Science.gov

Sample records for affect bone mineral

  1. Factors Affecting Bone Mineral Density in Adults with Cerebral Palsy

    PubMed Central

    Yoon, Young Kwon; Kim, Ae Ryoung; Kim, On Yoo; Lee, Kilchan; Suh, Young Joo

    2012-01-01

    Objective To clarify factors affecting bone mineral density (BMD) in adults with cerebral palsy (CP). Method Thirty-five patients with CP participated in this study. Demographic data including gender, age, body mass index (BMI), subtype according to neuromotor type and topographical distribution, ambulatory function, and functional independence measure (FIM) were investigated. The BMD of the lumbar spine and femur were measured using Dual-energy X-ray absorptiometry, and the factors affecting BMD were analyzed. Results The BMD had no significant association with factors such as gender, age, and subtype in adults with CP. However, BMI was significantly correlated with the BMD of lumbar spine and femur (p<0.05). The FIM score was also positively correlated with the BMD of femur (p<0.05). Moreover, CP patients with higher ambulatory function had significantly higher BMD of femur (p<0.05). Conclusion These findings suggest that BMI and functional levels such as FIM and ambulatory function can affect BMD in adults with CP. The results might be used as basic data, suggesting the importance of treatment including weight bearing exercise and gait training in adults with CP. PMID:23342308

  2. Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure.

    PubMed

    Scholz-Ahrens, Katharina E; Ade, Peter; Marten, Berit; Weber, Petra; Timm, Wolfram; Açil, Yahya; Glüer, Claus-C; Schrezenmeir, Jürgen

    2007-03-01

    Several studies in animals and humans have shown positive effects of nondigestible oligosaccharides (NDO) on mineral absorption and metabolism and bone composition and architecture. These include inulin, oligofructose, fructooligosaccharides, galactooligosaccharides, soybean oligosaccharide, and also resistant starches, sugar alcohols, and difructose anhydride. A positive outcome of dietary prebiotics is promoted by a high dietary calcium content up to a threshold level and an optimum amount and composition of supplemented prebiotics. There might be an optimum composition of fructooligosaccharides with different chain lengths (synergy products). The efficacy of dietary prebiotics depends on chronological age, physiological age, menopausal status, and calcium absorption capacity. There is evidence for an independent probiotic effect on facilitating mineral absorption. Synbiotics, i.e., a combination of probiotics and prebiotics, can induce additional effects. Whether a low content of habitual NDO would augment the effect of dietary prebiotics or synbiotics remains to be studied. The underlying mechanisms are manifold: increased solubility of minerals because of increased bacterial production of short-chain fatty acids, which is promoted by the greater supply of substrate; an enlargement of the absorption surface by promoting proliferation of enterocytes mediated by bacterial fermentation products, predominantly lactate and butyrate; increased expression of calcium-binding proteins; improvement of gut health; degradation of mineral complexing phytic acid; release of bone-modulating factors such as phytoestrogens from foods; stabilization of the intestinal flora and ecology, also in the presence of antibiotics; stabilization of the intestinal mucus; and impact of modulating growth factors such as polyamines. In conclusion, prebiotics are the most promising but also best investigated substances with respect to a bone-health-promoting potential, compared with probiotics

  3. Adynamic Bone Decreases Bone Toughness During Aging by Affecting Mineral and Matrix.

    PubMed

    Ng, Adeline H; Omelon, Sidney; Variola, Fabio; Allo, Bedilu; Willett, Thomas L; Alman, Benjamin A; Grynpas, Marc D

    2016-02-01

    Adynamic bone is the most frequent type of bone lesion in patients with chronic kidney disease; long-term use of antiresorptive therapy may also lead to the adynamic bone condition. The hallmark of adynamic bone is a loss of bone turnover, and a major clinical concern of adynamic bone is diminished bone quality and an increase in fracture risk. Our current study aims to investigate how bone quality changes with age in our previously established mouse model of adynamic bone. Young and old mice (4 months old and 16 months old, respectively) were used in this study. Col2.3Δtk (DTK) mice were treated with ganciclovir and pamidronate to create the adynamic bone condition. Bone quality was evaluated using established techniques including bone histomorphometry, microcomputed tomography, quantitative backscattered electron imaging, and biomechanical testing. Changes in mineral and matrix properties were examined by powder X-ray diffraction and Raman spectroscopy. Aging controls had a natural decline in bone formation and resorption with a corresponding deterioration in trabecular bone structure. Bone turnover was severely blunted at all ages in adynamic animals, which preserved trabecular bone loss normally associated with aging. However, the preservation of trabecular bone mass and structure in old adynamic mice did not rescue deterioration of bone mechanical properties. There was also a decrease in cortical bone toughness in old adynamic mice that was accompanied by a more mature collagen matrix and longer bone crystals. Little is known about the effects of metabolic bone disease on bone fracture resistance. We observed an age-related decrease in bone toughness that was worsened by the adynamic condition, and this decrease may be due to material level changes at the tissue level. Our mouse model may be useful in the investigation of the mechanisms involved in fractures occurring in elderly patients on antiresorptive therapy who have very low bone turnover. PMID:26332924

  4. Ameloblastin, an Extracellular Matrix Protein, Affects Long Bone Growth and Mineralization.

    PubMed

    Lu, Xuanyu; Fukumoto, Satoshi; Yamada, Yoshihiko; Evans, Carla A; Diekwisch, Thomas Gh; Luan, Xianghong

    2016-06-01

    Matrix molecules such as the enamel-related calcium-binding phosphoprotein ameloblastin (AMBN) are expressed in multiple tissues, including teeth, bones, and cartilage. Here we have asked whether AMBN is of functional importance for timely long bone development and, if so, how it exerts its function related to osteogenesis. Adolescent AMBN-deficient mice (AMBN(Δ5-6) ) suffered from a 33% to 38% reduction in femur length and an 8.4% shorter trunk spinal column when compared with WT controls, whereas there was no difference between adult animals. On a cellular level, AMBN truncation resulted in a shortened growth plate and a 41% to 49% reduction in the number of proliferating tibia chondrocytes and osteoblasts. Bone marrow stromal cells (BMSCs) isolated from AMBN mutant mice displayed defects in proliferation and differentiation potential as well as cytoskeleton organization. Osteogenesis-related growth factors, such as insulin-like growth factor 1 (IGF1) and BMP7, were also significantly (46% to 73%) reduced in AMBN-deficient BMSCs. Addition of exogenous AMBN restored cytoskeleton structures in AMBN mutant BMSCs and resulted in a dramatic 400% to 600% increase in BMP2, BMP7, and Col1A expression. Block of RhoA diminished the effect of AMBN on osteogenic growth factor and matrix protein gene expression. Addition of exogenous BMP7 and IGF1 rescued the proliferation and differentiation potential of AMBN-deficient BMSCs. Confirming the effects of AMBN on long bone growth, back-crossing of mutant mice with full-length AMBN overexpressors resulted in a complete rescue of AMBN(Δ5-6) bone defects. Together, these data indicate that AMBN affects extracellular matrix production and cell adhesion properties in the long bone growth plate, resulting in altered cytoskeletal dynamics, increased osteogenesis-related gene expression, as well as osteoblast and chondrocyte proliferation. We propose that AMBN facilitates rapid long bone growth and an important growth spurt during the

  5. Mathematical model for bone mineralization

    PubMed Central

    Komarova, Svetlana V.; Safranek, Lee; Gopalakrishnan, Jay; Ou, Miao-jung Yvonne; McKee, Marc D.; Murshed, Monzur; Rauch, Frank; Zuhr, Erica

    2015-01-01

    Defective bone mineralization has serious clinical manifestations, including deformities and fractures, but the regulation of this extracellular process is not fully understood. We have developed a mathematical model consisting of ordinary differential equations that describe collagen maturation, production and degradation of inhibitors, and mineral nucleation and growth. We examined the roles of individual processes in generating normal and abnormal mineralization patterns characterized using two outcome measures: mineralization lag time and degree of mineralization. Model parameters describing the formation of hydroxyapatite mineral on the nucleating centers most potently affected the degree of mineralization, while the parameters describing inhibitor homeostasis most effectively changed the mineralization lag time. Of interest, a parameter describing the rate of matrix maturation emerged as being capable of counter-intuitively increasing both the mineralization lag time and the degree of mineralization. We validated the accuracy of model predictions using known diseases of bone mineralization such as osteogenesis imperfecta and X-linked hypophosphatemia. The model successfully describes the highly nonlinear mineralization dynamics, which includes an initial lag phase when osteoid is present but no mineralization is evident, then fast primary mineralization, followed by secondary mineralization characterized by a continuous slow increase in bone mineral content. The developed model can potentially predict the function for a mutated protein based on the histology of pathologic bone samples from mineralization disorders of unknown etiology. PMID:26347868

  6. Factors that affect bone mineral accrual in the adolescent growth spurt.

    PubMed

    Whiting, Susan J; Vatanparast, Hassanali; Baxter-Jones, Adam; Faulkner, Robert A; Mirwald, Robert; Bailey, Donald A

    2004-03-01

    The development of bone mass during the growing years is an important determinant for risk of osteoporosis in later life. Adequate dietary intake during the growth period may be critical in reaching bone growth potential. The Saskatchewan Bone Mineral Accrual Study (BMAS) is a longitudinal study of bone growth in Caucasian children. We have calculated the times of maximal peak bone mineral content (BMC) velocity to be 14.0 +/- 1.0 y in boys and 12.5 +/- 0.9 y in girls; bone growth is maximal approximately 6 mo after peak height velocity. In the 2 y of peak skeletal growth, adolescents accumulate over 25% of adult bone. BMAS data may provide biological data on calcium requirements through application of calcium accrual values to factorial calculations of requirement. As well, our data are beginning to reveal how dietary patterns may influence attainment of bone mass during the adolescent growth spurt. Replacing milk intake by soft drinks appears to be detrimental to bone gain by girls, but not boys. Fruit and vegetable intake, providing alkalinity to bones and/or acting as a marker of a healthy diet, appears to influence BMC in adolescent girls, but not boys. The reason why these dietary factors appear to be more influential in girls than in boys may be that BMAS girls are consuming less than their requirement for calcium, while boys are above their threshold. Specific dietary and nutrient recommendations for adolescents are needed in order to ensure optimal bone growth and consolidation during this important life stage. PMID:14988470

  7. Subtle changes in bone mineralization density distribution in most severely affected patients with chronic obstructive pulmonary disease.

    PubMed

    Misof, B M; Roschger, P; Jorgetti, V; Klaushofer, K; Borba, V Z C; Boguszewski, C L; Cohen, A; Shane, E; Zhou, H; Dempster, D W; Moreira, C A

    2015-10-01

    Chronic obstructive pulmonary disease (COPD) is associated with low aBMD as measured by DXA and altered microstructure as assessed by bone histomorphometry and microcomputed tomography. Knowledge of bone matrix mineralization is lacking in COPD. Using quantitative backscatter electron imaging (qBEI), we assessed cancellous (Cn.) and cortical (Ct.) bone mineralization density distribution (BMDD) in 19 postmenopausal women (62.1 ± 7.3 years of age) with COPD. Eight had sustained fragility fractures, and 13 had received treatment with inhaled glucocorticoids. The BMDD outcomes from the patients were compared with healthy reference data and were correlated with previous clinical and histomorphometric findings. In general, the BMDD outcomes for the patients were not significantly different from the reference data. Neither the subgroups of with or without fragility fractures or of who did or did not receive inhaled glucocorticoid treatment, showed differences in BMDD. However, subgroup comparison according to severity revealed 10% decreased cancellous mineralization heterogeneity (Cn.CaWidth) for the most severely affected compared with less affected patients (p=0.042) and compared with healthy premenopausal controls (p=0.021). BMDD parameters were highly correlated with histomorphometric cancellous bone volume (BV/TV) and formation indices: mean degree of mineralization (Cn.CaMean) versus BV/TV (r=0.58, p=0.009), and Cn.CaMean and Ct.CaMean versus bone formation rate (BFR/BS) (r=-0.71, p<0.001). In particular, those with lower BV/TV (<50th percentile) had significantly lower Cn.CaMean (p=0.037) and higher Cn.CaLow (p=0.020) compared with those with higher (>50th percentile) BV/TV. The normality in most of the BMDD parameters and bone formation rates as well as the significant correlations between them suggests unaffected mineralization processes in COPD. Our findings also indicate no significant negative effect of treatment with inhaled glucocorticoids on the bone

  8. Rye Affects Bacterial Translocation, Intestinal Viscosity, Microbiota Composition and Bone Mineralization in Turkey Poults

    PubMed Central

    Tellez, Guillermo; Latorre, Juan D.; Kuttappan, Vivek A.; Hargis, Billy M.; Hernandez-Velasco, Xochitl

    2015-01-01

    Previously, we have reported that rye significantly increased both viscosity and Clostridium perfringens proliferation when compared with corn in an in vitro digestive model. Two independent trials were conducted to evaluate the effect of rye as a source of energy on bacterial translocation, intestinal viscosity, gut microbiota composition, and bone mineralization, when compared with corn in turkey poults. In each experiment, day-of-hatch, turkey poults were randomly assigned to either a corn or a rye diet (n = 0 /group). At 10 d of age, in both experiments, 12 birds/group were given an oral gavage dose of fluorescein isothiocyanate dextran (FITC-d). After 2.5 h of oral gavage, blood and liver samples were collected to evaluate the passage of FITC-d and bacterial translocation (BT) respectively. Duodenum, ileum and cecum gut sections were collected to evaluate intestinal viscosity and to enumerate gut microbiota. Tibias were collected for observation of bone parameters. Broilers fed with a rye diet showed increased (p<0.05) intestinal viscosity, BT, and serum FITC-d. Bacterial enumeration revealed that turkey poults fed with rye had increased the number of total lactic acid bacteria (LAB) in all three sections of the gastrointestinal tract evaluated when compared to turkey poults fed with corn. Turkey poults fed with rye also had significantly higher coliforms in duodenum and ileum but not in the ceca, whereas the total number of anaerobes increased only in duodenum. A significant reduction in bone strength and bone mineralization was observed in turkey poults fed with rye when compared with corn fed turkey poults. In conclusion, rye evoked mucosal damage in turkey poults that increased intestinal viscosity, increased leakage through the intestinal tract, and altered the microbiota composition and bone mineralization. Studies to evaluate dietary inclusion of selected Direct-Fed Microbial (DFM) candidates that produce exogenous enzymes in rye fed turkey poults are

  9. Rye affects bacterial translocation, intestinal viscosity, microbiota composition and bone mineralization in Turkey poults.

    PubMed

    Tellez, Guillermo; Latorre, Juan D; Kuttappan, Vivek A; Hargis, Billy M; Hernandez-Velasco, Xochitl

    2015-01-01

    Previously, we have reported that rye significantly increased both viscosity and Clostridium perfringens proliferation when compared with corn in an in vitro digestive model. Two independent trials were conducted to evaluate the effect of rye as a source of energy on bacterial translocation, intestinal viscosity, gut microbiota composition, and bone mineralization, when compared with corn in turkey poults. In each experiment, day-of-hatch, turkey poults were randomly assigned to either a corn or a rye diet (n = 0 /group). At 10 d of age, in both experiments, 12 birds/group were given an oral gavage dose of fluorescein isothiocyanate dextran (FITC-d). After 2.5 h of oral gavage, blood and liver samples were collected to evaluate the passage of FITC-d and bacterial translocation (BT) respectively. Duodenum, ileum and cecum gut sections were collected to evaluate intestinal viscosity and to enumerate gut microbiota. Tibias were collected for observation of bone parameters. Broilers fed with a rye diet showed increased (p<0.05) intestinal viscosity, BT, and serum FITC-d. Bacterial enumeration revealed that turkey poults fed with rye had increased the number of total lactic acid bacteria (LAB) in all three sections of the gastrointestinal tract evaluated when compared to turkey poults fed with corn. Turkey poults fed with rye also had significantly higher coliforms in duodenum and ileum but not in the ceca, whereas the total number of anaerobes increased only in duodenum. A significant reduction in bone strength and bone mineralization was observed in turkey poults fed with rye when compared with corn fed turkey poults. In conclusion, rye evoked mucosal damage in turkey poults that increased intestinal viscosity, increased leakage through the intestinal tract, and altered the microbiota composition and bone mineralization. Studies to evaluate dietary inclusion of selected Direct-Fed Microbial (DFM) candidates that produce exogenous enzymes in rye fed turkey poults are

  10. Integrating Epigenomic Elements and GWASs Identifies BDNF Gene Affecting Bone Mineral Density and Osteoporotic Fracture Risk

    PubMed Central

    Guo, Yan; Dong, Shan-Shan; Chen, Xiao-Feng; Jing, Ying-Aisha; Yang, Man; Yan, Han; Shen, Hui; Chen, Xiang-Ding; Tan, Li-Jun; Tian, Qing; Deng, Hong-Wen; Yang, Tie-Lin

    2016-01-01

    To identify susceptibility genes for osteoporosis, we conducted an integrative analysis that combined epigenomic elements and previous genome-wide association studies (GWASs) data, followed by validation at population and functional levels, which could identify common regulatory elements and predict new susceptibility genes that are biologically meaningful to osteoporosis. By this approach, we found a set of distinct epigenomic elements significantly enriched or depleted in the promoters of osteoporosis-associated genes, including 4 transcription factor binding sites, 27 histone marks, and 21 chromatin states segmentation types. Using these epigenomic marks, we performed reverse prediction analysis to prioritize the discovery of new candidate genes. Functional enrichment analysis of all the prioritized genes revealed several key osteoporosis related pathways, including Wnt signaling. Genes with high priority were further subjected to validation using available GWASs datasets. Three genes were significantly associated with spine bone mineral density, including BDNF, PDE4D, and SATB2, which all closely related to bone metabolism. The most significant gene BDNF was also associated with osteoporotic fractures. RNA interference revealed that BDNF knockdown can suppress osteoblast differentiation. Our results demonstrated that epigenomic data could be used to indicate common epigenomic marks to discover additional loci with biological functions for osteoporosis. PMID:27465306

  11. Integrating Epigenomic Elements and GWASs Identifies BDNF Gene Affecting Bone Mineral Density and Osteoporotic Fracture Risk.

    PubMed

    Guo, Yan; Dong, Shan-Shan; Chen, Xiao-Feng; Jing, Ying-Aisha; Yang, Man; Yan, Han; Shen, Hui; Chen, Xiang-Ding; Tan, Li-Jun; Tian, Qing; Deng, Hong-Wen; Yang, Tie-Lin

    2016-01-01

    To identify susceptibility genes for osteoporosis, we conducted an integrative analysis that combined epigenomic elements and previous genome-wide association studies (GWASs) data, followed by validation at population and functional levels, which could identify common regulatory elements and predict new susceptibility genes that are biologically meaningful to osteoporosis. By this approach, we found a set of distinct epigenomic elements significantly enriched or depleted in the promoters of osteoporosis-associated genes, including 4 transcription factor binding sites, 27 histone marks, and 21 chromatin states segmentation types. Using these epigenomic marks, we performed reverse prediction analysis to prioritize the discovery of new candidate genes. Functional enrichment analysis of all the prioritized genes revealed several key osteoporosis related pathways, including Wnt signaling. Genes with high priority were further subjected to validation using available GWASs datasets. Three genes were significantly associated with spine bone mineral density, including BDNF, PDE4D, and SATB2, which all closely related to bone metabolism. The most significant gene BDNF was also associated with osteoporotic fractures. RNA interference revealed that BDNF knockdown can suppress osteoblast differentiation. Our results demonstrated that epigenomic data could be used to indicate common epigenomic marks to discover additional loci with biological functions for osteoporosis. PMID:27465306

  12. Modulation of Vitamin D Status and Dietary Calcium Affects Bone Mineral Density and Mineral Metabolism in Göttingen Minipigs

    PubMed Central

    Scholz-Ahrens, Katharina E.; Glüer, Claus-Christian; Bronner, Felix; Delling, Günter; Açil, Yahya; Hahne, Hans-Jürgen; Hassenpflug, Joachim; Timm, Wolfram; Schrezenmeir, Jürgen

    2013-01-01

    Calcium and vitamin D deficiency impairs bone health and may cause rickets in children and osteomalacia in adults. Large animal models are useful to study experimental osteopathies and associated metabolic changes. We intended to modulate vitamin D status and induce nutritional osteomalacia in minipigs. The control group (n = 9) was fed a semisynthetic reference diet with 6 g calcium and 6,500 IU vitamin D3/kg and the experimental group (n = 10) the same diet but with only 2 g calcium/kg and without vitamin D. After 15 months, the deficient animals were in negative calcium balance, having lost bone mineral density significantly (means ± SEM) with −51.2 ± 14.7 mg/cm3 in contrast to controls (−2.3 ± 11.8 mg/cm3), whose calcium balance remained positive. Their osteoid surface was significantly higher, typical of osteomalacia. Their plasma 25(OH)D dropped significantly from 60.1 ± 11.4 nmol/L to 15.3 ± 3.4 nmol/L within 10 months, whereas that of the control group on the reference diet rose. Urinary phosphorus excretion and plasma 1,25-dihydroxyvitamin D concentrations were significantly higher and final plasma calcium significantly lower than in controls. We conclude that the minipig is a promising large animal model to induce nutritional osteomalacia and to study the time course of hypovitaminosis D and associated functional effects. PMID:24062955

  13. [Inflammatory bowel disease and bone decreased bone mineral density].

    PubMed

    Hisamatsu, Tadakazu; Wada, Yasuyo; Kanai, Takanori

    2015-11-01

    Metabolic bone diseases such as osteopenia and osteoporosis increase the risk of bone fracture that negatively affects quality of life of individuals. Patients with inflammatory bowel disease(IBD), including ulcerative colitis(UC)and Crohn's disease(CD), have been shown to be at increased risk of decreased bone mineral density, however frequency of metabolic bone disease in IBD and identified risk factors are varied among reports. PMID:26503868

  14. Utilization of rye as energy source affects bacterial translocation, intestinal viscosity, microbiota composition, and bone mineralization in broiler chickens

    PubMed Central

    Tellez, Guillermo; Latorre, Juan D.; Kuttappan, Vivek A.; Kogut, Michael H.; Wolfenden, Amanda; Hernandez-Velasco, Xochitl; Hargis, Billy M.; Bottje, Walter G.; Bielke, Lisa R.; Faulkner, Olivia B.

    2014-01-01

    Two independent trials were conducted to evaluate the utilization of rye as energy source on bacterial translocation (BT), intestinal viscosity, gut integrity, gut microbiota composition, and bone mineralization, when compared with a traditional cereal (corn) in broiler chickens. In each experiment, day-of-hatch, broiler chickens were randomly assigned to either a corn or a rye diet (n = 20 chickens/group). At 10 d of age, in both experiments, 12 chickens/group were randomly selected, and given an oral gavage dose of fluorescein isothiocyanate dextran (FITC-d). After 2.5 h of oral gavage, blood samples were collected to determine the passage of FITC-d. The liver was collected from each bird to evaluate BT. Duodenum, ileum, and cecum gut sections were collected to evaluate intestinal viscosity and to enumerate gut microbiota. Tibias were collected for observation of bone parameters. Broilers fed with rye showed increased (p < 0.05) intestinal viscosity, BT, and serum FITC-d. Bacterial enumeration revealed that chickens fed with rye had increased the number of total lactic acid bacteria in all three sections of the gastrointestinal tract evaluated when compared to chickens fed with corn. Chickens fed with rye also had significantly higher coliforms in duodenum and ileum, whereas the total number of anaerobes increased only in duodenum. A significant reduction in bone strength and bone mineralization was observed in chickens fed with rye when compared with corn fed chickens. In conclusion, rye evoked mucosal damage in chickens that alter the intestinal viscosity, increased leakage through the intestinal tract, and altered the microbiota composition as well as bone mineralization. Studies to evaluate dietary inclusion of selected DFM candidates that produce exogenous enzymes in rye fed chickens are currently being evaluated. PMID:25309584

  15. Utilization of rye as energy source affects bacterial translocation, intestinal viscosity, microbiota composition, and bone mineralization in broiler chickens.

    PubMed

    Tellez, Guillermo; Latorre, Juan D; Kuttappan, Vivek A; Kogut, Michael H; Wolfenden, Amanda; Hernandez-Velasco, Xochitl; Hargis, Billy M; Bottje, Walter G; Bielke, Lisa R; Faulkner, Olivia B

    2014-01-01

    Two independent trials were conducted to evaluate the utilization of rye as energy source on bacterial translocation (BT), intestinal viscosity, gut integrity, gut microbiota composition, and bone mineralization, when compared with a traditional cereal (corn) in broiler chickens. In each experiment, day-of-hatch, broiler chickens were randomly assigned to either a corn or a rye diet (n = 20 chickens/group). At 10 d of age, in both experiments, 12 chickens/group were randomly selected, and given an oral gavage dose of fluorescein isothiocyanate dextran (FITC-d). After 2.5 h of oral gavage, blood samples were collected to determine the passage of FITC-d. The liver was collected from each bird to evaluate BT. Duodenum, ileum, and cecum gut sections were collected to evaluate intestinal viscosity and to enumerate gut microbiota. Tibias were collected for observation of bone parameters. Broilers fed with rye showed increased (p < 0.05) intestinal viscosity, BT, and serum FITC-d. Bacterial enumeration revealed that chickens fed with rye had increased the number of total lactic acid bacteria in all three sections of the gastrointestinal tract evaluated when compared to chickens fed with corn. Chickens fed with rye also had significantly higher coliforms in duodenum and ileum, whereas the total number of anaerobes increased only in duodenum. A significant reduction in bone strength and bone mineralization was observed in chickens fed with rye when compared with corn fed chickens. In conclusion, rye evoked mucosal damage in chickens that alter the intestinal viscosity, increased leakage through the intestinal tract, and altered the microbiota composition as well as bone mineralization. Studies to evaluate dietary inclusion of selected DFM candidates that produce exogenous enzymes in rye fed chickens are currently being evaluated. PMID:25309584

  16. Bone mineral density test

    MedlinePlus

    BMD test; Bone density test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis-BMD ... need to undress. This scan is the best test to predict your risk of fractures. Peripheral DEXA ( ...

  17. Bone mineral density test

    MedlinePlus

    BMD test; Bone density test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis-BMD ... Bone density testing can be done several ways. The most common and accurate way uses a dual-energy x- ...

  18. Is bone mineral density measurement using dual-energy X-ray absorptiometry affected by gamma rays?

    PubMed

    Xie, Liang-Jun; Li, Jian-Fang; Zeng, Feng-Wei; Jiang, Hang; Cheng, Mu-Hua; Chen, Yi

    2013-01-01

    The objective of this study was to determine whether the gamma rays emitted from the radionuclide effect bone mineral density (BMD) measurement. Nine subjects (mean age: 56 ± 17.96 yr) scheduled for bone scanning underwent BMD measurement using dual-energy X-ray absorptiometry (DXA) (Hologic/Discovery A) before and 1, 2, and 4 h after injection of technetium-99m-methylene diphosphonate (99mTc-MDP). Ten subjects (mean age: 41 ± 15.47 yr) scheduled for therapy of differentiated thyroid carcinoma with iodine-131 underwent BMD measurement before and 2 h after therapeutic radionuclide administration. All patients were given whole body BMD measurement, including head, arm, ribs, lumbar spine, pelvis, and leg sites. Besides, patients who referred to radioiodine therapy were given total hip and femoral neck BMD measurement as well. No statistically significant changes in BMD values were detected after 99mTc-MDP and iodine-131 administration for all measurement sites (p > 0.05), and individual difference of BMD before and after radionuclide imaging or therapy was less than the least significant change in lumbar spine, total hip, and femoral neck. In conclusion, BMD measurements are not influenced by the gamma rays emitted from technetium-99m and iodine-131. DXA bone densitometry may be performed simultaneously with bone scanning and radioiodine therapy. PMID:23473956

  19. Effects of Exercise on Bone Mineral Content in Postmenopausal Women.

    ERIC Educational Resources Information Center

    Rikli, Roberta E.; McManis, Beth G.

