Science.gov

Sample records for affect biomass production

  1. Tassel Removal Positively Affects Biomass Production Coupled with Significantly Increasing Stem Digestibility in Switchgrass

    PubMed Central

    Zhao, Chunqiao; Fan, Xifeng; Hou, Xincun; Zhu, Yi; Yue, Yuesen; Zhang, Shuang; Wu, Juying

    2015-01-01

    In this study, tassels of Cave-in-Rock (upland) and Alamo (lowland) were removed at or near tassel emergence to explore its effects on biomass production and quality. Tassel-removed (TR) Cave-in-Rock and Alamo both exhibited a significant (P<0.05) increase in plant heights (not including tassel length), tiller number, and aboveground biomass dry weight (10% and 12%, 30% and 13%, 13% and 18%, respectively by variety) compared to a control (CK) treatment. Notably, total sugar yields of TR Cave-in-Rock and Alamo stems increased significantly (P<0.05 or 0.01) by 19% and 19%, 21% and 14%, 52% and 18%, respectively by variety, compared to those of control switchgrass under 3 treatments by direct enzymatic hydrolysis (DEH), enzymatic hydrolysis after 1% NaOH pretreatment (EHAL) and enzymatic hydrolysis after 1% H2SO4 pretreatment (EHAC). These differences were mainly due to significantly (P<0.05 or 0.01) higher cellulose content, lower cellulose crystallinity indexes (CrI) caused by higher arabinose (Ara) substitution in xylans, and lower S/G ratio in lignin. However, the increases of nitrogen (N) and sulphur (S) concentration negatively affects the combustion quality of switchgrass aboveground biomass. This work provides information for increasing biomass production and quality in switchgrass and also facilitates the inhibition of gene dispersal of switchgrass in China. PMID:25849123

  2. Tassel removal positively affects biomass production coupled with significantly increasing stem digestibility in switchgrass.

    PubMed

    Zhao, Chunqiao; Fan, Xifeng; Hou, Xincun; Zhu, Yi; Yue, Yuesen; Zhang, Shuang; Wu, Juying

    2015-01-01

    In this study, tassels of Cave-in-Rock (upland) and Alamo (lowland) were removed at or near tassel emergence to explore its effects on biomass production and quality. Tassel-removed (TR) Cave-in-Rock and Alamo both exhibited a significant (P<0.05) increase in plant heights (not including tassel length), tiller number, and aboveground biomass dry weight (10% and 12%, 30% and 13%, 13% and 18%, respectively by variety) compared to a control (CK) treatment. Notably, total sugar yields of TR Cave-in-Rock and Alamo stems increased significantly (P<0.05 or 0.01) by 19% and 19%, 21% and 14%, 52% and 18%, respectively by variety, compared to those of control switchgrass under 3 treatments by direct enzymatic hydrolysis (DEH), enzymatic hydrolysis after 1% NaOH pretreatment (EHAL) and enzymatic hydrolysis after 1% H2SO4 pretreatment (EHAC). These differences were mainly due to significantly (P<0.05 or 0.01) higher cellulose content, lower cellulose crystallinity indexes (CrI) caused by higher arabinose (Ara) substitution in xylans, and lower S/G ratio in lignin. However, the increases of nitrogen (N) and sulphur (S) concentration negatively affects the combustion quality of switchgrass aboveground biomass. This work provides information for increasing biomass production and quality in switchgrass and also facilitates the inhibition of gene dispersal of switchgrass in China.

  3. Does species richness affect fine root biomass and production in young forest plantations?

    PubMed

    Domisch, Timo; Finér, Leena; Dawud, Seid Muhie; Vesterdal, Lars; Raulund-Rasmussen, Karsten

    2015-02-01

    Tree species diversity has been reported to increase forest ecosystem above-ground biomass and productivity, but little is known about below-ground biomass and production in diverse mixed forests compared to single-species forests. For testing whether species richness increases below-ground biomass and production and thus complementarity between forest tree species in young stands, we determined fine root biomass and production of trees and ground vegetation in two experimental plantations representing gradients in tree species richness. Additionally, we measured tree fine root length and determined species composition from fine root biomass samples with the near-infrared reflectance spectroscopy method. We did not observe higher biomass or production in mixed stands compared to monocultures. Neither did we observe any differences in tree root length or fine root turnover. One reason for this could be that these stands were still young, and canopy closure had not always taken place, i.e. a situation where above- or below-ground competition did not yet exist. Another reason could be that the rooting traits of the tree species did not differ sufficiently to support niche differentiation. Our results suggested that functional group identity (i.e. conifers vs. broadleaved species) can be more important for below-ground biomass and production than the species richness itself, as conifers seemed to be more competitive in colonising the soil volume, compared to broadleaved species.

  4. Assessment of Cultivation Factors that Affect Biomass and Geraniol Production in Transgenic Tobacco Cell Suspension Cultures

    PubMed Central

    Vasilev, Nikolay; Schmitz, Christian; Grömping, Ulrike; Fischer, Rainer; Schillberg, Stefan

    2014-01-01

    A large-scale statistical experimental design was used to determine essential cultivation parameters that affect biomass accumulation and geraniol production in transgenic tobacco (Nicotiana tabacum cv. Samsun NN) cell suspension cultures. The carbohydrate source played a major role in determining the geraniol yield and factors such as filling volume, inoculum size and light were less important. Sucrose, filling volume and inoculum size had a positive effect on geraniol yield by boosting growth of plant cell cultures whereas illumination of the cultures stimulated the geraniol biosynthesis. We also found that the carbohydrates sucrose and mannitol showed polarizing effects on biomass and geraniol accumulation. Factors such as shaking frequency, the presence of conditioned medium and solubilizers had minor influence on both plant cell growth and geraniol content. When cells were cultivated under the screened conditions for all the investigated factors, the cultures produced ∼5.2 mg/l geraniol after 12 days of cultivation in shaking flasks which is comparable to the yield obtained in microbial expression systems. Our data suggest that industrial experimental designs based on orthogonal arrays are suitable for the selection of initial cultivation parameters prior to the essential medium optimization steps. Such designs are particularly beneficial in the early optimization steps when many factors must be screened, increasing the statistical power of the experiments without increasing the demand on time and resources. PMID:25117009

  5. Biomass production and nutrient removal by Chlorella sp. as affected by sludge liquor concentration.

    PubMed

    Åkerström, Anette M; Mortensen, Leiv M; Rusten, Bjørn; Gislerød, Hans Ragnar

    2014-11-01

    The use of microalgae for biomass production and nutrient removal from the reject water produced in the dewatering process of anaerobically digested sludge, sludge liquor, was investigated. The sludge liquor was characterized by a high content of total suspended solids (1590 mg L(-1)), a high nitrogen concentration (1210 mg L(-1)), and a low phosphorus concentration (28 mg L(-1)). Chlorella sp. was grown in sludge liquor diluted with wastewater treatment plant effluent water to different concentrations (12, 25, 40, 50, 70, and 100%) using batch mode. The environmental conditions were 25 °C, a continuous lightning of 115 μmol m(-2) s(-1), and a CO2 concentration of 3.0%. The highest biomass production (0.42-0.45 g dry weight L(-1) Day(-1)) was achieved at 40-50% sludge liquor, which was comparable to the production of the control culture grown with an artificial fertilizer. The biomass production was 0.12 and 0.26 g dry weight L(-1) Day(-1) at 12% and 100% sludge liquor, respectively. The percentage of nitrogen in the algal biomass increased from 3.6% in 12% sludge liquor and reached a saturation of ∼10% in concentrations with 50% sludge liquor and higher. The phosphorus content in the biomass increased linearly from 0.2 to 1.5% with increasing sludge liquor concentrations. The highest nitrogen removal rates by algal biosynthesis were 33.6-42.6 mg TN L(-1) Day(-1) at 40-70% sludge liquor, while the highest phosphorus removal rates were 3.1-4.1 mg TP L(-1) Day(-1) at 50-100% sludge liquor.

  6. Physicochemical factors differentially affect the biomass and bacteriocin production by bovine Enterococcus mundtii CRL1656.

    PubMed

    Espeche, M Carolina; Juárez Tomás, M Silvina; Wiese, Birgitt; Bru, Elena; Nader-Macías, M E Fátima

    2014-02-01

    Bovine Enterococcus mundtii CRL1656 (Centro de Referencia para Lactobacilos Culture Collection) produces an anti-Listeria and anti-Streptococcus dysgalactiae bacteriocin identified as mundticin CRL1656. The strain and its bacteriocin are candidates to be included in a beneficial product to prevent bovine mastitis as an alternative to antimicrobial agents. To optimize the production of biomass and mundticin CRL1656 by E. mundtii CRL1656, a complete 3 × 2(4) factorial design was applied. The effect of culture medium, initial pH, inoculum size, incubation temperature, and agitation conditions on biomass and bacteriocin production was evaluated simultaneously. Growth parameters were determined using the modified Gompertz model. A nonlinear model was used to estimate the effects of the variables on growth parameters. Bacteriocin production was analyzed using a linear mixed model. Optimal biomass and mundticin CRL1656 production by E. mundtii CRL1656 were obtained in different conditions. Maximal growth was recorded in autolyzed yeast, peptone, tryptone, Tween 80, and glucose or M17 broths, pH 6.5, 5.0% inoculum, 30 °C, with agitation. However, bacteriocin titers were higher in autolyzed yeast, peptone, tryptone, Tween 80, and glucose or de Man-Rogosa-Sharpe (MRS) broths, pH 6.5, 30°C, both with or without agitation. Knowledge of the optimum conditions for growth and bacteriocin production of E. mundtii CRL1656 will allow the obtainment of high levels of biomass and mundticin CRL1656 as bioingredients of potential products to prevent bovine mastitis.

  7. Silica distinctively affects cell wall features and lignocellulosic saccharification with large enhancement on biomass production in rice.

    PubMed

    Zhang, Jing; Zou, Weihua; Li, Ying; Feng, Yongqing; Zhang, Hui; Wu, Zhiliang; Tu, Yuanyuan; Wang, Yanting; Cai, Xiwen; Peng, Liangcai

    2015-10-01

    Rice is a typical silicon-accumulating crop with enormous biomass residues for biofuels. Silica is a cell wall component, but its effect on the plant cell wall and biomass production remains largely unknown. In this study, a systems biology approach was performed using 42 distinct rice cell wall mutants. We found that silica levels are significantly positively correlated with three major wall polymers, indicating that silica is associated with the cell wall network. Silicon-supplied hydroculture analysis demonstrated that silica distinctively affects cell wall composition and major wall polymer features, including cellulose crystallinity (CrI), arabinose substitution degree (reverse Xyl/Ara) of xylans, and sinapyl alcohol (S) proportion in three typical rice mutants. Notably, the silicon supplement exhibited dual effects on biomass enzymatic digestibility in the mutant and wild type (NPB) after pre-treatments with 1% NaOH and 1% H2SO4. In addition, silicon supply largely enhanced plant height, mechanical strength and straw biomass production, suggesting that silica rescues mutant growth defects. Hence, this study provides potential approaches for silicon applications in biomass process and bioenergy rice breeding.

  8. Pretreated densified biomass products

    DOEpatents

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  9. Factors affecting mycelial biomass and exopolysaccharide production in submerged cultivation of Antrodia cinnamomea using complex media.

    PubMed

    Lin, En-Shyh; Chen, Yueh-Hsiang

    2007-09-01

    Submerged cultures were used to identify growth-limiting nutrients by Antrodia cinnamomea strains. The mycelial biomass and EPS production by A. cinnamomea BCRC 35396 were markedly higher than other A. cinnamomea strains. A relatively high C/N ratio was favorable for both the mycelial growth (5.41 g/l) and EPS production (0.55 g/l); the optimum ratio was 40. The glucose was available utilized preferentially for mycelial growth, rather than for EPS production. Flushing the culture medium with nitrogen had a stimulating effect on both mycelial growth and EPS production. In addition, peptone, yeast extract and malt extract appeared to be important and significant component for EPS production. Phosphate ion, magnesium ion and thiamine were probably not essential for mycelial growth. By optimizing the effects of additional nutrition, the results showed that 5% (w/v) glucose, 0.8% (w/v) peptone, 0.8% (w/v) yeast extract, 0.8% (w/v) malt extract, 0.03% (w/v) KH2PO4, 0.1% (w/v) MgSO4 .7H2O and 0.1% (w/v) thiamine could lead to the maximum production of EPS (1.36 g/l).

  10. Susceptibility of Candida albicans biofilms to caspofungin and anidulafungin is not affected by metabolic activity or biomass production.

    PubMed

    Marcos-Zambrano, Laura Judith; Escribano, Pilar; Bouza, Emilio; Guinea, Jesús

    2016-02-01

    Micafungin is more active against biofilms with high metabolic activity; however, it is unknown whether this observation applies to caspofungin and anidulafungin and whether it is also dependent on the biomass production. We compare the antifungal activity of anidulafungin, caspofungin, and micafungin against preformed Candida albicans biofilms with different degrees of metabolic activity and biomass production from 301 isolates causing fungemia in patients admitted to Gregorio Marañon Hospital (January 2007 to September 2014). Biofilms were classified as having low, moderate, or high metabolic activity according XTT reduction assay or having low, moderate, or high biomass according to crystal violet assay. Echinocandin MICs for planktonic and sessile cells were measured using the EUCAST E.Def 7.2 procedure and XTT reduction assay, respectively. Micafungin showed the highest activity against biofilms classified according to the metabolic activity and biomass production (P < .001). The activity of caspofungin and anidulafungin was not dependent on the metabolic activity of the biofilm or the biomass production. These observations were confirmed by scanning electron microscopy. None of the echinocandins produced major changes in the structure of biofilms with low metabolic activity and biomass production when compared with the untreated biofilms. However, biofilm with high metabolic activity or high biomass production was considerably more susceptible to micafungin; this effect was not shown by caspofungin or anidulafungin.

  11. Biomass production in Florida

    SciTech Connect

    Smith, W.H.; Dowd, M.L.

    1981-08-01

    Florida posseses climatic, land, and water resources favorable for abundant biomass production. Therefore, a statewide program has been initiated to determine adapted species for the available array of production sites. Plant resources under investigation include woody, aquatic, grasses, hydrocarbon, and root crop species. The goal is to produce a continuous stream of biomass for the various biofuel conversion options. Preliminary yields from energy cropping experiments range from about 10 to nearly 90 metric tons per hectare per year, depending on the crop and the production systems employed. (Refs. 15).

  12. Carbon-to-nitrogen ratio affects the biomass composition and the fatty acid profile of heterotrophically grown Chlorella sp. TISTR 8990 for biodiesel production.

    PubMed

    Singhasuwan, Somruethai; Choorit, Wanna; Sirisansaneeyakul, Sarote; Kokkaew, Nakhon; Chisti, Yusuf

    2015-12-20

    Chlorella sp. TISTR 8990 was cultivated heterotrophically in media with various initial carbon-to-nitrogen ratios (C/N ratio) and at different agitation speeds. The production of the biomass, its total fatty acid content and the composition of the fatty acids were affected by the C/N ratio, but not by agitation speed in the range examined. The biomass production was maximized at a C/N mass ratio of 29:1. At this C/N ratio, the biomass productivity was 0.68gL(-1)d(-1), or nearly 1.6-fold the best attainable productivity in photoautotrophic growth. The biomass yield coefficient on glucose was 0.62gg(-1) during exponential growth. The total fatty acids (TFAs) in the freeze-dried biomass were maximum (459mgg(-1)) at a C/N ratio of 95:1. Lower values of the C/N ratio reduced the fatty acid content of the biomass. The maximum productivity of TFAs (186mgL(-1)d(-1)) occurred at C/N ratios of 63:1 and higher. At these conditions, the fatty acids were mostly of the polyunsaturated type. Allowing the alga to remain in the stationary phase for a prolonged period after N-depletion, reduced the level of monounsaturated fatty acids and the level of polyunsaturated fatty acids increased. Biotin supplementation of the culture medium reduced the biomass productivity relative to biotin-free control, but had no effect on the total fatty acid content of the biomass.

  13. Seeding rate and date and timing of termination affect hairy vetch (Vicia villosa Roth) biomass production across the eastern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hairy vetch (Vicia villosa Roth) is a winter annual legume cover crop that is often grown because it can provide a substantial amount of N to the following cash crop. Nitrogen accumulation is dependent on biomass production, which in turn is affected by climate, seeding rate and date, and timing of ...

  14. Estimating Phytoplankton Biomass and Productivity.

    DTIC Science & Technology

    1981-06-01

    Identlfy by block nuusbet) -Estimates of phytoplankton biomass and rates of production can provide a manager with some insight into questions concerning...and growth. Phytoplankton biomass is the amount of algal material present, whereas productivity is the rate at which algal cell material is produced...biomass and productivity parameters. Munawar et al. (1974) reported that cell volume was better correlated to chlorophyll a and photosynthe- sis rates

  15. Analysis of biomass production systems

    SciTech Connect

    Mishoe, J.W.; Fluck, R.C.; Jones, J.W.; Lorber, M.N.; Peart, R.M.

    1983-06-01

    Methodology is presented to analyze biomass production systems using a modeling and simulation approach. To illustrate the concepts, example studies are presented for sugarcane, water hyacinth, and napier grass. Economics and energetic analysis are described using methane as the output.

  16. Biomass production in agroforestry and forestry systems on salt-affected soils in South Asia: exploration of the GHG balance and economic performance of three case studies.

    PubMed

    Wicke, Birka; Smeets, Edward M W; Akanda, Razzaque; Stille, Leon; Singh, Ranjay K; Awan, Abdul Rasul; Mahmood, Khalid; Faaij, Andre P C

    2013-09-30

    This study explores the greenhouse gas balance and the economic performance (i.e. net present value (NPV) and production costs) of agroforestry and forestry systems on salt-affected soils (biosaline (agro)forestry) based on three case studies in South Asia. The economic impact of trading carbon credits generated by biosaline (agro)forestry is also assessed as a potential additional source of income. The greenhouse gas balance shows carbon sequestration over the plantation lifetime of 24 Mg CO2-eq. ha(-1) in a rice-Eucalyptus camaldulensis agroforestry system on moderately saline soils in coastal Bangladesh (case study 1), 6 Mg CO2-eq. ha(-1) in the rice-wheat- Eucalyptus tereticornis agroforestry system on sodic/saline-sodic soils in Haryana state, India (case study 2), and 96 Mg CO2-eq. ha(-1) in the compact tree (Acacia nilotica) plantation on saline-sodic soils in Punjab province of Pakistan. The NPV at a discount rate of 10% is 1.1 k€ ha(-1) for case study 1, 4.8 k€ ha(-1) for case study 2, and 2.8 k€ ha(-1) for case study 3. Carbon sequestration translates into economic values that increase the NPV by 1-12% in case study 1, 0.1-1% in case study 2, and 2-24% in case study 3 depending on the carbon credit price (1-15 € Mg(-1) CO2-eq.). The analysis of the three cases indicates that the economic performance strongly depends on the type and severity of salt-affectedness (which affect the type and setup of the agroforestry system, the tree species and the biomass yield), markets for wood products, possibility of trading carbon credits, and discount rate.

  17. Bioconversion of waste biomass to useful products

    DOEpatents

    Grady, James L.; Chen, Guang Jiong

    1998-01-01

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, bacillus smithii ATCC No. 55404.

  18. Bioconversion of waste biomass to useful products

    DOEpatents

    Grady, J.L.; Chen, G.J.

    1998-10-13

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, Bacillus smithii ATCC No. 55404. 82 figs.

  19. Engineering verification of the biomass production chamber

    NASA Technical Reports Server (NTRS)

    Prince, R. P.; Knott, W. M., III; Sager, J. C.; Jones, J. D.

    1992-01-01

    The requirements for life support systems, both biological and physical-chemical, for long-term human attended space missions are under serious study throughout NASA. The KSC 'breadboard' project has focused on biomass production using higher plants for atmospheric regeneration and food production in a special biomass production chamber. This chamber is designed to provide information on food crop growth rate, contaminants in the chamber that alter plant growth requirements for atmospheric regeneration, carbon dioxide consumption, oxygen production, and water utilization. The shape and size, mass, and energy requirements in relation to the overall integrity of the biomass production chamber are under constant study.

  20. Diversity increases biomass production for trematode parasites in snails

    USGS Publications Warehouse

    Hechinger, Ryan F.; Lafferty, Kevin D.; Kuris, Armand M.

    2008-01-01

    Increasing species diversity typically increases biomass in experimental assemblages. But there is uncertainty concerning the mechanisms of diversity effects and whether experimental findings are relevant to ecological process in nature. Hosts for parasites provide natural, discrete replicates of parasite assemblages. We considered how diversity affects standing-stock biomass for a highly interactive parasite guild: trematode parasitic castrators in snails. In 185 naturally occurring habitat replicates (individual hosts), diverse parasite assemblages had greater biomass than single-species assemblages, including those of their most productive species. Additionally, positive diversity effects strengthened as species segregated along a secondary niche axis (space). The most subordinate species—also the most productive when alone—altered the general positive effect, and was associated with negative diversity effects on biomass. These findings, on a previously unstudied consumer class, extend previous research to illustrate that functional diversity and species identity may generally both explain how diversity influences biomass production in natural assemblages of competing species.

  1. Biomass production from inland brines

    SciTech Connect

    Reach, C.D. Jr.

    1985-01-01

    The feasibility of utilizing inland saline waters to produce biomass through the application of marine aquaculture was investigated. From available data, the diatom Phaeodactylum tricornutum and the crustacea Artemia salina were selected as the experimental marine organisms. The proposed diatom served to establish primary productivity and concurrently provide a food source for the herbivorus crustacea. The objective of the first phase research was to investigate the ability of P. tricornutum and A. salina to survive in the inland saline environment. Clarified activated sludge and anaerobic digester effluents were evaluated as nutrient sources for the diatom cultures. Experimental results indicated that diatom and crustacea growth in the inland brine was equivalent to control cultures utilizing seawater. Wastewater effluents were successful as nutrient sources for the diatom cultures. Bioassay experiments conducted with petroleum related brines yielded mixed results respect to the survival and growth of the P. tricornutum and A. salina organisms. A second series of experiments involved cholornaphthalene, chlorophenanthene, and chlorophenanthrene, and chloroanthracene as the experimental hydrocarbons. Results of the diatom studies show chloroanthracene to induce toxic effects at a concentration of 500 ug/L. Artemia studies showed no acutely toxic effects relative to the test hydrocarbons at 50 and 100 ug/L.

  2. Butanol production from renewable biomass by clostridia.

    PubMed

    Jang, Yu-Sin; Malaviya, Alok; Cho, Changhee; Lee, Joungmin; Lee, Sang Yup

    2012-11-01

    Global energy crisis and limited supply of petroleum fuels have rekindled the worldwide focus towards development of a sustainable technology for alternative fuel production. Utilization of abundant renewable biomass offers an excellent opportunity for the development of an economical biofuel production process at a scale sufficiently large to have an impact on sustainability and security objectives. Additionally, several environmental benefits have also been linked with the utilization of renewable biomass. Butanol is considered to be superior to ethanol due to its higher energy content and less hygroscopy. This has led to an increased research interest in butanol production from renewable biomass in recent years. In this paper, we review the various aspects of utilizing renewable biomass for clostridial butanol production. Focus is given on various alternative substrates that have been used for butanol production and on fermentation strategies recently reported to improve butanol production.

  3. PRODUCTION OF XYLITOL FROM AGRICULTURAL HEMICELLULOSIC BIOMASS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The production of value-added co-products from agricultural biomass is an important economic driver for the success of a biorefinery approach to the production of ethanol and other fuels. During most ethanol production methods, significant amounts of hemicellulose by-products are produced which are...

  4. Freshwater aquatic plant biomass production in Florida

    SciTech Connect

    Reddy, K.R.; Sutton, D.L.; Bowes, G.

    1983-01-01

    About 8% (1.2 million ha) of the total surface area of Florida is occupied by freshwater. Many of these water bodies are eutrophic. Nutrients present in these water bodies can be potentially used to culture aquatic plants as a possible feedstock for methane production. This paper summarizes the results of known research findings on biomass production potential of freshwater aquatic plants in Florida and identifies key research needs to improve the quality and quantity of biomass yields. Among floating aquatic plants, biomass yield potential was in the order of water-hyacinth > water lettuce > pennywort > salvinia > duckweed > azolla. Pennywort, duckweed, and azolla appear to perform well during the cooler months compared to other aquatic plants. Among emergent plants, biomass yield potential was in the order of southern wild rice > cattails > soft rush > bulrush. Cultural techniques, nutrient management, and environmental factors influencing the biomass yields were discussed. 68 references.

  5. Closed photobioreactors for production of microalgal biomasses.

    PubMed

    Wang, Bei; Lan, Christopher Q; Horsman, Mark

    2012-01-01

    Microalgal biomasses have been produced industrially for a long history for application in a variety of different fields. Most recently, microalgae are established as the most promising species for biofuel production and CO(2) bio-sequestration owing to their high photosynthesis efficiency. Nevertheless, design of photobioreactors that maximize solar energy capture and conversion has been one of the major challenges in commercial microalga biomass production. In this review, we systematically survey the recent developments in this field.

  6. Biomass pretreatment affects Ustilago maydis in producing itaconic acid

    PubMed Central

    2012-01-01

    Background In the last years, the biotechnological production of platform chemicals for fuel components has become a major focus of interest. Although ligno-cellulosic material is considered as suitable feedstock, the almost inevitable pretreatment of this recalcitrant material may interfere with the subsequent fermentation steps. In this study, the fungus Ustilago maydis was used to produce itaconic acid as platform chemical for the synthesis of potential biofuels such as 3-methyltetrahydrofuran. No studies, however, have investigated how pretreatment of ligno-cellulosic biomass precisely influences the subsequent fermentation by U. maydis. Thus, this current study aims to first characterize U. maydis in shake flasks and then to evaluate the influence of three exemplary pretreatment methods on the cultivation and itaconic acid production of this fungus. Cellulose enzymatically hydrolysed in seawater and salt-assisted organic-acid catalysed cellulose were investigated as substrates. Lastly, hydrolysed hemicellulose from fractionated beech wood was applied as substrate. Results U. maydis was characterized on shake flask level regarding its itaconic acid production on glucose. Nitrogen limitation was shown to be a crucial condition for the production of itaconic acid. For itaconic acid concentrations above 25 g/L, a significant product inhibition was observed. Performing experiments that simulated influences of possible pretreatment methods, U. maydis was only slightly affected by high osmolarities up to 3.5 osmol/L as well as of 0.1 M oxalic acid. The production of itaconic acid was achieved on pretreated cellulose in seawater and on the hydrolysed hemicellulosic fraction of pretreated beech wood. Conclusion The fungus U. maydis is a promising producer of itaconic acid, since it grows as single cells (yeast-like) in submerged cultivations and it is extremely robust in high osmotic media and real seawater. Moreover, U. maydis can grow on the hemicellulosic fraction

  7. Miscanthus as cellulosic biomass for bioethanol production.

    PubMed

    Lee, Wen-Chien; Kuan, Wei-Chih

    2015-06-01

    The members of the genus Miscanthus are potential feedstocks for biofuels because of the promising high yields of biomass per unit of planted area. This review addresses species, cultivation, and lignocellulose composition of Miscanthus, as well as pretreatment and enzyme saccharification of Miscanthus biomass for ethanol fermentation. The average cellulose contents in dried biomass of Miscanthus floridulus, Miscanthus sinensis, Miscanthus sacchariflorus, and Miscanthus × giganteus (M × G) are 37.2, 37.6, 38.9, and 41.1% wt/wt, respectively. A number of pretreatment methods have been applied in order to enhance digestibility of Miscanthus biomass for enzymatic saccharification. Pretreatment of Miscanthus using liquid hot water or alkaline results in a significant release of glucose; while glucose yields can be 90% or higher if a pretreatment like AFEX that combines both chemical and physical processes is used. As ethanol is produced by yeast fermentation of the hydrolysate from enzymatic hydrolysis of residual solids (pulp) after pretreatment, theoretical ethanol yields are 0.211-0.233 g/g-raw biomass if only cellulose is taken into account. Simultaneous saccharification and fermentation of pretreated M × G and M. lutarioriparius results in experimental ethanol yields of 0.13 and 0.15 g/g-raw biomass, respectively. Co-production of value-added products can reduce the overall production cost of bioethanol.

  8. Archaebacterial Fuel Production: Methane from Biomass.

    ERIC Educational Resources Information Center

    Lennox, John E.; And Others

    1983-01-01

    Discusses microbial production of methane from biomass. Topics include methogens (bacteria producing methane), ecology of methanogenesis, methanogenesis in ruminant/nonruminant and other environments, role of methanogenesis in nature, and methane production in sewage treatment plants. Also discusses construction of methane digesters (and related…

  9. Microbial production of energy sources from biomass

    NASA Astrophysics Data System (ADS)

    Righelato, R. C.

    1980-02-01

    The biochemical options available for the microbial production of energy sources from biomass is reviewed and some of the technology available for microbial conversion is discussed with particular reference to present limitations and how they may be overcome. Attention is given to the chemical process of anaerobic fermentation emphasizing the chemical reaction of glucose into pyruvic acid. The capital costs and energy consumption of ethanol and methane and their production are discussed. It is concluded that anaerobic fermentation of carbohydrates and digestion of biomass-containing effluents can be used as methods for achieving greater energy availability.

  10. Production of chemicals and fuels from biomass

    DOEpatents

    Woods, Elizabeth; Qiao, Ming; Myren, Paul; Cortright, Randy D.; Kania, John

    2015-12-15

    Described are methods, reactor systems, and catalysts for converting biomass to fuels and chemicals in a batch and/or continuous process. The process generally involves the conversion of water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C.sub.2+O.sub.1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C.sub.2+O.sub.1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.

  11. [Bio-oil production from biomass pyrolysis in molten salt].

    PubMed

    Ji, Dengxiang; Cai, Tengyue; Ai, Ning; Yu, Fengwen; Jiang, Hongtao; Ji, Jianbing

    2011-03-01

    In order to investigate the effects of pyrolysis conditions on bio-oil production from biomass in molten salt, experiments of biomass pyrolysis were carried out in a self-designed reactor in which the molten salt ZnCl2-KCl (with mole ratio 7/6) was selected as heat carrier, catalyst and dispersion agent. The effects of metal salt added into ZnCl2-KCl and biomass material on biomass pyrolysis were discussed, and the main compositions of bio-oil were determined by GC-MS. Metal salt added into molten salt could affect pyrolysis production yields remarkably. Lanthanon salt could enhance bio-oil yield and decrease water content in bio-oil, when mole fraction of 5.0% LaCl3 was added, bio-oil yield could reach up to 32.0%, and water content of bio-oil could reduce to 61.5%. The bio-oil and char yields were higher when rice straw was pyrolysed, while gas yield was higher when rice husk was used. Metal salts showed great selectivity on compositions of bio-oil. LiCl and FeCl2 promoted biomass to pyrolyse into smaller molecular weight compounds. CrCl3, CaCl2 and LaCl3 could restrain second pyrolysis of bio-oil. The research provided a scientific reference for production of bio-oil from biomass pyrolysis in molten salt.

  12. Polyhydroxyalkanoates production from waste biomass

    NASA Astrophysics Data System (ADS)

    Nor Aslan, A. K. H.; Ali, M. D. Muhd; Morad, N. A.; Tamunaidu, P.

    2016-06-01

    Polyhydroxyalkanoates (PHAs) is a group of biopolymers that are extensively researched for such purpose due to the biocompatibility with mammal tissue and similar properties with conventional plastic. However, commercialization of PHA is impended by its high total production cost, which half of it are from the cost of pure carbon source feedstock. Thus, cheap and sustainable feedstocks are preferred where waste materials from various industries are looked into. This paper will highlight recent studies done on PHA production by utilizing crop and agro waste material and review its potential as alternative feedstock.

  13. Biotechnological production of methanol from waste biomass

    SciTech Connect

    Kozak, R.; Morris, D.

    1995-12-01

    The production of methanol (CH{sub 3}OH) from waste biomass is possible through the use of genetically modified bacteria. The biomass to methanol conversion process makes use of a naturally occurring, direct aerobic enzymatic system referred to as oxidative demethylation. Methoxy groups are stripped off of lignin and lignin like plant substances (approximately fifty percent of all plant biomass) and hydrolyzed to form methanol. Since the biotech process is stoichiometric, potentially every methoxy group in the lignin feedstock can be converted to methanol fuel. Approximately 30-35% of lignin is a methoxy compound that can be converted. Biotechnological conversion could produce up to 100 gallons/ton or 20 billion gallons a year of methanol from waste biomass. Current work has focused on the genetic modification of the enzymatic conversion process to reach commercial production. The goals of this research are; increase product yields, implement an operon {open_quotes}switch{close_quotes} mechanism to exploit multiple feedstocks, and produce environmentally safe by-products. Progress on these topics will be reported.

  14. Outlook for Biomass Ethanol Production and Demand

    EIA Publications

    2000-01-01

    This paper presents a midterm forecast for biomass ethanol production under three different technology cases for the period 2000 to 2020, based on projections developed from the Energy Information Administration's National Energy Modeling System. An overview of cellulose conversion technology and various feedstock options and a brief history of ethanol usage in the United States are also presented.

  15. Products of direct liquefaction of biomass

    SciTech Connect

    Davis, H.G.; Eames, M.A.; Figueroa, C.; Gansley, R.R.; Schaleger, L.L.; Watt, D.W.

    1982-10-01

    Several methods of characterizing products of biomass liquefaction including GC-MS, wet analysis, infrared and various forms of liquid chromatography have been tried. Of these the SESC sequential elution technique has been particularly helpful in separating whole product oils into chemically distinguishable fractions. Variations in the distribution of SESC fractions have been used to show effects of changing conditions and changing feedstocks in biomass liquefaction. They have also been used to follow the effects of catalytic hydrogenation. Liquefaction of aspen results in higher yields than liquefaction of Douglas fir. The aspen oil product is richer in SESC fractions 1-4, is more fluid and has lower oxygen content. Catalytic hydrogenation is effective in increasing the percentage of oil in the more volatile SESC fractions 1-4.

  16. A 'breadboard' biomass production chamber for CELSS

    NASA Technical Reports Server (NTRS)

    Prince, Ralph P.; Knott, William M., III; Hilding, Suzanne E.; Mack, Tommy L.

    1987-01-01

    The Breadboard Project of the Controlled Ecological Life Support System (CELSS) Program is the first attempt by NASA to integrate the primary components of a bioregenerative life support system into a functioning system. The central component of this project is a Biomass Production Chamber (BPC). The BPC is under construction, and when finished will be sealed for the study of the flux of gases, liquids, and solids through the production module of a CELSS. Features of the CELSS breadboard facility will be covered as will design requirements for the BPC. Cultural practices developed for wheat for the BPC wil be discussed.

  17. Biological engineering for sustainable biomass production

    SciTech Connect

    Shen, S.

    1986-09-01

    A new discipline has evolved in efforts to engineer photosynthetic production systems that produce biomass feedstocks efficiently, economically and with minimal adverse environmental impact. In this talk an overview is given of how biological engineering systems are designed to produce energy and novel material products within the framework of existing market infrastructure. Practical examples of biological engineering systems which employ components based on genetic engineering, species propagation, modern agricultural techniques, chemical engineering, and mechanical engineering are analyzed for worldwide materials application and environmental conservation. 9 refs., 6 figs.

  18. Microbial biomass and productivity in seagrass beds

    NASA Technical Reports Server (NTRS)

    Moriarty, D. J.; Boon, P. I.; Hansen, J. A.; Hunt, W. G.; Poiner, I. R.; Pollard, P. C.; Skyring, G. W.; White, D. C.

    1985-01-01

    Different methods for measuring the rates of processes mediated by bacteria in sediments and the rates of bacterial cell production have been compared. In addition, net production of the seagrass Zostera capricorni and bacterial production have been compared and some interrelationships with the nitrogen cycle discussed. Seagrass productivity was estimated by measuring the plastochrone interval using a leaf stapling technique. The average productivity over four seasons was 1.28 +/- 0.28 g C m-2 day-1 (mean +/- standard deviation, n = 4). Bacterial productivity was measured five times throughout a year using the rate of tritiated thymidine incorporated into DNA. Average values were 33 +/- 12 mg C m-2 day-1 for sediment and 23 +/- 4 for water column (n = 5). Spatial variability between samples was greater than seasonal variation for both seagrass productivity and bacterial productivity. On one occasion, bacterial productivity was measured using the rate of 32P incorporated into phospholipid. The values were comparable to those obtained with tritiated thymidine. The rate of sulfate reduction was 10 mmol SO4(-2) m-2 day-1. The rate of methanogenesis was low, being 5.6 mg CH4 produced m-2 day-1. A comparison of C flux measured using rates of sulfate reduction and DNA synthesis indicated that anaerobic processes were predominant in these sediments. An analysis of microbial biomass and community structure, using techniques of phospholipid analysis, showed that bacteria were predominant members of the microbial biomass and that of these, strictly anaerobic bacteria were the main components. Ammonia concentration in interstitial water varied from 23 to 71 micromoles. Estimates of the amount of ammonia required by seagrass showed that the ammonia would turn over about once per day. Rapid recycling of nitrogen by bacteria and bacterial grazers is probably important.

  19. Biomass and pigments production in photosynthetic bacteria wastewater treatment: effects of light sources.

    PubMed

    Zhou, Qin; Zhang, Panyue; Zhang, Guangming

    2015-03-01

    This study is aimed at enhancing biomass and pigments production together with pollution removal in photosynthetic bacteria (PSB) wastewater treatment via different light sources. Red, yellow, blue, white LED and incandescent lamp were used. Results showed different light sources had great effects on the PSB. PSB had the highest biomass production, COD removal and biomass yield with red LED. The corresponding biomass, COD removal and biomass yield reached 2580 mg/L, 88.6% and 0.49 mg-biomass/mg-COD-removal, respectively. The hydraulic retention time of wastewater treatment could be shortened to 72 h with red LED. Mechanism analysis showed higher ATP was produced with red LED than others. Light sources could significantly affect the pigments production. The pigments productions were greatly higher with LED than incandescent lamp. Yellow LED had the highest pigments production while red LED produced the highest carotenoid/bacteriochlorophyll ratio. Considering both efficiency and energy cost, red LED was the optimal light source.

  20. Conversion of biomass to selected chemical products.

    PubMed

    Gallezot, Pierre

    2012-02-21

    This critical review provides a survey illustrated by recent references of different strategies to achieve a sustainable conversion of biomass to bioproducts. Because of the huge number of chemical products that can be potentially manufactured, a selection of starting materials and targeted chemicals has been done. Also, thermochemical conversion processes such as biomass pyrolysis or gasification as well as the synthesis of biofuels were not considered. The synthesis of chemicals by conversion of platform molecules obtained by depolymerisation and fermentation of biopolymers is presently the most widely envisioned approach. Successful catalytic conversion of these building blocks into intermediates, specialties and fine chemicals will be examined. However, the platform molecule value chain is in competition with well-optimised, cost-effective synthesis routes from fossil resources to produce chemicals that have already a market. The literature covering alternative value chains whereby biopolymers are converted in one or few steps to functional materials will be analysed. This approach which does not require the use of isolated, pure chemicals is well adapted to produce high tonnage products, such as paper additives, paints, resins, foams, surfactants, lubricants, and plasticisers. Another objective of the review was to examine critically the green character of conversion processes because using renewables as raw materials does not exempt from abiding by green chemistry principles (368 references).

  1. Species richness and the temporal stability of biomass production: A new analysis of recent biodiversity experiments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we investigate how species richness affects temporal stability of biomass production by analyzing 27 recent biodiversity experiments conducted in grassland and freshwater algal communities. We find that, in grasslands, increasing species richness stabilizes whole-community biomass pro...

  2. Microalgal biomass production: challenges and realities.

    PubMed

    Grobbelaar, Johan U

    2010-11-01

    The maximum quantum yield (Φ (max)), calculated from the maximum chlorophyll a specific photosynthetic rate divided by the quantum absorption per unit chlorophyll a, is 8 photons or 0.125 mol C per mol Quanta light energy. For the average solar radiation that reaches the earth's surface this relates to a photosynthetic yield of 1.79 g(dw) m(-2) day(-1) per percentage photosynthetic efficiency and it could be doubled for sunny, dry and hot areas. Many factors determine volumetric yields of mass algal cultures and it is not simply a question of extrapolating controlled laboratory rates to large scale outdoor production systems. This is an obvious mistake many algal biotechnology start-up companies make. Closed photobioreactors should be able to outperform open raceway pond cultures because of the synergistic enhancement of a reduced boundary layer and short light/dark fluctuations at high turbulences. However, this has not been shown on any large scale and to date the industrial norm for very large production systems is open raceway production ponds. Microalgal biomass production offers real opportunities for addressing issues such as CO(2) sequestration, biofuel production and wastewater treatment, and it should be the preferred research emphasis.

  3. Strategies for optimizing algal biology for enhanced biomass production

    SciTech Connect

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T.

    2015-02-02

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. In addition, these strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.

  4. Biomass gasification for liquid fuel production

    SciTech Connect

    Najser, Jan E-mail: vaclav.peer@vsb.cz; Peer, Václav E-mail: vaclav.peer@vsb.cz

    2014-08-06

    In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they dońt compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.

  5. Biomass gasification for liquid fuel production

    NASA Astrophysics Data System (ADS)

    Najser, Jan; Peer, Václav; Vantuch, Martin

    2014-08-01

    In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they dońt compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.

  6. Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis

    SciTech Connect

    Grant L. Hawkes; Michael G. McKellar

    2009-11-01

    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  7. Autohydrolysis Pretreatment of Lignocellulosic Biomass for Bioethanol Production

    NASA Astrophysics Data System (ADS)

    Han, Qiang

    Autohydrolysis, a simple and environmental friendly process, has long been studied but often abandoned as a financially viable pretreatment for bioethanol production due to the low yields of fermentable sugars at economic enzyme dosages. The introduction of mechanical refining can generate substantial improvements for autohydrolysis process, making it an attractive pretreatment technology for bioethanol commercialization. In this study, several lignocellulosic biomass including wheat straw, switchgrass, corn stover, waste wheat straw have been subjected to autohydrolysis pretreatment followed by mechanical refining to evaluate the total sugar recovery at affordable enzyme dosages. Encouraging results have been found that using autohydrolysis plus refining strategy, the total sugar recovery of most feedstock can be as high as 76% at 4 FPU/g enzymes dosages. The mechanical refining contributed to the improvement of enzymatic sugar yield by as much as 30%. Three non-woody biomass (sugarcane bagasse, wheat straw, and switchgrass) and three woody biomass (maple, sweet gum, and nitens) have been subjected to autohydrolysis pretreatment to acquire a fundamental understanding of biomass characteristics that affect the autohydrolysis and the following enzymatic hydrolysis. It is of interest to note that the nonwoody biomass went through substantial delignification during autohydrolysis compared to woody biomass due to a significant amount of p-coumaric acid and ferulic acid. It has been found that hardwood which has a higher S/V ratio in the lignin structure tends to have a higher total sugar recovery from autohydrolysis pretreatment. The economics of bioethanol production from autohydrolysis of different feedstocks have been investigated. Regardless of different feedstocks, in the conventional design, producing bioethanol and co-producing steam and power, the minimum ethanol revenues (MER) required to generate a 12% internal rate of return (IRR) are high enough to

  8. Analysis of coastal upwelling and the production of a biomass

    NASA Technical Reports Server (NTRS)

    Howe, J. T.

    1979-01-01

    The coastal upwelling index derived from weather data is input to a set of coupled differential equations that describe the production of a biomass. The curl of the wind stress vector is discussed in the context of the physical extent of the upwelling structure. An analogy between temperature and biomass concentration in the upwelled coastal water is derived and the relationship is quantified. The use of remote satellite or airborne sensing to obtain biomass rate production coefficients is considered.

  9. The economics of biomass production in the United States

    SciTech Connect

    Graham, R.L.; Walsh, M.E.; Lichtenberg, E.; Roningen, V.O.; Shapouri, H.

    1995-12-31

    Biomass crops (e.g. poplar, willow, switchgrass) could become important feedstocks for power, liquid fuel, and chemical production. This paper presents estimates of the potential production of biomass in the US under a range of assumptions. Estimates of potential biomass crop yields and production costs from the Department of Energy`s (DOE) Oak Ridge National Laboratories (ORNL) are combined with measures of land rents from USDA`s Conservation Reserve Program (CRP), to estimate a competitive supply of biomass wood and grass crops. Estimates are made for one potential biomass use--electric power production--where future costs of electricity production from competing fossil fuels set the demand price. The paper outlines the methodology used and limitations of the analysis.

  10. Microbial biodiesel production by direct methanolysis of oleaginous biomass.

    PubMed

    Thliveros, Panagiotis; Uçkun Kiran, Esra; Webb, Colin

    2014-04-01

    Biodiesel is usually produced by the transesterification of vegetable oils and animal fats with methanol, catalyzed by strong acids or bases. This study introduces a novel biodiesel production method that features direct base-catalyzed methanolysis of the cellular biomass of oleaginous yeast Rhodosporidium toruloides Y4. NaOH was used as catalyst for transesterification reactions and the variables affecting the esterification level including catalyst concentration, reaction temperature, reaction time, solvent loading (methanol) and moisture content were investigated using the oleaginous yeast biomass. The most suitable pretreatment condition was found to be 4gL(-1) NaOH and 1:20 (w/v) dried biomass to methanol ratio for 10h at 50°C and under ambient pressure. Under these conditions, the fatty acid methyl ester (FAME) yield was 97.7%. Therefore, the novel method of direct base-catalyzed methanolysis of R. toruloides is a much simpler, less tedious and time-consuming, process than the conventional processes with higher FAME (biodiesel) conversion yield.

  11. Iron nutrition, biomass production, and plant product quality.

    PubMed

    Briat, Jean-François; Dubos, Christian; Gaymard, Frédéric

    2015-01-01

    One of the grand challenges in modern agriculture is increasing biomass production, while improving plant product quality, in a sustainable way. Of the minerals, iron (Fe) plays a major role in this process because it is essential both for plant productivity and for the quality of their products. Fe homeostasis is an important determinant of photosynthetic efficiency in algae and higher plants, and we review here the impact of Fe limitation or excess on the structure and function of the photosynthetic apparatus. We also discuss the agronomic, plant breeding, and transgenic approaches that are used to remediate Fe deficiency of plants on calcareous soils, and suggest ways to increase the Fe content and bioavailability of the edible parts of crops to improve human diet.

  12. Making environmental assessments of biomass production systems comparable worldwide

    NASA Astrophysics Data System (ADS)

    Meyer, Markus A.; Seppelt, Ralf; Witing, Felix; Priess, Joerg A.

    2016-03-01

    Global demand for agricultural and forestry products fundamentally affects regional land-use change associated with environmental impacts (EIs) such as erosion. In contrast to aggregated global metrics such as greenhouse gas (GHG) balances, local/regional EIs of different agricultural and forestry production regions need methods which enable worldwide EI comparisons. The key aspect is to control environmental heterogeneity to reveal man-made differences of EIs between production regions. Environmental heterogeneity is the variation in biotic and abiotic environmental conditions. In the present study, we used three approaches to control environmental heterogeneity: (i) environmental stratification, (ii) potential natural vegetation (PNV), and (iii) regional environmental thresholds to compare EIs of solid biomass production. We compared production regions of managed forests and plantation forests in subtropical (Satilla watershed, Southeastern US), tropical (Rufiji basin, Tanzania), and temperate (Mulde watershed, Central Germany) climates. All approaches supported the comparison of the EIs of different land-use classes between and within production regions. They also standardized the different EIs for a comparison between the EI categories. The EIs for different land-use classes within a production region decreased with increasing degree of naturalness (forest, plantation forestry, and cropland). PNV was the most reliable approach, but lacked feasibility and relevance. The PNV approach explicitly included most of the factors that drive environmental heterogeneity in contrast to the stratification and threshold approaches. The stratification approach allows consistent global application due to available data. Regional environmental thresholds only included arbitrarily selected aspects of environmental heterogeneity; they are only available for few EIs. Especially, the PNV and stratification approaches are options to compare regional EIs of biomass or crop production

  13. The regional environmental impact of biomass production

    SciTech Connect

    Graham, R.L.

    1994-09-01

    The objective of this paper is to present a broad overview of the potential environmental impacts of biomass energy from energy crops. The subject is complex because the environmental impact of using biomass for energy must be considered in the context of alternative energy options while the environmental impact of producing biomass from energy crops must be considered in the context of the alternative land-uses. Using biomass-derived energy can reduce greenhouse gas emissions or increase them; growing biomass energy crops can enhance soil fertility or degrade it. Without knowing the context of the biomass energy, one can say little about its specific environmental impacts. The primary focus of this paper is an evaluation of the environmental impacts of growing energy crops. I present an approach for quantitatively evaluating the potential environmental impact of growing energy crops at a regional scale that accounts for the environmental and economic context of the crops. However, to set the stage for this discussion, I begin by comparing the environmental advantages and disadvantages of biomass-derived energy relative to other energy alternatives such as coal, hydropower, nuclear power, oil/gasoline, natural gas and photovoltaics.

  14. FRACTIONATION OF LIGNOCELLULOSIC BIOMASS FOR FUEL-GRADE ETHANOL PRODUCTION

    SciTech Connect

    F.D. Guffey; R.C. Wingerson

    2002-10-01

    PureVision Technology, Inc. (PureVision) of Fort Lupton, Colorado is developing a process for the conversion of lignocellulosic biomass into fuel-grade ethanol and specialty chemicals in order to enhance national energy security, rural economies, and environmental quality. Lignocellulosic-containing plants are those types of biomass that include wood, agricultural residues, and paper wastes. Lignocellulose is composed of the biopolymers cellulose, hemicellulose, and lignin. Cellulose, a polymer of glucose, is the component in lignocellulose that has potential for the production of fuel-grade ethanol by direct fermentation of the glucose. However, enzymatic hydrolysis of lignocellulose and raw cellulose into glucose is hindered by the presence of lignin. The cellulase enzyme, which hydrolyzes cellulose to glucose, becomes irreversibly bound to lignin. This requires using the enzyme in reagent quantities rather than in catalytic concentration. The extensive use of this enzyme is expensive and adversely affects the economics of ethanol production. PureVision has approached this problem by developing a biomass fractionator to pretreat the lignocellulose to yield a highly pure cellulose fraction. The biomass fractionator is based on sequentially treating the biomass with hot water, hot alkaline solutions, and polishing the cellulose fraction with a wet alkaline oxidation step. In September 2001 PureVision and Western Research Institute (WRI) initiated a jointly sponsored research project with the U.S. Department of Energy (DOE) to evaluate their pretreatment technology, develop an understanding of the chemistry, and provide the data required to design and fabricate a one- to two-ton/day pilot-scale unit. The efforts during the first year of this program completed the design, fabrication, and shakedown of a bench-scale reactor system and evaluated the fractionation of corn stover. The results from the evaluation of corn stover have shown that water hydrolysis prior to

  15. Strategies for optimizing algal biology for enhanced biomass production

    DOE PAGES

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T.

    2015-02-02

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials formore » biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass). To increase aerial carbon capture rates and biomass productivity, it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. In addition, these strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to twofold increases in biomass productivity.« less

  16. Tax issues and incentives for biomass products

    SciTech Connect

    Martin, K.

    1995-11-01

    The more sophisticated developers of biomass projects figure out ways to structure their projects to take advantage of tax subsidies. The federal government offers at least eight tax subsidies for biomass. This is rather like building a house. One tries to design the house to build in as many of these features as possible. The more tax benefits that can be built into the ownership structure for a project, the less the project will cost at the end of the day.

  17. Impact of light quality on biomass production and fatty acid content in the microalga Chlorella vulgaris.

    PubMed

    Hultberg, Malin; Jönsson, Helene Larsson; Bergstrand, Karl-Johan; Carlsson, Anders S

    2014-05-01

    In this study, the green microalga Chlorella vulgaris was exposed to monochromatic light at six different wavelengths in order to study the effect on biomass productivity and fatty acid content. A significantly higher amount of biomass by produced in the treatments with yellow, red and white light compared with blue, green and purple light. There were also significant differences in total lipid content and fatty acid profile between the treatments. The green light regime gave the lowest concentration of lipids, but increased the concentration of polyunsaturated fatty acids. Thus it can be concluded that light quality significantly affects biomass productivity, total lipid concentration and fatty acid profile in the microalga C. vulgaris.

  18. Biomass Production System (BPS) Plant Growth Unit

    NASA Astrophysics Data System (ADS)

    Morrow, R. C.; Crabb, T. M.

    The Biomass Production System (BPS) was developed under the Small Business Innovative Research (SBIR) program to meet science, biotechnology and commercial plant growth needs in the Space Station era. The BPS is equivalent in size to a double middeck locker, but uses it's own custom enclosure with a slide out structure to which internal components mount. The BPS contains four internal growth chambers, each with a growing volume of more than 4 liters. Each of the growth chambers has active nutrient delivery, and independent control of temperature, humidity, lighting, and CO2 set-points. Temperature control is achieved using a thermoelectric heat exchanger system. Humidity control is achieved using a heat exchanger with a porous interface which can both humidify and dehumidify. The control software utilizes fuzzy logic for nonlinear, coupled temperature and humidity control. The fluorescent lighting system can be dimmed to provide a range of light levels. CO2 levels are controlled by injecting pure CO2 to the system based on input from an infrared gas analyzer. The unit currently does not scrub CO2, but has been designed to accept scrubber cartridges. In addition to providing environmental control, a number of features are included to facilitate science. The BPS chambers are sealed to allow CO2 and water vapor exchange measurements. The plant chambers can be removed to allow manipulation or sampling of specimens, and each chamber has gas/fluid sample ports. A video camera is provided for each chamber, and frame-grabs and complete environmental data for all science and hardware system sensors are stored on an internal hard drive. Data files can also be transferred to 3.5-inch disks using the front panel disk drive

  19. Biomass Production System (BPS) plant growth unit.

    PubMed

    Morrow, R C; Crabb, T M

    2000-01-01

    The Biomass Production System (BPS) was developed under the Small Business Innovative Research (SBIR) program to meet science, biotechnology and commercial plant growth needs in the Space Station era. The BPS is equivalent in size to a double middeck locker, but uses its own custom enclosure with a slide out structure to which internal components mount. The BPS contains four internal growth chambers, each with a growing volume of more than 4 liters. Each of the growth chambers has active nutrient delivery, and independent control of temperature, humidity, lighting, and CO2 set-points. Temperature control is achieved using a thermoelectric heat exchanger system. Humidity control is achieved using a heat exchanger with a porous interface which can both humidify and dehumidify. The control software utilizes fuzzy logic for nonlinear, coupled temperature and humidity control. The fluorescent lighting system can be dimmed to provide a range of light levels. CO2 levels are controlled by injecting pure CO2 to the system based on input from an infrared gas analyzer. The unit currently does not scrub CO2, but has been designed to accept scrubber cartridges. In addition to providing environmental control, a number of features are included to facilitate science. The BPS chambers are sealed to allow CO2 and water vapor exchange measurements. The plant chambers can be removed to allow manipulation or sampling of specimens, and each chamber has gas/fluid sample ports. A video camera is provided for each chamber, and frame-grabs and complete environmental data for all science and hardware system sensors are stored on an internal hard drive. Data files can also be transferred to 3.5-inch disks using the front panel disk drive.

  20. Direct production of fractionated and upgraded hydrocarbon fuels from biomass

    SciTech Connect

    Felix, Larry G.; Linck, Martin B.; Marker, Terry L.; Roberts, Michael J.

    2014-08-26

    Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.

  1. Methane production from global biomass burning

    SciTech Connect

    Wei Min Hao; Ward, D.E.

    1993-11-20

    Emissions of methane from various sources of biomass burning are determined quantitatively for tropical, temperate, and boreal regions. About 85% of the total CH{sub 4} is emitted in the tropical area, which is mainly the result of shifting cultivation, fuelwood use, and deforestation. Methane emissions from biomass burning may have increased by at least 9% during the last decade because of increases in tropical deforestation and the use of fuelwood. Changes in land use practices and population growth in the tropics are possible causes of the increase of atmospheric CH{sub 4} concentration. 31 refs., 1 fig., 4 tabs.

  2. Superior cottonwood and eucalyptus clones for biomass production in wastewater biomass production in wastewater bioremediation systems

    SciTech Connect

    Rockwood, D.L.; Pisano, S.M.; McConnell, W.V.

    1996-12-31

    Fast-growing cottonwood and Eucalyptus species have wastewater bioremediation potential. To estimate genetic variation in cottonwood`s response to sewage effluent, 10 clones were planted at Tallahassee in April 1992. Progenies and/or clones of E. Ampligolia (EA). E. Camaldulensis (EC), and E. Grandis (EG) were planted in a dry stormwater retention/bioremediation pond constructed in June 1993 at Tampa. Genetic variability within cottonwood and Eucalyptus species was observed and should be utilized to optimize biomass production and nutrient uptake in wastewater bioremediation applications. On good sites with freeze risk in northern Florida, three cottonwood clones are particularly productive. While as many as four EC and EG clones are promising, one EG clone appears superior for stormwater remediation, systems in central Florida.

  3. Investigating combustion as a method of processing inedible biomass produced in NASA's biomass production chamber

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Wheeler, R. M.; Hinkle, C. R.; Sager, J. C.; Knott, W. M.

    1991-01-01

    The Controlled Ecological Life Support System (CELSS) Breadboard Project at the John F. Kennedy Space Center is a research program to integrate and evaluate biological processes to provide air, water, and food for humans in closed environments for space habitation. This project focuses on the use of conventional crop plants as grown in the Biomass Production Chamber (BPC) for the production and recycling of oxygen, food, and water. The inedible portion of these crops has the potential to be converted to edible biomass or directly to the elemental constituents for direct recycling. Converting inedible biomass directly, by combustion, to carbon dioxide, water, and minerals could provide a baseline for estimating partitioning of the mass balance during recycling in a CELSS. Converting the inedible biomass to carbon dioxide and water requires the same amount of oxygen that was produced by photosynthesis. The oxygen produced during crop growth is just equal to the oxygen required to oxidize all the biomass produced during growth. Thus, the amount of oxygen produced that is available for human consumption is in proportion to the amount of biomass actually utilized by humans. The remaining oxygen must be available to oxidize the rest of the biomass back to carbon dioxide and water or the system will not be a regenerative one.

  4. Method for creating high carbon content products from biomass oil

    DOEpatents

    Parker, Reginald; Seames, Wayne

    2012-12-18

    In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

  5. Correlation and path analysis of biomass sorghum production.

    PubMed

    Vendruscolo, T P S; Barelli, M A A; Castrillon, M A S; da Silva, R S; de Oliveira, F T; Corrêa, C L; Zago, B W; Tardin, F D

    2016-12-23

    Sorghum biomass is an interesting raw material for bioenergy production due to its versatility, potential of being a renewable energy source, and low-cost of production. The objective of this study was to evaluate the genetic variability of biomass sorghum genotypes and to estimate genotypic, phenotypic, and environmental correlations, and direct and indirect effects of seven agronomic traits through path analysis. Thirty-four biomass sorghum genotypes and two forage sorghum genotypes were cultivated in a randomized block design with three replicates. The following morpho-agronomic traits were evaluated: flowering date, stem diameter, number of stems, plant height, number of leaves, green mass production, and dry matter production. There were significant differences at the 1% level for all traits. The highest genotypic correlation was found between the traits green mass production and dry matter production. The path analysis demonstrated that green mass production and number of leaves can assist in the selection of dry matter production.

  6. Sustainable Production of Switchgrass for Biomass Energy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass (Panicum virgatum L.) is a C4 grass native to the North American tallgrass prairies, which historically extended from Mexico to Canada. It is the model perennial warm-season grass for biomass energy. USDA-ARS in Lincoln, NE has studied switchgrass continuously since 1936. Plot-scale rese...

  7. Photoelectrochemical hydrogen production from biomass derivatives and water.

    PubMed

    Lu, Xihong; Xie, Shilei; Yang, Hao; Tong, Yexiang; Ji, Hongbing

    2014-11-21

    Hydrogen, a clean energy carrier with high energy capacity, is a very promising candidate as a primary energy source for the future. Photoelectrochemical (PEC) hydrogen production from renewable biomass derivatives and water is one of the most promising approaches to producing green chemical fuel. Compared to water splitting, hydrogen production from renewable biomass derivatives and water through a PEC process is more efficient from the viewpoint of thermodynamics. Additionally, the carbon dioxide formed can be re-transformed into carbohydrates via photosynthesis in plants. In this review, we focus on the development of photoanodes and systems for PEC hydrogen production from water and renewable biomass derivatives, such as methanol, ethanol, glycerol and sugars. We also discuss the future challenges and opportunities for the design of the state-of-the-art photoanodes and PEC systems for hydrogen production from biomass derivatives and water.

  8. Regulation for Optimal Liquid Products during Biomass Pyrolysis: A Review

    NASA Astrophysics Data System (ADS)

    Wang, F.; Hu, L. J.; Zheng, Y. W.; Huang, Y. B.; Yang, X. Q.; Liu, C.; Kang, J.; Zheng, Z. F.

    2016-08-01

    The liquid product obtained from biomass pyrolysis is very valuable that it could be used for extraction of chemicals as well as for liquid fuel. The desire goal is to obtain the most bio-oil with desired higher heating value (HHV), high physicochemical stability. The yields and chemical composition of products from biomass pyrolysis are closely related to the feedstock, pyrolysis parameters and catalysts. Current researches mainly concentrated on the co-pyrolysis of different biomass and introduce of novel catalysts as well as the combined effect of catalysts and pyrolysis parameters. This review starts with the chemical composition of biomass and the fundamental parameters and focuses on the influence of catalysts on bio-oil. What is more, the pyrolysis facilities at commercial scales were also involved. The classic researches and the current literature about the yield and composition of products (mainly liquid products) are summarized.

  9. Biomass and energy productivity of Leucaena under humid subtropical conditions

    SciTech Connect

    Othman, A.B.; Prine, G.M.

    1984-01-01

    A table shows the amount and energy content of above-ground biomass produced in 1982 and 1983 by the 12 most productive of 62 accessions of Leucanena spp. established in 1979 at the University of Florida. Mean annual biomass production of the 12 accessions was 29.3 and 24.7 Mg/ha, with energy contents of 19,690 and 19,820 J/g, in 1982 and 1983 respectively.

  10. Biomass and neutral lipid production in geothermal microalgal consortia.

    PubMed

    Bywaters, Kathryn F; Fritsen, Christian H

    2014-01-01

    Recently, technologies have been developed that offer the possibility of using algal biomass as feedstocks to energy producing systems - in addition to oil-derived fuels (Bird et al., 2011, 2012). Growing native mixed microalgal consortia for biomass in association with geothermal resources has the potential to mitigate negative impacts of seasonally low temperatures on biomass production systems as well as mitigate some of the challenges associated with growing unialgal strains. We assessed community composition, growth rates, biomass, and neutral lipid production of microalgal consortia obtained from geothermal hot springs in the Great Basin/Nevada area that were cultured under different thermal and light conditions. Biomass production rates ranged from 39.0 to 344.1 mg C L(-1) day(-1). The neutral lipid production in these consortia with and without shifts to lower temperatures and additions of bicarbonate (both environmental parameters that have been shown to enhance neutral lipid production) ranged from 0 to 38.74 mg free fatty acids (FFA) and triacylglycerols (TAG) L(-1 )day(-1); the upper value was approximately 6% of the biomass produced. The higher lipid values were most likely due to the presence of Achnanthidium sp. Palmitic and stearic acids were the dominant free fatty acids. The S/U ratio (the saturated to unsaturated FA ratio) decreased for cultures shifted from their original temperature to 15°C. Biomass production was within the upper limits of those reported for individual strains, and production of neutral lipids was increased with secondary treatment. All results demonstrate a potential of culturing and manipulating resultant microalgal consortia for biomass-based energy production and perhaps even for biofuels.

  11. Biomass and Neutral Lipid Production in Geothermal Microalgal Consortia

    PubMed Central

    Bywaters, Kathryn F.; Fritsen, Christian H.

    2015-01-01

    Recently, technologies have been developed that offer the possibility of using algal biomass as feedstocks to energy producing systems – in addition to oil-derived fuels (Bird et al., 2011, 2012). Growing native mixed microalgal consortia for biomass in association with geothermal resources has the potential to mitigate negative impacts of seasonally low temperatures on biomass production systems as well as mitigate some of the challenges associated with growing unialgal strains. We assessed community composition, growth rates, biomass, and neutral lipid production of microalgal consortia obtained from geothermal hot springs in the Great Basin/Nevada area that were cultured under different thermal and light conditions. Biomass production rates ranged from 39.0 to 344.1 mg C L−1 day−1. The neutral lipid production in these consortia with and without shifts to lower temperatures and additions of bicarbonate (both environmental parameters that have been shown to enhance neutral lipid production) ranged from 0 to 38.74 mg free fatty acids (FFA) and triacylglycerols (TAG) L−1 day−1; the upper value was approximately 6% of the biomass produced. The higher lipid values were most likely due to the presence of Achnanthidium sp. Palmitic and stearic acids were the dominant free fatty acids. The S/U ratio (the saturated to unsaturated FA ratio) decreased for cultures shifted from their original temperature to 15°C. Biomass production was within the upper limits of those reported for individual strains, and production of neutral lipids was increased with secondary treatment. All results demonstrate a potential of culturing and manipulating resultant microalgal consortia for biomass-based energy production and perhaps even for biofuels. PMID:25763368

  12. Sophorolipid production from lignocellulosic biomass feedstocks

    NASA Astrophysics Data System (ADS)

    Samad, Abdul

    , the yield of SLs was 0.55 g/g carbon (sugars plus oil) for cultures with bagasse hydrolysates. Further, SL production was investigated using sweet sorghum bagasse and corn stover hydrolysates derived from different pretreatment conditions. For the former and latter sugar sources, yellow grease or soybean oil was supplemented at different doses to enhance sophorolipid yield. 14-day batch fermentation on bagasse hydrolysates with 10, 40 and 60 g/L of yellow grease had cell densities of 5.7 g/L, 6.4 g/L and 7.8 g/L, respectively. The study also revealed that the yield of SLs on bagasse hydrolysate decreased from 0.67 to 0.61 and to 0.44 g/g carbon when yellow grease was dosed at 10, 40 and 60 g/L. With aforementioned increasing yellow grease concentration, the residual oil left after 14 days was recorded as 3.2 g/L, 8.5 g/L and 19.9 g/L. For similar experimental conditions, the cell densities observed for corn stover hydrolysate combined with soybean oil at 10, 20 and 40 g/L concentration were 6.1 g/L, 5.9 g/L, and 5.4 g/L respectively. Also, in the same order of oil dose supplemented, the residual oil recovered after 14-day was 8.5 g/L, 8.9 g/L, and 26.9 g/L. Corn stover hydrolysate mixed with the 10, 20 and 40 g/L soybean oil, the SL yield was 0.19, 0.11 and 0.09 g/g carbon. Overall, both hydrolysates supported cell growth and sophorolipid production. The results from this research show that hydrolysates derived from the different lignocellulosic biomass feedstocks can be utilized by C. bombicola to achieve substantial yields of SLs. Based upon the results revealed by several batch-stage experiments, it can be stated that there is great potential for scaling up and industrial scale production of these high value products in future.

