental impact of such fuels is not clear. Life cycle analysis (LCA), as a complete comprehensive analysis method, has been widely used in bioenergy assessment studies. Great efforts have been directed toward establishing an efficient method for comprehensively estimating the greenhouse gas (GHG) emission reduction potential from the large-scale cultivation of energy plants by combining LCA with ecosystem/biogeochemical process models. LCA presents a general framework for evaluating the energy consumption and GHG emission from energy crop planting, yield acquisition, production, product use, and postprocessing. Meanwhile, ecosystem/biogeochemical process models are adopted to simulate the fluxes and storage of energy, water, carbon, and nitrogen in the soil-plant (energy crops) soil continuum. Although clear progress has been made in recent years, some problems still exist in current studies and should be addressed. This paper reviews the state-of-the-art method for estimating GHG emission reduction through developing energy crops and introduces in detail a new approach for assessing GHG emission reduction by combining LCA with biogeochemical process models. The main achievements of this study along with the problems in current studies are described and discussed. PMID:25045736

  1. AUV based study on physical and ecological processes at fronts

    NASA Astrophysics Data System (ADS)

    Tippenhauer, Sandra; Wulff, Thorben; Von Appen, Wilken-Jon

    2017-04-01

    Small-scale processes and their effects get more and more attention when it comes to understanding processes and changes in the (Arctic) ocean. Here we present a study on physical processes and ecological responses at submesoscale frontal systems in the Fram Strait investigated using an autonomous underwater vehicle (AUV). The AUV is equipped with physical and biogeochemical sensors such as an acoustic Doppler current profiler, a turbulence probe, a conductivity-temperature-depth probe, and sensors for Oxygen, Nitrate, Chlorophyll a, and photosynthetically active radiation (PAR). The study is designed such that the AUV covers tracks of several kilometers length in cross-frontal direction with the front roughly located in the middle of the track. On its way, the AUV records high-resolution vertical or zigzag profiles of the physical and biogeochemical properties in the upper 50 m which includes the euphotic zone. In both, physical and biogeochemical terms, the measurements revealed a complex structure of the water column. At the fronts the distribution of phytoplankton and nutrients was highly inhomogeneous, possibly due to wind-driven frontogenesis or the growth of mixed layer eddies. To set the observations into a larger context we also examine ship-based and satellite data. We investigate how the observed patterns of the potential vorticity and the biogeochemical properties may be formed and which processes could lead to a smoothing of the observed gradients.

  2. Thinking outside the channel: Modeling nitrogen cycling in networked river ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helton, Ashley; Poole, Geoffrey C.; Meyer, Judy

    2011-01-01

    Agricultural and urban development alters nitrogen and other biogeochemical cycles in rivers worldwide. Because such biogeochemical processes cannot be measured empirically across whole river networks, simulation models are critical tools for understanding river-network biogeochemistry. However, limitations inherent in current models restrict our ability to simulate biogeochemical dynamics among diverse river networks. We illustrate these limitations using a river-network model to scale up in situ measures of nitrogen cycling in eight catchments spanning various geophysical and land-use conditions. Our model results provide evidence that catchment characteristics typically excluded from models may control river-network biogeochemistry. Based on our findings, we identify importantmore » components of a revised strategy for simulating biogeochemical dynamics in river networks, including approaches to modeling terrestrial-aquatic linkages, hydrologic exchanges between the channel, floodplain/riparian complex, and subsurface waters, and interactions between coupled biogeochemical cycles.« less

  3. Incorporating ecogeomorphic feedbacks to better understand resiliency in streams: A review and directions forward

    NASA Astrophysics Data System (ADS)

    Atkinson, Carla L.; Allen, Daniel C.; Davis, Lisa; Nickerson, Zachary L.

    2018-03-01

    Decades of interdisciplinary research show river form and function depends on interactions between the living and nonliving world, but a dominant paradigm underlying ecogeomorphic work consists of a top-down, unidirectional approach with abiotic forces driving biotic systems. Stream form and location within the stream network does dictate the habitat and resources available for organisms and overall community structure. Yet this traditional hierarchal framework on its own is inadequate in communicating information regarding the influence of biological systems on fluvial geomorphology that lead to changes in channel morphology, sediment cycling, and system-scale functions (e.g., sediment yield, biogeochemical nutrient cycling). Substantial evidence that organisms influence fluvial geomorphology exists, specifically the ability of aquatic vegetation and lotic animals to modify flow velocities and sediment deposition and transport - thus challenging the traditional hierarchal framework. Researchers recognize the need for ecogeomorphic frameworks that conceptualize feedbacks between organisms, sediment transport, and geomorphic structure. Furthermore, vital ecosystem processes, such as biogeochemical nutrient cycling represent the conversations that are occurring between geomorphological and biological systems. Here we review and synthesize selected case studies highlighting the role organisms play in moderating geomorphic processes and likely interact with these processes to have an impact on an essential ecosystem process, biogeochemical nutrient recycling. We explore whether biophysical interactions can provide information essential to improving predictions of system-scale river functions, specifically sediment transport and biogeochemical cycling, and discuss tools used to study these interactions. We suggest that current conceptual frameworks should acknowledge that hydrologic, geomorphologic, and ecologic processes operate on different temporal scales, generating bidirectional feedback loops over space and time. Hydro- and geomorphologic processes, operating episodically during bankfull conditions, influence ecological processes (e.g., biogeochemical cycling) occurring over longer time periods during base-flow conditions. This ecological activity generates the antecedent conditions that influence the hydro- and geomorphologic processes occurring during the next high flow event, creating a bidirectional feedback. This feedback should enhance the resiliency of fluvial landforms and ecosystem processes, allowing physical and biological processes to pull and push against each other over time.

  4. The genetic potential for key biogeochemical processes in Arctic frost flowers and young sea ice revealed by metagenomic analysis.

    PubMed

    Bowman, Jeff S; Berthiaume, Chris T; Armbrust, E Virginia; Deming, Jody W

    2014-08-01

    Newly formed sea ice is a vast and biogeochemically active environment. Recently, we reported an unusual microbial community dominated by members of the Rhizobiales in frost flowers at the surface of Arctic young sea ice based on the presence of 16S gene sequences related to these strains. Here, we use metagenomic analysis of two samples, from a field of frost flowers and the underlying young sea ice, to explore the metabolic potential of this surface ice community. The analysis links genes for key biogeochemical processes to the Rhizobiales, including dimethylsulfide uptake, betaine glycine turnover, and halocarbon production. Nodulation and nitrogen fixation genes characteristic of terrestrial root-nodulating Rhizobiales were generally lacking from these metagenomes. Non-Rhizobiales clades at the ice surface had genes that would enable additional biogeochemical processes, including mercury reduction and dimethylsulfoniopropionate catabolism. Although the ultimate source of the observed microbial community is not known, considerations of the possible role of eolian deposition or transport with particles entrained during ice formation favor a suspended particle source for this microbial community. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  5. INTERACTIONS OF CHANGING CLIMATE AND ULTRAVIOLET RADIATION IN AQUATIC AND TERRESTRIAL BIOGEOCHEMICAL CYCLES

    EPA Science Inventory

    During the past decade interest has developed in the interactive effects of climate change and UV radiation on aquatic and terrestrial biogeochemical cycles. This talk used selected case studies to illustrate approaches that are being used to investigate these intriguing processe...

  6. Using Remote Sensing and Field Observations of Colored Dissolved Organic Material (CDOM) to Improve Understanding of Carbon Dynamics at the Land-Ocean Interface

    NASA Astrophysics Data System (ADS)

    Lai, L.; Tzortziou, M.; Gilerson, A.; Foster, R.

    2013-12-01

    Dissolved Organic Matter (DOM) and its colored component, (CDOM) are sensitive indicators of environmental pollution, nutrient enrichment, water quality and plays a key role in a broad range of processes and climate-related biogeochemical cycles in estuarine and coastal ecosystems. Because of its strong influence on how ocean color is viewed, CDOM can provide an invaluable optical tool for coastal zone environmental assessment and from space. There is a continuous cycle of sources and sinks of CDOM from terrestrial sources to the wetlands to the estuaries and to the ocean waters. Terrestrial inputs from natural processes, anthropogenic activities, exchanges with the atmosphere, rich biodiversity and high primary productivity, physical, photochemical and microbial processes affect not only the amount but also the quality and optical signature of CDOM in near-shore waters. In this study, new measurements are presented of the optical characteristics of CDOM collected from the Chesapeake Bay estuarine environment. Measured parameters include absorption spectra, estimated spectral slopes, slope ratios, DOC-specific CDOM absorption as well as 3D CDOM fluorescence emission-excitation matrices. Such results will provide insight of the measured CDOM in this complex environment and the complex process that affect CDOM quality and amount during transport to the estuary and coastal ocean. New field campaigns will be conducted in August and September in the Chesapeake Bay estuary and the coast of the Gulf of Mexico to collect more samples for analysis of CDOM dynamics and link field observations and measurements to satellite ocean color retrievals of estuarine biogeochemical processes. In addition, advanced satellite CDOM data distribution and usage is discussed as it has considerable operational value and practical application beyond the scientific community and research. Keywords: CDOM, carbon dynamics, estuaries, coastal ecosystems, optical properties, satellite applications, data distribution

  7. Impact of Holocene terrestrial vegetation succession on the biogeochemical structure and function of an Arctic lake, Alaska

    NASA Astrophysics Data System (ADS)

    Langdon, P. G.; Whiteford, E.; Hopla, E.; van Hardenbroek, M.; Turner, S.; Edwards, M. E.; Jones, V.; McGowan, S.; Wiik, E.; Anderson, N. J.

    2016-12-01

    Vegetation changes are occurring in the Arctic as warming progresses, a process often referred to as "greening". The northward expansion of woody shrubs influence nutrient cycling in soils, including carbon (C) cycling, but the extent to which they will change the storage or release of carbon at a landscape scale is uncertain. The role that lakes play in this system is not fully understood, but it is known that many lakes in the tundra and northern forests are today releasing carbon dioxide (and methane) into the atmosphere in significant amounts, and a proportion of this carbon comes into the lake from the vegetation and soils of the surrounding landscape. Furthermore, the number of lakes contributing to this gas release has been hitherto underestimated, and it is thus likely that lakes play a far greater role in terms of total gas emissions. In order to assess the relationships between vegetation succession and lake biogeochemical cycling we have studied palaeoenvironmental change in a suite of lakes across the Arctic in a NERC funded project LAC (Lakes and the Arctic Carbon Cycle). This abstract is focused on a full Holocene sequence from an Alaskan Lake (Woody Bottom Pond), with palaeo records of major elements (scanning XRF), diatoms, pollen, stable isotopes and pigments. The small size of the catchment likely leads to strong coupling between catchment processes such as vegetation succession and fire and aquatic biogeochemical responses. For example the arrival of alder is followed by marked shift in diatom assemblage and pigments associated with changes in N cycling. This approach allows us to assess how catchment change affects aquatic ecosystems and the resultant balance between heterotrophy and autotrophy in arctic lakes over long timescales.

  8. Modelling carbon and nitrogen turnover in variably saturated soils

    NASA Astrophysics Data System (ADS)

    Batlle-Aguilar, J.; Brovelli, A.; Porporato, A.; Barry, D. A.

    2009-04-01

    Natural ecosystems provide services such as ameliorating the impacts of deleterious human activities on both surface and groundwater. For example, several studies have shown that a healthy riparian ecosystem can reduce the nutrient loading of agricultural wastewater, thus protecting the receiving surface water body. As a result, in order to develop better protection strategies and/or restore natural conditions, there is a growing interest in understanding ecosystem functioning, including feedbacks and nonlinearities. Biogeochemical transformations in soils are heavily influenced by microbial decomposition of soil organic matter. Carbon and nutrient cycles are in turn strongly sensitive to environmental conditions, and primarily to soil moisture and temperature. These two physical variables affect the reaction rates of almost all soil biogeochemical transformations, including microbial and fungal activity, nutrient uptake and release from plants, etc. Soil water saturation and temperature are not constants, but vary both in space and time, thus further complicating the picture. In order to interpret field experiments and elucidate the different mechanisms taking place, numerical tools are beneficial. In this work we developed a 3D numerical reactive-transport model as an aid in the investigation the complex physical, chemical and biological interactions occurring in soils. The new code couples the USGS models (MODFLOW 2000-VSF, MT3DMS and PHREEQC) using an operator-splitting algorithm, and is a further development an existing reactive/density-dependent flow model PHWAT. The model was tested using simplified test cases. Following verification, a process-based biogeochemical reaction network describing the turnover of carbon and nitrogen in soils was implemented. Using this tool, we investigated the coupled effect of moisture content and temperature fluctuations on nitrogen and organic matter cycling in the riparian zone, in order to help understand the relative sensitivity of biological transformations to these processes.

  9. Snowmelt Induced Hydrologic Perturbations Drive Dynamic Microbiological and Geochemical Behaviors across a Shallow Riparian Aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danczak, Robert E.; Yabusaki, Steven B.; Williams, Kenneth H.

    Shallow riparian aquifers represent hotspots of biogeochemical activity in the arid western US. While these environments provide extensive ecosystem services, little is known of how natural environmental perturbations influence subsurface microbial communities and associated biogeochemical processes. Over a six-month period we tracked the annual snowmelt-driven incursion of groundwater into the vadose zone of an aquifer adjacent to the Colorado River, leading to increased dissolved oxygen (DO) concentrations in the normally suboxic saturated zone. Strong biogeochemical heterogeneity was measured across the site, with abiotic reactions between DO and sulfide minerals driving rapid DO consumption and mobilization of redox active species inmore » reduced aquifer regions. Conversely, extensive DO increases were detected in less reduced sediments. 16S rRNA gene surveys tracked microbial community composition within the aquifer, revealing strong correlations between increases in putative oxygen-utilizing chemolithoautotrophs and heterotrophs and rising DO concentrations. The gradual return to suboxic aquifer conditions favored increasing abundances of 16S rRNA sequences matching members of the Microgenomates (OP11) and Parcubacteria (OD1) that have been strongly implicated in fermentative processes. Microbial community stability measurements indicated that deeper aquifer locations were relatively less affected by geochemical perturbations, while communities in shallower locations exhibited the greatest change. Reactive transport modeling of the geochemical and microbiological results supported field observations, suggesting that a predictive framework can be applied to develop a greater understanding of such environments. Frontiers in Earth Science Journal Impact & Description - ResearchGate - Impact Rankings ( 2015 and 2016 ). Available from: https://www.researchgate.net/journal/2296-6463_Frontiers_in_Earth_Science [accessed Jul 25, 2016].« less

  10. Restoration effects on N cycling pools and processes

    Treesearch

    James M. Vose; Chris Geron; John Walker; Karsten Raulund-Rasmussen

    2005-01-01

    Over the past several years, there has been an acceleration of restoration efforts to mitigate the consequences (i.e., ground and surface water chemical pollutants, erosion, etc.) of degraded ecosystems and enhance structural and functional components of watershed ecosystems that regulate biogeochemical cycling and associated aquatic components. Biogeochemical...

  11. Thinking outside the channel: modeling nitrogen cycling in networked river ecosystems

    Treesearch

    Ashley M. Helton; Geoffrey C. Poole; Judy L. Meyer; Wilfred M. Wollheim; Bruce J. Peterson; Patrick J. Mulholland; Emily S. Bernhardt; Jack A. Stanford; Clay Arango; Linda R. Ashkenas; Lee W. Cooper; Walter K. Dodds; Stanley V. Gregory; Robert O. Hall; Stephen K. Hamilton; Sherri L. Johnson; William H. McDowell; Jody D. Potter; Jennifer L. Tank; Suzanne M. Thomas; H. Maurice Valett; Jackson R. Webster; Lydia Zeglin

    2011-01-01

    Agricultural and urban development alters nitrogen and other biogeochemical cycles in rivers worldwide. Because such biogeochemical processes cannot be measured empirically across whole river networks, simulation models are critical tools for understanding river-network biogeochemistry. However, limitations inherent in current models restrict our ability to simulate...

  12. Biogeochemical research priorities for sustainable biofuel and bioenergy feedstock production in the Americas

    USDA-ARS?s Scientific Manuscript database

    Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demands on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustaina...

  13. How life affects the geochemical cycle of carbon

    NASA Technical Reports Server (NTRS)

    Walker, James C. G.

    1992-01-01

    Developing a quantitative understanding of the biogeochemical cycles of carbon as they have worked throughout Earth history on various time scales, how they have been affected by biological evolution, and how changes in the carbon content of ocean and atmosphere may have affected climate and the evolution of life are the goals of the research. Theoretical simulations were developed that can be tuned to reproduce such data as exist and, once tuned, can be used to predict properties that have not yet been observed. This is an ongoing process, in which models and results are refined as new data and interpretations become available and as understanding of the global system improves. Results of the research are described in several papers which were published or submitted for publication. These papers are summarized. Future research plans are presented.

  14. Improved global simulation of groundwater-ecosystem interactions via tight coupling of a dynamic global ecosystem model and a global hydrological model

    NASA Astrophysics Data System (ADS)

    Braakhekke, Maarten; Rebel, Karin; Dekker, Stefan; Smith, Benjamin; Sutanudjaja, Edwin; van Beek, Rens; van Kampenhout, Leo; Wassen, Martin

    2017-04-01

    In up to 30% of the global land surface ecosystems are potentially influenced by the presence of a shallow groundwater table. In these regions upward water flux by capillary rise increases soil moisture availability in the root zone, which has a strong effect on evapotranspiration, vegetation dynamics, and fluxes of carbon and nitrogen. Most global hydrological models and several land surface models simulate groundwater table dynamics and their effects on land surface processes. However, these models typically have relatively simplistic representation of vegetation and do not consider changes in vegetation type and structure. Dynamic global vegetation models (DGVMs), describe land surface from an ecological perspective, combining detailed description of vegetation dynamics and structure, and biogeochemical processes and are thus more appropriate to simulate the ecological and biogeochemical effects of groundwater interactions. However, currently virtually all DGVMs ignore these effects, assuming that water tables are too deep to affect soil moisture in the root zone. We have implemented a tight coupling between the dynamic global ecosystem model LPJ-GUESS and the global hydrological model PCR-GLOBWB, which explicitly simulates groundwater dynamics. This coupled model allows us to explicitly account for groundwater effects on terrestrial ecosystem processes at global scale. Results of global simulations indicate that groundwater strongly influences fluxes of water, carbon and nitrogen, in many regions, adding up to a considerable effect at the global scale.

  15. Stochastic Controls on Nitrate Transport and Cycling

    NASA Astrophysics Data System (ADS)

    Botter, G.; Settin, T.; Alessi Celegon, E.; Marani, M.; Rinaldo, A.

    2005-12-01

    In this paper, the impact of nutrient inputs on basin-scale nitrates losses is investigated in a probabilistic framework by means of a continuous, geomorphologically based, Montecarlo approach, which explicitly tackles the random character of the processes controlling nitrates generation, transformation and transport in river basins. This is obtained by coupling the stochastic generation of climatic and rainfall series with simplified hydrologic and biogeochemical models operating at the hillslope scale. Special attention is devoted to the spatial and temporal variability of nitrogen sources of agricultural origin and to the effect of temporally distributed rainfall fields on the ensuing nitrates leaching. The influence of random climatic variables on bio-geochemical processes affecting the nitrogen cycle in the soil-water system (e.g. plant uptake, nitrification and denitrification, mineralization), is also considered. The approach developed has been applied to a catchment located in North-Eastern Italy and is used to provide probabilistic estimates of the NO_3 load transferred downstream, which is received and accumulated in the Venice lagoon. We found that the nitrogen load introduced by fertilizations significantly affects the pdf of the nitrates content in the soil moisture, leading to prolonged risks of increased nitrates leaching from soil. The model allowed the estimation of the impact of different practices on the probabilistic structure of the basin-scale hydrologic and chemical response. As a result, the return period of the water volumes and of the nitrates loads released into the Venice lagoon has been linked directly to the ongoing climatic, pluviometric and agricultural regimes, with relevant implications for environmental planning activities aimed at achieving sustainable management practices.

  16. Impact of phenanthrene on the properties of biogeochemical interfaces in soil: A two-layer column study

    NASA Astrophysics Data System (ADS)

    Reichel, Katharina; Totsche, Kai Uwe

    2013-04-01

    Biogeochemical interfaces in soils (Totsche et al. 2010) are the "hot spots" of microbial activity and the processing of organic compounds in soils. The production and relocation of mobile organic matter (MOM) and biocolloids like microorganisms are key processes for the formation and depth propagation of biogeochemical interfaces in soils (BGI). Phenanthrene (PHE) has been shown to affect microbial communities in soils (Ding et al. 2012) and may induce shifts in MOM quantity and quality (amount, type and properties of MOM). We hypothesize that the properties of BGI in soil change significantly due to the presence of PHE. The objectives of this study are (i) to evaluate the effect of PHE on soil microbial communities and on MOM quantity and quality under flow conditions with single- and two-layer column experiments and (ii) to assess the role of these processes for the physicochemical, mechanical and sorptive properties of BGI in soils. The soil columns were operated under water-unsaturated conditions. The top layer (source layer, SL, 2 cm) is made of sieved soil material (Luvisol, Scheyern, Germany) spiked with PHE (0.2 mg/g). The bottom layer (reception layer, RL, 10 cm) comprised the same soil without PHE. PHE-free columns were conducted in parallel as reference. Release and transport of MOM in mature soil of a single-layer column experiment was found to depend on the transport regime. The release of larger sized MOM (>0.45 µm) was restricted to an increased residence time during flow interruptions. Steady flow conditions favor the release of smaller MOM (<0.45 µm). Compared to the reference, in the two-layer column experiments higher OC concentrations were detected in the effluent from PHE spiked columns after enhanced flow interruptions (26d, 52d). That indicated the PHE influenced production or mobilization of MOM. Parallel factor analysis of fluorescence excitation and emission matrices revealed the presence of a constant DOM background and two new unknown components in the effluent, probably PHE metabolites. The emergence of new components emphasizes the role of metabolization processes in the release of MOM. The identification of key microbial actors and communities are currently in progress. Totsche, K.U. et al. (2010): Biogeochemical interfaces in soil: The interdisciplinary challenge for soil science. J. Plant Nutr. Soil Sci., 173(1), 88-99 Ding, G.-C., Heuer, H. & Smalla, K. (2012): Dynamics of bacterial communities in two unpolluted soils after spiking with phenanthrene: soil type specific and common responders. Front Microbio 10.3389/fmicb.2012.00290.

  17. Comparative Biogeochemical Cycles of Bioenergy Crops Reveal Nitrogen-Fixation and Low GHG Emissions in a Miscanthus x giganteus Agro-ecosystem

    USDA-ARS?s Scientific Manuscript database

    We evaluated the relative greenhouse gas mitigation potential of plant species considered as biofuel feedstock crops by simulating the biogeochemical processes associated with Miscanthus x giganteus, Panicum virgatum, Zea mays, and a mixed prairie community. DayCent model simulations for Miscanthus ...

  18. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data

    USDA-ARS?s Scientific Manuscript database

    Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of carbon dynami...

  19. Biogeochemical processes on tree islands in the greater everglades: Initiating a new paradigm

    USGS Publications Warehouse

    Wetzel, P.R.; Sklar, Fred H.; Coronado, C.A.; Troxler, T.G.; Krupa, S.L.; Sullivan, P.L.; Ewe, S.; Price, R.M.; Newman, S.; Orem, W.H.

    2011-01-01

    Scientists' understanding of the role of tree islands in the Everglades has evolved from a plant community of minor biogeochemical importance to a plant community recognized as the driving force for localized phosphorus accumulation within the landscape. Results from this review suggest that tree transpiration, nutrient infiltration from the soil surface, and groundwater flow create a soil zone of confluence where nutrients and salts accumulate under the head of a tree island during dry periods. Results also suggest accumulated salts and nutrients are flushed downstream by regional water flows during wet periods. That trees modulate their environment to create biogeochemical hot spots and strong nutrient gradients is a significant ecological paradigm shift in the understanding of the biogeochemical processes in the Everglades. In terms of island sustainability, this new paradigm suggests the need for distinct dry-wet cycles as well as a hydrologic regime that supports tree survival. Restoration of historic tree islands needs further investigation but the creation of functional tree islands is promising. Copyright ?? 2011 Taylor & Francis Group, LLC.

  20. Use of slow filtration columns to assess oxygen respiration, consumption of dissolved organic carbon, nitrogen transformations, and microbial parameters in hyporheic sediments.

    PubMed

    Mermillod-Blondin, F; Mauclaire, L; Montuelle, B

    2005-05-01

    Biogeochemical processes mediated by microorganisms in river sediments (hyporheic sediments) play a key role in river metabolism. Because biogeochemical reactions in the hyporheic zone are often limited to the top few decimetres of sediments below the water-sediment interface, slow filtration columns were used in the present study to quantify biogeochemical processes (uptakes of O2, DOC, and nitrate) and the associated microbial compartment (biomass, respiratory activity, and hydrolytic activity) at a centimetre scale in heterogeneous (gravel and sand) sediments. The results indicated that slow filtration columns recreated properly the aerobic-anaerobic gradient classically observed in the hyporheic zone. O2 and NO3- consumptions (256 +/- 13 microg of O2 per hour and 14.6 +/- 6.1 microg of N-NO3- per hour) measured in columns were in the range of values measured in different river sediments. Slow filtration columns also reproduced the high heterogeneity of the hyporheic zone with the presence of anaerobic pockets in sediments where denitrification and fermentation processes occurred. The respiratory and hydrolytic activities of bacteria were strongly linked with the O2 consumption in the experimental system, highlighting the dominance of aerobic processes in our river sediments. In comparison with these activities, the bacterial biomass (protein content) integrated both aerobic and anaerobic processes and could be used as a global microbial indicator in our system. Finally, slow filtration columns are an appropriate tool to quantify in situ rates of biogeochemical processes and to determine the relationship between the microbial compartment and the physico-chemical environment in coarse river sediments.

  1. The oxygen minimum zone of the eastern South Pacific

    NASA Astrophysics Data System (ADS)

    Ulloa, Osvaldo; Pantoja, Silvio

    2009-07-01

    In spite of the fact that oxygen-deficient waters with ⩽20 μM of dissolved oxygen—known as oxygen minimum zones (OMZs)—occupy only ˜1% of the volume of the global ocean, they disproportionately affect global biogeochemical cycles, particularly the nitrogen cycle. The macrobiota diversity in OMZs is low, but the fauna that do inhabit these regions present special adaptations to the low-oxygen conditions. Conversely, microbial communities in the OMZ water column and sediments are abundant and phylogenetically and metabolically very diverse, and microbial processes occurring therein (e.g., denitrification, anammox, and organic matter degradation) are important for global marine biogeochemical cycles. In this introductory article, we present the collection of papers for the special volume on the OMZ of the eastern South Pacific, one of the three main open-ocean oxygen-deficient regions of the global ocean. These papers deal with aspects of regional oceanography, inorganic and organic geochemistry, ecology, and the biochemistry of micro and macro organisms—both in the plankton and in the sediments—and past changes in the fish scales preserved in the sediments bathed by OMZ waters.

  2. Effects of Plant Traits on Ecosystem and Regional Processes: a Conceptual Framework for Predicting the Consequences of Global Change

    PubMed Central

    CHAPIN, F. STUART

    2003-01-01

    Human activities are causing widespread changes in the species composition of natural and managed ecosystems, but the consequences of these changes are poorly understood. This paper presents a conceptual framework for predicting the ecosystem and regional consequences of changes in plant species composition. Changes in species composition have greatest ecological effects when they modify the ecological factors that directly control (and respond to) ecosystem processes. These interactive controls include: functional types of organisms present in the ecosystem; soil resources used by organisms to grow and reproduce; modulators such as microclimate that influence the activity of organisms; disturbance regime; and human activities. Plant traits related to size and growth rate are particularly important because they determine the productive capacity of vegetation and the rates of decomposition and nitrogen mineralization. Because the same plant traits affect most key processes in the cycling of carbon and nutrients, changes in plant traits tend to affect most biogeochemical cycling processes in parallel. Plant traits also have landscape and regional effects through their effects on water and energy exchange and disturbance regime. PMID:12588725

  3. A strategy to sample nutrient dynamics across the terrestrial-aquatic interface at NEON sites

    NASA Astrophysics Data System (ADS)

    Hinckley, E. S.; Goodman, K. J.; Roehm, C. L.; Meier, C. L.; Luo, H.; Ayres, E.; Parnell, J.; Krause, K.; Fox, A. M.; SanClements, M.; Fitzgerald, M.; Barnett, D.; Loescher, H. W.; Schimel, D.

    2012-12-01

    The construction of the National Ecological Observatory Network (NEON) across the U.S. creates the opportunity for researchers to investigate biogeochemical transformations and transfers across ecosystems at local-to-continental scales. Here, we examine a subset of NEON sites where atmospheric, terrestrial, and aquatic observations will be collected for 30 years. These sites are located across a range of hydrological regimes, including flashy rain-driven, shallow sub-surface (perched, pipe-flow, etc), and deep groundwater, which likely affect the chemical forms and quantities of reactive elements that are retained and/or mobilized across landscapes. We present a novel spatial and temporal sampling design that enables researchers to evaluate long-term trends in carbon, nitrogen, and phosphorus biogeochemical cycles under these different hydrological regimes. This design focuses on inputs to the terrestrial system (atmospheric deposition, bulk precipitation), transfers (soil-water and groundwater sources/chemistry), and outputs (surface water, and evapotranspiration). We discuss both data that will be collected as part of the current NEON design, as well as how the research community can supplement the NEON design through collaborative efforts, such as providing additional datasets, including soil biogeochemical processes and trace gas emissions, and developing collaborative research networks. Current engagement with the research community working at the terrestrial-aquatic interface is critical to NEON's success as we begin construction, to ensure that high-quality, standardized and useful data are not only made available, but inspire further, cutting-edge research.

  4. Biogeochemical Mg cycle in the Barton Peninsula, King George Island, West Antarctica

    NASA Astrophysics Data System (ADS)

    Choi, H. B.; Ryu, J. S.; Lee, J.; Lim, H. S.; Yoon, H.

    2016-12-01

    Understanding of biogeochemical Mg cycle is important in terms of plant growth as well as global climate because Mg participates in numerous biogeochemical processes. Here, we collected rock, soil, water and moss samples in the Barton peninsula, King George Island, West Antarctica, and measured their elemental and Mg isotope compositions in order to quantify and understand the biogeochemical processes of the Mg cycle. Elemental results show that the input of seawater derived Mg mainly controls dissolved Mg in meltwater. Mg isotope compositions in rocks and soils are consistent within the error, -0.03 ± 0.15‰ (n=6) and +0.03 ± 0.07‰ (n=8), respectively. However, δ26Mg values of meltwater and moss are -0.69 ± 0.09‰ (n=34) and -0.46 ± 0.19‰ (n=16), respectively, indicating that mosses display higher δ26Mg values compared to meltwater they uptake. This implies an isotope fractionation in favor of heavy isotopes during moss growth. The apparent Mg isotope fractionation between moss and meltwater (Δ26Mgmoss-meltwater) ranges from 0.02‰ to 0.55‰, with an average of +0.29‰ (n=6), which is within the range previously reported during higher plant growth. Our finding suggests that enhanced plant growth in Arctic and Antarctica due to climate change and global warming may play an important role in the biogeochemical Mg cycle globally.

  5. Scientific Discovery through Advanced Computing (SciDAC-3) Partnership Project Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Forest M.; Bochev, Pavel B.; Cameron-Smith, Philip J..

    The Applying Computationally Efficient Schemes for BioGeochemical Cycles ACES4BGC Project is advancing the predictive capabilities of Earth System Models (ESMs) by reducing two of the largest sources of uncertainty, aerosols and biospheric feedbacks, with a highly efficient computational approach. In particular, this project is implementing and optimizing new computationally efficient tracer advection algorithms for large numbers of tracer species; adding important biogeochemical interactions between the atmosphere, land, and ocean models; and applying uncertainty quanti cation (UQ) techniques to constrain process parameters and evaluate uncertainties in feedbacks between biogeochemical cycles and the climate system.

  6. Where microorganisms meet rocks in the Earth's Critical Zone

    NASA Astrophysics Data System (ADS)

    Akob, D. M.; Küsel, K.

    2011-12-01

    The Critical Zone (CZ) is the Earth's outer shell where all the fundamental physical, chemical, and biological processes critical for sustaining life occur and interact. As microbes in the CZ drive many of these biogeochemical cycles, understanding their impact on life-sustaining processes starts with an understanding of their biodiversity. In this review, we summarize the factors controlling where terrestrial CZ microbes (prokaryotes and micro-eukaryotes) live and what is known about their diversity and function. Microbes are found throughout the CZ, down to 5 km below the surface, but their functional roles change with depth due to habitat complexity, e.g. variability in pore spaces, water, oxygen, and nutrients. Abundances of prokaryotes and micro-eukaryotes decrease from 1010 or 107 cells g soil-1 or rock-1, or ml water-1 by up to eight orders of magnitude with depth. Although symbiotic mycorrhizal fungi and free-living decomposers have been studied extensively in soil habitats, where they occur up to 103 cells g soil-1, little is known regarding their identity or impact on weathering in the deep subsurface. The relatively low abundance of micro-eukaryotes in the deep subsurface suggests that they are limited in space, nutrients, are unable to cope with oxygen limitations, or some combination thereof. Since deep regions of the CZ have limited access to recent photosynthesis-derived carbon, microbes there depend on deposited organic material or a chemolithoautotrophic metabolism that allows for a complete food chain, independent from the surface, although limited energy flux means cell growth may take tens to thousands of years. Microbes are found in all regions of the CZ and can mediate important biogeochemical processes, but more work is needed to understand how microbial populations influence the links between different regions of the CZ and weathering processes. With the recent development of "omics" technologies, microbial ecologists have new methods that can be used to link the composition and function of in situ microbial communities. In particular, these methods can be used to search for new metabolic pathways that are relevant to biogeochemical nutrient cycling and determine how the activity of microorganisms can affect transport of carbon, particulates, and reactive gases between and within CZ regions.

  7. Benthic boundary layer processes in the Lower Florida Keys

    USGS Publications Warehouse

    Lavoie, D.L.; Richardson, M.D.; Holmes, C.

    1997-01-01

    This special issue of Geo-Marine Letters, "Benthic Boundary Layer Processes in the Lower Florida Keys," includes 12 papers that present preliminary results from the Key West Campaign. The Dry Tortugas and Marquesas Keys test sites were selected by a group of 115 scientists and technicians to study benthic boundary layer processes in a carbonate environment controlled by bioturbation and biogeochemical processes. Major activities included remote sediment classification; high-frequency acoustic scattering experiments; sediment sampling for radiological, geotechnical, biological, biogeochemical, physical, and geoacoustic studies; and hydrodynamic studies using an instrumented tetrapod. All these data are being used to improve our understanding of the effects of environmental processes on sediment structure and behavior.

  8. Aeolian nutrient fluxes following wildfire in sagebrush steppe: Implications for soil carbon storage

    USGS Publications Warehouse

    Hasselquist, N.J.; Germino, M.J.; Sankey, J.B.; Ingram, L.J.; Glenn, N.F.

    2011-01-01

    Pulses of aeolian transport following fire can profoundly affect the biogeochemical cycling of nutrients in semi-arid and arid ecosystems. Our objective was to determine horizontal nutrient fluxes occurring in the saltation zone during an episodic pulse of aeolian transport that occurred following a wildfire in a semi-arid sagebrush steppe ecosystem in southern Idaho, USA. We also examined how temporal trends in nutrient fluxes were affected by changes in particle sizes of eroded mass as well as nutrient concentrations associated with different particle size classes. In the burned area, total carbon (C) and nitrogen (N) fluxes were as high as 235 g C m????'1 d????'1 and 19 g N m????'1 d????'1 during the first few months following fire, whereas C and N fluxes were negligible in an adjacent unburned area throughout the study. Temporal variation in C and N fluxes following fire was largely attributable to the redistribution of saltation-sized particles. Total N and organic C concentrations in the soil surface were significantly lower in the burned relative to the unburned area one year after fire. Our results show how an episodic pulse of aeolian transport following fire can affect the spatial distribution of soil C and N, which, in turn, can have important implications for soil C storage. These findings demonstrate how an ecological disturbance can exacerbate a geomorphic process and highlight the need for further research to better understand the role aeolian transport plays in the biogeochemical cycling of C and N in recently burned landscapes. ?? Author(s) 2011. CC Attribution 3.0 License.

  9. Aeolian nutrient fluxes following wildfire in sagebrush steppe: Implications for soil carbon storage

    USGS Publications Warehouse

    Hasselquist, N.J.; Germino, M.J.; Sankey, J.B.; Ingram, L.J.; Glenn, N.F.

    2011-01-01

    Pulses of aeolian transport following fire can profoundly affect the biogeochemical cycling of nutrients in semi-arid and arid ecosystems. Our objective was to determine horizontal nutrient fluxes during an episodic pulse of aeolian transport that occurred following a wildfire in a semi-arid sagebrush steppe ecosystem in southern Idaho, USA. We also examined how temporal trends in nutrient fluxes were affected by changes in particle sizes of eroded mass as well as nutrient concentrations associated with different particle size classes. In the burned area, total carbon (C) and nitrogen (N) fluxes were as high as 235 g C m????'1 d????'1 and 19 g N m????'1 d????'1 during the first few months following fire, whereas C and N fluxes were negligible in an adjacent unburned area throughout the study. Temporal variation in C and N fluxes following fire was largely attributable to the redistribution of saltation-sized particles. Total N and organic C concentrations in the soil surface were significantly lower in the burned relative to the unburned area one year after fire. Our results show how an episodic pulse of aeolian transport following fire can affect the spatial distribution of soil C and N, which, in turn, can have important implications for soil C storage. These findings demonstrate how an ecological disturbance can exacerbate a geomorphic process and highlight the need for further research to better understand the role aeolian transport plays in the biogeochemical cycling of C and N in recently burned landscapes. ?? 2011 Author(s).

  10. Identifying biogeochemical processes beneath stormwater infiltration ponds in support of a new best management practice for groundwater protection

    USGS Publications Warehouse

    O'Reilly, Andrew M.; Chang, Ni-Bin; Wanielista, Martin P.; Xuan, Zhemin; Schirmer, Mario; Hoehn, Eduard; Vogt, Tobias

    2011-01-01

     When applying a stormwater infiltration pond best management practice (BMP) for protecting the quality of underlying groundwater, a common constituent of concern is nitrate. Two stormwater infiltration ponds, the SO and HT ponds, in central Florida, USA, were monitored. A temporal succession of biogeochemical processes was identified beneath the SO pond, including oxygen reduction, denitrification, manganese and iron reduction, and methanogenesis. In contrast, aerobic conditions persisted beneath the HT pond, resulting in nitrate leaching into groundwater. Biogeochemical differences likely are related to soil textural and hydraulic properties that control surface/subsurface oxygen exchange. A new infiltration BMP was developed and a full-scale application was implemented for the HT pond. Preliminary results indicate reductions in nitrate concentration exceeding 50% in soil water and shallow groundwater beneath the HT pond.

  11. Biogeochemical research priorities for sustainable biofuel and bioenergy feedstock production in the Americas

    Treesearch

    Hero T. Gollany; Brian D. Titus; D. Andrew Scott; Heidi Asbjornsen; Sigrid C. Resh; Rodney A. Chimner; Donald J. Kaczmarek; Luiz F.C. Leite; Ana C.C. Ferreira; Kenton A. Rod; Jorge Hilbert; Marcelo V. Galdos; Michelle E. Cisz

    2015-01-01

    Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demand on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustainability related to biomass production. Biomass production systems...

  12. Analyzing the ecosystem carbon and hydrologic characteristics of forested wetland using a biogeochemical process model

    Treesearch

    Jianbo Cui; Changsheng Li; Carl Trettin

    2005-01-01

    A comprehensive biogeochemical model, Wetland-DNDC, was applied to analyze the carbon and hydrologic characteristics of forested wetland ecosystem at Minnesota (MN) and Florida (FL) sites. The model simulates the flows of carbon, energy, and water in forested wetlands. Modeled carbon dynamics depends on physiological plant factors, the size of plant pools,...

  13. Understanding the Day Cent model: Calibration, sensitivity, and identifiability through inverse modeling

    USGS Publications Warehouse

    Necpálová, Magdalena; Anex, Robert P.; Fienen, Michael N.; Del Grosso, Stephen J.; Castellano, Michael J.; Sawyer, John E.; Iqbal, Javed; Pantoja, Jose L.; Barker, Daniel W.

    2015-01-01

    The ability of biogeochemical ecosystem models to represent agro-ecosystems depends on their correct integration with field observations. We report simultaneous calibration of 67 DayCent model parameters using multiple observation types through inverse modeling using the PEST parameter estimation software. Parameter estimation reduced the total sum of weighted squared residuals by 56% and improved model fit to crop productivity, soil carbon, volumetric soil water content, soil temperature, N2O, and soil3NO− compared to the default simulation. Inverse modeling substantially reduced predictive model error relative to the default model for all model predictions, except for soil 3NO− and 4NH+. Post-processing analyses provided insights into parameter–observation relationships based on parameter correlations, sensitivity and identifiability. Inverse modeling tools are shown to be a powerful way to systematize and accelerate the process of biogeochemical model interrogation, improving our understanding of model function and the underlying ecosystem biogeochemical processes that they represent.

  14. Carbon isotope dynamics in the water column and surface sediments of marginal seas

    NASA Astrophysics Data System (ADS)

    Lipka, Marko; Liu, Bo; Schmiedinger, Iris; Böttcher, Michael E.

    2017-04-01

    The microbial mineralization of organic matter in marine sediments leads to the accumulation of dissolved inorganic carbon (DIC) and other metabolites into the interstitial waters. Pore water profiles sensitively reflect the zones of dominant biogeochemical processes, net trans-formation rates, and diffusive and advective transport of dissolved species across the sediment-water interface. They are controlled by different factors like sedimentology, bottom water currents and redox conditions, microbial activity, and the availability of electron acceptors/donors. The biogeochemical processes create steep gradients in DIC and its carbon isotope composition. One boundary condition for transport processes in the sediment is defined by the composition of the water column, which is under impact by physical mixing processes (e.g., salinity gradient; sediment-water exchange), biological activity and carbon dioxide exchange at the water-atmosphere interface. We present here the results of detailed biogeochemical investigations of vertical water column and pore water profiles from two brackish marginal seas: the Baltic Sea and the Black Sea. The water column on a transect between the North Sea and the southern Baltic Sea as well within the Black Sea were investigated on three cruises with RV MS Merian (MSM33, MSM50, MSM51). In addition, biogeochemical processes and associated element fluxes across the sediment-water interface were studied in key regions of Baltic Sea and Black Sea using pore water and sediment samples retrieved from sediment cores that were collected with a multi-coring device. Water samples were analyzed for metals, nutrients, and metabolites concentrations as well as stable carbon isotope composition of DIC to allow a modeling of steady-state transformation, volumetric transformation rates and element fluxes. The isotope composition of the dissolved inorganic carbon system shows a gradient between the North and the Baltic Sea, following the salinity during winter time. Element fluxes across the sediment-water interface depend on bottom water redox conditions, sedimentology and organic contents. Advective fluxes induced by sedimentation events, macro zoobenthos and wave action can affect the top sections of the sediment, thereby modifying shallow concentration gradients. By means of non-steady state modelling of pore water profiles we were able to identify the impact of mixing processes and sedimentation events in the oxic part of the Baltic Sea. In the Black Sea, on the other hand, anaerobic processes control the dynamics in DI13C under permanent euxinic conditions. A Keeling plot analysis was performed on pore waters to identify the δ13C of DIC released upon oxidation of DOC or methane. The carbon isotope composition of DIC is found to be a highly sensitive tool for understanding carbon cycling in the water column and sediments. Acknowledgements: The study is supported by BMBF during FONA-SECOS project, DFG (cruises MSM33, MSM50 and MSM51) and Leibniz IOW.

  15. Biogeochemical Processes in Microbial Ecosystems

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The hierarchical organization of microbial ecosystems determines process rates that shape Earth's environment, create the biomarker sedimentary and atmospheric signatures of life and define the stage upon which major evolutionary events occurred. In order to understand how microorganisms have shaped the global environment of Earth and potentially, other worlds, we must develop an experimental paradigm that links biogeochemical processes with ever-changing temporal and spatial distributions of microbial population, and their metabolic properties. Photosynthetic microbial mats offer an opportunity to define holistic functionality at the millimeter scale. At the same time, their Biogeochemistry contributes to environmental processes on a planetary scale. These mats are possibly direct descendents of the most ancient biological communities; communities in which oxygenic photosynthesis might have been invented. Mats provide one of the best natural systems to study how microbial populations associate to control dynamic biogeochemical gradients. These are self-sustaining, complete ecosystems in which light energy absorbed over a diel (24 hour) cycle drives the synthesis of spatially-organized, diverse biomass. Tightly-coupled microorganisms in the mat have specialized metabolisms that catalyze transformations of carbon, nitrogen. sulfur, and a host of other elements.

  16. San Francisco Bay nutrients and plankton dynamics as simulated by a coupled hydrodynamic-ecosystem model

    NASA Astrophysics Data System (ADS)

    Liu, Qianqian; Chai, Fei; Dugdale, Richard; Chao, Yi; Xue, Huijie; Rao, Shivanesh; Wilkerson, Frances; Farrara, John; Zhang, Hongchun; Wang, Zhengui; Zhang, Yinglong

    2018-06-01

    An open source coupled physical-biogeochemical model is developed for San Francisco Bay (SFB) to study nutrient cycling and plankton dynamics as well as to assist ecosystem based management and risk assessment. The biogeochemical model in this study is based on the Carbon, Silicate and Nitrogen Ecosystem (CoSiNE) model, and coupled to the unstructured grid, Semi-Implicit Cross-scale Hydroscience Integrated System Model (SCHISM). The SCHISM-CoSiNE model reproduces the spatial and temporal variability in nutrients and plankton biomass, and its physical and biogeochemical performance is successfully tested using comparisons with shipboard and fixed station observations. The biogeochemical characteristics of the SFB during wet and dry years are investigated by changing the input of the major rivers. River discharges from the Sacramento and San Joaquin Rivers affect the phytoplankton biomass in North SFB through both advection and dilution of nutrient (including ammonium, NH4) concentrations in the river. The reduction in residence time caused by increased inflows can result in decreased biomass accumulation, while the corresponding reduction in NH4 concentration favors the growth of biomass. In addition, the model is used to make a series of sensitivity experiments to examine the response of SFB to changes in 1) nutrient loading from rivers and wastewater treatment plants (WWTPs), 2) a parameter (ψ) defining NH4 inhibition of nitrate (NO3) uptake by phytoplankton, 3) bottom grazing and 4) suspended sediment concentration. The model results show that changes in NH4 input from rivers or WWTPs affect the likelihood of phytoplankton blooms via NH4 inhibition and that the choice of ψ is critical. Bottom grazing simulated here as increased plankton mortality demonstrates the potential for bivalve reduction of chlorophyll biomass and the need to include bivalve grazing in future models. Furthermore, the model demonstrates the need to include sediments and their contribution to turbidity and availability of light. This biogeochemical model is suitable for other estuaries with similar ecological issues and anthropogenic stressors.

  17. A Centimeter-Scale Investigation of Geochemical Hotspots in a Soil Lysimeter

    NASA Astrophysics Data System (ADS)

    Umanzor, M.; Wang, Y.; Dontsova, K.; Chorover, J.; Troch, P. A. A.

    2016-12-01

    Studying the co-evolution of hydrological and biogeochemical processes in the subsurface of natural landscapes can enhance the understanding of coupled Earth-system processes. Such knowledge is imperative for improving predictions of hydro-biogeochemical cycles, especially under climate change scenarios. Hotspots may form in porous media that is undergoing biogeochemical weathering at locations where reactants accumulate to threshold values along hydrologic flow paths. This is expected to occur in weatherable silicate media, like granular basalt. To examine such processes during incipient soil formation, we constructed a sloping weighing lysimeter 2-m in length, 0.5-m in width and 1-m in depth. Mini-LEO was filled with crushed granular basalt rock with a known initial chemical composition. After 18 months of irrigation and intensive hydrological study, the model "landscape" was divided into a 3D matrix of 324 voxels and excavated. Collected samples were subjected to detailed hydro-bio-geochemical analysis to assess the formation of geochemical heterogeneity. A five-step sequential extraction was employed to characterize incongruent mineral weathering, and its relation to the spatial distribution of microbial composition (in a related study). The changes in Fe and Mn concentration and speciation along the lysimeter length and depth (as measured by each step of the sequential extraction) was quantified to characterize spatial distribution of weathering processes. Results are being used to assist in understanding not only spatial and temporal distribution of basalt weathering on the slope, but also, connections between hydrological and biogeochemical cycles that lead to formation of hotspots.

  18. Volume reduction outweighs biogeochemical processes in controlling phosphorus treatment in aged detention systems

    NASA Astrophysics Data System (ADS)

    Shukla, Asmita; Shukla, Sanjay; Annable, Michael D.; Hodges, Alan W.

    2017-08-01

    Stormwater detention areas (SDAs) play an important role in treating end-of-the-farm runoff in phosphorous (P) limited agroecosystems. Phosphorus transport from the SDAs, including those through subsurface pathways, are not well understood. The prevailing understanding of these systems assumes that biogeochemical processes play the primary treatment role and that subsurface losses can be neglected. Water and P fluxes from a SDA located in a row-crop farm were measured for two years (2009-2011) to assess the SDA's role in reducing downstream P loads. The SDA treated 55% (497 kg) and 95% (205 kg) of the incoming load during Year 1 (Y1, 09-10) and Year 2 (Y2, 10-11), respectively. These treatment efficiencies were similar to surface water volumetric retention (49% in Y1 and 84% in Y2) and varied primarily with rainfall. Similar water volume and P retentions indicate that volume retention is the main process controlling P loads. A limited role of biogeochemical processes was supported by low to no remaining soil P adsorption capacity due to long-term drainage P input. The fact that outflow P concentrations (Y1 = 368.3 μg L- 1, Y2 = 230.4 μg L- 1) could be approximated by using a simple mixing of rainfall and drainage P input further confirmed the near inert biogeochemical processes. Subsurface P losses through groundwater were 304 kg (27% of inflow P) indicating that they are an important source for downstream P. Including subsurface P losses reduces the treatment efficiency to 35% (from 61%). The aboveground biomass in the SDA contained 42% (240 kg) of the average incoming P load suggesting that biomass harvesting could be a cost-effective alternative for reviving the role of biogeochemical processes to enhance P treatment in aged, P-saturated SDAs. The 20-year present economic value of P removal through harvesting was estimated to be 341,000, which if covered through a cost share or a payment for P treatment services program could be a positive outcome for both agriculture and public interests.

  19. Volume reduction outweighs biogeochemical processes in controlling phosphorus treatment in aged detention systems.

    PubMed

    Shukla, Asmita; Shukla, Sanjay; Annable, Michael D; Hodges, Alan W

    2017-08-01

    Stormwater detention areas (SDAs) play an important role in treating end-of-the-farm runoff in phosphorous (P) limited agroecosystems. Phosphorus transport from the SDAs, including those through subsurface pathways, are not well understood. The prevailing understanding of these systems assumes that biogeochemical processes play the primary treatment role and that subsurface losses can be neglected. Water and P fluxes from a SDA located in a row-crop farm were measured for two years (2009-2011) to assess the SDA's role in reducing downstream P loads. The SDA treated 55% (497kg) and 95% (205kg) of the incoming load during Year 1 (Y1, 09-10) and Year 2 (Y2, 10-11), respectively. These treatment efficiencies were similar to surface water volumetric retention (49% in Y1 and 84% in Y2) and varied primarily with rainfall. Similar water volume and P retentions indicate that volume retention is the main process controlling P loads. A limited role of biogeochemical processes was supported by low to no remaining soil P adsorption capacity due to long-term drainage P input. The fact that outflow P concentrations (Y1=368.3μg L -1 , Y2=230.4μg L -1 ) could be approximated by using a simple mixing of rainfall and drainage P input further confirmed the near inert biogeochemical processes. Subsurface P losses through groundwater were 304kg (27% of inflow P) indicating that they are an important source for downstream P. Including subsurface P losses reduces the treatment efficiency to 35% (from 61%). The aboveground biomass in the SDA contained 42% (240kg) of the average incoming P load suggesting that biomass harvesting could be a cost-effective alternative for reviving the role of biogeochemical processes to enhance P treatment in aged, P-saturated SDAs. The 20-year present economic value of P removal through harvesting was estimated to be $341,000, which if covered through a cost share or a payment for P treatment services program could be a positive outcome for both agriculture and public interests. Copyright © 2017. Published by Elsevier B.V.

  20. Development of Advanced Eco-hydrologic and Biogeochemical Coupling Model to Constrain Missing Role of Inland Waters on Boundless Biogeochemical Cycle

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Maksyutov, S. S.

    2016-12-01

    Inland waters including rivers, lakes, and groundwater are suggested to act as a transport pathway for water and dissolved substances, and play some role in continental biogeochemical cycling (Cole et al., 2007; Battin et al., 2009). The authors have developed process-based National Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama, 2014, 2015, etc.), which includes feedback between hydrologic-geomorphic-ecological processes. In this study, NICE was further developed to couple with various biogeochemical cycle models in biosphere, those for water quality in aquatic ecosystems, and those for carbon weathering, etc. (NICE-BGC) (Nakayama, accepted). The new model incorporates connectivity of the biogeochemical cycle accompanied by hydrologic cycle between surface water and groundwater, hillslopes and river networks, and other intermediate regions. The model also includes reaction between inorganic and organic carbons, and its relation to nitrogen and phosphorus in terrestrial-aquatic continuum. The model results of CO2 evasion to the atmosphere, sediment storage, and carbon transport to the ocean (DOC, POC, and DIC flux) were reasonably in good agreement with previous compiled data. The model also showed carbon budget in major river basins and in each continent in global scale. In order to decrease uncertainty about carbon cycle, it became clear the previous empirical estimation by compiled data should be extended to this process-oriented model and higher resolution data to further clarify mechanistic interplay between inorganic and organic carbon and its relationship to nitrogen and phosphorus in terrestrial-aquatic linkages. NICE-BGC would play important role to re-evaluate greenhouse gas budget of the biosphere, and to bridge gap between top-down and bottom-up approaches (Battin et al., 2009; Regnier et al., 2013).

  1. What can high frequency data tell us about hydrological and biogeochemical processes in a permafrost-underlain watershed that we do not already know?

    NASA Astrophysics Data System (ADS)

    Carey, S. K.; Shatilla, N. J.; Tang, W.

    2017-12-01

    Permafrost and frozen ground play a key role in the delivery of water and solutes from the landscape to the stream, and in biogeochemical cycling by acting as a cold season or semi-permanent aquitard. Conceptual models of permafrost hydrology have been well defined for over 40 years, yet renewed interest in the face of global climate change and rapid degradation of frozen ground has provided an opportunity to revisit previous paradigms. At the same time, new instruments and techniques to understand coupled hydrological and biogeochemical processes have emerged, providing a more nuanced view of northern systems. High-frequency sub-hourly measures of flows, water quality and biogeochemical parameters such as salinity and chromophoric dissolved organic matter (CDOM), along with eddy covariance systems provide considerable data, yet using this data to reveal new process information remains challenging. In this presentation, multi-year high frequency data sets of water, solute and carbon fluxes from Granger Creek, an instrumented alpine watershed with discontinuous permafrost within the Wolf Creek Research Basin, Yukon Territory, Canada, will be shown. While several decades of hydrometric and geochemical data exist for Granger Creek, inter-annual variability is considerable and makes evaluating long-term trends difficult. Insights derived from high-frequency sub-hourly salinity, CDOM and flow over recent years reveal that hysteresis loops among variables can be used to assess changing connectivity and flow paths as both magnitude and direction of loops can be used to infer landscape-scale linkages. These patterns highlight spatial connections among landscape units not previously observed, and identify periods when hydrological and biogeochemical cycles are coupled. Evaluation of these patterns at the headwater scale provides alternate hypotheses for how permafrost landscapes will respond to a changing climate.

  2. Role of soil microbial processes in integrated pest management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis, A.J.

    1987-01-01

    Soil microorganisms play a significant role in the carbon, nitrogen, phosphorus, and sulfur cycles in nature and are critical to the functioning of ecosystems. Microorganisms affect plant growth directly by regulating the availability of plant nutrients in soil, or indirectly by affecting the population dynamics of plant pathogens in soil. Any adverse effect on soil microorganisms or on the microbial processes will affect the soil fertility, availability of plant nutrients and the overall biogeochemical cycling of elements in nature. Soil microorganisms are responsible for the degradation and detoxification of pesticides; they control many insect pests, nematodes, and other plant pathogenicmore » microorganisms by parasitism, competition, production of antibiotics and other toxic substances. Also, they regulate the availability of major and minor nutrients as well as essential elements. The long-term effects of continuous and, in some instances, excessive application of pesticides on soil fertility is not fully understood. Although much information is available on the integrated pest management (IPM) system, we have very little understanding of the extent of soil microbial processes which modulate the overall effectiveness of various strategies employed in IPM. The purpose of this paper is to review briefly the key microbial processes and their relationship to the IPM system.« less

  3. Biogeochemical redox processes and their impact on contaminant dynamics

    USGS Publications Warehouse

    Borch, Thomas; Kretzschmar, Ruben; Kappler, Andreas; Van Cappellen, Philippe; Ginder-Vogel, Matthew; Campbell, Kate M.

    2010-01-01

    Life and element cycling on Earth is directly related to electron transfer (or redox) reactions. An understanding of biogeochemical redox processes is crucial for predicting and protecting environmental health and can provide new opportunities for engineered remediation strategies. Energy can be released and stored by means of redox reactions via the oxidation of labile organic carbon or inorganic compounds (electron donors) by microorganisms coupled to the reduction of electron acceptors including humic substances, iron-bearing minerals, transition metals, metalloids, and actinides. Environmental redox processes play key roles in the formation and dissolution of mineral phases. Redox cycling of naturally occurring trace elements and their host minerals often controls the release or sequestration of inorganic contaminants. Redox processes control the chemical speciation, bioavailability, toxicity, and mobility of many major and trace elements including Fe, Mn, C, P, N, S, Cr, Cu, Co, As, Sb, Se, Hg, Tc, and U. Redox-active humic substances and mineral surfaces can catalyze the redox transformation and degradation of organic contaminants. In this review article, we highlight recent advances in our understanding of biogeochemical redox processes and their impact on contaminant fate and transport, including future research needs.

  4. Flow characteristics control turnover of polar trace organic compounds in the hyporheic zone of an urban lowland river

    NASA Astrophysics Data System (ADS)

    Schaper, Jonas L.; Seher, Wiebke; Jaeger, Anna; Galloway, Jason; Nuetzmann, Gunnar; Putschew, Anke; Lewandowski, Joerg

    2017-04-01

    Hyporheic zones are hypothesized to be important sinks for polar trace organic compounds (TrOCs) in lotic systems, mitigating potential adverse effects of TrOCs on ecosystem functioning and drinking water production. Predicting the fate of TrOCs in the hyporheic zone, however, is difficult as the attenuation rate itself as well as the biogeochemical factors and hydrological conditions controlling attenuation rates are unknown. We used time series of temperature depth profiles as well as heat pulse sensing with a 1D advection dispersion transport model to calculate first order attenuation rates of several TrOCs from equilibrium depth profiles in an urban lowland river in Berlin, Germany. Ring enclosures were used to prohibit horizontal flow and to create distinct biogeochemical conditions within the hyporheic zone. Flow characteristics as well as biogeochemical conditions showed pronounced differences between depth profiles inside and outside of enclosures. TrOCs attenuation rates varied considerably among compounds reflecting their general susceptibility to biodegradation and sorption. While for some compounds such as benzotriazole and sulfamethoxazole redox conditions had an influence on attenuation rates, the fate of other compounds was not affected by biogeochemical parameters. Under loosing conditions, hyporheic zones of urban lowland rivers can thus be regarded as sinks for TrOCs. Their effectiveness is dependent on both, hyporheic exchange characteristics as well as biogeochemical parameters.

  5. Benthic flux of dissolved organic matter from lake sediment at different redox conditions and the possible effects of biogeochemical processes.

    PubMed

    Yang, Liyang; Choi, Jung Hyun; Hur, Jin

    2014-09-15

    The benthic fluxes of dissolved organic carbon (DOC), chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) were studied for the sediment from an artificial lake, based on laboratory benthic chamber experiments. Conservative estimates for the benthic flux of DOC were 71 ± 142 and 51 ± 101 mg m(-2) day(-1) at hypoxic and oxic conditions, respectively. Two humic-like (C1 and C2), one tryptophan-like (C3), and one microbial humic-like (C4) components were identified from the samples using fluorescence excitation emission matrices and parallel factor analysis (EEM-PARAFAC). During the incubation period, C3 was removed while C4 was accumulated in the overlying water with no significant difference in the trends between the redox conditions. The humification index (HIX) increased with time. The combined results for C3, C4 and HIX suggested that microbial transformation may be an important process affecting the flux behaviors of DOM. In contrast, the overall accumulations of CDOM, C1, and C2 in the overlying water occurred only for the hypoxic condition, which was possibly explained by their enhanced photo-degradation and sorption to redox-sensitive minerals under the oxic condition. Our study demonstrated significant benthic flux of DOM in lake sediment and also the possible involvement of biogeochemical transformation in the processes, providing insight into carbon cycling in inland waters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Can neap-spring tidal cycles modulate biogeochemical fluxes in the abyssal near-seafloor water column?