    1990-01-01

    Study tested the effect of exercise programs on bone mineral content (BMC) and BMC/bone width in 31 postmenopausal women. Subjects were placed in groups with aerobic exercise, aerobics plus upper-body weight training, or no exercise. Results indicate that regular exercise programs positively affect bone mineral maintenance in postmenopausal women.…

  20. Genetic Analysis Identifies DDR2 as a Novel Gene Affecting Bone Mineral Density and Osteoporotic Fractures in Chinese Population

    PubMed Central

    Guo, Yan; Yang, Tie-Lin; Dong, Shan-Shan; Yan, Han; Hao, Ruo-Han; Chen, Xiao-Feng; Chen, Jia-Bin; Tian, Qing; Li, Jian; Shen, Hui; Deng, Hong-Wen

    2015-01-01

    DDR2 gene, playing an essential role in regulating osteoblast differentiation and chondrocyte maturation, may influence bone mineral density (BMD) and osteoporosis, but the genetic variations actually leading to the association remain to be elucidated. Therefore, the aim of this study was to investigate whether the genetic variants in DDR2 are associated with BMD and fracture risk. This study was performed in three samples from two ethnicities, including 1,300 Chinese Han subjects, 700 Chinese Han subjects (350 with osteoporotic hip fractures and 350 healthy controls) and 2,286 US white subjects. Twenty-eight SNPs in DDR2 were genotyped and tested for associations with hip BMD and fractures. We identified 3 SNPs in DDR2 significantly associated with hip BMD in the Chinese population after multiple testing adjustments, which were rs7521233 (P = 1.06×10−4, β: −0.018 for allele C), rs7553831 (P = 1.30×10−4, β: −0.018 for allele T), and rs6697469 (P = 1.59×10−3, β: −0.015 for allele C), separately. These three SNPs were in high linkage disequilibrium. Haplotype analyses detected two significantly associated haplotypes, including one haplotype in block 2 (P = 9.54×10−4, β: −0.016) where these three SNPs located. SNP rs6697469 was also associated with hip fractures (P = 0.043, OR: 1.42) in the Chinese population. The effect on fracture risk was consistent with its association with lower BMD. However, in the white population, we didn’t observe significant associations with hip BMD. eQTL analyses revealed that SNPs associated with BMD also affected DDR2 mRNA expression levels in Chinese. Our findings, together with the prior biological evidence, suggest that DDR2 could be a new candidate for osteoporosis in Chinese population. Our results also reveal an ethnic difference, which highlights the need for further genetic studies in each ethnic group. PMID:25658585

  1. Retinoic acid differentially affects in vitro proliferation, differentiation and mineralization of two fish bone-derived cell lines: different gene expression of nuclear receptors and ECM proteins.

    PubMed

    Fernández, Ignacio; Tiago, Daniel M; Laizé, Vincent; Leonor Cancela, M; Gisbert, Enric

    2014-03-01

    Retinoic acid (RA), the main active metabolite of vitamin A, regulates vertebrate morphogenesis through signaling pathways not yet fully understood. Such process involves the specific activation of retinoic acid and retinoid X receptors (RARs and RXRs), which are nuclear receptors of the steroid/thyroid hormone receptor superfamily. Teleost fish are suitable models to study vertebrate development, such as skeletogenesis. Cell systems capable of in vitro mineralization have been developed for several fish species and may provide new insights into the specific cellular and molecular events related to vitamin A activity in bone, complementary to in vivo studies. This work aims at investigating the in vitro effects of RA (0.5 and 12.5 μM) on proliferation, differentiation and extracellular matrix (ECM) mineralization of two gilthead seabream bone-derived cell lines (VSa13 and VSa16), and at identifying molecular targets of its action through gene expression analysis. RA induced phenotypic changes and cellular proliferation was inhibited in both cell lines in a cell type-dependent manner (36-59% in VSa13 and 17-46% in VSa16 cells). While RA stimulated mineral deposition in VSa13 cell cultures (50-62% stimulation), it inhibited the mineralization of extracellular matrix in VSa16 cells (11-57% inhibition). Expression of hormone receptor genes (rars and rxrs), and extracellular matrix-related genes such as matrix and bone Gla proteins (mgp and bglap), osteopontin (spp1) and type I collagen (col1a1) were differentially regulated upon exposure to RA in proliferating, differentiating and mineralizing cultures of VSa13 and VSa16 cells. Altogether, our results show: (i) RA affects proliferative and mineralogenic activities in two fish skeletal cell types and (ii) that during phenotype transitions, specific RA nuclear receptors and bone-related genes are differentially expressed in a cell type-dependent manner. PMID:24291400

  2. Genome-Wide Association Study Using Extreme Truncate Selection Identifies Novel Genes Affecting Bone Mineral Density and Fracture Risk

    PubMed Central

    Duncan, Emma L.; Danoy, Patrick; Kemp, John P.; Leo, Paul J.; McCloskey, Eugene; Nicholson, Geoffrey C.; Eastell, Richard; Prince, Richard L.; Eisman, John A.; Jones, Graeme; Sambrook, Philip N.; Reid, Ian R.; Dennison, Elaine M.; Wark, John; Richards, J. Brent; Uitterlinden, Andre G.; Spector, Tim D.; Esapa, Chris; Cox, Roger D.; Brown, Steve D. M.; Thakker, Rajesh V.; Addison, Kathryn A.; Bradbury, Linda A.; Center, Jacqueline R.; Cooper, Cyrus; Cremin, Catherine; Estrada, Karol; Felsenberg, Dieter; Glüer, Claus-C.; Hadler, Johanna; Henry, Margaret J.; Hofman, Albert; Kotowicz, Mark A.; Makovey, Joanna; Nguyen, Sing C.; Nguyen, Tuan V.; Pasco, Julie A.; Pryce, Karena; Reid, David M.; Rivadeneira, Fernando; Roux, Christian; Stefansson, Kari; Styrkarsdottir, Unnur; Thorleifsson, Gudmar; Tichawangana, Rumbidzai; Evans, David M.; Brown, Matthew A.

    2011-01-01

    Osteoporotic fracture is a major cause of morbidity and mortality worldwide. Low bone mineral density (BMD) is a major predisposing factor to fracture and is known to be highly heritable. Site-, gender-, and age-specific genetic effects on BMD are thought to be significant, but have largely not been considered in the design of genome-wide association studies (GWAS) of BMD to date. We report here a GWAS using a novel study design focusing on women of a specific age (postmenopausal women, age 55–85 years), with either extreme high or low hip BMD (age- and gender-adjusted BMD z-scores of +1.5 to +4.0, n = 1055, or −4.0 to −1.5, n = 900), with replication in cohorts of women drawn from the general population (n = 20,898). The study replicates 21 of 26 known BMD–associated genes. Additionally, we report suggestive association of a further six new genetic associations in or around the genes CLCN7, GALNT3, IBSP, LTBP3, RSPO3, and SOX4, with replication in two independent datasets. A novel mouse model with a loss-of-function mutation in GALNT3 is also reported, which has high bone mass, supporting the involvement of this gene in BMD determination. In addition to identifying further genes associated with BMD, this study confirms the efficiency of extreme-truncate selection designs for quantitative trait association studies. PMID:21533022

  3. Organic trace minerals and 25-hydroxycholecalciferol affect performance characteristics, leg abnormalities, and biomechanical properties of leg bones of turkeys.

    PubMed

    Ferket, P R; Oviedo-Rondón, E O; Mente, P L; Bohórquez, D V; Santos, A A; Grimes, J L; Richards, J D; Dibner, J J; Felts, V

    2009-01-01

    Leg problems and resulting mortality can exceed 1% per week in turkey toms starting at approximately 15 wk of age. Dietary supplementation of organic trace minerals (MIN) and 25-hydroxycholecalciferol (HyD) may improve performance, decrease incidence of leg abnormalities, and increase bone strength. Nicholas 85X700 toms were assigned to 4 treatments consisting of a factorial arrangement of 2 concentrations of MIN (0 and 0.1% of Mintrex P(Se), which adds 40, 40, 20, and 0.3 mg/kg of Zn, Mn, Cu, and Se, respectively) and 2 concentrations of HyD (0 and 92 microg/kg of HyD). Diets were formulated to be equal in nutrient content and fed ad libitum as 8 feed phases. Feed intake and BW were measured at 6, 12, 15, 17, and 20 wk of age. Valgus, varus, and shaky leg defects were determined at 12, 15, 17, and 20 wk of age. Tibia and femur biomechanical properties were evaluated by torsion and bending tests at 17 wk of age. There were no treatment effects on BW. Only MIN significantly improved feed conversion ratio through to 20 wk of age. Cumulative mortality at 3 wk of age was greater among the MIN birds, but it was lower by 20 wk (P = 0.085). The MIN decreased the incidence of varus defects at 17 wk of age; shaky leg at 12, 15, and 17 wk of age; and valgus defects at 15, 17, and 20 wk of age. There were no MIN x HyD interaction effects on individual gait problems. Maximum load and the bending stress required for tibias to break in a 4-point assay were increased with MIN supplementation, especially when HyD was also added. Maximum shear stress at failure of femoral bones in a torsion assay was increased by supplementation with both MIN and HyD together. Dietary supplementation of MIN and HyD may improve biomechanical properties of bones. Dietary MIN supplementation may improve feed conversion of turkeys, likely by decreasing leg problems. PMID:19096066

  4. Basketball Affects Bone Mineral Density Accrual in Boys More Than Swimming and Other Impact Sports: 9-mo Follow-Up.

    PubMed

    Agostinete, Ricardo R; Lynch, Kyle R; Gobbo, Luís A; Lima, Manoel Carlos Spiguel; Ito, Igor H; Luiz-de-Marco, Rafael; Rodrigues-Junior, Mario A; Fernandes, Romulo A

    2016-01-01

    The objective of this study was to analyze the effect of different sports on bone mineral density (BMD) accrual among male adolescents during a 9-mo follow-up. The sample was composed of 82 boys (control [n = 13], basketball [n = 14], karate [n = 9], soccer [n = 18], judo [n = 12], and swimming [n = 16]) who were followed up for 9 mo (from October 2013 to August 2014). BMD (gram per square centimeter) was assessed at baseline and follow-up using a dual-energy X-ray absorptiometry scanner, whereas somatic maturation was estimated through the use of the peak height velocity. Vitamin D consumption was assessed by questionnaire. After 9 mo of follow-up, all groups (including the control group) presented significant BMD accrual (overall sample: 4.5% in the whole body). On the other hand, the basketball group presented higher BMD accrual in the upper limbs (17.6%) than the control group (7.2%). A similar difference was observed in whole-body BMD (control group: 4.1% vs basketball group: 7.1%). The basketball group had significantly higher BMD gains than the control group and other sports groups. PMID:27174316

  5. Supplementation with calcium and short-chain fructo-oligosaccharides affects markers of bone turnover but not bone mineral density in postmenopausal women.

    PubMed

    Slevin, Mary M; Allsopp, Philip J; Magee, Pamela J; Bonham, Maxine P; Naughton, Violetta R; Strain, J J; Duffy, Maresa E; Wallace, Julie M; Mc Sorley, Emeir M

    2014-03-01

    This 24-mo randomized, double-blind, controlled trial aimed to examine whether supplementation with a natural marine-derived multi-mineral supplement rich in calcium (Ca) taken alone and in conjunction with short-chain fructo-oligosaccharide (scFOSs) has a beneficial effect on bone mineral density (BMD) and bone turnover markers (BTMs) in postmenopausal women. A total of 300 non-osteoporotic postmenopausal women were randomly assigned to daily supplements of 800 mg of Ca, 800 mg of Ca with 3.6 g of scFOS (CaFOS), or 9 g of maltodextrin. BMD was measured before and after intervention along with BTMs, which were also measured at 12 mo. Intention-to-treat ANCOVA identified that the change in BMD in the Ca and CaFOS groups did not differ from that in the maltodextrin group. Secondary analysis of changes to BTMs over time identified a greater decline in osteocalcin and C-telopeptide of type I collagen (CTX) in the Ca group compared with the maltodextrin group at 12 mo. A greater decline in CTX was observed at 12 mo and a greater decline in osteocalcin was observed at 24 mo in the CaFOS group compared with the maltodextrin group. In exploratory subanalyses of each treatment group against the maltodextrin group, women classified with osteopenia and taking CaFOS had a smaller decline in total-body (P = 0.03) and spinal (P = 0.03) BMD compared with the maltodextrin group, although this effect was restricted to those with higher total-body and mean spinal BMD at baseline, respectively. Although the change in BMD observed did not differ between the groups, the greater decline in BTMs in the Ca and CaFOS groups compared with the maltodextrin group suggests a more favorable bone health profile after supplementation with Ca and CaFOS. Supplementation with CaFOS slowed the rate of total-body and spinal bone loss in postmenopausal women with osteopenia-an effect that warrants additional investigation. This trial was registered at www.controlled-trials.com as ISRCTN63118444. PMID

  6. Bone Mineralization in Celiac Disease

    PubMed Central

    Larussa, Tiziana; Suraci, Evelina; Nazionale, Immacolata; Abenavoli, Ludovico; Imeneo, Maria; Luzza, Francesco

    2012-01-01

    Evidence indicates a well-established relationship between low bone mineral density (BMD) and celiac disease (CD), but data on the pathogenesis of bone derangement in this setting are still inconclusive. In patients with symptomatic CD, low BMD appears to be directly related to the intestinal malabsorption. Adherence to a strict gluten-free diet (GFD) will reverse the histological changes in the intestine and also the biochemical evidence of calcium malabsorption, resulting in rapid increase of BMD. Nevertheless, GFD improves BMD but does not normalize it in all patients, even after the recovery of intestinal mucosa. Other mechanisms of bone injury than calcium and vitamin D malabsorption are thought to be involved, such as proinflammatory cytokines, parathyroid function abnormalities, and misbalanced bone remodeling factors, most of all represented by the receptor activator of nuclear factor B/receptor activator of nuclear factor B-ligand/osteoprotegerin system. By means of dual-energy X-ray absorptiometry (DXA), it is now rapid and easy to obtain semiquantitative values of BMD. However, the question is still open about who and when submit to DXA evaluation in CD, in order to estimate risk of fractures. Furthermore, additional information on the role of nutritional supplements and alternative therapies is needed. PMID:22737164

  7. Relationships existing between the serum cytokine levels and bone mineral density in women in the premenopausal period affected by Graves' disease with subclinical hyperthyroidism.

    PubMed

    Ugur-Altun, Betül; Altun, Armagan; Arikan, Ender; Guldiken, Sibel; Tugrul, Armagan

    2003-11-01

    We examined the relationships existing between serum cytokine levels and bone mineral density (BMD) in women of premenopausal age affected by Graves' disease with subclinical hyperthyroidism. The study population consisted of 21 women with untreated hyperthyroid Graves' disease (group H) (age, 36 +/- 2 years), eight women with untreated subclinical hyperthyroid status (group SH) (age, 33 +/- 5 years) and 10 healthy women (group N) (age, 35 +/- 3 years). The following measurements were made in all patients: free T4 (fT4), free T3 (fT3), thyroid stimulating hormone (TSH), TSH receptor antibody (TRab), anti-thyroid peroxidase antibody (anti-TPO), anti-thyroglobulin antibody (anti-Tg), interleukin-2 receptor (IL-2r), interleukin-4 (IL-4), interleukin-8 (IL-8) and interleukin-13 (IL-13). IL-2r and IL-8 levels significantly increased in group H compared with group SH (p < 0.01 and p = 0.05, respectively) and group N (p < 0.001 and p = 0.02, respectively). IL-4 and IL-13 levels tended to be lower in groups H and SH compared with group N, although this difference did not reach statistical significance. Bone mineral density was significantly reduced in only two areas of the femur in group H compared with group N. There was no difference in BMD between groups SH and N. There was no correlation between thyroid hormones, serum cytokine levels and BMD in either group. In conclusion, these results suggest that there were no relationships existing between the serum level of these cytokines and BMD in women of premenopausal age affected by Graves' disease with subclinical hyperthyroidism. PMID:14682468

  8. Regulation of bone mineral loss during lactation

    NASA Technical Reports Server (NTRS)

    Brommage, R.; Deluca, H. F.

    1985-01-01

    The effects of varyng dietary calcium and phosphorous levels, vitamin D deficiency, oophorectomy, adrenalectomy, and simultaneous pregnancy on bone mineral loss during lactation in rats are studied. The experimental procedures and evaluations are described. The femur ash weight of lactating and nonlactating rats are calculated. The data reveals that a decrease in dietary calcium of 0.02 percent results in an increased loss of bone mineral, an increase in calcium to 1.4 percent does not lessen bone mineral loss, and bone mineral loss in vitamin D deficient rats is independent of calcium levels. It is observed that changes in dietary phosphorous level, oophorectomy, adrenalectomy, and simultaneous pragnancy do not reduce bone mineral loss during lactation. The analysis of various hormones to determine the mechanism that triggers bone mineral loss during lactation is presented.

  9. Effects of simulated weightlessness on bone mineral metabolism

    NASA Technical Reports Server (NTRS)

    Globus, R. K.; Bikle, D. D.; Morey-Holton, E.

    1984-01-01

    It is pointed out that prolonged space flight, bedrest, and immobilization are three factors which can produce a negative calcium balance, osteopenia, and an inhibition of bone formation. It is not known whether the effects of gravity on bone mineral metabolism are mediated by systemic endocrine factors which affect all bones simultaneously, or by local factors which affect each bone individually. The present investigation has the objective to test the relative importance of local vs. systemic factors in regulating the bone mineral response to conditions simulating weightlessness. Experiments were conducted with male Sprague-Dawley rats. The test conditions made it possible to compare the data from weighted and unweighted bones in the same animal. The obtained findings indicate that a decrease in bone mass relative to control value occurs rapidly under conditions which simulate certain aspects of weightlessness. However, this decrease reaches a plateau after 10 days.

  10. Bone mineral measurement from Apollo experiment M-078. [derangement of bone mineral metabolism in spacecrews

    NASA Technical Reports Server (NTRS)

    Vogel, J. M.; Rambaut, P. C.; Smith, M. C., Jr.

    1974-01-01

    Loss of mineral from bone during periods of immobilization, recumbency, or weightlessness is examined. This report describes the instrumentation, technique, and bone mineral changes observed preflight and postflight for the Apollo 14, 15, and 16 missions. The bone mineral changes documented during the Apollo Program are reviewed, and their relevance to future missions is discussed.

  11. Mineralized three-dimensional bone constructs

    NASA Technical Reports Server (NTRS)

    Clarke, Mark S. F. (Inventor); Sundaresan, Alamelu (Inventor); Pellis, Neal R. (Inventor)

    2011-01-01

    The present disclosure provides ex vivo-derived mineralized three-dimensional bone constructs. The bone constructs are obtained by culturing osteoblasts and osteoclast precursors under randomized gravity vector conditions. Preferably, the randomized gravity vector conditions are obtained using a low shear stress rotating bioreactor, such as a High Aspect Ratio Vessel (HARV) culture system. The bone constructs of the disclosure have utility in physiological studies of bone formation and bone function, in drug discovery, and in orthopedics.

  12. Mineralized Three-Dimensional Bone Constructs

    NASA Technical Reports Server (NTRS)

    Clarke, Mark S. F. (Inventor); Sundaresan, Alamelu (Inventor); Pellis, Neal R. (Inventor)

    2013-01-01

    The present disclosure provides ex vivo-derived mineralized three-dimensional bone constructs. The bone constructs are obtained by culturing osteoblasts and osteoclast precursors under randomized gravity vector conditions. Preferably, the randomized gravity vector conditions are obtained using a low shear stress rotating bioreactor, such as a High Aspect Ratio Vessel (HARV) culture system. The bone constructs of the disclosure have utility in physiological studies of bone formation and bone function, in drug discovery, and in orthopedics.

  13. Citrate bridges between mineral platelets in bone.

    PubMed

    Davies, Erika; Müller, Karin H; Wong, Wai Ching; Pickard, Chris J; Reid, David G; Skepper, Jeremy N; Duer, Melinda J

    2014-04-01

    We provide evidence that citrate anions bridge between mineral platelets in bone and hypothesize that their presence acts to maintain separate platelets with disordered regions between them rather than gradual transformations into larger, more ordered blocks of mineral. To assess this hypothesis, we take as a model for a citrate bridging between layers of calcium phosphate mineral a double salt octacalcium phosphate citrate (OCP-citrate). We use a combination of multinuclear solid-state NMR spectroscopy, powder X-ray diffraction, and first principles electronic structure calculations to propose a quantitative structure for this material, in which citrate anions reside in a hydrated layer, bridging between apatitic layers. To assess the relevance of such a structure in native bone mineral, we present for the first time, to our knowledge, (17)O NMR data on bone and compare them with (17)O NMR data for OCP-citrate and other calcium phosphate minerals relevant to bone. The proposed structural model that we deduce from this work for bone mineral is a layered structure with thin apatitic platelets sandwiched between OCP-citrate-like hydrated layers. Such a structure can explain a number of known structural features of bone mineral: the thin, plate-like morphology of mature bone mineral crystals, the presence of significant quantities of strongly bound water molecules, and the relatively high concentration of hydrogen phosphate as well as the maintenance of a disordered region between mineral platelets. PMID:24706850

  14. Calcium sources and their interaction with the different levels of non-phytate phosphorus affect performance and bone mineralization in broiler chickens.

    PubMed

    Hamdi, M; Solà-Oriol, D; Davin, R; Perez, J F

    2015-09-01

    An experiment was conducted to evaluate the influence of different Ca sources (limestone, Ca chloride, and Lipocal, a fat-encapsulated tricalcium phosphate, TCP) in conjunction with 4 dietary levels of non-phytate P (NPP) on performance, ileal digestibility of Ca and P, and bone mineralization in broiler chickens. Calcium sources were also evaluated in vitro to measure acid-binding capacity (ABC) and Ca solubility at different pH values. Ca chloride showed the highest solubility of Ca, with TCP showing the highest ABC. Ross male broiler-chicks were sorted by BW at 1 d post-hatch and assigned to 5 cages per diet with 5 birds per cage. Twelve diets were arranged in a 3×4 factorial of the 3 Ca sources and 4 levels of NPP (0.3%, 0.35%, 0.4% or 0.45%) consisting of 4 added P levels (Ca(H2PO4)2) with a high dose of phytase (1,150 U/kg) in all diets. On d 14 post-hatch, 3 birds were euthanized, and ileal digesta and the right tibia were collected to determine ileal Ca and P digestibility and bone mineralization, respectively. Feed intake (FI) and weight gain (WG) on d 14 was higher (P<0.01) with TCP and limestone than with Ca chloride. Added P increased the tibia weight and tibia ash content in chicks fed TCP up to 0.4% NPP and limestone up to 0.35% NPP. Calcium ileal digestibility was higher (P<0.01) with Ca chloride (73.7%) than with limestone (67.1%) or TCP (66.8%), which increased (P<0.05) with added levels of P from monocalcium phosphate. Phosphorus ileal digestibility was not affected by the Ca source and increased (P<0.001) with added levels of NPP. It can be concluded that starting broilers responded better to low-soluble Ca sources compared to high-soluble sources. A level of 0.35%-0.40% NPP with a high dose of phytase (1,150 U/kg) in diets including limestone or TCP is sufficient to guarantee performance and bone formation for broiler chickens from d 0 to d 14. PMID:25638469

  15. Bone Mineral Density Determinations by Dual-Energy x-ray Absorptiometry in the Management of Patients with Marfan Syndrome—Some Factors Which Affect the Measurement

    PubMed Central

    Peterson, Margaret G.E.; Schneider, Robert; Davis, Jessica G.; Burke, Stephen W.; Boachie-Adjei, Oheneba; Mueller, Charles M.; Raggio, Cathleen L.

    2006-01-01

    Reduced bone mineral density (BMD) was sporadically reported in patients with Marfan syndrome. This may or may not place the Marfan patient at increased risk for bone fracture. In comparing the BMDs of our patients with those reported in the literature, it seemed that agreement between values, and hence the degree of osteoporosis or osteopenia reported, was dependent on the instrumentation used. The objective of this study was to statistically assess this impression. Bone mineral density measurements from our previously published study of 30 adults with Marfan syndrome performed on a Lunar DPXL machine were compared with studies published between 1993–2000 measured using either Lunar or Hologic bone densitometry instruments. The differences of our measurements compared with those made on other Lunar machines were not statistically significant, but did differ significantly with published results from Hologic machines (P < 0.001). Before progress can be made in the assessment of BMD and fracture risk in Marfan patients and in the evidence-based orthopedic management of these patients, standardization of instrumental bone density determinations will be required along with considerations of height, obesity, age, and sex. PMID:18751776

  16. Affective Disorders, Bone Metabolism, and Osteoporosis

    PubMed Central

    2013-01-01

    The nature of the relationship between affective disorders, bone mineral density (BMD), and bone metabolism is unresolved, although there is growing evidence that many medications used to treat affective disorders are associated with low BMD or alterations in neuroendocrine systems that influence bone turnover. The objective of this review is to describe the current evidence regarding the association of unipolar and bipolar depression with BMD and indicators of bone metabolism, and to explore potential mediating and confounding influences of those relationships. The majority of studies of unipolar depression and BMD indicate that depressive symptoms are associated with low BMD. In contrast, evidence regarding the relationship between bipolar depression and BMD is inconsistent. There is limited but suggestive evidence to support an association between affective disorders and some markers of bone turnover. Many medications used to treat affective disorders have effects on physiologic systems that influence bone metabolism, and these conditions are also associated with a range of health behaviors that can influence osteoporosis risk. Future research should focus on disentangling the pathways linking psychotropic medications and their clinical indications with BMD and fracture risk. PMID:23874147

  17. Bone mineral measurement: Experiment M078

    NASA Technical Reports Server (NTRS)

    Smith, M. C., Jr.; Rambaut, P. C.; Vogel, J. M.; Whittle, M. W.

    1977-01-01

    Gamma ray absorptiometric measurements on bone mineral content, in addition to calcium balance studies, were performed on male volunteers during bed rest periods of 24 to 36 weeks duration and compared to Skylab mission data. Results show that mineral losses occur from the bones of the lower extremities during missions of up to 84 days and that in general they follow the loss patterns of the bed rest situation. The level of loss observed in Spacelab crews are not of clinical concern.

  18. Baseline Bone Mineral Density Measurements Key to Future Testing Intervals

    MedlinePlus

    ... on Research 2012 May 2012 (historical) Baseline Bone Mineral Density Measurements Key to Future Testing Intervals How often a woman should have bone mineral density (BMD) tests to track bone mass is ...

  19. Mineral metabolism in isolated mouse long bones: Opposite effects of microgravity on mineralization and resorption

    NASA Technical Reports Server (NTRS)

    Veldhuijzen, Jean Paul; Vanloon, Jack J. W. A.