  13. Biomass and lipid production of a local isolate Chlorella sorokiniana under mixotrophic growth conditions.

    PubMed

    Juntila, D J; Bautista, M A; Monotilla, W

    2015-09-01

    A local Chlorella sp. isolate with 97% rbcL sequence identity to Chlorella sorokiniana was evaluated in terms of its biomass and lipid production under mixotrophic growth conditions. Glucose-supplemented cultures exhibited increasing growth rate and biomass yield with increasing glucose concentration. Highest growth rate and biomass yield of 1.602 day(-1) and 687.5 mg L(-1), respectively, were achieved under 2 g L(-1) glucose. Nitrogen starvation up to 75% in the 1.0 g L(-1) glucose-supplemented culture was done to induce lipid accumulation and did not significantly affect the growth. Lipid content ranges from 20% to 27% dry weight. Nile Red staining showed more prominent neutral lipid bodies in starved mixotrophic cultures. C. sorokiniana exhibited enhanced biomass production under mixotrophy and more prominent neutral lipid accumulation under nitrogen starvation with no significant decrease in growth; hence, this isolate could be further studied to establish its potential for biodiesel production.

  14. Species richness and the temporal stability of biomass production: a new analysis of recent biodiversity experiments.

    PubMed

    Gross, Kevin; Cardinale, Bradley J; Fox, Jeremy W; Gonzalez, Andrew; Loreau, Michel; Polley, H Wayne; Reich, Peter B; van Ruijven, Jasper

    2014-01-01

    The relationship between biological diversity and ecological stability has fascinated ecologists for decades. Determining the generality of this relationship, and discovering the mechanisms that underlie it, are vitally important for ecosystem management. Here, we investigate how species richness affects the temporal stability of biomass production by reanalyzing 27 recent biodiversity experiments conducted with primary producers. We find that, in grasslands, increasing species richness stabilizes whole-community biomass but destabilizes the dynamics of constituent populations. Community biomass is stabilized because species richness impacts mean biomass more strongly than its variance. In algal communities, species richness has a minimal effect on community stability because richness affects the mean and variance of biomass nearly equally. Using a new measure of synchrony among species, we find that for both grasslands and algae, temporal correlations in species biomass are lower when species are grown together in polyculture than when grown alone in monoculture. These results suggest that interspecific interactions tend to stabilize community biomass in diverse communities. Contrary to prevailing theory, we found no evidence that species' responses to environmental variation in monoculture predicted the strength of diversity's stabilizing effect. Together, these results deepen our understanding of when and why increasing species richness stabilizes community biomass.

  15. Effects of two contrasting hemiparasitic plant species on biomass production and nitrogen availability.

    PubMed

    Demey, Andreas; Ameloot, Els; Staelens, Jeroen; De Schrijver, An; Verstraeten, Gorik; Boeckx, Pascal; Hermy, Martin; Verheyen, Kris

    2013-09-01

    Hemiparasitic plants can substantially change plant community structure; the drainage of host resources has a direct negative effect on host biomass and, as a consequence, promotes non-host biomass production (parasitism pathway); on the other hand, hemiparasitic litter inputs can enhance nutrient cycling which may have an indirect positive effect on both host and non-host biomass production (litter pathway). We evaluated the net effect of both pathways on total shoot biomass (with and without the hemiparasite) and shoot biomass of graminoids, forbs and ericaceous shrubs using a removal experiment in three sites infested with the annual Rhinanthus angustifolius, and three sites infested with the biennial Pedicularis sylvatica. We addressed the potential importance of litter effects by determination of litter quantity and quality, as well as modeling N release during decomposition. In the second year after removing the hemiparasites, total plant biomass at Rhinanthus sites was 24 % higher in weeded plots than in control plots, while weeding had no significant effect at Pedicularis sites. The increase in total biomass following Rhinanthus removal was mainly due to a higher biomass of graminoids. The amount of litter produced by Rhinanthus was only half of that produced by Pedicularis; N contents were similar. The amount of N in the litter was 9 and 30 % of the amount removed by mowing for Rhinanthus and Pedicularis sites, respectively. Within 2 months, about 45 % of the N in both hemiparasitic litter types was released by decomposition. Our results suggest that in addition to the suppression of host biomass due to parasitism, positive litter feedbacks on host and non-host biomass-via an increase in nutrient availability-also affect plant community structure. We propose that, depending on the particular hemiparasite and/or site conditions, these positive litter feedbacks on shoot biomass can compensate for the negative effect of parasitism.

  16. Biomass Burning and the Production of Greenhouse Gases. Chapter 9

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1994-01-01

    Biomass burning is a source of greenhouse gases, carbon dioxide, methane, and nitrous oxide. In addition, biomass burning is a source of chemically active gases, including carbon monoxide, nonmethane hydrocarbons, and nitric oxide. These gases, along with methane, lead to the chemical production of tropospheric ozone (another greenhouse gas) as well as control the concentration of the hydroxyl radical, which regulates the lifetime of almost every atmospheric gas. Following biomass burning, biogenic emissions of nitrous oxide, nitric oxide, and methane are significantly enhanced. It is hypothesized that enhanced postburn biogenic emissions of these gases are related to fire-induced changes in soil chemistry and/or microbial ecology. Biomass burning, once believed to be a tropical phenomenon, has been demonstrated by satellite imagery to also be a regular feature of the world's boreal forests. One example of biomass burning is the extensive 1987 fire that destroyed more than 12 million acres of boreal forest in the People's Republic of China and across its border in the Soviet Union. Recent estimates indicate that almost all biomass burning is human-initiated and that it is increasing with time. With the formation of greenhouse and chemically active gases as direct combustion products and a longer-term enhancement of biogenic emissions of gases, biomass burning may be a significant driver for global change.

  17. Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products.

    PubMed

    Chen, Hong-Zhang; Liu, Zhi-Hua

    2015-06-01

    Pretreatment is a key unit operation affecting the refinery efficiency of plant biomass. However, the poor efficiency of pretreatment and the lack of basic theory are the main challenges to the industrial implementation of the plant biomass refinery. The purpose of this work is to review steam explosion and its combinatorial pretreatment as a means of overcoming the intrinsic characteristics of plant biomass, including recalcitrance, heterogeneity, multi-composition, and diversity. The main advantages of the selective use of steam explosion and other combinatorial pretreatments across the diversity of raw materials are introduced. Combinatorial pretreatment integrated with other unit operations is proposed as a means to exploit the high-efficiency production of bio-based products from plant biomass. Finally, several pilot- and demonstration-scale operations of the plant biomass refinery are described. Based on the principle of selective function and structure fractionation, and multi-level and directional composition conversion, an integrated process with the combinatorial pretreatments of steam explosion and other pretreatments as the core should be feasible and conform to the plant biomass refinery concept. Combinatorial pretreatments of steam explosion and other pretreatments should be further exploited based on the type and intrinsic characteristics of the plant biomass used, the bio-based products to be made, and the complementarity of the processes.

  18. Engineering analysis of biomass gasifier product gas cleaning technology

    SciTech Connect

    Baker, E.G.; Brown, M.D.; Moore, R.H.; Mudge, L.K.; Elliott, D.C.

    1986-08-01

    For biomass gasification to make a significant contribution to the energy picture in the next decade, emphasis must be placed on the generation of clean, pollutant-free gas products. This reports attempts to quantify levels of particulated, tars, oils, and various other pollutants generated by biomass gasifiers of all types. End uses for biomass gases and appropriate gas cleaning technologies are examined. Complete systems analysis is used to predit the performance of various gasifier/gas cleanup/end use combinations. Further research needs are identified. 128 refs., 20 figs., 19 tabs.

  19. Microalgal biomass production pathways: evaluation of life cycle environmental impacts

    PubMed Central

    2013-01-01

    Background Microalgae are touted as an attractive alternative to traditional forms of biomass for biofuel production, due to high productivity, ability to be cultivated on marginal lands, and potential to utilize carbon dioxide (CO2) from industrial flue gas. This work examines the fossil energy return on investment (EROIfossil), greenhouse gas (GHG) emissions, and direct Water Demands (WD) of producing dried algal biomass through the cultivation of microalgae in Open Raceway Ponds (ORP) for 21 geographic locations in the contiguous United States (U.S.). For each location, comprehensive life cycle assessment (LCA) is performed for multiple microalgal biomass production pathways, consisting of a combination of cultivation and harvesting options. Results Results indicate that the EROIfossil for microalgae biomass vary from 0.38 to 1.08 with life cycle GHG emissions of −46.2 to 48.9 (g CO2 eq/MJ-biomass) and direct WDs of 20.8 to 38.8 (Liters/MJ-biomass) over the range of scenarios analyzed. Further anaylsis reveals that the EROIfossil for production pathways is relatively location invariant, and that algae’s life cycle energy balance and GHG impacts are highly dependent on cultivation and harvesting parameters. Contrarily, algae’s direct water demands were found to be highly sensitive to geographic location, and thus may be a constraining factor in sustainable algal-derived biofuel production. Additionally, scenarios with promising EROIfossil and GHG emissions profiles are plagued with high technological uncertainty. Conclusions Given the high variability in microalgae’s energy and environmental performance, careful evaluation of the algae-to-fuel supply chain is necessary to ensure the long-term sustainability of emerging algal biofuel systems. Alternative production scenarios and technologies may have the potential to reduce the critical demands of biomass production, and should be considered to make algae a viable and more efficient biofuel alternative

  20. Production of distillate fuels from biomass-derived polyoxygenates

    DOEpatents

    Kania, John; Blommel, Paul; Woods, Elizabeth; Dally, Brice; Lyman, Warren; Cortright, Randy

    2017-03-14

    The present invention provides methods, reactor systems and catalysts for converting biomass and biomass-derived feedstocks to C.sub.8+ hydrocarbons using heterogenous catalysts. The product stream may be separated and further processed for use in chemical applications, or as a neat fuel or a blending component in jet fuel and diesel fuel, or as heavy oils for lubricant and/or fuel oil applications.

  1. Liquid fuels production from biomass. Final report

    SciTech Connect

    Levy, P. F.; Sanderson, J. E.; Ashare, E.; Wise, D. L.; Molyneaux, M. S.

    1980-06-30

    The current program to convert biomass into liquid hydrocarbon fuels is an extension of a previous program to ferment marine algae to acetic acid. In that study it was found that marine algae could be converted to higher aliphatic organic acids and that these acids could be readily removed from the fermentation broth by membrane or liquid-liquid extraction. It was then proposed to convert these higher organic acids via Kolbe electrolysis to aliphatic hydrocarbons, which may be used as a diesel fuel. The specific goals for the current porgram are: (1) establish conditions under which substrates other than marine algae may be converted in good yield to organic acids, here the primary task is methane suppression; (2) modify the current 300-liter fixed packed bed batch fermenter to operate in a continuous mode; (3) change from membrane extraction of organic acids to liquid-liquid extraction; (4) optimize the energy balance of the electrolytic oxidation process, the primary task is to reduce the working potential required for the electrolysis while maintaining an adequate current density; (5) scale the entire process up to match the output of the 300 liter fermenter; and (6) design pilot plant and commercial size plant (1000 tons/day) processes for converting biomass to liquid hydrocarbon fuels and perform an economic analysis for the 1000 ton/day design.

  2. The diversity-biomass-productivity relationships in grassland management and restoration

    USGS Publications Warehouse

    Guo, Q.

    2007-01-01

    Diversity, biomass, and productivity, the three key community/ecosystem variables, are interrelated and pose reciprocal influences on each other. The relationships among the three variables have been a central focus in ecology and formed two schools of fundamentally different nature with two related applications: (1) management - how biomass manipulation (e.g., grazing, burning) affects diversity and productivity, and (2) restoration - how diversity manipulation (e.g., seeding, planting) affects biomass and productivity. In the past, the two apparently related aspects have been studied intensively but separately in basic research and the reciprocal effects of the three variables and applied aspects have not been jointly addressed. In most cases, optimal management often involves regulating biomass so that high diversity and productivity or other preferred habitat characteristics can be achieved and maintained, while restoration usually involves planting/seeding a certain number and/or combination of native species so that the native structure and function of the habitat can be restored and degraded ecosystems can recover faster. This article attempts to unify these two schools and discusses the significance and implications of the diversity-biomass-productivity relationships in practice, with particular emphasis on grassland ecosystems. ?? 2006 Gesellschaft fu??r O??kologie.

  3. Application Problem of Biomass Combustion in Greenhouses for Crop Production

    NASA Astrophysics Data System (ADS)

    Kawamura, Atsuhiro; Akisawa, Atsushi; Kashiwagi, Takao

    It is consumed much energy in fossil fuels to production crops in greenhouses in Japan. And fl ue gas as CO2 fertilization is used for growing crops in modern greenhouses. If biomass as renewable energy can use for production vegetables in greenhouses, more than 800,000 kl of energy a year (in crude oil equivalent) will be saved. In this study, at fi rst, we made the biomass combustion equipment, and performed fundamental examination for various pellet fuel. We performed the examination that considered an application to a real greenhouse next. We considered biomass as both a source of energy and CO2 gas for greenhouses, and the following fi ndings were obtained: 1) Based on the standard of CO2 gas fertilization to greenhouses, it is diffi cult to apply biomass as a CO2 fertilizer, so that biomass should be applied to energy use only, at least for the time being. 2) Practical biomass energy machinery for economy, high reliability and greenhouses satisfying the conservatism that it is easy is necessary. 3) It is necessary to develop crop varieties and cultivation systems requiring less strict environmental control. 4) Disposal of combustion ash occurring abundantly, effective practical use is necessary.

  4. Biodiversity simultaneously enhances the production and stability of community biomass, but the effects are independent.

    PubMed

    Cardinale, Bradley J; Gross, Kevin; Fritschie, Keith; Flombaum, Pedro; Fox, Jeremy W; Rixen, Christian; van Ruijven, Jasper; Reich, Peter B; Scherer-Lorenzen, Michael; Wilsey, Brian J

    2013-08-01

    To predict the ecological consequences of biodiversity loss, researchers have spent much time and effort quantifying how biological variation affects the magnitude and stability of ecological processes that underlie the functioning of ecosystems. Here we add to this work by looking at how biodiversity jointly impacts two aspects of ecosystem functioning at once: (1) the production of biomass at any single point in time (biomass/area or biomass/ volume), and (2) the stability of biomass production through time (the CV of changes in total community biomass through time). While it is often assumed that biodiversity simultaneously enhances both of these aspects of ecosystem functioning, the joint distribution of data describing how species richness regulates productivity and stability has yet to be quantified. Furthermore, analyses have yet to examine how diversity effects on production covary with diversity effects on stability. To overcome these two gaps, we reanalyzed the data from 34 experiments that have manipulated the richness of terrestrial plants or aquatic algae and measured how this aspect of biodiversity affects community biomass at multiple time points. Our reanalysis confirms that biodiversity does indeed simultaneously enhance both the production and stability of biomass in experimental systems, and this is broadly true for terrestrial and aquatic primary producers. However, the strength of diversity effects on biomass production is independent of diversity effects on temporal stability. The independence of effect sizes leads to two important conclusions. First, while it may be generally true that biodiversity enhances both productivity and stability, it is also true that the highest levels of productivity in a diverse community are not associated with the highest levels of stability. Thus, on average, diversity does not maximize the various aspects of ecosystem functioning we might wish to achieve in conservation and management. Second, knowing how

  5. A Review on Biomass Torrefaction Process and Product Properties

    SciTech Connect

    Jaya Shankar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; J. Richard Hess; Richard D. Boardman

    2011-08-01

    Biomass Torrefaction is gaining attention as an important preprocessing step to improve the quality of biomass in terms of physical properties and chemical composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of approximately 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-280 C. Thus, the process can be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, which produces a final product that will have a lower mass but a higher heating value. The present review work looks into (a) torrefaction process and different products produced during the process and (b) solid torrefied material properties which include: (i) physical properties like moisture content, density, grindability, particle size distribution and particle surface area and pelletability; (ii) chemical properties like proximate and ultimate composition; and (iii) storage properties like off-gassing and spontaneous combustion.

  6. Enhancing biomass and ethanol production by increasing NADPH production in Synechocystis sp. PCC 6803.

    PubMed

    Choi, Yun-Nam; Park, Jong Moon

    2016-08-01

    This study demonstrates that increased NADPH production can improve biomass and ethanol production in cyanobacteria. We over-expressed the endogenous zwf gene, which encodes glucose-6-phosphate dehydrogenase of pentose phosphate pathway, in the model cyanobacterium Synechocystis sp. PCC 6803. zwf over-expression resulted in increased NADPH production, and promoted biomass production compared to the wild type in both autotrophic and mixotrophic conditions. Ethanol production pathway including NADPH-dependent alcohol dehydrogenase was also integrated with and without zwf over-expression. Excessive NADPH production by zwf over-expression could improve both biomass and ethanol production in the autotrophic conditions.

  7. Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review

    SciTech Connect

    Ruth, M.

    2011-10-01

    This independent review is the conclusion arrived at from data collection, document reviews, interviews and deliberation from December 2010 through April 2011 and the technical potential of Hydrogen Production Cost Estimate Using Biomass Gasification. The Panel reviewed the current H2A case (Version 2.12, Case 01D) for hydrogen production via biomass gasification and identified four principal components of hydrogen levelized cost: CapEx; feedstock costs; project financing structure; efficiency/hydrogen yield. The panel reexamined the assumptions around these components and arrived at new estimates and approaches that better reflect the current technology and business environments.

  8. Assessment of technology for production of liquid fuels from biomass

    SciTech Connect

    Sheppard, A.P.; Spurlock, J.M.; Birchfield, J.L.

    1981-01-01

    Technologies for liquid fuel production from biomass vary widely in states of development and extent of need for government action. Ethanol produced from grain (principally corn), for use in gasohol blends, is the most widely used and accepted biomass-based energy source in the U.S. at present. Several practical factors strongly point to needed government emphasis on research and development to advance ethanol-production technology. Liquid fuels produced from soybeans, sunflowers, Euphorbia and similar crops, or from aquatic plants, remain as longer-term potential requiring further assessment. 6 refs.

  9. Ethylene dynamics in the CELSS biomass production chamber

    NASA Technical Reports Server (NTRS)

    Rakow, Allen L.

    1994-01-01

    A material balance model for ethylene was developed and applied retrospectively to data obtained in the Biomass Production Chamber of CELSS in order to calculate true plant production rates of ethylene. Four crops were analyzed: wheat, lettuce, soybean, and potato. The model represents an effort to account for each and every source and sink for ethylene in the system. The major source of ethylene is the plant biomass and the major sink is leakage to the surroundings. The result, expressed in the units of ppd/day, were converted to nl of ethylene per gram of plant dry mass per hour and compare favorably with recent glasshouse to belljar experiments.

  10. PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS

    SciTech Connect

    David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

    2001-04-20

    CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in

  11. Marginal land-based biomass energy production in China.

    PubMed

    Tang, Ya; Xie, Jia-Sui; Geng, Shu

    2010-01-01

    Fast economic development in China has resulted in a significant increase in energy demand. Coal accounts for 70% of China's primary energy consumption and its combustion has caused many environmental and health problems. Energy security and environmental protection requirements are the main drivers for renewable energy development in China. Small farmland and food security make bioenergy derived from corn or sugarcane unacceptable to China: the focus should be on generating bioenergy from ligno-cellulosic feedstock sources. As China cannot afford biomass energy production from its croplands, marginal lands may play an important role in biomass energy production. Although on a small scale, marginal land has already been used for various purposes. It is estimated that some 45 million hm(2) of marginal land could be brought into high potential biomass energy production. For the success of such an initiative, it will likely be necessary to develop multipurpose plants. A case study, carried out on marginal land in Ningnan County, Sichuan Province with per capita cropland of 0.07 ha, indicated that some 380,000 tons of dry biomass could be produced each year from annual pruning of mulberry trees. This study supports the feasibility of producing large quantities of biomass from marginal land sources.

  12. Feasibility of Bioethanol Production From Lignocellulosic Biomass

    NASA Astrophysics Data System (ADS)

    Aunina, Zane; Bazbauers, Gatis; Valters, Karlis

    2010-01-01

    The objective of the paper is to discuss the potential of cellulosic ethanol production processes and compare them, to find the most appropriate production method for Latvia's situation, to perform theoretical calculations and to determine the potential ethanol price. In addition, price forecasts for future cellulosic and grain ethanol are compared. A feasibility estimate to determine the price of cellulosic ethanol in Latvia, if production were started in 2010, was made. The grain and cellulosic ethanol price comparison (future forecast) was made through to the year 2018.

  13. Phytoplankton biomass, production and potential export in the North Water

    NASA Astrophysics Data System (ADS)

    Klein, Bert; LeBlanc, Bernard; Mei, Zhi-Ping; Beret, Rachel; Michaud, Josée; Mundy, C.-J.; von Quillfeldt, Cecilie H.; Garneau, Marie-Ève; Roy, Suzanne; Gratton, Yves; Cochran, J. Kirk; Bélanger, Simon; Larouche, Pierre; Pakulski, J. Dean; Rivkin, Richard B.; Legendre, Louis

    The seasonal patterns of phytoplankton biomass and production were determined in the North Water, located between Greenland and Ellesmere Island (Canadian Arctic), in August 1997, April-July 1998, and August-September 1999. The patterns differed among the four defined regions of this large polynya, i.e. North (>77.5°N), East (>75°W), West (<75°W), and South (<76°N). Phytoplankton biomass and production were low during April throughout the North Water. Biomass first increased in the East during April. From there, the biomass spread north- and westwards during May-June, when the bloom culminated (chlorophyll a concentrations up to 19.8 mg m -3). The large-sized (>5 μm) fraction dominated the biomass and production during the bloom. During July, August, and September, biomass and production decreased over the whole region, with the highest biomass, dominated by large cells, occurring in the North. The annual particulate and dissolved phytoplankton production were the highest ever reported for the high Arctic, reaching maximum values of 254 and 123 g C m -2 yr -1, respectively, in the East. Rates in the North and West were considerably lower than in the East (ca. two- and three-fold, respectively). The f-ratios (i.e. ratio of new to total production), derived from the size structure of phytoplankton, were high north of 76°N (0.4-0.7). Regionally, this indicated a high potential export of particulate organic carbon ( EPOC) from the phytoplankton community to other trophic compartments and/or downwards in the East (155 g C m -2 yr -1), with lower values in the North and West (i.e. 77 and 42 g C m -2 yr -1, respectively). The seasonal and spatial patterns of EPOC were consistent with independent estimates of potential carbon export. Phytoplankton biomass and production were generally dominated by the large size fraction, whereas EPOC seemed to be dominated by the large size fraction early in the season and by the small size fraction (<5 μm) from June until the end

  14. Fungal Biomass Protein Production from Trichoderma harzianum Using Rice Polishing

    PubMed Central

    Mustafa, Ghulam; Arshad, Muhammad

    2017-01-01

    Industrially important enzymes and microbial biomass proteins have been produced from fungi for more than 50 years. High levels of crude protein as much as 45% are present in fungal biomass with balanced essential amino acids. The aim of this study was to access the potential of Trichoderma harzianum to produce fungal biomass protein from rice polishings. Maximum biomass yield was obtained at 5% (w/v) rice polishings after 72 h of incubation at 28°C at pH 4. Carbon and nitrogen ratio of 20 : 1 gave significantly higher production of fungal biomass protein. The FBP in the 75 L fermenter contained 49.50% crude protein, 32.00% true protein, 19.45% crude fiber, 9.62% ash, 11.5% cellulose content, and 0.325% RNA content. The profile of amino acids of final FBP exhibited that all essential amino acids were present in great quantities. The FBP produced by this fungus has been shown to be of good nutritional value for supplementation to poultry. The results presented in this study have practical implications in that the fungus T. harzianum could be used successfully to produce fungal biomass protein using rice polishings. PMID:28367444

  15. Fungal Biomass Protein Production from Trichoderma harzianum Using Rice Polishing.

    PubMed

    Ahmed, Sibtain; Mustafa, Ghulam; Arshad, Muhammad; Rajoka, Muhammad Ibrahim

    2017-01-01

    Industrially important enzymes and microbial biomass proteins have been produced from fungi for more than 50 years. High levels of crude protein as much as 45% are present in fungal biomass with balanced essential amino acids. The aim of this study was to access the potential of Trichoderma harzianum to produce fungal biomass protein from rice polishings. Maximum biomass yield was obtained at 5% (w/v) rice polishings after 72 h of incubation at 28°C at pH 4. Carbon and nitrogen ratio of 20 : 1 gave significantly higher production of fungal biomass protein. The FBP in the 75 L fermenter contained 49.50% crude protein, 32.00% true protein, 19.45% crude fiber, 9.62% ash, 11.5% cellulose content, and 0.325% RNA content. The profile of amino acids of final FBP exhibited that all essential amino acids were present in great quantities. The FBP produced by this fungus has been shown to be of good nutritional value for supplementation to poultry. The results presented in this study have practical implications in that the fungus T. harzianum could be used successfully to produce fungal biomass protein using rice polishings.

  16. Life cycle water footprint of hydrogenation-derived renewable diesel production from lignocellulosic biomass.

    PubMed

    Wong, Alain; Zhang, Hao; Kumar, Amit

    2016-10-01

    The conversion of lignocellulosic biomass to biofuel requires water. This study is focused on the production of hydrogenation-derived renewable diesel (HDRD) from lignocellulosic biomass. Although there has been considerable focus on the assessment of greenhouse gas (GHG) emissions, there is limited work on the assessment of the life cycle water footprint of HDRD production. This paper presents a life cycle water consumption study on lignocellulosic biomass to HDRD via pyrolysis and hydrothermal liquefaction (HTL) processes. The results of this study show that whole tree (i.e., tree chips) biomass has water requirements of 497.79 L/MJ HDRD and 376.16 L/MJ HDRD for production through fast pyrolysis and the HTL process, respectively. Forest residues (i.e., chips from branches and tops generated during logging operations) have water requirements of 338.58 L/MJ HDRD and 255.85 L/MJ HDRD for production through fast pyrolysis and the HTL process, respectively. Agricultural residues (i.e., straw from wheat, oats, and barley), which are more water efficient, have water requirements of 83.7 L/MJ HDRD and 59.1 L/MJ HDRD through fast pyrolysis and the HTL process, respectively. Differences in water use between feedstocks and conversion processes indicate that the choices of biomass feedstock and conversion pathway water efficiency are crucial factors affecting water use efficiency of HDRD production.

  17. Energy-efficient photobioreactor configuration for algal biomass production.

    PubMed

    Pegallapati, Ambica Koushik; Arudchelvam, Yalini; Nirmalakhandan, Nagamany

    2012-12-01

    An internally illuminated photobioreactor (IIPBR) design is proposed for energy-efficient biomass production. Theoretical rationale of the IIPBR design and its advantages over the traditional bubble column photobioreactors (PBRs) are presented, followed by experimental results from prototype scale cultivation of freshwater and marine algal strains in an 18L IIPBR. Based on theoretical considerations, the proposed IIPBR design has the potential to support 160% higher biomass density and higher biomass productivity per unit energy input, B/E, than a bubble column PBR of equal incident area per unit culture volume. Experimental B/E values recorded in this study with fresh water algae and marine algae (1.42 and 0.37 gW(-1)d(-1), respectively) are at least twice as those reported in the literature for comparable species cultivated in bubble column and airlift PBRs.

  18. Pretreatment of Biomass by Aqueous Ammonia for Bioethanol Production

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hyun; Gupta, Rajesh; Lee, Y. Y.

    The methods of pretreatment of lignocellulosic biomass using aqueous ammonia are described. The main effect of ammonia treatment of biomass is delignification without significantly affecting the carbohydrate contents. It is a very effective pretreatment method especially for substrates that have low lignin contents such as agricultural residues and herbaceous feedstock. The ammonia-based pretreatment is well suited for simultaneous saccharification and co-fermentation (SSCF) because the treated biomass retains cellulose as well as hemicellulose. It has been demonstrated that overall ethanol yield above 75% of the theoretical maximum on the basis of total carbohydrate is achievable from corn stover pretreated with aqueous ammonia by way of SSCF. There are two different types of pretreatment methods based on aqueous ammonia: (1) high severity, low contact time process (ammonia recycle percolation; ARP), (2) low severity, high treatment time process (soaking in aqueous ammonia; SAA). Both of these methods are described and discussed for their features and effectiveness.

  19. Techno Economic Analysis of Hydrogen Production by gasification of biomass

    SciTech Connect

    Francis Lau

    2002-12-01

    Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-product of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more

  20. Native grasses for biomass production at high elevations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent policies such as the Energy Independence Security Act of 2007 (EISA) and the second U.S. Renewable Fuel Standards (RFS), have targeted biofuel production and domestic energy independence. Hence, considerable interest has focused on producing plant biomass for conversion into biofuels for the...

  1. Recovery of phenolic compounds from biomass during ethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass to ethanol conversion represents an alternative liquid fuel technology that does not need to compete with food crops. Maintaining agricultural production of commodity crops such as corn and soybeans for the food supply and using agricultural waste or low input energy crops grown on marginal ...

  2. Biogas production from anaerobic digestion of Spirulina maxima algal biomass

    SciTech Connect

    Samson, R.; LeDuy, A.

    1982-08-01

    The photosynthetic spectrum of solar energy could be exploited for the production of chemical energy of methane through the combined algal-bacterial process. In this process, the algae are mass produced from light and from carbon in the first step. The algal biomass is then used as a nutrient for feeding the anaerobic digester, in the second step, for the production of methane by anaerobic bacteria. The carbon source for the production of algal biomass could be either organic carbon from wastewaters (for eucaryotic algae), or carbon dioxide from the atmosphere or from the combustion exhaust gases (for both prokaryotic and eukaryotic algae). The technical feasibility data on the anaerobic digestion of algal biomass have been reported for many species of algae including macroscopic algae and microscopic algae. Research being conducted in the authors' laboratory consists of using the semimicroscopic blue-green alga Spirulina maxima as the sole substrate for this combined algal-bacterial process. This species of alga is very attractive for the process because of its capability of using the atmospheric carbon dioxide as carbon source and its simple harvesting methods. Furthermore, it appeared that the fermentability of S. maxima is significantly higher than other microscopic algae. This communication presents the results on the anaerobic inoculum development by the adaptation technique. This inoculum was then used for the semicontinuous anaerobic digestion of S. maxima algal biomass. The evolutions of biogas production and composition, biogas yield, total volatile fatty acids, alkalinity, ammonia nitrogen, pH, and electrode potential were followed.

  3. Alfalfa -- a sustainable crop for biomass energy production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alfalfa (Medicago sativa) has the potential to be a significant contributor to America's renewable energy future. In an alfalfa biomass energy production system, alfalfa forage would be separated into stem and leave fractions. The stems would be processed to produce energy, and the leaves would be s...

  4. Photosynthetic pathway and biomass energy production.

    PubMed

    Marzola, D L; Bartholomew, D P

    1979-08-10

    The current interest in locating new or alternative sources of energy has focused attention on solar energy capture by crops that can be subsequently utilized as a substitute for fossil fuels. The very high productivity of sugarepane and the fact that it accumulates sugars that are directly fermentable to alcohol may have caused seemingly less productive crops to be overlooked. We show here that recoverable alcohol from achievable commercial yields of pineapple can actually equal that of sugarcane, with the pineapple crop requiring only a fraction of the water used by sugarcane. Pineapple is well adapted to the subhumid or semiarid tropics and thus is particularly well suited for exploiting large areas not now under cultivation with any crop of commercial value.

  5. Biological production of liquid fuels from biomass

    SciTech Connect

    1982-01-01

    A scheme for the production of liquid fuels from renewable resources such as poplar wood and lignocellulosic wastes from a refuse hydropulper was investigated. The particular scheme being studied involves the conversion of a cellulosic residue, resulting from a solvent delignified lignocellulosic feed, into either high concentration sugar syrups or into ethyl and/or butyl alcohol. The construction of a pilot apparatus for solvent delignifying 150 g samples of lignocellulosic feeds was completed. Also, an analysis method for characterizing the delignified product has been selected and tested. This is a method recommended in the Forage Fiber Handbook. Delignified samples are now being prepared and tested for their extent of delignification and susceptibility to enzyme hydrolysis. Work is continuing on characterizing the cellulase and cellobiase enzyme systems derived from the YX strain of Thermomonospora.

  6. Two-stage biohumus production from inedible potato biomass.

    PubMed

    Manukovsky, N S; Kovalev, V S; Gribovskaya, I V

    2001-07-01

    The feasibility of a two-stage bioconversion of inedible potato biomass into biohumus by oyster mushroom followed by worms was tested. As a raw material for biohumus production the inedible potato biomass in certain properties ranked below wheat straw. The most feasible method to convert the potato wastes into biohumus was to mix them with wheat straw at the mass ratio of 1:3 and then treat with mushrooms followed by worms. This gave a good yield of mushrooms. The biohumus produced from the mixture was suitable for use as a plant growth medium.

  7. Alkane production from biomass: chemo-, bio- and integrated catalytic approaches.

    PubMed

    Deneyer, Aron; Renders, Tom; Van Aelst, Joost; Van den Bosch, Sander; Gabriëls, Dries; Sels, Bert F

    2015-12-01

    Linear, branched and cyclic alkanes are important intermediates and end products of the chemical industry and are nowadays mainly obtained from fossil resources. In search for alternatives, biomass feedstocks are often presented as a renewable carbon source for the production of fuels, chemicals and materials. However, providing a complete market for all these applications seems unrealistic due to both financial and logistic issues. Despite the very large scale of current alkane-based fuel applications, biomass definitely has the potential to offer a partial solution to the fuel business. For the smaller market of chemicals and materials, a transition to biomass as main carbon source is more realistic and even probably unavoidable in the long term. The appropriate use and further development of integrated chemo- and biotechnological (catalytic) process strategies will be crucial to successfully accomplish this petro-to-bio feedstock transition. Furthermore, a selection of the most promising technologies from the available chemo- and biocatalytic tool box is presented. New opportunities will certainly arise when multidisciplinary approaches are further explored in the future. In an attempt to select the most appropriate biomass sources for each specific alkane-based application, a diagram inspired by van Krevelen is applied, taking into account both the C-number and the relative functionality of the product molecules.

  8. Do peat amendments to oil sands wet sediments affect Carex aquatilis biomass for reclamation success?

    PubMed

    Roy, Marie-Claude; Mollard, Federico P O; Foote, A Lee

    2014-06-15

    The oil sands industries of Alberta (Canada) have reclamation objectives to return the mined landscape to equivalent pre-disturbance land capability. Industrial operators are charged with reclaiming a vast landscape of newly exposed sediments on saline-sodic marine-shales sediments. Incorporated in these sediments are by-products resulting from bitumen extraction (consolidated tailings (CT), tailings-sand (TS), and oil sands processed water (OSPW)). A sedge community dominated by Carex aquatilis was identified as a desirable and representative late-succession community for wet-meadow zones of oil sands-created marshes. However, the physical and chemical conditions, including high salinity and low nutrient content of CT and TS sediments suppress plant growth and performance. We experimentally tested the response of C. aquatilis to amendments with peat-mineral-mix (PM) on oil sand sediments (CT and TS). In a two factorial design experiment, we also tested the effects of OSPW on C. aquatilis. We assessed survival, below- and aboveground biomass, and physiology (chlorophyll a fluorescence). We demonstrated that PM amendments to oil sands sediments significantly increased C. aquatilis survival as well as below and aboveground biomass. The use of OSPW significantly reduced C. aquatilis belowground biomass and affected its physiological performance. Due to its tolerance and performance, we verified that C. aquatilis was a good candidate for use in reclaiming the wet-meadow zones of oil sands-created marshes. Ultimately, amending CT and TS with PM expedited the reclamation of the wetland to a C. aquatilis-community which was similar in gross structure to undisturbed wetlands of the region.

  9. Affective Productions of Mathematical Experience

    ERIC Educational Resources Information Center

    Walshaw, Margaret; Brown, Tony

    2012-01-01

    In underscoring the affective elements of mathematics experience, we work with contemporary readings of the work of Spinoza on the politics of affect, to understand what is included in the cognitive repertoire of the Subject. We draw on those resources to tell a pedagogical tale about the relation between cognition and affect in settings of…

  10. G-lignin and hemicellulosic monosaccharides distinctively affect biomass digestibility in rapeseed.

    PubMed

    Pei, Yanjie; Li, Yuyang; Zhang, Youbing; Yu, Changbing; Fu, Tingdong; Zou, Jun; Tu, Yuanyuan; Peng, Liangcai; Chen, Peng

    2016-03-01

    In this study, total 19 straw samples from four Brassica species were determined with a diverse cell wall composition and varied biomass enzymatic digestibility under sulfuric acid or lime pretreatment. Correlation analysis was then performed to detect effects of cell wall compositions and wall polymer features (cellulose crystallinity, hemicellulosic monosaccharides and lignin monomers) on rapeseeds biomass digestibility. As a result, coniferyl alcohol (G-lignin) showed a strongly negative effect on biomass saccharification, whereas hemicellulosic monosaccharides (fucose, galactose, arabinose and rhamnose) were positive factors on lignocellulose digestions. Notably, chemical analyses of four typical pairs of samples indicated that hemicellulosic monosaccharides and G-lignin may coordinately influence biomass digestibility in rapeseeds. In addition, Brassica napus with lower lignin content exhibited more efficiency on both biomass enzymatic saccharification and ethanol production, compared with Brassica junjea. Hence, this study has at first time provided a genetic strategy on cell wall modification towards bioenergy rapeseed breeding.

  11. Environmental control perspective for ethanol production from biomass

    SciTech Connect

    Collins, F.J.; Dock, J.S.; Malloy, M.C.; McNulty, W.B.; Rosen, L.A.; Simons, J.R.; Tomlinson, J.C.

    1980-08-01

    This report presents the results of a study identifying the environmental control technology issues associated with the expanded production of anhydrous ethanol from biomass. It provides an analysis of the environmental control aspects of biomass production and its subsequent conversion to ethanol and a perspective on associated environmental legislation. Two potential crops were selected as representative feedstocks to focus on the generic problems associated with an expanded ethanol production program. The primary feedstock evaluated was corn, and the secondary crop considered was sugar beets. Corn and sugar beets were chosen as representative starch and sugar crops, respectively, because they can be produced in large quantities and are grown in many regions of the contiguous United States. Minimum consideration was given to agricultural and food processing wastes because of their limited availability and poor handling characteristics for transportation. Cellulosic resources were not considered because the required conversion is not commercially available in the near term. (176 refs., 10 figs., 34 tabs.)

  12. Catalytic Production of Ethanol from Biomass-Derived Synthesis Gas

    SciTech Connect

    Trewyn, Brian G.; Smith, Ryan G.

    2016-06-01

    Heterogeneous catalysts have been developed for the conversion of biomass-derived synthetic gas (syngas) to ethanol. The objectives of this project were to develop a clean synthesis gas from biomass and develop robust catalysts with high selectivity and lifetime for C2 oxygenate production from biomass-derived syngas and surrogate syngas. During the timeframe for this project, we have made research progress on the four tasks: (1) Produce clean bio-oil generated from biomass, such as corn stover or switchgrass, by using fast pyrolysis system, (2) Produce clean, high pressure synthetic gas (syngas: carbon monoxide, CO, and hydrogen, H2) from bio-oil generated from biomass by gasification, (3) Develop and characterize mesoporous mixed oxide-supported metal catalysts for the selective production of ethanol and other alcohols, such as butanol, from synthesis gas, and (4) Design and build a laboratory scale synthesis gas to ethanol reactor system evaluation of the process. In this final report, detailed explanations of the research challenges associated with this project are given. Progress of the syngas production from various biomass feedstocks and catalyst synthesis for upgrading the syngas to C2-oxygenates is included. Reaction properties of the catalyst systems under different reaction conditions and different reactor set-ups are also presented and discussed. Specifically, the development and application of mesoporous silica and mesoporous carbon supports with rhodium nanoparticle catalysts and rhodium nanoparticle with manganese catalysts are described along with the significant material characterizations we completed. In addition to the synthesis and characterization, we described the activity and selectivity of catalysts in our micro-tubular reactor (small scale) and fixed bed reactor (larger scale). After years of hard work, we are proud of the work done on this project, and do believe that this work will provide a solid

  13. Biomass Biorefinery for the production of Polymers and Fuels

    SciTech Connect

    Dr. Oliver P. Peoples

    2008-05-05

    The conversion of biomass crops to fuel is receiving considerable attention as a means to reduce our dependence on foreign oil imports and to meet future energy needs. Besides their use for fuel, biomass crops are an attractive vehicle for producing value added products such as biopolymers. Metabolix, Inc. of Cambridge proposes to develop methods for producing biodegradable polymers polyhydroxyalkanoates (PHAs) in green tissue plants as well as utilizating residual plant biomass after polymer extraction for fuel generation to offset the energy required for polymer extraction. The primary plant target is switchgrass, and backup targets are alfalfa and tobacco. The combined polymer and fuel production from the transgenic biomass crops establishes a biorefinery that has the potential to reduce the nation’s dependence on foreign oil imports for both the feedstocks and energy needed for plastic production. Concerns about the widespread use of transgenic crops and the grower’s ability to prevent the contamination of the surrounding environment with foreign genes will be addressed by incorporating and expanding on some of the latest plant biotechnology developed by the project partners of this proposal. This proposal also addresses extraction of PHAs from biomass, modification of PHAs so that they have suitable properties for large volume polymer applications, processing of the PHAs using conversion processes now practiced at large scale (e.g., to film, fiber, and molded parts), conversion of PHA polymers to chemical building blocks, and demonstration of the usefulness of PHAs in large volume applications. The biodegradability of PHAs can also help to reduce solid waste in our landfills. If successful, this program will reduce U.S. dependence on imported oil, as well as contribute jobs and revenue to the agricultural economy and reduce the overall emissions of carbon to the atmosphere.

  14. Zinc Oxide Nanoparticles Affect Biomass Accumulation and Photosynthesis in Arabidopsis

    PubMed Central

    Wang, Xiaoping; Yang, Xiyu; Chen, Siyu; Li, Qianqian; Wang, Wei; Hou, Chunjiang; Gao, Xiao; Wang, Li; Wang, Shucai

    2016-01-01

    Dramatic increase in the use of nanoparticles (NPs) in a variety of applications greatly increased the likelihood of the release of NPs into the environment. Zinc oxide nanoparticles (ZnO NPs) are among the most commonly used NPs, and it has been shown that ZnO NPs were harmful to several different plants. We report here the effects of ZnO NPs exposure on biomass accumulation and photosynthesis in Arabidopsis. We found that 200 and 300 mg/L ZnO NPs treatments reduced Arabidopsis growth by ∼20 and 80%, respectively, in comparison to the control. Pigments measurement showed that Chlorophyll a and b contents were reduced more than 50%, whereas carotenoid contents remain largely unaffected in 300 mg/L ZnO NPs treated Arabidopsis plants. Consistent with this, net rate of photosynthesis, leaf stomatal conductance, intercellular CO2 concentration and transpiration rate were all reduced more than 50% in 300 mg/L ZnO NPs treated plants. Quantitative RT-PCR results showed that expression levels of chlorophyll synthesis genes including CHLOROPHYLL A OXYGENASE (CAO), CHLOROPHYLL SYNTHASE (CHLG), COPPER RESPONSE DEFECT 1 (CRD1), MAGNESIUM-PROTOPORPHYRIN IX METHYLTRANSFERASE (CHLM) and MG-CHELATASE SUBUNIT D (CHLD), and photosystem structure gene PHOTOSYSTEM I SUBUNIT D-2 (PSAD2), PHOTOSYSTEM I SUBUNIT E-2 (PSAE2), PHOTOSYSTEM I SUBUNIT K (PSAK) and PHOTOSYSTEM I SUBUNIT K (PSAN) were reduced about five folds in 300 mg/L ZnO NPs treated plants. On the other hand, elevated expression, though to different degrees, of several carotenoids synthesis genes including GERANYLGERANYL PYROPHOSPHATE SYNTHASE 6 (GGPS6), PHYTOENE SYNTHASE (PSY) PHYTOENE DESATURASE (PDS), and ZETA-CAROTENE DESATURASE (ZDS) were observed in ZnO NPs treated plants. Taken together, these results suggest that toxicity effects of ZnO NPs observed in Arabidopsis was likely due to the inhibition of the expression of chlorophyll synthesis genes and photosystem structure genes, which results in the inhibition of

  15. Artificial defoliation effect on Populus growth, biomass production, and total nonstructural carbohydrate concentration

    SciTech Connect

    Reichenbacker, R.R.; Hart, E.R.; Schultz, R.C.

    1996-06-01

    The impact of artificial defoliation on Populus growth, biomass production, and total nonstructural carbohydrate concentration was examined. Four Populus clones were field planted and artificially defoliated. Assigned defoliation levels (0, 25, 50, or 75%) were applied to leaves of leaf plastochron index 0 through 8 during a 6-d period in a 3-step incremental manner to simulate cottonwood leaf beetle, Chrysomela scripta F., larval feeding patterns. Artificial defoliations were timed to coincide with the outbreaks of natural beetle populations in adjacent areas. After 2 growing seasons, trees were measured for height, diameter, and biomass accumulation. Root samples were collected from 0 and 75% defoliation treatments for each clone. Biomass was reduced an average of 33% as defoliation level increased from 0 to 75%. As defoliation level increased from 0 to 75%, a consistent allocation ratio of biomass to 2/3 above and 1/3 below ground components continued in all clones. An overcompensation response occurred in above ground biomass when a defoliation level of 25% was applied. Between 25 and 75% a strong linear trend of decreasing biomass as defoliation increased was indicated. Vitality of the tree, as indicated by total nonstructural carbohydrate content, was affected only slightly by increasing defoliation. 26 refs., 1 fig., 6 tabs.

  16. Geographic and habitat origin influence biomass production and storage translocation in the clonal plant Aegopodium podagraria.

    PubMed

    D'Hertefeldt, Tina; Eneström, Johanna M; Pettersson, Lars B

    2014-01-01

    Through physiological integration, clonal plants can support ramets in unfavourable patches, exploit heterogeneously distributed resources and distribute resources that are taken up over large areas. Physiological integration generally increases in adverse conditions, but it is not well known which factors determine the evolution of physiological integration. The aim of this study was to investigate if clonal plants from Southern and Northern populations of the clonal herb Aegopodium podagraria differed in physiological integration in terms of translocation of carbon to the rhizomes, and in biomass production using a reciprocal transplant experiment. Aegopodium podagraria from shaded conditions have been suggested to share more resources than clones from open conditions and therefore, plants from forest and open populations within the Southern and Northern regions were included. The regional growing conditions greatly affected biomass production. Plants grown in North Sweden produced more biomass and allocated more biomass to shoots, while plants grown in South Sweden allocated more biomass to rhizomes. There was a regional origin effect as plants originating from North Sweden produced more biomass in both regions. Within the Northern region, plants from shaded habitats translocated more (14)C to the rhizomes, suggesting more storage there than in plants from open habitats. In addition to genetic differentiation in biomass production between Northern and Southern populations, probably as a response to a shorter growing season in the North, there appeared to be genetic differentiation in physiological integration within the Northern region. This shows that both regional and local conditions need to be taken into account in future studies of genetic differentiation of physiological integration in clonal plants.

  17. Geographic and Habitat Origin Influence Biomass Production and Storage Translocation in the Clonal Plant Aegopodium podagraria

    PubMed Central

    D′Hertefeldt, Tina; Eneström, Johanna M.; Pettersson, Lars B.

    2014-01-01

    Through physiological integration, clonal plants can support ramets in unfavourable patches, exploit heterogeneously distributed resources and distribute resources that are taken up over large areas. Physiological integration generally increases in adverse conditions, but it is not well known which factors determine the evolution of physiological integration. The aim of this study was to investigate if clonal plants from Southern and Northern populations of the clonal herb Aegopodium podagraria differed in physiological integration in terms of translocation of carbon to the rhizomes, and in biomass production using a reciprocal transplant experiment. Aegopodium podagraria from shaded conditions have been suggested to share more resources than clones from open conditions and therefore, plants from forest and open populations within the Southern and Northern regions were included. The regional growing conditions greatly affected biomass production. Plants grown in North Sweden produced more biomass and allocated more biomass to shoots, while plants grown in South Sweden allocated more biomass to rhizomes. There was a regional origin effect as plants originating from North Sweden produced more biomass in both regions. Within the Northern region, plants from shaded habitats translocated more 14C to the rhizomes, suggesting more storage there than in plants from open habitats. In addition to genetic differentiation in biomass production between Northern and Southern populations, probably as a response to a shorter growing season in the North, there appeared to be genetic differentiation in physiological integration within the Northern region. This shows that both regional and local conditions need to be taken into account in future studies of genetic differentiation of physiological integration in clonal plants. PMID:24427305

  18. Yeast Biomass Production in Brewery's Spent Grains Hemicellulosic Hydrolyzate

    NASA Astrophysics Data System (ADS)

    Duarte, Luís C.; Carvalheiro, Florbela; Lopes, Sónia; Neves, Ines; Gírio, Francisco M.

    Yeast single-cell protein and yeast extract, in particular, are two products which have many feed, food, pharmaceutical, and biotechnological applications. However, many of these applications are limited by their market price. Specifically, the yeast extract requirements for culture media are one of the major technical hurdles to be overcome for the development of low-cost fermentation routes for several top value chemicals in a biorefinery framework. A potential biotechnical solution is the production of yeast biomass from the hemicellulosic fraction stream. The growth of three pentose-assimilating yeast cell factories, Debaryomyces hansenii, Kluyveromyces marxianus, and Pichia stipitis was compared using non-detoxified brewery's spent grains hemicellulosic hydrolyzate supplemented with mineral nutrients. The yeasts exhibited different specific growth rates, biomass productivities, and yields being D. hansenii as the yeast species that presented the best performance, assimilating all sugars and noteworthy consuming most of the hydrolyzate inhibitors. Under optimized conditions, D. hansenii displayed a maximum specific growth rate, biomass yield, and productivity of 0.34 h-1, 0.61 g g-1, and 0.56 g 1-1 h-1, respectively. The nutritional profile of D. hansenii was thoroughly evaluated, and it compares favorably to others reported in literature. It contains considerable amounts of some essential amino acids and a high ratio of unsaturated over saturated fatty acids.

  19. Microwave-assisted pyrolysis of biomass for liquid biofuels production.

    PubMed

    Yin, Chungen

    2012-09-01

    Production of 2nd-generation biofuels from biomass residues and waste feedstock is gaining great concerns worldwide. Pyrolysis, a thermochemical conversion process involving rapid heating of feedstock under oxygen-absent condition to moderate temperature and rapid quenching of intermediate products, is an attractive way for bio-oil production. Various efforts have been made to improve pyrolysis process towards higher yield and quality of liquid biofuels and better energy efficiency. Microwave-assisted pyrolysis is one of the promising attempts, mainly due to efficient heating of feedstock by "microwave dielectric heating" effects. This paper presents a state-of-the-art review of microwave-assisted pyrolysis of biomass. First, conventional fast pyrolysis and microwave dielectric heating is briefly introduced. Then microwave-assisted pyrolysis process is thoroughly discussed stepwise from biomass pretreatment to bio-oil collection. The existing efforts are summarized in a table, providing a handy overview of the activities (e.g., feedstock and pretreatment, reactor/pyrolysis conditions) and findings (e.g., pyrolysis products) of various investigations.

  20. Biomass production by novel strains of Yarrowia lipolytica using raw glycerol, derived from biodiesel production.

    PubMed

    Juszczyk, Piotr; Tomaszewska, Ludwika; Kita, Agnieszka; Rymowicz, Waldemar

    2013-06-01

    This study demonstrated the potential applicability of the isolated strains of Yarrowia lipolytica for the valorization of glycerol waste generated during biodiesel production, throughout biomass production. Twenty-one strains were isolated from different environments and identified as Y. lipolytica. Biomass production from pure glycerol (25 g L(-1)) was performed in the shake-flasks experiment. Eight strains with the best biomass production ability were chosen for studies in bioreactor (pH 3.5). The analysis of technological process parameters and biomass chemical composition demonstrated that S6 strain was the most suitable for biomass production. Its application allowed obtaining 11.7 and 12.3 g L(-1) of the biomass with 1.30 and 1.37 g L(-1) h(-1) productivity, respectively when pure and raw glycerol (25 g L(-1)) was used. In the yeast protein amino acid profile the contents of lysine, threonine and phenylalanine/tyrosine were higher than required by FAO/WHO. According to the EAAI, the nutritional value of the biomass reached up to 72.3%.

  1. Sustainability of biofuels and renewable chemicals production from biomass.

    PubMed

    Kircher, Manfred

    2015-12-01

    In the sectors of biofuel and renewable chemicals the big feedstock demand asks, first, to expand the spectrum of carbon sources beyond primary biomass, second, to establish circular processing chains and, third, to prioritize product sectors exclusively depending on carbon: chemicals and heavy-duty fuels. Large-volume production lines will reduce greenhouse gas (GHG) emission significantly but also low-volume chemicals are indispensable in building 'low-carbon' industries. The foreseeable feedstock change initiates innovation, securing societal wealth in the industrialized world and creating employment in regions producing biomass. When raising the investments in rerouting to sustainable biofuel and chemicals today competitiveness with fossil-based fuel and chemicals is a strong issue. Many countries adopted comprehensive bioeconomy strategies to tackle this challenge. These public actions are mostly biased to biofuel but should give well-balanced attention to renewable chemicals as well.

  2. Research in biomass production and utilization: Systems simulation and analysis

    NASA Astrophysics Data System (ADS)

    Bennett, Albert Stewart

    There is considerable public interest in developing a sustainable biobased economy that favors support of family farms and rural communities and also promotes the development of biorenewable energy resources. This study focuses on a number of questions related to the development and exploration of new pathways that can potentially move us toward a more sustainable biobased economy. These include issues related to biomass fuels for drying grain, economies-of-scale, new biomass harvest systems, sugar-to-ethanol crop alternatives for the Upper Midwest U.S., biomass transportation, post-harvest biomass processing and double cropping production scenarios designed to maximize biomass feedstock production. The first section of this study considers post-harvest drying of shelled corn grain both at farm-scale and at larger community-scaled installations. Currently, drying of shelled corn requires large amounts of fossil fuel energy. To address future energy concerns, this study evaluates the potential use of combined heat and power systems that use the combustion of corn stover to produce steam for drying and to generate electricity for fans, augers, and control components. Because of the large capital requirements for solid fuel boilers and steam turbines/engines, both farm-scale and larger grain elevator-scaled systems benefit by sharing boiler and power infrastructure with other processes. The second and third sections evaluate sweet sorghum as a possible "sugarcane-like" crop that can be grown in the Upper Midwest. Various harvest systems are considered including a prototype mobile juice harvester, a hypothetical one-pass unit that separates grain heads from chopped stalks and traditional forage/silage harvesters. Also evaluated were post-harvest transportation, storage and processing costs and their influence on the possible use of sweet sorghum as a supplemental feedstock for existing dry-grind ethanol plants located in the Upper Midwest. Results show that the concept

  3. Biotechnological Approaches for Biomass and Cardenolide Production in Digitalis purpurea L.

    PubMed

    Pérez-Alonso, Naivy; Chong-Pérez, Borys; Capote, Alina; Pérez, Anabel; Gerth, André; Angenon, Geert; Jiménez, Elio

    2016-01-01

    Digitalis purpurea L. is one of the main economically viable sources of cardenolides (cardiac glycosides) for the pharmaceutical industry. Nevertheless, production of cardenolides in plants grown by traditional agriculture is not always an efficient process and can be affected by biotic and abiotic factors. This chapter provides two biotechnology strategies for biomass and cardenolide production in D. purpurea. Firstly, we report biomass production using a temporary immersion system (TIS), combined with cardenolide extraction and quantification. Secondly, an efficient protocol for genetic transformation via Agrobacterium tumefaciens is provided. These strategies can be used independently or combined in order to increase the content of cardiac glycosides in D. purpurea and to unravel biosynthetic pathways associated to cardiac glycoside production.

  4. Pectin-rich biomass as feedstock for fuel ethanol production.

    PubMed

    Edwards, Meredith C; Doran-Peterson, Joy

    2012-08-01

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes.

  5. Biodiesel production potential of wastewater treatment high rate algal pond biomass.

    PubMed

    Mehrabadi, Abbas; Craggs, Rupert; Farid, Mohammed M

    2016-12-01

    This study investigates the year-round production potential and quality of biodiesel from wastewater treatment high rate algal pond (WWT HRAP) biomass and how it is affected by CO2 addition to the culture. The mean monthly pond biomass and lipid productivities varied between 2.0±0.3 and 11.1±2.5gVSS/m(2)/d, and between 0.5±0.1 and 2.6±1.1g/m(2)/d, respectively. The biomass fatty acid methyl esters were highly complex which led to produce low-quality biodiesel so that it cannot be used directly as a transportation fuel. Overall, 0.9±0.1g/m(2)/d (3.2±0.5ton/ha/year) low-quality biodiesel could be produced from WWT HRAP biomass which could be further increased to 1.1±0.1g/m(2)/d (4.0ton/ha/year) by lowering culture pH to 6-7 during warm summer months. CO2 addition, had little effect on both the biomass lipid content and profile and consequently did not change the quality of biodiesel.

  6. Production of mycelial biomass by the Amazonian edible mushroom Pleurotus albidus.

    PubMed

    Kirsch, Larissa de Souza; de Macedo, Ana Júlia Porto; Teixeira, Maria Francisca Simas

    2016-01-01

    Edible mushroom species are considered as an adequate source of food in a healthy diet due to high content of protein, fiber, vitamins, and a variety of minerals. The representatives of Pleurotus genus are characterized by distinct gastronomic, nutritional, and medicinal properties among the edible mushrooms commercialized worldwide. In the present study, the growth of mycelial biomass of Pleurotus albidus cultivated in submerged fermentation was evaluated. Saccharose, fructose, and maltose were the three main carbon sources for mycelial biomass formation with corresponding yields of 7.28gL(-1), 7.07gL(-1), and 6.99gL(-1). Inorganic nitrogen sources did not stimulate growth and the optimal yield was significantly higher with yeast extract (7.98gL(-1)). The factorial design used to evaluate the influence of saccharose and yeast extract concentration, agitation speed, and initial pH indicated that all variables significantly influenced the production of biomass, especially the concentration of saccharose. The greater amount of saccharose resulted in the production of significantly more biomass. The highest mycelial biomass production (9.81gL(-1)) was reached in the medium formulated with 30.0gL(-1) saccharose, 2.5gL(-1) yeast extract, pH 7.0, and a speed of agitation at 180rpm. Furthermore, P. albidus manifested different aspects of morphology and physiology under the growth conditions employed. Media composition affected mycelial biomass production indicating that the diversification of carbon sources promoted its improvement and can be used as food or supplement.

  7. Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01.

    PubMed

    Bhatia, Shashi Kant; Kim, Junyoung; Song, Hun-Seok; Kim, Hyun Joong; Jeon, Jong-Min; Sathiyanarayanan, Ganesan; Yoon, Jeong-Jun; Park, Kyungmoon; Kim, Yun-Gon; Yang, Yung-Hun

    2017-02-20

    The effect of various biomass derived inhibitors (i.e. furfural, hydroxymethylfurfural (HMF), vanillin, 4-hydroxy benzaldehyde (4-HB) and acetate) was investigated for fatty acid accumulation in Rhodococcus sp. YHY 01. Rhodococcus sp. YHY01 was able to utilize acetate, vanillin, and 4-HB for biomass production and fatty acid accumulation. The IC50 value for furfural (3.1mM), HMF (3.2mM), vanillin (2.0mM), 4-HB (2.7mM) and acetate (3.7mM) was calculated. HMF and vanillin affect fatty acid composition and increase saturated fatty acid content. Rhodococcus sp. YHY 01 cultured with empty fruit bunch hydrolysate (EFBH) as the main carbon source resulted in enhanced biomass (20%) and fatty acid productivity (37%), in compression to glucose as a carbon source. Overall, this study showed the beneficial effects of inhibitory molecules on growth and fatty acid production, and support the idea of biomass hydrolysate utilization for biodiesel production by avoiding complex efforts to remove inhibitory compounds.

  8. Caterpillar biomass depends on temperature and precipitation, but does not affect bird reproduction

    NASA Astrophysics Data System (ADS)

    Schöll, Eva Maria; Ohm, Judith; Hoffmann, Konstantin Frank; Hille, Sabine Marlene

    2016-07-01

    Complex changes in phenological events appear as temperatures are increasing: In deciduous forests bud burst, hatching of herbivorous caterpillars, egg laying and nestling time of birds when feeding chicks on caterpillars, may differentially shift into early season and alter synchronization. If timing of bird reproduction has to match with short periods of food availability, phenological mismatch could negatively affect reproductive success. Using a unique empirical approach along an altitudinal temperature gradient, we firstly asked whether besides temperature, also precipitation and leaf phenology interplay and affect caterpillar biomass, since impacts of rainfall on caterpillars have been largely neglected so far. Secondly, we asked whether abundance of caterpillars and thereby body mass of great tit nestlings, which are mainly fed with caterpillars, vary along the altitudinal temperature gradient. We demonstrated that next to temperature also precipitation and leaf phenology affected caterpillar biomass. In our beech forest, even along altitudes, caterpillars were available throughout the great tit breeding season but in highly variable amounts. Our findings revealed that although timing of leaf phenology and great tit breeding season were delayed with decreasing temperature, caterpillars occurred synchronously and were not delayed according to altitude. However, altitude negatively affected caterpillar biomass, but body mass of fledglings at high altitude sites was not affected by lower amounts of caterpillar biomass. This might be partially outweighed by larger territory sizes in great tits.

  9. Methods for producing and using densified biomass products containing pretreated biomass fibers

    DOEpatents

    Dale, Bruce E.; Ritchie, Bryan; Marshall, Derek

    2015-05-26

    A process is provided comprising subjecting a quantity of plant biomass fibers to a pretreatment to cause at least a portion of lignin contained within each fiber to move to an outer surface of said fiber, wherein a quantity of pretreated tacky plant biomass fibers is produced; and densifying the quantity of pretreated tacky plant biomass fibers to produce one or more densified biomass particulates, wherein said biomass fibers are densified without using added binder.

  10. Biogas production from anaerobic digestion of Spirulina maxima algal biomass

    SciTech Connect

    Rejean Samson; Anh LeDuy

    1982-08-01

    Spirulina maxima algal biomass could be used as the sole nutrient for the production of biogas by anaerobic digestion process. It is relatively simple to adapt the municipal sewage sludge to this new substrate. The adapted sludge is very stable. Under nonoptimal conditions, the methane yield and productivity obtained were 0.26 m/sup 3//(kg VS added day) and 0.26 m/sup 3//(kg VS added day), respectively, with the semicontinuous, daily fed, anaerobic digestion having loading rate of 0.97 kg VS/(m/sup 3/ day), retention time of 33 days and temperature of 30/sup 0/C.

  11. Kinetics study on biomass pyrolysis for fuel gas production.

    PubMed

    Chen, Guan-Yi; Fang, Meng-Xiang; Andries, J; Luo, Zhong-Yang; Spliethoff, H; Cen, Ke-Fa

    2003-01-01

    Kinetic knowledge is of great importance in achieving good control of the pyrolysis and gasification process and optimising system design. An overall kinetic pyrolysis scheme is therefore addressed here. The kinetic modelling incorporates the following basic steps: the degradation of the virgin biomass materials into primary products (tar, gas and semi-char), the decomposition of primary tar into secondary products and the continuous interaction between primary gas and char. The last step is disregarded completely by models in the literature. Analysis and comparison of predicted results from different kinetic schemes and experimental data on our fixed bed pyrolyser yielded very positive evidence to support our kinetic scheme.

  12. Biogas energy production from tropical biomass wastes by anaerobic digestion.

    PubMed

    Ge, Xumeng; Matsumoto, Tracie; Keith, Lisa; Li, Yebo

    2014-10-01

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass and food wastes, such as taro, papaya, and sweet potato, are limited. In this study, these tropical biomass wastes were evaluated for biogas production by liquid AD (L-AD) and/or solid-state AD (SS-AD), depending on feedstock characteristics. When albizia leaves and chips were used as feedstocks, L-AD had greater methane yields (161 and 113 L kg(-1)VS, respectively) than SS-AD (156.8 and 59.6 L kg(-1)VS, respectively), while SS-AD achieved 5-fold higher volumetric methane productivity than L-AD. Mono-digestion and co-digestion of taro skin, taro flesh, papaya, and sweet potato achieved methane yields from 345 to 411 L kg(-1)VS, indicating the robustness of AD technology.

  13. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production.

    PubMed

    Choi, Seung Phill; Nguyen, Minh Thu; Sim, Sang Jun

    2010-07-01

    The production of ethanol from feedstock other than agriculture materials has been promoted in recent years. Some microalgae can accumulate a high starch content (about 44% of dry base) via photosynthesis. Algal biomass, Chlamydomonas reinhardtii UTEX 90, was converted into a suitable fermentable feedstock by two commercial hydrolytic enzymes. The results showed that almost all starch was released and converted into glucose without steps for the cell wall disruption. Various conditions in the liquefaction and saccharification processes, such as enzyme concentration, pH, temperature, and residence time, have been investigated to obtain an optimum combination using the orthogonal analysis. As a result, approximately 235 mg of ethanol was produced from 1.0 g of algal biomass by a separate hydrolysis and fermentation (SHF) method. The main advantages of this process include the low cost of chemicals, short residence time, and simple equipment system, all of which promote its large-scale application.

  14. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests.

    PubMed

    Durán, Jorge; Morse, Jennifer L; Groffman, Peter M; Campbell, John L; Christenson, Lynn M; Driscoll, Charles T; Fahey, Timothy J; Fisk, Melany C; Mitchell, Myron J; Templer, Pamela H

    2014-11-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity during the growing season. Soils from lower elevation plots, which accumulated less snow and experienced more soil temperature variability during the winter (and likely more freeze/thaw events), had less extractable inorganic nitrogen (N), lower rates of microbial N production via potential net N mineralization and nitrification, and higher potential microbial respiration during the growing season. Potential nitrate production rates during the growing season were particularly sensitive to changes in winter snow pack accumulation and winter soil temperature variability, especially in spring. Effects of elevation and winter conditions on N transformation rates differed from those on potential microbial respiration, suggesting that N-related processes might respond differently to winter climate change in northern hardwood forests than C-related processes.

  15. The economic prospects of cellulosic biomass for biofuel production

    NASA Astrophysics Data System (ADS)

    Kumarappan, Subbu

    competitive with existing crops, and additional subsidy support would be required. Among the states in the eastern half of US, the states of Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, and Virginia are found to be economically more suitable to cultivate perennial energy crops. The third paper estimates the optimal feedstock composition of annual and perennial feedstocks from a biorefinery's perspective. The objective function of the optimization model is to minimize the cumulative costs covering harvesting, transport, storage, and GHG costs, of biomass procurement over a biorefinery's productive period of 20 years subject to various constraints on land availability, feedstock availability, processing capacity, contracting needs and storage. The results suggest that the economic tradeoff is between higher production costs for dedicated energy crops and higher collection and transport costs for agricultural residues; the delivered costs of biomass drives the results. These tradeoffs are reflected in optimal spatial planting pattern as preferred by the biorefinery: energy crops are grown in fields closer to the biorefinery and agricultural residues can be sourced from fields farther away from the biorefinery. The optimization model also provides useful insights into the price premiums paid for annual and perennial feedstocks. For the parameters used in the case study, the energy crop price premium ranges from 2 to 8 per ton for fields located within a 10 mile radius. For agricultural residues, the price premiums range from 5 to 16 per ton within a 10-20 mile radius.

  16. Method for producing ethanol and co-products from cellulosic biomass

    DOEpatents

    Nguyen, Quang A

    2013-10-01

    The present invention generally relates to processes for production of ethanol from cellulosic biomass. The present invention also relates to production of various co-products of preparation of ethanol from cellulosic biomass. The present invention further relates to improvements in one or more aspects of preparation of ethanol from cellulosic biomass including, for example, improved methods for cleaning biomass feedstocks, improved acid impregnation, and improved steam treatment, or "steam explosion."

  17. Effect of seeding density on biomass production in mussel bottom culture

    NASA Astrophysics Data System (ADS)

    Capelle, Jacob J.; Wijsman, Jeroen W. M.; van Stralen, Marnix R.; Herman, Peter M. J.; Smaal, Aad C.