    NASA Astrophysics Data System (ADS)

    Turnewitsch, Robert; Dale, Andrew; Lahajnar, Niko; Lampitt, Richard S.; Sakamoto, Kei

    2017-05-01

    Before particulate matter that settles as 'primary flux' from the interior ocean is deposited into deep-sea sediments it has to traverse the benthic boundary layer (BBL) that is likely to cover almost all parts of the seafloor in the deep seas. Fluid dynamics in the BBL differ vastly from fluid dynamics in the overlying water column and, consequently, have the potential to lead to quantitative and compositional changes between primary and depositional fluxes. Despite this potential and the likely global relevance very little is known about mechanistic and quantitative aspects of the controlling processes. Here, results are presented for a sediment-trap time-series study that was conducted on the Porcupine Abyssal Plain in the abyssal Northeast Atlantic, with traps deployed at 2, 40 and 569 m above bottom (mab). The two bottommost traps were situated within the BBL-affected part of the water column. The time series captured 3 neap and 4 spring tides and the arrival of fresh settling material originating from a surface-ocean bloom. In the trap-collected material, total particulate matter (TPM), particulate inorganic carbon (PIC), biogenic silica (BSi), particulate organic carbon (POC), particulate nitrogen (PN), total hydrolysable amino acids (AA), hexosamines (HA) and lithogenic material (LM) were determined. The biogeochemical results are presented within the context of time series of measured currents (at 15 mab) and turbidity (at 1 mab). The main outcome is evidence for an effect of neap/spring tidal oscillations on particulate-matter dynamics in BBL-affected waters in the deep sea. Based on the frequency-decomposed current measurements and numerical modelling of BBL fluid dynamics, it is concluded that the neap/spring tidal oscillations of particulate-matter dynamics are less likely due to temporally varying total free-stream current speeds and more likely due to temporally and vertically varying turbulence intensities that result from the temporally varying interplay of different rotational flow components (residual, tidal, near-inertial) within the BBL. Using information from previously published empirical and theoretical relations between fluid and biogeochemical dynamics at the scale of individual particle aggregates, a conceptual and semi-quantitative picture of a mechanism was derived that explains how the neap/spring fluid-dynamic oscillations may translate through particle dynamics into neap/spring oscillations of biogeochemical aggregate decomposition (microbially driven organic-matter breakdown, biomineral dissolution). It is predicted that, during transitions from neap into spring tides, increased aggregation in near-seafloor waters and/or reduced deposition of aggregates at the seafloor coincides with reduced biogeochemical particulate-matter decomposition in near-seafloor waters. By contrast, during transitions from spring into neap tides, enhanced biogeochemical particulate-matter decomposition in near-seafloor waters is predicted to coincide with increased deposition of particulate matter at the seafloor. This study suggests that, in addition to current speed, the specifics and subtleties of the interplay of different rotational flow components can be an important control on how the primary flux from the interior ocean is translated into the depositional flux, with potential implications for sedimentary carbon deposition, benthic food supply and possibly even the sedimentary records of environmental change.

  7. Land-use and hydroperiod affect kettle hole sediment carbon and nitrogen biogeochemistry

    Treesearch

    Kai Nils Nitzsche; Thomas Kalettka; Katrin Premke; Gunnar Lischeid; Arthur Gessler; Zachary Eric Kayler

    2017-01-01

    Kettle holes are glaciofluvially created depressional wetlands that collect organic matter (OM) and nutrients from their surrounding catchment. Kettle holes mostly undergo pronounced wet-dry cycles. Fluctuations in water table, land-use, andmanagement can affect sediment biogeochemical transformations and perhaps threaten the carbon stocks of these unique ecosystems....

  8. Grand challenges in understanding the interplay of climate and land changes

    USGS Publications Warehouse

    Liu, Shuguang; Bond-Lamberty, Ben; Boysen, Lena R.; Ford, James D.; Fox, Andrew; Gallo, Kevin; Hatfield, Jerry L.; Henebry, Geoffrey M.; Huntington, Thomas G.; Liu, Zhihua; Loveland, Thomas R.; Norby, Richard J.; Sohl, Terry L.; Steiner, Allison L.; Yuan, Wenping; Zhang, Zhao; Zhao, Shuqing

    2017-01-01

    Half of Earth’s land surface has been altered by human activities, creating various consequences on the climate and weather systems at local to global scales, which in turn affect a myriad of land surface processes and the adaptation behaviors. This study reviews the status and major knowledge gaps in the interactions of land and atmospheric changes and present 11 grand challenge areas for the scientific research and adaptation community in the coming decade. These land-cover and land-use change (LCLUC)-related areas include 1) impacts on weather and climate, 2) carbon and other biogeochemical cycles, 3) biospheric emissions, 4) the water cycle, 5) agriculture, 6) urbanization, 7) acclimation of biogeochemical processes to climate change, 8) plant migration, 9) land-use projections, 10) model and data uncertainties, and, finally, 11) adaptation strategies. Numerous studies have demonstrated the effects of LCLUC on local to global climate and weather systems, but these putative effects vary greatly in magnitude and even sign across space, time, and scale and thus remain highly uncertain. At the same time, many challenges exist toward improved understanding of the consequences of atmospheric and climate change on land process dynamics and services. Future effort must improve the understanding of the scale-dependent, multifaceted perturbations and feedbacks between land and climate changes in both reality and models. To this end, one critical cross-disciplinary need is to systematically quantify and better understand measurement and model uncertainties. Finally, LCLUC mitigation and adaptation assessments must be strengthened to identify implementation barriers, evaluate and prioritize opportunities, and examine how decision-making processes work in specific contexts.

  9. Complex Catchment Processes that Control Stream Nitrogen and Organic Matter Concentrations in a Northeastern USA Upland Catchment

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Shanley, J. B.; Pellerin, B.; Saraceno, J.; Aiken, G. R.; Boyer, E. W.; Doctor, D. H.; Kendall, C.

    2009-05-01

    There is a need to understand the coupled biogeochemical and hydrological processes that control stream hydrochemistry in upland forested catchments. At watershed 9 (W-9) of the Sleepers River Research Watershed in the northeastern USA, we use high-frequency sampling, environmental tracers, end-member mixing analysis, and stream reach mass balances to understand dynamic factors affect forms and concentrations of nitrogen and organic matter in streamflow. We found that rates of stream nitrate processing changed during autumn baseflow and that up to 70% of nitrate inputs to a stream reach were retained. At the same time, the stream reach was a net source of the dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) fractions of dissolved organic matter (DOM). The in-stream nitrate loss and DOM gains are examples of hot moments of biogeochemical transformations during autumn when deciduous litter fall increases DOM availability. As hydrological flowpaths changed during rainfall events, the sources and transformations of nitrate and DOM differed from baseflow. For example, during storm flow we measured direct inputs of unprocessed atmospheric nitrate to streams that were as large as 30% of the stream nitrate loading. At the same time, stream DOM composition shifted to reflect inputs of reactive organic matter from surficial upland soils. The transport of atmospheric nitrate and reactive DOM to streams underscores the importance of quantifying source variation during short-duration stormflow events. Building upon these findings we present a conceptual model of interacting ecosystem processes that control the flow of water and nutrients to streams in a temperate upland catchment.

  10. Sorption and transport of iodine species in sediments from the Savannah River and Hanford Sites.

    PubMed

    Hu, Qinhong; Zhao, Pihong; Moran, Jean E; Seaman, John C

    2005-07-01

    Iodine is an important element in studies of environmental protection and human health, global-scale hydrologic processes and nuclear nonproliferation. Biogeochemical cycling of iodine is complex, because iodine occurs in multiple oxidation states and as inorganic and organic species that may be hydrophilic, atmophilic, and biophilic. In this study, we applied new analytical techniques to study the sorption and transport behavior of iodine species (iodide, iodate, and 4-iodoaniline) in sediments collected at the Savannah River and Hanford Sites, where anthropogenic (129)I from prior nuclear fuel processing activities poses an environmental risk. We conducted integrated column and batch experiments to investigate the interconversion, sorption and transport of iodine species, and the sediments we examined exhibit a wide range in organic matter, clay mineralogy, soil pH, and texture. The results of our experiments illustrate complex behavior with various processes occurring, including iodate reduction, irreversible retention or mass loss of iodide, and rate-limited and nonlinear sorption. There was an appreciable iodate reduction to iodide, presumably mediated by the structural Fe(II) in some clay minerals; therefore, careful attention must be given to potential interconversion among species when interpreting the biogeochemical behavior of iodine in the environment. The different iodine species exhibited dramatically different sorption and transport behavior in three sediment samples, possessing different physico-chemical properties, collected from different depths at the Savannah River Site. Our study yielded additional insight into processes and mechanisms affecting the geochemical cycling of iodine in the environment, and provided quantitative estimates of key parameters (e.g., extent and rate of sorption) for risk assessment at these sites.

  11. Benthic exchange and biogeochemical cycling in permeable sediments.

    PubMed

    Huettel, Markus; Berg, Peter; Kostka, Joel E

    2014-01-01

    The sandy sediments that blanket the inner shelf are situated in a zone where nutrient input from land and strong mixing produce maximum primary production and tight coupling between water column and sedimentary processes. The high permeability of the shelf sands renders them susceptible to pressure gradients generated by hydrodynamic and biological forces that modulate spatial and temporal patterns of water circulation through these sediments. The resulting dynamic three-dimensional patterns of particle and solute distribution generate a broad spectrum of biogeochemical reaction zones that facilitate effective decomposition of the pelagic and benthic primary production products. The intricate coupling between the water column and sediment makes it challenging to quantify the production and decomposition processes and the resultant fluxes in permeable shelf sands. Recent technical developments have led to insights into the high biogeochemical and biological activity of these permeable sediments and their role in the global cycles of matter.

  12. Simulation Based Exploration of Critical Zone Dynamics in Intensively Managed Landscapes

    NASA Astrophysics Data System (ADS)

    Kumar, P.

    2017-12-01

    The advent of high-resolution measurements of topographic and (vertical) vegetation features using areal LiDAR are enabling us to resolve micro-scale ( 1m) landscape structural characteristics over large areas. Availability of hyperspectral measurements is further augmenting these LiDAR data by enabling the biogeochemical characterization of vegetation and soils at unprecedented spatial resolutions ( 1-10m). Such data have opened up novel opportunities for modeling Critical Zone processes and exploring questions that were not possible before. We show how an integrated 3-D model at 1m grid resolution can enable us to resolve micro-topographic and ecological dynamics and their control on hydrologic and biogeochemical processes over large areas. We address the computational challenge of such detailed modeling by exploiting hybrid CPU and GPU computing technologies. We show results of moisture, biogeochemical, and vegetation dynamics from studies in the Critical Zone Observatory for Intensively managed Landscapes (IMLCZO) in the Midwestern United States.

  13. Technical Note: A generic law-of-the-minimum flux limiter for simulating substrate limitation in biogeochemical models

    DOE PAGES

    Tang, J. Y.; Riley, W. J.

    2016-02-05

    We present a generic flux limiter to account for mass limitations from an arbitrary number of substrates in a biogeochemical reaction network. The flux limiter is based on the observation that substrate (e.g., nitrogen, phosphorus) limitation in biogeochemical models can be represented as to ensure mass conservative and non-negative numerical solutions to the governing ordinary differential equations. Application of the flux limiter includes two steps: (1) formulation of the biogeochemical processes with a matrix of stoichiometric coefficients and (2) application of Liebig's law of the minimum using the dynamic stoichiometric relationship of the reactants. This approach contrasts with the ad hoc down-regulationmore » approaches that are implemented in many existing models (such as CLM4.5 and the ACME (Accelerated Climate Modeling for Energy) Land Model (ALM)) of carbon and nutrient interactions, which are error prone when adding new processes, even for experienced modelers. Through an example implementation with a CENTURY-like decomposition model that includes carbon, nitrogen, and phosphorus, we show that our approach (1) produced almost identical results to that from the ad hoc down-regulation approaches under non-limiting nutrient conditions, (2) properly resolved the negative solutions under substrate-limited conditions where the simple clipping approach failed, (3) successfully avoided the potential conceptual ambiguities that are implied by those ad hoc down-regulation approaches. We expect our approach will make future biogeochemical models easier to improve and more robust.« less

  14. Variability of atmospheric greenhouse gases as a biogeochemical processing signal at regional scale in a karstic ecosystem

    NASA Astrophysics Data System (ADS)

    Borràs, Sílvia; Vazquez, Eusebi; Morguí, Josep-Anton; Àgueda, Alba; Batet, Oscar; Cañas, Lídia; Curcoll, Roger; Grossi, Claudia; Nofuentes, Manel; Occhipinti, Paola; Rodó, Xavier

    2015-04-01

    The South-eastern area of the Iberian Peninsula is an area where climatic conditions reach extreme climatic conditions during the year, and is also heavily affected by the ENSO and NAO. The Natural Park of Cazorla, Segura de la Sierra and Las Villas is located in this region, and it is the largest protected natural area in Spain (209920 Ha). This area is characterized by important climatic and hydrologic contrasts: although the mean annual precipitation is 770 nm, the karstic soils are the main cause for water scarcity during the summer months, while on the other hand it is in this area where the two main rivers of Southern Spain, the Segura and the Guadalquivir, are born. The protected area comprises many forested landscapes, karstic areas and reservoirs like Tranco de Beas. The temperatures during summer are high, with over 40°C heatwaves occurring each year. But during the winter months, the land surface can be covered by snow for periods of time up until 30 days. The ENSO and NAO influences cause also an important inter annual climatic variability in this area. Under the ENSO, autumnal periods are more humid while the following spring is drier. In this area vegetal Mediterranean communities are dominant. But there are also a high number of endemic species and derelict species typical of temperate climate. Therefore it is a protected area with high specific diversity. Additionally, there is an important agricultural activity in the fringe areas of the Natural Park, mainly for olive production, while inside the Park this activity is focused on mountain wheat production. Therefore the diverse vegetal communities and landscapes can easily be under extreme climatic pressures, affecting in turn the biogeochemical processes at the regional scale. The constant, high-frequency monitoring of greenhouse gases (GHG) (CO2 and CH4) integrates the biogeochemical signal of changes in this area related to the carbon cycle at the regional scale, capturing the high diversity of landscapes and climatic variability. The monitoring is carried out in one of the stations of the ClimaDat network, which consists of eight GHG monitoring stations in highly preserved ecosystems which are very sensitive to climate change in Spain. This constant monitoring will allow relating changes in terrestrial ecosystems, hydrological processes and atmospheric transport of GHG. The goal of the presentation is to show the results obtained since September 2013 through continuous monitoring, focusing on the seasonal changes in precipitation, temperature, and CO2 and CH4 changes in atmospheric concentrations.

  15. [Ammonia-oxidizing archaea and their important roles in nitrogen biogeochemical cycling: a review].

    PubMed

    Liu, Jing-Jing; Wu, Wei-Xiang; Ding, Ying; Shi, De-Zhi; Chen, Ying-Xu

    2010-08-01

    As the first step of nitrification, ammonia oxidation is the key process in global nitrogen biogeochemical cycling. So far, the autotrophic ammonia-oxidizing bacteria (AOB) in the beta- and gamma-subgroups of proteobacteria have been considered as the most important contributors to ammonia oxidation, but the recent researches indicated that ammonia-oxidizing archaea (AOA) are widely distributed in various kinds of ecosystems and quantitatively predominant, playing important roles in the global nitrogen biogeochemical cycling. This paper reviewed the morphological, physiological, and ecological characteristics and the molecular phylogenies of AOA, and compared and analyzed the differences and similarities of the ammonia monooxygenase (AMO) and its encoding genes between AOA and AOB. In addition, the potential significant roles of AOA in nitrogen biogeochemical cycling in aquatic and terrestrial ecosystems were summarized, and the future research directions of AOA in applied ecology and environmental protection were put forward.

  16. Ecohydrological consequences of vegetation interactions within the critical zone in the tropical Andes: multi-scale assessment of vegetation change consequences

    NASA Astrophysics Data System (ADS)

    Villegas, J. C.; Salazar, J. F.; Arias, P. A.; León, J. D.

    2017-12-01

    Land cover transformation is currently one of the most important challenges in tropical South America. These transformations occur both because of climate-related ecological perturbations, as well as in response to ongoing socio-economic processes. A fundamental difference between those two drivers is the spatial and temporal scale at which they operate. However, when considered in a larger context, both drivers affect the ability of ecosystems to provide fundamental services to society. In this work, we use a multi-scale approach to identify key-mechanisms through which land cover transformation significantly affects ecological, hydrological and ecoclimatological dynamics, potentially leading to loss of societally-critical regulation services. We propose a suite of examples spanning multiple spatial and temporal scales that illustrate the effects of land cover trnasformations in ecological, hydrological, biogeochemical and climatic functions in tropical South America. These examples highlight important global-change-effects management challenges, as well as the need to consider the feedbacks and interactions between multi-scale processes.

  17. Ecohydrological interfaces as hot spots of ecosystem processes

    NASA Astrophysics Data System (ADS)

    Krause, Stefan; Lewandowski, Jörg; Grimm, Nancy B.; Hannah, David M.; Pinay, Gilles; McDonald, Karlie; Martí, Eugènia; Argerich, Alba; Pfister, Laurent; Klaus, Julian; Battin, Tom; Larned, Scott T.; Schelker, Jacob; Fleckenstein, Jan; Schmidt, Christian; Rivett, Michael O.; Watts, Glenn; Sabater, Francesc; Sorolla, Albert; Turk, Valentina

    2017-08-01

    The movement of water, matter, organisms, and energy can be altered substantially at ecohydrological interfaces, the dynamic transition zones that often develop within ecotones or boundaries between adjacent ecosystems. Interdisciplinary research over the last two decades has indicated that ecohydrological interfaces are often "hot spots" of ecological, biogeochemical, and hydrological processes and may provide refuge for biota during extreme events. Ecohydrological interfaces can have significant impact on global hydrological and biogeochemical cycles, biodiversity, pollutant removal, and ecosystem resilience to disturbance. The organizational principles (i.e., the drivers and controls) of spatially and temporally variable processes at ecohydrological interfaces are poorly understood and require the integrated analysis of hydrological, biogeochemical, and ecological processes. Our rudimentary understanding of the interactions between different drivers and controls critically limits our ability to predict complex system responses to change. In this paper, we explore similarities and contrasts in the functioning of diverse freshwater ecohydrological interfaces across spatial and temporal scales. We use this comparison to develop an integrated, interdisciplinary framework, including a roadmap for analyzing ecohydrological processes and their interactions in ecosystems. We argue that, in order to fully account for their nonlinear process dynamics, ecohydrological interfaces need to be conceptualized as unique, spatially and temporally dynamic entities, which represents a step change from their current representation as boundary conditions at investigated ecosystems.

  18. Green Infrastructure Increases Biogeochemical Responsiveness, Vegetation Growth and Decreases Runoff in a Semi-Arid City, Tucson, AZ, USA

    NASA Astrophysics Data System (ADS)

    Meixner, T.; Papuga, S. A.; Luketich, A. M.; Rockhill, T.; Gallo, E. L.; Anderson, J.; Salgado, L.; Pope, K.; Gupta, N.; Korgaonkar, Y.; Guertin, D. P.

    2017-12-01

    Green Infrastructure (GI) is often viewed as a mechanism to minimize the effects of urbanization on hydrology, water quality, and other ecosystem services (including the urban heat island). Quantifying the effects of GI requires field measurements of the dimensions of biogeochemical, ecosystem, and hydrologic function that we expect GI to impact. Here we investigated the effect of GI features in Tucson, Arizona which has a low intensity winter precipitation regime and a high intensity summer regime. We focused on understanding the effect of GI on soil hydraulic and biogeochemical properties as well as the effect on vegetation and canopy temperature. Our results demonstrate profound changes in biogeochemical and hydrologic properties and vegetation growth between GI systems and nearby control sites. In terms of hydrologic properties GI soils had increased water holding capacity and hydraulic conductivity. GI soils also have higher total carbon, total nitrogen, and organic matter in general than control soils. Furthermore, we tested the sampled soils (control and GI) for differences in biogeochemical response upon wetting. GI soils had larger respiration responses indicating greater biogeochemical activity overall. Long-term Lidar surveys were used to investigate the differential canopy growth of GI systems versus control sites. The results of this analysis indicate that while a significant amount of time is needed to observe differences in canopy growth GI features due increase tree size and thus likely impact street scale ambient temperatures. Additionally monitoring of transpiration, soil moisture, and canopy temperature demonstrates that GI features increase vegetation growth and transpiration and reduce canopy temperatures. These biogeochemical and ecohydrologic results indicate that GI can increase the biogeochemical processing of soils and increase tree growth and thus reduce urban ambient temperatures.

  19. Stream biogeochemical resilience in the age of Anthropocene

    NASA Astrophysics Data System (ADS)

    Dong, H.; Creed, I. F.

    2017-12-01

    Recent evidence indicates that biogeochemical cycles are being pushed beyond the tolerance limits of the earth system in the age of the Anthropocene placing terrestrial and aquatic ecosystems at risk. Here, we explored the question: Is there empirical evidence of global atmospheric changes driving losses in stream biogeochemical resilience towards a new normal? Stream biogeochemical resilience is the process of returning to equilibrium conditions after a disturbance and can be measured using three metrics: reactivity (the highest initial response after a disturbance), return rate (the rate of return to equilibrium condition after reactive changes), and variance of the stationary distribution (the signal to noise ratio). Multivariate autoregressive models were used to derive the three metrics for streams along a disturbance gradient - from natural systems where global drivers would dominate, to relatively managed or modified systems where global and local drivers would interact. We observed a loss of biogeochemical resilience in all streams. The key biogeochemical constituent(s) that may be driving loss of biogeochemical resilience were identified from the time series of the stream biogeochemical constituents. Non-stationary trends (detected by Mann-Kendall analysis) and stationary cycles (revealed through Morlet wavelet analysis) were removed, and the standard deviation (SD) of the remaining residuals were analyzed to determine if there was an increase in SD over time that would indicate a pending shift towards a new normal. We observed that nitrate-N and total phosphorus showed behaviours indicative of a pending shift in natural and managed forest systems, but not in agricultural systems. This study provides empirical support that stream ecosystems are showing signs of exceeding planetary boundary tolerance levels and shifting towards a "new normal" in response to global changes, which can be exacerbated by local management activities. Future work will consider the potential for cascading effects on downstream systems.

  20. Global vegetation-fire pattern under different land use and climate conditions

    NASA Astrophysics Data System (ADS)

    Thonicke, K.; Poulter, B.; Heyder, U.; Gumpenberger, M.; Cramer, W.

    2008-12-01

    Fire is a process of global significance in the Earth System influencing vegetation dynamics, biogeochemical cycling and biophysical feedbacks. Naturally ignited wildfires have long history in the Earth System. Humans have been using fire to shape the landscape for their purposes for many millenia, sometimes influencing the status of the vegetation remarkably as for example in Mediterranean-type ecosystems. Processes and drivers describing fire danger, ignitions, fire spread and effects are relatively well-known for many fire-prone ecosystems. Modeling these has a long tradition in fire-affected regions to predict fire risk and behavior for fire-fighting purposes. On the other hand, the global vegetation community realized the importance of disturbances to be recognized in their global vegetation models with fire being globally most important and so-far best studied. First attempts to simulate fire globally considered a minimal set of drivers, whereas recent developments attempt to consider each fire process separately. The process-based fire model SPITFIRE (SPread and InTensity of FIRE) simulates these processes embedded in the LPJ DGVM. Uncertainties still arise from missing measurements for some parameters in less-studied fire regimes, or from broad PFT classifications which subsume different fire-ecological adaptations and tolerances. Some earth observation data sets as well as fire emission models help to evaluate seasonality and spatial distribution of simulated fire ignitions, area burnt and fire emissions within SPITFIRE. Deforestation fires are a major source of carbon released to the atmosphere in the tropics; in the Amazon basin it is the second-largest contributor to Brazils GHG emissions. How ongoing deforestation affects fire regimes, forest stability and biogeochemical cycling in the Amazon basin under present climate conditions will be presented. Relative importance of fire vs. climate and land use change is analyzed. Emissions resulting from wildfires, agricultural and woodfuel burning will be quantified and drivers identified. Future projections of climate and land use change are applied to the model to investigate joint effects on future changes in fire, deforestation and vegetation dynamics in the Amazon basin.

  1. Effects of physical and biogeochemical processes on aquatic ecosystems at the groundwater-surface water interface: An evaluation of a sulfate-impacted wild rice stream in Minnesota (USA)

    NASA Astrophysics Data System (ADS)

    Ng, G. H. C.; Yourd, A. R.; Myrbo, A.; Johnson, N.

    2015-12-01

    Significant uncertainty and variability in physical and biogeochemical processes at the groundwater-surface water interface complicate how surface water chemistry affects aquatic ecosystems. Questions surrounding a unique 10 mg/L sulfate standard for wild rice (Zizania sp.) waters in Minnesota are driving research to clarify conditions controlling the geochemistry of shallow sediment porewater in stream- and lake-beds. This issue raises the need and opportunity to carry out in-depth, process-based analysis into how water fluxes and coupled C, S, and Fe redox cycles interact to impact aquatic plants. Our study builds on a recent state-wide field campaign that showed that accumulation of porewater sulfide from sulfate reduction impairs wild rice, an annual grass that grows in shallow lakes and streams in the Great Lakes region of North America. Negative porewater sulfide correlations with organic C and Fe quantities also indicated that lower redox rates and greater mineral precipitation attenuate sulfide. Here, we focus on a stream in northern Minnesota that receives high sulfate loading from iron mining activity yet maintains wild rice stands. In addition to organic C and Fe effects, we evaluate the degree to which streambed hydrology, and in particular groundwater contributions, accounts for the active biogeochemistry. We collect field measurements, spanning the surrounding groundwater system to the stream, to constrain a reactive-transport model. Observations from seepage meters, temperature probes, and monitoring wells delineate upward flow that may lessen surface water impacts below the stream. Geochemical analyses of groundwater, porewater, and surface water samples and of sediment extractions reveal distinctions among the different domains and stream banks, which appear to jointly control conditions in the streambed. A model based on field conditions can be used to evaluate the relative the importance and the spatiotemporal scales of diverse flux and geochemical factors affecting aquatic root zones.

  2. Using a spatially-distributed hydrologic biogeochemistry model to study the spatial variation of carbon processes in a Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Eissenstat, D. M.; Davis, K. J.; He, Y.

    2016-12-01

    Forest carbon processes are affected by, among other factors, soil moisture, soil temperature, soil nutrients and solar radiation. Most of the current biogeochemical models are 1-D and represent one point in space. Therefore, they cannot resolve the topographically driven hill-slope land surface heterogeneity or the spatial pattern of nutrient availability. A spatially distributed forest ecosystem model, Flux-PIHM-BGC, has been developed by coupling a 1-D mechanistic biogeochemical model Biome-BGC (BBGC) with a spatially distributed land surface hydrologic model, Flux-PIHM. Flux-PIHM is a coupled physically based model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. In the coupled Flux-PIHM-BGC model, each Flux-PIHM model grid couples a 1-D BBGC model, while soil nitrogen is transported among model grids via subsurface water flow. In each grid, Flux-PIHM provides BBGC with soil moisture, soil temperature, and solar radiation information, while BBGC provides Flux-PIHM with leaf area index. The coupled Flux-PIHM-BGC model has been implemented at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). Model results suggest that the vegetation and soil carbon distribution is primarily constrained by nitorgen availability (affected by nitorgen transport via topographically driven subsurface flow), and also constrained by solar radiation and root zone soil moisture. The predicted vegetation and soil carbon distribution generally agrees with the macro pattern observed within the watershed. The coupled ecosystem-hydrologic model provides an important tool to study the impact of topography on watershed carbon processes, as well as the impact of climate change on water resources.

  3. The GRASP project - a multidisciplinary study of hydrology and biogeochemistry in a periglacial catchment area

    NASA Astrophysics Data System (ADS)

    Johansson, Emma; Lindborg, Tobias

    2017-04-01

    The Arctic region is sensitive to global warming, and permafrost thaw and release of old carbon are examples of processes that may have a positive feedback effect to the global climate system. Quantification and assumptions on future change are often based on model predictions. Such models require cross-disciplinary data of high quality that often is lacking. Biogeochemical processes in the landscape are highly influenced by the hydrology, which in turn is intimately related to permafrost processes. Thus, a multidisciplinary approach is needed when collecting data and setting up field experiments aiming at increase the understanding of these processes. Here we summarize and present data collected in the GRASP, Greenland Analogue Surface Project. GRASP is a catchment-scale field study of the periglacial area in the Kangerlussuaq region, West Greenland, focusing on hydrological and biogeochemical processes in the landscape. The site investigations were initiated in 2010 and have since then resulted in three separate data sets published in ESSD (Earth system and Science Data) each one focusing on i) meteorological data and hydrology, ii) biogeochemistry and iii) geometries of sediments and the active layer. The three data-sets, which are freely available via the PANGAEA data base, enable conceptual and coupled numerical modeling of hydrological and biogeochemical processes. An important strength with the GRASP data is that all data is collected within the same, relatively small, catchment area. This implies that measurements are more easily linked to the right source area or process. Despite the small catchment area it includes the major units of the periglacial hydrological system; a lake, a talik, a supra- and subpermafrost aquifer and, consequently, biogeochemical processes in each of these units may be studied. The new data from GRASP is both used with the aim to increase the knowledge of present day periglacial hydrology and biogeochemistry but also in order to predict consequences within these subjects of future climate change.

  4. Potential Impact of North Atlantic Climate Variability on Ocean Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Muhling, B.; Lee, S. K.; Muller-Karger, F. E.; Enfield, D. B.; Lamkin, J. T.; Roffer, M. A.

    2016-02-01

    Previous studies have shown that upper ocean circulations largely determine primary production in the euphotic layers, here the global ocean model with biogeochemistry (GFDL's Modular Ocean Model with TOPAZ biogeochemistry) forced with the ERA-Interim is used to simulate the natural variability of biogeochemical processes in global ocean during 1979-present. Preliminary results show that the surface chlorophyll is overall underestimated in MOM-TOPAZ, but its spatial pattern is fairly realistic. Relatively high chlorophyll variability is shown in the subpolar North Atlantic, northeastern tropical Atlantic, and equatorial Atlantic. Further analysis suggests that the chlorophyll variability in the North Atlantic Ocean is affected by long-term climate variability. For the subpolar North Atlantic region, the chlorophyll variability is light-limited and is significantly correlated with North Atlantic Oscillation. A dipole pattern of chlorophyll variability is found between the northeastern tropical Atlantic and equatorial Atlantic. For the northeastern North Atlantic, the chlorophyll variability is significantly correlated with Atlantic Meridional Mode (AMM) and Atlantic Multidecadal Oscillation (AMO). During the negative phase of AMM and AMO, the increased trade wind in the northeast North Atlantic can lead to increased upwelling of nutrients. In the equatorial Atlantic region, the chlorophyll variability is largely link to Atlantic-Niño and associated equatorial upwelling of nutrients. The potential impact of climate variability on the distribution of pelagic fishes (i.e. yellowfin tuna) are discussed.

  5. Influence of harvesting on biogeochemical exchange in sheetflow and soil processes in a eutrophic floodplain forest

    Treesearch

    B.G. Lockaby; R.G. Clawson; K. Flynn; Robert Rummer; S. Meadows; B Stokes; John A. Stanturf

    1997-01-01

    Floodplain forests contribute to the maintenance of water quality as a result of various biogeochemical transformations which occur within them. In particular, they can serve as sinks for nutrient run-off from adjacent uplands or as nutrient transformers as water moves downstream. However, little is known about the potential that land management activities may have for...

  6. The role of experimental forests and ranges in the development of ecosystem science and biogeochemical cycling research

    Treesearch

    James M. Vose; Wayne T. Swank; Mary Beth Adams; Devendra Amatya; John Campbell; Sherri Johnson; Frederick J. Swanson; Randy Kolka; Ariel E. Lugo; Robert Musselman; Charles Rhoades

    2014-01-01

    Forest Service watershed-based Experimental Forests and Ranges (EFRs) have significantly advanced scientific knowledge on ecosystem structure and function through long-term monitoring and experimental research on hydrologic and biogeochemical cycling processes. Research conducted in the 1940s and 1950s began as “classic” paired watershed studies. The emergence of the...

  7. Eddy-driven nutrient transport and associated upper-ocean primary production along the Kuroshio

    NASA Astrophysics Data System (ADS)

    Uchiyama, Yusuke; Suzue, Yota; Yamazaki, Hidekatsu

    2017-06-01

    The Kuroshio is one of the most energetic western boundary currents accompanied by vigorous eddy activity both on mesoscale and submesoscale, which affects biogeochemical processes in the upper ocean. We examine the primary production around the Kuroshio off Japan using a climatological ocean modeling based on the Regional Oceanic Modeling System (ROMS) coupled with a nitrogen-based nutrient, phytoplankton and zooplankton, and detritus (NPZD) biogeochemical model in a submesoscale eddy-permitting configuration. The model indicates significant differences of the biogeochemical responses to eddy activities in the Kuroshio Region (KR) and Kuroshio Extension Region (KE). In the KR, persisting cyclonic eddies developed between the Kuroshio and coastline are responsible for upwelling-induced eutrophication. However, the eddy-induced vertical nutrient flux counteracts and promotes pronounced southward and downward diapycnal nutrient transport from the mixed-layer down beneath the main body of the Kuroshio, which suppresses the near-surface productivity. In contrast, the KE has a 23.5% higher productivity than the KR, even at comparable eddy intensity. Upward nutrient transport prevails near the surface due to predominant cyclonic eddies, particularly to the north of the KE, where the downward transport barely occurs, except at depths deeper than 400 m and to a much smaller degree than in the KR. The eddy energy conversion analysis reveals that the combination of shear instability around the mainstream of the Kuroshio with prominent baroclinic instability near the Kuroshio front is essential for the generation of eddies in the KR, leading to the increase of the eddy-induced vertical nitrate transport around the Kuroshio.

  8. Relating hyporheic fluxes, residence times, and redox-sensitive biogeochemical processes upstream of beaver dams

    USGS Publications Warehouse

    Briggs, Martin A.; Lautz, Laura; Hare, Danielle K.

    2013-01-01

    ¨hler number seemed to overestimate the actual transition as indicated by multiple secondary electron acceptors, illustrating the gradient nature of anaerobic transition. Temporal flux variability in low-flux morphologies generated a much greater range in hyporheic redox conditions compared to high-flux zones, and chemical responses to changing flux rates were consistent with those predicted from the empirical relationship between redox condition and residence time. The Raz tracer revealed that hyporheic flow paths have strong net aerobic respiration, particularly at higher residence time, but this reactive exchange did not affect the net stream signal at the reach scale.

  9. Solute sources in stream water during consecutive fall storms in a northern hardwood forest watershed: A combined hydrological, chemical and isotopic approach

    USGS Publications Warehouse

    Mitchell, M.J.; Piatek, K.B.; Christopher, S.; Mayer, B.; Kendall, C.; McHale, P.

    2006-01-01

    Understanding the effects of climate change including precipitation patterns has important implications for evaluating the biogeochemical responses of watersheds. We focused on four storms in late summer and early fall that occurred after an exceptionally dry period in 2002. We analyzed not only the influence of these storms on episodic chemistry and the role of different water sources in affecting surface water chemistry, but also the relative contributions of these storms to annual biogeochemical mass balances. The study site was a well studied 135-ha watershed in the Adirondack Park of New York State (USA). Our analyses integrated measurements on hydrology, solute chemistry and the isotopic composition of NO 3- (??15N and ??18O) and SO 42- (??34S and ??18O) to evaluate how these storms affected surface water chemistry. Precipitation amounts varied among the storms (Storm 1: Sept. 14-18, 18.5 mm; Storm 2: Sept. 21-24, 33 mm; Storm 3: Sept. 27-29, 42.9 mm; Storm 4: Oct. 16-21, 67.6 mm). Among the four storms, there was an increase in water yields from 2 to 14%. These water yields were much less than in studies of storms in previous years at this same watershed when antecedent moisture conditions were higher. In the current study, early storms resulted in relatively small changes in water chemistry. With progressive storms the changes in water chemistry became more marked with particularly major changes in Cb (sum of base cations), Si, NO 3- , and SO 42- , DOC and pH. Analyses of the relationships between Si, DOC, discharge and water table height clearly indicated that there was a decrease in ground water contributions (i.e., lower Si concentrations and higher DOC concentrations) as the watershed wetness increased with storm succession. The marked changes in chemistry were also reflected in changes in the isotopic composition of SO 42- and NO 3- . There was a strong inverse relationship between SO 42- concentrations and ??34S values suggesting the importance of S biogeochemical redox processes in contributing to SO 42- export. The isotopic composition of NO 3- in stream water indicated that this N had been microbially processed. Linkages between SO 42- and DOC concentrations suggest that wetlands were major sources of these solutes to drainage waters while the chemical and isotopic response of NO 3- suggested that upland sources were more important. Although these late summer and fall storms did not play a major role in the overall annual mass balances of solutes for this watershed, these events had distinctive chemistry including depressed pH and therefore have important consequences to watershed processes such as episodic acidification, and the linkage of these processes to climate change. ?? Springer 2006.

  10. Biology and Potential Biogeochemical Impacts of Novel Predatory Flavobacteria

    DTIC Science & Technology

    2010-06-01

    isolates to affect prey communities under more environmentally relevant conditions. An investigation of the minimum number of predatory cells needed...of present knowledge of predatory bacteria, they seem likely to affect microbial communities in ways distinct from those of protozoan grazers and...relatively less studied than both larger and smaller predators, some have been shown to affect prey communities. Much of this work has focused on the

  11. Linking the Modern and Recent Record of Cabo Frio Upwelling with Local Climate and Biogeochemical Processes in Hypersaline Coastal Lagoons, Região dos Lagos, Rio de Janeiro, Brazil

    NASA Astrophysics Data System (ADS)

    McKenzie, J. A.; Nascimento, G. S.; Albuquerque, A. L.; Belem, A. L.; Carreira, R.; Eglinton, T. I.; Vasconcelos, C.

    2015-12-01

    A unique marine and lagoonal system along the coast east of Rio de Janeiro is being investigated to understand the impact of climatic variability on the South Atlantic carbon cycle and biomineralisation processes involved in carbonate precipitation in the hypersaline coastal lagoons. The region is dominated by a semi-arid microclimate attributed to the local coastal upwelling phenomenon near Cabo Frio. The intensity of the upwelling affects the hydrology of the annual water and biogeochemical cycles in the lagoons, as well as biogeochemical signals of environmental change recorded in both onshore and offshore sediments. Preliminary results of δ18O and δD values of water samples collected monthly in Lagoa Vermelha and Brejo do Espinho from 2011 to 2014 show lower values for waters corresponding to the wet season, reflecting increased input of meteoric water. The higher values for waters collected during the dry season reflect the greater amount of evaporation with increased seasonal aridity. Radiocarbon dating of Holocene marine and lagoonal cores indicates that Mg-carbonate precipitation in the lagoons is associated with high evaporation. Modern field observations for the last 3 years suggest that the amount of carbonate precipitation is correlated with evaporitic conditions associated with the upwelling phenomenon. A calibration study of hydrogen isotopic fractionation in the modern lagoons is underway to define a relationship between δDlipid of suspended particles and δDwater of associated water. This isotopic relationship will be applied to material obtained in cores from the lagoons. Offshore cores will be studied using well-tested paleotemperature proxies to evaluate the intensity of the upwelling during the Holocene. In summary, linking the coastal upwelling with the lagoonal hydrology has the potential to furnish important insights about the relationship between the local climate and paleoceanographic circulation associated with the regional carbon cycle.

  12. Perfluoroalkylated substances in the global tropical and subtropical surface oceans.

    PubMed

    González-Gaya, Belén; Dachs, Jordi; Roscales, Jose L; Caballero, Gemma; Jiménez, Begoña

    2014-11-18

    In this study, perfluoroalkylated substances (PFASs) were analyzed in 92 surface seawater samples taken during the Malaspina 2010 expedition which covered all the tropical and subtropical Atlantic, Pacific and Indian oceans. Nine ionic PFASs including C6-C10 perfluoroalkyl carboxylic acids (PFCAs), C4 and C6-C8 perfluoroalkyl sulfonic acids (PFSAs) and two neutral precursors perfluoroalkyl sulfonamides (PFASAs), were identified and quantified. The Atlantic Ocean presented the broader range in concentrations of total PFASs (131-10900 pg/L, median 645 pg/L, n = 45) compared to the other oceanic basins, probably due to a better spatial coverage. Total concentrations in the Pacific ranged from 344 to 2500 pg/L (median = 527 pg/L, n = 27) and in the Indian Ocean from 176 to 1976 pg/L (median = 329, n = 18). Perfluorooctanesulfonic acid (PFOS) was the most abundant compound, accounting for 33% of the total PFASs globally, followed by perfluorodecanoic acid (PFDA, 22%) and perfluorohexanoic acid (PFHxA, 12%), being the rest of the individual congeners under 10% of total PFASs, even for perfluorooctane carboxylic acid (PFOA, 6%). PFASAs accounted for less than 1% of the total PFASs concentration. This study reports the ubiquitous occurrence of PFCAs, PFSAs, and PFASAs in the global ocean, being the first attempt, to our knowledge, to show a comprehensive assessment in surface water samples collected in a single oceanic expedition covering tropical and subtropical oceans. The potential factors affecting their distribution patterns were assessed including the distance to coastal regions, oceanic subtropical gyres, currents and biogeochemical processes. Field evidence of biogeochemical controls on the occurrence of PFASs was tentatively assessed considering environmental variables (solar radiation, temperature, chlorophyll a concentrations among others), and these showed significant correlations with some PFASs, but explaining small to moderate percentages of variability. This suggests that a number of physical and biogeochemical processes collectively drive the oceanic occurrence and fate of PFASs in a complex manner.

  13. N2-fixing legumes are linked to enhanced mineral dissolution and microbiome modulations in Neotropical rainforests

    NASA Astrophysics Data System (ADS)

    Epihov, Dimitar; Batterman, Sarah; Hedin, Lars; Saltonstall, Kristin; Hall, Jefferson; Leake, Jonathan; Beerling, David

    2017-04-01

    Legumes represent the dominant family of many tropical forests with estimates of 120 billion legume trees in the Amazon basin alone. Many rainforest legume trees form symbioses with N2-fixing bacteria. In the process of atmospheric N2-fixation large amounts of nitrogen-rich litter are generated, supplying half of all nitrogen required to support secondary rainforest succession. However, it is unclear how N2-fixers affect the biogeochemical cycling of other essential nutrients by affecting the rates of mineral dissolution and rock weathering. Here we show that N2-fixing legumes in young Panamanian rainforests promote acidification and enhance silicate rock weathering by a factor of 2 compared to non-fixing trees. We report that N2-fixers also associate with enhanced dissolution of Al- and Fe-bearing secondary minerals native to tropical oxisols. In legume-rich neighbourhoods, non-fixers benefited from raised weathering rates relative to those of legume-free zones thus suggesting a positive community effect driven by N2-fixers. These changes in weathering potential were tracked by parallel functional and structural changes in the soil and rock microbiomes. Our findings support the view that N2-fixing legumes are central components of biogeochemical cycling, associated with enhanced release of Fe- and Al-bound P and primary mineral products (Mg, Mo). Rainforest legume services therefore bear important implications to short-term C cycling related to forest growth and the long-term C cycle related to marine carbonate deposition fuelled by silicate weathering.

  14. Estimating the spatial distribution of soil organic matter density and geochemical properties in a polygonal shaped Arctic Tundra using core sample analysis and X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Soom, F.; Ulrich, C.; Dafflon, B.; Wu, Y.; Kneafsey, T. J.; López, R. D.; Peterson, J.; Hubbard, S. S.

    2016-12-01

    The Arctic tundra with its permafrost dominated soils is one of the regions most affected by global climate change, and in turn, can also influence the changing climate through biogeochemical processes, including greenhouse gas release or storage. Characterization of shallow permafrost distribution and characteristics are required for predicting ecosystem feedbacks to a changing climate over decadal to century timescales, because they can drive active layer deepening and land surface deformation, which in turn can significantly affect hydrological and biogeochemical responses, including greenhouse gas dynamics. In this study, part of the Next-Generation Ecosystem Experiment (NGEE-Arctic), we use X-ray computed tomography (CT) to estimate wet bulk density of cores extracted from a field site near Barrow AK, which extend 2-3m through the active layer into the permafrost. We use multi-dimensional relationships inferred from destructive core sample analysis to infer organic matter density, dry bulk density and ice content, along with some geochemical properties from nondestructive CT-scans along the entire length of the cores, which was not obtained by the spatially limited destructive laboratory analysis. Multi-parameter cross-correlations showed good agreement between soil properties estimated from CT scans versus properties obtained through destructive sampling. Soil properties estimated from cores located in different types of polygons provide valuable information about the vertical distribution of soil and permafrost properties as a function of geomorphology.

  15. Oceanic biogeochemical controls on global dynamics of persistent organic pollutants.

    PubMed

    Dachs, Jordi; Lohmann, Rainer; Ockenden, Wendy A; Méjanelle, Laurence; Eisenreich, Steven J; Jones, Kevin C

    2002-10-15

    Understanding and quantifying the global dynamics and sinks of persistent organic pollutants (POPs) is important to assess their environmental impact and fate. Air-surface exchange processes, where temperature plays a central role in controlling volatilization and deposition, are of key importance in controlling global POP dynamics. The present study is an assessment of the role of oceanic biogeochemical processes, notably phytoplankton uptake and vertical fluxes of particles, on the global dynamics of POPs. Field measurements of atmospheric polychlorinated biphenyls (PCBs), polychlorinated dibenzodioxins (PCDDs), and furans (PCDFs) are combined with remote sensing estimations of oceanic temperature, wind speed, and chlorophyll, to model the interactions between air-water exchange, phytoplankton uptake, and export of organic matter and POPs out of the mixed surface ocean layer. Deposition is enhanced in the mid-high latitudes and is driven by sinking marine particulate matter, rather than by a cold condensation effect. However, the relative contribution of the biological pump is a function of the physical-chemical properties of POPs. It is concluded that oceanic biogeochemical processes play a critical role in controlling the global dynamics and the ultimate sink of POPs.

  16. Linking Chaotic Advection with Subsurface Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Mays, D. C.; Freedman, V. L.; White, S. K.; Fang, Y.; Neupauer, R.

    2017-12-01

    This work investigates the extent to which groundwater flow kinematics drive subsurface biogeochemical processes. In terms of groundwater flow kinematics, we consider chaotic advection, whose essential ingredient is stretching and folding of plumes. Chaotic advection is appealing within the context of groundwater remediation because it has been shown to optimize plume spreading in the laminar flows characteristic of aquifers. In terms of subsurface biogeochemical processes, we consider an existing model for microbially-mediated reduction of relatively mobile uranium(VI) to relatively immobile uranium(IV) following injection of acetate into a floodplain aquifer beneath a former uranium mill in Rifle, Colorado. This model has been implemented in the reactive transport code eSTOMP, the massively parallel version of STOMP (Subsurface Transport Over Multiple Phases). This presentation will report preliminary numerical simulations in which the hydraulic boundary conditions in the eSTOMP model are manipulated to simulate chaotic advection resulting from engineered injection and extraction of water through a manifold of wells surrounding the plume of injected acetate. This approach provides an avenue to simulate the impact of chaotic advection within the existing framework of the eSTOMP code.

  17. Investigating the biogeochemical interactions involved in simultaneous TCE and Arsenic in situ bioremediation

    NASA Astrophysics Data System (ADS)

    Cook, E.; Troyer, E.; Keren, R.; Liu, T.; Alvarez-Cohen, L.

    2016-12-01

    The in situ bioremediation of contaminated sediment and groundwater is often focused on one toxin, even though many of these sites contain multiple contaminants. This reductionist approach neglects how other toxins may affect the biological and chemical conditions, or vice versa. Therefore, it is of high value to investigate the concurrent bioremediation of multiple contaminants while studying the microbial activities affected by biogeochemical factors. A prevalent example is the bioremediation of arsenic at sites co-contaminated with trichloroethene (TCE). The conditions used to promote a microbial community to dechlorinate TCE often has the adverse effect of inducing the release of previously sequestered arsenic. The overarching goal of our study is to simultaneously evaluate the bioremediation of arsenic and TCE. Although TCE bioremediation is a well-understood process, there is still a lack of thorough understanding of the conditions necessary for effective and stable arsenic bioremediation in the presence of TCE. The objective of this study is to promote bacterial activity that stimulates the precipitation of stable arsenic-bearing minerals while providing anaerobic, non-extreme conditions necessary for TCE dechlorination. To that end, endemic microbial communities were examined under various conditions to attempt successful sequestration of arsenic in addition to complete TCE dechlorination. Tested conditions included variations of substrates, carbon source, arsenate and sulfate concentrations, and the presence or absence of TCE. Initial arsenic-reducing enrichments were unable to achieve TCE dechlorination, probably due to low abundance of dechlorinating bacteria in the culture. However, favorable conditions for arsenic precipitation in the presence of TCE were eventually discovered. This study will contribute to the understanding of the key species in arsenic cycling, how they are affected by various concentrations of TCE, and how they interact with the key species in a dechlorinating community.

  18. The mechanics of erosion on soil organic redistribution

    NASA Astrophysics Data System (ADS)

    Papanicolaou, T.

    2014-12-01

    Soil Organic Carbon (SOC) is an important constituent of the earth's fabric derived from the breakdown of above ground plant litter, plant rhizomes and root exudates in the form of organic by-products. Stocks of SOC can be affected by a variety of natural and human-induced drivers, including climate and land management practices which collectively could affect intrinsic and extrinsic factors related to SOC, for example, soil texture, soil microclimate, and biomass accumulation rates . In intensely managed agricultural landscapes (IMLs), i.e., regions of significant land use change where significant degradation of SOC has been reported due to soil erosion, enhancing the sequestration or storage potential of SOC is of paramount importance to the ecosystem well-being of these landscapes. A literature review reveals that aspects of the SOC research have received considerable attention in the bioegeochemical, ecological, and agricultural disciplines because available SOC stocks within a soil column affect the evolution of key soil biogeochemical constituents. However, at the landscape scale the quantitative assessment of the SOC storage potential suffers in parts from lack of understanding of the collective effects that tillage and water-driven erosion have on the transport and burial of the eroded SOC. In this study an integrative process-based modeling framework that couples an established biogeochemical soil column model with a physically-based, landscape oriented watershed model capable of replicating the collective erosion effects on the mobilization and redistribution of SOC is developed. All simulations are conducted in an agricultural watershed in the U.S. Midwest Clear Creek, IA which has experienced intense agriculture since the beginning of the century to also assess the legacy effects that land use change and SOC initialization periods have on current SOC stock estimations.

  19. Integrated evaluation of the vulnerability to thermokarst disturbance and its implications for the regional carbon balance in boreal Alaska

    NASA Astrophysics Data System (ADS)

    Helene, G.; Lara, M. J.; McGuire, A. D.; Euskirchen, E. S.; Bolton, W. R.; Romanovsky, V. E.

    2017-12-01

    Our capacity to project future ecosystem trajectories in northern permafrost regions depends on our ability to characterize complex interactions between climatic and ecological processes at play in the soil, the vegetation, and the atmosphere. We present a study that uses remote sensing analyses, field observations, and data synthesis to inform models for the prediction of ecosystem responses to climate change in the boreal zone of Alaska. Recent warming, altered precipitation and fire regimes are driving permafrost degradation, threatening to mobilize vast reservoirs of ancient carbon previously protected from decomposition. Although large scale, progressive, top-down permafrost thaw have been well studied and represented in high-latitude ecosystem models, the consequences of abrupt and local thermokarst disturbances (TK) are less well understood. To fill this gap, we conducted a detection analysis characterizing 60 years of land cover change in the Tanana Flats, a wetland complex subjected to TK disturbance in Interior Alaska, using aerial and satellite images. We observed a nonlinear loss of permafrost plateau forest associated with TK and driven by precipitation and forest fragmentation. The results of this analysis were integrated into the Alaska Thermokarst Model (ATM), a state-and-transition model that simulates land cover change associated with TK disturbance. Thermokarst-related land cover change was simulated from 2000 to 2100 across the Tanana Flats. By 2100, the model predicts a mean decrease of 7.4% (sd 1.8%) in permafrost plateau forests associated with an increase in TK fens and bogs. Transitions from permafrost plateau forests to TK wetlands are accompanied with changes in physical and biogeochemical processes affecting ecosystem carbon balance. We evaluated the consequences of TK disturbances on the regional carbon balance by coupling outputs from the ATM and from a process-based biogeochemical model. We used long-term field observations of vegetation and soil physical and biogeochemical attributes to develop new parameterizations for TK wetlands and permafrost plateau forest land cover types. Preliminary simulations from 2000 to 2100 estimate that the conversion of permafrost plateau forest to young TK wetlands would result in a 7.5% (sd 3.5%) decrease in Net Ecosystem Exchange.

  20. A molecular dawn for biogeochemistry

    USGS Publications Warehouse

    Zak, D.R.; Blackwood, C.B.; Waldrop, M.P.

    2006-01-01

    Biogeochemistry is at the dawn of an era in which molecular advances enable the discovery of novel microorganisms having unforeseen metabolic capabilities, revealing new insight into the underlying processes regulating elemental cycles at local to global scales. Traditionally, biogeochemical inquiry began by studying a process of interest, and then focusing downward to uncover the microorganisms and metabolic pathways mediating that process. With the ability to sequence functional genes from the environment, molecular approaches now enable the flow of inquiry in the opposite direction. Here, we argue that a focus on functional genes, the microorganisms in which they reside, and the interaction of those organisms with the broader microbial community could transform our understanding of many globally important biogeochemical processes. ?? 2006 Elsevier Ltd. All rights reserved.

  1. Nitrogen Cycling Responses to Mountain Pine Beetle Disturbance in a High Elevation Whitebark Pine Ecosystem

    PubMed Central

    Keville, Megan P.; Reed, Sasha C.; Cleveland, Cory C.

    2013-01-01

    Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH4 +) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks. PMID:23755166

  2. Nitrogen cycling responses to mountain pine beetle disturbance in a high elevation whitebark pine ecosystem.

    PubMed

    Keville, Megan P; Reed, Sasha C; Cleveland, Cory C

    2013-01-01

    Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH₄⁺) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.

  3. Nitrogen cycling responses to mountain pine beetle disturbance in a high elevation whitebark pine ecosystem

    USGS Publications Warehouse

    Keville, Megan P.; Reed, Sasha C.; Cleveland, Cory C.

    2013-01-01

    Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH4+) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.

  4. Functional profile of black spruce wetlands in Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, R.A.

    1996-09-01

    The profile describes the ecologic context and wetland functions of black spruce (Picea mariana) wetlands (BSWs) covering about 14 million ha of Alaska taiga. Ecologic descriptions include climate, permafrost, landforms, post-Pleistocene vegetation, fire, successional processes, black spruce community types and adaptations, and characteristics of BSWs. The profile describes human activities potentially affecting BSWs and identifies research literature and data gaps generally applicable to BSWs. Hydrologic, water quality, global biogeochemical, and ecologic functions of BSWs, as well as their socioeconomic uses, appear in the profile, along with potential functional indicators, expected sensitivities of functions to fill placement or weltand drainage, andmore » potential mitigation strategies for impacts. Functional analysis separately considers ombrotrophic and minerotrophic BSWs where appropriate. Depending on trophic status, Alaska`s BSWs perform several low-magnitude hydrologic (groundwater discharge and recharge, flow regulation, and erosion control) and ecologic (nutrient export, nutrient cycling, and food-chain support) functions and several substantial water quality (sediment retention, nutrient transformation, nutrient uptake, and contaminant removal), global biogeochemical (carbon cycling and storage), and ecologic (avian and mammalian habitat) functions. BSWs also provide important socioeconomic uses: harvested of wetland-dependent fish, wildlife, and plant resources and active winter recreation.« less

  5. Influence of Humic Acid Complexation with Metal Ions on Extracellular Electron Transfer Activity.

    PubMed

    Zhou, Shungui; Chen, Shanshan; Yuan, Yong; Lu, Qin

    2015-11-23

    Humic acids (HAs) can act as electron shuttles and mediate biogeochemical cycles, thereby influencing the transformation of nutrients and environmental pollutants. HAs commonly complex with metals in the environment, but few studies have focused on how these metals affect the roles of HAs in extracellular electron transfer (EET). In this study, HA-metal (HA-M) complexes (HA-Fe, HA-Cu, and HA-Al) were prepared and characterized. The electron shuttle capacities of HA-M complexes were experimentally evaluated through microbial Fe(III) reduction, biocurrent generation, and microbial azoreduction. The results show that the electron shuttle capacities of HAs were enhanced after complexation with Fe but were weakened when using Cu or Al. Density functional theory calculations were performed to explore the structural geometry of the HA-M complexes and revealed the best binding sites of the HAs to metals and the varied charge transfer rate constants (k). The EET activity of the HA-M complexes were in the order HA-Fe > HA-Cu > HA-Al. These findings have important implications for biogeochemical redox processes given the ubiquitous nature of both HAs and various metals in the environment.

  6. Microbial activity in the marine deep biosphere: progress and prospects.

    PubMed

    Orcutt, Beth N; Larowe, Douglas E; Biddle, Jennifer F; Colwell, Frederick S; Glazer, Brian T; Reese, Brandi Kiel; Kirkpatrick, John B; Lapham, Laura L; Mills, Heath J; Sylvan, Jason B; Wankel, Scott D; Wheat, C Geoff

    2013-01-01

    The vast marine deep biosphere consists of microbial habitats within sediment, pore waters, upper basaltic crust and the fluids that circulate throughout it. A wide range of temperature, pressure, pH, and electron donor and acceptor conditions exists-all of which can combine to affect carbon and nutrient cycling and result in gradients on spatial scales ranging from millimeters to kilometers. Diverse and mostly uncharacterized microorganisms live in these habitats, and potentially play a role in mediating global scale biogeochemical processes. Quantifying the rates at which microbial activity in the subsurface occurs is a challenging endeavor, yet developing an understanding of these rates is essential to determine the impact of subsurface life on Earth's global biogeochemical cycles, and for understanding how microorganisms in these "extreme" environments survive (or even thrive). Here, we synthesize recent advances and discoveries pertaining to microbial activity in the marine deep subsurface, and we highlight topics about which there is still little understanding and suggest potential paths forward to address them. This publication is the result of a workshop held in August 2012 by the NSF-funded Center for Dark Energy Biosphere Investigations (C-DEBI) "theme team" on microbial activity (www.darkenergybiosphere.org).

  7. Microbial activity in the marine deep biosphere: progress and prospects

    PubMed Central

    Orcutt, Beth N.; LaRowe, Douglas E.; Biddle, Jennifer F.; Colwell, Frederick S.; Glazer, Brian T.; Reese, Brandi Kiel; Kirkpatrick, John B.; Lapham, Laura L.; Mills, Heath J.; Sylvan, Jason B.; Wankel, Scott D.; Wheat, C. Geoff

    2013-01-01

    The vast marine deep biosphere consists of microbial habitats within sediment, pore waters, upper basaltic crust and the fluids that circulate throughout it. A wide range of temperature, pressure, pH, and electron donor and acceptor conditions exists—all of which can combine to affect carbon and nutrient cycling and result in gradients on spatial scales ranging from millimeters to kilometers. Diverse and mostly uncharacterized microorganisms live in these habitats, and potentially play a role in mediating global scale biogeochemical processes. Quantifying the rates at which microbial activity in the subsurface occurs is a challenging endeavor, yet developing an understanding of these rates is essential to determine the impact of subsurface life on Earth's global biogeochemical cycles, and for understanding how microorganisms in these “extreme” environments survive (or even thrive). Here, we synthesize recent advances and discoveries pertaining to microbial activity in the marine deep subsurface, and we highlight topics about which there is still little understanding and suggest potential paths forward to address them. This publication is the result of a workshop held in August 2012 by the NSF-funded Center for Dark Energy Biosphere Investigations (C-DEBI) “theme team” on microbial activity (www.darkenergybiosphere.org). PMID:23874326

  8. Assessment of Arsenic Contamination of Groundwater and Health Problems in Bangladesh

    PubMed Central

    Khalequzzaman, Md.; Faruque, Fazlay S.; Mitra, Amal K.

    2005-01-01

    Excessive amounts of arsenic (As) in the groundwater in Bangladesh and neighboring states in India are a major public health problem. About 30% of the private wells in Bangladesh exhibit high concentrations of arsenic. Over half the country, 269 out of 464 administrative units, is affected. Similar problems exist in many other parts of the world, including the Unites States. This paper presents an assessment of the health hazards caused by arsenic contamination in the drinking water in Bangladesh. Four competing hypotheses, each addressing the sources, reaction mechanisms, pathways, and sinks of arsenic in groundwater, were analyzed in the context of the geologic history and land-use practices in the Bengal Basin. None of the hypotheses alone can explain the observed variability in arsenic concentration in time and space; each appears to have some validity on a local scale. Thus, it is likely that several bio-geochemical processes are active among the region’s various geologic environments, and that each contributes to the mobilization and release of arsenic. Additional research efforts will be needed to understand the relationships between underlying biogeochemical factors and the mechanisms for arsenic release in various geologic settings. PMID:16705819

  9. Microbial Community Composition and Putative Biogeochemical Functions in the Sediment and Water of Tropical Granite Quarry Lakes.

    PubMed

    Kumar, Amit; Ng, Daphne H P; Wu, Yichao; Cao, Bin

    2018-05-28

    Re-naturalized quarry lakes are important ecosystems, which support complex communities of flora and fauna. Microorganisms associated with sediment and water form the lowest trophic level in these ecosystems and drive biogeochemical cycles. A direct comparison of microbial taxa in water and sediment microbial communities is lacking, which limits our understanding of the dominant functions that are carried out by the water and sediment microbial communities in quarry lakes. In this study, using the 16S rDNA amplicon sequencing approach, we compared microbial communities in the water and sediment in two re-naturalized quarry lakes in Singapore and elucidated putative functions of the sediment and water microbial communities in driving major biogeochemical processes. The richness and diversity of microbial communities in sediments of the quarry lakes were higher than those in the water. The composition of the microbial communities in the sediments from the two quarries was highly similar to one another, while those in the water differed greatly. Although the microbial communities of the sediment and water samples shared some common members, a large number of microbial taxa (at the phylum and genus levels) were prevalent either in sediment or water alone. Our results provide valuable insights into the prevalent biogeochemical processes carried out by water and sediment microbial communities in tropical granite quarry lakes, highlighting distinct microbial processes in water and sediment that contribute to the natural purification of the resident water.

  10. The role of experimental forests and ranges in the development of ecosystem science and biogeochemical cycling research [Chapter 17

    Treesearch

    James M. Vose; Wayne T. Swank; Mary Beth Adams; Devendra Amatya; John Campbell; Sherri Johnson; Frederick J. Swanson; Randy Kolka; Ariel E. Lugo; Robert Musselman; Charles Rhoades

    2014-01-01

    Forest Service watershed-based Experimental Forests and Ranges (EFRs) have significantly advanced scientific knowledge on ecosystem structure and function through long-term monitoring and experimental research on hydrologic and biogeochemical cycling processes. Research conducted in the 1940s and 1950s began as “classic” paired watershed studies. The emergence of the...