    1994-01-01

    An experiment using isolated skeletal tissues under microgravity, is reported. Fetal mouse long bones (metatarsals) were cultured for 4 days in the Biorack facility of Spacelab during the IML-1 (International Microgravity Laboratory) mission of the Space Shuttle. Overall growth was not affected, however glucose consumption was significantly reduced under microgravity. Mineralization of the diaphysis was also strongly reduced under microgravity as compared to the on-board 1 g group. In contrast, mineral resorption by osteoclasts was signficantly increased. These results indicate that these fetal mouse long bones are a sensitive and useful model to further study the cellular mechanisms involved in the changed mineral metabolism of skeletal tissues under microgravity.

  20. High-strength mineralized collagen artificial bone

    NASA Astrophysics Data System (ADS)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  1. Exercise frequency and bone mineral density development in exercising postmenopausal osteopenic women. Is there a critical dose of exercise for affecting bone? Results of the Erlangen Fitness and Osteoporosis Prevention Study.

    PubMed

    Kemmler, Wolfgang; von Stengel, Simon; Kohl, Matthias

    2016-08-01

    Due to older people's low sports participation rates, exercise frequency may be the most critical component for designing exercise protocols that address bone. The aims of the present article were to determine the independent effect of exercise frequency (ExFreq) and its corresponding changes on bone mineral density (BMD) and to identify the minimum effective dose that just relevantly affects bone. Based on the 16-year follow-up of the intense, consistently supervised Erlangen Fitness and Osteoporosis Prevention-Study, ExFreq was retrospectively determined in the exercise-group of 55 initially early-postmenopausal females with osteopenia. Linear mixed-effect regression analysis was conducted to determine the independent effect of ExFreq on BMD changes at lumbar spine and total hip. Minimum effective dose of ExFreq based on BMD changes less than the 90% quantile of the sedentary control-group (n=43). Cut-offs were determined after 4, 8, 12 and 16years using bootstrap with 5000 replications. After 16years, average ExFreq ranged between 1.02 and 2.96sessions/week (2.28±0.40sessions/week). ExFreq has an independent effect on LS-BMD (p<.001) and hip-BMD (p=.005) changes. Bootstrap analysis detected a minimum effective dose at about 2sessions/week/16years (cut-off LS-BMD: 2.11, 95% CI: 2.06-2.12; total hip-BMD: 2.22, 95% CI: 2.00-2.78sessions/week/16years). In summary, the minimum effective dose of exercise frequency that relevantly addresses BMD is quite high, at least compared with the low sport participation rate of older adults. This result might not be generalizable across all exercise types, protocols and cohorts, but it does indicate at least that even when applying high impact/high intensity programs, exercise frequency and its maintenance play a key role in bone adaptation. PMID:27108341

  2. Mathematical Model for the Mineralization of Bone

    NASA Technical Reports Server (NTRS)

    Martin, Bruce

    1994-01-01

    A mathematical model is presented for the transport and precipitation of mineral in refilling osteons. One goal of this model was to explain calcification 'halos,' in which the bone near the haversian canal is more highly mineralized than the more peripheral lamellae, which have been mineralizing longer. It was assumed that the precipitation rate of mineral is proportional to the difference between the local concentration of calcium ions and an equilibrium concentration and that the transport of ions is by either diffusion or some other concentration gradient-dependent process. Transport of ions was assumed to be slowed by the accumulation of mineral in the matrix along the transport path. The model also mimics bone apposition, slowing of apposition during refilling, and mineralization lag time. It was found that simple diffusion cannot account for the transport of calcium ions into mineralizing bone, because the diffusion coefficient is two orders of magnitude too low. If a more rapid concentration gradient-driven means of transport exists, the model demonstrates that osteonal geometry and variable rate of refilling work together to produce calcification halos, as well as the primary and secondary calcification effect reported in the literature.

  3. Mathematical Model for the Mineralization of Bone

    NASA Technical Reports Server (NTRS)

    Martin, Bruce

    1994-01-01

    A mathematical model is presented for the transport and precipitation of mineral in refilling osteons. One goal of this model was to explain calcification 'halos,' in which the bone near the haversian canal is more highly mineralized than the more peripheral lamellae, which have been mineralizing longer. It was assumed that the precipitation rate of mineral is proportional to the difference between the local concentration of calcium ions and an equilibrium concentration and that the transport of ions is by either diffusion or some other concentration gradient-dependent process. Transport of ions was assumed to be slowed by the accumulation of mineral in the matrix along the transport path. ne model also mimics bone apposition, slowing of apposition during refilling, and mineralization lag time. It was found that simple diffusion cannot account for the transport of calcium ions into mineralizing bone, because the diffusion coefficient is two orders of magnitude too low. If a more rapid concentration gradient-driven means of transport exists, the model demonstrates that osteonal geometry and variable rate of refilling work together to produce calcification halos, as well as the primary and secondary calcification effect reported in the literature.

  4. Bone mineral changes in the Apollo astronauts

    NASA Technical Reports Server (NTRS)

    Vogel, J. M.

    1974-01-01

    Loss of mineral from bone during periods of immobilization, recumbency or weightlessness have been observed. These losses are more apparent in the lower extremity than the upper and have been observed to exceed 30% in the case of the central os calcis during 36 weeks of bedrest. In early Gemini studies using X-ray densitometry, large losses of bone mineral were observed in the radius and ulna. This observation was not validated in the Apollo 14, 15 and 16 crewmen when a more precise technique, gamma ray absorptiometry, was used. The large losses reported for the early Gemini missions were not seen when this new measuring technique was employed.

  5. [Hyperprolactinaemia and bone mineral density].

    PubMed

    Kostrzak, Anna; Męczekalski, Błażej

    2015-08-01

    Hyperprolactinaemia is one of the most common endocrinological disorder at women at the reproductive age. Prolactin is produced by the anterior lobe of the pituitary.The main role of prolactin is associated with mamotrophic action and lactogenesis. Hyperprolactinaemia causes several symptoms such as menstrual disorders, infertility, decrease of sexual function, galactorrhea in women and gynecomasty, impotence and decrease of semen quality in men. Recent studies have presented prolactin as a homone involved in many metabolic processes. Long-term consequences of high prolactin serum concentration are related to higher risk of cardiovascular system disease, disturbances in lipid profile and immunological system. Hyperprolactiaemia causes decrease of bone mass density (BMD). High serum prolactin levels lead to increase of the risk of osteopenia or/and osteoporosis. Decrease of BMD results from hypoestrogenism induced by hyperprolactinaemia and also by the direct negative influence of prolactin on bone. Hyperprolactinaemia related to prolactinoma significantly (more than functional hyperprolactiaemia) increases the risk of osteopenia, osteoporosis and bone fractures. Important group of patients threatened by osteoporosis and bone fracture is constituted by women which use antipsychotic drugs (which induce hyperprolactinaemia). Hyperprolactinaemia diagnosed in patients should be treated as soon as possible. Hyperprolactinaemic patients should be diagnosed in the direction of osteopenia and osteoporosis. When diagnosis is confirmed proper treatment is indicated. PMID:26319389

  6. Mineral and bone disorder after kidney transplantation

    PubMed Central

    Taweesedt, Pahnwat T; Disthabanchong, Sinee

    2015-01-01

    After successful kidney transplantation, accumulated waste products and electrolytes are excreted and regulatory hormones return to normal levels. Despite the improvement in mineral metabolites and mineral regulating hormones after kidney transplantation, abnormal bone and mineral metabolism continues to present in most patients. During the first 3 mo, fibroblast growth factor-23 (FGF-23) and parathyroid hormone levels decrease rapidly in association with an increase in 1,25-dihydroxyvitamin D production. Renal phosphate excretion resumes and serum calcium, if elevated before, returns toward normal levels. FGF-23 excess during the first 3-12 mo results in exaggerated renal phosphate loss and hypophosphatemia occurs in some patients. After 1 year, FGF-23 and serum phosphate return to normal levels but persistent hyperparathyroidism remains in some patients. The progression of vascular calcification also attenuates. High dose corticosteroid and persistent hyperparathyroidism are the most important factors influencing abnormal bone and mineral metabolism in long-term kidney transplant (KT) recipients. Bone loss occurs at a highest rate during the first 6-12 mo after transplantation. Measurement of bone mineral density is recommended in patients with estimated glomerular filtration rate > 30 mL/min. The use of active vitamin D with or without bisphosphonate is effective in preventing early post-transplant bone loss. Steroid withdrawal regimen is also beneficial in preservation of bone mass in long-term. Calcimimetic is an alternative therapy to parathyroidectomy in KT recipients with persistent hyperparathyroidism. If parathyroidectomy is required, subtotal to near total parathyroidectomy is recommended. Performing parathyroidectomy during the waiting period prior to transplantation is also preferred in patients with severe hyperparathyroidism associated with hypercalcemia. PMID:26722650

  7. Exercise Training and Bone Mineral Density.

    ERIC Educational Resources Information Center

    Lohman, Timothy G.

    1995-01-01

    The effect of exercise on total and regional bone mineral density (BMD) in postmenopausal women is reviewed. Studies on non-estrogen-replete postmenopausal women show 1-2% changes in regional BMD with 1 year of weight-bearing exercises. Studies of exercise training in the estrogen-replete postmenopausal population suggest large BMD changes.…

  8. Bone mineral content in normal US whites

    NASA Technical Reports Server (NTRS)

    Mazess, R. B.; Cameron, J. R.

    1974-01-01

    Photon absorptiometry with I-125 was used to measure the bone mineral content and the bone width on 763 children between the ages of 5 and 19 years, on 538 adults between the ages of 20 and 49 years, and on 550 adults over the age of 50 years. Measurements were made on the midshaft and the distal end of the radius and the ulna, and on the humerus midshaft. This has permitted analysis of annual bone growth in children, and the rate of change in elderly adults per decade. Male and female children grew at about the same rate until adolescence. After adolescence females grew at a slow rate until the mid-twenties, while males reached adult mineralization by age 20. Males remained relatively constant until the fifties, and females began their decline in the forties.

  9. Low bone mineral status in adolescent idiopathic scoliosis

    PubMed Central

    Li, Xin-Feng; Li, Hai

    2008-01-01

    Adolescent idiopathic scoliosis (AIS) is a pathological entity of unknown etiology. The causes of osteoporosis or osteopenia in AIS remain undetermined. Whether poor bone quality is an etiologic factor remains controversial. To determine the correlation between low bone mineral status and AIS, a review of literature was performed. After a literature search from 1966 to June 2007 (using Medline, EMBASE, Cochrane DSR, ACP Journal Club, DARE, CCTR, CINAHL and hand searches of references) for studies regarding low bone mineral status and AIS, 20 studies meeting the inclusion criteria were reviewed in terms of the appropriateness of valuation technique, the validity of descriptive system, the number and type of respondents, and overall quality of the studies. Nearly all investigations demonstrated that low bone mineral density (BMD) was a generalized phenomenon and a systematic disorder in AIS. The prevalence of AIS with osteoporosis is approximately 20–38%. The follow-up studies indicated that osteopenia in patients with AIS may be a persistent phenomenon. BMD could be affected by the mechanical loading and lower bone mineral mass is always associated with lower bone strength. The spinal architecture associated with the osteopenia may aggravate the spinal deformity. However, with regard to the concave and convex femoral neck BMD values, and the correlation of BMD to scoliosis parameters, the results remain inconsistent. Bracing may not result in permanent loss of bone mineral mass. The effect of the eccentric tension–compression environments on BMD, the correlation of BMD with scoliosis parameters and the effect of bracing on BMD should be investigated further in prospective, randomized and longitudinal follow-up studies. PMID:18751741

  10. Kinetic aspects of bone mineral metabolism

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.

    1973-01-01

    Two techniques were studied for measuring changes in bone mass in rats. One technique measures the Ar-37 produced from calcium during neutron irradiation and the other measures the changes in the Na-22 content which has been incorporated within the rat bone. Both methods are performed in VIVO and cause no significant physiological damage. The Ar-37 leaves the body of a rat within an hour after being produced, and it can be quantitatively collected and measured with a precision of - or + 2% on the same rat. With appropriate irradiation conditions it appears that the absolute quantity of calcuim in any rat can be determined within - or + 3% regardless of animal size. The Na-22 when uniformly distributed in bone, can be used to monitor bone mineral turnover and this has been demonstrated in conditions of calcium deficiency during growth and also pregnancy coupled with calcium deficiency.

  11. High resolution bone mineral densitometry with a gamma camera

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Evans, H.; Jhingran, S.; Johnson, P.

    1983-01-01

    A technique by which the regional distribution of bone mineral can be determined in bone samples from small animals is described. The technique employs an Anger camera interfaced to a medical computer. High resolution imaging is possible by producing magnified images of the bone samples. Regional densitometry of femurs from oophorectomised and bone mineral loss.

  12. Bone mineral content and bone mineral density are lower in older than in younger females with Rett syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although bone mineral deficits have been identified in Rett syndrome (RTT), the prevalence of low bone mineral density (BMD) and its association with skeletal fractures and scoliosis has not been characterized fully in girls and women with RTT. Accordingly, we measured total body bone mineral conten...

  13. [Sarcopenia and bone mineral property with age].

    PubMed

    Ogawa, Sumito

    2016-08-01

    In order to maintain functional activities in the elderly, promotion of musculoskeletal care is important toward successful aging and healthy longevity. In practice, reduction of falls and fall-related injuries together with treatment of osteoporosis is important to keep activities of daily living. Recent findings suggest the possibility that there is a relationship between skeletal muscle and bone mineral property, represented by pathophysiological linkage between sarcopenia and osteoporosis. PMID:27461501

  14. An investigation of the mineral in ductile and brittle cortical mouse bone.

    PubMed

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J

    2015-05-01

    Bone is a strong and tough material composed of apatite mineral, organic matter, and water. Changes in composition and organization of these building blocks affect bone's mechanical integrity. Skeletal disorders often affect bone's mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta model, oim(-/-) , mice have a defect in the collagen, which leads to brittle bone; PHOSPHO1 mutants, Phospho1(-/-) , have ductile bone resulting from altered mineralization. Oim(-/-) and Phospho1(-/-) were compared with their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD) and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (BSE SEM). Results revealed that although both pathology models had extremely different whole-bone mechanics, they both had smaller apatite crystals, lower bulk mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. In contrast, the degree of mineralization of bone matrix was different for each strain: brittle oim(-/-) were hypermineralized, whereas ductile Phospho1(-/-) were hypomineralized. Despite differences in the mineralization, nanoscale alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results indicated that alterations from normal crystal size

  15. Is Bone Tissue Really Affected by Swimming? A Systematic Review

    PubMed Central

    Gómez-Bruton, Alejandro; Gónzalez-Agüero, Alejandro; Gómez-Cabello, Alba; Casajús, José A.; Vicente-Rodríguez, Germán

    2013-01-01

    Background Swimming, a sport practiced in hypogravity, has sometimes been associated with decreased bone mass. Aim This systematic review aims to summarize and update present knowledge about the effects of swimming on bone mass, structure and metabolism in order to ascertain the effects of this sport on bone tissue. Methods A literature search was conducted up to April 2013. A total of 64 studies focusing on swimmers bone mass, structure and metabolism met the inclusion criteria and were included in the review. Results It has been generally observed that swimmers present lower bone mineral density than athletes who practise high impact sports and similar values when compared to sedentary controls. However, swimmers have a higher bone turnover than controls resulting in a different structure which in turn results in higher resistance to fracture indexes. Nevertheless, swimming may become highly beneficial regarding bone mass in later stages of life. Conclusion Swimming does not seem to negatively affect bone mass, although it may not be one of the best sports to be practised in order to increase this parameter, due to the hypogravity and lack of impact characteristic of this sport. Most of the studies included in this review showed similar bone mineral density values in swimmers and sedentary controls. However, swimmers present a higher bone turnover than sedentary controls that may result in a stronger structure and consequently in a stronger bone. PMID:23950908

  16. DXA parameters: beyond bone mineral density.

    PubMed

    Briot, Karine

    2013-05-01

    Dual-energy X-ray absorptiometry (DXA) is the reference standard for measuring bone mineral density (BMD) to diagnose osteoporosis. However, BMD measurement alone does not reliably predict the fracture risk. DXA can be used to assess other parameters (e.g. presence of vertebral fractures, bone microarchitecture, bone geometry, and body composition) simultaneously with BMD measurements, to help identify individuals at high fracture risk. Among these parameters, some are suitable for use in clinical practice, whereas others are reserved for research. Vertebral fracture assessment (VFA) is a very low radiation-dose method for detecting thoracic and lumbar vertebral fractures. Compared to standard radiography, VFA can be used in a broader population to detect asymptomatic vertebral fractures. The very good negative predictive value of VFA leads, in one-third of cases, to changes in patient management (drug treatment and prescription of radiographs). The trabecular bone score (TBS) is a noninvasively measured texture parameter that correlates with 3D bone microarchitecture parameters independently from BMD and that can be determined from lumbar-spine DXA images. Several cross-sectional studies and a prospective study established that the TBS was effective in identifying individuals with fractures. Additional studies will have to be performed to determine whether TBS determination can be recommended for everyday practice when treatment decisions are difficult. PMID:23622733

  17. Bone mineral density, Bone mineral contents, MMP-8 and MMP-9 levels in Human Mandible and alveolar bone: Simulated microgravity

    NASA Astrophysics Data System (ADS)

    Rai, Balwant; Kaur, Jasdeep; Catalina, Maria

    Exposure to microgravity has been associated with several physiological changes in astronauts and cosmonauts, including an osteoporosis-like loss of bone mass. It has been reported that head-down tilt bed-rest studies mimic many of the observations seen in flights. There is no study on the correlation on effects of mandibular bone and alveolar bone loss in both sex in simulating microgravity. This study was designed to determine the Bone mineral density and GCF MMP-8 MMP-9 in normal healthy subject of both sexes in simulated microgravity condition of -6 head-down-tilt (HDT) bed rest. The subjects of this investigation were 10 male and 10 female volunteers participated in three weeks 6 HDT bed-rest exposure. The Bone density and bone mineral contents were measured by dual energy X-ray absorptiometry before and in simulated microgravity. The GCF MMP-8 MMP-8 were measured by Enzyme-linked immunosorbent assays (Human Quantikine MMP-8,-9 ELISA kit). The bone mineral density and bone mineral contents levels were significantly decreased in simulated microgravity condition in both genders, although insignificantly loss was higher in females as compared to males. MMP-8 MMP-9 levels were significantly increased in simulated microgravity as compared to normal condition although insignificantly higher in females as compared to males. Further study is required on large samples size including all factors effecting in simulated microgravity and microgravity. Keys words-Simulated microgravity condition, head-down-tilt, Bone loss, MMP-8, MMP-9, Bone density, Bone mineral contents.

  18. [Bone Cell Biology Assessed by Microscopic Approach. Bone mineralization by ultrastructural imaging].

    PubMed

    Hasegawa, Tomoka

    2015-10-01

    Bone mineralization can be divided into two phases ; one is primary mineralization associated with osteoblastic bone formation, and the other is secondary mineralization which gradually increases mineral density of bone matrix after the primary mineralization. Primary mineralization is initiated by matrix vesicles synthesized by mature osteoblasts. Crystalline calcium phosphates are nucleated inside these matrix vesicles, and then, get out of them forming spherical mineralized nodule, which can grow more by being supplied with Ca2+ and PO4(3-) (matrix vesicle mineralization). Thereafter, the mineralized nodules make contacts with surrounding collagen fibrils, extending mineralization along with their longitudinal axis from the contact points (collagen mineralization). In this review, the ultrastructural findings on bone mineralization, specially, primary mineralization will be provided. PMID:26412723

  19. Bone mineral density: testing for osteoporosis

    PubMed Central

    Sheu, Angela; Diamond, Terry

    2016-01-01

    Summary Primary osteoporosis is related to bone loss from ageing. Secondary osteoporosis results from specific conditions that may be reversible. A thoracolumbar X-ray is useful in identifying vertebral fractures, and dual energy X-ray absorptiometry is the preferred method of calculating bone mineral density. The density of the total hip is the best predictor for a hip fracture, while the lumbar spine is the best site for monitoring the effect of treatment. The T-score is a comparison of the patient’s bone density with healthy, young individuals of the same sex. A negative T-score of –2.5 or less at the femoral neck defines osteoporosis. The Z-score is a comparison with the bone density of people of the same age and sex as the patient. A negative Z-score of –2.5 or less should raise suspicion of a secondary cause of osteoporosis. Clinical risk calculators can be used to predict the 10-year probability of a hip or major osteoporotic fracture. A probability of more than 5% for the hip or more than 20% for any fracture is abnormal and treatment may be warranted. PMID:27340320

  20. Preoperative Periarticular Knee Bone Mineral Density in Osteoarthritic Patients Undergoing TKA

    PubMed Central

    Ishii, Yoshinori; Noguchi, Hideo; Sato, Junko; Todoroki, Koji; Ezawa, Nobukazu; Toyabe, Shin-ichi

    2016-01-01

    Background: Preoperative periarticular bone quality is affected by joint loading. The purpose of this study was to determine the periarticular bone mineral density of the knee joint of patients undergoing total knee arthroplasty, and whether the location of the load-bearing axis correlates with the measured bone mineral density. Materials and Methods: The bone mineral densities of the medial and lateral femoral condyles and the medial and lateral tibial condyles were analyzed in consecutive 116 osteoarthritic patients (130 knees) by dual energy x-ray absorptiometry. Results: The median bone mineral density values in the condyles were 1.138 in femoral medial, 0.767 in femoral lateral, 1.056 in tibial medial, and 0.714 in tibial lateral. The medial condyles showed significantly higher bone mineral densities than the lateral condyles in both the femur and tibia. In addition, the femoral medial showed significantly higher bone mineral density levels than the tibial medial, and the femoral lateral condyle had higher bone mineral density levels than the tibial lateral. The bone mineral density Medial/Lateral ratio was significantly negatively correlated with the location (tibial medial edge 0%, lateral edge 100%) of the load-bearing axis in the femur and tibia. Conclusion: Preoperative bone mineral density values may provide against the changes in bone mineral density after total knee arthroplasty by reflecting the correlation with joint loading axis. These results help explain why total knee arthroplasty has such good long-term clinical outcomes with a low frequency of component loosening and periarticular fractures despite a high degree of postoperative bone loss. PMID:27583058

  1. Variations in Urine Calcium Isotope: Composition Reflect Changes in Bone Mineral Balance in Humans

    NASA Technical Reports Server (NTRS)

    Skulan, Joseph; Anbar, Ariel; Bullen, Thomas; Puzas, J. Edward; Shackelford, Linda; Smith, Scott M.

    2004-01-01

    Changes in bone mineral balance cause rapid and systematic changes in the calcium isotope composition of human urine. Urine from subjects in a 17 week bed rest study was analyzed for calcium isotopic composition. Comparison of isotopic data with measurements of bone mineral density and metabolic markers of bone metabolism indicates the calcium isotope composition of urine reflects changes in bone mineral balance. Urine calcium isotope composition probably is affected by both bone metabolism and renal processes. Calcium isotope. analysis of urine and other tissues may provide information on bone mineral balance that is in important respects better than that available from other techniques, and illustrates the usefulness of applying geochemical techniques to biomedical problems.

  2. [Bone turnover and mineralization in patients with kidney failure].

    PubMed

    James, Junichiro

    2016-09-01

    Bone remodeling is a device to accomplish "the buffering of the extracellular fluid mineral", which is one of the two major physiological functions of bone. Bone turnover is a term to express the frequency of bone remodeling, and its last step is calcification. When remodeling is induced, at first a large amount of mineral is released from bone to extracellular fluid transiently, and thereafter mineral is slowly and steadily drawn into bone. The extracellular minerals, especially calcium, are maintained by this repetition. When kidney is injured, bone turnover takes a wide spectrum from remarkably high cases to low cases. Primary calcification also shows marked individual differences. The classic renal bone diseases 5 classification clearly categorizes these disease condition, which is synonymous with renal osteodystrophy today. PMID:27561340

  3. Hypermineralized whale rostrum as the exemplar for bone mineral

    PubMed Central

    Li, Zhen; Pasteris, Jill D.; Novack, Deborah

    2013-01-01

    Although bone is a nanocomposite of mineral and collagen, mineral has been the more elusive component to study. A standard for bone mineral clearly is needed. We hypothesized that the most natural, least-processed bone mineral could be retrieved from the most highly mineralized bone. We therefore studied the rostrum of the toothed whale Mesoplodon densirostris, which has the densest recognized bone. Essential to establishment of a standard for bone mineral is documentation that the proposed tissue is bone-like in all properties except for its remarkably high concentration of mineral. Transmitted-light microscopy of unstained sections of rostral material shows normal bone morphology in osteon geometry, lacunae concentration, and vasculature development. Stained sections reveal extremely low density of thin collagen fibers throughout most of the bone, but enrichment in and thicker collagen fibers around vascular holes and in a minority of osteons. FE-SEM shows the rostrum to consist mostly of dense mineral prisms. Most rostral areas have the same chemical-structural features, Raman spectroscopically dominated by strong bands at ~962 Δcm−1 and weak bands at ~2940 Δcm−1. Spectral features indicate that the rostrum is composed mainly of the calcium phosphate mineral apatite and has only about 4 wt.% organic content. The degree of carbonate substitution (~8.5 wt.% carbonate) in the apatite is in the upper range found in most types of bone. We conclude that, despite its enamel-like extraordinarily high degree of mineralization, the rostrum is in all other features bone-like. Its mineral component is the long-sought uncontaminated, unaltered exemplar of bone mineral. PMID:23586370

  4. Hypermineralized whale rostrum as the exemplar for bone mineral.

    PubMed

    Li, Zhen; Pasteris, Jill D; Novack, Deborah

    2013-01-01

    Although bone is a nanocomposite of mineral and collagen, mineral has been the more elusive component of study. A standard for bone mineral is clearly needed. We hypothesized that the most natural, least-processed bone mineral could be retrieved from the most highly mineralized bone. We therefore studied the rostrum of the toothed whale Mesoplodon densirostris, which has the densest recognized bone. Essential to establishment of a standard for bone mineral is the documentation that the proposed tissue is bone-like in all properties except for its remarkably high concentration of mineral. Transmitted-light microscopy of unstained sections of rostral material shows normal bone morphology in osteon geometry, lacunae concentration, and vasculature development. Stained sections reveal extremely low density of thin collagen fibers in most of the bone, but enrichment of thicker collagen fibers around vascular holes and in a minority of osteons. Field-emission scanning electron microscopy shows the rostrum mostly consists of dense mineral prisms. Most rostral areas have the same chemical-structural features, i.e., Raman spectroscopically dominated by strong bands at ∼962 Δcm(-1) and weak bands at ∼2940 Δcm(-1). Spectral features indicate that the rostrum is composed mainly of the calcium phosphate mineral apatite and has only about 4 wt.% organic content. The degree of carbonate substitution (∼8.5 wt.% carbonate) in the apatite is in the upper range found in most types of bone. We conclude that, despite its enamel-like extraordinarily high degree of mineralization, the rostrum is in all other features bone-like. Its mineral component is the long-sought uncontaminated, unaltered exemplar of bone mineral. PMID:23586370

