Science.gov

Sample records for affect bone mass

  1. A 5-year exercise program in pre- and peripubertal children improves bone mass and bone size without affecting fracture risk.

    PubMed

    Detter, Fredrik T L; Rosengren, Björn E; Dencker, Magnus; Nilsson, J-Å; Karlsson, Magnus K

    2013-04-01

    We studied the effect in children of an exercise intervention program on fracture rates and skeletal traits. Fractures were registered for 5 years in a population-based prospective controlled exercise intervention study that included children aged 6-9 years at study start, 446 boys and 362 girls in the intervention group and 807 boys and 780 girls in the control group. Intervention subjects received 40 min/school day of physical education and controls, 60 min/week. In 73 boys and 48 girls in the intervention group and 52 boys and 48 girls in the control group, bone mineral density (BMD, g/cm(2)) and bone area (mm(2)) were followed annually by dual-energy X-ray absorptiometry, after which annual changes were calculated. At follow-up we also assessed trabecular and cortical volumetric BMD (g/cm(3)) and bone structure by peripheral computed tomography in the tibia and radius. There were 20.0 fractures/1,000 person-years in the intervention group and 18.5 fractures/1,000 person-years in the control group, resulting in a rate ratio of 1.08 (0.79-1.47) (mean and 95 % CI). The gain in spine BMD was higher in both girls (difference 0.01 g/cm(2), 0.005-0.019) and boys (difference 0.01 g/cm(2), 0.001-0.008) in the intervention group. Intervention girls also had higher gain in femoral neck area (difference 0.04 mm(2), 0.005-0.083) and at follow-up larger tibial bone mineral content (difference 0.18 g, 0.015-0.35), larger tibial cortical area (difference 17 mm(2), 2.4-31.3), and larger radial cross-sectional area (difference 11.0 mm(2), 0.63-21.40). As increased exercise improves bone mass and in girls bone size without affecting fracture risk, society ought to encourage exercise during growth.

  2. Factors affecting bone growth.

    PubMed

    Gkiatas, Ioannis; Lykissas, Marios; Kostas-Agnantis, Ioannis; Korompilias, Anastasios; Batistatou, Anna; Beris, Alexandros

    2015-02-01

    Bone growth and development are products of the complex interactions of genetic and environmental factors. Longitudinal bone growth depends on the growth plate. The growth plate has 5 different zones-each with a different functional role-and is the final target organ for longitudinal growth. Bone length is affected by several systemic, local, and mechanical factors. All these regulation systems control the final length of bones in a complicated way. Despite its significance to bone stability, bone growth in width has not been studied as extensively as longitudinal bone growth. Bone growth in width is also controlled by genetic factors, but mechanical loading regulates periosteal apposition. In this article, we review the most recent data regarding bone growth from the embryonic age and analyze the factors that control bone growth. An understanding of this complex system is important in identifying metabolic and developmental bone diseases and fracture risk.

  3. Treatment of subclinical hypothyroidism does not affect bone mass as determined by dual-energy X-ray absorptiometry, peripheral quantitative computed tomography and quantitative bone ultrasound in Spanish women

    PubMed Central

    Roncero-Martin, Raul; Calderon-Garcia, Julian F.; Santos-Vivas, Mercedes; Vera, Vicente; Martínez-Alvárez, Mariana; Rey-Sanchez, Purificación

    2015-01-01

    Introduction The results of studies examining the influence of subclinical hypothyroidism (SCH) and levothyroxine (L-T4) replacement therapy on bone have generated considerable interest but also controversy. The present research aims to evaluate the effects of L-T4 treatment on different skeletal sites in women. Material and methods A group of 45 premenopausal (mean age: 43.62 ±6.65 years) and 180 postmenopausal (mean age: 59.51 ±7.90 years) women with SCH who were undergoing L-T4 replacement therapy for at least 6 months were compared to 58 pre- and 180 postmenopausal women with SCH (untreated) matched for age. The mean doses of L-T4 were 90.88 ±42.59 µg/day in the premenopausal women and 86.35 ±34.11 µg/day in the postmenopausal women. Bone measurements were obtained using quantitative bone ultrasound (QUS) for the phalanx, dual-energy X-ray absorptiometry (DXA) for the lumbar spine and hip, and peripheral quantitative computed tomography (pQCT) for the non-dominant distal forearm. Results No differences were observed between patients and untreated controls in these bone measurements except in the bone mineral density (BMD) of the spine (p = 0.0214) in postmenopausal women, which was greater in treated women than in untreated controls. Conclusions Our results indicate that adequate metabolic control through replacement treatment with L-T4 in pre- and postmenopausal women does not affect bone mass. PMID:26528344

  4. Is Bone Tissue Really Affected by Swimming? A Systematic Review

    PubMed Central

    Gómez-Bruton, Alejandro; Gónzalez-Agüero, Alejandro; Gómez-Cabello, Alba; Casajús, José A.; Vicente-Rodríguez, Germán

    2013-01-01

    Background Swimming, a sport practiced in hypogravity, has sometimes been associated with decreased bone mass. Aim This systematic review aims to summarize and update present knowledge about the effects of swimming on bone mass, structure and metabolism in order to ascertain the effects of this sport on bone tissue. Methods A literature search was conducted up to April 2013. A total of 64 studies focusing on swimmers bone mass, structure and metabolism met the inclusion criteria and were included in the review. Results It has been generally observed that swimmers present lower bone mineral density than athletes who practise high impact sports and similar values when compared to sedentary controls. However, swimmers have a higher bone turnover than controls resulting in a different structure which in turn results in higher resistance to fracture indexes. Nevertheless, swimming may become highly beneficial regarding bone mass in later stages of life. Conclusion Swimming does not seem to negatively affect bone mass, although it may not be one of the best sports to be practised in order to increase this parameter, due to the hypogravity and lack of impact characteristic of this sport. Most of the studies included in this review showed similar bone mineral density values in swimmers and sedentary controls. However, swimmers present a higher bone turnover than sedentary controls that may result in a stronger structure and consequently in a stronger bone. PMID:23950908

  5. Targeted disruption of TGFBI in mice reveals its role in regulating bone mass and bone size through periosteal bone formation.

    PubMed

    Yu, Hongrun; Wergedal, Jon E; Zhao, Yongliang; Mohan, Subburaman

    2012-07-01

    Transforming growth factor-beta induced (TGFBI) and periostin are two closely related proteins in structure as well as in function. A previous study found that periostin positively regulates bone size. Here, we hypothesize that TGFBI has a similar function in bone development. To test this hypothesis, we employed TGFBI-deficient mice, which were generated by targeted disruption of the TGFBI gene. We bred these mice with C57BL/6J mice to generate homozygous TGFBI-deficient (TGFBI(-/-)) mice and homozygous wild-type littermates. All mice were raised to 12 weeks of age. Bone mass parameters were determined by PIXImus and micro-CT, bone strength parameters by three-point bending, and bone formation and resorption parameters by histomorphometry. We found that targeted disruption of TGFBI led to reduced body size, bone mass, bone size, and bone strength. This indicates that, like periostin, TGFBI also positively regulates bone size and that changes in bone size affect bone strength. Furthermore, there was also a significant decrease in periosteal, but not endosteal, bone formation rate of cortical bone in TGFBI(-/-) mice, suggesting that the observed effect of TGFBI on bone mass and bone size was largely caused by the effect of TGFBI on periosteal bone formation.

  6. Bone Mass Measurement: What the Numbers Mean

    MedlinePlus

    ... or more osteoporotic fractures. Low Bone Mass Versus Osteoporosis The information provided by a BMD test can ... products. NIH Pub. No. 15-7877-E NIH Osteoporosis and Related Bone Diseases ~ National Resource Center 2 ...

  7. Regulation of bone mass by growth hormone.

    PubMed

    Olney, Robert C

    2003-09-01

    Growth hormone (GH) is a peptide hormone secreted from the pituitary gland under the control of the hypothalamus. It has a many actions in the body, including regulating a number of metabolic pathways. Some, but not all, of its effects are mediated through insulin-like growth factor-I (IGF-I). Both GH and IGF-I play significant roles in the regulation of growth and bone metabolism and hence are regulators of bone mass. Bone mass increases steadily through childhood, peaking in the mid 20s. Subsequently, there is a slow decline that accelerates in late life. During childhood, the accumulation in bone mass is a combination of bone growth and bone remodeling. Bone remodeling is the process of new bone formation by osteoblasts and bone resorption by osteoclasts. GH directly and through IGF-I stimulates osteoblast proliferation and activity, promoting bone formation. It also stimulates osteoclast differentiation and activity, promoting bone resorption. The result is an increase in the overall rate of bone remodeling, with a net effect of bone accumulation. The absence of GH results in a reduced rate of bone remodeling and a gradual loss of bone mineral density. Bone growth primarily occurs at the epiphyseal growth plates and is the result of the proliferation and differentiation of chondrocytes. GH has direct effects on these chondrocytes, but primarily regulates this function through IGF-I, which stimulates the proliferation of and matrix production by these cells. GH deficiency severely limits bone growth and hence the accumulation of bone mass. GH deficiency is not an uncommon complication in oncology and has long-term effects on bone health.

  8. Relative bone mass decreased in mice fed high dietary fat despite an increase in body mass and bone formation markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Osteoporosis and obesity are interrelated health disorders. Osteoblasts and adipocytes are derived from common mesenchymal stem cells and age-related osteoporosis is associated with increased bone marrow adipogenesis. To determine whether bone mass and osteoblast number and activity are affected by ...

  9. A quantification strategy for missing bone mass in case of osteolytic bone lesions

    SciTech Connect

    Fränzle, Andrea Giske, Kristina; Bretschi, Maren; Bäuerle, Tobias; Hillengass, Jens; Bendl, Rolf

    2013-12-15

    Purpose: Most of the patients who died of breast cancer have developed bone metastases. To understand the pathogenesis of bone metastases and to analyze treatment response of different bone remodeling therapies, preclinical animal models are examined. In breast cancer, bone metastases are often bone destructive. To assess treatment response of bone remodeling therapies, the volumes of these lesions have to be determined during the therapy process. The manual delineation of missing structures, especially if large parts are missing, is very time-consuming and not reproducible. Reproducibility is highly important to have comparable results during the therapy process. Therefore, a computerized approach is needed. Also for the preclinical research, a reproducible measurement of the lesions is essential. Here, the authors present an automated segmentation method for the measurement of missing bone mass in a preclinical rat model with bone metastases in the hind leg bones based on 3D CT scans. Methods: The affected bone structure is compared to a healthy model. Since in this preclinical rat trial the metastasis only occurs on the right hind legs, which is assured by using vessel clips, the authors use the left body side as a healthy model. The left femur is segmented with a statistical shape model which is initialised using the automatically segmented medullary cavity. The left tibia and fibula are segmented using volume growing starting at the tibia medullary cavity and stopping at the femur boundary. Masked images of both segmentations are mirrored along the median plane and transferred manually to the position of the affected bone by rigid registration. Affected bone and healthy model are compared based on their gray values. If the gray value of a voxel indicates bone mass in the healthy model and no bone in the affected bone, this voxel is considered to be osteolytic. Results: The lesion segmentations complete the missing bone structures in a reasonable way. The mean

  10. Affective Disorders, Bone Metabolism, and Osteoporosis

    PubMed Central

    2013-01-01

    The nature of the relationship between affective disorders, bone mineral density (BMD), and bone metabolism is unresolved, although there is growing evidence that many medications used to treat affective disorders are associated with low BMD or alterations in neuroendocrine systems that influence bone turnover. The objective of this review is to describe the current evidence regarding the association of unipolar and bipolar depression with BMD and indicators of bone metabolism, and to explore potential mediating and confounding influences of those relationships. The majority of studies of unipolar depression and BMD indicate that depressive symptoms are associated with low BMD. In contrast, evidence regarding the relationship between bipolar depression and BMD is inconsistent. There is limited but suggestive evidence to support an association between affective disorders and some markers of bone turnover. Many medications used to treat affective disorders have effects on physiologic systems that influence bone metabolism, and these conditions are also associated with a range of health behaviors that can influence osteoporosis risk. Future research should focus on disentangling the pathways linking psychotropic medications and their clinical indications with BMD and fracture risk. PMID:23874147

  11. High-fat Diet Decreases Cancellous Bone Mass But Has No Effect on Cortical Bone Mass in the Tibia in Mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Body mass has a positive effect on bone mineral density and the strength. Whether mass derived from an obesity condition is beneficial to bone has not been established; neither have the mechanism by which obesity affects bone metabolism. The aim of this study was to examine the effects...

  12. Deficiency of Thrombospondin-4 in Mice Does Not Affect Skeletal Growth or Bone Mass Acquisition, but Causes a Transient Reduction of Articular Cartilage Thickness

    PubMed Central

    Simon, Maciej; Peters, Stephanie; Baum, Wolfgang; Schett, Georg; Ruether, Wolfgang; Niemeier, Andreas; Schinke, Thorsten; Amling, Michael

    2015-01-01

    Although articular cartilage degeneration represents a major public health problem, the underlying molecular mechanisms are still poorly characterized. We have previously utilized genome-wide expression analysis to identify specific markers of porcine articular cartilage, one of them being Thrombospondin-4 (Thbs4). In the present study we analyzed Thbs4 expression in mice, thereby confirming its predominant expression in articular cartilage, but also identifying expression in other tissues, including bone. To study the role of Thbs4 in skeletal development and integrity we took advantage of a Thbs4-deficient mouse model that was analyzed by undecalcified bone histology. We found that Thbs4-deficient mice do not display phenotypic differences towards wildtype littermates in terms of skeletal growth or bone mass acquisition. Since Thbs4 has previously been found over-expressed in bones of Phex-deficient Hyp mice, we additionally generated Thbs4-deficient Hyp mice, but failed to detect phenotypic differences towards Hyp littermates. With respect to articular cartilage we found that Thbs4-deficient mice display transient thinning of articular cartilage, suggesting a protective role of Thbs4 for joint integrity. Gene expression analysis using porcine primary cells revealed that Thbs4 is not expressed by synovial fibroblasts and that it represents the only member of the Thbs gene family with specific expression in articular, but not in growth plate chondrocytes. In an attempt to identify specific molecular effects of Thbs4 we treated porcine articular chondrocytes with human THBS4 in the absence or presence of conditioned medium from porcine synovial fibroblasts. Here we did not observe a significant influence of THBS4 on proliferation, metabolic activity, apoptosis or gene expression, suggesting that it does not act as a signaling molecule. Taken together, our data demonstrate that Thbs4 is highly expressed in articular chondrocytes, where its presence in the

  13. Genetic regulation of bone mass: from bone density to bone strength.

    PubMed

    Langman, Craig B

    2005-03-01

    Osteoporosis is a common disease characterized in adults by diminished bone density. Bone is an organ that evolves and grows throughout life, and establishing optimal bone density in childhood and adolescence serves to buffer bone loss later in life. Bone density, a measurable entity, is the clinical substitute for bone strength, or the ability to defend against fracture. Chronic diseases may adversely affect optimal peak bone density. Bone density is under genetic control, as revealed by three lines of investigations. These include (1) the finding of quantitative trait loci for bone density, (2) the finding that specific mutations in genes that are important in the development of osteoblast or osteoclast lineages alter bone density, and (3) the linkeage of known polymorphisms for genes involved in mineral homeostasis to bone density and/or fracture. Future therapeutics for improving peak bone density or delaying bone loss later in life may take advantage of the genetic nature of bone density development.

  14. Can physical activity improve peak bone mass?

    PubMed

    Specker, Bonny; Minett, Maggie

    2013-09-01

    The pediatric origin of osteoporosis has led many investigators to focus on determining factors that influence bone gain during growth and methods for optimizing this gain. Bone responds to bone loading activities by increasing mass or size. Overall, pediatric studies have found a positive effect of bone loading on bone size and accrual, but the types of loads necessary for a bone response have only recently been investigated in human studies. Findings indicate that responses vary by sex, maturational status, and are site-specific. Estrogen status, body composition, and nutritional status also may influence the bone response to loading. Despite the complex interrelationships among these various factors, it is prudent to conclude that increased physical activity throughout life is likely to optimize bone health.

  15. Monosodium glutamate-sensitive hypothalamic neurons contribute to the control of bone mass

    NASA Technical Reports Server (NTRS)

    Elefteriou, Florent; Takeda, Shu; Liu, Xiuyun; Armstrong, Dawna; Karsenty, Gerard

    2003-01-01

    Using chemical lesioning we previously identified hypothalamic neurons that are required for leptin antiosteogenic function. In the course of these studies we observed that destruction of neurons sensitive to monosodium glutamate (MSG) in arcuate nuclei did not affect bone mass. However MSG treatment leads to hypogonadism, a condition inducing bone loss. Therefore the normal bone mass of MSG-treated mice suggested that MSG-sensitive neurons may be implicated in the control of bone mass. To test this hypothesis we assessed bone resorption and bone formation parameters in MSG-treated mice. We show here that MSG-treated mice display the expected increase in bone resorption and that their normal bone mass is due to a concomitant increase in bone formation. Correction of MSG-induced hypogonadism by physiological doses of estradiol corrected the abnormal bone resorptive activity in MSG-treated mice and uncovered their high bone mass phenotype. Because neuropeptide Y (NPY) is highly expressed in MSG-sensitive neurons we tested whether NPY regulates bone formation. Surprisingly, NPY-deficient mice had a normal bone mass. This study reveals that distinct populations of hypothalamic neurons are involved in the control of bone mass and demonstrates that MSG-sensitive neurons control bone formation in a leptin-independent manner. It also indicates that NPY deficiency does not affect bone mass.

  16. Osteopontin Deficiency Increases Bone Fragility but Preserves Bone Mass

    PubMed Central

    Thurner, Philipp J.; Chen, Carol G.; Ionova-Martin, Sophi; Sun, Luling; Harman, Adam; Porter, Alexandra; Ager, Joel W.; Ritchie, Robert O.; Alliston, Tamara

    2010-01-01

    The ability of bone to resist catastrophic failure is critically dependent upon the material properties of bone matrix, a composite of hydroxyapatite, collagen type I, and noncollagenous proteins. These properties include elastic modulus, hardness, and fracture toughness. Like other aspects of bone quality, matrix material properties are biologically-defined and can be disrupted in skeletal disease. While mineral and collagen have been investigated in greater detail, the contribution of noncollagenous proteins such as osteopontin to bone matrix material properties remains unclear. Several roles have been ascribed to osteopontin in bone, many of which have the potential to impact material properties. To elucidate the role of osteopontin in bone quality, we evaluated the structure, composition, and material properties of bone from osteopontin-deficient mice and wild-type littermates at several length scales. Most importantly, the results show that osteopontin deficiency causes a 30% decrease in fracture toughness, suggesting an important role for OPN in preventing crack propagation. This significant decline in fracture toughness is independent of changes in whole bone mass, structure, or matrix porosity. Using nanoindentation and quantitative backscattered electron imaging to evaluate osteopontin-deficient bone matrix at the micrometer level, we observed a significant reduction in elastic modulus and increased variability in calcium concentration. Matrix heterogeneity was also apparent at the ultrastructural level. In conclusion, we find that osteopontin is essential for the fracture toughness of bone, and reduced toughness in osteopontin-deficient bone may be related to the increased matrix heterogeneity observed at the micro-scale. By exploring the effects of osteopontin-deficiency on bone matrix material properties, composition and organization, this study suggests that reduced fracture toughness is one mechanism by which loss of noncollagenous proteins contribute

  17. Osteopontin deficiency increases bone fragility but preserves bone mass.

    PubMed

    Thurner, Philipp J; Chen, Carol G; Ionova-Martin, Sophi; Sun, Luling; Harman, Adam; Porter, Alexandra; Ager, Joel W; Ritchie, Robert O; Alliston, Tamara

    2010-06-01

    The ability of bone to resist catastrophic failure is critically dependent upon the material properties of bone matrix, a composite of hydroxyapatite, collagen type I, and noncollagenous proteins. These properties include elastic modulus, hardness, and fracture toughness. Like other aspects of bone quality, matrix material properties are biologically-defined and can be disrupted in skeletal disease. While mineral and collagen have been investigated in greater detail, the contribution of noncollagenous proteins such as osteopontin to bone matrix material properties remains unclear. Several roles have been ascribed to osteopontin in bone, many of which have the potential to impact material properties. To elucidate the role of osteopontin in bone quality, we evaluated the structure, composition, and material properties of bone from osteopontin-deficient mice and wild-type littermates at several length scales. Most importantly, the results show that osteopontin deficiency causes a 30% decrease in fracture toughness, suggesting an important role for OPN in preventing crack propagation. This significant decline in fracture toughness is independent of changes in whole bone mass, structure, or matrix porosity. Using nanoindentation and quantitative backscattered electron imaging to evaluate osteopontin-deficient bone matrix at the micrometer level, we observed a significant reduction in elastic modulus and increased variability in calcium concentration. Matrix heterogeneity was also apparent at the ultrastructural level. In conclusion, we find that osteopontin is essential for the fracture toughness of bone, and reduced toughness in osteopontin-deficient bone may be related to the increased matrix heterogeneity observed at the micro-scale. By exploring the effects of osteopontin deficiency on bone matrix material properties, composition and organization, this study suggests that reduced fracture toughness is one mechanism by which loss of noncollagenous proteins contribute

  18. Independent and combined effect of nutrition and exercise on bone mass development.

    PubMed

    Vicente-Rodríguez, Germán; Ezquerra, Juan; Mesana, María Isabel; Fernández-Alvira, Juan Miguel; Rey-López, Juan Pablo; Casajus, José Antonio; Moreno, Luis Alberto

    2008-01-01

    Food intake provides the necessary components for adequate metabolic functions in bone. Calcium, phosphorus, vitamin D, magnesium, proteins, and fluoride are some of the most important nutrients in this regard. These have different effects on bone mass. Additionally, exercise has been shown to elicit osteogenic responses in bone development; indeed, it seems to potentiate, for example, the effect of calcium supplementation on bone mass. However, the nutrition-exercise-bone mass relationship is complex and needs further in-depth investigation. As a first step, therefore, we reviewed current knowledge about the role of nutrition on the development of bone tissue and how physical activity affects the nutrient-bone relationship.

  19. Donepezil regulates energy metabolism and favors bone mass accrual.

    PubMed

    Eimar, Hazem; Alebrahim, Sharifa; Manickam, Garthiga; Al-Subaie, Ahmed; Abu-Nada, Lina; Murshed, Monzur; Tamimi, Faleh

    2016-03-01

    The autonomous nervous system regulates bone mass through the sympathetic and parasympathetic arms. The sympathetic nervous system (SNS) favors bone loss whereas the parasympathetic nervous system (PNS) promotes bone mass accrual. Donepezil, a central-acting cholinergic agonist, has been shown to down-regulate SNS and up-regulate PNS signaling tones. Accordingly, we hypothesize that the use of donepezil could have beneficial effects in regulating bone mass. To test our hypothesis, two groups of healthy female mice were treated either with donepezil or saline. Differences in body metabolism and bone mass of the treated groups were compared. Body and visceral fat weights as well as serum leptin level were increased in donepezil-treated mice compared to control, suggesting that donepezil effects on SNS influenced metabolic activity. Donepezil-treated mice had better bone quality than controls due to a decrease in osteoclasts number. These results indicate that donepezil is able to affect whole body energy metabolism and favors bone mass in young female WT mice.

  20. Alteration of proteoglycan sulfation affects bone growth and remodeling.

    PubMed

    Gualeni, Benedetta; de Vernejoul, Marie-Christine; Marty-Morieux, Caroline; De Leonardis, Fabio; Franchi, Marco; Monti, Luca; Forlino, Antonella; Houillier, Pascal; Rossi, Antonio; Geoffroy, Valerie

    2013-05-01

    Diastrophic dysplasia (DTD) is a chondrodysplasia caused by mutations in the SLC26A2 gene, leading to reduced intracellular sulfate pool in chondrocytes, osteoblasts and fibroblasts. Hence, proteoglycans are undersulfated in the cartilage and bone of DTD patients. To characterize the bone phenotype of this skeletal dysplasia we used the Slc26a2 knock-in mouse (dtd mouse), that was previously validated as an animal model of DTD in humans. X-rays, bone densitometry, static and dynamic histomorphometry, and in vitro studies revealed a primary bone defect in the dtd mouse model. We showed in vivo that this primary bone defect in dtd mice is due to decreased bone accrual associated with a decreased trabecular and periosteal appositional rate at the cell level in one month-old mice. Although the osteoclast number evaluated by histomorphometry was not different in dtd compared to wild-type mice, urine analysis of deoxypyridinoline cross-links and serum levels of type I collagen C-terminal telopeptides showed a higher resorption rate in dtd mice compared to wild-type littermates. Electron microscopy studies showed that collagen fibrils in bone were thinner and less organized in dtd compared to wild-type mice. These data suggest that the low bone mass observed in mutant mice could possibly be linked to the different bone matrix compositions/organizations in dtd mice triggering changes in osteoblast and osteoclast activities. Overall, these results suggest that proteoglycan undersulfation not only affects the properties of hyaline cartilage, but can also lead to unbalanced bone modeling and remodeling activities, demonstrating the importance of proteoglycan sulfation in bone homeostasis.

  1. Alteration of proteoglycan sulfation affects bone growth and remodeling

    PubMed Central

    Gualeni, Benedetta; de Vernejoul, Marie-Christine; Marty-Morieux, Caroline; De Leonardis, Fabio; Franchi, Marco; Monti, Luca; Forlino, Antonella; Houillier, Pascal; Rossi, Antonio; Geoffroy, Valerie

    2013-01-01

    Diastrophic dysplasia (DTD) is a chondrodysplasia caused by mutations in the SLC26A2 gene, leading to reduced intracellular sulfate pool in chondrocytes, osteoblasts and fibroblasts. Hence, proteoglycans are undersulfated in the cartilage and bone of DTD patients. To characterize the bone phenotype of this skeletal dysplasia we used the Slc26a2 knock-in mouse (dtd mouse), that was previously validated as an animal model of DTD in humans. X-rays, bone densitometry, static and dynamic histomorphometry, and in vitro studies revealed a primary bone defect in the dtd mouse model. We showed in vivo that this primary bone defect in dtd mice is due to decreased bone accrual associated with a decreased trabecular and periosteal appositional rate at the cell level in one month-old mice. Although the osteoclast number evaluated by histomorphometry was not different in dtd compared to wild-type mice, urine analysis of deoxypyridinoline cross-links and serum levels of type I collagen C-terminal telopeptides showed a higher resorption rate in dtd mice compared to wild-type littermates. Electron microscopy studies showed that collagen fibrils in bone were thinner and less organized in dtd compared to wild-type mice. These data suggest that the low bone mass observed in mutant mice could possibly be linked to the different bone matrix compositions/organizations in dtd mice triggering changes in osteoblast and osteoclast activities. Overall, these results suggest that proteoglycan undersulfation not only affects the properties of hyaline cartilage, but can also lead to unbalanced bone modeling and remodeling activities, demonstrating the importance of proteoglycan sulfation in bone homeostasis. PMID:23369989

  2. Osteoporosis: Peak Bone Mass in Women

    MedlinePlus

    ... higher in men than in women. Before puberty, boys and girls acquire bone mass at similar rates. After puberty, ... teenage boys to get enough calcium. Physical Activity. Girls and boys and young adults who exercise regularly generally achieve ...

  3. Calcium requirements of growing rats based on bone mass, structure, or biomechanical strength are similar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although calcium (Ca) supplementation increases bone density, the increase is small and the impact on bone strength and fracture risk is uncertain. To investigate if bone mass, morphology, and biomechanical properties are affected by deficient to copious dietary Ca concentrations, the long bones (ti...

  4. A soluble bone morphogenetic protein type IA receptor increases bone mass and bone strength.

    PubMed

    Baud'huin, Marc; Solban, Nicolas; Cornwall-Brady, Milton; Sako, Dianne; Kawamoto, Yoshimi; Liharska, Katia; Lath, Darren; Bouxsein, Mary L; Underwood, Kathryn W; Ucran, Jeffrey; Kumar, Ravindra; Pobre, Eileen; Grinberg, Asya; Seehra, Jasbir; Canalis, Ernesto; Pearsall, R Scott; Croucher, Peter I

    2012-07-24

    Diseases such as osteoporosis are associated with reduced bone mass. Therapies to prevent bone loss exist, but there are few that stimulate bone formation and restore bone mass. Bone morphogenetic proteins (BMPs) are members of the TGFβ superfamily, which act as pleiotropic regulators of skeletal organogenesis and bone homeostasis. Ablation of the BMPR1A receptor in osteoblasts increases bone mass, suggesting that inhibition of BMPR1A signaling may have therapeutic benefit. The aim of this study was to determine the skeletal effects of systemic administration of a soluble BMPR1A fusion protein (mBMPR1A-mFc) in vivo. mBMPR1A-mFc was shown to bind BMP2/4 specifically and with high affinity and prevent downstream signaling. mBMPR1A-mFc treatment of immature and mature mice increased bone mineral density, cortical thickness, trabecular bone volume, thickness and number, and decreased trabecular separation. The increase in bone mass was due to an early increase in osteoblast number and bone formation rate, mediated by a suppression of Dickkopf-1 expression. This was followed by a decrease in osteoclast number and eroded surface, which was associated with a decrease in receptor activator of NF-κB ligand (RANKL) production, an increase in osteoprotegerin expression, and a decrease in serum tartrate-resistant acid phosphatase (TRAP5b) concentration. mBMPR1A treatment also increased bone mass and strength in mice with bone loss due to estrogen deficiency. In conclusion, mBMPR1A-mFc stimulates osteoblastic bone formation and decreases bone resorption, which leads to an increase in bone mass, and offers a promising unique alternative for the treatment of bone-related disorders.

  5. Association between Bone Mass and Dental Hypomineralization.

    PubMed

    van der Tas, J T; Elfrink, M E C; Vucic, S; Heppe, D H M; Veerkamp, J S J; Jaddoe, V W V; Rivadeneira, F; Hofman, A; Moll, H A; Wolvius, E B

    2016-04-01

    The aim of this study was to examine the association between the bone mass (bone mineral content [BMC]) and hypomineralized second primary molars (HSPMs)/molar incisor hypomineralization (MIH) in 6-y-old children. This cross-sectional study was embedded in the Generation R Study, a population-based prospective cohort study, starting from fetal life until adulthood in Rotterdam, Netherlands. The European Academy of Pediatric Dentistry criteria were used to score the intraoral photographs on the presence or absence of HSPMs and MIH. Bone mass was measured with a dual-energy x-ray absorptiometry (DXA) scan. Intraoral photographs and DXA scans were available in 6,510 6-y-old children. Binary logistic regression models were used to study the association between the bone mass and HSPMs/MIH. In total, 5,586 children had their second primary molars assessed and a DXA scan made; 507 children were diagnosed with HSPM. Of 2,370 children with data on their permanent first molars, 203 were diagnosed with MIH. In the fully adjusted model, children with lower BMC (corrected for bone area) were more likely to have HSPMs (odds ratio, 1.13; 95% confidence interval, 1.02 to 1.26 per 1-standard deviation decrease). A lower BMC (corrected for bone area) was not associated with MIH (odds ratio, 1.02; 95% confidence interval, 0.87 to 1.20 per 1-standard deviation decrease). We observed a negative association between BMC (corrected for bone area) and HSPMs. No association was found between BMC (corrected for bone area) and MIH. Future research should focus on investigating the mechanism underlying the negative association between the bone mass and HSPMs. Our study, in a large population of 6-y-old children, adds the finding that BMC (corrected for bone size) is associated with HSPMs but not with MIH in childhood.

  6. PROSPECT - GROWTH FACTOR CONTROL OF BONE MASS

    PubMed Central

    Canalis, Ernesto

    2010-01-01

    Bone formation is determined by the number and function of osteoblasts. Cell number is governed by factors that regulate the replication and differentiation of pre-osteoblasts and factors that regulate osteoblastic cell death. Cell function is controlled by signals acting on the mature osteoblast. Platelet derived and fibroblast growth factors are bone cell mitogens. Bone morphogenetic proteins (BMP) and Wnt induce the differentiation of mesenchymal cells toward osteoblasts, and insulin-like growth factor (IGF)-I stimulates the function of mature osteoblasts and prevents their death. The activity of BMP, Wnt and IGF-I is modulated by extracellular antagonists or binding proteins. Changes in growth factor synthesis and activity may play a role in the pathogenesis of selected forms of osteoporosis, and alterations in the expression or binding of the extracellular antagonists can be associated with changes in bone mass. Current approaches to bone anabolic therapies for osteoporosis include the administration of a growth factor, such as IGF-I, or the neutralization of an antagonist. Ideally, the targeting of an anabolic agent should be specific to bone to preclude non-skeletal unwanted side effects. Clinical trials are needed to determine the long-term effectiveness and safety of novel anabolic agents for the management of osteoporosis. PMID:19718659

  7. Accelerated Bone Mass Senescence After Hematopoietic Stem Cell Transplantation

    PubMed Central

    Serio, B; Pezzullo, L; Fontana, R; Annunziata, S; Rosamilio, R; Sessa, M; Giudice, V; Ferrara, I; Rocco, M; De Rosa, G; Ricci, P; Tauchmanovà, L; Montuori, N; Selleri, C.

    2013-01-01

    Osteoporosis and avascular necrosis (AVN) are long-lasting and debilitating complications of hematopoietic stem cell transplantation (HSCT). We describe the magnitude of bone loss, AVN and impairment in osteogenic cell compartment following autologous (auto) and allogeneic (allo) HSCT, through the retrospective bone damage revaluation of 100 (50 auto- and 50 allo-HSCT) long-term survivors up to 15 years after transplant. Current treatment options for the management of these complications are also outlined. We found that auto- and allo-HSCT recipients show accelerated bone mineral loss and micro-architectural deterioration during the first years after transplant. Bone mass density (BMD) at the lumbar spine, but not at the femur neck, may improve in some patients after HSCT, suggesting more prolonged bone damage in cortical bone. Phalangeal BMD values remained low for even more years, suggesting persistent bone micro-architectural alterations after transplant. The incidence of AVN was higher in allo-HSCT recipients compared to auto-HSCT recipients. Steroid treatment length, but not its cumulative dose was associated with a higher incidence of bone loss. Allo-HSCT recipients affected by chronic graft versus host disease seem to be at greater risk of continuous bone loss and AVN development. Reduced BMD and higher incidence of AVN was partly related to a reduced regenerating capacity of the normal marrow osteogenic cell compartment. Our results suggest that all patients after auto-HSCT and allo-HSCT should be evaluated for their bone status and treated with anti-resorptive therapy as soon as abnormalities are detected. PMID:23905076

  8. IMPACT OF DEFICIENT NUTRITION IN BONE MASS AFTER BARIATRIC SURGERY

    PubMed Central

    COSTA, Tatiana Munhoz da Rocha Lemos; PAGANOTO, Mariana; RADOMINSKI, Rosana Bento; BORBA, Victoria Zeghbi Cochenski

    2016-01-01

    Background: Essential nutrients are considered for the prevention of the bone loss that occurs after bariatric surgery. Aim: Evaluate nutrients involved in bone metabolism, and relate to serum concentrations of calcium, vitamin D, and parathyroid hormone, and the use of supplements and sun exposure on the bone mass of patients who had undergone gastric bypass surgery. Methods: An observational study, with patients who had undergone the surgery 12 or more months previously, operated group (OG), compared to a control group (CG). Results: Were included 56 in OG and 27 in the CG. The mean age was 36.4±8.5 years. The individuals in the OG, compared to CG, consumed inadequate amounts of protein and daily calcium. The OG had a higher prevalence of low sun exposure, lower levels of 25OH Vitamin D (21.3±10.9 vs. 32.1±11.8 ng/dl), and increased serum levels of parathyroid hormone (68.1±32.9 vs. 39.9±11.9 pg/ml, p<0.001). Secondary hyperparathyroidism was present only in the OG (41.7%). The mean lumbar spine bone mineral density was lower in the OG. Four individuals from the OG had low bone mineral density for chronological age, and no one from the CG. Conclusion: The dietary components that affect bone mass in patients undergoing bariatric surgery were inadequate. The supplementation was insufficient and the sun exposure was low. These changes were accompanied by secondary hyperparathyroidism and a high prevalence of low bone mass in lumbar spine in these subjects. PMID:27120738

  9. Nck influences preosteoblastic/osteoblastic migration and bone mass.

    PubMed

    Aryal A C, Smriti; Miyai, Kentaro; Izu, Yayoi; Hayata, Tadayoshi; Notomi, Takuya; Noda, Masaki; Ezura, Yoichi

    2015-12-15

    Migration of the cells in osteoblastic lineage, including preosteoblasts and osteoblasts, has been postulated to influence bone formation. However, the molecular bases that link preosteoblastic/osteoblastic cell migration and bone formation are incompletely understood. Nck (noncatalytic region of tyrosine kinase; collectively referred to Nck1 and Nck2) is a member of the signaling adaptors that regulate cell migration and cytoskeletal structures, but its function in cells in the osteoblastic lineage is not known. Therefore, we examined the role of Nck in migration of these cells. Nck is expressed in preosteoblasts/osteoblasts, and its knockdown suppresses migration as well as cell spreading and attachment to substrates. In contrast, Nck1 overexpression enhances spreading and increases migration and attachment. As for signaling, Nck double knockdown suppresses migration toward IGF1 (insulin-like growth factor 1). In these cells, Nck1 binds to IRS-1 (insulin receptor substrate 1) based on immunoprecipitation experiments using anti-Nck and anti-IRS-1 antibodies. In vivo, Nck knockdown suppresses enlargement of the pellet of DiI-labeled preosteoblasts/osteoblasts placed in the calvarial defects. Genetic experiments indicate that conditional double deletion of both Nck1 and Nck2 specifically in osteoblasts causes osteopenia. In these mice, Nck double deficiency suppresses the levels of bone-formation parameters such as bone formation rate in vivo. Interestingly, bone-resorption parameters are not affected. Finally, Nck deficiency suppresses repair of bone injury after bone marrow ablation. These results reveal that Nck regulates preosteoblastic/osteoblastic migration and bone mass.

  10. Follicle-stimulating hormone increases bone mass in female mice.

    PubMed

    Allan, Charles M; Kalak, Robert; Dunstan, Colin R; McTavish, Kirsten J; Zhou, Hong; Handelsman, David J; Seibel, Markus J

    2010-12-28

    Elevated follicle-stimulating hormone (FSH) activity is proposed to directly cause bone loss independent of estradiol deficiency in aging women. Using transgenic female mice expressing human FSH (TgFSH), we now reveal that TgFSH dose-dependently increased bone mass, markedly elevating tibial and vertebral trabecular bone volume. Furthermore, TgFSH stimulated a striking accrual of bone mass in hypogonadal mice lacking endogenous FSH and luteinizing hormone (LH) function, showing that FSH-induced bone mass occurred independently of background LH or estradiol levels. Higher TgFSH levels increased osteoblast surfaces in trabecular bone and stimulated de novo bone formation, filling marrow spaces with woven rather than lamellar bone, reflective of a strong anabolic stimulus. Trabecular bone volume correlated positively with ovarian-derived serum inhibin A or testosterone levels in TgFSH mice, and ovariectomy abolished TgFSH-induced bone formation, proving that FSH effects on bone require an ovary-dependent pathway. No detectable FSH receptor mRNA in mouse bone or cultured osteoblasts or osteoclasts indicated that FSH did not directly stimulate bone. Therefore, contrary to proposed FSH-induced bone loss, our findings demonstrate that FSH has dose-dependent anabolic effects on bone via an ovary-dependent mechanism, which is independent of LH activity, and does not involve direct FSH actions on bone cells.

  11. Common endocrine control of body weight, reproduction, and bone mass

    NASA Technical Reports Server (NTRS)

    Takeda, Shu; Elefteriou, Florent; Karsenty, Gerard

    2003-01-01

    Bone mass is maintained constant between puberty and menopause by the balance between osteoblast and osteoclast activity. The existence of a hormonal control of osteoblast activity has been speculated for years by analogy to osteoclast biology. Through the search for such humoral signal(s) regulating bone formation, leptin has been identified as a strong inhibitor of bone formation. Furthermore, intracerebroventricular infusion of leptin has shown that the effect of this adipocyte-derived hormone on bone is mediated via a brain relay. Subsequent studies have led to the identification of hypothalamic groups of neurons involved in leptin's antiosteogenic function. In addition, those neurons or neuronal pathways are distinct from neurons responsible for the regulation of energy metabolism. Finally, the peripheral mediator of leptin's antiosteogenic function has been identified as the sympathetic nervous system. Sympathomimetics administered to mice decreased bone formation and bone mass. Conversely, beta-blockers increased bone formation and bone mass and blunted the bone loss induced by ovariectomy.

  12. Effects of parathyroid hormone on bone mass, bone strength, and bone regeneration in male rats with type 2 diabetes mellitus.

    PubMed

    Hamann, Christine; Picke, Ann-Kristin; Campbell, Graeme M; Balyura, Mariya; Rauner, Martina; Bernhardt, Ricardo; Huber, Gerd; Morlock, Michael M; Günther, Klaus-Peter; Bornstein, Stefan R; Glüer, Claus-C; Ludwig, Barbara; Hofbauer, Lorenz C

    2014-04-01

    Type 2 diabetes mellitus (T2DM) is associated with increased skeletal fragility and impaired fracture healing. Intermittent PTH therapy increases bone strength; however, its skeletal and metabolic effects in diabetes are unclear. We assessed whether PTH improves skeletal and metabolic function in rats with T2DM. Subcritical femoral defects were created in diabetic fa/fa and nondiabetic +/+ Zucker Diabetic Fatty (ZDF) rats and internally stabilized. Vehicle or 75 μg/kg/d PTH(1-84) was sc administered over 12 weeks. Skeletal effects were evaluated by μCT, biomechanical testing, histomorphometry, and biochemical markers, and defect regeneration was analyzed by μCT. Glucose homeostasis was assessed using glucose tolerance testing and pancreas histology. In diabetic rats, bone mass was significantly lower in the distal femur and vertebrae, respectively, and increased after PTH treatment by up to 23% in nondiabetic and up to 18% in diabetic rats (P < .0001). Diabetic rats showed 23% lower ultimate strength at the spine (P < .0005), which was increased by PTH by 36% in normal and by 16% in diabetic rats (P < .05). PTH increased the bone formation rate by 3-fold in normal and by 2-fold in diabetic rats and improved defect regeneration in normal and diabetic rats (P < .01). PTH did not affect serum levels of undercarboxylated osteocalcin, glucose tolerance, and islet morphology. PTH partially reversed the adverse skeletal effects of T2DM on bone mass, bone strength, and bone defect repair in rats but did not affect energy metabolism. The positive skeletal effects were generally more pronounced in normal compared with diabetic rats.

  13. [New therapies for children affected by bone diseases].

    PubMed

    Ballhausen, Diana; Dépraz, Nuria Garcia; Kern, Ilse; Unger, Sheila; Bonafé, Luisa

    2012-02-22

    Considerable progress has been achieved in recent years in treating children affected by bone diseases. Advances in the understanding of the molecular pathophysiology of genetic bone diseases have led to the development of enzyme replacement therapies for various lysosomal storage diseases, following the breakthrough initiated in treating Gaucher disease. Clinical studies are underway with tailored molecules correcting bone fragility and alleviating chronic bone pain and other manifestations of hypophosphatasia, or promoting growth of long bones in achondroplasia patients. We further report our very encouraging experience with intravenous bisphosphonate treatment in children suffering from secondary osteopenia and the high prevalence of calcium and vitamin D deficits in these severely disabled children.

  14. Adolescent obesity, bone mass and cardiometabolic risk factors

    PubMed Central

    Pollock, Norman K; Bernard, Paul J; Gutin, Bernard; Davis, Catherine L; Zhu, Haidong; Dong, Yanbin

    2010-01-01

    Objective To compare bone mass between overweight adolescents with and without cardiometabolic risk factors (CMR). Associations of bone mass with CMR and adiposity were also determined. Study design Overweight adolescents (aged 14–18 years) were classified in Healthy (n=55), 1CMR (n=46) or ≥2CMR (n=42). CMR were measured using standard methods and defined according to pediatric definitions of metabolic syndrome. Total body bone mass, fat mass and fat-free soft tissue mass (FFST) were measured by DXA. Visceral adipose tissue (VAT) and subcutaneous abdominal adipose tissue (SAAT) were assessed using MRI. Results After controlling for age, sex, race, height and FFST, Healthy group had 5.4% and 6.3% greater bone mass than the 1CMR and ≥2CMR groups, respectively (both P<0.04). Multiple linear regression, adjusting for same covariates, revealed that VAT (β=−0.22), waist circumference (β= −0.23), homeostasis model assessment of insulin resistance (β= −0.23) and HDL-cholesterol (β=0.22) were associated with bone mass (all P<0.04). There was a trend towards a significant inverse association between bone mass and fasting glucose (P=0.056). No relations were found between bone mass and fat mass, SAAT, BP or triglycerides. Conclusion Being overweight with metabolic abnormalities, particularly insulin resistance, low HDL-cholesterol and visceral adiposity, may adversely influence adolescent bone mass. PMID:21232765

  15. Nutritional factors affecting poultry bone health.

    PubMed

    Fleming, Robert H

    2008-05-01

    Outlined are two main current research concerns relating to skeletal disorders in poultry: (a) osteoporosis in egg-laying hens; (b) leg problems caused by rapid bone growth in broiler chickens. Surveys indicate that 30% of caged laying hens suffer at least one lifetime fracture (a severe welfare issue). Modern hybrids produce one egg per d for 50 weeks. For this period 'normal' bone turnover ceases; only medullary bone (MB) is formed, a woven bone type of limited structural value. MB is resorbed for eggshell formation alongside structural bone, leading to increased fracture risk. Avian osteoporosis is reduced by activity and genetic selection but nutrition is also important. Fluoride and vitamin K are beneficial but the timing of nutritional intervention is important. Ca, inorganic P and vitamin D must be adequate and the form of Ca is critical. Limestone fed as particulates benefits skeletal and eggshell quality. In hens fed particulate limestone compared with flour-fed hens the tibiotarsus breaking strength and radiographic density are increased at 56 weeks of age (P<0.01 and P<0.001 respectively) and the number of tartrate-resistant acid phosphatase-positive stained active osteoclasts (mean number per microscopic field) is decreased (P<0.001). In broiler (meat) chickens selection for rapid growth from approximately 50 g to 3 kg in 42 d has inadvertently produced skeletal disorders such as tibial dyschondroplasia, rickets and associated valgus-varus deformities leading to lameness. The beneficial skeletal effects during growth of increased dietary n-3 PUFA:n-6 PUFA (utilising salmon oil) have been demonstrated. Experiments simulating daylight UVB levels have produced beneficial skeletal effects in Ca- and vitamin D-deficient chicks.

  16. Genetic background modifies the effects of type 2 cannabinoid receptor deficiency on bone mass and bone turnover.

    PubMed

    Sophocleous, Antonia; Idris, Aymen I; Ralston, Stuart H

    2014-03-01

    Cannabinoid receptors and their ligands play significant roles in regulating bone metabolism. Previous studies of type 1 cannabinoid receptor-deficient mice have shown that genetic background influences the skeletal phenotype. Here, we investigated the effects of genetic background on the skeletal phenotype of mice with type 2 cannabinoid receptor deficiency (Cnr2 (-/-)). We studied Cnr2 (-/-) mice on a CD1 background and compared the findings with those previously reported in Cnr2 (-/-) C57BL/6 mice. Young female Cnr2 (-/-) CD1 mice had low bone turnover and high trabecular bone mass compared with wild-type (WT), contrasting with the situation in Cnr2 (-/-) C57BL/6 mice where trabecular bone mass has been reported to be similar to WT. The Cnr2 (-/-) CD1 mice lost more trabecular bone at the tibia with age than WT due to reduced bone formation, and at 12 months there was no difference in trabecular bone volume between genotypes. This differs from the phenotype previously reported in C57BL/6 Cnr2 (-/-) mice, where bone turnover is increased and bone mass reduced with age. There were no substantial differences in skeletal phenotype between Cnr2 (-/-) and WT in male mice. Cortical bone phenotype was similar in Cnr2 (-/-) and WT mice of both genders. Deficiency of Cnr2 has site- and gender-specific effects on the skeleton, mainly affecting trabecular bone, which are influenced by genetic differences between mouse strains. Further evaluation of the pathways responsible might yield new insights into the mechanisms by which cannabinoid receptors regulate bone metabolism.

  17. Suppressed bone remodeling in black bears conserves energy and bone mass during hibernation.

    PubMed

    McGee-Lawrence, Meghan; Buckendahl, Patricia; Carpenter, Caren; Henriksen, Kim; Vaughan, Michael; Donahue, Seth

    2015-07-01

    Decreased physical activity in mammals increases bone turnover and uncouples bone formation from bone resorption, leading to hypercalcemia, hypercalcuria, bone loss and increased fracture risk. Black bears, however, are physically inactive for up to 6 months annually during hibernation without losing cortical or trabecular bone mass. Bears have been shown to preserve trabecular bone volume and architectural parameters and cortical bone strength, porosity and geometrical properties during hibernation. The mechanisms that prevent disuse osteoporosis in bears are unclear as previous studies using histological and serum markers of bone remodeling show conflicting results. However, previous studies used serum markers of bone remodeling that are known to accumulate with decreased renal function, which bears have during hibernation. Therefore, we measured serum bone remodeling markers (BSALP and TRACP) that do not accumulate with decreased renal function, in addition to the concentrations of serum calcium and hormones involved in regulating bone remodeling in hibernating and active bears. Bone resorption and formation markers were decreased during hibernation compared with when bears were physically active, and these findings were supported by histomorphometric analyses of bone biopsies. The serum concentration of cocaine and amphetamine regulated transcript (CART), a hormone known to reduce bone resorption, was 15-fold higher during hibernation. Serum calcium concentration was unchanged between hibernation and non-hibernation seasons. Suppressed and balanced bone resorption and formation in hibernating bears contributes to energy conservation, eucalcemia and the preservation of bone mass and strength, allowing bears to survive prolonged periods of extreme environmental conditions, nutritional deprivation and anuria.

  18. Moderate-Intensity Rotating Magnetic Fields Do Not Affect Bone Quality and Bone Remodeling in Hindlimb Suspended Rats

    PubMed Central

    Shen, Guanghao; Zhai, Mingming; Tong, Shichao; Xu, Qiaoling; Xie, Kangning; Wu, Xiaoming; Tang, Chi; Xu, Xinmin; Liu, Juan; Guo, Wei; Jiang, Maogang; Luo, Erping

    2014-01-01

    Abundant evidence has substantiated the positive effects of pulsed electromagnetic fields (PEMF) and static magnetic fields (SMF) on inhibiting osteopenia and promoting fracture healing. However, the osteogenic potential of rotating magnetic fields (RMF), another common electromagnetic application modality, remains poorly characterized thus far, although numerous commercial RMF treatment devices have been available on the market. Herein the impacts of RMF on osteoporotic bone microarchitecture, bone strength and bone metabolism were systematically investigated in hindlimb-unloaded (HU) rats. Thirty two 3-month-old male Sprague-Dawley rats were randomly assigned to the Control (n = 10), HU (n = 10) and HU with RMF exposure (HU+RMF, n = 12) groups. Rats in the HU+RMF group were subjected to daily 2-hour exposure to moderate-intensity RMF (ranging from 0.60 T to 0.38 T) at 7 Hz for 4 weeks. HU caused significant decreases in body mass and soleus muscle mass of rats, which were not obviously altered by RMF. Three-point bending test showed that the mechanical properties of femurs in HU rats, including maximum load, stiffness, energy absorption and elastic modulus were not markedly affected by RMF. µCT analysis demonstrated that 4-week RMF did not significantly prevent HU-induced deterioration of femoral trabecular and cortical bone microarchitecture. Serum biochemical analysis showed that RMF did not significantly change HU-induced decrease in serum bone formation markers and increase in bone resorption markers. Bone histomorphometric analysis further confirmed that RMF showed no impacts on bone remodeling in HU rats, as evidenced by unchanged mineral apposition rate, bone formation rate, osteoblast numbers and osteoclast numbers in cancellous bone. Together, our findings reveal that RMF do not significantly affect bone microstructure, bone mechanical strength and bone remodeling in HU-induced disuse osteoporotic rats. Our study indicates potentially

  19. The Rho-GEF Kalirin regulates bone mass and the function of osteoblasts and osteoclasts.

    PubMed

    Huang, Su; Eleniste, Pierre P; Wayakanon, Kornchanok; Mandela, Prashant; Eipper, Betty A; Mains, Richard E; Allen, Matthew R; Bruzzaniti, Angela

    2014-03-01

    Bone homeostasis is maintained by the balance between bone resorption by osteoclasts and bone formation by osteoblasts. Dysregulation in the activity of the bone cells can lead to osteoporosis, a disease characterized by low bone mass and an increase in bone fragility and risk of fracture. Kalirin is a novel GTP-exchange factor protein that has been shown to play a role in cytoskeletal remodeling and dendritic spine formation in neurons. We examined Kalirin expression in skeletal tissue and found that it was expressed in osteoclasts and osteoblasts. Furthermore, micro-CT analyses of the distal femur of global Kalirin knockout (Kal-KO) mice revealed significantly reduced trabecular and cortical bone parameters in Kal-KO mice, compared to WT mice, with significantly reduced bone mass in 8, 14 and 36week-old female Kal-KO mice. Male mice also exhibited a decrease in bone parameters but not to the level seen in female mice. Histomorphometric analyses also revealed decreased bone formation rate in 14week-old female Kal-KO mice, as well as decreased osteoblast number/bone surface and increased osteoclast surface/bone surface. Consistent with our in vivo findings, the bone resorbing activity and differentiation of Kal-KO osteoclasts was increased in vitro. Although alkaline phosphatase activity by Kal-KO osteoblasts was increased in vitro, Kal-KO osteoblasts showed decreased mineralizing activity, as well as decreased secretion of OPG, which was inversely correlated with ERK activity. Taken together, our findings suggest that deletion of Kalirin directly affects osteoclast and osteoblast activity, leading to decreased OPG secretion by osteoblasts which is likely to alter the RANKL/OPG ratio and promote osteoclastogenesis. Therefore, Kalirin may play a role in paracrine and/or endocrine signaling events that control skeletal bone remodeling and the maintenance of bone mass.

  20. Diet-induced Obesity Alters Bone Remodeling Leading to Decreased Femoral Trabecular Bone Mass in Mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Body mass derived from an obesity condition may be detrimental to bone health but the mechanism is unknown. This study was to examine changes in bone structure and serum cytokines related to bone metabolism in obese mice induced by a high-fat diet(HFD). Mice fed the HFD were obese and had higher ser...

  1. Spontaneous recovery of bone mass after cure of endogenous hypercortisolism.

    PubMed

    Randazzo, Maria Elena; Grossrubatscher, Erika; Dalino Ciaramella, Paolo; Vanzulli, Angelo; Loli, Paola

    2012-06-01

    Patients with Cushing's syndrome (CS) develop osteopenia-osteoporosis. The present study evaluates the recovery of bone mass within 2 years after remission of hypercortisolism and in long term follow up, an issue rarely addressed. Twenty patients (6M, 14F, 3 post-menopausal, 15-64 years old), 15 with Cushing's disease, 2 with ectopic ACTH syndrome, 3 with ACTH-independent CS were studied. BMD, T and Z scores at lumbar spine and proximal femur were assessed by dual-energy X-ray absorptiometry before and 7-33 months after treatment of hypercortisolism. Five patients were treated with bisphosphonates. Four patients had hypogonadism and 4 GH-deficiency. At baseline all patients showed osteopenia/osteoporosis and the spine appeared more damaged than the femur; femur BMD was positively related with body mass index (BMI). No correlations were observed between spine and femur bone parameters and duration of disease or severity of hypercortisolism. Bone parameters did not differ in patients with or without GH or other pituitary deficiencies. After cure of hypercortisolism a significant improvement in spine BMD, Z and T scores and in femur Z and T scores was observed with normalization in 3 patients; there was no significant difference in percent improvement between femur and spine. The increase in bone parameters at spine and femur was independent from values at baseline. The percent increase in spine T and Z scores was positively related with time elapsed since cure. Bisphosphonates did not influence the recovery of bone mineralization. In long term follow up, after a median period of 7 years a further improvement in bone density was observed in 100% of patients at spine and in 9/11 at femur, although 8/11 patients still had femoral and/or vertebral T score in the range of osteopenia/osteoporosis. Spontaneous improvement of osteoporosis after cure of hypercortisolism occurs both at spine and femur, is independent from basal conditions and not affected by bisphosphonates

  2. Oral Contraceptives Use by Young Woman Reduces Peak Bone Mass

    DTIC Science & Technology

    1999-09-01

    metabolism and peak bone mass (PBM) in young female rats. Intact, adolescent / young adult Sprague-Dawley rats were treated with: (1) placebo, (2) OC therapy...steroid (OC) use leads to decreased peak bone mass in young intact female rats. Findings: OC use decreased the peak hone mass of young intact female...non-aromatizable androgenic steroid did not prevent the adverse efforts of OCs to the growing skeleton of young rats at the dose used; and (3) If the

  3. Poor bone health in underprivileged Indian girls: an effect of low bone mass accrual during puberty.

    PubMed

    Khadilkar, Anuradha V; Sanwalka, Neha J; Kadam, Nidhi S; Chiplonkar, Shashi A; Khadilkar, Vaman V; Mughal, M Zulf

    2012-05-01

    A socio-economic gradient exists for most reasons of morbidity and mortality including delayed puberty in lower (LSES) as compared to higher (HSES) socio-economic stratum and puberty is an important factor affecting bone status in children and adolescents. Thus, a cross-sectional study was conducted on 195 age-matched pairs of girls (8-17years) from LSES and HSES in Pune City, India to assess the hypothesis that socio-economic factors working through late puberty would have a negative association with bone status of adolescents. Height, weight and Tanner stage were assessed. Total body bone mineral content (TBBMC), total body bone area (TBBA), total body bone mineral density (TBBMD), lean body mass (LBM) and total body fat mass (TBFM) were measured using GE Lunar DPX Pro Pencil Beam DXA (Wisconsin, USA) scanner. Mean TBBMC (1172±434g), TBBA (1351±356cm(2)), TBBMD (0.846±0.104g/cm(2)), LBM (21,622±5306g) and TBFM (7746±5194g) in LSES girls were significantly lower than that of HSES girls [TBBMC (1483±525g), TBBA (1533±380cm(2)), TBBMD (0.942±0.119g/cm(2)), LBM (24,308±5829g) and TBFM (12,196±7404g)] (p<0.01). There was a significant effect of age and puberty on all bone parameters. The differences in TBBMC, TBBA, LBM and TBFM between the 2 socio-economic strata at Tanner stage I were not significant (p>0.1) whereas there were significant differences in these parameters from Tanner stages II to V (p<0.05). The percentage difference between LSES and HSES girls in TBBMC, TBBA, TBBMD, LBM and TBFM was 3.4%, 0%, 3.7%, 0.2% and 17.3% respectively at Tanner stage I which increased to 19.1%, 9.7%, 10.4%, 8.8% and 31.2% respectively at Tanner stage V. In conclusion, our results suggest that pubertal years may provide a window of opportunity to promote bone health in adolescent girls from the lower socio-economic stratum.

  4. Tooth dentin defects reflect genetic disorders affecting bone mineralization

    PubMed Central

    Vital, S. Opsahl; Gaucher, C.; Bardet, C.; Rowe, P.S.; George, A.; Linglart, A.; Chaussain, C.

    2012-01-01

    Several genetic disorders affecting bone mineralization may manifest during dentin mineralization. Dentin and bone are similar in several aspects, especially pertaining to the composition of the extracellular matrix (ECM) which is secreted by well-differentiated odontoblasts and osteoblasts, respectively. However, unlike bone, dentin is not remodelled and is not involved in the regulation of calcium and phosphate metabolism. In contrast to bone, teeth are accessible tissues with the shedding of deciduous teeth and the extractions of premolars and third molars for orthodontic treatment. The feasibility of obtaining dentin makes this a good model to study biomineralization in physiological and pathological conditions. In this review, we focus on two genetic diseases that disrupt both bone and dentin mineralization. Hypophosphatemic rickets is related to abnormal secretory proteins involved in the ECM organization of both bone and dentin, as well as in the calcium and phosphate metabolism. Osteogenesis imperfecta affects proteins involved in the local organization of the ECM. In addition, dentin examination permits evaluation of the effects of the systemic treatment prescribed to hypophosphatemic patients during growth. In conclusion, dentin constitutes a valuable tool for better understanding of the pathological processes affecting biomineralization. PMID:22296718

  5. Oral Contraceptives Use by Young Women Reduces Peak Bone Mass

    DTIC Science & Technology

    2002-12-01

    peak bone mass (PBM) in young female rats. Adolescent / young adult Sprague-Dawley rats were treated with 1) placebo, 2) OC, 3) OC supplemented with an...decreased peak bone mass in young intact female rats. Findings: OC use decreased the peak bone mass of young intact females rats. 2. If the addition of a...steroid did not prevent the adverse effects of OCs to the growing skeleton of young rats at the dose used. 3. If anti-androgen treatment mimics the effect

  6. ADAR1 ablation decreases bone mass by impairing osteoblast function in mice.

    PubMed

    Yu, Shibing; Sharma, Rohit; Nie, Daibang; Jiao, Hongli; Im, Hee-Jeong; Lai, Yumei; Zhao, Zhongfang; Zhu, Ke; Fan, Jie; Chen, Di; Wang, Qingde; Xiao, Guozhi

    2013-01-15

    Bone mass is controlled through a delicate balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption. We show here that RNA editing enzyme adenosine deaminase acting on RNA 1 (ADAR1) is critical for proper control of bone mass. Postnatal conditional knockout of Adar1 (the gene encoding ADAR1) resulted in a severe osteopenic phenotype. Ablation of the Adar1 gene significantly suppressed osteoblast differentiation without affecting osteoclast differentiation in bone. In vitro deletion of the Adar1 gene decreased expression of osteoblast-specific osteocalcin and bone sialoprotein genes, alkaline phosphatase activity, and mineralization, suggesting a direct intrinsic role of ADAR1 in osteoblasts. ADAR1 regulates osteoblast differentiation by, at least in part, modulation of osterix expression, which is essential for bone formation. Further, ablation of the Adar1 gene decreased the proliferation and survival of bone marrow stromal cells and inhibited the differentiation of mesenchymal stem cells towards osteoblast lineage. Finally, shRNA knockdown of the Adar1 gene in MC-4 pre-osteoblasts reduced cyclin D1 and cyclin A1 expression and cell growth. Our results identify ADAR1 as a new key regulator of bone mass and suggest that ADAR1 functions in this process mainly through modulation of the intrinsic properties of osteoblasts (i.e., proliferation, survival and differentiation).

  7. Vitamin D receptor gene FokI polymorphisms influence bone mass in adolescent football (soccer) players.

    PubMed

    Diogenes, Maria Eduarda L; Bezerra, Flávia Fioruci; Cabello, Giselda M K; Cabello, Pedro H; Mendonça, Laura M C; Oliveira Júnior, Astrogildo V; Donangelo, Carmen M

    2010-01-01

    The genetic influence on bone mineralization during adolescence is unclear possibly due to modifying factors such as skeletal maturation and lifestyle. We evaluated the influence of polymorphisms of the vitamin D receptor (VDR) gene on longitudinal changes in bone mass, bone- and calcium-related hormones in 46 adolescent soccer players (11.8-14.2 years). Total body bone mineral content (TBMC) and density (TBMD) were measured at baseline and after 6 months. Insulin-like growth factor-I (IGF-1), testosterone, intact parathyroid hormone, and activity of plasma bone alkaline phosphatase were measured at baseline and after 3 months. The influence of FokI or TaqI VDR genotypes on changes in the outcome variables were analyzed by univariate ANOVA with adjustment for chronological age, skeletal age and body weight at baseline. At baseline, boys with Ff genotype had higher TBMC, TBMD, TBMD Z-score compared to those with FF genotype (P < 0.05). After 3 months, Ff boys also had higher increment in plasma IGF-1 (P < 0.05). FokI polymorphism did not influence changes in bone mass measurements after 6 months, although differences detected at baseline remained significant after 6 months. There were no differences in the outcome variables according to TaqI genotypes. This study demonstrates that FokI polymorphisms affect bone mass in Brazilian adolescent soccer players and suggests that the FokI effect on bone mineralization occurs during bone maturation, possibly at the initial pubertal stages.

  8. Skeletal development of mice lacking bone sialoprotein (BSP)--impairment of long bone growth and progressive establishment of high trabecular bone mass.

    PubMed

    Bouleftour, Wafa; Boudiffa, Maya; Wade-Gueye, Ndeye Marième; Bouët, Guénaëlle; Cardelli, Marco; Laroche, Norbert; Vanden-Bossche, Arnaud; Thomas, Mireille; Bonnelye, Edith; Aubin, Jane E; Vico, Laurence; Lafage-Proust, Marie Hélène; Malaval, Luc

    2014-01-01

    Adult Ibsp-knockout mice (BSP-/-) display shorter stature, lower bone turnover and higher trabecular bone mass than wild type, the latter resulting from impaired bone resorption. Unexpectedly, BSP knockout also affects reproductive behavior, as female mice do not construct a proper "nest" for their offsprings. Multiple crossing experiments nonetheless indicated that the shorter stature and lower weight of BSP-/- mice, since birth and throughout life, as well as their shorter femur and tibia bones are independent of the genotype of the mothers, and thus reflect genetic inheritance. In BSP-/- newborns, µCT analysis revealed a delay in membranous primary ossification, with wider cranial sutures, as well as thinner femoral cortical bone and lower tissue mineral density, reflected in lower expression of bone formation markers. However, trabecular bone volume and osteoclast parameters of long bones do not differ between genotypes. Three weeks after birth, osteoclast number and surface drop in the mutants, concomitant with trabecular bone accumulation. The growth plates present a thinner hypertrophic zone in newborns with lower whole bone expression of IGF-1 and higher IHH in 6 days old BSP-/- mice. At 3 weeks the proliferating zone is thinner and the hypertrophic zone thicker in BSP-/- than in BSP+/+ mice of either sex, maybe reflecting a combination of lower chondrocyte proliferation and impaired cartilage resorption. Six days old BSP-/- mice display lower osteoblast marker expression but higher MEPE and higher osteopontin(Opn)/Runx2 ratio. Serum Opn is higher in mutants at day 6 and in adults. Thus, lack of BSP alters long bone growth and membranous/cortical primary bone formation and mineralization. Endochondral development is however normal in mutant mice and the accumulation of trabecular bone observed in adults develops progressively in the weeks following birth. Compensatory high Opn may allow normal endochondral development in BSP-/- mice, while impairing

  9. Bone Mineral Density in Sheehan's Syndrome; Prevalence of Low Bone Mass and Associated Factors.

    PubMed

    Chihaoui, Melika; Yazidi, Meriem; Chaker, Fatma; Belouidhnine, Manel; Kanoun, Faouzi; Lamine, Faiza; Ftouhi, Bochra; Sahli, Hela; Slimane, Hedia

    2016-10-01

    Hypopituitarism is a known cause of bone mineral loss. This study aimed to evaluate the frequency of osteopenia and osteoporosis in patients with Sheehan's syndrome (SS) and to determine the risk factors. This is a retrospective study of 60 cases of SS that have had a bone mineral density (BMD) measurement. Clinical, biological, and therapeutic data were collected. The parameters of osteodensitometry at the femoral neck and the lumbar spine of 60 patients with SS were compared with those of 60 age-, height-, and weight-matched control women. The mean age at BMD measurement was 49.4 ± 9.9 yr (range: 25-76 yr). The mean duration of SS was 19.3 ± 8.5 yr (range: 3-41 yr). All patients had corticotropin deficiency and were treated with hydrocortisone at a mean daily dose of 26.3 ± 4.1 mg. Fifty-seven patients (95%) had thyrotropin deficiency and were treated with thyroxine at a mean daily dose of 124.3 ± 47.4 µg. Thirty-five of the 49 patients, aged less than 50 yr at diagnosis and having gonadotropin deficiency (71.4%), had estrogen-progesterone substitution. Osteopenia was present in 25 patients (41.7%) and osteoporosis in 21 (35.0%). The BMD was significantly lower in the group with SS than in the control group (p < 0.001). The odds ratio of osteopenia-osteoporosis was 3.1 (95% confidence interval: 1.4-6.8) at the femoral neck and 3.7 (95% confidence interval: 1.7-7.8) at the lumbar spine. The lumbar spine was more frequently affected by low bone mineral mass (p < 0.05). The duration of the disease and the daily dose of hydrocortisone were independently and inversely associated with BMD at the femoral neck. The daily dose of thyroxine was independently and inversely associated with BMD at the lumbar spine. Estrogen-progesterone replacement therapy was not associated with BMD. Low bone mineral mass was very common in patients with SS. The lumbar spine was more frequently affected. The duration of the disease and the doses of

  10. Increased Bone Mass in Female Mice Lacking Mast Cell Chymase

    PubMed Central

    Lind, Thomas; Gustafson, Ann-Marie; Calounova, Gabriela; Hu, Lijuan; Rasmusson, Annica; Jonsson, Kenneth B.; Wernersson, Sara; Åbrink, Magnus; Andersson, Göran; Larsson, Sune; Melhus, Håkan; Pejler, Gunnar

    2016-01-01

    Here we addressed the potential impact of chymase, a mast-cell restricted protease, on mouse bone phenotype. We show that female mice lacking the chymase Mcpt4 acquired a persistent expansion of diaphyseal bone in comparison with wild type controls, reaching a 15% larger diaphyseal cross sectional area at 12 months of age. Mcpt4-/- mice also showed increased levels of a bone anabolic serum marker and higher periosteal bone formation rate. However, they were not protected from experimental osteoporosis, suggesting that chymase regulates normal bone homeostasis rather than the course of osteoporosis. Further, the absence of Mcpt4 resulted in age-dependent upregulation of numerous genes important for bone formation but no effects on osteoclast activity. In spite of the latter, Mcpt4-/- bones had increased cortical porosity and reduced endocortical mineralization. Mast cells were found periosteally and, notably, bone-proximal mast cells in Mcpt4-/- mice were degranulated to a larger extent than in wild type mice. Hence, chymase regulates degranulation of bone mast cells, which could affect the release of mast cell-derived factors influencing bone remodelling. Together, these findings reveal a functional impact of mast cell chymase on bone. Further studies exploring the possibility of using chymase inhibitors as a strategy to increase bone volume may be warranted. PMID:27936149

  11. Central genes, pathways and modules that regulate bone mass.

    PubMed

    Quiros-Gonzalez, Isabel; Yadav, Vijay K

    2014-11-01

    Bones are structures that give the shape and defined features to vertebrates, protect several soft organs and perform multiple endocrine influences on other organs. To achieve these functions bones are first modeled early during life and then constantly remodeled throughout life. The process of bone (re)modeling happens simultaneously at multitude of locations in the skeleton and ensures that vertebrates have a mechanically strong yet a flexible skeleton to the most part of their life. Given the extent of its occurrence in the body, bone remodeling is a highly energy demanding process and is co-ordinated with other physiological processes as diverse as energy metabolism, sleep-wake cycle and reproduction. Neuronal circuits in the brain play a very important role in the coordination of bone remodeling with other organ system functions, and perform this function in sync with environmental and peripheral hormonal cues. In this review, we will focus on the roles of hormonal signals and neural circuits that originate in, or impinge on, the brain in the regulation of bone mass. We will provide herein an updated view of how advances in molecular genetics have refined the neural circuits involved in the regulation of bone mass, from the whole brain level to the specific neuronal populations and their neurotransmitters. This will help to understand the mechanisms whereby vertebrate brain regulates bone mass by fine-tuning metabolic signals that originate in the brain or elsewhere in the body.

  12. Time course of disassociation of bone formation signals with bone mass and bone strength in sclerostin antibody treated ovariectomized rats.

    PubMed

    Ma, Yanfei L; Hamang, Matthew; Lucchesi, Jonathan; Bivi, Nicoletta; Zeng, Qianqiang; Adrian, Mary D; Raines, Sarah E; Li, Jiliang; Kuhstoss, Stuart A; Obungu, Victor; Bryant, Henry U; Krishnan, Venkatesh

    2017-04-01

    Sclerostin antibodies increase bone mass by stimulating bone formation. However, human and animal studies show that bone formation increases transiently and returns to pre-treatment level despite ongoing antibody treatment. To understand its mechanism of action, we studied the time course of bone formation, correlating the rate and extent of accrual of bone mass and strength after sclerostin antibody treatment. Ovariectomized (OVX) rats were treated with a sclerostin-antibody (Scle-ab) at 20mg/kg sc once weekly and sacrificed at baseline and 2, 3, 4, 6, and 8weeks post-treatment. In Scle-ab treated rats, serum PINP and OCN rapidly increased at week 1, peaked around week 3, and returned to OVX control levels by week 6. Transcript analyses from the distal femur revealed an early increase in bone formation followed by a sustained decrease in bone resorption genes. Lumbar vertebral (LV) osteoblast surface increased 88% by week 2, and bone formation rate (BFR/BS) increased 138% by week 4. Both parameters were below OVX control by week 8. Bone formation was primarily a result of modeling based formation. Endocortical and periosteal BFR/BS peaked around week 4 at 313% and 585% of OVX control, respectively. BFR/BS then declined but remained higher than OVX control on both surfaces through week 8. Histomorphometric analyses showed LV-BV/TV did not further increase after week 4, while BMD continued to increase at LV, mid femur (MF), and femoral neck (FN) through week 8. Biomechanical tests showed a similar improvement in bone strength through 8weeks in MF and FN, but bone strength plateaued between weeks 6 and 8 for LV. Our data suggest that bone formation with Scle-ab treatment is rapid and modeling formation dominated in OVX rats. Although transient, the bone formation response persists longer in cortical than trabecular bone.

  13. Restoring and maintaining bone in osteopenic female rat skeleton: I. Changes in bone mass and structure

    NASA Technical Reports Server (NTRS)

    Tang, L. Y.; Jee, W. S.; Ke, H. Z.; Kimmel, D. B.

    1992-01-01

    This experiment contains the crucial data for the lose, restore, and maintain (LRM) concept, a practical approach for reversing existing osteoporosis. The LRM concept uses anabolic agents to restore bone mass and architecture (+ phase) and then switches to an agent with the established ability to maintain bone mass, to keep the new bone (+/- phase). The purpose of this study was to learn whether switching to an agent known chiefly for its ability to maintain existing bone mass preserves new bone induced by PGE2 in osteopenic, estrogen-depleted rats. The current study had three phases, the bone loss (-), restore (+), and maintain (+/-) phases. We ovariectomized (OX) or sham ovariectomized (sham-OX) 5.5-month-old female rats (- phase). The OX rats were treated 5 months postovariectomy with 1-6 mg PGE2 per kg/day for 75 days to restore lost cancellous bone mass (+ phase), and then PGE2 treatment was stopped and treatment began with 1 or 5 micrograms/kg of risedronate, a bisphosphonate, twice a week for 60 days (+/- phase). During the loss (-) phase, the cancellous bone volume of the proximal tibial metaphysis in the OX rat fell to 19% of initial and 30% of age-matched control levels. During the restore (+) phase, the cancellous bone volume in OX rats doubled. When PGE2 treatment was stopped, however, and no special maintenance efforts were made during the maintain (+/-) phase, the PGE2-induced cancellous bone disappeared. In contrast, the PGE2-induced cancellous bone persisted when the PGE2 treatment was followed by either a 1 or 5 micrograms treatment of risedronate per kg given twice a week for 60 days during the maintain (+/-) phase. The tibial shaft demonstrated very little cortical bone loss during the loss (-) phase in OX rats. The tibial shaft cortical bone fell some 8%. During the restore (+) phase, new cortical bone in OX rats increased by 22%. When PGE2 treatment was stopped and nothing was given during the maintain (+/-) phase, however, all but the PGE2

  14. Bone Mass and Bone Quality are Altered by Hypoactivity in the Chicken

    NASA Astrophysics Data System (ADS)

    Aguado, E.; Libouban, H.; Basle, M. F.; Chappard, D.

    2008-06-01

    Disuse induces a rapid bone loss in adults. Hypoactivity also decreases bone mass in adults but its effects in young growing animals are largely unknown. 10 chicks of the rapidly growing strain 857K were grown in a large enclosure; 10 others were kept in small cages with little space to move around. They were sacrificed at 56 days and femur and tibia were evaluated by texture analysis, DEXA and microCT. Hypoactivity had no effect on the length and diameter the bones. BMD, microCT (BV/TV and trabecular microarchitecture) and texture analysis were always found significantly reduced in the bones of hypodynamic animals.