    2016-04-01

    Effects of seeding density on biomass production in mussel bottom culture are investigated by detailed monitoring of culture practice in the western Wadden Sea, The Netherlands. The seeds originate from different sources. The seeds differ in size and farmers apply seeding techniques dependent on the seed size resulting in different seed densities on the culture plots. We hypothesise growth to be density dependent and that biomass production is primarily determined by survival and is therefore a function of seed density which is related to the activities of the farmers. Data was collected from 42 different culture plots over a three year period (June 2009-June 2012). During this period, 66 sub-populations were followed from seeding until harvest. Seeding at the start of the culture resulted in an instantaneous drop in biomass production, caused by large losses in mussel number. These losses were on average 42% of the mussels seeded. This seeding loss decreased with mussel size and increased with seeding density. A subsequent density dependent loss of 1.8 mussels per day was found for smaller mussels (< 30 mm), and a non-density dependent loss of 0.8 mussels per day for larger mussels (> 30 mm) during grow out. Overall loss from seeding to harvest was high, from 92% for the smallest seeds collected from spat collectors, to 54% for half-grown mussels fished from natural beds in the spring. No indication was found that growth or mussel condition was affected by culture plot scale density. Growth was dependent on mussel size and age, and this largely determined the differences in biomass production between seed sources. The density dependent seeding loss associated with seeding activities largely determined survival, and hence overall biomass production.

  18. The seeding and cultivation of a tropical species of filamentous Ulva for algal biomass production.

    PubMed

    Carl, Christina; de Nys, Rocky; Paul, Nicholas A

    2014-01-01

    Filamentous species of Ulva are ideal for cultivation because they are robust with high growth rates and maintained across a broad range of environments. Temperate species of filamentous Ulva are commercially cultivated on nets which can be artificially 'seeded' under controlled conditions allowing for a high level of control over seeding density and consequently biomass production. This study quantified for the first time the seeding and culture cycle of a tropical species of filamentous Ulva (Ulva sp. 3) and identified seeding density and nursery period as key factors affecting growth and biomass yield. A seeding density of 621,000 swarmers m(-1) rope in combination with a nursery period of five days resulted in the highest growth rate and correspondingly the highest biomass yield. A nursery period of five days was optimal with up to six times the biomass yield compared to ropes under either shorter or longer nursery periods. These combined parameters of seeding density and nursery period resulted in a specific growth rate of more than 65% day(-1) between 7 and 10 days of outdoor cultivation post-nursery. This was followed by a decrease in growth through to 25 days. This study also demonstrated that the timing of harvest is critical as the maximum biomass yield of 23.0 ± 8.8 g dry weight m(-1) (228.7 ± 115.4 g fresh weight m(-1)) was achieved after 13 days of outdoor cultivation whereas biomass degraded to 15.5 ± 7.3 g dry weight m(-1) (120.2 ± 71.8 g fresh weight m(-1)) over a longer outdoor cultivation period of 25 days. Artificially seeded ropes of Ulva with high biomass yields over short culture cycles may therefore be an alternative to unattached cultivation in integrated pond-based aquaculture systems.

  19. The Seeding and Cultivation of a Tropical Species of Filamentous Ulva for Algal Biomass Production

    PubMed Central

    Carl, Christina; de Nys, Rocky; Paul, Nicholas A.

    2014-01-01

    Filamentous species of Ulva are ideal for cultivation because they are robust with high growth rates and maintained across a broad range of environments. Temperate species of filamentous Ulva are commercially cultivated on nets which can be artificially ‘seeded’ under controlled conditions allowing for a high level of control over seeding density and consequently biomass production. This study quantified for the first time the seeding and culture cycle of a tropical species of filamentous Ulva (Ulva sp. 3) and identified seeding density and nursery period as key factors affecting growth and biomass yield. A seeding density of 621,000 swarmers m-1 rope in combination with a nursery period of five days resulted in the highest growth rate and correspondingly the highest biomass yield. A nursery period of five days was optimal with up to six times the biomass yield compared to ropes under either shorter or longer nursery periods. These combined parameters of seeding density and nursery period resulted in a specific growth rate of more than 65% day−1 between 7 and 10 days of outdoor cultivation post-nursery. This was followed by a decrease in growth through to 25 days. This study also demonstrated that the timing of harvest is critical as the maximum biomass yield of 23.0±8.8 g dry weight m−1 (228.7±115.4 g fresh weight m−1) was achieved after 13 days of outdoor cultivation whereas biomass degraded to 15.5±7.3 g dry weight m−1 (120.2±71.8 g fresh weight m−1) over a longer outdoor cultivation period of 25 days. Artificially seeded ropes of Ulva with high biomass yields over short culture cycles may therefore be an alternative to unattached cultivation in integrated pond-based aquaculture systems. PMID:24897115

  20. Ultrasound pretreatment of filamentous algal biomass for enhanced biogas production.

    PubMed

    Lee, Kwanyong; Chantrasakdakul, Phrompol; Kim, Daegi; Kong, Mingeun; Park, Ki Young

    2014-06-01

    The filamentous alga Hydrodictyon reticulatum harvested from a bench-scale wastewater treatment pond was used to evaluate biogas production after ultrasound pretreatment. The effects of ultrasound pretreatment at a range of 10-5000 J/mL were tested with harvested H. reticulatum. Cell disruption by ultrasound was successful and showed a higher degree of disintegration at a higher applied energy. The range of 10-5000 J/mL ultrasound was able to disintegrated H. reticulatum and the soluble COD was increased from 250 mg/L to 1000 mg/L at 2500 J/mL. The disintegrated algal biomass was digested for biogas production in batch experiments. Both cumulative gas generation and volatile solids reduction data were obtained during the digestion. Cell disintegration due to ultrasound pretreatment increased the specific biogas production and degradation rates. Using the ultrasound approach, the specific methane production at a dose of 40 J/mL increased up to 384 mL/g-VS fed that was 2.3 times higher than the untreated sample. For disintegrated samples, the volatile solids reduction was greater with increased energy input, and the degradation increased slightly to 67% at a dose of 50 J/mL. The results also indicate that disintegration of the algal cells is the essential step for efficient anaerobic digestion of algal biomass.

  1. Particulate size of microalgal biomass affects hydrolysate properties and bioethanol concentration.

    PubMed

    Harun, Razif; Danquah, Michael K; Thiruvenkadam, Selvakumar

    2014-01-01

    Effective optimization of microalgae-to-bioethanol process systems hinges on an in-depth characterization of key process parameters relevant to the overall bioprocess engineering. One of the such important variables is the biomass particle size distribution and the effects on saccharification levels and bioethanol titres. This study examined the effects of three different microalgal biomass particle size ranges, 35 μm ≤ x ≤ 90 μm, 125 μm ≤ x ≤ 180 μm, and 295 μm ≤ x ≤ 425 μm, on the degree of enzymatic hydrolysis and bioethanol production. Two scenarios were investigated: single enzyme hydrolysis (cellulase) and double enzyme hydrolysis (cellulase and cellobiase). The glucose yield from biomass in the smallest particle size range (35 μm ≤ x ≤ 90 μm) was the highest, 134.73 mg glucose/g algae, while the yield from biomass in the larger particle size range (295 μm ≤ x ≤ 425 μm) was 75.45 mg glucose/g algae. A similar trend was observed for bioethanol yield, with the highest yield of 0.47 g EtOH/g glucose obtained from biomass in the smallest particle size range. The results have shown that the microalgal biomass particle size has a significant effect on enzymatic hydrolysis and bioethanol yield.

  2. Production and characterization of lignocellulosic biomass-derived activated carbon.

    PubMed

    Namazi, A B; Jia, C Q; Allen, D G

    2010-01-01

    The goal of this work is to establish the technical feasibility of producing activated carbon from pulp mill sludges. KOH chemical activation of four lignocellulosic biomass materials, two sludges from pulp mills, one sludge for a linerboard mill, and cow manure, were investigated experimentally, with a focus on the effects of KOH/biomass ratio (1/1, 1.5/1 and 2/1), activation temperature (400-600 °C) and activation time (1 to 2 h) on the development of porosity. The activation products were characterized for their physical and chemical properties using a surface area analyzer, scanning electron microscopy and Fourier transform infrared spectroscopy. Experiments were carried out to establish the effectiveness of the lignocellulosic biomass-derived activated carbon in removing methylene blue (MB), a surrogate of large organic molecules. The results show that the activated carbon are highly porous with specific surface area greater than 500 m²/g. The yield of activated carbon was greater than the percent of fixed carbon in the dry sludge, suggesting that the activation process was able to capture a substantial amount of carbon from the organic matter in the sludge. While 400 °C was too low, 600 °C was high enough to sustain a substantial rate of activation for linerboard sludge. The KOH/biomass ratio, activation temperature and time all play important roles in pore development and yield control, allowing optimization of the activation process. MB adsorption followed a Langmuir isotherm for all four activated carbon, although the adsorption capacity of NK-primary sludge-derived activated carbon was considerably lower than the rest, consistent with its lower specific surface area.

  3. Biomass and pigments production in photosynthetic bacteria wastewater treatment: Effects of photoperiod.

    PubMed

    Zhou, Qin; Zhang, Panyue; Zhang, Guangming; Peng, Meng

    2015-08-01

    This study aimed at enhancing the bacterial biomass and pigments production in together with pollution removal in photosynthetic bacteria (PSB) wastewater treatment via using different photoperiods. Different light/dark cycles and light/dark cycle frequencies were examined. Results showed that PSB had the highest biomass production, COD removal and biomass yield, and light energy efficiency with light/dark cycle of 2h/1h. The corresponding biomass, COD removal and biomass yield reached 2068mg/L, 90.3%, and 0.38mg-biomass/mg-COD-removal, respectively. PSB showed higher biomass production and biomass yield with higher light/dark cycle frequency. Mechanism analysis showed within a light/dark cycle from 1h/2h to 2h/1h, the carotenoid and bacteriochlorophyll production increased with an increase in light/dark cycle. Moreover, the pigment contents were much higher with lower frequency of 2-4 times/d.

  4. Design and performance of the KSC Biomass Production Chamber

    NASA Technical Reports Server (NTRS)

    Prince, Ralph P.; Knott, William M.; Sager, John C.; Hilding, Suzanne E.

    1987-01-01

    NASA's Controlled Ecological Life Support System program has instituted the Kennedy Space Center 'breadboard' project of which the Biomass Production Chamber (BPC) presently discussed is a part. The BPC is based on a modified hypobaric test vessel; its design parameters and operational parameters have been chosen in order to meet a wide range of plant-growing objectives aboard future spacecraft on long-duration missions. A control and data acquisition subsystem is used to maintain a common link between the heating, ventilation, and air conditioning system, the illumination system, the gas-circulation system, and the nutrient delivery and monitoring subsystems.

  5. Ozone production potential following convective redistribution of biomass burning emissions

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.; Thompson, Anne M.; Scala, John R.; Tao, Wei-Kuo; Simpson, Joanne

    1992-01-01

    The effects of deep convection on the potential for forming ozone in the free troposphere have been simulated for regions where the trace gas composition is influenced by biomass burning. Cloud photochemical and dynamic simulations based on observations in the 1980 and 1985 Brazilian campaigns form the basis of a sensitivity study of the ozone production potential under differing conditions. It is seen that there is considerably more ozone formed in the middle and upper troposphere when convection has redistributed hydrocarbons, NO(x), and CO compared to the example of no convection.

  6. Performance and reliability of the NASA Biomass Production Chamber

    NASA Technical Reports Server (NTRS)

    Sager, J. C.; Chetirkin, P. V.

    1994-01-01

    The Biomass Production Chamber (BPC) at the Kennedy Space Center is part of the Controlled Ecological Life Support System (CELSS) Breadboard Project. Plants are grown in a closed environment in an effort to quantify their contributions to the requirements for life support. Performance of this system is described. Also, in building this system, data from component and subsystem failures are being recorded. These data are used to identify problem areas in the design and implementation. The techniques used to measure the reliability will be useful in the design and construction of future CELSS. Possible methods for determining the reliability of a green plant, the primary component of a CELSS, are discussed.

  7. Performance and reliability of the NASA biomass production chamber

    NASA Technical Reports Server (NTRS)

    Fortson, R. E.; Sager, J. C.; Chetirkin, P. V.

    1994-01-01

    The Biomass Production Chamber (BPC) at the Kennedy Space Center is part of the Controlled Ecological Life Support System (CELSS) Breadboard Project. Plants are grown in a closed environment in an effort to quantify their contributions to the requirements for life support. Performance of this system is described. Also, in building this system, data from component and subsystem failures are being recorded. These data are used to identify problem areas in the design and implementation. The techniques used to measure the reliability will be useful in the design and construction of future CELSS. Possible methods for determining the reliability of a green plant, the primary component of CELSS, are discussed.

  8. Environmental impacts of conversion of cropland to biomass production

    SciTech Connect

    Green, T.H.; Brown, G.F.; Bingham, L.

    1996-12-31

    A study was initiated to determine the effects of conversion of row crop land to biomass production on runoff quality and quantity. Treatments were: (1) remain in row crop (no-till corn); (2) convert to short rotation woody crop (SRWC) production with sweetgum (Liquidambar styraciflua L.) planted in a 1.5 in by 3 in spacing maintaining complete weed control; (3) convert to SRWC with a tall fescue (Festuca eliator L.) cover crop planted in a 2.4 in strip centered between rows of trees to reduce erosion; and (4) convert to switchgrass (Panicum virgatum L.) as a biomass energy crop. Plots within a block similar in size (approximately 0.45 ha in block 1 and 0.20 ha in block 2), slope, soils, topographic position, recent land use history, etc. Although switchgrass plots eroded more early in the growing season, erosion was low once it became well established. Conversely, plots where trees were grown with no cover continued to erode throughout the growing season. These results indicate that growing short-rotation intensively cultured hardwoods with complete weed control will provide little erosion relief in agricultural fields, at least during the first growing season. Planting switchgrass for bioenergy production, however, does protect the soil. Nutrient runoff was related to fertilization.

  9. Management and fertility control ecosystem carbon allocation to biomass production

    NASA Astrophysics Data System (ADS)

    Campioli, Matteo; Vicca, Sara; Janssens, Ivan

    2015-04-01

    Carbon (C) allocation within the ecosystem is one of the least understood processes in plant- and geo-sciences. The proportion of the C assimilated through photosynthesis (gross primary production, GPP) that is used for biomass production (BP) is a key variable of the C allocation process and it has been termed as biomass production efficiency (BPE). We investigated the potential drivers of BPE using a global dataset of BP, GPP, BPE and ancillary ecosystem characteristics (vegetation properties, climatic and environmental variables, anthropogenic impacts) for 131 sites comprising six major ecosystem types: forests, grasslands, croplands, tundra, boreal peatlands and marshes. We obtained two major findings. First, site fertility is the key driver of BPE across forests, with nutrient-rich forests allocating 58% of their photosynthates to BP, whereas this fraction is only 42% for nutrient-poor forests. Second, by disentangling the effect of management from the effect of fertility and by integrating all ecosystem types, we observed that BPE is globally not driven by the 'natural' site fertility, but by the positive effect brought by management on the nutrient availability. This resulted in managed ecosystems having substantially larger BPE than natural ecosystems. These findings will crucially improve our elucidation of the human impact on ecosystem functioning and our predictions of the global C cycle.

  10. Microbial Functional Diversity, Biomass and Activity as Affected by Soil Surface Mulching in a Semiarid Farmland.

    PubMed

    Shen, Yufang; Chen, Yingying; Li, Shiqing

    2016-01-01

    Mulching is widely used to increase crop yield in semiarid regions in northwestern China, but little is known about the effect of different mulching systems on the microbial properties of the soil, which play an important role in agroecosystemic functioning and nutrient cycling. Based on a 4-year spring maize (Zea mays L.) field experiment at Changwu Agricultural and Ecological Experimental Station, Shaanxi, we evaluated the responses of soil microbial activity and crop to various management systems. The treatments were NMC (no mulching with inorganic N fertilizer), GMC (gravel mulching with inorganic N fertilizer), FMC (plastic-film mulching with inorganic N fertilizer) and FMO (plastic-film mulching with inorganic N fertilizer and organic manure addition). The results showed that the FMO soil had the highest contents of microbial biomass carbon and nitrogen, dehydrogenase activity, microbial activity and Shannon diversity index. The relative use of carbohydrates and amino acids by microbes was highest in the FMO soil, whereas the relative use of polymers, phenolic compounds and amines was highest in the soil in the NMC soil. Compared with the NMC, an increased but no significant trend of biomass production and nitrogen accumulation was observed under the GMC treatment. The FMC and FMO led a greater increase in biomass production than GMC and NMC. Compare with the NMC treatment, FMC increased grain yield, maize biomass and nitrogen accumulation by 62.2, 62.9 and 86.2%, but no significant difference was found between the FMO and FMC treatments. Some soil biological properties, i.e. microbial biomass carbon, microbial biomass nitrogen, being sensitive to the mulching and organic fertilizer, were significant correlated with yield and nitrogen availability. Film mulching over gravel mulching can serve as an effective measure for crop production and nutrient cycling, and plus organic fertilization additions may thus have improvements in the biological quality of the

  11. Microbial Functional Diversity, Biomass and Activity as Affected by Soil Surface Mulching in a Semiarid Farmland

    PubMed Central

    Shen, Yufang; Chen, Yingying; Li, Shiqing

    2016-01-01

    Mulching is widely used to increase crop yield in semiarid regions in northwestern China, but little is known about the effect of different mulching systems on the microbial properties of the soil, which play an important role in agroecosystemic functioning and nutrient cycling. Based on a 4-year spring maize (Zea mays L.) field experiment at Changwu Agricultural and Ecological Experimental Station, Shaanxi, we evaluated the responses of soil microbial activity and crop to various management systems. The treatments were NMC (no mulching with inorganic N fertilizer), GMC (gravel mulching with inorganic N fertilizer), FMC (plastic-film mulching with inorganic N fertilizer) and FMO (plastic-film mulching with inorganic N fertilizer and organic manure addition). The results showed that the FMO soil had the highest contents of microbial biomass carbon and nitrogen, dehydrogenase activity, microbial activity and Shannon diversity index. The relative use of carbohydrates and amino acids by microbes was highest in the FMO soil, whereas the relative use of polymers, phenolic compounds and amines was highest in the soil in the NMC soil. Compared with the NMC, an increased but no significant trend of biomass production and nitrogen accumulation was observed under the GMC treatment. The FMC and FMO led a greater increase in biomass production than GMC and NMC. Compare with the NMC treatment, FMC increased grain yield, maize biomass and nitrogen accumulation by 62.2, 62.9 and 86.2%, but no significant difference was found between the FMO and FMC treatments. Some soil biological properties, i.e. microbial biomass carbon, microbial biomass nitrogen, being sensitive to the mulching and organic fertilizer, were significant correlated with yield and nitrogen availability. Film mulching over gravel mulching can serve as an effective measure for crop production and nutrient cycling, and plus organic fertilization additions may thus have improvements in the biological quality of the

  12. "Trojan Horse" strategy for deconstruction of biomass for biofuels production.

    SciTech Connect

    Sinclair, Michael B.; Hadi, Masood Z.; Timlin, Jerilyn Ann; Thomson, James; Whalen, Maureen; Thilmony, Roger; Tran-Gyamfi, Mary; Simmons, Blake Alexander; Sapra, Rajat

    2008-08-01

    Production of renewable biofuels to displace fossil fuels currently consumed in the transportation sector is a pressing multi-agency national priority. Currently, nearly all fuel ethanol is produced from corn-derived starch. Dedicated 'energy crops' and agricultural waste are preferred long-term solutions for renewable, cheap, and globally available biofuels as they avoid some of the market pressures and secondary greenhouse gas emission challenges currently facing corn ethanol. These sources of lignocellulosic biomass are converted to fermentable sugars using a variety of chemical and thermochemical pretreatments, which disrupt cellulose and lignin cross-links, allowing exogenously added recombinant microbial enzymes to more efficiently hydrolyze the cellulose for 'deconstruction' into glucose. This process is plagued with inefficiencies, primarily due to the recalcitrance of cellulosic biomass, mass transfer issues during deconstruction, and low activity of recombinant deconstruction enzymes. Costs are also high due to the requirement for enzymes and reagents, and energy-intensive and cumbersome pretreatment steps. One potential solution to these problems is found in synthetic biology; they propose to engineer plants that self-produce a suite of cellulase enzymes targeted to the apoplast for cleaving the linkages between lignin and cellulosic fibers; the genes encoding the degradation enzymes, also known as cellulases, are obtained from extremophilic organisms that grow at high temperatures (60-100 C) and acidic pH levels (<5). These enzymes will remain inactive during the life cycle of the plant but become active during hydrothermal pretreatment i.e., elevated temperatures. Deconstruction can be integrated into a one-step process, thereby increasing efficiency (cellulose-cellulase mass-transfer rates) and reducing costs. The proposed disruptive technologies address biomass deconstruction processes by developing transgenic plants encoding a suite of enzymes used

  13. Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products.

    PubMed

    Zhuang, Xinshu; Wang, Wen; Yu, Qiang; Qi, Wei; Wang, Qiong; Tan, Xuesong; Zhou, Guixiong; Yuan, Zhenhong

    2016-01-01

    Pretreatment is an essential prerequisite to overcome recalcitrance of biomass and enhance the ethanol conversion efficiency of polysaccharides. Compared with other pretreatment methods, liquid hot water (LHW) pretreatment not only reduces the downstream pressure by making cellulose more accessible to the enzymes but minimizes the formation of degradation products that inhibit the growth of fermentative microorganisms. Herein, this review summarized the improved LHW process for different biomass feedstocks, the decomposition behavior of biomass in the LHW process, the enzymatic hydrolysis of LHW-treated substrates, and production of high value-added products and ethanol. Moreover, a combined process producing ethanol and high value-added products was proposed basing on the works of Guangzhou Institute of Energy Conversion to make LHW pretreatment acceptable in the biorefinery of cellulosic ethanol.

  14. Kinetic studies of amylase and biomass production by Calvatia gigantea

    SciTech Connect

    Kekos, D.; Macris, B.J.

    1987-01-01

    Production of alpha-amylase (alpha-4, glucan 4-glucanohydrolase, EC 3.2.1.1) by microorganisms has been practiced for many years in small and large scale operations and the literature on this enzyme is voluminous. Aspergillus niger and Aspergillus oryzae have been reported as the main fungal species used for commercial production of the enzyme. On the other hand, large volumes of low-cost agricultural products such as acorn (the perisperm-free dry seed contains approximately 60% starch) are wasted in many countries and provide a challenge to biotechnology to efficiently utilize these rich sources of starch for the production of high added value products like enzymes. C. gigantea is an edible puffball excreting high levels of alpha-amylase when cultivated on different sources of starch containing elevated quantities of toxic tannic compounds. This fungus has been employed for the production of microbial protein from wastes and acorns containing high levels of toxic tannic compounds. The same fungus was also reported to grow on both hydrolyzable and condensed tannins as sole carbon sources. The present work was undertaken to investigate certain kinetic characteristics of alpha-amylase and biomass production by C. gigantea grown on soluble and acorn starch in a lab fermenter. (Refs. 18).

  15. Biomass enzymatic saccharification is determined by the non-KOH-extractable wall polymer features that predominately affect cellulose crystallinity in corn.

    PubMed

    Jia, Jun; Yu, Bin; Wu, Leiming; Wang, Hongwu; Wu, Zhiliang; Li, Ming; Huang, Pengyan; Feng, Shengqiu; Chen, Peng; Zheng, Yonglian; Peng, Liangcai

    2014-01-01

    Corn is a major food crop with enormous biomass residues for biofuel production. Due to cell wall recalcitrance, it becomes essential to identify the key factors of lignocellulose on biomass saccharification. In this study, we examined total 40 corn accessions that displayed a diverse cell wall composition. Correlation analysis showed that cellulose and lignin levels negatively affected biomass digestibility after NaOH pretreatments at p<0.05 & 0.01, but hemicelluloses did not show any significant impact on hexoses yields. Comparative analysis of five standard pairs of corn samples indicated that cellulose and lignin should not be the major factors on biomass saccharification after pretreatments with NaOH and H2SO4 at three concentrations. Notably, despite that the non-KOH-extractable residues covered 12%-23% hemicelluloses and lignin of total biomass, their wall polymer features exhibited the predominant effects on biomass enzymatic hydrolysis including Ara substitution degree of xylan (reverse Xyl/Ara) and S/G ratio of lignin. Furthermore, the non-KOH-extractable polymer features could significantly affect lignocellulose crystallinity at p<0.05, leading to a high biomass digestibility. Hence, this study could suggest an optimal approach for genetic modification of plant cell walls in bioenergy corn.

  16. Abundance, biomass and production of juvenile flatfish in southeastern kattegat

    NASA Astrophysics Data System (ADS)

    Pihl, L.

    Abundance, biomass and production of juvenile 0- and 1-group flatfish were estimated at 1.5 to 11.0 m depth from May 1984 to May 1987 in southeastern Kattegat. Species studied were: Plaice, Pleuronectes platessa (L.), sole, Solea solea (L.), dab, Limanda limanda (L.), turbot, Scophthalmus maximus (L.), brill, Scophthalmus rhombus (L.), and flounder, Platichthys flesus (L.). Highest abundance and biomass of 0- and 1-group flatfish occurred in July and August each year. Plaice, sole, turbot, brill and flounder were mainly found as 0-group at 1.5 to 5.0 m, but as 1-group they also occupied deeper water. 0- and 1-group dab occurred in the highest density at 5.0 to 11.0 m. Total summer (May to September) production at 1.5 to 5.0 m of the dominant species, plaice, sole and dab, were 98, 23 and 88 g AFDW per 100 m 2 during the three years investigated. Corresponding figures for the depth range 5.0 to 11.0 m were 12, 13 and 53 g AFDW per 100 m 2. Effects of eutrophication on the area as a nursery ground for flatfish are discussed.

  17. Value added liquid products from waste biomass pyrolysis using pretreatments.

    PubMed

    Das, Oisik; Sarmah, Ajit K

    2015-12-15

    Douglas fir wood, a forestry waste, was attempted to be converted into value added products by pretreatments followed by pyrolysis. Four different types of pretreatments were employed, namely, hot water treatment, torrefaction, sulphuric acid and ammonium phosphate doping. Subsequently, pyrolysis was done at 500°C and the resulting bio-oils were analysed for their chemical composition using Karl Fischer titration, thermogravimetry, ion exchange, and gas chromatography. Pretreatment with acid resulted in the highest yield of bio-oil (~60%). The acid and salt pretreatments were responsible for drastic reduction in the lignin oligomers and enhancement of water content in the pyrolytic liquid. The quantity of xylose/mannose reduced as a result of pretreatments. Although, the content of fermentable sugars remained similar across all the pretreatments, the yield of levoglucosan increased. Pretreatment of the biomass with acid yielded the highest amount of levoglucosan in the bio-oil (13.21%). The acid and salt pretreatments also elevated the amount of acetic acid in the bio-oils. Addition of acid and salt to the biomass altered the interaction of cellulose-lignin in the pyrolysis regime. Application of pretreatments should be based on the intended end use of the liquid product having a desired chemical composition.

  18. Scenedesmus dimorphus biofilm: Photoefficiency and biomass production under intermittent lighting

    PubMed Central

    Toninelli, Andrea Efrem; Wang, Junfeng; Liu, Mingshen; Wu, Hong; Liu, Tianzhong

    2016-01-01

    This study investigated the effect of intermittent lighting on the growth performances of a Scenedesmus dimorphus biofilm. Flashing light effect (FLE) is common in traditional suspended cultures of microalgae; yet, publications about this phenomenon, in the context of biofilm cultivation, are scarce. In this work we demonstrate that, thanks to intermittent illumination, it is possible for attached cultivations to fulfill FLE, improve photoefficiency and productivity as well as providing protection from photoinhibition using much lower flashing light frequencies than those usually required with suspended cultures. Medium frequency intermittent lighting (0.1 Hz) guaranteed excellent light integration resulting in 9.13 g m−2 d−1 biomass productivity, which was 8.9% higher than with continuous lighting. Results showed that a light fraction value of 0.5 always improved photoefficiency values as related to continuous light with a 118.8% maximum increase. PMID:27561323

  19. Circumpolar arctic tundra biomass and productivity dynamics in response to projected climate change and herbivory.

    PubMed

    Yu, Qin; Epstein, Howard; Engstrom, Ryan; Walker, Donald

    2017-03-08

    Satellite remote sensing data have indicated a general 'greening' trend in the arctic tundra biome. However, the observed changes based on remote sensing are the result of multiple environmental drivers, and the effects of individual controls such as warming, herbivory, and other disturbances on changes in vegetation biomass, community structure, and ecosystem function remain unclear. We apply ArcVeg, an arctic tundra vegetation dynamics model, to estimate potential changes in vegetation biomass and net primary production (NPP) at the plant community and functional type levels. ArcVeg is driven by soil nitrogen output from the Terrestrial Ecosystem Model, existing densities of Rangifer populations, and projected summer temperature changes by the NCAR CCSM4.0 general circulation model across the Arctic. We quantified the changes in aboveground biomass and NPP resulting from (i) observed herbivory only; (ii) projected climate change only; and (iii) coupled effects of projected climate change and herbivory. We evaluated model outputs of the absolute and relative differences in biomass and NPP by country, bioclimate subzone, and floristic province. Estimated potential biomass increases resulting from temperature increase only are approximately 5% greater than the biomass modeled due to coupled warming and herbivory. Such potential increases are greater in areas currently occupied by large or dense Rangifer herds such as the Nenets-occupied regions in Russia (27% greater vegetation increase without herbivores). In addition, herbivory modulates shifts in plant community structure caused by warming. Plant functional types such as shrubs and mosses were affected to a greater degree than other functional types by either warming or herbivory or coupled effects of the two.

  20. Production of New Biomass/Waste-Containing Solid Fuels

    SciTech Connect

    Glenn A. Shirey; David J. Akers

    2005-09-23

    CQ Inc. and its industry partners--PBS Coals, Inc. (Friedens, Pennsylvania), American Fiber Resources (Fairmont, West Virginia), Allegheny Energy Supply (Williamsport, Maryland), and the Heritage Research Group (Indianapolis, Indiana)--addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that is applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provides environmental benefits compared with coal. During Phase I of this project (January 1999 to July 2000), several biomass/waste materials were evaluated for potential use in a composite fuel. As a result of that work and the team's commercial experience in composite fuels for energy production, paper mill sludge and coal were selected for further evaluation and demonstration in Phase II

  1. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid-and Carbohydrate-Derived Fuel Products

    SciTech Connect

    Davis, R.; Kinchin, C.; Markham, J.; Tan, E. C. D.; Laurens, L. M. L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

    2014-09-11

    The U.S. Department of Energy (DOE) promotes the production of a range of liquid fuels and fuel blendstocks from biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass production, conversion, and sustainability. As part of its involvement in this program, the National Renewable Energy Laboratory (NREL) investigates the conceptual production economics of these fuels. This includes fuel pathways from lignocellulosic (terrestrial) biomass, as well as from algal (aquatic) biomass systems.

  2. Production of xylitol from biomass using an inhibitor-tolerant fungal strain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inhibitory compounds arising from physical–chemical pretreatment of biomass feedstock can interfere with fermentation of biomass sugars to product. A fungus, Coniochaeta ligniaria NRRL30616 improves fermentability of biomass sugars by metabolizing a variety of microbial inhibitors including furan al...

  3. Productivity of wet soils: Biomass of cultivated and natural vegetation

    SciTech Connect

    Johnston, C.A.

    1988-12-01

    Wet soils, soils which have agronomic limitations because of excess water, comprise 105 million acres of non-federal land in the conterminous United States. Wet soils which support hydrophytic plants are ''wetlands'', and are some of the most productive natural ecosystems in the world. When both above- and belowground productivity are considered, cattail (Typha latifolia) is the most productive temperate wetland species (26.4 Mg/ha/year). Both cattail and reed (Phragmites australis) have aboveground productivities of about 13 Mg/ha/year. Although average aboveground yields of reed canarygrass (Phalaris arundinacea) are lower (9.5 Mg/ha/year), techniques for its establishment and cultivation are well-developed. Other herbaceous wetland species which show promise as biomass crops include sedge (Carex spp.), river bulrush (Scirpus fluviatilis) and prairie cordgrass (Spartina pectinata). About 40% of wet soils in the conterminous US are currently cultivated, and they produce one-quarter of the major US crops. Most of this land is artificially drained for crops such as corn, soybeans, and vegetables. US wetlands are drained for agriculture at the rate of 223,000 ha/yr. Paddies flooded with water are used to grow rice, cranberries, and wild rice. Forage and live sphagnum moss are products of undrained wetlands. A number of federal and state regulations apply to the draining or irrigation of wetlands, but most do not seriously restrict their use for agriculture. 320 refs., 36 tabs.

  4. Effective production of fermentable sugars from brown macroalgae biomass.

    PubMed

    Wang, Damao; Kim, Do Hyoung; Kim, Kyoung Heon

    2016-11-01

    Brown macroalgae are renewable and sustainable biomass resources for the production of biofuels and chemicals, owing to their high levels of carbohydrates and low levels of lignin. To increase the biological usage of brown macroalgae, it is necessary to depolymerize the polysaccharides that generate macroalgal monomeric sugars or sugar derivatives and to convert them into fermentable sugars for the production of biofuels and chemicals. In this review, we discuss the chemical and enzymatic saccharification of the major carbohydrates found in brown macroalgae and the use of the resulting constituents in the production of biofuels and chemicals, as well as high-value health-benefiting functional oligosaccharides and sugars. We also discuss recently reported experimental results, novel enzymes, and technological breakthroughs that are related to polysaccharide depolymerization, fermentable sugar production, and the biological conversion of non-favorable sugars for fermentation using industrial microorganisms. This review provides a comprehensive perspective of the efficient utilization of brown macroalgae as renewable resources for the production of biofuels and chemicals.

  5. Remote sensing investigations of wetland biomass and productivity for global biosystems research

    NASA Technical Reports Server (NTRS)

    Harkisky, M.; Klemas, V.

    1983-01-01

    Monitoring biomass of wetlands ecosystems can provide information on net primary production and on the chemical and physical status of wetland soils relative to anaerobic microbial transformation of key elements. Multispectral remote sensing techniques successfully estimated macrophytic biomass in wetlands systems. Regression models developed from ground spectral data for predicting Spartina alterniflora biomass over an entire growing season include seasonal variations in biomass density and illumination intensity. An independent set of biomass and spectral data were collected and the standing crop biomass and net primary productivity were estimated. The improved spatial, radiometric and spectral resolution of th LANDSAT-4 Thematic Mapper over the LANDSAT MSS can greatly enhance multispectral techniques for estimating wetlands biomass over large areas. These techniques can provide the biomass data necessary for global ecology studies.

  6. Biomass production by fescue and switchgrass alone and in mixed swards with legumes. Final project report

    SciTech Connect

    Collins, M.

    1994-06-01

    In assessing the role of biomass in alleviating potential global warming, the absence of information on the sustainability of biomass production on soils of limited agricultural potential is cited as a major constraint to the assessment of the role of biomass. Research on the sustainability of yields, recycling of nutrients, and emphasis on reduced inputs of agricultural chemicals in the production of biomass are among the critical research needs to clarify optimum cropping practice in biomass production. Two field experiments were conducted between 1989 and 1993. One study evaluated biomass production and composition of switchgrass (Panicum virgatum L.) grown alone and with bigflower vetch (Vicia grandiflora L.) and the other assessed biomass productivity and composition of tall fescue (Festuca arundinacea Schreb.) grown alone and with perennial legumes. Switchgrass received 0, 75 or 150 kg ha{sup {minus}1} of N annually as NH{sub 4}NO{sub 3} or was interseeded with vetch. Tall fescue received 0, 75, 150 or 225 kg ha{sup {minus}1} of N annually or was interseeded with alfalfa (Medicago L.) or birdsfoot trefoil (Lotus corniculatus L.). It is hoped that production systems can be designed to produce high yields of biomass with minimal inputs of fertilizer N. Achievement of this goal would reduce the potential for movement of NO{sub 3} and other undesirable N forms outside the biomass production system into the environment. In addition, management systems involving legumes could reduce the cost of biomass production.

  7. Effect of caffeine concentration on biomass production, caffeine degradation, and morphology of Aspergillus tamarii.

    PubMed

    Gutiérrez-Sánchez, G; Roussos, S; Augur, C

    2013-05-01

    The aim of the present study was to evaluate the effect of the initial caffeine concentration (1-8 g/L) on growth and caffeine consumption by Aspergillus tamarii as well as pellet morphology, in submerged fermentation. Caffeine was used as sole nitrogen source. At 1 g/L of initial caffeine concentration, caffeine degradation was not affected, resulting in a production of 8.7 g/L of biomass. The highest biomass production (12.4-14.8 g/L) was observed within a range of 2 to 4 g/L of initial caffeine concentration. At these initial caffeine concentrations, after 96 h of fermentation, 41-51 % of the initial caffeine was degraded. Using an initial caffeine concentration of 2-3 g/L, the highest specific growth rate was observed (μ = 0.069 1/h). Biomass production decreased at 8 g/L of initial caffeine concentration. A. tamarii formed mainly pellets at all concentrations tested. The size of the pellet decreased at a caffeine concentration of 8 g/L.

  8. Rationally engineered synthetic coculture for improved biomass and product formation.

    PubMed

    Santala, Suvi; Karp, Matti; Santala, Ville

    2014-01-01

    In microbial ecosystems, bacteria are dependent on dynamic interspecific interactions related to carbon and energy flow. Substrates and end-metabolites are rapidly converted to other compounds, which protects the community from high concentrations of inhibitory molecules. In biotechnological applications, pure cultures are preferred because of the more straight-forward metabolic engineering and bioprocess control. However, the accumulation of unwanted side products can limit the cell growth and process efficiency. In this study, a rationally engineered coculture with a carbon channeling system was constructed using two well-characterized model strains Escherichia coli K12 and Acinetobacter baylyi ADP1. The directed carbon flow resulted in efficient acetate removal, and the coculture showed symbiotic nature in terms of substrate utilization and growth. Recombinant protein production was used as a proof-of-principle example to demonstrate the coculture utility and the effects on product formation. As a result, the biomass and recombinant protein titers of E. coli were enhanced in both minimal and rich medium simple batch cocultures. Finally, harnessing both the strains to the production resulted in enhanced recombinant protein titers. The study demonstrates the potential of rationally engineered cocultures for synthetic biology applications.

  9. Biomass production chamber air analysis of wheat study (BWT931)

    NASA Technical Reports Server (NTRS)

    Batten, J. H.; Peterson, B. V.; Berdis, E.; Wheeler, E. M.

    1993-01-01

    NASA's Controlled Ecological Life Support System (CELSS) biomass production chamber at John F. Kennedy Space Center provides a test bed for bioregenerative studies using plants to provide food, oxygen, carbon dioxide removal, and potable water to humans during long term space travel. Growing plants in enclosed environments has brought about concerns regarding the level of volatile organic compounds (VOC's) emitted from plants and the construction materials that make up the plant growth chambers. In such closed systems, the potential exists for some VOC's to reach toxic levels and lead to poor plant growth, plant death, or health problems for human inhabitants. This study characterized the air in an enclosed environment in which wheat cv. Yocora Rojo was grown. Ninty-four whole air samples were analyzed by gas chromatography/mass spectrometry throughout the eighty-four day planting. VOC emissions from plants and materials were characterized and quantified.

  10. THE PRODUCTION OF SYNGAS VIA HIGH TEMPERATURE ELECTROLYSIS AND BIO-MASS GASIFICATION

    SciTech Connect

    M. G. McKellar; G. L. Hawkes; J. E. O'Brien

    2008-11-01

    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to improve the hydrogen production efficiency of the steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon dioxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K.

  11. Effects of iron, manganese, copper, and zinc enrichments on productivity and biomass in the subarctic Pacific

    SciTech Connect

    Coale, K.H. )

    1991-12-01

    Natural plankton populations from subarctic Pacific surface waters were incubated in 7-d experiments with added concentrations of Fe, Mn, Cu, and Zn. Small additions of metals were used to simulate natural perturbations in metal concentrations potentially experienced by marine plankton. Trace metal concentrations, phytoplankton productivity, Chl a, and the species composition of phytoplankton and microzooplankton were measured over the course of the experiment. Although the controls indicated little growth, increases in phytoplankton productivity, Chl a, and cell densities were dramatic after the addition of 0.89 nM Fe, indicating that it may limit the rates of algal production in these waters. Similar increases were observed in experiments with 3.9 nM Cu added. The Cu effect is attributed to a decrease in the grazing activities of the microzooplankton and increases in the rates of production. Mn enrichment had its greatest effect on diatom biomass, whereas Zn enrichment had its greatest effect on other autofluorescent organisms. The extent of trace metal adsorption onto carboy walls was also evaluated. These results imply that natural systems may be affected as follows: natural levels of Fe and Cu may influence phytoplankton productivity and trophic structure in open-ocean, high-nutrient, low-biomass systems; rates of net production are not limited by one micronutrient alone.

  12. Altered sucrose metabolism impacts plant biomass production and flower development.

    PubMed

    Coleman, Heather D; Beamish, Leigh; Reid, Anya; Park, Ji-Young; Mansfield, Shawn D

    2010-04-01

    Nicotiana tabacum (tobacco) was transformed with three genes involved in sucrose metabolism, UDP-glucose pyrophosphorylase (UGPase, EC 2.7.7.9), sucrose synthase (SuSy, EC 2.4.1.13) and sucrose phosphate synthase (SPS, EC 2.4.1.14). Plants harbouring the single transgenes were subsequently crossed to produce double and triple transgenic lines, including: 2 x 35S::UGPase x SPS, 4CL::UGPase x SPS, 2 x 35S::SuSy x SPS, 4CL::SuSy x SPS, 2 x 35S::UGPase x SuSy x SPS, and 4CL::UGPase x SuSy x SPS. The ultimate aim of the study was to examine whether it is possible to alter cellulose production through the manipulation of sucrose metabolism genes. While altering sucrose metabolism using UGPase, SuSy and SPS does not have an end effect on cellulose production, their simultaneous overexpression resulted in enhanced primary growth as seen in an increase in height growth, in some cases over 50%. Furthermore, the pyramiding strategy of simultaneously altering the expression of multiple genes in combination resulted in increased time to reproductive bud formation as well as altered flower morphology and foliar stipule formation in 4CL lines. Upregulation of these sucrose metabolism genes appears to directly impact primary growth and therefore biomass production in tobacco.

  13. Hydrogen production from high moisture content biomass in supercritical water

    SciTech Connect

    Antal, M.J. Jr.; Xu, X.

    1998-08-01

    By mixing wood sawdust with a corn starch gel, a viscous paste can be produced that is easily delivered to a supercritical flow reactor by means of a cement pump. Mixtures of about 10 wt% wood sawdust with 3.65 wt% starch are employed in this work, which the authors estimate to cost about $0.043 per lb. Significant reductions in feed cost can be achieved by increasing the wood sawdust loading, but such an increase may require a more complex pump. When this feed is rapidly heated in a tubular flow reactor at pressures above the critical pressure of water (22 MPa), the sawdust paste vaporizes without the formation of char. A packed bed of carbon catalyst in the reactor operating at about 650 C causes the tarry vapors to react with water, producing hydrogen, carbon dioxide, and some methane with a trace of carbon monoxide. The temperature and history of the reactor`s wall influence the hydrogen-methane product equilibrium by catalyzing the methane steam reforming reaction. The water effluent from the reactor is clean. Other biomass feedstocks, such as the waste product of biodiesel production, behave similarly. Unfortunately, sewage sludge does not evidence favorable gasification characteristics and is not a promising feedstock for supercritical water gasification.

  14. Effect of torrefaction on biomass structure and hydrocarbon production from fast pyrolysis

    SciTech Connect

    Neupane, Sneha; Adhikari, Sushil; Wang, Zhouhong; Ragauskas, Arthur; Pu, Yunqiao

    2015-01-27

    Torrefaction has been shown to improve the chemical composition of bio-oils produced from fast pyrolysis by lowering its oxygen content and enhancing the aromatic yield. A Py-GC/MS study was employed to investigate the effect of torrefaction temperatures (225, 250 and 275 °C) and residence times (15, 30 and 45 min) on product distribution from non-catalytic and H+ZSM-5 catalyzed pyrolysis of pinewood. During torrefaction, structural transformations in biomass constitutive polymers: hemicellulose, cellulose and lignin took place, which were evaluated using component analysis, solid state CP/MAS 13C NMR and XRD techniques. Torrefaction caused deacetylation and decomposition of hemicellulose, cleavage of aryl ether linkages and demethoxylation of lignin, degradation of cellulose and an overall increase in aromaticity of biomass, all of which affected the product yield from pyrolysis of torrefied biomass. For non-catalytic pyrolysis, selectivity of phenolic compounds increased with an increase in torrefaction severity while that of furan compounds decreased. In the case of catalytic pyrolysis, the sample torrefied at 225 °C-30 min and 250 °C-15 min resulted in a significant increase in aromatic hydrocarbon (HC) and also total carbon yield (approx. 1.6 times higher) as compared to catalytic pyrolysis of non-torrefied pine. Cleavage of aryl ether linkages and demethoxylation in lignin due to torrefaction caused increased yield of phenolic compounds, which in the presence of a catalyst were dehydrated to form aromatic HC.

  15. Effect of torrefaction on biomass structure and hydrocarbon production from fast pyrolysis

    DOE PAGES

    Neupane, Sneha; Adhikari, Sushil; Wang, Zhouhong; ...

    2015-01-27

    Torrefaction has been shown to improve the chemical composition of bio-oils produced from fast pyrolysis by lowering its oxygen content and enhancing the aromatic yield. A Py-GC/MS study was employed to investigate the effect of torrefaction temperatures (225, 250 and 275 °C) and residence times (15, 30 and 45 min) on product distribution from non-catalytic and H+ZSM-5 catalyzed pyrolysis of pinewood. During torrefaction, structural transformations in biomass constitutive polymers: hemicellulose, cellulose and lignin took place, which were evaluated using component analysis, solid state CP/MAS 13C NMR and XRD techniques. Torrefaction caused deacetylation and decomposition of hemicellulose, cleavage of aryl ethermore » linkages and demethoxylation of lignin, degradation of cellulose and an overall increase in aromaticity of biomass, all of which affected the product yield from pyrolysis of torrefied biomass. For non-catalytic pyrolysis, selectivity of phenolic compounds increased with an increase in torrefaction severity while that of furan compounds decreased. In the case of catalytic pyrolysis, the sample torrefied at 225 °C-30 min and 250 °C-15 min resulted in a significant increase in aromatic hydrocarbon (HC) and also total carbon yield (approx. 1.6 times higher) as compared to catalytic pyrolysis of non-torrefied pine. Cleavage of aryl ether linkages and demethoxylation in lignin due to torrefaction caused increased yield of phenolic compounds, which in the presence of a catalyst were dehydrated to form aromatic HC.« less

  16. Biomass Productivities in Wild Type and Pigment Mutant of Cyclotella sp. (Diatom)

    SciTech Connect

    Huesemann, Michael H.; Hausmann, Tom S.; Bartha, Richard; Aksoy, M.; Weissman, Joseph C.; Benemann, John

    2008-07-03

    (1000 μmole/m2∙sec). Similarly, the biomass productivities measured in outdoor ponds were significantly lower for the mutant than for the wild type. While the exact reasons for the poor performance of the pigment mutant are not known, it is possible that the mutation procedure affected other photosynthetic or metabolic processes. This hypothesis was partially validated by the observation that the pigment mutant had a longer lag-period following inoculation, a lower maximum specific growth rate, and poorer stability than the wild type.

  17. Chronic nitrogen deposition alters tree allometric relationships: implications for biomass production and carbon storage.

    PubMed

    Ibáñez, Inés; Zak, Donald R; Burton, Andrew J; Pregitzer, Kurt S

    2016-04-01

    As increasing levels of nitrogen (N) deposition impact many terrestrial ecosystems, understanding the potential effects of higher N availability is critical for forecasting tree carbon allocation patterns and thus future forest productivity. Most regional estimates of forest biomass apply allometric equations, with parameters estimated from a limited number of studies, to forest inventory data (i.e., tree diameter). However most of these allometric equations cannot account for potential effects of increased N availability on biomass allocation patterns. Using 18 yr of tree diameter, height, and mortality data collected for a dominant tree species (Acer saccharum) in an atmospheric N deposition experiment, we evaluated how greater N availability affects allometric relationships in this species. After taking into account site and individual variability, our results reveal significant differences in allometric parameters between ambient and experimental N deposition treatments. Large trees under experimental N deposition reached greater heights at a given diameter; moreover, their estimated maximum height (mean ± standard deviation: 33.7 ± 0.38 m) was significantly higher than that estimated under the ambient condition (31.3 ± 0.31 m). Within small tree sizes (5-10 cm diameter) there was greater mortality under experimental N deposition, whereas the relative growth rates of small trees were greater under experimental N deposition. Calculations of stemwood biomass using our parameter estimates for the diameter-height relationship indicated the potential for significant biases in these estimates (~2.5%), with under predictions of stemwood biomass averaging 4 Mg/ha lower if ambient parameters were to be used to estimate stem biomass of trees in the experimental N deposition treatment. As atmospheric N deposition continues to increase into the future, ignoring changes in tree allometry will contribute to the uncertainty associated with aboveground carbon storage

  18. The marketing implications of affective product design.

    PubMed

    Seva, Rosemary R; Duh, Henry Been-Lirn; Helander, Martin G

    2007-11-01

    Emotions are compelling human experiences and product designers can take advantage of this by conceptualizing emotion-engendering products that sell well in the market. This study hypothesized that product attributes influence users' emotions and that the relationship is moderated by the adherence of these product attributes to purchase criteria. It was further hypothesized that the emotional experience of the user influences purchase intention. A laboratory study was conducted to validate the hypotheses using mobile phones as test products. Sixty-two participants were asked to assess eight phones from a display of 10 phones and indicate their emotional experiences after assessment. Results suggest that some product attributes can cause intense emotional experience. The attributes relate to the phone's dimensions and the relationship between these dimensions. The study validated the notion of integrating affect in designing products that convey users' personalities.

  19. Global effects of national biomass production and consumption: Austria's embodied HANPP related to agricultural biomass in the year 2000

    PubMed Central

    Haberl, Helmut; Kastner, Thomas; Schaffartzik, Anke; Ludwiczek, Nikolaus; Erb, Karl-Heinz

    2012-01-01

    Global trade of biomass-related products is growing exponentially, resulting in increasing ‘teleconnections’ between producing and consuming regions. Sustainable management of the earth's lands requires indicators to monitor these connections across regions and scales. The ‘embodied human appropriation of NPP’ (eHANPP) allows one to consistently attribute the HANPP resulting from production chains to consumers. HANPP is the sum of land-use induced NPP changes and biomass harvest. We present the first national-level assessment of embodied HANPP related to agriculture based on a calculation using bilateral trade matrices. The dataset allows (1) the tracing of the biomass-based products consumed in Austria in the year 2000 to their countries of origin and quantifying the HANPP caused in production, and (2) the assigning of the national-level HANPP on Austria's territory to the consumers of the products on the national level. The dataset is constructed along a consistent system boundary between society and ecosystems and can be used to assess Austria's physical trade balance in terms of eHANPP. Austria's eHANPP-trade balance is slightly negative (imports are larger than exports); import and export flows are large in relation to national HANPP. Our findings show how the eHANPP approach can be used for quantifying and mapping the teleconnections related to a nation's biomass metabolism. PMID:23576842

  20. Global effects of national biomass production and consumption: Austria's embodied HANPP related to agricultural biomass in the year 2000.

    PubMed

    Haberl, Helmut; Kastner, Thomas; Schaffartzik, Anke; Ludwiczek, Nikolaus; Erb, Karl-Heinz

    2012-12-01

    Global trade of biomass-related products is growing exponentially, resulting in increasing 'teleconnections' between producing and consuming regions. Sustainable management of the earth's lands requires indicators to monitor these connections across regions and scales. The 'embodied human appropriation of NPP' (eHANPP) allows one to consistently attribute the HANPP resulting from production chains to consumers. HANPP is the sum of land-use induced NPP changes and biomass harvest. We present the first national-level assessment of embodied HANPP related to agriculture based on a calculation using bilateral trade matrices. The dataset allows (1) the tracing of the biomass-based products consumed in Austria in the year 2000 to their countries of origin and quantifying the HANPP caused in production, and (2) the assigning of the national-level HANPP on Austria's territory to the consumers of the products on the national level. The dataset is constructed along a consistent system boundary between society and ecosystems and can be used to assess Austria's physical trade balance in terms of eHANPP. Austria's eHANPP-trade balance is slightly negative (imports are larger than exports); import and export flows are large in relation to national HANPP. Our findings show how the eHANPP approach can be used for quantifying and mapping the teleconnections related to a nation's biomass metabolism.

  1. Ethanol Production from Biomass: Large Scale Facility Design Project

    SciTech Connect

    Berson, R. Eric

    2009-10-29

    High solids processing of biomass slurries provides the following benefits: maximized product concentration in the fermentable sugar stream, reduced water usage, and reduced reactor size. However, high solids processing poses mixing and heat transfer problems above about 15% for pretreated corn stover solids due to their high viscosities. Also, highly viscous slurries require high power consumption in conventional stirred tanks since they must be run at high rotational speeds to maintain proper mixing. An 8 liter scraped surface bio-reactor (SSBR) is employed here that is designed to efficiently handle high solids loadings for enzymatic saccharification of pretreated corn stover (PCS) while maintaining power requirements on the order of low viscous liquids in conventional stirred tanks. Saccharification of biomass exhibit slow reaction rates and incomplete conversion, which may be attributed to enzyme deactivation and loss of activity due to a variety of mechanisms. Enzyme deactivation is classified into two categories here: one, deactivation due to enzyme-substrate interactions and two, deactivation due to all other factors that are grouped together and termed “non-specific” deactivation. A study was conducted to investigate the relative extents of “non-specific” deactivation and deactivation due to “enzyme-substrate interactions” and a model was developed that describes the kinetics of cellulose hydrolysis by considering the observed deactivation effects. Enzyme substrate interactions had a much more significant effect on overall deactivation with a deactivation rate constant about 20X higher than the non-specific deactivation rate constant (0.35 h-1 vs 0.018 h-1). The model is well validated by the experimental data and predicts complete conversion of cellulose within 30 hours in the absence of enzyme substrate interactions.

  2. Screening Prosopis (mesquite) germplasm for biomass production and nitrogen fixation

    SciTech Connect

    Felker, P.; Cannell, G.H.; Clark, P.R.; Osborn, J.F.

    1980-01-01

    The nitrogen-fixing trees of the genus Prosopis (mesquite or algaroba) are well adapted to the semi-arid and often saline regions of the world. These trees may produce firewood or pods for livestock food, they may stabilize sand dunes and they may enrich the soil by production of leaf litter supported by nitrogen fixation. A collection of nearly 500 Prosopis accessions representing North and South American and African germplasm has been established. Seventy of these accessions representing 14 taxa are being grown under field conditions where a 30-fold range in biomass productivity among accessions has been estimated. In a greehouse experiment, 13 Prosopis taxa grew on nitrogen-free medium nodulated, and had a 10-fold difference in nitrogen fixation (acetylene reduction). When Prosopis is propagated by seed the resulting trees are extremely variable in growth rate and presence or absence of thorns. Propagation of 6 Prosopis taxa by stem cuttings has been achieved with low success (1 to 10%) in field-grown plants and with higher success (50 to 100%) with young actively growing greenhouse plants.

  3. Ethanol and lignin production from Brazilian empty fruit bunch biomass.

    PubMed

    Raman, Jegannathan Kenthorai; Gnansounou, Edgard

    2014-11-01

    Brazil Government is promoting palm plantations to use degraded land for biofuels. Palm production is expected to increase 35 per cent in future and there would be profuse biomass available that needs to be handled efficiently. Therefore, in this study the potential of EFB from Brazil as raw material for biorefinery was explored by compositional analysis and pretreatment conditions optimization to produce ethanol and co-products. EFB from Brazil contains significant cellulose, hemicellulose, lignin and low ash content. The optimized dilute sulfuric acid pretreatment conditions for efficient cellulose and hemicellulose separation were 160°C temperature, 1.025% v/v acid concentration, 10.5min and 20% solid loading. Under optimum pretreatment process conditions, low enzyme loading (10FPU, 20IU cellulase and glucosidase enzyme/g glucan) and 15% solid loading, 51.1g ethanol, 344.1g solid residue (65% lignin and 24.87MJ/kg LHV) and 3.7l xylose rich liquid could be produced per kg dry EFB.

  4. Simulation of biomass yield and soil organic carbon under bioenergy sorghum production.

    PubMed

    Dou, Fugen; Wight, Jason P; Wilson, Lloyd T; Storlien, Joseph O; Hons, Frank M

    2014-01-01

    Developing sustainable management practices including appropriate residue removal and nitrogen (N) fertilization for bioenergy sorghum is critical. However, the effects of residue removal and N fertilization associated with bioenergy sorghum production on soil organic carbon (SOC) are less studied compared to other crops. The objective of our research was to assess the impacts of residue removal and N fertilization on biomass yield and SOC under biomass sorghum production. Field measurements were used to calibrate the DNDC model, then verified the model by comparing simulated results with measured results using the field management practices as agronomic inputs. Both residue removal and N fertilization affected bioenergy sorghum yields in some years. The average measured SOC at 0-50 cm across the treatments and the time-frame ranged from 47.5 to 78.7 Mg C ha-1, while the simulated SOC was from 56.3 to 67.3 Mg C ha-1. The high correlation coefficients (0.65 to 0.99) and low root mean square error (3 to 18) between measured and simulated values indicate the DNDC model accurately simulated the effects of residue removal with N fertilization on bioenergy sorghum production and SOC. The model predictions revealed that there is, in the long term, a trend for higher SOC under bioenergy sorghum production regardless of residue management.

  5. Simulation of Biomass Yield and Soil Organic Carbon under Bioenergy Sorghum Production

    PubMed Central

    Dou, Fugen; Wight, Jason P.; Wilson, Lloyd T.; Storlien, Joseph O.; Hons, Frank M.

    2014-01-01

    Developing sustainable management practices including appropriate residue removal and nitrogen (N) fertilization for bioenergy sorghum is critical. However, the effects of residue removal and N fertilization associated with bioenergy sorghum production on soil organic carbon (SOC) are less studied compared to other crops. The objective of our research was to assess the impacts of residue removal and N fertilization on biomass yield and SOC under biomass sorghum production. Field measurements were used to calibrate the DNDC model, then verified the model by comparing simulated results with measured results using the field management practices as agronomic inputs. Both residue removal and N fertilization affected bioenergy sorghum yields in some years. The average measured SOC at 0–50 cm across the treatments and the time-frame ranged from 47.5 to 78.7 Mg C ha−1, while the simulated SOC was from 56.3 to 67.3 Mg C ha−1. The high correlation coefficients (0.65 to 0.99) and low root mean square error (3 to 18) between measured and simulated values indicate the DNDC model accurately simulated the effects of residue removal with N fertilization on bioenergy sorghum production and SOC. The model predictions revealed that there is, in the long term, a trend for higher SOC under bioenergy sorghum production regardless of residue management. PMID:25531758

  6. Biogas energy production from tropical biomass wastes by anaerobic digestion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass, and food w...

  7. Production of Butyric Acid and Butanol from Biomass

    SciTech Connect

    Ramey, David E.; Yang, Shang-Tian

    2005-08-25

    Butanol replaced gasoline gallon for gallon in a 10,000 miles trip across the United States without the need to highly modify a ’92 Buick (your existing car today). Butanol can now be made for less than ethanol and yields more Btu’s from the same corn, making the plow to tire equation positive – more energy out than it takes to make it and Butanol is much safer. Butanol when substituted for gasoline gives better gas mileage and does not pollute as tested in 10 states. Butanol should now receive the same recognition as ethanol in U.S. legislation “ethanol/butanol”. There is abundant plant biomass present as low-value agricultural commodities or processing wastes requiring proper disposal to avoid pollution problems. One example is in the corn refinery industry, which processes more than 13% of the ~9.5 billion bushels (~240 million metric tons) of corn annually produced in the U.S. to produce high-fructose-corn-syrup, dextrose, starch, and fuel alcohol, and generates more than 10 million metric tons of corn byproducts that are currently of limited use and pose significant environmental problems. The abundant inexpensive renewable resources as feedstock for fermentation, and recent advances in the fields of biotechnology and bioprocessing have resulted in a renewed interest in the fermentation production of chemicals and fuels, including n-butanol. The historic acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum is one of the oldest known industrial fermentations. It was ranked second only to ethanol fermentation by yeast in its scale of production, and is one of the largest biotechnological processes ever known. However, since the 1950's industrial ABE fermentation has declined continuously, and almost all butanol is now produced via petrochemical routes (Chemical Marketing Reporter, 1993). Butanol is an important industrial solvent and is a better fuel for replacing gasoline – gallon for gallon than ethanol. Current butanol prices

  8. Remote sensing investigations of wetland biomass and productivity for global biosystems research

    NASA Technical Reports Server (NTRS)

    Klemas, V.

    1986-01-01

    The relationship between spectral radiance and plant canopy biomass was studied in wetlands. Spectroradiometer data was gathered on Thematic Mapper wavebands 3, 4, and 5, and correlated with canopy and edaphic factors determined by harvesting. The relationship between spectral radiance and plant canopy biomass for major salt and brackish canopy types was determined. Algorithms were developed for biomass measurement in mangrove swamps. The influence of latitudinal variability in canopy structure on biomass assessment of selected plants was investigated. Brackish marsh biomass estimates were obtained from low altitude aircraft and compared with ground measurements. Annual net aerial primary productivity estimates computed from spectral radiance data were compiled for a Spartina alterniflora marsh. Spectral radiance data were expressed as vegetation or infrared index values. Biomass estimates computed from models were in close agreement with biomass estimates determined from harvests.

  9. Attached cultivation for improving the biomass productivity of Spirulina platensis.

    PubMed

    Zhang, Lanlan; Chen, Lin; Wang, Junfeng; Chen, Yu; Gao, Xin; Zhang, Zhaohui; Liu, Tianzhong

    2015-04-01

    To improve cultivation efficiency for microalgae Spirulina platensis is related to increase its potential use as food source and as an effective alternative for CO2 fixation. The present work attempted to establish a technique, namely attached cultivation, for S. platensis. Laboratory experiments were made firstly to investigate optimal conditions on attached cultivation. The optimal conditions were found: 25 g m(-2) for initial inoculum density using electrostatic flocking cloth as substrata, light intensity lower than 200 μmol m(-2) s(-1), CO2 enriched air flow (0.5%) at a superficial aeration rate of 0.0056 m s(-1) in a NaHCO3-free Zarrouk medium. An outdoor attached cultivation bench-scale bioreactor was built and a 10d culture of S. platensis was carried out with daily harvesting. A high footprint areal biomass productivity of 60 g m(-2) d(-1) was obtained. The nutrition of S. platensis with attached cultivation is identical to that with conventional liquid cultivation.

  10. Potential of water surface-floating microalgae for biodiesel production: Floating-biomass and lipid productivities.

    PubMed

    Muto, Masaki; Nojima, Daisuke; Yue, Liang; Kanehara, Hideyuki; Naruse, Hideaki; Ujiro, Asuka; Yoshino, Tomoko; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2017-03-01

    Microalgae have been accepted as a promising feedstock for biodiesel production owing to their capability of converting solar energy into lipids through photosynthesis. However, the high capital and operating costs, and high energy consumption, are hampering commercialization of microalgal biodiesel. In this study, the surface-floating microalga, strain AVFF007 (tentatively identified as Botryosphaerella sudetica), which naturally forms a biofilm on surfaces, was characterized for use in biodiesel production. The biofilm could be conveniently harvested from the surface of the water by adsorbing onto a polyethylene film. The lipid productivity of strain AVFF007 was 46.3 mg/L/day, allowing direct comparison to lipid productivities of other microalgal species. The moisture content of the surface-floating biomass was 86.0 ± 1.2%, which was much lower than that of the biomass harvested using centrifugation. These results reveal the potential of this surface-floating microalgal species as a biodiesel producer, employing a novel biomass harvesting and dewatering strategy.

  11. Chromium speciation in coal and biomass co-combustion products.

    PubMed

    Stam, Arthur F; Meij, Ruud; Te Winkel, Henk; Eijk, Ronald J van; Huggins, Frank E; Brem, Gerrit

    2011-03-15

    Chromium speciation is vital for the toxicity of products resulting from co-combustion of coal and biomass. Therefore, understanding of formation processes has been studied using a combination of X-ray absorption fine structure (XAFS) spectroscopy and thermodynamic equilibrium calculations. The influence of cofiring on Cr speciation is very dependent on the type of fuel. Cr(VI) contents in the investigated fly ash samples from coal and cofiring average around 7% of the total chromium. An exception is cofiring 7-28% wood for which ashes exhibited Cr(VI) concentrations of 12-16% of the total chromium. Measurements are in line with thermodynamic predictions: RE factors of Cr around 1 are in line with volatile Cr only above 1400 °C; lower Cr(VI) concentrations with lower oxygen content and Cr(III) dissolved in aluminosilicate glass. Stability of Cr(VI) below 700 °C does not correlate with Cr(VI) concentrations found in the combustion products. It is indicated that Cr(VI) formation is a high-temperature process dependent on Cr evaporation (mode of occurrence in fuel, promoted by organic association), oxidation (local oxygen content), and formation of solid chromates (promoted by presence of free lime (CaO) in the ash). CaCrO(4)(s) is a probable chemical form but, given different leachable fractions (varying from 25 to 100%), different forms of Cr(VI) must be present. Clay-bound Cr is likely to dissolve in the aluminosilicate glass phase during melting of the clay.

  12. Biomass logistics analysis for large scale biofuel production: case study of loblolly pine and switchgrass.

    PubMed

    Lu, Xiaoming; Withers, Mitch R; Seifkar, Navid; Field, Randall P; Barrett, Steven R H; Herzog, Howard J

    2015-05-01

    The objective of this study was to assess the costs, energy consumption and greenhouse gas (GHG) emissions throughout the biomass supply chain for large scale biofuel production. Two types of energy crop were considered, switchgrass and loblolly pine, as representative of herbaceous and woody biomass. A biomass logistics model has been developed to estimate the feedstock supply system from biomass production through transportation. Biomass in the form of woodchip, bale and pellet was investigated with road, railway and waterway transportation options. Our analysis indicated that the farm or forest gate cost is lowest for loblolly pine whole tree woodchip at $39.7/dry tonne and highest for switchgrass round bale at $72.3/dry tonne. Switchgrass farm gate GHG emissions is approximately 146kgCO2e/dry tonne, about 4 times higher than loblolly pine. The optimum biomass transportation mode and delivered form are determined by the tradeoff between fixed and variable costs for feedstock shipment.

  13. Remote sensing of aboveground biomass and annual net aerial primary productivity in tidal wetlands

    SciTech Connect

    Hardisky, M.A.

    1983-01-01

    A technique was investigated for estimating biomass and net aerial primary productivity (NAPP) in Delaware tidal marshes from spectral data, describing marsh vegetation canopies. Spectral radiance data were collected with hand-held radiometers from the ground and from low altitude aircraft. Spectral wavebands corresponding to Landsat 4 thematic mapper bands 3, 4 and 5 and multispectral scanner bands 5 and 7 were employed. Spectral data, expressed as index values, were substituted into simple regression models to nondestructively compute total aboveground biomass. Dead biomass, salt crystals on plant leaves and soil background reflectance, all attenuated the spectral radiance index values. A large spectral contribution from any one of these canopy components caused an underestimate of live biomass. Biomass and annual NAPP of a S. alterniflora dominated salt marsh was estimated by traditional harvesting techniques and from ground-gathered spectral radiance data. The live and dead standing crop biomass estimates computed from spectral data were usually not significantly different from harvest biomass estimates. Spectral estimates of NAPP were usually within 10% of NAPP estimates calculated from harvest data. August live standing crop biomass estimates computed from ground-gathered spectral data for a tidal brackish marsh were generally within 10% of harvest estimates. Live biomass estimates computed from spectral data gathered from a low altitude aircraft were equally similar to harvest biomass estimates. The remote sensing technique holds much promise for rapid and accurate estimates of biomass and NAPP in tidal marshes.