  11. Native Mussels Alter Nutrient Availability and Reduce Blue ...

    EPA Pesticide Factsheets

    Nutrient cycling is a key process that ties all organisms together. This is especially apparent in stream environments in which nutrients are taken up readily and cycled through the system in a downstream trajectory. Ecological stoichiometry predicts that biogeochemical cycles of different elements are interdependent because the organisms that drive these cycles require fixed ratios of nutrients. There is growing recognition that animals play an important role in biogeochemical cycling across ecosystems. In particular, dense aggregations of consumers can create biogeochemical hotspots in aquatic ecosystems via nutrient translocation. We predicted that filter-feeding freshwater mussels, which occur as speciose, high biomass aggregates, would create biogeochemical hotspots in streams by altering nutrient limitation and algal dynamics. In a field study, we manipulated nitrogen and phosphorus using nutrient-diffusing substrates in areas with high and low mussel abundance, recorded algal growth and community composition, and determined in situ mussel excretion stoichiometry at 18 sites in 3 rivers (Kiamichi, Little, and Mt. Fork rivers, southcentral U.S.). Our results indicate that mussels greatly influence ecosystem processes by modifying the nutrients that limit primary productivity. Sites without mussels were N-limited with ~26% higher abundances of N-fixing blue-green algae, while sites with high mussel densities were co-limited (N and P) and dominated by diatoms

  12. Global Analysis, Interpretation and Modelling: An Earth Systems Modelling Program

    NASA Technical Reports Server (NTRS)

    Moore, Berrien, III; Sahagian, Dork

    1997-01-01

    The Goal of the GAIM is: To advance the study of the coupled dynamics of the Earth system using as tools both data and models; to develop a strategy for the rapid development, evaluation, and application of comprehensive prognostic models of the Global Biogeochemical Subsystem which could eventually be linked with models of the Physical-Climate Subsystem; to propose, promote, and facilitate experiments with existing models or by linking subcomponent models, especially those associated with IGBP Core Projects and with WCRP efforts. Such experiments would be focused upon resolving interface issues and questions associated with developing an understanding of the prognostic behavior of key processes; to clarify key scientific issues facing the development of Global Biogeochemical Models and the coupling of these models to General Circulation Models; to assist the Intergovernmental Panel on Climate Change (IPCC) process by conducting timely studies that focus upon elucidating important unresolved scientific issues associated with the changing biogeochemical cycles of the planet and upon the role of the biosphere in the physical-climate subsystem, particularly its role in the global hydrological cycle; and to advise the SC-IGBP on progress in developing comprehensive Global Biogeochemical Models and to maintain scientific liaison with the WCRP Steering Group on Global Climate Modelling.

  13. Hyporheic zone as a bioreactor: sediment heterogeneity influencing biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Perujo, Nuria; Romani, Anna M.; Sanchez-Vila, Xavier

    2017-04-01

    Mediterranean fluvial systems are characterized by frequent periods of low flow or even drought. During low flow periods, water from wastewater treatment plants (WWTPs) is proportionally large in fluvial systems. River water might be vertically transported through the hyporheic zone, and then porous medium acts as a complementary treatment system since, as water infiltrates, a suite of biogeochemical processes occurs. Subsurface sediment heterogeneity plays an important role since it influences the interstitial fluxes of the medium and drives biomass growing, determining biogeochemical reactions. In this study, WWTP water was continuously infiltrated for 3 months through two porous medium tanks: one consisting of 40 cm of fine sediment (homogeneous); and another comprised of two layers of different grain size sediments (heterogeneous), 20 cm of coarse sediment in the upper part and 20 cm of fine one in the bottom. Several hydrological, physicochemical and biological parameters were measured periodically (weekly at the start of the experiment and biweekly at the end). Analysed parameters include dissolved nitrogen, phosphorus, organic carbon, and oxygen all measured at the surface, and at 5, 20 and 40 cm depth. Variations in hydraulic conductivity with time were evaluated. Sediment samples were also analysed at three depths (surface, 20 and 40 cm) to determine bacterial density, chlorophyll content, extracellular polymeric substances, and biofilm function (extracellular enzyme activities and carbon substrate utilization profiles). Preliminary results suggest hydraulic conductivity to be the main driver of the differences in the biogeochemical processes occurring in the subsurface. At the heterogeneous tank, a low nutrient reduction throughout the whole medium is measured. In this medium, high hydraulic conductivity allows for a large amount of infiltrating water, but with a small residence time. Since some biological processes are largely time-dependent, small water residence time results in low nutrient reduction. Moreover, high nitrification and low ammonium concentration in the interface of the two grain-size layers are measured, probably related to high dissolved oxygen concentration at the coarse-fine sediment interface, further promoting accumulation of bacteria and algae. In contrast, the homogeneous tank shows low dissolved oxygen values and high denitrification in depth which could be related to lower overall hydraulic conductivity, as compared to the heterogeneous tank. The preliminary analysis of our results indicates a key role of hydraulic conductivity on biogeochemical processes in the porous medium but, at the same time that it is strongly interacting with sediment grain-size distribution and the development of biofilm. The final scope of this study is to know the interactions between physicochemical and biological components in sediments in order to understand in detail the biogeochemical processes occurring.

  14. Statistical modelling of variability in sediment-water nutrient and oxygen fluxes

    NASA Astrophysics Data System (ADS)

    Serpetti, Natalia; Witte, Ursula; Heath, Michael

    2016-06-01

    Organic detritus entering, or produced, in the marine environment is re-mineralised to inorganic nutrient in the seafloor sediments. The flux of dissolved inorganic nutrient between the sediment and overlying water column is a key process in the marine ecosystem, which binds the biogeochemical sub-system to the living food web. These fluxes are potentially affected by a wide range of physical and biological factors and disentangling these is a significant challenge. Here we develop a set of General Additive Models (GAM) of nitrate, nitrite, ammonia, phosphate, silicate and oxygen fluxes, based on a year-long campaign of field measurements off the north-east coast of Scotland. We show that sediment grain size, turbidity due to sediment re-suspension, temperature, and biogenic matter content were the key factors affecting oxygen consumption, ammonia and silicate fluxes. However, phosphate fluxes were only related to suspended sediment concentrations, whilst nitrate fluxes showed no clear relationship to any of the expected drivers of change, probably due to the effects of denitrification. Our analyses show that the stoichiometry of nutrient regeneration in the ecosystem is not necessarily constant and may be affected by combinations of processes. We anticipate that our statistical modelling results will form the basis for testing the functionality of process-based mathematical models of whole-sediment biogeochemistry.

  15. High resolution modelling of the biogeochemical processes in the eutrophic Loire River (France)

    NASA Astrophysics Data System (ADS)

    Minaudo, Camille; Moatar, Florentina; Curie, Florence; Gassama, Nathalie; Billen, Gilles

    2016-04-01

    A biogeochemical model was developed, coupling a physically based water temperature model (T-NET) with a semi-mechanistic biogeochemical model (RIVE, used in ProSe and Riverstrahler models) in order to assess at a fine temporal and spatial resolution the biogeochemical processes in the eutrophic Middle Loire hydrosystem (≈10 000 km², 3361 river segments). The code itself allows parallelized computing, which decreased greatly the calculation time (5 hours for simulating 3 years hourly). We conducted a daily survey during the period 2012-2014 at 2 sampling stations located in the Middle Loire of nutrients, chlorophyll pigments, phytoplankton and physic-chemical variables. This database was used as both input data (upstream Loire boundary) and validation data of the model (basin outlet). Diffuse and non-point sources were assessed based on a land cover analysis and WWTP datasets. The results appeared very sensible to the coefficients governing the dynamic of suspended solids and of phosphorus (sorption/desorption processes) within the model and some parameters needed to be estimated numerically. Both the Lagrangian point of view and fluxes budgets at the seasonal and event-based scale evidenced the biogeochemical functioning of the Loire River. Low discharge levels set up favorable physical conditions for phytoplankton growth (long water travel time, limited water depth, suspended particles sedimentation). Conversely, higher discharge levels highly limited the phytoplankton biomass (dilution of the colony, washing-out, limited travel time, remobilization of suspended sediments increasing turbidity), and most biogeochemical species were basically transferred downstream. When hydrological conditions remained favorable for phytoplankton development, P-availability was the critical factor. However, the model evidenced that most of the P in summer was recycled within the water body: on one hand it was assimilated by the algae biomass, and on the other hand it was released by mineralization of the dead cells. The high resolution of the model allowed understanding some fine temporal scale events, especially during some minor flood events occurring in summer. Paradoxically such events played two opposite roles: first it was disturbing the phytoplankton by diluting the biomass and remobilizing suspended sediments; then, it indirectly re-supplied the system with more available phosphorus, mainly because the washed-out phytoplankton could not assimilate the P available upstream. The model also pointed out the significant role played by Corbicula invasive clams in the river biogeochemical functioning, substantially reducing the phytoplankton biomass, and thus impacting the nutrients, oxygen and carbon cycles. However, the temporal and spatial distribution of Corbicula was questioned, and highlighted the need for data collection on this topic.

  16. Deterministic influences exceed dispersal effects on hydrologically-connected microbiomes: Deterministic assembly of hyporheic microbiomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Emily B.; Crump, Alex R.; Resch, Charles T.

    2017-03-28

    Subsurface zones of groundwater and surface water mixing (hyporheic zones) are regions of enhanced rates of biogeochemical cycling, yet ecological processes governing hyporheic microbiome composition and function through space and time remain unknown. We sampled attached and planktonic microbiomes in the Columbia River hyporheic zone across seasonal hydrologic change, and employed statistical null models to infer mechanisms generating temporal changes in microbiomes within three hydrologically-connected, physicochemically-distinct geographic zones (inland, nearshore, river). We reveal that microbiomes remain dissimilar through time across all zones and habitat types (attached vs. planktonic) and that deterministic assembly processes regulate microbiome composition in all data subsets.more » The consistent presence of heterotrophic taxa and members of the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) superphylum nonetheless suggests common selective pressures for physiologies represented in these groups. Further, co-occurrence networks were used to provide insight into taxa most affected by deterministic assembly processes. We identified network clusters to represent groups of organisms that correlated with seasonal and physicochemical change. Extended network analyses identified keystone taxa within each cluster that we propose are central in microbiome composition and function. Finally, the abundance of one network cluster of nearshore organisms exhibited a seasonal shift from heterotrophic to autotrophic metabolisms and correlated with microbial metabolism, possibly indicating an ecological role for these organisms as foundational species in driving biogeochemical reactions within the hyporheic zone. Taken together, our research demonstrates a predominant role for deterministic assembly across highly-connected environments and provides insight into niche dynamics associated with seasonal changes in hyporheic microbiome composition and metabolism.« less

  17. Land-use controls on sources and processing of nitrate in small watersheds: Insights from dual isotopic analysis

    USGS Publications Warehouse

    Barnes, R.T.; Raymond, P.A.

    2010-01-01

    Studies have repeatedly shown that agricultural and urban areas export considerably more nitrogen to streams than forested counterparts, yet it is difficult to identify and quantify nitrogen sources to streams due to complications associated with terrestrial and in-stream biogeochemical processes. In this study, we used the isotopic composition of nitrate (??15N-NO3- and ??18O- NO3-) in conjunction with a simple numerical model to examine the spatial and temporal variability of nitrate (NO3-) export across a land-use gradient and how agricultural and urban development affects net removal mechanisms. In an effort to isolate the effects of land use, we chose small headwater systems in close proximity to each other, limiting the variation in geology, surficial materials, and climate between sites. The ??15N and ??18Oof stream NO 3- varied significantly between urban, agricultural, and forested watersheds, indicating that nitrogen sources are the primary determinant of the ??15N-NO3-, while the ??18O-NO3- was found to reflect biogeochemical processes. The greatest NO3- concentrations corresponded with the highest stream ??15N-NO3- values due to the enriched nature of two dominant anthropogenic sources, septic and manure, within the urban and agricultural watersheds, respectively. On average, net removal of the available NO3- pool within urban and agricultural catchments was estimated at 45%. The variation in the estimated net removal of NO3- from developed watersheds was related to both drainage area and the availability of organic carbon. The determination of differentiated isotopic land-use signatures and dominant seasonal mechanisms illustrates the usefulness of this approach in examining the sources and processing of excess nitrogen within headwater catchments. ?? 2010 by the Ecological Society of America.

  18. Understanding and Projecting Climate and Human Impacts on Terrestrial-Coastal Carbon and Nutrient Fluxes

    NASA Astrophysics Data System (ADS)

    Lohrenz, S. E.; Cai, W. J.; Tian, H.; He, R.; Fennel, K.

    2017-12-01

    Changing climate and land use practices have the potential to dramatically alter coupled hydrologic-biogeochemical processes and associated movement of water, carbon and nutrients through various terrestrial reservoirs into rivers, estuaries, and coastal ocean waters. Consequences of climate- and land use-related changes will be particularly evident in large river basins and their associated coastal outflow regions. Here, we describe a NASA Carbon Monitoring System project that employs an integrated suite of models in conjunction with remotely sensed as well as targeted in situ observations with the objectives of describing processes controlling fluxes on land and their coupling to riverine, estuarine and ocean ecosystems. The nature of our approach, coupling models of terrestrial and ocean ecosystem dynamics and associated carbon processes, allows for assessment of how societal and human-related land use, land use change and forestry and climate-related change affect terrestrial carbon transport as well as export of materials through watersheds to the coastal margins. Our objectives include the following: 1) Provide representation of carbon processes in the terrestrial ecosystem to understand how changes in land use and climatic conditions influence the export of materials to the coastal ocean, 2) Couple the terrestrial exports of carbon, nutrients and freshwater to a coastal biogeochemical model and examine how different climate and land use scenarios influence fluxes across the land-ocean interface, and 3) Project future changes under different scenarios of climate and human impact, and support user needs related to carbon management and other activities (e.g., water quality, hypoxia, ocean acidification). This research is providing information that will contribute to determining an overall carbon balance in North America as well as describing and predicting how human- and climate-related changes impact coastal water quality including possible effects of coastal eutrophication and hypoxia.

  19. Cyclic biogeochemical processes and nitrogen fate beneath a subtropical stormwater infiltration basin

    USGS Publications Warehouse

    O'Reilly, Andrew M.; Chang, Ni-Bin; Wanielista, Martin P.

    2012-01-01

    A stormwater infiltration basin in north–central Florida, USA, was monitored from 2007 through 2008 to identify subsurface biogeochemical processes, with emphasis on N cycling, under the highly variable hydrologic conditions common in humid, subtropical climates. Cyclic variations in biogeochemical processes generally coincided with wet and dry hydrologic conditions. Oxidizing conditions in the subsurface persisted for about one month or less at the beginning of wet periods with dissolved O2 and NO3- showing similar temporal patterns. Reducing conditions in the subsurface evolved during prolonged flooding of the basin. At about the same time O2 and NO3- reduction concluded, Mn, Fe and SO42- reduction began, with the onset of methanogenesis one month later. Reducing conditions persisted up to six months, continuing into subsequent dry periods until the next major oxidizing infiltration event. Evidence of denitrification in shallow groundwater at the site is supported by median NO3-–N less than 0.016 mg L-1, excess N2 up to 3 mg L-1 progressively enriched in δ15N during prolonged basin flooding, and isotopically heavy δ15N and δ18O of NO3- (up to 25‰ and 15‰, respectively). Isotopic enrichment of newly infiltrated stormwater suggests denitrification was partially completed within two days. Soil and water chemistry data suggest that a biogeochemically active zone exists in the upper 1.4 m of soil, where organic carbon was the likely electron donor supplied by organic matter in soil solids or dissolved in infiltrating stormwater. The cyclic nature of reducing conditions effectively controlled the N cycle, switching N fate beneath the basin from NO3- leaching to reduction in the shallow saturated zone. Results can inform design of functionalized soil amendments that could replace the native soil in a stormwater infiltration basin and mitigate potential NO3- leaching to groundwater by replicating the biogeochemical conditions under the observed basin.

  20. Abundance and Distribution of Geographically Isolated Wetlands across the Conterminous United States

    EPA Science Inventory

    Geographically isolated wetlands (GIWS) are important landscape elements involved in hydrologic, biogeochemical, and biological functioning. Their influence, under certain circumstances, can significantly affect other waters of the Unites States. However, there have been no data-...

  1. Biogeochemical Barriers: Redox Behavior of Metals and Metalloids

    EPA Science Inventory

    Redox conditions and pH are arguably the most important geochemical parameters that control contaminant transport and fate in groundwater systems. Oxidation-reduction (redox) reactions mediate the chemical behavior of both inorganic and organic chemical constituents by affecting...

  2. Diurnal variability in carbon and nitrogen pools within Chesapeake Bay and northern Gulf of Mexico: implications for future ocean color satellite sensors

    NASA Astrophysics Data System (ADS)

    Mannino, A.; Novak, M. G.; Tzortziou, M.; Salisbury, J.

    2016-02-01

    Relative to their areal extent, estuaries and coastal ocean ecosystems contribute disproportionately more to global biogeochemical cycling of carbon, nitrogen and other elements compared to the open ocean. Applying ocean color satellite data to study biological and biogeochemical processes within coastal ecosystems is challenging due to the complex mixtures of aquatic constituents derived from terrestrial, anthropogenic, and marine sources, human-impacted atmospheric properties, presence of clouds during satellite overpass, fine-scale spatial gradients, and time-varying processes on diurnal scales that cannot be resolved with current sensors. On diurnal scales, biological, photochemical, and biogeochemical processes are regulated by the variation in solar radiation. Other physical factors, such as tides, river discharge, estuarine and coastal ocean circulation, wind-driven mixing, etc., impart further variability on biological and biogeochemical processes on diurnal to multi-day time scales. Efforts to determine the temporal frequency required from a NASA GEO-CAPE ocean color satellite sensor to discern diurnal variability C and N stocks, fluxes and productivity culminated in field campaigns in the Chesapeake Bay and northern Gulf of Mexico. Near-surface drogues were released and tracked in quasi-lagrangian space to monitor hourly changes in community production, C and N stocks, and optical properties. While only small diurnal changes were observed in dissolved organic carbon (DOC) and colored dissolved organic matter (CDOM) absorption in Chesapeake Bay, substantial variation in particulate organic carbon (POC) and nitrogen (PN), chlorophyll-a, and inorganic nitrogen (DIN) were measured. Similar or greater diurnal changes in POC, PN, chlorophyll-a and DIN were found in Gulf of Mexico nearshore and offshore sites. These results suggest that satellite observations at hourly frequency are desirable to capture diurnal variability in carbon and nitrogen stocks, fluxes and productivity within coastal ecosystems.

  3. Microfluidic Experiments Studying Pore Scale Interactions of Microbes and Geochemistry

    NASA Astrophysics Data System (ADS)

    Chen, M.; Kocar, B. D.

    2016-12-01

    Understanding how physical phenomena, chemical reactions, and microbial behavior interact at the pore-scale is crucial to understanding larger scale trends in groundwater chemistry. Recent studies illustrate the utility of microfluidic devices for illuminating pore-scale physical-biogeochemical processes and their control(s) on the cycling of iron, uranium, and other important elements 1-3. These experimental systems are ideal for examining geochemical reactions mediated by microbes, which include processes governed by complex biological phenomenon (e.g. biofilm formation, etc.)4. We present results of microfluidic experiments using a model metal reducing bacteria and varying pore geometries, exploring the limitations of the microorganisms' ability to access tight pore spaces, and examining coupled biogeochemical-physical controls on the cycling of redox sensitive metals. Experimental results will provide an enhanced understanding of coupled physical-biogeochemical processes transpiring at the pore-scale, and will constrain and compliment continuum models used to predict and describe the subsurface cycling of redox-sensitive elements5. 1. Vrionis, H. A. et al. Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site. Appl. Environ. Microbiol. 71, 6308-6318 (2005). 2. Pearce, C. I. et al. Pore-scale characterization of biogeochemical controls on iron and uranium speciation under flow conditions. Environ. Sci. Technol. 46, 7992-8000 (2012). 3. Zhang, C., Liu, C. & Shi, Z. Micromodel investigation of transport effect on the kinetics of reductive dissolution of hematite. Environ. Sci. Technol. 47, 4131-4139 (2013). 4. Ginn, T. R. et al. Processes in microbial transport in the natural subsurface. Adv. Water Resour. 25, 1017-1042 (2002). 5. Scheibe, T. D. et al. Coupling a genome-scale metabolic model with a reactive transport model to describe in situ uranium bioremediation. Microb. Biotechnol. 2, 274-286 (2009).

  4. Validation of an intermediate-complexity model for simulating marine biogeochemistry under anoxic conditions in the modern Black Sea

    NASA Astrophysics Data System (ADS)

    Romaniello, Stephen J.; Derry, Louis A.

    2010-08-01

    We test the ability of a new 1-D intermediate-complexity box model (ICBM) that includes process-based C, N, P, O, and S biogeochemistry to simulate profiles and fluxes of biogeochemically reactive species across a wide range of ocean redox states. The ICBM was developed to simulate whole ocean processes for paleoceanographic applications and has been tested with data from the modern global ocean. Here we adapt the circulation submodel of the ICBM to simulate water mass exchange and eddy diffusion processes in the Black Sea but make only very minor changes to the biogeochemical submodel. We force the model with estimated natural and anthropogenic inputs of tracers and nutrients to the Black Sea and compare the results of the simulations to modern observations. Ventilation of the Black Sea is modeled by depth-dependent entrainment of Cold Intermediate Layer water into Bosphorus plume water and subsequent intrusion into deep layers. The simulated profiles of circulation tracers θ, salinity, CFC-12, and radiocarbon agree well with available data, suggesting that the model does a reasonable job of representing physical exchange. Vertical profiles of biogeochemically active components are in good overall agreement with observations. The lack of trace metal (Mn and Fe) cycling in the model results in some discrepancies between the simulated profiles and observation across the suboxic zone; however, the overall redox balance is not sensitive to this difference. We compare modeled basin-wide biogeochemical fluxes to available estimates, but in a number of cases uncertainties in modern budgets limit our ability to test the model rigorously. In agreement with earlier work we find that fixed N losses via thiodenitrification are likely a major pathway in the Black Sea N cycle. Overall, the same biogeochemical submodel used to simulate the modern global ocean appears to perform well in simulating Black Sea processes without requiring significant modification. The ability of a single model to perform across a wide range of redox states is an important prerequisite for applying the ICBM to deep time paleoceanographic problems. The model source code is available as MATLAB™ 7 m-files provided as auxiliary material.

  5. Divergence in plant and microbial allocation strategies explains continental patterns in microbial allocation and biogeochemical fluxes.

    PubMed

    Averill, Colin

    2014-10-01

    Allocation trade-offs shape ecological and biogeochemical phenomena at local to global scale. Plant allocation strategies drive major changes in ecosystem carbon cycling. Microbial allocation to enzymes that decompose carbon vs. organic nutrients may similarly affect ecosystem carbon cycling. Current solutions to this allocation problem prioritise stoichiometric tradeoffs implemented in plant ecology. These solutions may not maximise microbial growth and fitness under all conditions, because organic nutrients are also a significant carbon resource for microbes. I created multiple allocation frameworks and simulated microbial growth using a microbial explicit biogeochemical model. I demonstrate that prioritising stoichiometric trade-offs does not optimise microbial allocation, while exploiting organic nutrients as carbon resources does. Analysis of continental-scale enzyme data supports the allocation patterns predicted by this framework, and modelling suggests large deviations in soil C loss based on which strategy is implemented. Therefore, understanding microbial allocation strategies will likely improve our understanding of carbon cycling and climate. © 2014 John Wiley & Sons Ltd/CNRS.

  6. Microbial Energetics Beneath the Taylor Glacier, Antarctica

    NASA Astrophysics Data System (ADS)

    Mikucki, J. A.; Turchyn, A. V.; Farquhar, J.; Priscu, J. C.; Schrag, D. P.; Pearson, A.

    2007-12-01

    Subglacial microbiology is controlled by glacier hydrology, bedrock lithology, and the preglacial ecosystem. These factors can all affect metabolic function by influencing electron acceptor and donor availability in the subglacial setting leaving biogeochemical signatures that can be used to determine ecosystem processes. Blood Falls, an iron-rich, episodic subglacial outflow from the Taylor Glacier in the McMurdo Dry Valleys Antarctica provides an example of how microbial community structure and function can provide insight into subglacial hydrology. This subglacial outflow contains cryoconcentrated, Pliocene-age seawater salts that pooled in the upper Taylor Valley and was subsequently covered by the advance of the Taylor Glacier. Biogeochemical measurements, culture-based techniques, and genomic analysis were used to characterize microbes and chemistry associated with the subglacial outflow. The isotopic composition of important geochemical substrates (i.e., δ34Ssulfate, Δ33Ssulfate, δ18Osulfate, δ18Owater, Δ14SDIC) were also measured to provide more detail on subglacial microbial energetics. Typically, subglacial systems, when driven to anoxia by the hydrolysis of organic matter, will follow a continuum of redox chemistries utilizing electron acceptors with decreasing reduction potential (e.g., Fe (III), sulfate, CO2). Our data provide no evidence for sulfate reduction below the Taylor Glacier despite high dissolved organic carbon (450 μM C) and measurable metabolic activity. We contend that, in the case of the Taylor Glacier, the in situ bioenergetic reduction potential has been 'short-circuited' at Fe(III)-reduction and excludes sulfate reduction and methanogenesis. Given the length of time that this marine system has been isolated from phototrophic production (~2 Mya) the ability to degrade and consume increasingly recalcitrant organic carbon is likely an important component to the observed redox chemistry. Our work indicates that glacier hydrology imparts strong feedbacks on the availability of oxygen as an electron acceptor and may be a robust regulator of the in situ metabolism. This biogeochemical regulation in turn affects the chemical nature of subglacial efflux. Blood Falls demonstrates that measurements of geochemistry and microbial diversity can support models of subglacial hydrology.

  7. Tropical rain forest biogeochemistry in a warmer world: initial results from a novel warming experiment in a Puerto Rico tropical forest

    NASA Astrophysics Data System (ADS)

    Reed, S.; Cavaleri, M. A.; Alonso-Rodríguez, A. M.; Kimball, B. A.; Wood, T. E.

    2016-12-01

    Tropical forests represent one of the planet's most active biogeochemical engines. They account for the dominant proportion of Earth's live terrestrial plant biomass, nearly one-third of all soil carbon, and exchange more CO2 with the atmosphere than any other biome. In the coming decades, the tropics will experience extraordinary changes in temperature, and our understanding of how this warming will affect biogeochemical cycling remains notably poor. Given the large amounts of carbon tropical forests store and cycle, it is no surprise that our limited ability to characterize tropical forest responses to climate change may represent the largest hurdle in accurately predicting Earth's future climate. Here we describe initial results from the world's first tropical forest field warming experiment, where forest understory plants and soils are being warmed 4 °C above ambient temperatures. This Tropical Responses to Altered Climate Experiment (TRACE) was established in a rain forest in Puerto Rico to investigate the effects of increased temperature on key biological processes that control tropical forest carbon cycling, and to establish the steps that need to be taken to resolve the uncertainties surrounding tropical forest responses to warming. In this talk we will describe the experimental design, as well as the wide range of measurements being conducted. We will also present results from the initial phase of warming, including data on how increased temperatures from infrared lamp warming affected soil moisture, soil respiration rates, a suite of carbon pools, soil microbial biomass, nutrient availability, and the exchange of elements between leaf litter and soil. These data represent a first look into tropical rain forest responses to an experimentally-warmed climate in the field, and provide exciting insight into the non-linear ways tropical biogeochemical cycles respond to change. Overall, we strive to improve Earth System Model parameterization of the pools and fluxes of water, carbon, and nutrients in tropical forested ecosystems and the data shown will highlight how these cycles are coupled and independently altered by warming.

  8. Isotope biogeochemical assessment of natural biodegradation processes in open cast pit mining landscapes

    NASA Astrophysics Data System (ADS)

    Jeschke, Christina; Knöller, Kay; Koschorreck, Matthias; Ussath, Maria; Hoth, Nils

    2014-05-01

    In Germany, a major share of the energy production is based on the burning of lignite from open cast pit mines. The remediation and re-cultivation of the former mining areas in the Lusatian and Central German lignite mining district is an enormous technical and economical challenge. After mine closures, the surrounding landscapes are threatened by acid mine drainage (AMD), i.e. the acidification and mineralization of rising groundwater with metals and inorganic contaminants. The high content of sulfur (sulfuric acid, sulfate), nitrogen (ammonium) and iron compounds (iron-hydroxides) deteriorates the groundwater quality and decelerates sustainable development of tourism in (former) mining landscapes. Natural biodegradation or attenuation (NA) processes of inorganic contaminants are considered to be a technically low impact and an economically beneficial solution. The investigations of the stable isotope compositions of compounds involved in NA processes helps clarify the dynamics of natural degradation and provides specific informations on retention processes of sulfate and nitrogen-compounds in mine dump water, mine dump sediment, and residual pit lakes. In an active mine dump we investigated zones where the process of bacterial sulfate reduction, as one very important NA process, takes place and how NA can be enhanced by injecting reactive substrates. Stable isotopes signatures of sulfur and nitrogen components were examined and evaluated in concert with hydrogeochemical data. In addition, we delineated the sources of ammonium pollution in mine dump sediments and investigated nitrification by 15N-labeling techniques to calculate the limit of the conversion of harmful ammonium to nitrate in residual mining lakes. Ultimately, we provided an isotope biogeochemical assessment of natural attenuation of sulfate and ammonium at mine dump sites and mining lakes. Also, we estimated the risk potential for water in different compartments of the hydrological system. In laboratory experiments, we tested reactive materials that may speed up the process of bacterial sulfate reduction. In in-situ experiments, we quantified nitrification rates. Based on the results, we are able to suggest promising technical measures that enhance natural attenuation processes at mine dump site and in mining lakes. The natural water cycle in lignite mining landscapes is heavily impacted by human activities. Basically, nature is capable of cleaning itself to a certain extent after mining activities stopped. However, it is our responsibility to support biogeochemical processes to make them more efficient and more sustainable. Isotopic monitoring proved to be an excellent tool for assessing the relevance and performance of different re-cultivation measures for a positive long-term development of the water quality in large-scale aquatic systems affected by the impact of lignite mining.

  9. Natural and anthropogenic decadal pH decrease in the North Atlantic and Mediterranean Sea waters

    NASA Astrophysics Data System (ADS)

    Huertas, E.; Flecha, S.; Murata, A.; Garcia Lafuente, J.; Pérez, F. F.

    2017-12-01

    Seawater pH is undergoing a decreasing trend due to atmospheric CO2 absorption, a phenomenon known as Ocean Acidification (OA) that has been documented in different ocean regions. Certain marine basins are more vulnerable to OA, such as the Mediterranean Sea (MS), which is attributed to particular water circulation processes and biogeochemical features. Considering previous studies on OA in Mediterranean and Atlantic water masses, the main aim of this work was to identify for the first time the natural and anthropogenic contribution to decadal pH variations. Therefore, an archetypal analysis was applied to pH measurements and other biogeochemical variables collected in the Strait of Gibraltar during 10 years. Our results reveal that the biological component of the pH change in the Western Mediterranean Deep Water (WMDW) (ΔpHWMDW) represents around 56% of the total decadal pH decrease observed, highlighting the relevance of the remineralization occurring in the Alboran basin, where the WMDW resides before leaving the MS. On the other hand, neither natural nor anthropogenic forcing on the pH change in the Levantine Intermediate Water (ΔpHLIW) was detected, as pH variation was negligible. As for the North Atlantic Central Water (NACW), atmospheric CO2 uptake was responsible of 58% of the ΔpHNACW, likely related to permanent contact with the atmosphere. Additionally, estimations of the approximated ages of the NACW, LIW and WMDW in the SG of about 8, 34 and 32 years respectively have been obtained. Our results show that Mediterranean waters undergo changes in their biogeochemical characteristics during transit through the SG and gives insights on the main mechanisms affecting pH variations occurring from their formation sites to the SG.

  10. Contribution of natural terrestrial sources to the atmospheric chloroform budget

    NASA Astrophysics Data System (ADS)

    Rhew, R. C.; Abel, T.; Pan, D.; Whelan, M.

    2008-12-01

    Chloroform (trichloromethane, CHCl3) is the second largest carrier of natural chlorine in the troposphere after methyl chloride, contributing to the reactive chlorine burden in the troposphere and to ozone destruction in the stratosphere. Our understanding of the biogeochemical cycling of atmospheric CHCl3 has undergone major adjustments recently, including the quantification of the total atmospheric burden of this compound, the estimated global source and sink strengths, and the relative contributions of anthropogenic versus natural contributions. Numerous natural terrestrial sources have been identified, including temperate peatlands, Arctic tundra, termite mounds, salt marshes, grasslands, forests and woodlands. However, the wide variability of fluxes within each ecosystem has complicated efforts to quantify the overall terrestrial source. In addition, the environmental and biogeochemical controls remain largely unknown. We shall present a comparison of recent CHCl3 flux measurements that cover a range of biome types and climatic conditions. To address within-biome variability, flux measurements from the Arctic tundra and temperate grasslands will be compared to common environmental parameters (e.g., temperature, soil moisture, solar insolation) and other trace gas fluxes (CH3Cl, CH4, CCl4). The generally poor correlations demonstrate that the variability of CHCl3 emissions may be affected by site-specific parameters that are not currently measured or by drastic changes in hydrologic conditions. Similar patterns are observed in laboratory incubations of tundra peat and grassland soils. We explore the possibility that the humification of plant material, which has been shown to produce organochlorine compounds through the chlorination of organic matter, may contribute to CHCl3 emissions. If this link exists, then CHCl3 production could potentially act as a proxy for organic matter degradation and carbon sequestration, essential biogeochemical and ecosystem processes.

  11. Biotic and Human Vulnerability to Projected Changes in Ocean Biogeochemistry over the 21st Century

    PubMed Central

    Mora, Camilo; Wei, Chih-Lin; Rollo, Audrey; Amaro, Teresa; Baco, Amy R.; Billett, David; Bopp, Laurent; Chen, Qi; Collier, Mark; Danovaro, Roberto; Gooday, Andrew J.; Grupe, Benjamin M.; Halloran, Paul R.; Ingels, Jeroen; Jones, Daniel O. B.; Levin, Lisa A.; Nakano, Hideyuki; Norling, Karl; Ramirez-Llodra, Eva; Rex, Michael; Ruhl, Henry A.; Smith, Craig R.; Sweetman, Andrew K.; Thurber, Andrew R.; Tjiputra, Jerry F.; Usseglio, Paolo; Watling, Les; Wu, Tongwen; Yasuhara, Moriaki

    2013-01-01

    Ongoing greenhouse gas emissions can modify climate processes and induce shifts in ocean temperature, pH, oxygen concentration, and productivity, which in turn could alter biological and social systems. Here, we provide a synoptic global assessment of the simultaneous changes in future ocean biogeochemical variables over marine biota and their broader implications for people. We analyzed modern Earth System Models forced by greenhouse gas concentration pathways until 2100 and showed that the entire world's ocean surface will be simultaneously impacted by varying intensities of ocean warming, acidification, oxygen depletion, or shortfalls in productivity. In contrast, only a small fraction of the world's ocean surface, mostly in polar regions, will experience increased oxygenation and productivity, while almost nowhere will there be ocean cooling or pH elevation. We compiled the global distribution of 32 marine habitats and biodiversity hotspots and found that they would all experience simultaneous exposure to changes in multiple biogeochemical variables. This superposition highlights the high risk for synergistic ecosystem responses, the suite of physiological adaptations needed to cope with future climate change, and the potential for reorganization of global biodiversity patterns. If co-occurring biogeochemical changes influence the delivery of ocean goods and services, then they could also have a considerable effect on human welfare. Approximately 470 to 870 million of the poorest people in the world rely heavily on the ocean for food, jobs, and revenues and live in countries that will be most affected by simultaneous changes in ocean biogeochemistry. These results highlight the high risk of degradation of marine ecosystems and associated human hardship expected in a future following current trends in anthropogenic greenhouse gas emissions. PMID:24143135

  12. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century.

    PubMed

    Mora, Camilo; Wei, Chih-Lin; Rollo, Audrey; Amaro, Teresa; Baco, Amy R; Billett, David; Bopp, Laurent; Chen, Qi; Collier, Mark; Danovaro, Roberto; Gooday, Andrew J; Grupe, Benjamin M; Halloran, Paul R; Ingels, Jeroen; Jones, Daniel O B; Levin, Lisa A; Nakano, Hideyuki; Norling, Karl; Ramirez-Llodra, Eva; Rex, Michael; Ruhl, Henry A; Smith, Craig R; Sweetman, Andrew K; Thurber, Andrew R; Tjiputra, Jerry F; Usseglio, Paolo; Watling, Les; Wu, Tongwen; Yasuhara, Moriaki

    2013-10-01

    Ongoing greenhouse gas emissions can modify climate processes and induce shifts in ocean temperature, pH, oxygen concentration, and productivity, which in turn could alter biological and social systems. Here, we provide a synoptic global assessment of the simultaneous changes in future ocean biogeochemical variables over marine biota and their broader implications for people. We analyzed modern Earth System Models forced by greenhouse gas concentration pathways until 2100 and showed that the entire world's ocean surface will be simultaneously impacted by varying intensities of ocean warming, acidification, oxygen depletion, or shortfalls in productivity. In contrast, only a small fraction of the world's ocean surface, mostly in polar regions, will experience increased oxygenation and productivity, while almost nowhere will there be ocean cooling or pH elevation. We compiled the global distribution of 32 marine habitats and biodiversity hotspots and found that they would all experience simultaneous exposure to changes in multiple biogeochemical variables. This superposition highlights the high risk for synergistic ecosystem responses, the suite of physiological adaptations needed to cope with future climate change, and the potential for reorganization of global biodiversity patterns. If co-occurring biogeochemical changes influence the delivery of ocean goods and services, then they could also have a considerable effect on human welfare. Approximately 470 to 870 million of the poorest people in the world rely heavily on the ocean for food, jobs, and revenues and live in countries that will be most affected by simultaneous changes in ocean biogeochemistry. These results highlight the high risk of degradation of marine ecosystems and associated human hardship expected in a future following current trends in anthropogenic greenhouse gas emissions.

  13. Aerosols in atmospheric chemistry and biogeochemical cycles of nutrients

    NASA Astrophysics Data System (ADS)

    Kanakidou, Maria; Myriokefalitakis, Stelios; Tsigaridis, Kostas

    2018-06-01

    Atmospheric aerosols have complex and variable compositions and properties. While scientific interest is centered on the health and climatic effects of atmospheric aerosols, insufficient attention is given to their involvement in multiphase chemistry that alters their contribution as carriers of nutrients in ecosystems. However, there is experimental proof that the nutrient equilibria of both land and marine ecosystems have been disturbed during the Anthropocene period. This review study first summarizes our current understanding of aerosol chemical processing in the atmosphere as relevant to biogeochemical cycles. Then it binds together results of recent modeling studies based on laboratory and field experiments, focusing on the organic and dust components of aerosols that account for multiphase chemistry, aerosol ageing in the atmosphere, nutrient (N, P, Fe) emissions, atmospheric transport, transformation and deposition. The human-driven contribution to atmospheric deposition of these nutrients, derived by global simulations using past and future anthropogenic emissions of pollutants, is put into perspective with regard to potential changes in nutrient limitations and biodiversity. Atmospheric deposition of nutrients has been suggested to result in human-induced ecosystem limitations with regard to specific nutrients. Such modifications favor the development of certain species against others and affect the overall functioning of ecosystems. Organic forms of nutrients are found to contribute to the atmospheric deposition of the nutrients N, P and Fe by 20%–40%, 35%–45% and 7%–18%, respectively. These have the potential to be key components of the biogeochemical cycles since there is initial proof of their bioavailability to ecosystems. Bioaerosols have been found to make a significant contribution to atmospheric sources of N and P, indicating potentially significant interactions between terrestrial and marine ecosystems. These results deserve further experimental and modeling studies to reduce uncertainties and understand the feedbacks induced by atmospheric deposition of nutrients to ecosystems.

  14. Global Change: A Biogeochemical Perspective

    NASA Technical Reports Server (NTRS)

    Mcelroy, M.

    1983-01-01

    A research program that is designed to enhance our understanding of the Earth as the support system for life is described. The program change, both natural and anthropogenic, that might affect the habitability of the planet on a time scale roughly equal to that of a human life is studied. On this time scale the atmosphere, biosphere, and upper ocean are treated as a single coupled system. The need for understanding the processes affecting the distribution of essential nutrients--carbon, nitrogen, phosphorous, sulfur, and water--within this coupled system is examined. The importance of subtle interactions among chemical, biological, and physical effects is emphasized. The specific objectives are to define the present state of the planetary life-support system; to ellucidate the underlying physical, chemical, and biological controls; and to provide the body of knowledge required to assess changes that might impact the future habitability of the Earth.

  15. Global dust cycle

    NASA Astrophysics Data System (ADS)

    Ridgwell, Andy

    Dust, micron to submicron particles and mostly comprising soil mineral fragments, affects a multitude of climatic and biogeochemical processes during its journey from its sources on land to sinks on land and in the ocean. Suspended in the atmosphere, the presence of dust can alter both shortwave and longwave radiation balances, enhance cloud nucleation, and affect photochemical reaction rates. Deposited to the land surface, dust has beneficial impacts on soil quality but detrimental implications for human health. At the interface of surface ocean and lower atmosphere, dust deposited to seawater supplies plankton with the essential micronutrient iron and hence provides an important control on marine ecosystems. This chapter reviews these various roles of dust in the Earth system; summarizes the factors controlling the production, transport, and deposition of dust; and, because the causes and consequences of dust are interlinked via climate and atmospheric CO2, discusses the potential importance of dusty feedback in past and future climate change.

  16. Spatial distribution of planktonic bacterial and archaeal communities in the upper section of the tidal reach in Yangtze River

    PubMed Central

    Fan, Limin; Song, Chao; Meng, Shunlong; Qiu, Liping; Zheng, Yao; Wu, Wei; Qu, Jianhong; Li, Dandan; Zhang, Cong; Hu, Gengdong; Chen, Jiazhang

    2016-01-01

    Bacterioplankton and archaeaplankton communities play key roles in the biogeochemical processes of water, and they may be affected by many factors. In this study, we used high-throughput 16S rRNA gene sequencing to profile planktonic bacterial and archaeal community compositions in the upper section of the tidal reach in Yangtze River. We found that the predominant bacterial phyla in this river section were Proteobacteria, Firmicutes, and Actinobacteria, whereas the predominant archaeal classes were Halobacteria, Methanomicrobia, and unclassified Euryarchaeota. Additionally, the bacterial and archaeal community compositions, richnesses, functional profiles, and ordinations were affected by the spatial heterogeneity related to the concentration changes of sulphate or nitrate. Notably, the bacterial community was more sensitive than the archaeal community to changes in the spatial characteristics of this river section. These findings provide important insights into the distributions of bacterial and archaeal communities in natural water habitats. PMID:27966673

  17. Spatial distribution of planktonic bacterial and archaeal communities in the upper section of the tidal reach in Yangtze River

    NASA Astrophysics Data System (ADS)

    Fan, Limin; Song, Chao; Meng, Shunlong; Qiu, Liping; Zheng, Yao; Wu, Wei; Qu, Jianhong; Li, Dandan; Zhang, Cong; Hu, Gengdong; Chen, Jiazhang

    2016-12-01

    Bacterioplankton and archaeaplankton communities play key roles in the biogeochemical processes of water, and they may be affected by many factors. In this study, we used high-throughput 16S rRNA gene sequencing to profile planktonic bacterial and archaeal community compositions in the upper section of the tidal reach in Yangtze River. We found that the predominant bacterial phyla in this river section were Proteobacteria, Firmicutes, and Actinobacteria, whereas the predominant archaeal classes were Halobacteria, Methanomicrobia, and unclassified Euryarchaeota. Additionally, the bacterial and archaeal community compositions, richnesses, functional profiles, and ordinations were affected by the spatial heterogeneity related to the concentration changes of sulphate or nitrate. Notably, the bacterial community was more sensitive than the archaeal community to changes in the spatial characteristics of this river section. These findings provide important insights into the distributions of bacterial and archaeal communities in natural water habitats.

  18. Characterization of eco-hydraulic habitats for examining biogeochemical processes in rivers

    NASA Astrophysics Data System (ADS)

    McPhillips, L. E.; O'Connor, B. L.; Harvey, J. W.

    2009-12-01

    Spatial variability in biogeochemical reaction rates in streams is often attributed to sediment characteristics such as particle size, organic material content, and biota attached to or embedded within the sediments. Also important in controlling biogeochemical reaction rates are hydraulic conditions, which influence mass transfer of reactants from the stream to the bed, as well as hyporheic exchange within near-surface sediments. This combination of physical and ecological variables has the potential to create habitats that are unique not only in sediment texture but also in their biogeochemical processes and metabolism rates. In this study, we examine the two-dimensional (2D) variability of these habitats in an agricultural river in central Iowa. The streambed substratum was assessed using a grid-based survey identifying dominant particle size classes, as well as aerial coverage of green algae, benthic organic material, and coarse woody debris. Hydraulic conditions were quantified using a calibrated 2D model, and hyporheic exchange was assessed using a scaling relationship based on sediment and hydraulic characteristics. Point-metabolism rates were inferred from measured sediment dissolved oxygen profiles using an effective diffusion model and compared to traditional whole-stream measurements of metabolism. The 185 m study reach had contrasting geomorphologic and hydraulic characteristics in the upstream and downstream portions of an otherwise relatively straight run of a meandering river. The upstream portion contained a large central gravel bar (50 m in length) flanked by riffle-run segments and the downstream portion contained a deeper, fairly uniform channel cross-section. While relatively high flow velocities and gravel sediments were characteristic of the study river, the upstream island bar separated channels that differed with sandy gravels on one side and cobbley gravels on the other. Additionally, green algae was almost exclusively found in riffle portions of the cobbley gravel channel sediments while fine benthic organic material was concentrated at channel margins, regardless of the underlying sediments. A high degree of spatial variability in hyporheic exchange potential was the result of the complex 2D nature of topography and hydraulics. However, sediment texture classifications did a reasonable job in characterizing variability in hyporheic exchange potential because sediment texture mapping incorporates qualitative aspects of bed shear stress and hydraulic conductivity that control hyporheic exchange. Together these variables greatly influenced point-metabolism measurements in different sediment texture habitats separated by only 1 to 2 m. Results from this study suggest that spatial variability and complex interactions between geomorphology, hydraulics, and biological communities generate eco-hydraulic habitats that control variability in biogeochemical processes. The processes controlling variability are highly two-dimensional in nature and are not often accounted for in traditional one-dimensional analysis approaches of biogeochemical processes.

  19. Radionuclides in surface and groundwater

    USGS Publications Warehouse

    Campbell, Kate M.

    2009-01-01

    Unique among all the contaminants that adversely affect surface and water quality, radioactive compounds pose a double threat from both toxicity and damaging radiation. The extreme energy potential of many of these materials makes them both useful and toxic. The unique properties of radioactive materials make them invaluable for medical, weapons, and energy applications. However, mining, production, use, and disposal of these compounds provide potential pathways for their release into the environment, posing a risk to both humans and wildlife. This chapter discusses the sources, uses, and regulation of radioactive compounds in the United States, biogeochemical processes that control mobility in the environment, examples of radionuclide contamination, and current work related to contaminated site remediation.

  20. Predicting Mountainous Watershed Biogeochemical Dynamics, Including Response to Droughts and Early Snowmelt

    NASA Astrophysics Data System (ADS)

    Hubbard, S. S.; Williams, K. H.; Long, P.; Agarwal, D.; Banfield, J. F.; Beller, H. R.; Bouskill, N.; Brodie, E.; Maxwell, R. M.; Nico, P. S.; Steefel, C. I.; Steltzer, H.; Tokunaga, T. K.; Wainwright, H. M.

    2016-12-01

    Climate change, extreme weather, land-use change, and other perturbations are significantly reshaping interactions with in watersheds throughout the world. While mountainous watersheds are recognized as the water towers for the world, hydrological processes in watersheds also mediate biogeochemical processes that support all terrestrial life. Developing predictive understanding of watershed hydrological and biogeochemical functioning is challenging, as complex interactions occurring within a heterogeneous watershed can lead to a cascade of effects on downstream water availability and quality. Although these interactions can have significant implications for energy production, agriculture, water quality, and other benefits valued by society, uncertainty associated with predicting watershed function is high. The Watershed Function project aims to substantially reduce this uncertainty through developing a predictive understanding of how mountainous watersheds retain and release downgradient water, nutrients, carbon, and metals. In particular, the project is exploring how early snowmelt, drought, and other disturbances will influence mountainous watershed dynamics at seasonal to decadal timescales. The Watershed Function project is being carried out in a headwater mountainous catchment of the Upper Colorado River Basin, within a watershed characterized by significant gradients in elevation, vegetation and hydrogeology. A system-within system project perspective posits that the integrated watershed response to disturbances can be adequately predicted through consideration of interactions and feedbacks occurring within a limited number of subsystems, each having distinct vegetation-subsurface biogeochemical-hydrological characteristics. A key technological goal is the development of scale-adaptive simulation capabilities that can incorporate genomic information where and when it is useful for predicting the overall watershed response to disturbance. Through developing and integrating new microbial ecology, geochemical, hydrological, ecohydrological, computational and geophysical approaches, the project is developing new insights about biogeochemical dynamics from genome to watershed scales.

  1. Development of a 3D coupled physical-biogeochemical model for the Marseille coastal area (NW Mediterranean Sea): what complexity is required in the coastal zone?

    PubMed

    Fraysse, Marion; Pinazo, Christel; Faure, Vincent Martin; Fuchs, Rosalie; Lazzari, Paolo; Raimbault, Patrick; Pairaud, Ivane

    2013-01-01

    Terrestrial inputs (natural and anthropogenic) from rivers, the atmosphere and physical processes strongly impact the functioning of coastal pelagic ecosystems. The objective of this study was to develop a tool for the examination of these impacts on the Marseille coastal area, which experiences inputs from the Rhone River and high rates of atmospheric deposition. Therefore, a new 3D coupled physical/biogeochemical model was developed. Two versions of the biogeochemical model were tested, one model considering only the carbon (C) and nitrogen (N) cycles and a second model that also considers the phosphorus (P) cycle. Realistic simulations were performed for a period of 5 years (2007-2011). The model accuracy assessment showed that both versions of the model were able of capturing the seasonal changes and spatial characteristics of the ecosystem. The model also reproduced upwelling events and the intrusion of Rhone River water into the Bay of Marseille well. Those processes appeared to greatly impact this coastal oligotrophic area because they induced strong increases in chlorophyll-a concentrations in the surface layer. The model with the C, N and P cycles better reproduced the chlorophyll-a concentrations at the surface than did the model without the P cycle, especially for the Rhone River water. Nevertheless, the chlorophyll-a concentrations at depth were better represented by the model without the P cycle. Therefore, the complexity of the biogeochemical model introduced errors into the model results, but it also improved model results during specific events. Finally, this study suggested that in coastal oligotrophic areas, improvements in the description and quantification of the hydrodynamics and the terrestrial inputs should be preferred over increasing the complexity of the biogeochemical model.

  2. Development of a 3D Coupled Physical-Biogeochemical Model for the Marseille Coastal Area (NW Mediterranean Sea): What Complexity Is Required in the Coastal Zone?

    PubMed Central

    Fraysse, Marion; Pinazo, Christel; Faure, Vincent Martin; Fuchs, Rosalie; Lazzari, Paolo; Raimbault, Patrick; Pairaud, Ivane

    2013-01-01

    Terrestrial inputs (natural and anthropogenic) from rivers, the atmosphere and physical processes strongly impact the functioning of coastal pelagic ecosystems. The objective of this study was to develop a tool for the examination of these impacts on the Marseille coastal area, which experiences inputs from the Rhone River and high rates of atmospheric deposition. Therefore, a new 3D coupled physical/biogeochemical model was developed. Two versions of the biogeochemical model were tested, one model considering only the carbon (C) and nitrogen (N) cycles and a second model that also considers the phosphorus (P) cycle. Realistic simulations were performed for a period of 5 years (2007–2011). The model accuracy assessment showed that both versions of the model were able of capturing the seasonal changes and spatial characteristics of the ecosystem. The model also reproduced upwelling events and the intrusion of Rhone River water into the Bay of Marseille well. Those processes appeared to greatly impact this coastal oligotrophic area because they induced strong increases in chlorophyll-a concentrations in the surface layer. The model with the C, N and P cycles better reproduced the chlorophyll-a concentrations at the surface than did the model without the P cycle, especially for the Rhone River water. Nevertheless, the chlorophyll-a concentrations at depth were better represented by the model without the P cycle. Therefore, the complexity of the biogeochemical model introduced errors into the model results, but it also improved model results during specific events. Finally, this study suggested that in coastal oligotrophic areas, improvements in the description and quantification of the hydrodynamics and the terrestrial inputs should be preferred over increasing the complexity of the biogeochemical model. PMID:24324589

  3. Using NEON Data to Test and Refine Conceptual and Numerical Models of Soil Biogeochemical and Microbial Dynamics

    NASA Astrophysics Data System (ADS)

    Weintraub, S. R.; Stanish, L.; Ayers, E.

    2017-12-01

    Recent conceptual and numerical models have proposed new mechanisms that underpin key biogeochemical phenomena, including soil organic matter storage and ecosystem response to nitrogen deposition. These models seek to explicitly capture the ecological links among biota, especially microbes, and their physical and chemical environment to represent belowground pools and fluxes and how they respond to perturbation. While these models put forth exciting new concepts, their broad predictive abilities are unclear as some have been developed and tested against only small or regional datasets. The National Ecological Observatory Network (NEON) presents new opportunities to test and validate these models with multi-site data that span wide climatic, edaphic, and ecological gradients. NEON is measuring surface soil biogeochemical pools and fluxes along with diversity, abundance, and functional potential of soil microbiota at 47 sites distributed across the United States. This includes co-located measurements of soil carbon and nitrogen concentrations and stable isotopes, net nitrogen mineralization and nitrification rates, soil moisture, pH, microbial biomass, and community composition via 16S and ITS rRNA sequencing and shotgun metagenomic analyses. Early NEON data demonstrates that these wide edaphic and climatic gradients are related to changes in microbial community structure and functional potential, as well as element pools and process rates. Going forward, NEON's suite of standardized soil data has the potential to advance our understanding of soil communities and processes by allowing us to test the predictions of new soil biogeochemical frameworks and models. Here, we highlight several recently developed models that are ripe for this kind of data validation, and discuss key insights that may result. Further, we explore synergies with other networks, such as (i)LTER and (i)CZO, which may increase our ability to advance the frontiers of soil biogeochemical modeling.

  4. Projecting changes in Everglades soil biogeochemistry for carbon and other key elements, to possible 2060 climate and hydrologic scenarios.

    PubMed

    Orem, William; Newman, Susan; Osborne, Todd Z; Reddy, K Ramesh

    2015-04-01

    Based on previously published studies of elemental cycling in Everglades soils, we projected how soil biogeochemistry, specifically carbon, nitrogen, phosphorus, sulfur, and mercury might respond to climate change scenarios projected for 2060 by the South Florida Water Management Model. Water budgets and stage hydrographs from this model with future scenarios of a 10% increased or decreased rainfall, a 1.5 °C rise in temperature and associated increase in evapotranspiration (ET) and a 0.5 m rise in sea level were used to predict resulting effects on soil biogeochemistry. Precipitation is a much stronger driver of soil biogeochemical processes than temperature, because of links among water cover, redox conditions, and organic carbon accumulation in soils. Under the 10% reduced rainfall scenario, large portions of the Everglades will experience dry down, organic soil oxidation, and shifts in soil redox that may dramatically alter biogeochemical processes. Lowering organic soil surface elevation may make portions of the Everglades more vulnerable to sea level rise. The 10% increased rainfall scenario, while potentially increasing phosphorus, sulfur, and mercury loading to the ecosystem, would maintain organic soil integrity and redox conditions conducive to normal wetland biogeochemical element cycling. Effects of increased ET will be similar to those of decreased precipitation. Temperature increases would have the effect of increasing microbial processes driving biogeochemical element cycling, but the effect would be much less than that of precipitation. The combined effects of decreased rainfall and increased ET suggest catastrophic losses in carbon- and organic-associated elements throughout the peat-based Everglades.

  5. Role of biochar as an additive in organic waste composting.

    PubMed

    Sanchez-Monedero, M A; Cayuela, M L; Roig, A; Jindo, K; Mondini, C; Bolan, N

    2018-01-01

    The use of biochar in organic waste composting has attracted interest in the last decade due to the environmental and agronomical benefits obtained during the process. Biochar presents favourable physicochemical properties, such as large porosity, surface area and high cation exchange capacity, enabling interaction with major nutrient cycles and favouring microbial growth in the composting pile. The enhanced environmental conditions can promote a change in the microbial communities that can affect important microbially mediated biogeochemical cycles: organic matter degradation and humification, nitrification, denitrification and methanogenesis. The main benefits of the use of biochar in composting are reviewed in this article, with special attention to those related to the process performance, compost microbiology, organic matter degradation and humification, reduction of N losses and greenhouse gas emissions and fate of heavy metals. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whicker, Jeffrey J; Field, Jason P; Belnap, Jayne

    Emission and redistribution of dust due to wind erosion in drylands drives major biogeochemical dynamics and provides important aeolian environmental connectivity at scales from individual plants up to the global scale. Yet, perhaps because most relevant research on aeolian processes has been presented in a geosciences rather than ecological context, most ecological studies do not explicitly consider dust-driven processes. To bridge this disciplinary gap, we provide a general overview of the ecological importance of dust, examine complex interactions between wind erosion and ecosystem dynamics from the plant-interspace scale to regional and global scales, and highlight specific examples of how disturbancemore » affects these interactions and their consequences. Changes in climate and intensification of land use will both likely lead to increased dust production. To address these challenges, environmental scientists, land managers and policy makers need to more explicitly consider dust in resource management decisions.« less

  7. Boreal mire Green House Gas exchange in response to global change perturbations

    NASA Astrophysics Data System (ADS)

    Nilsson, Mats

    2017-04-01

    High latitude boreal peatlands contribute importantly to the land-atmosphere-hydrosphere exchange of carbon and GHG, i.e. carbon dioxide, methane and dissolved organic carbon. High latitude biomes are identified as most vulnerable to changing climate. High latitudes are also characterized by a strong seasonality in incoming solar radiation, weather conditions and thus also in biogeochemical processes. The strong seasonality in incoming solar radiation, not to change in response to a changing climate, constitute firm constraints on how changes in air temperature, evapotranspiration and precipitation will affect biogeochemical processes underlying the land atmosphere and land hydrosphere exchange of green house gases. In this presentation I combine data from long-term monitoring, long-term field manipulations and detailed chemical analysis to understand how changes in atmosphere and weather conditions influence the major carbon fluxes of a boreal mire Net Ecosystem Carbon Balance. The long-term monitoring data contains >12 years of continuous Eddy Covariance CO2 data, growing season chamber CH4 data and continuous measurements of discharge export of DOC, CO2 and CH4. Data from long-term field snow removal manipulations and growing season temperature increase manipulations are used to further understand the impact of climate on mire carbon and GHG fluxes. Finally we uses Nuclear Magnetic Spectroscopy (NMR) to reveal how century scale changes in atmospheric CO2 from 300 to 400 pm CO2 and temperature have influenced the net photosynthetic capacity of Sphagnum mosses, the single most important plant genus for boreal mire carbon sequestration.

  8. Antimony isotopic composition in river waters affected by ancient mining activity.

    PubMed

    Resongles, Eléonore; Freydier, Rémi; Casiot, Corinne; Viers, Jérôme; Chmeleff, Jérôme; Elbaz-Poulichet, Françoise

    2015-11-01

    In this study, antimony (Sb) isotopic composition was determined in natural water samples collected along two hydrosystems impacted by historical mining activities: the upper Orb River and the Gardon River watershed (SE, France). Antimony isotope ratio was measured by HG-MC-ICP-MS (Hydride Generation Multi-Collector Inductively Coupled Plasma Mass Spectrometer) after a preconcentration and purification step using a new thiol-cellulose powder (TCP) procedure. The external reproducibility obtained for δ(123)Sb measurements of our in-house Sb isotopic standard solution and a certified reference freshwater was 0.06‰ (2σ). Significant isotopic variations were evident in surface waters from the upper Orb River (-0.06‰≤δ(123)Sb≤+0.11‰) and from the Gardon River watershed (+0.27‰≤δ(123)Sb≤+0.83‰). In particular, streams that drained different former mining sites exploited for Sb or Pb-Zn exhibited contrasted Sb isotopic signature, that may be related to various biogeochemical processes occurring during Sb transfer from rocks, mine wastes and sediments to the water compartment. Nevertheless, Sb isotopic composition appeared to be stable along the Gardon River, which might be attributed to the conservative transport of Sb at distance from mine-impacted streams, due to the relative mobile behavior of Sb(V) in natural oxic waters. This study suggests that Sb isotopic composition could be a useful tool to track pollution sources and/or biogeochemical processes in hydrologic systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. An approach to quantify sources, seasonal change, and biogeochemical processes affecting metal loading in streams: Facilitating decisions for remediation of mine drainage

    USGS Publications Warehouse

    Kimball, B.A.; Runkel, R.L.; Walton-Day, K.

    2010-01-01

    Historical mining has left complex problems in catchments throughout the world. Land managers are faced with making cost-effective plans to remediate mine influences. Remediation plans are facilitated by spatial mass-loading profiles that indicate the locations of metal mass-loading, seasonal changes, and the extent of biogeochemical processes. Field-scale experiments during both low- and high-flow conditions and time-series data over diel cycles illustrate how this can be accomplished. A low-flow experiment provided spatially detailed loading profiles to indicate where loading occurred. For example, SO42 - was principally derived from sources upstream from the study reach, but three principal locations also were important for SO42 - loading within the reach. During high-flow conditions, Lagrangian sampling provided data to interpret seasonal changes and indicated locations where snowmelt runoff flushed metals to the stream. Comparison of metal concentrations between the low- and high-flow experiments indicated substantial increases in metal loading at high flow, but little change in metal concentrations, showing that toxicity at the most downstream sampling site was not substantially greater during snowmelt runoff. During high-flow conditions, a detailed temporal sampling at fixed sites indicated that Zn concentration more than doubled during the diel cycle. Monitoring programs must account for diel variation to provide meaningful results. Mass-loading studies during different flow conditions and detailed time-series over diel cycles provide useful scientific support for stream management decisions.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, J. Y.; Riley, W. J.

    We present a generic flux limiter to account for mass limitations from an arbitrary number of substrates in a biogeochemical reaction network. The flux limiter is based on the observation that substrate (e.g., nitrogen, phosphorus) limitation in biogeochemical models can be represented as to ensure mass conservative and non-negative numerical solutions to the governing ordinary differential equations. Application of the flux limiter includes two steps: (1) formulation of the biogeochemical processes with a matrix of stoichiometric coefficients and (2) application of Liebig's law of the minimum using the dynamic stoichiometric relationship of the reactants. This approach contrasts with the ad hoc down-regulationmore » approaches that are implemented in many existing models (such as CLM4.5 and the ACME (Accelerated Climate Modeling for Energy) Land Model (ALM)) of carbon and nutrient interactions, which are error prone when adding new processes, even for experienced modelers. Through an example implementation with a CENTURY-like decomposition model that includes carbon, nitrogen, and phosphorus, we show that our approach (1) produced almost identical results to that from the ad hoc down-regulation approaches under non-limiting nutrient conditions, (2) properly resolved the negative solutions under substrate-limited conditions where the simple clipping approach failed, (3) successfully avoided the potential conceptual ambiguities that are implied by those ad hoc down-regulation approaches. We expect our approach will make future biogeochemical models easier to improve and more robust.« less

  11. Dryland ecosystem responses to precipitation extremes and wildfire at a long-term rainfall manipulation experiment

    NASA Astrophysics Data System (ADS)

    Brown, R. F.; Collins, S. L.