  5. Hypermineralized whale rostrum as the exemplar for bone mineral.

    PubMed

    Li, Zhen; Pasteris, Jill D; Novack, Deborah

    2013-01-25

    Although bone is a nanocomposite of mineral and collagen, mineral has been the more elusive component to study. A standard for bone mineral clearly is needed. We hypothesized that the most natural, least-processed bone mineral could be retrieved from the most highly mineralized bone. We therefore studied the rostrum of the toothed whale Mesoplodon densirostris, which has the densest recognized bone. Essential to establishment of a standard for bone mineral is documentation that the proposed tissue is bone-like in all properties except for its remarkably high concentration of mineral. Transmitted-light microscopy of unstained sections of rostral material shows normal bone morphology in osteon geometry, lacunae concentration, and vasculature development. Stained sections reveal extremely low density of thin collagen fibers throughout most of the bone, but enrichment in and thicker collagen fibers around vascular holes and in a minority of osteons. FE-SEM shows the rostrum to consist mostly of dense mineral prisms. Most rostral areas have the same chemical-structural features, Raman spectroscopically dominated by strong bands at ∼962 Δcm(-1) and weak bands at ∼2940 Δcm(-1). Spectral features indicate that the rostrum is composed mainly of the calcium phosphate mineral apatite and has only about 4 wt.% organic content. The degree of carbonate substitution (∼8.5 wt.% carbonate) in the apatite is in the upper range found in most types of bone. We conclude that, despite its enamel-like extraordinarily high degree of mineralization, the rostrum is in all other features bone-like. Its mineral component is the long-sought uncontaminated, unaltered exemplar of bone mineral. PMID:23350666

  6. The Factors Affecting Bone Density in Cirrhosis

    PubMed Central

    Hajiabbasi, Asghar; Shafaghi, Afshin; Fayazi, Haniyeh Sadat; Shenavar Masooleh, Irandokht; Hedayati Emami, Mohammad Hassan; Ghavidel Parsa, Pooneh; Amir Maafi, Alireza

    2015-01-01

    Background: Bone loss is common in cirrhosis. However, the prevalence of osteopenia and osteoporosis has been heterogeneous in different reports. Reduction in bone formation with or without increase in bone resorption appears to be responsible for bone loss in these patients. Objectives: We aimed to investigate bone loss in patients with cirrhosis at different anatomical sites and key factors that might affect it. Patients and Methods: In this cross-sectional study, 97 patients with cirrhosis who were referred to Razi Hospital, Rasht, Iran, from 2008 to 2010, were studied. Cirrhosis was diagnosed using biopsy and/or clinical and paraclinical findings. Bone mineral densitometry was done in L2 through L4 lumbar spine (LS) and femoral neck (FN), using dual-energy X-ray absorptiometry (DEXA) (QDR 1000, Hologic DEXA Inc, Waltham, Massachusetts, the United States). Statistical analysis was performed using SPSS 18. A P value < 0.05 was considered statistically significant. Results: A total of 97 patients with cirrhosis (55.7% male) and the mean age of 51 ± 13 years and median body mass index (BMI) of 22.7 kg/m2 were recruited over a two-year period. Etiologies of cirrhosis were hepatitis C (40.2%), hepatitis B (26.8%), cryptogenic (21.6%), and other causes (11.4%). Child A, B, and C, were seen in 16.5%, 47.4%, and 36.1% of patients, respectively. The DEXA results were abnormal in 78.4% of our participants (osteopenia, 45.4%; osteoporosis, 33%). BMI and calculated glomerular filtration rate (GFRc) had moderate positive and Child score had moderate negative significant correlation with T score in both anatomical sites. There was no significant association between abnormal DEXA and the causes of cirrhosis. The univariate analysis showed that the risk of abnormal results in DEXA was significantly higher in those with low BMI, current smoking, higher Child score, and low GFRc; however, in multivariate analysis, the abnormal results were more frequent in those with lower

  7. The effects of strontium on bone mineral: A review on current knowledge and microanalytical approaches.

    PubMed

    Querido, William; Rossi, Andre L; Farina, Marcos

    2016-01-01

    The interest in effects of strontium (Sr) on bone has greatly increased in the last decade due to the development of the promising drug strontium ranelate. This drug is used for treating osteoporosis, a major bone disease affecting hundreds of millions of people worldwide, especially postmenopausal women. The novelty of strontium ranelate compared to other treatments for osteoporosis is its unique effect on bone: it simultaneously promotes bone formation by osteoblasts and inhibits bone resorption by osteoclasts. Besides affecting bone cells, treatment with strontium ranelate also has a direct effect on the mineralized bone matrix. Due to the chemical similarities between Sr and Ca, a topic that has long been of particular interest is the incorporation of Sr into bones replacing Ca from the mineral phase, which is composed by carbonated hydroxyapatite nanocrystals. Several groups have analyzed the mineral produced during treatment; however, most analysis were done with relatively large samples containing numerous nanocrystals, resulting thus on data that represents an average of many crystalline domains. The nanoscale analysis of the bone apatite crystals containing Sr has only been described in a few studies. In this study, we review the current knowledge on the effects of Sr on bone mineral and discuss the methodological approaches that have been used in the field. In particular, we focus on the great potential that advanced microscopy and microanalytical techniques may have on the detailed analysis of the nanostructure and composition of bone apatite nanocrystals produced during treatment with strontium ranelate. PMID:26546967

  8. Isotopic bone mineralization rates in maintenance dialysis patients

    SciTech Connect

    Cochran, M.; Stephens, E.

    1983-09-01

    The expanding pool model of radiocalcium kinetics has been used in 13 maintenance dialysis patients to measure bone mineralization rate. No difficulties were met in applying the data to the model, and values for the bone mineralization rate ranged from 0.0 to 2.0 mmol/kg Ca++ per day. The bone histology obtained at the time of the study showed a correlation between the degree of secondary hyperparathyroidism and the bone mineralization rate, with low values of the latter occurring in atypical osteomalacia (two patients) or inactive-looking bone (one patient) and raised values in seven patients. The plasma alkaline phosphatase and immunoassayable parathyroid hormone levels each correlated significantly with the bone mineralization rate. These findings suggest that the technique is valid when applied to hemodialysis patients and provides quantitative information about skeletal calcium metabolism in different types of renal bone disease.

  9. FLUORIDE EFFECTS ON BONE FORMATION AND MINERALIZATION ARE INFLUENCED BY GENETICS

    PubMed Central

    Mousny, M.; Omelon, S.; Wise, L.; Everett, E. T.; Dumitriu, M.; Holmyard, D. P.; Banse, X.; Devogelaer, J. P.; Grynpas, M. D

    2008-01-01

    effect on bone microarchitecture in these three strains. The increased osteoid formation and decreased mineralization heterogeneity support the theory that F− delays mineralization of new bone. The increasing crystal width with increasing F− dose confirms earlier results and correlates with most of the decreased mechanical properties. An increase in bone F− may affect the mineral-organic interfacial bonding and/or bone matrix proteins, interfering with bone crystal growth inhibition on the crystallite faces as well as bonding between the mineral and organic interface. The smaller bone crystallites of the 129P3/J (resistant) strain may indicate a stronger organic/inorganic interface, reducing crystallite growth rate and increasing interfacial mechanical strength. PMID:18755305

  10. Bone mineral crystal size and organization vary across mature rat bone cortex.

    PubMed

    Turunen, Mikael J; Kaspersen, Jørn D; Olsson, Ulf; Guizar-Sicairos, Manuel; Bech, Martin; Schaff, Florian; Tägil, Magnus; Jurvelin, Jukka S; Isaksson, Hanna

    2016-09-01

    The macro- and micro-features of bone can be assessed by using imaging methods. However, nano- and molecular features require more detailed characterization, such as use of e.g., vibrational spectroscopy and X-ray scattering. Nano- and molecular features also affect the mechanical competence of bone tissue. The aim of the present study was to reveal the effects of mineralization and its alterations on the mineral crystal scale, by investigating the spatial variation of molecular composition and mineral crystal structure across the cross-section of femur diaphyses in young rats, and healthy and osteoporotic mature rats (N=5). Fourier transform infrared spectroscopy and scanning small- and wide-angle X-ray scattering (SAXS/WAXS) techniques with high spatial resolution were used at identical locations over the whole cross-section. This allowed quantification of point-by-point information about the spatial distribution of mineral crystal volume. All measured parameters (crystal dimensions, degree of orientation and predominant orientation) varied across the cortex. Specifically, the crystal dimensions were lower in the central cortex than in the endosteal and periosteal regions. Mineral crystal orientation followed the cortical circumference in the periosteal and endosteal regions, but was less well-oriented in the central regions. Central cortex is formed rapidly during development through endochondral ossification. Since rats possess no osteonal remodeling, this bone remains (until old age). Significant linear correlations were observed between the dimensional and organizational parameters, e.g., between crystal length and degree of orientation (R(2)=0.83, p<0.001). Application of SAXS/WAXS provides valuable information on bone nanostructure and its constituents, effects of diseases and, prospectively, mechanical competence. PMID:27417019

  11. Minerals

    MedlinePlus

    Minerals are important for your body to stay healthy. Your body uses minerals for many different jobs, including building bones, making ... regulating your heartbeat. There are two kinds of minerals: macrominerals and trace minerals. Macrominerals are minerals your ...

  12. Correlation between longitudinal, circumferential, and radial moduli in cortical bone: effect of mineral content.

    PubMed

    Macione, J; Depaula, C A; Guzelsu, N; Kotha, S P

    2010-07-01

    Previous studies indicate that changes in the longitudinal elastic properties of bone due to changes in mineral content are related to the longitudinal strength of bone tissue. Changes in mineral content are expected to affect bone tissue mechanical properties along all directions, albeit to different extents. However, changes in tissue mechanical properties along the different directions are expected to be correlated to one another. In this study, we investigate if radial, circumferential, and longitudinal moduli are related in bone tissue with varying mineral content. Plexiform bovine femoral bone samples were treated in fluoride ion solutions for a period of 3 and 12 days to obtain bones with 20% and 32% lower effective mineral contents. Transmission ultrasound velocities were obtained in the radial, circumferential, and longitudinal axes of bone and combined with measured densities to obtain corresponding tensorial moduli. Results indicate that moduli decreased with fluoride ion treatments and were significantly correlated to one another (r(2) radial vs. longitudinal = 0.80, r(2) circumferential vs. longitudinal = 0.90, r(2) radial vs. circumferential = 0.85). Densities calculated from using ultrasound parameters, acoustic impedance and transmission velocities, were moderately correlated to those measured by the Archimedes principle (r(2)=0.54, p<0.01). These results suggest that radial and circumferential ultrasound measurements could be used to determine the longitudinal properties of bone and that ultrasound may not be able to predict in vitro densities of bones containing unbonded mineral. PMID:20416555

  13. Mechanisms of Bone Mineralization and Effects of Mechanical Loading

    NASA Technical Reports Server (NTRS)

    Babich, Michael

    1996-01-01

    The data suggest that PTH and PKC inhibit nodule formation, and that alternative energy sources are utilized by osteoblasts in the process of mineralization. The conditions and techniques to grow, fix, photograph, and measure bone mineralization in vitro were defined. The results are presently in preliminary form and require further assessment as follows; quantitate the surface area of nodules + treatments via computer-aided image analysis; use PTH + inhibitors of signaling pathways to determine the mechanism of nodule formation; determine how protein kinase C is involved as a promotor of nodule formation; cell proliferation vs. cell death affected by modulation of signal transduction (i.e., PTH, enzyme inhibitors and activators); identify mRNA induced or decreased in response to PTH and signaling modulators that encode proteins that regulate cell morphology, proliferation, and nodule formation. Therefore, several follow-up studies between the laboratories at NASA-Ames Research Center and my laboratory at the University of Illinois have been initiated.

  14. Bone mineral measurement using dual energy x ray densitometry

    NASA Technical Reports Server (NTRS)

    Smith, Steven W.

    1989-01-01

    Bone mineral measurements before and after space missions have shown that weightlessness greatly accelerates bone demineralization. Bone mineral losses as high as 1 to 3 percent per month were reported. Highly precise instrumentation is required to monitor this loss and thereby test the efficacy of treatment. During the last year, a significant improvement was made in Dual-Photon Absorptiometry by replacing the radioactive source with an x ray tube. Advantages of this system include: better precision, lower patient dose, better spacial resolution, and shorter scan times. The high precision and low radiation dose of this technique will allow detection of bone mineral changes of less than 1 percent with measurements conducted directly at the sites of interest. This will allow the required bone mineral studies to be completed in a shorter time with greater confidence.

  15. Molecular packing in bone collagen fibrils prior to mineralization

    NASA Astrophysics Data System (ADS)

    Hsiao, Benjamin; Zhou, Hong-Wen; Burger, Christian; Chu, Benjamin; Glimcher, Melvin J.

    2012-02-01

    The three-dimensional packing of collagen molecules in bone collagen fibrils has been largely unknown because even in moderately mineralized bone tissues, the organic matrix structure is severely perturbed by the deposition of mineral crystals. During the past decades, the structure of tendon collagen (e.g. rat tail) --- a tissue that cannot mineralize in vivo, has been assumed to be representative for bone collagen fibrils. Small-angle X-ray diffraction analysis of the native, uncalcified intramuscular fish bone has revealed a new molecular packing scheme, significantly different from the quasi-hexagonal arrangement often found in tendons. The deduced structure in bone collagen fibrils indicates the presence of spatially discrete microfibrils, and an arrangement of intrafibrillar space to form ``channels'', which could accommodate crystals with dimensions typically found in bone apatite.

  16. Bone mineral density and survival of elements and element portions in the bones of the Crow Creek massacre victims.

    PubMed

    Willey, P; Galloway, A; Snyder, L

    1997-12-01

    The interpretation of archaeologically-derived skeletal series is dependent on the elements and portions of elements preserved for examination. Bone and bone portion survival is affected by factors, both intrinsic and extrinsic to the elements themselves, that influence deterioration and preservation. Among the intrinsic variables, the density of the element and element portion are particularly important with respect to the degree of preservation. Recently reported bone mineral density values from a contemporary human sample are compared to the survival of prehistoric limb bones of the Crow Creek specimens, a fourteenth-century massacre skeletal series. The contemporary density values are positively correlated with Crow Creek element and element portion survival. Two calculations of bone mineral density, however, are more closely related to preservation than a third. Such density information has implications for assessing minimum number of elements and individuals and documenting taphonomic processes. PMID:9453699

  17. Dietary Pseudopurpurin Effects on Bone Mineral Density and Bone Geometry Architecture in Rats

    PubMed Central

    Wu, Chen-Chen; Li, Xiao-Bing; Han, Tie-Suo; Li, Peng; Liu, Guo-Wen; Wang, Wei-Zhong; Wang, Zhe

    2012-01-01

    The objective of our study was to evaluate whether feeding pseudopurpurin affects bone mineral density and bone geometry architecture in rats. Pseudopurpurin was extracted, analyzed and purified using an HLPC-ESI-MS. Rats were given 0% and 0.5% pseudopurpurin powder in their diet. Femurs of rats were examined at 0.5, 1 and 2 months after pseudopurpurin feeding. Compared with rats in the group 0%, the bone mineral density, and the calcium, magnesium, zinc and manganese concentrations in the rats femur in the group 0.5% increased significantly at 1 month and 2 months after pseudopurpurin feeding. Analytical results of micro-computed tomography showed that the group 0.5% displayed an increase in the trabecular volume fraction, trabecular thickness and trabecular number of the distal femur at 1 and 2 months after pseudopurpurin feeding, and the mean thickness, inner perimeter, outer perimeter, and area of the femur diaphysis were significantly increased at 2 months after pseudopurpurin feeding compared with the group 0%. In parallel, the trabecular separation and structure model index of the distal femur were decreased, compared with the group 0% at 1 and 2 months after pseudopurpurin feeding. In the 0.5% and 0% groups, there was no damage to kidney and liver by histopathology analysis. The long-term feeding of pseudopurpurin is safe for rats. The feeding of 0.5% pseudopurpurin which has specific chemical affinities for calcium for bone improvement and level of bone mineral density, enhances the geometry architecture compared with the 0% group. PMID:22489160

  18. Bone mineral density, adiposity, and cognitive functions

    PubMed Central

    Sohrabi, Hamid R.; Bates, Kristyn A.; Weinborn, Michael; Bucks, Romola S.; Rainey-Smith, Stephanie R.; Rodrigues, Mark A.; Bird, Sabine M.; Brown, Belinda M.; Beilby, John; Howard, Matthew; Criddle, Arthur; Wraith, Megan; Taddei, Kevin; Martins, Georgia; Paton, Athena; Shah, Tejal; Dhaliwal, Satvinder S.; Mehta, Pankaj D.; Foster, Jonathan K.; Martins, Ian J.; Lautenschlager, Nicola T.; Mastaglia, Francis; Laws, Simon M.; Martins, Ralph N.

    2015-01-01

    Cognitive decline and dementia due to Alzheimer's disease (AD) have been associated with genetic, lifestyle, and environmental factors. A number of potentially modifiable risk factors should be taken into account when preventive or ameliorative interventions targeting dementia and its preclinical stages are investigated. Bone mineral density (BMD) and body composition are two such potentially modifiable risk factors, and their association with cognitive decline was investigated in this study. 164 participants, aged 34–87 years old (62.78 ± 9.27), were recruited for this longitudinal study and underwent cognitive and clinical examinations at baseline and after 3 years. Blood samples were collected for apolipoprotein E (APOE) genotyping and dual energy x-ray absorptiometry (DXA) was conducted at the same day as cognitive assessment. Using hierarchical regression analysis, we found that BMD and lean body mass, as measured using DXA were significant predictors of episodic memory. Age, gender, APOE status, and premorbid IQ were controlled for. Specifically, the List A learning from California Verbal Learning Test was significantly associated with BMD and lean mass both at baseline and at follow up assessment. Our findings indicate that there is a significant association between BMD and lean body mass and episodic verbal learning. While the involvement of modifiable lifestyle factors in human cognitive function has been examined in different studies, there is a need for further research to understand the potential underlying mechanisms. PMID:25741279

  19. Bone mineral density, adiposity, and cognitive functions.

    PubMed

    Sohrabi, Hamid R; Bates, Kristyn A; Weinborn, Michael; Bucks, Romola S; Rainey-Smith, Stephanie R; Rodrigues, Mark A; Bird, Sabine M; Brown, Belinda M; Beilby, John; Howard, Matthew; Criddle, Arthur; Wraith, Megan; Taddei, Kevin; Martins, Georgia; Paton, Athena; Shah, Tejal; Dhaliwal, Satvinder S; Mehta, Pankaj D; Foster, Jonathan K; Martins, Ian J; Lautenschlager, Nicola T; Mastaglia, Francis; Laws, Simon M; Martins, Ralph N

    2015-01-01

    Cognitive decline and dementia due to Alzheimer's disease (AD) have been associated with genetic, lifestyle, and environmental factors. A number of potentially modifiable risk factors should be taken into account when preventive or ameliorative interventions targeting dementia and its preclinical stages are investigated. Bone mineral density (BMD) and body composition are two such potentially modifiable risk factors, and their association with cognitive decline was investigated in this study. 164 participants, aged 34-87 years old (62.78 ± 9.27), were recruited for this longitudinal study and underwent cognitive and clinical examinations at baseline and after 3 years. Blood samples were collected for apolipoprotein E (APOE) genotyping and dual energy x-ray absorptiometry (DXA) was conducted at the same day as cognitive assessment. Using hierarchical regression analysis, we found that BMD and lean body mass, as measured using DXA were significant predictors of episodic memory. Age, gender, APOE status, and premorbid IQ were controlled for. Specifically, the List A learning from California Verbal Learning Test was significantly associated with BMD and lean mass both at baseline and at follow up assessment. Our findings indicate that there is a significant association between BMD and lean body mass and episodic verbal learning. While the involvement of modifiable lifestyle factors in human cognitive function has been examined in different studies, there is a need for further research to understand the potential underlying mechanisms. PMID:25741279

  20. Method for improved prediction of bone fracture risk using bone mineral density in structural analysis

    NASA Technical Reports Server (NTRS)

    Cann, Christopher E. (Inventor); Faulkner, Kenneth G. (Inventor)

    1992-01-01

    A non-invasive in-vivo method of analyzing a bone for fracture risk includes obtaining data from the bone such as by computed tomography or projection imaging which data represents a measure of bone material characteristics such as bone mineral density. The distribution of the bone material characteristics is used to generate a finite element method (FEM) mesh from which load capability of the bone can be determined. In determining load capability, the bone is mathematically compressed, and stress, strain force, force/area versus bone material characteristics are determined.

  1. Dependence of Long Bone Flexural Properties on Bone Mineral Distribution

    NASA Technical Reports Server (NTRS)

    Katz, BethAnn; Cleek, Tammy M.; Whalen, Robert T.; Connolly, James P. (Technical Monitor)

    1995-01-01

    The objective of this study is to assess whether a non-invasive determination of long bone cross-sectional areal properties using bone densitometry accurately estimates true long bone flexural properties. In this study, section properties of two pairs of human female embalmed tibiae were compared using two methods: special analysis of bone densitometry data, and experimental determination of flexural regidities from bone surface strain measurements during controlled loading.

  2. Autophagy in osteoblasts is involved in mineralization and bone homeostasis

    PubMed Central

    Nollet, Marie; Santucci-Darmanin, Sabine; Breuil, Véronique; Al-Sahlanee, Rasha; Cros, Chantal; Topi, Majlinda; Momier, David; Samson, Michel; Pagnotta, Sophie; Cailleteau, Laurence; Battaglia, Séverine; Farlay, Delphine; Dacquin, Romain; Barois, Nicolas; Jurdic, Pierre; Boivin, Georges; Heymann, Dominique; Lafont, Frank; Lu, Shi Shou; Dempster, David W; Carle, Georges F; Pierrefite-Carle, Valérie

    2014-01-01

    Bone remodeling is a tightly controlled mechanism in which osteoblasts (OB), the cells responsible for bone formation, osteoclasts (OC), the cells specialized for bone resorption, and osteocytes, the multifunctional mechanosensing cells embedded in the bone matrix, are the main actors. Increased oxidative stress in OB, the cells producing and mineralizing bone matrix, has been associated with osteoporosis development but the role of autophagy in OB has not yet been addressed. This is the goal of the present study. We first show that the autophagic process is induced in OB during mineralization. Then, using knockdown of autophagy-essential genes and OB-specific autophagy-deficient mice, we demonstrate that autophagy deficiency reduces mineralization capacity. Moreover, our data suggest that autophagic vacuoles could be used as vehicles in OB to secrete apatite crystals. In addition, autophagy-deficient OB exhibit increased oxidative stress and secretion of the receptor activator of NFKB1 (TNFSF11/RANKL), favoring generation of OC, the cells specialized in bone resorption. In vivo, we observed a 50% reduction in trabecular bone mass in OB-specific autophagy-deficient mice. Taken together, our results show for the first time that autophagy in OB is involved both in the mineralization process and in bone homeostasis. These findings are of importance for mineralized tissues which extend from corals to vertebrates and uncover new therapeutic targets for calcified tissue-related metabolic pathologies. PMID:25484092

  3. Strontium increases vertebral bone volume in rats at a low dose that does not induce detectable mineralization defect.

    PubMed

    Grynpas, M D; Hamilton, E; Cheung, R; Tsouderos, Y; Deloffre, P; Hott, M; Marie, P J

    1996-03-01

    Low doses of strontium and fluoride were shown to increase bone formation and trabecular bone density in rodents. To assess whether strontium or fluoride affect the quality of the mineral at doses known to increase bone density, we have determined the effects of low doses of strontium and fluoride on bone formation and bone mineral characteristics in rats. Adult rats were given strontium alone (0.20%), fluoride alone (1 mg/kg per day), or the combined treatment for 8 weeks. Strontium levels in serum and femur were similar in groups treated with strontium alone or in combination, being about 5% of calcium levels. Biochemical and neutron activation analyses in femur showed that calcium and magnesium contents did not differ in the four group of rats, suggesting that strontium was incorporated in the apatite lattice of the bone minerals in the strontium-treated rats. The mineralized bone volume was significantly increased by 17% in the strontium-treated group, by 20% in the fluoride-treated group, and by 19% in rats given with the combined treatment. This was associated with increased osteoid surface, osteoblast surface, and double tetracycline labeled surfaces in the strontium-treated and fluoride-treated groups, showing that the number of bone forming sites was increased. However, the mineral apposition rate, the osteoid thickness, and the mineralization lag time were similar in controls and treated groups, reflecting the lack of deleterious effects of low doses of strontium and fluoride on bone mineralization. The density fractionation analysis measured in the femur also showed that neither strontium, nor fluoride at the low doses used, significantly altered the mineralization profile. The results indicate that treatment with low doses of strontium or fluoride increase the number of bone forming sites and vertebral bone volume in rats, but does not have detectable adverse effects on the mineral profile, bone mineral chemistry or bone matrix mineralization. PMID

  4. AN INVESTIGATION OF THE MINERAL IN DUCTILE AND BRITTLE CORTICAL MOUSE BONE

    PubMed Central

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J.; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J.

    2015-01-01

    Bone is a strong and tough material composed of apatite mineral, organic matter and water. Changes in composition and organization of these building blocks affect bone’s mechanical integrity. Skeletal disorders often affect bone’s mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta murine (oim−/−) mice were used to model brittle bone; PHOSPHO1 mutants (Phospho1−/−) had ductile bone. They were compared to their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD), and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification, to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (qbSEM). Interestingly, the mineral of brittle oim−/− and ductile Phospho1−/− bones had many similar characteristics. Both pathology models had smaller apatite crystals, lower mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild-types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. The degree of mineralization of the bone matrix was different for each strain: oim−/− were hypermineralized, while Phospho1−/− were hypomineralized. However, alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results revealed that despite having extremely different whole bone mechanics, the mineral of oim−/− and Phospho1−/− has several similar trends at smaller length scales. This

  5. Bone mineral density testing after fragility fracture

    PubMed Central

    Posen, Joshua; Beaton, Dorcas E.; Sale, Joanna; Bogoch, Earl R.

    2013-01-01

    Abstract Objective To determine the proportion of patients with fragility fractures who can be expected to have low bone mineral density (BMD) at the time of fracture and to assist FPs in deciding whether to refer patients for BMD testing. Data sources MEDLINE, EMBASE, and CINAHL were searched from the earliest available dates through September 2009. Study selection English-language articles reporting BMD test results of patients with fragility fractures who were managed in an orthopedic environment (eg, fracture clinic, emergency management by orthopedic surgeons, inpatients) were eligible for review. While the orthopedic environment has been identified as an ideal point for case finding, FPs are often responsible for investigation and treatment. Factors that potentially influenced BMD test results (eg, selection of fracture types, exclusion criteria) were identified. Studies with 2 or more selection factors of potential influence were flagged, and rates of low BMD were calculated including and excluding these studies. Synthesis The distribution of the proportion of persons with low BMD was summarized across studies using descriptive statistics. We calculated lower boundaries on this distribution, using standard statistical thresholds, to determine a lower threshold of the expected rate of low BMD. Conclusion Family physicians evaluating patients with fragility fractures can expect that at least two-thirds of patients with fragility fractures who are older than 50 years of age will have low BMD (T score ≤ −1.0). With this a priori expectation, FPs might more readily conduct a fracture risk assessment and pursue warranted fracture risk reduction strategies following fragility fracture. PMID:24336562

  6. Bone mineral density in asthmatic patients using low dose inhaled glucocorticosteroids.

    PubMed

    El, O; Gulbahar, S; Ceylan, E; Ergor, G; Sahin, E; Senocak, O; Oncel, S; Cimrin, A

    2005-01-01

    Inhaled glucocorticosteroids are clearly beneficial in subjects with moderate or severe asthma since they are well tolerated, reduce symptoms, and improve quality of life. Some studies suggest that inhaled glucocorticosteroids can adversely affect bone mineral density. The aim of this study is to determine the effects of inhaled glucocorticosteroid therapy on bone mineral density in female patients. Forty-five asthmatic female patients (36 premenopousal and 9 postmenopausal) and forty-six healthy control subjects were included in the study. Bone mineral density was measured from lumbar spine (L1-4) and femur (neck, trochanter, and Ward's triangle) by dual energy X-Ray absorptiometry. Age, occupation, menopause and smoking status, alcohol consumption, body mass index, previous fractures, family history of fractures, menstrual history, ooferectomy, number of pregnancies, the duration of lactation, physical activity and calcium intake were questioned according to the European Vertebral Osteoporosis Study Group (EVOS) form. Cumulative inhaled glucocorticosteroid dose was calculated. T score of femoral neck and T score and bone mineral density of Ward's triangle were significantly lower in asthmatic patients compared to control group but no statistically significant correlation was found between the disease duration, inhaled steroid treatment duration, cumulative inhaled dose and annual inhaled steroid dose and bone mineral density measurement. These results suggest that in asthmatic patients using low dose inhaled corticosteroids bone mineral density is lower than in healthy controls but it is still unclear if asthma by itself is a risk factor for osteoporosis. PMID:15864884

  7. Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein

    PubMed Central

    Foster, B.L.; Ao, M.; Willoughby, C.; Soenjaya, Y.; Holm, E.; Lukashova, L.; Tran, A. B.; Wimer, H.F.; Zerfas, P.M.; Nociti, F.H.; Kantovitz, K.R.; Quan, B.D.; Sone, E.D.; Goldberg, H.A.; Somerman, M.J.