  14. Biomass and carotenoid production in photosynthetic bacteria wastewater treatment: effects of light intensity.

    PubMed

    Zhou, Qin; Zhang, Panyue; Zhang, Guangming

    2014-11-01

    This study investigated the feasibility of using photosynthetic bacteria (PSB) to produce biomass and carotenoid while treating wastewater. The effects of light intensity on the biomass, carotenoid and bacteriochlorophyll accumulation in together with pollutant removal were studied. Results showed that it was feasible to use PSB to treat wastewater as well as to produce biomass or carotenoid. 2000 lux was an optimal intensity for biomass production and COD removal, and the corresponding values were 2645 mg/L and 94.7%. 8000 lux was an optimal light intensity for carotenoid production (1.455 mg/L). Mechanism analysis displayed that the greater the bacteriochlorophyll and carotenoid were secreted, the lower the light conversion efficiency turned out to be. The highest light conversion efficiency was achieved at 500 lux; the ATP production, biomass production, and COD removal were the highest at 2000 lux, but the bacteriochlorophyll and carotenoid content were the lowest at 2000 lux.

  15. Laccase production by Aspergillus heteromorphus using distillery spent wash and lignocellulosic biomass.

    PubMed

    Singh, Anita; Bajar, Somvir; Bishnoi, Narsi R; Singh, Namita

    2010-04-15

    Laccase is among the major enzymes which plays an important role in ligninolytic system of fungi. Laccase production by Aspergillus heteromorphus was studied using anaerobically treated distillery spent wash (ADSW) and lignocellulosic biomass. Lignocellulosic biomass (rice straw, wheat straw and sugarcane bagasse) generated during biomass processing leads to solid waste and distillery spent wash is unwanted liquid waste produced by distilleries, both causes environmental pollution. Two mineral media and anaerobically treated distillery spent wash medium was tested for laccase production. Enzyme production in various media and in presence and absence of lignocellulosic biomass supplements showed that anaerobically treated distillery spent wash medium was a better laccase inducer medium than the mineral media. Addition of lignocellulosic biomass enhances laccase production and highest laccase activity was obtained in 5% anaerobically treated distillery spent wash medium with rice straw.

  16. Invariable biomass-specific primary production of taxonomically discrete picoeukaryote groups across the Atlantic Ocean.

    PubMed

    Grob, Carolina; Hartmann, Manuela; Zubkov, Mikhail V; Scanlan, Dave J

    2011-12-01

    Oceanic photosynthetic picoeukaryotes (< 3 µm) are responsible for > 40% of total primary production at low latitudes such as the North-Eastern tropical Atlantic. In the world ocean, warmed by climate changes, the expected gradual shift towards smaller primary producers could render the role of photosynthetic picoeukaryotes even more important than they are today. Little is still known, however, about how the taxonomic composition of this highly diverse group affects primary production at the basin scale. Here, we combined flow cytometric cell sorting, NaH¹⁴CO₃ radiotracer incubations and class-specific fluorescence in situ hybridization (FISH) probes to determine cell- and biomass-specific inorganic carbon fixation rates and taxonomic composition of two major photosynthetic picoeukaryote groups on a ∼7500-km-long latitudinal transect across the Atlantic Ocean (Atlantic Meridional Transect, AMT19). We show that even though larger cells have, on average, cell-specific CO₂ uptake rates ∼5 times higher than the smaller ones, the average biomass-specific uptake is statistically similar for both groups. On the other hand, even at a high taxonomic level, i.e. class, the contributions to both groups by Prymnesiophyceae, Chrysophyceae and Pelagophyceae are significantly different (P < 0.001 in all cases). We therefore conclude that these group's carbon fixation rates are independent of the taxonomic composition of photosynthetic picoeukaryotes across the Atlantic Ocean. Because the above applies across different oceanic regions the diversity changes seem to be a secondary factor determining primary production.

  17. Process Design and Economics for the Production of Algal Biomass: Algal Biomass Production in Open Pond Systems and Processing Through Dewatering for Downstream Conversion

    SciTech Connect

    Davis, Ryan; Markham, Jennifer; Kinchin, Christopher; Grundl, Nicholas; Tan, Eric C.D.; Humbird, David

    2016-02-17

    This report describes in detail a set of aspirational design and process targets to better understand the realistic economic potential for the production of algal biomass for subsequent conversion to biofuels and/or coproducts, based on the use of open pond cultivation systems and a series of dewatering operations to concentrate the biomass up to 20 wt% solids (ash-free dry weight basis).

  18. Nitrogen recycling in prairie species managed for biomass production

    NASA Astrophysics Data System (ADS)

    Smith, L.; Jackson, R. D.

    2011-12-01

    Plant nutrient recycling is an important mechanism for nitrogen (N) retention in plants and has been identified as a means for reducing N losses in perennial grass systems managed for biomass production. Warm-season (C4 photosynthesis) prairie grasses are thought to be inherently good at recycling N, because they often thrive in nutrient-limited native grasslands where N recycling strategies would be advantageous. Results from studies of plant responses to altered N resources and the subsequent ability or need for plants to resorb N in high-productivity environments have been equivocal. We addressed N resorption of four species -- Panicum virgatum in a switchgrass monoculture, and Andropogen gerardii, Sorghastrum nutans and Helianthus grosseserratus in a restored prairie -- and their responses to fertilizer additions of 0, 50, or 150 kg N ha-1 on productive mollisols. We hypothesized that senesced leaf N (the final N concentration retained in a senesced leaf) would increase with fertility, while N resorption efficiency (the proportion of original green leaf N resorbed after senescence) would decrease with fertility. N resorption efficiency rates in the prairie differed mainly by species without significant treatment effects. Helianthus grosseserratus resorption efficiency was highest (69.0 ± 2.6% [s.e.]), followed by Sorghastrum nutans (47.9 ± 5.4%) and Andropogen gerardii (35.3 ± 5.7%). Panicum virgatum resorption efficiencies responded opposite to our predictions with the highest resorption rates in the high-fertility treatment (62.9 ± 5.7%) and the lowest resorption rates in the unfertilized treatment (49.4 ± 6.1%). Fertilizer effects were only significant in senesced Panicum virgatum leaves, but across all species, plants with high green leaf N tended to also have higher senesced leaf N. This suggests that plants with high N resorption efficiencies may resorb a higher proportion of original leaf N because there is more N to remobilize. However, these

  19. Biofuel production by liquefaction of kenaf (Hibiscus cannabinus L.) biomass.

    PubMed

    Meryemoğlu, Bahar; Hasanoğlu, Arif; Irmak, Sibel; Erbatur, Oktay

    2014-01-01

    In this study, kenaf biomass, its dried hydrolysate residue (solid residue left after removing water from hydrolysate) and non-hydrolyzed kenaf residue (solid residue left after hydrolysis process) were liquefied at various temperatures. Hydrolysis of biomass was performed in subcritical water condition. The oil+gas yield of biomass materials increased as the temperature increased from 250 to 300°C. Increasing temperature to 350°C resulted in decreases in oil+gas contents for all biomass feeds studied. On the other hand, preasphaltene+asphaltene (PA+A) and char yields significantly decreased with increasing the process temperature. The use of carbon or activated carbon supported Ru catalyst in the process significantly decreased char and PA+A formations. Oils produced from liquefaction of kenaf, dried kenaf hydrolysate and non-hydrolyzed kenaf residue consist of fuel related components such as aromatic hydrocarbons, benzene and benzene derivative compounds, indane and trans/cis-decalin.

  20. How-To-Do-It: Measuring Vegetation Biomass and Production.

    ERIC Educational Resources Information Center

    Collins, Don; Weaver, T.

    1988-01-01

    Describes a lab exercise used to demonstrate the measurement of biomass in a three layered forest. Discusses sampling, estimation methods, and the analysis of results. Presents an example of a summary sheet for this activity. (CW)

  1. Mapping landscape scale variations of forest structure, biomass, and productivity in Amazonia

    NASA Astrophysics Data System (ADS)

    Saatchi, S.; Malhi, Y.; Zutta, B.; Buermann, W.; Anderson, L. O.; Araujo, A. M.; Phillips, O. L.; Peacock, J.; Ter Steege, H.; Lopez Gonzalez, G.; Baker, T.; Arroyo, L.; Almeida, S.; Higuchi, N.; Killeen, T.; Monteagudo, A.; Neill, D.; Pitman, N.; Prieto, A.; Salomão, R.; Silva, N.; Vásquez Martínez, R.; Laurance, W.; Ramírez, H. A.

    2009-06-01

    Landscape and environmental variables such as topography, geomorphology, soil types, and climate are important factors affecting forest composition, structure, productivity, and biomass. Here, we combine a network of forest inventories with recently developed global data products from satellite observations in modeling the potential distributions of forest structure and productivity in Amazonia and examine how geomorphology, soil, and precipitation control these distributions. We use the RAINFOR network of forest plots distributed in lowland forests across Amazonia, and satellite observations of tree cover, leaf area index, phenology, moisture, and topographical variations. A maximum entropy estimation (Maxent) model is employed to predict the spatial distribution of several key forest structure parameters: basal area, fraction of large trees, fraction of palms, wood density, productivity, and above-ground biomass at 5 km spatial resolution. A series of statistical tests at selected thresholds as well as across all thresholds and jackknife analysis are used to examine the accuracy of distribution maps and the relative contributions of environmental variables. The final maps were interpreted using soil, precipitation, and geomorphological features of Amazonia and it was found that the length of dry season played a key role in impacting the distribution of all forest variables except the wood density. Soil type had a significant impact on the wood productivity. Most high productivity forests were distributed either on less infertile soils of western Amazonia and Andean foothills, on crystalline shields, and younger alluvial deposits. Areas of low elevation and high density of small rivers of Central Amazonia showed distinct features, hosting mainly forests with low productivity and smaller trees.

  2. Evaluation of remotely sensed DMP product using multi-year field measurements of biomass in West Africa

    NASA Astrophysics Data System (ADS)

    Nutini, Francesco; Stroppiana, Daniela; Boschetti, Mirco; Brivio, Pietro A.; Bartholome, Etienne; Beye, Gora

    2011-11-01

    The Sahelian belt of West Africa is a region characterized by wide climate variations, which can in turn affect the survival of local populations especially in rangeland, as happened during the dramatic food crisis in the 70-80s caused by severe drought. This work has been carried out in the framework of the EU FP7 Geoland2 project as a contribution to the ECOWAS component (Economic Community Of West African States) of the AMESD (African Monitoring of the Environment for Sustainable Development) programme with the purpose of establishing the reliability of Dry Matter Productivity (DMP) developed by Flemish Institute for Technological Research (VITO), a spatial estimation of dry matter (DM) obtained from remotely sensed data. DMP can be of great help in monitoring savanna pasturelands in a region characterized by food insecurity and a significant variability of biomass production, linked to climate variations, which can in turn affect the survival of local populations. The evaluation of DMP was carried out thanks to the Centre de Suivi Ecologique (CSE) and Action Contre la Fame (ACF), the partners who provided the field biomass measurements. The paper shows the correlation of DMP with field measurements of herbaceous biomass, and discusses the differences among the different sites where ground data were collected. The analysis of other environmental variables (land cover, rainfall), which can be influential on rangeland biomass production, is presented in order to better explain the variance of field measurements among the different years.

  3. Siting Evaluation for Biomass-Ethanol Production in Hawaii

    SciTech Connect

    Kinoshita, C.M.; Zhou, J.

    2000-10-15

    This report examines four Hawaiian islands, Oahu, Hawaii, Maui, and Kauai, to identify three best combinations of potential sites and crops for producing dedicated supplies of biomass for conversion to ethanol. Key technical and economic factors considered in the siting evaluation include land availability (zoning and use), land suitability (agronomic conditions), potential quantities and costs of producing biomass feedstocks, infrastructure (including water and power supplies), transportation, and potential bioresidues to supplement dedicated energy crops.

  4. Production of new biomass/waste-containing solid fuels

    SciTech Connect

    Akers, D.; Shirey, G.; Zitron, Z.; Nowak, M.

    2000-07-01

    The electric utility industry is interested in the use of biomass and waste byproducts as fuel to reduce both emissions and fuel costs. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. One method of addressing these issues is to produce composite fuels composed of a pelletized mixture of biomass and other constituents. However, for composite fuels to be extensively used in the US, especially in the steam market, a lower cost method of producing these fuels must be developed. Also, standard formulations of biomass and coal (possibly including waste) with broad application to US boilers must be identified. In addition to acceptable cost, these standard formulations can provide environmental benefits relative to coal. The Department of Energy along with the Electric Power Research Institute and various industry partners has funded CQ Inc. to develop both a dewatering/pelletizing die and three standard formulations of biomass, coal, and waste byproducts. Six biomass/waste sources were initially selected for study: petroleum coke, mixed waste plastic, switchgrass, waxed cardboard, poultry manure, and sewage sludge. A sample representative of each source was collected and analyzed. Also, two sources of coal, recovered from waste ponds, were collected for use in the project.

  5. The Mississippi University Research Consortium for the Utilization of Biomass: Production of Alternative Fuels from Waste Biomass Initiative

    SciTech Connect

    Drs. Mark E. Zapp; Todd French; Lewis Brown; Clifford George; Rafael Hernandez; Marvin Salin; Drs. Huey-Min Hwang, Ken Lee, Yi Zhang; Maria Begonia; Drs. Clint Williford; Al Mikell; Drs. Robert Moore; Roger Hester .

    2009-03-31

    The Mississippi Consortium for the Utilization of Biomass was formed via funding from the US Department of Energy's EPSCoR Program, which is administered by the Office of Basic Science. Funding was approved in July of 1999 and received by participating Mississippi institutions by 2000. The project was funded via two 3-year phases of operation (the second phase was awarded based on the high merits observed from the first 3-year phase), with funding ending in 2007. The mission of the Consortium was to promote the utilization of biomass, both cultured and waste derived, for the production of commodity and specialty chemicals. These scientific efforts, although generally basic in nature, are key to the development of future industries within the Southeastern United States. In this proposal, the majority of the efforts performed under the DOE EPSCoR funding were focused primarily toward the production of ethanol from lignocellulosic feedstocks and biogas from waste products. However, some of the individual projects within this program investigated the production of other products from biomass feeds (i.e. acetic acid and biogas) along with materials to facilitate the more efficient production of chemicals from biomass. Mississippi is a leading state in terms of raw biomass production. Its top industries are timber, poultry production, and row crop agriculture. However, for all of its vast amounts of biomass produced on an annual basis, only a small percentage of the biomass is actually industrially produced into products, with the bulk of the biomass being wasted. This situation is actually quite representative of many Southeastern US states. The research and development efforts performed attempted to further develop promising chemical production techniques that use Mississippi biomass feedstocks. The three processes that were the primary areas of interest for ethanol production were syngas fermentation, acid hydrolysis followed by hydrolyzate fermentation, and enzymatic

  6. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis.

    PubMed

    Li, Yong; Niu, Shuli; Yu, Guirui

    2016-02-01

    Nitrogen (N) and phosphorus (P), either individually or in combination, have been demonstrated to limit biomass production in terrestrial ecosystems. Field studies have been extensively synthesized to assess global patterns of N impacts on terrestrial ecosystem processes. However, to our knowledge, no synthesis has been done so far to reveal global patterns of P impacts on terrestrial ecosystems, especially under different nitrogen (N) levels. Here, we conducted a meta-analysis of impacts of P addition, either alone or with N addition, on aboveground (AGB) and belowground biomass production (BGB), plant and soil P concentrations, and N : P ratio in terrestrial ecosystems. Overall, our meta-analysis quantitatively confirmed existing notions: (i) colimitation of N and P on biomass production and (ii) more P limitation in tropical forest than other ecosystems. More importantly, our analysis revealed new findings: (i) P limitation on biomass production was aggravated by N enrichment and (ii) plant P concentration was a better indicator of P limitation than soil P availability. Specifically, P addition increased AGB and BGB by 34% and 13%, respectively. The effect size of P addition on biomass production was larger in tropical forest than grassland, wetland, and tundra and varied with P fertilizer forms, P addition rates, or experimental durations. The P-induced increase in biomass production and plant P concentration was larger under elevated than ambient N. Our findings suggest that the global limitation of P on biomass production will become severer under increasing N fertilizer and deposition in the future.

  7. Food and disturbance effects on Arctic benthic biomass and production size spectra

    NASA Astrophysics Data System (ADS)

    Górska, Barbara; Włodarska-Kowalczuk, Maria

    2017-03-01

    Body size is a fundamental biological unit that is closely coupled to key ecological properties and processes. At the community level, changes in size distributions may influence energy transfer pathways in benthic food webs and ecosystem carbon cycling; nevertheless they remain poorly explored in benthic systems, particularly in the polar regions. Here, we present the first assessment of the patterns of benthic biomass size spectra in Arctic coastal sediments and explore the effects of glacial disturbance and food availability on the partitioning of biomass and secondary productivity among size-defined components of benthic communities. The samples were collected in two Arctic fjords off west Spitsbergen (76 and 79°N), at 6 stations that represent three regimes of varying food availability (indicated by chlorophyll a concentration in the sediments) and glacial sedimentation disturbance intensity (indicated by sediment accumulation rates). The organisms were measured using image analysis to assess the biovolume, biomass and the annual production of each individual. The shape of benthic biomass size spectra at most stations was bimodal, with the location of a trough and peaks similar to those previously reported in lower latitudes. In undisturbed sediments macrofauna comprised 89% of the total benthic biomass and 56% of the total production. The lower availability of food resources seemed to suppress the biomass and secondary production across the whole size spectra (a 6-fold decrease in biomass and a 4-fold decrease in production in total) rather than reshape the spectrum. At locations where poor nutritional conditions were coupled with disturbance, the biomass was strongly reduced in selected macrofaunal size classes (class 10 and 11), while meiofaunal biomass and production were much higher, most likely due to a release from macrofaunal predation and competition pressure. As a result, the partitioning of benthic biomass and production shifted towards meiofauna

  8. Design Case Summary: Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating, and Hydrocracking

    SciTech Connect

    Jones, S. B.; Valkenburg, C.; Walkton, C. W.; Elliott, D. C.; Holladay, J. E.; Stevens, D. J.; Kinchin, C.; Czernik, S.

    2010-02-01

    The Biomass Program develops design cases to understand the current state of conversion technologies and to determine where improvements need to take place in the future. This design case is the first to establish detailed cost targest for the production of diesel and gasoline blendstock from biomass via a fast pyrolysis process.

  9. Perceptions of Agriculture Teachers Regarding Education about Biomass Production in Iowa

    ERIC Educational Resources Information Center

    Han, Guang; Martin, Robert A.

    2015-01-01

    With the growth of biorenewable energy, biomass production has become an important segment in the agriculture industry (Iowa Energy Center, 2013). A great workforce will be needed for this burgeoning biomass energy industry (Iowa Workforce Development, n. d.). Instructional topics in agricultural education should take the form of problems and…

  10. Research to develop improved production methods for woody and herbaceous biomass crops

    SciTech Connect

    Ferrell, J.E.; Wright, L.L.; Tuskan, G.A.

    1995-09-01

    DOE`s Biofuels Feedstock Development Program (BFDP) has led the nation in developing short-rotation woody crops (SRWC) and herbaceous energy crops (HEC) as feedstocks for renewable energy. Over the past 15 years, the BFDP has examined the performance of 154 woody species and 35 herbaceous species in field trials across the US. One result of this effort to date has been the prescription of silvicultural systems for hybrid poplars and hybrid willows and agricultural systems for switchgrass. Selected clones of woody species are producing dry weight yields in research plots on agricultural land that are 3 to 7 times greater than those obtained from mixed species stands on forest land, and at least 2 times the yields of southern plantation pines. Selected switchgrass varieties are producing dry weight yields 2 to 7 times greater than average forage grass yields on similar sites. Crop development research is continuing efforts to translate this potential, in a sustainable manner, to larger, more geographically diverse acreage. Research on environmental aspects of biomass crop production are aimed at developing sustainable systems that will contribute to the biodiversity of agricultural landscapes. Systems integration aims to understand all factors affecting bringing the crop to market. Factors affecting price and potential supplies of biomass crops are being evaluated at regional and national scales. Scale-up studies, feasibility analysis and demonstrations are establishing actual costs and facilitating the commercialization of integrated biomass systems. Information management and dissemination activities are facilitating the communication of results among a community of researchers, policymakers, and potential users and producers of energy crops.

  11. Functional dominance rather than taxonomic diversity and functional diversity mainly affects community aboveground biomass in the Inner Mongolia grassland.

    PubMed

    Zhang, Qing; Buyantuev, Alexander; Li, Frank Yonghong; Jiang, Lin; Niu, Jianming; Ding, Yong; Kang, Sarula; Ma, Wenjing

    2017-03-01

    The relationship between biodiversity and productivity has been a hot topic in ecology. However, the relative importance of taxonomic diversity and functional characteristics (including functional dominance and functional diversity) in maintaining community productivity and the underlying mechanisms (including selection and complementarity effects) of the relationship between diversity and community productivity have been widely controversial. In this study, 194 sites were surveyed in five grassland types along a precipitation gradient in the Inner Mongolia grassland of China. The relationships between taxonomic diversity (species richness and the Shannon-Weaver index), functional dominance (the community-weighted mean of four plant traits), functional diversity (Rao's quadratic entropy), and community aboveground biomass were analyzed. The results showed that (1) taxonomic diversity, functional dominance, functional diversity, and community aboveground biomass all increased from low to high precipitation grassland types; (2) there were significant positive linear relationships between taxonomic diversity, functional dominance, functional diversity, and community aboveground biomass; (3) the effect of functional characteristics on community aboveground biomass is greater than that of taxonomic diversity; and (4) community aboveground biomass depends on the community-weighted mean plant height, which explained 57.1% of the variation in the community aboveground biomass. Our results suggested that functional dominance rather than taxonomic diversity and functional diversity mainly determines community productivity and that the selection effect plays a dominant role in maintaining the relationship between biodiversity and community productivity in the Inner Mongolia grassland.

  12. Invasive warm-season grasses reduce mycorrhizal root colonization and biomass production of native prairie grasses.

    PubMed

    Wilson, Gail W T; Hickman, Karen R; Williamson, Melinda M

    2012-07-01

    Soil organisms play important roles in regulating ecosystem-level processes and the association of arbuscular mycorrhizal (AM) fungi with a plant species can be a central force shaping plant species' ecology. Understanding how mycorrhizal associations are affected by plant invasions may be a critical aspect of the conservation and restoration of native ecosystems. We examined the competitive ability of old world bluestem, a non-native grass (Caucasian bluestem [Bothriochloa bladhii]), and the influence of B. bladhii competition on AM root colonization of native warm-season prairie grasses (Andropogon gerardii or Schizachyrium scoparium), using a substitutive design greenhouse competition experiment. Competition by the non-native resulted in significantly reduced biomass production and AM colonization of the native grasses. To assess plant-soil feedbacks of B. bladhii and Bothriochloa ischaemum, we conducted a second greenhouse study which examined soil alterations indirectly by assessing biomass production and AM colonization of native warm-season grasses planted into soil collected beneath Bothriochloa spp. This study was conducted using soil from four replicate prairie sites throughout Kansas and Oklahoma, USA. Our results indicate that a major mechanism in plant growth suppression following invasion by Bothriochloa spp. is the alteration in soil microbial communities. Plant growth was tightly correlated with AM root colonization demonstrating that mycorrhizae play an important role in the invasion of these systems by Bothriochloa spp. and indicating that the restoration of native AM fungal communities may be a fundamental consideration for the successful establishment of native grasses into invaded sites.

  13. Production of Renewable Natural Gas from Waste Biomass

    NASA Astrophysics Data System (ADS)

    Kumar, Sachin; Suresh, S.; Arisutha, S.

    2013-03-01

    Biomass energy is expected to make a major contribution to the replacement of fossil fuels. Methane produced from biomass is referred to as bio-methane, green gas, bio-substitute natural gas or renewable natural gas (RNG) when it is used as a transport fuel. Research on upgrading of the cleaned producer gas to RNG is still ongoing. The present study deals with the conversion of woody biomass into fuels, RNG using gasifier. The various effects of parameters like temperature, pressure, and tar formation on conversion were also studied. The complete carbon conversion was observed at 480 °C and tar yield was significantly less. When biomass was gasified with and without catalyst at about 28 s residence time, ~75 % (w/w) and 88 % (w/w) carbon conversion for without and with catalyst was observed. The interest in RNG is growing; several initiatives to demonstrate the thermal-chemical conversion of biomass into methane and/or RNG are under development.

  14. Technological steps and yeast biomass as factors affecting the lipid content of beer during the brewing process.

    PubMed

    Bravi, Elisabetta; Perretti, Giuseppe; Buzzini, Pietro; Della Sera, Rolando; Fantozzi, Paolo

    2009-07-22

    Knowledge of lipid content and composition in the brewing process enables the quality control of the final product. Lipids have a beneficial effect on yeast growth during fermentation as well as deleterious effects on end-product quality. The lipid content of a beer affects its ability to form a stable head of foam and plays an important role in beer staling. Lipid oxidation during wort production is of great interest because of its effect on beer quality: both lipids and their oxidation products are known to have adverse effects on beer flavor, whereas interactions between lipids and protein films stabilizing the gas bubbles are thought to cause the collapse of foam. In this background, the aim of this research was the characterization of the lipid content during a brewing process for evaluating the influence of both technological steps and yeast biomass in the lipid composition of beer. Lipid contents and their fatty acid profile were evaluated in brewing raw materials, wort, and beer. A high-resolution gas chromatography-flame ionization detector (HRGC-FID) system was used for fatty acid determination in lipid extracts. The results of the present study highlighted that the main technological steps influencing the lipid content in brewing byproduct and beer were clarification in a whirlpool and filtration. Moreover, the presence of metabolically active yeast cells (used as starter culture) were found to have a great influence on the fatty acids composition of lipids.

  15. Combined heat treatment and acid hydrolysis of cassava grate waste (CGW) biomass for ethanol production

    SciTech Connect

    Agu, R.C.; Amadife, A.E.; Ude, C.M.; Onyia, A.; Ogu, E.O.; Okafor, M.; Ezejiofor, E.

    1997-12-31

    The effect of combined heat treatment and acid hydrolysis (various concentrations) on cassava grate waste (CGW) biomass for ethanol production was investigated. At high concentrations of H{sub 2}SO{sub 4} (1--5 M), hydrolysis of the CGW biomass was achieved but with excessive charring or dehydration reaction. At lower acid concentrations, hydrolysis of CGW biomass was also achieved with 0.3--0.5 M H{sub 2}SO{sub 4}, while partial hydrolysis was obtained below 0.3 M H{sub 2}SO{sub 4} (the lowest acid concentration that hydrolyzed CGW biomass) at 120 C and 1 atm pressure for 30 min. A 60% process efficiency was achieved with 0.3 M H{sub 2}SO{sub 4} in hydrolyzing the cellulose and lignin materials present in the CGW biomass. High acid concentration is therefore not required for CGW biomass hydrolysis. The low acid concentration required for CGW biomass hydrolysis, as well as the minimal cost required for detoxification of CGW biomass because of low hydrogen cyanide content of CGW biomass would seem to make this process very economical. From three liters of the CGW biomass hydrolysate obtained from hydrolysis with 0.3M H{sub 2}SO{sub 4}, ethanol yield was 3.5 (v/v%) after yeast fermentation. However, although the process resulted in gainful utilization of CGW biomass, additional costs would be required to effectively dispose new by-products generated from CGW biomass processing.

  16. Biomass burning and the production of greenhouse gases

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1991-01-01

    The present discussion of related aspects of biomass burning describes a technique for estimating the instantaneous emission of trace gases generated by such fires on the basis of satellite imagery, and notes that burning results in significantly enhanced biogenic emissions of N2O, NO, and CH4. Biomass burning therefore has both immediate and long-term impacts on the trace-gas content of the atmosphere. The effects of Kuwait's oil fires, which encompass both combustion gases and particulates, are compared with those of the more general problem.

  17. Airborne measurements of biomass burning products over Africa

    NASA Technical Reports Server (NTRS)

    Helas, Guenter; Lobert, Juergen; Goldammer, Johann; Andreae, Meinrat O.; Lacaux, J. P.; Delmas, R.

    1994-01-01

    Ozone has been observed in elevated concentrations by satellites over hitherto believed 'background' areas. There is meteorological evidence that these ozone 'plumes' found over the Atlantic ocean originate from biomass fires on the African continent. Therefore we have investigated ozone and assumed precursor compounds over African regions. The measurements revealed large photosmog layers in altitudes between 1.5 and 4 km. Here we will focus on some results of ozone mixing ratios obtained during the DECAFE 91/FOS experiment and estimate the relevance of biomass burning as a source by comparing the strength of this source to stratospheric input.

  18. Plankton secondary productivity and biomass: Their relation to lake trophic state

    USGS Publications Warehouse

    Pederson, G.L.; Welch, E.B.; Litt, A.H.

    1976-01-01

    The biomass and production of the most important zooplankton species were followed for two years in three lakes of varying trophic status in the Lake Washington watershed. Cladocerans and copepods were of equal importance in the biomass of lakes Findley and Chester Morse (both oligotrophic), whereas, copepods were the main biomass component in Lake Sammamish (mesotrophic). Cladocerans dominated production in lakes Sammamish and Chester Morse, while in Findley Lake their productive role, like that of biomass, was equal to that of the copepods. Rotifers contributed a relatively small biomass and production. Data from this study supported Hillbricht-Ilkowska's postulate that the energy transfer efficiency between the primary and secondary trophic levels decreases with increasing trophic state. Energy transfer efficiencies for the lakes of this study expressed as a two year mean of the ratio-secondary: primary production, were as follows: Findley Lake-0.13; Chester Morse Lake-0.08; and Lake Sammanish-0.04. On the other hand, the hypothesis of Patalas that the secondary productivity: biomass ratio (P/B) tended to increase in proportion to the productivity of a lake, could not be supported. Lake Sammamish, the most productive of the lakes studied, had a P/B ratio of 0.03 while lakes Findley and Chester Morse had P/B ratios of 0.04. ?? 1976 Dr. W. Junk b. v. Publishers.

  19. Microwave-Assisted γ-Valerolactone Production for Biomass Lignin Extraction: A Cascade Protocol.

    PubMed

    Tabasso, Silvia; Grillo, Giorgio; Carnaroglio, Diego; Calcio Gaudino, Emanuela; Cravotto, Giancarlo

    2016-03-26

    The general need to slow the depletion of fossil resources and reduce carbon footprints has led to tremendous effort being invested in creating "greener" industrial processes and developing alternative means to produce fuels and synthesize platform chemicals. This work aims to design a microwave-assisted cascade process for a full biomass valorisation cycle. GVL (γ-valerolactone), a renewable green solvent, has been used in aqueous acidic solution to achieve complete biomass lignin extraction. After lignin precipitation, the levulinic acid (LA)-rich organic fraction was hydrogenated, which regenerated the starting solvent for further biomass delignification. This process does not requires a purification step because GVL plays the dual role of solvent and product, while the reagent (LA) is a product of biomass delignification. In summary, this bio-refinery approach to lignin extraction is a cascade protocol in which the solvent loss is integrated into the conversion cycle, leading to simplified methods for biomass valorisation.

  20. Production of lactic acid and fungal biomass by Rhizopus fungi from food processing waste streams.

    PubMed

    Jin, Bo; Yin, Pinghe; Ma, Yihong; Zhao, Ling

    2005-12-01

    This study proposed a novel waste utilization bioprocess for production of lactic acid and fungal biomass from waste streams by fungal species of Rhizopus arrhizus 36017 and R. oryzae 2062. The lactic acid and fungal biomass were produced in a single-stage simultaneous saccharification and fermentation process using potato, corn, wheat and pineapple waste streams as production media. R. arrhizus 36017 gave a high lactic acid yield up to 0.94-0.97 g/g of starch or sugars associated with 4-5 g/l of fungal biomass produced, while 17-19 g/l fungal biomass with a lactic acid yield of 0.65-0.76 g/g was produced by the R. oryzae 2062 in 36-48 h fermentation. Supplementation of 2 g/l of ammonium sulfate, yeast extract and peptone stimulated an increase in 8-15% lactic acid yield and 10-20% fungal biomass.

  1. Biomass energy crop production versus food crop production in the Caribbean

    SciTech Connect

    Sammuels, G.

    1983-12-01

    The Caribbean countries have traditionally grown sugar cane, coffee and bananas as major agriculture export crops. Food crop production was sufficient in most cases for domestic consumption. In recent years powerful social and economic changes of increasing population, industrial development and higher living standards have placed pressure on local governments to provide food, clothing, shelter and energy. Energy that is mainly supplied by imported oil. Biomass, primarily as sugar cane, can provide a solution, either partial or total, to the problem. Unfortunately, the arable land area for the majority of the countries is limited. Food crop production is needed for local consumption and export. Possible energy crop production to provide local needs will place an increasing demand on arable land. The objective of this paper is to present the scope of food versus energy crop production and a suggested renewable energy crop program to help achieve a balance within the limited land resources of the Caribbean.

  2. Safety and health in biomass production, transportation, and storage: a commentary based on the biomass and biofuels session at the 2013 North American Agricultural Safety Summit.

    PubMed

    Yoder, Aaron M; Schwab, Charles; Gunderson, Paul; Murphy, Dennis

    2014-01-01

    There is significant interest in biomass production ranging from government agencies to the private sector, both inside and outside of the traditional production agricultural setting. This interest has led to an increase in the development and production of biomass crops. Much of this effort has focused on specific segments of the process, and more specifically on the mechanics of these individual segments. From a review of scientific literature, it is seen that little effort has been put into identifying, classifying and preventing safety hazards in on-farm biomass production systems. This commentary describes the current status of the knowledge pertaining to health and safety factors of biomass production and storage in the US and identifies areas of standards development that the biomass industry needs from the agricultural safety and health community.

  3. High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants.

    PubMed

    Li, Fengcheng; Zhang, Mingliang; Guo, Kai; Hu, Zhen; Zhang, Ran; Feng, Yongqing; Yi, Xiaoyan; Zou, Weihua; Wang, Lingqiang; Wu, Changyin; Tian, Jinshan; Lu, Tiegang; Xie, Guosheng; Peng, Liangcai

    2015-05-01

    Rice is a major food crop with enormous biomass residue for biofuels. As plant cell wall recalcitrance basically decides a costly biomass process, genetic modification of plant cell walls has been regarded as a promising solution. However, due to structural complexity and functional diversity of plant cell walls, it becomes essential to identify the key factors of cell wall modifications that could not much alter plant growth, but cause an enhancement in biomass enzymatic digestibility. To address this issue, we performed systems biology analyses of a total of 36 distinct cell wall mutants of rice. As a result, cellulose crystallinity (CrI) was examined to be the key factor that negatively determines either the biomass enzymatic saccharification upon various chemical pretreatments or the plant lodging resistance, an integrated agronomic trait in plant growth and grain production. Notably, hemicellulosic arabinose (Ara) was detected to be the major factor that negatively affects cellulose CrI probably through its interlinking with β-1,4-glucans. In addition, lignin and G monomer also exhibited the positive impact on biomass digestion and lodging resistance. Further characterization of two elite mutants, Osfc17 and Osfc30, showing normal plant growth and high biomass enzymatic digestion in situ and in vitro, revealed the multiple GH9B candidate genes for reducing cellulose CrI and XAT genes for increasing hemicellulosic Ara level. Hence, the results have suggested the potential cell wall modifications for enhancing both biomass enzymatic digestibility and plant lodging resistance by synchronically overexpressing GH9B and XAT genes in rice.

  4. Testing of Willow Clones for Biomass Production in Wisconsin

    SciTech Connect

    Kubiske, Marke E.

    2005-01-01

    A core experiment with 31 willow clones and 8 standard poplar clones was established at the Harshaw Experimental Farm, Rhinelander, WI in 1997. Data analysis is continuing for survival, growth, and biomass data for all willow test sites in this project.

  5. Soil nutrient dynamics in a perennial biomass production system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the upper Midwest, economic and social interests in bioenergy and low-carbon fuels are stimulating the conversion of cropland into perennial biomass systems. Landowners are embracing the change by developing diverse whole-farm management systems that can balance economic and environmental risk of...

  6. Production and analysis of fast pyrolysis oils from proteinaceous biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fast pyrolysis of lignocellulosic biomass is a facile method for producing high yields of liquid fuel intermediates. However, because most fast pyrolysis oils are highly oxygenated, acidic and unstable identification of feedstocks that produce higher quality pyrolysis liquids is desirable. Therefor...

  7. Cover crop biomass harvest for bioenergy: implications for crop productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crops, such as rye (Secale cereale), are usually used in conservation agriculture systems in the Southeast. Typically, the cover crop is terminated two to three weeks before planting the summer crop, with the cover biomass left on the soil surface as a mulch. However, these cover crops ...

  8. Design and performance of the KSC biomass production chamber

    SciTech Connect

    Prince, R.P.; Knott, W.M.; Sager, J.C.

    1987-01-01

    An atmospherically sealed chamber has been constructed for the purpose of studying gas, liquid, and microbial contaminants produced by growing food crops. This chamber is designed to provide suitable biomass for evaluation of quality, yield, volume, and energy for different environments and nutrient delivery systems.

  9. Evaluation of yeast strains for production of fuel ethanol from biomass hydrolysates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Robust industrial yeast strains are needed for profitable production of fuel ethanol from mixed biomass waste. USDA, ARS, NCAUR, RPT has been evaluating ethanol-producing yeasts, including Saccharomyces cerevisiae, engineered GMAX Saccharomyces cerevisiae, irradiated Kluyveromyces marxianus, and Pi...

  10. Development of Sustainable Landscape Designs for Improved Biomass Production in the U.S. Corn Belt

    NASA Astrophysics Data System (ADS)

    Bonner, Ian J.

    Demand for renewable and sustainable energy options has resulted in a significant commitment by the US Government to research pathways for fuel production from biomass. The research presented in this thesis describes one potential pathway to increase the amount of biomass available for biofuel production by integrating dedicated energy crops into agricultural fields. In the first chapter an innovative landscape design method based on subfield placement of an energy crop into row crop fields in central Iowa is used to reduce financial loss for farmers, increase and diversify biomass production, and improve soil resources. The second chapter explores how subfield management decisions may be made using high fidelity data and modeling to balance concerns of primary crop production and economics. This work provides critical forward looking support to agricultural land managers and stakeholders in the biomass and bioenergy industry for pathways to improving land stewardship and energy security.

  11. Biomass energy production. Citations from the International Aerospace Abstracts data base

    NASA Technical Reports Server (NTRS)

    Moore, P. W.

    1980-01-01

    These 210 citations from the international literature describe the production and/or utilization of most forms of biomass as a source of energy, fuel, food, and chemical intermediates or feedstocks. Biomass conversion by incineration, gasification, pyrolysis, hydrolysis, anaerobic digestion, or fermentation, as well as by catalytic, photosynthetic, chemosynthetic, and bio-electrochemical means are among the conversion processes considered. Discussions include biomass plantation and material productivity, transportation and equipment requirements, effects, comparisons of means and efficiencies of utilization and conversion, assessments of limitations, and evaluations of economic potential.

  12. Audible sound treatment of the microalgae Picochlorum oklahomensis for enhancing biomass productivity.

    PubMed

    Cai, Weiming; Dunford, Nurhan Turgut; Wang, Ning; Zhu, Songming; He, Huinong

    2016-02-01

    It has been reported in the literature that exposure of microalgae cells to audible sound could promote growth. This study examined the effect of sound waves with the frequency of 1100 Hz, 2200 Hz, and 3300 Hz to stimulate the biomass productivity of an Oklahoma native strain, Picochlorum oklahomensis (PO). The effect of the frequency of sound on biomass mass was measured. This study demonstrated that audible sound treatment of the algae cultures at 2200 Hz was the most effective in terms of biomass production and volumetric oil yield.

  13. Process design and evaluation of production of bioethanol and β-lactam antibiotic from lignocellulosic biomass.

    PubMed

    Kim, Sung Bong; Park, Chulhwan; Kim, Seung Wook

    2014-11-01

    To design biorefinery processes producing bioethanol from lignocellulosic biomass with dilute acid pretreatment, biorefinery processes were simulated using the SuperPro Designer program. To improve the efficiency of biomass use and the economics of biorefinery, additional pretreatment processes were designed and evaluated, in which a combined process of dilute acid and aqueous ammonia pretreatments, and a process of waste media containing xylose were used, for the production of 7-aminocephalosporanic acid. Finally, the productivity and economics of the designed processes were compared.

  14. A Multivariate Approach to Evaluate Biomass Production, Biochemical Composition and Stress Compounds of Spirulina platensis Cultivated in Wastewater.

    PubMed

    Çelekli, Abuzer; Topyürek, Ali; Markou, Giorgos; Bozkurt, Hüseyin

    2016-10-01

    The study was performed to investigate the effects of using cow effluent for the cultivation of Spirulina platensis on its biomass production and cell physiology. S. platensis was cultivated in three different cow effluents (CE) used as cultivation medium during 15 days. CE was prepared using dry cow manures, and it was further modified with supplement of NaNO3 (CEN) and NaNO3 + NaCl (CENS). High nitrate value stimulated chlorophyll-a and total protein content of the cyanobacterium and also biomass production in standards medium (SM) and CEN media. Total carbohydrate content of S. platensis grown in CE media was found to be higher (p < 0.05) than that of SM. Productions of biomass and biochemical compounds by the cyanobacterium grown on the CE and SM media were evaluated by using multivariate approach. Conductivity, oxidation reduction potential (ORP), salinity, pH, and TDS played important role (p < 0.01) in the biochemical composition. As an effective explanatory factor, ORP had a significant positive correlation with H2O2, whereas negatively correlated with chlorophyll-α, biomass production, filament length, and proline. Canonical correspondence analysis proposed that biochemical compounds of S. platensis were not only affected by salinity and nutrition of media but also by pH and ORP. The present study indicated that CEN as a low cost model medium had high potential for the production of biomass by S. platensis with high protein content.

  15. Sources of biomass feedstock variability and the potential impact on biofuels production

    SciTech Connect

    Williams, C. Luke; Westover, Tyler L.; Emerson, Rachel M.; Tumuluru, Jaya Shankar; Li, Chenlin

    2015-11-23

    In this study, terrestrial lignocellulosic biomass has the potential to be a carbon neutral and domestic source of fuels and chemicals. However, the innate variability of biomass resources, such as herbaceous and woody materials, and the inconsistency within a single resource due to disparate growth and harvesting conditions, presents challenges for downstream processes which often require materials that are physically and chemically consistent. Intrinsic biomass characteristics, including moisture content, carbohydrate and ash compositions, bulk density, and particle size/shape distributions are highly variable and can impact the economics of transforming biomass into value-added products. For instance, ash content increases by an order of magnitude between woody and herbaceous feedstocks (from ~0.5 to 5 %, respectively) while lignin content drops by a factor of two (from ~30 to 15 %, respectively). This increase in ash and reduction in lignin leads to biofuel conversion consequences, such as reduced pyrolysis oil yields for herbaceous products as compared to woody material. In this review, the sources of variability for key biomass characteristics are presented for multiple types of biomass. Additionally, this review investigates the major impacts of the variability in biomass composition on four conversion processes: fermentation, hydrothermal liquefaction, pyrolysis, and direct combustion. Finally, future research processes aimed at reducing the detrimental impacts of biomass variability on conversion to fuels and chemicals are proposed.

  16. Sources of biomass feedstock variability and the potential impact on biofuels production

    DOE PAGES

    Williams, C. Luke; Westover, Tyler L.; Emerson, Rachel M.; ...

    2015-11-23

    In this study, terrestrial lignocellulosic biomass has the potential to be a carbon neutral and domestic source of fuels and chemicals. However, the innate variability of biomass resources, such as herbaceous and woody materials, and the inconsistency within a single resource due to disparate growth and harvesting conditions, presents challenges for downstream processes which often require materials that are physically and chemically consistent. Intrinsic biomass characteristics, including moisture content, carbohydrate and ash compositions, bulk density, and particle size/shape distributions are highly variable and can impact the economics of transforming biomass into value-added products. For instance, ash content increases by anmore » order of magnitude between woody and herbaceous feedstocks (from ~0.5 to 5 %, respectively) while lignin content drops by a factor of two (from ~30 to 15 %, respectively). This increase in ash and reduction in lignin leads to biofuel conversion consequences, such as reduced pyrolysis oil yields for herbaceous products as compared to woody material. In this review, the sources of variability for key biomass characteristics are presented for multiple types of biomass. Additionally, this review investigates the major impacts of the variability in biomass composition on four conversion processes: fermentation, hydrothermal liquefaction, pyrolysis, and direct combustion. Finally, future research processes aimed at reducing the detrimental impacts of biomass variability on conversion to fuels and chemicals are proposed.« less

  17. Biomass in the manufacture of industrial products--the use of proteins and amino acids.

    PubMed

    Scott, Elinor; Peter, Francisc; Sanders, Johan

    2007-06-01

    The depletion in fossil feedstocks, increasing oil prices, and the ecological problems associated with CO2 emissions are forcing the development of alternative resources for energy, transport fuels, and chemicals: the replacement of fossil resources with CO2 neutral biomass. Allied with this, the conversion of crude oil products utilizes primary products (ethylene, etc.) and their conversion to either materials or (functional) chemicals with the aid of co-reagents such as ammonia and various process steps to introduce functionalities such as -NH2 into the simple structures of the primary products. Conversely, many products found in biomass often contain functionalities. Therefore, it is attractive to exploit this to bypass the use, and preparation of, co-reagents as well as eliminating various process steps by utilizing suitable biomass-based precursors for the production of chemicals. It is the aim of this mini-review to describe the scope of the possibilities to generate current functionalized chemical materials using amino acids from biomass instead of fossil resources, thereby taking advantage of the biomass structure in a more efficient way than solely utilizing biomass for the production of fuels or electricity.

  18. Increased Night Temperature Negatively Affects Grain Yield, Biomass and Grain Number in Chilean Quinoa

    PubMed Central

    Lesjak, Jurka; Calderini, Daniel F.

    2017-01-01

    Quinoa high nutritive value increases interest worldwide, especially as a crop that could potentially feature in different cropping systems, however, climate change, particularly rising temperatures, challenges this and other crop species. Currently, only limited knowledge exists regarding the grain yield and other key traits response to higher temperatures of this crop, especially to increased night temperatures. In this context, the main objective of this study was to evaluate the effect of increased night temperature on quinoa yield, grain number, individual grain weight and processes involved in crop growth under the environmental conditions (control treatment) and night thermal increase at two phases: flowering (T1) and grain filling (T2) in southern Chile. A commercial genotype, Regalona, and a quinoa accession (Cod. BO5, N°191, grain bank from Semillas Baer, hereby referred to as Accession) were used, due to their adaptability to Southern Chilean conditions and contrasting grain yield potential, grain weight and size of plants. Temperature was increased ≈4°C above the ambient from 8 pm until 9 am the next morning. Control treatments reached a high grain yield (600 and 397 g m-2, i.e., Regalona and Accession). Temperature increase reduced grain yield by 31% under T1 treatment and 12% when under T2 in Regalona and 23 and 26% in Accession, respectively. Aboveground biomass was negatively affected by the thermal treatments and a positive linear association was found between grain yield and aboveground biomass across treatments. By contrast, the harvest index was unaffected either by genotype, or by thermal treatments. Grain number was significantly affected between treatments and this key trait was linearly associated with grain yield. On the other hand, grain weight showed a narrow range of variation across treatments. Additionally, leaf area index was not affected, but significant differences were found in SPAD values at the end of T1 treatment, compared

  19. Macrobenthic biomass and production in a heterogenic subarctic fjord after invasion by the red king crab

    NASA Astrophysics Data System (ADS)

    Fuhrmann, Mona M.; Pedersen, Torstein; Ramasco, Virginie; Nilssen, Einar M.

    2015-12-01

    We studied the macrobenthic fauna and their production potential in Porsangerfjord, Northern Norway, in relation to environmental gradients and the recent invasion by the predatory red king crab into the outer fjord. The study area is characterized by a distinct along-fjord temperature gradient, with the influence of warmer Atlantic water in the outer fjord and year-round bottom temperatures around zero in the inner fjord. Benthic organisms can play a crucial role in ecosystem energy flow. Despite this, our knowledge of factors regulating benthic secondary production in high latitude ecosystems is limited. Macrobenthic abundance, biomass (B), production (P) and production-to-biomass ratio (P/B) were estimated from grab samples collected in 2010. Annual P/B ratios were calculated using a multi-parameter artificial neural network (ANN) model by Brey (2012). The mean abundance, biomass, production and P/B were 4611 ind. m- 2 (95% CI = 3994, 5316), 65 g ww m- 2 (95% CI = 51, 82), 174 kJ m- 2 y- 1 (95% CI = 151, 201) and 1.02 y- 1, respectively. Benthic biomass and production in the fjord were dominated by polychaetes. Spatial variability in P/B and production was mainly driven by community structure and differences in environmental habitat conditions. The inner basins of the fjord were characterized by high total production (439 kJ m- 2 y- 1), attributable to high standing stock biomass and community structure, despite cold bottom temperatures. In the middle and outer fjord, smaller taxa with low individual body masses increased the P/B ratios, but they did not compensate for the low biomass, thereby resulting in lower total production in these areas. The low biomass and the sparseness of large taxa in the outer and middle fjord may already be a result of predation by the invasive red king crab resulting in an overall lower macrobenthic production regime.

  20. Evaluation of Biomass Availability for Biogas Production at Regional Level

    NASA Astrophysics Data System (ADS)

    Dzene, I.; Bodescu, F.

    2009-01-01

    Currently available data were used in an integrated deterministic modelling approach to assess the total biomass availability. The conceptual approach of combining the benefits of relational database and GIS modelling was tested in two eastern European countries - in Latvia and Romania, both located in different bio-geographical regions. The developed system has proven its efficiency in dealing with heterogeneity in different levels of complexity regarding environmental and ecological structures. The overall approach of assessing the biomass resources was first to estimate the quantity of material generated from municipal waste and agricultural practices in each of research areas. The quantity of material that could be recovered from these practices was then taken into account and the technical and environmental constraints associated with other site factors were evaluated. As a result, the particular areas with high, medium and low potential in each country were identified.

  1. Status of Process Development for Pyrolysis of Biomass for Liquid Fuels and Chemicals Production.

    SciTech Connect

    Elliott, Douglas C.

    2010-06-01

    Pyrolysis is one of several thermochemical conversion strategies to produce useful fuels from biomass material . The goal of fast pyrolysis is to maximize liquid product yield. Fast pyrolysis is accomplished by the thermal treatment of the biomass in an air-free environment. Very short heat up and cool-down is a requirement for fast pyrolysis. The typical residence time in the pyrolysis reactor is 1 second. In order to accomplish the fast heatup, grinding the biomass to a small particle size in the range of 1 mm is typical and pre-drying of the biomass to less than 10 weight percent moisture is considered the standard. Recovery of the product liquid, called bio-oil, is accomplished by a variety of methods all of which require a quick quench of the product vapor. A definition of fast pyrolysis bio-oil is provided for the CAS # RN 1207435-39-9 recently issued by ChemAbstracts Services.

  2. Pretreatment optimization of Sorghum pioneer biomass for bioethanol production and its scale-up.

    PubMed

    Koradiya, Manoj; Duggirala, Srinivas; Tipre, Devayani; Dave, Shailesh

    2016-01-01

    Based on one parameter at a time, saccharification of delignified sorghum biomass by 4% and 70% v/v sulfuric acid resulted in maximum 30.8 and 33.8 g% sugar production from biomass respectively. The Box Behnken Design was applied for further optimization of acid hydrolysis. As a result of the designed experiment 36.3g% sugar production was achieved when 3% v/v H2SO4 treatment given for 60 min at 180°C. The process was scaled-up to treat 2 kg of biomass. During the screening of yeast cultures, isolate C, MK-I and N were found to be potent ethanol producers from sorghum hydrolyzate. Culture MK-I was the best so used for scale up of ethanol production up to 25 L capacity, which gave a yield of 0.49 g ethanol/g sugar from hydrolyzate obtained from 2 kg of sorghum biomass.

  3. Hydrogen Production From Crude Bio-oil and Biomass Char by Electrochemical Catalytic Reforming

    NASA Astrophysics Data System (ADS)

    Li, Xing-long; Ning, Shen; Yuan, Li-xia; Li, Quan-xin

    2011-08-01

    We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass. The product gas was a mixed gas containing 72%H2, 26%CO2, 1.9%CO, and a trace amount of CH4. It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%). The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H2O. In addition, the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2.

  4. Methane and fertilizer production from seaweed biomass. Final report

    SciTech Connect

    Betzer, P.R.; Humm, H.J.

    1984-01-01

    It was demonstrated that several varieties of abundant benthic algae indigenous to Tampa Bay (Gracilaria, Hypnea, and Ulva) were readily degradable via anaerobic digestion to methane. The energy yield per unit weight biomass degraded was higher than any previously reported. Given the large masses of readily degradable plants which are annually produced in and around Tampa Bay, the resource is estimated to be at least equivalent to several million gallons of gasoline.

  5. Potential effects on grassland birds of converting marginal cropland to switchgrass biomass production

    USGS Publications Warehouse

    Murray, L.D.; Best, Louis B.; Jacobsen, T.J.; Braster, M.L.

    2003-01-01

    Habitat loss is a major reason for the decline of grassland birds in North America. Five habitats (pastures, hayfields, rowcrop fields, small-grain fields, Conservation Reserve Program fields) compose most of the habitat used by grassland birds in the Midwest United States. Growing and harvesting switchgrass (Panicum virgatum) as a biomass fuel would create another habitat for grassland birds. Bird abundance information from studies conducted in Iowa and adjacent states and land-use data for the Rathbun Lake Watershed in southern Iowa were used in a Geographic Information System to model the potential effects on bird abundances of converting rowcrop fields to biomass production. Abundances of bird species that are management priorities increased in both biomass scenarios. Common yellowthroat (Geothlypis trichas) abundance in the watershed also increased greatly in both scenarios. Other species (e.g., homed lark [Eremophila alpestris], killdeer [Charadrius vociferous]) were more abundant in the existing land use than in the biomass scenarios, and conversion of fields from rowcrop to biomass production could be detrimental to these species. In general, biomass fields will provide habitat for grassland birds that are management priorities, but future monitoring of birds in such fields is needed as conversion of rowcrop fields to biomass production continues. ?? 2002 Elsevier Science Ltd. All rights reserved.

  6. Maintaining environmental quality while expanding biomass production: Sub-regional U.S. policy simulations

    SciTech Connect

    Egbendewe-Mondzozo, Aklesso; Swinton, S.; Izaurralde, Roberto C.; Manowitz, David H.; Zhang, Xuesong

    2013-03-01

    This paper evaluates environmental policy effects on ligno-cellulosic biomass production and environ- mental outcomes using an integrated bioeconomic optimization model. The environmental policy integrated climate (EPIC) model is used to simulate crop yields and environmental indicators in current and future potential bioenergy cropping systems based on weather, topographic and soil data. The crop yield and environmental outcome parameters from EPIC are combined with biomass transport costs and economic parameters in a representative farmer profit-maximizing mathematical optimization model. The model is used to predict the impact of alternative policies on biomass production and environmental outcomes. We find that without environmental policy, rising biomass prices initially trigger production of annual crop residues, resulting in increased greenhouse gas emissions, soil erosion, and nutrient losses to surface and ground water. At higher biomass prices, perennial bioenergy crops replace annual crop residues as biomass sources, resulting in lower environmental impacts. Simulations of three environmental policies namely a carbon price, a no-till area subsidy, and a fertilizer tax reveal that only the carbon price policy systematically mitigates environmental impacts. The fertilizer tax is ineffectual and too costly to farmers. The no-till subsidy is effective only at low biomass prices and is too costly to government.

  7. Algal biomass and primary production within a temperate zone sandstone

    SciTech Connect

    Bell, R.A.; Sommerfeld, M.R. )

    1987-02-01

    The use of dimethyl sulfoxide (DMSO) to extract chlorophyll a and {sup 14}C-labelled photosynthate from endolithic algae of sparsely vegetated, cold temperate grasslands on the Colorado Plateau in Arizona has yielded the first estimates of biomass and photosynthesis for this unusual community. These subsurface microorganisms are found widespread in exposed Coconino Sandstone, a predominant formation in this cold temperate region. The endolithic community in Coconino Sandstone, composed primarily of coccoid blue-green and coccoid/sarcinoid green algae, yielded a biomass value (as chlorophyll a content) of 87 mg m{sup {minus}2} rock surface area and a photosynthetic rate of 0.37 mg CO{sub 2} dm{sup {minus}2} hr{sup {minus}1} or 0.48 mg CO{sub 2} mg{sup {minus}1} chl a hr{sup {minus}1}. The endolithic algal community contributes moderate biomass (5-10%) and substantial photosynthesis (20-80%) to the sparse grassland ecosystem.

  8. Estimating total standing herbaceous biomass production with LANDSAT MSS digital data

    NASA Technical Reports Server (NTRS)

    Richardson, A. J.; Everitt, J. H.; Wiegand, C. L. (Principal Investigator)

    1982-01-01

    Rangeland biomass data were correlated with spectral vegetation indices, derived from LANDSAT MSS data. LANDSAT data from five range and three other land use sites in Willacv and Cameron Counties were collected on October 17 and December 10, 1975, and on July 31 and September 23, 1976. The overall linear correlation of total standing herbaceous biomass with the LANDSAT derived perpendicular vegetation index was highly significant (r = 0.90**) for these four dates. The standard error of estimate was 722 kg/ha. Biomass data were recorded for two of these range sites for 8 months (March through October) during the 1976 growing season. Standing green biomass accounted for most of the increase in herbage, starting in June and ending about September and October. These results indicate that satellite data may be useful for the estimation of total standing herbaceous biomass production that could aid range managers in assessing range condition and animal carrying capacities of large and inaccessible range holdings.

  9. Fuels production by photoelectrolysis of water and photooxidation of soluble biomass materials

    SciTech Connect

    Sammells, A.F.; St. John, M.R.

    1984-03-20

    A process and apparatus for production of fuels by photoelectrolysis of water and photooxidation of water soluble biomass and a process for preparation of Schottky-type metalized, appropriately doped n-type semiconductor photochemical diodes suitable for use in the above process and apparatus. The production of hydrogen by photoelectrolysis of water as the cathodic reaction of an optically illuminated photochemical diode is effected in an aqueous electrolyte which comprises a biomass product which may be monosaccharides, polysaccharides, lignins, their partially oxidized products, and mixtures thereof which are oxidized as the anodic reaction of the photochemical diode producing liquid fuels and useful chemicals. Molecular oxygen evolution is avoided and utilization of biomass product provides a cost effective material to increase fuels and useful chemical production by photoelectrolysis of water at potentials substantially less than required for normal water electrolysis involving oxygen evolution.

  10. Process energy comparison for the production and harvesting of algal biomass as a biofuel feedstock.

    PubMed

    Weschler, Matthew K; Barr, William J; Harper, Willie F; Landis, Amy E

    2014-02-01

    Harvesting and drying are often described as the most energy intensive stages of microalgal biofuel production. This study analyzes two cultivation and eleven harvest technologies for the production of microalgae biomass with and without the use of drying. These technologies were combined to form 122 different production scenarios. The results of this study present a calculation methodology and optimization of total energy demand for the production of algal biomass for biofuel production. The energetic interaction between unit processes and total process energy demand are compared for each scenario. Energy requirements are shown to be highly dependent on final mass concentration, with thermal drying being the largest energy consumer. Scenarios that omit thermal drying in favor of lipid extraction from wet biomass show the most promise for energy efficient biofuel production. Scenarios which used open ponds for cultivation, followed by settling and membrane filtration were the most energy efficient.

  11. How liability law affects medical productivity.

    PubMed

    Kessler, Daniel P; McClellan, Mark B

    2002-11-01

    Previous research suggests that "direct" reforms to the liability system-reforms designed to reduce the level of compensation to potential claimants-reduce medical expenditures without important consequences for patient health outcomes. We extend this research by identifying the mechanisms through which reforms affect the behavior of health care providers. Although we find that direct reforms improve medical productivity primarily by reducing malpractice claims rates and compensation conditional on a claim, our results suggest that other policies that reduce the time spent and the amount of conflict involved in defending against a claim can also reduce defensive practices substantially. In addition, we find that "malpractice pressure" has a more significant impact on diagnostic rather than therapeutic treatment decisions. Our results provide an empirical foundation for simulating the effects of untried malpractice reforms on health care expenditures and outcomes, based on their predicted effects on the malpractice pressure facing medical providers.

  12. Biomass production and carbon sequestration of a short-rotation forest with different poplar clones in northwest China.

    PubMed

    Meifang, Yan; Lu, Wang; Honghui, Ren; Xinshi, Zhang

    2017-05-15

    Short Rotation Forestry (SRF) is of interest as producers of biomass for bio-energy, but also as carbon (C) sinks to mitigate CO2 emission. To investigate biomass production and C sequestration of SRF, ecosystem C stock (including C stored in tree biomass, litter and soil), NPP (net primary productivity), heterotrophic respiration (Rh) and NEP (net ecosystem productivity) of three poplar clone plantations were estimated by repeated field sampling in northwest China. Ecosystem C stock (105.62MgCha(-1)) was significantly lower in PB (P. balsamifera) stand than in PD (P. deltoids) and PE (P.×euramericana) stands (P<0.01). Biomass C stock was greatly affected by clone type (P<0.01), while significant difference in soil C stock was not detected. Averaged NPP was 8.80MgCha(-1)yr(-1) across all clone stands, but the most productive clone of PD yielded up to 10.72MgCha(-1)yr(-1). NEP was found to be significantly different among the clone stands, increasing from 0.21MgCha(-1)yr(-1) in PB to 6.77MgCha(-1)yr(-1) in PD stand. With soil C outputs (Rh) being smaller than C sequestrations, the plantations all acted as C sinks, averagely absorbing 3.45MgCha(-1) during a year. Our results suggest that clone type is a main factor influencing C sequestration capacity of a plantation, along with determining the amount of biomass yield. The success of poplar plantations as a bio-energy resource largely depends on the selection of hybrid varieties.

  13. Biochemical Control of Fungal Biomass and Enzyme Production During Native Hawaiian Litter Degradation

    NASA Astrophysics Data System (ADS)

    Amatangelo, K. L.; Cordova, T. P.; Vitousek, P. M.

    2007-12-01

    Microbial growth and enzyme production during decomposition is controlled by the availability of carbon substrates, essential elements, and the ratios of these (such as lignin:N). We manipulated carbon:nutrient stoichiometry during decomposition using a natural fertility gradient in Hawaii and litter of varying initial biochemistry. We collected freshly senesced litter of seven biochemically distinct species from three sites offering differing levels of N, P, cations, and 15N , but similar yearly rainfall and temperature patterns. Litter types were decomposed at both the sites they were collected, and at the other site(s) that species was found. Litter was collected at multiple time points, and after one year of decomposition, calculated K constants varied an order of magnitude, from 0.276 to 2.76. Decomposition rates varied significantly with both litter site of origin and deployment, except at the oldest, P-limited site, where litter site of origin was not significantly correlated with decomposition within species. As microbial exocellular enzymes provide the catalyst for the breakdown of organic molecules including phenols, cellulose, and cutin, we assayed polyphenol oxidase, cellobiohydrolase, cutinase, chitinase, and lignin peroxidase to evaluate the breakdown sequence of different litter types. To measure the fungal biomass accumulating during decomposition, we extracted (22E)-Ergosta-5,7,22-trien-3beta- ol (ergosterol) on a subset of samples. The production of particular exocellular enzymes on litter species responded distinctly to origin and decomposition sites: after six months, chitinase and cellobiohydrolase were significantly affected by origin site, whereas polyphenol oxidase activity was controlled by deployment site. We conclude that site characteristics can alter the interaction between litter carbon:nutrient ratios and decomposition rate, mediated through microbial biomass and enzyme production.

  14. Biomass pretreatment

    DOEpatents

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  15. Factors affecting the estimate of primary production from space

    NASA Technical Reports Server (NTRS)

    Balch, W. M.; Byrne, C. F.

    1994-01-01

    Remote sensing of primary production in the euphotic zone has been based mostly on visible-band and water-leaving radiance measured with the coastal zone color scanner. There are some robust, simple relationships for calculating integral production based on surface measurements, but they also require knowledge for photoadaptive parameters such as maximum photosynthesis which currently cannot be obtained from spave. A 17,000-station data set is used to show that space-based estimates of maximum photosynthesis could improve predictions of psi, the water column light utiliztion index, which is an important term in many primary productivity models. Temperature is also examined as a factor for predicting hydrographic structure and primary production. A simple model is used to relate temperature and maximum photosynthesis; the model incorporates (1) the positive relationship between maximum photosynthesis and temperature and (2) the strongly negative relationship between temperature and nitrate in the ocean (which directly affects maximum growth rates via nitrogen limitation). Since these two factors relate to carbon and nitrogen, 'balanced carbon/nitrogen assimilation' was calculated using the Redfield ratio, It is expected that the relationship between maximum balanced carbon assimilation versus temperature is concave-down, with the peak dependent on nitrate uptake kinetics, temperature-nitrate relationships,a nd the carbon chlorophyll ration. These predictions were compared with the sea truth data. The minimum turnover time for nitrate was also calculated using this approach. Lastly, sea surface temperature gradients were used to predict the slope of isotherms (a proxy for the slope of isopycnals in many waters). Sea truth data show that at size scales of several hundred kilometers, surface temperature gradients can provide information on the slope of isotherms in the top 200 m of the water column. This is directly relevant to the supply of nutrients into the surface

  16. Genotypic diversity effects on biomass production in native perennial bioenergy cropping systems.

    PubMed

    Morris, Geoffrey P; Hu, Zhenbin; Grabowski, Paul P; Borevitz, Justin O; de Graaff, Marie-Anne; Miller, R Michael; Jastrow, Julie D

    2016-09-01

    The perennial grass species that are being developed as biomass feedstock crops harbor extensive genotypic diversity, but the effects of this diversity on biomass production are not well understood. We investigated the effects of genotypic diversity in switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii) on perennial biomass cropping systems in two experiments conducted over 2008-2014 at a 5.4-ha fertile field site in northeastern Illinois, USA. We varied levels of switchgrass and big bluestem genotypic diversity using various local and nonlocal cultivars - under low or high species diversity, with or without nitrogen inputs - and quantified establishment, biomass yield, and biomass composition. In one experiment ('agronomic trial'), we compared three switchgrass cultivars in monoculture to a switchgrass cultivar mixture and three different species mixtures, with or without N fertilization. In another experiment ('diversity gradient'), we varied diversity levels in switchgrass and big bluestem (1, 2, 4, or 6 cultivars per plot), with one or two species per plot. In both experiments, cultivar mixtures produced yields equivalent to or greater than the best cultivars. In the agronomic trial, the three switchgrass mixture showed the highest production overall, though not significantly different than best cultivar monoculture. In the diversity gradient, genotypic mixtures had one-third higher biomass production than the average monoculture, and none of the monocultures were significantly higher yielding than the average mixture. Year-to-year variation in yields was lowest in the three-cultivar switchgrass mixtures and Cave-In-Rock (the southern Illinois cultivar) and also reduced in the mixture of switchgrass and big bluestem relative to the species monocultures. The effects of genotypic diversity on biomass composition were modest relative to the differences among species and genotypes. Our findings suggest that local genotypes can be included in

  17. Direct biodiesel production from wet microalgae biomass of Chlorella pyrenoidosa through in situ transesterification.