  15. Osteoprogenitor cells from bone marrow and cortical bone: understanding how the environment affects their fate.

    PubMed

    Corradetti, Bruna; Taraballi, Francesca; Powell, Sebastian; Sung, David; Minardi, Silvia; Ferrari, Mauro; Weiner, Bradley K; Tasciotti, Ennio

    2015-05-01

    Bone is a dynamic organ where skeletal progenitors and hematopoietic cells share and compete for space. Presumptive mesenchymal stem cells (MSC) have been identified and harvested from the bone marrow (BM-MSC) and cortical bone fragments (CBF-MSC). In this study, we demonstrate that despite the cells sharing a common ancestor, the differences in the structural properties of the resident tissues affect cell behavior and prime them to react differently to stimuli. Similarly to the bone marrow, the cortical portion of the bone contains a unique subset of cells that stains positively for the common MSC-associated markers. These cells display different multipotent differentiation capability, clonogenic expansion, and immunosuppressive potential. In particular, when compared with BM-MSC, CBF-MSC are bigger in size, show a lower proliferation rate at early passages, have a greater commitment toward the osteogenic lineage, constitutively produce nitric oxide as a mediator for bone remodeling, and more readily respond to proinflammatory cytokines. Our data suggest that the effect of the tissue's microenvironment makes the CBF-MSC a superior candidate in the development of new strategies for bone repair.

  16. Evaluation of bone mass and growth in young diabetics.

    PubMed

    Wiske, P S; Wentworth, S M; Norton, J A; Epstein, S; Johnston, C C

    1982-08-01

    To determine the relationships among bone mass, bone growth and serum glucose control in young, insulin-dependent diabetics, we performed photon absorptiometry and radiogrammetry on a clinically well-characterized group of 78 diabetics (mean age 15.2 yr, mean duration of diabetes 6.7 yr). Total and ionized calcium (TCa, ICa), magnesium (Mg), immunoreactive parathyroid hormone (iPTH) and phosphorus (P) were measured in fasting serum. Bone age was calculated from hand x-rays; and bone measurements, heights, and weights were standardized against normal groups of corresponding age, sex, and race. Mean deviation of bone mass measurement score was 1.24 SD below the normal mean (p less than .001); mean cortical area score was .22 SD and percent cortical area .25 SD below the normal means (both p less than .05). Radical width and metacarpal width for the diabetics were not less than normal. Mean percentiles for height and weight were 52.3 and 57.1 respectively, the latter significantly elevated (p less than .02). Bone mass and cortical area were inversely related to duration of disease (r = -.228, p less than .05; r = -.216, p less than .05). They were not correlated with serum parameters of mineral metabolism or of glucose control. Bone age was not significantly different from chronological age in those who had not achieved maturity (14.4 versus 14.5 yr). Mean age of menarche was 12.9 yr. When compared to normals the diabetic sample had diminished serum ICa (p less than .001), and Mg (p less than .001), though P and iPTH were not significantly different. We have demonstrated: (1) bone mass in this sample of juvenile diabetics is depressed, without evidence of impaired overall growth or delayed maturation, (2) this reduced bone mass probably results from a failure to gain the normal component of endosteal bone expected at this age, (3) this abnormality in bone growth progresses with disease but does not appear to vary with serum glucose control, and (4) in this population

  17. Female mice lacking estrogen receptor-alpha in osteoblasts have compromised bone mass and strength.

    PubMed

    Melville, Katherine M; Kelly, Natalie H; Khan, Sohaib A; Schimenti, John C; Ross, F Patrick; Main, Russell P; van der Meulen, Marjolein C H

    2014-02-01

    Reduced bioavailability of estrogen increases skeletal fracture risk in postmenopausal women, but the mechanisms by which estrogen regulates bone mass are incompletely understood. Because estrogen signaling in bone acts, in part, through estrogen receptor alpha (ERα), mice with global deletion of ERα (ERαKO) have been used to determine the role of estrogen signaling in bone biology. These animals, however, have confounding systemic effects arising from other organs, such as increased estrogen and decreased insulin-like growth factor 1 (IGF-1) serum levels, which may independently affect bone. Mice with tissue-specific ERα deletion in chondrocytes, osteoblasts, osteocytes, or osteoclasts lack the systemic effects seen in the global knockout, but show that presence of the receptor is important for the function of each cell type. Although bone mass is reduced when ERα is deleted from osteoblasts, no study has determined if this approach reduces whole bone strength. To address this issue, we generated female osteoblast-specific ERαKO mice (pOC-ERαKO) by crossing mice expressing a floxed ERα gene (ERα(fl/fl)) with mice transgenic for the osteocalcin-Cre promoter (OC-Cre). Having confirmed that serum levels of estrogen and IGF-1 were unaltered, we focused on relating bone mechanics to skeletal phenotype using whole bone mechanical testing, microcomputed tomography, histology, and dynamic histomorphometry. At 12 and 18 weeks of age, pOC-ERαKO mice had decreased cancellous bone mass in the proximal tibia, vertebra, and distal femur, and decreased cortical bone mass in the tibial midshaft, distal femoral cortex, and L5 vertebral cortex. Osteoblast activity was reduced in cancellous bone of the proximal tibia, but osteoclast number was unaffected. Both femora and vertebrae had decreased whole bone strength in mechanical tests to failure, indicating that ERα in osteoblasts is required for appropriate bone mass and strength accrual in female mice. This p

  18. Professional sport activity and micronutrients: effects on bone mass.

    PubMed

    Nuti, R; Martini, G; Merlotti, D; Valleggi, F; De Paola, V; Gennari, L

    2005-01-01

    Osteoporosis is the most prevalent metabolic bone disease among developed countries. Although bone mass and density are certainly determined by various concurrent factors such as genetics, hormones, life-style and the environment, and although the genetic program has a critical role in growth and in bone peak development, for their realization an adequate nutritional intake of nutrients and regular exercise are always necessary and may represent a way to prevent osteoporosis and fractures. Exercise and especially high-impact sport activity during growth and adolescence increases bone mineral density (BMD) in weight-loaded skeletal regions. Aerobics, weight bearing and resistance exercises may also be effective in increasing BMD in post-menopausal women. Even though most of the research on nutritional components has focused almost exclusively on calcium and vitamin D, there is now considerable interest in the effects of a variety of other nutrients on bone status.

  19. Prevention of arterial calcification corrects the low bone mass phenotype in MGP-deficient mice.

    PubMed

    Marulanda, Juliana; Gao, Chan; Roman, Hassem; Henderson, Janet E; Murshed, Monzur

    2013-12-01

    Matrix gla protein (MGP), a potent inhibitor of extracellular matrix (ECM) mineralization, is primarily produced by vascular smooth muscle cells (VSMCs) and chondrocytes. Consistent with its expression profile, MGP deficiency in mice (Mgp-/- mice) results in extensive mineralization of all arteries and cartilaginous ECMs. Interestingly, we observed a progressive loss of body weight in Mgp-/- mice, which becomes apparent by the third week of age. Taking into account the new paradigm linking the metabolic regulators of energy metabolism and body mass to that of bone remodeling, we compared the bone volume in Mgp-/- mice to that of their wild type littermates by micro-CT and bone histomorphometry. We found a decrease of bone volume over tissue volume in Mgp-/- mice caused by an impaired osteoblast function. In culture, early differentiation of Mgp-/- primary osteoblasts was not affected; however there was a significant upregulation of the late osteogenic marker Bglap (osteocalcin). We examined whether the prevention of arterial calcification in Mgp-/- mice could correct the low bone mass phenotype. The bones of two different genetic models: Mgp-/-;SM22-Mgp and Mgp-/-;Eln+/- mice were analyzed. In the former strain, vascular calcification was fully rescued by transgenic overexpression of Mgp in the VSMCs, while in the latter, elastin haploinsufficiency significantly impeded the deposition of minerals in the arterial walls. In both models, the low mass phenotype seen in Mgp-/- mice was rescued. Our data support the hypothesis that the arterial calcification, not MGP deficiency itself, causes the low bone mass phenotype in Mgp-/- mice. Taken together, we provide evidence that arterial calcification affects bone remodeling and pave the way for further mechanistic studies to identify the pathway(s) regulating this process.

  20. Effect of Teriparatide, Vibration and the Combination on Bone Mass and Bone Architecture in Chronic Spinal Cord Injury

    DTIC Science & Technology

    2014-10-01

    Bone Architechture in Chronic Spinal Cord Injury Effect of Teriparatide, Vibration and the Combination on Bone Mass and Bone Architechture in Chronic... Spinal Cord Injury 5a. CONTRACT NUMBER W81XWH-10-1-0951 Mass and Bone Architecture in Chronic Spinal Cord Injury 5b. GRANT NUMBER 5c. PROGRAM...distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Severe bone loss commonly occurs in individuals with chronic spinal cord injury who are non

  1. Wntless functions in mature osteoblasts to regulate bone mass.

    PubMed

    Zhong, Zhendong; Zylstra-Diegel, Cassandra R; Schumacher, Cassie A; Baker, Jacob J; Carpenter, April C; Rao, Sujata; Yao, Wei; Guan, Min; Helms, Jill A; Lane, Nancy E; Lang, Richard A; Williams, Bart O

    2012-08-14

    Recent genome-wide association studies of individuals of Asian and European descent have found that SNPs located within the genomic region (1p31.3) encoding the Wntless (Wls)/Gpr177 protein are associated significantly with reduced bone mineral density. Wls/Gpr177 is a newly identified chaperone protein that specifically escorts Wnt ligands for secretion. Given the strong functional association between the Wnt signaling pathways and bone development and homeostasis, we generated osteoblast-specific Wls-deficient (Ocn-Cre;Wls-flox) mice. Homozygous conditional knockout animals were born at a normal Mendelian frequency. Whole-body dual-energy X-ray absorptiometry scanning revealed that bone-mass accrual was significantly inhibited in homozygotes as early as 20 d of age. These homozygotes had spontaneous fractures and a high frequency of premature lethality at around 2 mo of age. Microcomputed tomography analysis and histomorphometric data revealed a dramatic reduction of both trabecular and cortical bone mass in homozygous mutants. Bone formation in homozygotes was severely impaired, but no obvious phenotypic change was observed in mice heterozygous for the conditional deletion. In vitro studies showed that Wls-deficient osteoblasts had a defect in differentiation and mineralization, with significant reductions in the expression of key osteoblast differentiation regulators. In summary, these results reveal a surprising and crucial role of osteoblast-secreted Wnt ligands in bone-mass accrual.

  2. DXA measurements in Rett syndrome reveal small bones with low bone mass.

    PubMed

    Roende, Gitte; Ravn, Kirstine; Fuglsang, Kathrine; Andersen, Henrik; Nielsen, Jytte Bieber; Brøndum-Nielsen, Karen; Jensen, Jens-Erik Beck

    2011-09-01

    Low bone mass is reported in growth-retarded patients harboring mutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene causing Rett syndrome (RTT). We present the first study addressing both bone mineral density (BMD) and bone size in RTT. Our object was to determine whether patients with RTT do have low BMD when correcting for smaller bones by examination with dual-energy X-ray absorptiometry (DXA). We compared areal BMD (aBMD(spine) and aBMD(total hip) ) and volumetric bone mineral apparent density (vBMAD(spine) and vBMAD(neck) ) in 61 patients and 122 matched healthy controls. Further, spine and hip aBMD and vBMAD of patients were associated with clinical risk factors of low BMD, low-energy fractures, MECP2 mutation groups, and X chromosome inactivation (XCI). Patients with RTT had reduced bone size on the order of 10% and showed lower values of spine and hip aBMD and vBMAD (p < .001) adjusted for age, pubertal status, and body mass index (BMI). aBMD(spine) , vBMAD(spine) , and aBMD(total hip) were associated with low-energy fractures (p < .05). Walking was significantly associated to aBMD(total hip) and vBMAD(neck) adjusted for age and body mass index (BMI). Further, vBMAD(neck) was significantly associated to a diagnosis of epilepsy, antiepileptic treatment, and MECP2 mutation group, but none of the associations with vBMAD(neck) remained clinically significant in a multiple adjusted model including age and BMI. Neither aBMD(spine) , vBMAD(spine) , nor aBMD(total hip) were significantly associated with epilepsy, antiepileptic treatment, MECP2 mutation group, XCI, or vitamin D status. Low bone mass and small bones are evident in RTT, indicating an apparent low-bone-formation phenotype.

  3. Effect of probiotics supplementation on bone mineral content and bone mass density.

    PubMed

    Parvaneh, Kolsoom; Jamaluddin, Rosita; Karimi, Golgis; Erfani, Reza

    2014-01-01

    A few studies in animals and a study in humans showed a positive effect of probiotic on bone metabolism and bone mass density. Most of the investigated bacteria were Lactobacillus and Bifidobacterium. The positive results of the probiotics were supported by the high content of dietary calcium and the high amounts of supplemented probiotics. Some of the principal mechanisms include (1) increasing mineral solubility due to production of short chain fatty acids; (2) producing phytase enzyme by bacteria to overcome the effect of mineral depressed by phytate; (3) reducing intestinal inflammation followed by increasing bone mass density; (4) hydrolysing glycoside bond food in the intestines by Lactobacillus and Bifidobacteria. These mechanisms lead to increase bioavailability of the minerals. In conclusion, probiotics showed potential effects on bone metabolism through different mechanisms with outstanding results in the animal model. The results also showed that postmenopausal women who suffered from low bone mass density are potential targets to consume probiotics for increasing mineral bioavailability including calcium and consequently increasing bone mass density.

  4. Effect of Probiotics Supplementation on Bone Mineral Content and Bone Mass Density

    PubMed Central

    Parvaneh, Kolsoom; Jamaluddin, Rosita; Karimi, Golgis; Erfani, Reza

    2014-01-01

    A few studies in animals and a study in humans showed a positive effect of probiotic on bone metabolism and bone mass density. Most of the investigated bacteria were Lactobacillus and Bifidobacterium . The positive results of the probiotics were supported by the high content of dietary calcium and the high amounts of supplemented probiotics. Some of the principal mechanisms include (1) increasing mineral solubility due to production of short chain fatty acids; (2) producing phytase enzyme by bacteria to overcome the effect of mineral depressed by phytate; (3) reducing intestinal inflammation followed by increasing bone mass density; (4) hydrolysing glycoside bond food in the intestines by Lactobacillus and Bifidobacteria. These mechanisms lead to increase bioavailability of the minerals. In conclusion, probiotics showed potential effects on bone metabolism through different mechanisms with outstanding results in the animal model. The results also showed that postmenopausal women who suffered from low bone mass density are potential targets to consume probiotics for increasing mineral bioavailability including calcium and consequently increasing bone mass density. PMID:24587733

  5. Characterization of Low Bone Mass in Young Patients with Thalassemia by DXA, pQCT and Markers of Bone Turnover

    PubMed Central

    Fung, Ellen B.; Vichinsky, Elliott P.; Kwiatkowski, Janet L.; Huang, James; Bachrach, Laura K.; Sawyer, Aenor J.; Zemel, Babette S.

    2011-01-01

    Previous reports using dual x-ray absorptiometry (DXA) suggest that up to 70% of adults with thalassemia major (Thal) have low bone mass. However, few studies have controlled for body size and pubertal delay, variables known to affect bone mass in this population. In this study, bone mineral content and areal density (BMC, aBMD) of the spine and whole body were assessed by DXA, and volumetric BMD and cortical geometries of the distal tibia by peripheral quantitative computed tomography (pQCT) in subjects with Thal (n=25, 11 male, 10 to 30 yrs) and local controls (n=34, 15 male, 7 to 30 yrs). Z-scores for bone outcomes were calculated from reference data from a large sample of healthy children and young adults. Fasting blood and urine were collected, pubertal status determined by self-assessment and dietary intake and physical activity assessed by written questionnaires. Subjects with Thal were similar in age, but had lower height, weight and lean mass index Z-scores (all p<0.001) compared to controls. DXA aBMD was significantly lower in Thal compared to controls at all sites. Adult Thal subjects (>18 yrs, n=11) had lower tibial trabecular vBMD (p=0.03), cortical area, cortical BMC, cortical thickness, periosteal circumference and section modulus Z-scores (all p<0.01) compared to controls. Cortical area, cortical BMC, cortical thickness, and periosteal circumference Z-scores (p=0.02) were significantly lower in young Thal (≤18 yrs, n=14) compared to controls. In separate multivariate models, tibial cortical area, BMC, and thickness and spine aBMD and whole body BMC Z-scores remained lower in Thal compared to controls after adjustment for gender, lean mass and/or growth deficits (all p<0.01). Tanner stage was not predictive in these models. Osteocalcin, a marker of bone formation, was significantly reduced in Thal compared to controls after adjusting for age, puberty and whole body BMC (p=0.029). In summary, we have found evidence of skeletal deficits that cannot

  6. Genetic Dissection of a QTL Affecting Bone Geometry

    PubMed Central

    Sabik, Olivia L.; Medrano, Juan F.; Farber, Charles R.

    2017-01-01

    Parameters of bone geometry such as width, length, and cross-sectional area are major determinants of bone strength. Although these traits are highly heritable, few genes influencing bone geometry have been identified. Here, we dissect a major quantitative trait locus (QTL) influencing femur size. This QTL was originally identified in an F2 cross between the C57BL/6J-hg/hg (HG) and CAST/EiJ strains and was referred to as femur length in high growth mice 2 (Feml2). Feml2 was located on chromosome (Chr.) 9 at ∼20 cM. Here, we show that the HG.CAST-(D9Mit249-D9Mit133)/Ucd congenic strain captures Feml2. In an F2 congenic cross, we fine-mapped the location of Feml2 to an ∼6 Mbp region extending from 57.3 to 63.3 Mbp on Chr. 9. We have identified candidates by mining the complete genome sequence of CAST/EiJ and through allele-specific expression (ASE) analysis of growth plates in C57BL/6J × CAST/EiJ F1 hybrids. Interestingly, we also find that the refined location of Feml2 overlaps a cluster of six independent genome-wide associations for human height. This work provides the foundation for the identification of novel genes affecting bone geometry. PMID:28082324

  7. Genetic Dissection of a QTL Affecting Bone Geometry.

    PubMed

    Sabik, Olivia L; Medrano, Juan F; Farber, Charles R

    2017-03-10

    Parameters of bone geometry such as width, length, and cross-sectional area are major determinants of bone strength. Although these traits are highly heritable, few genes influencing bone geometry have been identified. Here, we dissect a major quantitative trait locus (QTL) influencing femur size. This QTL was originally identified in an F2 cross between the C57BL/6J-hg/hg (HG) and CAST/EiJ strains and was referred to as femur length in high growth mice 2 (Feml2). Feml2 was located on chromosome (Chr.) 9 at ∼20 cM. Here, we show that the HG.CAST-(D9Mit249-D9Mit133)/Ucd congenic strain captures Feml2 In an F2 congenic cross, we fine-mapped the location of Feml2 to an ∼6 Mbp region extending from 57.3 to 63.3 Mbp on Chr. 9. We have identified candidates by mining the complete genome sequence of CAST/EiJ and through allele-specific expression (ASE) analysis of growth plates in C57BL/6J × CAST/EiJ F1 hybrids. Interestingly, we also find that the refined location of Feml2 overlaps a cluster of six independent genome-wide associations for human height. This work provides the foundation for the identification of novel genes affecting bone geometry.

  8. Numerical test concerning bone mass apposition under electrical and mechanical stimulus

    PubMed Central

    2012-01-01

    This article proposes a model of bone remodeling that encompasses mechanical and electrical stimuli. The remodeling formulation proposed by Weinans and collaborators was used as the basis of this research, with a literature review allowing a constitutive model evaluating the permittivity of bone tissue to be developed. This allowed the mass distribution that depends on mechanical and electrical stimuli to be obtained. The remaining constants were established through numerical experimentation. The results demonstrate that mass distribution is altered under electrical stimulation, generally resulting in a greater deposition of mass. In addition, the frequency of application of an electric field can affect the distribution of mass; at a lower frequency there is more mass in the domain. These numerical experiments open up discussion concerning the importance of the electric field in the remodeling process and propose the quantification of their effects. PMID:22578031

  9. Numerical test concerning bone mass apposition under electrical and mechanical stimulus.

    PubMed

    Garzón-Alvarado, Diego A; Ramírez-Martínez, Angélica M; Cardozo de Martínez, Carmen Alicia

    2012-05-11

    This article proposes a model of bone remodeling that encompasses mechanical and electrical stimuli. The remodeling formulation proposed by Weinans and collaborators was used as the basis of this research, with a literature review allowing a constitutive model evaluating the permittivity of bone tissue to be developed. This allowed the mass distribution that depends on mechanical and electrical stimuli to be obtained. The remaining constants were established through numerical experimentation. The results demonstrate that mass distribution is altered under electrical stimulation, generally resulting in a greater deposition of mass. In addition, the frequency of application of an electric field can affect the distribution of mass; at a lower frequency there is more mass in the domain. These numerical experiments open up discussion concerning the importance of the electric field in the remodeling process and propose the quantification of their effects.

  10. Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis.

    PubMed

    Li, Xiaodong; Ominsky, Michael S; Warmington, Kelly S; Morony, Sean; Gong, Jianhua; Cao, Jin; Gao, Yongming; Shalhoub, Victoria; Tipton, Barbara; Haldankar, Raj; Chen, Qing; Winters, Aaron; Boone, Tom; Geng, Zhaopo; Niu, Qing-Tian; Ke, Hua Zhu; Kostenuik, Paul J; Simonet, W Scott; Lacey, David L; Paszty, Chris

    2009-04-01

    The development of bone-rebuilding anabolic agents for potential use in the treatment of bone loss conditions, such as osteoporosis, has been a long-standing goal. Genetic studies in humans and mice have shown that the secreted protein sclerostin is a key negative regulator of bone formation, although the magnitude and extent of sclerostin's role in the control of bone formation in the aging skeleton is still unclear. To study this unexplored area of sclerostin biology and to assess the pharmacologic effects of sclerostin inhibition, we used a cell culture model of bone formation to identify a sclerostin neutralizing monoclonal antibody (Scl-AbII) for testing in an aged ovariectomized rat model of postmenopausal osteoporosis. Six-month-old female rats were ovariectomized and left untreated for 1 yr to allow for significant estrogen deficiency-induced bone loss, at which point Scl-AbII was administered for 5 wk. Scl-AbII treatment in these animals had robust anabolic effects, with marked increases in bone formation on trabecular, periosteal, endocortical, and intracortical surfaces. This not only resulted in complete reversal, at several skeletal sites, of the 1 yr of estrogen deficiency-induced bone loss, but also further increased bone mass and bone strength to levels greater than those found in non-ovariectomized control rats. Taken together, these preclinical results establish sclerostin's role as a pivotal negative regulator of bone formation in the aging skeleton and, furthermore, suggest that antibody-mediated inhibition of sclerostin represents a promising new therapeutic approach for the anabolic treatment of bone-related disorders, such as postmenopausal osteoporosis.

  11. A delay in pubertal onset affects the covariation of body weight, estradiol, and bone size.

    PubMed

    Yingling, Vanessa R

    2009-04-01

    The skeletal system functions as a locomotive organ and a mineral reservoir and combinations of genetic and environmental factors affect the skeletal system. Although delayed puberty is associated with compromised bone mass, suppression of estrogen should be beneficial to cortical strength. The purpose was to employ path analysis to study bone strength and delayed puberty. Forty-five female rats were randomly assigned to a control group (n = 15) and an experimental group (n = 30) that received injections of gonadotropin releasing hormone antagonist (GnRH-a). Causal models were constructed by specifying directed paths between bone traits. The first model tested the hypothesis that the functional relationships between bone traits and body weight were altered by a delay in pubertal onset. GnRH-a injections during puberty altered the covariation between body weight and bone size. The second model was constructed to test the hypothesis that variability in stiffness was causally related to variability in body weight. The model also tested the relationship between the periosteal and endocortical surfaces and their relationship to stiffness. There was no change in the relationship between the surfaces in the GnRH-a group. The third model determined the effect of estradiol on both total area and relative cortical area in both groups. The relationship between periosteal surface and serum estradiol levels was only significant during estrogen suppression. These data suggest that increases in body weight during or prior to puberty may not be protective of bone strength.

  12. An Unusual Neck Mass: Ingested Chicken Bone

    PubMed Central

    Demirhan, Erhan; İber, Metin; Yağız, Özlem; Kandoğan, Tolga; Çukurova, İbrahim

    2016-01-01

    Background Foreign bodies in the upper aerodigestive tract are frequently seen in otolaryngological practice, but migration of an ingested foreign body to the neck is a very rare condition. Case Report We present a 66-year-old woman admitted to our outpatient department with a painful neck mass. She had a history of emergency department admission 4 months prior with odynophagia after eating chicken meal. A physical examination revealed a painful and hyperemic mass on the left neck. Antibiotherapy did not relieve the patient’s symptoms and signs. A 3-cm linear foreign body was observed in X-ray and computed tomography scans. The symptoms of the patient were relieved after excision of the foreign body. Conclusion Although it is a rare situation, migration of a foreign body ingested through the aerodigestive tract to the neck should be kept in mind in the differential diagnosis of patients who present with neck masses. PMID:27994927

  13. Bone mineral density-affecting genes in Africans.

    PubMed Central

    Gong, Gordon; Haynatzki, Gleb; Haynatzka, Vera; Howell, Ryan; Kosoko-Lasaki, Sade; Fu, Yun-Xin; Yu, Fei; Gallagher, John C.; Wilson, M. Roy

    2006-01-01

    BACKGROUND: We have recently reported the role of environmental exposure in the ethnic diversity of bone mineral density (BMD). Potential genetic difference has not been adequately assessed. PURPOSE: To determine allele frequencies of BMD-affecting genes and their association with BMD in Africans. METHODS: Allele frequencies at 18 polymorphic sites in 13 genes that affect BMD in Asians and/or Caucasians were determined in 143 recent immigrants (55 men and 88 women, 18-51 years of age) from sub-Saharan Sudan to the United States. Genetic association studies were performed. RESULTS: Among the 14 single-nucleotide polymorphisms (SNPs), 10 were significantly different in allele frequency between Sudanese and Asians, and 10 between Sudanese and Caucasians. Only the osteocalcin gene was not significantly different in allele frequency among Sudanese, Asians and Caucasians. Allele frequencies in the TGFB, COL1A1 and CSR genes were extremely low (<0.04) in the Sudanese. Frequencies of microsatellite alleles in four genes were significantly different among Sudanese, Asians and Caucasians. SNPs in the VDR and ERalpha genes were associated with BMD and/or BMC (bone mineral content) at several bone sites. CONCLUSIONS: Genetic difference may play a role in the ethnic diversity in BMD and/or BMC. PMID:16895279

  14. Repeated freeze-thawing of bone tissue affects Raman bone quality measurements

    PubMed Central

    McElderry, John-David P.; Kole, Matthew R.; Morris, Michael D.

    2011-01-01

    The ability to probe fresh tissue is a key feature to biomedical Raman spectroscopy. However, it is unclear how Raman spectra of calcified tissues are affected by freezing. In this study, six transverse sections of femoral cortical bone were subjected to multiple freeze/thaw cycles and probed using a custom Raman microscope. Significant decreases were observed in the amide I and amide III bands starting after two freeze thaw cycles. Raman band intensities arising from proline residues of frozen tissue appeared consistent with fresh tissue after four cycles. Crystallinity values of bone mineral diminished slightly with freezing and were noticeable after only one freezing. Mineral carbonate levels did not deviate significantly with freezing and thawing. The authors recommend freezing and thawing bone tissue only once to maintain accurate results. PMID:21806253

  15. Adults with spastic cerebral palsy have lower bone mass than those with dyskinetic cerebral palsy.

    PubMed

    Kim, Wonjin; Lee, Su Jin; Yoon, Young-Kwon; Shin, Yoon-Kyum; Cho, Sung-Rae; Rhee, Yumie

    2015-02-01

    Adults with cerebral palsy (CP) are known to have low bone mass with an increased risk of fragility fracture. CP is classified into two major types: spastic (pyramidal) and dyskinetic (extrapyramidal). Spastic CP is the most common and is characterized by muscle hypertonicity and impaired neuromuscular control. By contrast, dyskinetic CP is characterized by mixed muscle tone with involuntary movements. The aim of this study was to elucidate the relationship between bone metabolism and subtype of CP. Fifty-eight adults with CP (aged 18 to 49years, mean age 33.2years; 32 men, 26 women) were included in this cross-sectional analysis. Lumbar spine and femoral bone mineral density (BMD) Z-scores were measured. Bone markers, including C-telopeptide of type I collagen (CTx) and osteocalcin (OCN), were also analyzed. Among these participants, 30 had spastic CP and 28 had dyskinetic CP. The Z-scores of lumbar spine BMD did not differ between the two types. However, the Z-scores of femur trochanteric BMD were significantly lower in participants with spastic CP than in those with dyskinetic CP (-1.6±1.2 vs. -0.9±1.1, p<0.05). Seventy-four percent of participants with either type of CP had abnormally elevated CTx, while about 90% of participants showed normal OCN levels. When participants were subclassified into nonambulatory and ambulatory groups, the nonambulatory group had significantly lower BMD in the femur, including the trochanteric and total regions, whether they were spastic or dyskinetic (p<0.05). Because the type of CP affects bone mass, nonambulatory spastic CP participants showed the lowest total hip region BMD among the four groups. These results reveal that reduced weight bearing and immobility related to CP cause a negative bone balance because of increased bone resorption, which leads to a lower bone mass. In addition, hypertonicity of the affected limbs in participants with spastic CP resulted in lower bone mass than in those with dyskinetic CP. Type of CP

  16. Bone Mass in Young Adults with down Syndrome

    ERIC Educational Resources Information Center

    Guijarro, M.; Valero, C.; Paule, B.; Gonzalez-Macias, J.; Riancho, J. A.

    2008-01-01

    Background: Down syndrome (DS) is a frequent cause of intellectual disability. With the increasing life expectancy of these patients, concerns have been raised about the risk of osteoporosis. In fact, several investigators have reported a reduced bone mass in DS. However, the results may be confounded by comorbid diseases, and differences in…

  17. Bone Mass and Mineral Metabolism Alterations in Adult Celiac Disease: Pathophysiology and Clinical Approach

    PubMed Central

    Di Stefano, Michele; Mengoli, Caterina; Bergonzi, Manuela; Corazza, Gino Roberto

    2013-01-01

    Osteoporosis affects many patients with celiac disease (CD), representing the consequence of calcium malabsorption and persistent activation of mucosal inflammation. A slight increase of fracture risk is evident in this condition, particularly in those with overt malabsorption and in postmenopausal state. The adoption of a correct gluten-free diet (GFD) improves bone derangement, but is not able to normalize bone mass in all the patients. Biomarkers effective in the prediction of bone response to gluten-free diet are not yet available and the indications of guidelines are still imperfect and debated. In this review, the pathophysiology of bone loss is correlated to clinical aspects, defining an alternative proposal of management for this condition. PMID:24284619

  18. A report from Fukushima: an assessment of bone health in an area affected by the Fukushima nuclear plant incident.

    PubMed

    Ishii, Takeaki; Ito, Kazuo; Kato, Shigeaki; Tsubokura, Masaharu; Ochi, Sae; Iwamoto, Yukihide; Saito, Yasutoshi

    2013-11-01

    Bone health was assessed for inhabitants of an area affected by the Fukushima nuclear plant incident. Osteoporotic patients, who had been treated with active vitamin D3 and/or bisphosphonate at Soma Central Hospital before the Fukushima incident, were enrolled. Changes in bone turnover markers and bone mineral density were retrospectively analyzed. Serum levels of a bone resorption marker, serum type I collagen cross-linked N-telopeptide were decreased in all the treated groups, whereas those of a bone formation marker, bone-specific alkaline phosphatase, were increased. Accordingly, bone mineral density, estimated by dual-energy X-ray absorptiometry, was increased in the lumbar spine of all groups, but bone mass increase in the proximal femur was detected only in the group treated with the two agents in combination. From the degree of these parameter changes, the antiosteoporotic treatments looked effective and were equivalent to the expected potency of past observations. At this stage, the present study implies that the Fukushima nuclear incident did not bring an acute risk to bone health in the affected areas.

  19. Bone Mass and Bone Quality Are Altered by Hypoactivity in the Chicken

    PubMed Central

    Aguado, Eric; Pascaretti-Grizon, Florence; Goyenvalle, Eric; Audran, Maurice; Chappard, Daniel

    2015-01-01

    Disuse induces a rapid bone loss in adults; sedentarity is now recognized as a risk factor for osteoporosis. Hypoactivity or confinement also decrease bone mass in adults but their effects are largely unknown and only few animal models have been described. We have used 10 chickens of the rapidly growing strain 857K bred in a large enclosure (FREE group); 10 others were confined in small cages with little space to move around (HYPO group). They were sacrificed at 53 days and femurs and tibias were evaluated by texture analysis, dual energy X-ray densitometry, microcomputed tomography (microCT) and histomorphometry. Hypoactivity had no effect on the length and diameter of the bones. Bone mineral density (BMD), microCT (trabecular bone volume and trabecular microarchitecture) and texture analysis were always found significantly reduced in the animals of the HYPO group. BMD was reduced at both femur and tibia diaphysises; BMD of the metaphysis was significantly reduced in the femur but not in the tibia. An increase in osteoid volume and surfaces was noted in the HYPO group. However, there was no alteration of the mineral phase as the osteoid thickness did not differ from control animals. Bone loss was much more pronounced at the lower femur metaphysis than at the upper metaphysis of the tibia. At the tibia, only microarchitectural changes of trabecular bone could be evidenced. The confined chicken represents a new method for the study of hypodynamia since these animals do not have surgical lesions. PMID:25635404

  20. Hand bone segmentation in radioabsorptiometry images for computerised bone mass assessment.

    PubMed

    Sotoca, José M; Iñesta, José M; Belmonte, Miguel A

    2003-01-01

    From hand radiographs, the measurement of the bone density of hand bones is automatically performed, using units relative to an aluminium wedge, in order to know the absorption of the ray light intensity respect to a known substance. By means of a point distribution model, the variation modes of a statistical model of the phalanx are determined, and the boundaries of such bones localised, aiming to obtain their average grey level. The goal is to obtain an accurate and reliable computerised radiographic X-ray absorptiometry system for automatic bone mass assessment that can be easily applied to the population. The developed system has been tested and compared to other known methods with a high level of correlation.

  1. Probiotics (Bifidobacterium longum) Increase Bone Mass Density and Upregulate Sparc and Bmp-2 Genes in Rats with Bone Loss Resulting from Ovariectomy

    PubMed Central

    Parvaneh, Kolsoom; Ebrahimi, Mahdi; Sabran, Mohd Redzwan; Karimi, Golgis; Hwei, Angela Ng Min; Abdul-Majeed, Saif; Ahmad, Zuraini; Ibrahim, Zuriati; Jamaluddin, Rosita

    2015-01-01

    Probiotics are live microorganisms that exert beneficial effects on the host, when administered in adequate amounts. Mostly, probiotics affect the gastrointestinal (GI) tract of the host and alter the composition of gut microbiota. Nowadays, the incidence of hip fractures due to osteoporosis is increasing worldwide. Ovariectomized (OVX) rats have fragile bone due to estrogen deficiency and mimic the menopausal conditions in women. Therefore, this study aimed to examine the effects of Bifidobacterium longum (B. longum) on bone mass density (BMD), bone mineral content (BMC), bone remodeling, bone structure, and gene expression in OVX rats. The rats were randomly assigned into 3 groups (sham, OVX, and the OVX group supplemented with 1 mL of B. longum 108–109 colony forming units (CFU)/mL). B. longum was given once daily for 16 weeks, starting from 2 weeks after the surgery. The B. longum supplementation increased (p < 0.05) serum osteocalcin (OC) and osteoblasts, bone formation parameters, and decreased serum C-terminal telopeptide (CTX) and osteoclasts, bone resorption parameters. It also altered the microstructure of the femur. Consequently, it increased BMD by increasing (p < 0.05) the expression of Sparc and Bmp-2 genes. B. longum alleviated bone loss in OVX rats and enhanced BMD by decreasing bone resorption and increasing bone formation. PMID:26366421

  2. Final Report: Bone Mass Inheritance: A Project to Identify the Genetic Regulation of Bone Mass

    SciTech Connect

    Recker, Robert R., M.D.

    2002-03-28

    This project was designed to find human chromosomal locations that contain genes regulating peak bone density. It is part of a whole genome search for those loci,each responsible for at least 15% of the variation in the peak adult bone density. We accomplished this with a sib pair design, combined with simultaneous examination of extended kindreds. This project gave partial support of the recruitment which has now been completed. The project will extend into 2003. During the remainder of the project, a whole genome scan will be performed from the entire cohort of 2226 persons who have DNA archived, followed by linkage analysis. This project will meet the scientific objective leading eventually to expanded options for treating the condition that leads to bone thinning osteoporosis, and potential fractures in aging populations.

  3. Leg tissue mass composition affects tibial acceleration response following impact.

    PubMed

    Schinkel-Ivy, Alison; Burkhart, Timothy A; Andrews, David M

    2012-02-01

    To date, there has not been a direct examination of the effect that tissue composition (lean mass/muscle, fat mass, bone mineral content) differences between males and females has on how the tibia responds to impacts similar to those seen during running. To evaluate this, controlled heel impacts were imparted to 36 participants (6 M and 6 F in each of low, medium and high percent body fat [BF] groups) using a human pendulum. A skin-mounted accelerometer medial to the tibial tuberosity was used to determine the tibial response parameters (peak acceleration, acceleration slope and time to peak acceleration). There were no consistent effects of BF or specific tissue masses on the un-normalized tibial response parameters. However, females experienced 25% greater peak acceleration than males. When normalized to lean mass, wobbling mass, and bone mineral content, females experienced 50%, 62% and 70% greater peak acceleration, respectively, per gram of tissue than males. Higher magnitudes of lean mass and bone mass significantly contributed to decreased acceleration responses in general.

  4. Effect of Teriparatide, Vibration and the Combination on Bone Mass and Bone Architecture in Chronic Spinal Cord Injury

    DTIC Science & Technology

    2011-10-01

    randomized, placebo-controlled study evaluates the efficacy and safety of two interventions known to be anabolic to bone, parathyroid hormone and...ability of two interventions, parathyroid hormone and mechanical loading, separately and together, to increase bone mass and improve bone quality in

  5. Sprint Interval Training Induces A Sexual Dimorphism but does not Improve Peak Bone Mass in Young and Healthy Mice

    PubMed Central

    Koenen, Kathrin; Knepper, Isabell; Klodt, Madlen; Osterberg, Anja; Stratos, Ioannis; Mittlmeier, Thomas; Histing, Tina; Menger, Michael D.; Vollmar, Brigitte; Bruhn, Sven; Müller-Hilke, Brigitte

    2017-01-01

    Elevated peak bone mass in early adulthood reduces the risk for osteoporotic fractures at old age. As sports participation has been correlated with elevated peak bone masses, we aimed to establish a training program that would efficiently stimulate bone accrual in healthy young mice. We combined voluntary treadmill running with sprint interval training modalities that were tailored to the individual performance limits and were of either high or intermediate intensity. Adolescent male and female STR/ort mice underwent 8 weeks of training before the hind legs were analyzed for cortical and trabecular bone parameters and biomechanical strength. Sprint interval training led to increased running speeds, confirming an efficient training. However, males and females responded differently. The males improved their running speeds in response to intermediate intensities only and accrued cortical bone at the expense of mechanical strength. High training intensities induced a significant loss of trabecular bone. The female bones showed neither adverse nor beneficial effects in response to either training intensities. Speculations about the failure to improve geometric alongside mechanical bone properties include the possibility that our training lacked sufficient axial loading, that high cardio-vascular strains adversely affect bone growth and that there are physiological limits to bone accrual. PMID:28303909

  6. Sprint Interval Training Induces A Sexual Dimorphism but does not Improve Peak Bone Mass in Young and Healthy Mice.

    PubMed

    Koenen, Kathrin; Knepper, Isabell; Klodt, Madlen; Osterberg, Anja; Stratos, Ioannis; Mittlmeier, Thomas; Histing, Tina; Menger, Michael D; Vollmar, Brigitte; Bruhn, Sven; Müller-Hilke, Brigitte

    2017-03-17

    Elevated peak bone mass in early adulthood reduces the risk for osteoporotic fractures at old age. As sports participation has been correlated with elevated peak bone masses, we aimed to establish a training program that would efficiently stimulate bone accrual in healthy young mice. We combined voluntary treadmill running with sprint interval training modalities that were tailored to the individual performance limits and were of either high or intermediate intensity. Adolescent male and female STR/ort mice underwent 8 weeks of training before the hind legs were analyzed for cortical and trabecular bone parameters and biomechanical strength. Sprint interval training led to increased running speeds, confirming an efficient training. However, males and females responded differently. The males improved their running speeds in response to intermediate intensities only and accrued cortical bone at the expense of mechanical strength. High training intensities induced a significant loss of trabecular bone. The female bones showed neither adverse nor beneficial effects in response to either training intensities. Speculations about the failure to improve geometric alongside mechanical bone properties include the possibility that our training lacked sufficient axial loading, that high cardio-vascular strains adversely affect bone growth and that there are physiological limits to bone accrual.

  7. Bone development in black ducks as affected by dietary toxaphene

    USGS Publications Warehouse

    Mehrle, P.M.; Finley, M.T.; Ludke, J.L.; Mayer, F.L.; Kaiser, T.E.

    1979-01-01

    Black ducks, Anas rubripes, were exposed to dietary toxaphene concentrations of 0, 10, or 50 μg/g of food for 90 days prior to laying and through the reproductive season. Toxaphene did not affect reproduction or survival, but reduced growth and impaired backbone development in ducklings. Collagen, the organic matrix of bone, was decreased significantly in cervical vertebrae of ducklings fed 50 μg/g, and calcium conentrations increased in vertebrae of ducklings fed 10 or 50 μg/g. The effects of toxaphene were observed only in female ducklings. In contrast to effects on vertebrae, toxaphene exposure did not alter tibia development. Toxaphene residues in carcasses of these ducklings averaged slightly less than the dietary levels.

  8. Exercise in youth: High bone mass, large bone size, and low fracture risk in old age.

    PubMed

    Tveit, M; Rosengren, B E; Nilsson, J Å; Karlsson, M K

    2015-08-01

    Physical activity is favorable for peak bone mass but if the skeletal benefits remain and influence fracture risk in old age is debated. In a cross-sectional controlled mixed model design, we compared dual X-ray absorptiometry-derived bone mineral density (BMD) and bone size in 193 active and retired male elite soccer players and 280 controls, with duplicate measurements of the same individual done a mean 5 years apart. To evaluate lifetime fractures, we used a retrospective controlled study design in 397 retired male elite soccer players and 1368 controls. Differences in bone traits were evaluated by Student's t-test and fracture risk assessments by Poisson regression and Cox regression. More than 30 years after retirement from sports, the soccer players had a Z-score for total body BMD of 0.4 (0.1 to 0.6), leg BMD of 0.5 (0.2 to 0.8), and femoral neck area of 0.3 (0.0 to 0.5). The rate ratio for fracture after career end was 0.6 (0.4 to 0.9) and for any fragility fracture 0.4 (0.2 to 0.9). Exercise-associated bone trait benefits are found long term after retirement from sports together with a lower fracture risk. This indicates that physical activity in youth could reduce the burden of fragility fractures.

  9. Low Bone Mass Is a Risk Factor in Periodontal Disease-Related Tooth Loss in Patients with Intellectual Disability

    PubMed Central

    Numoto, Yoko; Mori, Takayuki; Maeda, Shigeru; Tomoyasu, Yumiko; Higuchi, Hitoshi; Egusa, Masahiko; Miyawaki, Takuya

    2013-01-01

    Teeth are fundamental to maintaining good quality of life, but are often lost prematurely in individuals with intellectual disability. Furthermore, since bone mass decreases in menopausal women, women with intellectual disability have an augmented risk of losing their teeth. However, the relationship between periodontal disease-related tooth loss and bone mass has never been studied specifically in patients with intellectual disability. This study evaluated this relationship in a retrospective cohort study. Participants were female dental patients aged between 20 and 50 years and with an intellectual disability, who were treated in the Special Needs Dentistry unit of the Okayama University Hospital from January 2009 to March 2010. Logistic regression analysis was used to analyze which factors affect periodontal disease-related tooth loss. Information relating to 12 predictor variables, including age and bone mass level, was derived from medical records. The 27 subjects had a total of 704 teeth at the time of initial examination, but 20 teeth (2.8%) had been lost owing to periodontal disease by the time bone mass measurements were recorded. Results of the multinomial logistic regression analysis indicated a significant odds ratio for three items: number of missing teeth at the time of initial examination, bone mass, and living environment. This result suggests that low bone mass is an independent risk factor in tooth loss secondary to periodontal disease in patients with intellectual disability. Dentists should thus take account of this heightened risk of tooth loss when caring for post-menopausal women with intellectual disability. PMID:24358063

  10. Arteriovenous Fistula Affects Bone Mineral Density Measurements in End-Stage Renal Failure Patients

    PubMed Central

    Torregrosa, José-Vicente; Fuster, David; Peris, Pilar; Vidal-Sicart, Sergi; Solà, Oriol; Domenech, Beatriz; Martín, Gloria; Casellas, Joan; Pons, Francisca

    2009-01-01

    Background and objectives: Hemodialysis needs an arteriovenous fistula (AVF) that may influence the structure and growth of nearby bone and affect bone mass measurement. The study analyzed the effect of AVF in the assessment of forearm bone mineral density (BMD) measured by dual energy x-ray absorptiometry (DXA) and examined its influence on the final diagnosis of osteoporosis. Design, setting, participants, & measurements: Forty patients (52 ± 18 yr) in hemodialysis program (12 ± 8 yr) with permeable AVF in forearm were included. Patients were divided in two groups (over and under 50 yr). BMD of both forearms (three areas), lumbar spine, and femur was measured by DXA. Forearm measurements in each arm were compared. Patients were diagnosed as normal only if all territories were considered nonpathologic and osteoporosis/osteopenia was determined by the lowest score found. Results: Ten patients were excluded and 30 patients were analyzed. BMD in the forearm with AVF was significantly lower than that observed in the contralateral forearm in both groups of patients and in all forearm areas analyzed. When only lumbar spine and femur measurements were considered, 70% of patients were nonpathologic and 30% were osteoporotic. However, inclusion of AVF forearm classified 63% as osteoporotic and a further 27% as osteopenic, leaving only 10% as nonpathologic. Conclusions: Forearm AVF affects BMD measurements by decreasing their values in patients with end-stage renal failure. This may produce an overdiagnosis of osteoporosis, which should be taken into account when evaluating patients of this type. PMID:19713298

  11. Enhanced bone mass and physical fitness in prepubescent footballers.

    PubMed

    Vicente-Rodriguez, G; Jimenez-Ramirez, J; Ara, I; Serrano-Sanchez, J A; Dorado, C; Calbet, J A L

    2003-11-01

    Not much is known about the osteogenic effects of sport activities before puberty. We tested the hypothesis that football (soccer) participation is associated with enhanced bone mineral content (BMC) and areal density (BMD) in prepubertal boys. One hundred four healthy white boys (9.3 +/- 0.2 years, Tanner stages I-II) participated in this study: 53 footballers and 51 controls. The footballers devoted at least 3 h per week to participation in football, while the controls did not perform in any kind of regular physical activity other than that programmed during the compulsory physical education courses. Bone variables were measured by dual-energy X-ray absorptiometry. The maximal leg extension isometric force in the squat position with knees bent at 90 degrees and the peak force, mean power, and height jumped during vertical jumps were assed with a force plate. Additionally, 30-m running speed, 300-m run (anaerobic capacity), and 20-m shuttle-run tests (maximal aerobic power) were also performed. Compared to the controls, the footballers attained better results in the physical fitness test and had lower body mass (-10%, P < 0.05) due to a reduced percentage of body fat (4% less, P < 0.05). The footballers exhibit enhanced trochanteric BMC (+17%, P < 0.001). Likewise, femoral and lumbar spine BMD were also greater in the football players (P mass and the whole body lean mass. Interestingly, among all physical fitness variables, the maximal isometric force showed the highest correlation with total and regional BMC and BMD. Multiple regression analysis indicated that the 30-m running speed test, combined with the height and body mass, has predictive value for whole-body BMC (r = 0.92, P < 0.001) and BMD (r = 0.69, P < 0.001) in prepubescent boys. In summary, football participation is associated with improved physical fitness, reduced fat mass, increased lean

  12. Body Mass, Training, Menses, and Bone in Adolescent Runners: A 3-y Follow-Up

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract: Endurance runners with low bone mass during adolescence may be at risk of developing a low peak bone mineral density (BMD) as a young adult. However, it is possible that they mature late and undergo delayed bone mass accumulation. PURPOSE: We evaluated 40 adolescent runners (age 15.9 ± 0....

  13. Vaccination with DKK1-derived peptides promotes bone formation and bone mass in an aged mouse osteoporosis model.

    PubMed

    Wu, Qiong; Li, Rui-Shu; Zhao, Yue; Wang, Zhi-Xia; Tang, Yan-Chun; Zhang, Jing; Liu, Jian-Ning; Tan, Xiang-Yang

    2014-08-01

    The investigation of agents for the treatment of osteoporosis has been a long-standing effort. The Wnt pathway plays an important role in bone formation and regeneration, and expression of Wnt pathway inhibitors, Dickkopf-1 (DKK1), appears to be associated with changes in bone mass. Inactivation of DKK1 leads to substantially increased bone mass in genetically manipulated animals. DKK1-derived peptides (DDPs) were added to BMP2-stimulated MC3T3-E1 preosteoblastic cells in vitro to evaluate inhibitory activity of DDPs in MC3T3-E1 cell differentiation. Study was extended in vivo on old female mice to show whether or not inhibition of endogenous DKK1 biological activity using DDPs vaccination approach leads to increase of bone formation, bone density, and improvement of bone microstructure. We reported that synthetic DDPs were able to reduce alkaline phosphatase activity, prevent mineralization and inhibit the differentiation of MC3T3-E1 cells in vitro. Furthermore, vaccination with these DDPs in aged female mice 4 times for a total period of 22 weeks promoted bone mass and bone microstructure. 3D microCT and histomorphometric analysis showed that there were significant increase in bone mineral densities, improvement of bone microstructure and promotion of bone formation in the vaccinated mice, especially in the mice vaccinated with DDP-A and DDP-C. Histological and scanning electron microscopy image analysis also indicated that vaccination increased trabecular bone mass and significantly decreased fragmentation of bone fibers. Taken together, these preclinical results suggest that vaccination with DDPs represents a promising new therapeutic approach for the treatment of bone-related disorders, such as osteoporosis.

  14. Relationship of lean body mass with bone mass and bone mineral density in the general Korean population.

    PubMed

    Moon, Seong-Su

    2014-09-01

    We investigated association of lean body mass with bone mass (BM) and bone mineral density (BMD) according to gender and menopausal status in the general Korean population. Participants included 4,299 males and 5,226 females who were 20 years of age or older from the fourth and fifth Korea National Health and Nutritional Examination Surveys (2009-2010). Dual-energy X-ray absorptiometry was used for measurement of BMD and body composition. BMD was measured in the femur and lumbar spine. Appendicular skeletal muscle mass (ASM) was defined as the sum of the lean soft tissue masses for the arms and legs. Analysis was performed after categorizing participants into four groups (males <50 years, males ≥ 50 years, premenopausal females, and postmenopausal females). In males, the highest ASM was observed in the 20-29-year group and then showed a gradual decrease as age increased, and BM and BMD showed similar patterns of change, while in females, ASM, BMD, and BM reached the peak level in the 40-49-year group and then decreased. In multiple regression analysis, after adjusting for confounding factors, the results showed an independent association of ASM with an increase in BM and BMD (P < 0.05). After adjusting for confounding factors, total fat mass showed a significant association with BM (P < 0.05). These aforementioned relationships were commonly observed on both femur and lumbar spine in every group. Lean body mass showed an independent association with increased BM and BMD, regardless of gender, age in men, and menopausal status in women.

  15. Radiation-induced sarcomas of bone: factors that affect outcome.

    PubMed

    Kalra, S; Grimer, R J; Spooner, D; Carter, S R; Tillman, R M; Abudu, A

    2007-06-01

    We identified 42 patients who presented to our unit over a 27-year period with a secondary radiation-induced sarcoma of bone. We reviewed patient, tumour and treatment factors to identify those that affected outcome. The mean age of the patients at presentation was 45.6 years (10 to 84) and the mean latent interval between radiotherapy and diagnosis of the sarcoma was 17 years (4 to 50). The median dose of radiotherapy given was estimated at 50 Gy (mean 49; 20 to 66). There was no correlation between radiation dose and the time to development of a sarcoma. The pelvis was the most commonly affected site (14 patients (33%)). Breast cancer was the most common primary tumour (eight patients; 19%). Metastases were present at diagnosis of the sarcoma in nine patients (21.4%). Osteosarcoma was the most common diagnosis and occurred in 30 cases (71.4%). Treatment was by surgery and chemotherapy when indicated: 30 patients (71.4%) were treated with the intention to cure. The survival rate was 41% at five years for those treated with the intention to cure but in those treated palliatively the mean survival was only 8.8 months (2 to 22), and all had died by two years. The only factor found to be significant for survival was the ability to completely resect the tumour. Limb sarcomas had a better prognosis (66% survival at five years) than central ones (12% survival at five years) (p = 0.009). Radiation-induced sarcoma is a rare complication of radiotherapy. Both surgical and oncological treatment is likely to be compromised by the treatment received previously by the patient.

  16. Forearm bone mass predicts mortality in chronic hemodialysis patients.

    PubMed

    Orlic, Lidija; Mikolasevic, Ivana; Crncevic-Orlic, Zeljka; Jakopcic, Ivan; Josipovic, Josipa; Pavlovic, Drasko

    2016-07-27

    We aim to determine the relationship between bone mineral density (BMD), measured by T- and Z-score, and mortality risk in hemodialysis (HD) patients. We also investigate which are the most suitable skeletal sites for predicting mortality rate. We analyzed the survival of 102 patients who had been treated with chronic HD according to BMD. Patients with a T-score ≤2.5 at the middle, ultradistal and proximal part of the forearm had a higher mortality risk than those with a T-score of -2.5 or higher. Furthermore, no statistically significant association was found between loss of bone mass at other measuring points-lumbar spine (anteroposterior orientation from L1-L4) and hip (neck, trochanter, intertrochanter, total and Ward's triangle)-and mortality risk. We were also interested in exploring the relationship between Z-score at different skeletal regions and mortality risk. We found that patients with a Z-score of -1 or lower at all three parts of the forearm had a greater mortality risk. It is also worth noting that the Z-score at all three parts of the forearm was a more apparent predictor of mortality, compared to the T-score at the same skeletal regions. This empirical analysis showed that BMD assessments should be obtained at the forearm, due to the good predictability of this skeletal site regarding mortality of HD patients. Moreover, data concerning bone density should be reported as Z-scores.

  17. Dietary supplements and physical exercise affecting bone and body composition in frail elderly persons.

    PubMed Central

    de Jong, N; Chin A Paw, M J; de Groot, L C; Hiddink, G J; van Staveren, W A

    2000-01-01

    OBJECTIVES: This study determined the effect of enriched foods and all-around physical exercise on bone and body composition in frail elderly persons. METHODS: A 17-week randomized, controlled intervention trial, following a 2 x 2 factorial design--(1) enriched foods, (2) exercise, (3) both, or (4) neither--was performed in 143 frail elderly persons (aged 78.6 +/- 5.6 years). Foods were enriched with multiple micronutrients; exercises focused on skill training, including strength, endurance, coordination, and flexibility. Main outcome parameters were bone and body composition. RESULTS: Exercise preserved lean mass (mean difference between exercisers and non-exercisers: 0.5 kg +/- 1.2 kg; P < .02). Groups receiving enriched food had slightly increased bone mineral density (+0.4%), bone mass (+0.6%), and bone calcium (+0.6%) compared with groups receiving non-enriched foods, in whom small decreases of 0.1%, 0.2%, and 0.4%, respectively, were found. These groups differed in bone mineral density (0.006 +/- 0.020 g/cm2; P = .08), total bone mass (19 +/- g; P = .04), and bone calcium (8 +/- 21 g; P = .03). CONCLUSIONS: Foods containing a physiologic dose of micronutrients slightly increased bone density, mass, and calcium, whereas moderately intense exercise preserved lean body mass in frail elderly persons. PMID:10846514

  18. Radiological study of two disseminated maligant non-Hodgkin lymphomas affecting only the bones in children

    SciTech Connect

    Vanel, D; Rebibo, G.; Tamman, S.; Bayle, C.; Hartmann, O.

    1982-12-01

    Malignant non-Hodgkin lymphomas are a neoplastic proliferation of lymphoid cells whose clinical manifestations are extremely variable. All tissues can be affected. There may be localization in lymphoid organs (Waldeyer's ring, spleen, digestive tract), other localizations (lungs, pleura, liver, bone marrow, central nervous system) and unusual localizations. Although bone marrow is often affected, bone involvement is very rare in the early stages of the disease. This report concerns the radiological study of two disseminated malignant non-Hodgkin lymphomas affecting only the bone in children.

  19. The role of Dkk1 in bone mass regulation: correlating serum Dkk1 expression with bone mineral density.

    PubMed

    Butler, Joseph S; Murray, David W; Hurson, Conor J; O'Brien, Julie; Doran, Peter P; O'Byrne, John M

    2011-03-01

    The Wnt/β-catenin pathway is a major signaling cascade in bone biology, playing a key role in regulating bone development and remodeling, with aberrations in signaling resulting in disturbances in bone mass. The objectives of our study were to correlate serum Dkk1 expression with bone mineral density (BMD) and assess the potential role of Dkk1 as a serological marker of bone mass. Serum was collected from a cohort of patients (n = 36), 18 patients with a reduced BMD and 18 control patients. Serum Dkk1 expression as quantified by ELISA was correlated with lumbar and femoral t- and z-scores. Serum Dkk1 concentration in the osteoporosis group was significantly higher than control group (941 ± 116 vs. 558 ± 47 pg/ml, p < 0.01). Serum Dkk1 expression was highly correlated with bone mass variables with inverse associations found between serum Dkk1 expression and lumbar t-score (r = -0.34, p = 0.00433), lumbar z-score (r = -0.22, p = 0.1907), femur t-score (r = -0.42, p = 0.0101), and femur z-score (r = -0.43, p = 0.0089). Our data further emphasizes the pivotal role played by Wnt/β-catenin signaling in bone mass regulation. Dkk1, a powerful antagonist of canonical Wnt signaling, may have a role to play as a serological marker for disorders of bone mass, warranting further evaluation.

  20. Rapid loss of bone mass and strength in mice after abdominal irradiation.

    PubMed

    Jia, Dan; Gaddy, Dana; Suva, Larry J; Corry, Peter M

    2011-11-01

    Localized irradiation is a common treatment modality for malignancies in the pelvic-abdominal cavity. We report here on the changes in bone mass and strength in mice 7-14 days after abdominal irradiation. Male C57BL/6 mice of 10-12 weeks of age were given a single-dose (0, 5, 10, 15 or 20 Gy) or fractionated (3 Gy × 2 per day × 7.5 days) X rays to the abdomen and monitored daily for up to 14 days. A decrease in the serum bone formation marker and ex vivo osteoblast differentiation was detected 7 days after a single dose of radiation, with little change in the serum bone resorption marker and ex vivo osteoclast formation. A single dose of radiation elicited a loss of bone mineral density (BMD) within 14 days of irradiation. The BMD loss was up to 4.1% in the whole skeleton, 7.3% in tibia, and 7.7% in the femur. Fractionated abdominal irradiation induced similar extents of BMD loss 10 days after the last fraction: 6.2% in the whole skeleton, 5.1% in tibia, and 13.8% in the femur. The loss of BMD was dependent on radiation dose and was more profound in the trabecula-rich regions of the long bones. Moreover, BMD loss in the total skeleton and the femurs progressed with time. Peak load and stiffness in the mid-shaft tibia from irradiated mice were 11.2-14.2% and 11.5-25.0% lower, respectively, than sham controls tested 7 days after a single-dose abdominal irradiation. Our data demonstrate that abdominal irradiation induces a rapid loss of BMD in the mouse skeleton. These effects are bone type- and region-specific but are independent of radiation fractionation. The radiation-induced abscopal damage to the skeleton is manifested by the deterioration of biomechanical properties of the affected bone.

  1. Does Orthodontic Treatment Affect the Alveolar Bone Density?

    PubMed Central

    Yu, Jian-Hong; Huang, Heng-Li; Liu, Chien-Feng; Wu, Jay; Li, Yu-Fen; Tsai, Ming-Tzu; Hsu, Jui-Ting

    2016-01-01

    Abstract Few studies involving human participants have been conducted to investigate the effect of orthodontic treatment on alveolar bone density around the teeth. Our previous study revealed that patients who received 6 months of active orthodontic treatment exhibited an ∼24% decrease in alveolar bone density around the teeth. However, after an extensive retention period following orthodontic treatment, whether the bone density around the teeth can recover to its original state from before the treatment remains unclear, thus warranting further investigation. The purpose of this study was to assess the bone density changes around the teeth before, during, and after orthodontic treatment. Dental cone-beam computed tomography (CBCT) was used to measure the changes in bone density around 6 teeth in the anterior maxilla (maxilla central incisors, lateral incisors, and canines) of 8 patients before and after orthodontic treatment. Each patient underwent 3 dental CBCT scans: before treatment (T0); at the end of 7 months of active orthodontic treatment (T1); after several months (20–22 months) of retention (T2). The Friedman test was applied to evaluate the changes in the alveolar bone density around the teeth according to the 3 dental CBCT scans. From T0 to T1, a significant reduction in bone density was observed around the teeth (23.36 ± 10.33%); by contrast, a significant increase was observed from T1 to T2 (31.81 ± 23.80%). From the perspective of the overall orthodontic treatment, comparing the T0 and T2 scans revealed that the bone density around the teeth was relatively constant (a reduction of only 0.75 ± 19.85%). The results of the statistical test also confirmed that the difference in bone density between T0 and T2 was nonsignificant. During orthodontic tooth movement, the alveolar bone density around the teeth was reduced. However, after a period of bone recovery, the reduced bone density recovered to its previous state from before the

  2. Does Orthodontic Treatment Affect the Alveolar Bone Density?

    PubMed

    Yu, Jian-Hong; Huang, Heng-Li; Liu, Chien-Feng; Wu, Jay; Li, Yu-Fen; Tsai, Ming-Tzu; Hsu, Jui-Ting

    2016-03-01

    Few studies involving human participants have been conducted to investigate the effect of orthodontic treatment on alveolar bone density around the teeth. Our previous study revealed that patients who received 6 months of active orthodontic treatment exhibited an ∼24% decrease in alveolar bone density around the teeth. However, after an extensive retention period following orthodontic treatment, whether the bone density around the teeth can recover to its original state from before the treatment remains unclear, thus warranting further investigation.The purpose of this study was to assess the bone density changes around the teeth before, during, and after orthodontic treatment.Dental cone-beam computed tomography (CBCT) was used to measure the changes in bone density around 6 teeth in the anterior maxilla (maxilla central incisors, lateral incisors, and canines) of 8 patients before and after orthodontic treatment. Each patient underwent 3 dental CBCT scans: before treatment (T0); at the end of 7 months of active orthodontic treatment (T1); after several months (20-22 months) of retention (T2). The Friedman test was applied to evaluate the changes in the alveolar bone density around the teeth according to the 3 dental CBCT scans.From T0 to T1, a significant reduction in bone density was observed around the teeth (23.36 ± 10.33%); by contrast, a significant increase was observed from T1 to T2 (31.81 ± 23.80%). From the perspective of the overall orthodontic treatment, comparing the T0 and T2 scans revealed that the bone density around the teeth was relatively constant (a reduction of only 0.75 ± 19.85%). The results of the statistical test also confirmed that the difference in bone density between T0 and T2 was nonsignificant.During orthodontic tooth movement, the alveolar bone density around the teeth was reduced. However, after a period of bone recovery, the reduced bone density recovered to its previous state from before the orthodontic treatment

  3. Bone protein “extractomics”: comparing the efficiency of bone protein extractions of Gallus gallus in tandem mass spectrometry, with an eye towards paleoproteomics

    PubMed Central

    DeHart, Caroline J.; Schweitzer, Mary H.; Thomas, Paul M.; Kelleher, Neil L.

    2016-01-01

    Proteomic studies of bone require specialized extraction protocols to demineralize and solubilize proteins from within the bone matrix. Although various protocols exist for bone protein recovery, little is known about how discrete steps in each protocol affect the subset of the bone proteome recovered by mass spectrometry (MS) analyses. Characterizing these different “extractomes” will provide critical data for development of novel and more efficient protein extraction methodologies for fossils. Here, we analyze 22 unique sub-extractions of chicken bone and directly compare individual extraction components for their total protein yield and diversity and coverage of bone proteins identified by MS. We extracted proteins using different combinations and ratios of demineralizing reagents, protein-solubilizing reagents, and post-extraction buffer removal methods, then evaluated tryptic digests from 20 µg aliquots of each fraction by tandem MS/MS on a 12T FT-ICR mass spectrometer. We compared total numbers of peptide spectral matches, peptides, and proteins identified from each fraction, the redundancy of protein identifications between discrete steps of extraction methods, and the sequence coverage obtained for select, abundant proteins. Although both alpha chains of collagen I (the most abundant protein in bone) were found in all fractions, other collagenous and non-collagenous proteins (e.g., apolipoprotein, osteonectin, hemoglobin) were differentially identified. We found that when a standardized amount of extracted proteins was analyzed, extraction steps that yielded the most protein (by weight) from bone were often not the ones that produced the greatest diversity of bone proteins, or the highest degree of protein coverage. Generally, the highest degrees of diversity and coverage were obtained from demineralization fractions, and the proteins found in the subsequent solubilization fractions were highly redundant with those in the previous fraction. Based on

  4. Bone protein "extractomics": comparing the efficiency of bone protein extractions of Gallus gallus in tandem mass spectrometry, with an eye towards paleoproteomics.

    PubMed

    Schroeter, Elena R; DeHart, Caroline J; Schweitzer, Mary H; Thomas, Paul M; Kelleher, Neil L

    2016-01-01

    Proteomic studies of bone require specialized extraction protocols to demineralize and solubilize proteins from within the bone matrix. Although various protocols exist for bone protein recovery, little is known about how discrete steps in each protocol affect the subset of the bone proteome recovered by mass spectrometry (MS) analyses. Characterizing these different "extractomes" will provide critical data for development of novel and more efficient protein extraction methodologies for fossils. Here, we analyze 22 unique sub-extractions of chicken bone and directly compare individual extraction components for their total protein yield and diversity and coverage of bone proteins identified by MS. We extracted proteins using different combinations and ratios of demineralizing reagents, protein-solubilizing reagents, and post-extraction buffer removal methods, then evaluated tryptic digests from 20 µg aliquots of each fraction by tandem MS/MS on a 12T FT-ICR mass spectrometer. We compared total numbers of peptide spectral matches, peptides, and proteins identified from each fraction, the redundancy of protein identifications between discrete steps of extraction methods, and the sequence coverage obtained for select, abundant proteins. Although both alpha chains of collagen I (the most abundant protein in bone) were found in all fractions, other collagenous and non-collagenous proteins (e.g., apolipoprotein, osteonectin, hemoglobin) were differentially identified. We found that when a standardized amount of extracted proteins was analyzed, extraction steps that yielded the most protein (by weight) from bone were often not the ones that produced the greatest diversity of bone proteins, or the highest degree of protein coverage. Generally, the highest degrees of diversity and coverage were obtained from demineralization fractions, and the proteins found in the subsequent solubilization fractions were highly redundant with those in the previous fraction. Based on these

  5. Deficiency and Also Transgenic Overexpression of Timp-3 Both Lead to Compromised Bone Mass and Architecture In Vivo

    PubMed Central

    Hopkinson, Mark; Poulet, Blandine; Pollard, Andrea S.; Shefelbine, Sandra J.; Chang, Yu-Mei; Francis-West, Philippa; Bou-Gharios, George; Pitsillides, Andrew A.

    2016-01-01

    Tissue inhibitor of metalloproteinases-3 (TIMP-3) regulates extracellular matrix via its inhibition of matrix metalloproteinases and membrane-bound sheddases. Timp-3 is expressed at multiple sites of extensive tissue remodelling. This extends to bone where its role, however, remains largely unresolved. In this study, we have used Micro-CT to assess bone mass and architecture, histological and histochemical evaluation to characterise the skeletal phenotype of Timp-3 KO mice and have complemented this by also examining similar indices in mice harbouring a Timp-3 transgene driven via a Col-2a-driven promoter to specifically target overexpression to chondrocytes. Our data show that Timp-3 deficiency compromises tibial bone mass and structure in both cortical and trabecular compartments, with corresponding increases in osteoclasts. Transgenic overexpression also generates defects in tibial structure predominantly in the cortical bone along the entire shaft without significant increases in osteoclasts. These alterations in cortical mass significantly compromise predicted tibial load-bearing resistance to torsion in both genotypes. Neither Timp-3 KO nor transgenic mouse growth plates are significantly affected. The impact of Timp-3 deficiency and of transgenic overexpression extends to produce modification in craniofacial bones of both endochondral and intramembranous origins. These data indicate that the levels of Timp-3 are crucial in the attainment of functionally-appropriate bone mass and architecture and that this arises from chondrogenic and osteogenic lineages. PMID:27519049

  6. Physical characteristics affecting the tensile failure properties of compact bone.

    PubMed

    Currey, J D

    1990-01-01

    Compact bone specimens from a wide variety of reptiles, birds, and mammals were tested in tension, and their failure properties related to mineral volume fraction, porosity and histological orientation. The principal findings were that the ultimate strain and the work under the stress-strain curve declined sharply with mineralisation, as did the stress and strain appearing after the specimen had yielded. Ultimate tensile strength was not simply related to any combination of the possible explanatory variables, but some relatively poorly mineralised bones, notably antlers, had high stresses at failure. These high strengths were allowed by a great increase in stress after the bones had yielded at quite low stresses.

  7. Pyridoxine deficiency affects biomechanical properties of chick tibial bone

    NASA Technical Reports Server (NTRS)

    Masse, P. G.; Rimnac, C. M.; Yamauchi, M.; Coburn, S. P.; Rucker, R. B.; Howell, D. S.; Boskey, A. L.

    1996-01-01

    The mechanical integrity of bone is dependent on the bone matrix, which is believed to account for the plastic deformation of the tissue, and the mineral, which is believed to account for the elastic deformation. The validity of this model is shown in this study based on analysis of the bones of vitamin B6-deficient and vitamin B6-replete chick bones. In this model, when B6-deficient and control animals are compared, vitamin B6 deficiency has no effect on the mineral content or composition of cortical bone as measured by ash weight (63 +/- 6 vs. 58 +/- 3); mineral to matrix ratio of the FTIR spectra (4.2 +/- 0.6 vs. 4.5 +/- 0.2), line-broadening analyses of the X-ray diffraction 002 peak (beta 002 = 0.50 +/- 0.1 vs. 0.49 +/- 0.01), or other features of the infrared spectra. In contrast, collagen was significantly more extractable from vitamin B6-deficient chick bones (20 +/- 2% of total hydroxyproline extracted vs. 10 +/- 3% p < or = 0.001). The B6-deficient bones also contained an increased amount of the reducible cross-links DHLNL, dehydro-dihydroxylysinonorleucine, (1.03 +/- 0.07 vs. 0.84 +/- 0.13 p < or = 0.001); and a nonsignificant increase in HLNL, dehydro-hydroxylysinonorleucine, (0.51 +/- 0.03 vs. 0.43 +/- 0.03, p < or = 0.10). There were no significant changes in bone length, bone diameter, or area moment of inertia. In four-point bending, no significant changes in elastic modulus, stiffness, offset yield deflection, or fracture deflection were detected. However, fracture load in the B6-deficient animals was decreased from 203 +/- 35 MPa to 151 +/- 23 MPa, p < or = 0.01, and offset yield load was decreased from 165 +/- 9 MPa to 125 +/- 14 MPa, p < or = 0.05. Since earlier histomorphometric studies had demonstrated that the B6-deficient bones were osteopenic, these data suggest that although proper cortical bone mineralization occurred, the alterations of the collagen resulted in changes to bone mechanical performance.

  8. Effect of daily lithium chloride administration on bone mass and strength in growing broiler chickens.

    PubMed

    Harvey, B M; Eschbach, M; Glynn, E A; Kotha, S; Darre, M; Adams, D J; Ramanathan, R; Mancini, R; Govoni, K E

    2015-02-01

    The objective was to determine the effects of oral lithium chloride supplementation on bone strength and mass in broiler chickens. Ninety-six broilers were assigned to 1 of 2 treatment groups (lithium chloride or control; n=48/treatment). Beginning at 1 or 3 wk of age, chickens were administered lithium chloride (20 mg/kg body weight) or water daily by oral gavage. At 6 wk of age, chickens were euthanized and bone and muscle samples were collected. A 24 h lithium chloride (20 mg/kg body weight) challenge determined that serum lithium chloride increased within 2 h and cleared the system within 24 h, demonstrating the effective delivery of lithium chloride. Treatment did not influence body weight (P≥0.20) or feed intake (P≥0.81), demonstrating that lithium chloride did not negatively affect broiler growth. To determine bone strength, 3-point bending was performed on the femora and tibiae obtained from control and lithium chloride-treated birds in the 1 wk group. Lithium chloride-treated birds had a 22% reduction in stiffness compared with control in the femora (P=0.02) without a corresponding reduction in elastic modulus. No differences were observed in yield or ultimate load and in the corresponding calculations of stresses (P≥0.26). The toughness of tibiae was not altered in lithium chloride compared with control (P=0.11). Bone length and micro-CT imaging were performed on the tibiae of control and lithium chloride groups. No differences (P≥0.52) in bone length, cortical or trabecular bone volume, trabecular thickness, number, or spacing were observed. Lithium chloride treatment did not affect pectoralis muscle color or lipid oxidation (P>0.05). In conclusion, lithium chloride treatment in broilers did not negatively affect growth or meat quality. A reduction in bone stiffness of the femur with lithium chloride treatment was observed, however unlike the mouse model, the dosages of lithium chloride used in the current study did not result in anabolic effects

  9. In vivo loading increases mechanical properties of scaffold by affecting bone formation and bone resorption rates.

    PubMed

    Roshan-Ghias, Alireza; Lambers, Floor M; Gholam-Rezaee, Mehdi; Müller, Ralph; Pioletti, Dominique P

    2011-12-01

    A successful bone tissue engineering strategy entails producing bone-scaffold constructs with adequate mechanical properties. Apart from the mechanical properties of the scaffold itself, the forming bone inside the scaffold also adds to the strength of the construct. In this study, we investigated the role of in vivo cyclic loading on mechanical properties of a bone scaffold. We implanted PLA/β-TCP scaffolds in the distal femur of six rats, applied external cyclic loading on the right leg, and kept the left leg as a control. We monitored bone formation at 7 time points over 35 weeks using time-lapsed micro-computed tomography (CT) imaging. The images were then used to construct micro-finite element models of bone-scaffold constructs, with which we estimated the stiffness for each sample at all time points. We found that loading increased the stiffness by 60% at 35 weeks. The increase of stiffness was correlated to an increase in bone volume fraction of 18% in the loaded scaffold compared to control scaffold. These changes in volume fraction and related stiffness in the bone scaffold are regulated by two independent processes, bone formation and bone resorption. Using time-lapsed micro-CT imaging and a newly-developed longitudinal image registration technique, we observed that mechanical stimulation increases the bone formation rate during 4-10 weeks, and decreases the bone resorption rate during 9-18 weeks post-operatively. For the first time, we report that in vivo cyclic loading increases mechanical properties of the scaffold by increasing the bone formation rate and decreasing the bone resorption rate.

  10. Bone volume fraction explains the variation in strength and stiffness of cancellous bone affected by metastatic cancer and osteoporosis.

    PubMed

    Nazarian, Ara; von Stechow, Dietrich; Zurakowski, David; Müller, Ralph; Snyder, Brian D

    2008-12-01

    Preventing nontraumatic fractures in millions of patients with osteoporosis or metastatic cancer may significantly reduce the associated morbidity and reduce health-care expenditures incurred by these fractures. Predicting fracture occurrence requires an accurate understanding of the relationship between bone structure and the mechanical properties governing bone fracture that can be readily measured. The aim of this study was to test the hypothesis that a single analytic relationship with either bone tissue mineral density or bone volume fraction (BV/TV) as independent variables could predict the strength and stiffness of normal and pathologic cancellous bone affected by osteoporosis or metastatic cancer. After obtaining institutional review board approval and informed consent, 15 patients underwent excisional biopsy of metastatic prostate, breast, lung, ovarian, or colon cancer from the spine and/or femur to obtain 41 metastatic cancer specimens. In addition, 96 noncancer specimens were excised from 43 age- and site-matched cadavers. All specimens were imaged using micro-computed tomography (micro-CT) and backscatter emission imaging and tested mechanically by uniaxial compression and nanoindentation. The minimum BV/TV, measured using quantitative micro-CT, accounted for 84% of the variation in bone stiffness and strength for all cancellous bone specimens. While relationships relating bone density to strength and stiffness have been derived empirically for normal and osteoporotic bone, these relationships have not been applied to skeletal metastases. This simple analytic relationship will facilitate large-scale screening and prediction of fracture risk for normal and pathologic cancellous bone using clinical CT systems to determine the load capacity of bones altered by metastatic cancer, osteoporosis, or both.