    2017-12-01

    Climate is becoming increasingly more variable due to global environmental change, which is evidenced by fewer, but more extreme precipitation events, changes in precipitation seasonality, and longer, higher severity droughts. These changes, combined with a rising incidence of wildfire, have the potential to strongly impact net primary production (NPP) and key biogeochemical cycles, particularly in dryland ecosystems where NPP is sequentially limited by water and nutrient availability. Here we utilize a ten-year dataset from an ongoing long-term field experiment established in 2007 in which we experimentally altered monsoon rainfall variability to examine how our manipulations, along with naturally occurring events, affect NPP and associated biogeochemical cycles in a semi-arid grassland in central New Mexico, USA. Using long-term regional averages, we identified extremely wet monsoon years (242.8 mm, 2013), and extremely dry monsoon years (86.0 mm, 2011; 80.0 mm, 2015) and water years (117.0 mm, 2011). We examined how changes in precipitation variability and extreme events affected ecosystem processes and function particularly in the context of ecosystem recovery following a 2009 wildfire. Response variables included above- and below-ground plant biomass (ANPP & BNPP) and abundance, soil nitrogen availability, and soil CO2 efflux. Mean ANPP ranged from 3.6 g m-2 in 2011 to 254.5 g m-2 in 2013, while BNPP ranged from 23.5 g m-2 in 2015 to 194.2 g m-2 in 2013, demonstrating NPP in our semi-arid grassland is directly linked to extremes in both seasonal and annual precipitation. We also show increased nitrogen deposition positively affects NPP in unburned grassland, but has no significant impact on NPP post-fire except during extremely wet monsoon years. While soil respiration rates reflect lower ANPP post-fire, patterns in CO2 efflux have not been shown to change significantly in that efflux is greatest following large precipitation events preceded by longer drying periods. Current land surface models poorly represent dryland ecosystems, which frequently undergo extreme weather events. Our long-term experiment provides key insights into ecosystem processes and function, thereby providing capacity for model improvement particularly in the context of future environmental change.

  12. Thresholds of understanding: Exploring assumptions of scale invariance vs. scale dependence in global biogeochemical models

    NASA Astrophysics Data System (ADS)

    Wieder, W. R.; Bradford, M.; Koven, C.; Talbot, J. M.; Wood, S.; Chadwick, O.

    2016-12-01

    High uncertainty and low confidence in terrestrial carbon (C) cycle projections reflect the incomplete understanding of how best to represent biologically-driven C cycle processes at global scales. Ecosystem theories, and consequently biogeochemical models, are based on the assumption that different belowground communities function similarly and interact with the abiotic environment in consistent ways. This assumption of "Scale Invariance" posits that environmental conditions will change the rate of ecosystem processes, but the biotic response will be consistent across sites. Indeed, cross-site comparisons and global-scale analyses suggest that climate strongly controls rates of litter mass loss and soil organic matter turnover. Alternatively, activities of belowground communities are shaped by particular local environmental conditions, such as climate and edaphic conditions. Under this assumption of "Scale Dependence", relationships generated by evolutionary trade-offs in acquiring resources and withstanding environmental stress dictate the activities of belowground communities and their functional response to environmental change. Similarly, local edaphic conditions (e.g. permafrost soils or reactive minerals that physicochemically stabilize soil organic matter on mineral surfaces) may strongly constrain the availability of substrates that biota decompose—altering the trajectory of soil biogeochemical response to perturbations. Identifying when scale invariant assumptions hold vs. where local variation in biotic communities or edaphic conditions must be considered is critical to advancing our understanding and representation of belowground processes in the face of environmental change. Here we introduce data sets that support assumptions of scale invariance and scale dependent processes and discuss their application in global-scale biogeochemical models. We identify particular domains over which assumptions of scale invariance may be appropriate and potential thresholds where shifts in ecosystem function may be expected. Finally, we discuss the mechanistic insight that can be applied in process-based models and datasets that can evaluate models across spatial and temporal scales.

  13. Ground-level climate at a peatland wind farm in Scotland is affected by wind turbine operation

    NASA Astrophysics Data System (ADS)

    Armstrong, Alona; Burton, Ralph R.; Lee, Susan E.; Mobbs, Stephen; Ostle, Nicholas; Smith, Victoria; Waldron, Susan; Whitaker, Jeanette

    2016-04-01

    The global drive to produce low-carbon energy has resulted in an unprecedented deployment of onshore wind turbines, representing a significant land use change for wind energy generation with uncertain consequences for local climatic conditions and the regulation of ecosystem processes. Here, we present high-resolution data from a wind farm collected during operational and idle periods that shows the wind farm affected several measures of ground-level climate. Specifically, we discovered that operational wind turbines raised air temperature by 0.18 °C and absolute humidity (AH) by 0.03 g m-3 during the night, and increased the variability in air, surface and soil temperature throughout the diurnal cycle. Further, the microclimatic influence of turbines on air temperature and AH decreased logarithmically with distance from the nearest turbine. These effects on ground-level microclimate, including soil temperature, have uncertain implications for biogeochemical processes and ecosystem carbon cycling, including soil carbon stocks. Consequently, understanding needs to be improved to determine the overall carbon balance of wind energy.

  14. How do local and remote processes affect the distribution of iron in the Atlantic Ocean?

    NASA Astrophysics Data System (ADS)

    Tagliabue, A.; Boyd, P.; Rijkenberg, M. J. A.; Williams, R. G.

    2016-02-01

    Iron (Fe) plays an important role in governing the magnitudes and patterns of primary productivity, nitrogen fixation and phytoplankton community composition across the Atlantic Ocean. Variations in the supply of Fe to surface waters across the mixed layer interface, over seasonal to annual to decadal scales, are underpinned by it's vertical profile. Traditionally, nutrient profiles are understood in terms of surface depletion and subsurface regeneration, but for Fe this is more complicated due to the role of scavenging and organic complexation by ligands, as well as subsurface sources. This means that the Fe profile may be controlled locally, by sinking, regeneration and scavenging or remotely, by the upstream conditions of subducted water masses. Subduction drives the transfer of Fe across the interface between winter mixed layer and the ocean interior, but has received little attention thus far. Via the subduction of watermasses with distinct biogeochemical signatures to low latitudes, remote processes can regulate the Atlantic Ocean Fe distribution at local scales. Specifically, the formation of mode waters with excess Fe binding ligands (positive L*) enable these waters to stabilise any Fe flux from regeneration that would otherwise be lost by scavenging. The pattern of mode water ventilation then highlights those regions of the ocean where local processes are able to influence the Fe profile. Local process that augment L*, such as the production of ligands during particle regeneration, can also interact with the larger scale ventilation signature but do not alter the main trends. By applying our framework to recent GEOTRACES datasets over the Atlantic Ocean we are able to highlight regions where the Fe profile is forced locally or remotely, thereby providing an important process-based constraint on the biogeochemical models we rely on for future projections. Furthermore, we are able to appraise how the varying influence of local and remote processes drives the degree of agreement in the vertical profiles of Fe and macronutrients, which then sets the degree of surface water Fe limitation.

  15. Belowground Carbon Cycling Processes at the Molecular Scale: An EMSL Science Theme Advisory Panel Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Nancy J.; Brown, Gordon E.; Plata, Charity

    2014-02-21

    As part of the Belowground Carbon Cycling Processes at the Molecular Scale workshop, an EMSL Science Theme Advisory Panel meeting held in February 2013, attendees discussed critical biogeochemical processes that regulate carbon cycling in soil. The meeting attendees determined that as a national scientific user facility, EMSL can provide the tools and expertise needed to elucidate the molecular foundation that underlies mechanistic descriptions of biogeochemical processes that control carbon allocation and fluxes at the terrestrial/atmospheric interface in landscape and regional climate models. Consequently, the workshop's goal was to identify the science gaps that hinder either development of mechanistic description ofmore » critical processes or their accurate representation in climate models. In part, this report offers recommendations for future EMSL activities in this research area. The workshop was co-chaired by Dr. Nancy Hess (EMSL) and Dr. Gordon Brown (Stanford University).« less

  16. Biogeochemical study of termite mounds: a case study from Tummalapalle area of Andhra Pradesh, India.

    PubMed

    Arveti, Nagaraju; Reginald, S; Kumar, K Sunil; Harinath, V; Sreedhar, Y

    2012-04-01

    Termite mounds are abundant components of Tummalapalle area of uranium mineralization of Cuddapah District of Andhra Pradesh, India. The systematic research has been carried out on the application of termite mound sampling to mineral exploration in this region. The distribution of chemical elements Cu, Pb, Zn, Ni, Co, Cr, Li, Rb, Sr, Ba, and U were studied both in termite soils and adjacent surface soils. Uranium accumulations were noticed in seven termite mounds ranging from 10 to 36 ppm. A biogeochemical parameter called "Biological Absorption Coefficient" of the termite mounds indicated the termite affected soils contained huge amounts of chemical elements than the adjacent soils.

  17. 2010 MARINE MICROBES GORDON RESEARCH CONFERENCE (JULY 4-9, 2010 - TILTON SCHOOL, TILTON NH)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Kirchman

    Marine microbes include representatives from all three kingdoms of life and collectively carry out virtually all forms of metabolisms found on the planet. Because of this metabolic and genetic diversity, these microbes mediate many of the reactions making up global biogeochemical cycles which govern the flow of energy and material in the biosphere. The goal of this conference is to bring together approaches and concepts from studies of microbial evolution, genomics, ecology, and oceanography in order to gain new insights into marine microbes and their biogeochemical functions. The integration of scales, from genes to global cycles, will result in amore » better understanding of marine microbes and of their contribution to the carbon cycle and other biogeochemical processes.« less

  18. Riparian zone hydrology and biogeochemistry as a function of stream evolution stage in glaciated landscapes of the US Northeast

    NASA Astrophysics Data System (ADS)

    Rook, S. P.; Vidon, P.; Walter, M. T.

    2011-12-01

    The management of riparian buffer strips is often regarded as one of the most economical and sustainable methods of managing non-point source pollution and water quality. However, current riparian management often follows a 'one size fits all' design, which fails to recognize the complexity of the many biogeochemical processes that regulate pollutant transformation and retention in these systems. This study addresses two critical gaps in knowledge: (1) How carbon, nitrogen, phosphorous, and iron cycles interact with one another (rather than individually). (2) How stream channel geometry and evolution regulate these nutrient cycles and greenhouse gas (GHG) dynamics in the near stream zone. This project specifically explores the hydrological and biogeochemical functioning of riparian zones across a gradient of stream meander evolution stages, with the primary goal of understanding and predicting potential interactions between nutrient dynamics in these systems. Key research questions include: (1) How does stream meander curvature affect riparian zone hydrology? (2) How does stream meander curvature influence riparian zone biogeochemistry? (3) What relationships exist among N, P, Fe, and GHG dynamics? We instrumented three riparian sites near Ithaca, NY, with a dense network of wells, piezometers, and static chambers. These sites represent three riparian zones along three evolution stages of stream meanders: an inner meander, a straight stream section, and an outer bend of the stream with an oxbow lake formation. In spring through fall 2011, water samples and gas samples were collected at a tri-weekly bases at each of the three sites. Water samples were analyzed for oxidation-reduction potential, dissolved oxygen, temperature, FeII/FeIII, nutrients (NO3-, NH4+, PO43-) and dissolved organic carbon (DOC). GHG fluxes at the soil-atmosphere interface were measured for N2O, CO2, and CH4 gases. We predict that stream curvature will significantly affect groundwater flow direction in the riparian zones. Owing to more prolonged saturation, we expect that the oxbow setting will exhibit anoxic conditions, and associated biogeochemistry. Finally, we hypothesize clear relationships among N, P, Fe, and GHG dynamics. In areas of significant denitrification, we expect to see an increase in Fe reduction, PO43- release, N2O emission, and CH4 emission, and a decrease in CO2 emission. Quantifying these interactions will enhance our ability to model riparian biogeochemical processes, promote water quality, and comprehend to what extent the promotion of riparian zones for nitrate removal is done at the expense of air quality (with respect to GHG emissions) and/or water quality (with respect to P).

  19. Environmental Assessment for Potential Impacts of Ocean CO2 Storage on Marine Biogeochemical Cycles

    NASA Astrophysics Data System (ADS)

    Yamada, N.; Tsurushima, N.; Suzumura, M.; Shibamoto, Y.; Harada, K.

    2008-12-01

    Ocean CO2 storage that actively utilizes the ocean potential to dissolve extremely large amounts of CO2 is a useful option with the intent of diminishing atmospheric CO2 concentration. CO2 storage into sub-seabed geological formations is also considered as the option which has been already put to practical reconnaissance in some projects. Direct release of CO2 in the ocean storage and potential CO2 leakage from geological formations into the bottom water can alter carbonate system as well as pH of seawater. It is essential to examine to what direction and extent chemistry change of seawater induced by CO2 can affect the marine environments. Previous studies have shown direct and acute effects by increasing CO2 concentrations on physiology of marine organisms. It is also a serious concern that chemistry change can affect the rates of chemical, biochemical and microbial processes in seawater resulting in significant influences on marine biogeochemical cycles of the bioelements including carbon, nutrients and trace metals. We, AIST, have conducted a series of basic researches to assess the potential impacts of ocean CO2 storage on marine biogeochemical processes including CaCO3 dissolution, and bacterial and enzymatic decomposition of organic matter. By laboratory experiments using a special high pressure apparatus, the improved empirical equation was obtained for CaCO3 dissolution rate in the high CO2 concentrations. Based on the experimentally obtained kinetics with a numerical simulation for a practical scenario of oceanic CO2 sequestration where 50 Mton CO2 per year is continuously injected to 1,000-2,500 m depth within 100 x 333 km area for 30 years, we could illustrate precise 3-D maps for the predicted distributions of the saturation depth of CaCO3, in situ Ω value and CaCO3 dissolution rate in the western North Pacific. The result showed no significant change in the bathypelagic CaCO3 flux due to chemistry change induced by ocean CO2 sequestration. Both bacteria and hydrolytic enzymes are known as the essential promoters for organic matter decomposition in marine ecosystems. Bacterial activity and metabolisms under various CO2 concentrations and pH were examined on total cell abundance, 3H-leucine incorporation rate, and viable cell abundance. Our in vitro experiments demonstrated that acute effect by high CO2 conditions was negligible on the activities of bathypelagic bacteria at pH 7 or higher. However, our results suggested that bacterial assemblage in some organic-rich "microbial hot-spots" in seawater such as organic aggregates sinking particles, exhibited high sensitivity to acidification. Furthermore, it was indicated that CO2 injection seems to be the trigger to alter the microbial community structure between Eubacteria and Archaea. The activities of five types of hydrolytic enzymes showed no significant change with acidification as those observed in the bacterial activity. As to acute effects on microbial and biochemical processes examined by our laboratory studies, no significant influence was exhibited in the simulated ocean CO2 storage on marine biogeochemical cycling. Uncertainties in chronic and large-scale impacts, however, remain and should be addressed for more understanding the potential benefits and risks of the ocean storage.

  20. Investigating the initial stages of soil formation in glacier forefields using the new biogeochemical model: SHIMMER

    NASA Astrophysics Data System (ADS)

    Bradley, James; Anesio, Alexandre; Arndt, Sandra; Sabacka, Marie; Barker, Gary; Benning, Liane; Blacker, Joshua; Singarayer, Joy; Tranter, Martyn; Yallop, Marian

    2016-04-01

    Glaciers and ice sheets in Polar and alpine regions are retreating in response to recent climate warming, exposing terrestrial ecosystems that have been locked under the ice for thousands of years. Exposed soils exhibit successional characteristics that can be characterised using a chronosequence approach. Decades of empirical research in glacier forefields has shown that soils are quickly colonised by microbes which drive biogeochemical cycling of elements and affect soil properties including nutrient concentrations, carbon fluxes and soil stability (Bradley et al, 2014). The characterisation of these soils is important for our understanding of the cycling of organic matter under extreme environmental and nutrient limiting conditions, and their potential contribution to global biogeochemical cycles. This is particularly important as these new areas will become more geographically expansive with continued ice retreat. SHIMMER (Soil biogeocHemIcal Model of Microbial Ecosystem Response) (Bradley et al, 2015) is a new mathematical model that simulates biogeochemical and microbial dynamics in glacier forefields. The model captures, explores and predicts the growth of different microbial groups (classified by function), and the associated cycling of carbon, nitrogen and phosphorus along a chronosequence. SHIMMER improves typical soil model formulations by including explicit representation of microbial dynamics, and those processes which are shown to be important for glacier forefields. For example, we categorise microbial groups by function to represent the diversity of soil microbial communities, and include the different metabolic needs and physiological pathways of microbial organisms commonly found in glacier forefields (e.g. microbes derived from underneath the glacier, typical soil bacteria, and microbes that can fix atmospheric nitrogen and assimilate soil nitrogen). Here, we present data from a study where we integrated modelling using SHIMMER with empirical observations from chronosequences from the forefield of Midtre Lovénbreen, Svalbard (78°N), to investigate the first 120 years of soil development. We carried out an in depth analysis of the model dynamics and determined the most sensitive parameters. We then used laboratory measurements to derive values for those parameters: bacterial growth rate, growth efficiency and temperature dependency. By applying the model to the High-Arctic forefield and integrating the measured parameter values, we could refine the model and easily predict the rapid accumulation of microbial biomass that was observed in our field data. Furthermore, we show that the bacterial production is dominated by autotrophy (rather than heterotrophy). Heterotrophic production in young soils (0-20 years) is supported by labile substrate, whereas carbon stocks in older soils (60-120 years) are more refractory. Nitrogen fixing organisms are responsible for the initial accumulation of available nitrates in the soil. However, microbial processes alone do not explain the build-up of organic matter observed in the field data record. Consequently, the model infers that allochthonous deposition of organic material may play a significant contributory role that could accelerate or facilitate further microbial growth. SHIMMER provides a quantitative evaluation on the dynamics of glacier forefield systems that have previously largely been explored through qualitative interpretation of datasets. References Bradley J.A., Singarayer J.S., Anesio A.M. (2014) Microbial community dynamics in the forefield of glaciers. Proceedings Biological sciences / The Royal Society 281(1795), 2793-2802. (doi:10.1098/rspb.2014.0882). Bradley J.A., Anesio A.M., Singarayer J.S., Heath M.R., Arndt S. (2015) SHIMMER (1.0): a novel mathematical model for microbial and biogeochemical dynamics in glacier forefield ecosystems. Geosci Model Dev 8(10), 3441-3470. (doi:10.5194/gmd-8-3441-2015).

  1. CO2 leakage alters biogeochemical and ecological functions of submarine sands

    PubMed Central

    Molari, Massimiliano; Guilini, Katja; Lott, Christian; Weber, Miriam; de Beer, Dirk; Meyer, Stefanie; Ramette, Alban; Wegener, Gunter; Wenzhöfer, Frank; Martin, Daniel; Cibic, Tamara; De Vittor, Cinzia; Vanreusel, Ann; Boetius, Antje

    2018-01-01

    Subseabed CO2 storage is considered a future climate change mitigation technology. We investigated the ecological consequences of CO2 leakage for a marine benthic ecosystem. For the first time with a multidisciplinary integrated study, we tested hypotheses derived from a meta-analysis of previous experimental and in situ high-CO2 impact studies. For this, we compared ecological functions of naturally CO2-vented seafloor off the Mediterranean island Panarea (Tyrrhenian Sea, Italy) to those of nonvented sands, with a focus on biogeochemical processes and microbial and faunal community composition. High CO2 fluxes (up to 4 to 7 mol CO2 m−2 hour−1) dissolved all sedimentary carbonate, and comigration of silicate and iron led to local increases of microphytobenthos productivity (+450%) and standing stocks (+300%). Despite the higher food availability, faunal biomass (−80%) and trophic diversity were substantially lower compared to those at the reference site. Bacterial communities were also structurally and functionally affected, most notably in the composition of heterotrophs and microbial sulfate reduction rates (−90%). The observed ecological effects of CO2 leakage on submarine sands were reproduced with medium-term transplant experiments. This study assesses indicators of environmental impact by CO2 leakage and finds that community compositions and important ecological functions are permanently altered under high CO2. PMID:29441359

  2. Climate Impacts of Cover Crops

    NASA Astrophysics Data System (ADS)

    Lombardozzi, D.; Wieder, W. R.; Bonan, G. B.; Morris, C. K.; Grandy, S.

    2016-12-01

    Cover crops are planted in agricultural rotation with the intention of protecting soil rather than harvest. Cover crops have numerous environmental benefits that include preventing soil erosion, increasing soil fertility, and providing weed and pest control- among others. In addition to localized environmental benefits, cover crops can have important regional or global biogeochemical impacts by increasing soil organic carbon, changing emissions of greenhouse trace gases like nitrous oxide and methane, and reducing hydrologic nitrogen losses. Cover crops may additionally affect climate by changing biogeophysical processes, like albedo and latent heat flux, though these potential changes have not yet been evaluated. Here we use the coupled Community Atmosphere Model (CAM5) - Community Land Model (CLM4.5) to test how planting cover crops in the United States may change biogeophysical fluxes and climate. We present seasonal changes in albedo, heat fluxes, evaporative partitioning, radiation, and the resulting changes in temperature. Preliminary analyses show that during seasons when cover crops are planted, latent heat flux increases and albedo decreases, changing the evaporative fraction and surface temperatures. Understanding both the biogeophysical changes caused by planting cover crops in this study and the biogeochemical changes found in other studies will give a clearer picture of the overall impacts of cover crops on climate and atmospheric chemistry, informing how this land use strategy will impact climate in the future.

  3. CO2 leakage alters biogeochemical and ecological functions of submarine sands.

    PubMed

    Molari, Massimiliano; Guilini, Katja; Lott, Christian; Weber, Miriam; de Beer, Dirk; Meyer, Stefanie; Ramette, Alban; Wegener, Gunter; Wenzhöfer, Frank; Martin, Daniel; Cibic, Tamara; De Vittor, Cinzia; Vanreusel, Ann; Boetius, Antje

    2018-02-01

    Subseabed CO 2 storage is considered a future climate change mitigation technology. We investigated the ecological consequences of CO 2 leakage for a marine benthic ecosystem. For the first time with a multidisciplinary integrated study, we tested hypotheses derived from a meta-analysis of previous experimental and in situ high-CO 2 impact studies. For this, we compared ecological functions of naturally CO 2 -vented seafloor off the Mediterranean island Panarea (Tyrrhenian Sea, Italy) to those of nonvented sands, with a focus on biogeochemical processes and microbial and faunal community composition. High CO 2 fluxes (up to 4 to 7 mol CO 2 m -2 hour -1 ) dissolved all sedimentary carbonate, and comigration of silicate and iron led to local increases of microphytobenthos productivity (+450%) and standing stocks (+300%). Despite the higher food availability, faunal biomass (-80%) and trophic diversity were substantially lower compared to those at the reference site. Bacterial communities were also structurally and functionally affected, most notably in the composition of heterotrophs and microbial sulfate reduction rates (-90%). The observed ecological effects of CO 2 leakage on submarine sands were reproduced with medium-term transplant experiments. This study assesses indicators of environmental impact by CO 2 leakage and finds that community compositions and important ecological functions are permanently altered under high CO 2 .

  4. Biogeochemical controls of uranium bioavailability from the dissolved phase in natural freshwaters

    USGS Publications Warehouse

    Croteau, Marie-Noele; Fuller, Christopher C.; Cain, Daniel J.; Campbell, Kate M.; Aiken, George R.

    2016-01-01

    To gain insights into the risks associated with uranium (U) mining and processing, we investigated the biogeochemical controls of U bioavailability in the model freshwater speciesLymnaea stagnalis (Gastropoda). Bioavailability of dissolved U(VI) was characterized in controlled laboratory experiments over a range of water hardness, pH, and in the presence of complexing ligands in the form of dissolved natural organic matter (DOM). Results show that dissolved U is bioavailable under all the geochemical conditions tested. Uranium uptake rates follow first order kinetics over a range encompassing most environmental concentrations. Uranium uptake rates in L. stagnalis ultimately demonstrate saturation uptake kinetics when exposure concentrations exceed 100 nM, suggesting uptake via a finite number of carriers or ion channels. The lack of a relationship between U uptake rate constants and Ca uptake rates suggest that U does not exclusively use Ca membrane transporters. In general, U bioavailability decreases with increasing pH, increasing Ca and Mg concentrations, and when DOM is present. Competing ions did not affect U uptake rates. Speciation modeling that includes formation constants for U ternary complexes reveals that the aqueous concentration of dicarbonato U species (UO2(CO3)2–2) best predicts U bioavailability to L. stagnalis, challenging the free-ion activity model postulate.

  5. Impacts of mesoscale eddies in the South China Sea on biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Guo, Mingxian; Chai, Fei; Xiu, Peng; Li, Shiyu; Rao, Shivanesh

    2015-09-01

    Biogeochemical cycles associated with mesoscale eddies in the South China Sea (SCS) were investigated. The study was based on a coupled physical-biogeochemical Pacific Ocean model (Regional Ocean Model System-Carbon, Silicate, and Nitrogen Ecosystem, ROMS-CoSiNE) simulation for the period from 1991 to 2008. A total of 568 mesoscale eddies with lifetime longer than 30 days were used in the analysis. Composite analysis revealed that the cyclonic eddies were associated with abundance of nutrients, phytoplankton, and zooplankton while the anticyclonic eddies depressed biogeochemical cycles, which are generally controlled by the eddy pumping mechanism. In addition, diatoms were dominant in phytoplankton species due to the abundance of silicate. Dipole structures of vertical fluxes with net upward motion in cyclonic eddies and net downward motion in anticyclonic eddies were revealed. During the lifetime of an eddy, the evolutions of physical, biological, and chemical structures were not linearly coupled at the eddy core where plankton grew, and composition of the community depended not only on the physical and chemical processes but also on the adjustments by the predator-prey relationship.

  6. A coupled hydrologic and biogeochemical model for assessing watershed responses to climate and land use

    EPA Science Inventory

    This seminar for Oregon State University’s Water Resources Graduate Program will describe the use of a spatially-distributed ecohydrological model, VELMA, for quantifying how alternative land use and climate scenarios affect tradeoffs among important ecosystem services. Sp...

  7. Modeling and Assimilating Ocean Color Radiances

    NASA Technical Reports Server (NTRS)

    Gregg, Watson

    2012-01-01

    Radiances are the source of information from ocean color sensors to produce estimates of biological and geochemical constituents. They potentially provide information on various other aspects of global biological and chemical systems, and there is considerable work involved in deriving new information from these signals. Each derived product, however, contains errors that are derived from the application of the radiances, above and beyond the radiance errors. A global biogeochemical model with an explicit spectral radiative transfer model is used to investigate the potential of assimilating radiances. The results indicate gaps in our understanding of radiative processes in the oceans and their relationships with biogeochemical variables. Most important, detritus optical properties are not well characterized and produce important effects of the simulated radiances. Specifically, there does not appear to be a relationship between detrital biomass and its optical properties, as there is for chlorophyll. Approximations are necessary to get beyond this problem. In this reprt we will discuss the challenges in modeling and assimilation water-leaving radiances and the prospects for improving our understanding of biogeochemical process by utilizing these signals.

  8. The impact of temperature on marine phytoplankton resource allocation and metabolism

    NASA Astrophysics Data System (ADS)

    Toseland, A.; Daines, S. J.; Clark, J. R.; Kirkham, A.; Strauss, J.; Uhlig, C.; Lenton, T. M.; Valentin, K.; Pearson, G. A.; Moulton, V.; Mock, T.

    2013-11-01

    Marine phytoplankton are responsible for ~50% of the CO2 that is fixed annually worldwide, and contribute massively to other biogeochemical cycles in the oceans. Their contribution depends significantly on the interplay between dynamic environmental conditions and the metabolic responses that underpin resource allocation and hence biogeochemical cycling in the oceans. However, these complex environment-biome interactions have not been studied on a larger scale. Here we use a set of integrative approaches that combine metatranscriptomes, biochemical data, cellular physiology and emergent phytoplankton growth strategies in a global ecosystems model, to show that temperature significantly affects eukaryotic phytoplankton metabolism with consequences for biogeochemical cycling under global warming. In particular, the rate of protein synthesis strongly increases under high temperatures even though the numbers of ribosomes and their associated rRNAs decreases. Thus, at higher temperatures, eukaryotic phytoplankton seem to require a lower density of ribosomes to produce the required amounts of cellular protein. The reduction of phosphate-rich ribosomes in warmer oceans will tend to produce higher organismal nitrogen (N) to phosphate (P) ratios, in turn increasing demand for N with consequences for the marine carbon cycle due to shifts towards N-limitation. Our integrative approach suggests that temperature plays a previously unrecognized, critical role in resource allocation and marine phytoplankton stoichiometry, with implications for the biogeochemical cycles that they drive.

  9. Potential for real-time understanding of coupled hydrologic and biogeochemical processes in stream ecosystems: Future integration of telemetered data with process models for glacial meltwater streams

    NASA Astrophysics Data System (ADS)

    McKnight, Diane M.; Cozzetto, Karen; Cullis, James D. S.; Gooseff, Michael N.; Jaros, Christopher; Koch, Joshua C.; Lyons, W. Berry; Neupauer, Roseanna; Wlostowski, Adam

    2015-08-01

    While continuous monitoring of streamflow and temperature has been common for some time, there is great potential to expand continuous monitoring to include water quality parameters such as nutrients, turbidity, oxygen, and dissolved organic material. In many systems, distinguishing between watershed and stream ecosystem controls can be challenging. The usefulness of such monitoring can be enhanced by the application of quantitative models to interpret observed patterns in real time. Examples are discussed primarily from the glacial meltwater streams of the McMurdo Dry Valleys, Antarctica. Although the Dry Valley landscape is barren of plants, many streams harbor thriving cyanobacterial mats. Whereas a daily cycle of streamflow is controlled by the surface energy balance on the glaciers and the temporal pattern of solar exposure, the daily signal for biogeochemical processes controlling water quality is generated along the stream. These features result in an excellent outdoor laboratory for investigating fundamental ecosystem process and the development and validation of process-based models. As part of the McMurdo Dry Valleys Long-Term Ecological Research project, we have conducted field experiments and developed coupled biogeochemical transport models for the role of hyporheic exchange in controlling weathering reactions, microbial nitrogen cycling, and stream temperature regulation. We have adapted modeling approaches from sediment transport to understand mobilization of stream biomass with increasing flows. These models help to elucidate the role of in-stream processes in systems where watershed processes also contribute to observed patterns, and may serve as a test case for applying real-time stream ecosystem models.

  10. SUSPENDED AND BENTHIC SEDIMENT RELATIONSHIPS IN THE YAQUINA ESTUARY, OREGON: NUTRIENT PROCESSING

    EPA Science Inventory

    Measurements of nutrient loading and subsequent nutrient processing are fundamental for determining biogeochemical processes in rivers and estuaries. In Oregon coastal watersheds, nutrient transport is strongly seasonal with up to 94% of the riverine dissolved nitrate and silic...

  11. Carbon and nitrogen biogeochemistry in the ocean: A study using stable isotope natural abundance

    NASA Technical Reports Server (NTRS)

    Rau, G. H.; Desmarais, David J.

    1985-01-01

    Determining the biogeochemical pathways traveled by carbon and nitrogen in the ocean is fundamental to the understanding of how the ocean participates in the cycling of these elements within the biosphere. Because biological production, metabolism, and respiration can significantly alter the natural abundance of C-13 and N-15, these abundances can provide important information about the nature of these biological processes and their variability in the marine environment. The research initially seeks to characterize the spatial and temporal patterns of stable isotope abundances in organic matter, and to relate these abundances to C and N biogeochemical processes within selected areas of the northeastern Pacific Ocean.

  12. Carbohydrates as indicators of biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Lazareva, E. V.; Romankevich, E. A.

    2012-05-01

    A method is presented to study the carbohydrate composition of marine objects involved into sedimento- and diagenesis (plankton, particulate matter, benthos, and bottom sediments). The analysis of the carbohydrates is based upon the consecutive separation of their fractions with different solvents (water, alkali, and acid). The ratio of the carbohydrate fractions allows one to evaluate the lability of the carbohydrate complex. It is also usable as an indicator of the biogeochemical processes in the ocean, as well of the genesis and the degree of conversion of organic matter in the bottom sediments and nodules. The similarity in the monosaccharide composition is shown for dissolved organic matter and aqueous and alkaline fractions of seston and particulate matter.

  13. A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning

    USGS Publications Warehouse

    Wallenstein, Matthew D.; Hall, Edward K.

    2012-01-01

    As the earth system changes in response to human activities, a critical objective is to predict how biogeochemical process rates (e.g. nitrification, decomposition) and ecosystem function (e.g. net ecosystem productivity) will change under future conditions. A particular challenge is that the microbial communities that drive many of these processes are capable of adapting to environmental change in ways that alter ecosystem functioning. Despite evidence that microbes can adapt to temperature, precipitation regimes, and redox fluctuations, microbial communities are typically not optimally adapted to their local environment. For example, temperature optima for growth and enzyme activity are often greater than in situ temperatures in their environment. Here we discuss fundamental constraints on microbial adaptation and suggest specific environments where microbial adaptation to climate change (or lack thereof) is most likely to alter ecosystem functioning. Our framework is based on two principal assumptions. First, there are fundamental ecological trade-offs in microbial community traits that occur across environmental gradients (in time and space). These trade-offs result in shifting of microbial function (e.g. ability to take up resources at low temperature) in response to adaptation of another trait (e.g. limiting maintenance respiration at high temperature). Second, the mechanism and level of microbial community adaptation to changing environmental parameters is a function of the potential rate of change in community composition relative to the rate of environmental change. Together, this framework provides a basis for developing testable predictions about how the rate and degree of microbial adaptation to climate change will alter biogeochemical processes in aquatic and terrestrial ecosystems across the planet.

  14. Model-Based Analysis of the Role of Biological, Hydrological and Geochemical Factors Affecting Uranium Bioremediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jiao; Scheibe, Timothy D.; Mahadevan, Radhakrishnan

    2011-01-24

    Uranium contamination is a serious concern at several sites motivating the development of novel treatment strategies such as the Geobacter-mediated reductive immobilization of uranium. However, this bioremediation strategy has not yet been optimized for the sustained uranium removal. While several reactive-transport models have been developed to represent Geobacter-mediated bioremediation of uranium, these models often lack the detailed quantitative description of the microbial process (e.g., biomass build-up in both groundwater and sediments, electron transport system, etc.) and the interaction between biogeochemical and hydrological process. In this study, a novel multi-scale model was developed by integrating our recent model on electron capacitancemore » of Geobacter (Zhao et al., 2010) with a comprehensive simulator of coupled fluid flow, hydrologic transport, heat transfer, and biogeochemical reactions. This mechanistic reactive-transport model accurately reproduces the experimental data for the bioremediation of uranium with acetate amendment. We subsequently performed global sensitivity analysis with the reactive-transport model in order to identify the main sources of prediction uncertainty caused by synergistic effects of biological, geochemical, and hydrological processes. The proposed approach successfully captured significant contributing factors across time and space, thereby improving the structure and parameterization of the comprehensive reactive-transport model. The global sensitivity analysis also provides a potentially useful tool to evaluate uranium bioremediation strategy. The simulations suggest that under difficult environments (e.g., highly contaminated with U(VI) at a high migration rate of solutes), the efficiency of uranium removal can be improved by adding Geobacter species to the contaminated site (bioaugmentation) in conjunction with the addition of electron donor (biostimulation). The simulations also highlight the interactive effect of initial cell concentration and flow rate on U(VI) reduction.« less

  15. Impact of mixing chemically heterogeneous groundwaters on the sustainability of an open-loop groundwater heat pump

    NASA Astrophysics Data System (ADS)

    Burté, L.; Farasin, J.; Cravotta, C., III; Gerard, M. F.; Cotiche Baranger, C.; Aquilina, L.; Le Borgne, T.

    2017-12-01

    Geothermal systems using shallow aquifers are commonly used for heating and cooling. The sustainability of these systems can be severely impacted by the occurrence of clogging process. The geothermal loop operation (including pumping of groundwater, filtering and heat extraction through exchangers and cooled water injection) can lead to an unexpected biogeochemical reactivity and scaling formation that can ultimately lead to the shutdown of the geothermal doublet. Here, we report the results of investigations carried out on a shallow geothermal doublet (< 40 m depth) affected by rapid clogging processes linked to iron and manganese oxidation. Using a reactive transport model, we determine the parameters controlling clogging. To characterize the biogeochemical processes induced by the operation of the production well, we combined hydrodynamic measurements by flowmeter and in-situ chemical depth profiles. We thus investigated the chemical heterogeneity into the pumping well as a function of the operating conditions (static or dynamic). Hydrochemical data collected at the pumping well showed that groundwater was chemically heterogeneous long the 11 meters well screen. While the aquifer was dominantly oxic, a localized inflow of anoxic water was detected and evaluated to produce about 40% of the total flow . The mixture of chemically heterogeneous water induced by pumping lead to the oxidation of reductive species and thus to the formation of biogenic precipitates responsible for clogging. The impact of pumping waters of different redox potential and chemical characteristics was quantified by numerical modeling using PHREEQC. These results shows that natural chemical heterogeneity can occur at a small scale in heterogeneous aquifers and highlight the importance of their characterization during the production well testing and the geothermal loop operation in order to take preventive measures to avoid clogging.

  16. Combined effects of hydrologic alteration and cyprinid fish in mediating biogeochemical processes in a Mediterranean stream.

    PubMed

    Rubio-Gracia, Francesc; Almeida, David; Bonet, Berta; Casals, Frederic; Espinosa, Carmen; Flecker, Alexander S; García-Berthou, Emili; Martí, Eugènia; Tuulaikhuu, Baigal-Amar; Vila-Gispert, Anna; Zamora, Lluis; Guasch, Helena

    2017-12-01

    Flow regimes are important drivers of both stream community and biogeochemical processes. However, the interplay between community and biogeochemical responses under different flow regimes in streams is less understood. In this study, we investigated the structural and functional responses of periphyton and macroinvertebrates to different densities of the Mediterranean barbel (Barbus meridionalis, Cyprinidae) in two stream reaches differing in flow regime. The study was conducted in Llémena Stream, a small calcareous Mediterranean stream with high nutrient levels. We selected a reach with permanent flow (permanent reach) and another subjected to flow regulation (regulated reach) with periods of flow intermittency. At each reach, we used in situ cages to generate 3 levels of fish density. Cages with 10 barbels were used to simulate high fish density (>7indm -2 ); cages with open sides were used as controls (i.e. exposed to actual fish densities of each stream reach) thus having low fish density; and those with no fish were used to simulate the disappearance of fish that occurs with stream drying. Differences in fish density did not cause significant changes in periphyton biomass and macroinvertebrate density. However, phosphate uptake by periphyton was enhanced in treatments lacking fish in the regulated reach with intermittent flow but not in the permanent reach, suggesting that hydrologic alteration hampers the ability of biotic communities to compensate for the absence of fish. This study indicates that fish density can mediate the effects of anthropogenic alterations such as flow intermittence derived from hydrologic regulation on stream benthic communities and associated biogeochemical processes, at least in eutrophic streams. Copyright © 2017. Published by Elsevier B.V.

  17. Biogeochemistry of natural ponds in agricultural landscape: Lessons learned from modeling a kettle hole in Northeast Germany.

    PubMed

    Onandia, Gabriela; Lischeid, Gunnar; Kalettka, Thomas; Kleeberg, Andreas; Omari, Mohamed; Premke, Katrin; Arhonditsis, George B

    2018-09-01

    Kettle holes, small shallow ponds of glacial origin, represent hotspots for biodiversity and biogeochemical cycling. They abound in the young moraine landscape of Northeast Germany, potentially modulating element fluxes in a region where intensive agriculture prevails. The Rittgarten kettle hole, with semi-permanent hydroperiod and a surrounding reed belt, can be considered as a representative case study for such systems. Aiming to provide insights into the biogeochemical processes driving nutrient and primary producer dynamics in the Rittgarten kettle hole, we developed a mechanistic model that simulates the carbon, nitrogen, phosphorus and oxygen, phytoplankton, and free-floating macrophyte biomass dynamics. After model calibration and sensitivity analysis, our modeling exercise quantified the simulated nutrient fluxes associated with all the major biogeochemical processes considered by the model. Seasonality of nutrient concentrations, magnitude of primary productivity rates, and biogeochemical process characterization in the pond were reasonably reproduced by the model from July 2013 to July 2014. Our results suggest that the establishment of a phytoplankton community well-adapted to low light availability, together with the differential use of N and P from free-floating macrophytes and phytoplankton can explain their coexistence in kettle holes. Sediment nutrient release along with decomposition of decaying submerged macrophyte are essential drivers of internal nutrient cycling in kettle holes. Our results also suggest that the Rittgarten kettle hole act as a net source of CO 2 to the atmosphere on an annual scale, which offers a testable hypothesis for kettle holes with structural and functional similarities. We conclude by discussing the need to shed light on the effects of water level fluctuations on nutrient dynamics and biological succession patterns, as well as the relative importance of external sources and internal nutrient recycling mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Authigenic Carbonate Formation on the Peru Margin; New Insights from IODP Site 1230

    NASA Astrophysics Data System (ADS)

    Abdullajintakam, S.; Naehr, T. H.

    2015-12-01

    Fluid seepage of reduced organic compounds such as methane impacts the geology and biology of the seabed by inducing complex, microbially mediated biogeochemical processes. Authigenic carbonates serve as one of the few permanent records of these of dynamic biogeochemical interactions that involve methanogenesis, methanotrophy, sulfate reduction and carbonate precipitation. Meister et al. (2007) investigated deep-sea dolomite formation at Sites 1227-1229 on the Peru margin, where dolomite precipitation occurs in association with organic carbon-rich continental margin sediments. Geochemical and petrographic studies indicated episodic dolomite precipitation at a dynamic sulfate methane transition zone (SMTZ). Variations in δ13C values of these dolomites between +15‰ and -15‰ were attributed to non-steady state conditions as a result of the upward and downward migration of the SMTZ. Our study aims to better understand the biogeochemical processes associated with authigenic carbonate precipitation in this dynamic deep-sea setting. We focused our efforts on IODP Site 1230, which is a gas-hydrate-bearing site that shows sulphate consumption within the uppermost 10 m below the seafloor as well as high methane production. Using a multi proxy approach, we combined X-ray diffraction, stable isotope geochemistry, and trace metal analysis of authigenic carbonates to elucidate conditions for authigenic carbonate formation. Results from Site 1230 are compared to Sites 1227 and 1229, which lacks gas hydrates and is characterized by high pore water sulfate and low methane concentrations. This study contributes to a more comprehensive understanding of authigenic carbonate formation and associated biogeochemical processes in continental margin sediments. Meister, P., Mckenzie, J. A., Vasconcelos, C., Bernasconi, S., Frank, M., Gutjhar, M. and SCHRAG, D. P. (2007), Dolomite formation in the dynamic deep biosphere: results from the Peru Margin. Sedimentology, 54: 1007-1032.

  19. Impacts of Bottom Fishing on Sediment Biogeochemical and Biological Parameters in Cohesive and Non-cohesive Sediments

    NASA Astrophysics Data System (ADS)

    Sciberras, M.; Hiddink, J. G.; Powell, C.; Parker, R.; Krӧger, S.; Bolam, S. G.; Robertson, C.

    2016-02-01

    Sediment resuspension and bed reworking by tides, waves and biological activity are frequent in the energetic coastal environments. Sediment mixing by tides and waves are generally more important in regulating sediment processes in advection-dominated system such as sandy sediments, whereas sediment reworking by bioturbation is more important in diffusion-dominated systems such as muddy sediments. Bottom fishing constitutes an additional significant impact on benthic communities and sediment biogeochemical processes in coastal areas through physical changes in sediment resuspension and mixing and changes to bioturbating fauna. This study examined the biological (macro-infaunal) and biogeochemical responses to fishing at a muddy and sandy site in the Irish Sea that were predominantly impacted by otter trawls and scallop dredges, respectively. The sandy habitat (>90% sand) was typical of a hydrodynamic environment characterized by a diverse array of small infaunal species, low organic carbon levels and fast remineralisation of organic matter in the sediment. The muddier habitat (>65% fines) was dominated by fewer but larger bioturbating species compared to sand, and illustrated highly diffusional solute transport, higher organic carbon content and a shallower oxygen penetration depth. Generally there appeared to be no clear statistically significant changes in the biogeochemistry of the sandy or muddy habitat that could be attributed to different intensities of fishing. However, pore-water nutrient profiles of ammonium, phosphate and silicate provided clear evidence of organic matter burial and/or mixing as a result of trawling at the muddy site. The biogeochemistry at the sandy site appeared to remain dominated by the natural physical environment, so impact of fishing disturbance was less evident. These results suggest that fishing does not have comparable effects on the biology and biogeochemical processes in all benthic habitats.

  20. Seasonal Dynamics of Biogeochemical Processes in the Water Column of the Northeastern Black Sea

    NASA Astrophysics Data System (ADS)

    Rusanov, I. I.; Lein, A. Yu.; Makkaveev, P. N.; Klyuvitkin, A. A.; Kravchishina, M. D.; Ivanov, M. V.; Flint, M. V.

    2018-01-01

    Integrated studies on the hydrochemistry and water column rates of microbial processes in the eastern sector of the Black Sea along a standard 100-miles transect off Gelendzhik from the coast to the central part of the sea at water depths of 100-2170 m show that a series of warm winters and the absence of intense convective winter mixing resulted in a relatively low content of suspended particulate matter (SPM), particulate organic carbon (POC), and nutrients in the water column in March 2009. The relatively high SPM concentrations and the presence of isotopically light POC at the offshore station are indicative of the supply of terrigenous material from land and low contributions of phytoplanktonic organic matter to the composition of SPM. This may explain the low rates of biogeochemical processes in the water column near the coast. The surface layer at deep-water stations is dominated by isotopically heavy phytoplanktonic organic matter. This suggests that the supply of terrigenous material from land was insufficient in offshore deep-water areas. Therefore, warm winters and insufficient nutrient supply do not prevent photosynthesis in the photic layer of the deep-water zone, which generates organic substrates for heterotrophic aquatic communities. The results of isotopic analysis of POC, measurements of the rates biogeochemical processes, and the hydrochemical characteristics of the water column can be used to determine the nature and seasonal variability of the POC composition.

  1. Mercury bioaccumulation in estuarine fishes: Novel insights from sulfur stable isotopes

    USGS Publications Warehouse

    Willacker, James J.; Eagles-Smith, Collin A.; Ackerman, Joshua T.

    2017-01-01

    Estuaries are transitional habitats characterized by complex biogeochemical and ecological gradients that result in substantial variation in fish total mercury concentrations (THg). We leveraged these gradients and used carbon (δ13C), nitrogen (δ15N), and sulfur (δ34S) stable isotopes to examine the ecological and biogeochemical processes underlying THg bioaccumulation in fishes from the San Francisco Bay Estuary. We employed a tiered approach that first examined processes influencing variation in fish THg among wetlands, and subsequently examined the roles of habitat and within-wetland processes in generating larger-scale patterns in fish THg. We found that δ34S, an indicator of sulfate reduction and habitat specific-foraging, was correlated with fish THg at all three spatial scales. Over the observed ranges of δ34S, THg concentrations in fish increased by up to 860% within wetlands, 560% among wetlands, and 291% within specific impounded wetland habitats. In contrast, δ13C and δ15N were not correlated with THg among wetlands and were only important in low salinity impounded wetlands, possibly reflecting more diverse food webs in this habitat. Together, our results highlight the key roles of sulfur biogeochemistry and ecology in influencing estuarine fish THg, as well as the importance of fish ecology and habitat in modulating the relationships between biogeochemical processes and Hg bioaccumulation.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    RoyChowdhury, Taniya; Bramer, Lisa; Hoyt, David W.

    Earth System Models predict climate extremes that will impact regional and global hydrology. Aquatic-terrestrial transition zones like wetlands are subjected to the immediate consequence of climate change with shifts in the magnitude and dynamics of hydrologic flow. Such fluctuating hydrology can alter the nature and rate of biogeochemical transformations and significantly impact the carbon balance of the ecosystem. We tested the impacts of fluctuating hydrology and, specifically, the role of antecedent moisture conditions in determining the dominant carbon loss mechanisms in soils sampled from a tidal freshwater wetland system in the lower Columbia River, WA, USA. The objective was tomore » understand shifts in biogeochemical processes in response to changing soil moisture, based on soil respiration and methane production rates, and to elucidate such responses based on the observed electron acceptor and metabolite profiles under laboratory conditions. Metabolomics and biogeochemical process rates provided evidence that soil redox was the principal factor driving metabolic function. Fluctuating redox conditions altered terminal electron acceptor and donor availability and recovery strengths of their concentrations in soil such that a disproportionate release of carbon dioxide stemmed from alternative anaerobic degradation processes like sulfate and iron reduction compared to carbon loss due to methanogenesis. These results show that extended and short-term saturation created conditions conducive to increasing metabolite availability for anaerobic decomposition processes, with a significant lag in methanogenesis. In contrast, extended drying caused a cellular-level stress response and rapid recycling of alternate electron acceptors.« less

  3. Mercury Bioaccumulation in Estuarine Fishes: Novel Insights from Sulfur Stable Isotopes.

    PubMed

    Willacker, James J; Eagles-Smith, Collin A; Ackerman, Joshua T

    2017-02-21

    Estuaries are transitional habitats characterized by complex biogeochemical and ecological gradients that result in substantial variation in fish total mercury concentrations (THg). We leveraged these gradients and used carbon (δ 13 C), nitrogen (δ 15 N), and sulfur (δ 34 S) stable isotopes to examine the ecological and biogeochemical processes underlying THg bioaccumulation in fishes from the San Francisco Bay Estuary. We employed a tiered approach that first examined processes influencing variation in fish THg among wetlands, and subsequently examined the roles of habitat and within-wetland processes in generating larger-scale patterns in fish THg. We found that δ 34 S, an indicator of sulfate reduction and habitat specific-foraging, was correlated with fish THg at all three spatial scales. Over the observed ranges of δ 34 S, THg concentrations in fish increased by up to 860% within wetlands, 560% among wetlands, and 291% within specific impounded wetland habitats. In contrast, δ 13 C and δ 15 N were not correlated with THg among wetlands and were only important in low salinity impounded wetlands, possibly reflecting more diverse food webs in this habitat. Together, our results highlight the key roles of sulfur biogeochemistry and ecology in influencing estuarine fish THg, as well as the importance of fish ecology and habitat in modulating the relationships between biogeochemical processes and Hg bioaccumulation.

  4. Sensitivity of land surface modeling to parameters: An uncertainty quantification method applied to the Community Land Model

    NASA Astrophysics Data System (ADS)

    Ricciuto, D. M.; Mei, R.; Mao, J.; Hoffman, F. M.; Kumar, J.

    2015-12-01

    Uncertainties in land parameters could have important impacts on simulated water and energy fluxes and land surface states, which will consequently affect atmospheric and biogeochemical processes. Therefore, quantification of such parameter uncertainties using a land surface model is the first step towards better understanding of predictive uncertainty in Earth system models. In this study, we applied a random-sampling, high-dimensional model representation (RS-HDMR) method to analyze the sensitivity of simulated photosynthesis, surface energy fluxes and surface hydrological components to selected land parameters in version 4.5 of the Community Land Model (CLM4.5). Because of the large computational expense of conducting ensembles of global gridded model simulations, we used the results of a previous cluster analysis to select one thousand representative land grid cells for simulation. Plant functional type (PFT)-specific uniform prior ranges for land parameters were determined using expert opinion and literature survey, and samples were generated with a quasi-Monte Carlo approach-Sobol sequence. Preliminary analysis of 1024 simulations suggested that four PFT-dependent parameters (including slope of the conductance-photosynthesis relationship, specific leaf area at canopy top, leaf C:N ratio and fraction of leaf N in RuBisco) are the dominant sensitive parameters for photosynthesis, surface energy and water fluxes across most PFTs, but with varying importance rankings. On the other hand, for surface ans sub-surface runoff, PFT-independent parameters, such as the depth-dependent decay factors for runoff, play more important roles than the previous four PFT-dependent parameters. Further analysis by conditioning the results on different seasons and years are being conducted to provide guidance on how climate variability and change might affect such sensitivity. This is the first step toward coupled simulations including biogeochemical processes, atmospheric processes or both to determine the full range of sensitivity of Earth system modeling to land-surface parameters. This can facilitate sampling strategies in measurement campaigns targeted at reduction of climate modeling uncertainties and can also provide guidance on land parameter calibration for simulation optimization.

  5. Control of topography gradients on residence time distributions, mixing dynamics and reactive hotspot development

    NASA Astrophysics Data System (ADS)

    Bandopadhyay, Aditya; Le Borgne, Tanguy; Davy, Philippe

    2017-04-01

    Topography-driven subsurface flows are thought to play a central role in determining solute turnover and biogeochemical processes at different scales in the critical zone, including river-hyporheic zone exchanges, hillslope solute transport and reactions, and catchment biogeochemical cycles. Hydraulic head gradients, induced by topography gradients at different scales, generate a distribution of streamlines at depth, dictating the spatial distribution of redox sensitive species, the magnitude of surface water - ground water exchanges and ultimately the source/sink function of the subsurface. Flow velocities generally decrease with depth, leading to broad residence time distributions, which have been shown to affect river chemistry and geochemical reactions in catchments. In this presentation, we discuss the impact of topography-driven flows on mixing processes and the formation of localized reactive hotspots. For this, we solve analytically the coupled flow, mixing and reaction equations in two-dimensional vertical cross-sections of subsurface domains with different topography gradients. For a given topography gradient, we derive the spatial distribution of subsurface velocities, the rates of solute mixing accross streamlines and the induced kinetics of redox, precipitation and dissolution reactions using a Lagrangian approach (Le Borgne et al. 2014). We demonstrate that vertical velocity profiles driven by topography variations, act effectively as shear flows, hence stretching continuously the mixing fronts between recently infiltrated and resident water (Bandopadhyay et al. 2017). We thus derive analytical expressions for residence time distributions, mixing rates and kinetics of chemical reactions as a function of the topography gradients. We show that the rates dissolution and precipitation reactions are significantly enhanced by the existence of vertical velocity gradients and that reaction rates reach a maximum in a localized subsurface reactive layer, whose location and intensity depends on topography gradients. As a consequence of these findings, we discuss the links between topography variations, subsurface velocity gradients and biogeochemical processes in the critical zone. References: Bandopadhyay A., T. Le Borgne, Y. Méheust and M. Dentz (2017) Enhanced reaction kinetics and reactive mixing scale dynamics in mixing fronts under shear flow for arbitrary Damkohler numbers, Adv. in Water Resour. Vol. 100, p. 78-95 Le Borgne T., T. Ginn and M. Dentz (2014) Impact of Fluid Deformation on Mixing-Induced Chemical Reactions in Heterogeneous Flows, Geophys. Res. Lett., Vol. 41, 22, p. 7898-790

  6. The Value of Long-Term Research at the Five USGS WEBB Catchments

    NASA Astrophysics Data System (ADS)

    Shanley, J. B.; Murphy, S. F.; Scholl, M. A.; Wickland, K.; Aulenbach, B. T.; Hunt, R.; Clow, D. W.

    2017-12-01

    Long-term catchment studies are sentinel sites for detecting, documenting, and understanding ecosystem processes and environmental change. The small catchment approach fosters in-depth site-based hydrological, biogeochemical, and ecological process understanding, while a collective network of catchment observatories offers a broader context to synthesize understanding across a range of climates and geologies. The USGS Water, Energy, and Biogeochemical Budgets (WEBB) program is a network of five sites established in 1991 to assess the impact of climate and environmental change on hydrology and biogeochemistry. Like other networks, such as the USDA - Forest Service Experimental Forests and the Czech Geomon network, WEBB exploits gradients of climate, geology, and topography to understand controls on biogeochemical processes. We present examples from each site and some cross-site syntheses to demonstrate how WEBB has advanced catchment science and informed resource management and policy. WEBB has relied on strong academic partnerships, providing long-term continuity for shorter-term academic grants, which have offered rich graduate educational opportunities. Like other sites and networks, the long-term datasets and process understanding of WEBB provide context to detect and interpret change. Without this backdrop, we have no baseline to quantify effects of droughts, floods, and extreme events, and no test sites to validate process-based models. In an era of lean budgets for science funding, the long-term continuity of WEBB and other catchment networks is in jeopardy, as is the critical scientific value and societal benefits they embody.

  7. Linking Nitrogen-Cycling Microbial Communities to Environmental Fluctuations and Biogeochemical Activity in a Large, Urban Estuary: the San Francisco Bay-Delta

    NASA Astrophysics Data System (ADS)

    Francis, C.

    2015-12-01

    Nitrogen (N) availability is an important factor controlling productivity and thus carbon cycling in estuaries. The fate of N in estuaries depends on the activities of the microbes that carry out the N-cycle, which in turn depend on factors such as organic matter availability, dissolved inorganic N, salinity, oxygen, and temperature. Key microbial N transformations include nitrification (the aerobic oxidation of ammonia to nitrite and nitrate) and denitrification (the anaerobic reduction of nitrate to dinitrogen gas). While denitrification leads to N loss, nitrification is the only link between reduced N (produced by decomposition) and oxidized N (substrates for N loss processes), and both processes are known to produce nitrous oxide (N2O), a potent greenhouse gas. Understanding controls of N-cycling in the San Francisco Bay-Delta (SFBD)—the largest estuary on the west coast of North America—is particularly important, as this urban estuary is massively polluted with N, even compared to classic "eutrophic" systems. Interestingly, the SFBD has been spared the detrimental consequences of nutrient enrichment, largely due to high suspended sediment concentrations (and thus low light penetration) throughout the water column, combined with high grazing pressure. However, the recent "clearing" of SFBD waters due to a sharp decrease in suspended sediments may significantly alter the ecology of the estuary, by increasing phytoplankton growth. Thus, the SFBD may be losing its historical resilience to eutrophication, and may soon be "high-nutrient, low-chlorophyll" no more. Elucidating the environmental factors affecting the community structure, activity, and functioning of N-cycling microbes in SFBD is crucial for determining how changes in turbidity and productivity will be propagated throughout the ecosystem. While substantial ecological research in the SFBD has focused on phytoplankton and food webs, bacterial and archaeal communities have received far less attention. Using a combination of molecular, biogeochemical, and 'omics' approaches, we have been examining how N-cycling microbial communities throughout the SFBD change in relation to environmental fluctuations—a critical step in understanding how microbial populations drive biogeochemical cycling in this estuary.

  8. Bridging Food Webs, Ecosystem Metabolism, and Biogeochemistry Using Ecological Stoichiometry Theory.

    PubMed

    Welti, Nina; Striebel, Maren; Ulseth, Amber J; Cross, Wyatt F; DeVilbiss, Stephen; Glibert, Patricia M; Guo, Laodong; Hirst, Andrew G; Hood, Jim; Kominoski, John S; MacNeill, Keeley L; Mehring, Andrew S; Welter, Jill R; Hillebrand, Helmut

    2017-01-01

    Although aquatic ecologists and biogeochemists are well aware of the crucial importance of ecosystem functions, i.e., how biota drive biogeochemical processes and vice-versa, linking these fields in conceptual models is still uncommon. Attempts to explain the variability in elemental cycling consequently miss an important biological component and thereby impede a comprehensive understanding of the underlying processes governing energy and matter flow and transformation. The fate of multiple chemical elements in ecosystems is strongly linked by biotic demand and uptake; thus, considering elemental stoichiometry is important for both biogeochemical and ecological research. Nonetheless, assessments of ecological stoichiometry (ES) often focus on the elemental content of biota rather than taking a more holistic view by examining both elemental pools and fluxes (e.g., organismal stoichiometry and ecosystem process rates). ES theory holds the promise to be a unifying concept to link across hierarchical scales of patterns and processes in ecology, but this has not been fully achieved. Therefore, we propose connecting the expertise of aquatic ecologists and biogeochemists with ES theory as a common currency to connect food webs, ecosystem metabolism, and biogeochemistry, as they are inherently concatenated by the transfer of carbon, nitrogen, and phosphorous through biotic and abiotic nutrient transformation and fluxes. Several new studies exist that demonstrate the connections between food web ecology, biogeochemistry, and ecosystem metabolism. In addition to a general introduction into the topic, this paper presents examples of how these fields can be combined with a focus on ES. In this review, a series of concepts have guided the discussion: (1) changing biogeochemistry affects trophic interactions and ecosystem processes by altering the elemental ratios of key species and assemblages; (2) changing trophic dynamics influences the transformation and fluxes of matter across environmental boundaries; (3) changing ecosystem metabolism will alter the chemical diversity of the non-living environment. Finally, we propose that using ES to link nutrient cycling, trophic dynamics, and ecosystem metabolism would allow for a more holistic understanding of ecosystem functions in a changing environment.

  9. Response of O2 and pH to ENSO in the California Current System in a high-resolution global climate model

    NASA Astrophysics Data System (ADS)

    Turi, Giuliana; Alexander, Michael; Lovenduski, Nicole S.; Capotondi, Antonietta; Scott, James; Stock, Charles; Dunne, John; John, Jasmin; Jacox, Michael

    2018-02-01

    Coastal upwelling systems, such as the California Current System (CalCS), naturally experience a wide range of O2 concentrations and pH values due to the seasonality of upwelling. Nonetheless, changes in the El Niño-Southern Oscillation (ENSO) have been shown to measurably affect the biogeochemical and physical properties of coastal upwelling regions. In this study, we use a novel, high-resolution global climate model (GFDL-ESM2.6) to investigate the influence of warm and cold ENSO events on variations in the O2 concentration and the pH of the CalCS coastal waters. An assessment of the CalCS response to six El Niño and seven La Niña events in ESM2.6 reveals significant variations in the response between events. However, these variations overlay a consistent physical and biogeochemical (O2 and pH) response in the composite mean. Focusing on the mean response, our results demonstrate that O2 and pH are affected rather differently in the euphotic zone above ˜ 100 m. The strongest O2 response reaches up to several hundreds of kilometers offshore, whereas the pH signal occurs only within a ˜ 100 km wide band along the coast. By splitting the changes in O2 and pH into individual physical and biogeochemical components that are affected by ENSO variability, we found that O2 variability in the surface ocean is primarily driven by changes in surface temperature that affect the O2 solubility. In contrast, surface pH changes are predominantly driven by changes in dissolved inorganic carbon (DIC), which in turn is affected by upwelling, explaining the confined nature of the pH signal close to the coast. Below ˜ 100 m, we find conditions with anomalously low O2 and pH, and by extension also anomalously low aragonite saturation, during La Niña. This result is consistent with findings from previous studies and highlights the stress that the CalCS ecosystem could periodically undergo in addition to impacts due to climate change.

  10. The Biogeochemical Response to Inter-decadal Atmospheric Forcing Across Watershed Scales in Canada's Subarctic

    NASA Astrophysics Data System (ADS)

    Spence, C.