    PubMed

    Cao, Hechun; Zhang, Zhiling; Wu, Xuwen; Miao, Xiaoling

    2013-01-01

    A one-step process was applied to directly converting wet oil-bearing microalgae biomass of Chlorella pyrenoidosa containing about 90% of water into biodiesel. In order to investigate the effects of water content on biodiesel production, distilled water was added to dried microalgae biomass to form wet biomass used to produce biodiesel. The results showed that at lower temperature of 90°C, water had a negative effect on biodiesel production. The biodiesel yield decreased from 91.4% to 10.3% as water content increased from 0% to 90%. Higher temperature could compensate the negative effect. When temperature reached 150°C, there was no negative effect, and biodiesel yield was over 100%. Based on the above research, wet microalgae biomass was directly applied to biodiesel production, and the optimal conditions were investigated. Under the optimal conditions of 100 mg dry weight equivalent wet microalgae biomass, 4 mL methanol, 8 mL n-hexane, 0.5 M H2SO4, 120°C, and 180 min reaction time, the biodiesel yield reached as high as 92.5% and the FAME content was 93.2%. The results suggested that biodiesel could be effectively produced directly from wet microalgae biomass and this effort may offer the benefits of energy requirements for biodiesel production.

  18. Direct Biodiesel Production from Wet Microalgae Biomass of Chlorella pyrenoidosa through In Situ Transesterification

    PubMed Central

    Cao, Hechun; Zhang, Zhiling; Wu, Xuwen; Miao, Xiaoling

    2013-01-01

    A one-step process was applied to directly converting wet oil-bearing microalgae biomass of Chlorella pyrenoidosa containing about 90% of water into biodiesel. In order to investigate the effects of water content on biodiesel production, distilled water was added to dried microalgae biomass to form wet biomass used to produce biodiesel. The results showed that at lower temperature of 90°C, water had a negative effect on biodiesel production. The biodiesel yield decreased from 91.4% to 10.3% as water content increased from 0% to 90%. Higher temperature could compensate the negative effect. When temperature reached 150°C, there was no negative effect, and biodiesel yield was over 100%. Based on the above research, wet microalgae biomass was directly applied to biodiesel production, and the optimal conditions were investigated. Under the optimal conditions of 100 mg dry weight equivalent wet microalgae biomass, 4 mL methanol, 8 mL n-hexane, 0.5 M H2SO4, 120°C, and 180 min reaction time, the biodiesel yield reached as high as 92.5% and the FAME content was 93.2%. The results suggested that biodiesel could be effectively produced directly from wet microalgae biomass and this effort may offer the benefits of energy requirements for biodiesel production. PMID:24195081

  19. Three types of Marine microalgae and Nannocholoropsis oculata cultivation for potential source of biomass production

    NASA Astrophysics Data System (ADS)

    Krishnan, Vijendren; Uemura, Yoshimitsu; Tien Thanh, Nguyen; Khalid, Nadila Abdul; Osman, Noridah; Mansor, Nurlidia

    2015-06-01

    Microalgae have been vastly investigated throughout the world for possible replacement of fossil fuels, besides utilization in remediation of leachate, disposal of hypersaline effluent and also as feedstock for marine organisms. This research particularly has focused on locally available marine microalgae sample and Nannochloropsis oculata for potential mass production of microalgae biomass. Biomass produced by sample 1 and sample 2 is 0.6200 g/L and 0.6450 g/L respectively. Meanwhile, sample 3 and N. oculata has obtained maximum biomass concentration of 0.4917 g/L and 0.5183 g/L respectively. This shows that sample 1 and sample 2 has produced approximately 20% higher biomass concentration in comparison to sample 3 and N. oculata. Although sample 3 and N. oculata is slightly lower than other samples, the maximum biomass was achieved four days earlier. Hence, the specific growth rate of sample 3 and N. oculata is higher; meanwhile the specific growth rate of N. oculata is the highest. Optical density measurements of all the sample throughout the cultivation period also correlates well with the biomass concentration of microalgae. Therefore, N. oculata is finally selected for utilization in mass production of microalgae biomass.

  20. Production of biomass by Spirulina at different groundwater type. Case of Ouargla-Southeast Algeria

    NASA Astrophysics Data System (ADS)

    Saggaï, Ali; Dadamoussa, Belkheir; Djaghoubi, Afaf; Bissati, Samia

    2016-07-01

    In this paper, Spirulina platensis was cultivated to estimate the biomass production with different groundwater type in Ouargla. Growth experiments were undertaken in flasks under shelter in outdoor condition. For this, the temperature, pH and salinity value was recorded between two days of growth. Biomass concentration in the culture media was calculated by measuring the DO625. The combination of the Mioplocen water with the nutriments gave the highest values of biomass concentration with avenge of 1.78 ±0.91g/l. All the three-type water supported the growth of Spirulina that appeared as good as a culture media.

  1. Numerical simulation of vortex pyrolysis reactors for condensable tar production from biomass

    SciTech Connect

    Miller, R.S.; Bellan, J.

    1998-08-01

    A numerical study is performed in order to evaluate the performance and optimal operating conditions of vortex pyrolysis reactors used for condensable tar production from biomass. A detailed mathematical model of porous biomass particle pyrolysis is coupled with a compressible Reynolds stress transport model for the turbulent reactor swirling flow. An initial evaluation of particle dimensionality effects is made through comparisons of single- (1D) and multi-dimensional particle simulations and reveals that the 1D particle model results in conservative estimates for total pyrolysis conversion times and tar collection. The observed deviations are due predominantly to geometry effects while directional effects from thermal conductivity and permeability variations are relatively small. Rapid ablative particle heating rates are attributed to a mechanical fragmentation of the biomass particles that is modeled using a critical porosity for matrix breakup. Optimal thermal conditions for tar production are observed for 900 K. Effects of biomass identity, particle size distribution, and reactor geometry and scale are discussed.

  2. Biomass production and nutritional value of Artemia sp. (Anostraca: Artemiidae) in Campeche, México.

    PubMed

    Maldonado-Montiel, Teresita D N J; Rodríguez-Canché, Leticia G

    2005-01-01

    Biomass of the crustacean Artemia sp. has multiple uses. The biochemical composition and biomass production of Artemia grown from cysts produced by a native population from Real de Salinas were evaluated under laboratory conditions. Nauplii (instar I) were stocked at density of 10 nauplii/ml in 1.5 l tanks, fed with rice bran from day 2 to day 6, and with the microalgae Tetraselmis suecica from day 7 to day 15. At the end of the trial (day 15) the average length was 5.34 mm, biomass production was 15.72 g/l (wet weight), and survival was 79%. The proximal analysis and biochemical composition of Artemia biomass indicated that its nutrient percentages are closely similar to Artemia from other regions, making this species a suitable food for cultured fish and crustacean.

  3. Enhancing bio-butanol production from biomass of Chlorella vulgaris JSC-6 with sequential alkali pretreatment and acid hydrolysis.

    PubMed

    Wang, Yue; Guo, Wanqian; Cheng, Chieh-Lun; Ho, Shih-Hsin; Chang, Jo-Shu; Ren, Nanqi

    2016-01-01

    This study presents a successful butanol production method using alkali and acid pretreated biomass of Chlorella vulgaris JSC-6. The butanol concentration, yield, and productivity were 13.1g/L, 0.58mol/mol sugar, 0.66g/L/h, respectively. Nearly 2.93L/L of biohydrogen was produced during the acidogenesis phase in ABE fermentation. The hydrogen yield and productivity were 0.39mol/mol sugar and 104.2g/L/h respectively. In addition, the high glucose consumption efficiency (97.5%) suggests that the hydrolysate pretreated with NaOH (1%) followed by H2SO4 (3%) did not contain inhibitors to the fermentation. It was also discovered that an excess amount of nitrogen sources arising from hydrolysis of highly concentrated microalgal biomass negatively affected the butanol production. This work demonstrates the technical feasibility of producing butanol from sustainable third-generation feedstock (i.e., microalgal biomass).

  4. Additives initiate selective production of chemicals from biomass pyrolysis.

    PubMed

    Leng, Shuai; Wang, Xinde; Wang, Lei; Qiu, Huizhe; Zhuang, Guilin; Zhong, Xing; Wang, Jianguo; Ma, Fengyun; Liu, Jingmei; Wang, Qiang

    2014-03-01

    To improve chemicals selectivity under low temperature, a new method that involves the injection of additives into biomass pyrolysis is introduced. This method allows biomass pyrolysis to achieve high selectivity to chemicals under low temperature (300°C), while nothing was obtained in typical pyrolysis under 300°C. However, by using the new method, the first liquid drop emerged at the interval between 140°C and 240°C. Adding methanol to mushroom scrap pyrolysis obtained high selectivity to acetic acid (98.33%), while adding ethyl acetate gained selectivity to methanol (65.77%) in bagasse pyrolysis and to acetone (72.51%) in corncob pyrolysis. Apart from basic chemicals, one high value-added chemical (2,3-dihydrobenzofuran) was also detected, which obtained the highest selectivity (10.33%) in corncob pyrolysis through the addition of ethyl acetate. Comparison of HZSM-5 and CaCO3 catalysis showed that benzene emerged in the liquid because of the larger degree of cracking and hydrodeoxygenation over HZSM-5.

  5. Influence of Plant Community Composition on Biomass Production in Planted Grasslands

    PubMed Central

    Henschell, Max A.; Webster, Christopher R.; Flaspohler, David J.; Fortin, Chad R.

    2015-01-01

    United States energy policy mandates increased use of renewable fuels. Restoring grasslands could contribute to a portion of this requirement through biomass harvest for bioenergy use. We investigated which plant community characteristics are associated with differences in biomass yield from a range of realistic native prairie plantings (n = 11; i.e., conservation planting, restoration, and wildlife cover). Our primary goal was to understand whether patterns in plant community composition and the Floristic Quality Index (FQI) were related to productivity as evidenced by dormant season biomass yield. FQI is an objective measure of how closely a plant community represents that of a pre-European settlement community. Our research was conducted in planted fields of native tallgrass prairie species, and provided a gradient in floristic quality index, species richness, species diversity, and species evenness in south-central Wisconsin during 2008 and 2009. We used a network of 15 randomly located 1 m2 plots within each field to characterize the plant community and estimate biomass yield by clipping the plots at the end of each growing season. While plant community composition and diversity varied significantly by planting type, biomass yield did not vary significantly among planting types (ANOVA; P >0.05). Biomass yield was positively correlated with plant community evenness, richness, C4 grass cover, and floristic quality index, but negatively correlated with plant species diversity in our multi-season multiple linear mixed effects models. Concordantly, plots with biomass yield in the lowest quartile (biomass yield < 3500 kh/ha) had 8% lower plant community evenness and 9% lower FQI scores than those in the upper quartile (biomass yield > 5800 kh/ha). Our results suggest that promoting the establishment of fields with high species evenness and floristic quality may increase biomass yield, while simultaneously supporting biodiversity. PMID:26018412

  6. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    SciTech Connect

    G. L. Hawkes; J. E. O'Brien; M. G. McKellar

    2011-11-01

    Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power

  7. Linking state-and-transition simulation and timber supply models for forest biomass production scenarios

    USGS Publications Warehouse

    Costanza, Jennifer; Abt, Robert C.; McKerrow, Alexa; Collazo, Jaime

    2015-01-01

    We linked state-and-transition simulation models (STSMs) with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS) was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.

  8. Improving simulated Amazon forest biomass and productivity by including spatial variation in biophysical parameters

    NASA Astrophysics Data System (ADS)

    Castanho, A. D. A.; Coe, M. T.; Costa, M. H.; Malhi, Y.; Galbraith, D.; Quesada, C. A.

    2013-04-01

    Dynamic vegetation models forced with spatially homogeneous biophysical parameters are capable of producing average productivity and biomass values for the Amazon basin forest biome that are close to the observed estimates, but these models are unable to reproduce observed spatial variability. Recent observational studies have shown substantial regional spatial variability of above-ground productivity and biomass across the Amazon basin, which is believed to be primarily driven by a combination of soil physical and chemical properties. In this study, spatial heterogeneity of vegetation properties is added to the Integrated Biosphere Simulator (IBIS) land surface model, and the simulated productivity and biomass of the Amazon basin are compared to observations from undisturbed forest. The maximum RuBiCo carboxylation capacity (Vcmax) and the woody biomass residence time (τw) were found to be the most important properties determining the modeled spatial variation of above-ground woody net primary productivity and biomass, respectively. Spatial heterogeneity of these properties may lead to simulated spatial variability of 1.8 times in the woody net primary productivity (NPPw) and 2.8 times in the woody above-ground biomass (AGBw). The coefficient of correlation between the modeled and observed woody productivity improved from 0.10 with homogeneous parameters to 0.73 with spatially heterogeneous parameters, while the coefficient of correlation between the simulated and observed woody above-ground biomass improved from 0.33 to 0.88. The results from our analyses with the IBIS dynamic vegetation model demonstrated that using single values for key ecological parameters in the tropical forest biome severely limits simulation accuracy. Clearer understanding of the biophysical mechanisms that drive the spatial variability of carbon allocation, τw and Vcmax is necessary to achieve further improvements to simulation accuracy.

  9. Role of nutrients and illuminance in predicting the fate of fungal mediated petroleum hydrocarbon degradation and biomass production.

    PubMed

    Ali Khan, Aqib Hassan; Tanveer, Sundus; Anees, Mariam; Muhammad, Yousaf Shad; Iqbal, Mazhar; Yousaf, Sohail

    2016-07-01

    Biodegradation and biomass production are affected by numerous environmental factors including pH, oxygen availability and presence of pollutants. The present study, for the first time, elucidated the effects of nutrients and light on mycodegradation of petroleum hydrocarbons in diesel oil. Seven fungal strains (Aspergillus terreus FA3, Aspergillus niger FA5, Aspergillus terreus FA6, Penicillium chrysogenum FP4, Aspergillus terreus FP6, Aspergillus flavus FP10, and Candida sp. FG1) were used for hydrocarbon degradation under static conditions, in four combinations of nutrient media and illuminance for 45 days. Highest degradation was achieved by Aspergillus terreus FA6 and Candida sp. FG1 under both conditions of light and dark, with nutrient deprived HAF (Hydrocarbon adopted fungi) broth. Under HAF/Dark diesel oil degradation by FA6 and FG1 was 87.3% and 84.3% respectively, while under HAF/Light both FA6 and FG1 performed 84.3% biodegradation. The highest biomass was produced by Aspergillus flavus FP10 in PDB (Potato dextrose broth)/Dark (109.3 mg). Fungal degradation of petroleum hydrocarbons was negatively affected by the presence of other simpler-to-degrade carbon sources in the medium. The biomass production was enhanced by improved nutrient availability and diminished by illuminance.

  10. Acid-Catalyzed Algal Biomass Pretreatment for Integrated Lipid and Carbohydrate-Based Biofuels Production

    SciTech Connect

    Laurens, L. M. L.; Nagle, N.; Davis, R.; Sweeney, N.; Van Wychen, S.; Lowell, A.; Pienkos, P. T.

    2014-11-12

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. We studied the effect of harvest timing on the conversion yields, using two algal strains; Chlorella and Scenedesmus, generating biomass with distinctive compositional ratios of protein, carbohydrate, and lipids. We found that the late harvest Scenedesmus biomass had the maximum theoretical biofuel potential at 143 gasoline gallon equivalent (GGE) combined fuel yield per dry ton biomass, followed by late harvest Chlorella at 128 GGE per ton. Our experimental data show a clear difference between the two strains, as Scenedesmus was more successfully converted in this process with a demonstrated 97 GGE per ton. Our measurements indicated a release of >90% of the available glucose in the hydrolysate liquors and an extraction and recovery of up to 97% of the fatty acids from wet biomass. Techno-economic analysis for the combined product yields indicates that this process exhibits the potential to improve per-gallon fuel costs by up to 33% compared to a lipids-only process for one strain, Scenedesmus, grown to the mid-point harvest condition.

  11. Characterization of Nizimuddinia zanardini macroalgae biomass composition and its potential for biofuel production.

    PubMed

    Yazdani, Parviz; Zamani, Akram; Karimi, Keikhosro; Taherzadeh, Mohammad J

    2015-01-01

    Nizimuddinia zanardini macroalgae, harvested from Persian Gulf, was chemically characterized and employed for the production of ethanol, seaweed extract, alginic acid, and biogas. In order to improve the products yields, the biomass was pretreated with dilute sulfuric acid and hot water. The pretreated and untreated biomasses were subjected to enzymatic hydrolysis by cellulase (15FPU/g) and β-glucosidase (30IU/g). Hydrolysis yield of glucan was 29.8, 82.5, and 72.7g/kg for the untreated, hot-water pretreated, and acid pretreated biomass, respectively. Anaerobic fermentation of hydrolysates by Saccharomycescerevisiae resulted in the maximum ethanol yield of 34.6g/kg of the dried biomass. A seaweed extract containing mannitol and a solid residue containing alginic acid were recovered as the main byproducts of the ethanol production. On the other hand, the biogas yield from the biomass was increased from 170 to 200m(3) per ton of dried algae biomass by hot water pretreatment.

  12. Energy biomass tree seedling production study. Fuels from woody biomass. Progress report, September 1978-January 1980

    SciTech Connect

    Foote, K.R.

    1980-03-01

    The research to date has centered around the establishment of baseline growing conditions for a number of species of tree seedlings, primarily deciduous hardwoods. As these baseline conditions were established for each specie, the shoot and root environments were manipulated in an attempt to establish techniques to increase seedling growth and reduce production times. Seedlings were outplanted in an attempt to establish baseline survival rates for seedlings grown in totally controlled environments. Studies to determine the optimum container for tree seedling production have been run and will continue as other containers are identified and made available. The most significant of the research results has been in the maximization of seedling growth. Seedling production times have been decreased in some species by as much as 50% under the baseline production times. Controlled environment production techniques provide for plant densities as high as 144 seedlings per square foot of growing space. Investigations of growing media indicate a significant species specific responses. Preliminary results of outplanting indicate survival rates as high as 90% plus.

  13. Community Biomass and Bottom up Multivariate Nutrient Complementarity Mediate the Effects of Bioturbator Diversity on Pelagic Production

    PubMed Central

    Caliman, Adriano; Carneiro, Luciana S.; Leal, João J. F.; Farjalla, Vinicius F.; Bozelli, Reinaldo L.; Esteves, Francisco A.

    2012-01-01

    Tests of the biodiversity and ecosystem functioning (BEF) relationship have focused little attention on the importance of interactions between species diversity and other attributes of ecological communities such as community biomass. Moreover, BEF research has been mainly derived from studies measuring a single ecosystem process that often represents resource consumption within a given habitat. Focus on single processes has prevented us from exploring the characteristics of ecosystem processes that can be critical in helping us to identify how novel pathways throughout BEF mechanisms may operate. Here, we investigated whether and how the effects of biodiversity mediated by non-trophic interactions among benthic bioturbator species vary according to community biomass and ecosystem processes. We hypothesized that (1) bioturbator biomass and species richness interact to affect the rates of benthic nutrient regeneration [dissolved inorganic nitrogen (DIN) and total dissolved phosphorus (TDP)] and consequently bacterioplankton production (BP) and that (2) the complementarity effects of diversity will be stronger on BP than on nutrient regeneration because the former represents a more integrative process that can be mediated by multivariate nutrient complementarity. We show that the effects of bioturbator diversity on nutrient regeneration increased BP via multivariate nutrient complementarity. Consistent with our prediction, the complementarity effects were significantly stronger on BP than on DIN and TDP. The effects of the biomass-species richness interaction on complementarity varied among the individual processes, but the aggregated measures of complementarity over all ecosystem processes were significantly higher at the highest community biomass level. Our results suggest that the complementarity effects of biodiversity can be stronger on more integrative ecosystem processes, which integrate subsidiary “simpler” processes, via multivariate complementarity. In

  14. An analysis of alternative technologies for the removal of ethylene from the CELSS biomass production chamber

    NASA Technical Reports Server (NTRS)

    Rakow, Allen L.

    1995-01-01

    A variety of technologies were analyzed for their potential to remove ethylene from the CELSS Biomass Production Chamber (BPC). During crop production (e.g., lettuce, wheat, soybean, potato) in the BPC ethylene can accumulate in the airspace and subsequently affect plant viability. The chief source of ethylene is the plants themselves which reside in plastic trays containing nutrient solution. The main sink for ethylene is chamber leakage. The removal technology can be employed when deleterious levels (e.g., 50 ppb for potato) of ethylene are exceeded in the BPC and perhaps to optimize the plant growth process once a better understanding is developed of the relationship between exogenous ethylene concentration and plant growth. The technologies examined were catalytic oxidation, molecular sieve, cryotrapping, permanganate absorption, and UV degradation. Upon analysis, permanganate was chosen as the most suitable method. Experimental data for ethylene removal by permanganate during potato production was analyzed in order to design a system for installation in the BPC air duct. In addition, an analysis of the impact on ethylene concentration in the BPC of integrating the Breadboard Scale Aerobic Bioreactor (BSAB) with the BPC was performed. The result indicates that this unit has no significant effect on the ethylene material balance as a source or sink.

  15. Mixed plantations of eucalyptus and leguminous trees enhance biomass production. Forest Service research paper (Final)

    SciTech Connect

    DeBell, D.S.; Whitesell, C.D.; Schubert, T.H.

    1985-07-01

    Two Eucalyptus species--E. Saligna and E. grandis--are especially favored in Hawaii for wood, fiber, and fuel production because of their quick growth and high yields. Their growth is limited, however, on many sites by low levels of available nitrogen. Supplemental nitrogen can be provided by nitrogen-fixing plants, such as legumes. A test was conducted to determine whether planting two leguminous species--Acacia melanoxylon and Albizia falcataria Fosberg--could increase biomass production. Total biomass production was much greater in the mixed-species plantations than in the pure Eucalyptus plantation.

  16. Mg2+ improves biomass production from soybean wastewater using purple non-sulfur bacteria.

    PubMed

    Wu, Pan; Zhang, Guangming; Li, Jianzheng

    2015-02-01

    Soybean wastewater was used to generate biomass resource by use of purple non-sulfur bacteria (PNSB). This study investigated the enhancement of PNSB cell accumulation in wastewater by Mg2+ under the light-anaerobic condition. Results showed that with the optimal Mg2+ dosage of 10 mg/L, biomass production was improved by 70% to 3630 mg/L, and biomass yield also was improved by 60%. Chemical Oxygen Demand (COD) removal reached above 86% and hydraulic retention time was shortened from 96 to 72 hr. The mechanism analysis indicated that Mg2+ could promote the content of bacteriochlorophyll in photosynthesis because Mg2+ is the bacteriochlorophyll active center, and thus improved adenosine triphosphate (ATP) production. An increase of ATP production enhanced the conversion of organic matter in wastewater into PNSB cell materials (biomass yield) and COD removal, leading to more biomass production. With 10 mg/L Mg2+, bacteriochlorophyll content and ATP production were improved by 60% and 33% respectively.

  17. Eutrophication effects on phytoplankton size-fractioned biomass and production at a tropical estuary.

    PubMed

    Guenther, Mariana; Araújo, Moacyr; Flores-Montes, Manuel; Gonzalez-Rodriguez, Eliane; Neumann-Leitão, Sigrid

    2015-02-28

    Size-fractioned phytoplankton (pico, nano and microplankton) biomass and production were estimated throughout a year at Recife harbor (NE Brazil), a shallow well mixed tropical hypereutrophic estuary with short residence times but restricted water renewal. Intense loads of P-PO4 (maximum 14 μM) resulted in low N:P ratios (around 2:1), high phytoplankton biomass (B=7.1-72 μg chl-a L(-1)), production (PP=10-2657 μg C L(-1) h(-1)) and photosynthetic efficiency (P(B)=0.5-45 μg C μg chl-a(-1)), but no oxygen depletion (average O2 saturation: 109.6%). Nanoplankton dominated phytoplankton biomass (66%) but micro- and nanoplankton performed equivalent primary production rates (47% each). Production-biomass models indicate an export of the exceeding microplankton biomass during most of the year, possibly through grazing. The intense and constant nutrient and organic matter loading at Recife harbor is thus supporting the high microplankton productivity that is not accumulating on the system nor contributing to oxygen depletion, but supporting the whole system's trophic web.

  18. Salt tolerance and stress level affect plant biomass-density relationships and neighbor effects

    NASA Astrophysics Data System (ADS)

    Yu, Zhenxing; Chen, Wenwen; Zhang, Qian; Yang, Haishui; Tang, Jianjun; Weiner, Jacob; Chen, Xin

    2014-07-01

    It has been shown that plant biomass-density relationships are altered under extreme or stressed conditions. We do not know whether variation in biomass-density relationships is a direct result of stress tolerance or occurs via changes in plant-plant interactions. Here, we evaluated biomass-density relationships and neighbor effects in six plant species that differ in salt tolerance in a salt marsh, and conducted a literature review of biomass-density relationship under higher and lower stress levels. Our field study showed that both neighbor effects and the exponent of the biomass-density relationship (α) varied among plant species with different degrees of salt tolerance. There was a positive relationship between neighbor effects (measured as relative interaction index) and α-value among the tested species. The literature review showed that α and its variation increased under higher stress. Our results indicate that plant species with different salinity tolerance differ in the direction and strength of neighbor effects, resulting in variation in biomass-density relationships. Our results support the hypothesis that differences in biomass-density relationships among species are not due to differences in stress tolerance alone, they are mediated by changes in plant-plant interactions.

  19. Demonstration of the Viability and Evaluation of Production Costs for Biomass-Infused Coal Briquettes

    SciTech Connect

    Kamshad, Kourosh

    2014-04-01

    This project was split into four main areas, first to identify the best combination of coal and biomass, second, create and test lab quantity of preferred combinations, Third, create a sizeable quantity for larger scale handling and consuming analysis and fourth, to provide analysis for a commercial scale production capacity. Samples of coal and biomass were collected. Five coals, representing the three major coal ranks, were collected including one bituminous, two sub-bituminous, and two lignite samples. In addition, three square bales (~50 lbs/bale) each of corn Stover and switch grass were collected with one bale of each sample processed through a hammer mill to approximately -5 mesh. A third sample of sawdust was collected once experimentation began at the University of Kentucky. Multiple combinations of coal and biomass; coal, biomass, with biomass binder, were tested until a formulation was identified that could meet the requirement criteria. Based on the results of the binderless briquetting evaluations, the CS/Sub-bit combinations was selected for extended evaluation at a 10% biomass addition rate while the WS/Bitum combination was selected for extended evaluation at a 30% biomass-addition rate. With the final results of the selection process complete, the CoalTek continuous production pilot plant in Tucker GA was outfitted with the specialized blending equipment and two 1/4 ton production runs of biomass and binder subbituminous coal briquettes were completed. These briquettes were later used for a calorific test burn at the University of North Dakota. The first formulation included subbituminous coal, corn stover and a corn starch binder the second formulation included subbituminous coal, wheat stover and corn starch binder.

  20. Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications.

    PubMed

    Brinchi, L; Cotana, F; Fortunati, E; Kenny, J M

    2013-04-15

    The use of renewables materials for industrial applications is becoming impellent due to the increasing demand of alternatives to scarce and unrenewable petroleum supplies. In this regard, nanocrystalline cellulose, NCC, derived from cellulose, the most abundant biopolymer, is one of the most promising materials. NCC has unique features, interesting for the development of new materials: the abundance of the source cellulose, its renewability and environmentally benign nature, its mechanical properties and its nano-scaled dimensions open a wide range of possible properties to be discovered. One of the most promising uses of NCC is in polymer matrix nanocomposites, because it can provide a significant reinforcement. This review provides an overview on this emerging nanomaterial, focusing on extraction procedures, especially from lignocellulosic biomass, and on technological developments and applications of NCC-based materials. Challenges and future opportunities of NCC-based materials will be are discussed as well as obstacles remaining for their large use.

  1. Bio-oil production from biomass via supercritical fluid extraction

    NASA Astrophysics Data System (ADS)

    Durak, Halil

    2016-04-01

    Supercritical fluid extraction is used for producing bio-fuel from biomass. Supercritical fluid extraction process under supercritical conditions is the thermally disruption process of the lignocellulose or other organic materials at 250-400 °C temperature range under high pressure (4-5 MPa). Supercritical fluid extraction trials were performed in a cylindrical reactor (75 mL) in organic solvents (acetone, ethanol) under supercritical conditions with (calcium hydroxide, sodium carbonate) and without catalyst at the temperatures of 250, 275 and 300 °C. The produced liquids at 300 °C in supercritical liquefaction were analyzed and characterized by elemental, GC-MS and FT-IR. 36 and 37 different types of compounds were identified by GC-MS obtained in acetone and ethanol respectively.

  2. Sustainability: The capacity of smokeless biomass pyrolysis for energy production, global carbon capture and sequestration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of modern smokeless biomass pyrolysis for biochar and biofuel production is potentially a revolutionary approach for global carbon capture and sequestration at gigatons of carbon (GtC) scales. A conversion of about 7% of the annual terrestrial gross photosynthetic product (120 GtC y-1) i...

  3. Factors governing phytoplankton biomass and production in tropical estuaries of western Taiwan

    NASA Astrophysics Data System (ADS)

    Pan, Ching-Wen; Chuang, Yi-Li; Chou, Lien-Siang; Chen, Meng-Hsien; Lin, Hsing-Juh

    2016-04-01

    Factors governing phytoplankton community composition and production in tropical estuaries remain mostly unknown. We aimed to quantify phytoplankton biomass, production, and community composition seasonally in 2 tropical estuaries with different levels of nutrient concentrations and turbidity, and we compared them with an offshore control site on the western coast of central Taiwan for two years. Phytoplankton biomass and production varied with season and site. Annual integrated primary production showed that these three sites were mesotrophic systems. Spearman rank correlations showed that phytoplankton biomass and production were positively correlated with water temperature, but negatively correlated with turbidity. The threshold of turbidity was 12 Nephelometric Turbidity Units (NTU), above which phytoplankton chlorophyll a concentrations were <0.5 mg m-3, and gross production rate was <100 mg C m-3 d-1. The results of nonmetric multidimensional scaling (MDS) showed that the community was primarily structured by season and secondarily by site. The functional traits further showed that turbidity, water temperature, and SiO2 concentration were governing factors for the variations in the community. In summary, turbidity was the main factor governing phytoplankton biomass and production, whereas water temperature and SiO2 concentration had both a direct effect on production and an indirect effect by changing community composition.

  4. [Vegetation above-ground biomass and its affecting factors in water/wind erosion crisscross region on Loess Plateau].

    PubMed

    Wang, Jian-guo; Fan, Jun; Wang, Quan-jiu; Wang, Li

    2011-03-01

    Field investigations were conducted in Liudaogou small watershed in late September 2009 to study the differences of vegetation above-ground biomass, soil moisture content, and soil nutrient contents under different land use patterns, aimed to approach the vegetation above-ground biomass level and related affecting factors in typical small watershed in water/wind erosion crisscross region on Loess Plateau. The above-ground dry biomass of the main vegetations in Liudaogou was 177-2207 g x m(-2), and that in corn field, millet field, abandoned farmland, artificial grassland, natural grassland, and shrub land was 2097-2207, 518-775, 248-578, 280-545, 177-396, and 372-680 g x m(-2), respectively. The mean soil moisture content in 0-100 layer was the highest (14.2%) in farmlands and the lowest (10.9%) in shrub land. The coefficient of variation of soil moisture content was the greatest (26. 7% ) in abandoned farmland, indicating the strong spatial heterogeneity of soil moisture in this kind of farmland. The mean soil water storage was in the order of farmland > artificial grassland > natural grassland > shrub land. Soil dry layer was observed in alfalfa and caragana lands. There was a significant positive correlation (r = 0.639, P < 0.05) between above-ground dry biomass and 0-100 cm soil water storage, and also, a very significant positive correlation between above-ground fresh biomass and vegetation height. The above-ground biomass of the higher vegetations could potentially better control the wind and water erosion in the water/wind erosion crisscross region. Vegetation above-ground biomass was highly correlated with soil moisture and nutrient contents, but had no significant correlations with elevation, slope gradient, slope aspect, and soil bulk density.

  5. Utilisation of biomass gasification by-products for onsite energy production.

    PubMed

    Vakalis, S; Sotiropoulos, A; Moustakas, K; Malamis, D; Baratieri, M

    2016-06-01

    Small scale biomass gasification is a sector with growth and increasing applications owing to the environmental goals of the European Union and the incentivised policies of most European countries. This study addresses two aspects, which are at the centre of attention concerning the operation and development of small scale gasifiers; reuse of waste and increase of energy efficiency. Several authors have denoted that the low electrical efficiency of these systems is the main barrier for further commercial development. In addition, gasification has several by-products that have no further use and are discarded as waste. In the framework of this manuscript, a secondary reactor is introduced and modelled. The main operating principle is the utilisation of char and flue gases for further energy production. These by-products are reformed into secondary producer gas by means of a secondary reactor. In addition, a set of heat exchangers capture the waste heat and optimise the process. This case study is modelled in a MATLAB-Cantera environment. The model is non-stoichiometric and applies the Gibbs minimisation principle. The simulations show that some of the thermal energy is depleted during the process owing to the preheating of flue gases. Nonetheless, the addition of a secondary reactor results in an increase of the electrical power production efficiency and the combined heat and power (CHP) efficiency.

  6. Effect of industrial waste products on phosphorus mobilisation and biomass production in abattoir wastewater irrigated soil.

    PubMed

    Seshadri, Balaji; Kunhikrishnan, Anitha; Bolan, Nanthi; Naidu, Ravi

    2014-09-01

    This study evaluated the effect of alkaline industrial by-products such as flyash (FA) and redmud (RM) on phosphorus (P) mobilisation in abattoir wastewater irrigated soils, using incubation, leaching and plant growth (Napier grass [Pennisetum purpureum]) experiments. The soil outside the wastewater irrigated area was also collected and treated with inorganic (KH2PO4 [PP]) and organic (poultry manure [PM]) P treatments, to study the effect of FA and RM on P mobilisation using plant growth experiment. Among the amendments, FA showed the highest increase in Olsen P, oxalic acid content and phosphatase activity. The highest increase in Olsen P for PM treated non-irrigated soils showed the ability of FA and RM in mobilising organic P better than inorganic P (PP). There was over 85 % increase in oxalic acid content in the plant growth soils compared to the incubated soil, showing the effect of Napier grass in the exudation of oxalic acid. Both amendments (FA and RM) showed an increase in phosphatase activity at over 90 % at the end of the 5-week incubation period. The leaching experiment indicated a decrease in water soluble P thereby ensuring the role of FA and RM in minimising P loss to water bodies. FA and RM showed an increase in plant biomass for all treatments, where FA amended soil showed the highest increase as evident from FA's effect on Olsen P. Therefore, the use of FA and RM mobilised P in abattoir wastewater irrigated soils and increased biomass production of Napier grass plants through root exudation of oxalic acid.

  7. Yeast biomass production: a new approach in glucose-limited feeding strategy.

    PubMed

    Vieira, Érika Durão; Andrietta, Maria da Graça Stupiello; Andrietta, Silvio Roberto

    2013-01-01

    The aim of this work was to implement experimentally a simple glucose-limited feeding strategy for yeast biomass production in a bubble column reactor based on a spreadsheet simulator suitable for industrial application. In biomass production process using Saccharomyces cerevisiae strains, one of the constraints is the strong tendency of these species to metabolize sugars anaerobically due to catabolite repression, leading to low values of biomass yield on substrate. The usual strategy to control this metabolic tendency is the use of a fed-batch process in which where the sugar source is fed incrementally and total sugar concentration in broth is maintained below a determined value. The simulator presented in this work was developed to control molasses feeding on the basis of a simple theoretical model in which has taken into account the nutritional growth needs of yeast cell and two input data: the theoretical specific growth rate and initial cell biomass. In experimental assay, a commercial baker's yeast strain and molasses as sugar source were used. Experimental results showed an overall biomass yield on substrate of 0.33, a biomass increase of 6.4 fold and a specific growth rate of 0.165 h(-1) in contrast to the predicted value of 0.180 h-1 in the second stage simulation.

  8. Response of grassland biomass production to simulated climate change and clipping along an elevation gradient.

    PubMed

    Carlyle, Cameron N; Fraser, Lauchlan H; Turkington, Roy

    2014-03-01

    Changes in rainfall and temperature regimes are altering plant productivity in grasslands worldwide, and these climate change factors are likely to interact with grassland disturbances, particularly grazing. Understanding how plant production responds to both climate change and defoliation, and how this response varies among grassland types, is important for the long-term sustainability of grasslands. For 4 years, we manipulated temperature [ambient and increased using open-top chambers (OTC)], water (ambient, reduced using rainout shelters and increased using hand watering) and defoliation (clipped, and unclipped) in three grassland types along an elevation gradient. We monitored plant cover and biomass and found that OTC reduced biomass by 15%, but clipping and water treatments interacted with each other and their effects varied in different grassland types. For example, total biomass did not decline in the higher elevation grasslands due to clipping, and water addition mitigated the effects of clipping on subordinate grasses in the lower grasslands. The response of total biomass was driven by dominant plant species while subordinate grasses and forbs showed more variable responses. Overall, our results demonstrate that biomass in the highest elevation grassland was least effected by the treatments and the response of biomass tended to be dependent on interactions between climate change treatments and defoliation. Together, the results suggest that ecosystem function of these grasslands under altered climate patterns will be dependent on site-specific management.

  9. Challenges for the production of bioethanol from biomass using recombinant yeasts.

    PubMed

    Kricka, William; Fitzpatrick, James; Bond, Ursula

    2015-01-01

    Lignocellulose biomass, one of the most abundant renewable resources on the planet, is an alternative sustainable energy source for the production of second-generation biofuels. Energy in the form of simple or complex carbohydrates can be extracted from lignocellulose biomass and fermented by microorganisms to produce bioethanol. Despite 40 years of active and cutting-edge research invested into the development of technologies to produce bioethanol from lignocellulosic biomass, the process remains commercially unviable. This review describes the achievements that have been made in generating microorganisms capable of utilizing both simple and complex sugars from lignocellulose biomass and the fermentation of these sugars into ethanol. We also provide a discussion on the current "roadblocks" standing in the way of making second-generation bioethanol a commercially viable alternative to fossil fuels.

  10. Complex analysis of energy production technologies from solid biomass in the Ukraine

    NASA Astrophysics Data System (ADS)

    Zheliezna, T. A.; Drozdova, O. I.

    2014-04-01

    The results of the energetic, economic, and environmental analyses of technologies of energy production from solid biomass are considered. Examples of the introduction of the technology of the direct combustion of biomass (straw and wood) in a boiler installation, a domestic boiler, and a combined heat and power plant (CHPP) are considered. The results indicate the energetic and environmental reasonability of implementation of such projects. From the economic viewpoint, the introduction of the boilers that use the biomass is profitable with the substitution of natural gas for the state-financed and industrial consumers, and the CHPP operation with the use of biomass is profitable with selling the electrical energy by the "feed-in" tariff.

  11. Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance.

    PubMed

    Zhu, J Y; Pan, Xuejun; Zalesny, Ronald S

    2010-07-01

    This mini review discusses several key technical issues associated with cellulosic ethanol production from woody biomass: energy consumption for woody biomass pretreatment, pretreatment energy efficiency, woody biomass pretreatment technologies, and quantification of woody biomass recalcitrance. Both total sugar yield and pretreatment energy efficiency, defined as the total sugar recovery divided by total energy consumption for pretreatment, should be used to evaluate the performance of a pretreatment process. A post-chemical pretreatment wood size-reduction approach was proposed to significantly reduce energy consumption. The review also emphasizes using a low liquid-to-wood ratio (L/W) to reduce thermal energy consumption for any thermochemical/physical pretreatment in addition to reducing pretreatment temperature.

  12. Hydrogen production from biomass gasification using biochar as a catalyst/support.

    PubMed

    Yao, Dingding; Hu, Qiang; Wang, Daqian; Yang, Haiping; Wu, Chunfei; Wang, Xianhua; Chen, Hanping

    2016-09-01

    Biochar is a promising catalyst/support for biomass gasification. Hydrogen production from biomass steam gasification with biochar or Ni-based biochar has been investigated using a two stage fixed bed reactor. Commercial activated carbon was also studied as a comparison. Catalyst was prepared with an impregnation method and characterized by X-ray diffraction, specific surface and porosity analysis, X-ray fluorescence and scanning electron micrograph. The effects of gasification temperature, steam to biomass ratio, Ni loading and bio-char properties on catalyst activity in terms of hydrogen production were explored. The Ni/AC catalyst showed the best performance at gasification temperature of 800°C, S/B=4, Ni loading of 15wt.%. Texture and composition characterization of the catalysts suggested the interaction between volatiles and biochar promoted the reforming of pyrolysis volatiles. Cotton-char supported Ni exhibited the highest activity of H2 production (64.02vol.%, 92.08mgg(-1) biomass) from biomass gasification, while rice-char showed the lowest H2 production.

  13. Effect of the N/P ratio on biomass productivity and nutrient removal from municipal wastewater.

    PubMed

    Choi, Hee Jeong; Lee, Seung Mok

    2015-04-01

    The aim of this study is to investigate the effect of the N/P ratio on biomass growth with the simultaneous removal of nutrients from municipal wastewaters. An optical panel photobioreactor is employed for this investigation because it provides a uniform light distribution within the reactor, which enhances the efficiency of the reactor in the cultivation of microalgae. The N/P ratio is varied over a wide range, i.e., from 5 to 30, for the assessment of its effect on biomass productivity. There is not a strong correlation between biomass productivity and TN removal, and these factors do not seem to be proportional in the wastewater using the microalgae we employed. In contrast, the TP removal depends greatly on both the N/P ratio and biomass productivity. The optimum value of the N/P ratio for biomass productivity in and nutrient removal from municipal wastewater treatment using microalgae varies from 5 to 30, depending on the ecological conditions in the wastewater.

  14. Recovery of aboveground plant biomass and productivity after fire in mesic and dry black spruce forests of interior Alaska

    USGS Publications Warehouse

    Mack, M.C.; Treseder, K.K.; Manies, K.L.; Harden, J.W.; Schuur, E.A.G.; Vogel, J.G.; Randerson, J.T.; Chapin, F. S.

    2008-01-01

    Plant biomass accumulation and productivity are important determinants of ecosystem carbon (C) balance during post-fire succession. In boreal black spruce (Picea mariana) forests near Delta Junction, Alaska, we quantified aboveground plant biomass and net primary productivity (ANPP) for 4 years after a 1999 wildfire in a well-drained (dry) site, and also across a dry and a moderately well-drained (mesic) chronosequence of sites that varied in time since fire (2 to ???116 years). Four years after fire, total biomass at the 1999 burn site had increased exponentially to 160 ?? 21 g m-2 (mean ?? 1SE) and vascular ANPP had recovered to 138 ?? 32 g m-2 y -1, which was not different than that of a nearby unburned stand (160 ?? 48 g m-2 y-1) that had similar pre-fire stand structure and understory composition. Production in the young site was dominated by re-sprouting graminoids, whereas production in the unburned site was dominated by black spruce. On the dry and mesic chronosequences, total biomass pools, including overstory and understory vascular and non-vascular plants, and lichens, increased logarithmically (dry) or linearly (mesic) with increasing site age, reaching a maximum of 2469 ?? 180 (dry) and 4008 ?? 233 g m-2 (mesic) in mature stands. Biomass differences were primarily due to higher tree density in the mesic sites because mass per tree was similar between sites. ANPP of vascular and non-vascular plants increased linearly over time in the mesic chronosequence to 335 ?? 68 g m-2 y -1 in the mature site, but in the dry chronosequence it peaked at 410 ?? 43 g m-2 y-1 in a 15-year-old stand dominated by deciduous trees and shrubs. Key factors regulating biomass accumulation and production in these ecosystems appear to be the abundance and composition of re-sprouting species early in succession, the abundance of deciduous trees and shrubs in intermediate aged stands, and the density of black spruce across all stand ages. A better understanding of the controls

  15. Microalgae cultivation using an aquaculture wastewater as growth medium for biomass and biofuel production.

    PubMed

    Guo, Zhen; Liu, Yuan; Guo, Haiyan; Yan, Song; Mu, Jun

    2013-12-01

    Microalgae as a main feedstock has attracted much attention in recent years but is still not economically feasible due to high algal culture cost. The objective of this study was to develop a comprehensive eco-friendly technology for cultivating microalgae Platymonas subcordiformis using aquaculture wastewater as growth medium for biomass and biofuel production. Platymonas subcordiformis was grown in pretreated flounder aquaculture wastewaters taken from different stages. Each of wastewater contained different levels of nutrients. The biomass yield of microalgae and associated nitrogen and phosphorous removal were investigated. The results showed that algal cell density increased 8.9 times than the initial level. Platymonas subcordiformis removed nitrogen and phosphorus from wastewater with an average removal efficiency of 87%-95% for nitrogen and 98%-99% for phosphorus. It was feasible to couple the removal of nitrogen and phosphorus from wastewater to algal biomass and biofuel production. However, further studies are required to make this technologies economically viable for algae biofuel production.

  16. Hybrid-renewable processes for biofuels production: concentrated solar pyrolysis of biomass residues

    SciTech Connect

    George, Anthe; Geier, Manfred; Dedrick, Daniel E.

    2014-10-01

    The viability of thermochemically-derived biofuels can be greatly enhanced by reducing the process parasitic energy loads. Integrating renewable power into biofuels production is one method by which these efficiency drains can be eliminated. There are a variety of such potentially viable "hybrid-renewable" approaches; one is to integrate concentrated solar power (CSP) to power biomass-to-liquid fuels (BTL) processes. Barriers to CSP integration into BTL processes are predominantly the lack of fundamental kinetic and mass transport data to enable appropriate systems analysis and reactor design. A novel design for the reactor has been created that can allow biomass particles to be suspended in a flow gas, and be irradiated with a simulated solar flux. Pyrolysis conditions were investigated and a comparison between solar and non-solar biomass pyrolysis was conducted in terms of product distributions and pyrolysis oil quality. A novel method was developed to analyse pyrolysis products, and investigate their stability.

  17. Production of algal biomass (Chlorella vulgaris) using sediment microbial fuel cells.

    PubMed

    Jeon, Hyeon Jin; Seo, Kyu-won; Lee, Sang Hyun; Yang, Yung-Hun; Kumaran, Rangarajulu Senthil; Kim, Sunghyun; Hong, Seok Won; Choi, Yong Su; Kim, Hyung Joo

    2012-04-01

    In this study, a novel algal biomass production method using a sediment microbial fuel cell (SMFC) system was assessed. Under the experimental conditions, CO(2) generation from the SMFC and its rate of increase were found to be dependent on the current generated from the SMFC. However, the CH(4) production rate from the SMFC was inhibited by the generation of current. When Chlorella vulgaris was inoculated into the cathode compartment of the SMFC and current was generated under 10 Ω resistance, biomass production from the anode compartment was observed to be closely associated with the rate of current generation from the SMFC. The experimental results demonstrate that 420 mg/L of algae (dry cell weight) was produced when the current from the SMFC reached 48.5 mA/m(2). Therefore, SMFC could provide a means for producing algal biomass via CO(2) generated by the oxidation of organics upon current generation.

  18. Economic feasibility of agricultural alcohol production within a biomass system

    SciTech Connect

    Hertzmark, D.; Flaim, S.; Ray, D.; Parvin, G.

    1980-12-01

    The technical and economic feasibility of agricultural alcohol production in the United States is discussed. The beverage fermentation processes are compared and contrasted with the wet milling of corn, and alternative agricultural products for alcohol production are discussed. Alcohol costs for different fermentation methods and for various agricultural crops (corn, sugar cane, sugar beets, etc.) are presented, along with a brief discussion of US government policy implications. (JMT)

  19. A comprehensive review of biomass resources and biofuel production in Nigeria: potential and prospects.

    PubMed

    Sokan-Adeaga, Adewale Allen; Ana, Godson R E E

    2015-01-01

    The quest for biofuels in Nigeria, no doubt, represents a legitimate ambition. This is so because the focus on biofuel production has assumed a global dimension, and the benefits that may accrue from such effort may turn out to be enormous if the preconditions are adequately satisfied. As a member of the global community, it has become exigent for Nigeria to explore other potential means of bettering her already impoverished economy. Biomass is the major energy source in Nigeria, contributing about 78% of Nigeria's primary energy supply. In this paper, a comprehensive review of the potential of biomass resources and biofuel production in Nigeria is given. The study adopted a desk review of existing literatures on major energy crops produced in Nigeria. A brief description of the current biofuel developmental activities in the country is also given. A variety of biomass resources exist in the country in large quantities with opportunities for expansion. Biomass resources considered include agricultural crops, agricultural crop residues, forestry resources, municipal solid waste, and animal waste. However, the prospects of achieving this giant stride appear not to be feasible in Nigeria. Although the focus on biofuel production may be a worthwhile endeavor in view of Nigeria's development woes, the paper argues that because Nigeria is yet to adequately satisfy the preconditions for such program, the effort may be designed to fail after all. To avoid this, the government must address key areas of concern such as food insecurity, environmental crisis, and blatant corruption in all quarters. It is concluded that given the large availability of biomass resources in Nigeria, there is immense potential for biofuel production from these biomass resources. With the very high potential for biofuel production, the governments as well as private investors are therefore encouraged to take practical steps toward investing in agriculture for the production of energy crops and the

  20. Biomass production from sugarcane and sweet sorghum. Final report

    SciTech Connect

    Gascho, G.J.; Shih, S.F.

    1980-01-01

    The results of a field study on growing sugarcane and sweet sorghum in the Lake Okeechobee area of Florida are reported. Two experiments were conducted on row-spacing of sugarcane and one on row-spacing of sorghum. There were no surprises in the data obtained in this year's sugarcane experiments. High biomass, sugar and fiber were produced both on sand and muck soils in south Florida. Yields were, as in previous years, higher for the narrow row spacing where solar radiation was better than in plant cane. Likewise it is greater for a second ratoon than for a first ratoon. Sweet sorghum produced well but not as well as last year due to a planting data which was 1 to 2 months late and to the wider spacings used to facilitate the trial of sugarcane harvesting equipment. Moisture is much more critical for sorghum than for cane. One experiment on muck suffered due to wet conditions. A second experiment on sand was lost due to lack of moisture.

  1. Hydrogen production from algal biomass via steam gasification.

    PubMed

    Duman, Gozde; Uddin, Md Azhar; Yanik, Jale

    2014-08-01

    Algal biomasses were tested as feedstock for steam gasification in a dual-bed microreactor in a two-stage process. Gasification experiments were carried out in absence and presence of catalyst. The catalysts used were 10% Fe₂O₃-90% CeO₂ and red mud (activated and natural forms). Effects of catalysts on tar formation and gasification efficiencies were comparatively investigated. It was observed that the characteristic of algae gasification was dependent on its components and the catalysts used. The main role of the catalyst was reforming of the tar derived from algae pyrolysis, besides enhancing water gas shift reaction. The tar reduction levels were in the range of 80-100% for seaweeds and of 53-70% for microalgae. Fe₂O₃-CeO₂ was found to be the most effective catalyst. The maximum hydrogen yields obtained were 1036 cc/g algae for Fucus serratus, 937 cc/g algae for Laminaria digitata and 413 cc/g algae for Nannochloropsis oculata.

  2. Managing water resources for biomass production in a biofuel economy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One goal of our national security policy is to become more energy independent using biofuels. The expanded production of agricultural crops for bioenergy production has introduced new challenges for management of water. Water availability has been widely presumed in the discussion of bioenergy crop ...

  3. Biohydrogen production from microalgal biomass: energy requirement, CO2 emissions and scale-up scenarios.

    PubMed

    Ferreira, Ana F; Ortigueira, Joana; Alves, Luís; Gouveia, Luísa; Moura, Patrícia; Silva, Carla

    2013-09-01

    This paper presents a life cycle inventory of biohydrogen production by Clostridium butyricum through the fermentation of the whole Scenedesmus obliquus biomass. The main purpose of this work was to determine the energy consumption and CO2 emissions during the production of hydrogen. This was accomplished through the fermentation of the microalgal biomass cultivated in an outdoor raceway pond and the preparation of the inoculum and culture media. The scale-up scenarios are discussed aiming for a potential application to a fuel cell hybrid taxi fleet. The H2 yield obtained was 7.3 g H2/kg of S. obliquus dried biomass. The results show that the production of biohydrogen required 71-100 MJ/MJ(H2) and emitted about 5-6 kg CO2/MJ(H2). Other studies and production technologies were taken into account to discuss an eventual process scale-up. Increased production rates of microalgal biomass and biohydrogen are necessary for bioH2 to become competitive with conventional production pathways.

  4. Development of Value-Added Products from Residual Algae to Biomass

    SciTech Connect

    Behnke, Craig

    2016-02-29

    DOE Award # EE0000393 was awarded to fund research into the development of beneficial uses of surplus algal biomass and the byproducts of biofuel production. At the time of award, Sapphire’s intended fuel production pathway was a fairly conventional extraction of lipids from biomass, resulting in a defatted residue which could be processed using anaerobic digestion. Over the lifetime of the award, we conducted extensive development work and arrived at the conclusion that anaerobic digestion presented significant technical challenges for this high-nitrogen, high-ash, and low carbon material. Over the same timeframe, Sapphire’s fuel production efforts came to focus on hydrothermal liquefaction. As a result of this technology focus, the residue from fuel production became unsuitable for either anaerobic digestion (or animal feed uses). Finally, we came to appreciate the economic opportunity that the defatted biomass could represent in the animal feed space, as well as understanding the impact of seasonal production on a biofuels extraction plant, and sought to develop uses for surplus biomass produced in excess of the fuel production unit’s capacity.

  5. A Review on Biomass Torrefaction Process and Product Properties for Energy Applications

    SciTech Connect

    Jaya Shankar Tumuluru; Shahab Sokhansanj; J. Richard Hess; Christopher T. Wright; Richard D. Boardman

    2011-10-01

    Torrefaction of biomass can be described as a mild form of pyrolysis at temperatures typically ranging between 200 and 300 C in an inert and reduced environment. Common biomass reactions during torrefaction include devolatilization, depolymerization, and carbonization of hemicellulose, lignin and cellulose. Torrefaction process produces a brown to black solid uniform product and also condensable (water, organics, and lipids) and non condensable gases (CO2, CO, and CH4). Typically during torrefaction, 70% of the mass is retained as a solid product, containing 90% of the initial energy content, and 30% of the lost mass is converted into condensable and non-condensable products. The system's energy efficiency can be improved by reintroducing the material lost during torrefaction as a source of heat. Torrefaction of biomass improves its physical properties like grindability; particle shape, size, and distribution; pelletability; and proximate and ultimate composition like moisture, carbon and hydrogen content, and calorific value. Carbon and calorific value of torrefied biomass increases by 15-25%, and moisture content reduces to <3% (w.b.). Torrefaction reduces grinding energy by about 70%, and the ground torrefied biomass has improved sphericity, particle surface area, and particle size distribution. Pelletization of torrefied biomass at temperatures of 225 C reduces specific energy consumption by two times and increases the capacity of the mill by two times. The loss of the OH group during torrefaction makes the material hydrophobic (loses the ability to attract water molecules) and more stable against chemical oxidation and microbial degradation. These improved properties make torrefied biomass particularly suitable for cofiring in power plants and as an upgraded feedstock for gasification.

  6. Enhanced biomass production through optimization of carbon source and utilization of wastewater as a nutrient source.

    PubMed

    Gupta, Prabuddha L; Choi, Hee-Jeong; Pawar, Radheshyam R; Jung, Sokhee P; Lee, Seung-Mok

    2016-12-15

    The study aimed to utilize the domestic wastewater as nutrient feedstock for mixotrophic cultivation of microalgae by evaluating appropriate carbon source. The microalgae Chlorella vulgaris was cultivated in municipal wastewater under various carbon sources (glucose, glycerol, and acetate), followed by optimization of appropriate carbon source concentration to augment the biomass, lipid, and carbohydrate contents. Under optimized conditions, namely of 5 g/L glucose, C. vulgaris showed higher increments of biomass with 1.39 g/L dry cell weight achieving biomass productivity of 0.13 g/L/d. The biomass accumulated 19.29 ± 1.83% total lipid, 41.4 ± 1.46% carbohydrate, and 33.06 ± 1.87% proteins. Moreover, the cultivation of Chlorella sp. in glucose-supplemented wastewater removed 96.9% chemical oxygen demand, 65.3% total nitrogen, and 71.2% total phosphate. The fatty acid methyl ester obtained showed higher amount (61.94%) of saturated fatty acid methyl esters associated with the improved fuel properties. These results suggest that mixotrophic cultivation using glucose offers great potential in the production of renewable biomass, wastewater treatment, and consequent production of high-value microalgal oil.

  7. Pretreatment optimization of the biomass of Microcystis aeruginosa for efficient bioethanol production.

    PubMed

    Khan, Muhammad Imran; Lee, Moon Geon; Shin, Jin Hyuk; Kim, Jong Deog

    2017-12-01

    Microalgae are considered to be the future promising sources of biofuels and bio products. The algal carbohydrates can be fermented to bioethanol after pretreatment process. Efficient pretreatment of the biomass is one of the major requirements for commercialization of the algal based biofuels. In present study the microalga, M. aeruginsa was used for pretreatment optimization and bioethanol production. Treatment of algal biomass with CaO before acid and/or enzymatic hydrolysis enhanced the degradation of algal cells. Monomeric sugars yield was increased more than twice when biomass was pretreated with CaO. Similarly, an increase was noted in the amount of fermentable sugars when biomass was subjected to invertase saccharification after acid or lysozyme pretreatment. Highest yield of fermentable sugars (16 mM/ml) in the centrifuged algal juice was obtained. 4 Different microorganisms' species were used individually and in combination for converting centrifuged algal juice to bioethanol. Comparatively higher yield of bioethanol (60 mM/ml) was obtained when the fermenter microorganisms were used in combination. The results demonstrated that M. arginase biomass can be efficiently pretreated to get higher yield of fermentable sugars for enhanced yield of bioethanol production.

  8. Current problems: Plant biomass as raw material for the production of olefins and motor fuels

    SciTech Connect

    Paushkin, Ya.M.; Lapidus, A.L.; Adel`son, S.V.

    1995-01-01

    Apart from petroleum, another reserve of energy that may be tapped is plant biomass - the primary source of life on Earth. Plant biomass is formed every year in the amount of 170-200 billion tonnes (calculated as dry weight), equivalent in energy to 70-80 billion tonnes of crude oil (compare with the world oil production of about 3 billion tonnes). A small percentage of the plant biomass is utilized by the human race (food, construction, fuel, industry) and by the animal world. Most of it vanishes without producing any benefits; it is decomposed and converted to carbon dioxide and water. With modern technology of growing and harvesting biomass, there is no doubt that at least 2.5-5% of the biomass can be utilized; this is equivalent in terms of energy to 2-4 billion tonnes of crude oil or more than 3-6 billion tonnes of coal. In the course of processing plant raw material in the forest industry, agriculture, and other activities, large amounts of organic wastes are formed; these can be utilized directly for energy production - either as solid fuel in the form of fuel briquets, in solid-waste disposal plants for the production of heat in the form of steam, or as a raw material for processing into liquid fuel means of newly developed technology.

  9. Increased biomass productivity in green algae by tuning non-photochemical quenching.

    PubMed

    Berteotti, Silvia; Ballottari, Matteo; Bassi, Roberto

    2016-02-18

    Photosynthetic microalgae have a high potential for the production of biofuels and highly valued metabolites. However, their current industrial exploitation is limited by a productivity in photobioreactors that is low compared to potential productivity. The high cell density and pigment content of the surface layers of photosynthetic microalgae result in absorption of excess photons and energy dissipation through non-photochemical quenching (NPQ). NPQ prevents photoinhibition, but its activation reduces the efficiency of photosynthetic energy conversion. In Chlamydomonas reinhardtii, NPQ is catalyzed by protein subunits encoded by three lhcsr (light harvesting complex stress related) genes. Here, we show that heat dissipation and biomass productivity depends on LHCSR protein accumulation. Indeed, algal strains lacking two lhcsr genes can grow in a wide range of light growth conditions without suffering from photoinhibition and are more productive than wild-type. Thus, the down-regulation of NPQ appears to be a suitable strategy for improving light use efficiency for biomass and biofuel production in microalgae.

  10. Atmospheric leakage and condensate production in NASA's biomass production chamber. Effect of diurnal temperature cycles

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.; Drese, John H.; Sager, John C.

    1991-01-01

    A series of tests were conducted to monitor atmospheric leakage rate and condensate production in NASA's Biomass Production Chamber (BPC). Water was circulated through the 64 plant culture trays inside the chamber during the tests but no plants were present. Environmental conditions were set to a 12-hr photoperiod with either a matching 26 C (light)/20 C (dark) thermoperiod, or a constant 23 C temperature. Leakage, as determined by carbon dioxide decay rates, averaged about 9.8 percent for the 26 C/20 C regime and 7.3 percent for the constant 23 C regime. Increasing the temperature from 20 C to 26 C caused a temporary increase in pressure (up to 0.5 kPa) relative to ambient, while decreasing the temperature caused a temporary decrease in pressure of similar magnitude. Little pressure change was observed during transition between 23 C (light) and 23 C (dark). The lack of large pressure events under isothermal conditions may explain the lower leakage rate observed. When only the plant support inserts were placed in the culture trays, condensate production averaged about 37 liters per day. Placing acrylic germination covers over the tops of culture trays reduced condensate production to about 7 liters per day. During both tests, condensate production from the lower air handling system was 60 to 70 percent greater than from the upper system, suggesting imbalances exist in chilled and hot water flows for the two air handling systems. Results indicate that atmospheric leakage rates are sufficiently low to measure CO2 exchange rates by plants and the accumulation of certain volatile contaminants (e.g., ethylene). Control system changes are recommended in order to balance operational differences (e.g., humidity and temperature) between the two halves of the chamber.

  11. Lutein production from biomass: marigold flowers versus microalgae.

    PubMed

    Lin, Jian-Hao; Lee, Duu-Jong; Chang, Jo-Shu

    2015-05-01

    Microalgae have faster growth rates and more free lutein than marigold flowers, the current source of lutein. However, no commercial lutein production uses microalgae. This review compares lutein content, cultivation, harvesting, cell disruption, and extraction stages of lutein production using marigold flowers and those using microalgae as feedstock. The lutein production rate of microalgae is 3-6 times higher than that of marigold flowers. To produce 1 kg of pure lutein, marigolds need more land and water, but require less nutrients (N, P, K) and less energy than microalgae. Since lutein is tightly bound in microalgae and microalgae are small, cell disruption and subsequent extraction stages consume a considerable amount of energy. Research and development of affordable lutein production from microalgae are discussed.

  12. The coupling of biodiversity and productivity in phytoplankton communities: consequences for biomass stoichiometry.

    PubMed

    Striebel, Maren; Behl, Stephan; Stibor, Herwig

    2009-08-01

    There is widespread concern that loss of biodiversity can influence important ecosystem services. A positive relationship between diversity and productivity has been observed in investigations of terrestrial and aquatic plant communities. However, an increase in primary production (carbon assimilation) does not necessarily result in higher nutrient uptake by primary producers. There is a loose coupling between carbon assimilation and nutrient uptake in autotrophs, and their biomass carbon-to-nutrient ratios (stoichiometry) are flexible. We performed controlled laboratory experiments to investigate the effect of phytoplankton biodiversity on phytoplankton stoichiometry. Our results indicate that biodiversity influences carbon assimilation and nutrient uptake of phytoplankton communities in different ways, resulting in variations of biomass stoichiometry. Data from 46 lake communities also support this link. Shifts in the biomass stoichiometry of phytoplankton communities are generally attributed to environmental fluctuations in resources. However, our results show that biodiversity is also important in determining their stoichiometry.

  13. Production of Leuconostoc oenos Biomass under pH Control †

    PubMed Central

    Champagne, Claude P.; Gardner, Nancy; Doyon, Gilles

    1989-01-01

    Leuconostoc oenos was grown on apple juice-based media. The effect of pH control on metabolism and biomass production was studied. Without pH control, L. oenos acidified the apple juice media to approximately pH 3.6. More than 75% of the malic acid was used under these conditions, but less than half of the carbohydrates was assimilated. Under pH control, biomass yields increased by 60%; most of the malic acid was used, but high levels of unfermented carbohydrates remained. The addition of tomato juice, vitamins, nucleotides, Mn+, and malic acid did not permit further increases in the cell counts; however, malic acid did induce further acidification. Growth without pH control favored a more homofermentative metabolism. Biomass production was higher in filter-sterilized apple juice media compared with that in the autoclaved media. PMID:16348025

  14. Comparative study of thermochemical processes for hydrogen production from biomass fuels.

    PubMed

    Biagini, Enrico; Masoni, Lorenzo; Tognotti, Leonardo

    2010-08-01

    Different thermochemical configurations (gasification, combustion, electrolysis and syngas separation) are studied for producing hydrogen from biomass fuels. The aim is to provide data for the production unit and the following optimization of the "hydrogen chain" (from energy source selection to hydrogen utilization) in the frame of the Italian project "Filiera Idrogeno". The project focuses on a regional scale (Tuscany, Italy), renewable energies and automotive hydrogen. Decentred and small production plants are required to solve the logistic problems of biomass supply and meet the limited hydrogen infrastructures. Different options (gasification with air, oxygen or steam/oxygen mixtures, combustion, electrolysis) and conditions (varying the ratios of biomass and gas input) are studied by developing process models with uniform hypothesis to compare the results. Results obtained in this work concern the operating parameters, process efficiencies, material and energetic needs and are fundamental to optimize the entire hydrogen chain.

  15. Cyanobacteria cultivation in industrial wastewaters and biodiesel production from their biomass: a review.

    PubMed

    Balasubramanian, Lavanya; Subramanian, Geetha; Nazeer, Thayiba Thanveer; Simpson, Hannah Shalini; Rahuman, Shifina T; Raju, Preetha

    2011-01-01

    As an alternative fuel biodiesel has become increasingly important due to diminishing petroleum reserves and adverse environmental consequences of exhaust gases from petroleum-fueled engines. Recently, research interest has focused on the production of biofuel from microalgae. Cyanobacteria appeared to be suitable candidates for cultivation in wastes and wastewaters because they produce biomass in satisfactory quantity and can be harvested relatively easily due to their size and structure. In addition, their biomass composition can be manipulated by several environmental and operational factors to produce biomass with concrete characteristics. Herein, we review the culture of cyanobacteria in wastewaters and also the potential resources that can be transformed into biodiesel successfully for meeting the ever-increasing demand for biodiesel production.

  16. The influence of light intensity and photoperiod on duckweed biomass and starch accumulation for bioethanol production.

    PubMed

    Yin, Yehu; Yu, Changjiang; Yu, Li; Zhao, Jinshan; Sun, Changjiang; Ma, Yubin; Zhou, Gongke

    2015-01-01

    Duckweed has been considered as a valuable feedstock for bioethanol production due to its high biomass and starch production. To investigate the effects of light conditions on duckweed biomass and starch production, Lemna aequinoctialis 6000 was cultivated at different photoperiods (12:12, 16:8 and 24:0h) and light intensities (20, 50, 80, 110, 200 and 400μmolm(-2)s(-1)). The results showed that the duckweed biomass and starch production was increased with increasing light intensity and photoperiod except at 200 and 400μmolm(-2)s(-1). Considering the light cost, 110μmolm(-2)s(-1) was optimum light condition for starch accumulation with the highest maximum growth rate, biomass and starch production of 8.90gm(-2)day(-1), 233.25gm(-2) and 98.70gm(-2), respectively. Moreover, the results suggested that high light induction was a promising method for duckweed starch accumulation. This study provides optimized light conditions for future industrial large-scale duckweed cultivation.