  11. Delayed bone regeneration and low bone mass in a rat model of insulin-resistant type 2 diabetes mellitus is due to impaired osteoblast function.

    PubMed

    Hamann, Christine; Goettsch, Claudia; Mettelsiefen, Jan; Henkenjohann, Veit; Rauner, Martina; Hempel, Ute; Bernhardt, Ricardo; Fratzl-Zelman, Nadja; Roschger, Paul; Rammelt, Stefan; Günther, Klaus-Peter; Hofbauer, Lorenz C

    2011-12-01

    Patients with diabetes mellitus have an impaired bone metabolism; however, the underlying mechanisms are poorly understood. Here, we analyzed the impact of type 2 diabetes mellitus on bone physiology and regeneration using Zucker diabetic fatty (ZDF) rats, an established rat model of insulin-resistant type 2 diabetes mellitus. ZDF rats develop diabetes with vascular complications when fed a Western diet. In 21-wk-old diabetic rats, bone mineral density (BMD) was 22.5% (total) and 54.6% (trabecular) lower at the distal femur and 17.2% (total) and 20.4% (trabecular) lower at the lumbar spine, respectively, compared with nondiabetic animals. BMD distribution measured by backscattered electron imaging postmortem was not different between diabetic and nondiabetic rats, but evaluation of histomorphometric indexes revealed lower mineralized bone volume/tissue volume, trabecular thickness, and trabecular number. Osteoblast differentiation of diabetic rats was impaired based on lower alkaline phosphatase activity (-20%) and mineralized matrix formation (-55%). In addition, the expression of the osteoblast-specific genes bone morphogenetic protein-2, RUNX2, osteocalcin, and osteopontin was reduced by 40-80%. Osteoclast biology was not affected based on tartrate-resistant acidic phosphatase staining, pit formation assay, and gene profiling. To validate the implications of these molecular and cellular findings in a clinically relevant model, a subcritical bone defect of 3 mm was created at the left femur after stabilization with a four-hole plate, and bone regeneration was monitored by X-ray and microcomputed tomography analyses over 12 wk. While nondiabetic rats filled the defects by 57%, diabetic rats showed delayed bone regeneration with only 21% defect filling. In conclusion, we identified suppressed osteoblastogenesis as a cause and mechanism for low bone mass and impaired bone regeneration in a rat model of type 2 diabetes mellitus.

  12. Smad4 is required to inhibit osteoclastogenesis and maintain bone mass

    PubMed Central

    Morita, Mayu; Yoshida, Shigeyuki; Iwasaki, Ryotaro; Yasui, Tetsuro; Sato, Yuiko; Kobayashi, Tami; Watanabe, Ryuichi; Oike, Takatsugu; Miyamoto, Kana; Takami, Masamichi; Ozato, Keiko; Deng, Chu-Xia; Aburatani, Hiroyuki; Tanaka, Sakae; Yoshimura, Akihiko; Toyama, Yoshiaki; Matsumoto, Morio; Nakamura, Masaya; Kawana, Hiromasa; Nakagawa, Taneaki; Miyamoto, Takeshi

    2016-01-01

    Bone homeostasis is maintained as a delicate balance between bone-resorption and bone-formation, which are coupled to maintain appropriate bone mass. A critical question is how bone-resorption is terminated to allow bone-formation to occur. Here, we show that TGFβs inhibit osteoclastogenesis and maintain bone-mass through Smad4 activity in osteoclasts. We found that latent-TGFβ1 was activated by osteoclasts to inhibit osteoclastogenesis. Osteoclast-specific Smad4 conditional knockout mice (Smad4-cKO) exhibited significantly reduced bone-mass and elevated osteoclast formation relative to controls. TGFβ1-activation induced expression of Irf8 and Bcl6, both of which encode factors inhibiting osteoclastogenesis, by blocking their negative regulator, Prdm1, in osteoclasts in a Smad4-dependent manner. Reduced bone-mass and accelerated osteoclastogenesis seen in Smad4-cKO were abrogated by Prdm1 deletion. Administration of latent-TGFβ1-Fc to wild-type mice antagonized LPS-induced bone destruction in a model of activated osteoclast-mediated bone destruction. Thus, latent-TGFβ1-Fc could serve as a promising new therapeutic agent in bone diseases marked by excessive resorption. PMID:27731422

  13. Cyclic cryopreservation affects the nanoscale material properties of trabecular bone.

    PubMed

    Landauer, Alexander K; Mondal, Sumona; Yuya, Philip A; Kuxhaus, Laurel

    2014-11-07

    Tissues such as bone are often stored via freezing, or cryopreservation. During an experimental protocol, bone may be frozen and thawed a number of times. For whole bone, the mechanical properties (strength and modulus) do not significantly change throughout five freeze-thaw cycles. Material properties at the trabecular and lamellar scales are distinct from whole bone properties, thus the impact of freeze-thaw cycling at this scale is unknown. To address this, the effect of repeated freezing on viscoelastic material properties of trabecular bone was quantified via dynamic nanoindentation. Vertebrae from five cervine spines (1.5-year-old, male) were semi-randomly assigned, three-to-a-cycle, to 0-10 freeze-thaw cycles. After freeze-thaw cycling, the vertebrae were dissected, prepared and tested. ANOVA (factors cycle, frequency, and donor) on storage modulus, loss modulus, and loss tangent, were conducted. Results revealed significant changes between cycles for all material properties for most cycles, no significant difference across most of the dynamic range, and significant differences between some donors. Regression analysis showed a moderate positive correlation between cycles and material property for loss modulus and loss tangent, and weak negative correlation for storage modulus, all correlations were significant. These results indicate that not only is elasticity unpredictably altered, but also that damping and viscoelasticity tend to increase with additional freeze-thaw cycling.

  14. Paranasal bone: the prime factor affecting the decision to use transsinus vs zygomatic implants for biomechanical support for immediate function in maxillary dental implant reconstruction.

    PubMed

    Jensen, Ole T; Adams, Mark W; Smith, Edmund

    2014-01-01

    Paranasal bone affects the decision-making process for placement of implants for immediate function in the highly resorbed maxilla. The most important bone for apical fixation of implants in this setting is the lateral nasal bone mass. Maximum available bone mass found at the pyriform above the nasal fossa, designated M point, can most often engage two implants placed at 30-degree angles. The second most important area of paranasal bone mass is the subnasal bone of the premaxilla, which is required to engage an angled implant at the alveolar crest. However, only 4 to 5 mm in height is needed when implants are angled posterior to engage M point. The third most important paranasal bone site for implant fixation is the midline nasal crest extending upward to the vomer. This site, which is usually type 1/2 bone, can engage implants apically and provide enough fixation for immediate function even if implants are short. These anatomical bone sites enable placement of implants to obtain a 12- to 15-mm anterior-posterior spread, which is favorable for immediate function.

  15. The limitation of DEXA analysis for bone mass determination in mice.

    PubMed

    Dickson, Glenn R; Luczak, Mirosław; Włodarski, Krzysztof H

    2004-01-01

    An increase in femoral and tibio/fibular bone mass following periosteal membrane stimulation by Moloney sarcoma virus inoculation into thigh muscles of mice was measured in situ on formalin fixed excised hind limbs using a Hologic 4500A Fan Beam X-ray bone densitometer adapted for small bone samples. These results were verified by measurements of constant dry bone mass of the same bones liberated from soft limb tissues by NaOH hydrolysis. There was no consistent data correlation found between the DEXA scan and dry bone mass evaluations. It is concluded that the sensitivity of the DEXA measurement is unsuitable when assessing very small bone samples, weighing merely 20-30 mg.

  16. High fat diet promotes achievement of peak bone mass in young rats

    SciTech Connect

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T.; Mittal, Monika; Chattopadhyay, Naibedya; Wani, Mohan R.; Bhat, Manoj Kumar

    2014-12-05

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet.

  17. Does aspiration of bones and joints affect results of later bone scanning

    SciTech Connect

    Canale, S.T.; Harkness, R.M.; Thomas, P.A.; Massie, J.D.

    1985-01-01

    To determine the effect, if any, of needle aspiration on /sup 99m/Tc bone scanning, three different areas of 15 dogs were first aspirated and then imaged with technetium bone scintigraphy. The hip joint was aspirated, the distal femoral metaphysis was drilled and aspirated, and the tibial periosteum was scraped with an 18- or 20-gauge needle. Varying amounts of trauma were inflicted to simulate varying difficulties at aspiration. /sup 99m/Tc bone scans were obtained from 5 h to 10 days later. There was no evidence of focal technetium uptake after any hip joint aspiration. This was consistent regardless of the amount of trauma inflicted or the time from aspiration to bone scanning. Metaphyseal cortical drilling and tibial periosteal scraping occasionally caused some focal uptake when scanning was delayed greater than 2 days. When osteomyelitis or pyarthrosis is clinically suspected, joint aspiration can be performed without fear of producing a false- positive bone scan.

  18. Parallels between Nutrition and Physical Activity: Research Questions in Development of Peak Bone Mass

    ERIC Educational Resources Information Center

    Weaver, Connie M.

    2015-01-01

    Lifestyle choices are attributed to 40% to 60% of adult peak bone mass. The National Osteoporosis Foundation (NOF) sought to update its 2000 consensus statement on peak bone mass and partnered with the American Society for Nutrition, which, in turn, charged a 9-member writing committee with using a systematic review approach to update the previous…

  19. Mutations in Known Monogenic High Bone Mass Loci Only Explain a Small Proportion of High Bone Mass Cases

    PubMed Central

    Wheeler, Lawrie; Hardcastle, Sarah A; Appleton, Louise H; Addison, Kathryn A; Brugmans, Marieke; Clark, Graeme R; Ward, Kate A; Paggiosi, Margaret; Stone, Mike; Thomas, Joegi; Agarwal, Rohan; Poole, Kenneth ES; McCloskey, Eugene; Fraser, William D; Williams, Eleanor; Bullock, Alex N; Davey Smith, George; Brown, Matthew A; Tobias, Jon H; Duncan, Emma L

    2015-01-01

    ABSTRACT High bone mass (HBM) can be an incidental clinical finding; however, monogenic HBM disorders (eg, LRP5 or SOST mutations) are rare. We aimed to determine to what extent HBM is explained by mutations in known HBM genes. A total of 258 unrelated HBM cases were identified from a review of 335,115 DXA scans from 13 UK centers. Cases were assessed clinically and underwent sequencing of known anabolic HBM loci: LRP5 (exons 2, 3, 4), LRP4 (exons 25, 26), SOST (exons 1, 2, and the van Buchem's disease [VBD] 52‐kb intronic deletion 3′). Family members were assessed for HBM segregation with identified variants. Three‐dimensional protein models were constructed for identified variants. Two novel missense LRP5 HBM mutations ([c.518C>T; p.Thr173Met], [c.796C>T; p.Arg266Cys]) were identified, plus three previously reported missense LRP5 mutations ([c.593A>G; p.Asn198Ser], [c.724G>A; p.Ala242Thr], [c.266A>G; p.Gln89Arg]), associated with HBM in 11 adults from seven families. Individuals with LRP5 HBM (∼prevalence 5/100,000) displayed a variable phenotype of skeletal dysplasia with increased trabecular BMD and cortical thickness on HRpQCT, and gynoid fat mass accumulation on DXA, compared with both non‐LRP5 HBM and controls. One mostly asymptomatic woman carried a novel heterozygous nonsense SOST mutation (c.530C>A; p.Ser177X) predicted to prematurely truncate sclerostin. Protein modeling suggests the severity of the LRP5‐HBM phenotype corresponds to the degree of protein disruption and the consequent effect on SOST‐LRP5 binding. We predict p.Asn198Ser and p.Ala242Thr directly disrupt SOST binding; both correspond to severe HBM phenotypes (BMD Z‐scores +3.1 to +12.2, inability to float). Less disruptive structural alterations predicted from p.Arg266Cys, p.Thr173Met, and p.Gln89Arg were associated with less severe phenotypes (Z‐scores +2.4 to +6.2, ability to float). In conclusion, although mutations in known HBM loci may be asymptomatic, they only

  20. Effects of Sequential Osteoporosis Treatments on Trabecular Bone Mass and Strength in Osteopenic Rats

    PubMed Central

    Amugongo, Sarah K; Yao, Wei; Jia, Junjing; Lay, Yu-An E; Dai, Weiwei; Jiang, Li; Walsh, Daniel; Li, Chin-Shang; Dave, N. K. N.; Olivera, Diana; Panganiban, Brian; Ritchie, Robert O.; Lane, Nancy E

    2015-01-01

    Introduction Individual agents used to treat human osteoporosis reduce fracture risk by ~50-60%. Since agents that act with complementary mechanisms are available, sequential therapies that mix anti-resorptive and anabolic agents could improve fracture risk reduction, when compared to monotherapies. Methods We evaluated bone mass, bone microarchitecture, and bone strength in adult ovariectomized (OVX), osteopenic rats, during different sequences of vehicle (Veh), parathyroid hormone (PTH), alendronate (Aln), or raloxifene (Ral) in three 90 day treatment periods, over nine months. Differences among groups were evaluated. The interrelationships of bone mass and microarchitecture endpoints, and their relationship to bone strength were studied. Results Estrogen deficiency caused bone loss. OVX rats treated with Aln monotherapy had significantly better bone mass, microarchitecture, and bone strength than untreated OVX rats. Rats treated with an Aln drug holiday had bone mass and microarchitecture similar to the Aln monotherapy group, but with significantly lower bone strength. PTH-treated rats had markedly higher bone endpoints, but all were lost after PTH withdrawal without follow-up treatment. Rats treated with PTH followed by Aln had better bone endpoints than those treated with Aln monotherapy, PTH monotherapy, or an Aln holiday. Rats treated initially with Aln or Ral, then switched to PTH, also had better bone endpoints, than monotherapy treatment. Rats treated with Aln, then PTH, and returned to Aln had the highest values for all endpoints. Conclusion Our data indicate that anti-resorptive therapy can be coupled with an anabolic agent, to produce and maintain better bone mass, microarchitecture, and strength than can be achieved with any monotherapy. PMID:24722767

  1. AGE-RELATED FACTORS AFFECTING THE POST-YIELD ENERGY DISSIPATION OF HUMAN CORTICAL BONE

    PubMed Central

    Nyman, Jeffry S.; Roy, Anuradha; Tyler, Jerrod H.; Acuna, Rae L.; Gayle, Heather J.; Wang, Xiaodu

    2007-01-01

    The risk of bone fracture depends in part on the quality of the tissue, not just the size and mass. This study assessed the post-yield energy dissipation of cortical bone in tension as a function of age and composition. Tensile specimens were prepared from tibiae of human cadavers in which male and female donors were divided into two age groups: middle aged (51 to 56 years old, n = 9) and elderly (72 to 90 years old, n = 8). By loading, unloading, and reloading a specimen with rest period inserted in between, tensile properties at incremental strain levels were assessed. In addition, the post-yield toughness was estimated and partitioned as follows: plastic strain energy related to permanent deformation, released elastic strain energy related to stiffness loss, and hysteresis energy related to viscous behavior. Porosity, mineral and collagen content, and collagen crosslinks of each specimen were also measured to determine the micro and ultrastructural properties of the tissue. It was found that age affected all the energy terms plus strength but not elastic stiffness. The post-yield energy terms were correlated with porosity, pentosidine (a marker of non-enzymatic crosslinks), and collagen content, all of which significantly varied with age. General linear models with the highest possible R2 value suggested that the pentosidine concentration and collagen content provided the best explanation of the age-related decrease in the post-yield energy dissipation of bone. Among them, pentosidine concentration had the greatest contribution to plastic strain energy and was the best explanatory variable of damage accumulation. PMID:17266142

  2. UK Food Standards Agency Optimal Nutrition Status Workshop: environmental factors that affect bone health throughout life.

    PubMed

    Burns, Lynn; Ashwell, Margaret; Berry, Jacqueline; Bolton-Smith, Caroline; Cassidy, Aedin; Dunnigan, Matthew; Khaw, Kay Tee; Macdonald, Helen; New, Susan; Prentice, Ann; Powell, Jonathan; Reeve, Jonathan; Robins, Simon; Teucher, Birgit

    2003-06-01

    The UK Food Standards Agency (FSA) convened a group of expert scientists to discuss and review UK FSA- and Department of Health-funded research on diet and bone health. This research focused on the lifestyle factors that are amenable to change and may significantly affect bone health and the risk of osteoporotic fracture. The potential benefits of fruits and vegetables, meat, Ca, vitamins D and K and phyto-oestrogens were presented and discussed. Other lifestyle factors were also discussed, particularly the effect of physical activity and possible gene-nutrient interactions affecting bone health.

  3. Effects of short-term step aerobics exercise on bone metabolism and functional fitness in postmenopausal women with low bone mass.

    PubMed

    Wen, H J; Huang, T H; Li, T L; Chong, P N; Ang, B S

    2017-02-01

    Measurement of bone turnover markers is an alternative way to determine the effects of exercise on bone health. A 10-week group-based step aerobics exercise significantly improved functional fitness in postmenopausal women with low bone mass, and showed a positive trend in reducing resorption activity via bone turnover markers.

  4. Restoring and Maintaining Bone in Osteopenic Female Rat Skeleton. Part 1; Changes in Bone Mass and Structure

    NASA Technical Reports Server (NTRS)

    Tang, Li Ya; Jee, Webster S. S.; Ke, Hua Zhu; Kimmel, Donald B.

    1992-01-01

    This experiment contains the crucial data for the lose, restore, and maintain (LRM) concept, a practical approach for reversing existing osteoporosis. The LRM concept uses anabolic agents to restore bone mass and architecture (+ phase) and then switches to an agent with the established ability to maintain bone mass, to keep the new bone (+/- phase). The purpose of this study was to learn whether switching to an agent known chiefly for its ability to maintain existing bone mass preserves new bone induced by PGE2, in osteopenic,estrogen-depleted rats. The current study had three phases, the bone loss (-), restore (+), and maintain (+/-) phases. We ovariectomized (OX) or sham ovariectomized (sham-OX) 5.5 month-old female rats (- phase). The OX rats were treated 5 months postovariectomy with 1-6 mg PGE2, per kg/day for 75 days to restore lost cancellous bone mass (+ phase), and then PGE2, treatment was stopped and treatment began with 1 or 5 micro-g/kg of risedronate, a bisphosphonate, twice a week for 60 days (+/- phase). During the loss (-) phase, the cancellous bone volume of the proximal tibial metaphysis in the OX rat fell to 19% of initial and 30% of age-matched control levels. During the restore (+) phase, the cancellous bone volume in OX rats doubled. When PGE2 treatment was stopped, however, and no special maintenance efforts were made during the maintain (+/-) phase, the PGE2-induced cancellous bone disappeared. In contrast, the PGE2-induced cancellous bone persisted when the PGE2 treatment was followed by either a 1 or 5 micro-g treatment of risedronate per kg given twice a week for 60 days during the maintain (+/-) phase. The tibial shaft demonstrated very little cortical bone loss during the loss (-) phase in OX rats. The tibial shaft cortical bone fell some 8%. During the restore (+) phase, new cortical bone in OX rats increased by 22%. When PGE2 treatment was stopped and nothing was given during the maintain (+/-) phase, however, all but the PGE2-induced

  5. Osteoarthritis of the Distal Interphalangeal and First Carpometacarpal Joints is Associated with High Bone Mass in Women and Small Bone Size and Low Lean Mass in Men

    PubMed Central

    von Schewelov, Thord; Magnusson, Håkan; Cöster, Maria; Karlsson, Caroline; Rosengren, Björn E

    2015-01-01

    Objective: To determine if primary hand osteoarthritis (OA) is associated with abnormal bone and anthropometric traits. Methods: We used DXA to measure total body bone mineral density (BMD), femoral neck width (bone size) and total body lean and fat mass in 39 subjects with hand OA (primary DIP and/or CMC I) and 164 controls. Data are presented as mean Z-scores or Odds Ratios (OR) with 95% confidence intervals. Results: Women with hand OA had (compared to controls) higher BMD (0.5(0.1,0.9)) but similar bone size (-0.3(-0.8,0.2)), lean mass (0.3(-0.3,0.9)), fat mass (-0.1(-0.6,0.5)) and BMI (0.0(-0.6,0.6)). Men with hand OA had (compared to controls) similar BMD (-0.1(-0.7,0.6)), smaller bone size (-0.5(-1.1,-0.01)), lower lean mass (-0.6(-1.1,-0.04)), and similar fat mass (-0.2(-0.7,0.4)) and BMI -0.1(-0.6,0.6). In women, each SD higher BMD was associated with an OR of 1.8 (1.03, 3.3) for having hand OA. In men each SD smaller bone size was associated with an OR of 1.8 (1.02, 3.1) and each SD lower proportion of lean body mass with an OR of 1.9 (1.1, 3.3) for having hand OA. Conclusion: Women with primary DIP finger joint and/or CMC I joint OA have a phenotype with higher BMD while men with the disease have a smaller bone size and lower lean body mass. PMID:26401163

  6. Bone mass in girls according to their BMI, VO2 max, hours and years of practice.

    PubMed

    Ubago-Guisado, Esther; Martinez-Rodriguez, Alejandro; Gallardo, Leonor; Sánchez-Sánchez, Javier

    2016-11-01

    The accumulation of bone mass during puberty is related with bone health in adulthood. This accumulation is influenced by diverse factors such as body mass index (BMI), maximal oxygen uptake (VO2 max), hours of training and years of sport practice. For this reason, the objective of this study is to analyse the influence of these variables on bone mass in young female athletes. The sample is formed of 120 healthy girls with ages between 9 and 13 (11.32 ± 1.6 years old), divided into two groups depending on their BMI, VO2 max, hours of training and years of sport practice. The participants completed a series of tests to evaluate level of sexual development, body composition (fat mass, lean mass and bone mass) and physical condition. The results show higher values of total lean mass, total fat mass and percentage of body fat in the groups with higher BMI in prepubertal girls and pubertal girls (p < .05). In relation to VO2 max, in the prepubertal group, girls with lower VO2 max had higher values of total fat mass (p < .05) and percentage of body fat (p < .05). In the pubertal group, girls with lower VO2 max also showed a higher total fat mass (p < .05). The studied variables account for a 85% and 75.4% of the variance of total bone mineral content and bone mineral density (BMD), respectively. In conclusion, the content and BMD are closely related with muscle mass and sports practice in young females. The amount of fat mass showed no association with bone mass and physical condition has an indirect relationship with bone development.

  7. Daily intake of green and yellow vegetables is effective for maintaining bone mass in young women.

    PubMed

    Fujii, Hiroko; Noda, Tsuyako; Sairenchi, Toshimi; Muto, Takashi

    2009-06-01

    The increasing proportion of underweight young women may lead to an increase in those with low bone mass. The present study investigated whether bone mass level is associated with lifestyle factors among young Japanese women. A total of 103 Japanese female college students aged 20-21 majoring in food science participated in this cross-sectional study. We measured bone area ratio at the os calcis using quantitative ultrasound (QUS) and assessed lifestyle factors including diet and physical activity using a self-reported questionnaire. Bone area ratio was defined as a proportion of bone substance in a cross section of os trabeculare. Ninety-one subjects who completed the questionnaire were categorized into two groups according to the average bone area ratio of the 103 subjects (30.9%), calculated based on the screening method for osteoporosis prevention: 69 subjects with normal bone mass (bone area ratio: 36.2 +/- 3.8%) and 22 subjects with low bone mass (bone area ratio: 28.1 +/- 1.6%). In normal group, 12 subjects (17.4%) had a dietary habit of not daily intake of green and yellow vegetables, such as carrot and spinach, while this occurred in 10 subjects (45.5%) in low group (P = 0.007). Adjusted logistic regression analyses showed that the subjects without daily intake of green and yellow vegetables had almost 5-fold risk of low bone mass, compared to the subjects having daily intake of the vegetables [Odds ratio: 4.96 (95%CI 1.36-18.18)]. In conclusion, daily intake of green and yellow vegetables is effective for maintaining bone mass in young women.

  8. The recent prevalence of Osteoporosis and low bone mass in the United States based on bone mineral density at the Femoral Neck or Lumbar Spine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of our study was to estimate the prevalence of osteoporosis and low bone mass based on bone mineral density (BMD) at the femoral neck and the lumbar spine in adults 50 years and older in the United States (US). We applied prevalence estimates of osteoporosis or low bone mass at the femoral ...

  9. Breast Cancer Metastasis to Bone Affects Osteoblast Differentiation

    DTIC Science & Technology

    2005-05-01

    Miele, M.E., Babu, G.R., Melly, R., Beck, L.N., Kent, J., Gilman, V.R., Sosnowski, D.M., Campo , D.A., Gay, C.V., Budgeon, L.R., Christensen, N.D...a gift from Dr. Henry Donahue, Penn State Hershey Medical Center. MDA-MB-231 cells were maintained in DMEM containing 5% fetal bovine serum (FBS) and...metastasis of breast cancer to bone, J.Orthop.Sci. 5 (2000) 75-81. [15] E. Luegmayr, F. Varga , T. Frank, et al., Effects of triiodothyronine on

  10. Estrogens maintain bone mass by regulating expression of genes controlling function and life span in mature osteoclasts.

    PubMed

    Imai, Yuuki; Youn, Ming-Young; Kondoh, Shino; Nakamura, Takashi; Kouzmenko, Alexander; Matsumoto, Takahiro; Takada, Ichiro; Takaoka, Kunio; Kato, Shigeaki

    2009-09-01

    Estrogens play a key role in regulation of bone mass and strength by controlling activity of bone-forming osteoblasts and bone-resorbing osteoclasts. Cellular effects of estrogens are mediated predominantly by the action of estrogen receptor alpha (ERalpha). In earlier studies, ablation of the ERalpha gene in mice did not result in osteoporotic phenotypes due to systemic endocrine disturbance and compensatory effects of elevated levels of testosterone. Despite the relatively well-established effects in osteoblasts, little is known about the direct action of estrogen in osteoclasts. Development in the last decade of more sophisticated genetic manipulation approaches opened new possibilities to explore cell-specific roles of nuclear receptors in bone tissue. Recently, we have generated osteoclast-specific ERalpha gene knockout mice and shown that in vivo estrogens directly regulate the life span of mature osteoclasts by inducing the expression of pro-apoptotic Fas ligand (FasL). Inhibitory effects of estrogens on osteoclast function were further studied in vitro. We observed sufficiently detectable ERalpha expression in osteoclasts differentiating from primary bone marrow cells or RAW264 cells, although levels of ERalpha were decreasing during progression of the differentiation into mature osteoclasts. Treatment with estrogens led to reduction in expression of osteoclast-specific genes controlling bone resorption activity. However, estrogens did not affect the size of multinucleated osteoclasts or number of nuclei in a mature osteoclast. In conclusion, in osteoclasts, estrogens function to inhibit bone resorption activity and vitality rather than differentiation.

  11. The Effect of a Whey Protein Supplement on Bone Mass in Older Caucasian Adults

    PubMed Central

    Kerstetter, Jane E.; Brindisi, Jennifer; Sullivan, Rebecca R.; Mangano, Kelsey M.; Larocque, Sarah; Kotler, Belinda M.; Simpson, Christine A.; Cusano, Anna Maria; Gaffney-Stomberg, Erin; Kleppinger, Alison; Reynolds, Jesse; Dziura, James; Kenny, Anne M.; Insogna, Karl L.

    2015-01-01

    Context: It has been assumed that the increase in urine calcium (Ca) that accompanies an increase in dietary protein was due to increased bone resorption. However, studies using stable Ca isotopes have found that dietary protein increases Ca absorption without increasing bone resorption. Objective: The objective of the study was to investigate the impact of a moderately high protein diet on bone mineral density (BMD). Design: This was a randomized, double-blind, placebo-controlled trial of protein supplementation daily for 18 months. Setting: The study was conducted at two institutional research centers. Participants: Two hundred eight older women and men with a body mass index between 19 and 32 kg/m2 and a self-reported protein intake between 0.6 and 1.0 g/kg participated in the study. Intervention: Subjects were asked to incorporate either a 45-g whey protein or isocaloric maltodextrin supplement into their usual diet for 18 months. Main Outcome Measure: BMD by dual-energy x-ray absorptiometry, body composition, and markers of skeletal and mineral metabolism were measured at baseline and at 9 and 18 months. Results: There were no significant differences between groups for changes in L-spine BMD (primary outcome) or the other skeletal sites of interest. Truncal lean mass was significantly higher in the protein group at 18 months (P = .048). C-terminal telopeptide (P = .0414), IGF-1 (P = .0054), and urinary urea (P < .001) were also higher in the protein group at the end of the study period. There was no difference in estimated glomerular filtration rate at 18 months. Conclusion: Our data suggest that protein supplementation above the recommended dietary allowance (0.8 g/kg) may preserve fat-free mass without adversely affecting skeletal health or renal function in healthy older adults. PMID:25844619

  12. Cell fusion in osteoclasts plays a critical role in controlling bone mass and osteoblastic activity

    SciTech Connect

    Iwasaki, Ryotaro; Ninomiya, Ken; Miyamoto, Kana; Suzuki, Toru; Sato, Yuiko

    2008-12-19

    The balance between osteoclast and osteoblast activity is central for maintaining the integrity of bone homeostasis. Here we show that mice lacking dendritic cell specific transmembrane protein (DC-STAMP), an essential molecule for osteoclast cell-cell fusion, exhibited impaired bone resorption and upregulation of bone formation by osteoblasts, which do not express DC-STAMP, which led to increased bone mass. On the contrary, DC-STAMP over-expressing transgenic (DC-STAMP-Tg) mice under the control of an actin promoter showed significantly accelerated cell-cell fusion of osteoclasts and bone resorption, with decreased osteoblastic activity and bone mass. Bone resorption and formation are known to be regulated in a coupled manner, whereas DC-STAMP regulates bone homeostasis in an un-coupled manner. Thus our results indicate that inhibition of a single molecule provides both decreased osteoclast activity and increased bone formation by osteoblasts, thereby increasing bone mass in an un-coupled and a tissue specific manner.

  13. The bone-muscle ratio of fetal lambs is affected more by maternal nutrition during pregnancy than by maternal size.

    PubMed

    Firth, E C; Rogers, C W; Vickers, M; Kenyon, P R; Jenkinson, C M C; Blair, H T; Johnson, P L; Mackenzie, D D S; Peterson, S W; Morris, S T

    2008-06-01

    Bone formation and loss are related to the strain imposed on bone by muscle forces. Bone mineral content (BMC) and lean mass (LM) of fetal lambs was determined at day 140 of pregnancy in 8 groups of ewes, which were of either large or small body size, on either high (ad libitum) or maintenance pasture intake from day 21 of pregnancy, or carrying either singletons or twins. BMC and LM (using DXA scanning) of fetal hindquarters/spine were corrected to leg length. BMC and LM were less in twin than singleton groups (P < 0.001). Large ewes on high intake produced single fetuses with a (group mean) BMC/LM ratio that was higher (P < 0.002) than that in fetuses of large ewes with singletons on maintenance intake or twins on either high or maintenance intakes, the ratios of which were not different. In single fetuses from small ewes on high intake, the BMC/LM ratio was higher than those from small ewes with singletons on maintenance intake or twins on either high or maintenance intakes, the ratios of which were not different. The ratio was not different in singleton fetuses of ewes on high intake, whether they were large or small. Different fetal environments resulted in a given amount of muscle being associated with a higher or lower bone mass. Dietary intake during pregnancy was more important than maternal size in affecting the ratio. We conclude that intrauterine environmental factors may be important in determining bone mass postnatally, and possibly later in life.

  14. A combination of methotrexate and zoledronic acid prevents bone erosions and systemic bone mass loss in collagen induced arthritis

    PubMed Central

    2009-01-01

    Introduction Osteoclasts play a key role in the pathogenesis of bone erosion and systemic bone mass loss during rheumatoid arthritis (RA). In this study, we aimed to determine the effect of methotrexate (MTX) and zoledronic acid (ZA), used alone or in combination, on osteoclast-mediated bone erosions and systemic bone mass loss in a rat model of collagen induced arthritis (CIA). We hypothesized that MTX and ZA could have an additive effect to prevent both bone erosion and systemic bone loss. Methods Arthritis was induced in 64 female Sprague-Dawley rats. After the clinical onset of CIA, rats were assigned to treatment with MTX (1 mg/kg/week), ZA (100 μg/kg twice weekly), both treatments at the same regimens, or vehicle. Arthritis score and paw thickness were recorded twice weekly. The rats were sacrificed on D28 and hind paws were removed for radiographic, histological and immunohistochemical analysis. The effects of treatments on osteoclastogenesis were determined by Tartrate resistant acid phosphatase (TRAP) staining. Micro-CT of the tibia was carried out for histomorphometric analysis. Bone mass density was evaluated by densitometry. Results MTX significantly decreased the severity of CIA, whereas ZA slightly exacerbated it. When these two drugs were used in combination, MTX prevented the pro-inflammatory effect of ZA. The combination of ZA with MTX was more effective than MTX alone for reducing structural joint damage with a dramatic decrease of osteoclasts' number in the eroded joints. However, MTX alone also significantly reduced the number of osteoclasts and the number of CD68+ mononuclear cells. ZA alone, or ZA with MTX, significantly increased the systemic bone mass density measured by densitometry and bone volume on histomorphometric analysis. Conclusions A combination of MTX and ZA prevented both bone erosion and systemic bone loss in a rat model of arthritis. Both treatments independently decreased the number of osteoclasts in the eroded joint. However

  15. Low bone mass in behaviorally HIV-infected young men on antiretroviral therapy: adolescent trials network (ATN) study 021B

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peak bone mass is achieved in adolescence/early adulthood and is the key determinant of bone mass in adulthood. We evaluated the association of bone mass with HIV infection and antiretroviral therapy (ART) during this critical period among behaviorally HIV infected young men and seronegative control...

  16. Vitamin D: more than just affecting calcium and bone.

    PubMed

    Staud, Roland

    2005-10-01

    Vitamin D is a fat-soluble steroid that is essential for maintaining normal calcium metabolism. In vitamin D deficiency, calcium absorption is insufficient and cannot satisfy the body's needs. Consequently, parathyroid hormone production increases and calcium is mobilized from bones and reabsorbed in the kidneys to maintain normal serum calcium levels--a condition defined as secondary hyperparathyroidism. Most organs, including the gut, brain, heart, pancreas, skin, kidneys, and immune system have receptors for 1,25 (OH)vitamin D. Furthermore, all of these organs have the capacity to synthesize 1,25 (OH)vitamin D from vitamin D. Extensive research suggests that vitamin D deficiency is common and represents a global health problem. Clinical consequences related to low vitamin D levels include not only osteomalacia, osteoporosis, and rickets, but also neuro-muscular dysfunction and fractures. Falls related to neuromuscular dysfunction lead to 40% of all nursing home admissions and are the largest single cause of injury-related deaths in elderly people. About one-third of all persons 65 and older fall at least once a year, resulting in more than 1.5 million emergency room treatments and more than 300,000 hospitalizations. Falls cause more than 11,000 deaths per year, most of them in elderly patients (> or = 75 years) who suffer hip fractures. It is well established that vitamin D deficiency not only has serious consequences for bone health, but also for other organ systems. Previous studies have shown that vitamin D supplementation reduces the number of fractures and directly improves neuromuscular function, thus helping to prevent falls and subsequent fractures. In addition, vitamin D appears to have other important functions as a regulator of cell differentiation and cell growth.

  17. Mechanisms by which nutritional disorders cause reduced bone mass in adults.

    PubMed

    Miller, Karen K

    2003-03-01

    Nutritional disorders that cause bone loss in adults include disordered eating behaviors (female athlete triad and anorexia nervosa), gastrointestinal diseases (celiac sprue, inflammatory bowel disease, and other malabsorption syndromes), alcoholism, and hypervitaminosis A. These disorders exert their effects on bone through a number of mechanisms, including estrogen deficiency. Deficiencies of anabolic hormones may also be important, including insulin-like growth factor I (IGF-I), a nutritionally regulated bone trophic factor. In addition, low weight itself is a risk factor for bone loss and decreased bone formation. Reduced calcium and vitamin D availability, with resultant secondary hyperparathyroidism, is another important mechanism of bone loss in nutritional disorders. This review discusses nutritional causes of reduced bone mass in adults and how nutritional disorders exert deleterious effects on the skeleton.

  18. Influence of muscle mass and bone mass on the mobility of elderly women: an observational study

    PubMed Central

    2014-01-01

    Background The purpose of this study was to investigate the influence of muscle mass and bone mineral density on markers of mobility in dwelling elderly women. Methods This cross-sectional study included 99 elderly women, who were 65 years old or above, in Campinas-SP, Brazil. To collect data, we used sociodemographic data, the body mass index (BMI), health status, comorbidities, use of medications, mobility tests (TUG and gait speed) and examinations of the body composition (densitometry with dual-emission X-ray absorptiometry “DXA”). In order to examine the relationship between muscle and bone mass with mobility (gait speed and TUG), we applied the Spearman correlation coefficient. Also was applied the analysis of covariance (ANCOVA) adjusted for age and comorbidities. To identify the factors associated with mobility, we used the univariate and multivariate logistic regression analysis. The level of significance for statistical tests was P < 0.05. Results The correlation between sarcopenia and bone mineral density with mobility tests showed a significant relationship only between sarcopenia and TUG (r = 0.277, P = 0.006) in Spearman correlation coefficient. The result of the correlation analysis (ANCOVA) showed that sarcopenia was associated with gait speed (r2 = 0.0636, P = 0.0018) and TUG (r2 = 0.0898, P = 0.0027). The results of the multivariate analysis showed that age (P = 0.034, OR = 1.081) was associated with worse performance on gait speed. By highlighting the TUG test, the results of the multivariate analysis showed that the age (P = 0.004, OR = 1.111) and BMI in overweight (P = 0.011, OR = 7.83) and obese (P < 0.001, OR = 7.84) women were associated with lower performance of the functionality of the lower limbs. Conclusion The findings with regard to mobility tests which were analyzed in this study indicate the association of variables related to the aging process that contribute to the

  19. Inhibition of CaMKK2 Reverses Age-Associated Decline in Bone Mass

    PubMed Central

    Pritchard, Zachary J.; Cary, Rachel L.; Yang, Chang; Novack, Deborah V.; Voor, Michael J.; Sankar, Uma

    2016-01-01

    Decline in bone formation is a major contributing factor to the loss of bone mass associated with aging. We previously showed that the genetic ablation of the tissue-restricted and multifunctional Ca2+/calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) stimulates trabecular bone mass accrual, mainly by promoting anabolic pathways and inhibiting catabolic pathways of bone remodeling. In this study, we investigated whether inhibition of this kinase using its selective cell-permeable inhibitor STO-609 will stimulate bone formation in 32 week old male WT mice and reverse age-associated of decline in bone volume and strength. Tri-weekly intraperitoneal injections of saline or STO-609 (10 μM) were performed for six weeks followed by metabolic labeling with calcein and alizarin red. New bone formation was assessed by dynamic histomorphometry whereas micro-computed tomography was employed to measure trabecular bone volume, microarchitecture and femoral mid-shaft geometry. Cortical and trabecular bone biomechanical properties were assessed using three-point bending and punch compression methods respectively. Our results reveal that as they progress from 12 to 32 weeks of age, WT mice sustain a significant decline in trabecular bone volume, microarchitecture and strength as well as cortical bone strength. However, treatment of the 32 week old WT mice with STO-609 stimulated apposition of new bone and completely reversed the age-associated decrease in bone volume, quality, as well as trabecular and cortical bone strength. We also observed that regardless of age, male Camkk2−/− mice possessed significantly elevated trabecular bone volume, microarchitecture and compressive strength as well as cortical bone strength compared to age-matched WT mice, implying that the chronic loss of this kinase attenuates age-associated decline in bone mass. Further, whereas STO-609 treatment and/or the absence of CaMKK2 significantly enhanced the femoral midshaft geometry, the

  20. Dietary habits, nutrients and bone mass in Spanish premenopausal women: the contribution of fish to better bone health.

    PubMed

    Calderon-Garcia, Julian F; Moran, Jose M; Roncero-Martin, Raul; Rey-Sanchez, Purificacion; Rodriguez-Velasco, Francisco J; Pedrera-Zamorano, Juan D

    2012-12-27

    The moderate consumption of fish is recommended for a healthy diet and is also a feature of the Mediterranean diet. Fish is a major food group in diets throughout the world, and studies show that fish consumption is associated with a lower risk of a number of conditions. Spain has one of the highest annual per capita consumptions of fish worldwide. As fish is a source of high quality protein; n-3 polyunsaturated fatty acids; vitamins, such as A and D; and minerals, such as selenium, calcium, iodine, magnesium, copper and zinc, nutrients that have positive effects on bone characteristics, it has been proposed that its consumption could improve bone health. In this cross-sectional study, we have investigated the relationship between dietary habits and nutrient intake of 151 Spanish premenopausal women and analyzed the association of fish consumption on bone mass measured by quantitative ultrasound of the phalanges. A higher (P < 0.05) bone mass and vitamin D intake (P < 0.05) was observed in the group with a fish intake of 5-7 servings/week. We conclude that increased fish consumption is helpful in maintaining an adequate bone mass in Spanish premenopausal women.

  1. Young Coconut Juice Supplementation Results in Greater Bone Mass and Bone Formation Indices in Ovariectomized Rats: A Preliminary Study.

    PubMed

    Morii, Yuko; Matsushita, Hiroshi; Minami, Akira; Kanazawa, Hiroaki; Suzuki, Takashi; Subhadhirasakul, Sanan; Watanabe, Kazushi; Wakatsuki, Akihiko

    2015-12-01

    Young coconut juice (Cocos nucifera Linn.) (YCJ) has traditionally been consumed to alleviate symptoms associated with menopause by women in Southeast Asia. The aim of the present study was to determine the effects of YCJ on bone metabolism in ovariectomized rats. Female 10-week-old Wistar rats were randomly assigned to the following 4 groups: Baseline, Sham, Ovx, and Ovx + YCJ (n = 10 rats per group). Rats in the Baseline group were sacrificed immediately, and those in the other groups were subjected to either sham operation (Sham) or bilateral ovariectomy (Ovx and Ovx + YCJ). The Ovx + YCJ rats were administered 5×-concentrated YCJ at a dose of 10 mL/kg body weight per day. Six weeks after surgery, the rats were sacrificed, and indices of bone mass and bone histomorphometry were measured. The bone mineral density of the left femur was significantly higher in the Ovx + YCJ group compared with the Ovx group. In addition, the Ovx + YCJ group showed significantly higher measurements for bone formation rate compared with the Ovx group. These findings suggest that YCJ supplementation has a positive effect on bone metabolism and thus represents a possible intervention to slow the bone loss observed following menopause.

  2. VDR in Osteoblast-Lineage Cells Primarily Mediates Vitamin D Treatment-Induced Increase in Bone Mass by Suppressing Bone Resorptiontdg%ang*tok.

    PubMed

    Nakamichi, Yuko; Udagawa, Nobuyuki; Horibe, Kanji; Mizoguchi, Toshihide; Yamamoto, Yoko; Nakamura, Takashi; Hosoya, Akihiro; Kato, Shigeaki; Suda, Tatsuo; Takahashi, Naoyuki

    2017-02-08

    Long-term treatment with active vitamin D [1α,25(OH)2 D3 ] and its derivatives is effective for increasing bone mass in patients with primary and secondary osteoporosis. Derivatives of 1α,25(OH)2 D3 , including eldecalcitol (ELD), exert their actions through the vitamin D receptor (VDR). ELD is more resistant to metabolic degradation than 1α,25(OH)2 D3 . It is reported that ELD treatment causes a net increase in bone mass by suppressing bone resorption rather than by increasing bone formation in animals and humans. VDR in bone and extraskeletal tissues regulates bone mass and secretion of osteotropic hormones. Therefore, it is unclear what types of cells expressing VDR preferentially regulate the vitamin D-induced increase in bone mass. Here, we examined the effects of 4-week treatment with ELD (50 ng/kg/day) on bone using osteoblast lineage-specific VDR conditional knockout (Ob-VDR-cKO) and osteoclast-specific VDR cKO (Ocl-VDR-cKO) male mice aged 10 weeks. Immunohistochemically, VDR in bone was detected preferentially in osteoblasts and osteocytes. Ob-VDR-cKO mice showed normal bone phenotypes, despite no appreciable immunostaining of VDR in bone. Ob-VDR-cKO mice failed to increase bone mass in response to ELD treatment. Ocl-VDR-cKO mice also exhibited normal bone phenotypes, but normally responded to ELD. ELD-induced FGF23 production in bone was regulated by VDR in osteoblast-lineage cells. These findings suggest that the vitamin D treatment-induced increase in bone mass is mediated by suppressing bone resorption through VDR in osteoblast-lineage cells. © 2017 American Society for Bone and Mineral Research.

  3. Cell and Signal Components of the Microenvironment of Bone Metastasis Are Affected by Hypoxia

    PubMed Central

    Bendinelli, Paola; Maroni, Paola; Matteucci, Emanuela; Desiderio, Maria Alfonsina

    2016-01-01

    Bone metastatic cells release bone microenvironment proteins, such as the matricellular protein SPARC (secreted protein acidic and rich in cysteine), and share a cell signaling typical of the bone metabolism controlled by Runx2. The megakaryocytes in the bone marrow engrafted by the metastases seem to be one of the principal microenvironment sources of the biological stimuli, implicated in the formation of an osteoblastic niche, and affecting metastasis phenotype and colonization. Educated platelets in the circulation might derive from megakaryocytes in bone metastasis. The evaluation of predictive markers in the circulating platelets might be useful for the stratification of patients for therapeutic purposes. The hypoxic environment in bone metastasis is one of the key regulators of the network of the biological soluble and structural components of the matrix. In bone metastatic cells under hypoxia, similar patterns of Runx2 and SPARC are observed, both showing downregulation. Conversely, hypoxia induces Endothelin 1, which upregulates SPARC, and these biological stimuli may be considered prognostic markers of bone metastasis in breast carcinoma patients. PMID:27187355

  4. [Mechanism of bone mass regulation by mechanical stress].

    PubMed

    Komori, Toshihisa

    2013-11-01

    Osteocytes establish an extensive intercellular and extracellular communication system via gap junction-coupled cell processes and canaliculi, through which cell processes pass throughout bone, and the communication system is extended to osteoblasts on the bone surface. The lacunocanalicular network formed by osteocytes is thought to be an ideal mechanosensory system and suitable for mechanotransduction, by which mechanical energy is converted into electrical and/or biochemical signals. The function of osteocytes cannot be estimated based on the events caused by osteocyte death, because apoptotic osteocytes are not phagocytosed, undergo secondary necrosis, and trigger a process of repair to replace the damaged bone. The analysis of the mice, in which both intercellular and extracellular communication systems are disturbed, shows that the osteocyte network mildly inhibits bone formation and mildly stimulates bone resorption in physiological condition. In unloaded condition, the functions of the osteocyte network are augmented, and it strongly inhibits bone formation and strongly stimulates bone resorption, at least in part, through the induction of Sost in osteocytes and Rankl in osteoblasts.

  5. Bisphosphonates improve trabecular bone mass and normalize cortical thickness in ovariectomized, osteoblast connexin43 deficient mice.

    PubMed

    Watkins, Marcus P; Norris, Jin Yi; Grimston, Susan K; Zhang, Xiaowen; Phipps, Roger J; Ebetino, Frank H; Civitelli, Roberto

    2012-10-01

    The gap junction protein, connexin43 (Cx43) controls both bone formation and osteoclastogenesis via osteoblasts and/or osteocytes. Cx43 has also been proposed to mediate an anti-apoptotic effect of bisphosphonates, potent inhibitors of bone resorption. We studied whether bisphosphonates are effective in protecting mice with a conditional Cx43 gene deletion in osteoblasts and osteocytes (cKO) from the consequences of ovariectomy on bone mass and strength. Ovariectomy resulted in rapid loss of trabecular bone followed by a slight recovery in wild type (WT) mice, and a similar degree of trabecular bone loss, albeit slightly delayed, occurred in cKO mice. Treatment with either risedronate (20 μg/kg) or alendronate (40 μg/kg) prevented ovariectomy-induced bone loss in both genotypes. In basal conditions, bones of cKO mice have larger marrow area, higher endocortical osteoclast number, and lower cortical thickness and strength relative to WT. Ovariectomy increased endocortical osteoclast number in WT but not in cKO mice. Both bisphosphonates prevented these increases in WT mice, and normalized endocortical osteoclast number, cortical thickness and bone strength in cKO mice. Thus, lack of osteoblast/osteocyte Cx43 does not alter bisphosphonate action on bone mass and strength in estrogen deficiency. These results support the notion that one of the main functions of Cx43 in cortical bone is to restrain osteoblast and/or osteocytes from inducing osteoclastogenesis at the endocortical surface.

  6. Artistic versus rhythmic gymnastics: effects on bone and muscle mass in young girls.

    PubMed

    Vicente-Rodriguez, G; Dorado, C; Ara, I; Perez-Gomez, J; Olmedillas, H; Delgado-Guerra, S; Calbet, J A L

    2007-05-01

    We compared 35 prepubertal girls, 9 artistic gymnasts and 13 rhythmic gymnasts with 13 nonphysically active controls to study the effect of gymnastics on bone and muscle mass. Lean mass, bone mineral content and areal density were measured by dual energy X-ray absorptiometry, and physical fitness was also assessed. The artistic gymnasts showed a delay in pubertal development compared to the other groups (p<0.05). The artistic gymnasts had a 16 and 17 % higher aerobic power and anaerobic capacity, while the rhythmic group had a 14 % higher anaerobic capacity than the controls, respectively (all p<0.05). The artistic gymnasts had higher lean mass (p<0.05) in the whole body and the extremities than both the rhythmic gymnasts and the controls. Body fat mass was 87.5 and 61.5 % higher in the controls than in the artistic and the rhythmic gymnasts (p<0.05). The upper extremity BMD was higher (p<0.05) in the artistic group compared to the other groups. Lean mass strongly correlated with bone mineral content (r=0.84, p<0.001), and multiple regression analysis showed that total lean mass explained 64 % of the variability in whole body bone mineral content, but only 20 % in whole body bone mineral density. Therefore, recreational artistic gymnastic participation is associated with delayed pubertal development, enhanced physical fitness, muscle mass, and bone density in prepubertal girls, eliciting a higher osteogenic stimulus than rhythmic gymnastic.

  7. Biological Regulation of Bone Quality

    PubMed Central

    Alliston, Tamara

    2014-01-01

    The ability of bone to resist fracture is determined by the combination of bone mass and bone quality. Like bone mass, bone quality is carefully regulated. Of the many aspects of bone quality, this review focuses on biological mechanisms that control the material quality of the bone extracellular matrix (ECM). Bone ECM quality depends upon ECM composition and organization. Proteins and signaling pathways that affect the mineral or organic constituents of bone ECM impact bone ECM material properties, such as elastic modulus and hardness. These properties are also sensitive to pathways that regulate bone remodeling by osteoblasts, osteoclasts, and osteocytes. Several extracellular proteins, signaling pathways, intracellular effectors, and transcription regulatory networks have been implicated in the control of bone ECM quality. A molecular understanding of these mechanisms will elucidate the biological control of bone quality and suggest new targets for the development of therapies to prevent bone fragility. PMID:24894149

  8. Quantitative genetics of cortical bone mass in healthy 10-year-old children from the Fels Longitudinal Study

    PubMed Central

    Duren, Dana L.; Sherwood, Richard J.; Choh, Audrey C.; Czerwinski, Stefan A.; Chumlea, Wm. Cameron; Lee, Miryoung; Sun, Shumei S.; Demerath, Ellen W.; Siervogel, Roger M.; Towne, Bradford

    2007-01-01

    The genetic influences on bone mass likely change throughout the life span, but most genetic studies of bone mass regulation have focused on adults. There is, however, a growing awareness of the importance of genes influencing the acquisition of bone mass during childhood on lifelong bone health. The present investigation examines genetic influences on childhood bone mass by estimating the residual heritabilities of different measures of second metacarpal bone mass in a sample of 600 10-year-old participants from 144 families in the Fels Longitudinal Study. Bivariate quantitative genetic analyses were conducted to estimate genetic correlations between cortical bone mass measures, and measures of bone growth and development. Using a maximum likelihood-based variance components method for pedigree data, we found a residual heritability estimate of 0.71 for second metacarpal cortical index. Residual heritability estimates for individual measures of cortical bone (e.g., lateral cortical thickness, medial cortical thickness) ranged from 0.47 to 0.58, at this pre-pubertal childhood age. Low genetic correlations were found between cortical bone measures and both bone length and skeletal age. However, after Bonferonni adjustment for multiple testing, ρG was not significantly different from 0 for any of these pairs of traits. Results of this investigation provide evidence of significant genetic control over bone mass largely independent of maturation while bones are actively growing and before rapid accrual of bone that typically occurs during puberty. PMID:17056310

  9. A 21-Week Bone Deposition Promoting Exercise Programme Increases Bone Mass in Young People with Down Syndrome

    ERIC Educational Resources Information Center

    Gonzalez-Aguero, Alejandro; Vicente-Rodriguez, German; Gomez-Cabello, Alba; Ara, Ignacio; Moreno, Luis A.; Casajus, Jose A.

    2012-01-01

    Aim: To determine whether the bone mass of young people with Down syndrome may increase, following a 21-week conditioning training programme including plyometric jumps. Method: Twenty-eight participants with Down syndrome (13 females, 15 males) aged 10 to 19 years were divided into exercise (DS-E; n = 14; eight females, six males mean age 13y 8mo,…

  10. Obesity induced by high dietary fat leads to increased bone resorption marker, TRAP, and decreased bone mass in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity, which is growing in prevalence, is a risk factor for such chronic health disorders as diabetes and cardiovascular diseases. However, it is thought to be a protective factor for osteoporosis and bone fractures in humans. Accumulating data in humans suggest that fat mass has a negative effect...

  11. Maintaining Restored Bone with Bisphoshonate in the Ovariectomized Rat Skeleton: Dynamic Histomorphometry of Changes in Bone Mass

    NASA Technical Reports Server (NTRS)

    Jee, W. S. S.; Tang, L.; Ke, H. Z.; Setterberg, R. B.; Kimmel, D. B.

    1993-01-01

    This experiment contains the crucial data for the Lose, Restore and Maintain (LRM) concept, a practical approach for reversing existing osteoporosis. The LRM concept uses ovariectomy (ox) to lose bone, an anabolic agent to restore bone mass and then switches to an anti-resorptive agent to maintain bone mass. We ox'd or sham-ox'd rats for 150 days (Loss Phase), treated them with 6 mg PGE2/kg/d for 75 days to restore lost cancellous bone mass (Restore Phase) and then stopped PGE2 treatment and began treatment with 1 or 5 micro-g/kg Risedronate, a bisphosphonate twice a week for 60 days (Maintain Phase). During the Loss Phase, cancellous bone volumes of the proximal tibial metaphysis (PTM) in the ox'd rat fell to 19% of initial controls. During the Restore Phase, the PTM bone volume in ox'd rats doubled. However, when PGE2 treatment was stopped, the PGE2-induced cancellous bone disappeared. In contrast, 5 micro-g of Risedronate inhibited the bone loss and maintained it at the PGE2 treatment level. The key dynamic histomorphometry value for the restore (R) and maintenance (M) phases was the ratio of bone formation to resorption rates. The ratio was elevated to 5.8 in the R phase and depressed to 0.4 for no and 1 micro-g Risedronate treated M phase and to a ratio of near unity of 1.1 for the 5 micro-g Risedronate treatment. These findings indicate that we were successful in maintaining the new PTM bone induced by PGE2 after discontinuing PGE2 by administering enough Risedronate, a resorption inhibitor. We concluded that the LRM concept is correct and such an approach should be considered when employing anabolic agents or growth factors in the treatment of osteoporosis. Continued use of an anabolic agent may not be appropriate because of cost, potential adverse side effects and a loss of efficacy.

  12. Maintaining Restored Bone with Bisphosphonate in the Ovariectomized Rat Skeleton: Dynamic Histomorphometry of Changes in Bone Mass

    NASA Technical Reports Server (NTRS)

    Jee, W. S. S.; Tang, L.; Ke, H. Z.; Setterberg, R. B.; Kimmel, D. B.

    1993-01-01

    This experiment contains the crucial data for the Lose, Restore and Maintain (LRM) concept, a practical approach for reversing existing osteoporosis. The LRM concept uses ovariectomy (ox) to lose bone, an anabolic agent to restore bone mass and then switches to an antiresorptive agent to maintain bone mass. We ox'd or sham-ox'd rats for 150 days (Loss Phase), treated them with 6 mg PGE(sub 2)kg/d for 75 days to restore lost cancellous bone mass (Restore Phase) and then stopped PGE(sub 2) treatment and began treatment with 1 or 5 micrograms/kg Risedronate, a bisphosphonate twice a week for 60 days (Maintain Phase). During the Loss Phase, cancellous bone volumes of the Proximal Tibial Metaphysis (PTM) in the ox'd rat fell to 19% of initial controls. During the Restore Phase, the PTM bone volume in ox'd rats doubled. However, when PGE(sub 2) treatment was stopped, the PGE(sub 2)-induced cancellous bone disappeared. In contrast, 5 miligrams of Risedronate inhibited the bone loss and maintained it at the PGE(sub 2) treatment level. The key dynamic histomorphometry value for the Restore (R) and Maintenance (M) phases was the ratio of bone formation to resorption rates. The ratio was elevated to 5.8 in the R phase and depressed to 0.4 for no and 1 miligram Risedronate treated M phase and to a ratio of near unity of 1.1 for the 5miligrams Risedronate treatment. These findings indicate that we were successful in maintaining the new PTM bone induced by PGE(sub 2) after discontinuing PGE(sub 2) by administering enough Risedronate, a resorption inhibitor. We concluded that the LRM concept is correct and such an approach should be considered when employing anabolic agents or growth factors in the treatment of osteoporosis. Continued use of an anabolic agent may not be appropriate because of cost, potential adverse side effects and a loss of efficacy.

  13. Lean mass as a total mediator of the influence of muscular fitness on bone health in schoolchildren: a mediation analysis.

    PubMed

    Torres-Costoso, Ana; Gracia-Marco, Luis; Sánchez-López, Mairena; García-Prieto, Jorge Cañete; García-Hermoso, Antonio; Díez-Fernández, Ana; Martínez-Vizcaíno, Vicente

    2015-01-01

    This report aims to analyse the independent association of lean mass and muscle fitness with bone mineral content (BMC) and bone mineral density (BMD), and to examine whether the relationship between muscle fitness and bone health is mediated by lean mass. Body composition (by dual energy X-ray absorptiometry (DXA)), muscle fitness, physical activity, age and height were measured in 132 schoolchildren (62 boys, aged 8-11 years). Analysis of covariance tested differences in bone-related variables by lean mass and muscle fitness, controlling for different sets of confounders. Linear regression models fitted for mediation analyses examined whether the association between muscle fitness and bone mass was mediated by lean mass. Children with good performance in handgrip and standing long jump had better and worse bone health, respectively. These differences disappeared after controlling for lean mass. Children with high lean mass had higher values in all bone-related variables. In addition, the relationship between muscle fitness and bone mass was fully mediated by lean mass. In conclusion, the relationship between upper-limbs muscle fitness and bone health seems to be dependent on lean mass but not on muscle fitness. Schoolchildren with high lean mass have more BMC and BMD in all regions. Lean mass mediates the association between muscle fitness and bone mass.

  14. Fat mass is positively associated with bone mass in relatively thin adolescents: data from the Kitakata Kids Health Study.

    PubMed

    Kouda, Katsuyasu; Fujita, Yuki; Sato, Yuho; Ohara, Kumiko; Nakamura, Harunobu; Uenishi, Kazuhiro; Iki, Masayuki

    2014-07-01

    Epidemiologic studies have found that higher body weight is associated with better bone health. Body weight consists of both fat mass (FM) and lean soft tissue mass (LSTM). Previous studies have examined the effects of FM levels during childhood on bone health, with conflicting results. In the present study, we investigated the independent contributions of FM to bone mass in Japanese adolescents. Subjects were 235 adolescents aged 15-18 years old in August 2010 and in August 2013 from the Kitakata Kids Health Study in Japan. We obtained cross-sectional data on body composition as well as bone mineral density (BMD). Body composition and BMD were measured using a dual-energy X-ray absorptiometry scanner. We found moderate and positive relationships between FM index and LSTM index (males, r=0.69; females, r=0.44). To verify a potentially additive effect of FM on the variance of bone variables beyond LSTM, we assessed the association between FM index and bone variables after stratification by tertiles of the LSTM index. In the lowest tertile of the LSTM index, FM index was significantly (P<0.05) associated with both femoral neck BMD (males, β=0.48; females, β=0.33) and whole body BMC (males, β=0.41; females, β=0.25). On the other hand, we found no significant associations between FM index and bone variables in other tertiles of the LSTM index. These findings indicate that FM can influence how high bone mass is obtained among relatively thin adolescents, but not among those who are of normal weight or overweight.

  15. Mutations in Known Monogenic High Bone Mass Loci Only Explain a Small Proportion of High Bone Mass Cases.

    PubMed

    Gregson, Celia L; Wheeler, Lawrie; Hardcastle, Sarah A; Appleton, Louise H; Addison, Kathryn A; Brugmans, Marieke; Clark, Graeme R; Ward, Kate A; Paggiosi, Margaret; Stone, Mike; Thomas, Joegi; Agarwal, Rohan; Poole, Kenneth E S; McCloskey, Eugene; Fraser, William D; Williams, Eleanor; Bullock, Alex N; Davey Smith, George; Brown, Matthew A; Tobias, Jon H; Duncan, Emma L

    2016-03-01

    High bone mass (HBM) can be an incidental clinical finding; however, monogenic HBM disorders (eg, LRP5 or SOST mutations) are rare. We aimed to determine to what extent HBM is explained by mutations in known HBM genes. A total of 258 unrelated HBM cases were identified from a review of 335,115 DXA scans from 13 UK centers. Cases were assessed clinically and underwent sequencing of known anabolic HBM loci: LRP5 (exons 2, 3, 4), LRP4 (exons 25, 26), SOST (exons 1, 2, and the van Buchem's disease [VBD] 52-kb intronic deletion 3'). Family members were assessed for HBM segregation with identified variants. Three-dimensional protein models were constructed for identified variants. Two novel missense LRP5 HBM mutations ([c.518C>T; p.Thr173Met], [c.796C>T; p.Arg266Cys]) were identified, plus three previously reported missense LRP5 mutations ([c.593A>G; p.Asn198Ser], [c.724G>A; p.Ala242Thr], [c.266A>G; p.Gln89Arg]), associated with HBM in 11 adults from seven families. Individuals with LRP5 HBM (∼prevalence 5/100,000) displayed a variable phenotype of skeletal dysplasia with increased trabecular BMD and cortical thickness on HRpQCT, and gynoid fat mass accumulation on DXA, compared with both non-LRP5 HBM and controls. One mostly asymptomatic woman carried a novel heterozygous nonsense SOST mutation (c.530C>A; p.Ser177X) predicted to prematurely truncate sclerostin. Protein modeling suggests the severity of the LRP5-HBM phenotype corresponds to the degree of protein disruption and the consequent effect on SOST-LRP5 binding. We predict p.Asn198Ser and p.Ala242Thr directly disrupt SOST binding; both correspond to severe HBM phenotypes (BMD Z-scores +3.1 to +12.2, inability to float). Less disruptive structural alterations predicted from p.Arg266Cys, p.Thr173Met, and p.Gln89Arg were associated with less severe phenotypes (Z-scores +2.4 to +6.2, ability to float). In conclusion, although mutations in known HBM loci may be asymptomatic, they only account for a very small

  16. Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure.

    PubMed

    Scholz-Ahrens, Katharina E; Ade, Peter; Marten, Berit; Weber, Petra; Timm, Wolfram; Açil, Yahya; Glüer, Claus-C; Schrezenmeir, Jürgen

    2007-03-01

    Several studies in animals and humans have shown positive effects of nondigestible oligosaccharides (NDO) on mineral absorption and metabolism and bone composition and architecture. These include inulin, oligofructose, fructooligosaccharides, galactooligosaccharides, soybean oligosaccharide, and also resistant starches, sugar alcohols, and difructose anhydride. A positive outcome of dietary prebiotics is promoted by a high dietary calcium content up to a threshold level and an optimum amount and composition of supplemented prebiotics. There might be an optimum composition of fructooligosaccharides with different chain lengths (synergy products). The efficacy of dietary prebiotics depends on chronological age, physiological age, menopausal status, and calcium absorption capacity. There is evidence for an independent probiotic effect on facilitating mineral absorption. Synbiotics, i.e., a combination of probiotics and prebiotics, can induce additional effects. Whether a low content of habitual NDO would augment the effect of dietary prebiotics or synbiotics remains to be studied. The underlying mechanisms are manifold: increased solubility of minerals because of increased bacterial production of short-chain fatty acids, which is promoted by the greater supply of substrate; an enlargement of the absorption surface by promoting proliferation of enterocytes mediated by bacterial fermentation products, predominantly lactate and butyrate; increased expression of calcium-binding proteins; improvement of gut health; degradation of mineral complexing phytic acid; release of bone-modulating factors such as phytoestrogens from foods; stabilization of the intestinal flora and ecology, also in the presence of antibiotics; stabilization of the intestinal mucus; and impact of modulating growth factors such as polyamines. In conclusion, prebiotics are the most promising but also best investigated substances with respect to a bone-health-promoting potential, compared with probiotics

  17. Evaluation of bone metabolism and bone mass in patients with type-2 diabetes mellitus.

    PubMed Central

    Oz, S. Gul; Guven, Gulay Sain; Kilicarslan, Alpaslan; Calik, Nursel; Beyazit, Yavuz; Sozen, Tumay

    2006-01-01

    The objectives of this study were to determine whether type-2 diabetes was associated with a higher bone mineral density (BMD) in men and women and to evaluate the differences in mineral metabolism between diabetic and normal subjects by using biochemical bone turnover markers. In this study, 52 patients (37 females/15 males) aged 41-64 with type-2 diabetes mellitus and 48 nondiabetic control subjects (34 females/14 males) were evaluated. In men, BMD was significantly higher in diabetics at the forearm (p <0.05), whereas in women tended to be higher at the hip (p=0.002). Serum osteocalcin (p<0.0001), bone alkaline phosphatase (BAP) (p<0.05) and carboxyterminal telopeptide (CTx) (p<0.05) were higher in the control group than in diabetics. In men, serum osteocalcin (p<0.05) and CTx (p<0.005) and, in women, serum osteocalcin (p<0.0001) and BAP (p<0.05) were lower in diabetic subjects. In conclusion, our findings suggest that although bone formation is decreased in type-2 diabetes, diabetic patients are not susceptible to bone resorption. This low bone turnover can slow the rate of bone loss and cause a higher bone density than expected for their age. PMID:17052049

  18. Calcium regulation and bone mass loss after total gastrectomy in pigs.

    PubMed Central

    Maier, G W; Kreis, M E; Zittel, T T; Becker, H D

    1997-01-01

    OBJECTIVE: Total gastrectomy often results in postgastrectomy bone disease with decreased bone mass and increased fracture risk. To further elucidate the mechanisms of postgastrectomy bone disease, the authors investigated calcium metabolism and bone mineral density after total gastrectomy in pigs. SUMMARY BACKGROUND DATA: Postgastrectomy bone disease can present as osteomalacia, osteoporosis in excess of normal aging, or a combination of both. The underlying mechanisms are insufficiently understood and need further investigation. METHODS: Growing minipigs were gastrectomized and compared with fed-matched, sham-operated control p gs for 1 year. Calcium absorption, serum calcium, parathyroid hormone, 25-(OH)-vitamin D, 1,25-(OH)2-vitamin D, alkaline phosphatase, and computed tomography bone mineral density were measured in three monthly intervals. RESULTS: Total gastrectomy resulted in impaired calcium absorption, reduced serum calcium and 25-(OH)-vitamin D, increased parathyroid hormone and 1,25-(OH)2-vitamin, and reduced bone mineral density compared with fed-matched, sham-operated control pigs. CONCLUSIONS: The authors data indicate that a reduced serum calcium activates counter-regulatory mechanisms, resulting in calcium mobilization from the bone. Possibly, calcium and vitamin D supplementation after total gastrectomy might prevent postgastrectomy bone mass loss. PMID:9065295

  19. Intercomparison of techniques for the non-invasive measurement of bone mass

    SciTech Connect

    Cohn, S.H.

    1981-01-01

    A variety of methods are presently available for the non-invasive measurement of bone mass of both normal individuals and patients with metabolic disorders. Chief among these methods are radiographic techniques such as radiogrammetry, photon absorptiometry, computer tomography, Compton scattering and neutron activation analysis. In this review, the salient features of the bone measurement techniques are discussed along with their accuracy and precision. The advantages and disadvantages of the various techniques for measuring bone mass are summarized. Where possible, intercomparisons are made of the various techniques.

  20. Effects of diabetes mellitus on bone mass in juvenile and adult-onset diabetes.

    PubMed

    Levin, M E; Boisseau, V C; Avioli, L V

    1976-01-29

    To assess the influence of diabetes mellitus on bone metabolism, we measured skeletal mass in the forearms of 35 patients with juvenile diabetes on insulin and 101 stable patients with adult-onset diabetes, on diet alone, insulin, or oral hypoglycemic agents. There was a significant loss of bone mass in both juvenile and adult-onset diabetes (P less than 0.01) as compared to controls matched for age and sex. The decrease was already present in patients with diabetes of less than five years' duration. Bone loss and duration of the diabetes did not correlate; the greatest decrease in bone mass was observed in the patients receiving oral agents. These data are consistent with the hypothesis that the loss of skeletal tissue in diabetes reflects the underlying disease since it occurs early and is not related to severity as evidenced by the need for insulin, to duration, or to treatment with insulin or diet alone.

  1. Bisphosphonate treatment affects trabecular bone apparent modulus through micro-architecture rather than matrix properties.

    PubMed

    Day, J S; Ding, M; Bednarz, P; van der Linden, J C; Mashiba, T; Hirano, T; Johnston, C C; Burr, D B; Hvid, I; Sumner, D R; Weinans, H

    2004-05-01

    Bisphosphonates are emerging as an important treatment for osteoporosis. But whether the reduced fracture risk associated with bisphosphonate treatment is due to increased bone mass, improved trabecular architecture and/or increased secondary mineralization of the calcified matrix remains unclear. We examined the effects of bisphosphonates on both the trabecular architecture and matrix properties of canine trabecular bone. Thirty-six beagles were divided into a control group and two treatment groups, one receiving risedronate and the other alendronate at 5-6 times the clinical dose for osteoporosis treatment. After one year, the dogs were killed, and samples from the first lumbar vertebrae were examined using a combination of micro-computed tomography, finite element modeling, and mechanical testing. By combining these methods, we examined the treatment effects on the calcified matrix and trabecular architecture independently. Conventional histomorphometry and microdamage data were obtained from the second and third lumbar vertebrae of the same dogs [Bone 28 (2001) 524]. Bisphosphonate treatment resulted in an increased apparent Young's modulus, decreased bone turnover, increased calcified matrix density, and increased microdamage. We could not detect any change in the effective Young's modulus of the calcified matrix in the bisphosphonate treated groups. The observed increase in apparent Young's modulus was due to increased bone mass and altered trabecular architecture rather than changes in the calcified matrix modulus. We hypothesize that the expected increase in the Young's modulus of the calcified matrix due to the increased calcified matrix density was counteracted by the accumulation of microdamage.

  2. A bisphosphonate that does not affect osteoclasts prevents osteoblast and osteocyte apoptosis and the loss of bone strength induced by glucocorticoids in mice.

    PubMed

    Plotkin, L I; Bivi, Nicoletta; Bellido, T

    2011-07-01

    Although a major effect of bisphosphonates on bone is inhibition of resorption resulting from their ability to interfere with osteoclast function, these agents also prevent osteoblast and osteocyte apoptosis in vitro and in vivo. However, the contribution of the latter property to the overall beneficial effects of the drugs on bone remains unknown. We compared herein the action on glucocorticoid-induced bone disease of the classical bisphosphonate alendronate with that of IG9402, a bisphosphonate analog that preserves osteoblast and osteocyte viability but does not induce osteoclast apoptosis in vitro. The bisphosphonates were injected daily (2.3 μmol/kg) to 5-month-old Swiss Webster mice (6-11 per group), starting 3 days before implantation of pellets releasing the glucocorticoid prednisolone (2.1 mg/kg/day). IG9402 did not affect levels of circulating C-telopeptide or osteocalcin, markers of resorption and formation, respectively, nor did it decrease mRNA levels of osteocalcin or collagen 1a1 in bone. On the other hand, alendronate decreased all these parameters. Moreover, IG9402 did not reduce cancellous mineralizing surface, mineral apposition rate, or bone formation rate, whereas alendronate induced a decrease in each of these bone formation measures. These findings demonstrate that, in contrast to alendronate, IG9402 does not inhibit bone turnover. Both alendronate and IG9402, on the other hand, activated survival kinase signaling in vivo, as evidenced by induction of ERK phosphorylation in bone. Furthermore, both bisphosphonates prevented the increase in osteoblast and osteocyte apoptosis as well as the decrease in vertebral bone mass and strength induced by glucocorticoids. We conclude that a bisphosphonate that does not affect osteoclasts prevents osteoblast and osteocyte apoptosis and the loss of bone strength induced by glucocorticoids in mice.

  3. Decreased osteoclastogenesis and high bone mass in mice with impaired insulin clearance due to liver-specific inactivation to CEACAM1.

    PubMed

    Huang, S; Kaw, M; Harris, M T; Ebraheim, N; McInerney, M F; Najjar, S M; Lecka-Czernik, B

    2010-04-01

    Type 2 diabetes is associated with normal-to-higher bone mineral density (BMD) and increased rate of fracture. Hyperinsulinemia and hyperglycemia may affect bone mass and quality in the diabetic skeleton. In order to dissect the effect of hyperinsulinemia from the hyperglycemic impact on bone homeostasis, we have analyzed L-SACC1 mice, a murine model of impaired insulin clearance in liver causing hyperinsulinemia and insulin resistance without fasting hyperglycemia. Adult L-SACC1 mice exhibit significantly higher trabecular and cortical bone mass, attenuated bone formation as measured by dynamic histomorphometry, and reduced number of osteoclasts. Serum levels of bone formation (BALP) and bone resorption markers (TRAP5b and CTX) are decreased by approximately 50%. The L-SACC1 mutation in the liver affects myeloid cell lineage allocation in the bone marrow: the (CD3(-)CD11b(-)CD45R(-)) population of osteoclast progenitors is decreased by 40% and the number of (CD3(-)CD11b(-)CD45R(+)) B-cell progenitors is increased by 60%. L-SACC1 osteoclasts express lower levels of c-fos and RANK and their differentiation is impaired. In vitro analysis corroborated a negative effect of insulin on osteoclast recruitment, maturation and the expression levels of c-fos and RANK transcripts. Although bone formation is decreased in L-SACC1 mice, the differentiation potential and expression of the osteoblast-specific gene markers in L-SACC1-derived mesenchymal stem cells (MSC) remain unchanged as compared to the WT. Interestingly, however, MSC from L-SACC1 mice exhibit increased PPARgamma2 and decreased IGF-1 transcript levels. These data suggest that high bone mass in L-SACC1 animals results, at least in part, from a negative regulatory effect of insulin on bone resorption and formation, which leads to decreased bone turnover. Because low bone turnover contributes to decreased bone quality and an increased incidence of fractures, studies on L-SACC1 mice may advance our understanding of

  4. The role of lean body mass and physical activity in bone health in children.

    PubMed

    Baptista, Fátima; Barrigas, Carlos; Vieira, Filomena; Santa-Clara, Helena; Homens, Pedro Mil; Fragoso, Isabel; Teixeira, Pedro J; Sardinha, Luís B

    2012-01-01

    In the context of physical education curricula, markers of physical fitness (e.g., aerobic capacity, muscular strength, flexibility, and body mass index or body fat) are usually evaluated in reference to health standards. Despite their possible mediating role in the relationship between weight-bearing or muscle forces and features of bone tissue, these attributes of fitness may not be the most relevant to predict skeletal health. It is therefore important to analyze the relative contribution of these factors to the variability in bone tissue of different parts of the skeleton, and to analyze it by gender, as sensitivity to mechanical loading can diverge for boys and girls. We compared the effects of habitual physical activity (PA) and lean mass, as surrogates of weight-bearing and muscle forces, and of physical fitness (aerobic and muscle capacity of lower and upper limbs) on bone mineral content (BMC) and size of total body, lumbar spine, femoral neck, and 1/3 radius in 53 girls and 64 boys from 7.9 to 9.7 years of age. After controlling for bone age, body mass, body height, and calcium intake, lean mass was the most important predictor of bone size and/or mineral in both genders (p < 0.05), while habitual weight-bearing PA positively influenced BMC in boys (p < 0.05). The effect of muscle in bone was not determined by PA and fitness score did not explain bone variability. Femoral neck was the bone site more closely associated with mechanical loading factors; boys with a PA > 608 counts/min/day (~105 min/day of moderate and vigorous intensity) showed 13-20% more BMC than those with less physical activity, and girls with a lean mass >19 kg showed 12-19% more BMC than those with less lean mass. These findings suggest that lean mass was the most important predictor of bone size and/or mineralization in both genders, while habitual weight-bearing PA appears to positively impact on bone mineral in prepubertal boys and that both lean mass and PA need to be

  5. Swimming Activity Prevents the Unloading Induced Loss of Bone Mass, Architecture, and Strength in Rats

    PubMed Central

    Falcai, Maurício J.; Leoni, Graziela Bianchi; de Sousa Neto, Manoel Damião; Volpon, Jose B.