    2015-01-01

    in endochondral ossification in the cranial base, and craniofacial morphology was unaffected in Bsp−/− mice. These analyses confirm a critical role for BSP in processes of cementogenesis and intramembranous ossification of craniofacial bone, whereas endochondral ossification in the cranial base was minimally affected and dentinogenesis was normal in Bsp−/− molar teeth. Dissimilar effects of loss of BSP on mineralization of dental and craniofacial tissues suggest local differences in the role of BSP and/or yet to be defined interactions with site-specific factors. PMID:25963390

  8. Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein.

    PubMed

    Foster, B L; Ao, M; Willoughby, C; Soenjaya, Y; Holm, E; Lukashova, L; Tran, A B; Wimer, H F; Zerfas, P M; Nociti, F H; Kantovitz, K R; Quan, B D; Sone, E D; Goldberg, H A; Somerman, M J

    2015-09-01

    endochondral ossification in the cranial base, and craniofacial morphology was unaffected in Bsp(-/-) mice. These analyses confirm a critical role for BSP in processes of cementogenesis and intramembranous ossification of craniofacial bone, whereas endochondral ossification in the cranial base was minimally affected and dentinogenesis was normal in Bsp(-/-) molar teeth. Dissimilar effects of loss of BSP on mineralization of dental and craniofacial tissues suggest local differences in the role of BSP and/or yet to be defined interactions with site-specific factors. PMID:25963390

  9. Management of Minerals and Bone Disorders after Kidney Transplantation

    PubMed Central

    Kalantar-Zadeh, Kamyar; Molnar, Miklos Z; Kovesdy, Csaba P.; Mucsi, Istvan; Bunnapradist, Suphamai

    2012-01-01

    Purpose of review Mineral and bone disorders (MBD), inherent complications of moderate and advanced chronic kidney disease (CKD), occur frequently in kidney transplant recipients. However, much confusion exists about clinical application of diagnostic tools and preventive or treatment strategies to correct bone loss or mineral disarrays in transplanted patients. We have reviewed the recent evidence about prevalence and consequences of MBD in kidney transplant recipients and examined diagnostic, preventive and therapeutic options to this end. Recent findings Low turnover bone disease occurs more frequently after kidney transplantation according to bone biopsy studies. The risk of fracture is high, especially in the first several months after kidney transplantation. Alterations in minerals (calcium, phosphorus and magnesium) and biomarkers of bone metabolism (PTH, alkaline phosphatase, vitamin D and FGF-23) are observed with varying impact on post-transplant outcomes. Calcineurin inhibitors are linked to osteoporosis, whereas steroid therapy may lead to both osteoporosis and varying degrees of osteonecrosis. Sirolimus and everolimus might have a bearing on osteoblasts proliferation and differentiation or decreasing osteoclast mediated bone resorption. Selected pharmacologic interventions for treatment of MBD in transplant patients include steroid withdrawal, the use of bisphosphonates, vitamin D derivatives, calcimimetics, teriparatide, calcitonin and denosumab. Summary MBD following kidney transplantation is common and characterized by loss of bone volume and mineralization abnormalities often leading to low turnover bone disease. Although there are no well-established therapeutic approaches for management of MBD in renal transplant recipients, clinicians should continue individualizing therapy as needed. PMID:22614626

  10. Bone mineralization pathways during the rapid growth of embryonic chicken long bones.

    PubMed

    Kerschnitzki, Michael; Akiva, Anat; Ben Shoham, Adi; Asscher, Yotam; Wagermaier, Wolfgang; Fratzl, Peter; Addadi, Lia; Weiner, Steve

    2016-07-01

    The uptake and transport of ions from the environment to the site of bone formation is only partially understood and, for the most part, based on disparate observations in different animals. Here we study different aspects of the biomineralization pathways in one system, the rapidly forming long bones of the chicken embryo. We mainly used cryo-fixation and cryo-electron imaging to preserve the often unstable mineral phases in the tissues. We show the presence of surprisingly large amounts of mineral particles located inside membrane-delineated vesicles in the bone forming tissue between the blood vessels and the forming bone surface. Some of these particles are also located inside mitochondrial networks. The surfaces of the forming bones in the extracellular space contain abundant aggregates of amorphous calcium phosphate particles, but these are not enveloped by vesicle membranes. In the bone resorbing region, osteoclasts also contain many particles in both mitochondrial networks and within vesicles. Some of these particles are present also between cells. These observations, together with the previously reported observation that CaP mineral particles inside membranes are present in blood vessels, leads us to the conclusion that important components of the bone mineralization pathways in rapidly forming chicken bone are dense phase mineral particles bound within membranes. It remains to be determined whether these mineral particles are transported to the site of bone formation in the solid state, fluid state or dissolve and re-precipitate. PMID:27108185

  11. Osteoporotic-like effects of cadmium on bone mineral density and content in aged ovariectomized beagles

    SciTech Connect

    Sacco-Gibson, N.; Abrams, J.; Chaudhry, S.; Hurst, D.; Peterson, D.; Bhattacharyya, M.

    1992-12-31

    Our purpose was to evaluate the effects of ovariectomy in conjunction with cadmium (Cd) exposure on bone. Aged female beagles with {sup 45}Ca-labeled skeletons ovariectomized and exposed to Cd. Successive vertebral scans by dual photon absorptiometry monitored changes in bone mineral density (BMD) in each dog with time. Results showed that ovariectomy or Cd exposure alone caused significant decreases in BMD; ovariectomy with Cd exposure caused the greatest decrease. Ovariectomy alone did not decrease BMD in the distal end or mid-shaft of the tibia while BMD of the distal tibia decreased significantly due to Cd exposure alone. Combination treatment resulted in significant decreases in BMD of both tibial regions. At necropsy, tibiae, humeri, lumbar vertebrae and ribs were obtained for biochemical analysis. No group-to-group differences in bone weights (wet, dry, ash), in ash/dry ratios, or in long bone and vertebral Ca/dry or Ca/ash ratios were observed. Significantly higher total {sup 45}Ca content and {sup 45}Ca/dry and {sup 45}Ca/ash ratios were observed in long bones and vertebrae of OV- and OV+ groups. In contrast, intact ribs showed significantly decreased Ca/dry and Ca/ash ratios compared to the SO-group. Quartered ribs demonstrated regional responses to specific treatment; decreases in total Ca content were greatest in the mid-rib region ({minus}36 to {minus}46%). Results suggest that in the aged female beagle, bone mineral loss associated with estrogen depletion is not only related to bone type (trabecular versus cortical) but also to bone Ca pools. Our results also suggest that a regional heterogeneity of bone plays a role in responsiveness to ovariectomy and Cd exposure. These aspects suggest that Cd is an exogenous factor affecting bone mineral loss independently of estrogen depletion. However, estrogen depletion primes bone for responsiveness to Cd-induced bone mineral loss.

  12. Alfacalcidol prevents aromatase inhibitor (Letrozole)-induced bone mineral loss in young growing female rats.

    PubMed

    Mohamed, Idris; Yeh, James K

    2009-08-01

    Long-term aromatase inhibitor use causes bone loss and increases fracture risk secondary to induced estrogen deficiency. We postulated that alfacalcidol (A; vitamin D(3) analog) could help prevent the Letrozole (L)-induced mineral bone loss. Fifty intact 1-month-old female rats were randomly divided into basal group; age-matched control group (AMC); L group: oral administration of 2 mg/kg per day; A group: oral administration of 0.1 microg/kg per day; and group L+A for a period of 8 weeks. Eight-week administration of L resulted in a significant increase in body weight, bone length, bone area, bone formation, and bone resorption activities when compared with the AMC group. However, the bone mass and bone mineral density (BMD) were significantly lower than the AMC group. Serum levels of testosterone, LH, FSH, and IGF-1 were significantly higher and serum estrone and estradiol were lower along with a decrease in ovary+uterus horn weight, when compared with the AMC groups. None of those parameters were affected by A treatment, except suppression of bone resorption activities and increased trabecular bone mass and femoral BMD, when compared with the AMC group. Results of L+A combined intervention showed that bone length, bone area, and bone formation activities were higher than the AMC group, and the bone resorption activities were lower and BMD was significantly higher than that of the L group. This study demonstrates that the combined intervention of L and A not only enhances bone growth, but also increases bone density, and the effects of L and A are independent and additive. PMID:19420010

  13. Effects of risedronate on femoral bone mineral density and bone strength in sciatic neurectomized young rats.

    PubMed

    Iwamoto, Jun; Seki, Azusa; Takeda, Tsuyoshi; Sato, Yoshihiro; Yamada, Harumoto

    2005-01-01

    Immobilization induces a rapid loss of bone density and bone strength in rats. The purpose of the present study was to examine the effects of risedronate (Ris) on the femoral bone density and bone strength of sciatic neurectomized young rats. Forty male Sprague-Dawley rats, 6 weeks of age, were randomized by the stratified weight method into the following four treatment groups of 10 rats each: sham-operation, bilateral sciatic neurectomy (NX), NX + low-dose Ris (0.25 mg/kg/day, orally), and NX + high-dose Ris (0.5 mg/kg/day, orally). After 8 weeks of feeding, the volumetric bone mineral density (vBMD) and stress strain index (SSI) of the femoral distal metaphysis and middiaphysis of the rats were measured by peripheral quantitative computed tomography. The mechanical properties of the femoral distal metaphysis and middiaphysis were measured by the compression and three-point bending tests, respectively. The femoral length was also measured. As compared with the findings in the sham-operated controls, NX resulted in a loss of femoral length, cancellous vBMD, SSI, maximum load, stiffness, and breaking energy of the femoral distal metaphysis; there was also loss of cortical thickness, SSI, maximum load, and stiffness of the femoral middiaphysis, with no significant effects on the cortical vBMD or breaking energy of the femoral middiaphysis. High-dose Ris increased the vBMD to values higher than those in the sham-operated controls, and prevented the loss of SSI, maximum load, and stiffness of the femoral distal metaphysis, while low-dose Ris prevented the loss of cancellous vBMD of the femoral distal metaphysis. Neither high- nor low-dose Ris affected any of the cortical bone parameters of the femoral middiaphysis, except for cortical thickness, or the femoral length. These findings suggest that Ris may prevent immobilization-induced loss of cancellous bone density and bone strength in a dose-dependent manner without interfering with bone growth, but has no apparent

  14. Bone loss without the loss of bone mineral material? A new perspective on anorexia nervosa.

    PubMed

    Bolotin, H H

    2009-06-01

    Since the advent on non-invasive in vivo clinical bone densitometry, investigators have reported that regional bone mineral material loss accompanies the onset and continuance of anorexia nervosa (AN). Initial single-energy photon absorptiometric (SPA) studies were followed by a succession of dual-energy X-ray absorptiometric (DXA) investigations, and a few single-energy quantitative computer assisted tomographic (SEQCT) bone densitometry vertebral measurements. Although most all DXA studies found a relatively small diminution (approximately 3%) of bone mineral material at lumbar vertebral and proximal femoral bone-sites of AN-afflicted adolescent girls and young women, these findings have been consensually interpreted and near-universally accepted as losses of actual bone mineral material accompanying AN. It has also been claimed by some that about 50% of those beset by AN while still young adolescents were osteoporotic. Nonetheless, over the last intervening 2 decades of these studies, no specific underlying direct bone-biological causal link between AN and trabecular bone material loss has yet been uncovered. The present exposition shows that in vivo SPA, DXA, and SEQCT measurements of bone mineral material losses do not constitute evidence of actual loss of bone material, and that the attribution of osteopenia and osteoporosis to AN-afflicted younger adolescent girls is not sustainable. Rather, the full gamut of these reported bone material "losses" can be accounted for by the already well-documented AN-induced changes in the anthropometrics and compositional mixes of extra-osseous soft tissues (primarily in a very noticeable reduction of extra-skeletal fat) and intra-osseous bone marrow yellowing (marrow hypoplasia and marrow cell necrosis). These changes in soft tissue compositions and anthropometrics alone have been shown to be sufficient to cause in vivo SPA, DXA, and SEQCT to systematically mis-estimate true bone material density and erroneously register

  15. Mechanical properties of nacre and highly mineralized bone.

    PubMed Central

    Currey, J D; Zioupos, P; Davies, P; Casino, A

    2001-01-01

    We compared the mechanical properties of 'ordinary' bovine bone, the highly mineralized bone of the rostrum of the whale Mesoplodon densirostris, and mother of pearl (nacre) of the pearl oyster Pinctada margaritifera. The rostrum and the nacre are similar in having very little organic material. However, the rostral bone is much weaker and more brittle than nacre, which in these properties is close to ordinary bone. The ability of nacre to outperform rostral bone is the result of its extremely well-ordered microstructure, with organic material forming a nearly continuous jacket round all the tiny aragonite plates, a design well adapted to produce toughness. In contrast, in the rostrum the organic material, mainly collagen, is poorly organized and discontinuous, allowing the mineral to join up to form, in effect, a brittle stony material. PMID:12123292

  16. Total body bone mineral density in young children: influence of head bone mineral density.

    PubMed

    Taylor, A; Konrad, P T; Norman, M E; Harcke, H T

    1997-04-01

    Dual-energy X-ray absorptiometry (DXA) with its short scan time, low radiation dose, and high precision and accuracy have made this technique particularly suitable for measuring total body bone mineral density (TBMD) in children. Other published reports have related TBMD to age in children 2-18 years of age. However, in young normal children aged 2-9 years (51 girls, 43 boys), we found that regression equations for TBMD with age as the predictor did not explain enough of the variance to warrant their use for predicting TBMD (adjusted R2 0.47, females; 0.41, males). Subtotal BMD (TBMD-head BMD) is predicted better by age because of a possibly invalid adult algorithm for head BMD (adjusted R2 0.73, females; 0.71, males). PMID:9101377

  17. Utilization of DXA Bone Mineral Densitometry in Ontario

    PubMed Central

    2006-01-01

    mortality, and decreased functional capacity and quality of life. A Canadian study showed that at 1 year after a hip fracture, the mortality rate was 20%. Another 20% required institutional care, 40% were unable to walk independently, and there was lower health-related quality of life due to attributes such as pain, decreased mobility and decreased ability to self-care. The cost of osteoporosis and osteoporotic fractures in Canada was estimated to be $1.3 billion in 1993. Guidelines for Bone Mineral Density Testing With 2 exceptions, almost all guidelines address only women. None of the guidelines recommend blanket population-based BMD testing. Instead, all guidelines recommend BMD testing in people at risk of osteoporosis, predominantly women aged 65 years or older. For women under 65 years of age, BMD testing is recommended only if one major or two minor risk factors for osteoporosis exist. Osteoporosis Canada did not restrict its recommendations to women, and thus their guidelines apply to both sexes. Major risk factors are age greater than or equal to 65 years, a history of previous fractures, family history (especially parental history) of fracture, and medication or disease conditions that affect bone metabolism (such as long-term glucocorticoid therapy). Minor risk factors include low body mass index, low calcium intake, alcohol consumption, and smoking. Current Funding for Bone Mineral Density Testing The Ontario Health Insurance Program (OHIP) Schedule presently reimburses DXA BMD at the hip and spine. Measurements at both sites are required if feasible. Patients at low risk of accelerated bone loss are limited to one BMD test within any 24-month period, but there are no restrictions on people at high risk. The total fee including the professional and technical components for a test involving 2 or more sites is $106.00 (Cdn). Method of Review This review consisted of 2 parts. The first part was an analysis of Ontario administrative data relating to DXA BMD, wrist

  18. Chronic kidney disease-mineral and bone disorder: Guidelines for diagnosis, treatment, and management.

    PubMed

    Moschella, Carla

    2016-07-01

    Chronic kidney disease affects 23 million Americans and is associated with many complications, one of the most complex of which is mineral and bone disorder. Pathophysiologic mechanisms begin to occur early in CKD but when the glomerular filtration rate declines to <50% of normal, biochemical and bone matrix abnormalities, which vary and are multifactorial, begin to be clinically apparent. Mainstays of treatment remain management of hyperphosphatemia and prevention or treatment of secondary hyperparathyroidism. PMID:27272731

  19. Bone mineral measurement, experiment M078. [space flight effects on human bone composition

    NASA Technical Reports Server (NTRS)

    Rambaut, P. C.; Vogel, J. M.; Ullmann, J.; Brown, S.; Kolb, F., III

    1973-01-01

    Measurement tests revealed few deviations from baseline bone mineral measurements after 56 days in a Skylab-type environment. No mineral change was observed in the right radius. One individual, however, showed a possible mineral loss in the left os calcis and another gained mineral in the right ulna. The cause of the gain is unclear but may be attributable to the heavy exercise routines engaged in by the crewmember in question. Equipment problems were identified during the experiment and rectified.

  20. Effects of delaying puberty on bone mineralization in female rats.

    PubMed

    Rakover, Y; Lu, P; Briody, J N; Tao, C; Weiner, E; Ederveen, A G; Cowell, C T; Ben-Shlomo, I

    2000-07-01

    The effect of delaying puberty on bone mineralization was studied using female rats as a model. Repeated injections of gonadotrophin-releasing hormone antagonist (GnRHa) were used to suppress the onset of puberty from the age of 6-10 weeks. A group of control female rats was given aqueous solution injections at the same age and for the same duration. The effect of delaying puberty on bone mineralization was examined using dual energy X-ray absorptiometry (DXA) and peripheral quantitative computerized tomography (QCT), both methods being adapted for small animals. Bone mineral parameters were measured at baseline and at the ages of 10, 17 and 24 weeks in total body, femur and spine. Compared to controls, bone mineral content (BMC) and bone mineral density (BMD), as measured by DXA, were significantly decreased in GnRHa-treated rats in total body and femur at 10 and 24 weeks of age (P < 0.05). The results were even more significant after adjusting for weight. After this adjustment, spine BMC and BMD at 10, 17 and 24 weeks were significantly lower in the treatment group (P < 0.05). Trabecular BMD at the distal femur in the GnRHa treated group as measured by peripheral QCT was significantly lower (P < 0.05). However, cortical bone in the mid-femur had higher BMD, concurrent with lower cortical thickness in the treatment group. In conclusion, a delay in the onset of sexual maturation may cause prolonged, possibly irreversible defect in bone mineralization. PMID:10875850

  1. Targeted delivery to bone and mineral deposits using bisphosphonate ligands.

    PubMed

    Cole, Lisa E; Vargo-Gogola, Tracy; Roeder, Ryan K

    2016-04-01

    The high concentration of mineral present in bone and pathological calcifications is unique compared with all other tissues and thus provides opportunity for targeted delivery of pharmaceutical drugs, including radiosensitizers and imaging probes. Targeted delivery enables accumulation of a high local dose of a therapeutic or imaging contrast agent to diseased bone or pathological calcifications. Bisphosphonates (BPs) are the most widely utilized bone-targeting ligand due to exhibiting high binding affinity to hydroxyapatite mineral. BPs can be conjugated to an agent that would otherwise have little or no affinity for the sites of interest. This article summarizes the current state of knowledge and practice for the use of BPs as ligands for targeted delivery to bone and mineral deposits. The clinical history of BPs is briefly summarized to emphasize the success of these molecules as therapeutics for metabolic bone diseases. Mechanisms of binding and the relative binding affinity of various BPs to bone mineral are introduced, including common methods for measuring binding affinity in vitro and in vivo. Current research is highlighted for the use of BP ligands for targeted delivery of BP conjugates in various applications, including (1) therapeutic drug delivery for metabolic bone diseases, bone cancer, other bone diseases, and engineered drug delivery platforms; (2) imaging probes for scintigraphy, fluorescence, positron emission tomography, magnetic resonance imaging, and computed tomography; and (3) radiotherapy. Last, and perhaps most importantly, key structure-function relationships are considered for the design of drugs with BP ligands, including the tether length between the BP and drug, the size of the drug, the number of BP ligands per drug, cleavable tethers between the BP and drug, and conjugation schemes. PMID:26482186

  2. Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization

    NASA Astrophysics Data System (ADS)

    Buehler, Markus J.

    2007-07-01

    Mineralized collagen fibrils are highly conserved nanostructural building blocks of bone. By a combination of molecular dynamics simulation and theoretical analysis it is shown that the characteristic nanostructure of mineralized collagen fibrils is vital for its high strength and its ability to sustain large deformation, as is relevant to the physiological role of bone, creating a strong and tough material. An analysis of the molecular mechanisms of protein and mineral phases under large deformation of mineralized collagen fibrils reveals a fibrillar toughening mechanism that leads to a manifold increase of energy dissipation compared to fibrils without mineral phase. This fibrillar toughening mechanism increases the resistance to fracture by forming large local yield regions around crack-like defects, a mechanism that protects the integrity of the entire structure by allowing for localized failure. As a consequence, mineralized collagen fibrils are able to tolerate microcracks of the order of several hundred micrometres in size without causing any macroscopic failure of the tissue, which may be essential to enable bone remodelling. The analysis proves that adding nanoscopic small platelets to collagen fibrils increases their Young's modulus and yield strength as well as their fracture strength. We find that mineralized collagen fibrils have a Young's modulus of 6.23 GPa (versus 4.59 GPa for the collagen fibril), yield at a tensile strain of 6.7% (versus 5% for the collagen fibril) and feature a fracture stress of 0.6 GPa (versus 0.3 GPa for the collagen fibril).

  3. In vivo ectopic bone formation by devitalized mineralized stem cell carriers produced under mineralizing culture condition.

    PubMed

    Chai, Yoke Chin; Geris, Liesbet; Bolander, Johanna; Pyka, Grzegorz; Van Bael, Simon; Luyten, Frank P; Schrooten, Jan

    2014-12-01

    Functionalization of tissue engineering scaffolds with in vitro-generated bone-like extracellular matrix (ECM) represents an effective biomimetic approach to promote osteogenic differentiation of stem cells in vitro. However, the bone-forming capacity of these constructs (seeded with or without cells) is so far not apparent. In this study, we aimed at developing a mineralizing culture condition to biofunctionalize three-dimensional (3D) porous scaffolds with highly mineralized ECM in order to produce devitalized, osteoinductive mineralized carriers for human periosteal-derived progenitors (hPDCs). For this, three medium formulations [i.e., growth medium only (BM1), with ascorbic acid (BM2), and with ascorbic acid and dexamethasone (BM3)] supplemented with calcium (Ca(2+)) and phosphate (PO4 (3-)) ions simultaneously as mineralizing source were investigated. The results showed that, besides the significant impacts on enhancing cell proliferation (the highest in BM3 condition), the formulated mineralizing media differentially regulated the osteochondro-related gene markers in a medium-dependent manner (e.g., significant upregulation of BMP2, bone sialoprotein, osteocalcin, and Wnt5a in BM2 condition). This has resulted in distinguished cell populations that were identifiable by specific gene signatures as demonstrated by the principle component analysis. Through devitalization, mineralized carriers with apatite crystal structures unique to each medium condition (by X-ray diffraction and SEM analysis) were obtained. Quantitatively, BM3 condition produced carriers with the highest mineral and collagen contents as well as human-specific VEGF proteins, followed by BM2 and BM1 conditions. Encouragingly, all mineralized carriers (after reseeded with hPDCs) induced bone formation after 8 weeks of subcutaneous implantation in nude mice models, with BM2-carriers inducing the highest bone volume, and the lowest in the BM3 condition (as quantitated by nano-computed tomography

  4. In Vivo Ectopic Bone Formation by Devitalized Mineralized Stem Cell Carriers Produced Under Mineralizing Culture Condition

    PubMed Central

    Chai, Yoke Chin; Geris, Liesbet; Bolander, Johanna; Pyka, Grzegorz; Van Bael, Simon; Luyten, Frank P.

    2014-01-01

    Abstract Functionalization of tissue engineering scaffolds with in vitro–generated bone-like extracellular matrix (ECM) represents an effective biomimetic approach to promote osteogenic differentiation of stem cells in vitro. However, the bone-forming capacity of these constructs (seeded with or without cells) is so far not apparent. In this study, we aimed at developing a mineralizing culture condition to biofunctionalize three-dimensional (3D) porous scaffolds with highly mineralized ECM in order to produce devitalized, osteoinductive mineralized carriers for human periosteal-derived progenitors (hPDCs). For this, three medium formulations [i.e., growth medium only (BM1), with ascorbic acid (BM2), and with ascorbic acid and dexamethasone (BM3)] supplemented with calcium (Ca2+) and phosphate (PO43−) ions simultaneously as mineralizing source were investigated. The results showed that, besides the significant impacts on enhancing cell proliferation (the highest in BM3 condition), the formulated mineralizing media differentially regulated the osteochondro-related gene markers in a medium-dependent manner (e.g., significant upregulation of BMP2, bone sialoprotein, osteocalcin, and Wnt5a in BM2 condition). This has resulted in distinguished cell populations that were identifiable by specific gene signatures as demonstrated by the principle component analysis. Through devitalization, mineralized carriers with apatite crystal structures unique to each medium condition (by X-ray diffraction and SEM analysis) were obtained. Quantitatively, BM3 condition produced carriers with the highest mineral and collagen contents as well as human-specific VEGF proteins, followed by BM2 and BM1 conditions. Encouragingly, all mineralized carriers (after reseeded with hPDCs) induced bone formation after 8 weeks of subcutaneous implantation in nude mice models, with BM2-carriers inducing the highest bone volume, and the lowest in the BM3 condition (as quantitated by nano

  5. Do the Determinants of Bone Mineral Density Differ by Gender? The Framingham Osteoporosis Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Osteoporosis is a disease that affects both men and women yet it remains unclear whether determinants of bone mineral density (BMD) differ by gender since few population-based osteoporosis studies have included both men and women. Our study goal was to determine factors associated with BMD and wheth...

  6. Fructus Ligustri Lucidi (FLL) ethanol extract increases bone mineral density and improves bone properties in growing female rats.