    2016-12-01

    Rapid landscape changes in the circumpolar north have been documented, including degradation of permafrost and alteration of vegetation communities. These are widely expected to have profound impacts on the freshwater fluxes of solutes, carbon and nitrogen across the Arctic domain. However, there have been few attempts to document trends across the diversity of landscapes in the circumpolar north, mostly due to a dearth of long term data. Some of the fastest rates of warming over the last thirty years have occurred in Canada's Northwest Territories, so this region should already exhibit changes in aquatic chemistry. Observations of chemical loads in streams draining the ice-poor discontinuous permafrost subarctic Canadian Shield region were analyzed with the goal of determining how basins across scales have responded to changes in atmospheric forcing. Smaller streams, with much closer linkages to terrestrial processes, experienced a synchrony among hydrological and biogeochemical processes that enhanced chemical flux above that in their larger counterparts. This demonstrates that there are differences in resiliency and resistance across scales to climate change. These results highlight the importance of biogeochemical process understanding to properly explain and predict how chemical loading scales from headwaters to river mouths. This is important information if society is to properly adapt policies for effluent discharge, nearshore marine management, among others.

  11. Long-term impact of hydrological regime on structure and functions of microbial communities in riverine wetland sediments.

    PubMed

    Foulquier, Arnaud; Volat, Bernadette; Neyra, Marc; Bornette, Gudrun; Montuelle, Bernard

    2013-08-01

    In a context of global change, alterations in the water cycle may impact the structure and function of terrestrial and aquatic ecosystems. Wetlands are particularly at risk because hydrological regime has a major influence on microbially mediated biogeochemical processes in sediments. While the influence of water availability on wetland biogeochemical processes has been comprehensively studied, the influence of hydrological regime on microbial community structure has been overlooked. We tested for the effect of hydrological regime on the structure and functions of microbial communities by comparing sediments collected at multiple sites in the Ain département (Eastern France). Each site consisted of two plots, one permanently and one seasonally inundated. At the time of sampling, all plots were continuously inundated for more than 6 months but still harboured distinct bacterial communities. This change in community structure was not associated with marked modifications in the rates of microbial activities involved in the C and N cycles. These results suggest that the observed structural change could be related to bacterial taxa responding to the environmental variations associated with different hydrological regimes, but not strongly associated with the biogeochemical processes monitored here. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  12. Microbial Metagenomics Reveals Climate-Relevant Subsurface Biogeochemical Processes.

    PubMed

    Long, Philip E; Williams, Kenneth H; Hubbard, Susan S; Banfield, Jillian F

    2016-08-01

    Microorganisms play key roles in terrestrial system processes, including the turnover of natural organic carbon, such as leaf litter and woody debris that accumulate in soils and subsurface sediments. What has emerged from a series of recent DNA sequencing-based studies is recognition of the enormous variety of little known and previously unknown microorganisms that mediate recycling of these vast stores of buried carbon in subsoil compartments of the terrestrial system. More importantly, the genome resolution achieved in these studies has enabled association of specific members of these microbial communities with carbon compound transformations and other linked biogeochemical processes-such as the nitrogen cycle-that can impact the quality of groundwater, surface water, and atmospheric trace gas concentrations. The emerging view also emphasizes the importance of organism interactions through exchange of metabolic byproducts (e.g., within the carbon, nitrogen, and sulfur cycles) and via symbioses since many novel organisms exhibit restricted metabolic capabilities and an associated extremely small cell size. New, genome-resolved information reshapes our view of subsurface microbial communities and provides critical new inputs for advanced reactive transport models. These inputs are needed for accurate prediction of feedbacks in watershed biogeochemical functioning and their influence on the climate via the fluxes of greenhouse gases, CO2, CH4, and N2O. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Quantifying the effects of mountain pine beetle infestation on water and biogeochemical cycles at multiple spatial and temporal scales

    NASA Astrophysics Data System (ADS)

    Brooks, P. D.; Harpold, A. A.; Somor, A. J.; Troch, P. A.; Gochis, D. J.; Ewers, B. E.; Pendall, E.; Biederman, J. A.; Reed, D.; Barnard, H. R.; Whitehouse, F.; Aston, T.; Borkhuu, B.

    2010-12-01

    Unprecedented levels of bark beetle infestation over the last decade have radically altered forest structure across millions of hectares of Western U.S. montane environments. The widespread extent of this disturbance presents a major challenge for governments and resource managers who lack a predictive understanding of how water and biogeochemical cycles will respond to this disturbance over various temporal and spatial scales. There is a widespread perception, largely based on hydrological responses to fire or logging, that a reduction in both transpiration and interception following tree death will increase soil water availability and catchment water yield. However, few studies have directly addressed the effects of insect-induced forest decline on water and biogeochemical cycling. We address this knowledge gap using observations and modeling at scales from 100 to 109 m2 across study sites in CO and WY that vary in the intensity and timing of beetle infestation and tree death. Our focus on multiple sites with different levels of impact allows us to address two broad, organizing questions: How do changes in vegetation structure associated with MPB alter the partitioning of energy and water? And How do these changes in energy and water availability affect local to regional scale water and biogeochemical cycles? This presentation will focus primarily on energy balance and water partitioning, providing context for ongoing biogeochemical work. During the growing season, stand-scale transpiration declines rapidly and soil moisture increases following infestation, consistent with streamflow data from regional catchments that shows an increase in baseflow following widespread attack. During the winter and spring, stand scale snow surveys and continuous snow depth sensors suggested that the variability in snow cover decreased as the severity of beetle impact increases, but there were no significant stand-scale differences in snow depth among levels of impact. This is due both to an increase in snow under the canopies of dead trees and a decrease in snow cover in canopy gaps. For example, mean snow depth under the canopy was 86cm (CV 0.02) in unimpacted sites and 95cm (CV 0.05) in heavily impacted sites. In canopy gaps however, mean snow depth was 117cm (CV 0.11) in unimpacted sites but only 93cm (CV 0.07) in heavily impacted sites. At the watershed scale, bark beetle infestation was more likely to decrease the amount of both snowmelt and annual runoff, suggesting that the opening of the canopy increases sublimation and evaporation of the snow cover. These data suggest that the disturbance due to bark beetle infestation is both quantitatively and qualitatively different than either fire or logging. Using these observations, we develop a conceptual model for evaluating how biotic and abiotic processes couple water and biogeochemical cycles in forest ecosystems.

  14. Biogeochemical Modeling of Ureolytically-Driven Calcium Carbonate Precipitation for Contaminant Immobilization

    NASA Astrophysics Data System (ADS)

    Smith, R. W.; Fujita, Y.; Taylor, J. L.

    2008-12-01

    Radionuclide and metal contaminants such as strontium-90 are present beneath U.S. Department of Energy (DOE) lands in both the groundwater (e.g., 100-N area at Hanford, WA) and vadose zone (e.g., Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory [INL]). Manipulation of in situ biogeochemical conditions to induce immobilization of these contaminants is a promising remediation approach that could yield significant risk and cost benefits to DOE. However, the effective design and interpretation of such field remediation activities requires the availability of numerical tools to model the biogeochemical processes underlying the remediation strategy. We are evaluating the use of microbial urea hydrolysis coupled to calcite precipitation as a means for the cost effective in situ stabilization of trace inorganic contaminants in groundwater and vadose zone systems. The approach relies upon the activity of indigenous ureolytic bacteria to hydrolyze introduced urea and causing an increase in pH and alkalinity, thereby accelerating calcium carbonate precipitation. The precipitation reaction results in the co- precipitation of trace metals and is sustained by the release of cations (both calcium and trace metals) from the aquifer matrix via exchange reactions involving the ammonium ions produced by urea hydrolysis. We have developed and parameterized a mixed kinetic-equilibrium reaction model using the Geochemist's Workbench computer code. Simulation results based on laboratory- and field-scale studies demonstrate the importance of transient events in systems with geochemical fluxes as well as of the coupling of biogeochemical processes.

  15. A Hybrid Multiscale Framework for Subsurface Flow and Transport Simulations

    DOE PAGES

    Scheibe, Timothy D.; Yang, Xiaofan; Chen, Xingyuan; ...

    2015-06-01

    Extensive research efforts have been invested in reducing model errors to improve the predictive ability of biogeochemical earth and environmental system simulators, with applications ranging from contaminant transport and remediation to impacts of biogeochemical elemental cycling (e.g., carbon and nitrogen) on local ecosystems and regional to global climate. While the bulk of this research has focused on improving model parameterizations in the face of observational limitations, the more challenging type of model error/uncertainty to identify and quantify is model structural error which arises from incorrect mathematical representations of (or failure to consider) important physical, chemical, or biological processes, properties, ormore » system states in model formulations. While improved process understanding can be achieved through scientific study, such understanding is usually developed at small scales. Process-based numerical models are typically designed for a particular characteristic length and time scale. For application-relevant scales, it is generally necessary to introduce approximations and empirical parameterizations to describe complex systems or processes. This single-scale approach has been the best available to date because of limited understanding of process coupling combined with practical limitations on system characterization and computation. While computational power is increasing significantly and our understanding of biological and environmental processes at fundamental scales is accelerating, using this information to advance our knowledge of the larger system behavior requires the development of multiscale simulators. Accordingly there has been much recent interest in novel multiscale methods in which microscale and macroscale models are explicitly coupled in a single hybrid multiscale simulation. A limited number of hybrid multiscale simulations have been developed for biogeochemical earth systems, but they mostly utilize application-specific and sometimes ad-hoc approaches for model coupling. We are developing a generalized approach to hierarchical model coupling designed for high-performance computational systems, based on the Swift computing workflow framework. In this presentation we will describe the generalized approach and provide two use cases: 1) simulation of a mixing-controlled biogeochemical reaction coupling pore- and continuum-scale models, and 2) simulation of biogeochemical impacts of groundwater – river water interactions coupling fine- and coarse-grid model representations. This generalized framework can be customized for use with any pair of linked models (microscale and macroscale) with minimal intrusiveness to the at-scale simulators. It combines a set of python scripts with the Swift workflow environment to execute a complex multiscale simulation utilizing an approach similar to the well-known Heterogeneous Multiscale Method. User customization is facilitated through user-provided input and output file templates and processing function scripts, and execution within a high-performance computing environment is handled by Swift, such that minimal to no user modification of at-scale codes is required.« less

  16. Improving Coastal Ocean Color Validation Capabilities through Application of Inherent Optical Properties (IOPs)

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio

    2008-01-01

    Understanding how the different components of seawater alter the path of incident sunlight through scattering and absorption is essential to using remotely sensed ocean color observations effectively. This is particularly apropos in coastal waters where the different optically significant components (phytoplankton, detrital material, inorganic minerals, etc.) vary widely in concentration, often independently from one another. Inherent Optical Properties (IOPs) form the link between these biogeochemical constituents and the Apparent Optical Properties (AOPs). understanding this interrelationship is at the heart of successfully carrying out inversions of satellite-measured radiance to biogeochemical properties. While sufficient covariation of seawater constituents in case I waters typically allows empirical algorithms connecting AOPs and biogeochemical parameters to behave well, these empirical algorithms normally do not hold for case I1 regimes (Carder et al. 2003). Validation in the context of ocean color remote sensing refers to in-situ measurements used to verify or characterize algorithm products or any assumption used as input to an algorithm. In this project, validation capabilities are considered those measurement capabilities, techniques, methods, models, etc. that allow effective validation. Enhancing current validation capabilities by incorporating state-of-the-art IOP measurements and optical models is the purpose of this work. Involved in this pursuit is improving core IOP measurement capabilities (spectral, angular, spatio-temporal resolutions), improving our understanding of the behavior of analytical AOP-IOP approximations in complex coastal waters, and improving the spatial and temporal resolution of biogeochemical data for validation by applying biogeochemical-IOP inversion models so that these parameters can be computed from real-time IOP sensors with high sampling rates. Research cruises supported by this project provides for collection and processing of seawater samples for biogeochemical (pigments, DOC and POC) and optical (CDOM and POM absorption coefficients) analyses to enhance our understanding of the linkages between in-water optical measurements (IOPs and AOPs) and biogeochemical constituents and to provide a more comprehensive suite of validation products.

  17. Quantifying Subsurface Water and Heat Distribution and its Linkage with Landscape Properties in Terrestrial Environment using Hydro-Thermal-Geophysical Monitoring and Coupled Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Dafflon, B.; Tran, A. P.; Wainwright, H. M.; Hubbard, S. S.; Peterson, J.; Ulrich, C.; Williams, K. H.

    2015-12-01

    Quantifying water and heat fluxes in the subsurface is crucial for managing water resources and for understanding the terrestrial ecosystem where hydrological properties drive a variety of biogeochemical processes across a large range of spatial and temporal scales. Here, we present the development of an advanced monitoring strategy where hydro-thermal-geophysical datasets are continuously acquired and further involved in a novel inverse modeling framework to estimate the hydraulic and thermal parameter that control heat and water dynamics in the subsurface and further influence surface processes such as evapotranspiration and vegetation growth. The measured and estimated soil properties are also used to investigate co-interaction between subsurface and surface dynamics by using above-ground aerial imaging. The value of this approach is demonstrated at two different sites, one in the polygonal shaped Arctic tundra where water and heat dynamics have a strong impact on freeze-thaw processes, vegetation and biogeochemical processes, and one in a floodplain along the Colorado River where hydrological fluxes between compartments of the system (surface, vadose zone and groundwater) drive biogeochemical transformations. Results show that the developed strategy using geophysical, point-scale and aerial measurements is successful to delineate the spatial distribution of hydrostratigraphic units having distinct physicochemical properties, to monitor and quantify in high resolution water and heat distribution and its linkage with vegetation, geomorphology and weather conditions, and to estimate hydraulic and thermal parameters for enhanced predictions of water and heat fluxes as well as evapotranspiration. Further, in the Colorado floodplain, results document the potential presence of only periodic infiltration pulses as a key hot moment controlling soil hydro and biogeochemical functioning. In the arctic, results show the strong linkage between soil water content, thermal parameters, thaw layer thickness and vegetation distribution. Overall, results of these efforts demonstrate the value of coupling various datasets at high spatial and temporal resolution to improve predictive understanding of subsurface and surface dynamics.

  18. Water release through plant roots: new insights into its consequences at the plant and ecosystem level.

    PubMed

    Prieto, Iván; Armas, Cristina; Pugnaire, Francisco I

    2012-03-01

    Hydraulic redistribution (HR) is the passive movement of water between different soil parts via plant root systems, driven by water potential gradients in the soil-plant interface. New data suggest that HR is a heterogeneous and patchy process. In this review we examine the main biophysical and environmental factors controlling HR and its main implications at the plant, community and ecosystem levels. Experimental evidence and the use of novel modelling approaches suggest that HR may have important implications at the community scale, affecting net primary productivity as well as water and vegetation dynamics. Globally, HR may influence hydrological and biogeochemical cycles and, ultimately, climate. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  19. The biogeochemical heterogeneity of tropical forests.

    PubMed

    Townsend, Alan R; Asner, Gregory P; Cleveland, Cory C

    2008-08-01

    Tropical forests are renowned for their biological diversity, but also harbor variable combinations of soil age, chemistry and susceptibility to erosion or tectonic uplift. Here we contend that the combined effects of this biotic and abiotic diversity promote exceptional biogeochemical heterogeneity at multiple scales. At local levels, high plant diversity creates variation in chemical and structural traits that affect plant production, decomposition and nutrient cycling. At regional levels, myriad combinations of soil age, soil chemistry and landscape dynamics create variation and uncertainty in limiting nutrients that do not exist at higher latitudes. The effects of such heterogeneity are not well captured in large-scale estimates of tropical ecosystem function, but we suggest new developments in remote sensing can help bridge the gap.

  20. Balancing the (carbon) budget: Using linear inverse models to estimate carbon flows and mass-balance 13C:15N labelling experiments in low oxygen sediments.

    NASA Astrophysics Data System (ADS)

    Hunter, William Ross; Van Oevelen, Dick; Witte, Ursula

    2013-04-01

    Over 1 million km2 of seafloor experience permanent low-oxygen conditions within oxygen minimum zones (OMZs). OMZs are predicted to grow as a consequence of climate change, potentially affecting oceanic biogeochemical cycles. The Arabian Sea OMZ impinges upon the western Indian continental margin at bathyal depths (150 - 1500m) producing a strong depth dependent oxygen gradient at the sea floor. The influence of the OMZ upon the short term processing of organic matter by sediment ecosystems was investigated using in situ stable isotope pulse chase experiments. These deployed doses of 13C:15N labeled organic matter onto the sediment surface at four stations from across the OMZ (water depth 540 - 1100 m; [O2] = 0.35 - 15 μM). In order to prevent experimentally anoxia, the mesocosms were not sealed. 13C and 15N labels were traced into sediment, bacteria, fauna and 13C into sediment porewater DIC and DOC. However, the DIC and DOC flux to the water column could not be measured, limiting our capacity to obtain mass-balance for C in each experimental mesocosm. Linear Inverse Modeling (LIM) provides a method to obtain a mass-balanced model of carbon flow that integrates stable-isotope tracer data with community biomass and biogeochemical flux data from a range of sources. Here we present an adaptation of the LIM methodology used to investigate how ecosystem structure influenced carbon flow across the Indian margin OMZ. We demonstrate how oxygen conditions affect food-web complexity, affecting the linkages between the bacteria, foraminifera and metazoan fauna, and their contributions to benthic respiration. The food-web models demonstrate how changes in ecosystem complexity are associated with oxygen availability across the OMZ and allow us to obtain a complete carbon budget for the stationa where stable-isotope labelling experiments were conducted.

  1. Harvest Influences on Floodwater Properties in a Forested Floodplain

    Treesearch

    R.G. Clawson; B.G Lockaby; R.B. Rummer

    1999-01-01

    Abstract: Floodplain forests directly influence water quality by serving as sinks, sources, or transformers of nutrients. Increases in the demand for timber raise the question of how silvicultural disturbance may affect this function. The objective of this research was to compare biogeochemical relationships between undisturbed vs. disturbed...

  2. Statistical evaluation of biogeochemical variables affecting spatiotemporal distributions of multiple free metal ion concentrationsin an urban estuary

    EPA Science Inventory

    Free metal ion concentrations have been recognized as a better indicator of metal bioavailability in aquatic environments than total dissolved metal concentrations. However, our understanding of the determinants of free ion concentrations, especially in a metal mixture, is limite...

  3. Elevated enzyme activities in soils under the invasive nitrogen-fixing tree Falcataria moluccana

    Treesearch

    Steven D. Allison; Caroline Nielsen; R. Flint Hughes

    2006-01-01

    Like other N-fixing invasive species in Hawaii, Falcataria moluccana dramatically alters forest structure, litterfall quality and quantity, and nutrient dynamics. We hypothesized that these biogeochemical changes would also affect the soil microbial community and the extracellular enzymes responsible for carbon and nutrient mineralization. Across...

  4. Recent rates of forest harvest and conversion in North America

    Treesearch

    Jeffrey G. Masek; Warren B. Cohen; Donald Leckie; Michael A. Wulder; Rodrigo Vargas; Ben de Jong; Sean Healey; Beverly Law; Richard Birdsey; R. A. Houghton; David Mildrexler; Samuel Goward; W. Brad Smith

    2011-01-01

    Incorporating ecological disturbance into biogeochemical models is critical for estimating current and future carbon stocks and fluxes. In particular, anthropogenic disturbances, such as forest conversion and wood harvest, strongly affect forest carbon dynamics within North America. This paper summarizes recent (2000-2008) rates of extraction, including both conversion...

  5. Methodological Considerations in the Study of Earthworms in Forest Ecosystems

    Treesearch

    Dylan Rhea-Fournier; Grizelle Gonzalez

    2017-01-01

    Decades of studies have shown that soil macrofauna, especially earthworms, play dominant engineering roles in soils, affecting physical, chemical, and biological components of ecosystems. Quantifying these effects would allow crucial improvement in biogeochemical budgets and modeling, predicting response of land use and disturbance, and could be applied to...

  6. Naturally occurring soil salinity does not reduce N-transforming enzymes or organisms

    USDA-ARS?s Scientific Manuscript database

    Soil salinity can negatively affect plant production and important biogeochemical cycles which are mainly carried out by soil microbes. The objective of this study was to contribute new information on soil biological N transformations by examining the impact primary salinity reduction has on a) the ...

  7. Natural and drought scenarios in an east central Amazon forest: Fidelity of the Community Land Model 3.5 with three biogeochemical models

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Koichi; Zeng, Xubin; Christoffersen, Bradley J.; Restrepo-Coupe, Natalia; Saleska, Scott R.; Brando, Paulo M.

    2011-03-01

    Recent development of general circulation models involves biogeochemical cycles: flows of carbon and other chemical species that circulate through the Earth system. Such models are valuable tools for future projections of climate, but still bear large uncertainties in the model simulations. One of the regions with especially high uncertainty is the Amazon forest where large-scale dieback associated with the changing climate is predicted by several models. In order to better understand the capability and weakness of global-scale land-biogeochemical models in simulating a tropical ecosystem under the present day as well as significantly drier climates, we analyzed the off-line simulations for an east central Amazon forest by the Community Land Model version 3.5 of the National Center for Atmospheric Research and its three independent biogeochemical submodels (CASA', CN, and DGVM). Intense field measurements carried out under Large Scale Biosphere-Atmosphere Experiment in Amazonia, including forest response to drought from a throughfall exclusion experiment, are utilized to evaluate the whole spectrum of biogeophysical and biogeochemical aspects of the models. Our analysis shows reasonable correspondence in momentum and energy turbulent fluxes, but it highlights three processes that are not in agreement with observations: (1) inconsistent seasonality in carbon fluxes, (2) biased biomass size and allocation, and (3) overestimation of vegetation stress to short-term drought but underestimation of biomass loss from long-term drought. Without resolving these issues the modeled feedbacks from the biosphere in future climate projections would be questionable. We suggest possible directions for model improvements and also emphasize the necessity of more studies using a variety of in situ data for both driving and evaluating land-biogeochemical models.

  8. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau.

    PubMed

    Chen, Huai; Zhu, Qiuan; Peng, Changhui; Wu, Ning; Wang, Yanfen; Fang, Xiuqing; Gao, Yongheng; Zhu, Dan; Yang, Gang; Tian, Jianqing; Kang, Xiaoming; Piao, Shilong; Ouyang, Hua; Xiang, Wenhua; Luo, Zhibin; Jiang, Hong; Song, Xingzhang; Zhang, Yao; Yu, Guirui; Zhao, Xinquan; Gong, Peng; Yao, Tandong; Wu, Jianghua

    2013-10-01

    With a pace of about twice the observed rate of global warming, the temperature on the Qinghai-Tibetan Plateau (Earth's 'third pole') has increased by 0.2 °C per decade over the past 50 years, which results in significant permafrost thawing and glacier retreat. Our review suggested that warming enhanced net primary production and soil respiration, decreased methane (CH(4)) emissions from wetlands and increased CH(4) consumption of meadows, but might increase CH(4) emissions from lakes. Warming-induced permafrost thawing and glaciers melting would also result in substantial emission of old carbon dioxide (CO(2)) and CH(4). Nitrous oxide (N(2)O) emission was not stimulated by warming itself, but might be slightly enhanced by wetting. However, there are many uncertainties in such biogeochemical cycles under climate change. Human activities (e.g. grazing, land cover changes) further modified the biogeochemical cycles and amplified such uncertainties on the plateau. If the projected warming and wetting continues, the future biogeochemical cycles will be more complicated. So facing research in this field is an ongoing challenge of integrating field observations with process-based ecosystem models to predict the impacts of future climate change and human activities at various temporal and spatial scales. To reduce the uncertainties and to improve the precision of the predictions of the impacts of climate change and human activities on biogeochemical cycles, efforts should focus on conducting more field observation studies, integrating data within improved models, and developing new knowledge about coupling among carbon, nitrogen, and phosphorus biogeochemical cycles as well as about the role of microbes in these cycles. © 2013 John Wiley & Sons Ltd.

  9. Detecting Anthropogenic Disturbance on Weathering and Erosion Processes

    NASA Astrophysics Data System (ADS)

    Vanacker, V.; Schoonejans, J.; Bellin, N.; Ameijeiras-Mariño, Y.; Opfergelt, S.; Christl, M.

    2014-12-01

    Anthropogenic disturbance of natural vegetation can profoundly alter the physical, chemical and biological processes within soils. Rapid removal of topsoil during intense farming can result in an imbalance between soil production through chemical weathering and physical erosion, with direct implications on local biogeochemical cycling. However, the feedback mechanisms between soil erosion, chemical weathering and biogeochemical cycling in response to anthropogenic forcing are not yet fully understood. In this paper, we analyze dynamic soil properties for a rapidly changing anthropogenic landscape in the Spanish Betic Cordillera; and focus on the coupling between physical erosion, soil production and soil chemical weathering. Modern erosion rates were quantified through analysis of sediment deposition volumes behind check dams, and represent catchment-average erosion rates over the last 10 to 50 years. Soil production rates are derived from in-situ produced 10Be nuclide concentrations, and represent long-term flux rates. In each catchment, soil chemical weathering intensities were calculated for two soil-regolith profiles. Although Southeast Spain is commonly reported as the European region that is most affected by land degradation, modern erosion rates are low (140 t ha-1 yr-1). About 50 % of the catchments are losing soils at a rate of less than 60 t km-2 yr-1. Our data show that modern erosion rates are roughly of the same magnitude as the long-term or cosmogenically-derived erosion rates in the Betic Cordillera. Soils developed on weathered metamorphic rocks have no well-developed profile characteristics, and are generally thin and stony. Nevertheless, soil chemical weathering intensities are high; and question the occurrence of past soil truncation.

  10. Microbial processes at the beds of glaciers and ice sheets: a look at life below the Whillans Ice Stream

    NASA Astrophysics Data System (ADS)

    Mikucki, J.; Campen, R.; Vancleave, S.; Scherer, R. P.; Coenen, J. J.; Powell, R. D.; Tulaczyk, S. M.

    2017-12-01

    Groundwater, saturated sediments and hundreds of subglacial lakes exist below the ice sheets of Antarctica. The few Antarctic subglacial environments sampled to date all contain viable microorganisms. This is a significant finding because microbes are known to be key in mediating biogeochemical cycles. In sediments, microbial metabolic activity can also result in byproducts or direct interactions with sediment particles that influence the physical and geochemical characteristics of the matrix they inhabit. Subglacial Lake Whillans (SLW), a fresh water lake under the Whillans Ice Stream that drains into the Ross Sea at its grounding zone, was recently sampled as part of the NSF-funded Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project. Sediments from both SLW and its grounding zone contain microbial taxa related to iron, sulfur, nitrogen and methane oxidizers. In addition to molecular data, biogeochemical measurements and culture based experiments on Whillans sediments support the notion that the system is chemosynthetic with energy derived in part by cycling inorganic compounds. Etch pitting and mineral precipitates on fossil sponge spicules suggest that spicules may also provide microbial nutrients in these environments. Perhaps the most widespread microbial process that affects sediment structure and mineral weathering is the production of extra polymeric substances (EPS). Several phylogenetic groups detected in Whillans sediments are known to produce EPS and we have observed its production in pure cultures enriched directly from these sediments. Our data sheds light on how microbial life persists below the Antarctic Ice Sheet despite extended isolation in icy darkness, and how these microbes may be shaping their environment.

  11. Triple oxygen isotope analysis of tropospheric CO2 on the two sides of the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Liang, M. C.; Newman, S.; Laskar, A. H.

    2017-12-01

    The abundance variations of near surface atmospheric CO2 isotopologues (primarily 16O12C16O, 16O13C16O, 17O12C16O, and 18O12C16O) represent an integrated signal from anthropogenic/biogeochemical processes, including fossil fuel burning, biospheric photosynthesis and respiration, hydrospheric isotope exchange with water, stratospheric photochemistry, cross-tropopause exchange, and subsequent vertical mixing between the free troposphere and planetary boundary. Oxygen isotopes, in particular, are affected by both the carbon and water cycles. Being a useful tracer that directly probes governing processes in CO2 biogeochemical cycles, D17O (= ln(1+d17O) - 0.516 ln(1+d18O)) provides a powerful constraint on the strengths of the associated cycles involving CO2. Here, we report and compare summer to winter seasons CO2 isotopic composition from Taiwan (Taipei) and USA (Palos Verdes, CA). On average, the D17O values from Taiwan are significantly higher than those in USA. Analysis shows that the impact of 2014-2016 El Nino event on the observed D17O values is not visible, in contrast to what was reported for the 1997-1998 El Nino from the CO2 data collected from La Jolla, CA. Attempts are made to understand the elevated D17O values in the eastern Pacific compared to those in the western Pacific. Implications for utilizing the new tracer D17O along with the conventional d18O for carbon cycling studies are also discussed.

  12. The roles of resuspension, diffusion and biogeochemical processes on oxygen dynamics offshore of the Rhône River, France: a numerical modeling study

    NASA Astrophysics Data System (ADS)

    Moriarty, Julia M.; Harris, Courtney K.; Fennel, Katja; Friedrichs, Marjorie A. M.; Xu, Kehui; Rabouille, Christophe

    2017-04-01

    Observations indicate that resuspension and associated fluxes of organic material and porewater between the seabed and overlying water can alter biogeochemical dynamics in some environments, but measuring the role of sediment processes on oxygen and nutrient dynamics is challenging. A modeling approach offers a means of quantifying these fluxes for a range of conditions, but models have typically relied on simplifying assumptions regarding seabed-water-column interactions. Thus, to evaluate the role of resuspension on biogeochemical dynamics, we developed a coupled hydrodynamic, sediment transport, and biogeochemical model (HydroBioSed) within the Regional Ocean Modeling System (ROMS). This coupled model accounts for processes including the storage of particulate organic matter (POM) and dissolved nutrients within the seabed; fluxes of this material between the seabed and the water column via erosion, deposition, and diffusion at the sediment-water interface; and biogeochemical reactions within the seabed. A one-dimensional version of HydroBioSed was then implemented for the Rhône subaqueous delta in France. To isolate the role of resuspension on biogeochemical dynamics, this model implementation was run for a 2-month period that included three resuspension events; also, the supply of organic matter, oxygen, and nutrients to the model was held constant in time. Consistent with time series observations from the Rhône Delta, model results showed that erosion increased the diffusive flux of oxygen into the seabed by increasing the vertical gradient of oxygen at the seabed-water interface. This enhanced supply of oxygen to the seabed, as well as resuspension-induced increases in ammonium availability in surficial sediments, allowed seabed oxygen consumption to increase via nitrification. This increase in nitrification compensated for the decrease in seabed oxygen consumption due to aerobic remineralization that occurred as organic matter was entrained into the water column. Additionally, entrainment of POM into the water column during resuspension events, and the associated increase in remineralization there, also increased oxygen consumption in the region of the water column below the pycnocline. During these resuspension events, modeled rates of oxygen consumption increased by factors of up to ˜ 2 and ˜ 8 in the seabed and below the pycnocline, respectively. When averaged over 2 months, the intermittent cycles of erosion and deposition led to a ˜ 16 % increase of oxygen consumption in the seabed, as well as a larger increase of ˜ 140 % below the pycnocline. These results imply that observations collected during quiescent periods, and biogeochemical models that neglect resuspension or use typical parameterizations for resuspension, may underestimate net oxygen consumption at sites like the Rhône Delta. Local resuspension likely has the most pronounced effect on oxygen dynamics at study sites with a high oxygen concentration in bottom waters, only a thin seabed oxic layer, and abundant labile organic matter.

  13. Biogeochemical cycling in terrestrial ecosystems - Modeling, measurement, and remote sensing

    NASA Technical Reports Server (NTRS)

    Peterson, D. L.; Matson, P. A.; Lawless, J. G.; Aber, J. D.; Vitousek, P. M.

    1985-01-01

    The use of modeling, remote sensing, and measurements to characterize the pathways and to measure the rate of biogeochemical cycling in forest ecosystems is described. The application of the process-level model to predict processes in intact forests and ecosystems response to disturbance is examined. The selection of research areas from contrasting climate regimes and sites having a fertility gradient in that regime is discussed, and the sites studied are listed. The use of remote sensing in determining leaf area index and canopy biochemistry is analyzed. Nitrous oxide emission is investigated by using a gas measurement instrument. Future research projects, which include studying the influence of changes on nutrient cycling in ecosystems and the effect of pollutants on the ecosystems, are discussed.

  14. Biogeochemical Attributes That Affect the Fate and Transport of Military Relevant Contaminants Under Freeze-thaw Conditions

    NASA Astrophysics Data System (ADS)

    LeMonte, J.; Price, C. L.; Seiter, J.; Crocker, F. H.; Douglas, T.; Chappell, M. A.

    2017-12-01

    The roles and missions that the U.S. Department of Defense (DoD) undertakes in the Arctic are being reshaped by significant changes in the operational environment as a result of rising global temperatures and increased development of the vast training ranges available in Alaska. The Arctic is warming faster than any other region on Earth resulting in changing seasonality and precipitation patterns that, in turn, are leading to alterations in above ground vegetation, permafrost stability and summer sea ice extent. Collectively, these poorly defined ecosystem changes play critical roles in affecting the transport and eventual fate of persistent military relevant contaminants through unique Arctic and Subarctic terrestrial environments. As a result, management of military contaminants in a changing Arctic represents a unique and potentially significant liability to the Army and the DoD. The United States footprint in the Arctic region falls within the state of Alaska and U.S. Army Alaska manages 10% of all active Army training lands worldwide, which cover nearly 2,500 square miles in total land area. Primary recalcitrant contaminants of concern at active training ranges and at legacy sites include energetics (i.e. RDX and 2,4-dinitrotoluene) and heavy metals (i.e. antimony and lead). Through a series of field sampling and laboratory experiments, the objectives of this work are to: 1) quantify soil biogeochemical attributes that effect the physical fate and transport of military relevant contaminants in Arctic and subarctic soils under freeze-thaw conditions with a focus on near surface processes, and 2) quantify microbial diversity in Arctic and subarctic soils and the environmental constraints on community activity while exploring the effects of amendments on community function as they relate to contaminant transformation.

  15. Effects of stratospheric ozone depletion, solar UV radiation, and climate change on biogeochemical cycling: interactions and feedbacks

    DOE PAGES

    Erickson III, David J.; Sulzberger, Barbara; Zepp, Richard G.; ...

    2014-11-07

    Climate change modulates the effects of solar UV radiation on biogeochemical cycles in terrestrial and aquatic ecosystems, particularly for carbon cycling, resulting in UV-mediated positive or negative feedbacks on climate. Possible positive feedbacks discussed in this assessment include: (i) enhanced UV-induced mineralisation of above ground litter due to aridification; (ii) enhanced UV-induced mineralisation of photoreactive dissolved organic matter (DOM) in aquatic ecosystems due to changes in continental runoff and ice melting; (iii) reduced efficiency of the biological pump due to UV-induced bleaching of coloured dissolved organic matter (CDOM) in stratified aquatic ecosystems, where CDOM protects phytoplankton from the damaging solarmore » UV-B radiation. Mineralisation of organic matter results in the production and release of CO 2, whereas the biological pump is the main biological process for CO 2 removal by aquatic ecosystems. This research also assesses the interactive effects of solar UV radiation and climate change on the biogeochemical cycling of aerosols and trace gases other than CO 2, as well as of chemical and biological contaminants. Lastly,, interacting effects of solar UV radiation and climate change on biogeochemical cycles are particularly pronounced at terrestrial-aquatic interfaces.« less

  16. Biogeochemical carbon coupling influences global precipitation in geoengineering experiments

    NASA Astrophysics Data System (ADS)

    Fyfe, J. C.; Cole, J. N. S.; Arora, V. K.; Scinocca, J. F.