    2015-01-01

    We investigated whether swimming activity associated with a three-week period of hypoactivity could prevent the deleterious effects of disuse on the tibias of tail-suspended rats. Forty Wistar rats were divided into five groups: (HS) permanently hindlimb suspension rats; (HS + Swim) rats submitted to unloading interrupted by swimming exercise; (HS + WB) hindlimb suspension rats with interruption for regular weight bearing for the same length of time as the HS+Swim rats; (Control) control rats that were allowed regular cage activities; and (Control + Swim) control rats that underwent swimming exercise. At the end of the experiment, bone mineral density, bone strength, and trabecular quantification were analyzed. The hindlimb-suspended rats exhibited bone quality loss (significant decrease in BMD, bone strength, and deterioration of trabecular and cortical bone architecture; decrease in BV/TV, TbN, TbTh, ConnD, CtV, and CtTh; and increase in TbSp) when compared to control rats. In contrast, trained rats showed a significant increase of 43% in bone mass, 29% in bone strength, 58% in trabecular thickness, 85% in bone volume, 27% in trabeculae number, and 30% in cortical volume, when compared to the hindlimb-suspended rats. We conclude that swimming activity not only ameliorates but also fully prevents the deleterious effects on bone quality in osteopenic rats. PMID:26090414

  6. Resveratrol supplementation preserves long bone mass, microstructure, and strength in hindlimb-suspended old male rats.

    PubMed

    Durbin, Stephanie M; Jackson, Janna R; Ryan, Michael J; Gigliotti, Joseph C; Alway, Stephan E; Tou, Janet C

    2014-01-01

    Resveratrol has gained popularity as an "anti-aging" compound due to its antioxidant and anti-inflammatory properties. Few studies have investigated the role of resveratrol supplementation in the prevention of age-related bone loss and skeletal disuse despite increased inactivity and age-related bone loss in the elderly. The objective of the study was to investigate the effect of resveratrol supplementation on disuse and age-related bone loss. Old (age 33 months) Fischer 344 × Brown Norway male rats were provided either trans-resveratrol (12.5 mg/kg bw/day) or deionized distilled water by oral gavage for 21 days. Rats were hindlimb-suspended (HLS) or kept ambulatory (AMB) for 14 days. Both femora and tibiae were collected. Bone mass was measured by dual-energy X-ray absorptiometry and bone microstructure was determined by micro-computed tomography. HLS of old male rats accelerated loss of bone mineral content, decreased trabecular bone volume per unit of total volume, and increased trabecular separation. Resveratrol supplementation ameliorated bone demineralization and loss of bone microarchitecture in HLS old male rats. The peak force measured by the three-point bending test was reduced (P = 0.007) in HLS/control compared to AMB/control rats. Resveratrol supplementation ameliorated HLS-induced loss of femur strength. Plasma osteocalcin and alkaline phosphatase was higher (P < 0.04) and C-reactive protein was lower (P = 0.04) in old male rats given resveratrol. The bone protective effects of resveratrol appeared to be mediated through increased osteoblast bone formation, possibly due to reduced inflammation. Based on the results, resveratrol supplementation appeared to provide a feasible dietary therapy for preserving the skeletal system during disuse and age-related bone loss.

  7. Aryl Hydrocarbon Receptors in Osteoclast Lineage Cells Are a Negative Regulator of Bone Mass

    PubMed Central

    Yu, Tai-yong; Pang, Wei-jun; Yang, Gong-she

    2015-01-01

    Aryl hydrocarbon receptors (AhRs) play a critical role in various pathological and physiological processes. Although recent research has identified AhRs as a key contributor to bone metabolism following studies in systemic AhR knockout (KO) or transgenic mice, the cellular and molecular mechanism(s) in this process remain unclear. In this study, we explored the function of AhR in bone metabolism using AhRRANKΔOc/ΔOc (RANKCre/+;AhRflox/flox) mice. We observed enhanced bone mass together with decreased resorption in both male and female 12 and 24-week-old AhRRANKΔOc/ΔOc mice. Control mice treated with 3-methylcholanthrene (3MC), an AhR agonist, exhibited decreased bone mass and increased bone resorption, whereas AhRCtskΔOc/ΔOc (CtskCre/+;AhRflox/flox) mice injected with 3MC appeared to have a normal bone phenotype. In vitro, bone marrow-derived macrophages (BMDMs) from AhRRANKΔOc/ΔOc mice exhibited impaired osteoclastogenesis and repressed differentiation with downregulated expression of B lymphocyte-induced maturation protein 1 (Blimp1), and cytochrome P450 genes Cyp1b1 and Cyp1a2. Collectively, our results not only demonstrated that AhR in osteoclast lineage cells is a physiologically relevant regulator of bone resorption, but also highlighted the need for further studies on the skeletal actions of AhR inhibitors in osteoclast lineage cells commonly associated with bone diseases, especially diseases linked to environmental pollutants known to induce bone loss. PMID:25615839

  8. Aryl hydrocarbon receptors in osteoclast lineage cells are a negative regulator of bone mass.

    PubMed

    Yu, Tai-yong; Pang, Wei-jun; Yang, Gong-she

    2015-01-01

    Aryl hydrocarbon receptors (AhRs) play a critical role in various pathological and physiological processes. Although recent research has identified AhRs as a key contributor to bone metabolism following studies in systemic AhR knockout (KO) or transgenic mice, the cellular and molecular mechanism(s) in this process remain unclear. In this study, we explored the function of AhR in bone metabolism using AhR(RANKΔOc/ΔOc) (RANK(Cre/+);AhR(flox/flox)) mice. We observed enhanced bone mass together with decreased resorption in both male and female 12 and 24-week-old AhR(RANKΔOc/ΔOc) mice. Control mice treated with 3-methylcholanthrene (3MC), an AhR agonist, exhibited decreased bone mass and increased bone resorption, whereas AhR(CtskΔOc/ΔOc) (Ctsk(Cre/+);AhR(flox/flox)) mice injected with 3MC appeared to have a normal bone phenotype. In vitro, bone marrow-derived macrophages (BMDMs) from AhR(RANKΔOc/ΔOc) mice exhibited impaired osteoclastogenesis and repressed differentiation with downregulated expression of B lymphocyte-induced maturation protein 1 (Blimp1), and cytochrome P450 genes Cyp1b1 and Cyp1a2. Collectively, our results not only demonstrated that AhR in osteoclast lineage cells is a physiologically relevant regulator of bone resorption, but also highlighted the need for further studies on the skeletal actions of AhR inhibitors in osteoclast lineage cells commonly associated with bone diseases, especially diseases linked to environmental pollutants known to induce bone loss.

  9. Deficiency of circadian clock protein BMAL1 in mice results in a low bone mass phenotype.

    PubMed

    Samsa, William E; Vasanji, Amit; Midura, Ronald J; Kondratov, Roman V

    2016-03-01

    The circadian clock is an endogenous time keeping system that controls the physiology and behavior of many organisms. The transcription factor Brain and Muscle ARNT-like Protein 1 (BMAL1) is a component of the circadian clock and necessary for clock function. Bmal1(-/-) mice display accelerated aging and many accompanying age associated pathologies. Here, we report that mice deficient for BMAL1 have a low bone mass phenotype that is absent at birth and progressively worsens over their lifespan. Accelerated aging of these mice is associated with the formation of bony bridges occurring across the metaphysis to the epiphysis, resulting in shorter long bones. Using micro-computed tomography we show that Bmal1(-/-) mice have reductions in cortical and trabecular bone volume and other micro-structural parameters and a lower bone mineral density. Histology shows a deficiency of BMAL1 results in a reduced number of active osteoblasts and osteocytes in vivo. Isolation of bone marrow derived mesenchymal stem cells from Bmal1(-/-) mice demonstrate a reduced ability to differentiate into osteoblasts in vitro, which likely explains the observed reductions in osteoblasts and osteocytes, and may contribute to the observed osteopenia. Our data support the role of the circadian clock in the regulation of bone homeostasis and shows that BMAL1 deficiency results in a low bone mass phenotype.

  10. Fluoride-Induced Oxidative and Inflammatory Stress in Osteosarcoma Cells: Does It Affect Bone Development Pathway?

    PubMed

    Gandhi, Deepa; Naoghare, Pravin K; Bafana, Amit; Kannan, Krishnamurthi; Sivanesan, Saravanadevi

    2017-01-01

    Oxidative stress is reported to negatively affect osteoblast cells. Present study reports oxidative and inflammatory signatures in fluoride-exposed human osteosarcoma (HOS) cells, and their possible association with the genes involved in osteoblastic differentiation and bone development pathways. HOS cells were challenged with sublethal concentration (8 mg/L) of sodium fluoride for 30 days and analyzed for transcriptomic expression. In total, 2632 transcripts associated with several biological processes were found to be differentially expressed. Specifically, genes involved in oxidative stress, inflammation, osteoblastic differentiation, and bone development pathways were found to be significantly altered. Variation in expression of key genes involved in the abovementioned pathways was validated through qPCR. Expression of serum amyloid A1 protein, a key regulator of stress and inflammatory pathways, was validated through western blot analysis. This study provides evidence that chronic oxidative and inflammatory stress may be associated with the fluoride-induced impediment in osteoblast differentiation and bone development.

  11. Reduced bone mass and muscle strength in male 5α-reductase type 1 inactivated mice.

    PubMed

    Windahl, Sara H; Andersson, Niklas; Börjesson, Anna E; Swanson, Charlotte; Svensson, Johan; Movérare-Skrtic, Sofia; Sjögren, Klara; Shao, Ruijin; Lagerquist, Marie K; Ohlsson, Claes

    2011-01-01

    Androgens are important regulators of bone mass but the relative importance of testosterone (T) versus dihydrotestosterone (DHT) for the activation of the androgen receptor (AR) in bone is unknown. 5α-reductase is responsible for the irreversible conversion of T to the more potent AR activator DHT. There are two well established isoenzymes of 5α-reductase (type 1 and type 2), encoded by separate genes (Srd5a1 and Srd5a2). 5α-reductase type 2 is predominantly expressed in male reproductive tissues whereas 5α-reductase type 1 is highly expressed in liver and moderately expressed in several other tissues including bone. The aim of the present study was to investigate the role of 5α-reductase type 1 for bone mass using Srd5a1⁻/⁻ mice. Four-month-old male Srd5a1⁻/⁻ mice had reduced trabecular bone mineral density (-36%, p<0.05) and cortical bone mineral content (-15%, p<0.05) but unchanged serum androgen levels compared with wild type (WT) mice. The cortical bone dimensions were reduced in the male Srd5a1⁻/⁻ mice as a result of a reduced cortical periosteal circumference compared with WT mice. T treatment increased the cortical periosteal circumference (p<0.05) in orchidectomized WT mice but not in orchidectomized Srd5a1⁻/⁻ mice. Male Srd5a1⁻/⁻ mice demonstrated a reduced forelimb muscle grip strength compared with WT mice (p<0.05). Female Srd5a1⁻/⁻ mice had slightly increased cortical bone mass associated with elevated circulating levels of androgens. In conclusion, 5α-reductase type 1 inactivated male mice have reduced bone mass and forelimb muscle grip strength and we propose that these effects are due to lack of 5α-reductase type 1 expression in bone and muscle. In contrast, the increased cortical bone mass in female Srd5a1⁻/⁻ mice, is an indirect effect mediated by elevated circulating androgen levels.

  12. A bispecific antibody targeting sclerostin and DKK-1 promotes bone mass accrual and fracture repair

    PubMed Central

    Florio, Monica; Gunasekaran, Kannan; Stolina, Marina; Li, Xiaodong; Liu, Ling; Tipton, Barbara; Salimi-Moosavi, Hossein; Asuncion, Franklin J.; Li, Chaoyang; Sun, Banghua; Tan, Hong Lin; Zhang, Li; Han, Chun-Ya; Case, Ryan; Duguay, Amy N.; Grisanti, Mario; Stevens, Jennitte; Pretorius, James K.; Pacheco, Efrain; Jones, Heidi; Chen, Qing; Soriano, Brian D.; Wen, Jie; Heron, Brenda; Jacobsen, Frederick W.; Brisan, Emil; Richards, William G.; Ke, Hua Zhu; Ominsky, Michael S.

    2016-01-01

    Inhibition of the Wnt antagonist sclerostin increases bone mass in patients with osteoporosis and in preclinical animal models. Here we show increased levels of the Wnt antagonist Dickkopf-1 (DKK-1) in animals treated with sclerostin antibody, suggesting a negative feedback mechanism that limits Wnt-driven bone formation. To test our hypothesis that co-inhibition of both factors further increases bone mass, we engineer a first-in-class bispecific antibody with single residue pair mutations in the Fab region to promote efficient and stable cognate light–heavy chain pairing. We demonstrate that dual inhibition of sclerostin and DKK-1 leads to synergistic bone formation in rodents and non-human primates. Furthermore, by targeting distinct facets of fracture healing, the bispecific antibody shows superior bone repair activity compared with monotherapies. This work supports the potential of this agent both for treatment and prevention of fractures and offers a promising therapeutic approach to reduce the burden of low bone mass disorders. PMID:27230681

  13. Adverse effects of smoking on peak bone mass may be attenuated by higher body mass index in young female smokers.

    PubMed

    Callréus, Mattias; McGuigan, Fiona; Akesson, Kristina

    2013-12-01

    Smoking is associated with postmenopausal bone loss and fracture, but the effect of smoking on bone in younger women is unclear. Peak bone mass is an important determinant for fracture risk; therefore, our aim was to evaluate the association between smoking and bone mass in 25-year-old women, specifically the influence of daily cigarette consumption and total exposure, duration, age at starting smoking, and time since smoking cessation on bone density and fracture risk. Smoking and bone mineral density (BMD) data were available for 1,054 women from the PEAK-25 cohort. Analyses comparing current smokers with women who never smoked were performed using number of cigarettes per day, pack-years, smoking duration, age smoking started, and, for former smokers, age at quitting. BMD did not differ between never, former, and current smokers; and the relative fracture risk in smokers was not significant (relative risk [RR] = 1.2, 95 % confidence interval 0.8-1.9). Among current smokers, BMD decreased with a dose response as cigarette consumption increased (femoral neck p = 0.037). BMD was not significantly lower in young women who had smoked for long duration or started smoking early (p = 0.07-0.64); long duration and early start were associated with higher body mass index (BMI; p = 0.038). Lower BMD persisted up to 24 months after smoking cessation (p = 0.027-0.050), becoming comparable to never-smokers after 24 months. Hip BMD was negatively associated with smoking and dose-dependent on cigarette consumption. Smoking duration was not associated with BMD, although young women with a long smoking history had higher BMI, which might attenuate the adverse effects from smoking.

  14. Factors affecting directional migration of bone marrow mesenchymal stem cells to the injured spinal cord.

    PubMed

    Xia, Peng; Pan, Su; Cheng, Jieping; Yang, Maoguang; Qi, Zhiping; Hou, Tingting; Yang, Xiaoyu

    2014-09-15

    Microtubule-associated protein 1B plays an important role in axon guidance and neuronal migration. In the present study, we sought to discover the mechanisms underlying microtubule-associated protein 1B mediation of axon guidance and neuronal migration. We exposed bone marrow mesenchymal stem cells to okadaic acid or N-acetyl-D-erythro-sphingosine (an inhibitor and stimulator, respectively, of protein phosphatase 2A) for 24 hours. The expression of the phosphorylated form of type I microtubule-associated protein 1B in the cells was greater after exposure to okadaic acid and lower after N-acetyl-D-erythro-sphingosine. We then injected the bone marrow mesenchymal stem cells through the ear vein into rabbit models of spinal cord contusion. The migration of bone marrow mesenchymal stem cells towards the injured spinal cord was poorer in cells exposed to okadaic acid- and N-acetyl-D-erythro-sphingosine than in non-treated bone marrow mesenchymal stem cells. Finally, we blocked phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways in rabbit bone marrow mesenchymal stem cells using the inhibitors LY294002 and U0126, respectively. LY294002 resulted in an elevated expression of phosphorylated type I microtubule-associated protein 1B, whereas U0126 caused a reduction in expression. The present data indicate that PI3K and ERK1/2 in bone marrow mesenchymal stem cells modulate the phosphorylation of microtubule-associated protein 1B via a cross-signaling network, and affect the migratory efficiency of bone marrow mesenchymal stem cells towards injured spinal cord.

  15. GDF11 decreases bone mass by stimulating osteoclastogenesis and inhibiting osteoblast differentiation

    PubMed Central

    Liu, Weiqing; Zhou, Liyan; Zhou, Chenchen; Zhang, Shiwen; Jing, Junjun; Xie, Liang; Sun, Ningyuan; Duan, Xiaobo; Jing, Wei; Liang, Xing; Zhao, Hu; Ye, Ling; Chen, Qianming; Yuan, Quan

    2016-01-01

    Osteoporosis is an age-related disease that affects millions of people. Growth differentiation factor 11 (GDF11) is a secreted member of the transforming growth factor beta (TGF-β) superfamily. Deletion of Gdf11 has been shown to result in a skeletal anterior–posterior patterning disorder. Here we show a role for GDF11 in bone remodelling. GDF11 treatment leads to bone loss in both young and aged mice. GDF11 inhibits osteoblast differentiation and also stimulates RANKL-induced osteoclastogenesis through Smad2/3 and c-Fos-dependent induction of Nfatc1. Injection of GDF11 impairs bone regeneration in mice and blocking GDF11 function prevents oestrogen-deficiency-induced bone loss and ameliorates age-related osteoporosis. Our data demonstrate that GDF11 is a previously unrecognized regulator of bone remodelling and suggest that GDF11 is a potential target for treatment of osteoporosis. PMID:27653144

  16. Alendronate increases bone mass and reduces bone markers in postmenopausal African-American women.

    PubMed

    Bell, Norman H; Bilezikian, John P; Bone, Henry G; Kaur, Amarjot; Maragoto, Adele; Santora, Arthur C

    2002-06-01

    Previous studies indicated that aminobisphosphonate alendronate sodium, a potent inhibitor of bone resorption, increases bone mineral density (BMD) at the hip and spine, reduces markers of bone turnover, and reduces the risk of fractures in Caucasian postmenopausal women. The purpose of the present study was to investigate whether alendronate increases BMD and reduces markers of bone turnover in African-American postmenopausal women. In a multicenter, randomized, double-blind, placebo-controlled study, 65 African-American women, aged 45 to 88 yr, were randomly assigned to either placebo (n = 33) or alendronate 10 mg daily (n = 32) for 2 yr. Mean BMD T scores of the lumbar spine at baseline were -3.18 in the placebo-treated group and -3.09 in the alendronate-treated group. All women took 500 mg elemental calcium daily in the form of calcium carbonate and 500 IU vitamin D. Alendronate significantly increased BMD and reduced markers of bone formation and resorption, compared with placebo. At 2 yr, mean changes +/- SE in BMD were 6.5% +/- 0.7% for the lumbar spine (P < 0.001), 4.5% +/- 1.0% for the femoral neck (P < 0.001), 6.4% +/- 0.6% for the femoral trochanter (P < 0.001), 4.1% +/- 0.7% for the total hip (P < 0.001), 0.7% +/- 0.5% for the one third forearm (NS), and 2.0% +/- 0.4% for the total body (P < 0.001) in women treated with alendronate, compared with 0.9% +/- 0.6% (NS), 0.5% +/- 1.1% (NS), -0.2 +/- 0.8 (NS), -1.1 +/- 0.7% (NS), -0.8% +/- 0.6% (NS), and -1.2% +/- 0.6% (P < 0.05) for the lumbar spine, femoral neck, trochanter, total hip, one third forearm, and total body, respectively, in women treated with placebo. At 2 yr, mean serum bone-specific alkaline phosphatase had declined by 46.3% with alendronate (P < 0.001) and 13.6% with placebo (P < 0.01), and mean urinary N-telopeptide of type I collagen/creatinine ratio had declined by 70.5% with alendronate (P < 0.001) and 6.7% with placebo (NS). The incidence of adverse experiences was not different between

  17. Prolyl hydroxylase domain proteins regulate bone mass through their expression in osteoblasts.

    PubMed

    Zhu, Ke; Song, Pingping; Lai, Yumei; Liu, Chuanju; Xiao, Guozhi

    2016-12-05

    The roles of prolyl hydroxylase domain proteins (PHDs) in bone are incompletely understood. Here we deleted the expression of genes encoding PHD1, PHD2, and PHD3 in osteoblasts in mice by breeding the floxed Phd1-3 mice with Col1a1-Cre transgenic mice. Results showed that mice lacking PHD1-3 in osteoblasts (Phd1-3ob-/-) had increased bone mass. Bone parameters such as bone volume/tissue volume (BV/TV), trabecular number (Tb.N), and trabecular thickness (Tb.Th) were increased, while trabecular spacing (Tb.Sp) was decreased in Phd1-3ob-/- relative to wild-type (WT) femurs. In contrast, loss of PHD1-3 in osteoblasts did not alter cortical thickness (Cort.Th). The mineralization apposition rate (MAR) was increased in Phd1-3ob-/- bone compared to that of wild-type (WT) bone, demonstrating an enhancement of osteoblast function. Loss of PHD1-3 increased the number of osteoblast progenitors (CFU-OBs) in bone marrow cultures. Interestingly, deleting Phd1-3 genes in osteoblasts increased osteoclast formation in vitro and in bone.

  18. Clinical factors affecting pathological fracture and healing of unicameral bone cysts

    PubMed Central

    2014-01-01

    Background Unicameral bone cyst (UBC) is the most common benign lytic bone lesion seen in children. The aim of this study is to investigate clinical factors affecting pathological fracture and healing of UBC. Methods We retrospectively reviewed 155 UBC patients who consulted Nagoya musculoskeletal oncology group hospitals in Japan. Sixty of the 155 patients had pathological fracture at presentation. Of 141 patients with follow-up periods exceeding 6 months, 77 were followed conservatively and 64 treated by surgery. Results The fracture risk was significantly higher in the humerus than other bones. In multivariate analysis, ballooning of bone, cyst in long bone, male sex, thin cortical thickness and multilocular cyst were significant adverse prognostic factors for pathological fractures at presentation. The healing rates were 30% and 83% with observation and surgery, respectively. Multivariate analysis revealed that fracture at presentation and history of biopsy were good prognostic factors for healing of UBC in patients under observation. Conclusion The present results suggest that mechanical disruption of UBC such as fracture and biopsy promotes healing, and thus watchful waiting is indicated in these patients, whereas patients with poor prognostic factors for fractures should be considered for surgery. PMID:24884661

  19. Dietary calcium restriction affects mesenchymal stem cell activity and bone development in neonatal pigs.

    PubMed

    Mahajan, Avanika; Alexander, Lindsey S; Seabolt, Brynn S; Catrambone, Daniel E; McClung, James P; Odle, Jack; Pfeiler, T Wayne; Loboa, Elizabeth G; Stahl, Chad H

    2011-03-01

    The effects of dietary calcium (Ca) deficiency on skeletal integrity are well characterized in growing and mature mammals; however, less is known about Ca nutrition during the neonatal period. In this study, we examined the effects of neonatal Ca nutrition on bone integrity, endocrine hormones, and mesenchymal stem cell (MSC) activity. Neonatal pigs (24 ± 6 h of age) received either a Ca-adequate (1.2 g/100 g) or an ~40% Ca-deficient diet for 18 d. Ca deficiency reduced (P < 0.05) bone flexural strength and bone mineral density without major differences in plasma indicators of Ca status. There were no meaningful differences in plasma Ca, phosphate (PO(4)), parathyroid hormone, or 1,25-dihydroxycholecalciferol due to Ca nutrition throughout the study. Calcium deficiency also reduced (P < 0.05) the in vivo proliferation of MSC by ~50%. In vitro studies utilizing homologous sera demonstrated that MSC activity was affected (P < 0.05) by both the Ca status of the pig and the sera as well as by their interaction. The results indicate that neonatal Ca nutrition is crucial for bone integrity and suggest that early-life Ca restriction may have long-term effects on bone integrity via programming of MSC.

  20. Bone mass, size and previous fractures as predictors of prospective fractures in an osteoporotic referral population.

    PubMed

    Eklund, Fredrik; Nordström, Anna; Björnstig, Ulf; Nordström, Peter

    2009-10-01

    The influence of bone mass, bone size and previous low energy fractures upon prospective fractures has not been investigated in a referral osteoporotic population. We investigated the association between bone mass, bone size, previous fractures, body constitution, and prospective validated fractures in 5701 women and 1376 men, aged 30 years and older. Bone mass measurements of the femoral neck were collected at a single study center in Sweden. Most of the subjects were measured on suspicion of osteoporosis. Data on validated low energy retrospective and prospective fractures in the cohort were collected from the corresponding health care district. Bone mineral density (BMD, g/cm(2)) and estimated volumetric BMD (vBMD, g/cm(3)) were shown to be good independent predictors for fracture in both women and men (Hazard ratio per standard deviation decrease (HR)=1.27-1.52, p<0.05). Bone size did not predict prospective fractures in either sex (HR=0.91-0.99, p>0.05), and bone size completely explained the higher BMD in men than in women. In women, retrospective low energy fractures (HR=1.78, p<0.001) and height (HR=1.02, p=0.006) were additional independent predictors of osteoporotic fractures after adjusting for age and BMD. In conclusion, we show that in a large osteoporotic referral population, age, BMD and previous fractures are independent predictors of prospective low energy fractures. These results add additional strength to the recent change in focus towards a multivariate analysis when assessing the future risk of fracture.

  1. N-acetylcysteine supplementation decreases osteoclast differentiation and increases bone mass in mice fed a high-fat diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies have demonstrated that obesity induced by high-fat diets increases bone resorption, decreases trabecular bone mass, and reduces bone strength in various animal models. This study investigated whether N-acetylcysteine (NAC), an antioxidant and a glutathione precursor, alters glutathione statu...

  2. High bone mass in mice lacking Cx37 because of defective osteoclast differentiation.

    PubMed

    Pacheco-Costa, Rafael; Hassan, Iraj; Reginato, Rejane D; Davis, Hannah M; Bruzzaniti, Angela; Allen, Matthew R; Plotkin, Lilian I

    2014-03-21

    Connexin (Cx) proteins are essential for cell differentiation, function, and survival in all tissues with Cx43 being the most studied in bone. We now report that Cx37, another member of the connexin family of proteins, is expressed in osteoclasts, osteoblasts, and osteocytes. Mice with global deletion of Cx37 (Cx37(-/-)) exhibit higher bone mineral density, cancellous bone volume, and mechanical strength compared with wild type littermates. Osteoclast number and surface are significantly lower in bone of Cx37(-/-) mice. In contrast, osteoblast number and surface and bone formation rate in bones from Cx37(-/-) mice are unchanged. Moreover, markers of osteoblast activity ex vivo and in vivo are similar to those of Cx37(+/+) littermates. sRANKL/M-CSF treatment of nonadherent Cx37(-/-) bone marrow cells rendered a 5-fold lower level of osteoclast differentiation compared with Cx37(+/+) cell cultures. Further, Cx37(-/-) osteoclasts are smaller and have fewer nuclei per cell. Expression of RANK, TRAP, cathepsin K, calcitonin receptor, matrix metalloproteinase 9, NFATc1, DC-STAMP, ATP6v0d1, and CD44, markers of osteoclast number, fusion, or activity, is lower in Cx37(-/-) osteoclasts compared with controls. In addition, nonadherent bone marrow cells from Cx37(-/-) mice exhibit higher levels of markers for osteoclast precursors, suggesting altered osteoclast differentiation. The reduction of osteoclast differentiation is associated with activation of Notch signaling. We conclude that Cx37 is required for osteoclast differentiation and fusion, and its absence leads to arrested osteoclast maturation and high bone mass in mice. These findings demonstrate a previously unrecognized role of Cx37 in bone homeostasis that is not compensated for by Cx43 in vivo.

  3. Fusion mass bone quality after uninstrumented spinal fusion in older patients.

    PubMed

    Andersen, Thomas; Christensen, Finn B; Langdahl, Bente L; Ernst, Carsten; Fruensgaard, Søren; Ostergaard, Jørgen; Andersen, Jens Langer; Rasmussen, Sten; Niedermann, Bent; Høy, Kristian; Helmig, Peter; Holm, Randi; Lindblad, Bent Erling; Hansen, Ebbe Stender; Egund, Niels; Bünger, Cody

    2010-12-01

    Older people are at increased risk of non-union after spinal fusion, but little is known about the factors determining the quality of the fusion mass in this patient group. The aim of this study was to investigate fusion mass bone quality after uninstrumented spinal fusion and to evaluate if it could be improved by additional direct current (DC) electrical stimulation. A multicenter RCT compared 40 and 100 μA DC stimulation with a control group of uninstrumented posterolateral fusion in patients older than 60 years. This report comprised 80 patients who underwent DEXA scanning at the 1 year follow-up. The study population consisted of 29 men with a mean age of 72 years (range 62-85) and 51 women with a mean age of 72 years (range 61-84). All patients underwent DEXA scanning of their fusion mass. Fusion rate was assessed at the 2 year follow-up using thin slice CT scanning. DC electrical stimulation did not improve fusion mass bone quality. Smokers had lower fusion mass BMD (0.447 g/cm(2)) compared to non-smokers (0.517 g/cm(2)) (P = 0.086). Women had lower fusion mass BMD (0.460 g/cm(2)) compared to men (0.552 g/cm(2)) (P = 0.057). Using linear regression, fusion mass bone quality, measured as BMD, was significantly influenced by gender, age of the patient, bone density of the remaining part of the lumbar spine, amount of bone graft applied and smoking. Fusion rates in this cohort was 34% in the control group and 33 and 43% in the 40 and 100 μA groups, respectively (not significant). Patients classified as fused after 2 years had significant higher fusion mass BMD at 1 year (0.592 vs. 0.466 g/cm(2), P = 0.0001). Fusion mass bone quality in older patients depends on several factors. Special attention should be given to women with manifest or borderline osteoporosis. Furthermore, bone graft materials with inductive potential might be considered for this patient population.

  4. Hypochlorhydria‐induced calcium malabsorption does not affect fracture healing but increases post‐traumatic bone loss in the intact skeleton

    PubMed Central

    Haffner‐Luntzer, Melanie; Heilmann, Aline; Heidler, Verena; Liedert, Astrid; Schinke, Thorsten; Amling, Michael; Yorgan, Timur Alexander; vom Scheidt, Annika

    2016-01-01

    ABSTRACT Efficient calcium absorption is essential for skeletal health. Patients with impaired gastric acidification display low bone mass and increased fracture risk because calcium absorption is dependent on gastric pH. We investigated fracture healing and post‐traumatic bone turnover in mice deficient in Cckbr, encoding a gastrin receptor that affects acid secretion by parietal cells. Cckbr−/− mice display hypochlorhydria, calcium malabsorption, and osteopenia. Cckbr−/− and wildtype (WT) mice received a femur osteotomy and were fed either a standard or calcium‐enriched diet. Healed and intact bones were assessed by biomechanical testing, histomorphometry, micro‐computed tomography, and quantitative backscattering. Parathyroid hormone (PTH) serum levels were determined by enzyme‐linked immunosorbent assay. Fracture healing was unaffected in Cckbr−/− mice. However, Cckbr−/− mice displayed increased calcium mobilization from the intact skeleton during bone healing, confirmed by significantly elevated PTH levels and osteoclast numbers compared to WT mice. Calcium supplementation significantly reduced secondary hyperparathyroidism and bone resorption in the intact skeleton in both genotypes, but more efficiently in WT mice. Furthermore, calcium administration improved bone healing in WT mice, indicated by significantly increased mechanical properties and bone mineral density of the fracture callus, whereas it had no significant effect in Cckbr−/− mice. Therefore, under conditions of hypochlorhydria‐induced calcium malabsorption, calcium, which is essential for callus mineralization, appears to be increasingly mobilized from the intact skeleton in favor of fracture healing. Calcium supplementation during fracture healing prevented systemic calcium mobilization, thereby maintaining bone mass and improving fracture healing in healthy individuals whereas the effect was limited by gastric hypochlorhydria. © 2016 Orthopaedic Research Society

  5. The salutary effect of dietary calcium on bone mass in a rat model of simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Globus, R.; Halloran, B. P.; Morey-Holton, E.

    1985-01-01

    Whether supplementation of dietary calcium reduces the differences in bone mass of unweighed limbs and normally weighted limbs, and whether parathyroid hormone (PTH) and 1,25-dihydroxyvitamin D (1,25(OH)2D) respond differently to dietary calcium in unweighted animals in comparison with pair-fed controls was studied. The hind limbs of rats were unweighted by a tail suspension method and diets containing 0.1% to 2.4% calcium. After 2 weeks serum calcium, phosphorus, PTH and 1,25(OH)2D intestinal calcium transport were determined and bone mass, ash weight, and calcium in the tibia, L-1 vertebra, and humerus were measured. No significant differences in body weights were observed among the various groups. Suspended rats maintained constant levels of serum calcium and phosphate over the wide range of dietary calcium. Serum PTH and 1,25(OH)2D and intestinal calcium transport fell as dietary calcium was increased. Bone calcium in the tibia and vertebra from suspended rats remained less than that from pair-fed control. It is suggested that although no striking difference between suspended and control animals was observed in response to dieteary calcium, increasing dietary calcium may reduce the negative impact of unloading on the calcium content of the unweighted bones. The salutary effect of high dietary calcium appears to be due to inhibition of bone resorption rather than to stimulation of bone formation.

  6. Non-nuclear-initiated actions of the estrogen receptor protect cortical bone mass.

    PubMed

    Bartell, Shoshana M; Han, Li; Kim, Ha-neui; Kim, Sung Hoon; Katzenellenbogen, John A; Katzenellenbogen, Benita S; Chambliss, Ken L; Shaul, Philip W; Roberson, Paula K; Weinstein, Robert S; Jilka, Robert L; Almeida, Maria; Manolagas, Stavros C

    2013-04-01

    Extensive evidence has suggested that at least some of the effects of estrogens on bone are mediated via extranuclear estrogen receptor α signaling. However, definitive proof for this contention and the extent to which such effects may contribute to the overall protective effects of estrogens on bone maintenance have remained elusive. Here, we investigated the ability of a 17β-estradiol (E2) dendrimer conjugate (EDC), incapable of stimulating nuclear-initiated actions of estrogen receptor α, to prevent the effects of ovariectomy (OVX) on the murine skeleton. We report that EDC was as potent as an equimolar dose of E2 in preventing bone loss in the cortical compartment that represents 80% of the entire skeleton, but was ineffective on cancellous bone. In contrast, E2 was effective in both compartments. Consistent with its effect on cortical bone mass, EDC partially prevented the loss of both vertebral and femoral strength. In addition, EDC, as did E2, prevented the OVX-induced increase in osteoclastogenesis, osteoblastogenesis, and oxidative stress. Nonetheless, the OVX-induced decrease in uterine weight was unaltered by EDC but was restored by E2. These results demonstrate that the protection of cortical bone mass by estrogens is mediated, at least in part, via a mechanism that is distinct from the classic mechanism of estrogen action on reproductive organs.

  7. An analysis of factors affecting the mercury content in the human femoral bone.

    PubMed

    Zioła-Frankowska, A; Dąbrowski, M; Kubaszewski, Ł; Rogala, P; Kowalski, A; Frankowski, M

    2017-01-01

    The study was carried out to determine the content of mercury in bone tissue of the proximal femur (head and neck bone) of 95 patients undergoing total hip replacement due to osteoarthritis, using CF-AFS analytical technique. Furthermore, the investigations were aimed at assessing the impact of selected factors, such as age, gender, tobacco smoking, alcohol consumption, exposure to chemical substance at work, type of degenerative changes, clinical evaluation and radiological parameters, type of medications, on the concentration of mercury in the head and neck of the femur, resected in situ. Mercury was obtained in all samples of the head and neck of the femur (n = 190) in patients aged 25-91 years. The mean content of mercury for the whole group of patients was as follows: 37.1 ± 35.0 ng/g for the femoral neck and 24.2 ± 19.5 ng/g for the femoral head. The highest Hg contents were found in femoral neck samples, both in women and men, and they amounted to 169.6 and 176.5 ng/g, respectively. The research showed that the mercury content of bones can be associated with body mass index, differences in body anatomy, and gender. The uses of statistical analysis gave the possibility to define the influence of factors on mercury content in human femoral bones.

  8. Collagen modifications in postmenopausal osteoporosis: advanced glycation endproducts may affect bone volume, structure and quality.

    PubMed

    Willett, Thomas L; Pasquale, Julia; Grynpas, Marc D

    2014-09-01

    The classic model of postmenopausal osteoporosis (PM-OP) starts with the depletion of estrogen, which in turn stimulates imbalanced bone remodeling, resulting in loss of bone mass/volume. Clinically, this leads to fractures because of structural weakness. Recent work has begun to provide a more complete picture of the mechanisms of PM-OP involving oxidative stress and collagen modifications known as advanced glycation endproducts (AGEs). On one hand, AGEs may drive imbalanced bone remodeling through signaling mediated by the receptor for AGEs (RAGE), stimulating resorption and inhibiting formation. On the other hand, AGEs are associated with degraded bone material quality. Oxidative stress promotes the formation of AGEs, inhibits normal enzymatically derived crosslinking and can degrade collagen structure, thereby reducing fracture resistance. Notably, there are multiple positive feedback loops that can exacerbate the mechanisms of PM-OP associated with oxidative stress and AGEs. Anti-oxidant therapies may have the potential to inhibit the oxidative stress based mechanisms of this disease.

  9. Evaluation of the parameters affecting bone temperature during drilling using a three-dimensional dynamic elastoplastic finite element model.

    PubMed

    Chen, Yung-Chuan; Tu, Yuan-Kun; Zhuang, Jun-Yan; Tsai, Yi-Jung; Yen, Cheng-Yo; Hsiao, Chih-Kun

    2017-03-28

    A three-dimensional dynamic elastoplastic finite element model was constructed and experimentally validated and was used to investigate the parameters which influence bone temperature during drilling, including the drill speed, feeding force, drill bit diameter, and bone density. Results showed the proposed three-dimensional dynamic elastoplastic finite element model can effectively simulate the temperature elevation during bone drilling. The bone temperature rise decreased with an increase in feeding force and drill speed, however, increased with the diameter of drill bit or bone density. The temperature distribution is significantly affected by the drilling duration; a lower drilling speed reduced the exposure duration, decreases the region of the thermally affected zone. The constructed model could be applied for analyzing the influence parameters during bone drilling to reduce the risk of thermal necrosis. It may provide important information for the design of drill bits and surgical drilling powers.

  10. Enzalutamide Reduces the Bone Mass in the Axial But Not the Appendicular Skeleton in Male Mice.

    PubMed

    Wu, Jianyao; Movérare-Skrtic, Sofia; Börjesson, Anna E; Lagerquist, Marie K; Sjögren, Klara; Windahl, Sara H; Koskela, Antti; Grahnemo, Louise; Islander, Ulrika; Wilhelmson, Anna S; Tivesten, Åsa; Tuukkanen, Juha; Ohlsson, Claes

    2016-02-01

    Testosterone is a crucial regulator of the skeleton, but the role of the androgen receptor (AR) for the maintenance of the adult male skeleton is unclear. In the present study, the role of the AR for bone metabolism and skeletal growth after sexual maturation was evaluated by means of the drug enzalutamide, which is a new AR antagonist used in the treatment of prostate cancer patients. Nine-week-old male mice were treated with 10, 30, or 100 mg/kg·d of enzalutamide for 21 days or were surgically castrated and were compared with vehicle-treated gonadal intact mice. Although orchidectomy reduced the cortical bone thickness and trabecular bone volume fraction in the appendicular skeleton, these parameters were unaffected by enzalutamide. In contrast, both enzalutamide and orchidectomy reduced the bone mass in the axial skeleton as demonstrated by a reduced lumbar spine areal bone mineral density (P < .001) and trabecular bone volume fraction in L5 vertebrae (P < .001) compared with vehicle-treated gonadal intact mice. A compression test of the L5 vertebrae revealed that the mechanical strength in the axial skeleton was significantly reduced by enzalutamide (maximal load at failure -15.3% ± 3.5%; P < .01). The effects of enzalutamide in the axial skeleton were associated with a high bone turnover. In conclusion, enzalutamide reduces the bone mass in the axial but not the appendicular skeleton in male mice after sexual maturation. We propose that the effect of testosterone on the axial skeleton in male mice is mainly mediated via the AR.

  11. Relative Importance of Lean and Fat Mass on Bone Mineral Density in Iranian Children and Adolescents

    PubMed Central

    Jeddi, Marjan; Dabbaghmanesh, Mohammad Hossein; Ranjbar Omrani, Gholamhossein; Ayatollahi, Sayed Mohammad Taghi; Bagheri, Zahra; Bakhshayeshkaram, Marzieh

    2015-01-01

    Background: Body weight is made up of lean and fat mass and both are involved in growth and development. Impression of these two components in bone density accrual has been controversial. Objectives: The aim of this study was to evaluate the relationship between fat and lean mass and bone density in Iranian children and adolescents. Patients and Methods: A cross-sectional study was performed on 472 subjects (235 girls, 237 boys) aged 9-18 years old in Fars Province. The participants' weight, height, waist circumference, stage of puberty, and level of physical activity were recorded. Bone Mineral Content (BMC), Bone Mineral Density (BMD), total body fat and lean mass were measured using dual-energy X-ray absorptiometry. Results: Results showed that 12.2% of boys and 12.3% of girls were overweight and 5.5% of boys and 4.7% of girls were obese. Obese individuals had greater total body BMD (0.96 ± 0.11) than normal-weight ones (0.86 ± 0.11) (P < 0.001). We found the greatest correlation between total body BMD and total body lean mass (R = 0.78. P < 0.001) and the least correlation with total body fat percentage (R = 0.03, P = 0.44). Total lean mass in more active boys was 38.1 ± 10.9 and in less active boys was 32.3 ± 11.0 (P < 0.001). The results of multiple regression analysis showed that age and total body lean mass were independent factors of BMD in growing children and adolescents. Conclusions: These findings suggest that lean mass was the most important predictor of BMD in both genders. Physical activity appears to positively impact on lean mass and needs to be considered in physical education and health-enhancing programs in Iranian school children. PMID:26401143

  12. Bone morphogenetic protein Smads signaling in mesenchymal stem cells affected by osteoinductive calcium phosphate ceramics.

    PubMed

    Tang, Zhurong; Wang, Zhe; Qing, Fangzhu; Ni, Yilu; Fan, Yujiang; Tan, Yanfei; Zhang, Xingdong

    2015-03-01

    Porous calcium phosphate ceramics (CaP ceramics) could induce ectopic bone formation which was regulated by various signal molecules. In this work, bone marrow mesenchymal stem cells (MSCs) were cultured on the surface of osteoinductive hydroxyapatite (HA) and biphasic calcium phosphate (BCP) ceramics in comparison with control (culture plate) for up to 14 days to detect the signal molecules which might be affected by the CaP ceramics. Without adding osteogenic factors, MSCs cultured on HA and BCP both expressed higher Runx2, Osterix, collagen type I, osteopontin, bone sialoprotein, and osteocalcin at various stages compared with control, thus confirmed the osteoblastic differentiation of MSCs. Later study demonstrated the messenger RNA level of bone morphogenetic protein 2 (BMP2) and BMP4 were also significantly enhanced by HA and BCP. Furthermore, Smad1, 4, 5, and Dlx5, the main molecules in the BMP/Smads signaling pathway, were upregulated by HA and BCP. Moreover, the higher expression of Smads and BMP2, 4 in BCP over HA, corresponded to the better performance of BCP in stimulating in vitro osteoblastic differentiation of MSCs. This was in accordance with the better osteoinductivity of BCP over HA in vivo. Altogether, these results implied that the CaP ceramics may initiate the osteoblastic differentiation of MSCs by influencing the expression of molecules in BMP/Smads pathway.

  13. The nicotinic acetylcholine receptor α7 subunit is an essential negative regulator of bone mass.

    PubMed

    Mito, Kazuaki; Sato, Yuiko; Kobayashi, Tami; Miyamoto, Kana; Nitta, Eriko; Iwama, Atsushi; Matsumoto, Morio; Nakamura, Masaya; Sato, Kazuki; Miyamoto, Takeshi

    2017-03-28

    The nicotinic receptor α7nAchR reportedly regulates vagal nerve targets in brain and cardiac tissue. Here we show that nAchR7(-/-) mice exhibit increased bone mass due to decreased osteoclast formation, accompanied by elevated osteoprotegerin/RANKL ratios in serum. Vagotomy in wild-type mice also significantly increased the serum osteoprotegerin/RANKL ratio, and elevated bone mass seen in nAchR7(-/-) mice was reversed in α7nAchR/osteoprotegerin-doubly-deficient mice. α7nAchR loss significantly increased TNFα expression in Mac1-positive macrophages, and TNFα increased the osteoprotegerin/RANKL ratio in osteoblasts. Targeting TNFα in nAchR7(-/-) mice normalized both serum osteoprotegerin/RANKL ratios and bone mass. Administration of nicotine, an α7nAchR ligand, to wild-type mice increased serum RANKL levels. Thus, vagal nerve stimulation of macrophages via α7nAchR regulates bone mass by modulating osteoclast formation.

  14. The nicotinic acetylcholine receptor α7 subunit is an essential negative regulator of bone mass

    PubMed Central

    Mito, Kazuaki; Sato, Yuiko; Kobayashi, Tami; Miyamoto, Kana; Nitta, Eriko; Iwama, Atsushi; Matsumoto, Morio; Nakamura, Masaya; Sato, Kazuki; Miyamoto, Takeshi

    2017-01-01

    The nicotinic receptor α7nAchR reportedly regulates vagal nerve targets in brain and cardiac tissue. Here we show that nAchR7−/− mice exhibit increased bone mass due to decreased osteoclast formation, accompanied by elevated osteoprotegerin/RANKL ratios in serum. Vagotomy in wild-type mice also significantly increased the serum osteoprotegerin/RANKL ratio, and elevated bone mass seen in nAchR7−/− mice was reversed in α7nAchR/osteoprotegerin-doubly-deficient mice. α7nAchR loss significantly increased TNFα expression in Mac1-positive macrophages, and TNFα increased the osteoprotegerin/RANKL ratio in osteoblasts. Targeting TNFα in nAchR7−/− mice normalized both serum osteoprotegerin/RANKL ratios and bone mass. Administration of nicotine, an α7nAchR ligand, to wild-type mice increased serum RANKL levels. Thus, vagal nerve stimulation of macrophages via α7nAchR regulates bone mass by modulating osteoclast formation. PMID:28349965

  15. Adolescence: How do we increase intestinal calcium absorption to allow for bone mineral mass accumulation?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An increase in calcium absorptive efficiency (fractional absorption of dietary calcium) during adolescence is associated with a rapid increase in total body bone mineral mass (BMM) accumulation. This increase occurs across a range of calcium intakes. It appears to be principally mediated by hormonal...

  16. Physical activity and dark skin tone: protective factors against low bone mass in Mexican men.

    PubMed

    Vivanco-Muñoz, Nalleli; Jo, Talavera; Gerardo, Huitron-Bravo; Juan, Tamayo; Clark, Patricia

    2012-01-01

    A cross-sectional study was conducted on 268 Mexican men between the ages of 13 and 80 yr to evaluate the association of clinical factors related with bone mass. Men from high schools, universities, and retirement homes were invited to participate. Body mass index (BMI) was measured, and bone mineral density (BMD) was assessed using dual-energy X-ray absorptiometry for L1-L4 and total hip. Factors related to bone mass were assessed by questionnaire and analyzed using a logistic regression model. Demographic factors (age, education, and occupation), clinical data (BMI, skin tone, previous fracture, history of osteoporosis [OP], and history of fractures), and lifestyle variables (diet, physical activity, sun exposure, and smoking) were evaluated. Physical activity (≥ 60 min/5 times a week) reduced the risk for low BMD for age, osteopenia, and OP at the spine and total hip (odds ratio [OR]: 0.276; 95% confidence interval [CI]: 0.099-0.769; p=0.014; and OR: 0.184; 95% CI: 0.04-0.849; p=0.03, respectively). Dark skin tone was a protective factor, decreasing the risk by up to 70%. In this population of healthy Mexican men (aged 13-80 yr), dark skin and physical activity were protective factors against low bone mass.

  17. 42 CFR 410.31 - Bone mass measurement: Conditions for coverage and frequency standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the use of a dual energy x-ray absorptiometry system (axial skeleton). (3) Medicare covers a medically... bone mass measurement is performed by a dual energy x-ray absorptiometry system (axial skeleton) and the initial measurement was not performed by a dual energy x-ray absorptiometry system (axial...

  18. 42 CFR 410.31 - Bone mass measurement: Conditions for coverage and frequency standards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the use of a dual energy x-ray absorptiometry system (axial skeleton). (3) Medicare covers a medically... bone mass measurement is performed by a dual energy x-ray absorptiometry system (axial skeleton) and the initial measurement was not performed by a dual energy x-ray absorptiometry system (axial...

  19. 42 CFR 410.31 - Bone mass measurement: Conditions for coverage and frequency standards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the use of a dual energy x-ray absorptiometry system (axial skeleton). (3) Medicare covers a medically... bone mass measurement is performed by a dual energy x-ray absorptiometry system (axial skeleton) and the initial measurement was not performed by a dual energy x-ray absorptiometry system (axial...

  20. 42 CFR 410.31 - Bone mass measurement: Conditions for coverage and frequency standards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the use of a dual energy x-ray absorptiometry system (axial skeleton). (3) Medicare covers a medically... bone mass measurement is performed bya dual energy x-ray absorptiometry system (axial skeleton) and theinitial measurement was not performed by a dual energy x-rayabsorptiometry system (axial skeleton)....

  1. Direct stimulation of bone mass by increased GH signalling in the osteoblasts of Socs2-/- mice.

    PubMed

    Dobie, R; MacRae, V E; Huesa, C; van't Hof, R; Ahmed, S F; Farquharson, C

    2014-10-01

    The suppressor of cytokine signalling (Socs2(-/-))-knockout mouse is characterised by an overgrowth phenotype due to enhanced GH signalling. The objective of this study was to define the Socs2(-/-) bone phenotype and determine whether GH promotes bone mass via IGF1-dependent mechanisms. Despite no elevation in systemic IGF1 levels, increased body weight in 4-week-old Socs2(-/-) mice following GH treatment was associated with increased cortical bone area (Ct.Ar) (P<0.01). Furthermore, detailed bone analysis of male and female juvenile and adult Socs2(-/-) mice revealed an altered cortical and trabecular phenotype consistent with the known anabolic effects of GH. Indeed, male Socs2(-/-) mice had increased Ct.Ar (P<0.05) and thickness associated with increased strength. Despite this, there was no elevation in hepatic Igf1 expression, suggesting that the anabolic bone phenotype was the result of increased local GH action. Mechanistic studies showed that in osteoblasts and bone of Socs2(-/-) mice, STAT5 phosphorylation was significantly increased in response to GH. Conversely, overexpression of SOCS2 decreased GH-induced STAT5 signalling. Although an increase in Igf1 expression was observed in Socs2(-/-) osteoblasts following GH, it was not evident in vivo. Igf1 expression levels were not elevated in response to GH in 4-week-old mice and no alterations in expression was observed in bone samples of 6-week-old Socs2(-/-) mice. These studies emphasise the critical role of SOCS2 in controlling the local GH anabolic bone effects. We provide compelling evidence implicating SOCS2 in the regulation of GH osteoblast signalling and ultimately bone accrual, which maybe via mechanisms that are independent of IGF1 production in vivo.

  2. Bone mass and microarchitecture in CKD patients with fracture.

    PubMed

    Nickolas, Thomas L; Stein, Emily; Cohen, Adi; Thomas, Valerie; Staron, Ronald B; McMahon, Donald J; Leonard, Mary B; Shane, Elizabeth

    2010-08-01

    Patients with predialysis chronic kidney disease (CKD) have increased risk for fracture, but the structural mechanisms underlying this increased skeletal fragility are unknown. We measured areal bone mineral density (aBMD) by dual-energy x-ray absorptiometry at the spine, hip, and radius, and we measured volumetric BMD (vBMD), geometry, and microarchitecture by high-resolution peripheral quantitative computed tomography (HR-pQCT) at the radius and tibia in patients with CKD: 32 with fracture and 59 without fracture. Patients with fracture had lower aBMD at the spine, total hip, femoral neck, and the ultradistal radius, the last having the strongest association with fracture. By HR-pQCT of the radius, patients with fracture had lower cortical area and thickness, total and trabecular vBMD, and trabecular number and greater trabecular separation and network heterogeneity. At the tibia, patients with fracture had significantly lower cortical area, thickness, and total and cortical density. Total vBMD at both radius and tibia most strongly associated with fracture. By receiver operator characteristic curve analysis, patients with longer duration of CKD had area under the curve of >0.75 for aBMD at both hip sites and the ultradistal radius, vBMD and geometry at the radius and tibia, and microarchitecture at the tibia. In summary, patients with predialysis CKD and fractures have lower aBMD by dual-energy x-ray absorptiometry and lower vBMD, thinner cortices, and trabecular loss by HR-pQCT. These density and structural differences may underlie the increased susceptibility to fracture among patients with CKD.

  3. Low dose pioglitazone does not affect bone formation and resorption markers or bone mineral density in streptozocin-induced diabetic rats.

    PubMed

    Tsirella, E; Mavrakanas, T; Rager, O; Tsartsalis, S; Kallaras, K; Kokkas, B; Mironidou-Tzouveleki, M

    2012-04-01

    Our study aims to investigate the effect of a low-dose pioglitazone regimen on bone mineral density and bone formation-resorption markers in control and diabetic rats. Wistar rats were divided into 4 groups: non-diabetic controls, control rats receiving pioglitazone (3 mg/kg), streptozocin-treated diabetic rats (50 mg/kg), diabetic rats treated with pioglitazone (3 mg/kg). The duration of the experiment was 8 weeks. Diabetes in our rats was associated with weight loss, increased urinary calcium excretion and reduced plasma osteocalcin levels. Diabetes mellitus did not affect bone mineral density. Pioglitazone administration had no impact on bone formation and resorption markers levels and did not modify bone mineral density in the four studied groups. Pioglitazone at the 3 mg/kg dose was not associated with significant skeletal complications in our experimental model.

  4. Zebrafish Bone and General Physiology Are Differently Affected by Hormones or Changes in Gravity.

    PubMed

    Aceto, Jessica; Nourizadeh-Lillabadi, Rasoul; Marée, Raphael; Dardenne, Nadia; Jeanray, Nathalie; Wehenkel, Louis; Aleström, Peter; van Loon, Jack J W A; Muller, Marc

    2015-01-01

    Teleost fish such as zebrafish (Danio rerio) are increasingly used for physiological, genetic and developmental studies. Our understanding of the physiological consequences of altered gravity in an entire organism is still incomplete. We used altered gravity and drug treatment experiments to evaluate their effects specifically on bone formation and more generally on whole genome gene expression. By combining morphometric tools with an objective scoring system for the state of development for each element in the head skeleton and specific gene expression analysis, we confirmed and characterized in detail the decrease or increase of bone formation caused by a 5 day treatment (from 5dpf to 10 dpf) of, respectively parathyroid hormone (PTH) or vitamin D3 (VitD3). Microarray transcriptome analysis after 24 hours treatment reveals a general effect on physiology upon VitD3 treatment, while PTH causes more specifically developmental effects. Hypergravity (3g from 5dpf to 9 dpf) exposure results in a significantly larger head and a significant increase in bone formation for a subset of the cranial bones. Gene expression analysis after 24 hrs at 3g revealed differential expression of genes involved in the development and function of the skeletal, muscular, nervous, endocrine and cardiovascular systems. Finally, we propose a novel type of experimental approach, the "Reduced Gravity Paradigm", by keeping the developing larvae at 3g hypergravity for the first 5 days before returning them to 1g for one additional day. 5 days exposure to 3g during these early stages also caused increased bone formation, while gene expression analysis revealed a central network of regulatory genes (hes5, sox10, lgals3bp, egr1, edn1, fos, fosb, klf2, gadd45ba and socs3a) whose expression was consistently affected by the transition from hyper- to normal gravity.

  5. Zebrafish Bone and General Physiology Are Differently Affected by Hormones or Changes in Gravity

    PubMed Central

    Aceto, Jessica; Nourizadeh-Lillabadi, Rasoul; Marée, Raphael; Dardenne, Nadia; Jeanray, Nathalie; Wehenkel, Louis; Aleström, Peter

    2015-01-01

    Teleost fish such as zebrafish (Danio rerio) are increasingly used for physiological, genetic and developmental studies. Our understanding of the physiological consequences of altered gravity in an entire organism is still incomplete. We used altered gravity and drug treatment experiments to evaluate their effects specifically on bone formation and more generally on whole genome gene expression. By combining morphometric tools with an objective scoring system for the state of development for each element in the head skeleton and specific gene expression analysis, we confirmed and characterized in detail the decrease or increase of bone formation caused by a 5 day treatment (from 5dpf to 10 dpf) of, respectively parathyroid hormone (PTH) or vitamin D3 (VitD3). Microarray transcriptome analysis after 24 hours treatment reveals a general effect on physiology upon VitD3 treatment, while PTH causes more specifically developmental effects. Hypergravity (3g from 5dpf to 9 dpf) exposure results in a significantly larger head and a significant increase in bone formation for a subset of the cranial bones. Gene expression analysis after 24 hrs at 3g revealed differential expression of genes involved in the development and function of the skeletal, muscular, nervous, endocrine and cardiovascular systems. Finally, we propose a novel type of experimental approach, the "Reduced Gravity Paradigm", by keeping the developing larvae at 3g hypergravity for the first 5 days before returning them to 1g for one additional day. 5 days exposure to 3g during these early stages also caused increased bone formation, while gene expression analysis revealed a central network of regulatory genes (hes5, sox10, lgals3bp, egr1, edn1, fos, fosb, klf2, gadd45ba and socs3a) whose expression was consistently affected by the transition from hyper- to normal gravity. PMID:26061167

  6. Conditional abrogation of Atm in osteoclasts extends osteoclast lifespan and results in reduced bone mass

    PubMed Central

    Hirozane, Toru; Tohmonda, Takahide; Yoda, Masaki; Shimoda, Masayuki; Kanai, Yae; Matsumoto, Morio; Morioka, Hideo; Nakamura, Masaya; Horiuchi, Keisuke

    2016-01-01

    Ataxia-telangiectasia mutated (ATM) kinase is a central component involved in the signal transduction of the DNA damage response (DDR) and thus plays a critical role in the maintenance of genomic integrity. Although the primary functions of ATM are associated with the DDR, emerging data suggest that ATM has many additional roles that are not directly related to the DDR, including the regulation of oxidative stress signaling, insulin sensitivity, mitochondrial homeostasis, and lymphocyte development. Patients and mice lacking ATM exhibit growth retardation and lower bone mass; however, the mechanisms underlying the skeletal defects are not fully understood. In the present study, we generated mutant mice in which ATM is specifically inactivated in osteoclasts. The mutant mice did not exhibit apparent developmental defects but showed reduced bone mass due to increased osteoclastic bone resorption. Osteoclasts lacking ATM were more resistant to apoptosis and showed a prolonged lifespan compared to the controls. Notably, the inactivation of ATM in osteoclasts resulted in enhanced NF-κB signaling and an increase in the expression of NF-κB-targeted genes. The present study reveals a novel function for ATM in regulating bone metabolism by suppressing the lifespan of osteoclasts and osteoclast-mediated bone resorption. PMID:27677594

  7. FIAT represses ATF4-mediated transcription to regulate bone mass in transgenic mice.

    PubMed

    Yu, Vionnie W C; Ambartsoumian, Gourgen; Verlinden, Lieve; Moir, Janet M; Prud'homme, Josée; Gauthier, Claude; Roughley, Peter J; St-Arnaud, René

    2005-05-23

    We report the characterization of factor inhibiting activating transcription factor 4 (ATF4)-mediated transcription (FIAT), a leucine zipper nuclear protein. FIAT interacted with ATF4 to inhibit binding of ATF4 to DNA and block ATF4-mediated transcription of the osteocalcin gene in vitro. Transgenic mice overexpressing FIAT in osteoblasts also had reduced osteocalcin gene expression and decreased bone mineral density, bone volume, mineralized volume, trabecular thickness, trabecular number, and decreased rigidity of long bones. Mineral homeostasis, osteoclast number and activity, and osteoblast proliferation and apoptosis were unchanged in transgenics. Expression of osteoblastic differentiation markers was largely unaffected and type I collagen synthesis was unchanged. Mineral apposition rate was reduced in transgenic mice, suggesting that the lowered bone mass was due to a decline in osteoblast activity. This cell-autonomous decrease in osteoblast activity was confirmed by measuring reduced alkaline phosphatase activity and mineralization in primary osteoblast cultures. These results show that FIAT regulates bone mass accrual and establish FIAT as a novel transcriptional regulator of osteoblastic function.

  8. Conditional abrogation of Atm in osteoclasts extends osteoclast lifespan and results in reduced bone mass.

    PubMed

    Hirozane, Toru; Tohmonda, Takahide; Yoda, Masaki; Shimoda, Masayuki; Kanai, Yae; Matsumoto, Morio; Morioka, Hideo; Nakamura, Masaya; Horiuchi, Keisuke

    2016-09-28

    Ataxia-telangiectasia mutated (ATM) kinase is a central component involved in the signal transduction of the DNA damage response (DDR) and thus plays a critical role in the maintenance of genomic integrity. Although the primary functions of ATM are associated with the DDR, emerging data suggest that ATM has many additional roles that are not directly related to the DDR, including the regulation of oxidative stress signaling, insulin sensitivity, mitochondrial homeostasis, and lymphocyte development. Patients and mice lacking ATM exhibit growth retardation and lower bone mass; however, the mechanisms underlying the skeletal defects are not fully understood. In the present study, we generated mutant mice in which ATM is specifically inactivated in osteoclasts. The mutant mice did not exhibit apparent developmental defects but showed reduced bone mass due to increased osteoclastic bone resorption. Osteoclasts lacking ATM were more resistant to apoptosis and showed a prolonged lifespan compared to the controls. Notably, the inactivation of ATM in osteoclasts resulted in enhanced NF-κB signaling and an increase in the expression of NF-κB-targeted genes. The present study reveals a novel function for ATM in regulating bone metabolism by suppressing the lifespan of osteoclasts and osteoclast-mediated bone resorption.

  9. Experiment K305: Quantitative analysis of selected bone parameters. Supplement 2: Bone elongation rate and bone mass in metaphysis of long bones

    NASA Technical Reports Server (NTRS)

    Jee, W. S. S.; Kimmel, D. B.; Smith, C.; Dell, R. B.

    1981-01-01

    The proximal humeral metaphysis of rats from time periods recovery plus zero days (R+0), recovery plus six days (R+6), and recovery plus twenty nine days (R+29) was analyzed. The volume of calcified cartilage and bone in flight and synchronous controls was reduced in groups R+0 and R+6, but was normal in group R+29. The number of functional bone cells (osteoblasts and osteoclasts) was decreased in proportion to the amount of bone in the early groups, and was normal in the last group. The fatty marrow volume was increased only in flight animals of groups R+0 and R+6, but was normal in the R+29 group. Accumulation of excess fatty marrow was seen only in flight animals. The decreased amount of bone and calcified cartilage is believed to be the result of a temporarily slowed or arrested production of calcified cartilage as a substrate for bone formation. This would have resulted from slowed bone elongation during flight and synchronous control conditions. Bone elongation returned to normal by twenty nine days after return.

  10. Prostaglandin E2 Increased Rat Cortical Bone Mass When Administered Immediately Following Ovariectomy

    NASA Technical Reports Server (NTRS)

    Ke, Hua Zhu; Jee, Webster S.S.; Zeng, Qing Qiang; Li, Mei; Lin, Bai Yun

    1993-01-01

    cavity to increase total bone mass in the tibial shaft of OVX rats when given immediately following ovafiectomy.

  11. A comparative study of trabecular bone mass distribution in cursorial and non-cursorial limb joints.

    PubMed

    Chirchir, Habiba

    2015-05-01

    Skeletal design among cursorial animals is a compromise between a stable body that can withstand locomotor stress and a light design that is energetically inexpensive to grow, maintain, and move. Cursors have been hypothesized to reduce distal musculoskeletal mass to maintain a balance between safety and energetic cost due to an exponential increase in energetic demand observed during the oscillation of the distal limb. Additionally, experimental research shows that the cortical bone in distal limbs experiences higher strains and remodeling rates, apparently maintaining lower mass at the expense of a smaller safety factor. This study tests the hypothesis that the trabecular bone mass in the distal limb epiphyses of cursors is relatively lower than that in the proximal limb epiphyses to minimize the energetic cost of moving the limb. This study utilized peripheral quantitative computed tomography scanning to measure the trabecular mass in the lower and upper limb epiphyses of hominids, cercopithecines, and felids that are considered cursorial and non-cursorial. One-way ANOVA with Tukey post hoc corrections was used to test for significant differences in trabecular mass across limb epiphyses. The results indicate that overall, both cursors and non-cursors exhibit varied trabecular mass in limb epiphyses and, in certain instances, conform to a proximal-distal decrease in mass irrespective of cursoriality. Specifically, hominid and cercopithecine hind limb epiphyses exhibit a proximal-distal decrease in mass irrespective of cursorial adaptations. These results suggest that cursorial mammals employ other energy saving mechanisms to minimize energy costs during running.

  12. Losartan increases bone mass and accelerates chondrocyte hypertrophy in developing skeleton

    PubMed Central

    Rianon, Nahid; Rajagopal, Abbhirami; Munivez, Elda; Bertin, Terry; Dawson, Brian; Chen, Yuqing; Jiang, Ming-Ming; Lee, Brendan; Yang, Tao; Bae, Yangjin

    2015-01-01

    Angiotensin receptor blockers (ARBs) are a group of anti-hypertensive drugs that are widely used to treat pediatric hypertension. Recent application of ARBs to treat diseases such as Marfan syndrome or Alport syndrome has shown positive outcomes in animal and human studies, suggesting a broader therapeutic potential for this class of drugs. Multiple studies have reported a benefit of ARBs on adult bone homeostasis; however, its effect on the growing skeleton in children is unknown. We investigated the effect of Losartan, an ARB, in regulating bone mass and cartilage during development in mice. Wild type mice were treated with Losartan from birth until 6 weeks of age, after which bones were collected for microCT and histomorphometric analyses. Losartan increased trabecular bone volume vs. tissue volume (a 98% increase) and cortical thickness (a 9% increase) in 6-weeks old wild type mice. The bone changes were attributed to decreased osteoclastogenesis as demonstrated by reduced osteoclast number per bone surface in vivo and suppressed osteoclast differentiation in vitro. At the molecular level, Angiotensin II-induced ERK1/2 phosphorylation in RAW cells was attenuated by Losartan. Similarly, RANKL-induced ERK1/2 phosphorylation was suppressed by Losartan, suggesting a convergence of RANKL and angiotensin signaling at the level of ERK1/2 regulation. To assess the effect of Losartan on cartilage development, we examined the cartilage phenotype of wild type mice treated with Losartan in utero from conception to 1 day of age. Growth plates of these mice showed an elongated hypertrophic chondrocyte zone and increased Col10a1 expression level, with minimal changes in chondrocyte proliferation. Altogether, inhibition of the angiotensin pathway by Losartan increases bone mass and accelerates chondrocyte hypertrophy in growth plate during skeletal development. PMID:25779879

  13. Losartan increases bone mass and accelerates chondrocyte hypertrophy in developing skeleton.

    PubMed

    Chen, Shan; Grover, Monica; Sibai, Tarek; Black, Jennifer; Rianon, Nahid; Rajagopal, Abbhirami; Munivez, Elda; Bertin, Terry; Dawson, Brian; Chen, Yuqing; Jiang, Ming-Ming; Lee, Brendan; Yang, Tao; Bae, Yangjin

    2015-05-01

    Angiotensin receptor blockers (ARBs) are a group of anti-hypertensive drugs that are widely used to treat pediatric hypertension. Recent application of ARBs to treat diseases such as Marfan syndrome or Alport syndrome has shown positive outcomes in animal and human studies, suggesting a broader therapeutic potential for this class of drugs. Multiple studies have reported a benefit of ARBs on adult bone homeostasis; however, its effect on the growing skeleton in children is unknown. We investigated the effect of Losartan, an ARB, in regulating bone mass and cartilage during development in mice. Wild type mice were treated with Losartan from birth until 6 weeks of age, after which bones were collected for microCT and histomorphometric analyses. Losartan increased trabecular bone volume vs. tissue volume (a 98% increase) and cortical thickness (a 9% increase) in 6-weeks old wild type mice. The bone changes were attributed to decreased osteoclastogenesis as demonstrated by reduced osteoclast number per bone surface in vivo and suppressed osteoclast differentiation in vitro. At the molecular level, Angiotensin II-induced ERK1/2 phosphorylation in RAW cells was attenuated by Losartan. Similarly, RANKL-induced ERK1/2 phosphorylation was suppressed by Losartan, suggesting a convergence of RANKL and angiotensin signaling at the level of ERK1/2 regulation. To assess the effect of Losartan on cartilage development, we examined the cartilage phenotype of wild type mice treated with Losartan in utero from conception to 1 day of age. Growth plates of these mice showed an elongated hypertrophic chondrocyte zone and increased Col10a1 expression level, with minimal changes in chondrocyte proliferation. Altogether, inhibition of the angiotensin pathway by Losartan increases bone mass and accelerates chondrocyte hypertrophy in growth plate during skeletal development.

  14. Handball Practice Enhances Bone Mass in Specific Sites Among Prepubescent Boys.

    PubMed

    Missawi, Kawther; Zouch, Mohamed; Chakroun, Yosra; Chaari, Hamada; Tabka, Zouhair; Bouajina, Elyès

    2016-01-01

    This investigation's purpose is to focus on the effects of practicing handball for at least 2 yr on bone acquisition among prepubescent boys. One hundred prepubescent boys aged 10.68 ± 0.85 yr were divided into 2 groups: 50 handball players (HP group) and 50 controls (C group). Bone mineral density (BMD), bone mineral content (BMC), and bone area (BA) were evaluated by using dual-photon X-ray absorptiometry on the whole body, lumbar spine (L2-L4), legs, arms, femoral necks, hips and radiuses. Results showed greater values of BMD in both right and left femoral neck and total hip in handball players than in controls. In addition, handball players had higher values of legs and right total hip BMC than controls without any obvious variation of BA measurement in all sites between groups. All results of the paired t-test displayed an obviously marked variation of bone mass parameters between the left and right sides in the trained group without any marked variation among controls. Data showed an increased BMD of the supporting sites between the left and the right leg among handball players. However, "BMC" results exhibited higher values in the right than in the left total hip, and in the right total radius than in the left correspondent site. In addition, differences in the "BA" measurements were observed in the left total hip and in the right arm. Specific bone sites are markedly stimulated by handball training in prepubescent boys.

  15. Soy intake and the maintenance of peak bone mass in Hong Kong Chinese women.

    PubMed

    Ho, S C; Chan, S G; Yi, Q; Wong, E; Leung, P C

    2001-07-01

    Our previous study on bone health among premenopausal women showed that bone mass consolidation is attained by the early 30s, and small loss of spinal bone mineral density (SBMD) occurs soon after peak bone mass attainment. Recent interest has been shown in the potential beneficial effects of phytoestrogens on bone health. However, data are lacking, particularly in Asian women. This study aims to investigate the effect of soy isoflavones intake on the maintenance of peak bone mass in a cohort of 132 women aged 30-40 years who were followed up for 3 years. Baseline measurements of SBMD (L2-L4) were obtained using dual-energy X-ray densitometry, and dietary intake of soy foods and other key nutrients, including dietary calcium, were obtained through a quantitative food frequency method. Information on body measurements; physical activity (PA), weight-bearing activity in particular; age of menarche; and number of pregnancies were obtained at baseline. Repeated measurements of SBMD were obtained yearly for a further 3 years with an average follow-up time of 38 months. Analyses were performed on 116 subjects with at least three SBMD measurements (at baseline, 3-year follow-up, and at least one measurement during follow-up). The individual SBMD regression slope was computed for each of the subjects. Soy isoflavones consumption was categorized as quartiles of intake. We observed a significant difference in the SBMD individual regression slopes between women belonging to the fourth and first soy isoflavones intake quartiles. The positive effect of soy isoflavones on SBMD remained after adjusting for age and body size (height, weight, and bone area). Multiple linear regression analysis including the other known covariates (lean body mass, PA, energy adjusted calcium, and follow-up time) showed that soy isoflavones, together with these variables, accounted for 24% of the variances of the SBMD individual regression slope. This longitudinal study shows that soy intake had a

  16. Long-term low ascorbic acid intake reduces bone mass in guinea pigs.

    PubMed

    Kipp, D E; Grey, C E; McElvain, M E; Kimmel, D B; Robinson, R G; Lukert, B P

    1996-08-01

    The effect of long-term (1 y) low to excess ascorbic acid (AA) intake on bone mass was evaluated using guinea pigs that were 12-14 d old at the start of the experiment. Dietary AA was low (0.15 g/ kg diet) (n = 7), normal (0.50 g/kg) (n = 8) or excess (10 g/kg) (n = 8). After 12 mo, total body bone mineral density (BMD, mg/cm2) and bone mineral content (BMC, g) were determined by dual energy X-ray absorptiometry. Histomorphometric analysis of the cancellous bone of the proximal tibial metaphysis was completed after in vivo dual fluorochrome labeling. Total body BMD of the low AA group was 4.9% lower (P < 0.05), and total body BMC was 12.4% lower (P < 0.05) than in the normal AA group. Total body BMD and BMC were similar in normal and excess AA groups and in the low and excess AA groups. Histomorphometric analysis indicated significantly greater (P < 0.05) double-labeled bone surface, mineralizing surface, and bone formation rate in the low AA guinea pigs compared with the normal AA animals. Thus, there was greater bone turnover in the low AA group than in the normal AA guinea pigs. No differences in histomorphometric endpoints existed between the normal AA and excess AA groups. Long-term AA deficiency, during the period of rapid growth and slower phases of skeletal maturation, resulted in bone abnormalities in adult guinea pig skeletons. Long-term dietary AA excess caused no such abnormalities.

  17. Lower bone mass in prepubertal overweight children with pre-diabetes

    PubMed Central

    Pollock, Norman K; Bernard, Paul J; Wenger, Karl; Misra, Sudipta; Gower, Barbara A; Allison, Jerry D; Zhu, Haidong; Davis, Catherine L

    2011-01-01

    Childhood studies of the fat-bone relationship are conflicting, possibly reflecting the influence of metabolic abnormalities in some but not all obese children. Bone mass was compared between prepubertal overweight children with (n=41) and without (n=99) pre-diabetes. Associations of bone mass with measures of total and central adiposity, glucose intolerance, insulin sensitivity, lipid profile, systemic inflammation, and osteocalcin were also determined. In 140 overweight children aged 7–11 y, an oral glucose tolerance test was used to identify those with pre-diabetes and for determination of glucose, 2-h glucose, glucose AUC, insulin, 2-hr insulin, and insulin AUC. Blood samples were also assessed for lipids, C-reactive protein, and osteocalcin. Total body bone mineral content (BMC), fat-free soft tissue mass (FFST), and fat mass (FM) were measured by DXA. Visceral adipose tissue (VAT) and subcutaneous abdominal adipose tissue (SAAT) were assessed using MRI. Total body BMC was 4% lower in overweight children with pre-diabetes than those without pre-diabetes, after controlling for sex, race, height, and weight (P=0.03). In the total sample, FM was positively related with BMC (β=0.16, P=0.01), after adjusting for sex, race, height, and FFST. However, VAT (β=−0.13, P=0.03) and SAAT (β=−0.34, P=0.02) were inversely associated with BMC, after controlling for sex, race, height, FFST, FM, and SAAT or VAT. No significant associations were found between BMC and the biochemical measurements. Prepubertal overweight children with pre-diabetes may be at risk for poor skeletal development. In addition, it appears that greater levels of central, rather than total, adiposity may be deleterious for developing bone. PMID:20641032

  18. Evidence for efficacy of drugs affecting bone metabolism in preventing hip fracture.

    PubMed Central

    Kanis, J. A.; Johnell, O.; Gullberg, B.; Allander, E.; Dilşen, G.; Gennari, C.; Lopes Vaz, A. A.; Lyritis, G. P.; Mazzuoli, G.; Miravet, L.