    PubMed

    Lyu, Ying; Feng, Xin; Zhao, Pengling; Wu, Zhenghao; Xu, Hao; Fang, Yuehui; Hou, Yangfeng; Denney, Liya; Xu, Yajun; Feng, Haotian

    2014-11-01

    Osteoporosis is a chronic disease affecting millions of people worldwide. It is generally accepted that acquisition of a high peak bone mass (PBM) early in life can reduce the risk of osteoporosis later in life. The aims of this study were to investigate the effects of Fructus Ligustri Lucidi (FLL) ethanol extract on bone mineral density and its mechanical properties in growing female rats and to explore the underlying mechanisms. The rats were given different doses of FLL extract mixed with AIN-93G formula (0.40, 0.65 and 0.90 %), and a group given AIN-93G diet treatment only was used as control. The intervention lasted for 16 weeks until the animals were about 5 months old, the time when the animals almost reach their PBM. Our results showed that FLL treatment increased bone mineral density and improved bone mechanical properties in the growing female rats in a dose-dependent manner. In addition, FLL treatment significantly decreased the serum bone-resorbing marker, CTX-I, while significantly increasing serum 25(OH)D3 and thereby increasing Ca absorption and Ca retention. Intriguingly, both in vivo and in vitro results demonstrated that FLL treatment could reduce the RANKL/OPG ratio. In conclusion, FLL ethanol extract exerted beneficial effects on peak bone mass acquisition and the improvement of bone mechanical properties by favoring Ca metabolism and decreasing the RANKL/OPG ratio. PMID:24362453

  7. Bone and mineral metabolism in adult celiac disease

    SciTech Connect

    Caraceni, M.P.; Molteni, N.; Bardella, M.T.; Ortolani, S.; Nogara, A.; Bianchi, P.A.

    1988-03-01

    Bone mineral density (/sup 125/I photon absorptiometry) was lower in 20 untreated adult celiac patients than in sex- and age-matched controls (p less than 0.001), and plasma alkaline phosphatase, parathyroid hormone, urinary hydroxyproline/creatinine levels were higher than normal (p less than 0.05, less than 0.001, less than 0.05, respectively). Gluten-free diet was started, and the patients were divided randomly into two treatment groups, one which received oral 25-hydroxyvitamin D 50 micrograms/day and one which did not. After 12 months' treatment, bone turnover markers showed a decrease, which did not reach statistical significance, and bone mineral density did not show significant modifications compared with base line in either group. It was found that a gluten-free diet followed for 1 yr can prevent further bone loss, but no significant differences were detected between the two groups.

  8. Assessment of Bone Mineral Status in Children With Marfan Syndrome

    PubMed Central

    Grover, Monica; Brunetti-Pierri, Nicola; Belmont, John; Phan, Kelly; Tran, Alyssa; Shypailo, Roman J; Ellis, Kenneth J; Lee, Brendan H

    2012-01-01

    Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder with skeletal involvement. It is caused by mutations in fibrillin1 (FBN1) gene resulting in activation of TGF-β, which developmentally regulates bone mass and matrix properties. There is no consensus regarding bone mineralization in children with MFS. Using dual-energy X-ray absorptiometry (DXA), we evaluated bone mineralization in 20 children with MFS unselected for bone problems. z-Scores were calculated based on age, gender, height, and ethnicity matched controls. Mean whole body bone mineral content (BMC) z-score was 0.26 ± 1.42 (P = 0.41). Mean bone mineral density (BMD) z-score for whole body was −0.34 ± 1.4 (P = 0.29) and lumbar spine was reduced at −0.55 ± 1.34 (P = 0.017). On further adjusting for stature, which is usually higher in MFS, mean BMC z-score was reduced at −0.677 ± 1.37 (P = 0.04), mean BMD z-score for whole body was −0.82 ± 1.55 (P = 0.002) and for lumbar spine was −0.83 ± 1.32 (P = 0.001). An increased risk of osteoporosis in MFS is controversial. DXA has limitations in large skeletons because it tends to overestimate BMD and BMC. By adjusting results for height, age, gender, and ethnicity, we found that MFS patients have significantly lower BMC and BMD in whole body and lumbar spine. Evaluation of diet, exercise, vitamin D status, and bone turnover markers will help gain insight into pathogenesis of the reduced bone mass. Further, larger longitudinal studies are required to evaluate the natural history, incidence of fractures, and effects of pharmacological therapy. © 2012 Wiley Periodicals, Inc. PMID:22887731

  9. Time Related Changes of Mineral and Collagen and Their Roles in Cortical Bone Mechanics of Ovariectomized Rabbits

    PubMed Central

    Xu, Chao; Wu, Zi-Xiang; Zhang, Yang; Feng, Ya-Fei; Yan, Ya-Bo; Lei, Wei

    2015-01-01

    As cortical bone has a hierarchical structure, the macroscopic bone strength may be affected by the alterations of mineral crystal and collagen, which are main components of cortical bone. Limited studies focused on the time related alterations of these two components in osteoporosis, and their contributions to bone mechanics at tissue level and whole-bone level. Therefore, the purpose of this study was to elucidate the time related changes of mineral and collagen in cortical bone of ovariectomized (OVX) rabbits, and to relate these changes to cortical bone nanomechanics and macromechanics. 40 Rabbits (7-month-old) were randomly allocated into two groups (OVX and sham). OVX group received bilateral ovariectomy operation. Sham group received sham-OVX operation. Cortical bone quality of five rabbits in each group were assessed by DXA, μCT, nanoindentation, Fourier transform infrared (FTIR) spectroscopy and biomechanical tests (3-point bending of femoral midshaft) at pre-OVX, 4, 6, and 8 weeks after OVX. As time increased from pre-OVX to 8 weeks, the mineral to matrix ratio decreased with time, while both collagen crosslink ratio and crystallinity increased with time in OVX group. Elastic modulus and hardness measured by nanoindentation, whole-bone strength measured by biomechanical tests all decreased in OVX group with time. Bone material properties measured by FTIR correlated well with nano or whole-bone level mechanics. However, bone mineral density (BMD), structure, tissue-level and whole-bone mechanical properties did not change with age in sham group. Our study demonstrated that OVX could affect the tissue-level mechanics and bone strength of cortical bone. And this influence was attributed to the time related alterations of mineral and collagen properties, which may help us to design earlier interventions and more effective treatment strategies on osteoporosis. PMID:26046792

  10. Bone mineral density and disorders of mineral metabolism in chronic liver disease

    PubMed Central

    George, Joe; Ganesh, Hosahithlu K; Acharya, Shrikrishna; Bandgar, Tushar R; Shivane, Vyankatesh; Karvat, Anjana; Bhatia, Shobna J; Shah, Samir; Menon, Padmavathy S; Shah, Nalini

    2009-01-01

    AIM: To estimate the prevalence and identify the risk factors for metabolic bone disease in patients with cirrhosis. METHODS: The study was performed on 72 Indian patients with cirrhosis (63 male, nine female; aged < 50 years). Etiology of cirrhosis was alcoholism (n = 37), hepatitis B (n = 25) and hepatitis C (n = 10). Twenty-three patients belonged to Child class A, while 39 were in class B and 10 in class C. Secondary causes for metabolic bone disease and osteoporosis were ruled out. Sunlight exposure, physical activity and dietary constituents were calculated. Complete metabolic profiles were derived, and bone mineral density (BMD) was measured using dual energy X ray absorptiometry. Low BMD was defined as a Z score below -2. RESULTS: Low BMD was found in 68% of patients. Lumbar spine was the most frequently and severely affected site. Risk factors for low BMD included low physical activity, decreased sunlight exposure, and low lean body mass. Calcium intake was adequate, with unfavorable calcium: protein ratio and calcium: phosphorus ratio. Vitamin D deficiency was highly prevalent (92%). There was a high incidence of hypogonadism (41%). Serum estradiol level was elevated significantly in patients with normal BMD. Insulin-like growth factor (IGF) 1 and IGF binding protein 3 levels were below the age-related normal range in both groups. IGF-1 was significantly lower in patients with low BMD. Serum osteocalcin level was low (68%) and urinary deoxypyridinoline to creatinine ratio was high (79%), which demonstrated low bone formation with high resorption. CONCLUSION: Patients with cirrhosis have low BMD. Contributory factors are reduced physical activity, low lean body mass, vitamin D deficiency and hypogonadism and low IGF-1 level. PMID:19630107

  11. Can Dental Cone Beam Computed Tomography Assess Bone Mineral Density?

    PubMed Central

    2014-01-01

    Mineral density distribution of bone tissue is altered by active bone modeling and remodeling due to bone complications including bone disease and implantation surgery. Clinical cone beam computed tomography (CBCT) has been examined whether it can assess oral bone mineral density (BMD) in patient. It has been indicated that CBCT has disadvantages of higher noise and lower contrast than conventional medical computed tomography (CT) systems. On the other hand, it has advantages of a relatively lower cost and radiation dose but higher spatial resolution. However, the reliability of CBCT based mineral density measurement has not yet been fully validated. Thus, the objectives of this review are to discuss 1) why assessment of BMD distribution is important and 2) whether the clinical CBCT can be used as a potential tool to measure the BMD. Brief descriptions of image artefacts associated with assessment of gray value, which has been used to account for mineral density, in CBCT images are provided. Techniques to correct local and conversion errors in obtaining the gray values in CBCT images are also introduced. This review can be used as a quick reference for users who may encounter these errors during analysis of CBCT images. PMID:25006568

  12. Computerized tomographic determination of spinal bone mineral content

    NASA Technical Reports Server (NTRS)

    Cann, C. E.; Genant, H. K.

    1980-01-01

    The aims of the study were three-fold: to determine the magnitude of vertebral cancellous mineral loss in normal subjects during bedrest, to compare this loss with calcium balance and mineral loss in peripheral bones, and to use the vertebral measurements as an evaluative criterion for the C12MDP treatment and compare it with other methods. The methods used are described and the results from 14 subjects are presented.

  13. Bone Mineral Density and Microarchitecture in Patients With Autosomal Dominant Osteopetrosis: A Report of Two Cases.

    PubMed

    Arruda, Mariana; Coelho, Maria Caroline Alves; Moraes, Aline Barbosa; de Paula Paranhos-Neto, Francisco; Madeira, Miguel; Farias, Maria Lucia Fleiuss; Neto, Leonardo Vieira

    2016-03-01

    The aim of this case study is to describe changes in areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry (DXA) scan, as well as volumetric bone density and microarchitecture by high-resolution peripheral quantitative computed tomography (HR-pQCT) in two patients with autosomal dominant osteopetrosis (ADO) and compare with 20 healthy subjects. We describe a 44-year-old male patient with six low-impact fractures since he was age 16 years, and a 32-year-old female patient with four low-impact fractures on her past history. Radiographic changes were typical of ADO. Consistent with the much higher aBMD, total volumetric BMD (average bone density of the whole bone, including trabecular and cortical compartments) at distal radius and tibia (HR-pQCT) was more than twice the mean values found in healthy subjects in both patients. Trabecular number and thickness were higher, leading to an evident increase in trabecular bone volume to tissue volume. Also, an enormous increase in cortical thickness was found. Most important, a great heterogeneity in bone microstructure of the affected patients was evident on HR-pQCT images: islets of very dense bone were interposed with areas with apparent normal density. The increase in aBMD, volumetric BMD, and most indices of trabecular and cortical bone, associated with the great heterogeneity on bone tridimensional microarchitecture, reflect the accumulation of old and fragile bone randomly distributed along the skeleton. These alterations in bone microstructure probably compromise bone quality, which might justify the high prevalence of low-impact fractures in patients with ADO, despite abnormally elevated BMD. © 2015 American Society for Bone and Mineral Research. PMID:26387875

  14. Bone scaffold architecture modulates the development of mineralized bone matrix by human embryonic stem cells

    PubMed Central

    Marcos-Campos, Ivan; Marolt, Darja; Petridis, Petros; Bhumiratana, Sarindr; Schmidt, Daniel; Vunjak-Novakovic, Gordana

    2012-01-01

    Decellularized bone has been widely used as a scaffold for bone formation, due to its similarity to the native bone matrix and excellent osteoinductive and biomechanical properties. We have previously shown that human mesenchymal and embryonic stem cells form functional bone matrix on such scaffolds, without the use of growth factors. In this study, we focused on differences in bone matrix that exist even among identical harvesting sites, and the effects of the matrix architecture and mineral content on bone formation by human embryonic stem cells (hESC). Mesenchymal progenitors derived from hESCs were cultured for 5 weeks in decellularized bone scaffolds with three different densities: low (0.281 ± 0.018 mg/mm3), medium (0.434 ± 0.015 mg/mm3) and high (0.618 ± 0.027 mg/mm3). The medium-density group yielded highest densities of cells and newly assembled bone matrix, presumably due to the best balance between the transport of nutrients and metabolites to and from the cells, space for cell infiltration, surface for cell attachment and the mechanical strength of the scaffolds, all of which depend on the scaffold density. Bone mineral was beneficial for the higher expression of bone markers in cultured cells and more robust accumulation of the new bone matrix. PMID:22901965

  15. Age and disease-related changes in the mineral of bone.

    PubMed

    Grynpas, M

    1993-01-01

    Bone mineralization changes with age and disease. The distribution of mineral particles in a given bone (mineralization profile) has been studied using density fractionation as well as microradiography and electron backscattering imaging. The biological determinant of mineralization is the rate of turnover. During rapid growth and periods of high remodeling, mineralization is shifted towards lower mineral density (hypomineralization). During aging and periods of low remodeling, mineralization is shifted towards higher mineral densities (hypermineralization). Chemicals can also influence the mineralization profile of bone. Fluoride induces hypermineralization by stabilizing the apatite lattice and reducing bone mineral solubility, whereas strontium induces hypomineralization by loosening the apatite lattice and increasing bone mineral solubility. Drugs such as bisphosphonates induce hypermineralization by inhibiting resorption and acting as crystal poison. Finally, mineralization can be impaired by defects as in rickets and osteomalacia or made excessive by continuous accretion of mineral without resorption as in osteopetrosis. PMID:8275381

  16. PRECISION OF SINGLE VERSUS BILATERAL HIP BONE MINERAL DENSITY SCANS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dual-energy X-ray absorptiometry (DXA) scans of the hip and lumbar spine are currently the "gold standard" for measurement of bone mineral density (BMD). DXA allows swift, noninvasive measurements with minimal radiation for both clinical practice and research. Traditional testing has used results ...

  17. Race/ethnic differences in bone mineral density in men

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The epidemiology of osteoporosis in male and minority populations is understudied. To address this concern, we conducted a study of skeletal health in a diverse population of adult males, comparing Bone Mineral Density (BMD) in 367 Black, 401 Hispanic, and 451 White men aged 30-79 years who were ran...

  18. Relationship of bone mineral density to progression of knee osteoarthritis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective. To evaluate the longitudinal relationship between bone mineral density (BMD) and BMD changes and the progression of knee osteoarthritis (OA), as measured by cartilage outcomes. Methods. We used observational cohort data from the Vitamin D for Knee Osteoarthritis trial. Bilateral femoral ...

  19. Difference in Bone Mineral Density between Young versus Midlife Women

    ERIC Educational Resources Information Center

    Sanderson, Sonya; Anderson, Pamela S.; Benton, Melissa J.

    2016-01-01

    Background: Older age is a risk factor for low bone mineral density (BMD). Older women have been found to have lower BMD than younger women. Recent trends for decreased calcium consumption and physical activity may place younger women at greater risk than previously anticipated. Purpose: The purpose of this study was to evaluate the effect of age…

  20. Probable phase composition of the mineral in bone.

    PubMed

    Driessens, F C

    1980-01-01

    Formulas proposed for the mineral of bone were reviewed. Literature data were collected where Ca, P, Na, Mg and CO3 are determined in the same samples. These data were analyzed for their conformity to the above mentioned formulas. According to this analysis Mg is contained in a phase having the Ca/P of magnesium whitlockite within the limites of error. Na is contained in a carbonated calcium phosphate phase which is analogy with synthetic systems must have the apatite structure. The Ca/P ratio of the remaining "rest phase" is 2. This is based on the composition of 101 bone mineral samples taken from fishes, reptiles, amphibians, birds and mammals. The CO3 content of the bone samples agrees with the formula Ca8 (PO4)4 (CO3) (OH)2 . X H2O for the "rest phase" within the limits of experimental error. Such a compound has, however, not been found in synthetic systems. Human bone contains about 15% magnesium whitlockite, 25% of the Na and CO3 containing apatite and the rest is the carbonated calcium phosphate with Ca/P = 2. It is presumed that this compound has a structure similar to that of octo calcium phosphate and that most of the citrate ions which always occur in bone mineral samples are incorporated in that phase. PMID:6773257

  1. High-acceleration whole body vibration stimulates cortical bone accrual and increases bone mineral content in growing mice.

    PubMed

    Gnyubkin, Vasily; Guignandon, Alain; Laroche, Norbert; Vanden-Bossche, Arnaud; Malaval, Luc; Vico, Laurence

    2016-06-14

    Whole body vibration (WBV) is a promising tool for counteracting bone loss. Most WBV studies on animals have been performed at acceleration <1g and frequency between 30 and 90Hz. Such WBV conditions trigger bone growth in osteopenia models, but not in healthy animals. In order to test the ability of WBV to promote osteogenesis in young animals, we exposed seven-week-old male mice to vibration at 90Hz and 2g peak acceleration for 15min/day, 5 days/week. We examined the effects on skeletal tissues with micro-computed tomography and histology. We also quantified bone vascularization and mechanosensitive osteocyte proteins, sclerostin and DMP1. Three weeks of WBV resulted in an increase of femur cortical thickness (+5%) and area (+6%), associated with a 25% decrease of sclerostin expression, and 35% increase of DMP1 expression in cortical osteocytes. Mass-structural parameters of trabecular bone were unaltered in femur or vertebra, while osteoclastic parameters and bone formation rate were increased at both sites. Three weeks of WBV resulted in higher blood vessel numbers (+23%) in the distal femoral metaphysis. After 9-week WBV, we have not observed the difference in structural cortical or trabecular parameters. However, the tissue mineral density of cortical bone was increased by 2.5%. Three or nine weeks of 2g/90Hz WBV treatment did not affect longitudinal growth rate or body weight increase under our experimental conditions, indicating that these are safe to use. These results validate a potential of 2g/90Hz WBV to stimulate trabecular bone cellular activity, accelerate cortical bone growth, and increase bone mineral density. PMID:27178020

  2. Bone Mineral Status in Children and Adolescents with Klinefelter Syndrome

    PubMed Central

    Stagi, Stefano; Di Tommaso, Mariarosaria; Manoni, Cristina; Scalini, Perla; Chiarelli, Francesco; Verrotti, Alberto; Lapi, Elisabetta; Giglio, Sabrina; Dosa, Laura; de Martino, Maurizio

    2016-01-01

    Objective. Klinefelter syndrome (KS) has long-term consequences on bone health. However, studies regarding bone status and metabolism during childhood and adolescence are very rare. Patients. This cross-sectional study involved 40 (mean age: 13.7 ± 3.8 years) KS children and adolescents and 80 age-matched healthy subjects. For both patient and control groups, we evaluated serum levels of ionised and total calcium, phosphate, total testosterone, luteinising hormone, follicle stimulating hormone, parathyroid hormone (PTH), 25-hydroxyvitamin D (25(OH)D), 1,25-dihydroxyvitamin D, osteocalcin, bone alkaline phosphatase, and urinary deoxypyridinoline concentrations. We also calculated the z-scores of the phalangeal amplitude-dependent speed of sound (AD-SoS) and the bone transmission time (BTT). Results. KS children and adolescents showed significantly reduced AD-SoS (p < 0.005) and BTT (p < 0.0005) z-scores compared to the controls. However, KS patients presented significantly higher PTH (p < 0.0001) and significantly lower 25(OH)D (p < 0.0001), osteocalcin (p < 0.05), and bone alkaline phosphatase levels (p < 0.005). Interestingly, these metabolic bone disorders were already present in the prepubertal subjects. Conclusions. KS children and adolescents exhibited impaired bone mineral status and metabolism with higher PTH levels and a significant reduction of 25-OH-D and bone formation markers. Interestingly, this impairment was already evident in prepubertal KS patients. Follow-ups should be scheduled with KS patients to investigate and ameliorate bone mineral status and metabolism until the prepubertal ages. PMID:27413371

  3. Treatment of Premenopausal Women with Low Bone Mineral Density

    PubMed Central

    Cohen, Adi; Shane, Elizabeth

    2015-01-01

    Interpretation of bone mineral density (BMD) results in premenopausal women is particularly challenging, because the relationship between BMD and fracture risk is not the same as for postmenopausal women. Z scores rather than T scores should be used to define “low BMD” in premenopausal women. The finding of low BMD in a premenopausal woman should prompt an evaluation for secondary causes of bone loss. If a secondary cause is found, management should focus on treatment of this condition. In some cases in which the secondary cause cannot be addressed, such as glucocorticoid therapy or cancer chemotherapy, treatment with a bone-active agent to prevent bone loss should be considered. In women with no fractures and no known secondary cause, low BMD may not signify compromised bone strength. BMD is likely to remain stable in these women, and pharmacologic therapy is rarely justified. Assessment of markers of bone turnover and follow-up bone density measurements can help to identify those with an ongoing process of bone loss that may indicate a higher risk for fracture, and possible need for pharmacologic intervention. PMID:18430399

  4. Effects of aluminum exposure on bone mineral density, mineral, and trace elements in rats.

    PubMed

    Li, Xinwei; Hu, Chongwei; Zhu, Yanzhu; Sun, Hao; Li, Yanfei; Zhang, Zhigang

    2011-10-01

    The purpose of the study was to investigate the effects of aluminum (Al) exposure on bone mineral elements, trace elements, and bone mineral density (BMD) in rats. One hundred Wistar rats were divided randomly into two groups. Experimental rats were given drinking water containing aluminum chloride (AlCl(3), 430 mg Al(3+)/L), whereas control rats were given distilled water for up to 150 days. Ten rats were sacrificed in each group every 30 days. The levels of Al, calcium (Ca), phosphorus (P), magnesium (Mg), zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), selenium (Se), boron (B), and strontium (Sr) in bone and the BMD of femur were measured. Al-treated rats showed lower deposition of Ca, P, and Mg compared with control rats. Levels of trace elements (Zn, Fe, Cu, Mn, Se, B, and Sr) were significantly lower in the Al-treated group than in the control group from day 60, and the BMD of the femur metaphysis in the Al-treated group was significantly lower than in the control group on days 120 and 150. These findings indicate that long-term Al exposure reduces the levels of mineral and trace elements in bone. As a result, bone loss was induced (particularly in cancellous bone). PMID:20886309

  5. Effect of Probiotics Supplementation on Bone Mineral Content and Bone Mass Density

    PubMed Central

    Parvaneh, Kolsoom; Jamaluddin, Rosita; Karimi, Golgis; Erfani, Reza

    2014-01-01

    A few studies in animals and a study in humans showed a positive effect of probiotic on bone metabolism and bone mass density. Most of the investigated bacteria were Lactobacillus and Bifidobacterium . The positive results of the probiotics were supported by the high content of dietary calcium and the high amounts of supplemented probiotics. Some of the principal mechanisms include (1) increasing mineral solubility due to production of short chain fatty acids; (2) producing phytase enzyme by bacteria to overcome the effect of mineral depressed by phytate; (3) reducing intestinal inflammation followed by increasing bone mass density; (4) hydrolysing glycoside bond food in the intestines by Lactobacillus and Bifidobacteria. These mechanisms lead to increase bioavailability of the minerals. In conclusion, probiotics showed potential effects on bone metabolism through different mechanisms with outstanding results in the animal model. The results also showed that postmenopausal women who suffered from low bone mass density are potential targets to consume probiotics for increasing mineral bioavailability including calcium and consequently increasing bone mass density. PMID:24587733

  6. Effect of probiotics supplementation on bone mineral content and bone mass density.

    PubMed

    Parvaneh, Kolsoom; Jamaluddin, Rosita; Karimi, Golgis; Erfani, Reza

    2014-01-01

    A few studies in animals and a study in humans showed a positive effect of probiotic on bone metabolism and bone mass density. Most of the investigated bacteria were Lactobacillus and Bifidobacterium. The positive results of the probiotics were supported by the high content of dietary calcium and the high amounts of supplemented probiotics. Some of the principal mechanisms include (1) increasing mineral solubility due to production of short chain fatty acids; (2) producing phytase enzyme by bacteria to overcome the effect of mineral depressed by phytate; (3) reducing intestinal inflammation followed by increasing bone mass density; (4) hydrolysing glycoside bond food in the intestines by Lactobacillus and Bifidobacteria. These mechanisms lead to increase bioavailability of the minerals. In conclusion, probiotics showed potential effects on bone metabolism through different mechanisms with outstanding results in the animal model. The results also showed that postmenopausal women who suffered from low bone mass density are potential targets to consume probiotics for increasing mineral bioavailability including calcium and consequently increasing bone mass density. PMID:24587733

  7. Kinetic measurements of bone mineral metabolism: The use of Na-22 as a tracer for long-term bone mineral turnover studies

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.

    1978-01-01

    Sodium-22 was studied as a tracer for bone mineral metabolism in rats and dogs. When incorporated into bone during growth from birth to adulthood, the bone becomes uniformly tagged with (22)Na which is released through the metabolic turnover of the bone. The (22)Na which is not incorporated in the bone matrix is rapidly excreted within a few days when animals are fed high but nontoxic levels of NaCl. The (22)Na tracer can be used to measure bone mineral loss in animals during space flight and in research on bone disease.

  8. International longitudinal pediatric reference standards for bone mineral content.

    PubMed

    Baxter-Jones, Adam D G; Burrows, Melonie; Bachrach, Laura K; Lloyd, Tom; Petit, Moira; Macdonald, Heather; Mirwald, Robert L; Bailey, Don; McKay, Heather

    2010-01-01

    To render a diagnosis pediatricians rely upon reference standards for bone mineral density or bone mineral content, which are based on cross-sectional data from a relatively small sample of children. These standards are unable to adequately represent growth in a diverse pediatric population. Thus, the goal of this study was to develop sex and site-specific standards for BMC using longitudinal data collected from four international sites in Canada and the United States. Data from four studies were combined; Saskatchewan Paediatric Bone Mineral Accrual Study (n=251), UBC Healthy Bones Study (n=382); Penn State Young Women's Health Study (n=112) and Stanford's Bone Mineral Accretion study (n=423). Males and females (8 to 25 years) were measured for whole body (WB), total proximal femur (PF), femoral neck (FN) and lumbar spine (LS) BMC (g). Data were analyzed using random effects models. Bland-Altman was used to investigate agreement between predicted and actual data. Age, height, weight and ethnicity independently predicted BMC accrual across sites (P<0.05). Compared to White males, Asian males had 31.8 (6.8) g less WB BMC accrual; Hispanic 75.4 (28.2) g less BMC accrual; Blacks 82.8 (26.3) g more BMC accrual with confounders of age, height and weight controlled. We report similar findings for the PF and FN. Models for females for all sites were similar with age, height and weight as independent significant predictors of BMC accrual (P<0.05). We provide a tool to calculate a child's BMC Z-score, accounting for age, size, sex and ethnicity. In conclusion, when interpreting BMC in pediatrics we recommend standards that are sex, age, size and ethnic specific. PMID:19854308

  9. Unique biochemical and mineral composition of whale ear bones.

    PubMed

    Kim, Sora L; Thewissen, J G M; Churchill, Morgan M; Suydam, Robert S; Ketten, Darlene R; Clementz, Mark T

    2014-01-01

    Abstract Cetaceans are obligate aquatic mammals derived from terrestrial artiodactyls. The defining characteristic of cetaceans is a thick and dense lip (pachyosteosclerotic involucrum) of an ear bone (the tympanic). This unique feature is absent in modern terrestrial artiodactyls and is suggested to be important in underwater hearing. Here, we investigate the mineralogical and biochemical properties of the involucrum, as these may hold clues to the aquatic adaptations of cetaceans. We compared bioapatites (enamel, dentine, cementum, and skeletal bone) of cetaceans with those of terrestrial artiodactyls and pachyosteosclerotic ribs of manatees (Sirenia). We investigated organic, carbonate, and mineral composition as well as crystal size and crystallinity index. In all studied variables, bioapatites of the cetacean involucrum were intermediate in composition and structure between those of tooth enamel on the one hand and those of dentine, cementum, and skeletal bone on the other. We also studied the amino acid composition of the cetacean involucrum relative to that of other skeletal bone. The central involucrum had low glycine and hydroxyproline concentrations but high concentrations of nonessential amino acids, unlike most bone samples but similar to the tympanic of hippos and the (pachyosteosclerotic) ribs of manatees. These amino acid results are evidence of rapid bone development. We hypothesize that the mineralogical and amino acid composition of cetacean bullae differs from that of other bone because of (1) functional modifications for underwater sound reception and (2) structural adaptations related to rapid ossification. PMID:24940922

  10. Brief Report: HIV Infection Is Associated With Worse Bone Material Properties, Independently of Bone Mineral Density.