    2013-02-01

    Abstract Climate model studies in which CO2-induced global warming is offset by engineered decreases of incoming solar radiation are generally robust in their prediction of reduced amounts of global precipitation. While this precipitation response has been explained on the basis of changes in net radiation controlling evaporative processes at the surface, there has been relatively little consideration of the relative role of biogeochemical carbon-cycle interactions. To address this issue, we employ an Earth System Model that includes oceanic and terrestrial carbon components to isolate the impact of biogeochemical carbon coupling on the precipitation response in geoengineering experiments for two types of solar radiation management. We show that carbon coupling is responsible for a large fraction of the global precipitation reduction in such geoengineering experiments and that the primary effect comes from reduced transpiration through the leaves of plants and trees in the terrestrial component of the carbon cycle due to elevated CO2. Our results suggest that biogeochemical interactions are as important as changes in net radiation and that climate models that do not account for such carbon coupling may significantly underestimate precipitation reductions in a geoengineered world.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=337905','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=337905"><span>Tracer techniques in aeolian research: Approaches, applications, and challenges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Aeolian processes, the entrainment, transport and deposition of sediments by wind, impacts climate, biogeochemical cycles, food security, environmental quality and human health. Considering the multitude of interactions between aeolian processes and all the major components of the Earth system, ther...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3826622','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3826622"><span>Natural gold particles in Eucalyptus leaves and their relevance to exploration for buried gold deposits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lintern, Melvyn; Anand, Ravi; Ryan, Chris; Paterson, David</p> <p>2013-01-01</p> <p>Eucalyptus trees may translocate Au from mineral deposits and support the use of vegetation (biogeochemical) sampling in mineral exploration, particularly where thick sediments dominate. However, biogeochemistry has not been routinely adopted partly because biotic mechanisms of Au migration are poorly understood. For example, although Au has been previously measured in plant samples, there has been doubt as to whether it was truly absorbed rather than merely adsorbed on the plant surface as aeolian contamination. Here we show the first evidence of particulate Au within natural specimens of living biological tissue (not from laboratory experimentation). This observation conclusively demonstrates active biogeochemical adsorption of Au and provides insight into its behaviour in natural samples. The confirmation of biogeochemical adsorption of Au, and of a link with abiotic processes, promotes confidence in an emerging technique that may lead to future exploration success and maintain continuity of supply. PMID:24149278</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70190245','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70190245"><span>Extent of localized tree mortality influences soil biogeochemical response in a beetle-infested coniferous forest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Brouillard, Brent; Mikkelson, Kristin; Bokman, Chelsea; Berryman, Erin Michele; Sharp, Jonathan</p> <p>2017-01-01</p> <p>Recent increases in the magnitude and occurrence of insect-induced tree mortality are disruptingevergreen forests globally. To resolve potentially conflicting ecosystem responses, we investigatedwhether surrounding trees exert compensatory effects on biogeochemical signatures following beetleinfestation. To this end, plots were surveyed within a Colorado Rocky Mountain watershed that expe-rienced beetle infestation almost a decade prior and contained a range of surrounding tree mortality(from 9 to 91% of standing trees). Near-surface soil horizons under plot-centered live (green) and beetle-killed (grey) lodgepole pines were sampled over two consecutive summers with variable moistureconditions. Results revealed that soil respiration was 18e28% lower beneath beetle-infested trees andcorrelated to elevated dissolved organic carbon aromaticity. While certain edaphic parameters includingpH and water content were elevated below grey compared to green trees regardless of the mortalityextent within plots, other biogeochemical responses required a higher severity of surrounding mortalityto overcome compensatory effects of neighboring live trees. For instance, C:N ratios under grey treesdeclined with increased severity of surrounding tree mortality, and the proportion of ammonium dis-played a threshold effect with pronounced increases after surrounding tree mortality exceeded ~40%.Overall, the biogeochemical response to tree death was most prominent in the mineral soil horizonwhere tree mortality had the largest affect on carbon recalcitrance and the enrichment of nitrogenspecies. These results can aid in determining when and where nutrient cycles and biogeochemicalfeedbacks to the atmosphere and hydrosphere will be observed in association with this type of ecological disturbance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29523543','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29523543"><span>Isoprenoid quinones resolve the stratification of microbial redox processes in a biogeochemical continuum from the photic zone to deep anoxic sediments of the Black Sea.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Becker, Kevin W; Elling, Felix J; Schröder, Jan M; Lipp, Julius S; Goldhammer, Tobias; Zabel, Matthias; Elvert, Marcus; Overmann, Jörg; Hinrichs, Kai-Uwe</p> <p>2018-03-09</p> <p>The stratified water column of the Black Sea serves as a model ecosystem for studying the interactions of microorganisms with major biogeochemical cycles. Here we provide detailed analysis of isoprenoid quinones to study microbial redox processes in the ocean. In a continuum from the photic zone through the chemocline into deep anoxic sediments of the southern Black Sea, diagnostic quinones and inorganic geochemical parameters indicate niche segregation between redox processes and corresponding shifts in microbial community composition. Quinones specific for oxygenic photosynthesis and aerobic respiration dominate oxic waters, while quinones associated with thaumarchaeal ammonia-oxidation and bacterial methanotrophy, respectively, dominate a narrow interval in suboxic waters. Quinone distributions indicate highest metabolic diversity within the anoxic zone, with anoxygenic photosynthesis being a major process in its photic layer. In the dark anoxic layer, quinone profiles indicate occurrence of bacterial sulfur and nitrogen cycling, archaeal methanogenesis, and archaeal methanotrophy. Multiple novel ubiquinone isomers, possibly originating from unidentified intra-aerobic anaerobes, occur in this zone. The respiration modes found in the anoxic zone continue into shallow subsurface sediments, but quinone abundances rapidly decrease within the upper 50 cm below sea floor, reflecting the transition to lower energy availability. In the deep subseafloor sediments, quinone distributions and geochemical profiles indicate archaeal methanogenesis/methanotrophy and potentially bacterial fermentative metabolisms. We observed that sedimentary quinone distributions track lithology, which supports prior hypotheses that deep biosphere community composition and metabolisms are determined by environmental conditions during sediment deposition. Importance Microorganisms play crucial roles in global biogeochemical cycles. Yet, we have only a fragmentary understanding of the diversity of microorganisms and their metabolisms, as the majority remains uncultured. Thus, culture-independent approaches are critical for determining microbial diversity and active metabolic processes. In order to resolve the stratification of microbial communities in the Black Sea, we comprehensively analyzed redox process-specific isoprenoid quinone biomarkers in a unique continuous record from the photic zone through the chemocline into anoxic subsurface sediments. We describe an unprecedented quinone diversity that allowed us to detect distinct biogeochemical processes including oxygenic photosynthesis, archaeal ammonia oxidation, aerobic methanotrophy and anoxygenic photosynthesis in defined geochemical zones. Copyright © 2018 American Society for Microbiology.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940030179','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940030179"><span>Global changes in biogeochemical cycles in response to human activities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moore, Berrien, III; Melillo, Jerry</p> <p>1994-01-01</p> <p>The main objective of our research was to characterize biogeochemical cycles at continental and global scales in both terrestrial and aquatic ecosystems. This characterization applied to both natural ecosystems and those disturbed by human activity. The primary elements of interest were carbon and nitrogen and the analysis sought to quantify standing stocks and dynamic cycling processes. The translocation of major nutrients from the terrestrial landscape to the atmosphere (via trace gases) and to fluvial systems (via leaching, erosional losses, and point source pollution) were of particular importance to this study. Our aim was to develop the first generation of Earth System Models. Our research was organized around the construction and testing of component biogeochemical models which treated terrestrial ecosystem processes, aquatic nutrient transport through drainage basins, and trace gas exchanges at the continental and global scale. A suite of three complementary models were defined within this construct. The models were organized to operate at a 1/2 degree latitude by longitude level of spatial resolution and to execute at a monthly time step. This discretization afforded us the opportunity to understand the dynamics of the biosphere down to subregional scales, while simultaneously placing these dynamics into a global context.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B23J..02T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B23J..02T"><span>Implementation ambiguity: The fifth element long lost in uncertainty budgets for land biogeochemical modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tang, J.; Riley, W. J.</p> <p>2015-12-01</p> <p>Previous studies have identified four major sources of predictive uncertainty in modeling land biogeochemical (BGC) processes: (1) imperfect initial conditions (e.g., assumption of preindustrial equilibrium); (2) imperfect boundary conditions (e.g., climate forcing data); (3) parameterization (type I equifinality); and (4) model structure (type II equifinality). As if that were not enough to cause substantial sleep loss in modelers, we propose here a fifth element of uncertainty that results from implementation ambiguity that occurs when the model's mathematical description is translated into computational code. We demonstrate the implementation ambiguity using the example of nitrogen down regulation, a necessary process in modeling carbon-climate feedbacks. We show that, depending on common land BGC model interpretations of the governing equations for mineral nitrogen, there are three different implementations of nitrogen down regulation. We coded these three implementations in the ACME land model (ALM), and explored how they lead to different preindustrial and contemporary land biogeochemical states and fluxes. We also show how this implementation ambiguity can lead to different carbon-climate feedback estimates across the RCP scenarios. We conclude by suggesting how to avoid such implementation ambiguity in ESM BGC models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915636P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915636P"><span>Modeling seasonal variability of carbonate system parameters at the sediment -water interface in the Baltic Sea (Gdansk Deep)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Protsenko, Elizaveta; Yakubov, Shamil; Lessin, Gennady; Yakushev, Evgeniy; Sokołowski, Adam</p> <p>2017-04-01</p> <p>A one-dimensional fully-coupled benthic pelagic biogeochemical model BROM (Bottom RedOx Model) was used for simulations of seasonal variability of biogeochemical parameters in the upper sediment, Bottom Boundary Layer and the water column in the Gdansk Deep of the Baltic Sea. This model represents key biogeochemical processes of transformation of C, N, P, Si, O, S, Mn, Fe and the processes of vertical transport in the water column and the sediments. The hydrophysical block of BROM was forced by the output calculated with model GETM (General Estuarine Transport Model). In this study we focused on parameters of carbonate system at Baltic Sea, and mainly on their distributions near the sea-water interface. For validating of BROM we used field data (concentrations of main nutrients at water column and porewater of upper sediment) from the Gulf of Gdansk. The model allowed us to simulate the baseline ranges of seasonal variability of pH, Alkalinity, TIC and calcite/aragonite saturation as well as vertical fluxes of carbon in a region potentially selected for the CCS storage. This work was supported by project EEA CO2MARINE and STEMM-CCS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950048882&hterms=solar+radiation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsolar%2Bradiation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950048882&hterms=solar+radiation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsolar%2Bradiation"><span>Solar radiation, phytoplankton pigments and the radiant heating of the equatorial Pacific warm pool</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Siegel, David A.; Ohlmann, J. Carter; Washburn, Libe; Bidigare, Robert R.; Nosse, Craig T.; Fields, Erik; Zhou, Yimei</p> <p>1995-01-01</p> <p>Recent optical, physical, and biological oceanographic observations are used to assess the magnitude and variability of the penetrating flux of solar radiation through the mixed layer of the warm water pool (WWP) of the western equatorial Pacific Ocean. Typical values for the penetrative solar flux at the climatological mean mixed layer depth for the WWP (30 m) are approx. 23 W/sq m and are a large fraction of the climatological mean net air-sea heat flux (approx. 40 W/sq m). The penetrating solar flux can vary significantly on synoptic timescales. Following a sustained westerly wind burst in situ solar fluxes were reduced in response to a near tripling of mixed layer phytoplankton pigment concentrations. This results in a reduction in the penetrative flux at depth (5.6 W/sq m at 30 m) and corresponds to a biogeochemically mediated increase in the mixed layer radiant heating rate of 0.13 C per month. These observations demonstrate a significant role of biogeochemical processes on WWP thermal climate. We speculate that this biogeochemically mediated feedback process may play an important role in enhancing the rate at which the WWP climate system returns to normal conditions following a westerly wind burst event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.B42C..03W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.B42C..03W"><span>Modification of suburban carbon and nitrogen fluxes by a coupled channel/floodplain system assessed using in situ sensors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wollheim, W. M.; Pellerin, B. A.; Saraceno, J.; Hopkinson, C.; Hope, A.; Morse, N.</p> <p>2010-12-01</p> <p>Biogeochemical fluxes in human dominated streams and rivers are highly impacted, but effects can be attenuated downstream through natural ecosystem processes. We deployed in situ nitrate, fdom, and chlorophyll sensors to characterize biogeochemical fluxes draining a suburban catchment, and modifications by a channel-floodplain system located immediately downstream. The upstream site reflects the suburban signal; the downstream site reflects the influence of the channel/floodplain on the suburban signal. FDOM showed a diurnal signal at both sites, but was stronger downstream, likely indicating new DOC production within the channel-floodplain system, which contained a small pond. In situ chlorophyll concentrations were also highly correlated with FDOM. FDOM showed a stronger storm response upstream than downstream, indicating terrestrial sources are mobilized by storms and subsequent dampening of the pulse by the floodplain. Nitrate concentrations consistently dropped from 0.6 to 0.7 mg/l upstream to less than 0.4 mg/l downstream, indicating likely nitrogen retention or removal over a relatively short distance (~500m). Use of in situ sensors is likely to greatly advance our understanding of biogeochemical processes in aquatic systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B23E0643J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B23E0643J"><span>Effect of dissimilatory iron and sulfate reduction on arsenic dynamics in the wetland rhizosphere and its bioaccumulation in plants</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jaffe, P. R.; Zhang, Z.; Moon, H. S.; Myneni, S.</p> <p>2015-12-01</p> <p>The mobility of arsenic in soils is linked to biogeochemical redox processes. The presence of wetland plants in riparian wetlands has a significant impact on the biogeochemical dynamics of the soil/sediment-redoxcline due to the release of root exudates and root turnover and oxygen transfer from the roots into the surrounding sediment. Micro-environmental redox conditions in the rhizosphere affect As, Fe, and S speciation as well as Fe(III) plaque deposition, which affects arsenic transport and uptake by plants. To investigate the dynamics of As coupled to S and Fe cycling in wetlands, mesocosms were operated in a greenhouse under various conditions (high and low Fe, high and low sulfate, with plant and without plants) for four months. Results show that the presence of plants, high Fe, and high SO42- levels enhanced As sequestration in these soils. We hypothesize that this compounding effect is because plants release biodegradable organic carbon, which is used by microorganism to reduce ferrihydrite and SO42- to generate FeS, FeS2, and/or orpiment (As2S3). Over the concentration range studied, As immobilization in soil and uptake by Scirpus actus was mainly controlled by SO42- rather than Fe levels. Under high sulfate levels, As immobilization in soil increased by 50% and As concentrations in plant roots increased by 97%, whereas no significant changes in plant As levels were seen for varying Fe concentrations. More than 80% of As was sequestrated in soils rather than plant uptake. Pore water As speciation analyses indicate that 20% more As(V) was reduced to As(III) under high sulfate as than low sulfate levels and that low Fe was more favorable to the As dissimilatory reduction. More dissimilatory arsenate-respiring bacteria (DARB) under high sulfate were confirmed by quantitative PCR. Arsenic distribution in plant leafs and roots after 30 days of exposure to As was analyzed via Synchrotron X-ray fluorescence analyses. The uptake of As by plants was distributed along leaf veins. The distribution of As in roots was correlated with the distribution of Fe in the roots, rather than with Ca or Zn. These observations expand our understanding of how Fe and S influences microbial As redox metabolisms and provide insights into the biogeochemical coupling between As and S as well as Fe in As contaminated wetlands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29437239','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29437239"><span>Depressional wetlands affect watershed hydrological, biogeochemical, and ecological functions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Evenson, Grey R; Golden, Heather E; Lane, Charles R; McLaughlin, Daniel L; D'Amico, Ellen</p> <p>2018-06-01</p> <p>Depressional wetlands of the extensive U.S. and Canadian Prairie Pothole Region afford numerous ecosystem processes that maintain healthy watershed functioning. However, these wetlands have been lost at a prodigious rate over past decades due to drainage for development, climate effects, and other causes. Options for management entities to protect the existing wetlands, and their functions, may focus on conserving wetlands based on spatial location vis-à-vis a floodplain or on size limitations (e.g., permitting smaller wetlands to be destroyed but not larger wetlands). Yet the effects of such management practices and the concomitant loss of depressional wetlands on watershed-scale hydrological, biogeochemical, and ecological functions are largely unknown. Using a hydrological model, we analyzed how different loss scenarios by wetland size and proximal location to the stream network affected watershed storage (i.e., inundation patterns and residence times), connectivity (i.e., streamflow contributing areas), and export (i.e., streamflow) in a large watershed in the Prairie Pothole Region of North Dakota, USA. Depressional wetlands store consequential amounts of precipitation and snowmelt. The loss of smaller depressional wetlands (<3.0 ha) substantially decreased landscape-scale inundation heterogeneity, total inundated area, and hydrological residence times. Larger wetlands act as hydrologic "gatekeepers," preventing surface runoff from reaching the stream network, and their modeled loss had a greater effect on streamflow due to changes in watershed connectivity and storage characteristics of larger wetlands. The wetland management scenario based on stream proximity (i.e., protecting wetlands 30 m and ~450 m from the stream) alone resulted in considerable landscape heterogeneity loss and decreased inundated area and residence times. With more snowmelt and precipitation available for runoff with wetland losses, contributing area increased across all loss scenarios. We additionally found that depressional wetlands attenuated peak flows; the probability of increased downstream flooding from wetland loss was also consistent across all loss scenarios. It is evident from this study that optimizing wetland management for one end goal (e.g., protection of large depressional wetlands for flood attenuation) over another (e.g., protecting of small depressional wetlands for biodiversity) may come at a cost for overall watershed hydrological, biogeochemical, and ecological resilience, functioning, and integrity. © 2018 by the Ecological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1994/0475/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1994/0475/report.pdf"><span>Water, energy, and biogeochemical budget research at Sleepers River Research Watershed, Vermont</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shanley, James B.; Sundquist, E.T.; Kendall, Carol</p> <p>1995-01-01</p> <p>The U.S. Geological Survey has selected the Sleepers River Research Watershed (Sleepers River) near Danville, Vt., as one of five sites for the investigation of Water, Energy, and Biogeochemical Budgets (WEBB). Sleepers River was chosen because it is a well-designed outdoor laboratory with a long history of hydrologic data collection and research, and also because it provides an ideal opportunity for collaboration among the U.S. Geological Survey, other Federal agencies, and universities at the site. The multiple subwatersheds at Sleepers River present a unique opportunity to investigate hydrologic, energy, and biogeochemical processes over a variety of spatial scales. This WEBB study builds on fundamental research on process mechanisms and rates at the plot scale (in this case, a hillslope). Results then are scaled up to interpret the hydrochemical response of first- and higher- order basins. Five research elements make up the Sleepers River WEBB project. Individually, each of the five elements is designed to investigate specific WEBB processes (such as CO2 efflux through a snowpack), address specific WEBB issues (such as scaling and flowpaths), or apply specific WEBB approaches (such as integrated chemical and physical study of a hillslope). The research elements overlap so that many of the processes investigated will be assessed in more than one way, thus allowing independent verification of research results. For example, flowpath information will be derived separately by use of isotopic tracers, conservative chemical solutes, and soil-moisture fluxes. Collectively, the five elements constitute an integrated approach to a comprehensive understanding of WEBB processes needed for the prediction of the effects of global change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21231992','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21231992"><span>Twelve testable hypotheses on the geobiology of weathering.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brantley, S L; Megonigal, J P; Scatena, F N; Balogh-Brunstad, Z; Barnes, R T; Bruns, M A; Van Cappellen, P; Dontsova, K; Hartnett, H E; Hartshorn, A S; Heimsath, A; Herndon, E; Jin, L; Keller, C K; Leake, J R; McDowell, W H; Meinzer, F C; Mozdzer, T J; Petsch, S; Pett-Ridge, J; Pregitzer, K S; Raymond, P A; Riebe, C S; Shumaker, K; Sutton-Grier, A; Walter, R; Yoo, K</p> <p>2011-03-01</p> <p>Critical Zone (CZ) research investigates the chemical, physical, and biological processes that modulate the Earth's surface. Here, we advance 12 hypotheses that must be tested to improve our understanding of the CZ: (1) Solar-to-chemical conversion of energy by plants regulates flows of carbon, water, and nutrients through plant-microbe soil networks, thereby controlling the location and extent of biological weathering. (2) Biological stoichiometry drives changes in mineral stoichiometry and distribution through weathering. (3) On landscapes experiencing little erosion, biology drives weathering during initial succession, whereas weathering drives biology over the long term. (4) In eroding landscapes, weathering-front advance at depth is coupled to surface denudation via biotic processes. (5) Biology shapes the topography of the Critical Zone. (6) The impact of climate forcing on denudation rates in natural systems can be predicted from models incorporating biogeochemical reaction rates and geomorphological transport laws. (7) Rising global temperatures will increase carbon losses from the Critical Zone. (8) Rising atmospheric P(CO2) will increase rates and extents of mineral weathering in soils. (9) Riverine solute fluxes will respond to changes in climate primarily due to changes in water fluxes and secondarily through changes in biologically mediated weathering. (10) Land use change will impact Critical Zone processes and exports more than climate change. (11) In many severely altered settings, restoration of hydrological processes is possible in decades or less, whereas restoration of biodiversity and biogeochemical processes requires longer timescales. (12) Biogeochemical properties impart thresholds or tipping points beyond which rapid and irreversible losses of ecosystem health, function, and services can occur. © 2011 Blackwell Publishing Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS43B2054W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS43B2054W"><span>Modeling the Oxygen Cycle in the Equatorial Pacific: Regulation of Physical and Biogeochemical Processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, X.; Murtugudde, R. G.; Zhang, D.</p> <p>2016-12-01</p> <p>Photosynthesis and respiration are important processes in all ecosystems on the Earth, in which carbon and oxygen are the two main elements. However, the oxygen cycle has received much less attention (relative to the carbon cycle) despite its big role in the earth system. Oxygen is a sensitive indicator of physical and biogeochemical processes in the ocean thus a key parameter for understanding the ocean's ecosystem and biogeochemistry. The Oxygen-Minimum-Zone (OMZ), often seen below 200 m, is a profound feature in the world oceans. There has been evidence of OMZ expansion over the past few decades in the tropical oceans. Climate models project that there would be a continued decline in dissolved oxygen (DO) and an expansion of the tropical OMZs under future warming conditions, which is of great concern because of the implications for marine organisms. We employ a validated three-dimensional model that simulates physical transport (circulation and vertical mixing), biological processes (O2 production and consumption) and ocean-atmosphere O2 exchange to quantify various sources and sinks of DO over 1980-2015. We show how we use observational data to improve our model simulation. Then we assess the spatial and temporal variability in simulated DO in the tropical Pacific Ocean, and explore the impacts of physical and biogeochemical processes on the DO dynamics, with a focus on the MOZ. Our analyses indicate that DO in the OMZ has a positive relationship with the 13ºC isotherm depth and a negative relationship with the concentration of dissolved organic material.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70168430','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70168430"><span>Biocrusts in the context of global change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Reed, Sasha C.; Maestre, Fernando T.; Ochoa-Hueso, Raul; Kuske, Cheryl; Darrouzet-Nardi, Anthony N.; Darby, Brian; Sinsabaugh, Bob; Oliver, Mel; Sancho, Leo; Belnap, Jayne</p> <p>2016-01-01</p> <p>A wide range of studies show global environmental change will profoundly affect the structure, function, and dynamics of terrestrial ecosystems. The research synthesized here underscores that biocrust communities are also likely to respond significantly to global change drivers, with a large potential for modification to their abundance, composition, and function. We examine how elevated atmospheric CO2 concentrations, climate change (increased temperature and altered precipitation), and nitrogen deposition affect biocrusts and the ecosystems they inhabit. We integrate experimental and observational data, as well as physiological, community ecology, and biogeochemical perspectives. Taken together, these data highlight the potential for biocrust organisms to respond dramatically to environmental change and show how changes to biocrust community composition translate into effects on ecosystem function (e.g., carbon and nutrient cycling, soil stability, energy balance). Due to the importance of biocrusts in regulating dryland ecosystem processes and the potential for large modifications to biocrust communities, an improved understanding and predictive capacity regarding biocrust responses to environmental change are of scientific and societal relevance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy..tmp..920L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy..tmp..920L"><span>Impact of chlorophyll bias on the tropical Pacific mean climate in an earth system model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lim, Hyung-Gyu; Park, Jong-Yeon; Kug, Jong-Seong</p> <p>2017-12-01</p> <p>Climate modeling groups nowadays develop earth system models (ESMs) by incorporating biogeochemical processes in their climate models. The ESMs, however, often show substantial bias in simulated marine biogeochemistry which can potentially introduce an undesirable bias in physical ocean fields through biogeophysical interactions. This study examines how and how much the chlorophyll bias in a state-of-the-art ESM affects the mean and seasonal cycle of tropical Pacific sea-surface temperature (SST). The ESM used in the present study shows a sizeable positive bias in the simulated tropical chlorophyll. We found that the correction of the chlorophyll bias can reduce the ESM's intrinsic cold SST mean bias in the equatorial Pacific. The biologically-induced cold SST bias is strongly affected by seasonally-dependent air-sea coupling strength. In addition, the correction of chlorophyll bias can improve the annual cycle of SST by up to 25%. This result suggests a possible modeling approach in understanding the two-way interactions between physical and chlorophyll biases by biogeophysical effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24526588','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24526588"><span>Dynamic energy budget modeling reveals the potential of future growth and calcification for the coccolithophore Emiliania huxleyi in an acidified ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Muller, Erik B; Nisbet, Roger M</p> <p>2014-06-01</p> <p>Ocean acidification is likely to impact the calcification potential of marine organisms. In part due to the covarying nature of the ocean carbonate system components, including pH and CO2 and CO3(2-) levels, it remains largely unclear how each of these components may affect calcification rates quantitatively. We develop a process-based bioenergetic model that explains how several components of the ocean carbonate system collectively affect growth and calcification rates in Emiliania huxleyi, which plays a major role in marine primary production and biogeochemical carbon cycling. The model predicts that under the IPCC A2 emission scenario, its growth and calcification potential will have decreased by the end of the century, although those reductions are relatively modest. We anticipate that our model will be relevant for many other marine calcifying organisms, and that it can be used to improve our understanding of the impact of climate change on marine systems. © 2014 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27152862','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27152862"><span>Microbial community dynamics in soil aggregates shape biogeochemical gas fluxes from soil profiles - upscaling an aggregate biophysical model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ebrahimi, Ali; Or, Dani</p> <p>2016-09-01</p> <p>Microbial communities inhabiting soil aggregates dynamically adjust their activity and composition in response to variations in hydration and other external conditions. These rapid dynamics shape signatures of biogeochemical activity and gas fluxes emitted from soil profiles. Recent mechanistic models of microbial processes in unsaturated aggregate-like pore networks revealed a highly dynamic interplay between oxic and anoxic microsites jointly shaped by hydration conditions and by aerobic and anaerobic microbial community abundance and self-organization. The spatial extent of anoxic niches (hotspots) flicker in time (hot moments) and support substantial anaerobic microbial activity even in aerated soil profiles. We employed an individual-based model for microbial community life in soil aggregate assemblies represented by 3D angular pore networks. Model aggregates of different sizes were subjected to variable water, carbon and oxygen contents that varied with soil depth as boundary conditions. The study integrates microbial activity within aggregates of different sizes and soil depth to obtain estimates of biogeochemical fluxes from the soil profile. The results quantify impacts of dynamic shifts in microbial community composition on CO2 and N2 O production rates in soil profiles in good agreement with experimental data. Aggregate size distribution and the shape of resource profiles in a soil determine how hydration dynamics shape denitrification and carbon utilization rates. Results from the mechanistic model for microbial activity in aggregates of different sizes were used to derive parameters for analytical representation of soil biogeochemical processes across large scales of practical interest for hydrological and climate models. © 2016 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=209786&keyword=rcn&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=209786&keyword=rcn&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Restoring “hot spots” of denitrification along hydrologic flow-paths</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Objectives: What are the relationships among N, C, and hydrology in degraded streams? What level of biogeochemical function remains with respect to N transformation processes (i.e. denitrification)? What could the results tell us about effectively restoring streams to process ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940026119','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940026119"><span>Linkages between terrestrial ecosystems and the atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bretherton, Francis; Dickinson, Robert E.; Fung, Inez; Moore, Berrien, III; Prather, Michael; Running, Steven W.; Tiessen, Holm</p> <p>1992-01-01</p> <p>The primary research issue in understanding the role of terrestrial ecosystems in global change is analyzing the coupling between processes with vastly differing rates of change, from photosynthesis to community change. Representing this coupling in models is the central challenge to modeling the terrestrial biosphere as part of the earth system. Terrestrial ecosystems participate in climate and in the biogeochemical cycles on several temporal scales. Some of the carbon fixed by photosynthesis is incorporated into plant tissue and is delayed from returning to the atmosphere until it is oxidized by decomposition or fire. This slower (i.e., days to months) carbon loop through the terrestrial component of the carbon cycle, which is matched by cycles of nutrients required by plants and decomposers, affects the increasing trend in atmospheric CO2 concentration and imposes a seasonal cycle on that trend. Moreover, this cycle includes key controls over biogenic trace gas production. The structure of terrestrial ecosystems, which responds on even longer time scales (annual to century), is the integrated response to the biogeochemical and environmental constraints that develop over the intermediate time scale. The loop is closed back to the climate system since it is the structure of ecosystems, including species composition, that sets the terrestrial boundary condition in the climate system through modification of surface roughness, albedo, and, to a great extent, latent heat exchange. These separate temporal scales contain explicit feedback loops which may modify ecosystem dynamics and linkages between ecosystems and the atmosphere. The long-term change in climate, resulting from increased atmospheric concentrations of greenhouse gases (e.g., CO2, CH4, and nitrous oxide (N2O)) will further modify the global environment and potentially induce further ecosystem change. Modeling these interactions requires coupling successional models to biogeochemical models to physiological models that describe the exchange of water, energy, and biogenic trace gases between the vegetation and the atmosphere at fine time scales. There does not appear to be any obvious way to allow direct reciprocal coupling of atmospheric general circulation models (GCM's), which inherently run with fine time steps, to ecosystem or successional models, which have coarse temporal resolution, without the interposition of physiological canopy models. This is equally true for biogeochemical models of the exchange of carbon dioxide and trace gases. This coupling across time scales is nontrivial and sets the focus for the modeling strategy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040065852','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040065852"><span>Wind Induced Sediment Resuspension in a Microtidal Estuary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Booth, J. G.; Miller, R. L.; McKee, B. A.; Leathers, R. A.</p> <p>1999-01-01</p> <p>Bottom sediment resuspension frequency, duration and extent (% of bottom sediments affected) were characterized for the fifteen month period from September 1995 to January 1997 for the Barataria Basin, LA. An empirical model of sediment resuspension as a function of wind speed, direction, fetch and water depth was derived from wave theory. Water column turbidity was examined by processing remotely sensed radiance information from visible and near-IR AVHRR imagery. Based on model predictions, wind induced resuspension occurred during all seasons of this study. Seasonal characteristics for resuspension reveal that late fall, winter and early spring are the periods of most frequent and intense resuspension. Model predictions of the critical wind speed required to induce resuspension indicate that winds of 4 m/s (averaged over all wind directions resuspend approximately 50% of bottom sediments in the water bodies examined. Winds of this magnitude (4 m/s) occurred for 80% of the time during the late fall, winter and early spring and for approximately 30% of the time during the summer. More than 50% of the bottom sedimets are resuspended throughout the year, indicating the importance of resuspension as a process affecting sediment and biogeochemical fluxes in the Barataria Basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=63387&keyword=see+AND+map&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=63387&keyword=see+AND+map&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>COASTAL ZONES, A REPORT OF THE MID-ATLANTIC REGIONAL ASSESSMENT TEAM FOR THE GLOBAL CHANGE RESEARCH PROGRAM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Impacts of climate change on coastal areas can be expected to have a regional signature that depends on the local climate change and the local geomorphological, biogeochemical, ecological and social factors that affect the sensitivity to climate. Here we present an assessment of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/49058','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/49058"><span>Triple nitrate isotopes indicate differing nitrate source contributions to streams across a nitrogen saturation gradient</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Lucy A. Rose; Emily M. Elliott; Mary Beth. Adams</p> <p>2015-01-01</p> <p>Nitrogen (N) deposition affects forest biogeochemical cycles worldwide, often contributing to N saturation. Using long-term (>30-year) records of stream nitrate (NO3-) concentrations at Fernow Experimental Forest (West Virginia, USA), we classified four watersheds into N saturation stages ranging from Stage 0 (N-...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013NatCC...3..298S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013NatCC...3..298S"><span>Variation in plastic responses of a globally distributed picoplankton species to ocean acidification</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schaum, Elisa; Rost, Björn; Millar, Andrew J.; Collins, Sinéad</p> <p>2013-03-01</p> <p>Phytoplankton are the basis of marine food webs, and affect biogeochemical cycles. As CO2 levels increase, shifts in the frequencies and physiology of ecotypes within phytoplankton groups will affect their nutritional value and biogeochemical function. However, studies so far are based on a few representative genotypes from key species. Here, we measure changes in cellular function and growth rate at atmospheric CO2 concentrations predicted for the year 2100 in 16 ecotypes of the marine picoplankton Ostreococcus. We find that variation in plastic responses among ecotypes is on par with published between-genera variation, so the responses of one or a few ecotypes cannot estimate changes to the physiology or composition of a species under CO2 enrichment. We show that ecotypes best at taking advantage of CO2 enrichment by changing their photosynthesis rates most should increase in relative fitness, and so in frequency in a high-CO2 environment. Finally, information on sampling location, and not phylogenetic relatedness, is a good predictor of ecotypes likely to increase in frequency in this system.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22073651','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22073651"><span>Effect of temperature on biogeochemistry of marine organic-enriched systems: implications in a global warming scenario.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sanz-Lázaro, Carlos; Valdemarsen, Thomas; Marín, Arnaldo; Holmer, Marianne</p> <p>2011-10-01</p> <p>Coastal biogeochemical cycles are expected to be affected by global warming. By means of a mesocosm experiment, the effect of increased water temperature on the biogeochemical cycles of coastal sediments affected by organic-matter enrichment was tested, focusing on the carbon, sulfur, and iron cycles. Nereis diversicolor was used as a model species to simulate macrofaunal bioirrigation activity in natural sediments. Although bioirrigation rates of N. diversicolor were not temperature dependent, temperature did have a major effect on the sediment metabolism. Under organic-enrichment conditions, the increase in sediment metabolism was greater than expected and occurred through the enhancement of anaerobic metabolic pathway rates, mainly sulfate reduction. There was a twofold increase in sediment metabolism and the accumulation of reduced sulfur. The increase in the benthic metabolism was maintained by the supply of electron acceptors through bioirrigation and as a result of the availability of iron in the sediment. As long as the sediment buffering capacity toward sulfides is not surpassed, an increase in temperature might promote the recovery of organic-enriched sediments by decreasing the time for mineralization of excess organic matter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.1567K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.1567K"><span>Organics in the atmosphere: From air pollution to biogeochemical cycles and climate (Vilhelm Bjerknes Medal)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kanakidou, Maria</p> <p>2016-04-01</p> <p>Organics are key players in the biosphere-atmosphere-climate interactions. They have also a significant anthropogenic component due to primary emissions or interactions with pollution. The organic pool in the atmosphere is a complex mixture of compounds of variable reactivity and properties, variable content in C, H, O, N and other elements depending on their origin and their history in the atmosphere. Multiphase atmospheric chemistry is known to produce organic acids with high oxygen content, like oxalic acid. This water soluble organic bi-acid is used as indicator for cloud processing and can form complexes with atmospheric Iron, affecting Iron solubility. Organics are also carriers of other nutrients like nitrogen and phosphorus. They also interact with solar radiation and with atmospheric water impacting on climate. In line with this vision for the role of organics in the atmosphere, we present results from a global 3-dimensional chemistry-transport model on the role of gaseous and particulate organics in atmospheric chemistry, accounting for multiphase chemistry and aerosol ageing in the atmosphere as well as nutrients emissions, atmospheric transport and deposition. Historical simulations and projections highlight the human impact on air quality and atmospheric deposition to the oceans. The results are put in the context of climate change. Uncertainties and implications of our findings for biogeochemical and climate modeling are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFM.H41A0259S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFM.H41A0259S"><span>Biogeochemical Process Comparison of the Five USGS Water, Energy, and Biogeochemical Budget (WEBB) Sites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shanley, J. B.; Peters, N. E.; Aulenbach, B. T.; Blum, A. E.; Campbell, D. H.; Clow, D. W.; Larsen, M. C.; Mast, M. A.; Stallard, R. F.; Troester, J. W.; Walker, J. F.; Webb, R. M.; White, A. F.</p> <p>2001-12-01</p> <p>Input - output budgets (in wet deposition and streamwater) have been constructed for water and major solutes at the five USGS Water, Energy, and Biogeochemical Budget (WEBB) sites for the period 1992-97 (Peters et al., 2000). In this poster we interpret the net chemical fluxes to identify the controlling biogeochemical processes, as influenced by the strong physical and biological contrasts (climate, geology, physiography, and vegetation types) in the five diverse environments. The five sites are: Allequash Creek, Wisconsin (low-relief humid continental forest); Andrews Creek, Colorado (cold alpine, taiga/tundra, and subalpine boreal forest); Icacos River, Puerto Rico (lower montane, wet tropical forest); Panola Mountain, Georgia (humid subtropical piedmont forest); and Sleepers River, Vermont (humid northern hardwood forest). Base cations and Si produced by chemical weathering displayed a net export at each site. The magnitude and stoichiometry of export reflects mineralogy, climate (temperature and rainfall), and water residence time in the subsurface. The lowest and highest mass export generally was for Andrews Creek and Icacos River, respectively, consistent with their extreme mean annual temperatures (0/degC in Colorado to 21/degC in Puerto Rico) and the limited residence time of meltwater at Andrews Creek. Calcite in bedrock at the three coldest watersheds caused somewhat higher relative export of Ca, especially at Sleepers River where calcite weathering is a dominant control on stream chemistry. In contrast, the high Mg content of the volcaniclastic rocks at Icacos River and glacial deposits at Allequash Creek caused disproportionately high Mg export relative to the other sites. Relatively high Na export at Panola Mountain and K export at Sleepers River are probably caused by plagioclase and biotite weathering, respectively. SO4 is retained at the two warmest sites, Panola Mountain and Icacos River. SO4 adsorption is known to limit SO4- export in highly weathered subtropical and tropical soils. At Sleepers River, net SO4 export occurs as a result of weathering of sulfide minerals in the bedrock, and correspondingly limited soil SO4 adsorption capacity. A small net export of SO4 occurs at Allequash Creek and Andrews Creek, but the SO4 may be in balance if dry deposition were added to the inputs. All sites except Icacos River retain NO3. At Andrews Creek and Sleepers River, net export of NO3 occurs during the peak snowmelt months, as soils are flushed during a time of low biological uptake. Additional analysis will be performed to evaluate the relative importance of temperature (affecting weathering rates and biological uptake) and water yield (i.e., the amount of water flushing through a catchment) in controlling solute fluxes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B31H..03G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B31H..03G"><span>Rapid disturbances in Arctic permafrost regions (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grosse, G.; Romanovsky, V. E.; Arp, C. D.; Jones, B. M.</p> <p>2013-12-01</p> <p>Permafrost thaw is often perceived as a slow process dominated by press disturbances such as gradual active layer thickening. However, various pulse disturbances such as thermokarst formation can substantially increase the rate of permafrost thaw and result in rapid landscape change on sub-decadal to decadal time scales. Other disturbances associated with permafrost thaw are even more dynamic and unfold on sub-annual timescales, such as catastrophic thermokarst lake drainage. The diversity of processes results in complex feedbacks with soil carbon pools, biogeochemical cycles, hydrology, and flora and fauna, and requires a differentiated approach when quantifying how these ecosystem componentsare affected,how vulnerablethey are to rapid change, and what regional to global scale impacts result. Here we show quantitative measurements for three examples of rapid pulse disturbances in permafrost regions as observed with remote sensing data time series: The formation of a mega thaw slump (>50 ha) in syngenetic permafrost in Siberia, the formation of new thermokarst ponds in ice-rich permafrost regions in Alaska and Siberia, and the drainage of thermokarst lakes along a gradient of permafrost extent in Western Alaska. The surprising setting and unabated growth of the mega thaw slump during the last 40 years indicates that limited information on panarctic ground ice distribution, abundance, and vulnerability remains a key gap for reliable projections of thermokarst and thermo-erosion impacts, and that the natural limits on the growth and size of thaw slumps are still poorly understood. Observed thermokarst pond formation and expansion in our study regions was closely tied to ice-rich permafrost terrain, such as syngenetic Yedoma uplands, but was also found in old drained thermokarst lake basins with epigenetic permafrost and shallow drained thermokarst lake basins whose ground ice had not been depleted by the prior lake phase. The very different substrates in which new ponds have been forming indicate a broad range of possible biogeochemical feedbacks that require further study. Finally, thermokarst lake drainage observed in regions of continuous permafrost shows that local permafrost degradation, such as thermo-erosional gully formation, may increase permafrost extent in a region, in particular by new permafrost aggradation in freshly exposed, refreezing lake basin sediments. Thermokarst lake drainage across all types of permafrost extent increases habitat diversity, is important for regional biogeochemical cycling, and results in carbon sequestration. While all three disturbance types differ in spatial scale and current abundance, they also point at specific vulnerabilities of permafrost landscapes that are tied to local factors such as ground ice, highlight critical knowledge gaps for predictive ecosystem and biogeochemical models, and indicate the potential for rapid, substantial, and surprising changes in a future warmer Arctic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19853961','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19853961"><span>Vadose zone attenuation of organic compounds at a crude oil spill site - interactions between biogeochemical reactions and multicomponent gas transport.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Molins, S; Mayer, K U; Amos, R T; Bekins, B A</p> <p>2010-03-01</p> <p>Contaminant attenuation processes in the vadose zone of a crude oil spill site near Bemidji, MN have been simulated with a reactive transport model that includes multicomponent gas transport, solute transport, and the most relevant biogeochemical reactions. Dissolution and volatilization of oil components, their aerobic and anaerobic degradation coupled with sequential electron acceptor consumption, ingress of atmospheric O(2), and the release of CH(4) and CO(2) from the smear zone generated by the floating oil were considered. The focus of the simulations was to assess the dynamics between biodegradation and gas transport processes in the vadose zone, to evaluate the rates and contributions of different electron accepting processes towards vadose zone natural attenuation, and to provide an estimate of the historical mass loss. Concentration distributions of reactive (O(2), CH(4), and CO(2)) and non-reactive (Ar and N(2)) gases served as key constraints for the model calibration. Simulation results confirm that as of 2007, the main degradation pathway can be attributed to methanogenic degradation of organic compounds in the smear zone and the vadose zone resulting in a contaminant plume dominated by high CH(4) concentrations. In accordance with field observations, zones of volatilization and CH(4) generation are correlated to slightly elevated total gas pressures and low partial pressures of N(2) and Ar, while zones of aerobic CH(4) oxidation are characterized by slightly reduced gas pressures and elevated concentrations of N(2) and Ar. Diffusion is the most significant transport mechanism for gases in the vadose zone; however, the simulations also indicate that, despite very small pressure gradients, advection contributes up to 15% towards the net flux of CH(4), and to a more limited extent to O(2) ingress. Model calibration strongly suggests that transfer of biogenically generated gases from the smear zone provides a major control on vadose zone gas distributions and vadose zone carbon balance. Overall, the model was successful in capturing the complex interactions between biogeochemical reactions and multicomponent gas transport processes. However, despite employing a process-based modeling approach, honoring observed parameter ranges, and generally obtaining good agreement between field observations and model simulations, accurate quantification of natural attenuation rates remains difficult. The modeling results are affected by uncertainties regarding gas phase saturations, tortuosities, and the magnitude of CH(4) and CO(2) flux from the smear zone. These findings highlight the need to better delineate gas fluxes at the model boundaries, which will help constrain contaminant degradation rates, and ultimately source zone longevity. Copyright 2009 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034593','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034593"><span>Vadose zone attenuation of organic compounds at a crude oil spill site - Interactions between biogeochemical reactions and multicomponent gas transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Molins, S.; Mayer, K.U.; Amos, R.T.; Bekins, B.A.</p> <p>2010-01-01</p> <p>Contaminant attenuation processes in the vadose zone of a crude oil spill site near Bemidji, MN have been simulated with a reactive transport model that includes multicomponent gas transport, solute transport, and the most relevant biogeochemical reactions. Dissolution and volatilization of oil components, their aerobic and anaerobic degradation coupled with sequential electron acceptor consumption, ingress of atmospheric O2, and the release of CH4 and CO2 from the smear zone generated by the floating oil were considered. The focus of the simulations was to assess the dynamics between biodegradation and gas transport processes in the vadose zone, to evaluate the rates and contributions of different electron accepting processes towards vadose zone natural attenuation, and to provide an estimate of the historical mass loss. Concentration distributions of reactive (O2, CH4, and CO2) and non-reactive (Ar and N2) gases served as key constraints for the model calibration. Simulation results confirm that as of 2007, the main degradation pathway can be attributed to methanogenic degradation of organic compounds in the smear zone and the vadose zone resulting in a contaminant plume dominated by high CH4 concentrations. In accordance with field observations, zones of volatilization and CH4 generation are correlated to slightly elevated total gas pressures and low partial pressures of N2 and Ar, while zones of aerobic CH4 oxidation are characterized by slightly reduced gas pressures and elevated concentrations of N2 and Ar. Diffusion is the most significant transport mechanism for gases in the vadose zone; however, the simulations also indicate that, despite very small pressure gradients, advection contributes up to 15% towards the net flux of CH4, and to a more limited extent to O2 ingress. Model calibration strongly suggests that transfer of biogenically generated gases from the smear zone provides a major control on vadose zone gas distributions and vadose zone carbon balance. Overall, the model was successful in capturing the complex interactions between biogeochemical reactions and multicomponent gas transport processes. However, despite employing a process-based modeling approach, honoring observed parameter ranges, and generally obtaining good agreement between field observations and model simulations, accurate quantification of natural attenuation rates remains difficult. The modeling results are affected by uncertainties regarding gas phase saturations, tortuosities, and the magnitude of CH4 and CO2 flux from the smear zone. These findings highlight the need to better delineate gas fluxes at the model boundaries, which will help constrain contaminant degradation rates, and ultimately source zone longevity. ?? 2009 Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BGeo...14.2979W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BGeo...14.2979W"><span>A numerical analysis of biogeochemical controls with physical modulation on hypoxia during summer in the Pearl River estuary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Bin; Hu, Jiatang; Li, Shiyu; Liu, Dehong</p> <p>2017-06-01</p> <p>A three-dimensional (3-D) physical-biogeochemical coupled model was applied to explore the mechanisms controlling the dissolved oxygen (DO) dynamics and bottom hypoxia during summer in the Pearl River estuary (PRE). By using the numerical oxygen tracers, we proposed a new method (namely the physical modulation method) to quantify the contributions of boundary conditions and each source and sink process occurring in local and adjacent waters to the DO conditions. A mass balance analysis of DO based on the physical modulation method indicated that the DO conditions at the bottom layer were mainly controlled by the source and sink processes, among which the sediment oxygen demand (SOD) at the water-sediment interface and the re-aeration at the air-sea interface were the two primary processes determining the spatial extent and duration of bottom hypoxia in the PRE. The SOD could cause a significant decrease in the bottom DO concentrations (averaged over July-August 2006) by over 4 mg L-1 on the shelf off the Modaomen sub-estuary, leading to the formation of a high-frequency zone of hypoxia (HFZ). However, the hypoxia that occurred in the HFZ was intermittent and distributed in a small area due to the combined effects of re-aeration and photosynthesis, which behaved as sources for DO and offset a portion of the DO consumed by SOD. The bottom DO concentrations to the west of the lower Lingdingyang Bay (i.e. the western shoal near Qi'ao Island) were also largely affected by high SOD, but there was no hypoxia occurring there because of the influence of re-aeration. Specifically, re-aeration could lead to an increase in the bottom DO concentrations by ˜ 4.8 mg L-1 to the west of the lower Lingdingyang Bay. The re-aeration led to a strong vertical DO gradient between the surface and the lower layers. As a result, the majority (˜ 89 %) of DO supplemented by re-aeration was transported to the lower layers through vertical diffusion and ˜ 28 % reached the bottom eventually. Additional numerical experiments showed that turning off re-aeration could lead to an expansion of the hypoxic area from 237 to 2203 km2 and result in persistent hypoxia (hypoxic frequency > 80 %) to the west of the lower Lingdingyang Bay. Compared to re-aeration and SOD, photosynthesis and water column respiration had relatively small impacts on the DO conditions; turning off these two processes increased the hypoxic area to 591 km2. In summary, our study explicitly elucidated the interactive impacts of physical and biogeochemical processes on the DO dynamics in the PRE, which is critical to understanding hypoxia in this shallow and river-dominated estuarine system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24176706','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24176706"><span>Shifts in the abundance and community structure of soil ammonia oxidizers in a wet sclerophyll forest under long-term prescribed burning.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Long, Xi-En; Chen, Chengrong; Xu, Zhihong; He, Ji-Zheng</p> <p>2014-02-01</p> <p>Fire shapes global biome distribution and promotes the terrestrial biogeochemical cycles. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) play a vital role in the biogeochemical cycling of nitrogen (N). However, behaviors of AOB and AOA under long-term prescribed burning remain unclear. This study was to examine how fire affected the abundances and communities of soil AOB and AOA. A long-term repeated forest fire experiment with three burning treatments (never burnt, B0; biennially burnt, B2; and quadrennially burnt, B4) was used in this study. The abundances and community structure of soil AOB and AOA were determined using quantitative PCR, restriction fragment length polymorphism and clone library. More frequent fires (B2) increased the abundance of bacterium amoA gene, but tended to decrease archaeal amoA genes. Fire also modified the composition of AOA and AOB communities. Canonical correspondence analysis showed soil pH and dissolved organic C (DOC) strongly affected AOB genotypes, while nitrate-N and DOC shaped the AOA distribution. The increased abundance of bacterium amoA gene by fires may imply an important role of AOB in nitrification in fire-affected soils. The fire-induced shift in the community composition of AOB and AOA demonstrates that fire can disturb nutrient cycles. © 2013.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1814172A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1814172A"><span>Benthic-Pelagic Coupling in Biogeochemical and Climate Models: Existing Approaches, Recent developments and Roadblocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arndt, Sandra</p> <p>2016-04-01</p> <p>Marine sediments are key components in the Earth System. They host the largest carbon reservoir on Earth, provide the only long term sink for atmospheric CO2, recycle nutrients and represent the most important climate archive. Biogeochemical processes in marine sediments are thus essential for our understanding of the global biogeochemical cycles and climate. They are first and foremost, donor controlled and, thus, driven by the rain of particulate material from the euphotic zone and influenced by the overlying bottom water. Geochemical species may undergo several recycling loops (e.g. authigenic mineral precipitation/dissolution) before they are either buried or diffuse back to the water column. The tightly coupled and complex pelagic and benthic process interplay thus delays recycling flux, significantly modifies the depositional signal and controls the long-term removal of carbon from the ocean-atmosphere system. Despite the importance of this mutual interaction, coupled regional/global biogeochemical models and (paleo)climate models, which are designed to assess and quantify the transformations and fluxes of carbon and nutrients and evaluate their response to past and future perturbations of the climate system either completely neglect marine sediments or incorporate a highly simplified representation of benthic processes. On the other end of the spectrum, coupled, multi-component state-of-the-art early diagenetic models have been successfully developed and applied over the past decades to reproduce observations and quantify sediment-water exchange fluxes, but cannot easily be coupled to pelagic models. The primary constraint here is the high computation cost of simulating all of the essential redox and equilibrium reactions within marine sediments that control carbon burial and benthic recycling fluxes: a barrier that is easily exacerbated if a variety of benthic environments are to be spatially resolved. This presentation provides an integrative overview of the benthic-pelagic coupling that accounts for the complex process interplay from the euphotic ocean to the deep sediment. It explores the intensity of the benthic-pelagic coupling across different environments and from the seasonal to the geological timescale. Different modelling approaches of coupling sediment and water column dynamics in regional/global biogeochemical models and (paleo)climate models are critically evaluated and their most important limitations, as well as the implications for our ability to predict the response of the global carbon cycle to past or future perturbations is discussed. Finally, the presentation identifies major roadblocks to the development of new model approaches and highlights how new techniques, new observational and laboratory data, as well as a close interdisciplinary collaboration can overcome these roadblocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B51I1931P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B51I1931P"><span>Can Runoff Responses be Used to Predict Aquatic Biogeochemical Fluxes from Boreal Forest Ecosystems?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prestegaard, K. L.; Ziegler, S. E.; Billings, S. A.; Edwards, K. A.</p> <p>2017-12-01</p> <p>Climate change has direct effects on precipitation and temperature, which contribute to indirect changes in ecosystem productivity, runoff, biogeochemical processes, and species composition. In this research, we examine water balances in boreal forest watersheds to determine spatial and inter-annual variations in their responses to changes in precipitation. Our research indicates that Central and Western N. American boreal watersheds with mean annual precipitation (MAP) of less than 1000 mm exhibit positive relationships between annual precipitation and annual evapotranspiration, suggesting an increase in forest productivity during wet years often without increased runoff. In Maritime boreal watersheds in Eastern N. America and N. Europe, runoff is a significantly larger portion of the water balance and runoff increases with precipitation This regionalism in the water balance may have significant consequences for biogeochemical fluxes; for example, where MAP >1000 mm, a future wetter climate may result in increases in the terrestrial-to-aquatic transport of solutes. To test this idea, we examined inter-annual variations in hydrologic and dissolved organic carbon fluxes in watersheds in Newfoundland and Labrador along a longitudinal transect. Mean annual temperature varies from 0-5.2oC along the transect, and MAP varies from 1050 to 1500 mm. Data indicate an increase in evapotranspiration, runoff, and soil DOC fluxes with the increasing mean annual precipitation among watersheds along the transect. During the 2011-2015 period of study there was significant overlap in annual precipitation among the sites. Although wet water years also produced higher amounts of runoff from most watersheds, the annual soil DOC flux within each region was not significantly affected by these inter-annual changes in precipitation. Stream and groundwater monitoring data from the catchments reveal seasonal variations in evapotranspiration and runoff and their role in solute fluxes, and suggest the importance of biological controls on solute fluxes that are not captured by using either wet years or wetter locations as proxies for a future wetter climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917940B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917940B"><span>Sedimentary particulate iron: the missing micronutrients ?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beghoura, Houda; Gorgues, Thomas; Aumont, Olivier; Planquette, Hélène</p> <p>2017-04-01</p> <p>Iron is known to regulate the marine primary production and to impact the structure of ecosystems. Indeed, iron is the limiting nutrient for the phytoplankton growth over about 30% of the global ocean. However, the nature of the external sources of iron to the ocean and their quantification remain uncertain. Among these external sources, the sediment sources have been recently shown to be underestimated. Besides, since the operationally defined dissolved iron (which is the sum of truly dissolved and colloidal iron) was traditionally assumed to be the only form available to phytoplankton and bacteria, most studies have focused on the supply of dissolved iron to the ocean, the role of the particulate fraction of iron being largely ignored. This traditional view has been recently challenged, noticeably, by observational evidences. Indeed, in situ observations have shown that large amounts of particulate iron are being resuspended from continental margins to the open ocean thanks to fine grained particles' transport over long distances. A fraction of this particulate iron may dissolve and thereby fuel the phytoplankton growth. The magnitude of the sedimentary sources of particulate iron and the releasing processes affecting this iron phase are not yet well constrained or quantified. As a consequence, the role of sedimentary particulate iron in the biogeochemical cycles is still unclear despite its potentially major widespread importance. Here, we propose a modeling exercise to assess the first order impacts of this newly considered particulate sedimentary iron on global ocean biogeochemistry. We designed global experiments with a coupled dynamical-biogeochemical model (NEMO-PISCES). First, a control simulation that includes only a sediment source of iron in the dissolved phase has been run. Then, this control simulation is being compared with simulations, in which we include a sediment source of iron in both phases (dissolved as well as particulate). Those latter simulations have been performed using a range of particulate iron dissolution rates (from published studies and laboratory experiment results) that will permit to test the sensitivity of the biogeochemical response.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/56130','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/56130"><span>Towards a predictive understanding of belowground process responses to climate change: have we moved any closer?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Elise Pendall; Lindsey Rustad; Josh Schimel</p> <p>2008-01-01</p> <p>Belowground processes, including root production and exudation, microbial activity and community dynamics, and biogeochemical cycling interact to help regulate climate change. Feedbacks associated with these processes, such as warming-enhanced decomposition rates, give rise to major uncertainties in predictions of future climate. Uncertainties associated with these...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840060271&hterms=biochemistry&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dbiochemistry','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840060271&hterms=biochemistry&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dbiochemistry"><span>Isotopic inferences of ancient biochemistries - Carbon, sulfur, hydrogen, and nitrogen</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schidlowski, M.; Hayes, J. M.; Kaplan, I. R.</p> <p>1983-01-01</p> <p>In processes of biological incorporation and subsequent biochemical processing sizable isotope effects occur as a result of both thermodynamic and kinetic fractionations which take place during metabolic and biosynthetic reactions. In this chapter a review is provided of earlier work and recent studies on isotope fractionations in the biogeochemical cycles of carbon, sulfur, hydrogen, and nitrogen. Attention is given to the biochemistry of carbon isotope fractionation, carbon isotope fractionation in extant plants and microorganisms, isotope fractionation in the terrestrial carbon cycle, the effects of diagenesis and metamorphism on the isotopic composition of sedimentary carbon, the isotopic composition of sedimentary carbon through time, implications of the sedimentary carbon isotope record, the biochemistry of sulfur isotope fractionation, pathways of the biogeochemical cycle of nitrogen, and the D/H ratio in naturally occurring materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=162783&keyword=moisture+AND+removal&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=162783&keyword=moisture+AND+removal&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>COMPARING FUNCTIONAL ASSESSMENTS OF WETLANDS TO MEASUREMENTS OF SOIL CHARACTERISTICS AND NITROGEN PROCESSING</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>One beneficial service of wetland ecosystems is the improvement of water quality through nitrogen (N) removal. However, one important N-removal process, denitrification, can produce the atmospheric pollutant nitrous oxide (N2O). Wetland biogeochemical functions, such as N proce...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PCE....97....1B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PCE....97....1B"><span>Wetland biogeochemistry and ecological risk assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bai, Junhong; Huang, Laibin; Gao, Haifeng; Zhang, Guangliang</p> <p>2017-02-01</p> <p>Wetlands are an important ecotone between terrestrial and aquatic ecosystems and can provide great ecological service functions. Soils/sediments are one of the important components of wetland ecosystems, which support wetland plants and microorganisms and influence wetland productivity. Moreover, wetland soils/sediments serve as sources, sinks and transfers of carbon, nitrogen, phosphorus and chemical contaminants such as heavy metals. In natural wetland ecosystems, wetland soils/sediments play a great role in improving water quality as these chemical elements can be retained in wetland soils/sediments for a long time. Moreover, the biogeochemical processes of the abovementioned elements in wetland soils/sediments can drive wetland evolution and development, and their changes will considerably affect wetland ecosystem health. Therefore, a better understanding of wetland soil biogeochemistry will contribute to improving wetland ecological service functions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4157K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4157K"><span>Modeling critical zone processes in intensively managed environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumar, Praveen; Le, Phong; Woo, Dong; Yan, Qina</p> <p>2017-04-01</p> <p>Processes in the Critical Zone (CZ), which sustain terrestrial life, are tightly coupled across hydrological, physical, biochemical, and many other domains over both short and long timescales. In addition, vegetation acclimation resulting from elevated atmospheric CO2 concentration, along with response to increased temperature and altered rainfall pattern, is expected to result in emergent behaviors in ecologic and hydrologic functions, subsequently controlling CZ processes. We hypothesize that the interplay between micro-topographic variability and these emergent behaviors will shape complex responses of a range of ecosystem dynamics within the CZ. Here, we develop a modeling framework ('Dhara') that explicitly incorporates micro-topographic variability based on lidar topographic data with coupling of multi-layer modeling of the soil-vegetation continuum and 3-D surface-subsurface transport processes to study ecological and biogeochemical dynamics. We further couple a C-N model with a physically based hydro-geomorphologic model to quantify (i) how topographic variability controls the spatial distribution of soil moisture, temperature, and biogeochemical processes, and (ii) how farming activities modify the interaction between soil erosion and soil organic carbon (SOC) dynamics. To address the intensive computational demand from high-resolution modeling at lidar data scale, we use a hybrid CPU-GPU parallel computing architecture run over large supercomputing systems for simulations. Our findings indicate that rising CO2 concentration and air temperature have opposing effects on soil moisture, surface water and ponding in topographic depressions. Further, the relatively higher soil moisture and lower soil temperature contribute to decreased soil microbial activities in the low-lying areas due to anaerobic conditions and reduced temperatures. The decreased microbial relevant processes cause the reduction of nitrification rates, resulting in relatively lower nitrate concentration. Results from geomorphologic model also suggest that soil erosion and deposition plays a dominant role in SOC both above- and below-ground. In addition, tillage can change the amplitude and frequency of C-N oscillation. This work sheds light in developing practical means for reducing soil erosion and carbon loss when the landscape is affected by human activities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC21I..07L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC21I..07L"><span>Understanding the ecocline at shallow coasts of the Baltic Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lenartz, B.; Jurasinski, G.; Voss, M.; Janssen, M.</p> <p>2017-12-01</p> <p>We report on results of the Research Training Group Baltic TRANSCOAST. The overall aim of Baltic TRANSCOAST is to enhance our knowledge of the shallow coast ecocline. How is the marine coastal zone influenced by terrestrial processes? How is the terrestrial coastal zone influenced by marine processes? These questions lead our research within the three research fields covering hydro-dynamic, (bio)geochemical and biological processes. Regarding the hydro-dynamics we assess how the peatland's water balance, the current dynamics and hydraulic properties of the marine sediments and the subsoil influence sea water intrusions into the peatland and/or submarine groundwater discharge into the Baltic Sea. With respect to (bio)geochemical processes we address how (bio)geochemical transformation processes both in the marine and the terrestrial part of the coast are influenced by water and matter inputs from the respective other coastal domain. Finally, reagrding the biological processes, we are interested in revealing how the primary production and the composition of the micro- and macro-phytobenthos in the shallow Baltic Sea influence matter transformation processes. The integrative approach of Baltic TRANSCOAST allows us to get to grips with questions that are otherwise hard to tackle. For instance, we address how the pore water constituents drive microbial processes and the deposition of nutrients and and how they are impacted by sediment resuspension and translocation. We investigate how the hydrology of the peat layers interferes with the generation of trace gases and investigate the role of the nearby Warnow river and its plume and how this changes under the impact of wind direction and wind strength. For the latter we rely on data and models. Further, as a common basis for all topics addressed in Baltic TRANSCOAST we established the geology of the study area and learned that regional variability may play a major role in shaping the processes under study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B41A0416W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B41A0416W"><span>Dissecting the Hydrobiogeochemical Box</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Y.; Alves Meira Neto, A.; Sengupta, A.; Root, R. A.; Dontsova, K.; Troch, P. A. A.; Chorover, J.</p> <p>2015-12-01</p> <p>Soil genesis is a coupled hydrologic and biogeochemical process that involves the interaction of weathering rock surfaces and water. Due to strong nonlinear coupling, it is extremely difficult to predict biogeochemical changes from hydrological modeling in natural field systems. A fully controlled and monitored system with known initial conditions could be utilized to isolate variables and simplify these natural processes. To investigate the initial weathering of host rock to soil, we employed a 10° sloping soil lysimeter containing one cubic meter of crushed and homogenized basaltic rock. A major experiment of the Periodic Tracer Hierarchy (PERTH) method (Harman and Kim, 2014) coupled with its bonus experiment were performed in the past two years. These experimental applications successfully described the transit-time distribution (TTD) of a tracer-enriched water breakthrough curve in this unique hydrological system (Harman, 2015). With intensive irrigation and high volume of water storage throughout the experiments, rapid biological changes have been observed on the soil surface, such as algal and grass growth. These observations imply that geochemical hotspots may be established within the soil lysimeter. To understand the detailed 2D spatial distribution of biogeochemical changes, 100 selected and undisturbed soil blocks, among a total 1000 sub-gridded equal sized, are tested with several geochemical tools. Each selected soil block was subjected to elemental analysis by pXRF to determine if elemental migration is detectable in the dynamic proto-soil development. Synchrotron XRD quantification with Reitveld refinement will follow to clarify mineralogical transformations in the soil blocks. The combined techniques aim to confirm the development of geochemical hotspots; and link these findings with previous hydrological findings from the PERTH experiment as well as other hydrological modeling, such as conducted with Hydrus and CATHY. This work provides insight to the detailed correlations between hydrological and biogeochemical processes during incipient soil formation, as well as aiding the development of advanced tools and methods to study complex Earth-system dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26289044','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26289044"><span>Available nitrogen is the key factor influencing soil microbial functional gene diversity in tropical rainforest.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cong, Jing; Liu, Xueduan; Lu, Hui; Xu, Han; Li, Yide; Deng, Ye; Li, Diqiang; Zhang, Yuguang</p> <p>2015-08-20</p> <p>Tropical rainforests cover over 50% of all known plant and animal species and provide a variety of key resources and ecosystem services to humans, largely mediated by metabolic activities of soil microbial communities. A deep analysis of soil microbial communities and their roles in ecological processes would improve our understanding on biogeochemical elemental cycles. However, soil microbial functional gene diversity in tropical rainforests and causative factors remain unclear. GeoChip, contained almost all of the key functional genes related to biogeochemical cycles, could be used as a specific and sensitive tool for studying microbial gene diversity and metabolic potential. In this study, soil microbial functional gene diversity in tropical rainforest was analyzed by using GeoChip technology. Gene categories detected in the tropical rainforest soils were related to different biogeochemical processes, such as carbon (C), nitrogen (N) and phosphorus (P) cycling. The relative abundance of genes related to C and P cycling detected mostly derived from the cultured bacteria. C degradation gene categories for substrates ranging from labile C to recalcitrant C were all detected, and gene abundances involved in many recalcitrant C degradation gene categories were significantly (P < 0.05) different among three sampling sites. The relative abundance of genes related to N cycling detected was significantly (P < 0.05) different, mostly derived from the uncultured bacteria. The gene categories related to ammonification had a high relative abundance. Both canonical correspondence analysis and multivariate regression tree analysis showed that soil available N was the most correlated with soil microbial functional gene structure. Overall high microbial functional gene diversity and different soil microbial metabolic potential for different biogeochemical processes were considered to exist in tropical rainforest. Soil available N could be the key factor in shaping the soil microbial functional gene structure and metabolic potential.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29121579','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29121579"><span>A process-oriented hydro-biogeochemical model enabling simulation of gaseous carbon and nitrogen emissions and hydrologic nitrogen losses from a subtropical catchment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Wei; Li, Yong; Zhu, Bo; Zheng, Xunhua; Liu, Chunyan; Tang, Jialiang; Su, Fang; Zhang, Chong; Ju, Xiaotang; Deng, Jia</p> <p>2018-03-01</p> <p>Quantification of nitrogen losses and net greenhouse gas (GHG) emissions from catchments is essential for evaluating the sustainability of ecosystems. However, the hydrologic processes without lateral flows hinder the application of biogeochemical models to this challenging task. To solve this issue, we developed a coupled hydrological and biogeochemical model, Catchment Nutrients Management Model - DeNitrification-DeComposition Model (CNMM-DNDC), to include both vertical and lateral mass flows. By incorporating the core biogeochemical processes (including decomposition, nitrification, denitrification and fermentation) of the DNDC into the spatially distributed hydrologic framework of the CNMM, the simulation of lateral water flows and their influences on nitrogen transportation can be realized. The CNMM-DNDC was then calibrated and validated in a small subtropical catchment belonged to Yanting station with comprehensive field observations. Except for the calibration of water flows (surface runoff and leaching water) in 2005, stream discharges of water and nitrate in 2007, the model validations of soil temperature, soil moisture, crop yield, water flows in 2006 and associated nitrate loss, fluxes of methane, ammonia, nitric oxide and nitrous oxide, and stream discharges of water and nitrate in 2008 were statistically in good agreement with the observations. Meanwhile, our initial simulation of the catchment showed scientific predictions. For instance, it revealed the following: (i) dominant ammonia volatilization among the losses of nitrogenous gases (accounting for 11-21% of the applied annual fertilizer nitrogen in croplands); (ii) hotspots of nitrate leaching near the main stream; and (iii) a net GHG sink function of the catchment. These results implicate the model's promising capability of predicting ecosystem productivity, hydrologic nitrogen loads, losses of gaseous nitrogen and emissions of GHGs, which could be used to provide strategies for establishing sustainable catchments. In addition, the model's capability would be further proved by applying in other catchments with different backgrounds. Copyright © 2017. Published by Elsevier B.V.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3458434','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3458434"><span>Microbial control over carbon cycling in soil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Schimel, Joshua P.; Schaeffer, Sean M.</p> <p>2012-01-01</p> <p>A major thrust of terrestrial microbial ecology is focused on understanding when and how the composition of the microbial community affects the functioning of biogeochemical processes at the ecosystem scale (meters-to-kilometers and days-to-years). While research has demonstrated these linkages for physiologically and phylogenetically “narrow” processes such as trace gas emissions and nitrification, there is less conclusive evidence that microbial community composition influences the “broad” processes of decomposition and organic matter (OM) turnover in soil. In this paper, we consider how soil microbial community structure influences C cycling. We consider the phylogenetic level at which microbes form meaningful guilds, based on overall life history strategies, and suggest that these are associated with deep evolutionary divergences, while much of the species-level diversity probably reflects functional redundancy. We then consider under what conditions it is possible for differences among microbes to affect process dynamics, and argue that while microbial community structure may be important in the rate of OM breakdown in the rhizosphere and in detritus, it is likely not important in the mineral soil. In mineral soil, physical access to occluded or sorbed substrates is the rate-limiting process. Microbial community influences on OM turnover in mineral soils are based on how organisms allocate the C they take up – not only do the fates of the molecules differ, but they can affect the soil system differently as well. For example, extracellular enzymes and extracellular polysaccharides can be key controls on soil structure and function. How microbes allocate C may also be particularly important for understanding the long-term fate of C in soil – is it sequestered or not? PMID:23055998</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS23A1366A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS23A1366A"><span>Evaluating the effect of oceanic striations on biogeochemistry in the eastern South Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Auger, P. A.; Belmadani, A.; Donoso, D.; Hormazabal, S.</p> <p>2017-12-01</p> <p>In recent years, quasi-zonal mesoscale jet-like features or striations have been ubiquitously detected in the time-mean circulation of the world ocean using satellite altimetry and in situ data. Most likely the result of some organization of the mesoscale eddy field such as preferred eddy tracks, these striations may be able to advect and mix physical properties. Yet, their impact on biogeochemistry has not been assessed yet. Off central Chile, the interaction between striations and sharp background gradients of biogeochemical properties may spatially structure biogeochemistry, with potential implications for marine ecosystems. For instance, striations may affect the mean horizontal distribution of surface phytoplankton biomass in the coastal transition zone (CTZ), or the structure and variability of the oxygen-minimum zone (OMZ). Here, we evaluate the expression of striations in satellite records of ocean color and in a set of numerically simulated biogeochemical tracers off central Chile (chlorophyll, carbon, primary production, oxygen, nutrients), averaged over the surface productive layer, the OMZ at intermediate depths or the water column. A multi-decadal hindcast simulation of the physical-biogeochemical dynamics was run over the period 1984-2013 using the ROMS-PISCES (for Regional Oceanic Modeling System - Pelagic Interactions Scheme for Carbon and Ecosystem Studies) platform at an eddy-resolving resolution. Satellite data and model outputs are spatially high-pass filtered to remove the large-scale signal and evaluate the match between striations and biogeochemical tracer anomalies in the model and observations. The effect of striations on the mean shape of the zonal gradient of phytoplankton biomass in the CTZ between eutrophic coastal waters and oligotrophic offshore waters is then deduced. The fraction of tracer anomalies due to striations is quantified, and the structuring roles of stationary and transient striations are respectively explored by matching striations and biogeochemical tracers on moving frames of variable widths from 6 months to several years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28334274','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28334274"><span>Interactive effects of multiple climate change factors on ammonia oxidizers and denitrifiers in a temperate steppe.