  17. Biomass production and energy source of thermophiles in a Japanese alkaline geothermal pool.

    PubMed

    Kimura, Hiroyuki; Mori, Kousuke; Nashimoto, Hiroaki; Hattori, Shohei; Yamada, Keita; Koba, Keisuke; Yoshida, Naohiro; Kato, Kenji

    2010-02-01

    Microbial biomass production has been measured to investigate the contribution of planktonic bacteria to fluxations in dissolved organic matter in marine and freshwater environments, but little is known about biomass production of thermophiles inhabiting geothermal and hydrothermal regions. The biomass production of thermophiles inhabiting an 85 degrees C geothermal pool was measured by in situ cultivation using diffusion chambers. The thermophiles' growth rates ranged from 0.43 to 0.82 day(-1), similar to those of planktonic bacteria in marine and freshwater habitats. Biomass production was estimated based on cellular carbon content measured directly from the thermophiles inhabiting the geothermal pool, which ranged from 5.0 to 6.1 microg C l(-1) h(-1). This production was 2-75 times higher than that of planktonic bacteria in other habitats, because the cellular carbon content of the thermophiles was much higher. Quantitative PCR and phylogenetic analysis targeting 16S rRNA genes revealed that thermophilic H2-oxidizing bacteria closely related to Calderobacterium and Geothermobacterium were dominant in the geothermal pool. Chemical analysis showed the presence of H2 in gases bubbling from the bottom of the geothermal pool. These results strongly suggested that H2 plays an important role as a primary energy source of thermophiles in the geothermal pool.

  18. Higher biomass productivity of microalgae in an attached growth system, using wastewater.

    PubMed

    Lee, Seung-Hoon; Oh, Hee-Mock; Jo, Beom-Ho; Lee, Sang-A; Shin, Sang-Yoon; Kim, Hee-Sik; Lee, Sang-Hyup; Ahn, Chi-Yong

    2014-11-28

    Although most algae cultivation systems are operated in suspended culture, an attached growth system can offer several advantages over suspended systems. Algal cultivation becomes light-limited as the microalgal concentration increases in the suspended system; on the other hand, sunlight penetrates deeper and stronger in attached systems owing to the more transparent water. Such higher availability of sunlight makes it possible to operate a raceway pond deeper than usual, resulting in a higher areal productivity. The attached system achieved 2.8-times higher biomass productivity and total lipid productivity of 9.1 g m(-2) day(-1) and 1.9 g m(-2) day(-1), respectively, than the suspended system. Biomass productivity can be further increased by optimization of the culture conditions. Moreover, algal biomass harvesting and dewatering were made simpler and cheaper in attached systems, because mesh-type substrates with attached microalgae were easily removed from the culture and the remaining treated wastewater could be discharged directly. When the algal biomass was dewatered using natural sunlight, the palmitic acid (C16:0) content increased by 16% compared with the freeze-drying method. There was no great difference in other fatty acid composition. Therefore, the attached system for algal cultivation is a promising cultivation system for mass biodiesel production.

  19. Biomass production, pasture balance, and their ecologic consequences in NW Namibia

    NASA Astrophysics Data System (ADS)

    Richters, Jochen J.

    2006-08-01

    The productivity of the vegetation layer and its consumption by cattle, goats and sheep are important topics in characterizing the ecologic conditions in the North-western Namibian rangeland. Using a mesoscale biosphere model the calculation of above ground phytomass (= biomass) and their seasonal productivity based on satellite data is of specific interest. The investigation area, Kaokoveld (north western Namibia), is characterized by a strong hydro climatic gradient with an annual precipitation range from 380mm/a in the north eastern part of the research area to 50 mm/a at the border of the Namib Desert. Small scale vegetation patterns with fractions of savannahs, woody savannahs, open and closed shrub lands and grasslands are the manifestation of this climatic gradient and the heterogeneous relief. The study area is partly used by local herders of the Himba as pasture ground for their livestock. This usage causes problems such as overgrazing and degradation of the vegetation. Together with the impact of climate change the known ecological gradient has strengthened during the last decade. With the remote sensing based regional biosphere model (RBM Kaokoveld) quantitative information about biomass changes and pasture ecology can be determined. Growth and reduction of biomass can be observed by using the theory of Monteith and Running et al. Biomass production can be derived from the combination of incoming solar radiation, NDVI, resulting from MODIS data and a biophysical conversion factor. This factor describes the ability of plants to produce net primary production (NPP). The regional biosphere model allows extracting detailed information from an area-wide biomass balance by using remote sensing. This balance describes the production as well as the consumption of biomass by cattle, game and natural decomposition. The modelling approach runs on medium temporal and spatial scale with a decadal time step and spatial resolution of 1 km. These temporal and spatial

  20. [Fine root biomass and production of four vegetation types in Loess Plateau, China].

    PubMed

    Deng, Qiang; Li, Ting; Yuan, Zhi-You; Jiao, Feng

    2014-11-01

    Fine roots (≤ 2 mm) play a major role in biogeochemical cycling in ecosystems. By the methods of soil cores and ingrowth soil cores, we studied the biomass and annual production of fine roots in 0-40 cm soil layers of four main vegetation types, i. e. , Robinia pseudoacacia plantation, deciduous shrubs, abandoned grassland, and Artemisia desertorum community in Loess Plateau, China. The spatial patterns of fine root biomass and production were negatively associated with latitudes. The fine root biomass in the 0-40 cm soil layer was in the order of deciduous shrubs (220 g · m(-2)), R. pseudoacacia plantation (163 g · m(-2)), abandoned grassland (162 g · m(-2)) and A. desertorum community (79 g · m(-2)). The proportion of ≤ 1 mm fine root biomass (74.1%) in the 0-40 cm soil layer of abandoned grassland was significantly higher than those in the other three vegetation types. The fine root biomass of the four vegetation types was mainly distributed in the 0-10 cm soil layer and decreased with soil depth. The proportion of fine root biomass (44.1%) in the 0-10 cm soil layer of abandoned grassland was significantly higher than those in other three vegetation types. The fine root productions of four vegetation types were in the order of abandoned grassland (315 g · m(-2) · a(-1)) > deciduous shrubs (249 g · m(-2) a(-1)) > R. pseudoacacia plantation (219 g · m(-2) · a(-1)) > A. desertorum community (115 g · m(-2) · a(-1)), and mainly concentrated in the 0-10 cm top soil layer and decreased with the soil depth. The proportion of the annual production (40.4%) in the 0-10 cm soil layer was the highest in abandoned grassland. Fine roots of abandoned grassland turned over faster than those from the other three vegetation types.

  1. Considerations for Sustainable Biomass Production in Quercus-Dominated Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Bruckman, Viktor; Yan, Shuai; Hochbichler, Eduard

    2013-04-01

    Our current energy system is mainly based on carbon (C) intensive metabolisms, resulting in great effects on the earth's biosphere. The majority of the energy sources are fossil (crude oil, coal, natural gas) and release CO2 in the combustion (oxidation) process which takes place during utilization of the energy. C released to the atmosphere was once sequestered by biomass over a time span of millions of years and is now being released back into the atmosphere within a period of just decades. In the context of green and CO2 neutral Energy, there is an on-going debate regarding the potentials of obtaining biomass from forests on multiple scales, from stand to international levels. Especially in the context of energy, it is highlighted that biomass is an entirely CO2 neutral feedstock since the carbon stored in wood originates from the atmospheric CO2 pool and it was taken up during plant growth. It needs systems approaches in order to justify this statement and ensure sustainability covering the whole life-cycle from biomass production to (bio)energy consumption. There are a number of Quercus woodland management systems focussing solely on woody biomass production for energetic utilization or a combination with traditional forestry and high quality timber production for trades and industry. They have often developed regionally as a consequence of specific demands and local production capacities, which are mainly driven by environmental factors such as climate and soil properties. We assessed the nutritional status of a common Quercus-dominated forest ecosystem in northern Austria, where we compared biomass- with belowground C and nutrient pools in order to identify potential site limits if the management shifts towards systems with a higher level of nutrient extraction. Heterogeneity of soils, and soil processes are considered, as well as other, growth-limiting factors (e.g. precipitation) and species-specific metabolisms and element translocation.

  2. Methods and materials for deconstruction of biomass for biofuels production

    DOEpatents

    Schoeniger, Joseph S; Hadi, Masood Zia

    2015-05-05

    The present invention relates to nucleic acids, peptides, vectors, cells, and plants useful in the production of biofuels. In certain embodiments, the invention relates to nucleic acid sequences and peptides from extremophile organisms, such as SSO1949 and Ce1A, that are useful for hydrolyzing plant cell wall materials. In further embodiments, the invention relates to modified versions of such sequences that have been optimized for production in one or both of monocot and dicot plants. In other embodiments, the invention provides for targeting peptide production or activity to a certain location within the cell or organism, such as the apoplast. In further embodiments, the invention relates to transformed cells or plants. In additional embodiments, the invention relates to methods of producing biofuel utilizing such nucleic acids, peptides, targeting sequences, vectors, cells, and/or plants.

  3. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.

    PubMed

    Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian

    Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.

  4. Influence of temperature on biomass production of clones of Atriplex halimus

    NASA Astrophysics Data System (ADS)

    Dessena, Leonarda; Mulas, Maurizio

    2016-05-01

    A very effective tool to combat desertification is revegetation. Promising species for this purpose are the evergreen shrubs of the genus Atriplex. The objective of the research was to study the growing responses of Atriplex halimus under different thermal regimes and to evaluate the biomass accumulation of selected clones. The test was carried out in four sites of Sardinia Island (Italy) characterized by different latitude, altitude and air temperature trends along the year. In every site, potted plants of five clones of A. halimus were compared for biomass production as measured by linear growth of plants (central axis and secondary shoots), as well as by dry weight of leaves, shoots and roots per plant. Correlations between sums of hour-degrees under or above the thresholds of critical air temperatures, comprised between 0 and 35 °C, and the plant growth indicators were analysed. Differences among the five clones, with regard to the influence of low temperatures on plant growth and on the biomass production were evaluated. Among five tested clones, GIO1 and SAN3 resulted more sensitive to low temperatures. Clones MAR1, PAL1 and FAN3 resulted less sensitive to low temperatures and in the site characterized by the lowest minimum temperatures also have shown greater adaptability and thus biomass growth in the observed period. The clone PAL1 showed a lower shoot/root biomass ratio as adaptation to cold temperature, and the clone FAN3, the opposite behaviour and a general preference to temperate thermal regimes.

  5. NASA's Biomass Production Chamber: a testbed for bioregenerative life support studies

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Stutte, G. W.; Sager, J. C.; Yorio, N. C.; Ruffe, L. M.; Fortson, R. E.; Dreschel, T. W.; Knott, W. M.; Corey, K. A.

    1996-01-01

    The Biomass Production Chamber (BPC) located at Kennedy Space Center, FL, USA provides a large (20 m2 area, 113 m3 vol.), closed environment for crop growth tests for NASA's Controlled Ecological Life Support System (CELSS) program. Since the summer of 1988, the chamber has operated on a near-continuous basis (over 1200 days) without any major failures (excluding temporary power losses). During this time, five crops of wheat (64-86 days each), three crops of soybean (90 to 97 days), five crops of lettuce (28-30 days), and four crops of potato (90 to 105 days were grown, producing 481 kg of dry plant biomass, 196 kg edible biomass, 540 kg of oxygen, 94,700 kg of condensed water, and fixing 739 kg of carbon dioxide. Results indicate that total biomass yields were close to expected values for the given light input, but edible biomass yields and harvest indices were slightly lower than expected. Stand photosynthesis, respiration, transpiration, and nutrient uptake rates were monitored throughout growth and development of the different crops, along with the build-up of ethylene and other volatile organic compounds in the atmosphere. Data were also gathered on system hardware maintenance and repair, as well as person-hours required for chamber operation. Future tests will include long-term crop production studies, tests in which nutrients from waste treatment systems will be used to grow new crops, and multi-species tests.

  6. Influence of temperature on biomass production of clones of Atriplex halimus.

    PubMed

    Dessena, Leonarda; Mulas, Maurizio

    2016-05-01

    A very effective tool to combat desertification is revegetation. Promising species for this purpose are the evergreen shrubs of the genus Atriplex. The objective of the research was to study the growing responses of Atriplex halimus under different thermal regimes and to evaluate the biomass accumulation of selected clones. The test was carried out in four sites of Sardinia Island (Italy) characterized by different latitude, altitude and air temperature trends along the year. In every site, potted plants of five clones of A. halimus were compared for biomass production as measured by linear growth of plants (central axis and secondary shoots), as well as by dry weight of leaves, shoots and roots per plant. Correlations between sums of hour-degrees under or above the thresholds of critical air temperatures, comprised between 0 and 35 °C, and the plant growth indicators were analysed. Differences among the five clones, with regard to the influence of low temperatures on plant growth and on the biomass production were evaluated. Among five tested clones, GIO1 and SAN3 resulted more sensitive to low temperatures. Clones MAR1, PAL1 and FAN3 resulted less sensitive to low temperatures and in the site characterized by the lowest minimum temperatures also have shown greater adaptability and thus biomass growth in the observed period. The clone PAL1 showed a lower shoot/root biomass ratio as adaptation to cold temperature, and the clone FAN3, the opposite behaviour and a general preference to temperate thermal regimes.

  7. NASA's biomass production chamber: a testbed for bioregenerative life support studies

    NASA Astrophysics Data System (ADS)

    Wheeler, R. M.; Mackowiak, C. L.; Stutte, G. W.; Sager, J. C.; Yorio, N. C.; Ruffe, L. M.; Fortson, R. E.; Dreschel, T. W.; Knott, W. M.; Corey, K. A.

    1996-01-01

    The Biomass Production Chamber (BPC) located at Kennedy Space Center, FL, USA provides a large (20 m^2 area, 113 m^3 vol.), closed environment for crop growth tests for NASA's Controlled Ecological Life Support System (CELSS) program. Since the summer of 1988, the chamber has operated on a near-continuous basis (over 1200 days) without any major failures (excluding temporary power losses). During this time, five crops of wheat (64-86 days each), three crops of soybean (90 to 97 days), five crops of lettuce (28-30 days), and four crops of potato (90 to 105 days) were grown, producing 481 kg of dry plant biomass, 196 kg edible biomass, 540 kg of oxygen, 94,700 kg of condensed water, and fixing 739 kg of carbon dioxide. Results indicate that total biomass yields were close to expected values for the given light input, but edible biomass yields and harvest indices were slightly lower than expected. Stand photosynthesis, respiration, transpiration, and nutrient uptake rates were monitored throughout growth and development of the different crops, along with the build-up of ethylene and other volatile organic compounds in the atmosphere. Data were also gathered on system hardware maintenance and repair, as well as person-hours required for chamber operation. Future tests will include long-term crop production studies, tests in which nutrients from waste treatment systems will be used to grow new crops, and multi-species tests.

  8. Biomass production and nitrogen dynamics in an integrated aquaculture/agriculture system

    NASA Technical Reports Server (NTRS)

    Owens, L. P.; Hall, C. R.

    1990-01-01

    A combined aquaculture/agriculture system that brings together the three major components of a Controlled Ecological Life Support System (CELSS) - biomass production, biomass processing, and waste recycling - was developed to evaluate ecological processes and hardware requirements necessary to assess the feasibility of and define design criteria for integration into the Kennedy Space Center (KSC) Breadboard Project. The system consists of a 1 square meter plant growth area, a 500 liter fish culture tank, and computerized monitoring and control hardware. Nutrients in the hydrophonic solution were derived from fish metabolites and fish food leachate. In five months of continuous operation, 27.0 kg of lettuce tops, 39.9 kg of roots and biofilm, and 6.6 kg of fish (wet weights) were produced with 12.7 kg of fish food input. Based on dry weights, a biomass conversion index of 0.52 was achieved. A nitrogen budget was derived to determine partitioning of nitrogen within various compartments of the system. Accumulating nitrogen in the hypoponic solution indicated a need to enlarge the plant growth area, potentially increasing the biomass production and improving the biomass conversion index.

  9. NASA's Biomass Production Chamber: a testbed for bioregenerative life support studies.

    PubMed

    Wheeler, R M; Mackowiak, C L; Stutte, G W; Sager, J C; Yorio, N C; Ruffe, L M; Fortson, R E; Dreschel, T W; Knott, W M; Corey, K A

    1996-01-01

    The Biomass Production Chamber (BPC) located at Kennedy Space Center, FL, USA provides a large (20 m2 area, 113 m3 vol.), closed environment for crop growth tests for NASA's Controlled Ecological Life Support System (CELSS) program. Since the summer of 1988, the chamber has operated on a near-continuous basis (over 1200 days) without any major failures (excluding temporary power losses). During this time, five crops of wheat (64-86 days each), three crops of soybean (90 to 97 days), five crops of lettuce (28-30 days), and four crops of potato (90 to 105 days were grown, producing 481 kg of dry plant biomass, 196 kg edible biomass, 540 kg of oxygen, 94,700 kg of condensed water, and fixing 739 kg of carbon dioxide. Results indicate that total biomass yields were close to expected values for the given light input, but edible biomass yields and harvest indices were slightly lower than expected. Stand photosynthesis, respiration, transpiration, and nutrient uptake rates were monitored throughout growth and development of the different crops, along with the build-up of ethylene and other volatile organic compounds in the atmosphere. Data were also gathered on system hardware maintenance and repair, as well as person-hours required for chamber operation. Future tests will include long-term crop production studies, tests in which nutrients from waste treatment systems will be used to grow new crops, and multi-species tests.

  10. Effects of Nitrogen and Desferal Treatments on CROTALARIA's (Crotalaria juncea Roth) Biomass Production

    NASA Astrophysics Data System (ADS)

    László Phd, M., ,, Dr.

    2009-04-01

    , depending on the N+Desferal treatment rates. g. On the given soil the highest quantity of 300 kg ha-1 year-1 N mineral fertilizer + 20 kg ha-1 year-1 Desferal chelating agent seemed to give already over fertilization and lowered in its tendency mainly the total green biomass yield and verifiable the total air dry biomass yield. By experimental results can be summarised that we was able to increase with a great rate Crotalaria juncea L. total green biomass yield and total air dry biomass yield by N and Desferal treatments. As well as so we can show and offer our results to different sustainable farming managements with nutrition system of low, mean and high input in the next future. Keywords: nitrogen, desferal, crotalaria, soil fertility, sustainable agriculture management Introduction Presently sustainable agriculture is vital to achieving food security poverty alleviation and environmental protection because land degradation and desertification has occurred in all the world over cutting across a broad spectrum of contrasts in climate, ecosystem types, land uses and socio/economic settings. For this reason improving integrated soil fertility management is appreciationed and has become a major issue of concern on the development plant nutrition and plant production agendas. On plant nutrition level mineral macronutrients so nitrogen and chelating agents of different microelements so Desferal- deferoxamin-methansulfonic are essential for plant growth and development. Crotalari juncea L. is a well-known nutrient indicator fodder and green manure crop with a high yield potential. The complexity of the desertification phenomenon has drawn our attention to categorize, inventory, monitor and repair the condition of the land (Arnalds and Archer 1999). Therefore, farmers are constantly being subjected to soil fertility changes that are beyond their control on account of factors that affect the viability and profitability their farming enterprise. They must acquire the capacity to

  11. METHANOL PRODUCTION FROM BIOMASS AND NATURAL GAS AS TRANSPORTATION FUEL

    EPA Science Inventory

    Two processes are examined for production of methanol. They are assessed against the essential requirements of a future alternative fuel for road transport: that it (i) is producible in amounts comparable to the 19 EJ of motor fuel annually consumed in the U.S., (ii) minimizes em...

  12. Extreme precipitation patterns reduced terrestrial ecosystem production across biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precipitation regimes are predicted to shift to more extreme patterns that are characterized by more intense rainfall events and longer dry intervals, yet their ecological impacts on vegetation production remain uncertain across biomes in natural climatic conditions. This in situ study investigated ...

  13. Evaluation of Energycane for Biomass Production in Starkville, MS.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The current energy crisis has given rise to the development of alternative energy programs that includes the production of ethanol. Energycane (Saccharum spp.) is a domestic feedstock that can be used to reduce the need for foreign oil and provide America’s farmers with more opportunities to decrea...

  14. Next-generation biomass feedstocks for biofuel production

    PubMed Central

    Simmons, Blake A; Loque, Dominique; Blanch, Harvey W

    2008-01-01

    The development of second-generation biofuels - those that do not rely on grain crops as inputs - will require a diverse set of feedstocks that can be grown sustainably and processed cost-effectively. Here we review the outlook and challenges for meeting hoped-for production targets for such biofuels in the United States. PMID:19133109

  15. Production of biorenewable styrene: utilization of biomass-derived sugars and insights into toxicity.

    PubMed

    Lian, Jieni; McKenna, Rebekah; Rover, Marjorie R; Nielsen, David R; Wen, Zhiyou; Jarboe, Laura R

    2016-05-01

    Fermentative production of styrene from glucose has been previously demonstrated in Escherichia coli. Here, we demonstrate the production of styrene from the sugars derived from lignocellulosic biomass depolymerized by fast pyrolysis. A previously engineered styrene-producing strain was further engineered for utilization of the anhydrosugar levoglucosan via expression of levoglucosan kinase. The resulting strain produced 240 ± 3 mg L(-1) styrene from pure levoglucosan, similar to the 251 ± 3 mg L(-1) produced from glucose. When provided at a concentration of 5 g L(-1), pyrolytic sugars supported styrene production at titers similar to those from pure sugars, demonstrating the feasibility of producing this important industrial chemical from biomass-derived sugars. However, the toxicity of contaminant compounds in the biomass-derived sugars and styrene itself limit further gains in production. Styrene toxicity is generally believed to be due to membrane damage. Contrary to this prevailing wisdom, our quantitative assessment during challenge with up to 200 mg L(-1) of exogenously provided styrene showed little change in membrane integrity; membrane disruption was observed only during styrene production. Membrane fluidity was also quantified during styrene production, but no changes were observed relative to the non-producing control strain. This observation that styrene production is much more damaging to the membrane integrity than challenge with exogenously supplied styrene provides insight into the mechanism of styrene toxicity and emphasizes the importance of verifying proposed toxicity mechanisms during production instead of relying upon results obtained during exogenous challenge.

  16. The production and potential loss mechanisms of bacterial biomass in the southern Gulf of Riga

    NASA Astrophysics Data System (ADS)

    Tuomi, Pirjo; Lundsgaard, Claus; Ekebom, Jan; Olli, Kalle; Künnis, Kai

    1999-12-01

    Bacterial biomass and production were measured in the water column and sediment of the southern Gulf of Riga. The potential loss of bacteria in the water column by lysis, grazing and sedimentation was estimated. A generally higher biomass and production of bacteria (135-195 mg C m -3 and 53-80 mg C m -3 day -1) were measured during the midsummer when compared to the spring (56-123 mg C m -3 and 7-26 mg C m -3 day -1) and late summer (51-98 mg C m -3 and 4-16 mg C m -3 day -1) periods. Also heterotrophic nanoflagellate biomass (13-25 mg C m -3) and virus numbers (5-16×10 10 l -1) had a maximum during midsummer. The average benthic bacterial production was highest in spring (1132 mg C m -2 day -1) when compared to the other seasons (706-806 mg C m -2 day -1). Benthic bacterial production exceeded the bacterial productivity in the water column above (404-1750 mg C m -2 day -1) in spring and late summer but not in midsummer. Throughout the productive season grazing was estimated to consume 6-50% and viral lysis 55->100% of the total bacterial production. Loss of bacteria by sedimentation was less than 2% of the bacterial production in the water column.

  17. Parameters affecting solvent production by Clostridium pasteurianum

    SciTech Connect

    Dabrock, B.; Bahl, H.; Gottschalk, G. )

    1992-04-01

    The effect of pH, growth rate, phosphate and iron limitation, carbon monoxide, and carbon source on product formation by Clostridium pasteurianum was determined. Under phosphate limitation, glucose was fermented almost exclusively to acetate and butyrate independently of the pH and growth rate. Iron limitation caused lactate production (38 mol/100 mol) from glucose in batch and continuous culture. At 15% (vol/vol) carbon monoxide in the atmosphere, glucose was fermented to ethanol (24 mol/100 mol), lactate (32 mol/100 mol), and butanol (36 mol/100 mol) in addition to the usual products, acetate (38 mol/100 mol) and butyrate (17 mol/100 mol). During glycerol fermentation, a completely different product pattern was found. In continuous culture under phosphate limitation, acetate and butyrate were produced only in trace amounts, whereas ethanol (30 mol/10 mol), butanol (18 mol/100 mol), and 1,3-propanediol (18 mol/100 mol) were the major products. Under iron limitation, the ratio of these products could be changed in favor of 1,3-propanediol (34 mol/100 mol). In addition, lactate was produced in significant amounts (25 mol/100 mol). The tolerance of C. pasteurianum to glycerol was remarkably high; growth was not inhibited by glycerol concentrations up to 17% (wt/vol). Increasing glycerol concentrations favored the production of 1,3-propanediol.

  18. Repeated application of composted tannery sludge affects differently soil microbial biomass, enzymes activity, and ammonia-oxidizing organisms.

    PubMed

    Araújo, Ademir Sérgio Ferreira; Lima, Luciano Moura; Santos, Vilma Maria; Schmidt, Radomir

    2016-10-01

    Repeated application of composted tannery sludge (CTS) changes the soil chemical properties and, consequently, can affect the soil microbial properties. The aim of this study was to evaluate the responses of soil microbial biomass and ammonia-oxidizing organisms to repeated application of CTS. CTS was applied repeatedly during 6 years, and, at the sixth year, the soil microbial biomass, enzymes activity, and ammonia-oxidizing organisms were determined in the soil. The treatments consisted of 0 (without CTS application), 2.5, 5, 10, and 20 t ha(-1) of CTS (dry basis). Soil pH, EC, SOC, total N, and Cr concentration increased with the increase in CTS rate. Soil microbial biomass did not change significantly with the amendment of 2.5 Mg ha(-1), while it decreased at the higher rates. Total and specific enzymes activity responded differently after CTS application. The abundance of bacteria did not change with the 2.5-Mg ha(-1) CTS treatment and decreased after this rate, while the abundance of archaea increased significantly with the 2.5-Mg ha(-1) CTS treatment. Repeated application of different CTS rates for 6 years had different effects on the soil microbial biomass and ammonia-oxidizing organisms as a response to changes in soil chemical properties.

  19. Bacterial biomass and production in pack ice of Antarctic marginal ice edge zones

    NASA Astrophysics Data System (ADS)

    Kottmeier, Steven T.; Sullivan, Cornelius W.

    1990-08-01

    Bacterial biomass and production in pack ice is little known even though the pack accounts for the majority of the 20 million square kilometer Antarctic sea ice habitat. On three cruises in marginal ice edge zones, spring 1983 (AMERIEZ I), autumn 1986 (AMERIEZ II), and late winter 1985 (Wintercruise I), considerable bacterial biomass and production was found throughout ice floes up to 2.22 m thick. We hypothesize that bacteria accumulate in pack ice as a result of both physical and biological processes. During the formation and growth of ice, physical processes act to concentrate and accumulate bacteria within the ice matrix. This is followed by in situ growth along physiochemical gradients found in several sea ice microhabitats. Bacterial biomass and production in ice were equal to that present in several meters of underlying seawater during all seasons. Among microhabitats, highest bacterial production and most rapid rates of growth ( >1 d -1) were found in saline ponds on the surface of floes and porewater in the interior of floes. Bacterial carbon production ranged from 2% of primary production in surface brash to 45-221% of primary production in surface ponds and porewater. Bacterial growth and microalgal photosynthetic metabolism in pack ice appear to be coupled in a fashion similar to that described for fast ice. The presence of substantial numbers of active, feeding protozoans and metazoans in pack ice suggests, albeit indirectly, that bacterial production supports microheterotrophs of the microbial loop, which in turn may support organisms at higher trophic levels. Bacterial growth in pack ice may be important to the potential for primary production. Thus ice bacteria may provide remineralized inorganic nutrients necessary for continued microalgal growth in localized microhabitats within the ice or they may compete with algae for nutrients. Upon release from melting ice, actively growing bacteria also contribute to microbial biomass in seawater. From these

  20. Radiation use efficiency, biomass production, and grain yield in two maize hybrids differing in drought tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought tolerant (DT) maize (Zea mays L.) hybrids have potential to increase yield under drought conditions. However, little information is known about the physiological determinations of yield in DT hybrids. Our objective was to assess radiation use efficiency (RUE), biomass production, and yield ...

  1. Improvement of biomass production and glucoamylase activity by Candida famata using factorial design.

    PubMed

    Mosbah, Habib; Aissa, Imen; Hassad, Nahla; Farh, Dhaker; Bakhrouf, Amina; Achour, Sami

    2016-07-01

    To improve biomass production and glucoamylase activity (GA) by Candida famata, culture conditions were optimized. A 2(3) full factorial design (FFD) with a response surface model was used to evaluate the effects and interactions of pH (X1 ), time of cultivation (X2 ), and starch concentration (X3 ) on the biomass production and enzyme activity. A total of 16 experiments were conducted toward the construction of an empiric model and a first-order equation. It was found that all factors (X1 , X2 , and X3 ) and their interactions were significant at a certain confidence level (P < 0.05). Using this methodology, the optimum values of the three tested parameters were obtained as follows: pH 6; time of cultivation 24 H and starch concentration 7 g/L, respectively. Our results showed that the starch concentration (X3) has significantly influenced both dependent variables, biomass production and GA of C. famata. Under this optimized medium, the experimental biomass production and GA obtained were 1.8 ± 0.54 g/L and 0.078 ± 0.012 µmol/L/Min, about 1.5- and 1.8-fold, respectively, higher than those in basal medium. The (R(2) ) coefficients obtained were 0.997 and 0.990, indicating an adequate degree of reliability in the model. Approximately 99% of validity of the predicted value was achieved.

  2. Gas exchange in NASA's biomass production chamber - A preprototype closed human life support system

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.; Wheeler, Raymond M.

    1992-01-01

    The unique capabilities of the NASA biomass production chamber for monitoring and evaluating gas exchange rates are examined. Special emphasis is given to results with wheat and soybeans. The potential of the chamber as a preprototype of a closed human life support system is considered.

  3. Production of poly(beta-L-malic acid) (PMA) from agricultural biomass substrates by Aureobasidium pullulans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report here for the first time the production of poly(beta-L-malic acid) (PMA) from agricultural biomass substrates by the yeastlike fungus Aureobasidium pullulans. Strains NRRL Y 2311-1, NRRL 50382, NRRL 50383, and NRRL 50384, representing diverse isolation sources and phylogenetic clades, prod...

  4. Biomass Program 2007 Program Peer Review - Biochemical and Products Platform Summary

    SciTech Connect

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Biochemical and Products Platform Review held on August 7-9, 2007 in Denver, Colorado.

  5. Progress on lipid extraction from wet algal biomass for biodiesel production.

    PubMed

    Ghasemi Naghdi, Forough; González González, Lina M; Chan, William; Schenk, Peer M

    2016-11-01

    Lipid recovery and purification from microalgal cells continues to be a significant bottleneck in biodiesel production due to high costs involved and a high energy demand. Therefore, there is a considerable necessity to develop an extraction method which meets the essential requirements of being safe, cost-effective, robust, efficient, selective, environmentally friendly, feasible for large-scale production and free of product contamination. The use of wet concentrated algal biomass as a feedstock for oil extraction is especially desirable as it would avoid the requirement for further concentration and/or drying. This would save considerable costs and circumvent at least two lengthy processes during algae-based oil production. This article provides an overview on recent progress that has been made on the extraction of lipids from wet algal biomass. The biggest contributing factors appear to be the composition of algal cell walls, pre-treatments of biomass and the use of solvents (e.g. a solvent mixture or solvent-free lipid extraction). We compare recently developed wet extraction processes for oleaginous microalgae and make recommendations towards future research to improve lipid extraction from wet algal biomass.

  6. Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: possibilities and challenges.

    PubMed

    Prajapati, Sanjeev Kumar; Kaushik, Prachi; Malik, Anushree; Vijay, Virendra Kumar

    2013-12-01

    Biogas produced from anaerobic digestion is a versatile and environment friendly fuel which traditionally utilizes cattle dung as the substrate. In the recent years, owing to its high content of biodegradable compounds, algal biomass has emerged as a potential feedstock for biogas production. Moreover, the ability of algae to treat wastewater and fix CO2 from waste gas streams makes it an environmental friendly and economically feasible feedstock. The present review focuses on the possibility of utilizing wastewater as the nutrient and waste gases as the CO2 source for algal biomass production and subsequent biogas generation. Studies describing the various harvesting methods of algal biomass as well as its anaerobic digestion have been compiled and discussed. Studies targeting the most recent advancements on biogas enrichment by algae have been discussed. Apart from highlighting the various advantages of utilizing algal biomass for biogas production, limitations of the process such as cell wall resistivity towards digestion and inhibitions caused due to ammonia toxicity and the possible strategies for overcoming the same have been reviewed. The studies compiled in the present review indicate that if the challenges posed in translating the lab scale studies on phycoremediation and biogas production to pilot scale are overcome, algal biogas could become the sustainable and economically feasible source of renewable energy.

  7. Herbicide and Application Timing Influence Cutleaf Groundcherry Biomass and Seed Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field experiment was conducted to evaluate herbicide and application timing on cutleaf groundcherry population, biomass, seed production, and peanut yield. Treatments included: 1) a non-treated control; 2) hand pruning; 3) diclosulam applied preemergence (PRE) at 0.027 kg ai/ha alone; 4) paraquat...

  8. Perennial species for optimum production of herbaceous biomass in the Piedmont

    SciTech Connect

    Parrish, D.J.; Wolf, D.D.; Daniels, W.L.; Vaughn, D.H.; Cundiff, J.S. )

    1990-07-01

    We have investigated eight biomass candidates grown on marginal Piedmont sites. The species include four grasses; sorghum-sundangrass hybrid, switchgrass, weeping lovegrass, and tall fescue; and four legumes: birdsfoot trefoil, crownvetch, flatpea, and sericea lespedeza. The candidate species were planted using no-till methods on twelve sites underlain by three different soils, Davidson, Cecil, and Appling. Initial establishment was good, but some plots had to be replanted after freezes and/or drought reduced stands. The two warm-season perennial grasses, switchgrass and weeping lovegrass, consistently provided the most biomass across all sites; average biomass yields in years following establishment ranged from 8 to 16 Mg/ha for the two. The legumes were generally lower than the grasses in biomass production, with sericea being the most productive legume overall, averaging about 6 Mg/ha/yr. Other studies indicated the experimental sites were quite variable in key soil morphological and chemical characteristics. Rooting depth of switchgrass was particularly notable, exceeding 0.7 m in all the soils studied. Erosion estimates using the Universal Soil Loss Equation suggested no-till production of perennial species limits soil losses. Economic analyses showed distinct differences among the candidates in costs of production. Physiological studies of switchgrass seed dormancy and photosynthesis were also conducted. 19 refs., 11 figs., 49 tabs.

  9. Inland saltwater as a medium for the production of biomass

    SciTech Connect

    Brune, D.E.; Reach, C.D.; O'Connor, J.T.

    1981-01-01

    A study was undertaken to determine if waste brine waters originating from inland salt seeps and crude oil production could be used to sustain the growth of marine organisms. In spite of a chemical composition significantly different from seawater controls, a central Missouri brine supported the rapid and dense growth of marine algae, which, in turn, was found to promote the normal growth of the brine shrimp Artemia. Additional experiments with oil-field brines indicated that the ability of waste brines to sustain algae-shrimp growth is site specific. The experimental results indicate that oil-field brines and inland salt waters can serve as media for the production of marine plants and animals.

  10. Commercial production of specialty chemicals and pharmaceuticals from biomass

    SciTech Connect

    McChesney, J.D.

    1993-12-31

    The chemical substances utilized in consumer products, and for pharmaceutical and agricultural uses are generally referred to as specialty chemicals. These may be flavor or fragrance substances, intermediates for synthesis of drugs or agrochemicals or the drugs or agrochemicals themselves, insecticides or insect pheromones or antifeedants, plant growth regulators, etc. These are in contrast to chemicals which are utilized in large quantities for fuels or preparation of plastics, lubricants, etc., which are usually referred to as industrial chemicals. The specific utilization of specialty chemicals is associated with a specific important physiochemical or biological property. They may possess unique properties as lubricants or waxes or have a very desirable biological activity such as a drug, agrochemical or perfume ingredient. These unique properties convey significant economic value to the specific specialty chemical. The economic commercial production of specialty chemicals commonly requires the isolation of a precursor or the specialty chemical itself from a natural source. The discovery, development and commercialization of specialty chemicals is presented and reviewed. The economic and sustainable production of specialty chemicals is discussed.

  11. Management of warm-season grass mixtures for biomass production in South Dakota USA.

    PubMed

    Mulkey, V R; Owens, V N; Lee, D K

    2008-02-01

    Switchgrass (Panicum virgatum L.), big bluestem (Andropogon gerardii Vitman), and indiangrass (Sorghastrum nutans (L.) Nash) are native warm-season grasses commonly used for pasture, hay, and conservation. More recently switchgrass has also been identified as a potential biomass energy crop, but management of mixtures of these species for biomass is not well documented. Therefore, the objectives of our study were to: (1) determine the effects of harvest timing and N rate on yield and biomass characteristics of established warm-season grass stands containing a mixture of switchgrass, big bluestem, and indiangrass, and (2) evaluate the impact of harvest management on species composition. Five N rates (0, 56, 112, and 224 kg ha(-1) applied annually in spring and 224 kg ha(-1) evenly split between spring and fall) and two harvest timings (anthesis and killing frost) were applied to plots at two South Dakota USA locations from 2001 to 2003. Harvesting once a year shortly after a killing frost produced the greatest yields with high concentrations of neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL) along with lower concentrations of total nitrogen (TN) and ash. This harvest timing also allowed for the greatest percentage of desirable species while maintaining low grass weed percentages. While N rates of 56 and 112 kg ha(-1) tended to increase total biomass without promoting severe invasion of grass and broadleaf weed species, N application did not always result in significant increases in biomass production. Based on these results, mixtures of switchgrass and big bluestem were well suited for sustainable biomass energy production. Furthermore, N requirements of these mixtures were relatively low thus reducing production input costs.

  12. Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources

    SciTech Connect

    Donaldson, T.L.; Culberson, O.L.

    1983-06-01

    This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

  13. Acid-Catalyzed Algal Biomass Pretreatment for Integrated Lipid and Carbohydrate-Based Biofuels Production

    DOE PAGES

    Laurens, L. M. L.; Nagle, N.; Davis, R.; ...

    2014-11-12

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. We studied the effect of harvest timing on the conversion yields, using two algal strains; Chlorella and Scenedesmus, generating biomass with distinctive compositionalmore » ratios of protein, carbohydrate, and lipids. We found that the late harvest Scenedesmus biomass had the maximum theoretical biofuel potential at 143 gasoline gallon equivalent (GGE) combined fuel yield per dry ton biomass, followed by late harvest Chlorella at 128 GGE per ton. Our experimental data show a clear difference between the two strains, as Scenedesmus was more successfully converted in this process with a demonstrated 97 GGE per ton. Our measurements indicated a release of >90% of the available glucose in the hydrolysate liquors and an extraction and recovery of up to 97% of the fatty acids from wet biomass. Techno-economic analysis for the combined product yields indicates that this process exhibits the potential to improve per-gallon fuel costs by up to 33% compared to a lipids-only process for one strain, Scenedesmus, grown to the mid-point harvest condition.« less

  14. Water consumption and biomass production of protoplast fusion lines of poplar hybrids under drought stress.

    PubMed

    Hennig, Anne; Kleinschmit, Jörg R G; Schoneberg, Sebastian; Löffler, Sonja; Janßen, Alwin; Polle, Andrea

    2015-01-01

    Woody crops such as poplars (Populus) can contribute to meet the increasing energy demand of a growing human population and can therefore enhance the security of energy supply. Using energy from biomass increases ecological sustainability as biomass is considered to play a pivotal role in abating climate change. Because areas for establishing poplar plantations are often confined to marginal sites drought tolerance is one important trait for poplar genotypes cultivated in short rotation coppice. We tested 9-month-old plants of four tetraploid Populus tremula (L.) × P. tremuloides (Michx.) lines that were generated by protoplast fusion and their diploid counterpart for water consumption and drought stress responses in a greenhouse experiment. The fusion lines showed equivalent or decreased height growth, stem biomass and total leaf area compared to the diploid line. The relative height increment of the fusion lines was not reduced compared to the diploid line when the plants were exposed to drought. The fusion lines were distinguished from the diploid counterpart by stomatal characteristics such as increased size and lower density. The changes in the stomatal apparatus did not affect the stomatal conductance. When exposed to drought the carbohydrate concentrations increased more strongly in the fusion lines than in the diploid line. Two fusion lines consumed significantly less water with regard to height growth, producing equivalent or increased relative stem biomass under drought compared to their diploid relative. Therefore, these tetraploid fusion lines are interesting candidates for short rotation biomass plantation on dry sites.

  15. Water consumption and biomass production of protoplast fusion lines of poplar hybrids under drought stress

    PubMed Central

    Hennig, Anne; Kleinschmit, Jörg R. G.; Schoneberg, Sebastian; Löffler, Sonja; Janßen, Alwin; Polle, Andrea

    2015-01-01

    Woody crops such as poplars (Populus) can contribute to meet the increasing energy demand of a growing human population and can therefore enhance the security of energy supply. Using energy from biomass increases ecological sustainability as biomass is considered to play a pivotal role in abating climate change. Because areas for establishing poplar plantations are often confined to marginal sites drought tolerance is one important trait for poplar genotypes cultivated in short rotation coppice. We tested 9-month-old plants of four tetraploid Populus tremula (L.) × P. tremuloides (Michx.) lines that were generated by protoplast fusion and their diploid counterpart for water consumption and drought stress responses in a greenhouse experiment. The fusion lines showed equivalent or decreased height growth, stem biomass and total leaf area compared to the diploid line. The relative height increment of the fusion lines was not reduced compared to the diploid line when the plants were exposed to drought. The fusion lines were distinguished from the diploid counterpart by stomatal characteristics such as increased size and lower density. The changes in the stomatal apparatus did not affect the stomatal conductance. When exposed to drought the carbohydrate concentrations increased more strongly in the fusion lines than in the diploid line. Two fusion lines consumed significantly less water with regard to height growth, producing equivalent or increased relative stem biomass under drought compared to their diploid relative. Therefore, these tetraploid fusion lines are interesting candidates for short rotation biomass plantation on dry sites. PMID:26042130

  16. Relationships between functional diversity and aboveground biomass production in the Northern Tibetan alpine grasslands.

    PubMed

    Zhu, Juntao; Jiang, Lin; Zhang, Yangjian

    2016-09-26

    Functional diversity, the extent of functional differences among species in a community, drives biodiversity-ecosystem function (BEF) relationships. Here, four species traits and aboveground biomass production (ABP) were considered. We used two community-wide measures of plant functional composition, (1) community weighted means of trait values (CWM) and (2) functional trait diversity based on Rao's quadratic diversity (FDQ) to evaluate the effects of functional diversity on the ABP in the Northern Tibetan alpine grasslands. Both species and functional diversity were positively related to the ABP. Functional trait composition had a larger predictive power for the ABP than species diversity and FDQ, indicating a primary dependence of ecosystem property on the identity of dominant species in our study system. Multivariate functional diversity was ineffective in predicting ecosystem function due to the trade-offs among different traits or traits selection criterions. Our study contributes to a better understanding of the mechanisms driving the BEF relationships in stressed ecosystems, and especially emphasizes that abiotic and biotic factors affect the BEF relationships in alpine grasslands.

  17. Relationships between functional diversity and aboveground biomass production in the Northern Tibetan alpine grasslands

    PubMed Central

    Zhu, Juntao; Jiang, Lin; Zhang, Yangjian

    2016-01-01

    Functional diversity, the extent of functional differences among species in a community, drives biodiversity–ecosystem function (BEF) relationships. Here, four species traits and aboveground biomass production (ABP) were considered. We used two community-wide measures of plant functional composition, (1) community weighted means of trait values (CWM) and (2) functional trait diversity based on Rao’s quadratic diversity (FDQ) to evaluate the effects of functional diversity on the ABP in the Northern Tibetan alpine grasslands. Both species and functional diversity were positively related to the ABP. Functional trait composition had a larger predictive power for the ABP than species diversity and FDQ, indicating a primary dependence of ecosystem property on the identity of dominant species in our study system. Multivariate functional diversity was ineffective in predicting ecosystem function due to the trade-offs among different traits or traits selection criterions. Our study contributes to a better understanding of the mechanisms driving the BEF relationships in stressed ecosystems, and especially emphasizes that abiotic and biotic factors affect the BEF relationships in alpine grasslands. PMID:27666532

  18. Productivity ranges of sustainable biomass potentials from non-agricultural land

    NASA Astrophysics Data System (ADS)

    Schueler, Vivian; Fuss, Sabine; Steckel, Jan Christoph; Weddige, Ulf; Beringer, Tim

    2016-07-01

    Land is under pressure from a number of demands, including the need for increased supplies of bioenergy. While bioenergy is an important ingredient in many pathways compatible with reaching the 2 °C target, areas where cultivation of the biomass feedstock would be most productive appear to co-host other important ecosystems services. We categorize global geo-data on land availability into productivity deciles, and provide a geographically explicit assessment of potentials that are concurrent with EU sustainability criteria. The deciles unambiguously classify the global productivity range of potential land currently not in agricultural production for biomass cultivation. Results show that 53 exajoule (EJ) sustainable biomass potential are available from 167 million hectares (Mha) with a productivity above 10 tons of dry matter per hectare and year (tD Mha-1 a-1), while additional 33 EJ are available on 264 Mha with yields between 4 and 10 tD M ha-1 a-1: some regions lose less of their highly productive potentials to sustainability concerns than others and regional contributions to bioenergy potentials shift when less productive land is considered. Challenges to limit developments to the exploitation of sustainable potentials arise in Latin America, Africa and Developing Asia, while new opportunities emerge for Transition Economies and OECD countries to cultivate marginal land.

  19. Sowing Density: A Neglected Factor Fundamentally Affecting Root Distribution and Biomass Allocation of Field Grown Spring Barley (Hordeum Vulgare L.).

    PubMed

    Hecht, Vera L; Temperton, Vicky M; Nagel, Kerstin A; Rascher, Uwe; Postma, Johannes A

    2016-01-01

    Studies on the function of root traits and the genetic variation in these traits are often conducted under controlled conditions using individual potted plants. Little is known about root growth under field conditions and how root traits are affected by agronomic practices in particular sowing density. We hypothesized that with increasing sowing density, root length density (root length per soil volume, cm cm(-3)) increases in the topsoil as well as specific root length (root length per root dry weight, cm g(-1)) due to greater investment in fine roots. Therefore, we studied two spring barley cultivars at ten different sowing densities (24-340 seeds m(-2)) in 2 consecutive years in a clay loam field in Germany and established sowing density dose-response curves for several root and shoot traits. We took soil cores for measuring roots up to a depth of 60 cm in and between plant rows (inter-row distance 21 cm). Root length density increased with increasing sowing density and was greatest in the plant row in the topsoil (0-10 cm). Greater sowing density increased specific root length partly through greater production of fine roots in the topsoil. Rooting depth (D50) of the major root axes (root diameter class 0.4-1.0 mm) was not affected. Root mass fraction decreased, while stem mass fraction increased with sowing density and over time. Leaf mass fraction was constant over sowing density but greater leaf area was realized through increased specific leaf area. Considering fertilization, we assume that light competition caused plants to grow more shoot mass at the cost of investment into roots, which is partly compensated by increased specific root length and shallow rooting. Increased biomass per area with greater densities suggest that density increases the efficiency of the cropping system, however, declines in harvest index at densities over 230 plants m(-2) suggest that this efficiency did not translate into greater yield. We conclude that plant density is a

  20. Sowing Density: A Neglected Factor Fundamentally Affecting Root Distribution and Biomass Allocation of Field Grown Spring Barley (Hordeum Vulgare L.)

    PubMed Central

    Hecht, Vera L.; Temperton, Vicky M.; Nagel, Kerstin A.; Rascher, Uwe; Postma, Johannes A.

    2016-01-01

    Studies on the function of root traits and the genetic variation in these traits are often conducted under controlled conditions using individual potted plants. Little is known about root growth under field conditions and how root traits are affected by agronomic practices in particular sowing density. We hypothesized that with increasing sowing density, root length density (root length per soil volume, cm cm−3) increases in the topsoil as well as specific root length (root length per root dry weight, cm g−1) due to greater investment in fine roots. Therefore, we studied two spring barley cultivars at ten different sowing densities (24–340 seeds m−2) in 2 consecutive years in a clay loam field in Germany and established sowing density dose-response curves for several root and shoot traits. We took soil cores for measuring roots up to a depth of 60 cm in and between plant rows (inter-row distance 21 cm). Root length density increased with increasing sowing density and was greatest in the plant row in the topsoil (0–10 cm). Greater sowing density increased specific root length partly through greater production of fine roots in the topsoil. Rooting depth (D50) of the major root axes (root diameter class 0.4–1.0 mm) was not affected. Root mass fraction decreased, while stem mass fraction increased with sowing density and over time. Leaf mass fraction was constant over sowing density but greater leaf area was realized through increased specific leaf area. Considering fertilization, we assume that light competition caused plants to grow more shoot mass at the cost of investment into roots, which is partly compensated by increased specific root length and shallow rooting. Increased biomass per area with greater densities suggest that density increases the efficiency of the cropping system, however, declines in harvest index at densities over 230 plants m−2 suggest that this efficiency did not translate into greater yield. We conclude that plant density is a

  1. [Relationships between the Biomass and Production of Bacterio- and Phytoplanktonic Communities].

    PubMed

    Aponasenko, A D; Shchur, L A

    2016-01-01

    Quantitative ratios of the biomasses of bacterio- and phytoplankton, interrelation of their production characteristics, and association of the functional characteristics with environmental factors were studied for Lake Khanka, the Yenisei River and the Krasnoyarsk Reservoir. The ratio between the biomasses of bacterioplankton (Bb) and phytoplankton (Bp) in these water bodies was shown to vary within the range exceeding three orders of magnitude. Bacterioplankton biomass was relatively stable and varied from sample to sample by an order of magnitude. In more than 50% of the samples (total sample number, 495), bacterioplankton biomass exceeded that of the phytoplankton. The average Bb/Bp ratios for Lake Khanka, Yenisei River, and Krasnoyarsk Reservoir were 5.1, 2, and 1.4, respectively. Increased Bb/Bp ratios were found to correlate with elevated specific (per unit biomass) phytoplankton production. This finding indicated additional supply of biogenic elements to phytoplankton due to their recycling by bacterial communities. The ratio between bacterioplankton and phytoplankton production for Lake Khanka varied from year to year (0.07 to 0.76). For the Yenisei River and the Krasnoyarsk Reservoir these ratios were on average 0.19 and 0.27, respectively. According to the literature data for other water bodies, bacterial production may reach from 10 to over 100% of the primary production. The equilibrium density of bacterioplankton (maximal density of the population) in Lake Khanka was ~1.5 times higher than in the Yenisei River and the Krasnoyarsk Reservoir due to higher content of suspended mineral matter and associated organo-mineral detritus in the lake. The interaction between dissolved organic compounds sorbed of the surface of mineral particles results in chemical alteration of biochemically stable substrate into compounds which may be assimilated by aquatic micoorganisms.

  2. Recycling of inorganic nutrients for hydroponic crop production following incineration of inedible biomass

    NASA Astrophysics Data System (ADS)

    Bubenheim, D. L.; Wignarajah, K.

    1997-01-01

    The goal of resource recovery in a regenerative life support system is maintenance of product quality to insure support of reliable and predictable levels of life support function performance by the crop plant component. Further, these systems must be maintained over extended periods of time, requiring maintenance of nutrient solutions to avoid toxicity and deficiencies. The focus of this study was to determine the suitability of the ash product following incineration of inedible biomass as a source of inorganic nutrients for hydroponic crop production. Inedible wheat biomass was incinerated and ash quality characterized. The incinerator ash was dissolved in adequate nitric acid to establish a consistent nitrogen concentration is all nutrient solution treatments. Four experimental nutrient treatments were included: control, ash only, ash supplemented to match the control treatment, and ash only quality formulated with reagent grade chemicals. When nutrient solutions were formulated using only ash following incineration of inedible biomass, a balance in solution is established representing elemental retention following incineration and nutrient proportions present in the original biomass. The resulting solution is not identical to the control. This imbalance resulted in a suppression of crop growth. When the ash is supplemented with reagent grade chemicals to establish the same balance as in the control - growth is identical to the control. The ash appears to carry no phytotoxic materials. Growth in solution formulated with reagent grade chemicals but matching the quality of the ash only treatment resulted in similar growth to that of the ash only treatment. The ash product resulting from incineration of inedible biomass appears to be a suitable form for recycle of inorganic nutrients to crop production.

  3. Recycling of inorganic nutrients for hydroponic crop production following incineration of inedible biomass.

    PubMed

    Bubenheim, D L; Wignarajah, K

    1997-01-01

    The goal of resource recovery in a regenerative life support system is maintenance of product quality to sure support of reliable and predictable levels of life support function performance by the crop plant component. Further, these systems must be maintained over extended periods of time, requiring maintenance of nutrient solutions to avoid toxicity and deficiencies. The focus of this study was to determine the suitability of the ash product following incineration of inedible biomass as a source of inorganic nutrients for hydroponic crop production. Inedible wheat biomass was incinerated and ash quality characterized. The incinerator ash was dissolved in adequate nitric acid to establish a consistent nitrogen concentration is all nutrient solution treatments. Four experimental nutrient treatments were included: control, ash only, ash supplemented to match the control treatment, and ash only quality formulated with reagent grade chemicals. When nutrient solutions were formulated using only ash following incineration of inedible biomass, a balance in solution is established representing elemental retention following incineration and nutrient proportions present in the original biomass. The resulting solution is not identical to the control. This imbalance resulted in a suppression of crop growth. When the ash is supplemented with reagent grade chemicals to establish the same balance as in the control--growth is identical to the control. The ash appears to carry no phytotoxic materials. Growth in solution formulated with reagent grade chemicals but matching the quality of the ash only treatment resulted in similar growth to that of the ash only treatment. The ash product resulting from incineration of inedible biomass appears to be a suitable form for recycle of inorganic nutrients to crop production.

  4. Relationship between biomass production and nitrogen fixation under drought stress conditions in peanut genoytpes with different levels of drought resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The relationship between biomass production and N2 fixation under drought stress conditions in peanut genotypes with different levels of drought resistance is not well understood. The objective of this study was to determine the effect of drought on biomass production and N2 fixation by evaluating t...

  5. Bioethanol production from Scenedesmus obliquus sugars: the influence of photobioreactors and culture conditions on biomass production.

    PubMed

    Miranda, J R; Passarinho, P C; Gouveia, L

    2012-10-01

    A closed-loop vertical tubular photobioreactor (PBR), specially designed to operate under conditions of scarce flat land availability and irregular solar irradiance conditions, was used to study the potential of Scenedesmus obliquus biomass/sugar production. The results obtained were compared to those from an open-raceway pond and a closed-bubble column. The influence of the type of light source and the regime (natural vs artificial and continuous vs light/dark cycles) on the growth of the microalga and the extent of the sugar accumulation was studied in both PBRs. The best type of reactor studied was a closed-loop PBR illuminated with natural light/dark cycles. In all the cases, the relationship between the nitrate depletion and the sugar accumulation was observed. The microalga Scenedesmus was cultivated for 53 days in a raceway pond (4,500 L) and accumulated a maximum sugar content of 29 % g/g. It was pre-treated for carrying out ethanol fermentation assays, and the highest ethanol concentration obtained in the hydrolysate fermented by Kluyveromyces marxianus was 11.7 g/L.

  6. Energetic potential of algal biomass from high-rate algal ponds for the production of solid biofuels.

    PubMed

    Costa, Taynan de Oliveira; Calijuri, Maria Lúcia; Avelar, Nayara Vilela; Carneiro, Angélica de Cássia de Oliveira; de Assis, Letícia Rodrigues

    2016-10-17

    In this investigation, chemical characteristics, higher, lower and net heating value, bulk and energy density, and thermogravimetric analysis were applied to study the thermal characteristics of three algal biomasses. These biomasses, grown as by-products of wastewater treatment in high-rate algal ponds (HRAPs), were: (i) biomass produced in domestic effluent and collected directly from an HRAP (PO); (ii) biomass produced in domestic effluent in a mixed pond-panel system and collected from the panels (PA); and (iii) biomass originating from the treatment effluent from the meat processing industry and collected directly from an HRAP (IN). The biomass IN was the best alternative for thermal power generation. Subsequently, a mixture of the algal biomasses and Jatropha epicarp was used to produce briquettes containing 0%, 25%, 50%, 75%, and 100% of algal biomass, and their properties were evaluated. In general, the addition of algal biomass to briquettes decreased both the hygroscopicity and fixed carbon content and increased the bulk density, ash content, and energy density. A 50% proportion of biomass IN was found to be the best raw material for producing briquettes. Therefore, the production of briquettes consisting of algal biomass and Jatropha epicarp at a laboratory scale was shown to be technically feasible.

  7. Sugar-rich sweet sorghum is distinctively affected by wall polymer features for biomass digestibility and ethanol fermentation in bagasse.

    PubMed

    Li, Meng; Feng, Shengqiu; Wu, Leiming; Li, Ying; Fan, Chunfen; Zhang, Rui; Zou, Weihua; Tu, Yuanyuan; Jing, Hai-Chun; Li, Shizhong; Peng, Liangcai

    2014-09-01

    Sweet sorghum has been regarded as a typical species for rich soluble-sugar and high lignocellulose residues, but their effects on biomass digestibility remain unclear. In this study, we examined total 63 representative sweet sorghum accessions that displayed a varied sugar level at stalk and diverse cell wall composition at bagasse. Correlative analysis showed that both soluble-sugar and dry-bagasse could not significantly affect lignocellulose saccharification under chemical pretreatments. Comparative analyses of five typical pairs of samples indicated that DP of crystalline cellulose and arabinose substitution degree of non-KOH-extractable hemicelluloses distinctively affected lignocellulose crystallinity for high biomass digestibility. By comparison, lignin could not alter lignocellulose crystallinity, but the KOH-extractable G-monomer predominately determined lignin negative impacts on biomass digestions, and the G-levels released from pretreatments significantly inhibited yeast fermentation. The results also suggested potential genetic approaches for enhancing soluble-sugar level and lignocellulose digestibility and reducing ethanol conversion inhibition in sweet sorghum.

  8. Cellulosic Biomass Feedstocks and Logistics for Ethanol Production

    SciTech Connect

    J. Richard Hess; Christopher T. Wright; Kevin L. Kenney

    2007-10-01

    The economic competitiveness of cellulosic ethanol production is highly dependent on feedstock cost, which constitutes 35–50% of the total ethanol production cost, depending on various geographical factors and the types of systems used for harvesting, collecting, preprocessing, transporting, and handling the material. Consequently, as the deployment of cellulosic ethanol biorefi neries approaches, feedstock cost and availability are the driving factors that infl uence pioneer biorefi nery locations and will largely control the rate at which this industry grows. Initial scenarios were postulated to develop a pioneer dry feedstock supply system design case as a demonstration of the current state of technology. Based on this pioneer design, advanced scenarios were developed to determine key cost barriers, needed supply system improvements, and technology advancements to achieve government and private sector cost targets. Analysis of the pioneer supply system resulted in a delivered feedstock cost to the throat of the pretreatment reactor of $37.00 per dry tonne (2002 $). Pioneer supply systems will start by using current infrastructure and technologies and be individually designed for biorefi neries using specifi c feedstock types and varieties based on local geographic conditions. As the industry develops and cost barriers are addressed, the supply systems will incorporate advanced technologies that will eliminate downstream diversity and provide a uniform, tailored feedstock for multiple biorefi neries located in different regions.

  9. Application of a novel enzymatic pretreatment using crude hydrolytic extracellular enzyme solution to microalgal biomass for dark fermentative hydrogen production.

    PubMed

    Yun, Yeo-Myeong; Kim, Dong-Hoon; Oh, You-Kwan; Shin, Hang-Sik; Jung, Kyung-Won

    2014-05-01

    In this study, a novel enzymatic pretreatment of Chlorella vulgaris for dark fermentative hydrogen production (DFHP) was performed using crude hydrolytic extracellular enzyme solution (CHEES) extracted from the H2 fermented effluent of food waste. It was found that the enzyme extracted at 52 h had the highest hydrolysis efficiency of microalgal biomass, resulting in the highest H2 yield of 43.1 mL H2/g dry cell weight along with shorter lag periods. Even though a high amount of VFAs was accumulated in CHEES, especially butyrate, the fermentative bacteria on the DFHP was not affected from product inhibition. It also appears that the presence of organic acids, especially lactate and acetate, contained in the CHEES facilitated enhancement of H2 production acted as a co-substrate. Therefore, all of the experimental results suggest that the enhancement of DFHP performance caused by CHEES has a dual role as the hydrolysis enhancer and the co-substrate supplier.

  10. Linking phenology and biomass productivity in South Dakota mixed-grass prairie

    USGS Publications Warehouse

    Rigge, Matthew; Smart, Alexander; Wylie, Bruce; Gilmanov, Tagir; Johnson, Patricia

    2013-01-01

    Assessing the health of rangeland ecosystems based solely on annual biomass production does not fully describe plant community condition; the phenology of production can provide inferences on species composition, successional stage, and grazing impacts. We evaluate the productivity and phenology of western South Dakota mixed-grass prairie using 2000 to 2008 Moderate Resolution Imaging Spectrometer (MODIS) normalized difference vegetation index (NDVI) satellite imagery at 250 m spatial resolution. Growing season NDVI images were integrated weekly to produce time-integrated NDVI (TIN), a proxy of total annual biomass production, and integrated seasonally to represent annual production by cool (C3) and warm (C4) season species. Additionally, a variety of phenological indicators including cool season percentage of TIN were derived from the seasonal profiles of NDVI. Cool season percentage and TIN were combined to generate vegetation classes, which served as proxies of plant community condition. TIN decreased with precipitation from east to west across the study area. Alternatively, cool season percentage increased from east to west, following patterns related to the reliability (interannual coefficient of variation [CV]) and quantity of mid-summer precipitation. Cool season TIN averaged 76.8% of total. Seasonal accumulation of TIN corresponded closely (R2 > 0.90) to that of gross photosynthesis data from a carbon flux tower. Field-collected biomass and community composition data were strongly related to the TIN and cool season percentage products. The patterns of vegetation classes were responsive to topographic, edaphic, and land management influences on plant communities. Accurate maps of biomass production, cool/warm season composition, and vegetation classes can improve the efficiency of land management by adjusting stocking rates and season of use to maximize rangeland productivity and achieve conservation objectives. Further, our results clarify the spatial and

  11. Current technologies, economics, and perspectives for 2,5-dimethylfuran production from biomass-derived intermediates.

    PubMed

    Saha, Basudeb; Abu-Omar, Mahdi M

    2015-04-13

    Since the U.S. Department of Energy (DOE) published a perspective article that described the potential of the top ten biomass-derived platform chemicals as petroleum replacements for high-value commodity and specialty chemicals, researchers around the world have been motivated to develop technologies for the conversion of biomass and biomass-derived intermediates into chemicals and fuels. Among several biorefinery processes, the conversion of biomass carbohydrates into 2,5-dimethylfuran (DMF) has received significant attention because of its low oxygen content, high energy content, and high octane value. DMF can further serve as a petroleum-replacement, biorenewable feedstock for the production of p-xylene (pX). In this review, we aim specifically to present a concise and up-to-date analysis of DMF production technologies with a critical discussion on catalytic systems, mechanistic insight, and process economics, which includes sensitivity analysis, so that more effective catalysts can be designed. Special emphasis has been given to bifunctional catalysts that improve DMF yields and selectivity and the synergistic effect of the bifunctional sites. Process economics for the current processes and the scope for further improvement are discussed. It is anticipated that the chemistry detailed in this review will guide researchers to develop more practical catalytic processes to enable the economic production of bio-based DMF. Processes for the upgrade of DMF to pX are also described.

  12. Improving bioethanol production from olive pruning biomass by deacetylation step prior acid hydrolysis and fermentation processes.

    PubMed

    Moya, Alberto J; Peinado, Silvia; Mateo, Soledad; Fonseca, Bruno G; Sánchez, Sebastián

    2016-11-01

    In order to produce bioethanol from olive tree pruning biomass, deacetylation was performed employing sodium hydroxide. Optimal conditions were determined using experimental design techniques. The highest acetic acid removal (3.8g/dm(3)), obtained by response surface methodology, was at optimum pretreatment conditions of temperature 60°C, 0.8% NaOH and residence time 60min. After oxalic acid hydrolysis of pretreated biomass, the hydrolysates were directly used for ethanol production without further detoxification process. Ethanol yields ranged from 0.19 to 0.45g/g, reaching the maximum yield value when pretreatment was carried out at 130°C with 100mM oxalic acid, involving a combined severity factor (CSF) of 1.05. The highest ethanol concentration obtained from pretreated biomass was 6.2g/dm(3) at 150°C, using 75mM of oxalic acid (CSF=1.53).

  13. Energy-efficient methane production from macroalgal biomass through chemo disperser liquefaction.

    PubMed

    Tamilarasan, K; Kavitha, S; Rajesh Banu, J; Arulazhagan, P; Yeom, Ick Tae

    2017-03-01

    In this study, an effort has been made to reduce the energy cost of liquefaction by coupling a mechanical disperser with a chemical (sodium tripolyphosphate). In terms of the cost and specific energy demand of liquefaction, the algal biomass disintegrated at 12,000rpm for 30min, and an STPP dosage of about 0.04g/gCOD was chosen as an optimal parameter. Chemo disperser liquefaction (CDL) was found to be energetically and economically sustainable in terms of liquefaction, methane production, and net profit (15%, 0.14gCOD/gCOD, and 4 USD/Ton of algal biomass) and preferable to disperser liquefaction (DL) (10%, 0.11 gCOD/gCOD, and -475 USD/Ton of algal biomass).

  14. Biogas production from anaerobic digestion of Spirulina maxima algal biomass

    SciTech Connect

    Samson, R.; LeDuy, A.

    1982-08-01

    The semimicroscopic blue-green alga Spirulina maxima makes an ideal substrate for anaerobic digestion because it is easy to harvest, it can use carbon dioxide from the atmosphere as its carbon source, and its fermentability is higher than that of other small algae. Digestion experiments demonstrated that S. maxima can serve as the sole nutrient for biogas production and that municipal sewage sludge, when adapted to this new substrate, is very stable. During semicontinuous daily-fed trials under non-optimal conditions at an 0.06 lb volatile solids (VS)/ft/sup 3/ (0.97 kg VS/m/sup 3/) loading rate, 33-day retention time, and 86/sup 0/F (30/sup 0/C) digestion temperature, the daily methane yield was 4.2 CF/lb (0.26 m/sup 3//kg) VS added, which represents 47% of the maximum theoretical yield. Studies on optimizing the process are underway.

  15. Growing Chlorella sp. on meat processing wastewater for nutrient removal and biomass production.

    PubMed

    Lu, Qian; Zhou, Wenguang; Min, Min; Ma, Xiaochen; Chandra, Ceria; Doan, Yen T T; Ma, Yiwei; Zheng, Hongli; Cheng, Sibo; Griffith, Richard; Chen, Paul; Chen, Chi; Urriola, Pedro E; Shurson, Gerald C; Gislerød, Hans R; Ruan, Roger

    2015-12-01

    In this work, Chlorella sp. (UM6151) was selected to treat meat processing wastewater for nutrient removal and biomass production. To balance the nutrient profile and improve biomass yield at low cost, an innovative algae cultivation model based on wastewater mixing was developed. The result showed that biomass yield (0.675-1.538 g/L) of algae grown on mixed wastewater was much higher than that on individual wastewater and artificial medium. Wastewater mixing eased the bottleneck for algae growth and contributed to the improved biomass yield. Furthermore, in mixed wastewater with sufficient nitrogen, ammonia nitrogen removal efficiencies (68.75-90.38%) and total nitrogen removal efficiencies (30.06-50.94%) were improved. Wastewater mixing also promoted the synthesis of protein in algal cells. Protein content of algae growing on mixed wastewater reached 60.87-68.65%, which is much higher than that of traditional protein source. Algae cultivation model based on wastewater mixing is an efficient and economical way to improve biomass yield.