    PubMed

    Güerri-Fernández, Robert; Molina, Daniel; Villar-García, Judit; Prieto-Alhambra, Daniel; Mellibovsky, Leonardo; Nogués, Xavier; González-Mena, Alicia; Guelar, Ana; Trenchs-Rodríguez, Marta; Herrera-Fernández, Sabina; Horcajada, Juan Pablo; Díez-Pérez, Adolfo; Knobel, Hernando

    2016-07-01

    Low bone mineral density (BMD) in HIV-infected individuals has been documented in an increasing number of studies. However, it is not clear whether it is the infection itself or the treatment that causes bone impairment. Microindentation measures bone material strength (Bone Material Strength index) directly. We recruited 85 patients, 50 infected with HIV and 35 controls. Median Bone Material Strength index was 84.5 (interquartile range 83-87) in HIV-infected patients and 90 (88.5-93) in controls (P < 0.001). No significant differences in BMD between cases and controls at any of the sites examined (total hip, femoral neck, and lumbar spine). HIV infection is associated with bone damage, independently of BMD. PMID:26910501

  11. Modification of os calcis bone mineral profiles during bedrest

    NASA Technical Reports Server (NTRS)

    Vogel, J. M.

    1977-01-01

    The mineral content of the left central os calcis was determined using the photon absorptiometric technique modified for the space missions to permit area scanning, and was compared with total body calcium balance changes. The instrument consists of a rectilinear scanner that is programmed by a specially designed control module to move a low energy X-ray emitting radionuclide placed in opposition to a detector to scan the foot which is places between them. The foot is placed in a plexiglas box filled with water to provide tissue equivalence and to compensate for irregularities in thickness of tissue cover that surrounds the bone. The mineral content is obtained from basic attenuation equation.

  12. Abnormal bone mineral density and bone turnover marker expression profiles in patients with primary spontaneous pneumothorax

    PubMed Central

    Yu, Lixin; Hou, Shengcai; Hu, Bin; Zhao, Liqiang; Miao, Jinbai; Wang, Yang; Li, Tong; Zhang, Zhenkui; You, Bin; Pang, Baosen; Liang, Yufang; Zhao, Yi; Hao, Wei

    2016-01-01

    Background To examine the bone mineral density (BMD) and the role of bone biomarkers, including bone formation marker procollagen type I aminoterminal propeptide (PINP) and N-terminal midmolecule fragment osteocalcin (N-MID), bone resorption marker b-C-telopeptides of type I collagen (b-CTX) and tartrate-resistant acid phosphatase 5b (TRACP5b) in the pathogenesis of PSP. Methods Eighty-three consecutive primary spontaneous pneumothorax (PSP) patients (PSP group) and 87 healthy individuals (control group) were enrolled in this study. General data, including gender, age, height, weight, and body mass index (BMI), were recorded. Dual-energy X-ray absorptiometry, electrochemiluminescence immunoassay (ECLIA), and ELISA were used to evaluate bone mineral density and expression levels of bone metabolism markers, including PINP, b-CTX, TRACP5b, N-MID, and 25-hydroxyvitamin D (25-OH VD). Results Mean height was significantly greater in the PSP group compared with the control group, whereas weight and BMI were lower. Patients in the PSP group had significantly lower average bone mineral density, which mainly manifested as osteopenia (11/12, 91.7%); however, only one patient (8.3%) developed osteoporosis. Serum overexpression of PINP, b-CTX, TRACP5b, and N-MID were found in PSP patients. Expression of 25-OH VD was low in PSP patients. Bone resorption markers showed positive linear relationships with bone formation markers in all participants; whereas only TRACP5b expression negatively correlated with 25-OH VD. Expression levels of all bone turnover markers negatively correlated with BMI. Regression analysis identified risk factors of PSP as age, height, weight, and TRACP5b and 25-OH VD expression levels; whereas gender and PINP, b-CTX, and N-MID expression levels were not significantly associated with the onset of PSP. Conclusions It had lower bone mineral density in PSP patients. Bone formation marker PINP, N-MID and bone resorption marker b-CTX, TRACP5b were upregulated in

  13. CALCOSPHERULITES* ISOLATED FROM THE MINERALIZATION FRONT OF BONE INDUCE THE MINERALIZATION OF TYPE I COLLAGEN

    PubMed Central

    Midura, Ronald J.; Vasanji, Amit; Su, Xiaowei; Wang, Aimin; Midura, Sharon B.; Gorski, Jeff P.

    2007-01-01

    Previous work has suggested that “calcospherulites” actively participate in the mineralization of developing and healing bone. This study sought to directly test this hypothesis by developing a method to isolate calcospherulites and analyzing their capacity to seed mineralization of fibrillar collagen. The periosteal surface of juvenile rat tibial diaphysis was enriched in spherulites of ~0.5-micron diameter exhibiting a Ca/P ratio of 1.3. Their identity as calcospherulites was confirmed by their uptake of calcein at the tibial mineralization front 24 h following in vivo injection. Periosteum was dissected and unmineralized osteoid removed by collagenase in order to expose calcospherulites. Calcein-labeled calcospherulites were then released from the mineralization front by dispase digestion and isolated via fluorescence flow sorting. X-ray diffraction analysis revealed they contained apatite crystals (c-axis length of 17.5 ± 0.2 nm), though their Ca/P ratio of 1.3 is lower than that of hydroxyapatite. Much of their non-mineral phosphorous content was removed by ice-cold ethanol, elevating their Ca/P ratio to 1.6, suggesting the presence of phospholipids. Western blot analyses showed the presence of bone matrix proteins and type I collagen in these preparations. Incubating isolated calcospherulites in collagen hydrogels demonstrated that they could seed a mineralization reaction on type I collagen fibers in vitro. Ultrastructural analyses revealed crystals on the collagen fibers that were distributed rather uniformly along the fiber lengths. Furthermore, crystals were observed at distances well away from the observed calcospherulites. Our results directly support an active role for calcospherulites in inducing the mineralization of type I collagen fibers at the mineralization front of bone. PMID:17936099

  14. The pleiotropic effects of paricalcitol: Beyond bone-mineral metabolism.

    PubMed

    Egido, Jesús; Martínez-Castelao, Alberto; Bover, Jordi; Praga, Manuel; Torregrosa, José Vicente; Fernández-Giráldez, Elvira; Solozábal, Carlos

    2016-01-01

    Secondary hyperparathyroidism (SHPT) is a common complication in patients with chronic kidney disease (CKD) that is characterised by elevated parathyroid hormone (PTH) levels and a series of bone-mineral metabolism anomalies. In patients with SHPT, treatment with paricalcitol, a selective vitamin D receptor activator, has been shown to reduce PTH levels with minimal serum calcium and phosphorus variations. The classic effect of paricalcitol is that of a mediator in mineral and bone homeostasis. However, recent studies have suggested that the benefits of treatment with paricalcitol go beyond PTH reduction and, for instance, it has a positive effect on cardiovascular disease and survival. The objective of this study is to review the most significant studies on the so-called pleiotropic effects of paricalcitol treatment in patients with CKD. PMID:26705959

  15. Bone Mineral Density in Elite DanceSport Athletes.

    PubMed

    Kruusamäe, Helena; Maasalu, Katre; Jürimäe, Jaak

    2016-03-01

    This study compared bone mineral density (BMD) variables of female and male elite dancesport athletes with untrained control subjects of the same gender. Sixty-six elite dancesport athletes (M 33, F 33) and 64 untrained controls (M 34, F 31) participated in this study. Elite dancesport athletes were dancing couples competing at the international level. Whole-body bone mineral content and whole-body, forearm, lumbar-spine, and femoral-neck BMD, as well as whole-body fat mass and fat free mass, were measured by dual-energy X-ray absorptiometry. There were no differences (p>0.05) in height and body mass between dancers and controls of the same gender, but percent body fat was lower (p<0.05) in dancers of both genders than in untrained controls. Elite dancesport athletes had significantly higher femoral-neck BMD, and male dancers also higher whole-body BMD values when compared with controls of the same gender. All other measured bone mineral values did not differ between the groups of the same gender. In addition, training experience was positively correlated with whole-body BMD (r=0.27; p<0.05) in dancesport athletes. Based on this study, it can be concluded that elite dancesport athletes have higher BMD values at the weight-bearing site (femoral-neck BMD), while other measured areas and whole-body bone mineral values do not differ from the corresponding values of healthy sedentary controls of the same gender. According to our results, low BMD is not an issue for elite female dancesport athletes, despite their lower percent body fat values. PMID:26966961

  16. The roles of the skeleton and phosphorus in the CKD mineral bone disorder.

    PubMed

    Hruska, Keith A; Mathew, Suresh

    2011-03-01

    The CKD mineral bone disorder is a new term coined to describe the multiorgan system failure that is a major component of the excess cardiovascular mortality and morbidity complicating decreased kidney function. This syndrome embodies new discoveries of organ-to-organ communication including the skeletal hormone fibroblast growth factor-23 (FGF-23), which signals the status of skeletal mineral deposition to the kidney. The CKD mineral bone disorder begins with mild decreases in kidney function (stage 2 CKD) affecting the skeleton, as marked by increased FGF-23 secretion. At this stage, the stimulation of cardiovascular risk has begun and the increases in FGF-23 levels are strongly predictive of cardiovascular events. Later in CKD, hyperphosphatemia ensues when FGF-23 and hyperparathyroidism are no longer sufficient to maintain phosphate excretion. Hyperphosphatemia has been shown to be a direct stimulus to several cell types including vascular smooth muscle cells migrating to the neointima of atherosclerotic plaques. Phosphorus stimulates FGF-23 secretion by osteocytes and expression of the osteoblastic transcriptome, thereby increasing extracellular matrix mineralization in atherosclerotic plaques, hypertrophic cartilage, and skeletal osteoblast surfaces. In CKD, the skeleton positively contributes to hyperphosphatemia through excess bone resorption and inhibition of matrix mineralization. Thus, through the action of phosphorus, FGF-23, and other newly discovered skeletal hormones, such as osteocalcin, the skeleton plays an important role in the occurrence of cardiovascular morbidity in CKD. PMID:21406294

  17. Relation between body composition and bone mineral density in young undregraduate students with different nutritional status

    PubMed Central

    Rodrigues, Edil de Albuquerque; dos Santos, Marcos André Moura; da Silva, Amanda Tabosa Pereira; Farah, Breno Quintella; Costa, Manoel da Cunha; Campos, Florisbela de Arruda Camara e Siqueira; Falcão, Ana Patrícia Siqueira Tavares

    2016-01-01

    ABSTRACT Objective To investigate the relationship between total and segmental body fat, bone mineral density and bone mineral content in undergraduate students stratified according to nutritional status. Methods The study included 45 male undergraduate students aged between 20 and 30 years. Total and segmental body composition, bone mineral density and bone mineral content assessments were performed using dual energy X-ray absorptiometry. Subjects were allocated into three groups (eutrophic, overweight and obese). Results With the exception of upper limb bone mineral content, significantly higher (p<0.05) mean bone mineral density, bone mineral content, and relative body fat values were documented in the obese group. Total body and segmental relative body fat (lower limbs and trunk) were positively correlated (p<0.05) with bone mineral density in the overweight group. Upper limb fat was negatively correlated (p<0.05) with bone mineral content in the normal and eutrophic groups. Conclusion Total body and segmental body fat were correlated with bone mineral density and bone mineral content in male undergraduate students, particularly in overweight individuals. PMID:27074228

  18. Relation between body composition and bone mineral density in young undregraduate students with different nutritional status.

    PubMed

    Rodrigues Filho, Edil de Albuquerque; Santos, Marcos André Moura Dos; Silva, Amanda Tabosa Pereira da; Farah, Breno Quintella; Costa, Manoel da Cunha; Campos, Florisbela de Arruda Camara E Siqueira; Falcão, Ana Patrícia Siqueira Tavares

    2016-03-01

    Objective To investigate the relationship between total and segmental body fat, bone mineral density and bone mineral content in undergraduate students stratified according to nutritional status. Methods The study included 45 male undergraduate students aged between 20 and 30 years. Total and segmental body composition, bone mineral density and bone mineral content assessments were performed using dual energy X-ray absorptiometry. Subjects were allocated into three groups (eutrophic, overweight and obese). Results With the exception of upper limb bone mineral content, significantly higher (p<0.05) mean bone mineral density, bone mineral content, and relative body fat values were documented in the obese group. Total body and segmental relative body fat (lower limbs and trunk) were positively correlated (p<0.05) with bone mineral density in the overweight group. Upper limb fat was negatively correlated (p<0.05) with bone mineral content in the normal and eutrophic groups. Conclusion Total body and segmental body fat were correlated with bone mineral density and bone mineral content in male undergraduate students, particularly in overweight individuals. PMID:27074228

  19. Mineralized polymer composites as biogenic bone substitute material

    NASA Astrophysics Data System (ADS)

    Shah, Rushita; Saha, Nabanita; Kitano, Takeshi; Saha, Petr

    2015-05-01

    Mineralized polymer composites (MPC) are recognized as potential fillers of bone defects. Though bioceramics exhibits quite a good bone-bonding and vascularization, it is considered to be too stiff and brittle for using alone. Thus, the use of polymer scaffold instead of bioceramics has several advantages including combining the osteoconductivity and bone-bonding potential of the inorganic phase with the porosity and interconnectivity of the three-dimensional construction. Aiming the advantages of ceramic-polymer composite scaffolds, the calcium carbonate (CaCO3) based biomineralized scaffold was prepared, where the PVP-CMC hydrogel was used as an extracellular matrix. This paper is reported about the morphology, swelling trend (in physiological solution) and viscoelastic behavior of (90 min mineralized) MPC. The dry MPC are off-white, coarse in texture, comparatively less flexible than the original PVP-CMC based hydrogel film, and the deposition of granular structures on the surface of the hydrogel film confirms about the development of biomineralized scaffold/polymer composites. Irrespective of thickness, the dry MPC shows higher values of swelling ratio within 30 min, which varies between 200-250 approximately. The dynamic viscoelastic nature of freshly prepared MPC was investigated applying 1% and 10% strain. At higher strain the viscoelastic moduli (G' and G") show significant change, and the nature of MPC turns from elastic to viscous. Based on the observed basic properties, the MPC (calcite based polymer composites) can be recommended for the treatment of adyanamic bone disorder.

  20. Selective glucocorticoid receptor modulation maintains bone mineral density in mice.

    PubMed

    Thiele, Sylvia; Ziegler, Nicole; Tsourdi, Elena; De Bosscher, Karolien; Tuckermann, Jan P; Hofbauer, Lorenz C; Rauner, Martina

    2012-11-01

    Glucocorticoids (GCs) are potent anti-inflammatory drugs, but their use is limited by their adverse effects on the skeleton. Compound A (CpdA) is a novel GC receptor modulator with the potential for an improved risk/benefit profile. We tested the effects of CpdA on bone in a mouse model of GC-induced bone loss. Bone loss was induced in FVB/N mice by implanting slow-release pellets containing either vehicle, prednisolone (PRED) (3.5 mg), or CpdA (3.5 mg). After 4 weeks, mice were killed to examine the effects on the skeleton using quantitative computed tomography, bone histomorphometry, serum markers of bone turnover, and gene expression analysis. To assess the underlying mechanisms, in vitro studies were performed with human bone marrow stromal cells (BMSCs) and murine osteocyte-like cells (MLO-Y4 cells). PRED reduced the total and trabecular bone density in the femur by 9% and 24% and in the spine by 11% and 20%, respectively, whereas CpdA did not influence these parameters. Histomorphometry confirmed these results and further showed that the mineral apposition rate was decreased by PRED whereas the number of osteoclasts was increased. Decreased bone formation was paralleled by a decline in serum procollagen type 1 N-terminal peptide (P1NP), reduced skeletal expression of osteoblast markers, and increased serum levels of the osteoblast inhibitor dickkopf-1 (DKK-1). In addition, serum CTX-1 and the skeletal receptor activator of NF-κB ligand (RANKL)/osteoprotegerin (OPG) ratio were increased by PRED. None of these effects were observed with CpdA. Consistent with the in vivo data, CpdA did not increase the RANKL/OPG ratio in MLO-Y4 cells or the expression of DKK-1 in bone tissue, BMSCs, and osteocytes. Finally, CpdA also failed to transactivate DKK-1 expression in bone tissue, BMSCs, and osteocytes. This study underlines the bone-sparing potential of CpdA and suggests that by preventing increases in the RANKL/OPG ratio or DKK-1 in osteoblast lineage cells, GC

  1. Bone Mineral Density of the Tarsals and Metatarsals With Reloading

    PubMed Central

    Hastings, Mary Kent; Gelber, Judy; Commean, Paul K; Prior, Fred; Sinacore, David R

    2008-01-01

    Background and Purpose: Bone mineral density (BMD) decreases rapidly with prolonged non–weight bearing. Maximizing the BMD response to reloading activities after NWB is critical to minimizing fracture risk. Methods for measuring individual tarsal and metatarsal BMD have not been available. This case report describes tarsal and metatarsal BMD with a reloading program, as revealed by quantitative computed tomography (QCT). Case Description: A 24-year-old woman was non–weight bearing for 6 weeks after right talocrural arthroscopy. Tarsal and metatarsal BMD were measured with QCT 9 weeks (before reloading) and 32 weeks (after reloading) after surgery. A 26-week progressive reloading program was completed. Change scores were calculated for BMD before reloading and BMD after reloading for the total foot (average of all tarsals and metatarsals), tarsals, metatarsals, bones of the medial column (calcaneus, navicular, cuneiforms 1 and 2, and metatarsal 1), and bones of the lateral column (calcaneus, cuboid, cuneiform 3, and metatarsals 2–5). The percent differences in BMD between the involved side and the uninvolved side were calculated. Outcomes: Before reloading, BMD of the involved total foot was 9% lower than that on the uninvolved side. After reloading, BMD increased 22% and 21% for the total foot, 16% and 14% for the tarsals, 29% and 30% for the metatarsals, 14% and 15% for the medial column bones, and 28% and 26% for the lateral column bones on the involved and uninvolved sides, respectively. After reloading, BMD of the involved total foot remained 8% lower than that on the uninvolved side. Discussion: The increase in BMD with reloading was not uniform across all pedal bones; the metatarsals showed a greater increase than the tarsals, and the lateral column bones showed a greater increase than the medial column bones. PMID:18388153

  2. Menatetrenone ameliorates reduction in bone mineral density and bone strength in sciatic neurectomized rats.

    PubMed

    Iwasaki-Ishizuka, Yoshiko; Yamato, Hideyuki; Murayama, Hisashi; Abe, Masako; Takahashi, Kei; Kurokawa, Kiyoshi; Fukagawa, Masafumi; Ezawa, Ikuko

    2003-08-01

    Vitamin K2 (menaquinone) acts on the bone metabolism. Menatetrenon (MK-4) is a vitamin K2 homologue that has been used as a therapeutic agent for osteoporosis in Japan. Rat models of immobilization induced by sciatic neurectomy are characterized by transiently increased bone resorption and sustained reduction in bone formation. Using such a rat model, we investigated the efficacy of MK-4 on bone loss. Male Sprague-Dawley rats were subjected to unilateral sciatic neurectomy and administered MK-4 for 28 d beginning day 21 after operation. The effect of MK-4 on the immobilized bone was assessed by measuring the bone mineral density of the femur, breaking force of the femoral diaphysis, and bone histomorphometry in tibial diaphysis. The BMD on both the femoral distal metaphysis and diaphysis was reduced by sciatic neurectomy. The administration of MK-4 ameliorated this reduction in a dose-dependent manner. The administration of 30 mg/kg MK-4 ameliorated the reduction in bone strength. An improvement in bone formation was observed following the administration of MK-4. These results suggest that MK-4 has a therapeutic potential for immobilization-induced osteopenia. PMID:14598912

  3. Geographic differences in bone mineral density of Mexican women.

    PubMed

    Delezé, M; Cons-Molina, F; Villa, A R; Morales-Torres, J; Gonzalez-Gonzalez, J G; Calva, J J; Murillo, A; Briceño, A; Orozco, J; Morales-Franco, G; Peña-Rios, H; Guerrero-Yeo, G; Aguirre, E; Elizondo, J

    2000-01-01

    The aim of this study was to generate standard curves for normal spinal and femoral neck bone mineral density (BMD) in Mexican women using dual-energy X-ray absorptiometry (DXA), to analyze geographic differences and to compare these with 'Hispanic' reference data to determine its applicability. This was a cross-sectional study of 4460 urban, clinically normal, Mexican women, aged 20-90 years, from 10 different cities in Mexico (5 in the north, 4 in the center and 1 in the southeast) with densitometry centers. Women with suspected medical conditions or who had used drugs affecting bone metabolism, were excluded. Lumbar spine BMD was significantly higher (1.089 +/- 0.18 g/cm2) in women from the northern part of Mexico, with intermediate values in the center (1.065 +/- 0.17 g/cm2) and lower values (1.013 +/- 0.19 g/cm2) in the southeast (p < 0.0001). Similarly, femoral neck BMD was significantly higher in women from the north (0.895 +/- 0.14 g/cm2), intermediate in the center (0.864 +/- 0.14 g/cm2) and lower (0.844 +/- 0.14 g/cm ) in the southeast part of Mexico (p < 0.0001). Northern Mexican women tend to be taller and heavier than women from the center and, even more, than those from the southeast of Mexico (p < 0.0001). However, these differences in BMD remained significant after adjustment for weight (p < 0.0001). A significant loss (p < 0.0001) in BMD was observed from 40 to 69 years of age at the lumbar spine and up to the eighth decade at the femoral neck. Higher and lower lumbar spine values, as compared with the 'Hispanic' population, were observed in Mexican mestizo women from the northern and southeastern regions, respectively. In conclusion, there are geographic differences in weight and height of Mexican women, and in BMD despite adjustment for weight. PMID:11069189

  4. A primary phosphorus-deficient skeletal phenotype in juvenile Atlantic salmon Salmo salar: the uncoupling of bone formation and mineralization.

    PubMed

    Witten, P E; Owen, M A G; Fontanillas, R; Soenens, M; McGurk, C; Obach, A

    2016-02-01

    To understand the effect of low dietary phosphorus (P) intake on the vertebral column of Atlantic salmon Salmo salar, a primary P deficiency was induced in post-smolts. The dietary P provision was reduced by 50% for a period of 10 weeks under controlled conditions. The animal's skeleton was subsequently analysed by radiology, histological examination, histochemical detection of minerals in bones and scales and chemical mineral analysis. This is the first account of how a primary P deficiency affects the skeleton in S. salar at the cellular and at the micro-anatomical level. Animals that received the P-deficient diet displayed known signs of P deficiency including reduced growth and soft, pliable opercula. Bone and scale mineral content decreased by c. 50%. On radiographs, vertebral bodies appear small, undersized and with enlarged intervertebral spaces. Contrary to the X-ray-based diagnosis, the histological examination revealed that vertebral bodies had a regular size and regular internal bone structures; intervertebral spaces were not enlarged. Bone matrix formation was continuous and uninterrupted, albeit without traces of mineralization. Likewise, scale growth continues with regular annuli formation, but new scale matrix remains without minerals. The 10 week long experiment generated a homogeneous osteomalacia of vertebral bodies without apparent induction of skeletal malformations. The experiment shows that bone formation and bone mineralization are, to a large degree, independent processes in the fish examined. Therefore, a deficit in mineralization must not be the only cause of the alterations of the vertebral bone structure observed in farmed S. salar. It is discussed how the observed uncoupling of bone formation and mineralization helps to better diagnose, understand and prevent P deficiency-related malformations in farmed S. salar. PMID:26707938

  5. A primary phosphorus‐deficient skeletal phenotype in juvenile Atlantic salmon Salmo salar: the uncoupling of bone formation and mineralization

    PubMed Central

    Owen, M. A. G.; Fontanillas, R.; Soenens, M.; McGurk, C.; Obach, A.

    2015-01-01

    To understand the effect of low dietary phosphorus (P) intake on the vertebral column of Atlantic salmon Salmo salar, a primary P deficiency was induced in post‐smolts. The dietary P provision was reduced by 50% for a period of 10 weeks under controlled conditions. The animal's skeleton was subsequently analysed by radiology, histological examination, histochemical detection of minerals in bones and scales and chemical mineral analysis. This is the first account of how a primary P deficiency affects the skeleton in S. salar at the cellular and at the micro‐anatomical level. Animals that received the P‐deficient diet displayed known signs of P deficiency including reduced growth and soft, pliable opercula. Bone and scale mineral content decreased by c. 50%. On radiographs, vertebral bodies appear small, undersized and with enlarged intervertebral spaces. Contrary to the X‐ray‐based diagnosis, the histological examination revealed that vertebral bodies had a regular size and regular internal bone structures; intervertebral spaces were not enlarged. Bone matrix formation was continuous and uninterrupted, albeit without traces of mineralization. Likewise, scale growth continues with regular annuli formation, but new scale matrix remains without minerals. The 10 week long experiment generated a homogeneous osteomalacia of vertebral bodies without apparent induction of skeletal malformations. The experiment shows that bone formation and bone mineralization are, to a large degree, independent processes in the fish examined. Therefore, a deficit in mineralization must not be the only cause of the alterations of the vertebral bone structure observed in farmed S. salar. It is discussed how the observed uncoupling of bone formation and mineralization helps to better diagnose, understand and prevent P deficiency‐related malformations in farmed S. salar. PMID:26707938

  6. Optical studies of changes in bone mineral density

    NASA Astrophysics Data System (ADS)

    Ugryumova, Nadya; Matcher, Stephen J.; Attenburrow, Don P.

    2003-07-01

    The ability to measure changes in bone-mineral-density (BMD) in-vivo has potential applications in monitoring stress-induced bone remodelling in, for example, competition race horses. In this study we have begun to investigate the potential of optical techniques to monitor such changes via changes in bone optical scattering. Using integrating spheres, we have investigated the optical properties of bone samples taken from the leg of the horse. Since our samples have stable characteristics over the time, we are able to use a single integrating-sphere technique. Diffuse reflection and transmission coefficients have been measured over the wavelength range 520 to 960 nm. Measurements were made on samples immersed in formic acid solution for different lengths of time; this was to investigate the effect of reduction in BMD on the optical properties. The experimental results and a Monte-Carlo based inversion method were used to extract the absorption coefficient and unmodified scattering coefficient of the samples. After full demineralisation scattering coefficient fell by a factor 4. This shows that the calcium-content in bone influences its optical properties considerably. Our experiments confirm the possibility of using optical techniques to determine changes in the BMD of samples.