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Cui-Jing; Shen, Ju-Pei; Sun, Yi-Fei; Wang, Jun-Tao; Zhang, Li-Mei; Yang, Zhong-Ling; Han, Hong-Yan; Wan, Shi-Qiang; He, Ji-Zheng</p> <p>2017-04-01</p> <p>Global climate change could have profound effects on belowground microbial communities and subsequently affect soil biogeochemical processes. The interactive effects of multiple co-occurring climate change factors on microbially mediated processes are not well understood. A four-factorial field experiment with elevated CO2, watering, nitrogen (N) addition and night warming was conducted in a temperate steppe of northern China. Real-time polymerase chain reaction and terminal-restriction fragment length polymorphism, combined with clone library techniques, were applied to examine the effects of those climate change factors on N-related microbial abundance and community composition. Only the abundance of ammonia-oxidizing bacteria significantly increased by nitrogen addition and decreased by watering. The interactions of watering × warming on the bacterial amoA community and warming × nitrogen addition on the nosZ community were found. Redundancy analysis indicated that the ammonia-oxidizing archaeal community was affected by total N and total carbon, while the community of bacterial amoA and nosZ were significantly affected by soil pH. According to a structural equation modeling analysis, climate change influenced net primary production indirectly by altering microbial abundance and activities. These results indicated that microbial responses to the combination of chronic global change tend to be smaller than expected from single-factor global change manipulations. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=240647','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=240647"><span>Hot spots and hot moments in riparian zones: potential for improved water quality management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Despite considerable heterogeneity over space and time, biogeochemical and hydrological processes in riparian zones regulate contaminant movement to receiving waters and often mitigate the impact of upland sources of contaminants on water quality. Recently, these heterogeneous processes have been co...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033165','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033165"><span>Integrating remotely sensed land cover observations and a biogeochemical model for estimating forest ecosystem carbon dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Liu, J.; Liu, S.; Loveland, Thomas R.; Tieszen, L.L.</p> <p>2008-01-01</p> <p>Land cover change is one of the key driving forces for ecosystem carbon (C) dynamics. We present an approach for using sequential remotely sensed land cover observations and a biogeochemical model to estimate contemporary and future ecosystem carbon trends. We applied the General Ensemble Biogeochemical Modelling System (GEMS) for the Laurentian Plains and Hills ecoregion in the northeastern United States for the period of 1975-2025. The land cover changes, especially forest stand-replacing events, were detected on 30 randomly located 10-km by 10-km sample blocks, and were assimilated by GEMS for biogeochemical simulations. In GEMS, each unique combination of major controlling variables (including land cover change history) forms a geo-referenced simulation unit. For a forest simulation unit, a Monte Carlo process is used to determine forest type, forest age, forest biomass, and soil C, based on the Forest Inventory and Analysis (FIA) data and the U.S. General Soil Map (STATSGO) data. Ensemble simulations are performed for each simulation unit to incorporate input data uncertainty. Results show that on average forests of the Laurentian Plains and Hills ecoregion have been sequestrating 4.2 Tg C (1 teragram = 1012 gram) per year, including 1.9 Tg C removed from the ecosystem as the consequences of land cover change. ?? 2008 Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GMD.....8.3441B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GMD.....8.3441B"><span>SHIMMER (1.0): a novel mathematical model for microbial and biogeochemical dynamics in glacier forefield ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bradley, J. A.; Anesio, A. M.; Singarayer, J. S.; Heath, M. R.; Arndt, S.</p> <p>2015-10-01</p> <p>SHIMMER (Soil biogeocHemIcal Model for Microbial Ecosystem Response) is a new numerical modelling framework designed to simulate microbial dynamics and biogeochemical cycling during initial ecosystem development in glacier forefield soils. However, it is also transferable to other extreme ecosystem types (such as desert soils or the surface of glaciers). The rationale for model development arises from decades of empirical observations in glacier forefields, and enables a quantitative and process focussed approach. Here, we provide a detailed description of SHIMMER, test its performance in two case study forefields: the Damma Glacier (Switzerland) and the Athabasca Glacier (Canada) and analyse sensitivity to identify the most sensitive and unconstrained model parameters. Results show that the accumulation of microbial biomass is highly dependent on variation in microbial growth and death rate constants, Q10 values, the active fraction of microbial biomass and the reactivity of organic matter. The model correctly predicts the rapid accumulation of microbial biomass observed during the initial stages of succession in the forefields of both the case study systems. Primary production is responsible for the initial build-up of labile substrate that subsequently supports heterotrophic growth. However, allochthonous contributions of organic matter, and nitrogen fixation, are important in sustaining this productivity. The development and application of SHIMMER also highlights aspects of these systems that require further empirical research: quantifying nutrient budgets and biogeochemical rates, exploring seasonality and microbial growth and cell death. This will lead to increased understanding of how glacier forefields contribute to global biogeochemical cycling and climate under future ice retreat.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSAH41A..02F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSAH41A..02F"><span>Changes in Chesapeake Bay Hypoxia over the Past Century</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Friedrichs, M. A.; Kaufman, D. E.; Najjar, R.; Tian, H.; Zhang, B.; Yao, Y.</p> <p>2016-02-01</p> <p>The Chesapeake Bay, one of the world's largest estuaries, is among the many coastal systems where hypoxia is a major concern and where dissolved oxygen thus represents a critical factor in determining the health of the Bay's ecosystem. Over the past century, the population of the Chesapeake Bay region has almost quadrupled, greatly modifying land cover and management practices within the watershed. Simultaneously, the Chesapeake Bay has been experiencing a high degree of climate change, including increases in temperature, precipitation, and precipitation intensity. Together, these changes have resulted in significantly increased riverine nutrient inputs to the Bay. In order to examine how interdecadal changes in riverine nitrogen input affects biogeochemical cycling and dissolved oxygen concentrations in Chesapeake Bay, a land-estuarine-ocean biogeochemical modeling system has been developed for this region. Riverine inputs of nitrogen to the Bay are computed from a terrestrial ecosystem model (the Dynamic Land Ecosystem Model; DLEM) that resolves riverine discharge variability on scales of days to years. This temporally varying discharge is then used as input to the estuarine-carbon-biogeochemical model embedded in the Regional Modeling System (ROMS), which provides estimates of the oxygen concentrations and nitrogen fluxes within the Bay as well as advective exports from the Bay to the adjacent Mid-Atlantic Bight shelf. Simulation results from this linked modeling system for the present (early 2000s) have been extensively evaluated with in situ and remotely sensed data. Longer-term simulations are used to isolate the effect of increased riverine nitrogen loading on dissolved oxygen concentrations and biogeochemical cycling within the Chesapeake Bay.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1390570','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1390570"><span>Temporal dynamics of CO 2 and CH 4 loss potentials in response to rapid hydrological shifts in tidal freshwater wetland soils</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>RoyChowdhury, Taniya; Bramer, Lisa; Hoyt, David W.</p> <p></p> <p>Earth System Models predict climate extremes that will impact regional and global hydrology. Aquatic-terrestrial transition zones like wetlands are subjected to the immediate consequence of climate change with shifts in the magnitude and dynamics of hydrologic flow. Such fluctuating hydrology can alter the nature and rate of biogeochemical transformations and significantly impact the carbon balance of the ecosystem. We tested the impacts of fluctuating hydrology and, specifically, the role of antecedent moisture conditions in determining the dominant carbon loss mechanisms in soils sampled from a tidal freshwater wetland system in the lower Columbia River, WA, USA. The objective was tomore » understand shifts in biogeochemical processes in response to changing soil moisture, based on soil respiration and methane production rates, and to elucidate such responses based on the observed electron acceptor and metabolite profiles under laboratory conditions. Metabolomics and biogeochemical process rates provided evidence that soil redox was the principal factor driving metabolic function. Fluctuating redox conditions altered terminal electron acceptor and donor availability and recovery strengths of their concentrations in soil such that a disproportionate release of carbon dioxide stemmed from alternative anaerobic degradation processes like sulfate and iron reduction compared to carbon loss due to methanogenesis. These results show that extended and short-term saturation created conditions conducive to increasing metabolite availability for anaerobic decomposition processes, with a significant lag in methanogenesis. In contrast, extended drying caused a cellular-level stress response and rapid recycling of alternate electron acceptors.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70129606','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70129606"><span>Temporal dynamics of biogeochemical processes at the Norman Landfill site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Arora, Bhavna; Mohanty, Binayak P.; McGuire, Jennifer T.; Cozzarelli, Isabelle M.</p> <p>2013-01-01</p> <p>The temporal variability observed in redox sensitive species in groundwater can be attributed to coupled hydrological, geochemical, and microbial processes. These controlling processes are typically nonstationary, and distributed across various time scales. Therefore, the purpose of this study is to investigate biogeochemical data sets from a municipal landfill site to identify the dominant modes of variation and determine the physical controls that become significant at different time scales. Data on hydraulic head, specific conductance, δ2H, chloride, sulfate, nitrate, and nonvolatile dissolved organic carbon were collected between 1998 and 2000 at three wells at the Norman Landfill site in Norman, OK. Wavelet analysis on this geochemical data set indicates that variations in concentrations of reactive and conservative solutes are strongly coupled to hydrologic variability (water table elevation and precipitation) at 8 month scales, and to individual eco-hydrogeologic framework (such as seasonality of vegetation, surface-groundwater dynamics) at 16 month scales. Apart from hydrologic variations, temporal variability in sulfate concentrations can be associated with different sources (FeS cycling, recharge events) and sinks (uptake by vegetation) depending on the well location and proximity to the leachate plume. Results suggest that nitrate concentrations show multiscale behavior across temporal scales for different well locations, and dominant variability in dissolved organic carbon for a closed municipal landfill can be larger than 2 years due to its decomposition and changing content. A conceptual framework that explains the variability in chemical concentrations at different time scales as a function of hydrologic processes, site-specific interactions, and/or coupled biogeochemical effects is also presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1390570-temporal-dynamics-co-ch-loss-potentials-response-rapid-hydrological-shifts-tidal-freshwater-wetland-soils','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1390570-temporal-dynamics-co-ch-loss-potentials-response-rapid-hydrological-shifts-tidal-freshwater-wetland-soils"><span>Temporal dynamics of CO 2 and CH 4 loss potentials in response to rapid hydrological shifts in tidal freshwater wetland soils</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>RoyChowdhury, Taniya; Bramer, Lisa; Hoyt, David W.; ...</p> <p>2017-06-27</p> <p>Earth System Models predict climate extremes that will impact regional and global hydrology. Aquatic-terrestrial transition zones like wetlands are subjected to the immediate consequence of climate change with shifts in the magnitude and dynamics of hydrologic flow. Such fluctuating hydrology can alter the nature and rate of biogeochemical transformations and significantly impact the carbon balance of the ecosystem. We tested the impacts of fluctuating hydrology and, specifically, the role of antecedent moisture conditions in determining the dominant carbon loss mechanisms in soils sampled from a tidal freshwater wetland system in the lower Columbia River, WA, USA. The objective was tomore » understand shifts in biogeochemical processes in response to changing soil moisture, based on soil respiration and methane production rates, and to elucidate such responses based on the observed electron acceptor and metabolite profiles under laboratory conditions. Metabolomics and biogeochemical process rates provided evidence that soil redox was the principal factor driving metabolic function. Fluctuating redox conditions altered terminal electron acceptor and donor availability and recovery strengths of their concentrations in soil such that a disproportionate release of carbon dioxide stemmed from alternative anaerobic degradation processes like sulfate and iron reduction compared to carbon loss due to methanogenesis. These results show that extended and short-term saturation created conditions conducive to increasing metabolite availability for anaerobic decomposition processes, with a significant lag in methanogenesis. In contrast, extended drying caused a cellular-level stress response and rapid recycling of alternate electron acceptors.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GBioC..29.1421M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GBioC..29.1421M"><span>An observational assessment of the influence of mesoscale and submesoscale heterogeneity on ocean biogeochemical reactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin, Adrian P.; Lévy, Marina; van Gennip, Simon; Pardo, Silvia; Srokosz, Meric; Allen, John; Painter, Stuart C.; Pidcock, Roz</p> <p>2015-09-01</p> <p>Numerous observations demonstrate that considerable spatial variability exists in components of the marine planktonic ecosystem at the mesoscale and submesoscale (100 km-1 km). The causes and consequences of physical processes at these scales ("eddy advection") influencing biogeochemistry have received much attention. Less studied, the nonlinear nature of most ecological and biogeochemical interactions means that such spatial variability has consequences for regional estimates of processes including primary production and grazing, independent of the physical processes. This effect has been termed "eddy reactions." Models remain our most powerful tools for extrapolating hypotheses for biogeochemistry to global scales and to permit future projections. The spatial resolution of most climate and global biogeochemical models means that processes at the mesoscale and submesoscale are poorly resolved. Modeling work has previously suggested that the neglected eddy reactions may be almost as large as the mean field estimates in some cases. This study seeks to quantify the relative size of eddy and mean reactions observationally, using in situ and satellite data. For primary production, grazing, and zooplankton mortality the eddy reactions are between 7% and 15% of the mean reactions. These should be regarded as preliminary estimates to encourage further observational estimates and not taken as a justification for ignoring eddy reactions. Compared to modeling estimates, there are inconsistencies in the relative magnitude of eddy reactions and in correlations which are a major control on their magnitude. One possibility is that models exhibit much stronger spatial correlations than are found in reality, effectively amplifying the magnitude of eddy reactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/49016','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/49016"><span>Experimental decoupling of canopy opening and debris addition on tropical gastropod populations and communities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Michael R. Willig; Christopher P. Bloch; Steven J. Presley</p> <p>2014-01-01</p> <p>Climate-induced disturbances such as hurricanes affect the structure and functioning of many ecosystems, especially those in the Caribbean Basin, where effects are well documented with regard to biodiversity and biogeochemical dynamics. Because climate change will likely alter the frequency or intensity of such storms, it is increasingly important to understand the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=316802','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=316802"><span>Legumes or nitrification inhibitors to reduce N2O emissions in subtropical cereal cropping systems? A simulation study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The DAYCENT biogeochemical model was used to investigate how the use of fertilisers coated with nitrification inhibitors and the introduction of legumes in the crop rotation can affect subtropical cereal production and N2O emissions. The model was validated using comprehensive multi-seasonal, high-f...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/54046','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/54046"><span>The effects of climate downscaling technique and observational data set on modeled ecological responses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Afshin Pourmokhtarian; Charles T. Driscoll; John L. Campbell; Katharine Hayhoe; Anne M. K. Stoner</p> <p>2016-01-01</p> <p>Assessments of future climate change impacts on ecosystems typically rely on multiple climate model projections, but often utilize only one downscaling approach trained on one set of observations. Here, we explore the extent to which modeled biogeochemical responses to changing climate are affected by the selection of the climate downscaling method and training...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916668Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916668Z"><span>Fronts and eddies: Engines for biogeochemical variability of the Central Red Sea during winter-spring periods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zarokanellos, Nikolaos; Jones, Burton</p> <p>2017-04-01</p> <p>The central Red Sea (CRS) has been shown to be characterized by significant eddy activity throughout the year. In winter, weakened stratification may lead to enhanced vertical exchange contributing to physical and biogeochemical processes. In winter 2014-2015 we began an extended glider time series to monitor a region in the northern CRS where eddy activity is significant. Remote sensing and glider observations that include CTD, oxygen, CDOM and chlorophyll fluorescence, and multi-wavelength optical backscatter, have been used to characterize the effects of winter mixing and eddy activity in this region. During winter, deep mixing driven by surface cooling and strong winds combined with eddy features, can supply nutrients into the upper layer dramatically modifies the environment from its typically stratified conditions. These mixing events disperse the phytoplankton from the deep chlorophyll maximum throughout the upper mixed layer, and increase the chlorophyll signature detected by ocean color imagery. In addition to the mixing, cyclonic eddies in the region can enhance the vertical displacement of deeper, nutrient containing water toward the euphotic zone contributing to increased chlorophyll concentration and biological productivity. Remote sensing analyses indicate that these eddies also contribute to significant horizontal dispersion including the exchange between the open sea and coastal coral reef ecosystems. During the winter mixing periods, diel fluctuations in phytoplankton biomass have been observed indicative of solar driven plankton dynamics. The biogeochemical response to the subsurface physical processes provides a sensitive indicator to the processes that result from the mixing and eddy dynamics - processes that are not necessarily detectable via remote sensing. In order to understand the seasonal responses, but also the interannual influences on these processes, sustained in situ autonomous platform measurements are essential.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B41F..06L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B41F..06L"><span>Microbial Extracellular Enzyme Activity and Community Assembly Processes Post Fire Disturbance Amanda Labrado, University of Texas at El Paso; Emily B. Graham, University of Colorado Boulder; Joseph E. Knelman, University of Colorado Boulder; Scott Ferrenberg, University of Colorado Boulder; Diana R. Nemergut, University of Colorado Boulder</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Labrdo, A.; Knelman, J. E.; Graham, E. B.; Ferrenberg, S.; Nemergut, D. R.</p> <p>2013-12-01</p> <p>Microbes control major biogeochemical cycles and can directly impact the carbon, nitrogen, and phosphorus pools and fluxes of soils. However, many questions remain regarding when and where data on microbial community structure are necessary to accurately predict biogeochemical processes. In particular, it is unknown how shifts in microbial assembly processes may relate to changes in the relationship between community structure and ecosystem function. Here, we examine soil microbial community assembly processes and extracellular enzyme activity (EEA) at 4-weeks and 16-weeks after the Fourmile Canyon Fire in Boulder, CO in order to determine the effects of disturbance on community assembly and EEA. Microbial community structure was determined from 16S rRNA gene pyrosequencing, edaphic properties were determined using standard biogeochemical assays, and extracellular enzyme activity for β-1, 4-glucosidase (BG) and β-1, 4-N-acetylglucosaminidase (NAG) enzymes were determined using fluorimetric assays. Stepwise linear regressions were used to determine the effects of microbial community structure and edaphic factors on EEA. We determined that in 4-week post fire samples EEA was only correlated with microbial predictors. However, we observed a shift with 16-week samples in which EEA was significantly related to edaphic predictors. Null derivation analysis of community assembly revealed that communities in the 4-week samples were more neutrally assembled than communities in the 16-week samples. Together, these results support a conceptual model in which the relationship between edaphic factors and ecosystem processes is somewhat decoupled in more neutrally assembled communities, and data on microbial community structure is important to most accurately predict function.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H43I1577C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H43I1577C"><span>Biogeochemical Hotspots: Role of Small Wetlands in Nutrient Processing at the Watershed Scale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheng, F. Y.; Basu, N. B.</p> <p>2016-12-01</p> <p>Increased loading of nutrients (nitrogen N and phosphorus P) from agricultural and urban intensification in the Anthropocene has led to severe degradation of inland and coastal waters. Amongst aquatic ecosystems, wetlands receive and retain significant quantities of nutrients and thus are important regulators of nutrient transport in watersheds. While the factors controlling N and P retention in wetlands is relatively well known, there is a lack of quantitative understanding on the relative contributions of the different factors on nutrient retention. There is also a deficiency in knowledge of how these processes behave across system size and type. In our study, we synthesized nutrient retention data from wetlands, lakes, and reservoirs to gain insight on the relationship between hydrologic and biogeochemical controls on nutrient retention. Our results indicated that the first-order reaction rate constant, k [T-1], is inversely proportional to the hydraulic residence time, τ, across six orders of magnitude in residence time for total nitrogen, total phosphorus, nitrate and phosphate. We hypothesized that the consistency of the relationship across constituent and system types points to the strong hydrologic control on biogeochemical processing. The hypothesis was tested using a two-compartment mechanistic model that links the nutrient removal processes (denitrification for N and sedimentation for P) with the system size. Finally, the k-τ relationships were upscaled with a regional size-frequency distribution to demonstrate the disproportionately large role of small wetlands in watershed-scale nutrient processing. Our results highlight the importance of hydrological controls as the dominant modifiers of nutrient removal mechanisms and the need for a stronger focus on small lentic ecosystems like wetlands as major nutrient sinks in the landscape.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.H21A1069M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.H21A1069M"><span>Sensitivity Analysis and Parameter Estimation for a Reactive Transport Model of Uranium Bioremediation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meyer, P. D.; Yabusaki, S.; Curtis, G. P.; Ye, M.; Fang, Y.</p> <p>2011-12-01</p> <p>A three-dimensional, variably-saturated flow and multicomponent biogeochemical reactive transport model of uranium bioremediation was used to generate synthetic data . The 3-D model was based on a field experiment at the U.S. Dept. of Energy Rifle Integrated Field Research Challenge site that used acetate biostimulation of indigenous metal reducing bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. A key assumption in past modeling studies at this site was that a comprehensive reaction network could be developed largely through one-dimensional modeling. Sensitivity analyses and parameter estimation were completed for a 1-D reactive transport model abstracted from the 3-D model to test this assumption, to identify parameters with the greatest potential to contribute to model predictive uncertainty, and to evaluate model structure and data limitations. Results showed that sensitivities of key biogeochemical concentrations varied in space and time, that model nonlinearities and/or parameter interactions have a significant impact on calculated sensitivities, and that the complexity of the model's representation of processes affecting Fe(II) in the system may make it difficult to correctly attribute observed Fe(II) behavior to modeled processes. Non-uniformity of the 3-D simulated groundwater flux and averaging of the 3-D synthetic data for use as calibration targets in the 1-D modeling resulted in systematic errors in the 1-D model parameter estimates and outputs. This occurred despite using the same reaction network for 1-D modeling as used in the data-generating 3-D model. Predictive uncertainty of the 1-D model appeared to be significantly underestimated by linear parameter uncertainty estimates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2465N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2465N"><span>Effects of land cover change on litter decomposition and soil greenhouse gas fluxes in subtropical Hong Kong</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ngar Wong, Chun; Lai, Derrick Yuk Fo</p> <p>2017-04-01</p> <p>Nowadays, over 50% of the world's population live in urbanized areas and the level of urbanization varies substantially across countries. Intense human activities and management associated with urbanization can alter the microclimate and biogeochemical processes in urban areas, which subsequently affect the provision of ecosystem services and functions. Litter decomposition and soil greenhouse gas (GHG) exchange play an important role in governing nutrient cycling and future climate change, respectively. Yet, the effects of urbanization on these two biogeochemical processes remain uncertain and not well understood, especially in subtropical and high-density cities. This study aims to examine the effects of urbanization on decomposition and GHG fluxes among four land covers- natural forest, urban forest, farmland and roadside planter, in Hong Kong based on litterbag experiment and closed chamber measurements for one full year. Litter decomposition rate was significantly lower in farmland than in other land cover types. Significant differences in CO2 emission were detected among the four land cover types (p<0.05), with the highest and lowest CO2 emissions being recorded in farmland and roadside planter, respectively. CH4 emission varied significantly among the land covers as well (p<0.05), with the highest and lowest CH4 emissions being recorded in farmland and urban forest, respectively. Farmland and urban forest showed the highest and lowest mean N2O fluxes, respectively. The emission of CO2 was positively correlated with soil potassium content, while CH4 and N2O flux increased markedly with soil temperature and nitrate nitrogen content, respectively. The results obtained in this study will enhance our understanding on urban ecosystem and be useful for recommending sustainable management strategies for conservation of ecosystem services in urban areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25386910','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25386910"><span>Timing of the departure of ocean biogeochemical cycles from the preindustrial state.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Christian, James R</p> <p>2014-01-01</p> <p>Changes in ocean chemistry and climate induced by anthropogenic CO2 affect a broad range of ocean biological and biogeochemical processes; these changes are already well underway. Direct effects of CO2 (e.g. on pH) are prominent among these, but climate model simulations with historical greenhouse gas forcing suggest that physical and biological processes only indirectly forced by CO2 (via the effect of atmospheric CO2 on climate) begin to show anthropogenically-induced trends as early as the 1920s. Dates of emergence of a number of representative ocean fields from the envelope of natural variability are calculated for global means and for spatial 'fingerprints' over a number of geographic regions. Emergence dates are consistent among these methods and insensitive to the exact choice of regions, but are generally earlier with more spatial information included. Emergence dates calculated for individual sampling stations are more variable and generally later, but means across stations are generally consistent with global emergence dates. The last sign reversal of linear trends calculated for periods of 20 or 30 years also functions as a diagnostic of emergence, and is generally consistent with other measures. The last sign reversal among 20 year trends is found to be a conservative measure (biased towards later emergence), while for 30 year trends it is found to have an early emergence bias, relative to emergence dates calculated by departure from the preindustrial mean. These results are largely independent of emission scenario, but the latest-emerging fields show a response to mitigation. A significant anthropogenic component of ocean variability has been present throughout the modern era of ocean observation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4227639','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4227639"><span>Timing of the Departure of Ocean Biogeochemical Cycles from the Preindustrial State</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Christian, James R.</p> <p>2014-01-01</p> <p>Changes in ocean chemistry and climate induced by anthropogenic CO2 affect a broad range of ocean biological and biogeochemical processes; these changes are already well underway. Direct effects of CO2 (e.g. on pH) are prominent among these, but climate model simulations with historical greenhouse gas forcing suggest that physical and biological processes only indirectly forced by CO2 (via the effect of atmospheric CO2 on climate) begin to show anthropogenically-induced trends as early as the 1920s. Dates of emergence of a number of representative ocean fields from the envelope of natural variability are calculated for global means and for spatial ‘fingerprints’ over a number of geographic regions. Emergence dates are consistent among these methods and insensitive to the exact choice of regions, but are generally earlier with more spatial information included. Emergence dates calculated for individual sampling stations are more variable and generally later, but means across stations are generally consistent with global emergence dates. The last sign reversal of linear trends calculated for periods of 20 or 30 years also functions as a diagnostic of emergence, and is generally consistent with other measures. The last sign reversal among 20 year trends is found to be a conservative measure (biased towards later emergence), while for 30 year trends it is found to have an early emergence bias, relative to emergence dates calculated by departure from the preindustrial mean. These results are largely independent of emission scenario, but the latest-emerging fields show a response to mitigation. A significant anthropogenic component of ocean variability has been present throughout the modern era of ocean observation. PMID:25386910</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.5417D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.5417D"><span>Oxygen consumption along bed forms under losing and gaining streamflow conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>De Falco, Natalie; Arnon, Shai; Boano, Fulvio</p> <p>2016-04-01</p> <p>Recent studies have demonstrated that bed forms are the most significant geomorphological structure that drives hyporheic exchange and biogeochemical processes in stream networks. Other studies also demonstrated that due to the hyporheic flow patterns within bed form, biogeochemical processes do not occur uniformly along and within the bed forms. The objective of this work was to systematically evaluate how losing or gaining flow conditions affect oxygen consumption by biofilm along sandy bed forms. We measured the effects of losing and gaining flow conditions on oxygen consumption by combining modeling and experiments in a novel laboratory flume system that enable the control of losing and gaining fluxes. Oxygen consumption was measured after growing a benthic biofilm fed with Sodium Benzoate (as a carbon source) and measuring the distribution of oxygen in the streambed with microelectrodes. The experimental results were analyzed using a novel code that calculates vertical profiles of reaction rates in the presence of hyporheic water fluxes. These experimental observations and modeling revealed that oxygen distribution varied along the bed forms. The zone of oxygen consumption (i.e. depth of penetration) was the largest at the upstream side of the bed form and the smallest in the lee side (at the lowest part of the bed form), regardless of the flow conditions. Also, the zone of oxygen consumption was the largest under losing conditions, the smallest under gaining conditions, and in-between under neutral conditions. The distribution of oxygen consumption rates determined with our new model will be also discussed. Our preliminary results enable us to show the importance of the coupling between flow conditions and oxygen consumption along bed forms and are expected to improve our understanding of nutrient cycling in streams.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRG..121..675C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRG..121..675C"><span>Freshwater and its role in the Arctic Marine System: Sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carmack, E. C.; Yamamoto-Kawai, M.; Haine, T. W. N.; Bacon, S.; Bluhm, B. A.; Lique, C.; Melling, H.; Polyakov, I. V.; Straneo, F.; Timmermans, M.-L.; Williams, W. J.</p> <p>2016-03-01</p> <p>The Arctic Ocean is a fundamental node in the global hydrological cycle and the ocean's thermohaline circulation. We here assess the system's key functions and processes: (1) the delivery of fresh and low-salinity waters to the Arctic Ocean by river inflow, net precipitation, distillation during the freeze/thaw cycle, and Pacific Ocean inflows; (2) the disposition (e.g., sources, pathways, and storage) of freshwater components within the Arctic Ocean; and (3) the release and export of freshwater components into the bordering convective domains of the North Atlantic. We then examine physical, chemical, or biological processes which are influenced or constrained by the local quantities and geochemical qualities of freshwater; these include stratification and vertical mixing, ocean heat flux, nutrient supply, primary production, ocean acidification, and biogeochemical cycling. Internal to the Arctic the joint effects of sea ice decline and hydrological cycle intensification have strengthened coupling between the ocean and the atmosphere (e.g., wind and ice drift stresses, solar radiation, and heat and moisture exchange), the bordering drainage basins (e.g., river discharge, sediment transport, and erosion), and terrestrial ecosystems (e.g., Arctic greening, dissolved and particulate carbon loading, and altered phenology of biotic components). External to the Arctic freshwater export acts as both a constraint to and a necessary ingredient for deep convection in the bordering subarctic gyres and thus affects the global thermohaline circulation. Geochemical fingerprints attained within the Arctic Ocean are likewise exported into the neighboring subarctic systems and beyond. Finally, we discuss observed and modeled functions and changes in this system on seasonal, annual, and decadal time scales and discuss mechanisms that link the marine system to atmospheric, terrestrial, and cryospheric systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70039049','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70039049"><span>Soil property control of biogeochemical processes beneath two subtropical stormwater infiltration basins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>O'Reilly, Andrew M.; Wanielista, Martin P.; Chang, Ni-Bin; Harris, Willie G.; Xuan, Zhemin</p> <p>2012-01-01</p> <p>Substantially different biogeochemical processes affecting nitrogen fate and transport were observed beneath two stormwater infiltration basins in north-central Florida. Differences are related to soil textural properties that deeply link hydroclimatic conditions with soil moisture variations in a humid, subtropical climate. During 2008, shallow groundwater beneath the basin with predominantly clayey soils (median, 41% silt+clay) exhibited decreases in dissolved oxygen from 3.8 to 0.1 mg L-1 and decreases in nitrate nitrogen (NO3-–N) from 2.7 mg L-1 to -1, followed by manganese and iron reduction, sulfate reduction, and methanogenesis. In contrast, beneath the basin with predominantly sandy soils (median, 2% silt+clay), aerobic conditions persisted from 2007 through 2009 (dissolved oxygen, 5.0–7.8 mg L-1), resulting in NO3-–N of 1.3 to 3.3 mg L-1 in shallow groundwater. Enrichment of d15N and d18O of NO3- combined with water chemistry data indicates denitrification beneath the clayey basin and relatively conservative NO3- transport beneath the sandy basin. Soil-extractable NO3-–N was significantly lower and the copper-containing nitrite reductase gene density was significantly higher beneath the clayey basin. Differences in moisture retention capacity between fine- and coarse-textured soils resulted in median volumetric gas-phase contents of 0.04 beneath the clayey basin and 0.19 beneath the sandy basin, inhibiting surface/subsurface oxygen exchange beneath the clayey basin. Results can inform development of soil amendments to maintain elevated moisture content in shallow soils of stormwater infiltration basins, which can be incorporated in improved best management practices to mitigate NO3- impacts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H41B1307P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H41B1307P"><span>Data and Model Uncertainties associated with Biogeochemical Groundwater Remediation and their impact on Decision Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pandey, S.; Vesselinov, V. V.; O'Malley, D.; Karra, S.; Hansen, S. K.</p> <p>2016-12-01</p> <p>Models and data are used to characterize the extent of contamination and remediation, both of which are dependent upon the complex interplay of processes ranging from geochemical reactions, microbial metabolism, and pore-scale mixing to heterogeneous flow and external forcings. Characterization is wrought with important uncertainties related to the model itself (e.g. conceptualization, model implementation, parameter values) and the data used for model calibration (e.g. sparsity, measurement errors). This research consists of two primary components: (1) Developing numerical models that incorporate the complex hydrogeology and biogeochemistry that drive groundwater contamination and remediation; (2) Utilizing novel techniques for data/model-based analyses (such as parameter calibration and uncertainty quantification) to aid in decision support for optimal uncertainty reduction related to characterization and remediation of contaminated sites. The reactive transport models are developed using PFLOTRAN and are capable of simulating a wide range of biogeochemical and hydrologic conditions that affect the migration and remediation of groundwater contaminants under diverse field conditions. Data/model-based analyses are achieved using MADS, which utilizes Bayesian methods and Information Gap theory to address the data/model uncertainties discussed above. We also use these tools to evaluate different models, which vary in complexity, in order to weigh and rank models based on model accuracy (in representation of existing observations), model parsimony (everything else being equal, models with smaller number of model parameters are preferred), and model robustness (related to model predictions of unknown future states). These analyses are carried out on synthetic problems, but are directly related to real-world problems; for example, the modeled processes and data inputs are consistent with the conditions at the Los Alamos National Laboratory contamination sites (RDX and Chromium).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000JHyd..227..292H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000JHyd..227..292H"><span>Reply to 'Comment on kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry' by J. Griffioen</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hunter, K. S.; Van Cappellen, P.</p> <p>2000-01-01</p> <p>Our paper, 'Kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry' (Hunter et al., 1998), presents a theoretical exploration of biogeochemical reaction networks and their importance to the biogeochemistry of groundwater systems. As with any other model, the kinetic reaction-transport model developed in our paper includes only a subset of all physically, biologically and chemically relevant processes in subsurface environments. It considers aquifer systems where the primary energy source driving microbial activity is the degradation of organic matter. In addition to the primary biodegradation pathways of organic matter (i.e. respiration and fermentation), the redox chemistry of groundwaters is also affected by reactions not directly involving organic matter oxidation. We refer to the latter as secondary reactions. By including secondary redox reactions which consume reduced reaction products (e.g., Mn2+, FeS, H2S), and in the process compete with microbial heterotrophic populations for available oxidants (i.e. O2, NO3-, Mn(IV), Fe(III), SO42-), we predict spatio-temporal distributions of microbial activity which differ significantly from those of models which consider only the biodegradation reactions. That is, the secondary reactions have a significant impact on the distributions of the rates of heterotrophic and chemolithotrophic metabolic pathways. We further show that secondary redox reactions, as well as non-redox reactions, significantly influence the acid-base chemistry of groundwaters. The distributions of dissolved inorganic redox species along flowpaths, however, are similar in simulations with and without secondary reactions (see Figs. 3(b) and 7(b) in Hunter et al., 1998), indicating that very different biogeochemical reaction dynamics may lead to essentially the same chemical redox zonation of a groundwater system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22370419','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22370419"><span>Soil property control of biogeochemical processes beneath two subtropical stormwater infiltration basins.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>O'Reilly, Andrew M; Wanielista, Martin P; Chang, Ni-Bin; Harris, Willie G; Xuan, Zhemin</p> <p>2012-01-01</p> <p>Substantially different biogeochemical processes affecting nitrogen fate and transport were observed beneath two stormwater infiltration basins in north-central Florida. Differences are related to soil textural properties that deeply link hydroclimatic conditions with soil moisture variations in a humid, subtropical climate. During 2008, shallow groundwater beneath the basin with predominantly clayey soils (median, 41% silt+clay) exhibited decreases in dissolved oxygen from 3.8 to 0.1 mg L and decreases in nitrate nitrogen (NO-N) from 2.7 mg L to <0.016 mg L, followed by manganese and iron reduction, sulfate reduction, and methanogenesis. In contrast, beneath the basin with predominantly sandy soils (median, 2% silt+clay), aerobic conditions persisted from 2007 through 2009 (dissolved oxygen, 5.0-7.8 mg L), resulting in NO-N of 1.3 to 3.3 mg L in shallow groundwater. Enrichment of δN and δO of NO combined with water chemistry data indicates denitrification beneath the clayey basin and relatively conservative NO transport beneath the sandy basin. Soil-extractable NO-N was significantly lower and the copper-containing nitrite reductase gene density was significantly higher beneath the clayey basin. Differences in moisture retention capacity between fine- and coarse-textured soils resulted in median volumetric gas-phase contents of 0.04 beneath the clayey basin and 0.19 beneath the sandy basin, inhibiting surface/subsurface oxygen exchange beneath the clayey basin. Results can inform development of soil amendments to maintain elevated moisture content in shallow soils of stormwater infiltration basins, which can be incorporated in improved best management practices to mitigate NO impacts. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.2216F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.2216F"><span>Climate extremes and the carbon cycle - a review using an integrated approach with regional examples for forests & native ecosystems -</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Frank, D.; Reichstein, M.; Bahn, M.; Beer, C.; Ciais, P.; Mahecha, M.; Seneviratne, S. I.; Smith, P.; van Oijen, M.; Walz, A.</p> <p>2012-04-01</p> <p>The terrestrial carbon cycle provides an important biogeochemical feedback to climate and is itself particularly susceptible to extreme climate events. Climate extremes can override any (positive) effects of mean climate change as shown in European and recent US-American heat waves and dry spells. They can impact the structure, composition, and functioning of terrestrial ecosystems and have the potential to cause rapid carbon losses from accumulated stocks. We review how climate extremes like severe droughts, heat waves, extreme precipitation or storms can cause direct impacts on the CO2 fluxes [e.g. due to extreme temperature and/ or drought events] as well as lagged impacts on the carbon cycle [e.g. via an increased fire risk, or disease outbreaks and pest invasions]. The relative impact of the different climate extremes varies according to climate region and vegetation type. We present lagged effects on plant growth (and mortality) in the year(s) following an extreme event and their impacts on the carbon sequestration of forests and natural ecosystems. Comprehensive regional or even continental quantification with regard to extreme events is missing, and especially compound extreme events, the role of lagged effects and aspects of the return frequency are not studied enough. In a case study of a Mediterranean ecosystem we illustrate that the response of the net carbon balance at ecosystem level to regional climate change is hard to predict as interacting and partly compensating processes are affected and several processes which have the ability to substantially alter the carbon balance are not or not sufficiently represented in state-of-the-art biogeochemical models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H52D..07S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H52D..07S"><span>Just Around the Riverbend: Seasonal hydrologic controls on dynamic hyporheic zone redox biogeochemistry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saup, C. M.; Sawyer, A. H.; Williams, K. H.; Wilkins, M.</p> <p>2017-12-01</p> <p>Upland rivers host exceptionally strong linkages between the terrestrial and aquatic elemental cycles. The weathering of mineral phases, coupled with degradation of organic matter and anthropogenic influences can result in the export of carbon, metals, and nutrients in upland fluvial systems, often decreasing downstream water quality with negative impacts on both human usage and ecosystem functioning. Within these fluvial networks, zones of hyporheic mixing—regions within the riverbed where surface water and groundwater mix—are thought to represent hotspots of biogeochemical activity, thus exerting significant control over elemental cycling and solute export. To investigate how the deeper exchange of oxic river water into the riverbed during snowmelt-driven peak discharge affects microbial degradation (oxidation) of carbon pools, depth resolved pore water samples were recovered from multiple locations around a representative meander on the East River near Crested Butte, CO. At each location, a series of temperature and redox probes were installed in the riverbed to track the extent of hyporheic mixing and the impact of this process on riverbed biogeochemistry. We complemented this real-time data with discrete samples collected during peak flow, intermediate flow, and base flow at a 10 cm resolution over 70 cm vertical profiles for a suite of microbiological and geochemical analyses. Results revealed elevated pore fluid concentrations of dissolved metals and recalcitrant DOC species under reducing conditions induced by base flow, while regions that were more influenced by down-welling oxic surface water hosted distinct microbial communities and lower metal concentrations. Overall, our results indicate that mixing-driven vertical redox gradients exert a strong control on biogeochemical processing in riverbeds, with implications for downstream water quality and solute export from watersheds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29030617','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29030617"><span>Oxygen isotope anomaly in tropospheric CO2 and implications for CO2 residence time in the atmosphere and gross primary productivity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liang, Mao-Chang; Mahata, Sasadhar; Laskar, Amzad H; Thiemens, Mark H; Newman, Sally</p> <p>2017-10-13</p> <p>The abundance variations of near surface atmospheric CO 2 isotopologues (primarily 16 O 12 C 16 O, 16 O 13 C 16 O, 17 O 12 C 16 O, and 18 O 12 C 16 O) represent an integrated signal from anthropogenic/biogeochemical processes, including fossil fuel burning, biospheric photosynthesis and respiration, hydrospheric isotope exchange with water, and stratospheric photochemistry. Oxygen isotopes, in particular, are affected by the carbon and water cycles. Being a useful tracer that directly probes governing processes in CO 2 biogeochemical cycles, Δ 17 O (=ln(1 + δ 17 O) - 0.516 × ln(1 + δ 18 O)) provides an alternative constraint on the strengths of the associated cycles involving CO 2 . Here, we analyze Δ 17 O data from four places (Taipei, Taiwan; South China Sea; La Jolla, United States; Jerusalem, Israel) in the northern hemisphere (with a total of 455 measurements) and find a rather narrow range (0.326 ± 0.005‰). A conservative estimate places a lower limit of 345 ± 70 PgC year -1 on the cycling flux between the terrestrial biosphere and atmosphere and infers a residence time of CO 2 of 1.9 ± 0.3 years (upper limit) in the atmosphere. A Monte Carlo simulation that takes various plant uptake scenarios into account yields a terrestrial gross primary productivity of 120 ± 30 PgC year -1 and soil invasion of 110 ± 30 PgC year -1 , providing a quantitative assessment utilizing the oxygen isotope anomaly for quantifying CO 2 cycling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H53H1519R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H53H1519R"><span>A comparison of analytical laboratory and optical in situ methods for the measurement of nitrate in north Florida water bodies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rozin, A. G.; Clark, M. W.</p> <p>2013-12-01</p> <p>Assessing the impact of nutrient concentrations on aquatic ecosystems requires an in depth understanding of dynamic biogeochemical cycles that are often a challenge to monitor at the high spatial and temporal resolution necessary to understand these complex processes. Traditional sampling approaches involving discrete samples and laboratory analyses can be constrained by analytical costs, field time, and logistical details that can fail to accurately capture both spatial and temporal changes. Optical in situ instruments may provide the opportunity to continuously monitor a variety of water quality parameters at a high spatial or temporal resolution. This work explores the suitability of a Submersible Ultraviolet Nitrate Analyzer (SUNA), produced by Satlantic, to accurately assess in situ nitrate concentration in several freshwater systems in north Florida. The SUNA was deployed to measure nitrate at five different water bodies selected to represent a range of watershed land uses and water chemistry in the region. In situ nitrate measurements were compared to standard laboratory methods to evaluate the effectiveness of the SUNA's operation. Other optical sensors were used to measure the spectral properties of absorbance, fluorescence, and turbidity (scatter) in the same Florida water bodies. Data from these additional sensors were collected to quantify possible interferences that may affect SUNA performance. In addition, data from the SUNA and other sensors are being used to infer information about the quality and quantity of aqueous constituents besides nitrate. A better understanding of the capabilities and possible limitations of these relatively new analytical instruments will allow researchers to more effectively investigate biogeochemical processes and nutrient transport and enhance decision-making to protect our water bodies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013OcScD..10.1997H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013OcScD..10.1997H"><span>Adapting to life: ocean biogeochemical modelling and adaptive remeshing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hill, J.; Popova, E. E.; Ham, D. A.; Piggott, M. D.; Srokosz, M.</p> <p>2013-11-01</p> <p>An outstanding problem in biogeochemical modelling of the ocean is that many of the key processes occur intermittently at small scales, such as the sub-mesoscale, that are not well represented in global ocean models. As an example, state-of-the-art models give values of primary production approximately two orders of magnitude lower than those observed in the ocean's oligotrophic gyres, which cover a third of the Earth's surface. This is partly due to their failure to resolve sub-mesoscale phenomena, which play a significant role in nutrient supply. Simply increasing the resolution of the models may be an inefficient computational solution to this problem. An approach based on recent advances in adaptive mesh computational techniques may offer an alternative. Here the first steps in such an approach are described, using the example of a~simple vertical column (quasi 1-D) ocean biogeochemical model. We present a novel method of simulating ocean biogeochemical behaviour on a vertically adaptive computational mesh, where the mesh changes in response to the biogeochemical and physical state of the system throughout the simulation. We show that the model reproduces the general physical and biological behaviour at three ocean stations (India, Papa and Bermuda) as compared to a high-resolution fixed mesh simulation and to observations. The simulations capture both the seasonal and inter-annual variations. The use of an adaptive mesh does not increase the computational error, but reduces the number of mesh elements by a factor of 2-3, so reducing computational overhead. We then show the potential of this method in two case studies where we change the metric used to determine the varying mesh sizes in order to capture the dynamics of chlorophyll at Bermuda and sinking detritus at Papa. We therefore demonstrate adaptive meshes may provide a~suitable numerical technique for simulating seasonal or transient biogeochemical behaviour at high spatial resolution whilst minimising computational cost.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014OcSci..10..323H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014OcSci..10..323H"><span>Adapting to life: ocean biogeochemical modelling and adaptive remeshing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hill, J.; Popova, E. E.; Ham, D. A.; Piggott, M. D.; Srokosz, M.</p> <p>2014-05-01</p> <p>An outstanding problem in biogeochemical modelling of the ocean is that many of the key processes occur intermittently at small scales, such as the sub-mesoscale, that are not well represented in global ocean models. This is partly due to their failure to resolve sub-mesoscale phenomena, which play a significant role in vertical nutrient supply. Simply increasing the resolution of the models may be an inefficient computational solution to this problem. An approach based on recent advances in adaptive mesh computational techniques may offer an alternative. Here the first steps in such an approach are described, using the example of a simple vertical column (quasi-1-D) ocean biogeochemical model. We present a novel method of simulating ocean biogeochemical behaviour on a vertically adaptive computational mesh, where the mesh changes in response to the biogeochemical and physical state of the system throughout the simulation. We show that the model reproduces the general physical and biological behaviour at three ocean stations (India, Papa and Bermuda) as compared to a high-resolution fixed mesh simulation and to observations. The use of an adaptive mesh does not increase the computational error, but reduces the number of mesh elements by a factor of 2-3. Unlike previous work the adaptivity metric used is flexible and we show that capturing the physical behaviour of the model is paramount to achieving a reasonable solution. Adding biological quantities to the adaptivity metric further refines the solution. We then show the potential of this method in two case studies where we change the adaptivity metric used to determine the varying mesh sizes in order to capture the dynamics of chlorophyll at Bermuda and sinking detritus at Papa. We therefore demonstrate that adaptive meshes may provide a suitable numerical technique for simulating seasonal or transient biogeochemical behaviour at high vertical resolution whilst minimising the number of elements in the mesh. More work is required to move this to fully 3-D simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/949153','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/949153"><span>Project Work Plan: Sequestration of Strontium-90 Subsurface Contamination in the Hanford 100-N Area by Surface Infiltration of an Apatite Solution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Szecsody, Jim E.</p> <p>2006-04-30</p> <p>We propose to develop an infiltration strategy that defines the precipitation rate of an apatite-forming solution and Sr-90 sequestration processes under variably saturated (low water content) conditions. We will develop this understanding through small-scale column studies, intermediate-scale two-dimensional (2-D) experiments, and numerical modeling to quantify individual and coupled processes associated with apatite formation and Sr-90 transport during and after infiltration of the Ca-citrate-PO4 solution. Development of capabilities to simulate these coupled biogeochemical processes during both injection and infiltration will be used to determine the most cost-effective means to emplace an in situ apatite barrier with a longevity of 300 yearsmore » to permanently sequester Sr-90 until it decays. Biogeochemical processes that will be investigated are citrate biodegradation and apatite precipitation rates at varying water contents as a function of water content. Coupled processes that will be investigated include the influence of apatite precipitation (which occupies pore space) on the hydraulic and transport properties of the porous media during infiltration.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3809095','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3809095"><span>Enhanced biogeochemical cycling and subsequent reduction of hydraulic conductivity associated with soil-layer interfaces in the vadose zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hansen, David J.; McGuire, Jennifer T.; Mohanty, Binayak P.</p> <p>2013-01-01</p> <p>Biogeochemical dynamics in the vadose zone are poorly understood due to the transient nature of chemical and hydrologic conditions, but are nonetheless critical to understanding chemical fate and transport. This study explored the effects of a soil layer on linked geochemical, hydrological, and microbiological processes. Three laboratory soil columns were constructed: a homogenized medium-grained sand, a homogenized organic-rich loam, and a sand-over-loam layered column. Upward and downward infiltration of water was evaluated during experiments to simulate rising water table and rainfall events respectively. In-situ collocated probes measured soil water content, matric potential, and Eh while water samples collected from the same locations were analyzed for Br−, Cl−, NO3−, SO42−, NH4+, Fe2+, and total sulfide. Compared to homogenous columns, the presence of a soil layer altered the biogeochemistry and water flow of the system considerably. Enhanced biogeochemical cycling was observed in the layered column over the texturally homogeneous soil columns. Enumerations of iron and sulfate reducing bacteria showed 1-2 orders of magnitude greater community numbers in the layered column. Mineral and soil aggregate composites were most abundant near the soil-layer interface; the presence of which, likely contributed to an observed order-of-magnitude decrease in hydraulic conductivity. These findings show that quantifying coupled hydrologic-biogeochemical processes occurring at small-scale soil interfaces is critical to accurately describing and predicting chemical changes at the larger system scale. Findings also provide justification for considering soil layering in contaminant fate and transport models because of its potential to increase biodegradation and/or slow the rate of transport of contaminants. PMID:22031578</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20110011415&hterms=Impact+environmental+Mexico&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DImpact%2Benvironmental%2BMexico','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20110011415&hterms=Impact+environmental+Mexico&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DImpact%2Benvironmental%2BMexico"><span>Ocean Carbon and Biogeochemistry Scoping Workshop on Terrestrial and Coastal Carbon Fluxes in the Gulf of Mexico, St. Petersburg, FL</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Robbins, L. L.; Coble, P. G.; Clayton, T. D.; Cai, W. J.</p> <p>2008-01-01</p> <p>Despite their relatively small surface area, ocean margins may have a significant impact on global biogeochemical cycles and, potentially, the global air-sea fluxes of carbon dioxide. Margins are characterized by intense geochemical and biological processing of carbon and other elements and exchange large amounts of matter and energy with the open ocean. The area-specific rates of productivity, biogeochemical cycling, and organic/inorganic matter sequestration are high in coastal margins, with as much as half of the global integrated new production occurring over the continental shelves and slopes (Walsh, 1991; Doney and Hood, 2002; Jahnke, in press). However, the current lack of knowledge and understanding of biogeochemical processes occurring at the ocean margins has left them largely ignored in most of the previous global assessments of the oceanic carbon cycle (Doney and Hood, 2002). A major source of North American and global uncertainty is the Gulf of Mexico, a large semi-enclosed subtropical basin bordered by the United States, Mexico, and Cuba. Like many of the marginal oceans worldwide, the Gulf of Mexico remains largely unsampled and poorly characterized in terms of its air-sea exchange of carbon dioxide and other carbon fluxes. The goal of the workshop was to bring together researchers from multiple disciplines studying terrestrial, aquatic, and marine ecosystems to discuss the state of knowledge in carbon fluxes in the Gulf of Mexico, data gaps, and overarching questions in the Gulf of Mexico system. The discussions at the workshop were intended to stimulate integrated studies of marine and terrestrial biogeochemical cycles and associated ecosystems that will help to establish the role of the Gulf of Mexico in the carbon cycle and how it might evolve in the face of environmental change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.H51C1070W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.H51C1070W"><span>Use of the Water, Energy, and Biogeochemical Model (WEBMOD) to Simulate Water Quality at Five U.S. Geological Survey Research Watersheds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Webb, R. M.; Leavesley, G. H.; Shanley, J. B.; Peters, N. E.; Aulenbach, B. T.; Blum, A. E.; Campbell, D. H.; Clow, D. W.; Mast, M. A.; Stallard, R. F.; Larsen, M. C.; Troester, J. W.; Walker, J. F.; White, A. F.</p> <p>2003-12-01</p> <p>The Water, Energy, and Biogeochemical Model (WEBMOD) was developed as an aid to compare and contrast basic hydrologic and biogeochemical processes active in the diverse hydroclimatic regions represented by the five U.S. Geological Survey (USGS) Water, Energy, and Biogeochemical Budget (WEBB) sites: Loch Vale, Colorado; Trout Lake, Wisconsin; Sleepers River, Vermont; Panola Mountain, Georgia; and Luquillo Experimental Forest, Puerto Rico. WEBMOD simulates solute concentrations for vegetation canopy, snow pack, impermeable ground, leaf litter, unsaturated and saturated soil zones, riparian zones and streams using selected process modules coupled within the USGS Modular Modeling System (MMS). Source codes for the MMS hydrologic modules include the USGS Precipitation Runoff Modeling System, the National Weather Service Hydro-17 snow model, and TOPMODEL. The hydrologic modules distribute precipitation and temperature to predict evapotranspiration, snow accumulation, snow melt, and streamflow. Streamflow generation mechanisms include infiltration excess, saturated overland flow, preferential lateral flow, and base flow. Input precipitation chemistry, and fluxes and residence times predicted by the hydrologic modules are input into the geochemical module where solute concentrations are computed for a series of discrete well-mixed reservoirs using calls to the geochemical engine PHREEQC. WEBMOD was used to better understand variations in water quality observed at the WEBB sites from October 1991 through September 1997. Initial calibrations were completed by fitting the simulated hydrographs with those measured at the watershed outlets. Model performance was then refined by comparing the predicted export of conservative chemical tracers such as chloride, with those measured at the watershed outlets. The model succeeded in duplicating the temporal variability of net exports of major ions from the watersheds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70192716','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70192716"><span>The implications of microbial and substrate limitation for the fates of carbon in different organic soil horizon types of boreal forest ecosystems: a mechanistically based model analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>He, Y.; Zhuang, Q.; Harden, Jennifer W.; McGuire, A. David; Fan, Z.; Liu, Y.; Wickland, Kimberly P.</p> <p>2014-01-01</p> <p>The large amount of soil carbon in boreal forest ecosystems has the potential to influence the climate system if released in large quantities in response to warming. Thus, there is a need to better understand and represent the environmental sensitivity of soil carbon decomposition. Most soil carbon decomposition models rely on empirical relationships omitting key biogeochemical mechanisms and their response to climate change is highly uncertain. In this study, we developed a multi-layer microbial explicit soil decomposition model framework for boreal forest ecosystems. A thorough sensitivity analysis was conducted to identify dominating biogeochemical processes and to highlight structural limitations. Our results indicate that substrate availability (limited by soil water diffusion and substrate quality) is likely to be a major constraint on soil decomposition in the fibrous horizon (40–60% of soil organic carbon (SOC) pool size variation), while energy limited microbial activity in the amorphous horizon exerts a predominant control on soil decomposition (>70% of SOC pool size variation). Elevated temperature alleviated the energy constraint of microbial activity most notably in amorphous soils, whereas moisture only exhibited a marginal effect on dissolved substrate supply and microbial activity. Our study highlights the different decomposition properties and underlying mechanisms of soil dynamics between fibrous and amorphous soil horizons. Soil decomposition models should consider explicitly representing different boreal soil horizons and soil–microbial interactions to better characterize biogeochemical processes in boreal forest ecosystems. A more comprehensive representation of critical biogeochemical mechanisms of soil moisture effects may be required to improve the performance of the soil model we analyzed in this study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/55052','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/55052"><span>Modeling forest carbon cycle using long-term carbon stock field measurement in the Delaware River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Bing Xu; Yude Pan; Alain F. Plante; Kevin McCullough; Richard Birdsey</p> <p>2017-01-01</p> <p>Process-based models are a powerful approach to test our understanding of biogeochemical processes, to extrapolate ground survey data from limited plots to the landscape scale, and to simulate the effects of climate change, nitrogen deposition, elevated atmospheric CO2, increasing natural disturbances, and land-use change on ecological processes...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS11F..08S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS11F..08S"><span>Threats, Challenges, and Promise of Marine Microbes: A NOAA Perspective with Emphasis on Ecological Forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sandifer, P. A.</p> <p>2012-12-01</p> <p>Fully functioning ecosystems, as well as healthy humans, depend on robust and diverse communities of microbes. The diversity of microbes in the marine environment is estimated to be huge, dwarfing diversity of other life forms, and crucial for many ecosystem processes. Despite the ubiquity and extreme importance of microbial life in the sea - from the air-surface interface to the deepest abyss and sediments - we know relatively little about this biotic component that may compose a large proportion of the total biomass on the planet. As the nation's principal steward of marine living resources, NOAA is both responsible for and vitally interested in marine microbes, from a variety of perspectives. These include (1) health threats to humans and other organisms and how these may be affected by climate change and ecosystem alteration; (2) detoxification of organic pollutants such as hydrocarbons (e.g., in the Deep Water Horizon oil catastrophe); (3) production of valuable natural products including potential new pharmaceuticals; (4) roles in biogeochemical cycles (e.g., for carbon, nitrogen, phosphorus, iron, etc.) and how human activities may affect these roles; (5) development and deployment of new methods to detect and quantify certain marine microbes, and incorporation of these into ocean observing systems; (6) development of Earth System models that include much improved understanding of microbial functional diversity and microbially mediated biogeochemical processes; (7) dynamics of bacterial, phyto- and zooplankton blooms, including for harmful algae and bacteria; (8) effects of climate change factors (e.g., temperature, CO2 concentrations, ocean acidification, changes in habitats and species distribution, etc.) on marine microbes; and others. Many of these topics likely will be discussed by others in this session. This presentation will focus primarily on NOAA's activities in addressing health threats emanating from a variety of microbes in the marine environment and the agency's developing efforts to collect routine observational data on selected microbes and establish regular forecasts of such threats and their likely impacts. Such "ecological forecasts" are projected to become a regular part of NOAA's service portfolio and may be expanded beyond disease-causing microbes in the future.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC11E0599R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC11E0599R"><span>Calibration of Daycent biogeochemical model for rice paddies in three agro-ecological zones in Peninsular India to optimize cropping practices and predict GHG emissions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rajan, S.; Kritee, K.; Keough, C.; Parton, W. J.; Ogle, S. M.</p> <p>2014-12-01</p> <p>Rice is a staple for nearly half of the world population with irrigated and rainfed lowland rice accounting for about 80% of the worldwide harvested rice area. Increased atmospheric CO2 and rising temperatures are expected to adversely affect rice yields by the end of the 21st century. In addition, different crop management practices affect methane and nitrous oxide emissions from rice paddies antagonistically warranting a review of crop management practices such that farmers can adapt to the changing climate and also help mitigate climate change. The Daily DayCent is a biogeochemical model that operates on a daily time step, driven by four ecological drivers, i.e. climate, soil, vegetation, and management practices. The model is widely used to simulate daily fluxes of various gases, plant productivity, nutrient availability, and other ecosystem parameters in response to changes in land management and climate. We employed the DayCent model as a tool to optimize rice cropping practices in Peninsular India so as to develop a set of farming recommendations to ensure a triple win (i.e. higher yield, higher profit and lower GHG emissions). We applied the model to simulate both N2O and CH4 emissions, and crop yields from four rice paddies in three different agro-ecological zones under different management practices, and compared them with measured GHG and yield data from these plots. We found that, like all process based models, the biggest constraint in using the model was input data acquisition. Lack of accurate documentation of historic land use and management practices, missing historical daily weather data, and difficulty in obtaining digital records of soil and crop/vegetation parameters related to our experimental plots came in the way of our execution of this model. We will discuss utilization of estimates based on available literature, or knowledge-based values in lieu of missing measured parameters in our simulations with DayCent which could prove to be a solution to overcome data limitations in modeling with DayCent and other process based models for developing regions of the world.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020016082&hterms=BIO&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DBIO','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020016082&hterms=BIO&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DBIO"><span>The Bermuda Bio-Optics Program (BBOP). Chapter 16</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Siegel, David A.</p> <p>2001-01-01</p> <p>The Bermuda Bio-Optics Project (BBOP) is a collaborative effort between the Institute for Computational Earth System Science (ICESS) at the University of California at Santa Barbara (UCSB) and the Bermuda Biological Station for Research (BBSR). This research program is designed to characterize light availability and utilization in the Sargasso Sea, and to provide an optical link by which biogeochemical observations may be used to evaluate bio-optical models for pigment concentration, primary production, and sinking particle fluxes from satellite-based ocean color sensors. The BBOP time-series was initiated in 1992, and is carried out in conjunction with the US JGOFS Bermuda Atlantic Time-series Study (BATS) at the Bermuda Biological Station for Research. The BATS program itself has been observing biogeochemical processes (primary productivity, particle flux at and elemental cycles) in the mesotrophic waters of the Sargasso Sea since 1988. Closely affiliated with BBOP and BATS is a separate NASA-funded study of the spatial variability of biogeochemical processes in the Sargasso Sea using high-resolution Advanced Very High Resolution Radiometer (AVHRR) and Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) data collected at Bermuda. The collaboration between BATS and BBOP measurements has resulted in a unique data set that addresses not only the SIMBIOS goals but also the broader issues of important factors controlling the carbon cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040067990','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040067990"><span>Bermuda Bio Optics Project. Chapter 14</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nelson, Norm</p> <p>2003-01-01</p> <p>The Bermuda BioOptics Project (BBOP) is a collaborative effort between the Institute for Computational Earth System Science (ICESS) at the University of California at Santa Barbara (UCSB) and the Bermuda Biological Station for Research (BBSR). This research program is designed to characterize light availability and utilization in the Sargasso Sea, and to provide an optical link by which biogeochemical observations may be used to evaluate bio-optical models for pigment concentration, primary production, and sinking particle fluxes from satellite-based ocean color sensors. The BBOP time-series was initiated in 1992, and is carried out in conjunction with the U.S. JGOFS Bermuda Atlantic Time-series Study (BATS) at the Bermuda Biological Station for Research. The BATS program itself has been observing biogeochemical processes (primary productivity, particle flux and elemental cycles) in the mesotrophic waters of the Sargasso Sea since 1988. Closely affiliated with BBOP and BATS is a separate NASA-funded study of the spatial variability of biogeochemical processes in the Sargasso Sea using high-resolution AVHRR and SeaWiFS data collected at Bermuda (N. Nelson, P.I.). The collaboration between BATS and BBOP measurements has resulted in a unique data set that addresses not only the SIMBIOS goals but also the broader issues of important factors controlling the carbon cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUSMNB33L..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUSMNB33L..01M"><span>Ancient Soils in a Sunburnt Country: Nutrient and Carbon Distributions in an Australian Dryland River System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McIntyre, R. E.; Grierson, P. F.; Adams, M. A.</p> <p>2005-05-01</p> <p>Riparian systems are hotspots in dryland landscapes for nutrient supply and transformation. Biogeochemical fluxes in riparian systems are closely coupled to hydrological flowpaths, which, in dryland regions, are characterised by catastrophic flooding and long periods of erratic or no flow. Re-wetting of soils stimulates soil microbial processes that drive mineralization of nutrients necessary for plant growth. We present here the first data of a 3-year research project investigating biogeochemical processes in riparian systems in the semi-arid Pilbara region of Western Australia. Spatial patterns of nitrogen, phosphorus and carbon were closely related to topographic zone (across floodplain and channels) and vegetation type. NO3- and PCi concentrations were four-fold higher in channel, bank and riparian soils than in soils of floodplain and riparian-floodplain transition zones. Nitrogen distribution was highly heterogeneous in riparian soils (NO3- CV=102%, NH4+ CV=84%) while phosphorus was particularly heterogeneous in floodplain soils (PCi CV=153%, PCo CV=266%), in comparison to other zones. Phospholipid fatty acid (PLFA) and enzymatic profiles will be used to assess microbial functional groups, combined with mineralisation experiments and stable isotope studies (15N and 13C). These data will improve understanding of biogeochemical cycling in dryland riparian systems, and contribute to improved regional management of water resources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040078744','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040078744"><span>The Bermuda BioOptics Project (BBOP) Years 9-11</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Maritorena, S.; Siegel, D. A.; Nelson, Norm B.</p> <p>2004-01-01</p> <p>The Bermuda BioOptics Project (BBOP) is a collaborative effort between the Institute for Computational Earth System Science (ICESS) at the University of California at Santa Barbara (UCSB) and the Bermuda Biological Station for Research (BBSR). This research program is designed to characterize light availability and utilization in the Sargasso Sea, and to provide an optical link by which biogeochemical observations may be used to evaluate bio-optical models for pigment concentration, primary production, and sinking particle fluxes from satellite-based ocean color sensors. The BBOP time-series was initiated in 1992, and is carried out in conjunction with the U.S. JGOFS Bermuda Atlantic Time-series Study (BATS) at the Bermuda Biological Station for Research. The BATS program itself has been observing biogeochemical processes (primary productivity, particle flux and elemental cycles) in the mesotrophic waters of the Sargasso Sea since 1988. Closely affiliated with BBOP and BATS is a separate NASA-funded study of the spatial variability of biogeochemical processes in the Sargasso Sea using high-resolution AVHRR and SeaWiFS data collected at Bermuda. The collaboration between BATS and BBOP measurements has resulted in a unique data set that addresses not only the SIMBIOS goals but also the broader issues of important factors controlling the carbon cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ECSS..204....1N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ECSS..204....1N"><span>Improving the analysis of biogeochemical patterns associated with internal waves in the strait of Gibraltar using remote sensing images</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Navarro, Gabriel; Vicent, Jorge; Caballero, Isabel; Gómez-Enri, Jesús; Morris, Edward P.; Sabater, Neus; Macías, Diego; Bolado-Penagos, Marina; Gomiz, Juan Jesús; Bruno, Miguel; Caldeira, Rui; Vázquez, Águeda</p> <p>2018-05-01</p> <p>High Amplitude Internal Waves (HAIWs) are physical processes observed in the Strait of Gibraltar (the narrow channel between the Atlantic Ocean and the Mediterranean Sea). These internal waves are generated over the Camarinal Sill (western side of the strait) during the tidal outflow (toward the Atlantic Ocean) when critical hydraulic conditions are established. HAIWs remain over the sill for up to 4 h until the outflow slackens, being then released (mostly) towards the Mediterranean Sea. These have been previously observed using Synthetic Aperture Radar (SAR), which captures variations in surface water roughness. However, in this work we use high resolution optical remote sensing, with the aim of examining the influence of HAIWs on biogeochemical processes. We used hyperspectral images from the Hyperspectral Imager for the Coastal Ocean (HICO) and high spatial resolution (10 m) images from the MultiSpectral Instrument (MSI) onboard the Sentinel-2A satellite. This work represents the first attempt to examine the relation between internal wave generation and the water constituents of the Camarinal Sill using hyperspectral and high spatial resolution remote sensing images. This enhanced spatial and spectral resolution revealed the detailed biogeochemical patterns associated with the internal waves and suggests local enhancements of productivity associated with internal waves trains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=335439&Lab=NRMRL&keyword=management+AND+information&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=335439&Lab=NRMRL&keyword=management+AND+information&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Understanding Arsenic Dynamics in Agronomic Systems to Predict and Prevent Uptake by Crop Plants</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>This review is on arsenic in agronomic systems, and covers processes that influence the entry of arsenic into the human food supply. The scope is from sources of arsenic (natural and anthropogenic) in soils, biogeochemical and rhizosphere processes that control arsenic speciatio...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/7128','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/7128"><span>An Overview of Hydrologic Studies at Center for Forested Wetlands Research, USDA Forest Service</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Devendra M. Amatya; Carl C. Trettin; R. Wayne Skaggs; Timothy J. Callahan; Ge Sun; Masato Miwa; John E. Parsons</p> <p>2004-01-01</p> <p>Managing forested wetland landscapes for water quality improvement and productivity requires a detailed understanding of functional linkages between ecohydrological processes and management practices. Studies are being conducted at Center for Forested Wetlands Research (CFWR), USDA Forest Service to understand the fundamental hydrologic and biogeochemical processes...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1377548','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1377548"><span>Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Anantharaman, Karthik; Brown, Christopher T.; Hug, Laura A.</p> <p></p> <p>The subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earth's biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complete strain-resolved genomes that represent the majority of known bacterial phyla as well as 47 newly discovered phylum-level lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to 36% of organisms detected in the system are used to documentmore » the distribution of pathways in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in simple consortia, we find that few organisms within the community can conduct multiple sequential redox transformations. As environmental conditions change, different assemblages of organisms are selected for, altering linkages among the major biogeochemical cycles.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1377548-thousands-microbial-genomes-shed-light-interconnected-biogeochemical-processes-aquifer-system','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1377548-thousands-microbial-genomes-shed-light-interconnected-biogeochemical-processes-aquifer-system"><span>Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Anantharaman, Karthik; Brown, Christopher T.; Hug, Laura A.; ...</p> <p>2016-10-24</p> <p>The subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earth's biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complete strain-resolved genomes that represent the majority of known bacterial phyla as well as 47 newly discovered phylum-level lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to 36% of organisms detected in the system are used to documentmore » the distribution of pathways in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in simple consortia, we find that few organisms within the community can conduct multiple sequential redox transformations. As environmental conditions change, different assemblages of organisms are selected for, altering linkages among the major biogeochemical cycles.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5079060','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5079060"><span>Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Anantharaman, Karthik; Brown, Christopher T.; Hug, Laura A.; Sharon, Itai; Castelle, Cindy J.; Probst, Alexander J.; Thomas, Brian C.; Singh, Andrea; Wilkins, Michael J.; Karaoz, Ulas; Brodie, Eoin L.; Williams, Kenneth H.; Hubbard, Susan S.; Banfield, Jillian F.</p> <p>2016-01-01</p> <p>The subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earth's biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complete strain-resolved genomes that represent the majority of known bacterial phyla as well as 47 newly discovered phylum-level lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to 36% of organisms detected in the system are used to document the distribution of pathways in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in simple consortia, we find that few organisms within the community can conduct multiple sequential redox transformations. As environmental conditions change, different assemblages of organisms are selected for, altering linkages among the major biogeochemical cycles. PMID:27774985</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatCo...713219A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatCo...713219A"><span>Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anantharaman, Karthik; Brown, Christopher T.; Hug, Laura A.; Sharon, Itai; Castelle, Cindy J.; Probst, Alexander J.; Thomas, Brian C.; Singh, Andrea; Wilkins, Michael J.; Karaoz, Ulas; Brodie, Eoin L.; Williams, Kenneth H.; Hubbard, Susan S.; Banfield, Jillian F.</p> <p>2016-10-01</p> <p>The subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earth's biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complete strain-resolved genomes that represent the majority of known bacterial phyla as well as 47 newly discovered phylum-level lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to 36% of organisms detected in the system are used to document the distribution of pathways in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in simple consortia, we find that few organisms within the community can conduct multiple sequential redox transformations. As environmental conditions change, different assemblages of organisms are selected for, altering linkages among the major biogeochemical cycles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H51E1535B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H51E1535B"><span>Biogeochemical Factors Influencing the Transport and Fate of Colloids and Colloid-Associated Contaminants in the Vadose Zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bradford, S. A.