    1992-01-01

    OBJECTIVE--To examine the effects of taking drugs affecting bone metabolism on the risk of hip fracture in women aged over 50 years. DESIGN--Retrospective, population based, case-control study by questionnaire. SETTING--14 centres in six countries in southern Europe. SUBJECTS--2086 women with hip fracture and 3532 control women matched for age. MAIN OUTCOME MEASURES--Number of drugs affecting bone metabolism taken and length taken for. RESULTS--Women taking drugs affecting bone metabolism had a significantly decreased risk of hip fracture. After adjustment for differences in other risk factors, the relative risk of hip fractures was 0.55 (95% confidence interval 0.31 to 0.85) in women taking oestrogens, 0.75 (0.60 to 0.94) in those taking calcium, and 0.69 (0.51 to 0.92) in those taking calcitonin. The fall in risk was not significant for anabolic steroids (0.6 (0.29 to 1.22)). Neither vitamin D nor fluorides were associated with a significant decrease in the risk of hip fracture. The effect on hip fracture risk increased significantly with increasing duration of exposure (risk ratio 0.8 (0.61 to 1.05) for less than median exposure v 0.66 (0.5 to 0.88) for greater than median exposure). Drugs were equally effective in older and younger women, with the exception of oestrogen. CONCLUSIONS--Oestrogen, calcium, and calcitonins significantly decrease the risk of hip fracture. Short term intervention late in the natural course of osteoporosis may have significant effects on the incidence of hip fracture. PMID:1463947

  19. High vitamin D3 diet administered during active colitis negatively affects bone metabolism in an adoptive T cell transfer model

    PubMed Central

    Larmonier, C. B.; McFadden, R.-M. T.; Hill, F. M.; Schreiner, R.; Ramalingam, R.; Besselsen, D. G.; Ghishan, F. K.

    2013-01-01

    Decreased bone mineral density (BMD) represents an extraintestinal complication of inflammatory bowel disease (IBD). Vitamin D3 has been considered a viable adjunctive therapy in IBD. However, vitamin D3 plays a pleiotropic role in bone modeling and regulates the bone formation-resorption balance, depending on the physiological environment, and supplementation during active IBD may have unintended consequences. We evaluated the effects of vitamin D3 supplementation during the active phase of disease on colonic inflammation, BMD, and bone metabolism in an adoptive IL-10−/− CD4+ T cell transfer model of chronic colitis. High-dose vitamin D3 supplementation for 12 days during established disease had negligible effects on mucosal inflammation. Plasma vitamin D3 metabolites correlated with diet, but not disease, status. Colitis significantly reduced BMD. High-dose vitamin D3 supplementation did not affect cortical bone but led to a further deterioration of trabecular bone morphology. In mice fed a high vitamin D3 diet, colitis more severely impacted bone formation markers (osteocalcin and bone alkaline phosphatase) and increased bone resorption markers, ratio of receptor activator of NF-κB ligand to osteoprotegrin transcript, plasma osteoprotegrin level, and the osteoclast activation marker tartrate-resistant acid phosphatase (ACp5). Bone vitamin D receptor expression was increased in mice with chronic colitis, especially in the high vitamin D3 group. Our data suggest that vitamin D3, at a dose that does not improve inflammation, has no beneficial effects on bone metabolism and density during active colitis or may adversely affect BMD and bone turnover. These observations should be taken into consideration in the planning of further clinical studies with high-dose vitamin D3 supplementation in patients with active IBD. PMID:23639807

  20. A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods

    PubMed Central

    2012-01-01

    Background Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights. Results Significant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial) limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa. Conclusions The conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion) and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in extinct terrestrial

  1. Pendulum mass affects the measurement of articular friction coefficient.

    PubMed

    Akelman, Matthew R; Teeple, Erin; Machan, Jason T; Crisco, Joseph J; Jay, Gregory D; Fleming, Braden C

    2013-02-01

    Friction measurements of articular cartilage are important to determine the relative tribologic contributions made by synovial fluid or cartilage, and to assess the efficacy of therapies for preventing the development of post-traumatic osteoarthritis. Stanton's equation is the most frequently used formula for estimating the whole joint friction coefficient (μ) of an articular pendulum, and assumes pendulum energy loss through a mass-independent mechanism. This study examines if articular pendulum energy loss is indeed mass independent, and compares Stanton's model to an alternative model, which incorporates viscous damping, for calculating μ. Ten loads (25-100% body weight) were applied in a random order to an articular pendulum using the knees of adult male Hartley guinea pigs (n=4) as the fulcrum. Motion of the decaying pendulum was recorded and μ was estimated using two models: Stanton's equation, and an exponential decay function incorporating a viscous damping coefficient. μ estimates decreased as mass increased for both models. Exponential decay model fit error values were 82% less than the Stanton model. These results indicate that μ decreases with increasing mass, and that an exponential decay model provides a better fit for articular pendulum data at all mass values. In conclusion, inter-study comparisons of articular pendulum μ values should not be made without recognizing the loads used, as μ values are mass dependent.

  2. F-Spondin Deficient Mice Have a High Bone Mass Phenotype

    PubMed Central

    Yang, Qing; Liu, James; Moon, Paxton; Beier, Frank; Abramson, Steven B.

    2014-01-01

    F-spondin is a pericellular matrix protein upregulated in developing growth plate cartilage and articular cartilage during osteoarthritis. To address its function in bone and cartilage in vivo, we generated mice that were deficient for the F-spondin gene, Spon1. Spon1−/− mice were viable and developed normally to adulthood with no major skeletal abnormalities. At 6 months, femurs and tibiae of Spon1−/− mice exhibited increased bone mass, evidenced by histological staining and micro CT analyses, which persisted up to 12 months. In contrast, no major abnormalities were observed in articular cartilage at any age group. Immunohistochemical staining of femurs and tibiae revealed increased levels of periostin, alkaline phosphate and tartrate resistant acid phosphatase (TRAP) activity in the growth plate region of Spon1−/− mice, suggesting elevated bone synthesis and turnover. However, there were no differences in serum levels of TRAP, the bone resorption marker, CTX-1, or osteoclast differentiation potential between genotypes. Knockout mice also exhibited reduced levels of TGF-β1 in serum and cultured costal chondrocytes relative to wild type. This was accompanied by increased levels of the BMP-regulatory SMADs, P-SMAD1/5 in tibiae and chondrocytes. Our findings indicate a previously unrecognized role for Spon1 as a negative regulator of bone mass. We speculate that Spon1 deletion leads to a local and systemic reduction of TGF-β levels resulting in increased BMP signaling and increased bone deposition in adult mice. PMID:24875054

  3. Heparin affects human bone marrow stromal cell fate: Promoting osteogenic and reducing adipogenic differentiation and conversion.

    PubMed

    Simann, Meike; Schneider, Verena; Le Blanc, Solange; Dotterweich, Julia; Zehe, Viola; Krug, Melanie; Jakob, Franz; Schilling, Tatjana; Schütze, Norbert

    2015-09-01

    Heparins are broadly used for the prevention and treatment of thrombosis and embolism. Yet, osteoporosis is considered to be a severe side effect in up to one third of all patients on long-term treatment. However, the mechanisms underlying this clinical problem are only partially understood. To investigate if heparin affects differentiation of skeletal precursors, we examined the effects of heparin on the osteogenic and adipogenic lineage commitment and differentiation of primary human bone marrow stromal cells (hBMSCs). Due to the known inverse relationship between adipogenesis and osteogenesis and the capacity of pre-differentiated cells to convert into the respective other lineage, we also determined heparin effects on osteogenic conversion and adipogenic differentiation/conversion. Interestingly, heparin did not only significantly increase mRNA expression and enzyme activity of the osteogenic marker alkaline phosphatase (ALP), but it also promoted mineralization during osteogenic differentiation and conversion. Furthermore, the mRNA expression of the osteogenic marker bone morphogenic protein 4 (BMP4) was enhanced. In addition, heparin administration partly prevented adipogenic differentiation and conversion demonstrated by reduced lipid droplet formation along with a decreased expression of adipogenic markers. Moreover, luciferase reporter assays, inhibitor experiments and gene expression analyses revealed that heparin had putative permissive effects on osteogenic signaling via the BMP pathway and reduced the mRNA expression of the Wnt pathway inhibitors dickkopf 1 (DKK1) and sclerostin (SOST). Taken together, our data show a rather supportive than inhibitory effect of heparin on osteogenic hBMSC differentiation and conversion in vitro. Further studies will have to investigate the net effects of heparin administration on bone formation versus bone resorption in vivo to unravel the molecular mechanisms of heparin-associated osteoporosis and reconcile

  4. Bone resorption is affected by follicular phase length in female rotating shift workers.

    PubMed Central

    Lohstroh, Pete N; Chen, Jiangang; Ba, Jianming; Ryan, Louise M; Xu, Xiping; Overstreet, James W; Lasley, Bill L

    2003-01-01

    Stressors as subtle as night work or shift work can lead to irregular menstrual cycles, and changes in reproductive hormone profiles can adversely affect bone health. This study was conducted to determine if stresses associated with the disruption of regular work schedule can induce alterations in ovarian function which, in turn, are associated with transient bone resorption. Urine samples from 12 rotating shift workers from a textile mill in Anqing, China, were collected in 1996-1998 during pairs of sequential menstrual cycles, of which one was longer than the other (28.4 vs. 37.4 days). Longer cycles were characterized by a prolonged follicular phase. Work schedules during the luteal-follicular phase transition (LFPT) preceding each of the two cycles were evaluated. All but one of the shorter cycles were associated with regular, forward phase work shift progression during the preceding LFPT. In contrast, five longer cycles were preceded by a work shift interrupted either by an irregular shift or a number of "off days." Urinary follicle-stimulating hormone levels were reduced in the LFPT preceding longer cycles compared with those in the LFPT preceding shorter cycles. There was greater bone resorption in the follicular phase of longer cycles than in that of shorter cycles, as measured by urinary deoxypyridinoline. These data confirm reports that changes in work shift can lead to irregularity in menstrual cycle length. In addition, these data indicate that there may be an association between accelerated bone resorption in menstrual cycles and changes of regularity in work schedule during the preceding LFPT. PMID:12676625

  5. Preservation of bone mass and structure in hibernating black bears (Ursus americanus) through elevated expression of anabolic genes.

    PubMed

    Fedorov, Vadim B; Goropashnaya, Anna V; Tøien, Øivind; Stewart, Nathan C; Chang, Celia; Wang, Haifang; Yan, Jun; Showe, Louise C; Showe, Michael K; Donahue, Seth W; Barnes, Brian M

    2012-06-01

    Physical inactivity reduces mechanical load on the skeleton, which leads to losses of bone mass and strength in non-hibernating mammalian species. Although bears are largely inactive during hibernation, they show no loss in bone mass and strength. To obtain insight into molecular mechanisms preventing disuse bone loss, we conducted a large-scale screen of transcriptional changes in trabecular bone comparing winter hibernating and summer non-hibernating black bears using a custom 12,800 probe cDNA microarray. A total of 241 genes were differentially expressed (P < 0.01 and fold change >1.4) in the ilium bone of bears between winter and summer. The Gene Ontology and Gene Set Enrichment Analysis showed an elevated proportion in hibernating bears of overexpressed genes in six functional sets of genes involved in anabolic processes of tissue morphogenesis and development including skeletal development, cartilage development, and bone biosynthesis. Apoptosis genes demonstrated a tendency for downregulation during hibernation. No coordinated directional changes were detected for genes involved in bone resorption, although some genes responsible for osteoclast formation and differentiation (Ostf1, Rab9a, and c-Fos) were significantly underexpressed in bone of hibernating bears. Elevated expression of multiple anabolic genes without induction of bone resorption genes, and the down regulation of apoptosis-related genes, likely contribute to the adaptive mechanism that preserves bone mass and structure through prolonged periods of immobility during hibernation.

  6. Rapidly growing Brtl/+ mouse model of osteogenesis imperfecta improves bone mass and strength with sclerostin antibody treatment.

    PubMed

    Sinder, Benjamin P; Salemi, Joseph D; Ominsky, Michael S; Caird, Michelle S; Marini, Joan C; Kozloff, Kenneth M

    2015-02-01

    Osteogenesis imperfecta (OI) is a heritable collagen-related bone dysplasia, characterized by brittle bones with increased fracture risk that presents most severely in children. Anti-resorptive bisphosphonates are frequently used to treat pediatric OI and controlled clinical trials have shown that bisphosphonate therapy improves vertebral outcomes but has little benefit on long bone fracture rate. New treatments which increase bone mass throughout the pediatric OI skeleton would be beneficial. Sclerostin antibody (Scl-Ab) is a potential candidate anabolic therapy for pediatric OI and functions by stimulating osteoblastic bone formation via the canonical Wnt signaling pathway. To explore the effect of Scl-Ab on the rapidly growing OI skeleton, we treated rapidly growing 3week old Brtl/+ mice, harboring a typical heterozygous OI-causing Gly→Cys substitution on col1a1, for 5weeks with Scl-Ab. Scl-Ab had anabolic effects in Brtl/+ and led to new cortical bone formation and increased cortical bone mass. This anabolic action resulted in improved mechanical strength to WT Veh levels without altering the underlying brittle nature of the material. While Scl-Ab was anabolic in trabecular bone of the distal femur in both genotypes, the effect was less strong in these rapidly growing Brtl/+ mice compared to WT. In conclusion, Scl-Ab was able to stimulate bone formation in a rapidly growing Brtl/+ murine model of OI, and represents a potential new therapy to improve bone mass and reduce fracture risk in pediatric OI.

  7. Preservation of bone mass and structure in hibernating black bears (Ursus americanus) through elevated expression of anabolic genes

    PubMed Central

    Goropashnaya, Anna V.; Tøien, Øivind; Stewart, Nathan C.; Chang, Celia; Wang, Haifang; Yan, Jun; Showe, Louise C.; Showe, Michael K.; Donahue, Seth W.; Barnes, Brian M.

    2015-01-01

    Physical inactivity reduces mechanical load on the skeleton, which leads to losses of bone mass and strength in non-hibernating mammalian species. Although bears are largely inactive during hibernation, they show no loss in bone mass and strength. To obtain insight into molecular mechanisms preventing disuse bone loss, we conducted a large-scale screen of transcriptional changes in trabecular bone comparing winter hibernating and summer non-hibernating black bears using a custom 12,800 probe cDNA microarray. A total of 241 genes were differentially expressed (P<0.01 and fold change >1.4) in the ilium bone of bears between winter and summer. The Gene Ontology and Gene Set Enrichment Analysis showed an elevated proportion in hibernating bears of overexpressed genes in six functional sets of genes involved in anabolic processes of tissue morphogenesis and development including skeletal development, cartilage development, and bone biosynthesis. Apoptosis genes demonstrated a tendency for downregulation during hibernation. No coordinated directional changes were detected for genes involved in bone resorption, although some genes responsible for osteoclast formation and differentiation (Ostf1, Rab9a, and c-Fos) were significantly underexpressed in bone of hibernating bears. Elevated expression of multiple anabolic genes without induction of bone resorption genes, and the down regulation of apoptosis-related genes, likely contribute to the adaptive mechanism that preserves bone mass and structure through prolonged periods of immobility during hibernation. PMID:22351243

  8. Rapidly Growing Brtl/+ Mouse Model of Osteogenesis Imperfecta Improves Bone Mass and Strength with Sclerostin Antibody Treatment

    PubMed Central

    Sinder, Benjamin P.; Salemi, Joseph D.; Ominsky, Michael S.; Caird, Michelle S.; Marini, Joan C.; Kozloff, Kenneth M.

    2014-01-01

    Osteogenesis imperfecta (OI) is a heritable collagen-related bone dysplasia, characterized by brittle bones with increased fracture risk that presents most severely in children. Anti-resorptive bisphosphonates are frequently used to treat pediatric OI and controlled clinical trials have shown bisphosphonate therapy improves vertebral outcomes but has little benefit on long bone fracture rate. New treatments which increase bone mass throughout the pediatric OI skeleton would be beneficial. Sclerostin antibody (Scl-Ab) is a potential candidate anabolic therapy for pediatric OI and functions by stimulating osteoblastic bone formation via the canonical wnt signaling pathway. To explore the effect of Scl-Ab on the rapidly growing OI skeleton, we treated rapidly growing 3 week old Brtl/+ mice, harboring a typical heterozygous OI-causing Gly->Cys substitution on col1a1, for 5 weeks with Scl-Ab. Scl-Ab had anabolic effects in Brtl/+ and led to new cortical bone formation and increased cortical bone mass. This anabolic action resulted in improved mechanical strength to WT Veh levels without altering the underlying brittle nature of the material. While Scl-Ab was anabolic in trabecular bone of the distal femur in both genotypes, the effect was less strong in these rapidly growing Brtl/+ mice compared to WT. In conclusion, Scl-Ab was able to stimulate bone formation in a rapidly growing Brtl/+ murine model of OI, and represents a potential new therapy to improve bone mass and reduce fracture risk in pediatric OI. PMID:25445450

  9. Longitudinal evaluation of bone mass in asthmatic children treated with inhaled beclomethasone dipropionate or cromolyn sodium.

    PubMed

    Martinati, L C; Bertoldo, F; Gasperi, E; Fortunati, P; Lo Cascio, V; Boner, A L

    1998-07-01

    Inhaled corticosteroids are recommended as first-line therapy in patients with moderate to severe asthma. The use of these agents in the milder form of asthma is controversial because of their potential adverse effects, especially in growing children. We investigated 49 asthmatic children (38 treated with beclomethasone dipropionate (BDP) at a daily dose of 276+/-125 microg/day and 11 treated with cromolyn sodium (CS) at a daily dose of 30+/-10 mg/day) for 7.4 months, with bone-mass measurements at baseline and after the treatment period. Evaluation of changes in cortical and trabecular bone mass (bone mineral density [BMD]; m/cm2) was performed by absorptiometry at the proximal forearm and at the lumbar spine, respectively. Furthermore, to correct for bone size changes due to growth, we calculated volumetric BMD (VOL-BMD; mg/cm3). At the end of the treatment period, the children who had received regular inhaled BDP had grown as well as children treated with CS, from 120+/-1.4 to 123+/-1.3 cm and from 118+/-3.2 to 120.3+/-2.8 cm, respectively. No children showed deviation from their percentile level of growth. Trabecular and cortical BMD increased after 7 months of follow-up in both groups to the same extent. When BMD was adjusted for body size (VOL-BMD; mg/cm3), bone mass was found not to have changed after BDP or CS treatment course within and between the two groups.

  10. X-ray dual energy spectral parameter optimization for bone Calcium/Phosphorus mass ratio estimation

    NASA Astrophysics Data System (ADS)

    Sotiropoulou, P. I.; Fountos, G. P.; Martini, N. D.; Koukou, V. N.; Michail, C. M.; Valais, I. G.; Kandarakis, I. S.; Nikiforidis, G. C.

    2015-09-01

    Calcium (Ca) and Phosphorus (P) bone mass ratio has been identified as an important, yet underutilized, risk factor in osteoporosis diagnosis. The purpose of this simulation study is to investigate the use of effective or mean mass attenuation coefficient in Ca/P mass ratio estimation with the use of a dual-energy method. The investigation was based on the minimization of the accuracy of Ca/P ratio, with respect to the Coefficient of Variation of the ratio. Different set-ups were examined, based on the K-edge filtering technique and single X-ray exposure. The modified X-ray output was attenuated by various Ca/P mass ratios resulting in nine calibration points, while keeping constant the total bone thickness. The simulated data were obtained considering a photon counting energy discriminating detector. The standard deviation of the residuals was used to compare and evaluate the accuracy between the different dual energy set-ups. The optimum mass attenuation coefficient for the Ca/P mass ratio estimation was the effective coefficient in all the examined set-ups. The variation of the residuals between the different set-ups was not significant.

  11. Low appendicular muscle mass is correlated with femoral neck bone mineral density loss in postmenopausal women

    PubMed Central

    2011-01-01

    Background After menopause, rapid bone mass loss occurs in response to hypoestrogenism. Several studies suggest that muscle mass and bone mineral density (BMD) are positively associated in postmenopausal women. Therefore, it may be assumed that postmenopausal low appendicular muscle mass (aMM) can increase BMD loss in a short period of time. Objective The purpose of this study was to assess relationship of aMM with femoral neck BMD in postmenopausal women. Methods Prospective, controlled clinical Trial including 64 women aged 45-70 years, who had not had their last menstruation for at least one year. Subjects were divided into two groups: low aMM (n = 32), and normal aMM (n-32). Femoral neck BMD and muscle mass were measured by DXA at baseline and after twelve months. Pairwise and independent t tests were used for data analysis. Results Baseline weight, BMI and muscle mass (total and appendicular) significantly differ between groups (p < 0.05). After twelve months, femoral neck BMD was significantly lower in the group with low aMM, whereas no significant difference was observed in the group with normal aMM (p < 0.05). Conclusion In postmenopausal women, low appendicular muscle mass is associated negatively with femoral neck BMD in a short period of time. PMID:21981859

  12. Discordance between fat mass index and body mass index is associated with reduced bone mineral density in women but not in men: the Busselton Healthy Ageing Study.

    PubMed

    Zhu, K; Hunter, M; James, A; Lim, E M; Cooke, B R; Walsh, J P

    2017-01-01

    The obesity-BMD relationship is complex. In 3045 middle-aged adults, we found that in women (but not men) with discordant fat mass index (FMI)/BMI categories, higher body fat for BMI was associated with lower BMD, suggesting that increased fat mass without an accompanying increase in lean mass may be deleterious to bone.

  13. Bone

    NASA Astrophysics Data System (ADS)

    Helmberger, Thomas K.; Hoffmann, Ralf-Thorsten

    The typical clinical signs in bone tumours are pain, destruction and destabilization, immobilization, neurologic deficits, and finally functional impairment. Primary malignant bone tumours are a rare entity, accounting for about 0.2% of all malignancies. Also benign primary bone tumours are in total rare and mostly asymptomatic. The most common symptomatic benign bone tumour is osteoid osteoma with an incidence of 1:2000.

  14. Lean mass as a predictor of bone density and microarchitecture in adult obese individuals with metabolic syndrome.

    PubMed

    Madeira, Eduardo; Mafort, Thiago Thomaz; Madeira, Miguel; Guedes, Erika Paniago; Moreira, Rodrigo Oliveira; de Mendonça, Laura Maria Carvalho; Lima, Inayá Correa Barbosa; de Pinho, Paulo Roberto Alves; Lopes, Agnaldo José; Farias, Maria Lucia Fleiuss

    2014-02-01

    The effects of obesity and metabolic syndrome (MS) on bone health are controversial. Furthermore, the relationship between body composition and bone quality has not yet been determined in this context. The aim of this study was to investigate the correlations between body composition and bone mineral density (BMD) and bone microstructure in obese individuals with MS. This cross-sectional study assessed 50 obese individuals with MS with respect to their body composition and BMD, both assessed using dual X-ray absorptiometry, and bone microarchitecture, assessed by high-resolution peripheral quantitative computed tomography (HR-pQCT) of the distal tibia and radius. Several HR-pQCT measurements exhibited statistically significant correlations with lean mass. Lean mass was positively correlated with parameters of better bone quality (r: 0.316-0.470) and negatively correlated with parameters of greater bone fragility (r: -0.460 to -0.310). Positive correlations were also observed between lean mass and BMD of the total femur and radius 33%. Fat mass was not significantly correlated with BMD or any HR-pQCT measurements. Our data suggest that lean mass might be a predictor of bone health in obese individuals with MS.

  15. Deficiency of AXL in Bone Marrow-Derived Cells Does Not Affect Advanced Atherosclerotic Lesion Progression.

    PubMed

    Subramanian, Manikandan; Proto, Jonathan D; Matsushima, Glenn K; Tabas, Ira

    2016-12-13

    AXL, a member of the TAM (Tyro3, Axl, MerTK) family of receptors, plays important roles in cell survival, clearance of dead cells (efferocytosis), and suppression of inflammation, which are processes that critically influence atherosclerosis progression. Whereas MerTK deficiency promotes defective efferocytosis, inflammation, and plaque necrosis in advanced murine atherosclerosis, the role of Axl in advanced atherosclerosis progression is not known. Towards this end, bone marrow cells from Axl(-/-) or wild-type mice were transplanted into lethally irradiated Ldlr(-/-) mice. These chimeric mice were then fed the Western-type diet (WD) for 17 weeks. We demonstrate that lesional macrophages in WT mice express Axl but that Axl deficiency in bone marrow-derived cells does not affect lesion size, cellularity, necrosis, or inflammatory parameters in advanced atherosclerotic plaques. Moreover, apoptosis of lesional cells was unaffected, and we found no evidence of defective lesional efferocytosis. In contrast to previously reported findings with MerTK deficiency, hematopoietic cell-Axl deficiency in WD-fed Ldlr(-/-) mice does not affect the progression of advanced atherosclerosis or lesional processes associated with TAM receptor signaling. These findings suggest a heretofore unappreciated TAM receptor hierarchy in advanced atherosclerosis.

  16. Deficiency of AXL in Bone Marrow-Derived Cells Does Not Affect Advanced Atherosclerotic Lesion Progression

    PubMed Central

    Subramanian, Manikandan; Proto, Jonathan D.; Matsushima, Glenn K.; Tabas, Ira

    2016-01-01

    AXL, a member of the TAM (Tyro3, Axl, MerTK) family of receptors, plays important roles in cell survival, clearance of dead cells (efferocytosis), and suppression of inflammation, which are processes that critically influence atherosclerosis progression. Whereas MerTK deficiency promotes defective efferocytosis, inflammation, and plaque necrosis in advanced murine atherosclerosis, the role of Axl in advanced atherosclerosis progression is not known. Towards this end, bone marrow cells from Axl−/− or wild-type mice were transplanted into lethally irradiated Ldlr−/− mice. These chimeric mice were then fed the Western-type diet (WD) for 17 weeks. We demonstrate that lesional macrophages in WT mice express Axl but that Axl deficiency in bone marrow-derived cells does not affect lesion size, cellularity, necrosis, or inflammatory parameters in advanced atherosclerotic plaques. Moreover, apoptosis of lesional cells was unaffected, and we found no evidence of defective lesional efferocytosis. In contrast to previously reported findings with MerTK deficiency, hematopoietic cell-Axl deficiency in WD-fed Ldlr−/− mice does not affect the progression of advanced atherosclerosis or lesional processes associated with TAM receptor signaling. These findings suggest a heretofore unappreciated TAM receptor hierarchy in advanced atherosclerosis. PMID:27958361

  17. The role of pleiotropy and linkage in genes affecting a sexual ornament and bone allocation in the chicken.

    PubMed

    Johnsson, M; Rubin, C-J; Höglund, A; Sahlqvist, A-S; Jonsson, K B; Kerje, S; Ekwall, O; Kämpe, O; Andersson, L; Jensen, P; Wright, D

    2014-05-01

    Sexual selection and the ornaments that inform such choices have been extensively studied, particularly from a phenotypic perspective. Although more is being revealed about the genetic architecture of sexual ornaments, much still remains to be discovered. The comb of the chicken is one of the most widely recognized sexual ornaments, which has been shown to be correlated with both fecundity and bone allocation. In this study, we use a combination of multiple intercrosses between White Leghorn populations and wild-derived Red Junglefowl to, first, map quantitative trait loci (QTL) for bone allocation and, second, to identify expression QTL that correlate and colocalize with comb mass. These candidate quantitative genes were then assessed for potential pleiotropic effects on bone tissue and fecundity traits. We identify genes that correlate with both relative comb mass and bone traits suggesting a combination of both pleiotropy and linkage mediates gene regulatory variation in these traits.

  18. Tibial bone geometry in chronic stroke patients: influence of sex, cardiovascular health, and muscle mass.

    PubMed

    Pang, Marco Yc; Ashe, Maureen C; Eng, Janice J

    2008-07-01

    This study aimed to examine the geometry of the tibia in chronic stroke survivors. Fifty-five ambulatory individuals with chronic stroke were included in the study. pQCT was used to obtain a cross-sectional scan of the tibia at the 30% site on both the paretic and nonparetic sides. Leg lean mass was derived from a total body scan using DXA. Each subject was also evaluated for peak oxygen consumption rate, spasticity, and functional mobility. Paired t-tests were used to compare the pQCT parameters between the two sides. Multiple linear regression analysis was used to identify the significant determinants of tibial bone strength index (BSI). In men, marrow cavity area on the paretic side was significantly greater than the nonparetic side (p = 0.011), whereas the total bone area showed no significant side-to-side difference (p = 0.252). In women, total bone area on the paretic side was significantly smaller than the nonparetic side (p = 0.003), whereas the marrow cavity area had no side-to-side difference (p = 0.367). Peak oxygen consumption (r(2) = 0.739, F(5,49) = 22.693, p < 0.001) and paretic leg lean mass (r(2) = 0.802, F(6,48) = 32.475, p < 0.001) remained independently associated with tibial BSI, after controlling for age, sex, body mass index, years since stroke onset, and physical activity level. The geometry of the tibia in stroke patients showed sex-specific side-to-side differences. The results suggested that, whereas endosteal resorption was apparent in men, periosteal resorption was more predominant in women. The results also highlight the potential importance of promoting cardiovascular health and leg muscle mass in enhancing bone geometry in chronic stroke survivors.

  19. Atmospheric composition affects heat- and mass-transfer processes

    NASA Technical Reports Server (NTRS)

    Blakely, R. L.; Nelson, W. G.

    1970-01-01

    For environmental control system functions sensitive to atmospheric composition, components are test-operated in helium-oxygen and nitrogen-oxygen mixtures, pure oxygen, and air. Transient heat- and mass-transfer tests are conducted for carbon dioxide adsorption on molecular sieve and for water vapor adsorption on silica gel.

  20. Tibial bone geometry in chronic stroke patients: influence of gender, cardiovascular health, and muscle mass

    PubMed Central

    Pang, Marco Y.C.; Ashe, Maureen C.; Eng, Janice J.

    2011-01-01

    Introduction Individuals with chronic stroke sustain a high risk of bone fractures, partly due to the stroke-induced bone loss and geometric changes. This study aimed to examine the geometry of the tibia in ambulatory, chronic stroke survivors. Materials and Methods Fifty-five ambulatory individuals with chronic stroke were included in the study. Peripheral quantitative computed tomography (pQCT) was used to obtain a cross-sectional scan of the tibia at the 30% site on both the paretic and non-paretic sides. Leg lean mass was derived from a total body scan using dual-energy X-ray absorptiometry. Each subject was also evaluated for peak oxygen consumption rate, spasticity, and functional mobility. Paired t-tests were used to compare the pQCT parameters between the two sides. The degree of association between tibial bone strength index (BSI) and other variables was determined by Pearson’s correlation coefficients and Spearman’s rho. Multiple linear regression analysis was used to identify the significant determinants of tibial BSI. Results In men, marrow cavity area on the paretic side was significantly greater than the non-paretic side (p=0.011) while the total bone area showed no significant side-to-side difference (p=0.252). In women, total bone area on the paretic side was significantly smaller than the non-paretic side (p=0.003) while the marrow cavity area had no side-to-side difference (p=0.367). Peak oxygen consumption (R2=0.739, F5,49=22.693, p<0.001) and paretic leg lean mass (R2=0.802, F6,48=32.475, p<0.001) remained independently associated with tibial BSI, after controlling for age, gender, body mass index, years since stroke onset, and physical activity level. Conclusions The geometry of the tibia in stroke patients showed gender-specific side-to-side differences. The results suggested that while endosteal resorption was apparent in men, periosteal resorption was more predominant in women. The results also highlight the potential importance of

  1. Effect of Sequential Treatments with Alendronate, Parathyroid Hormone (1-34) and Raloxifene on Cortical Bone Mass and Strength in Ovariectomized Rats

    PubMed Central

    Amugongo, Sarah K.; Yao, Wei; Jia, Junjing; Dai, Weiwei; Lay, Yu-An E.; Jiang, Li; Harvey, Danielle; Zimmermann, Elizabeth A.; Schaible, Eric; Dave, Neil; Ritchie, Robert O.; Kimmel, Donald B.; Lane, Nancy E.

    2014-01-01

    Anti-resorptive and anabolic agents are often prescribed for the treatment of osteoporosis continuously or sequentially for many years. However their impact on cortical bone quality and bone strength is not clear. Methods Six-month old female rats were either sham operated or ovariectomized (OVX). OVX rats were left untreated for two months and then were treated with vehicle (Veh), hPTH (1-34) (PTH), alendronate (Aln), or raloxifene (Ral) sequentially for three month intervals, for a total of three periods. Mid-tibial cortical bone architecture, mass, mineralization, and strength were measured on necropsy samples obtained after each period. Bone indentation properties were measured on proximal femur necropsy samples. Results Eight or more months of estrogen deficiency in rats resulted in decreased cortical bone area and thickness. Treatment with PTH for 3 months caused the deposition of endocortical lamellar bone that increased cortical bone area, thickness, and strength. These improvements were lost when PTH was withdrawn without followup treatment, but were maintained for the maximum times tested, six months with Ral and three months with Aln. Pre-treatment with anti-resorptives was also somewhat successful in ultimately preserving the additional endocortical lamellar bone formed under PTH treatment. These treatments did not affect bone indentation properties. Summary Sequential therapy that involved both PTH and anti-resorptive agents was required to achieve lasting improvements in cortical area, thickness, and strength in OVX rats. Anti-resorptive therapy, either prior to or following PTH, was required to preserve gains attributable to an anabolic agent. PMID:25016965

  2. Evaluation of Parameters Affecting Thermal Stresses in Mass Concrete

    DTIC Science & Technology

    1991-01-01

    ABAQUS , a finite-element program capable of performing complete incremental construction analyses of complex mass concrete structures during and...following construction. ’The report describes a user-defined aging creep material model, UMAT, used with ABAQUS to account for the changes in concrete...model to evolve the onset and effects of cracking. In addition to material aging, ABAQUS includes the (Continued) 14. SUBJECT TERMS 15. NUMBER OF PAGES

  3. Osteoporosis and low bone mass at the femur neck or lumbar spine in older adults: United States, 2005-2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many current clinical guidelines recommend that assessment of osteoporosis or low bone mass, as defined by the World Health Organization (WHO) (1), be based on bone mineral density at either the femur neck region of the proximal femur (hip) or the lumbar spine (2,3). This data brief presents the mos...

  4. The atherogenic Scarb1 null mouse model shows a high bone mass phenotype.

    PubMed

    Martineau, Corine; Martin-Falstrault, Louise; Brissette, Louise; Moreau, Robert

    2014-01-01

    Scavenger receptor class B, type I (SR-BI), the Scarb1 gene product, is a receptor associated with cholesteryl ester uptake from high-density lipoproteins (HDL), which drives cholesterol movement from peripheral tissues toward the liver for excretion, and, consequently, Scarb1 null mice are prone to atherosclerosis. Because studies have linked atherosclerosis incidence with osteoporosis, we characterized the bone metabolism in these mice. Bone morphometry was assessed through microcomputed tomography and histology. Marrow stromal cells (MSCs) were used to characterize influence of endogenous SR-BI in cell functions. Total and HDL-associated cholesterol in null mice were increased by 32-60%, correlating with its role in lipoprotein metabolism. Distal metaphyses from 2- and 4-mo-old null mice showed correspondingly 46 and 37% higher bone volume fraction associated with a higher number of trabeculae. Histomorphometric analyses in 2-mo-old null male mice revealed 1.42-fold greater osteoblast surface, 1.37-fold higher percent mineralizing surface, and 1.69-fold enhanced bone formation rate. In vitro assays for MSCs from null mice revealed 37% higher proliferation rate, 48% more alkaline phosphatase activity, 70% greater mineralization potential and a 2-fold osterix (Sp7) expression, yet a 0.5-fold decrease in caveolin-1 (Cav1) expression. Selective uptake levels of HDL-associated cholesteryl oleate and estradiol were similar between MSC from wild-type and Scarb1 null mice, suggesting that its contribution to this process is not its main role in these cells. However, Scarb1 knockout stunted the HDL-dependent regulation of Cav1 genic expression. Scarb1 null mice are not prone to osteoporosis but show higher bone mass associated with enhanced bone formation.

  5. Insulin and bone health in young adults: The mediator role of lean mass

    PubMed Central

    Pozuelo-Carrascosa, Diana P.; Álvarez-Bueno, Celia; Ferri-Morales, Asunción; Miota Ibarra, Jose; Notario-Pacheco, Blanca; Martínez-Vizcaíno, Vicente

    2017-01-01

    Background The positive relationship between lean mass (LM) and bone health is well known, but a positive association between insulin and LM has also been described. Insulin has some anabolic properties on bone through the stimulation of osteoblast differentiation, yet the role of LM as a confounder or mediator in this relationship remains uncertain. Objective To examine whether the association between insulin levels and bone health is mediated by LM. Methods A cross-sectional study was conducted at the Castilla La Mancha University (Spain) involving 466 young adults (113 young men; 19.5±2.3 years). LM and total-body bone mineral content (BMC) were measured by dual energy x-ray absorptiometry, and insulin was measured in fasting serum samples. Results Young adults with high total LM had higher values of total-body BMC than their peers after controlling for age and sex, this relationship persisted after adjusting for insulin levels (p<0.001). In mediation analyses, insulin levels were positively associated with total-body BMC (b = 0.05; p<0.001) and total LM acted as an intermediate variable, attenuating the association between insulin levels and total-body BMC (b = -31.98; p>0.05) as indicated by Sobel test values for indirect effect (z = 4.43; p<0.001). Conclusions LM plays an important role in the relationship between insulin levels and bone health, in such a way that while increases in LM have a positive influence on bone health, they are also negatively associated with insulin levels. PMID:28323845

  6. Combined treatment with GH and IGF-I: additive effect on cortical bone mass but not on linear bone growth in female rats.

    PubMed

    Sundström, Katja; Cedervall, Therese; Ohlsson, Claes; Camacho-Hübner, Cecilia; Sävendahl, Lars

    2014-12-01

    The growth-promoting effect of combined therapy with GH and IGF-I in normal rats is not known. We therefore investigated the efficacy of treatment with recombinant human (rh)GH and/or rhIGF-I on longitudinal bone growth and bone mass in intact, prepubertal, female Sprague-Dawley rats. rhGH was injected twice daily sc (5 mg/kg·d) and rhIGF-I continuously infused sc (2.2 or 4.4 mg/kg·d) for 28 days. Longitudinal bone growth was monitored by weekly x-rays of tibiae and nose-anus length measurements, and tibial growth plate histomorphology was analyzed. Bone mass was evaluated by peripheral quantitative computed tomography. In addition, serum levels of IGF-I, rat GH, acid labile subunit, IGF binding protein-3, 150-kDa ternary complex formation, and markers of bone formation and degradation were measured. Monotherapy with rhGH was more effective than rhIGF-I (4.4 mg/kg·d) to increase tibia and nose-anus length, whereas combined therapy did not further increase tibia, or nose-anus, lengths or growth plate height. In contrast, combined rhGH and rhIGF-I (4.4 mg/kg·d) therapy had an additive stimulatory effect on cortical bone mass vs rhGH alone. Combined treatment with rhGH and rhIGF-I resulted in markedly higher serum IGF-I concentrations vs rhGH alone but did not compromise the endogenous secretion of GH. We conclude that rhIGF-I treatment augments cortical bone mass but does not further improve bone growth in rhGH-treated young, intact, female rats.

  7. Osteoporosis or Low Bone Mass at the Femur Neck or Lumbar Spine in Older Adults: United States, 2005-2008

    MedlinePlus

    ... Bone Mass at the Femur Neck or Lumbar Spine in Older Adults: United States, 2005–2008 Recommend ... density at either the femur neck or lumbar spine? Nine percent of persons aged 50 years and ...

  8. Treatment with eldecalcitol positively affects mineralization, microdamage, and collagen crosslinks in primate bone.

    PubMed

    Saito, Mitsuru; Grynpas, Marc D; Burr, David B; Allen, Matthew R; Smith, Susan Y; Doyle, Nancy; Amizuka, Norio; Hasegawa, Tomoka; Kida, Yoshikuni; Marumo, Keishi; Saito, Hitoshi

    2015-04-01

    Eldecalcitol (ELD), an active form of vitamin D analog approved for the treatment of osteoporosis in Japan, increases lumbar spine bone mineral density (BMD), suppresses bone turnover markers, and reduces fracture risk in patients with osteoporosis. We have previously reported that treatment with ELD for 6 months improved the mechanical properties of the lumbar spine in ovariectomized (OVX) cynomolgus monkeys. ELD treatment increased lumbar BMD, suppressed bone turnover markers, and reduced histomorphometric parameters of both bone formation and resorption in vertebral trabecular bone. In this study, we elucidated the effects of ELD on bone quality (namely, mineralization, microarchitecture, microdamage, and bone collagen crosslinks) in OVX cynomolgus monkeys in comparison with OVX-vehicle control monkeys. Density fractionation of bone powder prepared from lumbar vertebrae revealed that ELD treatment shifted the distribution profile of bone mineralization to a higher density, and backscattered electron microscopic imaging showed improved trabecular bone connectivity in the ELD-treated groups. Higher doses of ELD more significantly reduced the amount of microdamage compared to OVX-vehicle controls. The fractionated bone powder samples were divided according to their density, and analyzed for collagen crosslinks. Enzymatic crosslinks were higher in both the high-density (≥2.0 mg/mL) and low-density (<2.0 mg/mL) fractions from the ELD-treated groups than in the corresponding fractions in the OVX-vehicle control groups. On the other hand, non-enzymatic crosslinks were lower in both the high- and low-density fractions. These observations indicated that ELD treatment stimulated the enzymatic reaction of collagen crosslinks and bone mineralization, but prevented non-enzymatic reaction of collagen crosslinks and accumulation of bone microdamage. Bone anti-resorptive agents such as bisphosphonates slow down bone remodeling so that bone mineralization, bone microdamage

  9. Enhanced bone mass and physical fitness in young female handball players.

    PubMed

    Vicente-Rodriguez, G; Dorado, C; Perez-Gomez, J; Gonzalez-Henriquez, J J; Calbet, J A L

    2004-11-01

    This study evaluates the effect of physical activity on the bone content (BMC) and density (BMD) in 51 girls (14.2+/-0.4 yr). Twenty-four were placed in the handball group as they have been playing handball for at least 1 year (3.9+/-0.4). The other 27 who did not perform in any kind of regular physical activity other than that programmed during the compulsory physical education courses comprised the control group. Bone mass and areal density were measured by dual-energy X-ray absorptiometry (DXA). The maximal leg extension isometric force in the squat position with knees bent at 90 degrees and the peak force, mean power, and height jumped during vertical squat jump were assessed with a force plate. Additionally, 30-m run (running speed) and 300-m run (as an estimate of anaerobic capacity) tests were also performed. Maximal aerobic capacity was estimated using the 20-m shuttle-run tests. Compared to the controls, handballers attained better results in the physical fitness tests and had a 6% and 11% higher total body and right upper extremity lean mass (all P<0.05). The handballers showed enhanced BMC and BMD in the lumbar spine, pelvic region, and lower extremity (all P<0.05). They also showed greater BMC in the whole body and enhanced BMD in the right upper extremity and femoral neck than the control subjects (all P<0.05). As expected, total lean mass strongly correlated with total and regional BMC and BMD (r=0.79-0.91 P<0.001). Interestingly, 300-m running speed correlated with BMC and BMD variables (r=0.59-0.67 and r=0.60-0.70, respectively; all P<0.001). Multiple regression analysis showed that the 30-m running speed test, combined with the height and body mass, has also predictive value for whole-body BMC and BMD (R=0.93 and R=0.90, P<0.001). In conclusion, handball participation is associated with improved physical fitness, increased lean and bone masses, and enhanced axial and appendicular BMD in young girls. The combination of anthropometric and fitness

  10. Maternal dietary patterns during pregnancy and childhood bone mass: a longitudinal study.

    PubMed

    Cole, Zoe A; Gale, Catharine R; Javaid, M Kassim; Robinson, Sian M; Law, Catherine; Boucher, Barbara J; Crozier, Sarah R; Godfrey, Keith M; Dennison, Elaine M; Cooper, Cyrus

    2009-04-01

    Maternal nutrition is a potentially important determinant of intrauterine skeletal development. Previous studies have examined the effects of individual nutrients, but the pattern of food consumption may be of greater relevance. We therefore examined the relationship between maternal dietary pattern during pregnancy and bone mass of the offspring at 9 yr of age. We studied 198 pregnant women 17-43 yr of age and their offspring at 9 yr of age. Dietary pattern was assessed using principal component analysis from a validated food frequency questionnaire. The offspring underwent measurements of bone mass using DXA at 9 yr of age. A high prudent diet score was characterized by elevated intakes of fruit, vegetables, and wholemeal bread, rice, and pasta and low intakes of processed foods. Higher prudent diet score in late pregnancy was associated with greater (p < 0.001) whole body and lumbar spine BMC and areal BMD in the offspring, after adjustment for sex, socioeconomic status, height, arm circumference, maternal smoking, and vitamin D status. Associations with prudent diet score in early pregnancy were weaker and nonsignificant. We conclude that dietary patterns consistent with current advice for healthy eating during pregnancy are associated with greater bone size and BMD in the offspring at 9 yr of age.

  11. Influences of physical fitness on bone mass in women with fibromyalgia.

    PubMed

    Gómez-Cabello, Alba; Vicente-Rodríguez, Germán; Navarro-Vera, Isabel; Martinez-Redondo, Diana; Díez-Sánchez, Carmen; Casajús, José Antonio

    2015-04-01

    The aim of this study was to provide information about the relationship of bone mineral content (BMC) and density (BMD) with some physical-fitness-related variables in a sample of women with fibromyalgia (FM) and age-matched women without FM. Twenty-eight women clinically diagnosed with FM (age 51.1 ± 8.4 yr, M ± SD) and 22 age-matched controls participated in the study. Whole-body BMC and BMD, lean mass, handgrip strength, quadriceps strength, and cardiovascular fitness were measured in all participants. The association between physical-fitness variables and bone-related variables was tested by linear regression controlling for body weight as a possible confounder. There were no differences in BMC or BMD between groups. Women with FM had lower values of handgrip strength, quadriceps strength, and VO2peak than the control group. Handgrip strength and aerobic capacity were associated with BMC and BMD and quadriceps strength was associated with BMD in women with FM; however, only VO2peak was associated with BMC in the group of women without FM. Bone mass of women with FM may be more susceptible to changes in physical fitness than that of the women without fibromyalgia.

  12. Body Composition, Nutritional Profile and Muscular Fitness Affect Bone Health in a Sample of Schoolchildren from Colombia: The Fuprecol Study.

    PubMed

    Forero-Bogotá, Mónica Adriana; Ojeda-Pardo, Mónica Liliana; García-Hermoso, Antonio; Correa-Bautista, Jorge Enrique; González-Jiménez, Emilio; Schmidt-RíoValle, Jacqueline; Navarro-Pérez, Carmen Flores; Gracia-Marco, Luis; Vlachopoulos, Dimitris; Martínez-Torres, Javier; Ramírez-Vélez, Robinson

    2017-02-03

    The objective of the present study is to investigate the relationships between body composition, nutritional profile, muscular fitness (MF) and bone health in a sample of children and adolescents from Colombia. Participants included 1118 children and adolescents (54.6% girls). Calcaneal broadband ultrasound attenuation (c-BUA) was obtained as a marker of bone health. Body composition (fat mass and lean mass) was assessed using bioelectrical impedance analysis. Furthermore height, weight, waist circumference and Tanner stage were measured and body mass index (BMI) was calculated. Standing long-jump (SLJ) and isometric handgrip dynamometry were used respectively as indicators of lower and upper body muscular fitness. A muscular index score was also computed by summing up the standardised values of both SLJ and handgrip strength. Dietary intake and degree of adherence to the Mediterranean diet were assessed by a 7-day recall questionnaire for food frequency and the Kidmed questionnaire. Poor bone health was considered using a z-score cut off of ≤-1.5 standard deviation. Once the results were adjusted for age and Tanner stage, the predisposing factors of having a c-BUA z-score ≤-1.5 standard deviation included being underweight or obese, having an unhealthy lean mass, having an unhealthy fat mass, SLJ performance, handgrip performance, and unhealthy muscular index score. In conclusion, body composition (fat mass and lean body mass) and MF both influenced bone health in a sample of children and adolescents from Colombia. Thus promoting strength adaptation and preservation in Colombian youth will help to improve bone health, an important protective factor against osteoporosis in later life.

  13. Body Composition, Nutritional Profile and Muscular Fitness Affect Bone Health in a Sample of Schoolchildren from Colombia: The Fuprecol Study

    PubMed Central

    Forero-Bogotá, Mónica Adriana; Ojeda-Pardo, Mónica Liliana; García-Hermoso, Antonio; Correa-Bautista, Jorge Enrique; González-Jiménez, Emilio; Schmidt-RíoValle, Jacqueline; Navarro-Pérez, Carmen Flores; Gracia-Marco, Luis; Vlachopoulos, Dimitris; Martínez-Torres, Javier; Ramírez-Vélez, Robinson

    2017-01-01

    The objective of the present study is to investigate the relationships between body composition, nutritional profile, muscular fitness (MF) and bone health in a sample of children and adolescents from Colombia. Participants included 1118 children and adolescents (54.6% girls). Calcaneal broadband ultrasound attenuation (c-BUA) was obtained as a marker of bone health. Body composition (fat mass and lean mass) was assessed using bioelectrical impedance analysis. Furthermore height, weight, waist circumference and Tanner stage were measured and body mass index (BMI) was calculated. Standing long-jump (SLJ) and isometric handgrip dynamometry were used respectively as indicators of lower and upper body muscular fitness. A muscular index score was also computed by summing up the standardised values of both SLJ and handgrip strength. Dietary intake and degree of adherence to the Mediterranean diet were assessed by a 7-day recall questionnaire for food frequency and the Kidmed questionnaire. Poor bone health was considered using a z-score cut off of ≤−1.5 standard deviation. Once the results were adjusted for age and Tanner stage, the predisposing factors of having a c-BUA z-score ≤−1.5 standard deviation included being underweight or obese, having an unhealthy lean mass, having an unhealthy fat mass, SLJ performance, handgrip performance, and unhealthy muscular index score. In conclusion, body composition (fat mass and lean body mass) and MF both influenced bone health in a sample of children and adolescents from Colombia. Thus promoting strength adaptation and preservation in Colombian youth will help to improve bone health, an important protective factor against osteoporosis in later life. PMID:28165360

  14. [Relation between body mass index and bone mineral density in a sample population of Mexican women].

    PubMed

    Murillo-Uribe, A; Aranda-Gallegos, J E; Río de la Loza-Cava, M F; Ortíz-Luna, G; Mendoza-Torres, L J; Santos-González, J

    1998-07-01

    The purpose of this trial is to demonstrate that a women with high body mass index (BMI > or = 28) has greater bone mineral density (BMD) from that with lower BMI. We studied 922 healthy women who met the inclusion criteria. They were classified into four groups according to their BMI (> or = 28 and < 28) and age (> or = 35 and < 35 years). Bone mineral measurement was performed by dual-energy X-ray absorptiometry (DEXA) in the hip and at the lumbar region. BMD in overweight women older than 35 years was significantly higher in comparison with that of women with lower BMI, both in the hip and the lumbar spine. In overweight women younger than 35 years, we found greater BMD in the hip reaching statistical significance, but not at the lumbar spine. We conclude that obesity is associated with greater BMD (4% at the lumbar spine; 11% at the hip) probably due to both greater physical stress and higher estrogen levels.

  15. Systematic review of raloxifene in postmenopausal Japanese women with osteoporosis or low bone mass (osteopenia)

    PubMed Central

    Fujiwara, Saeko; Hamaya, Etsuro; Sato, Masayo; Graham-Clarke, Peita; Flynn, Jennifer A; Burge, Russel

    2014-01-01

    Purpose To systematically review the literature describing the efficacy, effectiveness, and safety of raloxifene for postmenopausal Japanese women with osteoporosis or low bone mass (osteopenia). Materials and methods Medline via PubMed and Embase was systematically searched using prespecified terms. Retrieved publications were screened and included if they described randomized controlled trials or observational studies of postmenopausal Japanese women with osteoporosis or osteopenia treated with raloxifene and reported one or more outcome measures (change in bone mineral density [BMD]; fracture incidence; change in bone-turnover markers, hip structural geometry, or blood–lipid profile; occurrence of adverse events; and change in quality of life or pain). Excluded publications were case studies, editorials, letters to the editor, narrative reviews, or publications from non-peer-reviewed journals; multidrug, multicountry, or multidisease studies with no drug-, country-, or disease-level analysis; or studies of participants on dialysis. Results Of the 292 publications retrieved, 15 publications (seven randomized controlled trials, eight observational studies) were included for review. Overall findings were statistically significant increases in BMD of the lumbar spine (nine publications), but not the hip region (eight publications), a low incidence of vertebral fracture (three publications), decreases in markers of bone turnover (eleven publications), improved hip structural geometry (two publications), improved blood–lipid profiles (five publications), a low incidence of hot flushes, leg cramps, venous thromboembolism, and stroke (12 publications), and improved quality of life and pain relief (one publication). Conclusion Findings support raloxifene for reducing vertebral fracture risk by improving BMD and reducing bone turnover in postmenopausal Japanese women with osteoporosis or osteopenia. Careful consideration of fracture risk and the risk–benefit profile

  16. Normative Data for Bone Mass in Healthy Term Infants from Birth to 1 Year of Age

    PubMed Central

    Gallo, Sina; Vanstone, Catherine A.; Weiler, Hope A.

    2012-01-01

    For over 2 decades, dual-energy X-ray absorptiometry (DXA) has been the gold standard for estimating bone mineral density (BMD) and facture risk in adults. More recently DXA has been used to evaluate BMD in pediatrics. However, BMD is usually assessed against reference data for which none currently exists in infancy. A prospective study was conducted to assess bone mass of term infants (37 to 42 weeks of gestation), weight appropriate for gestational age, and born to healthy mothers. The group consisted of 33 boys and 26 girls recruited from the Winnipeg Health Sciences Center (Manitoba, Canada). Whole body (WB) as well as regional sites of the lumbar spine (LS 1–4) and femur was measured using DXA (QDR 4500A, Hologic Inc.) providing bone mineral content (BMC) for all sites and BMD for spine. During the year, WB BMC increased by 200% (76.0 ± 14.2 versus 227.0 ± 29.7 g), spine BMC by 130% (2.35 ± 0.42 versus 5.37 ± 1.02 g), and femur BMC by 190% (2.94 ± 0.54 versus 8.50 ± 1.84 g). Spine BMD increased by 14% (0.266 ± 0.044 versus 0.304 ± 0.044 g/cm2) during the year. This data, representing the accretion of bone mass during the first year of life, is based on a representative sample of infants and will aid in the interpretation of diagnostic DXA scans by researchers and health professionals. PMID:23091773

  17. Effects of Treatment of Treadmill Combined with Electro-Acupuncture on Tibia Bone Mass and Substance PExpression of Rabbits with Sciatic Nerve Injury

    PubMed Central

    Tang, Qiang; Zhu, Luwen; Huang, Ruyi; Huang, Lei; Koleini, Melanie; Zou, Dequan

    2016-01-01

    The peripheral nervous system may play an important role in normal bone maintenance and remodeling. Substance P (SP) is a neuropeptide associated with bone loss and formation that may mediate the effects of the nervous system. The purpose of this study is to determine if treadmill running combined with electro-acupuncture at Jiaji acupoints (Jiaji-EA) affects tibial bone mass and SP expression in rabbits with sciatic nerve injury. Twenty-four juvenile male New Zealand white rabbits were randomly assigned to one of 4 groups: sham injury control (sham), sciatic never crush control (SNCr), treadmill running (treadmill), and Jiaji-EA combined with treadmill running (ET group). The SNCr, treadmill, and ET groups all had an induced sciatic never crush injury of approximately 2mm. Control groups received no intervention; the treadmill and ET groups were trained by treadmill; the ET group also received Jiaji-EA. After the 4 weeks of treatment, toe-spreading index (TSI), BMD, bone strength, and SP expression in the tibia were significantly lower in the nerve injury groups (SNCr, treadmill, and ET) compared to the sham groups (p<0.05). Treatment (treadmill and ET groups) increased all measures compared to the SNCr group (p<0.05). Further, TSI, BMD, bone strength, and SP expression in the ET group were higher than the treadmill group (p<0.05). Our results indicate that treadmill therapy combined with electro-acupuncture at Jiaji acupoints prevents bone loss in rabbit tibias after sciatic nerve injury. This may occur in two ways: indirectly in association with axon regeneration and directly via loading on the bone mediated through increased SP expression. This study provides important evidence for the clinical treatment of bone loss after peripheral nerve injury. PMID:27880769

  18. Treatment with a sclerostin antibody increases cancellous bone formation and bone mass regardless of marrow composition in adult female rats.

    PubMed

    Tian, XiaoYan; Setterberg, Rebecca B; Li, Xiaodong; Paszty, Chris; Ke, Hua Zhu; Jee, Webster S S

    2010-09-01

    The current report describes the skeletal effects of a sclerostin monoclonal antibody (Scl-AbIII) treatment at a yellow (fatty) marrow skeletal site in adult female rats. Ten-month-old female Sprague-Dawley rats were treated with vehicle or Scl-AbIII at 5 or 25 mg/kg, twice per week by s.c. injection for 4 weeks. Trabecular bone from a yellow (fatty) marrow site, the 5th caudal vertebral body (CVB), was processed undecalcified for quantitative bone histomorphometric analysis. Compared to vehicle controls, Scl-AbIII at both doses significantly increased bone formation parameters and trabecular bone volume and thickness and decreased bone resorption parameter in the trabecular bone of the CVB. As a reference, we also found that the Scl-AbIII at both doses significantly decreased bone resorption and increased bone formation and bone volume in a red (hematopoietic) marrow site, the 4th lumber vertebral body (LVB). It appears that the percentage of increase in trabecular bone volume induced by Scl-AbIII treatment was slightly larger in the LVB than in the CVB. In summary, these preclinical findings show that antibody-mediated sclerostin inhibition has significant bone anabolic effects at both red and yellow marrow skeletal sites.

  19. Elevated Lifetime Lead Exposure Impedes Osteoclast Activity and Produces an Increase in Bone Mass in Adolescent Mice

    PubMed Central

    Beier, Eric E.; Holz, Jonathan D.; Sheu, Tzong-Jen; Puzas, J. Edward

    2016-01-01

    The heavy metal lead (Pb) has a deleterious effect on skeletal health. Because bone mass is maintained through a balance of bone formation and resorption, it is important to understand the effect of Pb levels on osteoblastic and osteoclastic activity. Pb exposure is associated with low bone mass in animal models and human populations; however, the correlation between Pb dosing and corresponding bone mass has been poorly explored. Thus, mice were exposed to increasing Pb and at higher levels (500 ppm), there was unexpectedly an increase in femur-tibial bone mass by 3 months of age. This is contrary to several studies alluded to earlier. Increased bone volume (BV) was accompanied by a significant increase in cortical thickness of the femur and trabecular bone that extended beyond the epiphyseal area into the marrow cavity. Subsequent evaluations revealed an increase in osteoclast numbers with high Pb exposure, but a deficiency in osteoclastic activity. These findings were substantiated by observed increases in levels of the resorption-altering hormones calcitonin and estrogen. In addition we found that pro-osteoclastic nuclear factor-kappa beta (NF-κB) pathway activity was dose dependently elevated with Pb, both in vivo and in vitro. However, the ability of osteoclasts to resorb bone was depressed in the presence of Pb in media and within test bone wafers. These findings indicate that exposure to high Pb levels disrupts early life bone accrual that may involve a disruption of osteoclast activity. This study accentuates the dose dependent variation in Pb exposure and consequent effects on skeletal health. PMID:26518054

  20. Associations of lean and fat mass measures with whole body bone mineral content and bone mineral density in female adolescent weightlifters and swimmers.

    PubMed

    Koşar, Şükran Nazan

    2016-01-01

    Body composition and sport participation have been associated with bone mass. The purpose of this study was to determine the associations of lean and fat mass measures with whole body bone mineral content (BMC) and bone mineral density (BMD) in female adolescent weightlifters, swimmers and non-athletic counterparts. This study included a total of 25 female adolescents (mean age: 15.3±1.1 years). Body composition and bone mass were measured by dual-energy X-ray absorptiometry. In most of the studied variables weight lifters had higher values compared to swimmers and non-athletes (p < 0.05). No significant difference was observed between swimmers and non-athletes (p > 0.05). Lean and fat mass measures were positively associated with BMC and BMD for the total participants (p < 0.05) while the associations differed when the study groups were analysed separately. In conclusion, both lean and fat mass measures were strongly related to BMC and BMD in female adolescents while these associations differed in swimmers, weightlifters and non-athletes.

  1. Does Body Mass Index Affect Mortality in Coronary Surgery?

    PubMed Central

    Protopapas, Aristotle D.

    2016-01-01

    Introduction: The Body Mass Index (BMI) quantifies nutritional status and classifies humans as underweight, of normal weight, overweight, mildly obese, moderately obese or morbidly obese. Obesity is the excessive accumulation of fat, defined as BMI higher than 30 kg/m2. Obesity is widely accepted to complicate anaesthesia and surgery, being a risk factor for mediastinitis after coronary artery bypass grafting (CABG). We sought the evidence on operative mortality of CABG between standard BMI groups. Materials and Methodology: A simple literature review of papers presenting the mortality of CABG by BMI group: Underweight (BMI ≤ 18.49 kg/m2), normal weight (BMI 18.5–24.9 kg/m2), overweight (BMI 25.0–29.9 kg/m2), mild obesity (BMI 30.0–34.9 kg/m2), moderate obesity (BMI 35.0–39.9 kg/m2), or morbid obesity (BMI ≥ 40.0 kg/m2). Results: We identified 18 relevant studies with 1,027,711 patients in total. Their variability in size of samples and choice of BMI groups precluded us from attempting inferential statistics. The overall cumulative mortality was 2.7%. Underweight patients had by far the highest mortality (6.6%). Overweight patients had the lowest group mortality (2.1%). The group mortality for morbidly obese patients was 3.44%. Discussion: Patients with extreme BMI’s undergoing CABG (underweight ones more than morbidly obese) suffer increased crude mortality. This simple observation indicates that under nutrition and morbid obesity need be further explored as risk factors for coronary surgery. PMID:28217179

  2. Quantification of bone mass gain in response to the application of biphasic bioceramics and platelet concentrate in critical-size bone defects.

    PubMed

    Lobo, Sonja Ellen; Wykrota, Francisco Henrique Lanna; Oliveira, Ana Carolina Marques Barbosa; Kerkis, Irina; Mahecha, Germán Bohorquez; Alves, Humberto José

    2009-05-01

    Biphasic bioceramics have been widely indicated for bone reconstruction; however, the real gain in bone mass due to the presence of such biomaterials has not been established yet nor the advantages of its association with platelet concentrate. This study aims at quantifying the volume of bone matrix, osteoblasts, osteocytes, blood vessels and adipose tissue after the application of a biphasic bioceramics composed of 65% hydroxyapatite and 35% beta-tricalcium phosphate. Critical-size bone defects were produced in rabbit femora and reconstructed with bioceramics only, with bioceramics combined with platelet concentrate, with platelet concentrate alone, and with no treatment (blood clot). The quantitative evaluation was performed on histological sections using histomorphometry. Our data provide original evidence that consolidates the indication of bioceramics for clinical bone loss reconstruction. The application of biphasic bioceramics alone led to major bone mass gain and was followed by its association with platelet concentrate. On the other hand, platelet concentrate can contribute to the augmentation and maintenance of the adipose tissue, representing a new field for future applications in plastic surgery.

  3. Sedentary behaviours and its association with bone mass in adolescents: the HELENA cross-sectional study

    PubMed Central

    2012-01-01

    Background We aimed to examine whether time spent on different sedentary behaviours is associated with bone mineral content (BMC) in adolescents, after controlling for relevant confounders such as lean mass and objectively measured physical activity (PA), and if so, whether extra-curricular participation in osteogenic sports could have a role in this association. Methods Participants were 359 Spanish adolescents (12.5-17.5 yr, 178 boys,) from the HELENA-CSS (2006–07). Relationships of sedentary behaviours with bone variables were analysed by linear regression. The prevalence of low BMC (at least 1SD below the mean) and time spent on sedentary behaviours according to extracurricular sport participation was analysed by Chi-square tests. Results In boys, the use of internet for non-study was negatively associated with whole body BMC after adjustment for lean mass and moderate to vigorous PA (MVPA). In girls, the time spent studying was negatively associated with femoral neck BMC. Additional adjustment for lean mass slightly reduced the negative association between time spent studying and femoral neck BMC. The additional adjustment for MVPA did not change the results at this site. The percentage of girls having low femoral neck BMC was significantly smaller in those participating in osteogenic sports (≥ 3 h/week) than in the rest, independently of the cut-off selected for the time spent studying. Conclusions The use of internet for non-study (in boys) and the time spent studying (in girls) are negatively associated with whole body and femoral neck BMC, respectively. In addition, at least 3 h/week of extra-curricular osteogenic sports may help to counteract the negative association of time spent studying on bone health in girls. PMID:23148760

  4. Behaviour of water bound in bone marrow cells affected by organic solvents of different polarity.

    PubMed

    Turov, Vladimir V; Kerus, Sergey V; Gun'ko, Vladimir M

    2009-08-01

    The behaviour of intracellular water affected by organic solvents of different polarity in partially dehydrated marrow cells obtained from tubular bones of broiler chickens was studied using (1)H NMR spectroscopy at 210-290K. The (1)H NMR spectra of intracellular water include two signals which can be assigned to strongly (SAW, chemical shift of the proton resonance delta(H)=4-5ppm) and weakly (WAW, delta(H)=1.2-1.7ppm) associated waters which can be also divided into weakly (WBW, frozen at 250-0.8kJ/mol) and strongly (SBW, unfrozen at T<250K, DeltaG<-0.8kJ/mol) bound intracellular waters. Solvents of different polarity such as dimethylsulfoxide-d(6) (Me(2)SO-d(6)), acetonitrile-d(3), and chloroform-d differently affect structure, Gibbs free energy, and molecular mobility of intracellular water. A maximal fraction of SBW in WAW and a minimal fraction of SBW in SAW are observed on absorption of acetonitrile (0.8g/g) by cells. The opposite results are on addition of Me(2)SO (0.8g/g) which strongly changes organisation of intracellular water and enhances the freezing point depression of SBW.

  5. Urbanization of black South African women may increase risk of low bone mass due to low vitamin D status, low calcium intake, and high bone turnover.

    PubMed

    Kruger, Marlena C; Kruger, Iolanthé M; Wentzel-Viljoen, Edelweiss; Kruger, Annamarie

    2011-10-01

    Globally, rural to urban migration is accompanied by changes in dietary patterns and lifestyle that have serious health implications, including development of low bone mass. We hypothesized that serum 25 (OH) vitamin D3 (25[OH]D3) levels will be lower, bone turnover higher, and nutrition inadequate in urban postmenopausal black women, increasing risk for low bone mass. We aimed to assess the prevalence of risk factors for low bone mass in 1261 black women from rural and urban areas in the North West Province of South Africa (Prospective Urban and Rural Epidemiology-South Africa project). Fasting blood samples were taken; and participants were interviewed to complete questionnaires on self-reported diseases, fractures, and dietary intakes. Bone health markers were assessed in a subgroup of 658 women older than 45 years. Specific lifestyle risk factors identified were inactivity, smoking, injectable progestin contraception use, and high alcohol consumption. Dietary risk factors identified were low calcium and high animal protein, phosphorous, and sodium intakes. The 25(OH)D3 and C-terminal telopeptide (CTX) levels were significantly higher in the rural vs the urban women older than 50 years. Parathyroid hormone (PTH) levels increased with age in both groups. The 25(OH)D levels were inversely correlated with CTX and PTH in rural women. In urban women, PTH and CTX were correlated while dietary calcium was inversely correlated with CTX and PTH with 25(OH)D3. The combination of low dietary calcium (<230 mg/d), marginally insufficient 25(OH)D3 status, and raised PTH may result in increased bone resorption. Further research is required to assess bone health and fracture risk in black African women.

  6. Increased fat mass is associated with increased bone size but reduced volumetric density in pre pubertal children.

    PubMed

    Cole, Z A; Harvey, N C; Kim, M; Ntani, G; Robinson, S M; Inskip, H M; Godfrey, K M; Cooper, C; Dennison, E M

    2012-02-01

    Recent studies have shown that obesity is associated with an increased risk of fracture in both adults and children. It has been suggested that, despite greater bone size, obese individuals may have reduced true volumetric density; however this is difficult to assess using two dimensional techniques such as DXA. We evaluated the relationship between fat mass, and bone size and density, in a population cohort of children in whom DXA and pQCT measurements had been acquired. We recruited 530 children at 6 years old from the Southampton Women's Survey. The children underwent measurement of bone mass at the whole body, lumbar spine and hip, together with body composition, by DXA (Hologic Discovery, Hologic Inc., Bedford, MA, USA). In addition 132 of these children underwent pQCT measurements at the tibia (Stratec XCT2000, Stratec Biomedical Systems, Birkenfeld, Germany). Significant positive associations were observed between total fat mass and both bone area (BA) and bone mineral content (BMC) at the whole body minus head, lumbar spine and hip sites (all p<0.0001). When true volumetric density was assessed using pQCT data from the tibia, fat mass (adjusted for lean mass) was negatively associated with both trabecular and cortical density (β=-14.6 mg/mm(3) per sd, p=0.003; β=-7.7 mg/mm(3) per sd, p=0.02 respectively). These results suggest that fat mass is negatively associated with volumetric bone density at 6 years old, independent of lean mass, despite positive associations with bone size.

  7. Body mass index and the risk of low bone mass–related fractures in women compared with men

    PubMed Central

    Xiang, Bing-Yan; Huang, Wei; Zhou, Guo-Qi; Hu, Ning; Chen, Hong; Chen, Cheng

    2017-01-01

    Abstract Background: Body mass index (BMI) is inconsistently associated with the progression of low bone mass–related fractures. We conducted a systematic review and meta-analysis to summarize the evidence regarding the relationship between BMI and the risk of fracture in men and women separately. Furthermore, we analyzed the association between BMI and fracture risk in women compared with men. Methods: PubMed, EmBase, and the Cochrane Library were searched up to November 2015 to identify prospective cohort studies of low bone mass–related fractures. Prospective cohort studies that reported effect estimates of fracture risk for different BMI categories compared to normal weight were included. Relative risk (RR) and the ratio of relative risk (RRR) were calculated using a random-effect model to measure the relationship between BMI and fracture risk. Results: We analyzed 37 cohorts (32 articles), which included a total of 506,004 women and 118,372 men; overall, 38,200 incident cases were reported. Overall, a lower BMI was not associated with fracture risk in men (RR: 1.50, 95% confidence interval [CI]: 1.00–2.26; P = 0.051) or women (RR: 1.25, 95% CI: 0.97–1.62; P = 0.083). Although a higher BMI might play a beneficial impact in men (RR: 0.80, 95% CI: 0.69–0.93; P = 0.003), it has little effect in women (RR: 0.91, 95% CI: 0.74–1.11; P = 0.343). In addition, an increase in BMI by 5 kg/m2 decreased the risk of fractures in men (RR: 0.90, 95% CI: 0.83–0.98; P = 0.017) and women (RR: 0.85, 95% CI: 0.81–0.89; P < 0.001). Finally, there was no evidence of a sex difference in the RR for fractures between participants with different BMI categories compared with those with normal BMI. Finally, gender did not affect the risk of fracture for any category of BMI values. Conclusion: Higher BMI may affect the risk of fractures regardless of the sex. This association may be due to the interaction between the participants’ BMI and their

  8. Calcium- and Phosphorus-Supplemented Diet Increases Bone Mass after Short-Term Exercise and Increases Bone Mass and Structural Strength after Long-Term Exercise in Adult Mice.

    PubMed

    Friedman, Michael A; Bailey, Alyssa M; Rondon, Matthew J; McNerny, Erin M; Sahar, Nadder D; Kohn, David H

    2016-01-01

    Exercise has long-lasting benefits to bone health that may help prevent fractures by increasing bone mass, bone strength, and tissue quality. Long-term exercise of 6-12 weeks in rodents increases bone mass and bone strength. However, in growing mice, a short-term exercise program of 3 weeks can limit increases in bone mass and structural strength, compared to non-exercised controls. Short-term exercise can, however, increase tissue strength, suggesting that exercise may create competition for minerals that favors initially improving tissue-level properties over structural-level properties. It was therefore hypothesized that adding calcium and phosphorus supplements to the diet may prevent decreases in bone mass and structural strength during a short-term exercise program, while leading to greater bone mass and structural strength than exercise alone after a long-term exercise program. A short-term exercise experiment was done for 3 weeks, and a long-term exercise experiment was done for 8 weeks. For each experiment, male 16-week old C57BL/6 mice were assigned to 4 weight-matched groups-exercise and non-exercise groups fed a control or mineral-supplemented diet. Exercise consisted of treadmill running at 12 m/min, 30 min/day for 7 days/week. After 3 weeks, exercised mice fed the supplemented diet had significantly increased tibial tissue mineral content (TMC) and cross-sectional area over exercised mice fed the control diet. After 8 weeks, tibial TMC, cross-sectional area, yield force, and ultimate force were greater from the combined treatments than from either exercise or supplemented diet alone. Serum markers of bone formation (PINP) and resorption (CTX) were both decreased by exercise on day 2. In exercised mice, day 2 PINP was significantly positively correlated with day 2 serum Ca, a correlation that was weaker and negative in non-exercised mice. Increasing dietary mineral consumption during an exercise program increases bone mass after 3 weeks and increases

  9. Plasma membrane calcium ATPase regulates bone mass by fine-tuning osteoclast differentiation and survival.

    PubMed

    Kim, Hyung Joon; Prasad, Vikram; Hyung, Seok-Won; Lee, Zang Hee; Lee, Sang-Won; Bhargava, Aditi; Pearce, David; Lee, Youngkyun; Kim, Hong-Hee

    2012-12-24

    The precise regulation of Ca(2+) dynamics is crucial for proper differentiation and function of osteoclasts. Here we show the involvement of plasma membrane Ca(2+) ATPase (PMCA) isoforms 1 and 4 in osteoclastogenesis. In immature/undifferentiated cells, PMCAs inhibited receptor activator of NF-κB ligand-induced Ca(2+) oscillations and osteoclast differentiation in vitro. Interestingly, nuclear factor of activated T cell c1 (NFATc1) directly stimulated PMCA transcription, whereas the PMCA-mediated Ca(2+) efflux prevented NFATc1 activation, forming a negative regulatory loop. PMCA4 also had an anti-osteoclastogenic effect by reducing NO, which facilitates preosteoclast fusion. In addition to their role in immature cells, increased expression of PMCAs in mature osteoclasts prevented osteoclast apoptosis both in vitro and in vivo. Mice heterozygous for PMCA1 or null for PMCA4 showed an osteopenic phenotype with more osteoclasts on bone surface. Furthermore, PMCA4 expression levels correlated with peak bone mass in premenopausal women. Thus, our results suggest that PMCAs play important roles for the regulation of bone homeostasis in both mice and humans by modulating Ca(2+) signaling in osteoclasts.

  10. Chronic administration of Glucagon-like peptide-1 receptor agonists improves trabecular bone mass and architecture in ovariectomised mice.