  16. Microbial Production of Short Chain Fatty Acids from Lignocellulosic Biomass: Current Processes and Market

    PubMed Central

    Baumann, Ivan

    2016-01-01

    Biological production of organic acids from conversion of biomass derivatives has received increased attention among scientists and engineers and in business because of the attractive properties such as renewability, sustainability, degradability, and versatility. The aim of the present review is to summarize recent research and development of short chain fatty acids production by anaerobic fermentation of nonfood biomass and to evaluate the status and outlook for a sustainable industrial production of such biochemicals. Volatile fatty acids (VFAs) such as acetic acid, propionic acid, and butyric acid have many industrial applications and are currently of global economic interest. The focus is mainly on the utilization of pretreated lignocellulosic plant biomass as substrate (the carbohydrate route) and development of the bacteria and processes that lead to a high and economically feasible production of VFA. The current and developing market for VFA is analyzed focusing on production, prices, and forecasts along with a presentation of the biotechnology companies operating in the market for sustainable biochemicals. Finally, perspectives on taking sustainable product of biochemicals from promise to market introduction are reviewed. PMID:27556042

  17. Microbial Production of Short Chain Fatty Acids from Lignocellulosic Biomass: Current Processes and Market.

    PubMed

    Baumann, Ivan; Westermann, Peter

    2016-01-01

    Biological production of organic acids from conversion of biomass derivatives has received increased attention among scientists and engineers and in business because of the attractive properties such as renewability, sustainability, degradability, and versatility. The aim of the present review is to summarize recent research and development of short chain fatty acids production by anaerobic fermentation of nonfood biomass and to evaluate the status and outlook for a sustainable industrial production of such biochemicals. Volatile fatty acids (VFAs) such as acetic acid, propionic acid, and butyric acid have many industrial applications and are currently of global economic interest. The focus is mainly on the utilization of pretreated lignocellulosic plant biomass as substrate (the carbohydrate route) and development of the bacteria and processes that lead to a high and economically feasible production of VFA. The current and developing market for VFA is analyzed focusing on production, prices, and forecasts along with a presentation of the biotechnology companies operating in the market for sustainable biochemicals. Finally, perspectives on taking sustainable product of biochemicals from promise to market introduction are reviewed.

  18. Biomass and lipid production of dinoflagellates and raphidophytes in indoor and outdoor photobioreactors.

    PubMed

    Fuentes-Grünewald, C; Garcés, E; Alacid, E; Rossi, S; Camp, J

    2013-02-01

    The principal fatty acids from the lipid profiles of two autochthonous dinoflagellates (Alexandrium minutum and Karlodinium veneficum) and one raphidophyte (Heterosigma akashiwo) maintained in bubble column photobioreactors under outdoor culture conditions are described for the first time. The biomass production, lipid content and lipid productivity of these three species were determined and the results compared to those obtained when the strains were cultured indoors. Under the latter condition, the biotic values did not significantly differ among species, whereas under outdoor conditions, differences in both duplication time and fatty acids content were observed. Specifically, A. minutum had higher biomass productivity (0.35 g·L⁻¹ day⁻¹), lipid productivity (80.7 mg lipid·L⁻¹ day⁻¹) and lipid concentration (252 mg lipid·L⁻¹) at harvest time (stationary phase) in outdoor conditions. In all three strains, the growth rate and physiological response to the light and temperature fluctuations of outdoor conditions greatly impacted the production parameters. Nonetheless, the species could be successfully grown in an outdoor photobioreactor and were of sufficient robustness to enable the establishment of long-term cultures yielding consistent biomass and lipid production.

  19. Evaluating the composition and processing potential of novel sources of Brazilian biomass for sustainable biorenewables production

    PubMed Central

    2014-01-01

    Background The search for promising and renewable sources of carbohydrates for the production of biofuels and other biorenewables has been stimulated by an increase in global energy demand in the face of growing concern over greenhouse gas emissions and fuel security. In particular, interest has focused on non-food lignocellulosic biomass as a potential source of abundant and sustainable feedstock for biorefineries. Here we investigate the potential of three Brazilian grasses (Panicum maximum, Pennisetum purpureum and Brachiaria brizantha), as well as bark residues from the harvesting of two commercial Eucalyptus clones (E. grandis and E. grandis x urophylla) for biofuel production, and compare these to sugarcane bagasse. The effects of hot water, acid, alkaline and sulfite pretreatments (at increasing temperatures) on the chemical composition, morphology and saccharification yields of these different biomass types were evaluated. Results The average yield (per hectare), availability and general composition of all five biomasses were compared. Compositional analyses indicate a high level of hemicellulose and lignin removal in all grass varieties (including sugarcane bagasse) after acid and alkaline pretreatment with increasing temperatures, whilst the biomasses pretreated with hot water or sulfite showed little variation from the control. For all biomasses, higher cellulose enrichment resulted from treatment with sodium hydroxide at 130°C. At 180°C, a decrease in cellulose content was observed, which is associated with high amorphous cellulose removal and 5-hydroxymethyl-furaldehyde production. Morphological analysis showed the effects of different pretreatments on the biomass surface, revealing a high production of microfibrillated cellulose on grass surfaces, after treatment with 1% sodium hydroxide at 130°C for 30 minutes. This may explain the higher hydrolysis yields resulting from these pretreatments, since these cellulosic nanoparticles can be easily

  20. A novel one-stage cultivation/fermentation strategy for improved biogas production with microalgal biomass.

    PubMed

    Klassen, Viktor; Blifernez-Klassen, Olga; Hoekzema, Yoep; Mussgnug, Jan H; Kruse, Olaf

    2015-12-10

    The use of alga biomass for biogas generation has been studied for over fifty years but until today, several distinct features, like inefficient degradation and low C/N ratios, limit the applicability of algal biomass for biogas production in larger scale. In this work we investigated a novel, one-stage combined cultivation/fermentation strategy including inherently progressing nitrogen starvation conditions to generate improved microalgal biomass substrates. For this strategy, comparable low amounts of nitrogen fertilizers were applied during cultivation and no additional enzymatic, chemical or physical pretreatments had to be performed. The results of this study demonstrate that progressing nitrogen limitation leads to continuously increasing C/N ratios of the biomass up to levels of 24-26 for all three tested alga strains (Chlamydomonas reinhardtii, Parachlorella kessleri and Scenedesmus obliquus). Importantly, the degradation efficiency of the algal cells increased with progressing starvation, leading to strain-specific cell disintegration efficiencies of 35%-100% during the fermentation process. Nitrogen limitation treatment resulted in a 65% increase of biogas yields for C. reinhardtii biomass (max. 698±23mL biogas g(-1) VS) when compared to replete conditions. For P. kessleri and S. obliquus, yields increased by 94% and 106% (max. 706±39mL and 586±36mL biogas g(-1) VS, respectively). From these results we conclude that this novel one-stage cultivation strategy with inherent nitrogen limitation can be used as a pretreatment for microalgal biomass generation, in order to produce accessible substrates with optimized C/N ratios for the subsequent anaerobic fermentation process, thus increasing methane production and avoiding the risk of ammonia inhibition effects within the fermenter.

  1. Combined pretreatment with torrefaction and washing using torrefaction liquid products to yield upgraded biomass and pyrolysis products.

    PubMed

    Chen, Dengyu; Mei, Jiaming; Li, Haiping; Li, Yiming; Lu, Mengting; Ma, Tingting; Ma, Zhongqing

    2017-03-01

    This study presented an approach to upgrade biomass and pyrolysis products using a process based on torrefaction liquid washing combined with torrefaction pretreatment. The torrefaction of cotton stalk was first conducted at 250°C for 30min and then the resulting torrefaction liquid products were collected and reused to wash cottonstalk. The pyrolysis of the original and pretreated cotton stalk was performed at 500°C for 15min in a fixed-bed reactor. The results indicated that the combined pretreatment obviously reduced the metallic species in cotton stalk, decreased the water and acids contents while promoted phenols in bio-oil, declined the ash content in biochar, as well as improved the heating value of non-condensable gas. Overall, the combined pretreatment did not only allow to reuse the liquid products issued from torrefaction pretreatment but also improved the quality of biomass and the pyrolysis products, making it a novel promising pretreatment method.

  2. Heterogeneous Light Supply Affects Growth and Biomass Allocation of the Understory Fern Diplopterygium glaucum at High Patch Contrast

    PubMed Central

    Guo, Wei; Song, Yao-Bin; Yu, Fei-Hai

    2011-01-01

    Spatial heterogeneity in resource supply is common and responses to heterogeneous resource supply have been extensively documented in clonal angiosperms but not in pteridophytes. To test the hypotheses that clonal integration can modify responses of pteridophytes to heterogeneous resource supply and the integration effect is larger at higher patch contrast, we conducted a field experiment with three homogeneous and two heterogeneous light treatments on the rhizomatous, understory fern Diplopterygium glaucum in an evergreen broad-leaved forest in East China. In homogeneous treatments, all D. glaucum ramets in 1.5 m×1.5 m units were subjected to 10, 40 and 100% natural light, respectively. In the heterogeneous treatment of low patch contrast, ramets in the central 0.5 m×0.5 m plots of the units were subjected to 40% natural light and their interconnected ramets in the surrounding area of the units to 100%; in the heterogeneous treatment of high patch contrast, ramets in the central plots were subjected to 10% natural light and those in the surrounding area to 100%. In the homogeneous treatments, biomass and number of living ramets in the central plots decreased and number of dead ramets increased with decreasing light supply. At low contrast heterogeneous light supply did not affect performance or biomass allocation of D. glaucum in the central plots, but at high contrast it increased lamina biomass and number of living ramets older than annual and modified biomass allocation to lamina and rhizome. Thus, clonal integration can affect responses of understory ferns to heterogeneous light supply and ramets in low light patches can be supported by those in high light. The results also suggest that effects of clonal integration depend on the degree of patch contrast and a significant integration effect may be found only under a relatively high patch contrast. PMID:22132189

  3. Responses of plant community composition and biomass production to warming and nitrogen deposition in a temperate meadow ecosystem.

    PubMed

    Zhang, Tao; Guo, Rui; Gao, Song; Guo, Jixun; Sun, Wei

    2015-01-01

    Climate change has profound influences on plant community composition and ecosystem functions. However, its effects on plant community composition and biomass production are not well understood. A four-year field experiment was conducted to examine the effects of warming, nitrogen (N) addition, and their interactions on plant community composition and biomass production in a temperate meadow ecosystem in northeast China. Experimental warming had no significant effect on plant species richness, evenness, and diversity, while N addition highly reduced the species richness and diversity. Warming tended to reduce the importance value of graminoid species but increased the value of forbs, while N addition had the opposite effect. Warming tended to increase the belowground biomass, but had an opposite tendency to decrease the aboveground biomass. The influences of warming on aboveground production were dependent upon precipitation. Experimental warming had little effect on aboveground biomass in the years with higher precipitation, but significantly suppressed aboveground biomass in dry years. Our results suggest that warming had indirect effects on plant production via its effect on the water availability. Nitrogen addition significantly increased above- and below-ground production, suggesting that N is one of the most important limiting factors determining plant productivity in the studied meadow steppe. Significant interactive effects of warming plus N addition on belowground biomass were also detected. Our observations revealed that environmental changes (warming and N deposition) play significant roles in regulating plant community composition and biomass production in temperate meadow steppe ecosystem in northeast China.

  4. Lasting effects of climate disturbance on perennial grassland above-ground biomass production under two cutting frequencies.

    PubMed

    Zwicke, Marine; Alessio, Giorgio A; Thiery, Lionel; Falcimagne, Robert; Baumont, René; Rossignol, Nicolas; Soussana, Jean-François; Picon-Cochard, Catherine

    2013-11-01

    Climate extremes can ultimately reshape grassland services such as forage production and change plant functional type composition. This 3-year field research studied resistance to dehydration and recovery after rehydration of plant community and plant functional types in an upland perennial grassland subjected to climate and cutting frequency (Cut+, Cut-) disturbances by measuring green tissue percentage and above-ground biomass production (ANPP). In year 1, a climate disturbance gradient was applied by co-manipulating temperature and precipitation. Four treatments were considered: control and warming-drought climatic treatment, with or without extreme summer event. In year 2, control and warming-drought treatments were maintained without extreme. In year 3, all treatments received ambient climatic conditions. We found that the grassland community was very sensitive to dehydration during the summer extreme: aerial senescence reached 80% when cumulated climatic water balance fell to -156 mm and biomass declined by 78% at the end of summer. In autumn, canopy greenness and biomass totally recovered in control but not in the warming-drought treatment. However ANPP decreased under both climatic treatments, but the effect was stronger on Cut+ (-24%) than Cut- (-15%). This decline was not compensated by the presence of three functional types because they were negatively affected by the climatic treatments, suggesting an absence of buffering effect on grassland production. In the following 2 years, lasting effects of climate disturbance on ANPP were observable. The unexpected stressful conditions of year 3 induced a decline in grassland production in the Cut+ control treatment. The fact that this treatment cumulated higher (45%) N export over the 3 years suggests that N plays a key role in ANPP stability. As ANPP in this mesic perennial grassland did not show engineering resilience, long-term experimental manipulation is needed. Infrequent mowing appears more

  5. Changes in droplet surface tension affect the observed hygroscopicity of photochemically aged biomass burning aerosol.

    PubMed

    Giordano, Michael R; Short, Daniel Z; Hosseini, Seyedehsan; Lichtenberg, William; Asa-Awuku, Akua A

    2013-10-01

    This study examines the hygroscopic and surface tension properties as a function of photochemical aging of the aerosol emissions from biomass burning. Experiments were conducted in a chamber setting at the UC-Riverside Center for Environmental Research and Technology (CE-CERT) Atmospheric Processes Lab using two biomass fuel sources, manzanita and chamise. Cloud condensation nuclei (CCN) measurements and off-line filter sample analysis were conducted. The water-soluble organic carbon content and surface tension of the extracted filter samples were measured. Surface tension information was then examined with Köhler theory analysis to calculate the hygroscopicity parameter, κ. Laboratory measurement of biomass burning smoke from two chaparral fuels is shown to depress the surface tension of water by 30% or more at organic matter concentrations relevant at droplet activation. Accounting for surface tension depression can lower the calculated κ by a factor of 2. This work provides evidence for surface tension depression in an important aerosol system and may provide closure for differing sub- and supersaturated κ measurements.

  6. Tow steps biohydrogen production: biomass pretreatment and fermentation

    NASA Astrophysics Data System (ADS)

    Ma, C.; Yang, H. H.; Guo, L. J.

    2010-03-01

    This paper investigated the pretreatment of cornstalk and integrated dark-photo fermentation for hydrogen production. Five parameters of the pretreatment experiments, including NaOH concentration, temperature, residence time, and dosage of cellulase and xylanase, were optimized through the L25 (5≙5) orthogonal test. The optimal NaOH concentration, temperature, residence time, and dosage of cellulase and xylanase were 0.5wt%, 115 °C, 3 h, 0.08g/g cornstalk, 0.08g/g cornstalk, respectively. Under the optimal conditions, 0.31g glucose/g cornstalk was obtained. The two-step fermentation consisted of dark fermentation and photo fermentation. The pretreated cornstalk was used as the substrate for dark fermentation, with cow dung as the inoculum. Then the effluents of dark fermentation were employed as the substrate for photo fermentation by photosynthetic bacteria. H2 yield of dark fermentation was 116.7 mL/g cornstalk, with H2 concentration of 41%. After photo fermentation, the total H2 yield increased to 294 mL/g cornstalk.

  7. Emergent Patterns of Forest Biomass Production from Across and within a Micro-Network

    NASA Astrophysics Data System (ADS)

    Pederson, N.; Martin Benito, D.; Bishop, D. A.; Dawson, A.; Dietze, M.; Druckenbrod, D.; Dye, A.; Gonzalez, A. C.; Hessl, A. E.; Martin Fernandez, J.; McLachlan, J. S.; Paciorek, C. J.; Poulter, B.; Williams, J. W.

    2014-12-01

    Many factors drive short- and long-term trends in forest biomass production. Replication at multiple scales, from within individual trees up to continental scales, is necessary to determine factors of growth and at what scale they are most important. Here we report on patterns of biomass production from within and across a micro-network of three forests in the northeastern US. Each forest has different histories and species composition, but each is within a similar climatological setting, which gives insight on important factors of short- and long-term patterns of forest production. One emergent pattern is that two forests are showing a large uptick in production over the last decade. Coincident to this uptick, late-season biomass production is showing a significant increase, even among 150-200+ year old trees. The third forest experienced a severe ice storm in the early-Aughts that paused a three-decade trend of increasing production. In the least diverse forest, the most dominant species drives most of the annual to decadal trend in production. In the most diverse forest, no one species appears to be driving landscape-level production, yet the emergent pattern of production reflects not only drought and pluvial events, but the impact of invasive species and the ice storm. Variation in annual biomass production for most species is strongly related to annual variations in soil moisture. Interestingly at the species level, coherency of growth among yellow birch is lower in the oldest forest in which is it is common versus the youngest forest. Differences in coherency suggest different drivers operating at different scales. Growth of red maple is also driven by moisture, but competition appears to be driving a long-term decline of individuals below the canopy. The decline begins soon after a severe defoliation event. In this same forest, however, significant wetting and warming over the last two decades appears to have reduced some of the climatic constraints on red

  8. Feasibility study for alternate fuel production from biomass resources

    SciTech Connect

    Not Available

    1981-06-01

    The propsed project will be a 50 mm USGPY anhydrous alcohol plant to be located at Walhalla in northeastern North Dakota. The plant will use barley grown in the region as the raw material to produce a Motor Fuel Grade Alcohol through a fermentation and distillation process. North Dakota lignite coal will be used as the primary energy source to produce alcohol from the barley. The site is located on an active branch of the Burlington Northern Railroad, providing efficient and economical access to North Dakota's vast lignite coal fields in western North Dakota and to the established grain and grain by-product markets of Duluth and Minneapolis. The site is also adjacent to paved secondary highways, providing access to state and interstate highway systems. The plant site is adjacent to the City of Walhalla and will be annexed to the city limits and served by community facilities. Electrical energy to operate plant equipment will be partially produced by co-generation within the plant but the total electrical energy cannot be produced internally and additional power will be purchased from Otter Tail Power Co., supplier to the community. A technical review of the plant is provided in this report. The process, plant layout and major equipment procurement and costs are described. A complete economic analysis is provided using the data derived from the technical evaluation and cost estimates and is provided in a separate section. Siting and the environmental and socio-economic considerations are covered separately. A review of the proposed management and personnel structure completes the report.

  9. Utilization of agricultural biomass in the production of the biopolymer schizophyllan.

    PubMed

    Sutivisedsak, Nongnuch; Leathers, Timothy D; Nunnally, Melinda S; Price, Neil P J; Biresaw, Girma

    2013-01-01

    Schizophyllan is a homoglucan produced by the fungus Schizophyllum commune, with a β-1,3-linked backbone and β-1,6-linked side chains of single glucose units at every other residue. Schizophyllan is commercially produced for pharmaceutical and cosmetics uses. However, the unique physical properties of schizophyllan suggest that it may have biomaterials applications. Schizophyllan is conventionally produced by submerged culture fermentation using glucose as a carbon source. This study demonstrates for the first time the efficient utilization of agricultural biomass substrates, particularly distiller's dried grains with solubles, for schizophyllan production. Sugar composition analysis, NMR, and permethylation linkage analysis confirmed that the recovered product was schizophyllan. Schizophyllan produced from agricultural residues was of a high molecular weight and exhibited solution viscosity properties similar to those of commercially produced material. Utilization of biomass substrates could reduce the cost of schizophyllan production and provide a new value-added bioproduct for integrated biorefineries of the future.

  10. Virus infection of Chlorella variabilis and enzymatic saccharification of algal biomass for bioethanol production.

    PubMed

    Cheng, Yu-Shen; Zheng, Yi; Labavitch, John M; VanderGheynst, Jean S

    2013-06-01

    Experiments were conducted to investigate the application of virus infection and amylolytic enzyme treatment on sugar release from Chlorella variabilis NC64A and bioethanol production from released sugars via Escherichia coli KO11 fermentation. Chlorella variabilis NC64A accumulated starch when it was cultured in a nitrogen-limited medium. The accumulated starch was not consumed during viral infection based on analysis of sugars released during infection. Both amylolytic enzyme addition and virus infection increased the hydrolysis of carbohydrates. Addition of amylolytic enzymes increased the release of glucose from algal biomass while virus addition increased the release of non-glucose neutral sugars. The combination of enzyme addition and virus infection also resulted in the highest ethanol production after fermentation. Acetic acid was generated as a co-product during fermentation in all sets of experiments. This study demonstrated that infection of microalgae with an algal virus resulted in disruption and hydrolysis of algal biomass to generate fermentable sugars.

  11. Overexpression of Populus trichocarpa CYP85A3 promotes growth and biomass production in transgenic trees.

    PubMed

    Jin, Yan-Li; Tang, Ren-Jie; Wang, Hai-Hai; Jiang, Chun-Mei; Bao, Yan; Yang, Yang; Liang, Mei-Xia; Kong, Fanjing; Li, Bei; Zhang, Hong-Xia

    2017-03-04

    Brassinosteroids (BRs) are essential hormones that play crucial roles in plant growth, reproduction and response to abiotic and biotic stress. In Arabidopsis, AtCYP85A2 works as a bifunctional cytochrome P450 monooxygenase to catalyze the conversion of castasterone (CS) to brassinolide (BL), a final rate-limiting step in the BR biosynthetic pathway. Here, we report the functional characterizations of PtCYP85A3, one of the three AtCYP85A2 homologous genes from Populus trichocarpa. PtCYP85A3 shares the highest similarity with AtCYP85A2 and can rescue the retarded-growth phenotype of the Arabidopsis cyp85a2-2 and tomato d(x) mutants. Constitutive expression of PtCYP85A3, driven by the cauliflower mosaic virus 35S promoter, increased the endogenous BR levels and significantly promoted the growth and biomass production in both transgenic tomato and poplar. Compared to the wild type (WT), plant height, shoot fresh weight and fruit yield increased 50%, 56% and 43%, respectively, in transgenic tomato plants. Similarly, plant height and stem diameter increased 15% and 25%, respectively, in transgenic poplar plants. Further study revealed that overexpression of PtCYP85A3 enhanced xylem formation without affecting the composition of cellulose and lignin, as well as the cell wall thickness in transgenic poplar. Our finding suggest that PtCYP85A3 could be used as a potential candidate gene for engineering fast growing trees with improved wood production. This article is protected by copyright. All rights reserved.

  12. Advancing Commercialization of Algal Biofuels Through Increased Biomass Productivity and Technology Integration

    SciTech Connect

    Bai, Xuemei; Sabarsky, Martin

    2013-09-30

    Cellana is a leading developer of algae-based bioproducts, and its pre-commercial production of marine microalgae takes place at Cellana?s Kona Demonstration Facility (KDF) in Hawaii. KDF is housing more than 70 high-performing algal strains for different bioproducts, of which over 30 have been grown outside at scale. So far, Cellana has produced more than 10 metric tons of algal biomass for the development of biofuels, animal feed, and high-value nutraceuticals. Cellana?s ALDUO algal cultivation technology allows Cellana to grow non-extremophile algal strains at large scale with no contamination disruptions. Cellana?s research and production at KDF have addressed three major areas that are crucial for the commercialization of algal biofuels: yield improvement, cost reduction, and the overall economics. Commercially acceptable solutions have been developed and tested for major factors limiting areal productivity of algal biomass and lipids based on years of R&D work conducted at KDF. Improved biomass and lipid productivity were achieved through strain improvement, culture management strategies (e.g., alleviation of self-shading, de-oxygenation, and efficient CO2 delivery), and technical advancement in downstream harvesting technology. Cost reduction was achieved through optimized CO2 delivery system, flue gas utilization technology, and energy-efficient harvesting technology. Improved overall economics was achieved through a holistic approach by integration of high-value co-products in the process, in addition to yield improvements and cost reductions.

  13. Hydrogen-Rich Gas Production by Cogasification of Coal and Biomass in an Intermittent Fluidized Bed

    PubMed Central

    Wang, Li-Qun; Chen, Zhao-Sheng

    2013-01-01

    This paper presents the experimental results of cogasification of coal and biomass in an intermittent fluidized bed reactor, aiming to investigate the influences of operation parameters such as gasification temperature (T), steam to biomass mass ratio (SBMR), and biomass to coal mass ratio (BCMR) on hydrogen-rich (H2-rich) gas production. The results show that H2-rich gas free of N2 dilution is produced and the H2 yield is in the range of 18.25~68.13 g/kg. The increases of T, SBMR, and BCMR are all favorable for promoting the H2 production. Higher temperature contributes to higher CO and H2 contents, as well as H2 yield. The BCMR has a weak influence on gas composition, but the yield and content of H2 increase with BCMR, reaching a peak at the BCMR of 4. The H2 content and yield in the product gas increase with SBMR, whilst the content of CO increases first and then decreases correspondingly. At a typical case, the relative linear sensitivity coefficients of H2 production efficiency to T, SBMR, and BCMR were calculated. The results reveal that the order of the influence of the operation parameters on H2 production efficiency is T > SBMR > BCMR. PMID:24174911

  14. Biomass, gas exchange, and nutrient contents in upland rice plants affected by application forms of microorganism growth promoters.

    PubMed

    Nascente, Adriano Stephan; de Filippi, Marta Cristina Corsi; Lanna, Anna Cristina; de Souza, Alan Carlos Alves; da Silva Lobo, Valácia Lemes; da Silva, Gisele Barata

    2017-01-01

    Microorganisms are considered a genetic resource with great potential for achieving sustainable development of agricultural areas. The objective of this research was to determine the effect of microorganism application forms on the production of biomass, gas exchange, and nutrient content in upland rice. The experiment was conducted under greenhouse conditions in a completely randomized design in a factorial 7 × 3 + 1, with four replications. The treatments consisted of combining seven microorganisms with three application forms (microbiolized seed; microbiolized seed + soil drenched with a microorganism suspension at 7 and 15 days after sowing (DAS); and microbiolized seed + plant sprayed with a microorganism suspension at 7 and 15 DAS) and a control (water). Treatments with Serratia sp. (BRM32114), Bacillus sp. (BRM32110 and BRM32109), and Trichoderma asperellum pool provided, on average, the highest photosynthetic rate values and dry matter biomass of rice shoots. Plants treated with Burkolderia sp. (BRM32113), Serratia sp. (BRM32114), and Pseudomonas sp. (BRM32111 and BRM32112) led to the greatest nutrient uptake by rice shoots. Serratia sp. (BRM 32114) was the most effective for promoting an increase in the photosynthetic rate, and for the greatest accumulation of nutrients and dry matter at 84 DAS, in rice shoots, which differed from the control treatment. The use of microorganisms can bring numerous benefits of rice, such as improving physiological characteristics, nutrient uptake, biomass production, and grain yield.

  15. Environmental and economic suitability of forest biomass-based bioenergy production in the Southern United States

    NASA Astrophysics Data System (ADS)

    Dwivedi, Puneet

    This study attempts to ascertain the environmental and economic suitability of utilizing forest biomass for cellulosic ethanol production in the Southern United States. The study is divided into six chapters. The first chapter details the background and defines the relevance of the study along with objectives. The second chapter reviews the existing literature to ascertain the present status of various existing conversion technologies. The third chapter assesses the net energy ratio and global warming impact of ethanol produced from slash pine (Pinus elliottii Engelm.) biomass. A life-cycle assessment was applied to achieve the task. The fourth chapter assesses the role of emerging bioenergy and voluntary carbon markets on the profitability of non-industrial private forest (NIPF) landowners by combining the Faustmann and Hartmann models. The fifth chapter assesses perceptions of four stakeholder groups (Non-Government Organization, Academics, Industries, and Government) on the use of forest biomass for bioenergy production in the Southern United States using the SWOT-AHP (Strength, Weakness, Opportunity, and Threat-Analytical Hierarchy Process) technique. Finally, overall conclusions are made in the sixth chapter. Results indicate that currently the production of cellulosic ethanol is limited as the production cost of cellulosic ethanol is higher than the production cost of ethanol derived from corn. However, it is expected that the production cost of cellulosic ethanol will come down in the future from its current level due to ongoing research efforts. The total global warming impact of E85 fuel (production and consumption) was found as 10.44 tons where as global warming impact of an equivalent amount of gasoline (production and consumption) was 21.45 tons. This suggests that the production and use of ethanol derived from slash pine biomass in the form of E85 fuel in an automobile saves about 51% of carbon emissions when compared to gasoline. The net energy ratio

  16. Hydrogen production from high-moisture content biomass in supercritical water

    SciTech Connect

    Antal, M.J. Jr.; Adschiri, T.; Ekbom, T.

    1996-10-01

    Most hydrogen is produced by steam reforming methane at elevated pressures. The goal of this research is to develop commercial processes for the catalytic steam reforming of biomass and other organic wastes at high pressures. This approach avoids the high cost of gas compression and takes advantage of the unique properties of water at high pressures. Prior to this year the authors reported the ability of carbon to catalyze the decomposition of biomass and related model compounds in supercritical water. The product gas consists of hydrogen, carbon dioxide, carbon monoxide, methane, and traces of higher hydrocarbons. During the past year the authors have: (a) developed a method to extend the catalyst life, (b) begun studies of the role of the shift reaction, (c) completed studies of carbon dioxide absorption from the product effluent by high pressure water, (d) measured the rate of carbon catalyst gasification in supercritical water, (e) discovered the pumpability of oil-biomass slurries, and (f) completed the design and begun fabrication of a flow reactor that will steam reform whole biomass feedstocks (i.e. sewage sludge) and produce a hydrogen rich synthesis gas at very high pressure (>22 MPa).

  17. Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products.

    PubMed

    Lange, Lene

    2017-01-01

    Fungi and fungal enzymes play important roles in the new bioeconomy. Enzymes from filamentous fungi can unlock the potential of recalcitrant lignocellulose structures of plant cell walls as a new resource, and fungi such as yeast can produce bioethanol from the sugars released after enzyme treatment. Such processes reflect inherent characteristics of the fungal way of life, namely, that fungi as heterotrophic organisms must break down complex carbon structures of organic materials to satisfy their need for carbon and nitrogen for growth and reproduction. This chapter describes major steps in the conversion of plant biomass to value-added products. These products provide a basis for substituting fossil-derived fuels, chemicals, and materials, as well as unlocking the biomass potential of the agricultural harvest to yield more food and feed. This article focuses on the mycological basis for the fungal contribution to biorefinery processes, which are instrumental for improved resource efficiency and central to the new bioeconomy. Which types of processes, inherent to fungal physiology and activities in nature, are exploited in the new industrial processes? Which families of the fungal kingdom and which types of fungal habitats and ecological specializations are hot spots for fungal biomass conversion? How can the best fungal enzymes be found and optimized for industrial use? How can they be produced most efficiently-in fungal expression hosts? How have industrial biotechnology and biomass conversion research contributed to mycology and environmental research? Future perspectives and approaches are listed, highlighting the importance of fungi in development of the bioeconomy.

  18. Cultivation of Chlorella vulgaris in Column Photobioreactor for Biomass Production and Lipid Accumulation.

    PubMed

    Wong, Y K; Ho, K C; Tsang, Y F; Wang, L; Yung, K K L

    2016-01-01

    Microalgae have been used as energy resources in recent decades to mitigate the global energy crisis. As the demand for pure microalgae strains for commercial use increases, designing an effective photobioreactor (PBR) for mass cultivation is important. Chlorella vulgaris, a local freshwater microalga, was used to study the algal biomass cultivation and lipid production using various PBR configurations (bubbling, air-lift, porous air-lift). The results show that a bubbling column design is a better choice for the cultivation of Chlorella vulgaris than an air-lift one. The highest biomass concentration in the bubbling PBR was 0.78 g/L while the air-lift PBR had a value of 0.09 g/L. Key operating parameters, including draft-tube length and bubbling flowrate, were then optimized based on biomass production and lipid yield. The highest lipid content was in the porous air-lift PBR and the air-lift PBR with shorter draft tube (35 cm) was also better than a longer one (50 cm) for algal cultivation, but the microalgae attachment on the inner tube of PBR always occurred. The highest biomass concentration could be produced under the highest gas flowrate of 2.7 L/min, whereas the lowest dry cell mass was under the lowest gas flowrate of 0.2 L/min.

  19. Influence of starch on microalgal biomass recovery, settleability and biogas production.

    PubMed

    Gutiérrez, Raquel; Ferrer, Ivet; García, Joan; Uggetti, Enrica

    2015-06-01

    In the context of wastewater treatment with microalgae cultures, coagulation-flocculation followed by sedimentation is one of the suitable options for microalgae harvesting. This process is enabled by the addition of chemicals (e.g. iron). However, in a biorefinery perspective, it is important to avoid possible contamination of downstream products caused by chemicals addition. The aim of this study was to evaluate the effect of potato starch as flocculant for microalgal biomass coagulation-flocculation and sedimentation. The optimal flocculant dose (25mg/L) was determined with jar tests. Such a concentration led to more than 95% biomass recovery (turbidity<9NTU). The settleability of flocs was studied using an elutriation apparatus measuring the settling velocities distribution. This test underlined the positive effect of starch on the biomass settling velocity, increasing to >70% the percentage of particles with settling velocities >6.5m/h. Finally, biochemical methane potential tests showed that starch biodegradation increased the biogas production from harvested biomass.

  20. A Life Cycle Assessment on a Fuel Production Through Distributed Biomass Gasification Process

    NASA Astrophysics Data System (ADS)

    Dowaki, Kiyoshi; Eguchi, Tsutomu; Ohkubo, Rui; Genchi, Yutaka

    In this paper, we estimated life cycle inventories (energy intensities and CO2 emissions) on the biomass gasification CGS, Bio-H2, Bio-MeOH (methanol) and Bio-DME (di-methyl ether), using the bottom-up methodology. CO2 emissions and energy intensities on material's chipping, transportation and dryer operation were estimated. Also, the uncertainties on the moisture content of biomass materials and the transportation distance to the plant were considered by the Monte Carlo simulation. The energy conversion system was built up by gasification through the BLUE Tower process, with either CGS, PSA (Pressure Swing Absorption) system or the liquefaction process. In our estimation, the biomass materials were the waste products from Japanese Cedar. The uncertainties of moisture content and transportation distance were assumed to be 20 to 50 wt.% and 5 to 50 km, respectively. The capability of the biomass gasification plant was 10 t-dry/d, that is, an annual throughput of 3,000 t-dry/yr. The production energy in each case was used as a functional unit. Finally, the energy intensities of 1.12 to 3.09 MJ/MJ and CO2 emissions of 4.79 to 88.0 g-CO2/MJ were obtained. CGS case contributes to the environmental mitigation, and Bio-H2 and/or Bio-DME cases have a potential to reduce CO2 emissions, compared to the conventional ones.

  1. Towards predicting basin-wide invertebrate organic biomass and production in marine sediments from a coastal sea.

    PubMed

    Burd, Brenda J; Macdonald, Tara A; van Roodselaar, Albert

    2012-01-01

    Detailed knowledge of environmental conditions is required to understand faunal production in coastal seas with topographic and hydrographic complexity. We test the hypothesis that organic biomass and production of subtidal sediment invertebrates throughout the Strait of Georgia, west coast of Canada, can be predicted by depth, substrate type and organic flux modified to reflect lability and age of material. A basin-wide database of biological, geochemical and flux data was analysed using an empirical production/biomass (P/B) model to test this hypothesis. This analysis is unique in the spatial extent and detail of P/B and concurrent environmental measurements over a temperate coastal region. Modified organic flux was the most important predictor of organic biomass and production. Depth and substrate type were secondary modifiers. Between 69-74% of variability in biomass and production could be explained by the combined environmental factors. Organisms <1 mm were important contributors to biomass and production primarily in shallow, sandy sediments, where high P/B values were found despite low organic flux. Low biomass, production, and P/B values were found in the deep, northern basin and mainland fjords, which had silty sediments, low organic flux, low biomass of organisms <1 mm, and dominance by large, slow-growing macrofauna. In the highest organic flux and biomass areas near the Fraser River discharge, production did not increase beyond moderate flux levels. Although highly productive, this area had low P/B. Clearly, food input is insufficient to explain the complex patterns in faunal production revealed here. Additional environmental factors (depth, substrate type and unmeasured factors) are important modifiers of these patterns. Potential reasons for the above patterns are explored, along with a discussion of unmeasured factors possibly responsible for unexplained (30%) variance in biomass and production. We now have the tools for basin-wide first

  2. Towards Predicting Basin-Wide Invertebrate Organic Biomass and Production in Marine Sediments from a Coastal Sea

    PubMed Central

    Burd, Brenda J.; Macdonald, Tara A.; van Roodselaar, Albert

    2012-01-01

    Detailed knowledge of environmental conditions is required to understand faunal production in coastal seas with topographic and hydrographic complexity. We test the hypothesis that organic biomass and production of subtidal sediment invertebrates throughout the Strait of Georgia, west coast of Canada, can be predicted by depth, substrate type and organic flux modified to reflect lability and age of material. A basin-wide database of biological, geochemical and flux data was analysed using an empirical production/biomass (P/B) model to test this hypothesis. This analysis is unique in the spatial extent and detail of P/B and concurrent environmental measurements over a temperate coastal region. Modified organic flux was the most important predictor of organic biomass and production. Depth and substrate type were secondary modifiers. Between 69–74% of variability in biomass and production could be explained by the combined environmental factors. Organisms <1 mm were important contributors to biomass and production primarily in shallow, sandy sediments, where high P/B values were found despite low organic flux. Low biomass, production, and P/B values were found in the deep, northern basin and mainland fjords, which had silty sediments, low organic flux, low biomass of organisms <1 mm, and dominance by large, slow-growing macrofauna. In the highest organic flux and biomass areas near the Fraser River discharge, production did not increase beyond moderate flux levels. Although highly productive, this area had low P/B. Clearly, food input is insufficient to explain the complex patterns in faunal production revealed here. Additional environmental factors (depth, substrate type and unmeasured factors) are important modifiers of these patterns. Potential reasons for the above patterns are explored, along with a discussion of unmeasured factors possibly responsible for unexplained (30%) variance in biomass and production. We now have the tools for basin-wide first

  3. Product Characterization for Entrained Flow Coal/Biomass Co-Gasification

    SciTech Connect

    Maghzi, Shawn; Subramanian, Ramanathan; Rizeq, George; Singh, Surinder; McDermott, John; Eiteneer, Boris; Ladd, David; Vazquez, Arturo; Anderson, Denise; Bates, Noel

    2011-12-11

    The U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE's bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and gas

  4. Product Characterization for Entrained Flow Coal/Biomass Co-Gasification

    SciTech Connect

    Maghzi, Shawn; Subramanian, Ramanathan; Rizeq, George; Singh, Surinder; McDermott, John; Eiteneer, Boris; Ladd, David; Vazquez, Arturo; Anderson, Denise; Bates, Noel

    2011-09-30

    The U.S. Department of Energy‘s National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE‘s bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and

  5. Use of cheese whey to enhance Geotrichum candidum biomass production in olive mill wastewater.

    PubMed

    Aouidi, Fathia; Khelifi, Eltaeif; Asses, Nedra; Ayed, Lamia; Hamdi, Moktar

    2010-08-01

    Geotrichum candidum is a yeast-like filamentous fungus that has attracted industrial interest. The present work investigated G. candidum biomass production in agro-industrial wastewaters (olive mill wastewater (OMW) and cheese whey (CW)) as the only substrate. Different solid media (Sabouraud dextrose agar (SDA), CW, OMW, and OMW/CW mixtures in different proportions) were tested. OMW/CW mixtures proved to be suitable for optimal mycelia growth of G. candidum with a very high hyphae density. The highest fungal and expansion rate growth of 83 +/- 1 mm and 12.4 day(-1), respectively, were obtained on a 20:80 mixture of OMW/CW, which was incubated for 7 days. This optimal mixture was used to study the biomass production and the OMW decolorization ability of G. candidum in the presence of CW in liquid medium. Liquid cultures were also conducted in OMW and CW separately. After 5 days of incubation, fungal biomass reached 9.26 g l(-1) in the OMW/CW mixture and only 2.83 g l(-1) in CW, while no biomass production was observed in OMW alone. OMW decolorization and dephenolization by G. candidum also improved in the presence of CW with a decolorization efficiency of 54.5% and a total phenolic reduction of 55.3%, compared with the control which yielded values of about 10% and 15%, respectively. These results suggested that OMW/CW--as the only substrate--could be used as a cost-effective medium to produce G. candidum biomass, without the need for water dilution or supplementation with other nutriments.

  6. Catalytic hydrotreating of biomass liquefaction products to produce hydrocarbon fuels: Interim report

    SciTech Connect

    Elliott, D.C.; Baker, E.G.

    1986-03-01

    Research catalytic hydrotreatment of biomass liquefaction products to a gasoline has been technically demonstrated in a bench-scale continuous processing unit. This report describes the development of the chemistry needed for hydrotreatment of both high pressure and pyrolyzate biomass liquefaction products and outlines the important processing knowledge gained by the research. Catalyst identity is important in hydrotreatment of phenolics. Hydrogenation catalysts such as palladium, copper chromite, cobalt and nickel show activity with nickel being the most active. Major products include benzene, cyclohexane, and cyclohexanone. The hydrotreating catalysts cobalt-molybdenum, nickel-molybdenum and nickel-tungsten exhibit some activity when added to the reactor in the oxide form and show a great specificity for hydrodeoxygenation of phenol without saturation of the benzene product. The sulfide form of these catalysts is much more active than the oxide form and, in the case of the cobalt-molybdenum, much of the specificity for hydrodeoxygenation is retained. Substitution on the phenolic ring has only marginal effects on the hydrotreating reaction. However, the methoxy (OCH/sub 3/) substituent on the phenol ring is thermally unstable relative to other phenolics tested. The pyrolysis products dominate the product distribution when cobalt-molybdenum is used as the hydrotreating catalyst for methoxyphenol. The product from catalytic hydrotreatment of high-pressure biomass liquefaction products confirms the model compounds studies. Catalytic processing at 350 to 400/sup 0/C and 2000 psig with the sulfided cobalt-molybdenum or nickel-molybdenum catalyst produced a gasoline-like product composed of cyclic and aromatic compounds. Oxygen contents in products were in the range of 0 to 0.7 wt % and hydrogen to carbon atomic ratios ranged from 1.5 to 2.0. 46 refs., 10 figs., 21 tabs.

  7. Effect of different liming levels on the biomass production and essential oil extraction yield of Cunila galioides Benth.

    PubMed

    Mossi, A J; Pauletti, G F; Rota, L; Echeverrigaray, S; Barros, I B I; Oliveira, J V; Paroul, N; Cansian, R L

    2012-11-01

    Poejo is an aromatic and medicinal plant native to highland areas of south Brazil, in acid soils with high Al3+ concentration. The main objective of the present work was to evaluate the effect of liming on the extraction yield of essential oil of three chemotypes of poejo (Cunila galioides Benth). For this purpose, the experiments were performed in a greenhouse, using 8-litre pots. The treatments were four dosages of limestone (0, 3.15, 12.5, and 25 g.L(-1)) and a completely random experimental design was used, with four replications and three chemotypes, set up in a 3 × 4 factorial arrangement. The parameters evaluated were dry weight of aerial parts, essential oil content and chemical composition of essential oil. Results showed that liming affects the biomass production, essential oil yield and chemical composition, with cross interaction verified between chemotype and limestone dosage. For the higher dosage lower biomass production, lower yield of essential oil as well as the lowest content of citral (citral chemotype) and limonene (menthene chemotype) was observed. In the ocimene chemotype, no liming influence was observed on the essential oil yield and on the content of major compounds. The dosage of 3.15 g.L(-1) can be considered the best limestone dosage for the production of poejo for the experimental conditions evaluated.

  8. A re-appraisal of the total biomass and annual production of Antarctic krill

    NASA Astrophysics Data System (ADS)

    Atkinson, A.; Siegel, V.; Pakhomov, E. A.; Jessopp, M. J.; Loeb, V.

    2009-05-01

    Despite much research on Euphausia superba, estimates of their total biomass and production are still very uncertain. Recently, circumpolar krill databases, combined with growth models and revisions in acoustics have made it possible to refine previous estimates. Net-based databases of density and length frequency (KRILLBASE) yield a summer distributional range of ˜19×10 6 km 2 and a mean total abundance of 8×10 14 post-larvae with biomass of 379 million tonnes (Mt). These values are based on a standardised net sampling method but they average over the period 1926-2004, during which krill abundance has fluctuated. To estimate krill biomass at the end of last century we combined the KRILLBASE map of relative krill density around Antarctica with an acoustics-derived biomass estimate of 37.3 Mt derived for the Scotia Sea area in 2000 by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR). Thus the CCAMLR 2000 survey area contains 28% of the total stock, with total biomass of ˜133 Mt in January-February 2000. Gross postlarval production is estimated conservatively at 342-536 Mt yr -1, based on three independent methods. These are high values, within the upper range of recent estimates, but consistent with the concept of high energy throughput for a species of this size. The similarity between the three production estimates reflects a broad agreement between the three growth models used, plus the fact that, for a given population size, production is relatively insensitive to the size distribution of krill at the start of the growth season. These production values lie within the envelope of what can be supported from the Southern Ocean primary production system and what is required to support an estimated predator consumption of 128-470 Mt yr -1. Given the range of recent acoustics estimates, plus the need for precautionary management of the developing krill fishery, our net-based data provide an alternative estimate of total krill

  9. Seasonal evolution of Biomass Production Efficiency (BPE) of a French beech forest.

    NASA Astrophysics Data System (ADS)

    Heid, L.; Calvaruso, C.; Conil, S.; Turpault, M. P.; Longdoz, B.

    2015-12-01

    With the evolution of ecosystem management and the actual climate change we are facing, there is a need to improve our knowledge of carbon (C) balance and more specifically of C allocation in the plants. In our study, we quantified the seasonal variation of gross primary production (GPP, obtained through eddy covariance measurements) and biomass production (BP, the C fixed into the biomass obtained thanks to inventory campaign) for a 60-year-old even-aged beech stand located in North East of France. We also assessed the seasonal evolution of the BP efficiency (BPE=BP/GPP; Vicca et al., 2012) and its potential determining factors for our site. For 2014, we found a net ecosystem exchange (NEE) of -549 gC m-2, corresponding to a C sequestration. This value breaks down between 1089 gC m-2 for the respiration of the ecosystem and -1639 gC m-2 for the GPP. On the same year, our stand built up 461.6 gC m-2 of tree biomass (leaves, trunk, branches, fine roots), leading to an annual BPE of 0.28, which is within the range of value found on other similar sites. There was a large temporal variation of C allocation to the different parts of the tree biomass during the growth season. Our results show that the growth first happened in the trunk and branches -with a peak value of 74.5 gC m-2 month-1 in May - whereas the fine roots biomass production started later (end of July) and reached a maximum at the end of the growth season (28.49 gC m-2 month-1 for September). The BPE varied also during the year from 0.13 in April to 0.31 in August, where the BP was the same than in July but the cumulated GPP was already decreasing. The seasonal variation may be mainly explained by climatic variations, whereas the shift between woody above-ground biomass and fine roots biomass could be explained by the phenology (linked to physiological mechanisms).

  10. Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass

    PubMed Central

    2011-01-01

    Background Microalgae are a promising feedstock for biofuel and bioenergy production due to their high photosynthetic efficiencies, high growth rates and no need for external organic carbon supply. In this study, utilization of Chlorella vulgaris (a fresh water microalga) and Dunaliella tertiolecta (a marine microalga) biomass was tested as a feedstock for anaerobic H2 and CH4 production. Results Anaerobic serum bottle assays were conducted at 37°C with enrichment cultures derived from municipal anaerobic digester sludge. Low levels of H2 were produced by anaerobic enrichment cultures, but H2 was subsequently consumed even in the presence of 2-bromoethanesulfonic acid, an inhibitor of methanogens. Without inoculation, algal biomass still produced H2 due to the activities of satellite bacteria associated with algal cultures. CH4 was produced from both types of biomass with anaerobic enrichments. Polymerase chain reaction-denaturing gradient gel electrophoresis profiling indicated the presence of H2-producing and H2-consuming bacteria in the anaerobic enrichment cultures and the presence of H2-producing bacteria among the satellite bacteria in both sources of algal biomass. Conclusions H2 production by the satellite bacteria was comparable from D. tertiolecta (12.6 ml H2/g volatile solids (VS)) and from C. vulgaris (10.8 ml H2/g VS), whereas CH4 production was significantly higher from C. vulgaris (286 ml/g VS) than from D. tertiolecta (24 ml/g VS). The high salinity of the D. tertiolecta slurry, prohibitive to methanogens, was the probable reason for lower CH4 production. PMID:21943287

  11. Ammonium nitrate fertiliser production based on biomass - environmental effects from a life cycle perspective.

    PubMed

    Ahlgren, Serina; Baky, Andras; Bernesson, Sven; Nordberg, Ke; Norén, Olle; Hansson, Per-Anders

    2008-11-01

    Ammonium nitrate and calcium ammonium nitrate are the most commonly used straight nitrogen fertilisers in Europe, accounting for 43% of the total nitrogen used for fertilisers. They are both produced in a similar way; carbonate can be added as a last step to produce calcium ammonium nitrate. The environmental impact, fossil energy input and land use from using gasified biomass (cereal straw and short rotation willow (Salix) coppice) as feedstock in ammonium nitrate production were studied in a cradle-to-gate evaluation using life cycle assessment methodology. The global warming potential in the biomass systems was only 22-30% of the impact from conventional production using natural gas. The eutrophication potential was higher for the biomass systems due to nutrient leaching during cultivation, while the acidification was about the same in all systems. The primary fossil energy use was calculated to be 1.45 and 1.37MJ/kg nitrogen for Salix and straw, respectively, compared to 35.14MJ for natural gas. The biomass production was assumed to be self-supporting with nutrients by returning part of the ammonium nitrate produced together with the ash from the gasification. For the production of nitrogen from Salix, it was calculated that 3914kg of nitrogen can be produced every year from 1ha, after that 1.6% of the produced nitrogen has been returned to the Salix production. From wheat straw, 1615kg of nitrogen can be produced annually from 1ha, after that 0.6% of the nitrogen has been returned.

  12. Modification of starch metabolism in transgenic Arabidopsis thaliana increases plant biomass and triples oilseed production.

    PubMed

    Liu, Fushan; Zhao, Qianru; Mano, Noel; Ahmed, Zaheer; Nitschke, Felix; Cai, Yinqqi; Chapman, Kent D; Steup, Martin; Tetlow, Ian J; Emes, Michael J

    2016-03-01

    We have identified a novel means to achieve substantially increased vegetative biomass and oilseed production in the model plant Arabidopsis thaliana. Endogenous isoforms of starch branching enzyme (SBE) were substituted by either one of the endosperm-expressed maize (Zea mays L.) branching isozymes, ZmSBEI or ZmSBEIIb. Transformants were compared with the starch-free background and with the wild-type plants. Each of the maize-derived SBEs restored starch biosynthesis but both morphology and structure of starch particles were altered. Altered starch metabolism in the transformants is associated with enhanced biomass formation and more-than-trebled oilseed production while maintaining seed oil quality. Enhanced oilseed production is primarily due to an increased number of siliques per plant whereas oil content and seed number per silique are essentially unchanged or even modestly decreased. Introduction of cereal starch branching isozymes into oilseed plants represents a potentially useful strategy to increase biomass and oilseed production in related crops and manipulate the structure and properties of leaf starch.

  13. Fast microwave-assisted catalytic gasification of biomass for syngas production and tar removal.

    PubMed

    Xie, Qinglong; Borges, Fernanda Cabral; Cheng, Yanling; Wan, Yiqin; Li, Yun; Lin, Xiangyang; Liu, Yuhuan; Hussain, Fida; Chen, Paul; Ruan, Roger

    2014-03-01

    In the present study, a microwave-assisted biomass gasification system was developed for syngas production. Three catalysts including Fe, Co and Ni with Al2O3 support were examined and compared for their effects on syngas production and tar removal. Experimental results showed that microwave is an effective heating method for biomass gasification. Ni/Al2O3 was found to be the most effective catalyst for syngas production and tar removal. The gas yield reached above 80% and the composition of tar was the simplest when Ni/Al2O3 catalyst was used. The optimal ratio of catalyst to biomass was determined to be 1:5-1:3. The addition of steam was found to be able to improve the gas production and syngas quality. Results of XRD analyses demonstrated that Ni/Al2O3 catalyst has good stability during gasification process. Finally, a new concept of microwave-assisted dual fluidized bed gasifier was put forward for the first time in this study.

  14. Biomass production in experimental grasslands of different species richness during three years of climate warming

    NASA Astrophysics Data System (ADS)

    de Boeck, H. J.; Lemmens, C. M. H. M.; Gielen, B.; Malchair, S.; Carnol, M.; Merckx, R.; van den Berge, J.; Ceulemans, R.; Nijs, I.

    2007-12-01

    Here we report on the single and combined impacts of climate warming and species richness on the biomass production in experimental grassland communities. Projections of a future warmer climate have stimulated studies on the response of terrestrial ecosystems to this global change. Experiments have likewise addressed the importance of species numbers for ecosystem functioning. There is, however, little knowledge on the interplay between warming and species richness. During three years, we grew experimental plant communities containing one, three or nine grassland species in 12 sunlit, climate-controlled chambers in Wilrijk, Belgium. Half of these chambers were exposed to ambient air temperatures (unheated), while the other half were warmed by 3°C (heated). Equal amounts of water were added to heated and unheated communities, so that warming would imply drier soils if evapotranspiration was higher. Biomass production was decreased due to warming, both aboveground (-29%) and belowground (-25%), as negative impacts of increased heat and drought stress in summer prevailed. Increased resource partitioning, likely mostly through spatial complementarity, led to higher shoot and root biomass in multi-species communities, regardless of the induced warming. Surprisingly, warming suppressed productivity the most in 9-species communities, which may be attributed to negative impacts of intense interspecific competition for resources under conditions of high abiotic stress. Our results suggest that warming and the associated soil drying could reduce primary production in many temperate grasslands, and that this will not necessarily be mitigated by efforts to maintain or increase species richness.

  15. Cuticular wax composition of Salix varieties in relation to biomass productivity.

    PubMed

    Teece, Mark A; Zengeya, Thomas; Volk, Timothy A; Smart, Lawrence B

    2008-01-01

    The leaf cuticular waxes of six Salix clones (one Salix miyabeana, one Salix dasyclados, one Salix eriocephala, two Salix purpurea, and one interspecific hybrid of Salix eriocephala x interior) with different biomass productivities were characterized by gas chromatography-mass spectrometry. Total wax content ranged from 6.3 to 16.8 microg cm(-2), and two distinct patterns of wax were measured. The wax from leaves of S. dasyclados 'SV1' differed from all other clones and was dominated by fatty acids (42%), high concentrations of n-alkanes (25%) and n-alcohols (28%), with low n-aldehyde content (4%). All other clones produced cuticular wax dominated by n-alcohols (32-51%), particularly 1-hexacosanol, with fatty acids (14-37%) and n-aldehydes (19-26%) present in lower abundances. Clones of Salix grown under identical environmental conditions produce noticeably different amounts of cuticular wax. In contrast to previous studies of Salix, total wax content was independent of biomass productivity, measured as basal area, suggesting that wax production is not directly linked with woody biomass production by shrub willows under these site conditions.

  16. Bacterioplankton and phytoplankton biomass and production during summer stratification in the northwestern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Pedrós-Alió, Carlos; Calderón-Paz, Juan-Isidro; Guixa-Boixereu, Núria; Estrada, Marta; Gasol, Josep M.

    1999-06-01

    We examined bacterioplankton biomass and heterotrophic production (BHP) during summer stratification in the northwestern Mediterranean in four successive stratification seasons (June-July of 1993-1996). Values of phytoplankton biomass and primary production were determined simultaneously so that the data sets for autotrophic and heterotrophic microbial plankton could be compared. Three standard stations were set along a transect from Barcelona to the channel between Mallorca and Menorca, representing coastally influenced shelf waters, frontal waters over the slope front, and open sea waters. Conversion factors from 3H-leucine incorporation to BHP were empirically determined and varied between 0.29 and 3.25 kg C mol -1. Bacterial biomass values were among the lowest found in any marine environment. BHP values (between 0.02 and 2.5 μg C L -1 d -1) were larger than those of low nutrient low chlorophyll areas such as the Sargasso Sea and lower than those from high nutrient low chlorophyll areas such as the equatorial Pacific. Growth rates of bacterioplankton were highest at the slope front (0.20 d -1) and lowest at the open sea station (0.04 d -1). Phytoplankton growth rates were similar at the three stations (˜0.50 d -1). Integrated values of bacterioplankton biomass, BHP and bacterial growth rates did not show significant differences among years, but differences between the three stations were clearly significant. Phytoplankton biomass, primary production, and phytoplankton growth rates did not show significant differences either with year or with station. As a consequence the bacterioplankton to phytoplankton biomass (BB/BPHY) and production (BHP/PP) ratios varied from the coastal to the open sea stations. The BB/BPHY ratio was 0.98 at the coast and ˜0.70 at the other two stations. These ratios are similar to those found in other oligotrophic marine environments. The BHP/PP ratio was 0.83 at the coast, 0.36 at the slope and 0.09 at the open sea station. The last

  17. An evaluation study of different methods for the production of β-D-glucan from yeast biomass.

    PubMed

    Varelas, Vassileios; Liouni, Maria; Calokerinos, Antony C; Nerantzis, Elias T

    2016-01-01

    β-Glucan is a proven beneficial and valuable molecule for human and animal health systems. It can be incorporated as an ingredient in various functional foods and beverages. β-Glucan has been isolated from various biological sources, fungi, mushrooms, algae, plants, and bacteria. The yeast cell wall comprises a suitable target for the extraction and purification of β-glucan. Although there are various extraction techniques, significant differences are observed as the technique used affects the final yield and purity, molecular weight, biological activity, solubility, quality, and other biological and functional properties of the extracted β-glucan. The aim of this review is the evaluation of different extraction methods for the production of β-glucan from yeast biomass. Furthermore, the use of industrial spent yeast waste from breweries and the wine industry for biotechnological β-glucan production and the concept of green wineries and breweries are discussed.

  18. Solubilization and functionalization of sulfuric acid lignin generated during bioethanol production from woody biomass.

    PubMed

    Matsushita, Yasuyuki; Inomata, Toyoki; Hasegawa, Tatsuya; Fukushima, Kazuhiko

    2009-01-01

    Sulfuric acid lignin (SAL), which is formed as a by-product during the production of bioethanol from woody biomass, was solubilized and functionalized by hydrothermal reaction. SAL could be easily dissolved in an alkaline medium, especially sodium hydroxide solution, by this reaction. The soluble part of the reaction products (S-HSAL) could be dissolved at neutral pH. IR spectrometric analysis of SAL revealed that hydrophilic groups were introduced in it during the reaction. The dispersibility of S-HSAL was increased by sulfonation (SS-HSAL), and it was found to be an effective dispersant for gypsum paste.

  19. Prediction of product distribution in fine biomass pyrolysis in fluidized beds based on proximate analysis.

    PubMed

    Kim, Sung Won

    2015-01-01

    A predictive model was satisfactorily developed to describe the general trends of product distribution in fluidized beds of lignocellulosic biomass pyrolysis. The model was made of mass balance based on proximate analysis and an empirical relationship with operating parameters including fluidization hydrodynamics. The empirical relationships between product yields and fluidization conditions in fluidized bed pyrolyzers were derived from the data of this study and literature. The gas and char yields showed strong functions of temperature and vapor residence time in the pyrolyzer. The yields showed a good correlation with fluidization variables related with hydrodynamics and bed mixing. The predicted product yields based on the model well accorded well with the experimental data.

  20. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid- and Carbohydrate-Derived Fuel Products

    SciTech Connect

    Davis, R.; Kinchin, C.; Markham, J.; Tan, E.; Laurens, L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

    2014-09-01

    Beginning in 2013, NREL began transitioning from the singular focus on ethanol to a broad slate of products and conversion pathways, ultimately to establish similar benchmarking and targeting efforts. One of these pathways is the conversion of algal biomass to fuels via extraction of lipids (and potentially other components), termed the 'algal lipid upgrading' or ALU pathway. This report describes in detail one potential ALU approach based on a biochemical processing strategy to selectively recover and convert select algal biomass components to fuels, namely carbohydrates to ethanol and lipids to a renewable diesel blendstock (RDB) product. The overarching process design converts algal biomass delivered from upstream cultivation and dewatering (outside the present scope) to ethanol, RDB, and minor coproducts, using dilute-acid pretreatment, fermentation, lipid extraction, and hydrotreating.

  1. Fertilization and Colors of Plastic Mulch Affect Biomass and Essential Oil of Sweet-Scented Geranium

    PubMed Central

    Silva, Anderson de Carvalho; dos Santos, Wallace Melo; Prata, Paloma Santana; Alves, Péricles Barreto

    2014-01-01

    Sweet-scented geranium (Pelargonium graveolens L'Hér), a plant belonging to the Geraniaceae family, has medicinal and aromatic properties and is widely used in the cosmetic, soap, perfume, aromatherapy, and food industries. The aim of this study was to evaluate the influence of fertilization and the use of different colors of plastic mulch on sweet-scented geranium biomass and essential oil. Three colors of plastic mulch (black, white, and silver-colored) and a control without plastic mulch were assessed along with three fertilizers (20,000 L·ha−1 of cattle manure; 1,000 kg·ha−1 of NPK 3-12-6; and 20,000 L·ha−1 of cattle manure + 1,000 kg·ha−1 of NPK 3-12-6 fertilizer) and a control without fertilizer. The absence of a soil cover negatively influenced the agronomical variables, while coverage with plastic mulch was associated with increased biomass. The use of fertilizer had no effect on the evaluated agronomic variables. When cattle manure and NPK 3-12-6 were used together, combined with white or black plastic mulch, the highest yields of essential oil were obtained. For the silver-colored plastic mulch, higher amounts of essential oil (6,9-guaiadien) were obtained with mineral fertilizer. PMID:24757440

  2. Fertilization and colors of plastic mulch affect biomass and essential oil of sweet-scented geranium.

    PubMed

    Silva, Anderson de Carvalho; Blank, Arie Fitzgerald; dos Santos, Wallace Melo; Prata, Paloma Santana; Alves, Péricles Barreto; Arrigoni-Blank, Maria de Fátima

    2014-01-01

    Sweet-scented geranium (Pelargonium graveolens L'Hér), a plant belonging to the Geraniaceae family, has medicinal and aromatic properties and is widely used in the cosmetic, soap, perfume, aromatherapy, and food industries. The aim of this study was to evaluate the influence of fertilization and the use of different colors of plastic mulch on sweet-scented geranium biomass and essential oil. Three colors of plastic mulch (black, white, and silver-colored) and a control without plastic mulch were assessed along with three fertilizers (20,000 L · ha(-1) of cattle manure; 1,000 kg · ha(-1) of NPK 3-12-6; and 20,000 L · ha(-1) of cattle manure + 1,000 kg · ha(-1) of NPK 3-12-6 fertilizer) and a control without fertilizer. The absence of a soil cover negatively influenced the agronomical variables, while coverage with plastic mulch was associated with increased biomass. The use of fertilizer had no effect on the evaluated agronomic variables. When cattle manure and NPK 3-12-6 were used together, combined with white or black plastic mulch, the highest yields of essential oil were obtained. For the silver-colored plastic mulch, higher amounts of essential oil (6,9-guaiadien) were obtained with mineral fertilizer.

  3. Integrated supply chain design for commodity chemicals production via woody biomass fast pyrolysis and upgrading.

    PubMed

    Zhang, Yanan; Hu, Guiping; Brown, Robert C

    2014-04-01

    This study investigates the optimal supply chain design for commodity chemicals (BTX, etc.) production via woody biomass fast pyrolysis and hydroprocessing pathway. The locations and capacities of distributed preprocessing hubs and integrated biorefinery facilities are optimized with a mixed integer linear programming model. In this integrated supply chain system, decisions on the biomass chipping methods (roadside chipping vs. facility chipping) are also explored. The economic objective of the supply chain model is to maximize the profit for a 20-year chemicals production system. In addition to the economic objective, the model also incorporates an environmental objective of minimizing life cycle greenhouse gas emissions, analyzing the trade-off between the economic and environmental considerations. The capital cost, operating cost, and revenues for the biorefinery facilities are based on techno-economic analysis, and the proposed approach is illustrated through a case study of Minnesota, with Minneapolis-St. Paul serving as the chemicals distribution hub.

  4. Biofuels from microalgae: lipid extraction and methane production from the residual biomass in a biorefinery approach.

    PubMed

    Hernández, D; Solana, M; Riaño, B; García-González, M C; Bertucco, A

    2014-10-01

    Renewable fuels and energy are of major concern worldwide and new raw materials and processes for its generation are being investigated. Among these raw materials, algae are a promising source of lipids and energy. Thus, in this work four different algae have been used for lipid extraction and biogas generation. Lipids were obtained by supercritical CO2 extraction (SCCO2), while anaerobic digestion of the lipid-exhausted algae biomass was used for biogas production. The extracted oil composition was analyzed (saturated, monounsaturated and polyunsaturated fatty acids) and quantified. The highest lipid yields were obtained from Tetraselmis sp. (11%) and Scenedesmus almeriensis (10%), while the highest methane production from the lipid-exhausted algae biomass corresponded to Tetraselmis sp. (236mLCH4/gVSadded).

  5. A review on biomass production from C4 grasses: yield and quality for end-use.

    PubMed

    Tubeileh, Ashraf; Rennie, Timothy J; Goss, Michael J

    2016-06-01

    With a dry biomass production exceeding 40Mgha(-1) in many environments, Miscanthus spp. is the most productive perennial C4 grass species thanks to five advantages over North American prairie tallgrasses. However, miscanthus has a slower nutrient remobilization system, resulting in higher nutrient concentrations at harvest. Perennial C4 grasses benefit from soil microbial associations, reducing their nutrient needs. For combustion purposes, grasses with low moisture content, high lignin and low nutrients are desired. For ethanol, preferred feedstock will have lower lignin, higher sugars, starch, or cellulose/hemicellulose depending on the conversion method. Species with high stem-to-leaf ratio provide better biofuel conversion efficiency and quality. Recently-developed transgenic switchgrass lines have much higher ethanol yields and lower transformation costs. Further selection and breeding are needed to optimize biomass quality and nutrient cycling.

  6. Turbidity as a control on phytoplankton biomass and productivity in estuaries

    USGS Publications Warehouse

    Cloern, J.E.

    1987-01-01

    In many coastal plain estuaries light attenuation by suspended sediments confines the photic zone to a small fraction of the water column, such that light limitation is a major control on phytoplankon production and turnover rate. For a variety of estuarine systems (e.g. San Francisco Bay, Puget Sound, Delaware Bay, Hudson River plume), photic-zone productivity can be estimated as a function of phytoplankton biomass times mean irradiance of the photic zone. Net water column productivity also varies with light availability, and in San Francisco Bay net productivity is zero (estimated respiratory loss of phytoplankton balances photosynthesis) when the ratio of photic depth (Zp) to mixed depth (Zm) is less than about 0.2. Thus whenever Zp:Zm < 0.2, the water column is a sink for phytoplankton production. Much of the spatial and temporal variability of phytoplankton biomass or productivity in estuaries is explained by variations in the ratio of photic depth to mixed depth. For example, phytoplankton blooms often coincide with stratification events that reduce the depth of the surface mixed layer (increase Zp:Zm). Shallow estuarine embayments (high Zp:Zm) are often characterized by high phytoplankton biomass relative to adjacent channels (low Zp:Zm). Many estuaries have longitudinal gradients in productivity that mirror the distribution of suspended sediments: productivity is low near the riverine source of sediments (low Zp:Zm) and increases toward the estuary mouth where turbidity decreases. Some of these generalizations are qualitative in nature, and detailed understanding of the interaction between turbidity and estuarine phytoplankton dynamics requires improved understanding of vertical mixing rates and phytoplankton respiration. ?? 1987.