</p> <p>2016-12-01</p> <p>The vadose zone exhibits large spatial and temporal variability in many physical, chemical, and biological factors that strongly influence the transport and fate of colloids (e.g., microbes, nanoparticles, clays, and dissolved organic matter) and colloid-associated contaminants (e.g., heavy metals, radionuclides, pesticides, and antibiotics). This presentation highlights our research activities to better understand and predict the influence of specific biogeochemical processes on colloid and colloid-facilitated transport. Results demonstrate the sensitivity of colloid transport, retention, release, and clogging to transients in solution chemistry (e.g., ionic strength, pH, cation and anion type, and surfactants), water velocity and saturation, and preferential flow. Mathematical modeling at interface-, pore-, and continuum-scales is shown to be a critical tool to quantify the relative importance and coupling of these biogeochemical factors on colloid and contaminant transport and fate, which otherwise might be experimentally intractable. Existing gaps in knowledge and model limitations are identified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1253864-groundwatersurface-water-mixing-shifts-ecological-assembly-processes-stimulates-organic-carbon-turnover','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1253864-groundwatersurface-water-mixing-shifts-ecological-assembly-processes-stimulates-organic-carbon-turnover"><span>Groundwater–surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Stegen, James C.; Fredrickson, James K.; Wilkins, Michael J.; ...</p> <p>2016-04-07</p> <p>Environmental transition zones are associated with geochemical gradients that overcome energy limitations to microbial metabolism, resulting in biogeochemical hot spots and moments. Riverine systems where groundwater mixes with surface water (the hyporheic zone) are spatially complex and temporally dynamic, making development of predictive models challenging. Spatial and temporal variations in hyporheic zone microbial communities are a key, but understudied, component of riverine biogeochemical function. To investigate the coupling among groundwater-surface water mixing, microbial communities, and biogeochemistry we applied ecological theory, aqueous biogeochemistry, DNA sequencing, and ultra-high resolution organic carbon profiling to field samples collected across times and locations representing amore » broad range of mixing conditions. Mixing of groundwater and surface water resulted in a shift from transport-driven stochastic dynamics to a deterministic microbial structure associated with elevated biogeochemical rates. While the dynamics of the hyporheic make predictive modeling a challenge, we provide new knowledge that can improve the tractability of such models.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27348427','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27348427"><span>Phenotypic Variability in the Coccolithophore Emiliania huxleyi.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Blanco-Ameijeiras, Sonia; Lebrato, Mario; Stoll, Heather M; Iglesias-Rodriguez, Debora; Müller, Marius N; Méndez-Vicente, Ana; Oschlies, Andreas</p> <p>2016-01-01</p> <p>Coccolithophores are a vital part of oceanic phytoplankton assemblages that produce organic matter and calcium carbonate (CaCO3) containing traces of other elements (i.e. Sr and Mg). Their associated carbon export from the euphotic zone to the oceans' interior plays a crucial role in CO2 feedback mechanisms and biogeochemical cycles. The coccolithophore Emiliania huxleyi has been widely studied as a model organism to understand physiological, biogeochemical, and ecological processes in marine sciences. Here, we show the inter-strain variability in physiological and biogeochemical traits in 13 strains of E. huxleyi from various biogeographical provinces obtained from culture collections commonly used in the literature. Our results demonstrate that inter-strain genetic variability has greater potential to induce larger phenotypic differences than the phenotypic plasticity of single strains cultured under a broad range of variable environmental conditions. The range of variation found in physiological parameters and calcite Sr:Ca highlights the need to reconsider phenotypic variability in paleoproxy calibrations and model parameterizations to adequately translate findings from single strain laboratory experiments to the real ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC21E0985O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC21E0985O"><span>Uncertainty in Earth System Models: Benchmarks for Ocean Model Performance and Validation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ogunro, O. O.; Elliott, S.; Collier, N.; Wingenter, O. W.; Deal, C.; Fu, W.; Hoffman, F. M.</p> <p>2017-12-01</p> <p>The mean ocean CO2 sink is a major component of the global carbon budget, with marine reservoirs holding about fifty times more carbon than the atmosphere. Phytoplankton play a significant role in the net carbon sink through photosynthesis and drawdown, such that about a quarter of anthropogenic CO2 emissions end up in the ocean. Biology greatly increases the efficiency of marine environments in CO2 uptake and ultimately reduces the impact of the persistent rise in atmospheric concentrations. However, a number of challenges remain in appropriate representation of marine biogeochemical processes in Earth System Models (ESM). These threaten to undermine the community effort to quantify seasonal to multidecadal variability in ocean uptake of atmospheric CO2. In a bid to improve analyses of marine contributions to climate-carbon cycle feedbacks, we have developed new analysis methods and biogeochemistry metrics as part of the International Ocean Model Benchmarking (IOMB) effort. Our intent is to meet the growing diagnostic and benchmarking needs of ocean biogeochemistry models. The resulting software package has been employed to validate DOE ocean biogeochemistry results by comparison with observational datasets. Several other international ocean models contributing results to the fifth phase of the Coupled Model Intercomparison Project (CMIP5) were analyzed simultaneously. Our comparisons suggest that the biogeochemical processes determining CO2 entry into the global ocean are not well represented in most ESMs. Polar regions continue to show notable biases in many critical biogeochemical and physical oceanographic variables. Some of these disparities could have first order impacts on the conversion of atmospheric CO2 to organic carbon. In addition, single forcing simulations show that the current ocean state can be partly explained by the uptake of anthropogenic emissions. Combined effects of two or more of these forcings on ocean biogeochemical cycles and ecosystems are challenging to predict since additive or antagonistic effects may occur. A benchmarking tool for accurate assessment and validation of marine biogeochemical outputs will be indispensable as the model community continues to improve ESM developments. It will provide a first order tool in understanding climate-carbon cycle feedbacks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918354D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918354D"><span>Marine Biogeochemistry Under The Influence of Fish And Fisheries: An Ecosystem Modeling Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Disa, Deniz; Akoglu, Ekin; Salihoglu, Baris</p> <p>2017-04-01</p> <p>The ocean and the marine ecosystems are important controllers of the global carbon cycle. They play a pivotal role in capturing atmospheric carbon into the ocean body, transforming it into organic carbon through photosynthesis and transporting it to the depths of the ocean. Fish, which has a significant role in the marine food webs, is thought to have a considerable impact on carbon export. More specifically, fish has a control on plankton dynamics as a predator, it provides nutrient to the ecosystem by its metabolic activities and it has the ability of moving actively and transporting materials. Fishing is also expected to impact carbon cycle because it directly changes the fish biomasses. However, how fish impacts the biogeochemistry of marine ecosystems is not studied extensively. The aim of this study is to analyze the impact of fish and fisheries on marine biogeochemical processes by setting up an end-to-end model, which simulates lower and higher tropic levels of marine ecosystems simultaneously. For this purpose, a one dimensional biogeochemical model simulating lower tropic level dynamics (e.g. carbon export, nutrient cycles) and an food web model simulating fisheries exploitation and higher tropic level dynamics were online and two-way coupled. Representing the marine ecosystem from one end to the other, the coupled model served as a tool for the analysis of fishing impacts on marine biogeochemical dynamics. Results obtained after incorporation of higher trophic level model changed the plankton compositions and enhanced detritus pools and increased carbon export. Additionally, our model showed that active movement of fish contributed to transport of carbon from surface to the deeper parts of the ocean. Moreover, results after applying different fishing intensities indicated that changes in fisheries exploitation levels directly influence the marine nutrient cycles and hence, the carbon export. Depending on the target and the intensity of fisheries, considerable changes in the biogeochemical responses observed. In conclusion, unlike the models that do not represent the fish explicitly, we demonstrate how marine biogeochemical processes are impacted by the activity of fish assemblages and fisheries exploitation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B54E..05S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B54E..05S"><span>Factors Influencing Divergent Patterns of Phosphorus Availability in NY and PA Biogeochemical `Hotspots'</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saia, S. M.; Hofmeister, K.; Regan, J. M.; Buda, A. R.; Carrick, H. J.; Walter, M. T.</p> <p>2016-12-01</p> <p>Anthropogenic alteration of the soil phosphorus (P) cycle leads to subsequent water quality issues in agricultural dominated watersheds. In the humid Northeastern United States (NE US), variably saturated areas can generate surface runoff that transports P and stimulates biogeochemical processes; these hydrologically dynamic locations are often called biogeochemical `hotspots'. Many studies have evaluated nitrogen and carbon cycling in biogeochemical hot spots but few have focused on P. We hypothesized seasonally wet parts of the landscape (i.e., hotspots) have smaller biologically available P pools because runoff events frequently carry away nutrients like P. To test this hypothesis, we generated soil wetness index (SWI) maps from soil (SURRGO) and elevation (LiDAR rescaled to 3 m) data and used these maps to direct seasonal soil sampling near Klingerstown, Pennsylvania (PA) and Ithaca, New York (NY). We collected 5cm deep soil samples in PA (bimonthly) and NY (monthly) along soil moisture gradients for a range of land cover types (forest, fallow, and cropped) from May through October. We measured soil moisture in the field and percent organic matter (OM), pH, and three increasingly strong soil P extractions (dilute-salt-extractable P, oxalate-extractable P, and total-extractable P) in the laboratory. Our results indicated a negative relationship between dilute-salt-extractable P concentrations and SWI in PA and no relationship between these same variables in NY. We also found positive relationships between each of the three P extractions in PA but only a positive relationship between oxalate-extractable P and total-extractable P in NY. Our findings in PA support our hypothesis; namely, less biologically available P (i.e. dilute-salt-extractable P) is found in wetter areas of the landscape. However, divergent P availability patterns in NY point to further complexities and confounding variables in our understanding in soil P processes. Further studies will look into the importance of environmental variables such as OM and pH on P patterns under changing soil moisture regimes. The knowledge gained from this study will improve our understanding of P cycling in biogeochemical hotspots and can be used to improve the effectiveness of agricultural management practices in the NE US.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JSR....65..170M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JSR....65..170M"><span>Effects of mud sedimentation on lugworm ecosystem engineering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Montserrat, F.; Suykerbuyk, W.; Al-Busaidi, R.; Bouma, T. J.; van der Wal, D.; Herman, P. M. J.</p> <p>2011-01-01</p> <p>Benthic ecosystem engineering organisms attenuate hydrodynamic or biogeochemical stress to ameliorate living conditions. Bioturbating infauna, like the lugworm Arenicola marina, determine intertidal process dynamics by maintaining the sediment oxygenated and sandy. Maintaining the permeability of the surrounding sediment enables them to pump water through the interstitial spaces, greatly increasing the oxygen availability. In a field experiment, both lugworm presence and siltation regime were manipulated to investigate to what extent lugworms are able to cope with sedimentation of increasing mud percentage and how this would affect its ecosystem engineering. Fluorescent tracers were added to experimentally deposited mud to visualise bioturbation effects on fine sediment fractions. Lugworm densities were not affected by an increasing mud percentage in experimentally deposited sediment. Negative effects are expected to occur under deposition with significantly higher mud percentages. Surface chlorophyll a content was a function of experimental mud percentage, with no effect of lugworm bioturbation. Surface roughness and sediment permeability clearly increased by lugworm presence, whereas sediment erosion threshold was not significantly affected by lugworms. The general idea that A. marina removes fine sediment fractions from the bed could not be confirmed. Rather, the main ecosystem engineering effect of A. marina is hydraulic destabilisation of the sediment matrix.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1286720-environmental-controls-govern-end-product-bacterial-nitrate-respiration','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1286720-environmental-controls-govern-end-product-bacterial-nitrate-respiration"><span>The environmental controls that govern the end product of bacterial nitrate respiration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Kraft, Beate; Tegetmeyer, Halina E.; Sharma, Ritin; ...</p> <p>2014-08-08</p> <p>In the biogeochemical nitrogen cycle, microbial respiration processes compete for nitrate as an electron acceptor. Denitrification converts nitrate into nitrogenous gas and thus removes fixed nitrogen from the biosphere, whereas ammonification converts nitrate into ammonium, which is directly reusable by primary producers. In this paper, we combined multiple parallel long-term incubations of marine microbial nitrate-respiring communities with isotope labeling and metagenomics to unravel how specific environmental conditions select for either process. Microbial generation time, supply of nitrite relative to nitrate, and the carbon/nitrogen ratio were identified as key environmental controls that determine whether nitrite will be reduced to nitrogenous gasmore » or ammonium. Finally, our results define the microbial ecophysiology of a biogeochemical feedback loop that is key to global change, eutrophication, and wastewater treatment.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011APJAS..47..463M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011APJAS..47..463M"><span>A review on vegetation models and applicability to climate simulations at regional scale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Myoung, Boksoon; Choi, Yong-Sang; Park, Seon Ki</p> <p>2011-11-01</p> <p>The lack of accurate representations of biospheric components and their biophysical and biogeochemical processes is a great source of uncertainty in current climate models. The interactions between terrestrial ecosystems and the climate include exchanges not only of energy, water and momentum, but also of carbon and nitrogen. Reliable simulations of these interactions are crucial for predicting the potential impacts of future climate change and anthropogenic intervention on terrestrial ecosystems. In this paper, two biogeographical (Neilson's rule-based model and BIOME), two biogeochemical (BIOME-BGC and PnET-BGC), and three dynamic global vegetation models (Hybrid, LPJ, and MC1) were reviewed and compared in terms of their biophysical and physiological processes. The advantages and limitations of the models were also addressed. Lastly, the applications of the dynamic global vegetation models to regional climate simulations have been discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917245R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917245R"><span>Conversion of forest to arable land in Southern Brazil has led to an increase in dissolved silicon flux</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robinet, Jérémy; Ameijeiras-Mariño, Yolanda; Vanderborght, Jan; Opfergelt, Sophie; Govers, Gerard</p> <p>2017-04-01</p> <p>Hydrology plays a major role in controlling biogeochemical fluxes at various scales. Among the various controlling factors of water fluxes at the hillslope or catchment scale, land use change is a direct human effect which has been relatively under-examined despite its potential important impact. The overall objective of this research is therefore to investigate how land use change can affect water fluxes and how these changes may, on their turn, affect biogeochemical fluxes, with a particular focus on silicon (Si) dynamic. We selected two small catchments with contrasting land use (agriculture vs. natural forest) in a subtropical region in the south of Brazil. The conversion of forest to arable land in the agricultural catchment is relatively recent, as deforestation started at the beginning of the 20th century. Stream, pore and groundwater were monitored, sampled and analyzed for major elements concentrations and δ18O. Preliminary results showed that deforestation and agriculture led to an increase in solute export at the catchment outlet, with for example dissolved Si (DSi) concentration and flux two times higher for the agricultural catchment. δ18O and DSi concentration data showed the importance of preferential flow in macropores in the forested catchment, probably because of the high root and low bulk densities. This led to a reduced mobilization of the pore water during rainfall event, contrarily to the agricultural catchment. As a result, there is almost no contribution of this relatively DSi-enriched pool to the river discharge in the forested environment. Those results indicate that the conversion of forest to arable land has had a significant impact on the biogeochemical fluxes, highlighted in this study with observed changes in DSi flux. Those changes could be partially attributed to changes in water fluxes and pathways.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcMod.126...13Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcMod.126...13Y"><span>Insights on multivariate updates of physical and biogeochemical ocean variables using an Ensemble Kalman Filter and an idealized model of upwelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Liuqian; Fennel, Katja; Bertino, Laurent; Gharamti, Mohamad El; Thompson, Keith R.</p> <p>2018-06-01</p> <p>Effective data assimilation methods for incorporating observations into marine biogeochemical models are required to improve hindcasts, nowcasts and forecasts of the ocean's biogeochemical state. Recent assimilation efforts have shown that updating model physics alone can degrade biogeochemical fields while only updating biogeochemical variables may not improve a model's predictive skill when the physical fields are inaccurate. Here we systematically investigate whether multivariate updates of physical and biogeochemical model states are superior to only updating either physical or biogeochemical variables. We conducted a series of twin experiments in an idealized ocean channel that experiences wind-driven upwelling. The forecast model was forced with biased wind stress and perturbed biogeochemical model parameters compared to the model run representing the "truth". Taking advantage of the multivariate nature of the deterministic Ensemble Kalman Filter (DEnKF), we assimilated different combinations of synthetic physical (sea surface height, sea surface temperature and temperature profiles) and biogeochemical (surface chlorophyll and nitrate profiles) observations. We show that when biogeochemical and physical properties are highly correlated (e.g., thermocline and nutricline), multivariate updates of both are essential for improving model skill and can be accomplished by assimilating either physical (e.g., temperature profiles) or biogeochemical (e.g., nutrient profiles) observations. In our idealized domain, the improvement is largely due to a better representation of nutrient upwelling, which results in a more accurate nutrient input into the euphotic zone. In contrast, assimilating surface chlorophyll improves the model state only slightly, because surface chlorophyll contains little information about the vertical density structure. We also show that a degradation of the correlation between observed subsurface temperature and nutrient fields, which has been an issue in several previous assimilation studies, can be reduced by multivariate updates of physical and biogeochemical fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/375/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/375/"><span>Total Mercury, Methylmercury, Methylmercury Production Potential, and Ancillary Streambed-Sediment and Pore-Water Data for Selected Streams in Oregon, Wisconsin, and Florida, 2003-04</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Marvin-DiPasquale, Mark C.; Lutz, Michelle A.; Krabbenhoft, David P.; Aiken, George R.; Orem, William H.; Hall, Britt D.; DeWild, John F.; Brigham, Mark E.</p> <p>2008-01-01</p> <p>Mercury contamination of aquatic ecosystems is an issue of national concern, affecting both wildlife and human health. Detailed information on mercury cycling and food-web bioaccumulation in stream settings and the factors that control these processes is currently limited. In response, the U.S. Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) conducted detailed studies from 2002 to 2006 on various media to enhance process-level understanding of mercury contamination, biogeochemical cycling, and trophic transfer. Eight streams were sampled for this study: two streams in Oregon, and three streams each in Wisconsin and Florida. Streambed-sediment and pore-water samples were collected between February 2003 and September 2004. This report summarizes the suite of geochemical and microbial constituents measured, the analytical methods used, and provides the raw data in electronic form for both bed-sediment and pore-water media associated with this study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PEPS....2....8T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PEPS....2....8T"><span>Biogeochemistry and limnology in Antarctic subglacial weathering: molecular evidence of the linkage between subglacial silica input and primary producers in a perennially ice-covered lake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takano, Yoshinori; Kojima, Hisaya; Takeda, Eriko; Yokoyama, Yusuke; Fukui, Manabu</p> <p>2015-12-01</p> <p>We report a 6,000 years record of subglacial weathering and biogeochemical processes in two perennially ice-covered glacial lakes at Rundvågshetta, on the Soya Coast of Lützow-Holm Bay, East Antarctica. The two lakes, Lake Maruwan Oike and Lake Maruwan-minami, are located in a channel that drains subglacial water from the base of the East Antarctic ice sheet. Greenish-grayish organic-rich laminations in sediment cores from the lakes indicate continuous primary production affected by the inflow of subglacial meltwater containing relict carbon, nitrogen, sulfur, and other essential nutrients. Biogenic silica, amorphous hydrated silica, and DNA-based molecular signatures of sedimentary facies indicate that diatom assemblages are the dominant primary producers, supported by the input of inorganic silicon (Si) from the subglacial inflow. This study highlights the significance of subglacial water-rock interactions during physical and chemical weathering processes and the importance of such interactions for the supply of bioavailable nutrients.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70003915','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70003915"><span>Diel biogeochemical processes in terrestrial waters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Nimick, David A.; Gammons, Christopher H.</p> <p>2011-01-01</p> <p>Many biogeochemical processes in rivers and lakes respond to the solar photocycle and produce persistent patterns of measureable phenomena that exhibit a day–night, or 24-h, cycle. Despite a large body of recent literature, the mechanisms responsible for these diel fluctuations are widely debated, with a growing consensus that combinations of physical, chemical, and biological processes are involved. These processes include streamflow variation, photosynthesis and respiration, plant assimilation, and reactions involving photochemistry, adsorption and desorption, and mineral precipitation and dissolution. Diel changes in streamflow and water properties such as temperature, pH, and dissolved oxygen concentration have been widely recognized, and recently, diel studies have focused more widely by considering other constituents such as dissolved and particulate trace metals, metalloids, rare earth elements, mercury, organic matter, dissolved inorganic carbon (DIC), and nutrients. The details of many diel processes are being studied using stable isotopes, which also can exhibit diel cycles in response to microbial metabolism, photosynthesis and respiration, or changes in phase, speciation, or redox state. In addition, secondary effects that diel cycles might have, for example, on biota or in the hyporheic zone are beginning to be considered.This special issue is composed primarily of papers presented at the topical session “Diurnal Biogeochemical Processes in Rivers, Lakes, and Shallow Groundwater” held at the annual meeting of the Geological Society of America in October 2009 in Portland, Oregon. This session was organized because many of the growing number of diel studies have addressed just a small part of the full range of diel cycling phenomena found in rivers and lakes. This limited focus is understandable because (1) fundamental aspects of many diel processes are poorly understood and require detailed study, (2) the interests and expertise of individual scientists typically do not encompass the wide diversity and range of processes that produce diel cycles, and (3) the logistics of making field measurements for 24-h periods has limited recognition and understanding of these important cycles. Thus, the topical session brought together hydrologists, biologists, geochemists, and ecologists to discuss field studies, laboratory experiments, theoretical modeling, and measurement techniques related to diel cycling. Hopefully with the cross-disciplinary synergy developed at the session as well as by this special issue, a more comprehensive understanding of the interrelationships between the diel processes will be developed. Needless to say, understanding diel processes is critical for regulatory agencies and the greater scientific community. And perhaps more importantly, expanded knowledge of biogeochemical cycling may lead to better predictions of how aquatic ecosystems might react to changing conditions of contaminant loading, eutrophication, climate change, drought, industrialization, development, and other variables.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.8634D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.8634D"><span>Interannual variability of primary production and air-sea CO2 flux in the Atlantic and Indian sectors of the Southern Ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dufour, Carolina; Merlivat, Liliane; Le Sommer, Julien; Boutin, Jacqueline; Antoine, David</p> <p>2013-04-01</p> <p>As one of the major oceanic sinks of anthropogenic CO2, the Southern Ocean plays a critical role in the climate system. However, due to the scarcity of observations, little is known about physical and biological processes that control air-sea CO2 fluxes and how these processes might respond to climate change. It is well established that primary production is one of the major drivers of air-sea CO2 fluxes, consuming surface Dissolved Inorganic Carbon (DIC) during Summer. Southern Ocean primary production is though constrained by several limiting factors such as iron and light availability, which are both sensitive to mixed layer depth. Mixed layer depth is known to be affected by current changes in wind stress or freshwater fluxes over the Southern Ocean. But we still don't know how primary production may respond to anomalous mixed layer depth neither how physical processes may balance this response to set the seasonal cycle of air-sea CO2 fluxes. In this study, we investigate the impact of anomalous mixed layer depth on surface DIC in the Atlantic and Indian sectors of the Subantarctic zone of the Southern Ocean (60W-60E, 38S-55S) with a combination of in situ data, satellite data and model experiment. We use both a regional eddy permitting ocean biogeochemical model simulation based on NEMO-PISCES and data-based reconstruction of biogeochemical fields based on CARIOCA buoys and SeaWiFS data. A decomposition of the physical and biological processes driving the seasonal variability of surface DIC is performed with both the model data and observations. A good agreement is found between the model and the data for the amplitude of biological and air-sea flux contributions. The model data are further used to investigate the impact of winter and summer anomalies in mixed layer depth on surface DIC over the period 1990-2004. The relative changes of each physical and biological process contribution are quantified and discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5507128','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5507128"><span>Bridging Food Webs, Ecosystem Metabolism, and Biogeochemistry Using Ecological Stoichiometry Theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Welti, Nina; Striebel, Maren; Ulseth, Amber J.; Cross, Wyatt F.; DeVilbiss, Stephen; Glibert, Patricia M.; Guo, Laodong; Hirst, Andrew G.; Hood, Jim; Kominoski, John S.; MacNeill, Keeley L.; Mehring, Andrew S.; Welter, Jill R.; Hillebrand, Helmut</p> <p>2017-01-01</p> <p>Although aquatic ecologists and biogeochemists are well aware of the crucial importance of ecosystem functions, i.e., how biota drive biogeochemical processes and vice-versa, linking these fields in conceptual models is still uncommon. Attempts to explain the variability in elemental cycling consequently miss an important biological component and thereby impede a comprehensive understanding of the underlying processes governing energy and matter flow and transformation. The fate of multiple chemical elements in ecosystems is strongly linked by biotic demand and uptake; thus, considering elemental stoichiometry is important for both biogeochemical and ecological research. Nonetheless, assessments of ecological stoichiometry (ES) often focus on the elemental content of biota rather than taking a more holistic view by examining both elemental pools and fluxes (e.g., organismal stoichiometry and ecosystem process rates). ES theory holds the promise to be a unifying concept to link across hierarchical scales of patterns and processes in ecology, but this has not been fully achieved. Therefore, we propose connecting the expertise of aquatic ecologists and biogeochemists with ES theory as a common currency to connect food webs, ecosystem metabolism, and biogeochemistry, as they are inherently concatenated by the transfer of carbon, nitrogen, and phosphorous through biotic and abiotic nutrient transformation and fluxes. Several new studies exist that demonstrate the connections between food web ecology, biogeochemistry, and ecosystem metabolism. In addition to a general introduction into the topic, this paper presents examples of how these fields can be combined with a focus on ES. In this review, a series of concepts have guided the discussion: (1) changing biogeochemistry affects trophic interactions and ecosystem processes by altering the elemental ratios of key species and assemblages; (2) changing trophic dynamics influences the transformation and fluxes of matter across environmental boundaries; (3) changing ecosystem metabolism will alter the chemical diversity of the non-living environment. Finally, we propose that using ES to link nutrient cycling, trophic dynamics, and ecosystem metabolism would allow for a more holistic understanding of ecosystem functions in a changing environment. PMID:28747904</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H43F1718R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H43F1718R"><span>The role of DOM in nitrogen processing in streams across arctic regions affected by fire</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rodriguez-Cardona, B.; Schade, J. D.; Holmes, R. M.; Natali, S.; Mann, P. J.; Wymore, A.; Coble, A. A.; Prokishkin, A. S.; Zito, P.; Podgorski, D. C.; Spencer, R. G.; McDowell, W. H.</p> <p>2017-12-01</p> <p>In stream ecosystems, inputs of dissolved organic carbon (DOC) have a strong influence on nitrogen (N) processing. Previous studies have demonstrated that increases in DOC concentrations can promote greater N removal in many stream ecosystems. Most of what we know about C and N coupling comes from studies of temperate streams; less is known about this relationship in the Arctic. Streams in Arctic ecosystems are facing rapid changes in climate and disturbance regimes, in particular increasing fire frequencies that are likely to alter biogeochemical cycles. Although fires can lead to increases in NO3 concentrations in streams, the effects of fire on DOC (concentration and composition) have been difficult to generalize. We studied the relationships between DOC and N in two locations; the Central Siberian Plateau, Russia and the Yukon-Kuskokwim (YK) River Delta, Alaska. Streams in both regions show increases in NO3 concentrations after fire, while DOC concentrations decrease in Siberia but increase in streams within the YK-Delta. These patterns in DOC and NO3 create a gradient in DOC and nutrient concentrations, allowing us to study this coupling in a wider Pan-Arctic scope. In order to assess the role of DOC in Arctic N processing, we conducted NO3 and NH4 additions to stream microcosms at the Alaskan site as well as whole-stream additions in Siberia. We hypothesized that nutrient uptake would be high in older burn sites of Siberia and recently burned sites in the YK-Delta, due to greater DOC concentrations and availability. Our results suggest that nitrogen dynamics in the Alaskan sites is strongly responsive to C availability, but is less so in Siberian sites. The potential impacts of permafrost thawing and fires on DOM and nutrient dynamics thus appear to not be consistent across the Arctic suggesting that different regions of the Arctic have unique biogeochemical controls.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24349938','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24349938"><span>Chiral chemicals as tracers of atmospheric sources and fate processes in a world of changing climate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>F Bidleman, Terry; M Jantunen, Liisa; Binnur Kurt-Karakus, Perihan; Wong, Fiona; Hung, Hayley; Ma, Jianmin; Stern, Gary; Rosenberg, Bruno</p> <p>2013-01-01</p> <p>Elimination of persistent organic pollutants (POPs) under national and international regulations reduces "primary" emissions, but "secondary" emissions continue from residues deposited in soil, water, ice and vegetation during former years of usage. In a future, secondary source controlled world, POPs will follow the carbon cycle and biogeochemical processes will determine their transport, accumulation and fate. Climate change is likely to affect mobilisation of POPs through e.g., increased temperature, altered precipitation and wind patterns, flooding, loss of ice cover in polar regions, melting glaciers, and changes in soil and water microbiology which affect degradation and transformation. Chiral compounds offer advantages for following transport and fate pathways because of their ability to distinguish racemic (newly released or protected from microbial attack) and nonracemic (microbially degraded) sources. This paper discusses the rationale for this approach and suggests applications where chiral POPs could aid investigation of climate-mediated exchange and degradation processes. Multiyear measurements of two chiral POPs, trans-chlordane and α-HCH, at a Canadian Arctic air monitoring station show enantiomer compositions which cycle seasonally, suggesting varying source contributions which may be under climatic control. Large-scale shifts in the enantioselective metabolism of chiral POPs in soil and water might influence the enantiomer composition of atmospheric residues, and it would be advantageous to include enantiospecific analysis in POPs monitoring programs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3810459','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3810459"><span>Chiral Chemicals as Tracers of Atmospheric Sources and Fate Processes in a World of Changing Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>F. Bidleman, Terry; M. Jantunen, Liisa; Binnur Kurt-Karakus, Perihan; Wong, Fiona; Hung, Hayley; Ma, Jianmin; Stern, Gary; Rosenberg, Bruno</p> <p>2013-01-01</p> <p>Elimination of persistent organic pollutants (POPs) under national and international regulations reduces “primary” emissions, but “secondary” emissions continue from residues deposited in soil, water, ice and vegetation during former years of usage. In a future, secondary source controlled world, POPs will follow the carbon cycle and biogeochemical processes will determine their transport, accumulation and fate. Climate change is likely to affect mobilisation of POPs through e.g., increased temperature, altered precipitation and wind patterns, flooding, loss of ice cover in polar regions, melting glaciers, and changes in soil and water microbiology which affect degradation and transformation. Chiral compounds offer advantages for following transport and fate pathways because of their ability to distinguish racemic (newly released or protected from microbial attack) and nonracemic (microbially degraded) sources. This paper discusses the rationale for this approach and suggests applications where chiral POPs could aid investigation of climate-mediated exchange and degradation processes. Multiyear measurements of two chiral POPs, trans-chlordane and α-HCH, at a Canadian Arctic air monitoring station show enantiomer compositions which cycle seasonally, suggesting varying source contributions which may be under climatic control. Large-scale shifts in the enantioselective metabolism of chiral POPs in soil and water might influence the enantiomer composition of atmospheric residues, and it would be advantageous to include enantiospecific analysis in POPs monitoring programs. PMID:24349938</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45..864S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45..864S"><span>Understanding the Dynamics of the Oxic-Anoxic Interface in the Black Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stanev, Emil V.; Poulain, Pierre-Marie; Grayek, Sebastian; Johnson, Kenneth S.; Claustre, Hervé; Murray, James W.</p> <p>2018-01-01</p> <p>The Black Sea, the largest semienclosed anoxic basin on Earth, can be considered as an excellent natural laboratory for oxic and anoxic biogeochemical processes. The suboxic zone, a thin interface between oxic and anoxic waters, still remains poorly understood because it has been undersampled. This has led to alternative concepts regarding the underlying processes that create it. Existing hypotheses suggest that the interface originates either by isopycnal intrusions that introduce oxygen or the dynamics of manganese redox cycling that are associated with the sinking of particles or chemosynthetic bacteria. Here we reexamine these concepts using high-resolution oxygen, sulfide, nitrate, and particle concentration profiles obtained with sensors deployed on profiling floats. Our results show an extremely stable structure in density space over the entire basin with the exception of areas near the Bosporus plume and in the southern areas dominated by coastal anticyclones. The absence of large-scale horizontal intrusive signatures in the open-sea supports a hypothesis prioritizing the role of biogeochemical processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/38294','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/38294"><span>The role of mosses in ecosystem succession and function in Alaska's boreal forest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Merritt R. Turetsky; Michelle C. Mack; Teresa N. Hollingsworth; Jennifer W. Harden</p> <p>2010-01-01</p> <p>Shifts in moss communities may affect the resilience of boreal ecosystems to a changing climate because of the role of moss species in regulating soil climate and biogeochemical cycling. Here, we use long-term data analysis and literature synthesis to examine the role of moss in ecosystem succession, productivity, and decomposition. In Alaskan forests, moss abundance...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=238323&keyword=water+AND+purification&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=238323&keyword=water+AND+purification&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Development of an Escherichia coli K12-specific quantitative polymerase chain reaction assay and DNA isolation suited to biofilms associated with iron drinking water pipe corrosion products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Escherichia coli is one of the most commonly used fecal indicator organisms for drinking water and groundwater systems. In order to understand various biogeochemical and biophysical factors affecting its interactions with biofilms, E. coli K12 was chosen as a model organism. A Ta...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GBioC..30.1086V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GBioC..30.1086V"><span>Carbon fate in a large temperate human-impacted river system: Focus on benthic dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vilmin, Lauriane; Flipo, Nicolas; Escoffier, Nicolas; Rocher, Vincent; Groleau, Alexis</p> <p>2016-07-01</p> <p>Fluvial networks play an important role in regional and global carbon (C) budgets. The Seine River, from the Paris urban area to the entrance of its estuary (220 km), is studied here as an example of a large human-impacted river system subject to temperate climatic conditions. We assess organic C (OC) budgets upstream and downstream from one of the world's largest wastewater treatment plants and for different hydrological conditions using a hydrobiogeochemical model. The fine representation of sediment accumulation on the river bed allows for the quantification of pelagic and benthic effects on OC export toward the estuary and on river metabolism (i.e., net CO2 production). OC export is significantly affected by benthic dynamics during the driest periods, when 25% of the inputs to the system is transformed or stored in the sediment layer. Benthic processes also substantially affect river metabolism under any hydrological condition. On average, benthic respiration accounts for one third of the total river respiration along the studied stretch (0.27 out of 0.86 g C m-2 d-1). Even though the importance of benthic processes was already acknowledged by the scientific community for headwater streams, these results stress the major influence of benthic dynamics, and thus of physical processes such as sedimentation and resuspension, on C cycling in downstream river systems. It opens the door to new developments in the quantification of C emissions by global models, whereby biogeochemical processing and benthic dynamics should be taken into account.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H13O..05F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H13O..05F"><span>Interacting Physical and Biological Processes Affecting Nutrient Transport Through Human Dominated Landscapes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Finlay, J. C.</p> <p>2015-12-01</p> <p>Human activities increasingly dominate biogeochemical cycles of limiting nutrients on Earth. Urban and agricultural landscapes represent the largest sources of excess nutrients that drive water quality degradation. The physical structure of both urban and agricultural watersheds has been extensively modified, and these changes have large impacts on water and nutrient transport. Despite strong physical controls over nutrient transport in human dominated landscapes, biological processes play important roles in determining the fates of both nitrogen and phosphorus. This talk uses examples from research in urban and agricultural watersheds in the Midwestern USA to illustrate interactions of physical and biological controls over nutrient cycles that have shifted nitrogen (N) and phosphorus (P) sources and cycling in unexpected ways in response to management changes. In urban watersheds, efforts to improve water quality have been hindered by legacy sources of phosphorus added to storm water through transport to drainage systems by vegetation. Similarly, reductions in field erosion in agricultural watersheds have not led to major reductions in phosphorus transport, because of continued release of biological sources of P. Where management of phosphorus has been most effective in reducing eutrophication of lakes, decreases in N removal processes have led to long term increases in N concentration and transport. Together, these examples show important roles for biological processes affecting nutrient movement in highly modified landscapes. Consideration of the downstream physical and biological responses of management changes are thus critical toward identification of actions that will most effectively reduce excess nutrients watersheds and coastal zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29420265','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29420265"><span>Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bonan, Gordon B; Doney, Scott C</p> <p>2018-02-02</p> <p>Many global change stresses on terrestrial and marine ecosystems affect not only ecosystem services that are essential to humankind, but also the trajectory of future climate by altering energy and mass exchanges with the atmosphere. Earth system models, which simulate terrestrial and marine ecosystems and biogeochemical cycles, offer a common framework for ecological research related to climate processes; analyses of vulnerability, impacts, and adaptation; and climate change mitigation. They provide an opportunity to move beyond physical descriptors of atmospheric and oceanic states to societally relevant quantities such as wildfire risk, habitat loss, water availability, and crop, fishery, and timber yields. To achieve this, the science of climate prediction must be extended to a more multifaceted Earth system prediction that includes the biosphere and its resources. Copyright © 2018, American Association for the Advancement of Science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17111221','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17111221"><span>Fate of tannins in Corsican pine litter.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nierop, Klaas G J; Verstraten, Jacobus M</p> <p>2006-12-01</p> <p>Tannins are ubiquitous in higher plants and also in litter and soils where they affect many biogeochemical processes. Despite this well-recognized role, their fate in litter and mineral soils is hardly known, as often only trace amounts, if any, are measured. In this study, we conducted an incubation experiment with Corsican pine litter to which known amounts of tannic acid (TA) or condensed tannins (CTs) from Corsican pine were added. Using Folin-Ciocalteu as a measure for total phenolics and HCl-butanol as an assay specific for CTs, acetone/water extractable phenolics and tannins decreased with time towards very low levels. Application of thermally assisted hydrolysis and methylation to litter before and after acetone/water extraction revealed that TA concentration decreased. By contrast, CTs remained to a great extent in the litter and could not be extracted suggesting that they were tightly bound.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B33E0666B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B33E0666B"><span>Shifts in Geochemical Parameters and Greenhouse Gas Fluxes following Insect-Induced Tree Mortality</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brouillard, B.; Mikkelson, K. M.; Berryman, E.; Sharp, J.; Leonard, L.; Vega, M.</p> <p>2016-12-01</p> <p>Extensive insect infestations and resultant expansive tree mortality are occurring globally due in part to warmer temperatures and persistent drought. These forest disturbances are expected to cause shifts in the biogeochemical cycle due to the cessation of below ground root outputs, changes in soil microbial communities, hydrologic perturbations, and altered woody material deposits to the forest floor. To better understand biogeochemical alterations and resolve potentially conflicting findings, we studied a lodgepole pine forest recently impacted by mountain pine beetles to determine the response of subsurface geochemical parameters and gaseous flux to the effects of surrounding tree mortality. While many parameters were found to be significantly different under recently killed trees compared to their healthy counterparts (pH, soil moisture, C/N-species), notable biogeochemically relevant parameters displayed shifts that tracked with the level of surrounding tree mortality. For instance, aromatic carbon (TSUVA) and CO2 respiration were found to have an increasing linear response under grey trees as the surrounding tree mortality within an 8m radius also increased. Rather than a linear increase, ammonium and nitrogen associated bacterial communities displayed a threshold effect, not increasing until a certain level of tree mortality of approximately 40% was surpassed. Gas flux was also correlated to measured parameters in three near surface soil horizons to determine drivers of CO2 and N2O release and their interactions with biogeochemical cycles. Collectively, these results aid in elucidating the extent of forest mortality required to overcome compensatory terrestrial biogeochemical processes. A heightened understanding of these shifts will aid the scientific and resource management community through enhanced predictive understanding of greenhouse gas release or potential water quality impacts following forest disturbance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSME54A0913M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSME54A0913M"><span>Influence of 1997/98 and 2006/2007 Indian Ocean Dipole on Phytoplankton Composition in the Eastern Tropical Indian Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mahapatra, K.; Okada, Y.</p> <p>2016-02-01</p> <p>The influence of Indian Ocean Dipole (IOD) events of varied intensity co-occurred with El Niño/Southern Oscillation (ENSO) in 1997/98 and 2006/2007 on phytoplankton functional types (PFTs) was assessed in the eastern tropical Indian Ocean using the NASA Ocean Biogeochemical Model (NOBM) and particle size distribution (PSD) parameters retrieved from satellite derived ocean color data. Response of the PFTs to the IOD events of 1997/98 and 2006/2007 was varied in term of magnitude and duration. Nitrate, chlorophyll and 2 PFTs (diatoms and chlorophytes) out of 4 PFTs (Diatoms, Chlorophytes, Coccolithophores and Cyanobacteria) were strongly correlated with the Dipole Mode Indices. The NOBM provided insight to the course of events leading to perturbations and evolution of biogeochemical processes associated with the IOD in a multi-phytoplankton context, against the backdrop of circulation and turbulence dynamics, irradiance availability, and the interaction among different PFTs. Different phases of the IOD cycle were well captured in the evolution of phytoplankton dynamics. Satellite-based retrievals of PSD parameters further characterized the specific biogeochemical setup that facilitated the PFTs to thrive and cross-dominate each other. We examined the potential impact of the IOD/ENSO events on the PFT-specific primary production. Significant correlation was noticed between DMI and PFT-specific primary production of diatoms and chlorophytes. We highlighted the need (1) to develop regional biogeochemical models to overcome the gaps in our understanding and elucidate the precise mechanism that drive the biogeochemical fluctuations in the region (2) to pursue further research on phenological aspects of PFTs to understand potential impact of climatological change on phytoplankton community and on annually recurring cycle of pelagic trophodynamics and ecosystem functions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.8158P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.8158P"><span>BIO ARGO floats: tools for operational monitoring of the Black Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Palazov, Atanas; Slabakova, Violeta; Peneva, Elisaveta; Stanev, Emil</p> <p>2014-05-01</p> <p>The assessment of ecological status in the context of the Water Framework Directive (WFD) and Marine Strategy Framework Directive (MSFD) requires comprehensive knowledge and understanding of the physical and biogeochemical processes that determine the functioning of marine ecosystems. One of the main challenges however is the need of data with frequency relevant to the spatial and temporal scales of the ecological processes. The majority of in situ observations that are commonly used for ecological monitoring of the Black Sea are generally based on near-shore monitoring programs or irregular oceanographic cruises that provide either non-synoptic, coarse resolution realizations of large scale processes or detailed, but time and site specific snapshots of local features. These gaps can be filled by two independent sources: satellite observation and profiling floats. In fact satellite ocean color sensors allows for determination at synoptic scale of water quality parameters through its absorption properties. However the satellite ocean color methods have a number of limitations such as: measurements can only be made during daylight hours; require cloud-free conditions and are sensitive to atmospheric aerosols; provide information only for the upper layer of the ocean (approximately the depth of 10% incident light); algorithms developed for global applications are a source of large uncertainties in the marginal seas and costal areas. These constrains of the optical remote sensing observations can be avoided by using miniature biogeochemical sensors and autonomous platforms that offer remarkable perspectives for observing the "biological" ocean, notably at critical spatiotemporal scales which have been out of reach until recently (Claustre et al., 2010). In the frame of "E-AIMS: Euro-Argo Improvements for the GMES marine Service" 7 EC FP project two Bio Argo floats were deployed in the Black Sea. Beside the traditionally CTD the floats were equipped with biogeochemical sensors (oxygen, irradiance, chl-a and backscattering). The selection of the deployment locations was limited only to the Bulgarian Black Sea waters, so that the optimal deployment strategy that has been chosen was the floats to be deployed in the maximum distant positions from each other along the Black Sea geostrophic current at depth ~ 1800 m. Coincident biogeochemical and in-water radiometric measurements were collected at the time of each float deployment to ensure intercalibration of the instruments mounted on the floats and as well as to find empirical relationship between optical data and biogeochemical variables. The data obtained form Bio floats will be used to: investigate the seasonal evolution of oxygen in the upper layers, including the subsurface oxygen maximum; study the seasonal and inter annual dynamics of phytoplankton blooms in the deeper Black Sea; cross validation of satellite derived Chl-a and backscattering. References: Claustre et al. (2010). Bio-optical profiling floats as new observational tools for biogeochemical and ecosystem studies: potential synergies with ocean color remote sensing. Proceedings of the "OceanObs'09: Sustained Ocean Observations and Information for Society" Conference, Venice/Italy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/39183','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/39183"><span>Hot spots and hot moments in riparian zones: Potential for improved water quality management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Philippe Vidon; Craig Allan; Douglas Burns; Tim P. Duval; Noel Gurwick; Shreeram Inamdar; Richard Lowrance; Judy Okay; Durelle Scott; Stephen Sebestyen</p> <p>2010-01-01</p> <p>Biogeochemical and hydrological processes in riparian zones regulate contaminant movement to receiving waters and often mitigate the impact of upland sources of contaminants on water quality. These heterogeneous processes have recently been conceptualized as "hot spots and moments" of retention, degradation, or production. Nevertheless, studies investigating...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/34967','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/34967"><span>Predicting forest successional stages using mutitemporal Landsat imagery with forest inventory and analysis data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Weiguo Liu; Conghe Song; Todd A. Schroeder; Warren B. Cohen</p> <p>2008-01-01</p> <p>Forest succession is an important ecological process that has profound biophysical, biological and biogeochemical implications in terrestrial ecosystems. Therefore, information on forest successional stages over an extensive forested landscape is crucial for us to understand ecosystem processes, such as carbon assimilation and energy interception. This study explored...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=187533&keyword=NH4&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=187533&keyword=NH4&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Dissolved carbon and nitrogen losses from forests of the Oregon Cascades over a successional gradient</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Ecologists have long used stream water chemistry records to infer hillslope processes, although a great deal of biogeochemical processing of soil water is known to occur both downslope and in-stream. We report the effects of forest succession on C and N export in the west central...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20368247','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20368247"><span>Maximum entropy production in environmental and ecological systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kleidon, Axel; Malhi, Yadvinder; Cox, Peter M</p> <p>2010-05-12</p> <p>The coupled biosphere-atmosphere system entails a vast range of processes at different scales, from ecosystem exchange fluxes of energy, water and carbon to the processes that drive global biogeochemical cycles, atmospheric composition and, ultimately, the planetary energy balance. These processes are generally complex with numerous interactions and feedbacks, and they are irreversible in their nature, thereby producing entropy. The proposed principle of maximum entropy production (MEP), based on statistical mechanics and information theory, states that thermodynamic processes far from thermodynamic equilibrium will adapt to steady states at which they dissipate energy and produce entropy at the maximum possible rate. This issue focuses on the latest development of applications of MEP to the biosphere-atmosphere system including aspects of the atmospheric circulation, the role of clouds, hydrology, vegetation effects, ecosystem exchange of energy and mass, biogeochemical interactions and the Gaia hypothesis. The examples shown in this special issue demonstrate the potential of MEP to contribute to improved understanding and modelling of the biosphere and the wider Earth system, and also explore limitations and constraints to the application of the MEP principle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFM.H42B0352B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFM.H42B0352B"><span>Climate Variability, Dissolved Organic Carbon, UV Exposure, and Amphibian Decline</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brooks, P. D.; O'Reilly, C. M.; Diamond, S.; Corn, S.; Muths, E.; Tonnessen, K.; Campbell, D. H.</p> <p>2001-12-01</p> <p>Increasing levels of UV radiation represent a potential threat to aquatic organisms in a wide range of environments, yet controls on in situ variability on UV exposure are relatively unknown. The primary control on the penetration of UV radiation in surface water environments is the amount of photoreactive dissolved organic carbon (DOC). Consequently, biogeochemical processes that control the cycling of DOC also affect the exposure of aquatic organisms to UV radiation. Three years of monitoring UV extinction and DOC composition in Rocky Mountain, Glacier, Sequoia/ Kings Canyon, and Olympic National Parks demonstrate that the amount of fulvic acid DOC is much more important than the total DOC pool in controlling UV attenuation. This photoreactive component of DOC originates primarily in soil, and is subject both to biogeochemical controls (e.g. temperature, moisture, vegetation, soil type) on production, and hydrologic controls on transport to surface water and consequently UV exposure to aquatic organisms. Both of these controls are positively related to precipitation with greater production and transport associated with higher precipitation amounts. For example, an approximately 20 percent reduction in precipitation from 1999 to 2000 resulted in a 27% - 59% reduction in the amount of photoreactive DOC at three sites in Rocky Mountain National Park. These differences in the amount of hydrophobic DOC result in an increase in UV exposure in the aquatic environment by a factor of 2 or more. Implications of these findings for observed patterns of amphibian decline will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26006220','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26006220"><span>Biogeochemical Research Priorities for Sustainable Biofuel and Bioenergy Feedstock Production in the Americas.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gollany, Hero T; Titus, Brian D; Scott, D Andrew; Asbjornsen, Heidi; Resh, Sigrid C; Chimner, Rodney A; Kaczmarek, Donald J; Leite, Luiz F C; Ferreira, Ana C C; Rod, Kenton A; Hilbert, Jorge; Galdos, Marcelo V; Cisz, Michelle E</p> <p>2015-12-01</p> <p>Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demand on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustainability related to biomass production. Biomass production systems incrementally remove greater quantities of organic matter, which in turn affects soil organic matter and associated carbon and nutrient storage (and hence long-term soil productivity) and off-site impacts. While these consequences have been extensively studied for some crops and sites, the ongoing and impending impacts of biomass removal require management strategies for ensuring that soil properties and functions are sustained for all combinations of crops, soils, sites, climates, and management systems, and that impacts of biomass management (including off-site impacts) are environmentally acceptable. In a changing global environment, knowledge of cumulative impacts will also become increasingly important. Long-term experiments are essential for key crops, soils, and management systems because short-term results do not necessarily reflect long-term impacts, although improved modeling capability may help to predict these impacts. Identification and validation of soil sustainability indicators for both site prescriptions and spatial applications would better inform commercial and policy decisions. In an increasingly inter-related but constrained global context, researchers should engage across inter-disciplinary, inter-agency, and international lines to better ensure the long-term soil productivity across a range of scales, from site to landscape.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6079232-biomass-burning-tropics-impact-atmospheric-chemistry-biogeochemical-cycles','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6079232-biomass-burning-tropics-impact-atmospheric-chemistry-biogeochemical-cycles"><span>Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Crutzen, P.J.; Andreae, M.O.</p> <p>1990-12-21</p> <p>Biomass burning is widespread, especially in the tropics. It serves to clear land for shifting cultivation, to convert forests to agricultural and pastoral lands, and to remove dry vegetation in order to promote agricultural productivity and the growth of higher yield grasses. Furthermore, much agricultural waste and fuel wood is being combusted, particularly in developing countries. Biomass containing 2 to 5 petagrams of carbon is burned annually (1 petagram = 10{sup 15} grams), producing large amounts of trace gases and aerosol particles that play important roles in atmospheric chemistry and climate. Emissions of carbon monoxide and methane by biomass burningmore » affect the oxidation efficiency of the atmosphere by reacting with hydroxyl radicals, and emissions of nitric oxide and hydrocarbons lead to high ozone concentrations in the tropics during the dry season. Large quantities of smoke particles are produced as well, and these can serve as cloud condensation nuclei. These particles may thus substantially influence cloud microphysical and optical properties, an effect that could have repercussions for the radiation budget and the hydrological cycle in the tropics. Widespread burning may also disturb biogeochemical cycles, especially that of nitrogen. About 50% of the nitrogen in the biomass fuel can be released as molecular nitrogen. This pyrodenitrification process causes a sizable loss of fixed nitrogen in tropical ecosystems, in the range of 10 to 20 teragrams per year (1 teragram = 10{sup 12} grams).« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H51K1348V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H51K1348V"><span>The NEON Aquatic Network: Expanding the Availability of Biogeochemical Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vance, J. M.; Bohall, C.; Fitzgerald, M.; Utz, R.; Parker, S. M.; Roehm, C. L.; Goodman, K. J.; McLaughlin, B.</p> <p>2013-12-01</p> <p>Aquatic ecosystems are facing unprecedented pressure from climate change and land-use practices. Invasive species, whether plant, animal, insect or microbe present additional threat to aquatic ecosystem services. There are significant scientific challenges to understanding how these forces will interact to affect aquatic ecosystems, as the flow of energy and materials in the environment is driven by multivariate and non-linear biogeochemical cycles. The National Ecological Observatory Network (NEON) will collect and provide observational data across multiple scales. Sites were selected to maximize representation of major North American ecosystems using a multivariate geographic clustering method that partitioned the continental US, AK, HI, and Puerto Rico into 20 eco-climatic domains. The NEON data collection systems and methods are designed to yield standardized, near real-time data subjected to rigorous quality controls prior to public dissemination through an online data portal. NEON will collect data for 30 years to facilitate spatial-temporal analysis of environmental responses and drivers of ecosystem change, ranging from local through continental scales. Here we present the NEON Aquatic Network, a multi-parameter network consisting of a combination of in situ sensor and observational data. This network will provide data to examine biogeochemical, biological, hydrologic and geomorphic metrics at 36 sites, which are a combination of small 1st/2nd order wadeable streams, large rivers and lakes. A typical NEON Aquatic site will host up to two in-stream sensor sets designed to collect near-continuous water quality data (e.g. pH/ORP, temperature, conductivity, dissolved oxygen, CDOM) along with up to 8 shallow groundwater monitoring wells (level, temp., cond.), and a local meteorological station (e.g. 2D wind speed, PAR, barometric pressure, temperature, net radiation). These coupled sensor suites will be complemented by observational data (e.g. water/sediment chemistry, aquatic organisms, geomorphology). The aquatic network will produce ~212 low-level data products for each site. NEON will produce several higher level data products such as measurements of whole-stream metabolism, gross primary productivity, ecosystem respiration, and fluxes of nitrogen, phosphorous and carbon that will enable users to analyze processes on a gross scale. These data may be integrated with NEON's terrestrial and airborne networks to bridge the gap between aquatic and terrestrial biogeochemical research. The NEON Aquatic Network is poised to greatly expand our ability to create more robust biogeochemical models. For example, hydrologic and stable isotope data will allow investigation of terrestrial-aquatic carbon flux. Constraints provided by NEON's terrestrial and atmospheric data concurrent with remotely sensed data will facilitate the scaling to regional and continental scales, potentially leading to greater accuracy in the global carbon budget. The NEON Aquatic Network represents a powerful tool that will give the scientific community access to standardized data over spatiotemporal scales that are needed to answer fundamental questions about natural ecological variability and responses to changes in the environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27555520','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27555520"><span>Dense water plumes modulate richness and productivity of deep sea microbes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Luna, Gian Marco; Chiggiato, Jacopo; Quero, Grazia Marina; Schroeder, Katrin; Bongiorni, Lucia; Kalenitchenko, Dimitri; Galand, Pierre E</p> <p>2016-12-01</p> <p>Growing evidence indicates that dense water formation and flow over the continental shelf is a globally relevant oceanographic process, potentially affecting microbial assemblages down to the deep ocean. However, the extent and consequences of this influence have yet to be investigated. Here it is shown that dense water propagation to the deep ocean increases the abundance of prokaryotic plankton, and stimulates carbon production and organic matter degradation rates. Dense waters spilling off the shelf modifies community composition of deep sea microbial assemblages, leading to the increased relevance of taxa likely originating from the sea surface and the seafloor. This phenomenon can be explained by a combination of factors that interplay during the dense waters propagation, such as the transport of surface microbes to the ocean floor (delivering in our site 0.1 megatons of C), the stimulation of microbial metabolism due to increased ventilation and nutrients availability, the sediment re-suspension, and the mixing with ambient waters along the path. Thus, these results highlight a hitherto unidentified role for dense currents flowing over continental shelves in influencing deep sea microbes. In light of climate projections, this process will affect significantly the microbial functioning and biogeochemical cycling of large sectors of the ocean interior. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012GML....32..289A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012GML....32..289A"><span>Selective geochemistry of iron in mangrove soils in a semiarid tropical climate: effects of the burrowing activity of the crabs Ucides cordatus and Uca maracoani</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Araújo, J. M. C.; Otero, X. L.; Marques, A. G. B.; Nóbrega, G. N.; Silva, J. R. F.; Ferreira, T. O.</p> <p>2012-08-01</p> <p>Bioturbation by crabs may affect processes associated with organic matter decomposition in mangrove soils. This study examines how two crabs ( Uca maracoani and Ucides cordatus), which are of substantial ecological and economic importance in semiarid coastal areas of Brazil, affect biogeochemical processes in mangrove soils. For this purpose, the physicochemical and geochemical parameters of the soils at different sites were analyzed. The redox potential was always positive at bioturbated sites (+12 to +218 mV), indicating more oxidizing conditions conducive to the oxidation of pyrite and precipitation of oxyhydroxides. In contrast, anoxic conditions prevailed at the control site (Eh < 0 mV), and the most abundant form of iron was Fe-pyrite. The highest degree of iron pyritization (DOP) was observed in soils from the control site (˜48%) and the lowest in the bioturbated soils (5-16%), indicating that crabs have an oxidative effect on iron sulfides. The results also suggest that U. cordatus has a higher oxidizing capacity than U. maracoani, probably because it constructs larger and deeper burrows. The results demonstrate that both crabs must be considered as important bioturbators in Brazilian semiarid mangrove soils, being capable of enhancing organic matter decomposition and also shifting the dominant pathway of organic matter degradation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GMD....10..453Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GMD....10..453Y"><span>Bottom RedOx Model (BROM v.1.1): a coupled benthic-pelagic model for simulation of water and sediment biogeochemistry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yakushev, Evgeniy V.; Protsenko, Elizaveta A.; Bruggeman, Jorn; Wallhead, Philip; Pakhomova, Svetlana V.; Yakubov, Shamil Kh.; Bellerby, Richard G. J.; Couture, Raoul-Marie</p> <p>2017-02-01</p> <p>Interactions between seawater and benthic systems play an important role in global biogeochemical cycling. Benthic fluxes of some chemical elements (e.g., C, N, P, O, Si, Fe, Mn, S) alter the redox state and marine carbonate system (i.e., pH and carbonate saturation state), which in turn modulate the functioning of benthic and pelagic ecosystems. The redox state of the near-bottom layer in many regions can change with time, responding to the supply of organic matter, physical regime, and coastal discharge. We developed a model (BROM) to represent key biogeochemical processes in the water and sediments and to simulate changes occurring in the bottom boundary layer. BROM consists of a transport module (BROM-transport) and several biogeochemical modules that are fully compatible with the Framework for the Aquatic Biogeochemical Models, allowing independent coupling to hydrophysical models in 1-D, 2-D, or 3-D. We demonstrate that BROM is capable of simulating the seasonality in production and mineralization of organic matter as well as the mixing that leads to variations in redox conditions. BROM can be used for analyzing and interpreting data on sediment-water exchange, and for simulating the consequences of forcings such as climate change, external nutrient loading, ocean acidification, carbon storage leakage, and point-source metal pollution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PrOce.151..138R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PrOce.151..138R"><span>Biogeochemical regions of the Mediterranean Sea: An objective multidimensional and multivariate environmental approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reygondeau, Gabriel; Guieu, Cécile; Benedetti, Fabio; Irisson, Jean-Olivier; Ayata, Sakina-Dorothée; Gasparini, Stéphane; Koubbi, Philippe</p> <p>2017-02-01</p> <p>When dividing the ocean, the aim is generally to summarise a complex system into a representative number of units, each representing a specific environment, a biological community or a socio-economical specificity. Recently, several geographical partitions of the global ocean have been proposed using statistical approaches applied to remote sensing or observations gathered during oceanographic cruises. Such geographical frameworks defined at a macroscale appear hardly applicable to characterise the biogeochemical features of semi-enclosed seas that are driven by smaller-scale chemical and physical processes. Following the Longhurst's biogeochemical partitioning of the pelagic realm, this study investigates the environmental divisions of the Mediterranean Sea using a large set of environmental parameters. These parameters were informed in the horizontal and the vertical dimensions to provide a 3D spatial framework for environmental management (12 regions found for the epipelagic, 12 for the mesopelagic, 13 for the bathypelagic and 26 for the seafloor). We show that: (1) the contribution of the longitudinal environmental gradient to the biogeochemical partitions decreases with depth; (2) the partition of the surface layer cannot be extrapolated to other vertical layers as the partition is driven by a different set of environmental variables. This new partitioning of the Mediterranean Sea has strong implications for conservation as it highlights that management must account for the differences in zoning with depth at a regional scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.B24A0301S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.B24A0301S"><span>Controls Over Mesopelagic Interior Carbon Storage</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sanders, R.</p> <p>2016-02-01</p> <p>Ocean biological processes play a central role in controlling atmospheric CO2 levels with the size of this effect being largely dependent on the depth at which sinking organic carbon (C) is recycled in the ocean's mesopelagic, between 100 and 1000m. Until recently our understanding was so poor that we were unable to even create and close a budget for the processes involved in supplying and consuming organic C in the mesopelagic, let alone model them explicitly with our best estimates of C sources and sinks being an order of magnitude apart. In 2014 however we published the first balanced mesopelagic C budget, in the Northeast Atlantic. Large scale data syntheses suggest that a wide range of factors can influence remineralisation depth including surface biogeochemical processes, dissolved oxygen (DO), and temperature (T). However such correlation analyses cannot provide a mechanistic understanding of mesopelagic remineralisation. In light of this, we have proposed to the UK NERC a focussed project known as COMICS with this mechanistic understanding as its aim. We will use targeted fieldwork to develop new parameterisations of particle flux and implement them in an IPCC class global biogeochemical model. Cruises in the Southern Ocean and in the Benguela Upwelling will exploit strong local gradients in surface biogeochemistry, T and DO. We will compile 1-d C budgets and make intensive measurements of interior C cycling and ecosystem structure. We will synthesise the observations to determine which processes are key, create new parameterisations for interior remineralisation and evaluate them by their ability to reproduce global biogeochemical distributions. Finally we will use these tools to provide a new estimate of ocean C storage using the UK Earth System Model's ocean component. This poster will introduce the project and describe the major challenges we face in delivering it.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17307120','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17307120"><span>Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gadd, Geoffrey M</p> <p>2007-01-01</p> <p>The study of the role that fungi have played and are playing in fundamental geological processes can be termed 'geomycology' and this article seeks to emphasize the fundamental importance of fungi in several key areas. These include organic and inorganic transformations and element cycling, rock and mineral transformations, bioweathering, mycogenic mineral formation, fungal-clay interactions, metal-fungal interactions, and the significance of such processes in the environment and their relevance to areas of environmental biotechnology such as bioremediation. Fungi are intimately involved in biogeochemical transformations at local and global scales, and although such transformations occur in both aquatic and terrestrial habitats, it is the latter environment where fungi probably have the greatest influence. Within terrestrial aerobic ecosystems, fungi may exert an especially profound influence on biogeochemical processes, particularly when considering soil, rock and mineral surfaces, and the plant root-soil interface. The geochemical transformations that take place can influence plant productivity and the mobility of toxic elements and substances, and are therefore of considerable socio-economic relevance, including human health. Of special significance are the mutualistic symbioses, lichens and mycorrhizas. Some of the fungal transformations discussed have beneficial applications in environmental biotechnology, e.g. in metal leaching, recovery and detoxification, and xenobiotic and organic pollutant degradation. They may also result in adverse effects when these processes are associated with the degradation of foodstuffs, natural products, and building materials, including wood, stone and concrete. It is clear that a multidisciplinary approach is essential to understand fully all the phenomena encompassed within geomycology, and it is hoped that this review will serve to catalyse further research, as well as stimulate interest in an area of mycology of global significance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMIN31A0058L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMIN31A0058L"><span>Ocean Carbon States: Data Mining in Observations and Numerical Simulations Results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Latto, R.; Romanou, A.</p> <p>2017-12-01</p> <p>Advanced data mining techniques are rapidly becoming widely used in Climate and Earth Sciences with the purpose of extracting new meaningful information from increasingly larger and more complex datasets. This is particularly important in studies of the global carbon cycle, where any lack of understanding of its combined physical and biogeochemical drivers is detrimental to our ability to accurately describe, understand, and predict CO2 concentrations and their changes in the major carbon reservoirs. The analysis presented here evaluates the use of cluster analysis as a means of identifying and comparing spatial and temporal patterns extracted from observational and model datasets. As the observational data is organized into various regimes, which we will call "ocean carbon states", we gain insight into the physical and/or biogeochemical processes controlling the ocean carbon cycle as well as how well these processes are simulated by a state-of-the-art climate model. We find that cluster analysis effectively produces realistic, dynamic regimes that can be associated with specific processes at different temporal scales for both observations and the model. In addition, we show how these regimes can be used to illustrate and characterize the model biases in the model air-sea flux of CO2. These biases are attributed to biases in salinity, sea surface temperature, wind speed, and nitrate, which are then used to identify the physical processes that are inaccurately reproduced by the model. In this presentation, we provide a proof-of-concept application using simple datasets, and we expand to more complex ones, using several physical and biogeochemical variable pairs, thus providing considerable insight into the mechanisms and phases of the ocean carbon cycle over different temporal and spatial scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29035265','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29035265"><span>Hydrothermal impacts on trace element and isotope ocean biogeochemistry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>German, C R; Casciotti, K A; Dutay, J-C; Heimbürger, L E; Jenkins, W J; Measures, C I; Mills, R A; Obata, H; Schlitzer, R; Tagliabue, A; Turner, D R; Whitby, H</p> <p>2016-11-28</p> <p>Hydrothermal activity occurs in all ocean basins, releasing high concentrations of key trace elements and isotopes (TEIs) into the oceans. Importantly, the calculated rate of entrainment of the entire ocean volume through turbulently mixing buoyant hydrothermal plumes is so vigorous as to be comparable to that of deep-ocean thermohaline circulation. Consequently, biogeochemical processes active within deep-ocean hydrothermal plumes have long been known to have the potential to impact global-scale biogeochemical cycles. More recently, new results from GEOTRACES have revealed that plumes rich in dissolved Fe, an important micronutrient that is limiting to productivity in some areas, are widespread above mid-ocean ridges and extend out into the deep-ocean interior. While Fe is only one element among the full suite of TEIs of interest to GEOTRACES, these preliminary results are important because they illustrate how inputs from seafloor venting might impact the global biogeochemical budgets of many other TEIs. To determine the global impact of seafloor venting, however, requires two key questions to be addressed: (i) What processes are active close to vent sites that regulate the initial high-temperature hydrothermal fluxes for the full suite of TEIs that are dispersed through non-buoyant hydrothermal plumes? (ii) How do those processes vary, globally, in response to changing geologic settings at the seafloor and/or the geochemistry of the overlying ocean water? In this paper, we review key findings from recent work in this realm, highlight a series of key hypotheses arising from that research and propose a series of new GEOTRACES modelling, section and process studies that could be implemented, nationally and internationally, to address these issues.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2015 The Authors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5069535','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5069535"><span>Hydrothermal impacts on trace element and isotope ocean biogeochemistry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dutay, J.-C.; Heimbürger, L. E.; Jenkins, W. J.; Measures, C. I.; Mills, R. A.; Obata, H.; Turner, D. R.; Whitby, H.</p> <p>2016-01-01</p> <p>Hydrothermal activity occurs in all ocean basins, releasing high concentrations of key trace elements and isotopes (TEIs) into the oceans. Importantly, the calculated rate of entrainment of the entire ocean volume through turbulently mixing buoyant hydrothermal plumes is so vigorous as to be comparable to that of deep-ocean thermohaline circulation. Consequently, biogeochemical processes active within deep-ocean hydrothermal plumes have long been known to have the potential to impact global-scale biogeochemical cycles. More recently, new results from GEOTRACES have revealed that plumes rich in dissolved Fe, an important micronutrient that is limiting to productivity in some areas, are widespread above mid-ocean ridges and extend out into the deep-ocean interior. While Fe is only one element among the full suite of TEIs of interest to GEOTRACES, these preliminary results are important because they illustrate how inputs from seafloor venting might impact the global biogeochemical budgets of many other TEIs. To determine the global impact of seafloor venting, however, requires two key questions to be addressed: (i) What processes are active close to vent sites that regulate the initial high-temperature hydrothermal fluxes for the full suite of TEIs that are dispersed through non-buoyant hydrothermal plumes? (ii) How do those processes vary, globally, in response to changing geologic settings at the seafloor and/or the geochemistry of the overlying ocean water? In this paper, we review key findings from recent work in this realm, highlight a series of key hypotheses arising from that research and propose a series of new GEOTRACES modelling, section and process studies that could be implemented, nationally and internationally, to address these issues. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035265</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B44B..02M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B44B..02M"><span>Filling the gap: using non-invasive geophysical methods to monitor the processes leading to enhanced carbon turnover induced by periodic water table fluctuations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mellage, A.; Pronk, G.; Atekwana, E. A.; Furman, A.; Rezanezhad, F.; Van Cappellen, P.</p> <p>2017-12-01</p> <p>Subsurface transition environments such as the capillary fringe are characterized by steep gradients in redox conditions. Spatial and temporal variations in electron acceptor and donor availability - driven by hydrological changes - may enhance carbon turnover, in some cases resulting in pulses of CO2-respiration. Filling the mechanistic knowledge gap between the hydrological driver and its biogeochemical effects hinges on our ability to monitor microbial activity and key geochemical markers at a high spatial and temporal resolution. However, direct access to subsurface biogeochemical processes is logistically difficult, invasive and usually expensive. In-line, non-invasive geophysical techniques - Spectral Induced Polarization (SIP) and Electrodic Potential (EP), specifically - offer a comparatively inexpensive alternative and can provide data with high spatial and temporal resolution. The challenge lies in linking electrical responses to specific changes in biogeochemical processes. We conducted SIP and EP measurements on a soil column experiment where an artificial soil mixture was subjected to monthly drainage and imbibition cycles. SIP responses showed a clear dependence on redox zonation and microbial abundance. Temporally variable responses exhibited no direct moisture dependence suggesting that the measured responses recorded changes in microbial activity and coincided with the depth interval over which enhanced carbon turnover was observed. EP measurements detected the onset of sulfate mineralization and mapped its depth zonation. SIP and EP signals thus detected enhanced microbial activity within the water table fluctuation zone as well as the timing of the development of specific reactive processes. These findings can be used to relate measured electrical signals to specific reaction pathways and help inform reactive transport models, increasing their predictive capabilities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H14C..08B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H14C..08B"><span>Compensatory vapor loss and biogeochemical attenuation along flowpaths mute the water resources impacts of insect-induced forest mortality</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Biederman, J. A.; Brooks, P. D.; Harpold, A. A.; Gochis, D. J.; Ewers, B. E.; Reed, D. E.; Gutmann, E. D.</p> <p>2013-12-01</p> <p>Forested montane catchments are critical to the amount and quality of downstream water resources. In western North America more than 60 million people rely on mountain precipitation, and water managers face uncertain response to an unprecedented forest die-off from mountain pine beetle (MPB) infestation. Reduced snow interception and transpiration are expected to increase streamflow, while increased organic matter decay is expected to increase biogeochemical stream fluxes. Tree- to plot-scale observations have documented some of the expected changes, but there has been little significant change to streamflow or water quality at the larger scales relevant to water resources. A critical gap exists in our understanding of why tree-scale process changes have not led to the expected, large-scale increases in streamflow and biogeochemical fluxes. We address this knowledge gap with observations of water and biogeochemical fluxes at nested spatial scales including tree, hillslope, and catchments from 3 to 700 ha with more than 75% mortality. Catchment discharge showed reduced water yield consistent with co-located eddy covariance observations showing increased vapor losses following MPB. Stable water isotopes showed progressive kinetic fractionation (i.e. unsaturated transition layer above the evaporating surface) in snowpack, soil water and streams indicating greater abiotic evaporation from multiple water sources offsetting decreased interception and transpiration. In the 3rd to 5th years following MPB forest mortality, soil water DOC and DON were similar beneath killed and healthy trees, but concentrations were elevated 2-10 times in groundwater of MPB-impacted sites as compared to unimpacted. Stream water DOC and DON were about 3 times as large during snowmelt runoff in ephemeral zero-order channels of MPB-impacted sites compared to unimpacted. Processing in the headwater streams of MPB-impacted forests rapidly attenuated dissolved organic matter. From the MPB-impacted zero-order channel, DOC and DON were reduced by ~50 % within 5 km downstream in a 700-ha catchment with similar MPB forest mortality. Soil water NO3 up to 500 μeq l-1 during the snowmelt flush was attenuated by an order of magnitude in the riparian groundwater and was usually below detection limit in the adjacent zero-order channel. These observations demonstrate that water resources impacts of insect-induced forest mortality may be muted because 1) compensatory vapor loss can offset expected water yield increases and 2) processing of carbon and nitrogen along both hillslope flowpaths and within headwater streams can rapidly attenuate biogeochemical fluxes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>