    PubMed

    Pereira, M; Jeyabalan, J; Jørgensen, C S; Hopkinson, M; Al-Jazzar, A; Roux, J P; Chavassieux, P; Orriss, I R; Cleasby, M E; Chenu, C

    2015-12-01

    Some anti-diabetic therapies can have adverse effects on bone health and increase fracture risk. In this study, we tested the skeletal effects of chronic administration of two Glucagon-like peptide-1 receptor agonists (GLP-1RA), increasingly used for type 2 diabetes treatment, in a model of osteoporosis associated bone loss and examined the expression and activation of GLP-1R in bone cells. Mice were ovariectomised (OVX) to induce bone loss and four weeks later they were treated with Liraglutide (LIR) 0.3mg/kg/day, Exenatide (Ex-4) 10 μg/kg/day or saline for four weeks. Mice were injected with calcein and alizarin red prior to euthanasia, to label bone-mineralising surfaces. Tibial micro-architecture was determined by micro-CT and bone formation and resorption parameters measured by histomorphometric analysis. Serum was collected to measure calcitonin and sclerostin levels, inhibitors of bone resorption and formation, respectively. GLP-1R mRNA and protein expression were evaluated in the bone, bone marrow and bone cells using RT-PCR and immunohistochemistry. Primary osteoclasts and osteoblasts were cultured to evaluate the effect of GLP-1RA on bone resorption and formation in vitro. GLP-1RA significantly increased trabecular bone mass, connectivity and structure parameters but had no effect on cortical bone. There was no effect of GLP-1RA on bone formation in vivo but an increase in osteoclast number and osteoclast surfaces was observed with Ex-4. GLP-1R was expressed in bone marrow cells, primary osteoclasts and osteoblasts and in late osteocytic cell line. Both Ex-4 and LIR stimulated osteoclastic differentiation in vitro but slightly reduced the area resorbed per osteoclast. They had no effect on bone nodule formation in vitro. Serum calcitonin levels were increased and sclerostin levels decreased by Ex-4 but not by LIR. Thus, GLP-1RA can have beneficial effects on bone and the expression of GLP-1R in bone cells may imply that these effects are exerted directly

  11. The Clinical and Biochemical Predictors of Bone Mass in Preterm Infants

    PubMed Central

    Czekuc-Kryskiewicz, Edyta; Pludowski, Pawel; Zaniuk, Katarzyna; Jaworski, Maciej; Łuba, Anna; Grzybowska, Karolina; Piłat, Krystyna; Dobrzanska, Anna

    2016-01-01

    Background Metabolic bone disease of prematurity still occurs in preterm infants, although a significant improvement in neonatal care has been observed in recent decades. Dual-energy X-ray absorptiometry (DXA) is the precise technique for assessing bone mineral content (BMC) in preterm infants, but is not widely available. Aim To investigate the clinical and biochemical parameters, including bone metabolism markers as potential predictors of BMC, in preterm infants up to 3 months corrected age (CA). Materials and Methods Ca-P homeostasis, iPTH, 25-hydroxyvitamin D, osteocalcin, N-terminal propeptide, cross-linked C-telopeptide and amino-terminal pro C-type natriuretic peptide and the DXA scans were prospectively performed in 184 preterm infants (≤ 34 weeks’ gestation) between term age and 3 mo CA. Lower bone mass was defined as BMC below or equal to respective median value for the whole study group, rounded to the nearest whole number. Results The appropriate quality DXA scans were available for 160 infants (87%) examined at term and for 130 (71%) tested at 3 mo CA. Higher iPTH level was the only independent predictor of lower BMC at term, whereas lower BMC at 3 mo CA was associated both with lower urinary phosphate excretion and higher serum osteocalcin level. ROC analysis showed that iPTH >43.6 pg/mL provided 40% sensitivity and 88% specificity in identification of preterm infants with lower BMC at term. In turn, urinary phosphate excretion (TRP>97% or UP/Cr ≤0.74 mg/mg) and serum osteocalcin >172 ng/mL provided 40% sensitivity and 93% specificity in identification of infants with decreased BMC at 3 mo CA. Conclusion Serum iPTH might to be a simple predictor of reduced BMC in preterm infants at term age, but urinary phosphate excretion and serum osteocalcin might predict reduced BMC at 3 mo CA. These results represent a promising diagnostic tool based on simple, widely available biochemical measurements for bone mass assessment in preterm infants. PMID

  12. Soccer increases bone mass in prepubescent boys during growth: a 3-yr longitudinal study.

    PubMed

    Zouch, Mohamed; Zribi, Anis; Alexandre, Christian; Chaari, Hamada; Frere, Delphine; Tabka, Zouhair; Vico, Laurence

    2015-01-01

    The aim of this study was to examine the effect of 3-yr soccer practice on bone acquisition in prepubescent boys. We investigated 65 boys (aged 10-13 yr, Tanner stage I) at baseline, among which only 40 boys (Tanner stages II and III) have continued the 3-yr follow-up: 23 soccer players (F) completed 2-5 h of training plus 1 competition game per week and 17 controls (C). Bone mineral density (BMD, g/cm(2)) and bone mineral content (BMC, g) were measured by dual-energy X-ray absorptiometry at different sites. At baseline, BMD was higher in soccer players than in controls in the whole body and legs. In contrast, there was nonsignificant difference BMD in head, femoral neck, arms, and BMC in all measured sites between groups. At 3-yr follow-up, soccer players were found to have higher BMD and BMC at all sites than controls, except for head BMD and BMC and arms BMC in which the difference was nonsignificant between groups. During the 3-yr follow-up, the soccer players were found to gain significantly more in lumbar spine (31.2% ± 2.9% vs 23.9% ± 2.1%; p < 0.05), femoral neck (24.1% ± 1.8% vs 11.4% ± 1.9%; p < 0.001), whole body (16.5% ± 1.4% vs 11.8% ± 1.5%; p < 0.05), and nondominant arm BMD (18.2% ± 1.4% vs 13.6% ± 1.7%; p < 0.05) as well as lumbar spine (62.5% ± 20.1% vs 39.5% ± 20.1%; p < 0.001), femoral neck, (37.7% ± 14.2% vs 28.9% ± 12.8%; p < 0.05) and nondominant arm BMC (68.6% ± 22.9% vs 50.1% ± 22.4%; p < 0.05) than controls. In contrast, soccer players have less %BMD and %BMC changes in the head than controls. A nonsignificant difference was found in legs, dominant arm, head %BMD and %BMC changes, and whole-body %BMC changes between groups. In summary, we suggest that soccer has an osteogenic effect BMD and BMC in loaded sites in pubertal soccer players. The increased bone mass induced by soccer training in the stressed sites was associated to a decreased skull bone mass after 3 yr of follow-up.

  13. Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model.

    PubMed Central

    Matkovic, V; Jelic, T; Wardlaw, G M; Ilich, J Z; Goel, P K; Wright, J K; Andon, M B; Smith, K T; Heaney, R P

    1994-01-01

    To determine the timing of peak bone mass and density, we conducted a cross-sectional study of bone mass measurements in 265 premenopausal Caucasian females, aged 8-50 yr. Bone mass and bone mineral density were measured using dual X-ray absorptiometry and single-photon absorptiometry at the spine (anteroposterior, lateral), proximal femur, radius shaft, distal forearm, and the whole body. Bone mass parameters were analyzed using a quadratic regression model and segmented regression models with quadratic-quadratic or quadratic-linear form. The results show that most of the bone mass at multiple skeletal locations will be accumulated by late adolescence. This is particularly notable for bone mineral density of the proximal femur and the vertebral body. Bone mass of the other regions of interest is either no different in women between the age of 18 yr and the menopause or it is maximal in 50-yr-old women, indicating slow but permanent bone accumulation continuing at some sites up to the time of menopause. This gain in bone mass in premenopausal adult women is probably the result of continuous periosteal expansion with age. Since rapid skeletal mineral acquisition at all sites occurs relatively early in life, the exogenous factors which might optimize peak bone mass need to be more precisely identified and characterized. Images PMID:8113412

  14. Bone Mass Outcomes in Patients With Osteoporosis Treated With Risedronate After Alendronate Failure: a 12-Month Follow-Up Study.

    PubMed

    Mendonça, Leonardo Teixeira; Pinheiro, Marcelo Medeiros; Szejnfeld, Vera Lúcia; Castro, Charlles Heldan de Moura

    Oral bisphosphonates are the drugs most frequently used for the treatment of osteoporosis. Clinicians usually switch between these drugs in clinical practice based on differences in efficacy. We aim to investigate the reasons associated with switching between oral bisphosphonates and to evaluate bone mass response and the incidence of fractures 12 mo after the exchange in a cohort of patients with osteoporosis seen at a tertiary hospital. Patients with osteoporosis who switched between oral bisphosphonates between January 2007 and December 2014 were included. Bone mass measured by dual-energy X-ray absorptiometry and the incidence of fracture were evaluated. A total of 112 patients (73.1 yr old on average, 95.5% women, 98% postmenopausal) were included. All patients were taking alendronate at the time of the switch to risedronate. In 91 patients (81.3%), the following reasons for the exchange of medication were identified: bone loss (59.8%), adverse events (11.6%), and recent fragility fracture (10.7%). One year after the switch, bone densitometry revealed bone loss in 51 patients (45.5%), bone mass maintenance in 34 (30.4%), and bone mass gain in 27 (24.1%). No new vertebral fracture was detected and no nonvertebral fracture was reported in 12 mo of follow-up. Bone mass outcomes (gain, loss, or maintenance) were not associated with the reason for switching between oral bisphosphonates. Similarly, none of the parameters evaluated could predict good densitometric response (gain or maintenance) in this scenario. Our findings suggest that the use of risedronate should not be recommended in the scenario of treatment failure or adverse events following the use of alendronate.

  15. The National Osteoporosis Foundation's position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations.

    PubMed

    Weaver, C M; Gordon, C M; Janz, K F; Kalkwarf, H J; Lappe, J M; Lewis, R; O'Karma, M; Wallace, T C; Zemel, B S

    2016-04-01

    Lifestyle choices influence 20-40 % of adult peak bone mass. Therefore, optimization of lifestyle factors known to influence peak bone mass and strength is an important strategy aimed at reducing risk of osteoporosis or low bone mass later in life. The National Osteoporosis Foundation has issued this scientific statement to provide evidence-based guidance and a national implementation strategy for the purpose of helping individuals achieve maximal peak bone mass early in life. In this scientific statement, we (1) report the results of an evidence-based review of the literature since 2000 on factors that influence achieving the full genetic potential for skeletal mass; (2) recommend lifestyle choices that promote maximal bone health throughout the lifespan; (3) outline a research agenda to address current gaps; and (4) identify implementation strategies. We conducted a systematic review of the role of individual nutrients, food patterns, special issues, contraceptives, and physical activity on bone mass and strength development in youth. An evidence grading system was applied to describe the strength of available evidence on these individual modifiable lifestyle factors that may (or may not) influence the development of peak bone mass (Table 1). A summary of the grades for each of these factors is given below. We describe the underpinning biology of these relationships as well as other factors for which a systematic review approach was not possible. Articles published since 2000, all of which followed the report by Heaney et al. [1] published in that year, were considered for this scientific statement. This current review is a systematic update of the previous review conducted by the National Osteoporosis Foundation [1]. [Table: see text] Considering the evidence-based literature review, we recommend lifestyle choices that promote maximal bone health from childhood through young to late adolescence and outline a research agenda to address current gaps in knowledge

  16. Visualizing fossilization using laser ablation-inductively coupled plasma-mass spectrometry maps of trace elements in Late Cretaceous bones

    USGS Publications Warehouse

    Koenig, A.E.; Rogers, R.R.; Trueman, C.N.

    2009-01-01

    Elemental maps generated by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) provide a previously unavailable high-resolution visualization of the complex physicochemical conditions operating within individual bones during the early stages of diagenesis and fossilization. A selection of LA-ICP-MS maps of bones collected from the Late Cretaceous of Montana (United States) and Madagascar graphically illustrate diverse paths to recrystallization, and reveal unique insights into geochemical aspects of taphonomic history. Some bones show distinct gradients in concentrations of rare earth elements and uranium, with highest concentrations at external bone margins. Others exhibit more intricate patterns of trace element uptake related to bone histology and its control on the flow paths of pore waters. Patterns of element uptake as revealed by LA-ICP-MS maps can be used to guide sampling strategies, and call into question previous studies that hinge upon localized bulk samples of fossilized bone tissue. LA-ICP-MS maps also allow for comparison of recrystallization rates among fossil bones, and afford a novel approach to identifying bones or regions of bones potentially suitable for extracting intact biogeochemical signals. ?? 2009 Geological Society of America.

  17. The PTH-Gαs-Protein Kinase A Cascade Controls αNAC Localization To Regulate Bone Mass

    PubMed Central

    Pellicelli, Martin; Miller, Julie A.; Arabian, Alice; Gauthier, Claude; Akhouayri, Omar; Wu, Joy Y.; Kronenberg, Henry M.

    2014-01-01

    The binding of PTH to its receptor induces Gαs-dependent cyclic AMP (cAMP) accumulation to turn on effector kinases, including protein kinase A (PKA). The phenotype of mice with osteoblasts specifically deficient for Gαs is mimicked by a mutation leading to cytoplasmic retention of the transcriptional coregulator αNAC, suggesting that Gαs and αNAC form part of a common genetic pathway. We show that treatment of osteoblasts with PTH(1–34) or the PKA-selective activator N6-benzoyladenosine cAMP (6Bnz-cAMP) leads to translocation of αNAC to the nucleus. αNAC was phosphorylated by PKA at serine 99 in vitro. Phospho-S99-αNAC accumulated in osteoblasts exposed to PTH(1–34) or 6Bnz-cAMP but not in treated cells expressing dominant-negative PKA. Nuclear accumulation was abrogated by an S99A mutation but enhanced by a phosphomimetic residue (S99D). Chromatin immunoprecipitation (ChIP) analysis showed that PTH(1–34) or 6Bnz-cAMP treatment leads to accumulation of αNAC at the Osteocalcin (Ocn) promoter. Altered gene dosages for Gαs and αNAC in compound heterozygous mice result in reduced bone mass, increased numbers of osteocytes, and enhanced expression of Sost. Our results show that αNAC is a substrate of PKA following PTH signaling. This enhances αNAC translocation to the nucleus and leads to its accumulation at target promoters to regulate transcription and affect bone mass. PMID:24550008

  18. Lycopene treatment against loss of bone mass, microarchitecture and strength in relation to regulatory mechanisms in a postmenopausal osteoporosis model.

    PubMed

    Ardawi, Mohammed-Salleh M; Badawoud, Mohammed H; Hassan, Sherif M; Rouzi, Abdulrahim A; Ardawi, Jumanah M S; AlNosani, Nouf M; Qari, Mohammed H; Mousa, Shaker A

    2016-02-01

    Lycopene supplementation decreases oxidative stress and exhibits beneficial effects on bone health, but the mechanisms through which it alters bone metabolism in vivo remain unclear. The present study aims to evaluate the effects of lycopene treatment on postmenopausal osteoporosis. Six-month-old female Wistar rats (n=264) were sham-operated (SHAM) or ovariectomized (OVX). The SHAM group received oral vehicle only and the OVX rats were randomized into five groups receiving oral daily lycopene treatment (mg/kg body weight per day): 0 OVX (control), 15 OVX, 30 OVX, and 45 OVX, and one group receiving alendronate (ALN) (2μg/kg body weight per day), for 12weeks. Bone densitometry measurements, bone turnover markers, biomechanical testing, and histomorphometric analysis were conducted. Micro computed tomography was also used to evaluate changes in microarchitecture. Lycopene treatment suppressed the OVX-induced increase in bone turnover, as indicated by changes in biomarkers of bone metabolism: serum osteocalcin (s-OC), serum N-terminal propeptide of type 1 collagen (s-PINP), serum crosslinked carboxyterminal telopeptides (s-CTX-1), and urinary deoxypyridinoline (u-DPD). Significant improvement in OVX-induced loss of bone mass, bone strength, and microarchitectural deterioration was observed in lycopene-treated OVX animals. These effects were observed mainly at sites rich in trabecular bone, with less effect in cortical bone. Lycopene treatment down-regulated osteoclast differentiation concurrent with up-regulating osteoblast together with glutathione peroxidase (GPx) catalase (CAT) and superoxide dismutase (SOD) activities. These findings demonstrate that lycopene treatment in OVX rats primarily suppressed bone turnover to restore bone strength and microarchitecture.

  19. Metformin revisited: Does this regulator of AMP-activated protein kinase secondarily affect bone metabolism and prevent diabetic osteopathy

    PubMed Central

    McCarthy, Antonio Desmond; Cortizo, Ana María; Sedlinsky, Claudia

    2016-01-01

    Patients with long-term type 1 and type 2 diabetes mellitus (DM) can develop skeletal complications or “diabetic osteopathy”. These include osteopenia, osteoporosis and an increased incidence of low-stress fractures. In this context, it is important to evaluate whether current anti-diabetic treatments can secondarily affect bone metabolism. Adenosine monophosphate-activated protein kinase (AMPK) modulates multiple metabolic pathways and acts as a sensor of the cellular energy status; recent evidence suggests a critical role for AMPK in bone homeostasis. In addition, AMPK activation is believed to mediate most clinical effects of the insulin-sensitizer metformin. Over the past decade, several research groups have investigated the effects of metformin on bone, providing a considerable body of pre-clinical (in vitro, ex vivo and in vivo) as well as clinical evidence for an anabolic action of metformin on bone. However, two caveats should be kept in mind when considering metformin treatment for a patient with type 2 DM at risk for diabetic osteopathy. In the first place, metformin should probably not be considered an anti-osteoporotic drug; it is an insulin sensitizer with proven macrovascular benefits that can secondarily improve bone metabolism in the context of DM. Secondly, we are still awaiting the results of randomized placebo-controlled studies in humans that evaluate the effects of metformin on bone metabolism as a primary endpoint. PMID:27022443

  20. When size matters: differences in demineralized bone matrix particles affect collagen structure, mesenchymal stem cell behavior, and osteogenic potential.

    PubMed

    Dozza, B; Lesci, I G; Duchi, S; Della Bella, E; Martini, L; Salamanna, F; Falconi, M; Cinotti, S; Fini, M; Lucarelli, E; Donati, D

    2017-04-01

    Demineralized bone matrix (DBM) is a natural, collagen-based, osteoinductive biomaterial. Nevertheless, there are conflicting reports on the efficacy of this product. The purpose of this study was to evaluate whether DBM collagen structure is affected by particle size and can influence DBM cytocompatibility and osteoinductivity. Sheep cortical bone was ground and particles were divided in three fractions with different sizes, defined as large (L, 1-2 mm), medium (M, 0.5-1 mm), and small (S, <0.5 mm). After demineralization, the chemical-physical analysis clearly showed a particle size-dependent alteration in collagen structure, with DBM-M being altered but not as much as DBM-S. DBM-M displayed a preferable trend in almost all biological characteristics tested, although all DBM particles revealed an optimal cytocompatibility. Subcutaneous implantation of DBM particles into immunocompromised mice resulted in bone induction only for DBM-M. When sheep MSC were seeded onto particles before implantation, all DBM particles were able to induce new bone formation with the best incidence for DBM-M and DBM-S. In conclusion, the collagen alteration in DBM-M is likely the best condition to promote bone induction in vivo. Furthermore, the choice of 0.5-1 mm particles may enable to obtain more efficient and consistent results among different research groups in bone tissue-engineering applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1019-1033, 2017.

  1. Characterization of candidate reference materials for bone lead via interlaboratory study and double isotope dilution mass spectrometry.

    PubMed

    Bellis, David J; Hetter, Katherine M; Verostek, Mary Frances; Parsons, Patrick J

    2008-01-01

    Four candidate ground bone reference materials (NYS RMs 05-01 through 04), were produced from lead-dosed bovine and caprine sources, and characterized by interlaboratory study. The consensus value ( X ) and expanded standard uncertainty (U(X) ) were determined from the robust average and standard deviation of the participants' data for each NYS RM 05-01 through 04. The values were 1.08 ±0.04, 15.3 ±0.5, 12.4 ±0.5, and 29.9 ±1.1 μg g(-1) Pb, respectively. Youden plots of z-scores showed a statistically significant correlation between the results for pairs of NYS RM 05-02 through 04, indicating common sources of between-laboratory variation affecting reproducibility. NYS RM 05-01 exhibited more random variability affecting repeatability at low concentration. Some participants using electrothermal atomic absorption spectrometry (ETAAS) exhibited a negative bias compared to the all-method consensus value. Other methods used included inductively coupled plasma mass spectrometry (ICP-MS), isotope dilution (ID-) ICP-MS, and ICP atomic (optical) emission spectroscopy (-OES). The NYS RMs 05-01 through 04 were subsequently re-analyzed in house using double ID-ICP-MS to assign certified reference values (C ) and expanded uncertainty (U(C) ) of 1.09 ± 0.03, 16.1 ± 0.3, 13.2 ± 0.3 and 31.5 ± 0.7, respectively, indicating a low bias in the interlaboratory data. SRM 1486 Bone Meal was analyzed for measurement quality assessment obtaining results in agreement with the certified values within the stated uncertainty. Analysis using a primary reference method based on ID-ICP-MS with full quantification of uncertainty calculated according to ISO guidelines provided traceability to SI units.

  2. Characterization of candidate reference materials for bone lead via interlaboratory study and double isotope dilution mass spectrometry

    PubMed Central

    Bellis, David J.; Hetter, Katherine M.; Verostek, Mary Frances; Parsons, Patrick J.

    2012-01-01

    Summary Four candidate ground bone reference materials (NYS RMs 05-01 through 04), were produced from lead-dosed bovine and caprine sources, and characterized by interlaboratory study. The consensus value ( X ) and expanded standard uncertainty (UX ) were determined from the robust average and standard deviation of the participants’ data for each NYS RM 05-01 through 04. The values were 1.08 ±0.04, 15.3 ±0.5, 12.4 ±0.5, and 29.9 ±1.1 μg g−1 Pb, respectively. Youden plots of z-scores showed a statistically significant correlation between the results for pairs of NYS RM 05-02 through 04, indicating common sources of between-laboratory variation affecting reproducibility. NYS RM 05-01 exhibited more random variability affecting repeatability at low concentration. Some participants using electrothermal atomic absorption spectrometry (ETAAS) exhibited a negative bias compared to the all-method consensus value. Other methods used included inductively coupled plasma mass spectrometry (ICP-MS), isotope dilution (ID-) ICP-MS, and ICP atomic (optical) emission spectroscopy (-OES). The NYS RMs 05-01 through 04 were subsequently re-analyzed in house using double ID-ICP-MS to assign certified reference values (C ) and expanded uncertainty (UC ) of 1.09 ± 0.03, 16.1 ± 0.3, 13.2 ± 0.3 and 31.5 ± 0.7, respectively, indicating a low bias in the interlaboratory data. SRM 1486 Bone Meal was analyzed for measurement quality assessment obtaining results in agreement with the certified values within the stated uncertainty. Analysis using a primary reference method based on ID-ICP-MS with full quantification of uncertainty calculated according to ISO guidelines provided traceability to SI units. PMID:23087531

  3. The benefits of a high-intensity aquatic exercise program (HydrOS) for bone metabolism and bone mass of postmenopausal women.

    PubMed

    Moreira, Linda Denise Fernandes; Fronza, Fernanda Cerveira A O; Dos Santos, Rodrigo Nolasco; Zach, Patrícia Lins; Kunii, Ilda S; Hayashi, Lilian Fukusima; Teixeira, Luzimar Raimundo; Kruel, Luis Fernando Martins; Castro, Marise Lazaretti

    2014-07-01

    This study aimed to evaluate the 24-week effects of a high-intensity aquatic exercise program on bone remodeling markers and bone mass of postmenopausal women. In this randomized, controlled trial we studied 108 women (58.8 ± 6.4 years), randomized into Aquatic Exercise Group (AEG), n = 64, performing 24 weeks of aquatic exercises, and Control Group (CG), n = 44, sedentary. They had their fasting morning blood sample collected for the measures of intact parathyroid hormone (iPTH), procollagen type 1 amino-terminal propeptide (P1NP) and carboxy-terminal cross-linking telopeptide of type I collagen (CTx). Bone mass was measured by dual-energy X-ray absorptiometry before and after the intervention. Participants of both groups received a daily supplementation of 500 mg of elementary calcium and 1,000 IU of vitamin D (cholecalciferol). Results showed an augment in bone formation marker (P1NP) only in the AEG (15.8 %; p = 0.001), and although both groups experienced significant enhancements in bone resorption marker (CTx), this increase was less considerable in the AEG (15 % in the AEG and 29 % in the CG). IPTH was increased by 19 % in the CG (p = 0.003) at the end. The femoral trochanter BMD presented a 1.2 % reduction in the CG (p = 0.009), whereas in the AEG no change was observed (p = 0.069). The proposed aquatic exercise program was efficient in attenuating bone resorption raise and enhancing bone formation, which prevented the participants in the AEG from reducing the femoral trochanter BMD, as happened in the CG.

  4. Body mass but not vitamin D status is associated with bone mineral content and density in young school children in northern Sweden

    PubMed Central

    Videhult, Frida K.; Öhlund, Inger; Hernell, Olle; West, Christina E.

    2016-01-01

    Background High latitude of residence where sun exposure is limited affects vitamin D status. Although vitamin D levels have been associated with poor bone health, cut-off values for optimising bone health are yet to be decided. Objective To assess vitamin D intake and status among young school children living at latitude 63–64 °N, in northern Sweden and to examine the association between vitamin D status and bone mineral content (BMC) and bone mineral density (BMD). Design In a cross-sectional study, diet was assessed by a 4-day food diary and a food frequency questionnaire in 8- to 9-year-old children (n=120). Energy, vitamin D, and calcium intakes were calculated. Physical activity was assessed using a pedometer for 7 days. Serum 25-hydroxyvitamin D (S-25[OH]D) levels were analysed by high-pressure liquid chromatography-atmospheric pressure chemical ionisation-mass spectrometry (n=113). BMC and BMD were assessed by dual energy X-ray absorptiometry scan. Height and weight were measured by standard procedures and BMI z-score was calculated using WHO AnthroPlus programme. Results The majority of children, 91%, did not reach the recommended vitamin D intake of 7.5 µg/day and 50% had insufficient S-25[OH]D levels defined as <50 nmol/l. The highest concentrations of S-25[OH]D were observed during the summer months (p=0.01). Body mass (p<0.01) but not S-25[OH]D was associated with measures of BMC and BMD. Furthermore, boys had higher total BMC (p=0.01), total body less head BMC (p=0.02), fat free mass (p<0.01), and a higher degree of physical activity (p=0.01) compared to girls. Conclusions Body mass was related to BMC and BMD measures in a population of prepubertal school children living at high latitudes in Sweden. Despite insufficient S-25[OH]D levels and low vitamin D intake, this did not appear to affect bone parameters. Prospective studies with repeated assessment of vitamin D status are needed to examine cut-off values for optimising bone health. PMID

  5. How large are the extinct giant insular rodents? New body mass estimations from teeth and bones.

    PubMed

    Moncunill-Solé, Blanca; Jordana, Xavier; Marín-Moratalla, Nekane; Moyà-Solà, Salvador; Köhler, Meike

    2014-03-01

    The island rule entails a modification of the body size of insular mammals, a character related with numerous biological and ecological variables. From the Miocene to human colonization (Holocene), Mediterranean and Canary Islands were unaltered natural ecosystems, with paleofaunas formed with endemic giant rodents among other mammals. Our aim is to create methods to estimate the body masses of fossil island rodents and address the nature of ecological pressures driving the island rule. We created regression equations based on extant rodent data and used these to estimate the body masses of the extinct species. Our results show strong correlations between teeth, cranial and postcranial measurements and body mass, except for the length of the long bones, the transversal diameter of the distal tibia and the anteroposterior diameter of the proximal tibia, where the equations were less reliable. The use of equations obtained from a more homogeneous group (suborder and family) is preferable when analyzing the area of the first molar. The new regressions were applied to estimate the body masses of some Mediterranean and Canarian fossil rodents (Canariomys, C. bravoi 1.5 kg and C. tamarani 1 kg; Hypnomys, H. morpheus 230 g and H. onicensis 200 g; and Muscardinus cyclopeus 100 g). Our results indicate that under absence of predation, resource availability (island area) is the key factor that determines the size of the Canariomys sp. However, under presence of specialized predators (birds of prey), body size evolution is less pronounced (Hypnomys sp.).

  6. An altered hormonal profile and elevated rate of bone loss are associated with low bone mass in professional horse-racing jockeys.

    PubMed

    Dolan, Eimear; McGoldrick, Adrian; Davenport, Colin; Kelleher, Grainne; Byrne, Brendan; Tormey, William; Smith, Diarmuid; Warrington, Giles D

    2012-09-01

    Horse-racing jockeys are a group of weight-restricted athletes, who have been suggested as undertaking rapid and extreme weight cycling practices in order to comply with stipulated body-mass standards. The aim of this study was to examine bone mass, turnover and endocrine function in jockeys and to compare this group with age, gender and body mass index matched controls. Twenty male professional jockeys and 20 healthy male controls participated. Dual energy X-ray absorptiometry scans and early morning fasting blood and urine samples were used to measure bone mass, turnover and a hormonal profile. Total body bone mineral density (BMD) was significantly lower in jockeys (1.143 ± 0.05 vs. 1.27 ± 0.06 g cm(-3), p < 0.01). Bone resorptive activity was elevated in the jockey group as indicated by significantly higher urinary NTx/creatinine (76.94 ± 29.52 vs. 55.9 ± 13.9 nmol mmol(-1), p < 0.01), resulting in a significantly negative uncoupling index between bone resorption and formation. Sex hormone binding globulin (SHBG) levels were significantly higher in jockeys (41.21 ± 9.77 vs. 28.24 ± 9.98 nmol L(-1), p < 0.01) with a lower percentage of bioavailable testosterone (48.89 ± 7.38 vs. 59.18 ± 6.74 %, p < 0.01). SHBG and insulin-like growth factor-1 were independent predictors of total body and femoral neck BMD, respectively (p < 0.05). In conclusion, it appears that professional jockeys have an elevated rate of bone loss and reduced bone mass that appears to be associated with disrupted hormonal activity. It is likely that this may have occurred in response to the chronic weight cycling habitually experienced by this group.

  7. Intermittent minodronic acid treatment with sufficient bone resorption inhibition prevents reduction in bone mass and strength in ovariectomized rats with established osteopenia comparable with daily treatment.

    PubMed

    Kimoto, Aishi; Tanaka, Makoto; Nozaki, Kazutoshi; Mori, Masamichi; Fukushima, Shinji; Mori, Hiroshi; Shiroya, Tsutomu; Nakamura, Toshitaka

    2013-07-01

    This study examined and compared the effects of four-week intermittent and daily administrations of minodronic acid, a highly potent nitrogen-containing bisphosphonate, on bone mineral density (BMD), bone strength, bone turnover, and histomorphometry on established osteopenia in ovariectomized (OVX) rats. Fourteen-week-old female F344 rats were OVX or sham-operated. At 12 weeks post surgery, minodronic acid was orally administered once every 4 weeks at 0.2, 1, and 5 mg/kg and once daily at 0.006, 0.03, and 0.15 mg/kg for 12 months. The total dosing amount was comparable between the two dosing regimens. The levels of urinary deoxypyridinoline and serum osteocalcin were measured to assess bone turnover. BMD as assessed via dual-energy X-ray absorptiometry, bone structure and dynamical changes in vertebral trabecula and biomechanical properties were measured ex vivo at 12 months to assess bone content and material properties. Minodronic acid dose-dependently ameliorated the decrease in BMD of lumbar vertebrae and the femur in both treatment regimens similarly. Minodronic acid suppressed elevated urinary levels of deoxypyridinoline, a bone resorption marker, and reduced the serum levels of osteocalcin, a bone formation marker. In the mechanical test at 12 months of treatment, minodronic acid dose-dependently ameliorated the reduction in bone strength in femur and vertebral body. There is no significant difference in parameters between the two regimens except maximal load of lower doses in lumbar vertebral body and absorption energy of middle doses in femur. With these parameters with significant differences, values of the intermittent regimen were significantly lower than that of daily repeated regimen. Bone histomorphometric analysis of the lumbar vertebral body showed that minodronic acid significantly ameliorated the decrease in bone mass, trabecular thickness and number, and the increase in trabecular separation, bone resorption indices (Oc.S/BS and N.Oc/BS), and

  8. Preservation and promotion of bone formation in the mandible as a response to a novel calcium-phosphate based biomaterial in mineral deficiency induced low bone mass male versus female rats

    PubMed Central

    Srinivasan, Kritika; Naula, Diana P.; Mijares, Dindo Q.; Janal, Malvin N.; LeGeros, Raquel Z.; Zhang, Yu

    2016-01-01

    Calcium and other trace mineral supplements have previously demonstrated to safely improve bone quality. We hypothesize that our novel calcium-phosphate based biomaterial (SBM) preserves and promotes mandibular bone formation in male and female rats on mineral deficient diet (MD). Sixty Sprague-Dawley rats were randomly assigned to receive one of three diets (n = 10): basic diet (BD), MD or mineral deficient diet with 2% SBM. Rats were sacrificed after 6 months. Micro-Computed Tomography (μCT) was used to evaluate bone volume and 3D-microarchitecture while microradiography (Faxitron) was used to measure bone mineral density from different sections of the mandible. Results showed that bone quality varied with region, gender and diet. MD reduced bone mineral density (BMD) and volume and increased porosity. SBM preserved BMD and bone mineral content (BMC) in the alveolar bone and condyle in both genders. In the alveolar crest and mandibular body, while preserving more bone in males, SBM also significantly supplemented female bone. Results indicate that mineral deficiency leads to low bone mass in skeletally immature rats, comparatively more in males. Furthermore, SBM administered as a dietary supplement was effective in preventing mandibular bone loss in all subjects. This study suggests that the SBM preparation has potential use in minimizing low peak bone mass induced by mineral deficiency and related bone loss irrespective of gender. PMID:26914814

  9. Examination of the mass media process and personal factors affecting the assessment of mass media-disseminated health information.

    PubMed

    Avcı, Kadriye; Çakır, Tülin; Avşar, Zakir; Üzel Taş, Hanife

    2015-06-01

    This study examined the mass media and personal characteristics leading to health communication inequality as well as the role of certain factors in health communication's mass media process. Using both sociodemographic variables and Maletzke's model as a basis, we investigated the relationship between selected components of the mass communication process, the receiving of reliable health information as a result of health communication, and the condition of its use. The study involved 1853 people in Turkey and was structured in two parts. The first part dealt with questions regarding sociodemographic characteristics, the use of the mass media and the public's ability to obtain health information from it, the public's perception of the trustworthiness of health information, and the state of translating this information into health-promoting behaviours. In the second part, questions related to the mass communication process were posed using a five-point Likert scale. This section tried to establish structural equation modelling using the judgements prepared on the basis of the mass media model. Through this study, it has been observed that sociodemographic factors such as education and age affect individuals' use of and access to communication channels; individuals' trust in and selection of health information from the programme content and their changing health behaviours (as a result of the health information) are related to both their perception of the mass communication process and to sociodemographic factors, but are more strongly related to the former.

  10. Paget's Disease of Bone

    MedlinePlus

    ... page please turn Javascript on. Paget's Disease of Bone What is Paget's Disease of Bone? Click for more information Enlarged and Misshapen Bones Paget's disease of bone causes affected bones to ...

  11. Subtle changes in bone mineralization density distribution in most severely affected patients with chronic obstructive pulmonary disease.

    PubMed

    Misof, B M; Roschger, P; Jorgetti, V; Klaushofer, K; Borba, V Z C; Boguszewski, C L; Cohen, A; Shane, E; Zhou, H; Dempster, D W; Moreira, C A

    2015-10-01

    Chronic obstructive pulmonary disease (COPD) is associated with low aBMD as measured by DXA and altered microstructure as assessed by bone histomorphometry and microcomputed tomography. Knowledge of bone matrix mineralization is lacking in COPD. Using quantitative backscatter electron imaging (qBEI), we assessed cancellous (Cn.) and cortical (Ct.) bone mineralization density distribution (BMDD) in 19 postmenopausal women (62.1 ± 7.3 years of age) with COPD. Eight had sustained fragility fractures, and 13 had received treatment with inhaled glucocorticoids. The BMDD outcomes from the patients were compared with healthy reference data and were correlated with previous clinical and histomorphometric findings. In general, the BMDD outcomes for the patients were not significantly different from the reference data. Neither the subgroups of with or without fragility fractures or of who did or did not receive inhaled glucocorticoid treatment, showed differences in BMDD. However, subgroup comparison according to severity revealed 10% decreased cancellous mineralization heterogeneity (Cn.CaWidth) for the most severely affected compared with less affected patients (p=0.042) and compared with healthy premenopausal controls (p=0.021). BMDD parameters were highly correlated with histomorphometric cancellous bone volume (BV/TV) and formation indices: mean degree of mineralization (Cn.CaMean) versus BV/TV (r=0.58, p=0.009), and Cn.CaMean and Ct.CaMean versus bone formation rate (BFR/BS) (r=-0.71, p<0.001). In particular, those with lower BV/TV (<50th percentile) had significantly lower Cn.CaMean (p=0.037) and higher Cn.CaLow (p=0.020) compared with those with higher (>50th percentile) BV/TV. The normality in most of the BMDD parameters and bone formation rates as well as the significant correlations between them suggests unaffected mineralization processes in COPD. Our findings also indicate no significant negative effect of treatment with inhaled glucocorticoids on the bone

  12. Reduced bone and body mass in young male rats exposed to lead.

    PubMed

    de Figueiredo, Fellipe Augusto Tocchini; Gerlach, Raquel Fernanda; da Veiga, Márcia Andreia Mesquita Silva; Nakadi, Flavio Venancio; Ramos, Junia; Kawakita, Erika Reiko; Guerra, Carolina de Souza; Issa, João Paulo Mardegan

    2014-01-01

    The aim of this study was to see whether there would be differences in whole blood versus tibia lead concentrations over time in growing rats prenatally. Lead was given in the drinking water at 30 mg/L from the time the dams were pregnant until offspring was 28- or 60-day-old. Concentrations of lead were measured in whole blood and in tibia after 28 (28D) and 60 days (60D) in control (C) and in lead-exposed animals (Pb). Lead measurements were made by GF-AAS. There was no significant difference (P > 0.05) in the concentration of whole blood lead between Pb-28D (8.0 ± 1.1  μg/dL) and Pb-60D (7.2 ± 0.89  μg/dL), while both significantly varied (P < 0.01) from controls (0.2  μg/dL). Bone lead concentrations significantly varied between the Pb-28D (8.02 ± 1.12  μg/g) and the Pb-60D (43.3 ± 13.26  μg/g) lead-exposed groups (P < 0.01), while those exposed groups were also significantly higher (P < 0.0001) than the 28D and 60D control groups (Pb < 1  μg/g). The Pb-60D group showed a 25% decrease in tibia mass as compared to the respective control. The five times higher amount of lead found in the bone of older animals (Pb-60D versus Pb-28D), which reinforces the importance of using bone lead as an exposure biomarker.

  13. Reduced Bone and Body Mass in Young Male Rats Exposed to Lead

    PubMed Central

    Augusto Tocchini de Figueiredo, Fellipe; Gerlach, Raquel Fernanda; Andreia Mesquita Silva da Veiga, Márcia; Venancio Nakadi, Flavio; Ramos, Junia; Reiko Kawakita, Erika; de Souza Guerra, Carolina; Issa, João Paulo Mardegan

    2014-01-01

    The aim of this study was to see whether there would be differences in whole blood versus tibia lead concentrations over time in growing rats prenatally. Lead was given in the drinking water at 30 mg/L from the time the dams were pregnant until offspring was 28- or 60-day-old. Concentrations of lead were measured in whole blood and in tibia after 28 (28D) and 60 days (60D) in control (C) and in lead-exposed animals (Pb). Lead measurements were made by GF-AAS. There was no significant difference (P > 0.05) in the concentration of whole blood lead between Pb-28D (8.0 ± 1.1 μg/dL) and Pb-60D (7.2 ± 0.89 μg/dL), while both significantly varied (P < 0.01) from controls (0.2 μg/dL). Bone lead concentrations significantly varied between the Pb-28D (8.02 ± 1.12 μg/g) and the Pb-60D (43.3 ± 13.26 μg/g) lead-exposed groups (P < 0.01), while those exposed groups were also significantly higher (P < 0.0001) than the 28D and 60D control groups (Pb < 1 μg/g). The Pb-60D group showed a 25% decrease in tibia mass as compared to the respective control. The five times higher amount of lead found in the bone of older animals (Pb-60D versus Pb-28D), which reinforces the importance of using bone lead as an exposure biomarker. PMID:24800241

  14. Influence of lean and fat mass on bone mineral density (BMD) in postmenopausal women with osteoporosis.

    PubMed

    Dytfeld, Joanna; Ignaszak-Szczepaniak, Magdalena; Gowin, Ewelina; Michalak, Michał; Horst-Sikorska, Wanda

    2011-01-01

    Despite known positive association between body mass and bone mineral density (BMD), relative contribution of fat and lean tissue to BMD remains under debate. We aimed at investigating the effect of selected anthropometric parameters, including fat content and lean body mass (LBM) on BMD in postmenopausal, osteoporotic women with body mass index (BMI) > 20 kg/m(2). The study involved 92 never-treated women (mean age 69.5 ± 7.3). L1-L4 and femoral neck (FN) BMD were measured by dual energy X-ray absorptiometry (DEXA). Absolute (kg) and relative (%) fat and LBM were assessed by means of electric bioimpedance method. We showed both FN and L1-L4 BMD were positively correlated with body mass, waist circumference (WC), hip circumference (HC) and LBM (kg). Fat content correlated with FN BMD (r = 0.36, p < 0.001). Regression analysis revealed the only predictor of L1-L4 BMD was LBM (R(2) = 0.18, p < 0.05), for FN--both LBM and fat (R(2) = 0.18, p < 0.05 and p < 0.001, respectively). Of the women, 44.5% were overweight, 18.4% obese. Obese women displayed the highest BMD. Both L1-L4 and FN BMD were higher in women with WC > 80 cm. In postmenopausal osteoporotic women with BMI > 20 kg/m(2) both fat and lean tissue might contribute to BMD. Positive association between body mass and BMD does not make obesity and osteoporosis mutually exclusive.

  15. Osteoblast-Specific Overexpression of Human WNT16 Increases Both Cortical and Trabecular Bone Mass and Structure in Mice

    PubMed Central

    Alkhouli, Mohammed; Gerard-O'Riley, Rita L.; Wright, Weston B.; Acton, Dena; Gray, Amie K.; Patel, Bhavmik; Reilly, Austin M.; Lim, Kyung-Eun; Robling, Alexander G.; Econs, Michael J.

    2016-01-01

    Previous genome-wide association studies have identified common variants in genes associated with bone mineral density (BMD) and risk of fracture. Recently, we identified single nucleotide polymorphisms (SNPs) in Wingless-type mouse mammary tumor virus integration site (WNT)16 that were associated with peak BMD in premenopausal women. To further identify the role of Wnt16 in bone mass regulation, we created transgenic (TG) mice overexpressing human WNT16 in osteoblasts. We compared bone phenotypes, serum biochemistry, gene expression, and dynamic bone histomorphometry between TG and wild-type (WT) mice. Compared with WT mice, WNT16-TG mice exhibited significantly higher whole-body areal BMD and bone mineral content (BMC) at 6 and 12 weeks of age in both male and female. Microcomputer tomography analysis of trabecular bone at distal femur revealed 3-fold (male) and 14-fold (female) higher bone volume/tissue volume (BV/TV), and significantly higher trabecular number and trabecular thickness but lower trabecular separation in TG mice compared with WT littermates in both sexes. The cortical bone at femur midshaft also displayed significantly greater bone area/total area and cortical thickness in the TG mice in both sexes. Serum biochemistry analysis showed that male TG mice had higher serum alkaline phosphatase, osteocalcin, osteoprotegerin (OPG), OPG to receptor activator of NF-kB ligand (tumor necrosis family ligand superfamily, number 11; RANKL) ratio as compared with WT mice. Also, lower carboxy-terminal collagen cross-link (CTX) to tartrate-resistant acid phosphatase 5, isoform b (TRAPc5b) ratio was observed in TG mice compared with WT littermates in both male and female. Histomorphometry data demonstrated that both male and female TG mice had significantly higher cortical and trabecular mineralizing surface/bone surface and bone formation rate compared with sex-matched WT mice. Gene expression analysis demonstrated higher expression of Alp, OC, Opg, and Opg to

  16. Low Bone Mass is Associated with Stroke in Chinese Postmenopausal Women: The Chongqing Osteoporosis Study.

    PubMed

    Zhou, Rui; Liu, Dong; Li, Rui; Zhou, Shiming; Cui, Min; Chen, Lin; Zhou, Huadong

    2015-04-01

    The objective of the present study was to investigate the association of low bone mass with the risk of stroke and death in community residents of China. This study was based on the follow-up data acquired from 5,136 postmenopausal women aged 50 years or older between July 2006 and June 2011. Baseline and the follow-up bone mineral density (BMD) in these patients were measured by dual energy X-ray absorptiometry scanning. The association of BMD and risk of stroke and death was further evaluated by Cox proportional hazard analysis. During the follow-up, 148 subjects (2.9%) sustained prospective stroke, and 261 subjects (5.1%) died. After adjustments for age and BMI, our results indicated that neck BMD and osteoporosis were independent predictors of stroke (HR for neck BMD = 1.35, 95% CI = 1.21-1.62; HR for osteoporosis = 2.24, 95% CI = 1.47-3.58) and were also associated with increased risk of death (HR for neck BMD = 1.39, 95% CI = 1.24-1.71; HR for osteoporosis = 1.97, 95% CI = 1.21-2.97). Our results also suggest that low neck BMD and osteoporosis are associated with significantly elevated risk of stroke and death in Chinese postmenopausal women.

  17. Pulsed electromagnetic fields partially preserve bone mass, microarchitecture, and strength by promoting bone formation in hindlimb-suspended rats.

    PubMed

    Jing, Da; Cai, Jing; Wu, Yan; Shen, Guanghao; Li, Feijiang; Xu, Qiaoling; Xie, Kangning; Tang, Chi; Liu, Juan; Guo, Wei; Wu, Xiaoming; Jiang, Maogang; Luo, Erping

    2014-10-01

    A large body of evidence indicates that pulsed electromagnetic fields (PEMF), as a safe and noninvasive method, could promote in vivo and in vitro osteogenesis. Thus far, the effects and underlying mechanisms of PEMF on disuse osteopenia and/or osteoporosis remain poorly understood. Herein, the efficiency of PEMF on osteoporotic bone microarchitecture, bone strength, and bone metabolism, together with its associated signaling pathway mechanism, was systematically investigated in hindlimb-unloaded (HU) rats. Thirty young mature (3-month-old), male Sprague-Dawley rats were equally assigned to control, HU, and HU + PEMF groups. The HU + PEMF group was subjected to daily 2-hour PEMF exposure at 15 Hz, 2.4 mT. After 4 weeks, micro-computed tomography (µCT) results showed that PEMF ameliorated the deterioration of trabecular and cortical bone microarchitecture. Three-point bending test showed that PEMF mitigated HU-induced reduction in femoral mechanical properties, including maximum load, stiffness, and elastic modulus. Moreover, PEMF increased serum bone formation markers, including osteocalcin (OC) and N-terminal propeptide of type 1 procollagen (P1NP); nevertheless, PEMF exerted minor inhibitory effects on bone resorption markers, including C-terminal crosslinked telopeptides of type I collagen (CTX-I) and tartrate-resistant acid phosphatase 5b (TRAcP5b). Bone histomorphometric analysis demonstrated that PEMF increased mineral apposition rate, bone formation rate, and osteoblast numbers in cancellous bone, but PEMF caused no obvious changes on osteoclast numbers. Real-time PCR showed that PEMF promoted tibial gene expressions of Wnt1, LRP5, β-catenin, OPG, and OC, but did not alter RANKL, RANK, or Sost mRNA levels. Moreover, the inhibitory effects of PEMF on disuse-induced osteopenia were further confirmed in 8-month-old mature adult HU rats. Together, these results demonstrate that PEMF alleviated disuse-induced bone loss by promoting skeletal anabolic activities

  18. Platelet dysfunction and a high bone mass phenotype in a murine model of platelet-type von Willebrand disease.

    PubMed

    Suva, Larry J; Hartman, Eric; Dilley, Joshua D; Russell, Susan; Akel, Nisreen S; Skinner, Robert A; Hogue, William R; Budde, Ulrich; Varughese, Kottayil I; Kanaji, Taisuke; Ware, Jerry

    2008-02-01

    The platelet glycoprotein Ib-IX receptor binds surface-bound von Willebrand factor and supports platelet adhesion to damaged vascular surfaces. A limited number of mutations within the glycoprotein Ib-IX complex have been described that permit a structurally altered receptor to interact with soluble von Willebrand factor, and this is the molecular basis of platelet-type von Willebrand disease. We have developed and characterized a mouse model of platelet-type von Willebrand disease (G233V) and have confirmed a platelet phenotype mimicking the human disorder. The mice have a dramatic increase in splenic megakaryocytes and splenomegaly. Recent studies have demonstrated that hematopoetic cells can influence the differentiation of osteogenic cells. Thus, we examined the skeletal phenotype of mice expressing the G233V variant complex. At 6 months of age, G233V mice exhibit a high bone mass phenotype with an approximate doubling of trabecular bone volume in both the tibia and femur. Serum measures of bone resorption were significantly decreased in G233V animals. With decreased bone resorption, cortical thickness was increased, medullary area decreased, and consequently, the mechanical strength of the femur was significantly increased. Using ex vivo bone marrow cultures, osteoclast-specific staining in the G233V mutant marrow was diminished, whereas osteoblastogenesis was unaffected. These studies provide new insights into the relationship between the regulation of megakaryocytopoiesis and bone mass.

  19. Adult Brtl/+ Mouse Model of Osteogenesis Imperfecta Demonstrates Anabolic Response to Sclerostin Antibody Treatment with Increased Bone Mass and Strength

    PubMed Central

    Sinder, Benjamin P.; White, Logan E.; Salemi, Joseph D.; Ominsky, Michael S.; Caird, Michelle S.; Marini, Joan C.; Kozloff, Kenneth M.

    2015-01-01

    Purpose Osteogenesis imperfecta (OI) is a heritable collagen-related bone dysplasia, characterized by brittle bones with increased fracture risk. Although OI fracture risk is greatest before puberty, adults with OI remain at risk of fracture. Anti-resorptive bisphosphonates are commonly used to treat adult OI, but have shown mixed efficacy. New treatments which consistently improve bone mass throughout the skeleton may improve patient outcomes. Neutralizing antibodies to sclerostin (Scl-Ab) are a novel anabolic therapy that have shown efficacy in preclinical studies by stimulating bone formation via the canonical wnt signaling pathway. The purpose of this study was to evaluate Scl-Ab in an adult 6 mo old Brtl/+ model of OI that harbors a typical heterozygous OI-causing Gly>Cys substitution on Col1a1. Methods 6mo old WT and Brtl/+ mice were treated with Scl-Ab (25mg/kg, 2x/week) or Veh for 5 weeks. OCN and TRACP5b serum assays, dynamic histomorphometry, microCT and mechanical testing were performed. Results Adult Brtl/+ mice demonstrated a strong anabolic response to Scl-Ab with increased serum osteocalcin and bone formation rate. This anabolic response led to improved trabecular and cortical bone mass in the femur. Mechanical testing revealed Scl-Ab increased Brtl/+ femoral stiffness and strength. Conclusion Scl-Ab was successfully anabolic in an adult Brtl/+ model of OI. PMID:24803333

  20. Densitometer-Specific Differences in the Correlation Between Body Mass Index and Lumbar Spine Trabecular Bone Score.

    PubMed

    Mazzetti, Gillian; Berger, Claudie; Leslie, William D; Hans, Didier; Langsetmo, Lisa; Hanley, David A; Kovacs, Christopher S; Prior, Jerrilyn C; Kaiser, Stephanie M; Davison, K Shawn; Josse, Robert; Papaioannou, Alexandra; Adachi, Jonathan R; Goltzman, David; Morin, Suzanne N

    2016-12-26

    Trabecular bone score (TBS) is a gray-level texture measure derived from lumbar spine dual-energy X-ray absorptiometry (DXA) images that predicts fractures independent of bone mineral density (BMD). Increased abdominal soft tissue in individuals with elevated body mass index (BMI) absorbs more X-rays during image acquisition for BMD measurement and must be accommodated by the TBS algorithm. We aimed to determine if the relationship between BMI and TBS varied between 2 major manufacturers' densitometers, because different densitometers accommodate soft tissues differently. We identified 1919 women and 811 men, participants of the Canadian Multicentre Osteoporosis Study, aged ≥40 yr with lumbar spine DXA scans acquired on GE Lunar (4 centers) or Hologic (3 centers) densitometers at year 10 of follow-up. TBS was calculated for L1-L4 (TBS iNsight® software, version 2.1). A significant negative correlation between TBS and BMI was observed when TBS measurements were performed on Hologic densitometers in men (Pearson r = -0.36, p <0.0001) and in women (Pearson r = -0.33, p <0.0001); significant correlations were not seen when TBS was measured on GE Lunar densitometers (Pearson r = 0.00 in men, Pearson r = -0.02 in women). Age-adjusted linear regression models confirmed significant interactions between BMI and densitometer manufacturer for both men and women (p < 0.0001). In contrast, comparable positive correlations were observed between BMD and BMI on both Hologic and GE Lunar densitometers in men and women. In conclusion, BMI significantly affects TBS values in men and women when measured on Hologic but not GE Lunar densitometers. This finding has implications for clinical and research applications of TBS, especially when TBS is measured sequentially on DXA densitometers from different manufacturers or when results from different machines are pooled for analysis.

  1. A magnesium based phosphate binder reduces vascular calcification without affecting bone in chronic renal failure rats.

    PubMed

    Neven, Ellen; De Schutter, Tineke M; Dams, Geert; Gundlach, Kristina; Steppan, Sonja; Büchel, Janine; Passlick-Deetjen, Jutta; D'Haese, Patrick C; Behets, Geert J

    2014-01-01

    The alternative phosphate binder calcium acetate/magnesium carbonate (CaMg) effectively reduces hyperphosphatemia, the most important inducer of vascular calcification, in chronic renal failure (CRF). In this study, the effect of low dose CaMg on vascular calcification and possible effects of CaMg on bone turnover, a persistent clinical controversy, were evaluated in chronic renal failure rats. Adenine-induced CRF rats were treated daily with 185 mg/kg CaMg or vehicle for 5 weeks. The aortic calcium content and area% calcification were measured to evaluate the effect of CaMg. To study the effect of CaMg on bone remodeling, rats underwent 5/6th nephrectomy combined with either a normal phosphorus diet or a high phosphorus diet to differentiate between possible bone effects resulting from either CaMg-induced phosphate deficiency or a direct effect of Mg. Vehicle or CaMg was administered at doses of 185 and 375 mg/kg/day for 8 weeks. Bone histomorphometry was performed. Aortic calcium content was significantly reduced by 185 mg/kg/day CaMg. CaMg ameliorated features of hyperparathyroid bone disease. In CRF rats on a normal phosphorus diet, the highest CaMg dose caused an increase in osteoid area due to phosphate depletion. The high phosphorus diet combined with the highest CaMg dose prevented the phosphate depletion and thus the rise in osteoid area. CaMg had no effect on osteoblast/osteoclast or dynamic bone parameters, and did not alter bone Mg levels. CaMg at doses that reduce vascular calcification did not show any harmful effect on bone turnover.

  2. Bone quality is affected by food restriction and by nutrition-induced catch-up growth.

    PubMed

    Pando, Rakefet; Masarwi, Majdi; Shtaif, Biana; Idelevich, Anna; Monsonego-Ornan, Efrat; Shahar, Ron; Phillip, Moshe; Gat-Yablonski, Galia

    2014-12-01

    Growth stunting constitutes the most common effect of malnutrition. When the primary cause of malnutrition is resolved, catch-up (CU) growth usually occurs. In this study, we have explored the effect of food restriction (RES) and refeeding on bone structure and mechanical properties. Sprague-Dawley male rats aged 24 days were subjected to 10 days of 40% RES, followed by refeeding for 1 (CU) or 26 days long-term CU (LTCU). The rats fed ad libitum served as controls. The growth plates were measured, osteoclasts were identified using tartrate-resistant acid phosphatase staining, and micro-computed tomography (CT) scanning and mechanical testing were used to study structure and mechanical properties. Micro-CT analysis showed that RES led to a significant reduction in trabecular BV/TV and trabecular number (Tb.N), concomitant with an increase in trabecular separation (Tb.Sp). Trabecular BV/TV and Tb.N were significantly greater in the CU group than in the RES in both short- and long-term experiments. Mechanical testing showed that RES led to weaker and less compliant bones; interestingly, bones of the CU group were also more fragile after 1 day of CU. Longer term of refeeding enabled correction of the bone parameters; however, LTCU did not achieve full recovery. These results suggest that RES in young rats attenuated growth and reduced trabecular bone parameters. While nutrition-induced CU growth led to an immediate increase in epiphyseal growth plate height and active bone modeling, it was also associated with a transient reduction in bone quality. This should be taken into consideration when treating children undergoing CU growth.

  3. INTERLABORATORY COMPARISON OF MASS SPECTROMETRIC METHODS FOR LEAD ISOTOPES AND TRACE ELEMENTS IN NIST SRM 1400 BONE ASH

    EPA Science Inventory

    The results of an interlaboratory comparison are reported for he lead isotope composition and for trace element concentrations in NIST SRM 1400 Bone Ash obtained using quadrupole and magnetic-sector inductively coupled plasma mass spectrometry (ICP-MS) and (for the Pb isotopes on...

  4. [Etalon-free laser mass-spectrometry as a new method of the elementary analysis of bone tissue at identification].

    PubMed

    Kolkutin, V V; Beniaev, N E; Makeev, E V; Leonov, B I; Krymova, T G; Medved', L N; Iurasov, V V

    2004-01-01

    The results of an experimental study dealing with the elementary composition of bone tissue by using the method of laser mass spectrometry are described in the paper. The method ensures the quantification of concentration values of all elements from the Mendeleev periodic table that can be made within an extensive dynamic range, which makes it promising in the forensic medical identification.

  5. Gravity, calcium, and bone - Update, 1989

    NASA Technical Reports Server (NTRS)

    Arnaud, Sara B.; Morey-Holton, Emily

    1990-01-01

    Recent results obtained on skeletal adaptation, calcium metabolism, and bone browth during short-term flights and ground simulated-microgravity experiments are presented. Results demonstrate that two principal components of calcium metabolism respond within days to changes in body position and to weightlessness: the calcium endocrine system and bone characteristics. Furthermore, results of recent studies imply that bone biomechanics are more severely affected by spaceflight exposures than is the bone mass.

  6. Bone mass loss is associated with systolic blood pressure in postmenopausal women with type 2 diabetes in Tibet: a retrospective cross-sectional study.

    PubMed

    Zhou, L; Song, J; Yang, S; Meng, S; Lv, X; Yue, J; Mina, A; Puchi, B; Geng, Y; Yang, L

    2017-02-02

    We conducted an observational cross-section study to investigate the status of bone mineral mass of Tibetan postmenopausal women with type 2 diabetes and the possible predictors for osteoporosis. We found that prevalence of osteoporosis was 27.0% and blood pressure was an independent risk factor for bone mass loss.

  7. Age-related switch of bone mass in p47phox deficient mice through increased inflammatory milieu in bone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bone remodeling is age-dependently regulated and changes dramatically during the course of development. Excessive accumulation of reactive oxygen species (ROS), including superoxide, hydrogen peroxide, and hydroxyl radicals, has been suggested to be the leading cause of many inflammatory and degener...

  8. Dinosaur bone beds and mass mortality: Implications for the K-T extinction

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth

    1988-01-01

    Mass accumulations of fossilized large terrestrial vertebrate skeletons (bone beds: BB) provide a test for K-T catastrophic extinction hypotheses. The two major factors contributing to BB formation are mode of death and sedimentation rate. Catastrophic mass mortality (CMM) is the sudden death of numerous individuals where species, age, health, gender, or social ranking offer no survivorship advantage. Noncatastrophic mass mortality (NCMM) occurs over time and is strongly influenced by species, age, or gender. In addition to cause of death, sedimentation rate is also important in BB formation. Models of BBs can be made. The CMM drops all individuals in their tracks, therefore, the BB should reflect the living population with respect to species, age, or gender. The NCMM results in monospecific BBs skewed in the direction of the less fit, usually the very young or very old, or towards a specific gender. The NCMM and AM BBs may become more similar the more spread out over time NCMM deaths occur because carcasses are widely scattered requiring hydraulic accumulation, and the greater time allows for more disarticulation and weathering. The CMM and NCMM BB appear to be dominated by social animals. Applying this and the characteristics of mortality patterns to the uppermost Cretaceous Hell Creek Formation indicates that only NCMM and AM BB occur. Furthermore, NCMM BB are rare in the upper third of the Hell Creek. Near the K-T boundary, only AM BB are known. The absence of CMM and NCMM BB appears to be real reflecting a decrease in population levels of some dinosaurs prior to the K-T event. The absence of CMM suggests that the K-T event did not lead to an instantaneous extinction of dinosaurs. Nor was there a protracted die-off due to an asteroid impact winter, because no NCMM BB are known at or near the K-T boundary.

  9. Genetic Analysis of High Bone Mass Cases from the BARCOS Cohort of Spanish Postmenopausal Women

    PubMed Central

    Urreizti, Roser; Civit, Sergi; Cols, Neus; García-Giralt, Natàlia; Yoskovitz, Guy; Aranguren, Alvaro; Malouf, Jorge; Di Gregorio, Silvana; Río, Luís Del; Güerri, Roberto; Nogués, Xavier; Díez-Pérez, Adolfo; Grinberg, Daniel; Balcells, Susana

    2014-01-01

    The aims of the study were to establish the prevalence of high bone mass (HBM) in a cohort of Spanish postmenopausal women (BARCOS) and to assess the contribution of LRP5 and DKK1 mutations and of common bone mineral density (BMD) variants to a HBM phenotype. Furthermore, we describe the expression of several osteoblast-specific and Wnt-pathway genes in primary osteoblasts from two HBM cases. A 0.6% of individuals (10/1600) displayed Z-scores in the HBM range (sum Z-score >4). While no mutation in the relevant exons of LRP5 was detected, a rare missense change in DKK1 was found (p.Y74F), which cosegregated with the phenotype in a small pedigree. Fifty-five BMD SNPs from Estrada et al. [NatGenet 44:491-501,2012] were genotyped in the HBM cases to obtain risk scores for each individual. In this small group of samples, Z-scores were found inversely related to risk scores, suggestive of a polygenic etiology. There was a single exception, which may be explained by a rare penetrant genetic variant, counterbalancing the additive effect of the risk alleles. The expression analysis in primary osteoblasts from two HBM cases and five controls suggested that IL6R, DLX3, TWIST1 and PPARG are negatively related to Z-score. One HBM case presented with high levels of RUNX2, while the other displayed very low SOX6. In conclusion, we provide evidence of lack of LRP5 mutations and of a putative HBM-causing mutation in DKK1. Additionally, we present SNP genotyping and expression results that suggest additive effects of several genes for HBM. PMID:24736728

  10. Strategies for the chemical analysis of highly porous bone scaffolds using secondary ion mass spectrometry.

    PubMed

    Wang, Daming; Poologasundarampillai, Gowsihan; van den Bergh, Wouter; Chater, Richard J; Kasuga, Toshihiro; Jones, Julian R; McPhail, David S

    2014-02-01

    Understanding the distribution of critical elements (e.g. silicon and calcium) within silica-based bone scaffolds synthesized by different methods is central to the optimization of these materials. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has been used to determine this information due to its very high surface sensitivity and its ability to map all the elements and compounds in the periodic table with high spatial resolution. The SIMS image data can also be combined with depth profiles to construct three-dimensional chemical maps. However, the scaffolds have interconnected pore networks, which are very challenging structures for the SIMS technique. To overcome this problem two experimental methodologies have been developed. The first method involved the use of the focused ion beam technique to obtain clear images of the regions of interest and subsequently mark them by introducing fiducial marks; the samples were then analysed using the ToF-SIMS technique to yield the chemical analyses of the regions of interest. The second method involved impregnating the pores using a suitable reagent so that a flat surface could be achieved, and this was followed by secondary ion mapping and 3D chemical imaging with ToF-SIMS. The samples used in this work were sol-gel 70S30C foam and electrospun fibres and calcium-containing silica/gelatin hybrid scaffolds. The results demonstrate the feasibility of both these experimental methodologies and indicate that these methods can provide an opportunity to compare various artificial bone scaffolds, which will be of help in improving scaffold synthesis and processing routes. The techniques are also transferable to many other types of porous material.

  11. Child and Adolescent Affective and Behavioral Distress and Elevated Adult Body Mass Index

    ERIC Educational Resources Information Center

    McClure, Heather H.; Eddy, J. Mark; Kjellstrand, Jean M.; Snodgrass, J. Josh; Martinez, Charles R., Jr.

    2012-01-01

    Obesity rates throughout the world have risen rapidly in recent decades, and are now a leading cause of morbidity and mortality. Several studies indicate that behavioral and affective distress in childhood may be linked to elevated adult body mass index (BMI). The present study utilizes data from a 20-year longitudinal study to examine the…

  12. Gorham-Stout syndrome affecting the temporal bone with cerebrospinal fluid leakage.

    PubMed

    Morimoto, Noriko; Ogiwara, Hideki; Miyazaki, Osamu; Kitamuara, Masayuki; Nishina, Sachiko; Nakazawa, Atsuko; Maekawa, Takanobu; Morota, Nobuhito

    2013-09-01

    Gorham-Stout syndrome is a rare disorder characterized by progressive osteolysis that leads to the disappearance of bone. Lymphvascular proliferation causes the local destruction of bony tissue. Owing to the low incidence of this syndrome, little is known about its etiology or treatment. We present an 11-year-old girl with Gorham-Stout syndrome that involved right petrous apex in temporal bone and upper clivus, which cause intracranial pressure increase and cerebrospinal fluid (CSF) leakage. The patient required surgical repair of CSF leakage by extradural middle fossa approach with temporal fascia flap. Combined treatment with interferon and propranolol prevented the progression of osteolysis.

  13. Bone mass and breast milk calcium concentration are associated with vitamin D receptor gene polymorphisms in adolescent mothers.

    PubMed

    Bezerra, Flávia F; Cabello, Giselda M K; Mendonça, Laura M C; Donangelo, Carmen M

    2008-02-01

    Lactation-associated bone loss has been reported in adolescent mothers. Polymorphisms in the vitamin D receptor (VDR) gene may contribute to differences in the physiologic skeletal response to lactation in these mothers. We evaluated the influence of VDR gene polymorphisms ApaI, BsmI, and TaqI on bone mass, bone and calcium-related hormones, and breast milk calcium of lactating adolescents with habitually low calcium intake. Total body bone mineral content (TBMC), total body bone mineral density (TBMD), lumbar spine BMD (LSBMD), serum hormones [intact parathyroid hormone (iPTH), 25-hydroxyvitamin D, insulin-like growth factor-I (IGF1), prolactin, and estradiol), and breast milk calcium were measured in 40 lactating Brazilian adolescents (15-18 y), and compared by VDR genotype subgroups after adjustment for calcium intake and postmenarcheal and lactational periods. TBMD and LSBMD Z scores were -0.55 +/- 1.01 and -1.15 +/- 1.48, respectively. LSBMD was higher (21%; P < 0.05) in adolescents with the aa genotype (n = 5) compared with those with the AA genotype (n = 7). TBMC and IGF1 were higher (23 and 50%, respectively; P < 0.05) in adolescents with tt (n = 4) than those with TT (n = 29) and Tt (n = 7) genotypes. Breast milk calcium and serum iPTH were higher (24 and 80%, respectively; P < 0.05) in adolescents with bb (n = 8) compared with those with BB (n = 21) genotype. These results indicate that bone mass and breast milk calcium are significantly associated with VDR genotypes in lactating Brazilian adolescents. Those with aa and tt genotypes had a better bone status and those with bb genotype had greater breast milk calcium.

  14. Nrf2 regulates mass accrual and the antioxidant endogenous response in bone differently depending on the sex and age

    PubMed Central

    Pellegrini, Gretel Gisela; Cregor, Meloney; McAndrews, Kevin; Morales, Cynthya Carolina; McCabe, Linda Doyle; McCabe, George P.; Peacock, Munro; Burr, David; Weaver, Connie; Bellido, Teresita

    2017-01-01

    Accumulation of reactive oxygen species (ROS) is an important pathogenic mechanism underling the loss of bone mass and strength with aging and other conditions leading to osteoporosis. The transcription factor erythroid 2-related factor2 (Nrf2) plays a central role in activating the cellular response to ROS. Here, we examined the endogenous response of bone regulated by Nrf2, and its relationship with bone mass and architecture in the male and female murine skeleton. Young (3 month-old) and old (15 month-old) Nrf2 knockout (KO) mice of either sex exhibited the expected reduction in Nrf2 mRNA expression compared to wild type (WT) littermates. Nrf2 deletion did not lead to compensatory increase in Nrf1 or Nrf3, other members of this transcription factor family; and instead, Nrf1 expression was lower in KO mice. Compared to the respective WT littermate controls, female KO mice, young and old, exhibited lower expression of both detoxifying and antioxidant enzymes; young male KO mice, displayed lower expression of detoxifying enzymes but not antioxidant enzymes; and old male KO mice showed no differences in either detoxifying or antioxidant enzymes. Moreover, old male WT mice exhibited lower Nrf2 levels, and consequently lower expression of both detoxifying and antioxidant enzymes, compared to old female WT mice. These endogenous antioxidant responses lead to delayed rate of bone acquisition in female KO mice and higher bone acquisition in male KO mice as quantified by DXA and μCT, demonstrating that Nrf2 is required for full bone accrual in the female skeleton but unnecessary and even detrimental in the male skeleton. Therefore, Nrf2 regulates the antioxidant endogenous response and bone accrual differently depending on sex and age. These findings suggest that therapeutic interventions that target Nrf2 could be developed to enhance the endogenous antioxidant response in a sex- and age-selective manner. PMID:28152064

  15. Time of flight secondary ion mass spectrometry of bone-Impact of sample preparation and measurement conditions.

    PubMed

    Henss, Anja; Hild, Anne; Rohnke, Marcus; Wenisch, Sabine; Janek, Juergen

    2015-06-07

    Time of flight secondary ion mass spectrometry (ToF-SIMS) enables the simultaneous detection of organic and inorganic ions and fragments with high mass and spatial resolution. Due to recent technical developments, ToF-SIMS has been increasingly applied in the life sciences where sample preparation plays an eminent role for the quality of the analytical results. This paper focusses on sample preparation of bone tissue and its impact on ToF-SIMS analysis. The analysis of bone is important for the understanding of bone diseases and the development of replacement materials and new drugs for the cure of diseased bone. The main purpose of this paper is to find out which preparation process is best suited for ToF-SIMS analysis of bone tissue in order to obtain reliable and reproducible analytical results. The influence of the embedding process on the different components of bone is evaluated using principal component analysis. It is shown that epoxy resin as well as methacrylate based plastics (Epon and Technovit) as embedding materials do not infiltrate the mineralized tissue and that cut sections are better suited for the ToF-SIMS analysis than ground sections. In case of ground samples, a resin layer is smeared over the sample surface due to the polishing step and overlap of peaks is found. Beside some signals of fatty acids in the negative ion mode, the analysis of native, not embedded samples does not provide any advantage. The influence of bismuth bombardment and O2 flooding on the signal intensity of organic and inorganic fragments due to the variation of the ionization probability is additionally discussed. As C60 sputtering has to be applied to remove the smeared resin layer, its effect especially on the organic fragments of the bone is analyzed and described herein.

  16. Genetic predisposition to low bone mass is paralleled by an enhanced sensitivity to signals anabolic to the skeleton

    NASA Technical Reports Server (NTRS)

    Judex, Stefan; Donahue, Leah-Rae; Rubin, Clinton

    2002-01-01

    The structure of the adult skeleton is determined, in large part, by its genome. Whether genetic variations may influence the effectiveness of interventions to combat skeletal diseases remains unknown. The differential response of trabecular bone to an anabolic (low-level mechanical vibration) and a catabolic (disuse) mechanical stimulus were evaluated in three strains of adult mice. In low bone-mineral-density C57BL/6J mice, the low-level mechanical signal caused significantly larger bone formation rates (BFR) in the proximal tibia, but the removal of functional weight bearing did not significantly alter BFR. In mid-density BALB/cByJ mice, mechanical stimulation also increased BFR, whereas disuse significantly decreased BFR. In contrast, neither anabolic nor catabolic mechanical signals influenced any index of bone formation in high-density C3H/HeJ mice. Together, data from this study indicate that the sensitivity of trabecular tissue to both anabolic and catabolic stimuli is influenced by the genome. Extrapolated to humans, these results may explain in part why prophylaxes for low bone mass are not universally effective, yet also indicate that there may be a genotypic indication of people who are at reduced risk of suffering from bone loss.

  17. The longitudinal effects of physical activity and dietary calcium on bone mass accrual across stages of pubertal development.

    PubMed

    Lappe, Joan M; Watson, Patrice; Gilsanz, Vicente; Hangartner, Thomas; Kalkwarf, Heidi J; Oberfield, Sharon; Shepherd, John; Winer, Karen K; Zemel, Babette

    2015-01-01

    Childhood and adolescence are critical periods of bone mineral content (BMC) accrual that may have long-term consequences for osteoporosis in adulthood. Adequate dietary calcium intake and weight-bearing physical activity are important for maximizing BMC accrual. However, the relative effects of physical activity and dietary calcium on BMC accrual throughout the continuum of pubertal development in childhood remains unclear. The purpose of this study was to determine the effects of self-reported dietary calcium intake and weight-bearing physical activity on bone mass accrual across the five stages of pubertal development in a large, diverse cohort of US children and adolescents. The Bone Mineral Density in Childhood study was a mixed longitudinal study with 7393 observations on 1743 subjects. Annually, we measured BMC by dual-energy X-ray absorptiometry (DXA), physical activity and calcium intake by questionnaire, and pubertal development (Tanner stage) by examination for up to 7 years. Mixed-effects regression models were used to assess physical activity and calcium intake effects on BMC accrual at each Tanner stage. We found that self-reported weight-bearing physical activity contributed to significantly greater BMC accrual in both sexes and racial subgroups (black and nonblack). In nonblack males, the magnitude of the activity effect on total body BMC accrual varied among Tanner stages after adjustment for calcium intake; the greatest difference between high- and low-activity boys was in Tanner stage 3. Calcium intake had a significant effect on bone accrual only in nonblack girls. This effect was not significantly different among Tanner stages. Our findings do not support differential effects of physical activity or calcium intake on bone mass accrual according to maturational stage. The study demonstrated significant longitudinal effects of weight-bearing physical activity on bone mass accrual through all stages of pubertal development.

  18. Core binding factor β of osteoblasts maintains cortical bone mass via stabilization of Runx2 in mice.

    PubMed

    Lim, Kyung-Eun; Park, Na-Rae; Che, Xiangguo; Han, Min-Su; Jeong, Jae-Hwan; Kim, Shin-Yoon; Park, Clara Yongjoo; Akiyama, Haruhiko; Kim, Jung-Eun; Ryoo, Hyun-Mo; Stein, Janet L; Lian, Jane B; Stein, Gary S; Choi, Je-Yong

    2015-04-01

    Core binding factor beta (Cbfβ), the partner protein of Runx family transcription factors, enhances Runx function by increasing the binding of Runx to DNA. Null mutations of Cbfb result in embryonic death, which can be rescued by restoring fetal hematopoiesis but only until birth, where bone formation is still nearly absent. Here, we address a direct role of Cbfβ in skeletal homeostasis by generating osteoblast-specific Cbfβ-deficient mice (Cbfb(Δob/Δob) ) from Cbfb-floxed mice crossed with mice expressing Cre from the Col1a1 promoter. Cbfb(Δob/Δob) mice showed normal growth and development but exhibited reduced bone mass, particularly of cortical bone. The reduction of bone mass in Cbfb(Δob/Δob) mice is similar to the phenotype of mice with haploinsufficiency of Runx2. Although the number of osteoblasts remained unchanged, the number of active osteoblasts decreased in Cbfb(Δob/Δob) mice and resulted in lower mineral apposition rate. Immunohistochemical and quantitative real-time PCR analyses showed that the expression of osteogenic markers, including Runx2, osterix, osteocalcin, and osteopontin, was significantly repressed in Cbfb(Δob/Δob) mice compared with wild-type mice. Cbfβ deficiency also reduced Runx2 protein levels in osteoblasts. The mechanism was revealed by forced expression of Cbfβ, which increased Runx2 protein levels in vitro by inhibiting polyubiquitination-mediated proteosomal degradation. Collectively, these findings indicate that Cbfβ stabilizes Runx2 in osteoblasts by forming a complex and thus facilitates the proper maintenance of bone mass, particularly cortical bone.

  19. Feeding flaxseed oil but not secoisolariciresinol diglucoside results in higher bone mass in healthy rats and rats with kidney disease.

    PubMed

    Weiler, H A; Kovacs, H; Nitschmann, E; Bankovic-Calic, N; Aukema, H; Ogborn, M

    2007-05-01

    Flaxseed's oil and lignan, secoisolariciresinol diglucoside (SDG), are implicated in attainment of health and treatment of renal injury and osteoporosis. To test for these benefits, weanling Han:SPRD-cy rats (n=171) with or without kidney disease were randomized to diets made with either corn oil or flaxseed oil and with or without SDG for 12 weeks. In females, weight was lower with the SDG diet. In males fed flaxseed oil, lean mass was higher and fat % was lower. In both sexes, fat % was lower in diseased rats. Bone mineral content (BMC) and density were higher in rats fed flaxseed oil and lower in diseased rats, additionally; BMC was lower in SDG-supplemented females. The benefit of flaxseed oil on body composition is sex specific but the effect on bone mass is not. Lastly, reduced weight due to early rat kidney disease is not due to loss of lean body mass.