  7. Succinate production from CO₂-grown microalgal biomass as carbon source using engineered Corynebacterium glutamicum through consolidated bioprocessing.

    PubMed

    Lee, Jungseok; Sim, Sang Jun; Bott, Michael; Um, Youngsoon; Oh, Min-Kyu; Woo, Han Min

    2014-07-24

    The potential for production of chemicals from microalgal biomass has been considered as an alternative route for CO₂ mitigation and establishment of biorefineries. This study presents the development of consolidated bioprocessing for succinate production from microalgal biomass using engineered Corynebacterium glutamicum. Starch-degrading and succinate-producing C. glutamicum strains produced succinate (0.16 g succinate/g total carbon source) from a mixture of starch and glucose as a model microalgal biomass. Subsequently, the engineered C. glutamicum strains were able to produce succinate (0.28 g succinate/g of total sugars including starch) from pretreated microalgal biomass of CO₂-grown Chlamydomonas reinhardtii. For the first time, this work shows succinate production from CO₂ via sequential fermentations of CO₂-grown microalgae and engineered C. glutamicum. Therefore, consolidated bioprocessing based on microalgal biomass could be useful to promote variety of biorefineries.

  8. d-lactic acid production from renewable lignocellulosic biomass via genetically modified Lactobacillus plantarum.

    PubMed

    Zhang, Yixing; Kumar, Amit; Hardwidge, Philip R; Tanaka, Tsutomu; Kondo, Akihiko; Vadlani, Praveen V

    2016-03-01

    d-lactic acid is of great interest because of increasing demand for biobased poly-lactic acid (PLA). Blending poly-l-lactic acid with poly-d-lactic acid greatly improves PLA's mechanical and physical properties. Corn stover and sorghum stalks treated with 1% sodium hydroxide were investigated as possible substrates for d-lactic acid production by both sequential saccharification and fermentation and simultaneous saccharification and cofermentation (SSCF). A commercial cellulase (Cellic CTec2) was used for hydrolysis of lignocellulosic biomass and an l-lactate-deficient mutant strain Lactobacillus plantarum NCIMB 8826 ldhL1 and its derivative harboring a xylose assimilation plasmid (ΔldhL1-pCU-PxylAB) were used for fermentation. The SSCF process demonstrated the advantage of avoiding feedback inhibition of released sugars from lignocellulosic biomass, thus significantly improving d-lactic acid yield and productivity. d-lactic acid (27.3 g L(-1) ) and productivity (0.75 g L(-1) h(-1) ) was obtained from corn stover and d-lactic acid (22.0 g L(-1) ) and productivity (0.65 g L(-1) h(-1) ) was obtained from sorghum stalks using ΔldhL1-pCU-PxylAB via the SSCF process. The recombinant strain produced a higher concentration of d-lactic acid than the mutant strain by using the xylose present in lignocellulosic biomass. Our findings demonstrate the potential of using renewable lignocellulosic biomass as an alternative to conventional feedstocks with metabolically engineered lactic acid bacteria to produce d-lactic acid. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:271-278, 2016.

  9. Variation of Spirulina maxima biomass production in different depths of urea-used culture medium

    PubMed Central

    Affan, Md-Abu; Lee, Dae-Won; Al-Harbi, Salim Marzoog; Kim, Han-Jun; Abdulwassi, Najah Ibrahim; Heo, Soo-Jin; Oh, Chulhong; Park, Heung-Sik; Ma, Chae Woo; Lee, Hyeon-Yong; Kang, Do-Hyung

    2015-01-01

    Fewer studies have assessed the outdoor cultivation of Spirulina maxima compared with S. platensis, although the protein content of S. maxima is higher than S. platensis. Spirulina growth medium requires an increased amount of NaHCO3, Na2CO3, and NaNO3, which increases the production cost. Therefore, the current study used a low-cost but high-efficiency biomass production medium (Medium M-19) after testing 33 different media. The medium depth of 25 cm (group A) was sub-divided into A1 (50% cover with a black curtain (PolyMax, 12 oz ultra-blackout), A2 (25% cover), and A3 (no cover). Similarly the medium depths of 30 and 35 cm were categorized as groups B (B1, B2, and B3) and C (C1, C2, and C3), respectively, and the effects of depth and surface light availability on growth and biomass production were assessed. The highest biomass production was 2.05 g L-1 in group A2, which was significantly higher (p < 0.05) than that in all other groups and sub-groups. Spirulina maxima died in B1 and C1 on the fifth day of culture. The biochemical composition of the biomass obtained from A2 cultures, including protein, carbohydrate, lipid, moisture, and ash, was 56.59%, 14.42%, 0.94%, 5.03%, and 23.02%, respectively. Therefore, S. maxima could be grown outdoors with the highest efficiency in urea-enriched medium at a 25-cm medium depth with 25% surface cover or uncovered. PMID:26691456

  10. Nutrient recovery from swine waste and protein biomass production using duckweed ponds (Landoltia punctata): southern Brazil.

    PubMed

    Mohedano, R A; Velho, V F; Costa, R H R; Hofmann, S M; Belli Filho, P

    2012-01-01

    Brazil is one of the most important countries in pork production worldwide, ranking third. This activity has an important role in the national economic scenario. However, the fast growth of this activity has caused major environmental impacts, especially in developing countries. The large amount of nitrogen and phosphorus compounds found in pig manure has caused ecological imbalances, with eutrophication of major river basins in the producing regions. Moreover, much of the pig production in developing countries occurs on small farms, and therefore causes diffuse pollution. Therefore, duckweed pond have been successfully used in the swine waste polishing, generating further a biomass with high protein content. The present study evaluated the efficiency of two full scale duckweed ponds for the polishing of a small pig farm effluent, biomass yield and crude protein (CP) content. Duckweed pond series received the effluent from a biodigester-storage pond, with a flow rate of 1 m(3)/day (chemical oxygen demand rate = 186 kg/ha day) produced by 300 animals. After 1 year a great improvement of effluent quality was observed, with removal of 96% of total Kjeldahl nitrogen (TKN) and 89% of total phosphorus (TP), on average. Nitrogen removal rate is one of the highest ever found (4.4 g TKN/m(2) day). Also, the dissolved oxygen rose from 0.0 to 3.0 mg/L. The two ponds produced together over 13 tons of fresh biomass (90.5% moisture), with 35% of CP content, which represents a productivity of 24 tonsCP/ha year. Due to the high rate of nutrient removal, and also the high protein biomass production, duckweed ponds revealed, under the presented conditions, a great potential for the polishing and valorization of swine waste. Nevertheless, this technology should be better exploited to improve the sustainability of small pig farms in order to minimize the impacts of this activity on the environment.

  11. Variation of Spirulina maxima biomass production in different depths of urea-used culture medium.

    PubMed

    Affan, Md-Abu; Lee, Dae-Won; Al-Harbi, Salim Marzoog; Kim, Han-Jun; Abdulwassi, Najah Ibrahim; Heo, Soo-Jin; Oh, Chulhong; Park, Heung-Sik; Ma, Chae Woo; Lee, Hyeon-Yong; Kang, Do-Hyung

    2015-01-01

    Fewer studies have assessed the outdoor cultivation of Spirulina maxima compared with S. platensis, although the protein content of S. maxima is higher than S. platensis. Spirulina growth medium requires an increased amount of NaHCO3, Na2CO3, and NaNO3, which increases the production cost. Therefore, the current study used a low-cost but high-efficiency biomass production medium (Medium M-19) after testing 33 different media. The medium depth of 25 cm (group A) was sub-divided into A1 (50% cover with a black curtain (PolyMax, 12 oz ultra-blackout), A2 (25% cover), and A3 (no cover). Similarly the medium depths of 30 and 35 cm were categorized as groups B (B1, B2, and B3) and C (C1, C2, and C3), respectively, and the effects of depth and surface light availability on growth and biomass production were assessed. The highest biomass production was 2.05 g L-1 in group A2, which was significantly higher (p < 0.05) than that in all other groups and sub-groups. Spirulina maxima died in B1 and C1 on the fifth day of culture. The biochemical composition of the biomass obtained from A2 cultures, including protein, carbohydrate, lipid, moisture, and ash, was 56.59%, 14.42%, 0.94%, 5.03%, and 23.02%, respectively. Therefore, S. maxima could be grown outdoors with the highest efficiency in urea-enriched medium at a 25-cm medium depth with 25% surface cover or uncovered.

  12. Biomass, production and woody detritus in an old coast redwood (Sequoia sempervirens) forest

    USGS Publications Warehouse

    Busing, R.T.; Fujimori, T.

    2005-01-01

    We examined aboveground biomass dynamics, aboveground net primary production (ANPP), and woody detritus input in an old Sequoia sempervirens stand over a three-decade period. Our estimates of aboveground biomass ranged from 3300 to 5800 Mg ha-1. Stem biomass estimates ranged from 3000 to 5200 Mg ha-1. Stem biomass declined 7% over the study interval. Biomass dynamics were patchy, with marked declines in recent tree-fall patches <0.05 ha in size. Larger tree-fall patches approaching 0.2 ha in size were observed outside the study plot. Our estimates of ANPP ranged from 6 to 14 Mg ha -1yr-1. Estimates of 7 to 10 Mg ha-1yr -1 were considered to be relatively accurate. Thus, our estimates based on long-term data corroborated the findings of earlier short-term studies. ANPP of old, pure stands of Sequoia was not above average for temperate forests. Even though production was potentially high on a per stem basis, it was moderate at the stand level. We obtained values of 797 m3 ha -1 and 262 Mg ha-1 for coarse woody detritus volume and mass, respectively. Fine woody detritus volume and mass were estimated at 16 m3 ha-1 and 5 Mg ha-1, respectively. Standing dead trees (or snags) comprised 7% of the total coarse detritus volume and 8% of the total mass. Coarse detritus input averaged 5.7 to 6.9 Mg ha -1yr-1. Assuming steady-state input and pool of coarse detritus, we obtained a decay rate constant of 0.022 to 0.026. The old-growth stand of Sequoia studied had extremely high biomass, but ANPP was moderate and the amount of woody detritus was not exceptionally large. Biomass accretion and loss were not rapid in this stand partly because of the slow population dynamics and low canopy turnover rate of Sequoia at the old-growth stage. Nomenclature: Hickman (1993). ?? Springer 2005.

  13. The place of algae in agriculture: policies for algal biomass production.

    PubMed

    Trentacoste, Emily M; Martinez, Alice M; Zenk, Tim

    2015-03-01

    Algae have been used for food and nutraceuticals for thousands of years, and the large-scale cultivation of algae, or algaculture, has existed for over half a century. More recently algae have been identified and developed as renewable fuel sources, and the cultivation of algal biomass for various products is transitioning to commercial-scale systems. It is crucial during this period that institutional frameworks (i.e., policies) support and promote development and commercialization and anticipate and stimulate the evolution of the algal biomass industry as a source of renewable fuels, high value protein and carbohydrates and low-cost drugs. Large-scale cultivation of algae merges the fundamental aspects of traditional agricultural farming and aquaculture. Despite this overlap, algaculture has not yet been afforded a position within agriculture or the benefits associated with it. Various federal and state agricultural support and assistance programs are currently appropriated for crops, but their extension to algal biomass is uncertain. These programs are essential for nascent industries to encourage investment, build infrastructure, disseminate technical experience and information, and create markets. This review describes the potential agricultural policies and programs that could support algal biomass cultivation, and the barriers to the expansion of these programs to algae.

  14. Alfalfa varieties for biomass production. Task IId. Quarterly report, July 1, 1997--September 30, 1997

    SciTech Connect

    Sheaffer, C.; Martin, N.; Lamb, J.

    1997-10-30

    The use of alfalfa for biomass production may require harvest schedules and alfalfa varieties with different traits than currently marketed varieties. A late flower (2-cut) system may have several advantages compared to more frequent cutting systems because it can result in high stem yield, result in less trips over the field, allow more schedule flexibility, provide greater wildlife habitat, and allow greater alfalfa persistence. However, modem alfalfa varieties have been developed for a frequent harvest system with 3-4 cuttings per season. The objectives of this study were to determine the total biomass yield; leaf and stem biomass yield; and leaf and stem composition of alfalfa varieties subject to diverse harvest regimes. Alfalfa varieties included those currently marketed in the biomass region as well as experimental entries developed for lodging resistance and leaf retention. Harvest regimes included conventional strategies based on harvests at bud or first flower and a non-conventional strategy with harvests at late flower. Harvest regime had the most consistent and greatest effect on the variables studied. Forage yields were greater for the early flower regime. Harvests at earlier maturity frequently result in leafier, higher quality forage than harvest at late flower. 3 figs., 9 tabs.

  15. Metal uptake and allocation in trees grown on contaminated land: implications for biomass production.

    PubMed

    Evangelou, Michael W H; Robinson, Brett H; Günthardt-Goerg, Madeleine S; Schulin, Rainer

    2013-01-01

    Phytostabilization aims to reduce environmental and health risks arising from contaminated soil. To be economically attractive, plants used for phytostabilization should produce valuable biomass. This study investigated the biomass production and metal allocation to foliage and wood of willow (Salix viminalis L.), poplar (Populus monviso), birch (Betula pendula), and oak (Quercus robur) on five different soils contaminated with trace elements (TE), with varying high concentrations of Cu, Zn, Cd, and Pb as well as an uncontaminated control soil. In the treatment soils, the biomass was reduced in all species except oak. There was a significant negative correlation between biomass and foliar Cd and Zn concentrations, reaching up to 15 mg Cd kg(-1) and 2000 mg Zn kg(-1) in willow leaves. Lead was the only TE with higher wood than foliage concentrations. The highest Pb accumulation occurred in birch with up to 135 mg kg(-1) in wood and 78 mg kg(-1) in foliage. Birch could be suitable for phytostabilization of soils with high Cd and Zn but low Pb concentrations, while poplars and willows could be used to stabilise soils with high Cu and Pb and low Zn and Cd concentrations.

  16. A novel reforming method for hydrogen production from biomass steam gasification.

    PubMed

    Gao, Ningbo; Li, Aimin; Quan, Cui

    2009-09-01

    In this work, an experimental study of biomass gasification in different operation conditions has been carried out in an updraft gasifier combined with a porous ceramic reformer. The effects of gasifier temperature, steam to biomass ratio (S/B), and reforming temperature on the gas characteristic parameters were investigated with and without porous ceramic filled in reformer. The results indicated that considerable synergistics effects were observed as the porous ceramic was filled in reformer leading to an increase in the hydrogen production. With the increasing gasifier temperature varying from 800 to 950 degrees C, hydrogen yield increased from 49.97 to 79.91 g H(2)/kg biomass. Steam/biomass ratio of 2.05 seemed to be optimal in all steam-gasification runs. The effect of reforming temperature for water-soluble tar produced in porous ceramic reforming was also investigated, and it was found that the conversion ratio of total organic carbon (TOC) contents is between 71.08% and 75.74%.

  17. Synthesis gas production through biomass direct chemical looping conversion with natural hematite as an oxygen carrier.

    PubMed

    Huang, Zhen; He, Fang; Feng, Yipeng; Zhao, Kun; Zheng, Anqing; Chang, Sheng; Li, Haibin

    2013-07-01

    Biomass direct chemical looping (BDCL) conversion with natural hematite as an oxygen carrier was conducted in a fluidized bed reactor under argon atmosphere focusing on investigation the cyclic performance of oxygen carrier. The presence of oxygen carrier can evidently promote the biomass conversion. The gas yield and carbon conversion increased from 0.75 Nm(3)/kg and 62.23% of biomass pyrolysis to 1.06 Nm(3)/kg and 87.63% of BDCL, respectively. The components of the gas product in BDCL were close to those in biomass pyrolysis as the cyclic number increased. The gas yield and carbon conversion decreased from 1.06 Nm(3)/kg and 87.63% at 1st cycle to 0.93 Nm(3)/kg and 77.18% at 20th cycle, respectively, due to the attrition and structural changes of oxygen carrier. X-ray diffraction (XRD) analysis showed that the reduction extent of oxygen carrier increased with the cycles. Scanning electron microscope (SEM) and pore structural analysis displayed that agglomeration was observed with the cycles.

  18. Effect of various stress-regulatory factors on biomass and lipid production in microalga Haematococcus pluvialis.

    PubMed

    Saha, Sushanta Kumar; McHugh, Edward; Hayes, Jeremiah; Moane, Siobhan; Walsh, Daniel; Murray, Patrick

    2013-01-01

    To maximize the biomass and lipid production for applications in food or biofuel feedstock, nine stress conditions were tested considering N and/or P limitations, light intensity & quality, for Haematococcus pluvialis SCCAP K-0084 cultivation. Photosynthetically active radiation (PAR), warm white light emitting diode (WWLED), and white light emitting diode (WLED) at illumination of 240 μmol photons m(-2) sec(-1) were the best stress-regulatory factors. PAR without P & low N conditions yielded high biomass with 33% lipids containing increased C16:0 and C18:0 saturated fatty acids, and reduced unsaturated fatty acids (UFAs) (oleic, linoleic, and α/γ-linolenic). WWLED and WLED without P conditions also yielded high biomass, but 25% lipids with increased amounts of UFAs. Red light emitting diode (RLED) without P & low N conditions yielded 46% lipids with lowest biomass. PAR and WWLED & WLED illuminated conditions were found suitable respectively for biodiesel feedstock lipids and UFA-rich lipids for multiple applications.

  19. Photochemical production of O3 in biomass burning plumes in the boundary layer over northern Australia

    NASA Astrophysics Data System (ADS)

    Takegawa, N.; Kondo, Y.; Ko, M.; Koike, M.; Kita, K.; Blake, D. R.; Hu, W.; Scott, C.; Kawakami, S.; Miyazaki, Y.; Russell-Smith, J.; Ogawa, T.

    2003-05-01

    In situ aircraft measurements of ozone (O3) and its precursors were made over northern Australia in August-September 1999 during the Biomass Burning and Lightning Experiment Phase B (BIBLE-B). A clear positive correlation of O3 with carbon monoxide (CO) was found in biomass burning plumes in the boundary layer (<3 km). The ΔO3/ΔCO ratio (linear regression slope of O3-CO correlation) is found to be 0.12 ppbv/ppbv, which is comparable to the ratio of 0.15 ppbv/ppbv observed at 0-4 km over the Amazon and Africa in previous studies. The net flux of O3 exported from northern Australia during BIBLE-B is estimated to be 0.3 Gmol O3/day. In the biomass burning region, large enhancements of O3 were coincident with the locations of biomass burning hot spots, suggesting that major O3 production occurred near fires (horizontal scale <50 km).

  20. Potential for hydrogen and methane production from biomass residues in Canada.

    PubMed

    Levin, David B; Zhu, Heguang; Beland, Michel; Cicek, Nazim; Holbein, Bruce E

    2007-02-01

    Canada generates approximately 1.45 x 10(8)t of residual biomass per year, containing an estimated energy value of 2.28 x 10(9)GJ, which is equivalent to about 22% of Canada's current annual energy use. Anaerobic digestion of these biomass residues using conventional technologies could generate 1.14 x 10(10)m(3)/year of CH(4) with a heating value of 4.56 x 10(8)GJ. Conversion of these residues using emerging technologies that favor the synthesis of H(2) and represses the synthesis of CH(4) could generate 1.47 x 10(10)m(3)/year renewable H(2), with a heating value of 1.89 x 10(8)GJ. While CH(4)-production results in a larger amount of energy recovery, generating H(2) from waste biomass is a renewable alternative that could fuel the hydrogen economy. Additional research to further both the technical and commercial development of microbial bio-energy from biomass is warranted.

  1. Biomass recovery during municipal wastewater treatment using photosynthetic bacteria and prospect of production of single cell protein for feedstuff.

    PubMed

    Saejung, Chewapat; Thammaratana, Thani

    2016-12-01

    Utilization of photosynthetic bacteria (PSB) for wastewater treatment and production of biomass for economical single cell protein production is a feasible option. In this study, Rhodopseudomonas sp. CSK01 was used for municipal wastewater treatment and the effect of initial pH, light intensity and additional carbon source was investigated. Optimum chemical oxygen demand (COD) removal and biomass production were achieved when the initial pH and light intensity were 7 and 4000 lux, respectively. The specific growth rate, biomass yield and biomass productivity were found to be 0.4/d, 3.2 g/g COD and 2.1 g/L/d, respectively, which were improved by 100%, 167% and 200% relative to the original condition. Under the optimal conditions, COD removal reached 85% and maximum biomass was 6.2 g/L accomplished within three days of cultivation. The biomass had a relatively high protein content (60.1%) consisting of all essential amino acids. The contents of histidine, lysine, phenylalanine and leucine were superior to those of the previously described PSB. Results showed that COD removal was not improved in the presence of additional carbon sources (glucose, sucrose and malic acid). The addition of malic acid significantly increased the biomass accumulation by 279% relative to the original condition, whereas COD removal was declined due to carbon catabolite repression. In this study, PSB biomass recovery and catabolite repression are proposed in municipal wastewater treatment by Rhodopseudomonas sp.

  2. Report - Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    SciTech Connect

    Jones, S. B.; Valkenburg, C.; Walton, C. W.; Elliott, D. C.; Holladay, J. E.; Stevens, D. J.; Kinchin, C.; Czernik, S.

    2009-02-01

    The purpose of this design case study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels.

  3. Evaluation of phytic acid utilization by S. cerevisiae strains used in fermentation processes and biomass production.

    PubMed

    Mikulski, Dawid; Kłosowski, Grzegorz

    2017-01-01

    Saccharomyces cerevisiae is a well-studied yeast species used mainly in fermentation processes, bakery, and for SCP (Single Cell Protein) acquisition. The aim of the study was to analyze the possibility of phytic acid utilization as one of the hydrolysis processes carried out by yeast. The analysis of 30 yeast strains used in fermentation and for biomass production, that were grown in media containing phytic acid, revealed a high variability in the biomass production rate and the capability to hydrolyze phytates. No correlation between a high biomass concentration and a high level of phytate hydrolysis was found. Only four analyzed strains (Bayanus IOC Efficience, Sano, PINK EXCEL, FINAROME) were able to reduce the phytic acid concentration by more than 33.5%, from the initial concentration 103.0 ± 2.1 μg/ml to the level below 70 μg/ml. The presented results suggest that the selected wine and fodder yeast can be used as in situ source of phosphohydrolases in fermentation processes, and especially in the production of fodder proteins. However, further studies aimed at the optimization of growing parameters, such as the maximization of phytase secretion, and a comprehensive analysis of the catalytic activity of the isolated phosphohydrolases, are necessary.

  4. Forecasting fish biomasses, densities, productions, and bioaccumulation potentials of mid-atlantic wadeable streams.

    PubMed

    Barber, M Craig; Rashleigh, Brenda; Cyterski, Michael J

    2016-01-01

    Regional fishery conditions of Mid-Atlantic wadeable streams in the eastern United States are estimated using the Bioaccumulation and Aquatic System Simulator (BASS) bioaccumulation and fish community model and data collected by the US Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP). Average annual biomasses and population densities and annual productions are estimated for 352 randomly selected streams. Realized bioaccumulation factors (BAF) and biomagnification factors (BMF), which are dependent on these forecasted biomasses, population densities, and productions, are also estimated by assuming constant water exposures to methylmercury and tetra-, penta-, hexa-, and hepta-chlorinated biphenyls. Using observed biomasses, observed densities, and estimated annual productions of total fish from 3 regions assumed to support healthy fisheries as benchmarks (eastern Tennessee and Catskill Mountain trout streams and Ozark Mountains smallmouth bass streams), 58% of the region's wadeable streams are estimated to be in marginal or poor condition (i.e., not healthy). Using simulated BAFs and EMAP Hg fish concentrations, we also estimate that approximately 24% of the game fish and subsistence fishing species that are found in streams having detectable Hg concentrations would exceed an acceptable human consumption criterion of 0.185 μg/g wet wt. Importantly, such streams have been estimated to represent 78.2% to 84.4% of the Mid-Atlantic's wadeable stream lengths. Our results demonstrate how a dynamic simulation model can support regional assessment and trends analysis for fisheries.

  5. Role of Brønsted acid in selective production of furfural in biomass pyrolysis.

    PubMed

    Zhang, Haiyan; Liu, Xuejun; Lu, Meizhen; Hu, Xinyue; Lu, Leigang; Tian, Xiaoning; Ji, Jianbing

    2014-10-01

    In this work, the role of Brønsted acid for furfural production in biomass pyrolysis on supported sulfates catalysts was investigated. The introduction of Brønsted acid was shown to improve the degradation of polysaccharides to intermediates for furfural, which did not work well when only Lewis acids were used in the process. Experimental results showed that CuSO4/HZSM-5 catalyst exhibited the best performance for furfural (28% yield), which was much higher than individual HZSM-5 (5%) and CuSO4 (6%). The optimum reaction conditions called for the mass ratio of CuSO4/HZSM-5 to be 0.4 and the catalyst/biomass mass ratio to be 0.5. The recycled catalyst exhibited low productivity (9%). Analysis of the catalysts by Py-IR revealed that the CuSO4/HZSM-5 owned a stronger Brønsted acid intensity than HZSM-5 or the recycled CuSO4/HZSM-5. Therefore, the existence of Brønsted acid is necessary to achieve a more productive degradation of biomass for furfural.

  6. The cost of ethanol production from lignocellulosic biomass -- A comparison of selected alternative processes. Final report

    SciTech Connect

    Grethlein, H.E.; Dill, T.

    1993-04-30

    The purpose of this report is to compare the cost of selected alternative processes for the conversion of lignocellulosic biomass to ethanol. In turn, this information will be used by the ARS/USDA to guide the management of research and development programs in biomass conversion. The report will identify where the cost leverages are for the selected alternatives and what performance parameters need to be achieved to improve the economics. The process alternatives considered here are not exhaustive, but are selected on the basis of having a reasonable potential in improving the economics of producing ethanol from biomass. When other alternatives come under consideration, they should be evaluated by the same methodology used in this report to give fair comparisons of opportunities. A generic plant design is developed for an annual production of 25 million gallons of anhydrous ethanol using corn stover as the model substrate at $30/dry ton. Standard chemical engineering techniques are used to give first order estimates of the capital and operating costs. Following the format of the corn to ethanol plant, there are nine sections to the plant; feed preparation, pretreatment, hydrolysis, fermentation, distillation and dehydration, stillage evaporation, storage and denaturation, utilities, and enzyme production. There are three pretreatment alternatives considered: the AFEX process, the modified AFEX process (which is abbreviated as MAFEX), and the STAKETECH process. These all use enzymatic hydrolysis and so an enzyme production section is included in the plant. The STAKETECH is the only commercially available process among the alternative processes.

  7. Vertical Integration of Biomass Saccharification of Enzymes for Sustainable Cellulosic Biofuel Production in a Biorefinery

    SciTech Connect

    Kumar, Manoj

    2011-05-09

    These are a set of slides from this conference. Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  8. Biomass production and chemical cycling in a man-made geothermal wetland

    SciTech Connect

    Breckenridge, R.P.; Wheeler, L.R.; Ginsburg, J.F.

    1983-06-01

    Biomass production and, to a lesser extent, chemical cycling have been evaluated in a man-made wetland created using geothermal water in southcentral Idaho. The wetland system consisted of a 0.25 ha area divided into two ponds. The upper pond contained submerged species (Egeria, pondweeds and coontail); the lower pond was planted with emergents (cattail, bulrush, and common reed). Biomass production from emergent plants in the two-year-old system was promising and compared favorably with production values reported in the literature for natural wetlands. Chemical cycling of potassium (K) was evaluated through the lower pond system. Uptake of several other constituents (F and Na) of the geothermal water by the emergent plants was observed. However, there was little difference in elemental concentrations of the system's influent and effluent, probably due to evapotranspiration of water which effectively concentrates elements in the remaining water. Twenty-one species of diatoms were identified in the geothermal wetland, and numerous species of insects were observed. The man-made wetland also created substantial habitat for wildlife. This type of system could be used as an alternative to injection of spent geothermal fluids from small-scale projects. Study results indicate that a wetland system can be developed to produce substantial quantities of biomass in a cold desert environment.

  9. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems

    PubMed Central

    Herrero, Mario; Havlík, Petr; Valin, Hugo; Notenbaert, An; Rufino, Mariana C.; Thornton, Philip K.; Blümmel, Michael; Weiss, Franz; Grace, Delia; Obersteiner, Michael

    2013-01-01

    We present a unique, biologically consistent, spatially disaggregated global livestock dataset containing information on biomass use, production, feed efficiency, excretion, and greenhouse gas emissions for 28 regions, 8 livestock production systems, 4 animal species (cattle, small ruminants, pigs, and poultry), and 3 livestock products (milk, meat, and eggs). The dataset contains over 50 new global maps containing high-resolution information for understanding the multiple roles (biophysical, economic, social) that livestock can play in different parts of the world. The dataset highlights: (i) feed efficiency as a key driver of productivity, resource use, and greenhouse gas emission intensities, with vast differences between production systems and animal products; (ii) the importance of grasslands as a global resource, supplying almost 50% of biomass for animals while continuing to be at the epicentre of land conversion processes; and (iii) the importance of mixed crop–livestock systems, producing the greater part of animal production (over 60%) in both the developed and the developing world. These data provide critical information for developing targeted, sustainable solutions for the livestock sector and its widely ranging contribution to the global food system. PMID:24344273

  10. Effects of climate and lifeform on dry matter yield (epsilon) from simulations using BIOME BGC. [ecosystem process model for vegetation biomass production using daily absorbed photosynthetically active radiation

    NASA Technical Reports Server (NTRS)

    Hunt, E. R., Jr.; Running, Steven W.

    1992-01-01

    An ecosystem process simulation model, BIOME-BGC, is used in a sensitivity analysis to determine the factors that may cause the dry matter yield (epsilon) and annual net primary production to vary for different ecosystems. At continental scales, epsilon is strongly correlated with annual precipitation. At a single location, year-to-year variation in net primary production (NPP) and epsilon is correlated with either annual precipitation or minimum air temperatures. Simulations indicate that forests have lower epsilon than grasslands. The most sensitive parameter affecting forest epsilon is the total amount of living woody biomass, which affects NPP by increasing carbon loss by maintenance respiration. A global map of woody biomass should significantly improve estimates of global NPP using remote sensing.

  11. Hydrogen production by high-temperature steam gasification of biomass and coal

    SciTech Connect

    Kriengsak, S.N.; Buczynski, R.; Gmurczyk, J.; Gupta, A.K.

    2009-04-15

    High-temperature steam gasification of paper, yellow pine woodchips, and Pittsburgh bituminous coal was investigated in a batch-type flow reactor at temperatures in the range of 700 to 1,200{sup o}C at two different ratios of steam to feedstock molar ratios. Hydrogen yield of 54.7% for paper, 60.2% for woodchips, and 57.8% for coal was achieved on a dry basis, with a steam flow rate of 6.3 g/min at steam temperature of 1,200{sup o}C. Yield of both the hydrogen and carbon monoxide increased while carbon dioxide and methane decreased with the increase in gasification temperature. A 10-fold reduction in tar residue was obtained at high-temperature steam gasification, compared to low temperatures. Steam and gasification temperature affects the composition of the syngas produced. Higher steam-to-feedstock molar ratio had negligible effect on the amount of hydrogen produced in the syngas in the fixed-batch type of reactor. Gasification temperature can be used to control the amounts of hydrogen or methane produced from the gasification process. This also provides mean to control the ratio of hydrogen to CO in the syngas, which can then be processed to produce liquid hydrocarbon fuel since the liquid fuel production requires an optimum ratio between hydrogen and CO. The syngas produced can be further processed to produce pure hydrogen. Biomass fuels are good source of renewable fuels to produce hydrogen or liquid fuels using controlled steam gasification.

  12. Biomass and productivity of three phytoplankton size classes in San Francisco Bay.

    USGS Publications Warehouse

    Cole, B.E.; Cloern, J.E.; Alpine, A.E.

    1986-01-01

    The 5-22 mu m size accounted for 40-50% of annual production in each embayment, but production by phytoplanton >22 mu m ranged from 26% in the S reach to 54% of total phytoplankton production in the landward embayment of the N reach. A productivity index is derived that predicts daily productivity for each size class as a function of ambient irradiance and integrated chlorophyll a in the photic zone. For the whole phytoplankton community and for each size class, this index was constant at approx= 0.76 g C m-2 (g chlorophyll a Einstein)-1. The annual means of maximum carbon assimilation numbers were usually similar for the three size classes. Spatial and temporal variations in size-fractionated productivity are primarily due to differences in biomass rather than size-dependent carbon assimilation rates. -from Authors

  13. Fermentation of de-oiled algal biomass by Lactobacillus casei for production of lactic acid.

    PubMed

    Overbeck, Tom; Steele, James L; Broadbent, Jeff R

    2016-12-01

    De-oiled algal biomass (algal cake) generated as waste byproduct during algal biodiesel production is a promising fermentable substrate for co-production of value-added chemicals in biorefinery systems. We explored the ability of Lactobacillus casei 12A to ferment algal cake for co-production of lactic acid. Carbohydrate and amino acid availability were determined to be limiting nutritional requirements for growth and lactic acid production by L. casei. These nutritional requirements were effectively addressed through enzymatic hydrolysis of the algal cake material using α-amylase, cellulase (endo-1,4-β-D-glucanase), and pepsin. Results confirm fermentation of algal cake for production of value-added chemicals is a promising avenue for increasing the overall cost competiveness of the algal biodiesel production process.

  14. Microbial biomass and carbon mineralization in agricultural soils as affected by pesticide addition.

    PubMed

    Kumar, Anjani; Nayak, A K; Shukla, Arvind K; Panda, B B; Raja, R; Shahid, Mohammad; Tripathi, Rahul; Mohanty, Sangita; Rath, P C

    2012-04-01

    A laboratory study was conducted with four pesticides, viz. a fungicide (carbendazim), two insecticides (chlorpyrifos and cartap hydrochloride) and an herbicide (pretilachlor) applied to a sandy clay loam soil at a field rate to determine their effect on microbial biomass carbon (MBC) and carbon mineralization (C(min)). The MBC content of soil increased with time up to 30 days in cartap hydrochloride as well as chlorpyrifos treated soil. Thereafter, it decreased and reached close to the initial level by 90th day. However, in carbendazim treated soil, the MBC showed a decreasing trend up to 45 days and subsequently increased up to 90 days. In pretilachlor treated soil, MBC increased through the first 15 days, and thereafter decreased to the initial level. Application of carbendazim, chlorpyrifos and cartap hydrochloride decreased C(min) for the first 30 days and then increased afterwards, while pretilachlor treated soil showed an increasing trend.

  15. Simultaneous Saccharification and Fermentation and Partial Saccharification and Co-Fermentation of Lignocellulosic Biomass for Ethanol Production

    NASA Astrophysics Data System (ADS)

    Doran-Peterson, Joy; Jangid, Amruta; Brandon, Sarah K.; Decrescenzo-Henriksen, Emily; Dien, Bruce; Ingram, Lonnie O.

    Ethanol production by fermentation of lignocellulosic biomass-derived sugars involves a fairly ancient art and an ever-evolving science. Production of ethanol from lignocellulosic biomass is not avant-garde, and wood ethanol plants have been in existence since at least 1915. Most current ethanol production relies on starch- and sugar-based crops as the substrate; however, limitations of these materials and competing value for human and animal feeds is renewing interest in lignocellulose conversion. Herein, we describe methods for both simultaneous saccharification and fermentation (SSF) and a similar but separate process for partial saccharification and cofermentation (PSCF) of lignocellulosic biomass for ethanol production using yeasts or pentose-fermenting engineered bacteria. These methods are applicable for small-scale preliminary evaluations of ethanol production from a variety of biomass sources.

  16. Submarine canyons: hotspots of benthic biomass and productivity in the deep sea.

    PubMed

    De Leo, Fabio C; Smith, Craig R; Rowden, Ashley A; Bowden, David A; Clark, Malcolm R

    2010-09-22

    Submarine canyons are dramatic and widespread topographic features crossing continental and island margins in all oceans. Canyons can be sites of enhanced organic-matter flux and deposition through entrainment of coastal detrital export, dense shelf-water cascade, channelling of resuspended particulate material and focusing of sediment deposition. Despite their unusual ecological characteristics and global distribution along oceanic continental margins, only scattered information is available about the influence of submarine canyons on deep-sea ecosystem structure and productivity. Here, we show that deep-sea canyons such as the Kaikoura Canyon on the eastern New Zealand margin (42 degrees 01' S, 173 degrees 03' E) can sustain enormous biomasses of infaunal megabenthic invertebrates over large areas. Our reported biomass values are 100-fold higher than those previously reported for deep-sea (non-chemosynthetic) habitats below 500 m in the ocean. We also present evidence from deep-sea-towed camera images that areas in the canyon that have the extraordinary benthic biomass also harbour high abundances of macrourid (rattail) fishes likely to be feeding on the macro- and megabenthos. Bottom-trawl catch data also indicate that the Kaikoura Canyon has dramatically higher abundances of benthic-feeding fishes than adjacent slopes. Our results demonstrate that the Kaikoura Canyon is one of the most productive habitats described so far in the deep sea. A new global inventory suggests there are at least 660 submarine canyons worldwide, approximately 100 of which could be biomass hotspots similar to the Kaikoura Canyon. The importance of such deep-sea canyons as potential hotspots of production and commercial fisheries yields merits substantial further study.

  17. Submarine canyons: hotspots of benthic biomass and productivity in the deep sea

    PubMed Central

    De Leo, Fabio C.; Smith, Craig R.; Rowden, Ashley A.; Bowden, David A.; Clark, Malcolm R.

    2010-01-01

    Submarine canyons are dramatic and widespread topographic features crossing continental and island margins in all oceans. Canyons can be sites of enhanced organic-matter flux and deposition through entrainment of coastal detrital export, dense shelf-water cascade, channelling of resuspended particulate material and focusing of sediment deposition. Despite their unusual ecological characteristics and global distribution along oceanic continental margins, only scattered information is available about the influence of submarine canyons on deep-sea ecosystem structure and productivity. Here, we show that deep-sea canyons such as the Kaikoura Canyon on the eastern New Zealand margin (42°01′ S, 173°03′ E) can sustain enormous biomasses of infaunal megabenthic invertebrates over large areas. Our reported biomass values are 100-fold higher than those previously reported for deep-sea (non-chemosynthetic) habitats below 500 m in the ocean. We also present evidence from deep-sea-towed camera images that areas in the canyon that have the extraordinary benthic biomass also harbour high abundances of macrourid (rattail) fishes likely to be feeding on the macro- and megabenthos. Bottom-trawl catch data also indicate that the Kaikoura Canyon has dramatically higher abundances of benthic-feeding fishes than adjacent slopes. Our results demonstrate that the Kaikoura Canyon is one of the most productive habitats described so far in the deep sea. A new global inventory suggests there are at least 660 submarine canyons worldwide, approximately 100 of which could be biomass hotspots similar to the Kaikoura Canyon. The importance of such deep-sea canyons as potential hotspots of production and commercial fisheries yields merits substantial further study. PMID:20444722

  18. Mild Biomass Liquefaction Process for Economic Production of Stabilized Refinery-Ready Bio-oil

    SciTech Connect

    Gangwal, Santosh; Meng, Jiajia; McCabe, Kevin; Larson, Eric; Mastro, Kelly

    2016-04-25

    Southern Research (SR) in cooperation with U.S. Department of Energy (DOE), Bioenergy Technology Office (BETO), investigated a biomass liquefaction process for economic production of stabilized refinery-ready bio-oil. The project was awarded by DOE under a Funding Opportunity Announcement (DE-FOA-0000686) for Bio-oil Stabilization and Commoditization that intended to evaluate the feasibility of using bio-oil as a potential feedstock in an existing petroleum refinery. SR investigated Topic Area 1 of the FOA at Technology Readiness Level 2-3 to develop thermochemical liquefaction technologies for producing a bio-oil feedstock from high-impact biomass that can be utilized within a petroleum refinery. Bio-oil obtained from fast pyrolysis of biomass is a green intermediate that can be further upgraded into a biofuel for blending in a petroleum refinery using a hydro-deoxygenation (HDO) route. Co-processing pyrolysis bio-oil in a petroleum refinery is an attractive approach to leverage the refinery’s existing capital. However, the petroleum industry is reluctant to accept pyrolysis bio-oil because of a lack of a standard definition for an acceptable bio-oil feedstock in existing refinery processes. Also per BETO’s multiyear program plan, fast pyrolysis-based bio-fuel is presently not cost competitive with petroleum-based transportation fuels. SR aims to develop and demonstrate a cost-effective low-severity thermal liquefaction and hydrodeoxygenation (HDO) process to convert woody biomass to stabilized bio-oils that can be directly blended with hydrotreater input streams in a petroleum refinery for production of gasoline and/or diesel range hydrocarbons. The specific project objectives are to demonstrate the processes at laboratory scale, characterize the bio-oil product and develop a plan in partnership with a refinery company to move the technology towards commercialization.

  19. Increased biomass productivity in green algae by tuning non-photochemical quenching

    PubMed Central

    Berteotti, Silvia; Ballottari, Matteo; Bassi, Roberto

    2016-01-01

    Photosynthetic microalgae have a high potential for the production of biofuels and highly valued metabolites. However, their current industrial exploitation is limited by a productivity in photobioreactors that is low compared to potential productivity. The high cell density and pigment content of the surface layers of photosynthetic microalgae result in absorption of excess photons and energy dissipation through non-photochemical quenching (NPQ). NPQ prevents photoinhibition, but its activation reduces the efficiency of photosynthetic energy conversion. In Chlamydomonas reinhardtii, NPQ is catalyzed by protein subunits encoded by three lhcsr (light harvesting complex stress related) genes. Here, we show that heat dissipation and biomass productivity depends on LHCSR protein accumulation. Indeed, algal strains lacking two lhcsr genes can grow in a wide range of light growth conditions without suffering from photoinhibition and are more productive than wild-type. Thus, the down-regulation of NPQ appears to be a suitable strategy for improving light use efficiency for biomass and biofuel production in microalgae. PMID:26888481

  20. The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests.

    PubMed

    Malhi, Yadvinder; Doughty, Christopher E; Goldsmith, Gregory R; Metcalfe, Daniel B; Girardin, Cécile A J; Marthews, Toby R; Del Aguila-Pasquel, Jhon; Aragão, Luiz E O C; Araujo-Murakami, Alejandro; Brando, Paulo; da Costa, Antonio C L; Silva-Espejo, Javier E; Farfán Amézquita, Filio; Galbraith, David R; Quesada, Carlos A; Rocha, Wanderley; Salinas-Revilla, Norma; Silvério, Divino; Meir, Patrick; Phillips, Oliver L

    2015-06-01

    Understanding the relationship between photosynthesis, net primary productivity and growth in forest ecosystems is key to understanding how these ecosystems will respond to global anthropogenic change, yet the linkages among these components are rarely explored in detail. We provide the first comprehensive description of the productivity, respiration and carbon allocation of contrasting lowland Amazonian forests spanning gradients in seasonal water deficit and soil fertility. Using the largest data set assembled to date, ten sites in three countries all studied with a standardized methodology, we find that (i) gross primary productivity (GPP) has a simple relationship with seasonal water deficit, but that (ii) site-to-site variations in GPP have little power in explaining site-to-site spatial variations in net primary productivity (NPP) or growth because of concomitant changes in carbon use efficiency (CUE), and conversely, the woody growth rate of a tropical forest is a very poor proxy for its productivity. Moreover, (iii) spatial patterns of biomass are much more driven by patterns of residence times (i.e. tree mortality rates) than by spatial variation in productivity or tree growth. Current theory and models of tropical forest carbon cycling under projected scenarios of global atmospheric change can benefit from advancing beyond a focus on GPP. By improving our understanding of poorly understood processes such as CUE, NPP allocation and biomass turnover times, we can provide more complete and mechanistic approaches to linking climate and tropical forest carbon cycling.

  1. Biomass Production in Switchgrass across the United States: Database Description and Determinants of Yield

    SciTech Connect

    Wullschleger, Stan D; Davis, Ethan B.; Borsuk, Mark E.; Gunderson, Carla A; Lynd, L.

    2010-01-01

    Fundamental to deriving a sustainable supply of cellulosic feedstock for an emerging biofuels industry is understanding how biomass yield varies as a function of crop management, climate, and soils. Here we focus on the perennial switchgrass (Panicum virgatum L.) and compile a database that contains 1190 observations of yield from 39 field trials conducted across the United States. Data include site location, stand age, plot size, cultivar, crop management, biomass yield, temperature, precipitation, and information on land quality. Statistical analysis revealed the major sources of variation in yield. Frequency distributions of yield for upland and lowland ecotypes were unimodal, with mean ({+-}SD) biomass yields of 8.7 {+-} 4.2 and 12.9 {+-} 5.9 Mg ha-1 for the two ecotypes, respectively. We looked for, but did not find, bias toward higher yields associated with small plots or preferential establishment of stands on high quality lands. A parametric yield model was fit to the data and accounted for one-third of the total observed variation in biomass yields, with an equal contribution of growing season precipitation, annual temperature, N fertilization, and ecotype. The model was used to predict yield across the continental United States. Mapped output was consistent with the natural range of switchgrass and, as expected, yields were shown to be limited by precipitation west of the Great Plains. Future studies should extend the geographic distribution of field trials and thus improve our understanding of biomass production as a function of soil, climate, and crop management for promising biofuels such as switchgrass.

  2. Biomass and productivity of fishes in estuaries: a South African case study.

    PubMed

    Whitfield, A K

    2016-10-01

    Estuaries are well known for their role as nutrient and detrital sinks that stimulate high levels of both primary and secondary production which, in turn, support a large biomass of fishes per unit area. This study reviews available information on coastal fish biomasses (g m(-2) wet mass) and productivity (g m(-2) wet mass year(-1) ) in order to place South African data on these topics into a global perspective. Using biogeographic fish productivity estimates, together with estuarine water area, the approximate annual teleost production in South African estuaries was calculated at 585, 1706 and 13 904 t in the cool temperate, warm temperate and subtropical regions, respectively. Total annual fish production in estuaries on the subcontinent is conservatively estimated at 16 195 t, but this figure is likely to fluctuate widely, depending on recruitment success and annual environmental conditions pertaining to these systems. Approximately 2000 t of fish are estimated to be harvested by fishing activities in South African estuaries each year, which represents c. 12% of annual fish production. Although this figure may appear sustainable, the reality is that there are a few heavily targeted estuary-associated marine species at the top of the food chain that are being overexploited by both anglers and subsistence fishermen. Natural mortalities due to piscivorous fish and bird predation has been estimated at c. 3% of total fish biomass per month in the East Kleinemonde Estuary, but this figure will vary considerably depending on bird abundance and foraging patterns along the coast. In contrast to catches made by the fishermen, piscivorous fishes and birds are targeting mainly juvenile marine fish and small estuarine resident species that are very abundant and generally low down in the food web.

  3. Sustainable biomass products development and evaluation, Hamakua project. Final draft report

    SciTech Connect

    1998-05-01

    The PICHTR Sustainable Biomass Energy Program was developed to evaluate the potential to cultivate crops for energy production as an alternative use of lands made available by the closing of large sugar plantations. In particular, the closing of the Hamakua Sugar Company on the island of Hawaii brought a great deal of attention to the future of agriculture in this region and in the state. Many options were proposed. Several promising alternatives had been proposed for cane lands. These included dedicated feedstock supply systems (DFSS) for electrical energy production, cultivation of sugarcane to produce ethanol and related by-products, and the production of feed and crops to support animal agriculture. Implementation of some of the options might require preservation of large tracts of land and maintenance of the sugar mills and sugar infrastructure. An analysis of the technical, financial, and other issues necessary to reach conclusions regarding the optimal use of these lands was required. At the request of the Office of State Planning and Senator Akaka`s office, the Pacific International Center for High Technology Research (PICHTR) established and coordinated a working group composed of state, county, federal, and private sector representatives to identify sustainable energy options for the use of idle sugar lands on the island of Hawaii. The Sustainable Biomass Energy Program`s Hamakua Project was established to complete a comprehensive evaluation of the most viable alternatives and assess the options to grow crops as a source of raw materials for the production of transportation fuel and/or electricity on the island of Hawaii. The motivation for evaluating biomass to energy conversion embraced the considerations that Hawaii`s energy security would be improved by diversifying the fuels used for transportation and reducing dependency on imported fossil fuels. The use of waste products as feedstocks could divert wastes from landfills.

  4. Co-pyrolysis of low rank coals and biomass: Product distributions

    SciTech Connect

    Soncini, Ryan M.; Means, Nicholas C.; Weiland, Nathan T.

    2013-10-01

    Pyrolysis and gasification of combined low rank coal and biomass feeds are the subject of much study in an effort to mitigate the production of green house gases from integrated gasification combined cycle (IGCC) systems. While co-feeding has the potential to reduce the net carbon footprint of commercial gasification operations, the effects of co-feeding on kinetics and product distributions requires study to ensure the success of this strategy. Southern yellow pine was pyrolyzed in a semi-batch type drop tube reactor with either Powder River Basin sub-bituminous coal or Mississippi lignite at several temperatures and feed ratios. Product gas composition of expected primary constituents (CO, CO{sub 2}, CH{sub 4}, H{sub 2}, H{sub 2}O, and C{sub 2}H{sub 4}) was determined by in-situ mass spectrometry while minor gaseous constituents were determined using a GC-MS. Product distributions are fit to linear functions of temperature, and quadratic functions of biomass fraction, for use in computational co-pyrolysis simulations. The results are shown to yield significant nonlinearities, particularly at higher temperatures and for lower ranked coals. The co-pyrolysis product distributions evolve more tar, and less char, CH{sub 4}, and C{sub 2}H{sub 4}, than an additive pyrolysis process would suggest. For lignite co-pyrolysis, CO and H{sub 2} production are also reduced. The data suggests that evolution of hydrogen from rapid pyrolysis of biomass prevents the crosslinking of fragmented aromatic structures during coal pyrolysis to produce tar, rather than secondary char and light gases. Finally, it is shown that, for the two coal types tested, co-pyrolysis synergies are more significant as coal rank decreases, likely because the initial structure in these coals contains larger pores and smaller clusters of aromatic structures which are more readily retained as tar in rapid co-pyrolysis.

  5. Recycle of Inorganic Nutrients for Hydroponic Crop Production Following Incineration of Inedible Biomass

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Wignarajah, Kanapathipillai; Kliss, Mark H. (Technical Monitor)

    1996-01-01

    Recovery of resources from waste streams is essential for future implementation and reliance on a regenerative life support system. The major waste streams of concern are from human activities and plant wastes. Carbon, water and inorganics are the primary desired raw materials of interest. The goal of resource recovery is maintenance of product quality to insure support of reliable and predictable levels of life support function performance by the crop plant component. Further, these systems must be maintained over extended periods of time, requiring maintenance of nutrient solutions to avoid toxicity and deficiencies. Today, reagent grade nutrients are used to make nutrient solutions for hydroponic culture and these solutions are frequently changed during the life cycle or sometimes managed for only one crop life cycle. The focus of this study was to determine the suitability of the ash product following incineration of inedible biomass as a source of inorganic nutrients for hydroponic crop production. Inedible wheat biomass was incinerated and ash quality characterized. The incinerator ash was dissolved in adequate nitric acid to establish a consistent nitrogen concentration in all nutrient solution treatments. Four experimental nutrient treatments were included: control, ash only, ash supplemented to match control, and ash only quality formulated with reagent grade chemicals. When nutrient solutions are formulated using only ash following-incineration of inedible biomass, a balance in solution is established representing elemental retention following incineration and nutrient proportions present in the original biomass. The resulting solution is not identical to the control. This imbalance resulted in suppression of crop growth. When the ash is supplemented with nutrients to establish the same balance as in the control, growth is identical to the control. The ash appears to carry no phytotoxic materials. Growth in solution formulated with reagent grade chemicals

  6. Effect of temperature and biomass-water ratio to yield and product characteristics of hydrothermal treatment of biomass

    NASA Astrophysics Data System (ADS)

    Oktaviananda, Cyrilla; Rahmawati, Ria F.; Prasetya, Agus; Purnomo, Chandra W.; Yuliansyah, Ahmad T.; Cahyono, Rochim B.

    2017-03-01

    Hydrothemal treatment is a thermochemical process that converts biomass into a coal-like materials called hydrochar by applying elevated temperature to biomass in a suspension with water under saturated pressure for a certain time. With this conversion process, easy to handle fuel with well-defined properties can be created from biomass residues, even with high moisture content. In this research, the effects of temperature (200-330°C) and biomass to water ratio (5%-20%) at initial pressure of 1.0 MPa to hydrothermal treatment of biomass (in the form of sawdust) were examined. All samples were then characterized in terms of yield, proximate analysis, calorific value,and changes in functional groups by FTIR. Approximately 52-69% of the original material was recovered as hydrochar. The gross calorific value ranged from 5472-7032 cal/g compared 5180 cal/g in the raw material. Fixed carbon ranged from 26.035-wt% compared with 26.269 wt% in the raw material.

  7. Alkaline/peracetic acid as a pretreatment of lignocellulosic biomass for ethanol fuel production

    NASA Astrophysics Data System (ADS)

    Teixeira, Lincoln Cambraia

    Peracetic acid is a lignin oxidation pretreatment with low energy input by which biomass can be treated in a silo type system for improving enzymatic digestibility of lignocellulosic materials for ethanol production. Experimentally, ground hybrid poplar wood and sugar cane bagasse are placed in plastic bags and a peracetic acid solution is added to the biomass in different concentrations based on oven-dry biomass. The ratio of solution to biomass is 6:1; after initial mixing of the resulting paste, a seven-day storage period at about 20°C is used in this study. As a complementary method, a series of pre-pretreatments using stoichiometric amounts of sodium hydroxide and ammonium hydroxide based on 4-methyl-glucuronic acid and acetyl content in the biomass is been performed before addition of peracetic acid. The alkaline solutions are added to the biomass in a ratio of 14:1 solution to biomass; the slurry is mixed for 24 hours at ambient temperature. The above procedures give high xylan content substrates. Consequently, xylanase/beta-glucosidase combinations are more effective than cellulase preparations in hydrolyzing these materials. The pretreatment effectiveness is evaluated using standard enzymatic hydrolysis and simultaneous saccharification and cofermentation (SSCF) procedures. Hybrid poplar wood pretreated with 15 and 21% peracetic acid based on oven-dry weight of wood gives glucan conversion yields of 76.5 and 98.3%, respectively. Sugar cane bagasse pretreated with the same loadings gives corresponding yields of 85.9 and 93.1%. Raw wood and raw bagasse give corresponding yields of 6.8 and 28.8%, respectively. The combined 6% NaOH/15% peracetic acid pretreatments increase the glucan conversion yields from 76.5 to 100.0% for hybrid poplar wood and from 85.9 to 97.6% for sugar cane bagasse. Respective ethanol yields of 92.8 and 91.9% are obtained from 6% NaOH/15% peracetic acid pretreated materials using recombinant Zymomonas mobilis CP4/pZB5. Peracetic acid

  8. Comparison of different pretreatment strategies for ethanol production of West African biomass.

    PubMed

    Thomsen, Sune Tjalfe; Londoño, Jorge Enrique González; Schmidt, Jens Ejbye; Kádár, Zsófia

    2015-03-01

    Pretreating lignocellulosic biomass for cellulosic ethanol production in a West African setting requires smaller scale and less capital expenditure compared to current state of the art. In the present study, three low-tech methods applicable for West African conditions, namely Boiling Pretreatment (BP), Soaking in Aqueous Ammonia (SAA) and White Rot Fungi pretreatment (WRF), were compared to the high-tech solution of hydrothermal pretreatment (HTT). The pretreatment methods were tested on 11 West African biomasses, i.e. cassava stalks, plantain peelings, plantain trunks, plantain leaves, cocoa husks, cocoa pods, maize cobs, maize stalks, rice straw, groundnut straw and oil palm empty fruit bunches. It was found that four biomass' (plantain peelings, plantain trunks, maize cobs and maize stalks) were most promising for production of cellulosic ethanol with profitable enzymatic conversion of glucan (>30 g glucan per 100 g total solids (TS)). HTT did show better results in both enzymatic convertibility and fermentation, but evaluated on the overall ethanol yield the low-tech pretreatment methods are viable alternatives with similar levels to the HTT (13.4-15.2 g ethanol per 100 g TS raw material).

  9. A low-cost culture medium for the production of Nannochloropsis gaditana biomass optimized for aquaculture.

    PubMed

    Camacho-Rodríguez, J; Cerón-García, M C; González-López, C V; Fernández-Sevilla, J M; Contreras-Gómez, A; Molina-Grima, E

    2013-09-01

    Nannochloropsis gaditana is a microalga with a high nutritional value and a protein and polyunsaturated fatty acid (PUFA) content that makes it interesting as a feed in aquaculture. To maximize its productivity and nutritional value in large-scale culture, a well-known commercial medium was optimized to the most favorable nutrient level using commercial fertilizers. Optimal growth conditions were obtained in the alternative fertilizer-based medium at a nitrogen concentration of 11.3 mM, a phosphorus concentration of 0.16 mM, and a micronutrient concentration of 30 μL L(-1). This alternative medium allowed to obtain a biomass concentration similar to that achieved when using the commercial formula but with a reduction in Cu, Fe, and Mo content of 71%, 89%, and 99%, respectively. A maximum biomass productivity of 0.51 g L(-1) d(-1) was obtained. The eicosapentaenoic acid and protein contents of the biomass were 2.84% and 44% of dry weight, respectively.

  10. Studies on mould growth and biomass production using waste banana peel.

    PubMed

    Essien, J P; Akpan, E J; Essien, E P

    2005-09-01

    Hyphomycetous (Aspergillus fumigatus) and Phycomycetous (Mucor hiemalis) moulds were cultivated in vitro at room temperature (28 + 20 degrees C) to examined their growth and biomass production on waste banana peel agar (BPA) and broth (BPB) using commercial malt extract agar (MEA) and broth (MEB) as control. The moulds grew comparatively well on banana peel substrates. No significant difference (p > 0.05) in radial growth rates was observed between moulds cultivated on PBA and MEA, although growth rates on MEA were slightly better. Slight variations in sizes of asexual spores and reproductive hyphae were also observed between moulds grown on MEA and BPA. Smaller conidia and sporangiospores, and shorter aerial hyphae (conidiophores and sporangiophores) were noticed in moulds grown on BPA than on MEA. The biomass weight of the test moulds obtained after one month of incubation with BPB were only about 1.8 mg and 1.4 mg less than values recorded for A. fumigatus and M. hiemalis respectively, grown on MEB. The impressive performance of the moulds on banana peel substrate may be attributed to the rich nutrient (particularly the crude protein 7.8% and crude fat 11.6% contents) composition of banana peels. The value of this agricultural waste can therefore be increased by its use not only in the manufacture of mycological medium but also in the production of valuable microfungal biomass which is rich in protein and fatty acids.

  11. Wastewater treatment high rate algal pond biomass for bio-crude oil production.

    PubMed

    Mehrabadi, Abbas; Craggs, Rupert; Farid, Mohammed M

    2017-01-01

    This study investigates the production potential of bio-crude from wastewater treatment high rate algal pond (WWT HRAP) biomass in terms of yield, elemental/chemical composition and higher heating value (HHV). Hydrothermal liquefaction (HTL) of the biomass slurry (2.2wt% solid content, 19.7kJ/g HHV) was conducted at a range of temperatures (150-300°C) for one hour. The bio-crude yield and HHV varied in range of 3.1-24.9wt% and 37.5-38.9kJ/g, respectively. The bio-crudes were comprised of 71-72.4wt% carbon, 0.9-4.8wt% nitrogen, 8.7-9.8wt% hydrogen and 12-15.7wt% oxygen. GC-MS analysis indicated that pyrroles, indoles, amides and fatty acids were the most abundant bio-crude compounds. HTL of WWT HRAP biomass resulted, also, in production of 10.5-26wt% water-soluble compounds (containing up to 293mg/L ammonia), 1.0-9.3wt% gas and 44.8-85.5wt% solid residue (12.2-18.1kJ/g). The aqueous phase has a great potential to be used as an ammonia source for further algal cultivation and the solid residue could be used as a process fuel source.

  12. Evaluating lignocellulosic biomass, its derivatives, and downstream products with Raman spectroscopy.

    PubMed

    Lupoi, Jason S; Gjersing, Erica; Davis, Mark F

    2015-01-01

    The creation of fuels, chemicals, and materials from plants can aid in replacing products fabricated from non-renewable energy sources. Before using biomass in downstream applications, it must be characterized to assess chemical traits, such as cellulose, lignin, or lignin monomer content, or the sugars released following an acid or enzymatic hydrolysis. The measurement of these traits allows researchers to gage the recalcitrance of the plants and develop efficient deconstruction strategies to maximize yields. Standard methods for assessing biomass phenotypes often have experimental protocols that limit their use for screening sizeable numbers of plant species. Raman spectroscopy, a non-destructive, non-invasive vibrational spectroscopy technique, is capable of providing qualitative, structural information and quantitative measurements. Applications of Raman spectroscopy have aided in alleviating the constraints of standard methods by coupling spectral data with multivariate analysis to construct models capable of predicting analytes. Hydrolysis and fermentation products, such as glucose and ethanol, can be quantified off-, at-, or on-line. Raman imaging has enabled researchers to develop a visual understanding of reactions, such as different pretreatment strategies, in real-time, while also providing integral chemical information. This review provides an overview of what Raman spectroscopy is, and how it has been applied to the analysis of whole lignocellulosic biomass, its derivatives, and downstream process monitoring.

  13. Production of Chlorella biomass enriched by selenium and its use in animal nutrition: a review.

    PubMed

    Doucha, Jirí; Lívanský, Karel; Kotrbácek, Václav; Zachleder, Vilém

    2009-07-01

    Feedstuffs are routinely supplemented with various selenium sources, where organic forms of Se are more bio-available and less toxic than the inorganic forms (selenites, selenates). When the algae are exposed to environmental Se in the form of selenite, they are able as other microorganisms to incorporate the element to different levels, depending on the algae species. Technology of heterotrophic fed-batch cultivation of the microalga Chlorella enriched by organically bound Se was developed, where the cultivation proceeds in fermentors on aerated and mixed nutrient solution with urea as a nitrogen and glucose as a carbon and energy source. High volumetric productivity and high cell concentrations (about 70-100 g Chlorella dry mass l(-1)) can be attained if nutrients and oxygen are adequately supplied. Addition of a small quantity of a new selenoprotein source-spray-dried Se-Chlorella biomass to the diet of farm animals had better effects on specific physiological and physical parameters of animals than selenite salt and was comparable with Se yeast added to the diet. This review introduces the importance of selenium for humans and animals, methods of Se determination, heterotrophic production of selenium-enriched Chlorella biomass in a fed-batch culture regime on organic carbon, and use of the biomass in animal nutrition.

  14. Evaluating Lignocellulosic Biomass, Its Derivatives, and Downstream Products with Raman Spectroscopy

    PubMed Central

    Lupoi, Jason S.; Gjersing, Erica; Davis, Mark F.

    2015-01-01

    The creation of fuels, chemicals, and materials from plants can aid in replacing products fabricated from non-renewable energy sources. Before using biomass in downstream applications, it must be characterized to assess chemical traits, such as cellulose, lignin, or lignin monomer content, or the sugars released following an acid or enzymatic hydrolysis. The measurement of these traits allows researchers to gage the recalcitrance of the plants and develop efficient deconstruction strategies to maximize yields. Standard methods for assessing biomass phenotypes often have experimental protocols that limit their use for screening sizeable numbers of plant species. Raman spectroscopy, a non-destructive, non-invasive vibrational spectroscopy technique, is capable of providing qualitative, structural information and quantitative measurements. Applications of Raman spectroscopy have aided in alleviating the constraints of standard methods by coupling spectral data with multivariate analysis to construct models capable of predicting analytes. Hydrolysis and fermentation products, such as glucose and ethanol, can be quantified off-, at-, or on-line. Raman imaging has enabled researchers to develop a visual understanding of reactions, such as different pretreatment strategies, in real-time, while also providing integral chemical information. This review provides an overview of what Raman spectroscopy is, and how it has been applied to the analysis of whole lignocellulosic biomass, its derivatives, and downstream process monitoring. PMID:25941674

  15. Evaluating lignocellulosic biomass, its derivatives, and downstream products with Raman spectroscopy

    DOE PAGES

    Lupoi, Jason S.; Gjersing, Erica; Davis, Mark F.

    2015-04-20

    The creation of fuels, chemicals, and materials from plants can aid in replacing products fabricated from non-renewable energy sources. Before using biomass in downstream applications, it must be characterized to assess chemical traits, such as cellulose, lignin, or lignin monomer content, or the sugars released following an acid or enzymatic hydrolysis. The measurement of these traits allows researchers to gage the recalcitrance of the plants and develop efficient deconstruction strategies to maximize yields. Standard methods for assessing biomass phenotypes often have experimental protocols that limit their use for screening sizeable numbers of plant species. Raman spectroscopy, a non-destructive, non-invasive vibrationalmore » spectroscopy technique, is capable of providing qualitative, structural information and quantitative measurements. Applications of Raman spectroscopy have aided in alleviating the constraints of standard methods by coupling spectral data with multivariate analysis to construct models capable of predicting analytes. Hydrolysis and fermentation products, such as glucose and ethanol, can be quantified off-, at-, or on-line. Raman imaging has enabled researchers to develop a visual understanding of reactions, such as different pretreatment strategies, in real-time, while also providing integral chemical information. Finally, this review provides an overview of what Raman spectroscopy is, and how it has been applied to the analysis of whole lignocellulosic biomass, its derivatives, and downstream process monitoring.« less

  16. Evaluating lignocellulosic biomass, its derivatives, and downstream products with Raman spectroscopy

    SciTech Connect

    Lupoi, Jason S.; Gjersing, Erica; Davis, Mark F.

    2015-04-20

    The creation of fuels, chemicals, and materials from plants can aid in replacing products fabricated from non-renewable energy sources. Before using biomass in downstream applications, it must be characterized to assess chemical traits, such as cellulose, lignin, or lignin monomer content, or the sugars released following an acid or enzymatic hydrolysis. The measurement of these traits allows researchers to gage the recalcitrance of the plants and develop efficient deconstruction strategies to maximize yields. Standard methods for assessing biomass phenotypes often have experimental protocols that limit their use for screening sizeable numbers of plant species. Raman spectroscopy, a non-destructive, non-invasive vibrational spectroscopy technique, is capable of providing qualitative, structural information and quantitative measurements. Applications of Raman spectroscopy have aided in alleviating the constraints of standard methods by coupling spectral data with multivariate analysis to construct models capable of predicting analytes. Hydrolysis and fermentation products, such as glucose and ethanol, can be quantified off-, at-, or on-line. Raman imaging has enabled researchers to develop a visual understanding of reactions, such as different pretreatment strategies, in real-time, while also providing integral chemical information. Finally, this review provides an overview of what Raman spectroscopy is, and how it has been applied to the analysis of whole lignocellulosic biomass, its derivatives, and downstream process monitoring.

  17. Trophic interactions and direct physical effects control phytoplankton biomass and production in an estuary

    USGS Publications Warehouse

    Alpine, A.E.;