  20. Short-term vitamin A supplementation does not affect bone turnover in men.

    PubMed

    Kawahara, Tisha N; Krueger, Diane C; Engelke, Jean A; Harke, Judy M; Binkley, Neil C

    2002-06-01

    Limited data in humans and animals indicate that excess vitamin A stimulates bone resorption and inhibits bone formation, effects that over time might lead to bone loss and fracture. Thus, it is possible that vitamin A supplementation is a currently unrecognized risk factor for the development of osteoporosis. To further evaluate this possibility, a prospective, randomized, single-blind study of vitamin A supplementation was conducted in 80 healthy men age 18-58 y. One half received 7576 microg (25,000 IU) of retinol palmitate daily with their evening meal; the others took a placebo. Blood was collected from fasting subjects and serum prepared at baseline and after 2, 4 and 6 wk of supplementation. Serum bone specific alkaline phosphatase (BSAP) and N-Telopeptide of type 1 collagen (NTx) were measured at all time points. Serum osteocalcin (Oc) was measured at baseline and after 6 wk of supplementation. BSAP, NTx and Oc did not differ between the supplemented and placebo-treated groups over the course of the study. In conclusion, short-term vitamin A supplementation at this dosage in healthy men does not alter serum markers of skeletal turnover. Thus, it is unlikely that short-term administration of vitamin A would contribute to the development of osteoporosis. Whether long-term vitamin A supplementation might have adverse skeletal effects remains to be determined.

  1. Effect of Teriparatide, Vibration and the Combination on Bone Mass and Bone Architecture in Chronic Spinal Cord Injury

    DTIC Science & Technology

    2015-12-01

    are non- weight- bearing and leads to an increased risk of lower extremity fractures. This 12 month, multi-site, double-blind, randomized, placebo...extremities of individuals who are not weight- bearing .[1, 2] Bone loss continues at an accelerated rate for the next 2-5 years and then a new steady...due to their limited ability to bear weight, but application of vibrational forces to deliver mechanical loads have been shown to be an anabolic

  2. Bone mass and turnover in women with epilepsy on antiepileptic drug monotherapy.

    PubMed

    Pack, Alison M; Morrell, Martha J; Marcus, Robert; Holloway, Leah; Flaster, Edith; Doñe, Silvia; Randall, Alison; Seale, Cairn; Shane, Elizabeth

    2005-02-01

    Antiepileptic drugs, particularly cytochrome P450 enzyme inducers, are associated with disorders of bone metabolism. We studied premenopausal women with epilepsy receiving antiepileptic drug monotherapy (phenytoin, carbamazepine, valproate, and lamotrigine). Subjects completed exercise and nutrition questionnaires and bone mineral density studies. Serum was analyzed for indices of bone metabolism including calcium, 25-hydroxyvitamin D, parathyroid hormone, insulin growth factor I, insulin binding protein III, and bone formation markers, bone-specific alkaline phosphatase, and osteocalcin. Urine was analyzed for cross-linked N-telopeptide of type I collagen, a bone resorption marker. Calcium concentrations were significantly less in subjects receiving carbamazepine, phenytoin, and valproate than in those receiving lamotrigine (p = 0.008). Insulin growth factor-I was significantly reduced in subjects receiving phenytoin compared with those receiving lamotrigine (p = 0.017). Subjects receiving phenytoin had significantly greater levels of bone-specific alkaline phosphatase (p = 0.007). Our results demonstrate that phenytoin is associated with changes in bone metabolism and increased bone turnover. The lower calcium concentrations in subjects taking carbamazepine or valproate compared with those taking other antiepileptic drugs suggest that these antiepileptic drugs may have long-term effects. Subjects receiving lamotrigine had no significant reductions in calcium or increases in markers of bone turnover, suggesting this agent is less likely to have long-term adverse effects on bone.

  3. Rye Affects Bacterial Translocation, Intestinal Viscosity, Microbiota Composition and Bone Mineralization in Turkey Poults

    PubMed Central

    Tellez, Guillermo; Latorre, Juan D.; Kuttappan, Vivek A.; Hargis, Billy M.; Hernandez-Velasco, Xochitl

    2015-01-01

    Previously, we have reported that rye significantly increased both viscosity and Clostridium perfringens proliferation when compared with corn in an in vitro digestive model. Two independent trials were conducted to evaluate the effect of rye as a source of energy on bacterial translocation, intestinal viscosity, gut microbiota composition, and bone mineralization, when compared with corn in turkey poults. In each experiment, day-of-hatch, turkey poults were randomly assigned to either a corn or a rye diet (n = 0 /group). At 10 d of age, in both experiments, 12 birds/group were given an oral gavage dose of fluorescein isothiocyanate dextran (FITC-d). After 2.5 h of oral gavage, blood and liver samples were collected to evaluate the passage of FITC-d and bacterial translocation (BT) respectively. Duodenum, ileum and cecum gut sections were collected to evaluate intestinal viscosity and to enumerate gut microbiota. Tibias were collected for observation of bone parameters. Broilers fed with a rye diet showed increased (p<0.05) intestinal viscosity, BT, and serum FITC-d. Bacterial enumeration revealed that turkey poults fed with rye had increased the number of total lactic acid bacteria (LAB) in all three sections of the gastrointestinal tract evaluated when compared to turkey poults fed with corn. Turkey poults fed with rye also had significantly higher coliforms in duodenum and ileum but not in the ceca, whereas the total number of anaerobes increased only in duodenum. A significant reduction in bone strength and bone mineralization was observed in turkey poults fed with rye when compared with corn fed turkey poults. In conclusion, rye evoked mucosal damage in turkey poults that increased intestinal viscosity, increased leakage through the intestinal tract, and altered the microbiota composition and bone mineralization. Studies to evaluate dietary inclusion of selected Direct-Fed Microbial (DFM) candidates that produce exogenous enzymes in rye fed turkey poults are

  4. Rye affects bacterial translocation, intestinal viscosity, microbiota composition and bone mineralization in Turkey poults.

    PubMed

    Tellez, Guillermo; Latorre, Juan D; Kuttappan, Vivek A; Hargis, Billy M; Hernandez-Velasco, Xochitl

    2015-01-01

    Previously, we have reported that rye significantly increased both viscosity and Clostridium perfringens proliferation when compared with corn in an in vitro digestive model. Two independent trials were conducted to evaluate the effect of rye as a source of energy on bacterial translocation, intestinal viscosity, gut microbiota composition, and bone mineralization, when compared with corn in turkey poults. In each experiment, day-of-hatch, turkey poults were randomly assigned to either a corn or a rye diet (n = 0 /group). At 10 d of age, in both experiments, 12 birds/group were given an oral gavage dose of fluorescein isothiocyanate dextran (FITC-d). After 2.5 h of oral gavage, blood and liver samples were collected to evaluate the passage of FITC-d and bacterial translocation (BT) respectively. Duodenum, ileum and cecum gut sections were collected to evaluate intestinal viscosity and to enumerate gut microbiota. Tibias were collected for observation of bone parameters. Broilers fed with a rye diet showed increased (p<0.05) intestinal viscosity, BT, and serum FITC-d. Bacterial enumeration revealed that turkey poults fed with rye had increased the number of total lactic acid bacteria (LAB) in all three sections of the gastrointestinal tract evaluated when compared to turkey poults fed with corn. Turkey poults fed with rye also had significantly higher coliforms in duodenum and ileum but not in the ceca, whereas the total number of anaerobes increased only in duodenum. A significant reduction in bone strength and bone mineralization was observed in turkey poults fed with rye when compared with corn fed turkey poults. In conclusion, rye evoked mucosal damage in turkey poults that increased intestinal viscosity, increased leakage through the intestinal tract, and altered the microbiota composition and bone mineralization. Studies to evaluate dietary inclusion of selected Direct-Fed Microbial (DFM) candidates that produce exogenous enzymes in rye fed turkey poults are

  5. Effects of Habitual Physical Activity and Fitness on Tibial Cortical Bone Mass, Structure and Mass Distribution in Pre-pubertal Boys and Girls: The Look Study.

    PubMed

    Duckham, Rachel L; Rantalainen, Timo; Ducher, Gaele; Hill, Briony; Telford, Richard D; Telford, Rohan M; Daly, Robin M

    2016-07-01

    Targeted weight-bearing activities during the pre-pubertal years can improve cortical bone mass, structure and distribution, but less is known about the influence of habitual physical activity (PA) and fitness. This study examined the effects of contrasting habitual PA and fitness levels on cortical bone density, geometry and mass distribution in pre-pubertal children. Boys (n = 241) and girls (n = 245) aged 7-9 years had a pQCT scan to measure tibial mid-shaft total, cortical and medullary area, cortical thickness, density, polar strength strain index (SSIpolar) and the mass/density distribution through the bone cortex (radial distribution divided into endo-, mid- and pericortical regions) and around the centre of mass (polar distribution). Four contrasting PA and fitness groups (inactive-unfit, inactive-fit, active-unfit, active-fit) were generated based on daily step counts (pedometer, 7-days) and fitness levels (20-m shuttle test and vertical jump) for boys and girls separately. Active-fit boys had 7.3-7.7 % greater cortical area and thickness compared to inactive-unfit boys (P < 0.05), which was largely due to a 6.4-7.8 % (P < 0.05) greater cortical mass in the posterior-lateral, medial and posterior-medial 66 % tibial regions. Cortical area was not significantly different across PA-fitness categories in girls, but active-fit girls had 6.1 % (P < 0.05) greater SSIpolar compared to inactive-fit girls, which was likely due to their 6.7 % (P < 0.05) greater total bone area. There was also a small region-specific cortical mass benefit in the posterior-medial 66 % tibia cortex in active-fit girls. Higher levels of habitual PA-fitness were associated with small regional-specific gains in 66 % tibial cortical bone mass in pre-pubertal children, particularly boys.

  6. The differing tempo of growth in bone size, mass, and density in girls is region-specific

    PubMed Central

    Bass, Shona; Delmas, Pierre D.; Pearce, Georgina; Hendrich, Elke; Tabensky, Aaron; Seeman, Ego

    1999-01-01

    The differing tempo and direction of growth of the periosteal and endocortical surfaces, and the differing tempo of growth of the axial and appendicular skeleton, may predispose to regional deficits in bone size, bone mineral content (BMC), and volumetric bone mineral density (vBMD). These traits were measured during 2 years by dual x-ray absorptiometry in 109 girls. By 7 years of age, bone size was approximately 80% of its maturational peak, and BMC was approximately 40% of its peak. Before puberty, the legs grew more rapidly than the trunk. During puberty, the growth spurt was truncal. Between 7 and 17 years, femoral and lumbar spine BMC increased by 50–150% because bone size increased. vBMD increased by 10–30%. Thus, growth builds a bigger, but only moderately denser, skeleton. Regions growing rapidly, or distant from their peak, may be more severely affected by illness than those growing slowly or nearer completion of growth. Depending on the age of exposure to disease, deficits may occur in limb dimensions (prepuberty), spine dimensions (early puberty), or vBMD by interference with mineral accrual (late puberty). As vBMD is independent of age before puberty, the position of an individual’s vBMD in the population distribution is established early in life. Bone fragility in old age may have its foundations in growth. PMID:10491415

  7. Influence of lean and fat mass on bone mineral density and on urinary stone risk factors in healthy women

    PubMed Central

    2013-01-01

    Background The role of body composition (lean mass and fat mass) on urine chemistries and bone quality is still debated. Our aim was therefore to determine the effect of lean mass and fat mass on urine composition and bone mineral density (BMD) in a cohort of healthy females. Materials and methods 78 female volunteers (mean age 46 ± 6 years) were enrolled at the Stone Clinic of Parma University Hospital and subdued to 24-hour urine collection for lithogenic risk profile, DEXA, and 3-day dietary diary. We defined two mathematical indexes derived from body composition measurement (index of lean mass-ILM, and index of fat mass-IFM) and the cohort was split using the median value of each index, obtaining groups differing only for lean or fat mass. We then analyzed differences in urine composition, dietary intakes and BMD. Results The women with high values of ILM had significantly higher excretion of creatinine (991 ± 194 vs 1138 ± 191 mg/day, p = 0.001), potassium (47 ± 13 vs 60 ± 18 mEq/day, p < 0.001), phosphorus (520 ± 174 vs 665 ± 186 mg/day, p < 0.001), magnesium (66 ± 20 vs 85 ± 26 mg/day, p < 0.001), citrate (620 ± 178 vs 807 ± 323 mg/day, p = 0.002) and oxalate (21 ± 7 vs 27 ± 11 mg/day, p = 0.015) and a significantly better BMD values in limbs than other women with low values of ILM. The women with high values of IFM had similar urine composition to other women with low values of IFM, but significantly better BMD in axial sites. No differences in dietary habits were found in both analyses. Conclusions Lean mass seems to significantly influence urine composition both in terms of lithogenesis promoters and inhibitors, while fat mass does not. Lean mass influences bone quality only in limb skeleton, while fat mass influences bone quality only in axial sites. PMID:24099643

  8. Lean mass and fat mass have differing associations with bone microarchitecture assessed by high resolution peripheral quantitative computed tomography in men and women from the Hertfordshire Cohort Study.

    PubMed

    Edwards, Mark H; Ward, Kate A; Ntani, Georgia; Parsons, Camille; Thompson, Jennifer; Sayer, Avan A; Dennison, Elaine M; Cooper, Cyrus

    2015-12-01

    Understanding the effects of muscle and fat on bone is increasingly important in the optimisation of bone health. We explored relationships between bone microarchitecture and body composition in older men and women from the Hertfordshire Cohort Study. 175 men and 167 women aged 72-81 years were studied. High resolution peripheral quantitative computed tomography (HRpQCT) images (voxel size 82 μm) were acquired from the non-dominant distal radius and tibia with a Scanco XtremeCT scanner. Standard morphological analysis was performed for assessment of macrostructure, densitometry, cortical porosity and trabecular microarchitecture. Body composition was assessed using dual energy X-ray absorptiometry (DXA) (Lunar Prodigy Advanced). Lean mass index (LMI) was calculated as lean mass divided by height squared and fat mass index (FMI) as fat mass divided by height squared. The mean (standard deviation) age in men and women was 76 (3) years. In univariate analyses, tibial cortical area (p<0.01), cortical thickness (p<0.05) and trabecular number (p<0.01) were positively associated with LMI and FMI in both men and women. After mutual adjustment, relationships between cortical area and thickness were only maintained with LMI [tibial cortical area, β (95% confidence interval (CI)): men 6.99 (3.97,10.01), women 3.59 (1.81,5.38)] whereas trabecular number and density were associated with FMI. Interactions by sex were found, including for the relationships of LMI with cortical area and FMI with trabecular area in both the radius and tibia (p<0.05). In conclusion, LMI and FMI appeared to show independent relationships with bone microarchitecture. Further studies are required to confirm the direction of causality and explore the mechanisms underlying these tissue-specific associations.

  9. The high bone mass phenotype is characterised by a combined cortical and trabecular bone phenotype: findings from a pQCT case-control study.

    PubMed

    Gregson, Celia L; Sayers, Adrian; Lazar, Victor; Steel, Sue; Dennison, Elaine M; Cooper, Cyrus; Smith, George Davey; Rittweger, Jörn; Tobias, Jon H

    2013-01-01

    High bone mass (HBM), detected in 0.2% of DXA scans, is characterised by a mild skeletal dysplasia largely unexplained by known genetic mutations. We conducted the first systematic assessment of the skeletal phenotype in unexplained HBM using pQCT in our unique HBM population identified from screening routine UK NHS DXA scans. pQCT measurements from the mid and distal tibia and radius in 98 HBM cases were compared with (i) 65 family controls (constituting unaffected relatives and spouses), and (ii) 692 general population controls. HBM cases had substantially greater trabecular density at the distal tibia (340 [320, 359] mg/cm(3)), compared to both family (294 [276, 312]) and population controls (290 [281, 299]) (p<0.001 for both, adjusted for age, gender, weight, height, alcohol, smoking, malignancy, menopause, steroid and estrogen replacement use). Similar results were obtained at the distal radius. Greater cortical bone mineral density (cBMD) was observed in HBM cases, both at the midtibia and radius (adjusted p<0.001). Total bone area (TBA) was higher in HBM cases, at the distal and mid tibia and radius (adjusted p<0.05 versus family controls), suggesting greater periosteal apposition. Cortical thickness was increased at the mid tibia and radius (adjusted p<0.001), implying reduced endosteal expansion. Together, these changes resulted in greater predicted cortical strength (strength strain index [SSI]) in both tibia and radius (p<0.001). We then examined relationships with age; tibial cBMD remained constant with increasing age amongst HBM cases (adjusted β -0.01 [-0.02, 0.01], p=0.41), but declined in family controls (-0.05 [-0.03, -0.07], p<0.001) interaction p=0.002; age-related changes in tibial trabecular BMD, CBA and SSI were also divergent. In contrast, at the radius HBM cases and controls showed parallel age-related declines in cBMD and trabecular BMD. HBM is characterised by increased trabecular BMD and by alterations in cortical bone density and

  10. [Effects of sodium chloride on bone health].

    PubMed

    Sarić, Marija; Piasek, Martina

    2005-03-01

    This paper discusses the physiology of sodium effects on calcium metabolism and possible implications of increased salt intake on bone remodelling and bone mass. Osteoporosis is an increasing public health problem affecting more than 200 million of women around the world. The major complications of osteoporosis are fractures, which are frequently associated with high morbidity and mortality. A number of clinical, epidemiological and experimental studies aim at identifying lifestyle factors that may improve bone mass and prevent bone loss. Different nutrients are proposed to play a role in bone development during growth and in the maintenance of bone mass thereafter. However, the importance of sodium intake for bone health has not been elucidated. It is well known that high dietary sodium intake decreases renal calcium reabsorption, which in turn leads to a greater urinary calcium excretion. This effect has been demonstrated in studies in humans of all ages as well as in experimental animals. It is not clear to what extent sodium-induced calcium loss is compensated for by increased intestinal calcium absorption. It is suspected that, if not fully compensated, sustained hypercalciuria due to increased sodium intake may diminish bone mass. Postmenopausal women showed that increased dietary salt may indeed augment bone resorption. Sodium effects on bone mass in various studies are inconsistent and there is still no evidence that increased salt intake is a risk factor in the aetiology of osteoporosis A randomized longitudinal study of different sodium intake in two groups of subject could clarify the role of sodium in bone mass.

  11. Mechanical consequences of different scenarios for simulated bone atrophy and recovery in the distal radius.

    PubMed

    Pistoia, W; van Rietbergen, B; Rüegsegger, P

    2003-12-01

    Metabolic bone diseases such as osteoporosis usually cause a decrease in bone mass and a deterioration of bone microarchitecture leading to a decline in bone strength. Methods to predict bone strength in patients are currently based on bone mass only. It has been suggested that an improved prediction of bone strength might be possible if structural changes are taken into account as well. In this study we evaluated which structural parameters (other than bone mass) are the best predictors for changes in bone mechanical properties of the human radius after different bone atrophy scenarios and whether the original strength of the affected bone can be recovered if bone loss is restored by thickening of the remaining structures. To answer these questions, a human radius was measured with a microcomputer tomography scanner to extract the full three-dimensional architecture of the distal radius at an isotropic resolution of 80 microm. Eight models with modified bone architecture were created and the mechanical variations due to these modifications were studied using microfinite element (micro-FE) simulations. In four models mass was lowered by 20%, either by reducing cortical thickness, trabecular thickness, or number of trabeculae or by overall thinning of structures. In the other four models bone mass was restored to the original value using a trabecular bone thickening procedure. The micro-FE analyses revealed that most load was carried by the cortical bone. For this reason, bone strength was affected most in the reduced cortical thickness model. For the same reason, the trabecular bone atrophy scenarios, all of which affected bone strength in a very similar way, resulted in less dramatic bone strength reduction. The restoration of bone mass did not recover the original bone strength. These findings demonstrate that the importance of different parameters for the prediction of bone strength also depends on the mechanical loading. This could explain why results of

  12. Reciprocal Interactions between Multiple Myeloma Cells and Osteoprogenitor Cells Affect Bone Formation and Tumor Growth

    DTIC Science & Technology

    2015-12-01

    frequent occurrence of tumour metastases in bone (discussed later), as well as serious infections such as tuberculosis involving this tissue before...as shown in Figure 3 below. Our next step was to use a TurboRed (RFP)-containing plasmid packaged into a lentivirus to infect the cells and...Institute of Technology, Cambridge, MA 02139; dDepartment of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard Medical

  13. Age and gender effects on bone mass density variation: finite elements simulation.

    PubMed

    Barkaoui, Abdelwahed; Ben Kahla, Rabeb; Merzouki, Tarek; Hambli, Ridha

    2017-04-01

    Bone remodeling is a physiological process by which bone constantly adapts its structure to changes in long-term loading manifested by interactions between osteoclasts and osteoblasts. This process can be influenced by many local factors, via effects on bone cells differentiation and proliferation, which are produced by bone cells and act in a paracrine or autocrine way. The aim of the current work is to provide mechanobiological finite elements modeling coupling both cellular activities and mechanical behavior in order to investigate age and gender effects on bone remodeling evolution. A series of computational simulations have been performed on a 2D and 3D human proximal femur. An age- and gender-related impacts on bulk density alteration of trabecular bone have been noticed, and the major actors responsible of this phenomenon have been then discussed.

  14. Pharmacological inhibition of PPARγ increases osteoblastogenesis and bone mass in male C57BL/6 mice.

    PubMed

    Duque, Gustavo; Li, Wei; Vidal, Christopher; Bermeo, Sandra; Rivas, Daniel; Henderson, Janet

    2013-03-01

    Infiltration of bone marrow with fat is a prevalent feature in people with age-related bone loss and osteoporosis, which correlates inversely with bone formation and positively with high expression levels of peroxisomal proliferator-activated receptor gamma (PPARγ). Inhibition of PPARγ thus represents a potential therapeutic approach for age-related bone loss. In this study, we examined the effect of PPARγ inhibition on bone in skeletally mature C57BL/6 male mice. Nine-month-old mice were treated with a PPARγ antagonist, bisphenol-A-diglycidyl ether (BADGE), alone or in combination with active vitamin D (1,25[OH](2) D(3) ) for 6 weeks. Micro-computed tomography and bone histomorphometry indicated that mice treated with either BADGE or BADGE + 1,25(OH)(2) D(3) had significantly increased bone volume and improved bone quality compared with vehicle-treated mice. This phenotype occurred in the absence of alterations in osteoclast number. Furthermore, the BADGE + 1,25(OH)(2) D(3) -treated mice exhibited higher levels of unmineralized osteoid. All of the treated groups showed a significant increase in circulating levels of bone formation markers without changes in bone resorption markers, while blood glucose, parathyroid hormone, and Ca(+) remained normal. Furthermore, treatment with BADGE induced higher levels of expression of vitamin D receptor within the bone marrow. Overall, treated mice showed higher levels of osteoblastogenesis and bone formation concomitant with decreased marrow adiposity and ex vivo adipogenesis. Taken together, these observations demonstrate that pharmacological inhibition of PPARγ may represent an effective anabolic therapy for osteoporosis in the near future.

  15. High phosphorus intakes acutely and negatively affect Ca and bone metabolism in a dose-dependent manner in healthy young females.

    PubMed

    Kemi, Virpi E; Kärkkäinen, Merja U M; Lamberg-Allardt, Christel J E

    2006-09-01

    Ca and P are both essential nutrients for bone and are known to affect one of the most important regulators of bone metabolism, parathyroid hormone (PTH). Too ample a P intake, typical of Western diets, could be deleterious to bone through the increased PTH secretion. Few controlled dose-response studies are available on the effects of high P intake in man. We studied the short-term effects of four P doses on Ca and bone metabolism in fourteen healthy women, 20-28 years of age, who were randomized to four controlled study days; thus each study subject served as her own control. P supplement doses of 0 (placebo), 250, 750 or 1500 mg were taken, divided into three doses during the study day. The meals served were exactly the same during each study day and provided 495 mg P and 250 mg Ca. The P doses affected the serum PTH (S-PTH) in a dose-dependent manner (P=0.0005). There was a decrease in serum ionized Ca concentration only in the highest P dose (P=0.004). The marker of bone formation, bone-specific alkaline phosphatase, decreased (P=0.05) and the bone resorption marker, N-terminal telopeptide of collagen type I, increased in response to the P doses (P=0.05). This controlled dose-response study showed that P has a dose-dependent effect on S-PTH and increases PTH secretion significantly when Ca intake is low. Acutely high P intake adversely affects bone metabolism by decreasing bone formation and increasing bone resorption, as indicated by the bone metabolism markers.

  16. Lean Mass and Body Fat Percentage Are Contradictory Predictors of Bone Mineral Density in Pre-Menopausal Pacific Island Women

    PubMed Central

    Casale, Maria; von Hurst, Pamela R.; Beck, Kathryn L.; Shultz, Sarah; Kruger, Marlena C.; O’Brien, Wendy; Conlon, Cathryn A.; Kruger, Rozanne

    2016-01-01

    Anecdotally, it is suggested that Pacific Island women have good bone mineral density (BMD) compared to other ethnicities; however, little evidence for this or for associated factors exists. This study aimed to explore associations between predictors of bone mineral density (BMD, g/cm2), in pre-menopausal Pacific Island women. Healthy pre-menopausal Pacific Island women (age 16–45 years) were recruited as part of the larger EXPLORE Study. Total body BMD and body composition were assessed using Dual X-ray Absorptiometry and air-displacement plethysmography (n = 83). A food frequency questionnaire (n = 56) and current bone-specific physical activity questionnaire (n = 59) were completed. Variables expected to be associated with BMD were applied to a hierarchical multiple regression analysis. Due to missing data, physical activity and dietary intake factors were considered only in simple correlations. Mean BMD was 1.1 ± 0.08 g/cm2. Bone-free, fat-free lean mass (LMO, 52.4 ± 6.9 kg) and age were positively associated with BMD, and percent body fat (38.4 ± 7.6) was inversely associated with BMD, explaining 37.7% of total variance. Lean mass was the strongest predictor of BMD, while many established contributors to bone health (calcium, physical activity, protein, and vitamin C) were not associated with BMD in this population, partly due to difficulty retrieving dietary data. This highlights the importance of physical activity and protein intake during any weight loss interventions to in order to minimise the loss of muscle mass, whilst maximizing loss of adipose tissue. PMID:27483314

  17. Lean Mass and Body Fat Percentage Are Contradictory Predictors of Bone Mineral Density in Pre-Menopausal Pacific Island Women.

    PubMed

    Casale, Maria; von Hurst, Pamela R; Beck, Kathryn L; Shultz, Sarah; Kruger, Marlena C; O'Brien, Wendy; Conlon, Cathryn A; Kruger, Rozanne

    2016-07-30

    Anecdotally, it is suggested that Pacific Island women have good bone mineral density (BMD) compared to other ethnicities; however, little evidence for this or for associated factors exists. This study aimed to explore associations between predictors of bone mineral density (BMD, g/cm²), in pre-menopausal Pacific Island women. Healthy pre-menopausal Pacific Island women (age 16-45 years) were recruited as part of the larger EXPLORE Study. Total body BMD and body composition were assessed using Dual X-ray Absorptiometry and air-displacement plethysmography (n = 83). A food frequency questionnaire (n = 56) and current bone-specific physical activity questionnaire (n = 59) were completed. Variables expected to be associated with BMD were applied to a hierarchical multiple regression analysis. Due to missing data, physical activity and dietary intake factors were considered only in simple correlations. Mean BMD was 1.1 ± 0.08 g/cm². Bone-free, fat-free lean mass (LMO, 52.4 ± 6.9 kg) and age were positively associated with BMD, and percent body fat (38.4 ± 7.6) was inversely associated with BMD, explaining 37.7% of total variance. Lean mass was the strongest predictor of BMD, while many established contributors to bone health (calcium, physical activity, protein, and vitamin C) were not associated with BMD in this population, partly due to difficulty retrieving dietary data. This highlights the importance of physical activity and protein intake during any weight loss interventions to in order to minimise the loss of muscle mass, whilst maximizing loss of adipose tissue.

  18. Relationship between Weight, Body Mass Index and Bone Mineral Density of Lumbar Spine in Women

    PubMed Central

    Kim, Sang Jun; Yang, Won-Gyu; Cho, Eun

    2012-01-01

    Objectives This study aims to identify a relationship between bone mineral density (BMD) of lumbar spine, and the weight and body mass index (BMI) in women. Methods The subjects were 1,143 females who visited the public health center. BMD (T-score), height and weight were measured and age, menopause, diabetes and hypertension, exercising status and smoking status were inquired by interview. Results Among the subjects, 362 (31.7%) were in the normal group and 781 (68.3%) were in the abnormal group. As the result of the logistic regression analysis with BMI (Model I), the odds ratio of getting into the abnormal BMD group as age increases by 1 year marked 1.044 (95% CI = 1.009-1.080). The odds ratio of getting into the abnormal BMD group due to menopause was 2.663 (1.516-4.679) and the odds ratio according to lack of walking exercise was 2.597 (1.878-3.591). The odds ratio with 1 kg/m2 of BMI increase was 0.909 (0.862-0.959). In the logistic regression analysis with weight (Model II), the odds ratio of getting into the abnormal BMD group as age increases by 1 year marked 1.044 (1.009-1.080). The odds ratio of getting into the abnormal bone density group due to menopause was 2.575 (1.472-4.507) and the odds ratio according to lack of walking exercise was 2.598 (1.881-3.587). The odds ratio with 1 kg of weight increase was 0.963 (0.942-0.984). The Akaike's information criterion (AIC) values of Model I and Model II were 1196.18 and 1197.14 respectively, indicating Model I has the better compatibility of regression analysis model. Conclusion Weight, BMI and BMD had a positive correlation. However, the coefficient of correlation between weight and BMD was higher than the coefficient between BMI and BMD, which means low weight is much more likely to be related to osteoporosis with no other factor considered. On the other hand, under the condition considering age, height, menopause and walking exercise smoking status, low BMI is much more compatible as a risk factor for

  19. High insulin levels in KK-Ay diabetic mice cause increased cortical bone mass and impaired trabecular micro-structure.

    PubMed

    Fu, Cen; Zhang, Xiaolin; Ye, Fei; Yang, Jianhong

    2015-04-13

    Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by hyperglycemia, hyperinsulinemia and complications, including obesity and osteoporosis. Rodents have been widely used to model human T2DM and investigate its effect on the skeleton. We aimed to investigate skeletal alterations in Yellow Kuo Kondo (KK-Ay) diabetic mice displaying high insulin and glucose levels. Bone mineral density (BMD), micro-architecture and bone metabolism-related genes were analyzed. The total femoral areal BMD (aBMD), cortical volumetric BMD (vBMD) and thickness were significantly increased in KK-Ay mice, while the trabecular vBMD and mineralized bone volume/tissue volume (BV/TV), trabecular thickness and number were decreased compared to C57BL mice. The expression of both osteoblast-related genes, such as osteocalcin (OC), bone sialoprotein, Type I Collagen, osteonectin, RUNX2 and OSX, and osteoclast-related genes, such as TRAP and TCIRG, were up-regulated in KK-Ay mice. Correlation analyses showed that serum insulin levels were positively associated with aBMD, cortical vBMD and thickness and negatively associated with trabecular vBMD and micro-architecture. In addition, serum insulin levels were positively related to osteoblast-related and osteoclast-related gene expression. Our data suggest that high insulin levels in KK-Ay diabetic mice may increase cortical bone mass and impair trabecular micro-structure by up-regulating osteoblast-and osteoclast-related gene expression.

  20. Propranolol, a β-adrenergic antagonist, attenuates the decrease in trabecular bone mass in high calorie diet fed growing mice.

    PubMed

    Baek, Kyunghwa; Hwang, Hyo Rin; Park, Hyun-Jung; Kwon, Arang; Qadir, Abdul S; Baek, Jeong-Hwa

    2014-09-01

    We investigated the effects of high calorie and low calorie diets on skeletal integrity, and whether β-adrenergic blockade (BB) attenuates bone loss induced by dietary calorie alteration. Male 6-week-old C57BL/6 mice were assigned to either an ad-lib fed control diet (CON), a high calorie diet (HIGH), or a low calorie diet (LOW) group. In each diet group, mice were treated with either vehicle (VEH) or propranolol, a β-adrenergic antagonist. Over 12-weeks, β-blockade mitigated body weight and fat mass increases induced by the high calorie diet. Femoral trabecular bone mineral density and the expression levels of osteogenic marker genes in bone marrow cells were reduced in HIGHVEH and LOWVEH mice, and BB significantly attenuated this decline only in HIGH mice. In summary, the magnitude of bone loss induced by low calorie diet was greater than that caused by high calorie diet in growing mice, and β-blockade mitigated high calorie diet-induced bone loss.

  1. Inhibitor of DASH proteases affects expression of adhesion molecules in osteoclasts and reduces myeloma growth and bone disease.

    PubMed

    Pennisi, Angela; Li, Xin; Ling, Wen; Khan, Sharmin; Gaddy, Dana; Suva, Larry J; Barlogie, Bart; Shaughnessy, John D; Aziz, Nazneen; Yaccoby, Shmuel

    2009-06-01

    Dipeptidyl peptidase (DPP) IV activity and/or structure homologues (DASH) are serine proteases implicated in tumourigenesis. We previously found that a DASH protease, fibroblast activation protein (FAP), was involved in osteoclast-induced myeloma growth. Here we further demonstrated expression of various adhesion molecules in osteoclasts cultured alone or cocultured with myeloma cells, and tested the effects of DASH inhibitor, PT-100, on myeloma cell growth, bone disease, osteoclast differentiation and activity, and expression of adhesion molecules in osteoclasts. PT-100 had no direct effects on viability of myeloma cells or mature osteoclasts, but significantly reduced survival of myeloma cells cocultured with osteoclasts. Real-time PCR array for 85 adhesion molecules revealed upregulation of 17 genes in osteoclasts after coculture with myeloma cells. Treatment of myeloma/osteoclast cocultures with PT-100 significantly downregulated 18 of 85 tested genes in osteoclasts, some of which are known to play roles in tumourigenesis and osteoclastogenesis. PT-100 also inhibited osteoclast differentiation and subsequent pit formation. Resorption activity of mature osteoclasts and differentiation of osteoblasts were not affected by PT-100. In primary myelomatous severe combined immunodeficient (SCID)-hu mice PT-100 reduced osteoclast activity, bone resorption and tumour burden. These data demonstrated that DASH proteases are involved in myeloma bone disease and tumour growth.

  2. Does body mass index and position of impacted lower third molar affect the postoperative pain intensity?

    PubMed

    Matijević, Marko; Uzarević, Zvonimir; Gvozdić, Vlatka; Leović, Dinko; Ivanisević, Zrinka; Matijević-Mikelić, Valentina; Bogut, Irella; Vcev, Aleksandar; Macan, Darko

    2012-12-01

    The main objective of this study was to determine to which extent body mass index and position of impacted lower third molar was affecting the pain intensity in the first seven postoperative days. The study was conducted following the extraction of the lower third molar in 108 patients. Depending on the type of information given to each particular patient, the patients were divided in two groups: the test group where patients were given detailed standard written and verbal instructions and the control group which received only standard written instructions about treatment after surgery. Using canonical discriminant analysis we investigated the influence of body mass index and the position of impacted lower third molar on postoperative pain intensity in two groups of patients. Results of this study showed that the body mass index or the tooth position did not have influence on intensity of postoperative pain. The body mass index and the position of impacted lower third molar do not affect the postoperative pain intensity.

  3. Pregnancy and lactation affect markers of calcium and bone metabolism differently in adolescent and adult women with low calcium intakes.

    PubMed

    Bezerra, Flávia F; Laboissière, Fabrícia P; King, Janet C; Donangelo, Carmen M

    2002-08-01

    Physiologic adaptation to the high calcium demand during pregnancy and lactation may be different in adolescents than in adults, particularly at low calcium intake. The aim of this cross-sectional study was to compare biochemical markers of calcium and bone metabolism between adolescent (14-19 y) and adult (21-35 y) women with calcium intake approximately 500 mg/d, in three different physiologic states, i.e., control (nonpregnant, nonlactating; NPNL), pregnant and lactating. Markers of calcium metabolism [serum Ca, P and intact parathyroid hormone (iPTH); urinary Ca and P] and of bone turnover [urinary deoxypyridinoline (D-Pyr) and plasma bone alkaline phosphatase (BAP)] were measured in NPNL (adolescents, n = 12 and adults, n = 25), pregnant (adolescents, n = 30 and adults, n = 36) and lactating (adolescents, n = 19 and adults, n = 26) women. In the NPNL women, iPTH, D-Pyr and BAP were higher (P < 0.001) and urinary Ca was lower (P < 0.001) in adolescents than in adults. Serum iPTH was higher (P < 0.001) and urinary Ca was lower (P < 0.01) in adolescents than in adults also in pregnancy and lactation. Compared with NPNL women, serum Ca decreased (P < 0.001) with pregnancy in adolescents but not in adults. The increase in D-Pyr with pregnancy and lactation was very pronounced in adults ( approximately 130%, P < 0.001) but less in adolescents (<25%, P < 0.01). BAP increased (P < 0.001) with pregnancy and lactation in adults ( approximately 60%) but decreased (P < 0.001) with pregnancy in adolescents ( approximately 13%). Pregnancy and lactation appear to affect bone turnover in adolescent and adult women with low calcium intake differently.

  4. Factors that affect postnatal bone growth retardation in the twitcher murine model of Krabbe disease.

    PubMed

    Contreras, Miguel Agustin; Ries, William Louis; Shanmugarajan, Srinivasan; Arboleda, Gonzalo; Singh, Inderjit; Singh, Avtar Kaur

    2010-01-01

    Krabbe disease is an inherited lysosomal disorder in which galactosylsphingosine (psychosine) accumulates mainly in the central nervous system. To gain insight into the possible mechanism(s) that may be participating in the inhibition of the postnatal somatic growth described in the animal model of this disease (twitcher mouse, twi), we studied their femora. This study reports that twi femora are smaller than of those of wild type (wt), and present with abnormality of marrow cellularity, bone deposition (osteoblastic function), and osteoclastic activity. Furthermore, lipidomic analysis indicates altered sphingolipid homeostasis, but without significant changes in the levels of sphingolipid-derived intermediates of cell death (ceramide) or the levels of the osteoclast-osteoblast coupling factor (sphingosine-1-phosphate). However, there was significant accumulation of psychosine in the femora of adult twi animals as compared to wt, without induction of tumor necrosis factor-alpha or interleukin-6. Analysis of insulin-like growth factor-1 (IGF-1) plasma levels, a liver secreted hormone known to play a role in bone growth, indicated a drastic reduction in twi animals when compared to wt. To identify the cause of the decrease, we examined the IGF-1 mRNA expression and protein levels in the liver. The results indicated a significant reduction of IGF-1 mRNA as well as protein levels in the liver from twi as compared to wt littermates. Our data suggest that a combination of endogenous (psychosine) and endocrine (IGF-1) factors play a role in the inhibition of postnatal bone growth in twi mice; and further suggest that derangements of liver function may be contributing, at least in part, to this alteration.

  5. The Effects of Hypergravity and Adrenalectomy on Bone Mineral Content, Urine Calcium and Body Mass in Rats

    NASA Technical Reports Server (NTRS)

    Lau, A.; Ramirez, J.; Melson, E.; Moran, M.; Baer, L.; Arnaud, S.; Wade, C.; Girten, B.; Dalton, Bonnie (Technical Monitor)

    2001-01-01

    The effects of 14 days of increased gravitational load, and the absence of adrenal stress hormones on total body bone mineral content (BMC) were examined in male Sprague-Dawley rats. Centrifugation at 2 Gs (2G) was used to increase the gravitational load, and bilateral adrenalectomy (ADX) was used to eliminate the production of adrenal stress hormones. Stationary groups at 1 G (1G) and sham operated (SHAM) animals served as controls. Thirty rats (n=6 or 8) made up the four experimental groups (1G SHAM, 1G ADX, 2G SHAM and 2G ADX). BMC was assessed by dual energy x-ray absorptiometry (DXA) which was performed to determine the total body bone mineral content, and also through bone ashing of the left femur and the left humerus. Activity was determined through biotelemetry, also body mass and food intake were measured. Multi-factorial analysis of variance (MANCOVA) and Newman Keuls post hoc tests were used to analyze significant effects (p is less than 0.05) for the primary variables. Results from both DXA and the ashed femur indicated that BMC decreased significantly with increased G for both the SHAM and ADX groups. The BMC determined by DXA for the 1G ADX group was also significantly lower than the 1G SHAM group, however the 2G SHAM and 2G ADX groups were not significantly different. However, the bone ashing results showed the femur differed significantly only between the rates of centrifugation and not between the ADX and SHAM. The humerus showed no significant difference between any of the groups. There was a significant decrease in body mass with increased G and there was no ADX effect on body mass. When DXA BMC was normalized for body mass changes, there were no significant group differences. However, with bone ashing, the femur BMC/BW still showed significant difference between rates of centrifugation, with the 2G group being lower. Activity level decreased with body mass, and food intake data showed there was significant hypophagia during the first few days of

  6. Functions of the osteocyte network in the regulation of bone mass.

    PubMed

    Komori, Toshihisa

    2013-05-01

    Osteocytes establish an extensive intracellular and extracellular communication system via gap-junction-coupled cell processes and canaliculi throughout bone and the communication system is extended to osteoblasts on the bone surface. The osteocyte network is an ideal mechanosensory system and suitable for mechanotransduction. However, the overall function of the osteocyte network remains to be clarified, since bone resorption is enhanced by osteocyte apoptosis, which is followed by a process of secondary necrosis attributable to the lack of scavengers. The enhanced bone resorption is caused by the release of intracellular content, including immunostimulatory molecules that activate osteoclastogenesis through the canaliculi. Therefore, a mouse model is required in which the osteocyte network is disrupted but in which no bone resorption is induced, in order to evaluate the overall functions of the osteocyte network. One such model is the BCL2 transgenic mouse, in which the osteocyte network, including both intracellular and extracellular networks, is disrupted. Another model is the osteocyte-specific Gja1 knockout mouse, in which intercellular communication through gap junctions is impaired but the canalicular system is intact. Combining the findings from these mouse models with previous histological observations showing the inverse linkage between osteocyte density and bone formation, we conclude that the osteocyte network enhances bone resorption and inhibits bone formation under physiological conditions. Further, studies with BCL2 transgenic mice show that these osteocyte functions are augmented in the unloaded condition. In this condition, Rankl upregulation in osteoblasts and Sost upregulation in osteocytes are, at least in part, responsible for enhanced bone resorption and suppressed bone formation, respectively.

  7. Reduced hip bone mineral density is related to physical fitness and leg lean mass in ambulatory individuals with chronic stroke

    PubMed Central

    Pang, Marco YC; Eng, Janice J; McKay, Heather A; Dawson, Andrew S

    2011-01-01

    Following a stroke, reduced level of physical activity and functional use of the paretic leg may lead to bone loss and muscle atrophy. These factors and the high incidence of falls may contribute to hip fractures in the stroke population. This study was the first to examine total proximal femur bone mineral content (BMC) and bone mineral density (BMD) and their relationship to stroke-specific impairments in ambulatory individuals with chronic stroke (onset >1 year). We utilized dual-energy X-ray absorptiometry (DXA) to acquire proximal femur and total body scans on 58 (23 women) community-dwelling individuals with chronic stroke. We report total proximal femur BMC (g) and BMD (g/cm2) derived from the proximal femur scans, and lean mass (g) and fat mass (g) for each leg derived from the total body scans. Each subject was evaluated for ambulatory capacity (Six Minute Walk Test), knee extension strength (hand-held dynamometry), physical fitness [Maximal oxygen uptake (VO2max)], and spasticity (Modified Ashworth Scale). Results showed that the paretic leg had significantly lower proximal femur BMD, lean mass, and percent lean mass but higher fat mass than the non-paretic leg for both men and women. Proximal femur BMD of the paretic leg was significantly related to ambulatory capacity (r=0.33, p=0.011), muscle strength (r=0.39, p=0.002), physical fitness (r=0.57, p<0.001) but not related to spasticity (r=−0.23, p=0.080). Multiple regression analysis showed that lean mass in the paretic leg was a major predictor (R2=0.371, p<0.001) of the paretic proximal femur BMD. VO2max was a significant predictor of both paretic proximal femur BMD (R2=0.325, p<0.001) and lean mass in the paretic leg (R2=0.700, p<0.001). Further study is required to determine whether increasing physical fitness and lean mass is important to improve hip bone health in chronic stroke. PMID:15902416

  8. Reduced hip bone mineral density is related to physical fitness and leg lean mass in ambulatory individuals with chronic stroke.

    PubMed

    Pang, Marco Y C; Eng, Janice J; McKay, Heather A; Dawson, Andrew S

    2005-12-01

    Following a stroke, the reduced level of physical activity and functional use of the paretic leg may lead to bone loss and muscle atrophy. These factors and the high incidence of falls may contribute to hip fractures in the stroke population. This study was the first to examine total proximal femur bone mineral content (BMC) and bone mineral density (BMD) and their relationship to stroke-specific impairments in ambulatory individuals with chronic stroke (onset >1 year). We utilized dual-energy X-ray absorptiometry (DXA) to acquire proximal femur and total body scans on 58 (23 women) community-dwelling individuals with chronic stroke. We reported total proximal femur BMC (g) and BMD (g/cm2) derived from the proximal femur scans, and lean mass (g) and fat mass (g) for each leg derived from the total body scans. Each subject was evaluated for ambulatory capacity (Six-Minute Walk Test), knee extension strength (hand-held dynamometry), physical fitness [maximal oxygen uptake (VO2max)] and spasticity (Modified Ashworth Scale). Results showed that the paretic leg had significantly lower proximal femur BMD, lean mass and percent lean mass, but higher fat mass than the non-paretic leg for both men and women. Proximal femur BMD of the paretic leg was significantly related to ambulatory capacity (r=0.33, P=0.011), muscle strength (r=0.39, P=0.002), physical fitness (r=0.57, P<0.001), but not related to spasticity (r=-0.23, P=0.080). Multiple regression analysis showed that lean mass in the paretic leg was a major predictor (r2=0.371, P<0.001) of the paretic proximal femur BMD. VO2max was a significant predictor of both paretic proximal femur BMD (r2=0.325, P<0.001) and lean mass in the paretic leg (r2=0.700, P<0.001). Further study is required to determine whether increasing physical fitness and lean mass are important to improve hip bone health in chronic stroke.

  9. Integrating Epigenomic Elements and GWASs Identifies BDNF Gene Affecting Bone Mineral Density and Osteoporotic Fracture Risk

    PubMed Central

    Guo, Yan; Dong, Shan-Shan; Chen, Xiao-Feng; Jing, Ying-Aisha; Yang, Man; Yan, Han; Shen, Hui; Chen, Xiang-Ding; Tan, Li-Jun; Tian, Qing; Deng, Hong-Wen; Yang, Tie-Lin

    2016-01-01

    To identify susceptibility genes for osteoporosis, we conducted an integrative analysis that combined epigenomic elements and previous genome-wide association studies (GWASs) data, followed by validation at population and functional levels, which could identify common regulatory elements and predict new susceptibility genes that are biologically meaningful to osteoporosis. By this approach, we found a set of distinct epigenomic elements significantly enriched or depleted in the promoters of osteoporosis-associated genes, including 4 transcription factor binding sites, 27 histone marks, and 21 chromatin states segmentation types. Using these epigenomic marks, we performed reverse prediction analysis to prioritize the discovery of new candidate genes. Functional enrichment analysis of all the prioritized genes revealed several key osteoporosis related pathways, including Wnt signaling. Genes with high priority were further subjected to validation using available GWASs datasets. Three genes were significantly associated with spine bone mineral density, including BDNF, PDE4D, and SATB2, which all closely related to bone metabolism. The most significant gene BDNF was also associated with osteoporotic fractures. RNA interference revealed that BDNF knockdown can suppress osteoblast differentiation. Our results demonstrated that epigenomic data could be used to indicate common epigenomic marks to discover additional loci with biological functions for osteoporosis. PMID:27465306

  10. Opioid receptor agonists may favorably affect bone mechanical properties in rats with estrogen deficiency-induced osteoporosis.

    PubMed

    Janas, Aleksandra; Folwarczna, Joanna

    2017-02-01

    The results of epidemiological, clinical, and in vivo and in vitro experimental studies on the effect of opioid analgesics on bone are inconsistent. The aim of the present study was to investigate the effect of morphine (an agonist of opioid receptors), buprenorphine (a partial μ opioid receptor agonist and κ opioid receptor antagonist), and naloxone (an antagonist of opioid receptors) on the skeletal system of female rats in vivo. The experiments were carried out on 3-month-old Wistar rats, divided into two groups: nonovariectomized (intact; NOVX) rats and ovariectomized (OVX) rats. The bilateral ovariectomy was performed 7 days before the start of drug administration. Morphine hydrochloride (20 mg/kg/day s.c.), buprenorphine (0.05 mg/kg/day s.c.), or naloxone hydrochloride dihydrate (2 mg/kg/day s.c.) were administered for 4 weeks to NOVX and OVX rats. In OVX rats, the use of morphine and buprenorphine counteracted the development of osteoporotic changes in the skeletal system induced by estrogen deficiency. Morphine and buprenorphine beneficially affected also the skeletal system of NOVX rats, but the effects were much weaker than those in OVX rats. Naloxone generally did not affect the rat skeletal system. The results confirmed the role of opioid receptors in the regulation of bone remodeling processes and demonstrated, in experimental conditions, that the use of opioid analgesics at moderate doses may exert beneficial effects on the skeletal system, especially in estrogen deficiency.

  11. Behavioural Responses to Thermal Conditions Affect Seasonal Mass Change in a Heat-Sensitive Northern Ungulate

    PubMed Central

    van Beest, Floris M.; Milner, Jos M.

    2013-01-01

    Background Empirical tests that link temperature-mediated changes in behaviour (activity and resource selection) to individual fitness or condition are currently lacking for endotherms yet may be critical to understanding the effect of climate change on population dynamics. Moose (Alces alces) are thought to suffer from heat stress in all seasons so provide a good biological model to test whether exposure to non-optimal ambient temperatures influence seasonal changes in body mass. Seasonal mass change is an important fitness correlate of large herbivores and affects reproductive success of female moose. Methodology/Principal Findings Using GPS-collared adult female moose from two populations in southern Norway we quantified individual differences in seasonal activity budget and resource selection patterns as a function of seasonal temperatures thought to induce heat stress in moose. Individual body mass was recorded in early and late winter, and autumn to calculate seasonal mass changes (n = 52 over winter, n = 47 over summer). We found large individual differences in temperature-dependent resource selection patterns as well as within and between season variability in thermoregulatory strategies. As expected, individuals using an optimal strategy, selecting young successional forest (foraging habitat) at low ambient temperatures and mature coniferous forest (thermal shelter) during thermally stressful conditions, lost less mass in winter and gained more mass in summer. Conclusions/Significance This study provides evidence that behavioural responses to temperature have important consequences for seasonal mass change in moose living in the south of their distribution in Norway, and may be a contributing factor to recently observed declines in moose demographic performance. Although the mechanisms that underlie the observed temperature mediated habitat-fitness relationship remain to be tested, physiological state and individual variation in thermal tolerance

  12. The Preventive Effect of Calcium Supplementation on Weak Bones Caused by the Interaction of Exercise and Food Restriction in Young Female Rats During the Period from Acquiring Bone Mass to Maintaining Bone Mass.

    PubMed

    Aikawa, Yuki; Agata, Umon; Kakutani, Yuya; Kato, Shoyo; Noma, Yuichi; Hattori, Satoshi; Ogata, Hitomi; Ezawa, Ikuko; Omi, Naomi

    2016-01-01

    Increasing calcium (Ca) intake is important for female athletes with a risk of weak bone caused by inadequate food intake. The aim of the present study was to examine the preventive effect of Ca supplementation on low bone strength in young female athletes with inadequate food intake, using the rats as an experimental model. Seven-week-old female Sprague-Dawley rats were divided into four groups: the sedentary and ad libitum feeding group (SED), voluntary running exercise and ad libitum feeding group (EX), voluntary running exercise and 30% food restriction group (EX-FR), and a voluntary running exercise, 30% food-restricted and high-Ca diet group (EX-FR+Ca). To Ca supplementation, we used 1.2% Ca diet as "high-Ca diet" that contains two-fold Ca of normal Ca diet. The experiment lasted for 12 weeks. As a result, the energy availability, internal organ weight, bone strength, bone mineral density, and Ca absorption in the EX-FR group were significantly lower than those in the EX group. The bone strength and Ca absorption in the EX-FR+Ca group were significantly higher than those in the EX-FR group. However, the bone strength in the EX-FR+Ca group did not reach that in the EX group. These results suggested that Ca supplementation had a positive effect on bone strength, but the effect was not sufficient to prevent lower bone strength caused by food restriction in young female athletes.

  13. Enhanced Wnt signaling improves bone mass and strength, but not brittleness, in the Col1a1(+/mov13) mouse model of type I Osteogenesis Imperfecta.

    PubMed

    Jacobsen, Christina M; Schwartz, Marissa A; Roberts, Heather J; Lim, Kyung-Eun; Spevak, Lyudmila; Boskey, Adele L; Zurakowski, David; Robling, Alexander G; Warman, Matthew L

    2016-09-01

    Osteogenesis Imperfecta (OI) comprises a group of genetic skeletal fragility disorders. The mildest form of OI, Osteogenesis Imperfecta type I, is frequently caused by haploinsufficiency mutations in COL1A1, the gene encoding the α1(I) chain of type 1 collagen. Children with OI type I have a 95-fold higher fracture rate compared to unaffected children. Therapies for OI type I in the pediatric population are limited to anti-catabolic agents. In adults with osteoporosis, anabolic therapies that enhance Wnt signaling in bone improve bone mass, and ongoing clinical trials are determining if these therapies also reduce fracture risk. We performed a proof-of-principle experiment in mice to determine whether enhancing Wnt signaling in bone could benefit children with OI type I. We crossed a mouse model of OI type I (Col1a1(+/Mov13)) with a high bone mass (HBM) mouse (Lrp5(+/p.A214V)) that has increased bone strength from enhanced Wnt signaling. Offspring that inherited the OI and HBM alleles had higher bone mass and strength than mice that inherited the OI allele alone. However, OI+HBM and OI mice still had bones with lower ductility compared to wild-type mice. We conclude that enhancing Wnt signaling does not make OI bone normal, but does improve bone properties that could reduce fracture risk. Therefore, agents that enhance Wnt signaling are likely to benefit children and adults with OI type 1.

  14. Peripheral quantitative computed tomography (pQCT) for the assessment of bone strength in most of bone affecting conditions in developmental age: a review.

    PubMed

    Stagi, Stefano; Cavalli, Loredana; Cavalli, Tiziana; de Martino, Maurizio; Brandi, Maria Luisa

    2016-09-26

    Peripheral quantitative computed tomography provides an automatical scan analysis of trabecular and cortical bone compartments, calculating not only their bone mineral density (BMD), but also bone geometrical parameters, such as marrow and cortical Cross-Sectional Area (CSA), Cortical Thickness (CoTh), both periosteal and endosteal circumference, as well as biomechanical parameters like Cross-Sectional Moment of Inertia (CSMI), a measure of bending, polar moment of inertia, indicating bone strength in torsion, and Strength Strain Index (SSI). Also CSA of muscle and fat can be extracted. Muscles, which are thought to stimulate bones to adapt their geometry and mineral content, are determinant to preserve or increase bone strength; thus, pQCT provides an evaluation of the functional 'muscle-bone unit', defined as BMC/muscle CSA ratio. This functional approach to bone densitometry can establish if bone strength is normally adapted to the muscle force, and if muscle force is adequate for body size, providing more detailed insights to targeted strategies for the prevention and treatment of bone fragility. The present paper offers an extensive review of technical features of pQCT and its possible clinical application in the diagnostic of bone status as well as in the monitoring of the skeleton's health follow-up.

  15. Mass Rearing History and Irradiation Affect Mating Performance of the Male Fruit Fly, Anastrepha obliqua

    PubMed Central

    Rull, Juan; Encarnación, Nery; Birke, Andrea

    2012-01-01

    As an initial step to improve the efficiency of the sterile insect technique applied to eradicate, suppress, and control wild Anastrepha obliqua (Macquart) (Diptera: Tephritidae) in mango producing areas of Mexico, the effect of radiation dose and mass rearing history on male mating performance was examined. Field cage tests in which both male and female laboratory flies were irradiated at different doses (0, 40, and 80 Gy) were released with cohorts of wild flies of both sexes, revealing that both mass rearing history and irradiation affected male mating performance. Laboratory males were accepted for copulation by wild females less frequently than wild males. Copulations involving laboratory males were shorter than those involving wild males. Irradiated males mated less frequently with wild females than wild males, and irradiated females appeared to be less able to reject courting males of both origins. High levels of fertility for untreated laboratory females crossed with males irradiated at different doses may reflect problems in mass rearing affecting homogeneity of pupal age before irradiation, and possibly masked a dose effect. Proposed remedial measures to improve male mating performance are discussed. PMID:22957485

  16. Does winter region affect spring arrival time and body mass of king eiders in northern Alaska?

    USGS Publications Warehouse

    Powell, Abby N.; Oppel, Steffen

    2009-01-01

    Events during the non-breeding season may affect the body condition of migratory birds and influence performance during the following breeding season. Migratory birds nesting in the Arctic often rely on endogenous nutrients for reproductive efforts, and are thus potentially subject to such carry-over effects. We tested whether king eider (Somateria spectabilis) arrival time and body mass upon arrival at breeding grounds in northern Alaska were affected by their choice of a winter region in the Bering Sea. We captured birds shortly after arrival on breeding grounds in early June 2002–2006 at two sites in northern Alaska and determined the region in which individuals wintered using satellite telemetry or stable isotope ratios of head feathers. We used generalized linear models to assess whether winter region explained variation in arrival body mass among individuals by accounting for sex, site, annual variation, and the date a bird was captured. We found no support for our hypothesis that either arrival time or arrival body mass of king eiders differed among winter regions. We conclude that wintering in different regions in the Bering Sea is unlikely to have reproductive consequences for king eiders in our study areas.

  17. Associations of breast-feeding patterns and introduction of solid foods with childhood bone mass: The Generation R Study.

    PubMed

    van den Hooven, Edith H; Gharsalli, Mounira; Heppe, Denise H M; Raat, Hein; Hofman, Albert; Franco, Oscar H; Rivadeneira, Fernando; Jaddoe, Vincent W V

    2016-03-28

    Breast-feeding has been associated with later bone health, but results from previous studies are inconsistent. We examined the associations of breast-feeding patterns and timing of introduction of solids with bone mass at the age of 6 years in a prospective cohort study among 4919 children. We collected information about duration and exclusiveness of breast-feeding and timing of introduction of any solids with postnatal questionnaires. A total body dual-energy X-ray absorptiometry scan was performed at 6 years of age, and bone mineral density (BMD), bone mineral content (BMC), area-adjusted BMC (aBMC) and bone area (BA) were analysed. Compared with children who were ever breast-fed, those never breast-fed had lower BMD (-4·62 mg/cm2; 95 % CI -8·28, -0·97), BMC (-8·08 g; 95 % CI -12·45, -3·71) and BA (-7·03 cm2; 95 % CI -12·55, -1·52) at 6 years of age. Among all breast-fed children, those who were breast-fed non-exclusively in the first 4 months had higher BMD (2·91 mg/cm2; 95 % CI 0·41, 5·41) and aBMC (3·97 g; 95 % CI 1·30, 6·64) and lower BA (-4·45 cm2; 95 % CI -8·28, -0·61) compared with children breast-fed exclusively for at least 4 months. Compared with introduction of solids between 4 and 5 months, introduction <4 months was associated with higher BMD and aBMC, whereas introduction between 5 and 6 months was associated with lower aBMC and higher BA. Additional adjustment for infant vitamin D supplementation did not change the results. In conclusion, results from the present study suggest that ever breast-feeding compared with never breast-feeding is associated with higher bone mass in 6-year-old children, but exclusive breast-feeding for 4 months or longer was not positively associated with bone outcomes.

  18. Physical education in West Virginia schools: are we doing enough to generate peak bone mass and promote skeletal health?

    PubMed

    Shuler, Franklin D; Lycans, Dana; Gill, Thomas; Oliashirazi, Ali

    2013-01-01

    Peak bone mass (PBM) is attained at 25-35 years of age, followed by a lifelong decline in bone strength. The most rapid increase in bone mass occurs between the ages of 12-17. Daily school physical education (PE) programs have been shown to produce measurable increases in PBM, but are not federally mandated. Increases in PBM can decrease the lifelong risk of osteoporosis and fractures; critical for West Virginia prevention programs. Nationally only 1 in 6 schools require PE three days per week, with 4% of elementary schools, 8% of middle schools and 2% of high schools providing daily PE. In 2005, West Virginia passed the Healthy Lifestyles Act that returned physical education to the K-12 curriculum. This law requires only one credit of PE from grades 9-12 and provides only 35% of the recommended PE for grades K-12. This article highlights the relationship of PE to PBM and discusses the potential impact on West Virginia skeletal health.

  19. Effect of Nasal Calcitonin on the Health-Related Quality of Life in Postmenopause Women Affected With Low Bone Density

    PubMed Central

    Shohrati, Majid; Bayat, Noushin; Saburi, Amin; Abbasi, Zahra

    2015-01-01

    Background: Physical activity and mental health could be affected by osteoporosis and various therapeutic options such as calcitonin may influence Quality Of Life (QOL) of these patients with Low Bone Density (LBD). Objectives: This study aimed to evaluate the effect of nasal calcitonin on QOL in post menopause women with LBD. Patients and Methods: This clinical trial study was performed on one hundred and fifteen menopause women with LBD less than 1 SD in Bone Mineral Densitometry (BMD) referred to Baqiyatallah Hospital in Tehran, Iran, during 2009 - 2010. They were assigned to receive 200 IU calcitonin nasal spray along with calcium (1000 mg) and vitamin D (400 IU) for 6 months. Quality of life was assessed by Short-Form 36 (SF-36) questionnaire (Persian-validated version). Results: The mean age (± SD) of the participants was 58.75 ± 8.15 years. Intranasal spray of calcitonin increased QOL scores significantly (88.05 ± 15.63 vs. 92.15 ± 13.22, P value = 0.000). Bone mineral density of spine was increased from 0.834 ± 0.11 to 0.12 ± 0.852 and this difference in BMD of lumbar spine was statistically significant (P value: 0.003) but not significant in femur’s BMD (P value = 0.061). In comparison with BMD indexes, The QOL scores especially Mental Health domain changes had only a significant correlation with the changes of total T score in BMD (P = 0.031, Coefficient Correlation = 0.248). Conclusions: It seems that nasal spray of calcitonin can effectively improve QOL of women with LBD and QOL changes were not influenced by clinical or para-clinical alteration. Mental health domain must be more considered in further studies as a predicting domain for Health-Related Quality of Life (HR-QOL) changes. PMID:26421180

  20. Age-related BMAL1 change affects mouse bone marrow stromal cell proliferation and osteo-differentiation potential

    PubMed Central

    Chen, Yijia; Xu, Xiaomei; Tan, Zhen; Ye, Cui; Chen, Yangxi

    2012-01-01

    Introduction Aging people's bone regeneration potential is always impaired. Bone marrow stromal cells (MSCs) contain progenitors of osteoblasts. Donor age may affect MSCs’ proliferation and differentiation potential, but the genomic base is still unknown. Due to recent research's indication that a core circadian component, brain and muscle ARNT-like 1 protein (BMAL1), has a role in premature aging, we investigated the normal aging mechanism in mice with their MSCs and Bmal1 gene/protein level. Material and methods 1, 6 and 16 month old C57BL/6 mice were used and the bone marrow stromal cells were gained and cultured at early passage. Bmal1 gene and protein level were detected in these cells. Marrow stromal cells were also induced to differentiate to osteoblasts or adipocytes. Three groups of mice MSCs were compared on proliferation by flow cytometry, on cell senescence by SA-β-gal expression and after osteo-induction on osteogenic potential by the expression of osterix (Osx), alkaline phosphatase (ALP) and osteocalcin (OCN). Results Bmal1 gene and protein level as well as S-phase fraction of the cell cycle decreased in MSCs along with the aging process. At the same time, SA-β-gal+ levels increased, especially in the aged mice MSCs. When induced to be osteogenic, Osx gene expression and ALP activity declined in the mid-age and aged mice MSCs, while OCN protein secretion deteriorated in the aged mice MSCs. Conclusions These findings demonstrate that mouse MSCs changed with their proliferation and osteo-differentiation abilities at different aging stages, and that Bmal1 is related to the normal aging process in MSCs. PMID:22457671

  1. Carpal Tunnel Cross-Sectional Area Affected by Soft Tissues Abutting the Carpal Bones.

    PubMed

    Gabra, Joseph N; Li, Zong-Ming

    2013-02-01

    The carpal tunnel accommodates free movement of its contents, and the tunnel's cross-sectional area is a useful morphological parameter for the evaluation of the space available for the carpal tunnel contents and of potential nerve compression in the tunnel. The osseous boundary of the carpal bones as the dorsal border of the carpal tunnel is commonly used to determine the tunnel area, but this boundary contains soft tissues such as numerous intercarpal ligaments and the flexor carpi radialis tendon. The aims of this study were to quantify the thickness of the soft tissues abutting the carpal bones and to investigate how this soft tissue influences the calculation of the carpal tunnel area. Magnetic resonance images were analyzed for eight cadaveric specimens. A medical balloon with a physiological pressure was inserted into an evacuated tunnel to identify the carpal tunnel boundary. The balloon-based (i.e. true carpal tunnel) and osseous-based carpal tunnel boundaries were extracted and divided into regions corresponding to the hamate, capitate, trapezoid, trapezium, and transverse carpal ligament (TCL). From the two boundaries, the overall and regional soft tissue thicknesses and areas were calculated. The soft tissue thickness was significantly greater for the trapezoid (3.1±1.2mm) and trapezium (3.4±1.0mm) regions than for the hamate (0.7±0.3mm) and capitate (1.2±0.5mm) regions. The carpal tunnel area using the osseous boundary (243.0±40.4mm(2)) was significantly larger than the balloon-based area (183.9±29.7mm(2)) with a ratio of 1.32. In other words, the carpal tunnel area can be estimated as 76% (= 1/1.32) of the osseous-based area. The abundance of soft tissue in the trapezoid and trapezium regions can be attributed mainly to the capitate-trapezium ligament and the flexor carpi radialis tendon. Inclusion of such soft tissue leads to overestimations of the carpal tunnel area. Correct quantification of the carpal tunnel area aids in examining carpal

  2. Correlations between skeletal muscle mass and bone mass in children 6-18 years: influences of sex, ethnicity, and pubertal status.

    PubMed

    Wang, J; Horlick, M; Thornton, J C; Levine, L S; Heymsfield, S B; Pierson, R N

    1999-01-01

    A constant sex-specific relationship between skeletal muscle mass and bone mass was observed in healthy adults based on TBK/TBCa, using TBK (total body potassium) by 40K counting and TBCa (total body calcium) by in-vivo neutron activation analysis (Ellis and Cohn, 1975). We revisited this topic in children by studying correlations between TBK and TBCa, and by comparing TBK/TBCa between sexes, pubertal groups (prepubertal and pubertal) and ethnic groups in 141 white, 101 black, and 62 Asian healthy children, aged 6 - 18 years, living in New York City. TBK was measured by 40K counting, and TBCa by dual energy x-ray absorptiometry. TBK and TBCa were significantly correlated from 6 to 18 years (r > 0.93), but the correlation equations varied by gender and ethnicity. Boys had significantly more TBK and greater TBK/TBCa than girls at a given age and weight, reflecting greater skeletal muscle mass in boys from 6 years, the age at which the study started. TBK/TBCa in blacks was significantly smaller than whites and Asians in both sexes in prepuberty and puberty, and pubertal black girls had the smallest mean TBK/TBCa. No significant differences were found between whites and Asians. TBK/TBCa decreased as body weight increased in prepubertal girls, and decreased as body weight and age increased in pubertal girls, but did not change with body weight or age in boys of any subgroup. The inverse relationship between TBK/TBCa and age in pubertal girls suggests greater increase in TBCa compared to TBK than in other groups, while the constant TBK/TBCa in boys reflects proportional increases in TBK and TBCa. Thus TBK/TBCa can be used as an index of relative growth in skeletal muscle mass and bone mass in white, black, and Asian children according to sex, age and pubertal status.

  3. Drinking water fluoridation and bone.

    PubMed

    Allolio, B; Lehmann, R

    1999-01-01

    Drinking water fluoridation has an established role in the prevention of dental caries, but may also positively or negatively affect bone. In bone fluoride is incorporated into hydroxylapatite to form the less soluble fluoroapatite. In higher concentrations fluoride stimulates osteoblast activity leading to an increase in cancellous bone mass. As optimal drinking water fluoridation (1 mg/l) is widely used, it is of great interest, whether long-term exposition to artificial water fluoridation has any impact on bone strength, bone mass, and -- most importantly -- fracture rate. Animal studies suggest a biphasic pattern of the effect of drinking water fluoridation on bone strength with a peak strength at a bone fluoride content of 1200 ppm followed by a decline at higher concentrations eventually leading to impaired bone quality. These changes are not paralleled by changes in bone mass suggesting that fluoride concentrations remain below the threshold level required for activation of osteoblast activity. Accordingly, in most epidemiological studies in humans bone mass was not altered by optimal drinking water fluoridation. In contrast, studies on the effect on hip fracture rate gave conflicting results ranging from an increased fracture incidence to no effect, and to a decreased fracture rate. As only ecological studies have been performed, they may be biased by unknown confounding factors -- the so-called ecological fallacy. However, the combined results of these studies indicate that any increase or decrease in fracture rate is likely to be small. It has been calculated that appropriately designed cohort studies to solve the problem require a sample size of >400,000 subjects. Such studies will not be performed in the foreseeable future. Future investigations in humans should, therefore, concentrate on the effect of long-term drinking water fluoridation on bone fluoride content and bone strength.

  4. Bone Analyzer

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The danger of disuse osteoporosis under weightless condition in space led to extensive research into measurements of bone stiffness and mass by the Biomedical Research Division of Ames and Stanford University. Through its Technology Utilization Program, NASA funded an advanced SOBSA, a microprocessor-controlled bone probe system. SOBSA determines bone stiffness by measuring responses to an electromagnetic shaker. With this information, a physician can identify bone disease, measure deterioration and prescribe necessary therapy. The system is now undergoing further testing.

  5. Identifying MRONJ-affected bone with digital fusion of functional imaging (FI) and cone-beam computed tomography (CBCT): case reports and hypothesis.

    PubMed

    Subramanian, Gayathri; Kalyoussef, Evelyne; Blitz-Goldstein, Meredith; Guerrero, Jessenia; Ghesani, Nasrin; Quek, Samuel Y P

    2017-03-01

    Surgical debridement of medication-related osteonecrosis of the jaw (MRONJ) lesions is far less predictable than lesion resection. Margins for surgical debridement are guided by surrogate markers of bone viability, such as bleeding and bone fluorescence, which limit debridement to visibly necrotic bone. In contrast, surgical resection is extensive, including a substantial portion of surrounding bone. The concept that the MRONJ lesion is a composite of affected but viable ("compromised") and necrotic bone is supported by histopathological data. Hence, removing only the necrotic bone during lesion debridement could inadvertently leave behind residual compromised bone in the lesion, subsequently contributing to persistence or reestablishment of the lesion. Using 2 case reports, this manuscript illustrates a novel assessment of the MRONJ lesion to enable demarcation of both the compromised and necrotic portions of the lesion. This assessment uses tumor-surveillance functional bone imaging data that may already be available for cancer patients with MRONJ and fuses these data digitally with computed tomography/cone-beam computed tomography imaging of the jaw obtained during MRONJ assessment. If validated, preoperative functional imaging-based assessment of the MRONJ lesion could enable surgeons to eliminate both the compromised and nonviable portions of the lesion precisely with conservative debridement, matching surgical resection in outcome.

  6. Does light scattering affect the OCT quantitation of redox state of cytochrome oxidase in bone tissue?

    NASA Astrophysics Data System (ADS)

    Xu, Xiangqun; Wang, Ruikang K.; El Haj, Alicia

    2002-06-01

    In our previous report, we have presented the possibility of optical coherence tomography (OCT) to monitor the redox state of mitochondria enzyme Cytochrome oxidase (CytOx) in bone tissue. The previous results showed that reduction of the enzyme in periosteal tissue leads to a change in attenuation coefficient of 1.68 +/- 0.67mm-1 by OCT measurements. The new results from cultured cells fixed in 300 (mu) l agarose plug showed the difference in attenuation coefficient is 0.26+-0.10 mm-1 (n = 9) for 7x106 astrocytoma cells and 0.28+-0.13 mm-1 (n = 7) for 20x106 astrocytoma cells in agarose plug, respectively between cells with oxidised and reduced enzyme at 820nm. A decrease in attenuation coefficient of 0.35+-0.09 mm-1 (n = 4) for 10 million SKMES cells in agarose was also observed with the redox shift of CytOx. The absorption coefficient of the oxidized-reduced form of CytOx is measured approximately 8.4+-1.5x10-3/mm (n=3) and 8.2+-1.0x10-3/mm (n=3) at 820nm for astrocytoma cells and rat periosteum respectively by means of a biochemical assay. Thereby it can be seen that the change in attenuation coefficient of cultured cells with redox shift of CytOx mainly results from the scattering change.

  7. Bone age and factors affecting skeletal maturation at diagnosis of paediatric Cushing's disease.

    PubMed

    Acharya, Shrikrishna V; Gopal, Raju A; Lila, Anurag; Menon, Padma S; Bandgar, Tushar R; Shah, Nalini S

    2010-12-01

    Paediatric Cushing's disease (CD) is usually associated with growth retardation, but there are only few published data on skeletal maturation at diagnosis. We analysed factors contributing to skeletal maturation and final height in Asian Indian patients with paediatric CD. We conducted retrospective analysis of 48 patients (29 males; 19 females) with mean age: 14.84 years at diagnosis (range 9-19 years). A single observer using the Greulich Pyle method determined the bone age (BA) of each child. BA delay, i.e. the difference between chronological age (CA) and BA, was compared with clinical and biochemical variables. BA delay was present in 35/48 (73%) patients (mean delay 1.6 years, range 0.5-5 years) and correlated negatively with height SDS (r = -0.594, P < 0.001) and positively with CA at diagnosis (r = 0.247, P < 0.05). There was no correlation with duration of symptoms before diagnosis, basal cortisol, midnight cortisol, ACTH or percentage suppression of low dose dexamethasone suppression cortisol (LDDST). We could not demonstrate any relationship between the duration of history before diagnosis and height SDS at final height. Mean final height SDS in patients was -1.84. We found that most children with CD had delayed BA and correlated significantly with CA and height SDS at diagnosis. Early diagnosis may reduce delay in skeletal maturation and thus contribute to optimal catch-up growth.

  8. COL1 C-propeptide Cleavage Site Mutations Cause High Bone Mass Osteogenesis Imperfecta

    PubMed Central

    Lindahl, Katarina; Barnes, Aileen M.; Fratzl-Zelman, Nadja; Whyte, Michael P.; Hefferan, Theresa E.; Makareeva, Elena; Brusel, Marina; Yaszemski, Michael J.; Rubin, Carl-Johan; Kindmark, Andreas; Roschger, Paul; Klaushofer, Klaus; McAlister, William H.; Mumm, Steven; Leikin, Sergey; Kessler, Efrat; Boskey, Adele L.; Ljunggren, Östen; Marini, Joan C.

    2011-01-01

    Osteogenesis imperfecta (OI) is most often caused by mutations in the type I procollagen genes (COL1A1/COL1A2). We identified two children with substitutions in the type I procollagen C-propeptide cleavage site, which disrupt a unique processing step in collagen maturation and define a novel phenotype within OI. The patients have mild OI caused by mutations in COL1A1 (Patient 1: p.Asp1219Asn) or COL1A2 (Patient 2: p.Ala1119Thr), respectively. Patient 1 L1-L4 DXA z-score was +3.9 and pQCT vBMD was +3.1; Patient 2 had L1-L4 DXA z-score of 0.0 and pQCT vBMD of −1.8. Patient BMD contrasts with radiographic osteopenia and histomorphometry without osteosclerosis. Mutant procollagen processing is impaired in pericellular and in vitro assays. Patient dermal collagen fibrils have irregular borders. Incorporation of pC-collagen into matrix leads to increased bone mineralization. FT-IR imaging confirms elevated mineral/matrix ratios in both patients, along with increased collagen maturation in trabecular bone, compared to normal or OI controls. Bone mineralization density distribution revealed a marked shift toward increased mineralization density for both patients. Patient 1 has areas of higher and lower bone mineralization than controls; Patient 2’s bone matrix has a mineral content exceeding even classical OI bone. These patients define a new phenotype of high BMD OI and demonstrate that procollagen C-propeptide cleavage is crucial to normal bone mineralization. PMID:21344539

  9. Thyroid-stimulating hormone maintains bone mass and strength by suppressing osteoclast differentiation.

    PubMed

    Zhang, Wenwen; Zhang, Yanling; Liu, Yuantao; Wang, Jie; Gao, Ling; Yu, Chunxiao; Yan, Huili; Zhao, Jiajun; Xu, Jin

    2014-04-11

    It has been suggested that pituitary hormone might be associated with bone metabolism. To investigate the role of thyroid-stimulating hormone (TSH) in bone metabolism, we designed the present study as follows. After weaning, TSH receptor (TSHR) null mice (Tshr(-/-)) were randomly divided into a thyroxine treatment group (n=10) or non-treatment group (n=10); the treatment group received a dose of desiccated thyroid extract at 100 ppm daily for 5 weeks. Age-matched wild-type (Tshr(+/+), n=10) and heterozygote mice (Tshr(+/-), n=10) served as controls. After 5 weeks, the animals were sacrificed, and the femurs were collected for histomorphometrical and biomechanical analyses. In addition, the effect of TSH on osteoclastogenesis was examined in the RAW264.7 osteoclast cell line. We found that compared with Tshr(+/+) mice, Tshr(-/-) and Tshr(+/-) mice had lower bone strength. The histomorphometric results showed that trabecular bone volume, osteoid surface, osteoid thickness and osteoblast surface were significantly decreased, whereas the osteoclast surface was significantly increased in both Tshr(-/-) and Tshr(+/-) mice compared with Tshr(+/+) mice. Bone resorption and formation in Tshr(-/-) mice were further enhanced by thyroxine replacement. bTSH inhibited osteoclast differentiation in vitro, as demonstrated by reduced development of TRAP-positive cells and down-regulation of differentiation markers, including tartrate-resistant acid phosphatase, matrix metallo-proteinase-9 and cathepsin K in RAW264.7 cells. Our results confirm that TSH increased bone volume and improved bone microarchitecture and strength at least partly by inhibiting osteoclastogenesis.

  10. Glucose-dependent insulinotropic polypeptide receptor knockout mice have altered bone turnover.

    PubMed

    Xie, Ding; Cheng, Hua; Hamrick, Mark; Zhong, Qing; Ding, Ke-Hong; Correa, Daniel; Williams, Sandra; Mulloy, Anthony; Bollag, Wendy; Bollag, Roni J; Runner, Royce R; McPherson, James C; Insogna, Karl; Isales, Carlos M

    2005-12-01

    Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone, which is secreted from endocrine cells in the small intestine after meal ingestion. GIP has been shown to affect osteoblastic function in vitro; however, the in vivo effects of GIP on bone remodeling remain unclear. In the present study, we investigated the role of GIP in modulating bone turnover, by evaluating serum markers of bone turnover, bone density, bone morphology, and changes in biomechanical bone strength over time (one to five months) in GIP receptor knockout mice (GIPR-/- mice). The GIPR-/- mice showed a decreased bone size, lower bone mass, altered bone microarchitecture and biomechanical properties, and altered parameters for bone turnover, especially in bone formation. Moreover, the effects of GIP on bone mass were site-specific and compensatory mechanism developed over time and ameliorated the impact of the loss of GIP signaling on bone mass. Further, GIPR-/- mice had earlier age-related changes than wild-type mice in body composition, including bone mass, lean body mass, and fat percentage. In summary, our results indicate that GIP has an anabolic effect on bone mass and bone quality and suggests that GIP may be a hormonal link between nutrient ingestion and utilization.

  11. Decreased peak bone mass is associated with a 3-bp deletion/insertion of the CYP19 intron 4 polymorphism: preliminary data from the GOOS study.

    PubMed

    Kastelan, D; Grubic, Z; Kraljevic, I; Duric, K; Kardum, I; Dusek, T; Stingl, K; Giljevic, Z; Kerhin-Brkljacic, V; Suchanek, E; Korsic, M

    2007-06-01

    Finding that estrogen plays an important role in bone homeostasis in men prompted research on relationship of polymorphism at the CYP19 gene and the bone mass. Therefore, influence of 3-bp deletion/insertion polymorphism of CYP19 (TTTA)7 allele on the peak bone mass attainment in males was studied. Fifty-eight unrelated male participants, aged 21-35, were selected depending on the presence of (TTTA)7 (no.=19) or (TTTA)7-3 (no.=39) alleles from the initial cohort of 92 young males. Heterozygotes (TTTA)7/(TTTA)7-3 (no.=13) were not included in the analysis. Serum levels of estradiol, free testosterone, 25-hydroxyvitamin D, bone alkaline phosphatase, osteocalcin, and beta-crosslaps were measured. Bone mass was measured by DXA at the hip and at the spine. (TTTA)7-3 allele was associated with significantly lower femoral neck bone mineral density (BMD) (p=0.02). Logistic regression model indicated strong association of (TTTA)7-3 allele with low BMD in the range of osteopenia/osteoporosis (p=0.014, odds ratio 12.36, confidence intervals 1.65-92.46). In the present study association of 3-bp deletion polymorphism of the (TTTA)7 allele with decreased peak bone mass in males is reported for the first time. However, further studies are necessary to elucidate the functional relevance of this polymorphism.

  12. Investigation of factors affecting loosening of Ilizarov ring-wire external fixator systems at the bone-wire interface.

    PubMed

    Donaldson, Finn E; Pankaj, Pankaj; Simpson, A Hamish R W

    2012-05-01

    The potential for peri-implant bone yielding and subsequent loosening of Ilizarov ring-wire external fixation systems was investigated using non-linear finite element (FE) analyses. A strain-based plasticity model was employed to simulate bone yielding. FE models also incorporated contact behavior at the wire-bone interface, orthotropic elasticity, and periosteal-endosteal variation of bone properties. These simulations were used to determine the extent and location of yielding with change in age-related bone structure and properties for the bone-Ilizarov construct at the tibial midshaft. At critical wire-bone interfaces, the predicted volume of yielded bone with four wires (on either side of the fracture) was ∼40% of that with two wires. Old-aged cases showed considerably greater bone yielding at the wire-bone interface than young cases (1.7-2.2 times greater volumes of yielded bone). The volume of yielded bone at all wire-bone interfaces decreased with an increase in wire pre-tension. The absence of continuous through-thickness yielding offers an explanation for the clinical observation that Ilizarov ring-wire fixation can provide stable fracture fixation even in bone with high porosity.

  13. Water polo is associated with an apparent redistribution of bone mass and density from the lower to the upper limbs.

    PubMed

    Kavouras, Stavros A; Magkos, Faidon; Yannakoulia, Mary; Perraki, Maria; Karipidou, Melina; Sidossis, Labros S

    2006-06-01

    The bone response to exercise is site-specific and load-dependent. Recent evidence suggests that an inverse relationship may exist between loaded and unloaded sites, such that the former may benefit at the expense of the latter. The present study examined this possibility in 48 males (21 water polo players, 12 handball players, and 15 sedentary controls). Water polo and handball are alike with respect to the active loading of the upper limbs during overhead throwing; however, the weight-supporting environment of water polo removes the weight-bearing effect from the lower limbs. Bone mineral content (BMC), bone projected area (Ap), and areal bone mineral density (aBMD) of the total body and of various subregions were determined by dual-energy X-ray absorptiometry. After adjusting for age, height, and weight, water polo players had higher arms BMC, Ap, and aBMD (by 22.2, 11.1, and 10.5%, respectively; P<0.05), but lower legs aBMD (-6.3%; P<0.05) relative to controls. On the contrary, compared to controls, handball players had higher BMC (from 11.8 to 24.3%), Ap (from 5.2 to 11.7%), and aBMD (from 6.4 to 11.9%) for the total body at all sites. Water polo athletes had increased arms and decreased legs aBMD ratios (regional-to-total) than either handball players or sedentary subjects (P<0.001). Water polo is associated with an apparent redistribution of bone mass and density from the lower to the upper limbs, with no major effects on the rest of the body.

  14. Comparative assessment of bone mass and structure using texture-based and histomorphometric analyses

    PubMed Central

    Xiang, Yongqing; Yingling, Vanessa R.; Malique, Rumena; Li, Chao Yang; Schaffler, Mitchell B.; Raphan, Theodore

    2013-01-01

    The purpose of this study was to develop a methodology for quantitatively assessing bone quantity and anisotropy based on texture analysis using Gabor wavelets. The wavelet approach has the capability to simultaneously examine the images at low and high resolutions to gain information on both global and detailed local features of the bone image. The program that implemented the texture analysis gave measures of density (MDensity) and anisotropy (MAnisotropy). It also allowed us to examine the texture energy at four orientations (0°, 45°, 90°, 135°) to gain insight about the details of the anisotropy. Analysis of templates of four simulated patterns, which had same number of dots but with differing orientations, demonstrated how the texture-based analysis differentiated between these templates. The measures of MAnisotropy discriminated between the four simulated patterns. The MDensity measures were similar across all patterns. These outcomes matched the design intent of the simulated patterns. We also compared the trabecular bone images obtained from a previous study, in which the right forelimbs of normal female retired breeder beagle dogs (5–7 years old) were cast for 12 months to induce bone loss, using both histomorphometry and texture analysis. Both histomorphometry and the texture analysis detected significant differences in the trabecular bone of the distal metatarsal between the control and disuse groups. Percent trabecular bone (Tb.Ar/T.Ar) and the textural density parameter (MDensity) were highly correlated (r =0.962). MAnisotropy was decreased (3.9%) after the 12-month disuse protocol, but was not significantly different from normal. However, the texture energy values at all orientations (0°, 45°, 90° and 135°) were significantly decreased in the disuse group. Therefore, texture analysis was able to assess anisotropy, which could not be extracted from histomorphometric parameters. We conclude that texture analysis is an effective tool for

  15. Secreted frizzled-related protein 1 modulates glucocorticoid attenuation of osteogenic activities and bone mass.

    PubMed

    Wang, Feng-Sheng; Lin, Chun-Liang; Chen, Yeung-Jen; Wang, Ching-Jen; Yang, Kuender D; Huang, Yu-Ting; Sun, Yi-Chih; Huang, Hui-Chen

    2005-05-01

    Prolonged glucocorticoid treatment is known to cause osteoporosis or aseptic necrosis. Secreted frizzled-related proteins 1 (SFRP1) and low-density lipoprotein-related protein 5 (LRP5), a Wnt protein antagonist and a coreceptor, have been found to regulate skeletogenesis. Whereas recent studies have reported that excess glucocorticoid promotes bone loss, the biological role of SFRP1 and LRP5 in regulating glucocorticoid attenuation of bone formation is not fully understood. We showed that a supraphysiological level of glucocorticoid enhanced SFRP1 but not LRP5 expression of primary mesenchymal cell cultures in vitro and osteoblasts at metaphyseal trabecular endosteum and chondrocytes at calcified cartilage in vivo. Glucocorticoid augmentation of SFRP1 expression was transcriptionally mediated. The inhibitory action of glucocorticoid on osteogenic differentiation appeared to be regulated by SFRP1 mediation of beta-catenin destabilization because knocking down SFRP1 by RNA interference abrogated the supraphysiological level of glucocorticoid attenuation of osteogenesis. Recombinant human SFRP1 reduced the promoting effect of physiological level of glucocorticoid on cytosolic beta-catenin accumulation, runt-related transcription factor-2 activation, and osteogenic activities. Glucocorticoid and recombinant human SFRP1 significantly increased osteochondral cell apoptosis associated with reduced mineral density, biomechanical properties, trabecular bone volume, and midshaft cortical bone areas in rat femurs. These findings suggest that SFRP1 modulates glucocorticoid-induced bone loss. Regulation of Wnt/SFRP signal transduction can be used in the future as an alternative strategy for the prevention of glucocorticoid-induced osteoporosis.

  16. In vivo assessment of forearm bone mass and ulnar bending stiffness in healthy men

    NASA Technical Reports Server (NTRS)

    Myburgh, K. H.; Zhou, L. J.; Steele, C. R.; Arnaud, S.; Marcus, R.

    1992-01-01

    The cross-sectional bending stiffness EI of the ulna was measured in vivo by mechanical resistance tissue analysis (MRTA) in 90 men aged 19-89 years. MRTA measures the impedance response of low-frequency vibrations to determine EI, which is a reflection of elastic modulus E and moment of inertia I for the whole ulna. EI was compared to conventional estimates of bone mineral content (BMC), bone width (BW), and BMC/BW, which were all measured by single-photon absorptiometry. Results obtained from the nondominant ulna indicate that BW increases (r = 0.27, p = 0.01) and ulnar BMC/BW decreases (r = -0.31, p < or = 0.005) with age. Neither BMC nor EI declined with age. The single best predictor of EI was BW (r2 = 0.47, p = 0.0001), and further small but significant contributions were made by BMC (r2 = 0.53, p = 0.0001) and grip strength (r2 = 0.55, p = 0.0001). These results suggest that the resistance of older men to forearm fracture is related to age-associated changes in the moment of inertia achieved by redistributing bone mineral farther from the bending axis. We conclude that the in vivo assessment of bone geometry offers important insights to the comprehensive evaluation of bone strength.

  17. Caffeic acid phenethyl ester preferentially sensitizes CT26 colorectal adenocarcinoma to ionizing radiation without affecting bone marrow radioresponse

    SciTech Connect

    Chen, Y.-J.; Liao, H.-F.; Tsai, T.-H.; Wang, S.-Y.; Shiao, M.-S. . E-mail: msshiao@vghtpe.gov.tw

    2005-11-15

    Purpose: Caffeic acid phenethyl ester (CAPE), a component of propolis, was reported capable of depleting glutathione (GSH). We subsequently examined the radiosensitizing effect of CAPE and its toxicity. Methods and Materials: The effects of CAPE on GSH level, GSH metabolism enzyme activities, NF-{kappa}B activity, and radiosensitivity in mouse CT26 colorectal adenocarcinoma cells were determined. BALB/c mouse with CT26 cells implantation was used as a syngeneic in vivo model for evaluation of treatment and toxicity end points. Results: CAPE entered CT26 cells rapidly and depleted intracellular GSH in CT26 cells, but not in bone marrow cells. Pretreatment with nontoxic doses of CAPE significantly enhanced cell killing by ionizing radiation (IR) with sensitizer enhancement ratios up to 2.2. Pretreatment of CT26 cells with N-acetyl-L-cysteine reversed the GSH depletion activity and partially blocked the radiosensitizing effect of CAPE. CAPE treatment in CT26 cells increased glutathione peroxidase, decreased glutathione reductase, and did not affect glutathione S-transferase or {gamma}-glutamyl transpeptidase activity. Radiation activated NF-{kappa}B was reversed by CAPE pretreatment. In vivo study revealed that pretreatment with CAPE before IR resulted in greater inhibition of tumor growth and prolongation of survival in comparison with IR alone. Pretreatment with CAPE neither affected body weights nor produced hepatic, renal, or hematopoietic toxicity. Conclusions: CAPE sensitizes CT26 colorectal adenocarcinoma to IR, which may be via depleting GSH and inhibiting NF-{kappa}B activity, without toxicity to bone marrow, liver, and kidney.

  18. Microelements for bone boost: the last but not the least

    PubMed Central

    Pepa, Giuseppe Della; Brandi, Maria Luisa

    2016-01-01

    Summary Osteoporosis is a major public health problem affects many millions of people around the world. It is a metabolic bone disease characterized by loss of bone mass and strength, resulting in increased risk of fractures. Several lifestyle factors are considered to be important determinants of it and nutrition can potentially have a positive impact on bone health, in the development and maintenance of bone mass and in the prevention of osteoporosis. There are potentially numerous nutrients and dietary components that can influence bone health, and these range from the macronutrients to micronutrients. In the last decade, epidemiological studies and clinical trials showed micronutrients can potentially have a positive impact on bone health, preventing bone loss and fractures, decreasing bone resorption and increasing bone formation. Consequently, optimizing micronutrients intake might represent an effective and low-cost preventive measure against osteoporosis. PMID:28228778

  19. Osteocytic connexin 43 is not required for the increase in bone mass induced by intermittent PTH administration in male mice

    PubMed Central

    Pacheco-Costa, R.; Davis, H.M.; Atkinson, E.G.; Katchburian, E.; Plotkin, L.I.; Reginato, R.D.

    2016-01-01

    Objective: To investigate whether osteocytic connexin 43 (Cx43) is required for the bone response to intermittent PTH administration, and whether the connexin is involved in maintaining the bone matrix. Methods: Human PTH(1-34) was injected to adult male mice expressing (Cx43fl/fl) or not osteocytic Cx43 (Cx43fl/fl;DMP1-8kb-Cre) daily (100 µg/kg/d) for 14 days. Results: Cx43fl/fl;DMP1-8kb-Cre mice have no difference in body weight and BMD from 1 to 4 months of age. Intermittent PTH administration increased BMD and BV/TV and induced a similar increase in type I collagen, alkaline phosphatase, runx2, osteocalcin, and bone sialoprotein expression in mice from both genotypes. On the other hand, osteocytic deletion of Cx43 did not alter mRNA levels of glycosaminoglycans, proteoglycans, collagens and osteoblast-related genes. In addition, expression of collagens assessed by immunohistochemistry was not affected by deleting osteocytic Cx43. However, PTH administration increased type II collagen only in Cx43fl/fl control mice, whereas hormone increased type I collagen expression only in Cx43fl/fl;DMP1-8kb-Cre mice. Furthermore, PTH increased maturity of collagen fibers in control, but not in Cx43-deficient mice. Conclusion: Expression of Cx43 in osteocytes is dispensable for bone anabolism induced by intermittent PTH administration; but it can modulate, at least in part, the effect of PTH on the bone matrix environment. PMID:26944823

  20. Investigate methods for measuring muscle and bone mass changes in astronauts and animals which occur during space flight

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.

    1977-01-01

    Sodium-22 is being used as a tracer for bone mineral metabolism studies. Dogs are being grown from puppies to adulthood on a diet containing a constant level of sodium-22 in order to uniformly tag the entire skeleton with a long lived radionuclide. This study is still in progress and the dogs are still growing. Potassium-40 measurements were made on people, who are replacing muscle mass lost due to leg injuries, in a second study. It appears that potassium-40 measurements provide an accurate and convenient method for determining relative changes in the muscle content of the leg.

  1. Protein-enriched meal replacements do not adversely affect liver, kidney or bone density: an outpatient randomized controlled trial

    PubMed Central

    2010-01-01

    Background There is concern that recommending protein-enriched meal replacements as part of a weight management program could lead to changes in biomarkers of liver or renal function and reductions in bone density. This study was designed as a placebo-controlled clinical trial utilizing two isocaloric meal plans utilizing either a high protein-enriched (HP) or a standard protein (SP) meal replacement in an outpatient weight loss program. Subjects/methods 100 obese men and women over 30 years of age with a body mass index (BMI) between 27 to 40 kg/m2 were randomized to one of two isocaloric weight loss meal plans 1). HP group: providing 2.2 g protein/kg of lean body mass (LBM)/day or 2). SP group: providing 1.1 g protein/kg LBM/day. Meal replacement (MR) was used twice daily (one meal, one snack) for 3 months and then once a day for 9 months. Body weight, lipid profiles, liver function, renal function and bone density were measured at baseline and 12 months. Results Seventy subjects completed the study. Both groups lost weight (HP -4.29 ± 5.90 kg vs. SP -4.66 ± 6.91 kg, p < 0.01) and there was no difference in weight loss observed between the groups at one year. There was no significant change noted in liver function [AST (HP -2.07 ± 10.32 U/L, p = 0.28; SP 0.27 ± 6.67 U/L, p = 0.820), ALT (HP -1.03 ± 10.08 U/L, p = 0.34; SP -2.6 ± 12.51 U/L, p = 0.24), bilirubin (HP 0.007 ± 0.33, U/L, p = 0.91; SP 0.07 ± 0.24 U/L, p = 0.120), alkaline phosphatase (HP 2.00 ± 9.07 U/L, p = 0.240; SP -2.12 ± 11.01 U/L, p = 0.280)], renal function [serum creatinine (HP 0.31 ± 1.89 mg/dL, p = 0.380; SP -0.05 ± 0.15 mg/dL, p = 0.060), urea nitrogen (HP 1.33 ± 4.68 mg/dL, p = 0.130; SP -0.24 ± 3.03 mg/dL, p = 0.650), 24 hour urine creatinine clearance (HP -0.02 ± 0.16 mL/min, p = 0.480; SP 1.18 ± 7.53 mL/min, p = 0.400), and calcium excretion (HP -0.41 ± 9.48 mg/24 hours, p = 0.830; SP -0.007 ± 6.76 mg/24 hours, p = 0.990)] or in bone mineral density by DEXA (HP 0.04

  2. Bone mass and vitamin D levels in Parkinson's disease: is there any difference between genders?

    PubMed

    Ozturk, Erhan Arif; Gundogdu, Ibrahim; Tonuk, Burak; Kocer, Bilge Gonenli; Tombak, Yasemin; Comoglu, Selcuk; Cakci, Aytul

    2016-08-01

    [Purpose] The aim of this study was to determine the bone mineral density, vitamin D level, and frequencies of osteopenia and osteoporosis in patients with Parkinson's disease and to compare male and female patients with the controls separately. [Subjects and Methods] One hundred fifteen Parkinson's disease patients (47 males, 68 females; age range: 55-85 years) and 117 age- and gender-matched controls (47 males, 70 females) were enrolled in the study. Bone mineral density measured by dual-energy X-ray absorptiometry and serum D vitamin levels of each participant were recorded. [Results] The mean lumbar spine, femur neck, and total femur bone mineral density levels, T-scores, and vitamin D levels were found to be significantly lower in Parkinson's disease patients in both genders. Furthermore, osteoporosis rates were found be significantly higher only in female Parkinson's disease patients compared with female controls. [Conclusion] Data from the present study revealed that while osteoporosis was significantly higher only in female Parkinson's disease patients, all Parkinson's disease patients had lower bone mineral density scores and vitamin D levels compared with the controls regardless of gender, suggesting that clinicians should pay attention to the osteoporosis risk in Parkinson's disease and that adequate preventive measures should be taken in order to limit the future risk due to osteoporotic fractures.

  3. Calcium and vitamin D requirements for optimal bone mass during adolescence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There remains very strong interest in the calcium and vitamin D requirements of adolescents related to bone health. The Institute of Medicine (IOM) released new dietary guidelines in late 2010 for these nutrients. These guidelines were primarily based on literature published in 2009 and earlier and ...

  4. Impact of parathyroid status and Ca and vitamin-D supplementation on bone mass and muscle-bone relationships in 208 Belarussian children after thyroidectomy because of thyroid carcinoma.

    PubMed

    Schneider, P; Biko, J; Reiners, Chr; Demidchik, Y E; Drozd, V M; Capozza, R F; Cointry, G R; Ferretti, J L

    2004-09-01

    This observational study analyzes Ca-P metabolism and its impact on bone mass accrual and density and the muscle-bone mass/mass relationships in male and female children and adolescents who were parathyroidectomized because of thyroid carcinoma. Two hundred and eight children and adolescents (119 girls and 89 boys) from Gomel city (Belarus) and its rural surroundings were referred to our institution after having undergone total thyroidectomy for the treatment of advanced papillary thyroid cancer. A subgroup of children with demonstrated primary hypoparathyroidism received dihydrotachysterol (AT-10) and/or Ca supplementation. Among routine procedures over a maximum follow-up period of 5 years (average 3.7 years, maximum 8 visits), whole-body scans were taken using dual energy X-ray absorptiometry (DXA) at each visit in order to determine whole-body bone mineral content (TBMC), projected "areal" bone mineral density (TBMD), total lean mass (TLM) and total fat mass (TFM). The average serum Ca, P and AP concentrations over the whole observation period were significantly different between the groups; however, TBMC z-scores for all studied children were statistically similar in all visits. In girls, no between-group differences in height- and weight-controlled TBMC and TBMD or the TBMC/TLM ratio were observed (ANCOVA) and supplementation exerted no effect on these data, suggesting that the total bone mass accrual was not impaired by PTH deficiency in the studied conditions. However, non-supplemented boys showed lower values of the TBMC/TLM ratio than girls, and supplementation normalized these values in direct correlation with the induced improvement in serum P availability to bone. Results indicate that the primary impairment in parathyroid function and bone metabolism indicators in the thyroidectomized children was unrelated to any measurable change in crude bone mass values. However, in boys this condition impaired the TBMC/TLM ratio in such a way that the

  5. Fat-free body mass is the most important body composition determinant of 10-yr longitudinal development of lumbar bone in adult men and women.

    PubMed

    Bakker, Ingrid; Twisk, Jos W R; Van Mechelen, Willem; Kemper, Han C G

    2003-06-01

    The purpose of this study was to analyze the longitudinal relationship between body composition and lumbar bone mineral density (LBMD) and lumbar bone mineral content (LBMC) in (young) adults over a 10-yr period. The data are from the Amsterdam Growth and Health Longitudinal Study. Two hundred twenty-five men and 241 women were measured at 27, 32, and/or 36 yr of age. Nine body composition components were explored: total body weight, standing height, body mass index, waist circumference, hip circumference, waist to hip ratio, sum of four skinfolds, fat mass, and fat-free mass (FFM). Stratified analyses were performed by gender and adjustment was made for physical activity and calcium intake. Univariate multilevel analyses indicated that FFM was significantly positively related to the 10-yr development of both LBMD and LBMC in both sexes. Total body weight, standing height, and body mass index also showed a significant positive univariate relationships with LBMD and LBMC in both sexes, fat mass only with female LBMD. All best predictive multiple regression models included FFM, explaining 4-27% of the variation in bone mineral over this 10-yr period. Because FFM can be interpreted as a proxy for skeletal muscle mass, these results indicate the importance of muscle contractions on bone to increase bone strength in (young) adults.

  6. Menopause and Bone Loss

    MedlinePlus

    ... You reach your highest bone mass (size and density) at about age 30. Then, sometime between age ... your bones, your doctor may do a bone density test (DEXA scan). This test gives exact measurements ...

  7. A Comprehensive Analysis of Uncertainties Affecting the Stellar Mass-Halo Mass Relation for 0

    SciTech Connect

    Behroozi, Peter S.; Conroy, Charlie; Wechsler, Risa H.

    2010-06-07

    We conduct a comprehensive analysis of the relationship between central galaxies and their host dark matter halos, as characterized by the stellar mass - halo mass (SM-HM) relation, with rigorous consideration of uncertainties. Our analysis focuses on results from the abundance matching technique, which assumes that every dark matter halo or subhalo above a specific mass threshold hosts one galaxy. We provide a robust estimate of the SM-HM relation for 0 < z < 1 and discuss the quantitative effects of uncertainties in observed galaxy stellar mass functions (GSMFs) (including stellar mass estimates and counting uncertainties), halo mass functions (including cosmology and uncertainties from substructure), and the abundance matching technique used to link galaxies to halos (including scatter in this connection). Our analysis results in a robust estimate of the SM-HM relation and its evolution from z=0 to z=4. The shape and evolution are well constrained for z < 1. The largest uncertainties at these redshifts are due to stellar mass estimates (0.25 dex uncertainty in normalization); however, failure to account for scatter in stellar masses at fixed halo mass can lead to errors of similar magnitude in the SM-HM relation for central galaxies in massive halos. We also investigate the SM-HM relation to z = 4, although the shape of the relation at higher redshifts remains fairly unconstrained when uncertainties are taken into account. We find that the integrated star formation at a given halo mass peaks at 10-20% of available baryons for all redshifts from 0 to 4. This peak occurs at a halo mass of 7 x 10{sup 11} M{sub {circle_dot}} at z = 0 and this mass increases by a factor of 5 to z = 4. At lower and higher masses, star formation is substantially less efficient, with stellar mass scaling as M{sub *} {approx} M{sub h}{sup 2.3} at low masses and M{sub *} {approx} M{sub h}{sup 0.29} at high masses. The typical stellar mass for halos with mass less than 10{sup 12} M

  8. Recql4 haploinsufficiency in mice leads to defects in osteoblast progenitors: Implications for low bone mass phenotype

    SciTech Connect

    Yang Jieping; Murthy, Sreemala; Winata, Therry; Werner, Sean; Abe, Masumi; Prahalad, Agasanur K. . E-mail: aprahala@iupui.edu; Hock, Janet M.

    2006-05-26

    The cellular and molecular mechanisms that underlie skeletal abnormalities in defective Recql4-related syndromes are poorly understood. Our objective in this study was to explore the function of Recql4 in osteoblast biology both in vitro and in vivo. Immunohistochemistry on adult mouse bone showed Recql4 protein localization in active osteoblasts around growth plate, but not in fully differentiated osteocytes. Consistent with this finding, Recql4 gene expression was high in proliferating mouse osteoblastic MC3T3.E1 cells and decreased as cells progressively lost their proliferation activity during differentiation. Recql4 overexpression in osteoblastic cells exhibited higher proliferation activity, while its depletion impeded cell growth. In addition, bone marrow stromal cells from male Recql4+/- mice had fewer progenitor cells, including osteoprogenitors, indicated by reduced total fibroblast colony forming units (CFU-f) and alkaline phosphatase-positive CFU-f colonies concomitant with reduced bone mass. These findings provide evidence that Recql4 functions as a regulatory protein during osteoprogenitor proliferation, a critical cellular event during skeleton development.

  9. Facial affective reactions to bitter-tasting foods and body mass index in adults.

    PubMed

    Garcia-Burgos, D; Zamora, M C

    2013-12-01

    Differences in food consumption among body-weight statuses (e.g., higher fruit intake linked with lower body mass index (BMI) and energy-dense products with higher BMI) has raised the question of why people who are overweight or are at risk of becoming overweight eat differently from thinner people. One explanation, in terms of sensitivity to affective properties of food, suggests that palatability-driven consumption is likely to be an important contributor to food intake, and therefore body weight. Extending this approach to unpalatable tastes, we examined the relationship between aversive reactions to foods and BMI. We hypothesized that people who have a high BMI will show more negative affective reactions to bitter-tasting stimuli, even after controlling for sensory perception differences. Given that hedonic reactions may influence consumption even without conscious feelings of pleasure/displeasure, the facial expressions were included in order to provide more direct access to affective systems than subjective reports. Forty adults (28 females, 12 males) participated voluntarily. Their ages ranged from 18 to 46 years (M=24.2, SD=5.8). On the basis of BMI, participants were classified as low BMI (BMI<20; n=20) and high BMI (BMI>23; n=20). The mean BMI was 19.1 for low BMI (SD=0.7) and 25.2 for high BMI participants (SD=1.8). Each subject tasted 5 mL of a grapefruit juice drink and a bitter chocolate drink. Subjects rated the drinks' hedonic and incentive value, familiarity and bitter intensity immediately after each stimulus presentation. The results indicated that high BMI participants reacted to bitter stimuli showing more profound changes from baseline in neutral and disgust facial expressions compared with low BMI. No differences between groups were detected for the subjective pleasantness and familiarity. The research here is the first to examine how affective facial reactions to bitter food, apart from taste responsiveness, can predict differences in BMI.

  10. Monitoring of mass measles campaign in AILA-affected areas of West Bengal.

    PubMed

    Dasgupta, Samir; Bagchi, Saumendra Nath; Ghosh, Pramit; Sardar, Jadab Chandra; Roy, Amal Sinha; Sau, Manabendra

    2010-01-01

    A mass measles campaign was organized in AILA-affected areas of West Bengal in July-August 2009. The present cross-sectional study was conducted with the objectives to monitor and assess the cold chain maintenance, safe injection practices, IEC methods adopted, and to observe the conduction of the sessions in the campaign. All the cold chain points at the block level had adequate vaccines and equipments, twice monitoring of temperature which was in optimal range. 82% sessions had team according to microplan, AWW was present and team members were actively mobilizing the children in 83% sessions, puncture proof container was used and vaccines were given in correct sites in more than 95% sessions. The study observed satisfactory conduction of the whole campaign, still the injection safety procedures should be strengthened considering the potential harm to the health care providers.

  11. Targeted overexpression of Dkk1 in osteoblasts reduces bone mass but does not impair the anabolic response to intermittent PTH treatment in mice.

    PubMed

    Yao, Gang-Qing; Wu, Jian-Jun; Troiano, Nancy; Insogna, Karl

    2011-03-01

    Parathyroid hormone (PTH) is a potent anabolic agent, but the cellular mechanisms by which it increases bone mass are not fully understood. Dickkopf 1 (Dkk1) is an endogenous inhibitor of Wnt signaling and suppresses bone formation in vivo. We sought to determine if Dkk1 and anabolic PTH treatment interact in regulating bone mass. PTH treatment of primary murine osteoblasts for 24 h reduced Dkk1 expression by 90% as quantified by real-time PCR, whereas PTH treatment in vivo reduced Dkk1 expression by 30% when given as a single daily subcutaneous dose. To directly determine whether Dkk1 modulates the anabolic response of PTH in vivo, we engineered transgenic (TG) mice expressing murine Dkk1 under the control of the 2.3-kb rat collagen alpha-1 promoter. TG mice had significantly reduced bone mass, which was accompanied by reduced histomorphometric parameters of bone formation (reduced OV/TV, ObS/OS, and NOb/TAR). Treatment of TG mice and wild-type (WT) littermates with 95 ng/g body weight of human (1-34) PTH daily for 34 days resulted in comparable increases in bone mass at all skeletal sites. Histomorphometric analyses indicated that PTH treatment increased the numbers of both osteoblasts and osteoclasts in WT mice but only increased the numbers of osteoblasts in TG mice. We conclude that overexpression of Dkk1 does not attenuate the anabolic response to PTH in vivo.

  12. Quality control for bone quality parameters affected by subject motion in high-resolution peripheral quantitative computed tomography.

    PubMed

    Pauchard, Yves; Liphardt, Anna-Maria; Macdonald, Heather M; Hanley, David A; Boyd, Steven K

    2012-06-01

    Subject motion during high-resolution peripheral quantitative computed tomography (HR-pQCT) causes image artifacts that affect morphological analysis of bone quality. The aim of our study was to determine effectiveness of techniques for quality control in the presence of motion in vivo including automated and manual approaches. First, repeatability of manual grading was determined within and between laboratories. Given proper training using a standardized scale and training images (provided by the manufacturer), we found that manual grading is suitable for repeatable image quality grading within and across sites (ICC>0.7). Both a new automated technique providing motion measures based on projection moments, and traditional manual grading (1=best, 5=worst) were subsequently used to assess subject data for motion in N=137 image pairs (scan/re-scan) from the Canadian Multicentre Osteoporosis Study (CaMos) Calgary cohort. High quality image pairs were selected and measurement precision was estimated by calculating the coefficient of variation (CV). Consistent with previous data, density parameters (e.g. total bone mineral density) are more robust than structural (e.g. trabecular number) or finite element parameters (e.g. failure load). To obtain acceptable measurement precision, images should not exceed a manual grading of 3 (on a scale from 1 to 5) or an automatic (ε(T)) grading of 1.2. Automatic and manual grading provide comparable quality control, but the advantage of the automated technique is its ability to provide a motion value at scan time (providing a basis for real time decision regarding re-scan requirements), and the assessment is objective. Notably, automatic motion measurement can be performed retrospectively based on original scan data, and is therefore well suited for multi-center studies as well as any research where objective quality control is paramount.

  13. Effects of Long-Term Daily Administration of Prostaglandin-E2 on Maintaining Elevated Proximal Tibial Metaphyseal Cancellous Bone Mass in Male Rats

    NASA Technical Reports Server (NTRS)

    Ke, Hua Zhu; Jee, Webster S. S.; Mori, Satoshi; Li, Xiao Jian; Kimmel, Donald B.

    1992-01-01

    The effects of long-term prostaglandin E(sub 2) (PGE(sub 2)) on cancellous bone in proximal tibial metaphysis were studied in 7 month old male Sprague-Dawley rats given daily subcutaneous injections of 0, 1, 3, and 6 mg PGE(sub 2)/kg/day and sacrificed after 60, 120, and 180 days. Histomorphometric analyses were performed on double fluorescent-labeled undecalcified bone specimens. After 60 days of treatment, PGE(sub 2) produced diffusely labeled trabecular bone area, increased trabecular bone area, eroded and labeled trabecular perimeter, mineral apposition rate, and bone formation rate at all dose levels when compared with age-matched controls. In rats given PGE(sub 2) for longer time periods (120 and 180 days), trabecular bone area, diffusely labeled trabecular bone area, labeled perimeter, mineral apposition, and bone formation rates were sustained at the elevated levels achieved earlier at 60-day treatment. The eroded perimeter continued to increase until 120 days, then plateau. The observation that continuous systemic PGE(sub 2) administration to adult male rats elevated metaphyseal cancellous bone mass to 3.5-fold of the control level within 60 days and maintained it for another 120 days indicates that the powerful skeletal anabolic effects of PGE2 can be sustained with continuous administration .

  14. Pelvis width associated with bone mass distribution at the proximal femur in children 10-11 years old.

    PubMed

    Cardadeiro, Graça; Baptista, Fátima; Janz, Kathleen F; Rodrigues, Luís A; Sardinha, Luís B

    2014-03-01

    Differences in skeletal geometry may generate different patterns of mechanical loading to bone. Impact and muscle loading during physical activity have been shown to influence skeletal geometry. The purpose of this study was to compare geometric measures of the pelvis and proximal femur (PF) of young children and to analyze the contribution and potential interaction of these geometric measures with physical activity on PF bone mass distribution. Participants were 149 girls and 145 boys, aged 10-11 years. Total body and left hip DXA scans were used to derive pelvic and PF geometric measures and PF bone mineral density (BMD) at the femoral neck (FN), trochanter (TR), and intertrochanter (IT). These subregions were used to represent bone mass distribution via three BMD ratios: FN:PF, TR:PF, and IT:PF. Physical activity was objectively measured using accelerometry, and maturity was estimated as the years of distance from peak height velocity. When compared to boys, girls had a wider pelvic diameter and greater interacetabular distances (p < 0.001), lower BMD at FN, TR, and IT (p < 0.05), and higher TR:PF (p < 0.001). After controlling for maturity, body height, and lean body mass, the interacetabular distance in girls explained 21.1 % (β = 0.713, p < 0.001) in TR:PF and 2.9 % (β = -0.179, p = 0.031) in the IT:PF. Neck-shaft angle explained 5.6 % (β = -0.265, p = 0.001) of the IT:PF and 3.1 % (β = 0.194, p = 0.018) of the FN:PF. In boys, FN axis length explained 2.9 % (β = 0.195, p = 0.040) of TR:PF. There was no main effect of physical activity or interaction effect with pelvic geometry in explaining BMD differences among the subregions of the PF. Even before sexual dimorphism, girls have a wider pelvis than boys, which accounted for proportionally greater BMD of the TR than other subregions of the PF.

  15. Characterization of oil sands process-affected waters by liquid chromatography orbitrap mass spectrometry.

    PubMed

    Pereira, Alberto S; Bhattacharjee, Subir; Martin, Jonathan W

    2013-05-21

    Recovery of bitumen from oil sands in northern Alberta, Canada, occurs by surface mining or in situ thermal recovery, and both methods produce toxic oil sands process-affected water (OSPW). A new characterization strategy for surface mining OSPW (sm-OSPW) and in situ OSPW (is-OSPW) was achieved by combining liquid chromatography with orbitrap mass spectrometry (MS). In electrospray positive and negative ionization modes (ESI(+)/ESI(-)), mass spectral data were acquired with high resolving power (RP > 100,000-190,000) and mass accuracy (<2 ppm). The additional chromatographic resolution allowed for separation of various isomers and interference-free MS(n) experiments. Overall, ∼3000 elemental compositions were revealed in each OSPW sample, corresponding to a range of heteroatom-containing homologue classes: Ox (where x = 1-6), NOx (where x = 1-4), SOx (where x = 1-4), NO₂S, N, and S. Despite similarities between the OSPW samples at the level of heteroatom class, the two samples were very different when considering isomer patterns and double-bond equivalent profiles. The chromatographic separations also allowed for confirmation that, in both OSPW samples, the O₂ species detected in ESI(-) (i.e., naphthenic acids) were chemically distinct from the corresponding O₂ species detected in ESI(+). In comparison to model compounds, tandem MS spectra of these new O₂ species suggested a group of non-acidic compounds with dihydroxy, diketo, or ketohydroxy functionality. In light of the known endocrine-disrupting potential of sm-OSPW, the toxicity of these O₂ species deserves attention and the method should be further applied to environmental forensic analysis of water in the region.

  16. Assessment of advective porewater movement affecting mass transfer of hydrophobic organic contaminants in marine intertidal sediment.

    PubMed

    Cho, Yeo-Myoung; Werner, David; Moffett, Kevan B; Luthy, Richard G

    2010-08-01

    Advective porewater movement and molecular diffusion are important factors affecting the mass transfer of hydrophobic organic compounds (HOCs) in marsh and mudflat sediments. This study assessed porewater movement in an intertidal mudflat in South Basin adjacent to Hunters Point Shipyard, San Francisco, CA, where a pilot-scale test of sorbent amendment assessed the in situ stabilization of polychlorinated biphenyls (PCBs). To quantify advective porewater movement within the top 0-60 cm sediment layer, we used temperature as a tracer and conducted heat transport analysis using 14-day data from multidepth sediment temperature logging stations and one-dimensional heat transport simulations. The best-fit conditions gave an average Darcy velocity of 3.8cm/d in the downward vertical direction for sorbent-amended sediment with a plausible range of 0 cm/d to 8 cm/d. In a limiting case with no net advection, the best-fit depth-averaged mechanical dispersion coefficient was 2.2x10(-7) m2/s with a range of 0.9x10(-7) m2/s to 5.6x10(-7) m2/s. The Peclet number for PCB mobilization showed that molecular diffusion would control PCB mass transfer from sediment to sorbent particles for the case of uniform distribution of sorbent. However, the advective flow and mechanical dispersion in the test site would significantly benefit the stabilization effect of heterogeneously distributed sorbent by acting to smooth out the heterogeneities and homogenizing pollutant concentrations across the entire bioactive zone. These measurements and modeling techniques on intertidal sediment porewater transport could be useful for the development of more reliable mass transfer models for the prediction of contaminant release within the sediment bed, the movement of HOCs in the intertidal aquatic environment, and in situ sequestration by sorbent addition.

  17. The Association between Muscle Mass Deficits Estimated from Bioelectrical Impedance Analysis and Lumbar Spine Bone Mineral Density in Korean Adults

    PubMed Central

    Jang, Hye-Yeon; Lee, Kye-Bong; Cho, Sul-Bit; Im, In Jae; Kim, Hee Jin

    2016-01-01

    Background Bone mineral density (BMD) is influenced by many factors. Despite the reported association between body components and BMD, most of these studies investigated the relationship between absolute muscle mass or fat mass and BMD in postmenopausal women or elderly subjects. The aim of this study is to investigate the association between muscle mass deficits (MMD) estimated from bioelectrical impedance analysis (BIA) and lumbar spinal BMD in Korean adults 20 to 49 years of age. Methods This cross-sectional study included 1,765 men and women who visited a health promotion center for a routine checkup. The lumbar spinal BMD was measured by dual energy X-ray absorptiometry. Body composition analysis was performed using BIA. Results The mean age of the subjects was 40.2±6.3 years. Ten thousand subjects (56.7%) were males and 126 subjects (7.1%) belonged to the low BMD (Z-score ≤-2.0). MMD had the strongest influence on BMD after adjusting for all covariates. The adjusted odds ratio of Group 3 (MDD >2.6 kg) for low BMD was 2.74 (95% CI, 1.46-5.15) after adjusting for age, gender, body mass index, height, and smoking. Conclusions MMD estimated by BIA showed a significant association with BMD and could be regarded as an independent risk factor for low BMD in adults 20 to 49 years of age. These findings support that interventions such as physical activity or lifestyle changes may simultaneously modify both muscle and bone health in this age group. PMID:27294081

  18. Repeated freeze-thaw cycles reduce the survival rate of osteocytes in bone-tendon constructs without affecting the mechanical properties of tendons.

    PubMed

    Suto, Kaori; Urabe, Ken; Naruse, Kouji; Uchida, Kentaro; Matsuura, Terumasa; Mikuni-Takagaki, Yuko; Suto, Mitsutoshi; Nemoto, Noriko; Kamiya, Kentaro; Itoman, Moritoshi

    2012-03-01

    Frozen bone-patellar tendon bone allografts are useful in anterior cruciate ligament reconstruction as the freezing procedure kills tissue cells, thereby reducing immunogenicity of the grafts. However, a small portion of cells in human femoral heads treated by standard bone-bank freezing procedures survive, thus limiting the effectiveness of allografts. Here, we characterized the survival rates and mechanisms of cells isolated from rat bones and tendons that were subjected to freeze-thaw treatments, and evaluated the influence of these treatments on the mechanical properties of tendons. After a single freeze-thaw cycle, most cells isolated from frozen bone appeared morphologically as osteocytes and expressed both osteoblast- and osteocyte-related genes. Transmission electron microscopic observation of frozen cells using freeze-substitution revealed that a small number of osteocytes maintained large nuclei with intact double membranes, indicating that these osteocytes in bone matrix were resistant to ice crystal formation. We found that tendon cells were completely killed by a single freeze-thaw cycle, whereas bone cells exhibited a relatively high survival rate, although survival was significantly reduced after three freeze-thaw cycles. In patella tendons, the ultimate stress, Young's modulus, and strain at failure showed no significant differences between untreated tendons and those subjected to five freeze-thaw cycles. In conclusion, we identified that cells surviving after freeze-thaw treatment of rat bones were predominantly osteocytes. We propose that repeated freeze-thaw cycles could be applied for processing bone-tendon constructs prior to grafting as the treatment did not affect the mechanical property of tendons and drastically reduced surviving osteocytes, thereby potentially decreasing allograft immunogenecity.

  19. Bone and bone marrow: the same organ.

    PubMed

    Del Fattore, Andrea; Capannolo, Marta; Rucci, Nadia

    2010-11-01

    Interplays between bone and bone marrow are not limited to merely anatomic and histological connections, but include a tight functional correlation. Bone marrow resides within the medullary cavity of the bones and the process of hematopoiesis is regulated, at least in part, by bone cells. Moreover, osteoclasts and osteoblasts derive from precursors of hematopoietic and mesenchymal origin, respectively, both residing within the bone marrow. Alterations in one of these components typically cause impairment in the other, so diseases of the bone marrow compartment often affect the bone and vice versa. All these findings could make us to speculate that bone and bone marrow are not two separate districts, but can be considered as the two elements of the same unique functional unit, the bone-bone marrow organ. Here we will describe histological and functional interplays between bone and bone marrow, and will illustrate some diseases in which this tight correlation is evident.

  20. Evidence for reduced cancellous bone mass in the spontaneously hypertensive rat

    NASA Technical Reports Server (NTRS)

    Wang, T. M.; Hsu, J. F.; Jee, W. S.; Matthews, J. L.

    1993-01-01

    The histomorphometric changes in the proximal tibial metaphysis and epiphyseal growth plate and midtibial shaft of 26-week-old spontaneously hypertensive rats (SHR) compared with those of the corresponding normotensive Wistar-Kyoto (WKY) rats were studied. A decrease in body weight, growth plate thickness, and longitudinal growth rate of the proximal tibial epiphysis, trabecular bone volume, trabecular thickness and number, the number of osteoblasts and osteoprogenitor cells per millimeter square surface of the proximal tibial metaphysis, periosteal and endocortical apposition rate and bone formation rate of the tibial diaphysis were observed in the SHR. Additionally, systolic blood pressure, the number of osteoclasts per millimeter square surface and average number of nuclei per osteoclast of the proximal tibial metaphysis were significantly increased. Thus, osteoclastic activity is dominant over osteoblastic and chondroblastic activity in the SHR that results in a cancellous bone deficit in the skeleton. It will require additional work to ascertain the underlying cause for this condition as several factors in the SHR with a potential for causing this change are present, including elevated parathyroid hormone (PTH), depressed 1,25-(OH)2D3, low calcium absorption, reduced body weight (reduced loading) elevated blood pressure and possibly other direct cell differences in the mutant strain. At present elevated PTH and adaptation to underloading from reduced weight are postulated to be a likely cause, but additional studies are required to test this interpretation.

  1. Bone mass changes in vivo during the entire reproductive cycle in rats feeding different dietary calcium and calcium/phosphorus ratio content.

    PubMed

    Zeni, S; Weisstaub, A; Di Gregorio, S; Ronanre De Ferrer, P; Portela, M L de

    2003-12-01

    The purpose of this study was to quantify in vivo the impact of different dietary Ca contents on the maternal total skeleton and skeletal sub-areas in adult rats during pregnancy and lactation, using DXA. Twenty-four female Wistar rats (approximately 5 months old) were mated and divided into three groups (n = 8) and fed one of the following diets, varying only in Ca content (LCD: 0.14%, NCD: 0.6% or HCD: 1.2%). Pups were adjusted to 8-9 per dam. Maternal ionic calcium and in vivo bone mineral density (BMD) were measured at the beginning, after delivery and after weaning. Regardless of the diet, ionized calcium decreased from onset to weaning ( P < 0.05). At weaning, bone mass decreased 7.3% in NCD, 15% in LCD and 10.5% in HCD from initial values. Total skeleton, whole and proximal tibia and spine BMDs only decreased at delivery in the LCD group ( P < 0.05) but, irrespective of the diet, at weaning, they were lower compared to delivery and initial values ( P < 0.05). LCD group presented the lowest BMD in the proximal tibia and spine regions ( P < 0.05). At birth, pups did not present differences, however, at weaning, LCD pups reached the lowest body weight ( P < 0.05), NCD presented the highest body Ca content ( P < 0.05) and there were no differences between LCD and HCD. This in vivo study showed that regardless of the dietary calcium content, the maternal skeleton is slightly affected by pregnancy but severely affected by lactation. However, the degree of such response appears to depend not only on dietary Ca content but also on dietary Ca/P molar ratio.

  2. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry.

    PubMed

    Buckley, Michael; Collins, Matthew; Thomas-Oates, Jane; Wilson, Julie C

    2009-12-01

    Species identification of fragmentary bone, such as in rendered meat and bone meal or from archaeological sites, is often difficult in the absence of clear morphological markers. Here we present a robust method of analysing genus-specific collagen peptides by mass spectrometry simply by using solid-phase extraction (a C18 ZipTip) for peptide purification, rather than liquid chromatography/mass spectrometry (LC/MS). Analysis of the collagen from 32 different mammal species identified a total of 92 peptide markers that could be used for species identification, for example, in processed food and animal feed. A set of ancient (>100 ka@10 degrees C) bone samples was also analysed to show that the proposed method has applications to archaeological bone identification.

  3. Alterations of mass density and 3D osteocyte lacunar properties in bisphosphonate-related osteonecrotic human jaw bone, a synchrotron µCT study.

    PubMed

    Hesse, Bernhard; Langer, Max; Varga, Peter; Pacureanu, Alexandra; Dong, Pei; Schrof, Susanne; Männicke, Nils; Suhonen, Heikki; Olivier, Cecile; Maurer, Peter; Kazakia, Galateia J; Raum, Kay; Peyrin, Francoise

    2014-01-01

    Osteonecrosis of the jaw, in association with bisphosphonates (BRONJ) used for treating osteoporosis or cancer, is a severe and most often irreversible side effect whose underlying pathophysiological mechanisms remain largely unknown. Osteocytes are involved in bone remodeling and mineralization where they orchestrate the delicate equilibrium between osteoclast and osteoblast activity and through the active process called osteocytic osteolysis. Here, we hypothesized that (i) changes of the mineralized tissue matrix play a substantial role in the pathogenesis of BRONJ, and (ii) the osteocyte lacunar morphology is altered in BRONJ. Synchrotron µCT with phase contrast is an appropriate tool for assessing both the 3D morphology of the osteocyte lacunae and the bone matrix mass density. Here, we used this technique to investigate the mass density distribution and 3D osteocyte lacunar properties at the sub-micrometer scale in human bone samples from the jaw, femur and tibia. First, we compared healthy human jaw bone to human tibia and femur in order to assess the specific differences and address potential explanations of why the jaw bone is exclusively targeted by the necrosis as a side effect of BP treatment. Second, we investigated the differences between BRONJ and control jaw bone samples to detect potential differences which could aid an improved understanding of the course of BRONJ. We found that the apparent mass density of jaw bone was significantly smaller compared to that of tibia, consistent with a higher bone turnover in the jaw bone. The variance of the lacunar volume distribution was significantly different depending on the anatomical site. The comparison between BRONJ and control jaw specimens revealed no significant increase in mineralization after BP. We found a significant decrease in osteocyte-lacunar density in the BRONJ group compared to the control jaw. Interestingly, the osteocyte-lacunar volume distribution was not altered after BP treatment.

  4. Prader-Willi Critical Region, a Non-Translated, Imprinted Central Regulator of Bone Mass: Possible Role in Skeletal Abnormalities in Prader-Willi Syndrome

    PubMed Central

    Qi, Yue; Zolotukhin, Sergei; Kulkarni, Rishikesh N.; Enriquez, Ronaldo F.; Purtell, Louise; Lee, Nicola J.; Wee, Natalie K.; Croucher, Peter I.; Campbell, Lesley; Herzog, Herbert; Baldock, Paul A.

    2016-01-01

    Prader-Willi Syndrome (PWS), a maternally imprinted disorder and leading cause of obesity, is characterised by insatiable appetite, poor muscle development, cognitive impairment, endocrine disturbance, short stature and osteoporosis. A number of causative loci have been located within the imprinted Prader-Willi Critical Region (PWCR), including a set of small non-translated nucleolar RNA’s (snoRNA). Recently, micro-deletions in humans identified the snoRNA Snord116 as a critical contributor to the development of PWS exhibiting many of the classical symptoms of PWS. Here we show that loss of the PWCR which includes Snord116 in mice leads to a reduced bone mass phenotype, similar to that observed in humans. Consistent with reduced stature in PWS, PWCR KO mice showed delayed skeletal development, with shorter femurs and vertebrae, reduced bone size and mass in both sexes. The reduction in bone mass in PWCR KO mice was associated with deficiencies in cortical bone volume and cortical mineral apposition rate, with no change in cancellous bone. Importantly, while the length difference was corrected in aged mice, consistent with continued growth in rodents, reduced cortical bone formation was still evident, indicating continued osteoblastic suppression by loss of PWCR expression in skeletally mature mice. Interestingly, deletion of this region included deletion of the exclusively brain expressed Snord116 cluster and resulted in an upregulation in expression of both NPY and POMC mRNA in the arcuate nucleus. Importantly, the selective deletion of the PWCR only in NPY expressing neurons replicated the bone phenotype of PWCR KO mice. Taken together, PWCR deletion in mice, and specifically in NPY neurons, recapitulates the short stature and low BMD and aspects of the hormonal imbalance of PWS individuals. Moreover, it demonstrates for the first time, that a region encoding non-translated RNAs, expressed solely within the brain, can regulate bone mass in health and disease

  5. Prader-Willi Critical Region, a Non-Translated, Imprinted Central Regulator of Bone Mass: Possible Role in Skeletal Abnormalities in Prader-Willi Syndrome.

    PubMed

    Khor, Ee-Cheng; Fanshawe, Bruce; Qi, Yue; Zolotukhin, Sergei; Kulkarni, Rishikesh N; Enriquez, Ronaldo F; Purtell, Louise; Lee, Nicola J; Wee, Natalie K; Croucher, Peter I; Campbell, Lesley; Herzog, Herbert; Baldock, Paul A

    2016-01-01

    Prader-Willi Syndrome (PWS), a maternally imprinted disorder and leading cause of obesity, is characterised by insatiable appetite, poor muscle development, cognitive impairment, endocrine disturbance, short stature and osteoporosis. A number of causative loci have been located within the imprinted Prader-Willi Critical Region (PWCR), including a set of small non-translated nucleolar RNA's (snoRNA). Recently, micro-deletions in humans identified the snoRNA Snord116 as a critical contributor to the development of PWS exhibiting many of the classical symptoms of PWS. Here we show that loss of the PWCR which includes Snord116 in mice leads to a reduced bone mass phenotype, similar to that observed in humans. Consistent with reduced stature in PWS, PWCR KO mice showed delayed skeletal development, with shorter femurs and vertebrae, reduced bone size and mass in both sexes. The reduction in bone mass in PWCR KO mice was associated with deficiencies in cortical bone volume and cortical mineral apposition rate, with no change in cancellous bone. Importantly, while the length difference was corrected in aged mice, consistent with continued growth in rodents, reduced cortical bone formation was still evident, indicating continued osteoblastic suppression by loss of PWCR expression in skeletally mature mice. Interestingly, deletion of this region included deletion of the exclusively brain expressed Snord116 cluster and resulted in an upregulation in expression of both NPY and POMC mRNA in the arcuate nucleus. Importantly, the selective deletion of the PWCR only in NPY expressing neurons replicated the bone phenotype of PWCR KO mice. Taken together, PWCR deletion in mice, and specifically in NPY neurons, recapitulates the short stature and low BMD and aspects of the hormonal imbalance of PWS individuals. Moreover, it demonstrates for the first time, that a region encoding non-translated RNAs, expressed solely within the brain, can regulate bone mass in health and disease.

  6. [Animal models for bone and joint disease. Assessment of bone mass, structure and strength in rat and mouse models - focus on micro-computed tomography study -].

    PubMed

    Ito, Masako

    2011-02-01

    In the assessment of quality of bone in animal models, it is required to know the differences in bone mineral density, bone structure and strength from the human bones. "Guidelines for Assessment of Bone Microstructure in Rodents Using Micro-Computed Tomography" has been published (2010 JBMR). For a good use of micro-CT for animal studies, the important items are explained in this article, (1) Imaging acquisition : sample preparation and positioning, X-ray scan conditions, voxel size/image resolution, region of interest (2) Image processing : filtration, segmentation (3) Terminology and algorithm of trabecular (bone volume fraction, trabecular number/thickness/separation, structure model index, connectivity, degree of anisotropy) and cortical (cross-sectional area, cortical thickness) bone morphometry.

  7. Double disruption of α2A- and α2C-adrenoceptors results in sympathetic hyperactivity and high-bone-mass phenotype.

    PubMed

    Fonseca, Tatiana L; Jorgetti, Vanda; Costa, Cristiane C; Capelo, Luciane P; Covarrubias, Ambart E; Moulatlet, Ana C; Teixeira, Marilia B; Hesse, Eric; Morethson, Priscilla; Beber, Eduardo H; Freitas, Fatima R; Wang, Charles C; Nonaka, Keico O; Oliveira, Ricardo; Casarini, Dulce E; Zorn, Telma M; Brum, Patricia C; Gouveia, Cecilia H

    2011-03-01

    Evidence demonstrates that sympathetic nervous system (SNS) activation causes osteopenia via β(2)-adrenoceptor (β2-AR) signaling. Here we show that female mice with chronic sympathetic hyperactivity owing to double knockout of adrenoceptors that negatively regulate norepinephrine release, α(2A)-AR and α(2C)-AR (α(2A) /α(2C)-ARKO), present an unexpected and generalized phenotype of high bone mass with decreased bone resorption and increased formation. In α(2A) /α(2C)-ARKO versus wild-type (WT) mice, micro-computed tomographic (µCT) analysis showed increased, better connected, and more plate-shaped trabeculae in the femur and vertebra and increased cortical thickness in the vertebra, whereas biomechanical analysis showed increased tibial and femoral strength. Tibial mRNA expression of tartrate-resistant acid phosphatase (TRACP) and receptor activator of NF-κB (RANK), which are osteoclast-related factors, was lower in knockout (KO) mice. Plasma leptin and brain mRNA levels of cocaine amphetamine-regulated transcript (CART), which are factors that centrally affect bone turnover, and serum levels of estradiol were similar between mice strains. Tibial β(2)-AR mRNA expression also was similar in KO and WT littermates, whereas α(2A)-, α(2B)- and α(2C)-AR mRNAs were detected in the tibia of WT mice and in osteoblast-like MC3T3-E1 cells. By immunohistochemistry, we detected α(2A)-, α(2B)-, α(2C)- and β(2)-ARs in osteoblasts, osteoclasts, and chondrocytes of 18.5-day-old mouse fetuses and 35-day-old mice. Finally, we showed that isolated osteoclasts in culture are responsive to the selective α(2)-AR agonist clonidine and to the nonspecific α-AR antagonist phentolamine. These findings suggest that β(2)-AR is not the single adrenoceptor involved in bone turnover regulation and show that α(2)-AR signaling also may mediate the SNS actions in the skeleton.

  8. Bone nutrients for vegetarians.

    PubMed

    Mangels, Ann Reed

    2014-07-01

    The process of bone mineralization and resorption is complex and is affected by numerous factors, including dietary constituents. Although some dietary factors involved in bone health, such as calcium and vitamin D, are typically associated with dairy products, plant-based sources of these nutrients also supply other key nutrients involved in bone maintenance. Some research suggests that vegetarian diets, especially vegan diets, are associated with lower bone mineral density (BMD), but this does not appear to be clinically significant. Vegan diets are not associated with an increased fracture risk if calcium intake is adequate. Dietary factors in plant-based diets that support the development and maintenance of bone mass include calcium, vitamin D, protein, potassium, and soy isoflavones. Other factors present in plant-based diets such as oxalic acid and phytic acid can potentially interfere with absorption and retention of calcium and thereby have a negative effect on BMD. Impaired vitamin B-12 status also negatively affects BMD. The role of protein in calcium balance is multifaceted. Overall, calcium and protein intakes in accord with Dietary Reference Intakes are recommended for vegetarians, including vegans. Fortified foods are often helpful in meeting recommendations for calcium and vitamin D. Plant-based diets can provide adequate amounts of key nutrients for bone health.

  9. SILICON AND BONE HEALTH

    PubMed Central

    JUGDAOHSINGH, R.

    2009-01-01

    Low bone mass (osteoporosis) is a silent epidemic of the 21st century, which presently in the UK results in over 200,000 fractures annually at a cost of over one billion pounds. Figures are set to increase worldwide. Understanding the factors which affect bone metabolism is thus of primary importance in order to establish preventative measures or treatments for this condition. Nutrition is an important determinant of bone health, but the effects of the individual nutrients and minerals, other than calcium, is little understood. Accumulating evidence over the last 30 years strongly suggest that dietary silicon is beneficial to bone and connective tissue health and we recently reported strong positive associations between dietary Si intake and bone mineral density in US and UK cohorts. The exact biological role(s) of silicon in bone health is still not clear, although a number of possible mechanisms have been suggested, including the synthesis of collagen and/or its stabilization, and matrix mineralization. This review gives an overview of this naturally occurring dietary element, its metabolism and the evidence of its potential role in bone health. PMID:17435952

  10. Silicon and bone health.

    PubMed

    Jugdaohsingh, R

    2007-01-01

    Low bone mass (osteoporosis) is a silent epidemic of the 21st century, which presently in the UK results in over 200,000 fractures annually at a cost of over one billion pounds. Figures are set to increase worldwide. Understanding the factors which affect bone metabolism is thus of primary importance in order to establish preventative measures or treatments for this condition. Nutrition is an important determinant of bone health, but the effects of the individual nutrients and minerals, other than calcium, is little understood. Accumulating evidence over the last 30 years strongly suggest that dietary silicon is beneficial to bone and connective tissue health and we recently reported strong positive associations between dietary Si intake and bone mineral density in US and UK cohorts. The exact biological role(s) of silicon in bone health is still not clear, although a number of possible mechanisms have been suggested, including the synthesis of collagen and/or its stabilization, and matrix mineralization. This review gives an overview of this naturally occurring dietary element, its metabolism and the evidence of its potential role in bone health.

  11. Leptin regulates bone formation via the sympathetic nervous system

    NASA Technical Reports Server (NTRS)

    Takeda, Shu; Elefteriou, Florent; Levasseur, Regis; Liu, Xiuyun; Zhao, Liping; Parker, Keith L.; Armstrong, Dawna; Ducy, Patricia; Karsenty, Gerard

    2002-01-01

    We previously showed that leptin inhibits bone formation by an undefined mechanism. Here, we show that hypothalamic leptin-dependent antiosteogenic and anorexigenic networks differ, and that the peripheral mediators of leptin antiosteogenic function appear to be neuronal. Neuropeptides mediating leptin anorexigenic function do not affect bone formation. Leptin deficiency results in low sympathetic tone, and genetic or pharmacological ablation of adrenergic signaling leads to a leptin-resistant high bone mass. beta-adrenergic receptors on osteoblasts regulate their proliferation, and a beta-adrenergic agonist decreases bone mass in leptin-deficient and wild-type mice while a beta-adrenergic antagonist increases bone mass in wild-type and ovariectomized mice. None of these manipulations affects body weight. This study demonstrates a leptin-dependent neuronal regulation of bone formation with potential therapeutic implications for osteoporosis.

  12. Bone Regeneration Mediated by BMP4-Expressing Muscle-Derived Stem Cells Is Affected by Delivery System

    PubMed Central

    Usas, Arvydas; Ho, Andrew M.; Cooper, Gregory M.; Olshanski, Anne; Peng, Hairong

    2009-01-01

    This study investigated the delivery of bone morphogenetic protein (BMP)4-secreting muscle-derived stem cells (MDSC-B4) capable of inducing bone formation in mice using collagen gel (CG), fibrin sealant (FS), and gelatin sponge carriers. After implanting these various cell-loaded scaffolds intramuscularly or into critical-size skull defects, we measured the extent of heterotopic ossification and calvarial defect healing over a 6-week period via radiographic, radiomorphometric, histological, and micro-computed tomography analyses. As expected, in the absence of MDSC-B4, there was no ectopic ossification and only minimal calvarial regeneration using each type of scaffold. Although CG and gelatin sponges loaded with BMP4-secreting cells produced the most ectopic bone, FS constructs produced bone with comparably less mineralization. In the mouse calvaria, we observed MDSC-B4-loaded scaffolds able to promote bone defect healing to a variable degree, but there were differences between these implants in the volume, shape, and morphology of regenerated bone. MDSC-B4 delivery in a gelatin sponge produced hypertrophic bone, whereas delivery in a CG and FS healed the defect with bone that closely resembled the quantity and configuration of native calvarium. In summary, hydrogels are suitable carriers for osteocompetent MDSCs in promoting bone regeneration, especially at craniofacial injury sites. PMID:19061430

  13. The standardized BHH10 extract, a combination of Astragalus membranaceus, Cinnamomum cassia, and Phellodendron amurense, reverses bone mass and metabolism in a rat model of postmenopausal osteoporosis.

    PubMed

    Huh, Jeong-Eun; Kim, Soo-Jeong; Kang, Jung-Won; Nam, Dong-Woo; Choi, Do-Young; Park, Dong-Suk; Lee, Jae-Dong

    2015-01-01

    Jasin-hwan-gagambang (BHH10), a modified prescription of Jasin-hwan, contains Astragalus membranaceus, Cinnamomum cassia, and Phellodendron amurense, and it has been traditionally used to treat osteoporosis and other inflammatory diseases. In this study, we systematically investigated the protective effects of BHH10 in ovariectomy (OVX)-induced rats. Sprague-Dawley rats were randomly divided into sham and OVX subgroups. The rats in the OVX group were treated with vehicle, BHH10, alendronate (ALN), and 17β-estradiol (E2). BHH10 treatment significantly inhibited OVX-induced increases in body weight and uterus atrophy. In addition, it significantly increased the bone mineral density (BMD) and prevented a decrease in trabecular bone volume, connectivity density, trabecular number, thickness, and separation at the total femur and femur neck. The OVX rats showed significant decreases in the serum levels of calcium and phosphorous and significant increases in the serum levels of cholesterol, low-density lipoprotein cholesterol, alkaline phosphatase, osteocalcin, C-telopeptide type 1 collagen, and bone morphogenetic protein-2. These changes were significantly reduced to near sham levels by administration of BHH10 to OVX rats. BHH10-treated rats had a greater bone mass, a better structural architecture of the bone, and higher levels of biochemical markers of the bone than did the ALN-treated or E2-treated rats. These results suggest that BHH10 reverses osteoporosis in OVX rats by stimulating bone formation or regulating bone resorption and is not associated with toxicity.

  14. Agreement between bioelectrical impedance and dual energy X-ray absorptiometry in assessing fat, lean and bone mass changes in adults after a lifestyle intervention.

    PubMed

    Macfarlane, Duncan J; Chan, Natalie T-Y; Tse, Michael A; Joe, Glen M

    2016-01-01

    We aimed to assess the agreement of a commercially available bioelectrical impedance analysis (BIA) device in measuring changes in fat, lean and bone mass over a 10-week lifestyle intervention, with dual energy X-ray absorptiometry (DXA) as reference. A sample of 136 volunteers (18-66 years) underwent a physical activity intervention to enhance lean mass and reduce fat mass. BIA (Tanita BC545) and DXA (Hologic Explorer) measures of whole-body composition were taken at baseline and at the end of the intervention. After an average of 74 ± 18 days intervention, DXA showed significant changes in 2 of 3 outcome variables: reduced fat mass of 0.802 ± 1.092 kg (P < 0.001), increased lean mass of 0.477 ± 0.966 kg (P < 0.001); minor non-significant increase of 0.007 ± 0.041 kg of bone mass (P = 0.052). The respective changes in BIA measures were a significant reduction of 0.486 ± 1.539 kg fat (P < 0.001), but non-significant increases of 0.084 ± 1.201 kg lean mass (P = 0.425), and 0.014 ± 0.091 kg bone (P = 0.074). Significant, but moderately weak, correlations were seen in absolute mass changes between DXA and BIA: 0.511 (fat), 0.362 (lean) and 0.172 (bone). Compared to DXA, BIA demonstrated mediocre agreement to changes in fat mass, but poor agreement to lean mass changes. BIA significantly underestimated the magnitude of changes in fat and lean mass compared to DXA.

  15. Textural and rheological properties of Pacific whiting surimi as affected by nano-scaled fish bone and heating rates.

    PubMed

    Yin, Tao; Park, Jae W

    2015-08-01

    Textural and rheological properties of Pacific whiting (PW) surimi were investigated at various heating rates with the use of nano-scaled fish bone (NFB) and calcium chloride. Addition of NFB and slow heating improved gel strength significantly. Activity of endogenous transglutaminase (ETGase) from PW surimi was markedly induced by both NFB calcium and calcium chloride, showing an optimal temperature at 30°C. Initial storage modulus increased as NFB calcium concentration increased and the same trend was maintained throughout the temperature sweep. Rheograms with temperature sweep at slow heating rate (1°C/min) exhibited two peaks at ∼ 35°C and ∼ 70°C. However, no peak was observed during temperature sweep from 20 to 90°C at fast heating rate (20°C/min). Protein patterns of surimi gels were affected by both heating rate and NFB calcium concentration. Under slow heating, myosin heavy chain intensity decreased with NFB calcium concentration, indicating formation of ε-(γ-glutamyl) lysine cross-links by ETGase and NFB calcium ion.

  16. Inactivation of Vhl in Osteochondral Progenitor Cells Causes High Bone Mass Phenotype and Protects Against Age-Related Bone Loss in Adult Mice

    PubMed Central

    Weng, Tujun; Xie, Yangli; Huang, Junlan; Luo, Fengtao; Yi, Lingxian; He, Qifen; Chen, Di; Chen, Lin

    2014-01-01

    Previous studies have shown that disruption of von Hippel–Lindau gene (Vhl) coincides with activation of hypoxia-inducible factor α (HIFα) signaling in bone cells and plays an important role in bone development, homeostasis, and regeneration. It is known that activation of HIF1α signaling in mature osteoblasts is central to the coupling between angiogenesis and bone formation. However, the precise mechanisms responsible for the coupling between skeletal angiogenesis and osteogenesis during bone remodeling are only partially elucidated. To evaluate the role of Vhl in bone homeostasis and the coupling between vascular physiology and bone, we generated mice lacking Vhl in osteochondral progenitor cells (referred to as Vhl cKO mice) at postnatal and adult stages in a tamoxifen-inducible manner and changes in skeletal morphology were assessed by micro–computed tomography (µCT), histology, and bone histomorphometry. We found that mice with inactivation of Vhl in osteochondral progenitor cells at the postnatal stage largely phenocopied that of mice lacking Vhl in mature osteoblasts, developing striking and progressive accumulation of cancellous bone with increased microvascular density and bone formation. These were accompanied with a significant increase in osteoblast proliferation, upregulation of differentiation marker Runx2 and osteocalcin, and elevated expression of vascular endothelial growth factor (VEGF) and phosphorylation of Smad1/5/8. In addition, we found that Vhl deletion in osteochondral progenitor cells in adult bone protects mice from aging-induced bone loss. Our data suggest that the VHL-mediated signaling in osteochondral progenitor cells plays a critical role in bone remodeling at postnatal/adult stages through coupling osteogenesis and angiogenesis. © 2014 American Society for Bone and Mineral Research. PMID:23999831

  17. Targeted disruption of BMP signaling through type IA receptor (BMPR1A) in osteocyte suppresses SOST and RANKL, leading to dramatic increase in bone mass, bone mineral density and mechanical strength.

    PubMed

    Kamiya, Nobuhiro; Shuxian, Lin; Yamaguchi, Ryosuke; Phipps, Matthew; Aruwajoye, Olumide; Adapala, Naga Suresh; Yuan, Hui; Kim, Harry K W; Feng, Jian Q

    2016-10-01

    Recent studies suggest a critical role of osteocytes in controlling skeletal development and bone remodeling although the molecular mechanism is largely unknown. This study investigated BMP signaling in osteocytes by disrupting Bmpr1a under the Dmp1-promoter. The conditional knockout (cKO) mice displayed a striking osteosclerotic phenotype with increased trabecular bone volume, thickness, number, and mineral density as assessed by X-ray and micro-CT. The bone histomorphometry, H&E, and TRAP staining revealed a dramatic increase in trabecular and cortical bone masses but a sharp reduction in osteoclast number. Moreover, there was an increase in BrdU positive osteocytes (2-5-fold) and osteoid volume (~4-fold) but a decrease in the bone formation rate (~85%) in the cKO bones, indicating a defective mineralization. The SEM analysis revealed poorly formed osteocytes: a sharp increase in cell numbers, a great reduction in cell dendrites, and a remarkable change in the cell distribution pattern. Molecular studies demonstrated a significant decrease in the Sost mRNA levels in bone (>95%), and the SOST protein levels in serum (~85%) and bone matrices. There was a significant increase in the β-catenin (>3-fold) mRNA levels as well as its target genes Tcf1 (>6-fold) and Tcf3 (~2-fold) in the cKO bones. We also showed a significant decrease in the RANKL levels of serum proteins (~65%) and bone mRNA (~57%), and a significant increase in the Opg mRNA levels (>20-fold) together with a significant reduction in the Rankl/Opg ratio (>95%), which are responsible for a sharp reduction in the cKO osteoclasts. The values of mechanical strength were higher in cKO femora (i.e. max force, displacement, and work failure). These results suggest that loss of BMP signaling specifically in osteocytes dramatically increases bone mass presumably through simultaneous inhibition of RANKL and SOST, leading to osteoclast inhibition and Wnt activation together. Finally, a working hypothesis is

  18. Optimizing Bone Health in Duchenne Muscular Dystrophy

    PubMed Central

    Buckner, Jason L.; Bowden, Sasigarn A.; Mahan, John D.

    2015-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle weakness, with eventual loss of ambulation and premature death. The approved therapy with corticosteroids improves muscle strength, prolongs ambulation, and maintains pulmonary function. However, the osteoporotic impact of chronic corticosteroid use further impairs the underlying reduced bone mass seen in DMD, leading to increased fragility fractures of long bones and vertebrae. These serious sequelae adversely affect quality of life and can impact survival. The current clinical issues relating to bone health and bone health screening methods in DMD are presented in this review. Diagnostic studies, including biochemical markers of bone turnover and bone mineral density by dual energy X-ray absorptiometry (DXA), as well as spinal imaging using densitometric lateral spinal imaging, and treatment to optimize bone health in patients with DMD are discussed. Treatment with bisphosphonates offers a method to increase bone mass in these children; oral and intravenous bisphosphonates have been used successfully although treatment is typically reserved for children with fractures and/or bone pain with low bone mass by DXA. PMID:26124831

  19. Smoking cue reactivity across massed extinction trials: negative affect and gender effects.

    PubMed

    Collins, Bradley N; Nair, Uma S; Komaroff, Eugene

    2011-04-01

    Designing and implementing cue exposure procedures to treat nicotine dependence remains a challenge. This study tested the hypothesis that gender and negative affect (NA) influence changes in smoking urge over time using data from a pilot project testing the feasibility of massed extinction procedures. Forty-three smokers and ex-smokers completed the behavioral laboratory procedures. All participants were over 17 years old, smoked at least 10 cigarettes daily over the last year (or the year prior to quitting) and had expired CO below 10 ppm at the beginning of the ~4-hour session. After informed consent, participants completed 45 min of baseline assessments, and then completed a series of 12 identical, 5-minute exposure trials with inter-trial breaks. Smoking cues included visual, tactile, and olfactory cues with a lit cigarette, in addition to smoking-related motor behaviors without smoking. After each trial, participants reported urge and negative affect (NA). Logistic growth curve models supported the hypothesis that across trials, participants would demonstrate an initial linear increase followed by a decrease in smoking urge (quadratic effect). Data supported hypothesized gender, NA, and gender×NA effects. Significant linear increases in urge were observed among high and low NA males, but not among females in either NA subgroup. A differential quadratic effect showed a significant decrease in urge for the low NA subgroup, but a non-significant decrease in urge in the high NA group. This is the first study to demonstrate gender differences and the effects of NA on the extinction process using a smoking cue exposure paradigm. Results could guide future cue reactivity research and exposure interventions for nicotine dependence.