  7. Bone Mineral Density in Healthy Female Adolescents According to Age, Bone Age and Pubertal Breast Stage

    PubMed Central

    Moretto, M.R; Silva, C.C; Kurokawa, C.S; Fortes, C.M; Capela, R.C; Teixeira, A.S; Dalmas, J.C; Goldberg, T.B

    2011-01-01

    Objectives: This study was designed to evaluate bone mineral density (BMD) in healthy female Brazilian adolescents in five groups looking at chronological age, bone age, and pubertal breast stage, and determining BMD behavior for each classification. Methods: Seventy-two healthy female adolescents aged between 10 to 20 incomplete years were divided into five groups and evaluated for calcium intake, weight, height, body mass index (BMI), pubertal breast stage, bone age, and BMD. Bone mass was measured by bone densitometry (DXA) in lumbar spine and proximal femur regions, and the total body. BMI was estimated by Quetelet index. Breast development was assessed by Tanner’s criteria and skeletal maturity by bone age. BMD comparison according to chronologic and bone age, and breast development were analyzed by Anova, with Scheffe’s test used to find significant differences between groups at P≤0.05. Results: BMD (g·cm-2) increased in all studied regions as age advanced, indicating differences from the ages of 13 to 14 years. This group differed to the 10 and 11 to 12 years old groups for lumbar spine BMD (0.865±0.127 vs 0.672±0.082 and 0.689±0.083, respectively) and in girls at pubertal development stage B3, lumbar spine BMD differed from B5 (0.709±0.073 vs 0.936±0.130) and whole body BMD differed from B4 and B5 (0.867±0.056 vs 0.977±0.086 and 1.040±0.080, respectively). Conclusion: Bone mineralization increased in the B3 breast maturity group, and the critical years for bone mass acquisition were between 13 and 14 years of age for all sites evaluated by densitometry. PMID:21966336

  8. Effect of age on bone mineral density and micro architecture in the radius and tibia of horses: An Xtreme computed tomographic study

    PubMed Central

    Fürst, A; Meier, D; Michel, S; Schmidlin, A; Held, L; Laib, A

    2008-01-01

    Background The effect of age on the bone mineral density and microarchitecture of the equine radius and tibia was investigated. Fifty-six bones from 15 horses aged four to 21 years were used. There were nine geldings and six mares, and none of the horses had any disease influencing bone properties. Xtreme computed tomography was used to evaluate a 9-mm segment of the diaphysis and metaphysis of each bone. The following variables were determined: length of the bone, circumference and diameter in the frontal and sagittal planes in the middle of the bone. Diaphysis: total volume, bone volume, bone volume ratio, slice area, bone area, marrow area, cortical and marrow thickness, bone mineral density, polar moment of inertia of the cortex. Metaphysis: total area, bone area, cortical bone area, cortical thickness, bone mineral density, bone mineral density in the cortex, bone mineral density in the trabecular region, trabecular number, trabecular thickness, trabecular separation, polar moment of inertia of the metaphysis, polar moment of inertia of the cortex of the metaphysis. Results Bone density and microarchitecture were not affected by breed or gender. However, the microarchitecture varied with the age of the horse; the number of trabeculae decreased significantly and the distance between trabeculae increased significantly with increasing age. There were no significant differences between bones of the left and right limbs or between the radius and tibia. Conclusion The variables investigated did not differ between geldings and mares. However, there were age-related changes in the microstructure of the bones. Further experimental studies are necessary to determine whether these changes reduce bone strength. Age-related changes in the bones were seen and may explain the higher incidence of fractures and fissures in older horses. PMID:18221526

  9. Lateral Packing of Mineral Crystals in Bone Collagen

    SciTech Connect

    Burger, C.; Zhou, H; Wang, H; Sics, I; Hsiao, B; Chu, B; Graham, L; Glimcher, M

    2008-01-01

    Combined small-angle x-ray scattering and transmission electron microscopy studies of intramuscular fish bone (shad and herring) indicate that the lateral packing of nanoscale calcium-phosphate crystals in collagen fibrils can be represented by irregular stacks of platelet-shaped crystals, intercalated with organic layers of collagen molecules. The scattering intensity distribution in this system can be described by a modified Zernike-Prins model, taking preferred orientation effects into account. Using the model, the diffuse fan-shaped small-angle x-ray scattering intensity profile, dominating the equatorial region of the scattering pattern, could be quantitatively analyzed as a function of the degree of mineralization. The mineral platelets were found to be very thin (1.5nm{approx}2.0nm), having a narrow thickness distribution. The thickness of the organic layers between adjacent mineral platelets within a stack is more broadly distributed with the average value varying from 6nm to 10nm, depending on the extent of mineralization. The two-dimensional analytical scheme also leads to quantitative information about the preferred orientation of mineral stacks and the average height of crystals along the crystallographic c axis.

  10. Determinants of bone mineral density, bone mineral content, and body composition in a cohort of healthy children: influence of sex, age, puberty, and physical activity.

    PubMed

    Ausili, Emanuele; Rigante, Donato; Salvaggio, Elio; Focarelli, Benedetta; Rendeli, Claudia; Ansuini, Valentina; Paolucci, Valentina; Triarico, Silvia; Martini, Lucilla; Caradonna, Paolo

    2012-09-01

    Interventions directed to the recognition of abnormal bone mineral density, bone mineral content, and body composition in the pediatric age require the definition of factors influencing bone mass acquisition during growth. We have evaluated in a cross-sectional manner by dual-energy X-ray absorptiometry the impact of sex, age, puberty, and physical activity on total body areal bone mineral density, regional (lumbar and femoral) bone mineral densities, bone mineral content, and body composition (fat mass and lean mass) in a cohort of 359 healthy Italian children aged 3-14 years and investigated their specific contribution to bone mass accrual. Statistical multiple regression analysis was performed dividing the population in pre- and post-pubertal groups. Bone mineral density at the lumbar spine has resulted equally distributed in both sexes before puberty while has resulted higher at the femoral necks in males at whatever age. A significant effect on bone mass acquisition was exerted by male sex and lean mass. In the areas where the cortical bone is prevalent, males of the pre-pubertal group have presented the highest values; in the areas where the cancellous bone is prevalent, both sexes were equivalent until the age of 9 years, but after this age, females have presented higher increases, probably related to the inferior dimensional development of lumbar vertebrae. Conclusively, male sex and lean mass seem to represent independent predictors of bone mass accrual in the cortical bone of the examined children, while female sex and pubertal maturation are independent predictors of bone mass accrual in the trabecular bone. PMID:21809005

  11. Preservation of bone structure and function by Lithothamnion sp. derived minerals.

    PubMed

    Aslam, Muhammad Nadeem; Bergin, Ingrid; Jepsen, Karl; Kreider, Jaclynn M; Graf, Kristin H; Naik, Madhav; Goldstein, Steven A; Varani, James

    2013-12-01

    Progressive bone mineral loss and increasing bone fragility are hallmarks of osteoporosis. A combination of minerals isolated from the red marine algae, Lithothamnion sp. was examined for ability to inhibit bone mineral loss in female mice maintained on either a standard rodent chow (control) diet or a high-fat western diet (HFWD) for 5, 12, and 18 months. At each time point, femora were subjected to μ-CT analysis and biomechanical testing. A subset of caudal vertebrae was also analyzed. Following this, individual elements were assessed in bones. Serum levels of the 5b isoform of tartrate-resistant acid phosphatase (TRAP) and procollagen type I propeptide (P1NP) were also measured. Trabecular bone loss occurred in both diets (evident as early as 5 months). Cortical bone increased through month 5 and then declined. Cortical bone loss was primarily in mice on the HFWD. Inclusion of the minerals in the diet reduced bone mineral loss in both diets and improved bone strength. Bone mineral density was also enhanced by these minerals. Of several cationic minerals known to be important to bone health, only strontium was significantly increased in bone tissue from animals fed the mineral diets, but the increase was large (5-10 fold). Serum levels of TRAP were consistently higher in mice receiving the minerals, but levels of P1NP were not. These data suggest that trace minerals derived from marine red algae may be used to prevent progressive bone mineral loss in conjunction with calcium. Mineral supplementation could find use as part of an osteoporosis-prevention strategy. PMID:24096551

  12. Preservation of bone structure and function by Lithothamnion sp. – derived minerals

    PubMed Central

    Aslam, Muhammad Nadeem; Bergin, Ingrid; Jepsen, Karl; Kreider, Jaclynn M.; Graf, Kristin H.; Naik, Madhav; Goldstein, Steven A.; Varani, James

    2013-01-01

    Progressive bone mineral loss and increasing bone fragility are hallmarks of osteoporosis. A combination of minerals isolated from the red marine algae, Lithothamnion sp. was examined for ability to inhibit bone mineral loss in female mice maintained on either a standard rodent chow (control) diet or a high-fat western diet (HFWD) for 5-, 12- and 18-months. At each time-point, femora were subjected to μ-CT analysis and biomechanical testing. A subset of caudal vertebrae was also analyzed. Following this, individual elements were assessed in bones. Serum levels of the 5b isoform of tartrate-resistant acid phosphatase (TRAP) and procollagen type I propeptide (P1NP) were also measured. Trabecular bone loss occurred in both diets (evident as early as 5-months). Cortical bone increased through month-5 and then declined. Cortical bone loss was primarily in mice on the HFWD. Inclusion of the minerals in the diet reduced bone mineral loss in both diets and improved bone strength. Bone mineral density (BMD) was also enhanced by these minerals. Of several cationic minerals known to be important to bone health, only strontium was significantly increased in bone tissue from animals fed the mineral diets, but the increase was large (5–10 fold). Serum levels of TRAP were consistently higher in mice receiving the minerals but levels of P1NP were not. These data suggest that trace minerals derived from marine red algae may be used to prevent progressive bone mineral loss in conjunction with calcium. Mineral supplementation could find use as part of an osteoporosis - prevention strategy. PMID:24096551

  13. Periprosthetic tibial bone mineral density changes after total knee arthroplasty

    PubMed Central

    Jaroma, Antti; Soininvaara, Tarja; Kröger, Heikki

    2016-01-01

    Background and purpose Total knee arthroplasty (TKA) may cause postoperative periprosthetic bone loss due to stress shielding. Bone also adapts to mechanical alterations such as correction of malalignment. We investigated medium-term changes in bone mineral density (BMD) in tibial periprosthetic bone after TKA. Patients and methods 86 TKA patients were prospectively measured with dual-energy X-ray absorptiometry (DXA), the baseline measurement being within 1 week after TKA and the follow-up measurements being at 3 and 6 months, and at 1, 2, 4, and 7 years postoperatively. Long standing radiographs were taken and clinical evaluation was done with the American Knee Society (AKS) score. Results The baseline BMD of the medial tibial metaphyseal region of interest (ROI) was higher in the varus aligned knees (25%; p < 0.001). Medial metaphyseal BMD decreased in subjects with preoperatively varus aligned knees (13%, p < 0.001) and in those with preoperatively valgus aligned knees (12%, p = 0.02) between the baseline and 7-year measurements. No statistically significant changes in BMD were detected in lateral metaphyseal ROIs. No implant failures or revision surgery due to tibial problems occurred. Interpretation Tibial metaphyseal periprosthetic bone is remodeled after TKA due to mechanical axis correction, resulting in more balanced bone stock below the tibial tray. The diaphyseal BMD remains unchanged after the initial drop, within 3–6 months. This remodeling process was related to good component survival, as there were no implant failures or revision operations due to tibial problems in this medium-term follow-up. PMID:27120266

  14. Periprosthetic tibial bone mineral density changes after total knee arthroplasty.

    PubMed

    Jaroma, Antti; Soininvaara, Tarja; Kröger, Heikki

    2016-06-01

    Background and purpose - Total knee arthroplasty (TKA) may cause postoperative periprosthetic bone loss due to stress shielding. Bone also adapts to mechanical alterations such as correction of malalignment. We investigated medium-term changes in bone mineral density (BMD) in tibial periprosthetic bone after TKA. Patients and methods - 86 TKA patients were prospectively measured with dual-energy X-ray absorptiometry (DXA), the baseline measurement being within 1 week after TKA and the follow-up measurements being at 3 and 6 months, and at 1, 2, 4, and 7 years postoperatively. Long standing radiographs were taken and clinical evaluation was done with the American Knee Society (AKS) score. Results - The baseline BMD of the medial tibial metaphyseal region of interest (ROI) was higher in the varus aligned knees (25%; p < 0.001). Medial metaphyseal BMD decreased in subjects with preoperatively varus aligned knees (13%, p < 0.001) and in those with preoperatively valgus aligned knees (12%, p = 0.02) between the baseline and 7-year measurements. No statistically significant changes in BMD were detected in lateral metaphyseal ROIs. No implant failures or revision surgery due to tibial problems occurred. Interpretation - Tibial metaphyseal periprosthetic bone is remodeled after TKA due to mechanical axis correction, resulting in more balanced bone stock below the tibial tray. The diaphyseal BMD remains unchanged after the initial drop, within 3-6 months. This remodeling process was related to good component survival, as there were no implant failures or revision operations due to tibial problems in this medium-term follow-up. PMID:27120266

  15. Bone Collagen: New Clues to its Mineralization Mechanism From Recessive Osteogenesis Imperfecta

    PubMed Central

    Eyre, David R.; Ann Weis, Mary

    2013-01-01

    Until 2006 the only mutations known to cause osteogenesis imperfecta (OI) were in the two genes coding for type I collagen chains. These dominant mutations affecting the expression or primary sequence of collagen α1(I) and α2(I) chains account for over 90% of OI cases. Since then a growing list of mutant genes causing the 5–10% of recessive cases has rapidly emerged. They include CRTAP, LEPRE1 and PPIB, which encode three proteins forming the prolyl 3-hydroxylase complex; PLOD2 and FKBP10, which encode respectively lysyl hydroxylase 2 and a foldase required for its activity in forming mature cross-links in bone collagen; SERPIN H1, which encodes the collagen chaperone HSP47; SERPIN F1, which encodes pigment epithelium-derived factor required for osteoid mineralization; and BMP1, which encodes the type I procollagen C-propeptidase. All cause fragile bone in infancy, which can include over-mineralization or under-mineralization defects as well as abnormal collagen post-translational modifications. Consistently both dominant and recessive variants lead to abnormal cross-linking chemistry in bone collagen. These recent discoveries strengthen the potential for a common pathogenic mechanism of misassembled collagen fibrils. Of the new genes identified, eight encode proteins required for collagen post-translational modification, chaperoning of newly synthesized collagen chains into native molecules or transport through the endoplasmic reticulum and Golgi for polymerization, cross-linking and mineralization. In reviewing these findings, we conclude that a common theme is emerging in the pathogenesis of brittle bone disease of mishandled collagen assembly with important insights on post-translational features of bone collagen that have evolved to optimize it as a biomineral template. PMID:23508630

  16. Measurement of bone mineral content in vivo using photon absorptiometry

    PubMed Central

    Boyd, R. M.; Cameron, E. C.; McIntosh, H. W.; Walker, V. R.

    1974-01-01

    Progress in evaluating treatment of systemic bone disease has been hampered in the past by lack of precise in vivo quantitative techniques. Recently a method has been developed for measurement of bone mineral content (BMC), based on bone absorption of low-energy monochromatic radiation. This paper discusses a technique of photon absorptiometry using 125l as a collimated point source. The technique is simple, with accuracy and precision within 2%. BMC and bone width (W) were measured in the distal radius of 359 normal subjects ranging in age from 5 to 82 years. A “normal” curve of BMC/W with age as the independent variable was then obtained from this population and was constructed for each sex. A positive correlation of BMC/W with height and body weight was found in a group of normal males. A series of patients with osteoporosis or malabsorption, or undergoing hemodialysis or steroid treatment, was then assessed in order to demonstrate changes in BMC/W that may occur secondary to disease or disturbances in calcium metabolism. Many of these patients were found to have a BMC/W below the normal mean value for their age and sex. PMID:4434288

  17. Bone mineral density in survivors of childhood acute lymphoblastic leukemia.

    PubMed

    Athanassiadou, Fani; Tragiannidis, Athanassios; Rousso, Israel; Katsos, Georgios; Sidi, Vassiliki; Papageorgiou, Theodotis; Papastergiou, Christos; Tsituridis, Ioannis; Koliouskas, Dimitrios

    2006-01-01

    The aim of our study was to evaluate bone metabolism with measurement of bone mineral density (BMD) after management (chemo-, radiotherapy) for childhood acute lymphoblastic leukemia (ALL). Bone mineral density (g/cm2) of lumbar spine was measured by dual energy X-ray absorptiometry (Norland bone densitometer) in 18 children with ALL and a median of 34 months' post-diagnosis with no history of relapse, secondary malignancy, or transplantation. In addition, patients' BMDs were correlated with particular attention to age, sex and time (years) from completion of chemotherapy. The results were compared with healthy age- and sex-matched controls of the same population and expressed as standard deviation scores (SDS). Mean age of children was 9.8 +/- 3.7 years. Of 18 children (10 boys and 8 girls), 13 were grouped as standard and 5 as high-risk, respectively. Based on z-score values, 9 were classified as normal (z-score <1 SD), 7 as osteopenic (z-score 1-2.5 SD) and 2 as osteoporotic (z-score >2.5 SD). Children with ALL had reduced lumbar BMDs (z score -0.99) in comparison to healthy controls (z score -0.14) (p=0.011), which is indicative of relative osteopenia. Moreover, the reduced BMD was associated with patient age (z score -0.14 and -1.52 for ages <10 and >10 years, respectively, p=0.016). Reduced BMD was not correlated with time from completion of chemotherapy (p=0.33), risk group (p=0.9) and sex (p=0.3). We conclude that children's BMDs are reduced after completion of chemotherapy for ALL. The causes are multifactorial and mainly related to antineoplastic treatments, such as corticosteroids and methotrexate, physical inactivity and cranial irradiation. We suggest that further studies are needed to evaluate the long-term effect on BMD in these children and to prevent pathological fractures later in life. PMID:16848106

  18. Quantitative CT for determination of bone mineral density: a review

    SciTech Connect

    Cann, C.E.

    1988-02-01

    One of the major uses of quantitative computed tomography (CT) has been the measurement of bone mineral density (BMD) at various skeletal sites. The published literature on this subject from 1974 to the present is extensive. Because many investigators and clinicians are just now starting to explore the utility of this technique, the author reviewed this literature to provide both the historic perspective and current status of BMD measurement with CT. The physical and physiologic bases of the method, accuracy, reproducibility, radiation dose, and clinical utility are all discussed.103 references.

  19. The use of Na-22 as a tracer for long-term bone mineral turnover studies.

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.; Rieksts, G. A.; Palmer, R. F.; Gillis, M. F.

    1979-01-01

    Sodium-22 has been studied as a tracer for bone mineral metabolism in rats and dogs. When incorporated into bone during growth from birth to adulthood, the bone becomes uniformly tagged with Na-22, which is released through the metabolic turnover of the bone. The Na-22 not incorporated in the bone matrix is rapidly excreted within a few days when animals are fed high, but nontoxic levels of NaCl. The Na-22 tracer can be used to measure bone mineral loss in animals during space flight and in research on bone disease.

  20. On the pathway of mineral deposition in larval zebrafish caudal fin bone.

    PubMed

    Akiva, Anat; Malkinson, Guy; Masic, Admir; Kerschnitzki, Michael; Bennet, Mathieu; Fratzl, Peter; Addadi, Lia; Weiner, Steve; Yaniv, Karina

    2015-06-01

    A poorly understood aspect of bone biomineralization concerns the mechanisms whereby ions are sequestered from the environment, concentrated, and deposited in the extracellular matrix. In this study, we follow mineral deposition in the caudal fin of the zebrafish larva in vivo. Using fluorescence and cryo-SEM-microscopy, in combination with Raman and XRF spectroscopy, we detect the presence of intracellular mineral particles located between bones, and in close association with blood vessels. Calcium-rich particles are also located away from the mineralized bone, and these are also in close association with blood vessels. These observations challenge the view that mineral formation is restricted to osteoblast cells juxtaposed to bone, or to the extracellular matrix. Our results, derived from observations performed in living animals, contribute a new perspective to the comprehensive mechanism of bone formation in vertebrates, from the blood to the bone. More broadly, these findings may shed light on bone mineralization processes in other vertebrates, including humans. PMID:25725266

  1. Evaluation of Lunar small animal software for measuring bone mineral content in excised rat bones.

    PubMed

    Kiebzak, G M; Meyer, M H; Meyer, R A

    1999-01-01

    The purpose of this study was to evaluate software from Lunar Corporation (Madison, WI) designed for the measurement of bone mineral content ([BMC],g) in excised rat femurs using dual-energy X-ray absorptiometry (DXA). Femurs were harvested from intact 2- to 12-mo-old female Sprague-Dawley rats, stripped of soft tissues, wrapped in saline-soaked gauze, and frozen at -20 degrees F. Thawed bones were scanned in air on a 1.7-cm-thick Lucite plate that was laid on the manufacturer's supplied Delrin platform. Bones were in an anteroposterior position and scanned in a proximal-to-distal manner. Small animal software version 1.0d was used with a Lunar DPX-L densitometer. Regions of interest (ROIs) were the middle one-third of the diaphysis, a small central area of the distal metaphysis, and the total bone. Precision (n = 6 femurs) was calculated for each region of interest. After DXA scanning, one group of bones (n = 10 femurs) was dried and incinerated in a muffle furnace to obtain bone ash. The ash was then digested in acid and aliquots assayed for calcium using atomic absorption spectrophotometry. This group of bones was used to correlate BMC with ash weight and areal bone mineral density (BMD) with calcium concentration. A second group of bones (n = 14 femurs) was used to correlate BMC with maximal load to failure (N), a biomechanical variable that provides information about bone strength. Precision of repetitive measurements for the three ROIs was 1.2, 3.0, and 0.65%, respectively. Total femur BMC and total femur ash weights were significantly correlated (r = 0.974, p <0.0001). Total femur area BMD (g/cm2) was significantly correlated with calcium concentration (microM) of the bone hydrolysate (r = 0.686, p = 0.029). Total femur BMC and maximum load to midshaft fracture were also significantly correlated (r = 0.914, p<0.0001). The greatest problem with the software was with edge detection: operator intervention was necessary to place edges manually during scan

  2. Effects of Rubus coreanus-Cheonggukjang on Bone Mineral Density and Bone Mineral Content in Growing Rats

    PubMed Central

    Jung, Yun-Jung; Choi, Mi-Ja

    2015-01-01

    The purpose of the present study was to investigate the bone-conserving effects of Rubus coreanus-Cheonggukjang (RC-CGJ) supplemented with more intensified phytochemicals compared to general Cheonggukjang (CGJ) in growing rats. Eighteen rats were divided into 3 treatment groups (Control, CGJ, and RC-CGJ) and were given experimental diets for 9 weeks. All of the rats in this study were fed a AIN-93G-based diet. Both CGJ groups were fed with 33.1% CGJ and RC-CGJ powder, respectively. The results of this study indicate that weight gain, mean food intake, and food efficiency ratio were not significantly different by the experimental diets among all groups. Spine bone mineral density (BMD) and femur BMD were not significantly different by the experimental diets. Spine bone mineral content (BMC) was significantly higher in the RC-CGJ and CGJ groups than in the control group, regardless of CGJ type. The femur BMC of the CGJ supplemented group was significantly higher compared with the control group and the RC-CGJ group. Compared with the control group, spine BMD and femur BMD per weight were markedly increased in the RC-CGJ and CGJ group regardless of CGJ type. Also, spine BMC per weight was significantly higher in the RC-CGJ group than in the CGJ group. However, femur BMC per weight was significantly higher in the CGJ group than in the RC-CGJ group. It can be concluded that RC-CGJ and CGJ supplemented diets have more beneficial effects on spine and femur peak bone mass in growing rats. PMID:26770913

  3. Effects of Rubus coreanus-Cheonggukjang on Bone Mineral Density and Bone Mineral Content in Growing Rats.

    PubMed

    Jung, Yun-Jung; Choi, Mi-Ja

    2015-12-01

    The purpose of the present study was to investigate the bone-conserving effects of Rubus coreanus-Cheonggukjang (RC-CGJ) supplemented with more intensified phytochemicals compared to general Cheonggukjang (CGJ) in growing rats. Eighteen rats were divided into 3 treatment groups (Control, CGJ, and RC-CGJ) and were given experimental diets for 9 weeks. All of the rats in this study were fed a AIN-93G-based diet. Both CGJ groups were fed with 33.1% CGJ and RC-CGJ powder, respectively. The results of this study indicate that weight gain, mean food intake, and food efficiency ratio were not significantly different by the experimental diets among all groups. Spine bone mineral density (BMD) and femur BMD were not significantly different by the experimental diets. Spine bone mineral content (BMC) was significantly higher in the RC-CGJ and CGJ groups than in the control group, regardless of CGJ type. The femur BMC of the CGJ supplemented group was significantly higher compared with the control group and the RC-CGJ group. Compared with the control group, spine BMD and femur BMD per weight were markedly increased in the RC-CGJ and CGJ group regardless of CGJ type. Also, spine BMC per weight was significantly higher in the RC-CGJ group than in the CGJ group. However, femur BMC per weight was significantly higher in the CGJ group than in the RC-CGJ group. It can be concluded that RC-CGJ and CGJ supplemented diets have more beneficial effects on spine and femur peak bone mass in growing rats. PMID:26770913

  4. Bone mineral density of healthy Turkish children and adolescents.

    PubMed

    Goksen, Damla; Darcan, Sukran; Coker, Mahmut; Kose, Timur

    2006-01-01

    The objective of this article is to gain reference values of lumbar and femoral neck bone mineral density (BMD) for healthy Turkish children. Three hundred forty-five children aged 2-18 years were examined. Weight and height development were normal for age according to national growth charts. Areal BMD (aBMD) was corrected using the model of Kroger et al (9). The results of the lumbar and femoral aBMD increased progressively from childhood to adulthood. Statistically significant correlation was found between lumbar and femoral neck aBMD and age and height (p<0.01). Lumbar volumetric (vBMD) data were similar between males and females. Femoral vBMD was only significantly different at the ages of 8 and 16 (p<0.05) in girls and boys and did not increase with age. A significant increase in aBMD L1-L4 values according to puberty was observed between all Tanner stages, except Tanner stages 3 and 4 (p>0.05). A significant difference was found between stages 1 and 2, and 2 and 3 in femoral neck aBMD (p<0.05). This data provides a tool for the investigation and follow-up of Turkish children at risk for low-bone mineralization. PMID:16731436

  5. Vascular calcification, bone and mineral metabolism after kidney transplantation

    PubMed Central

    D’Marco, Luis; Bellasi, Antonio; Mazzaferro, Sandro; Raggi, Paolo

    2015-01-01

    The development of end stage renal failure can be seen as a catastrophic health event and patients with this condition are considered at the highest risk of cardiovascular disease among any other patient groups and risk categories. Although kidney transplantation was hailed as an optimal solution to such devastating disease, many issues related to immune-suppressive drugs soon emerged and it became evident that cardiovascular disease would remain a vexing problem. Progression of chronic kidney disease is accompanied by profound alterations of mineral and bone metabolism that are believed to have an impact on the cardiovascular health of patients with advanced degrees of renal failure. Cardiovascular risk factors remain highly prevalent after kidney transplantation, some immune-suppression drugs worsen the risk profile of graft recipients and the alterations of mineral and bone metabolism seen in end stage renal failure are not completely resolved. Whether this complex situation promotes progression of vascular calcification, a hall-mark of advanced chronic kidney disease, and whether vascular calcifications contribute to the poor cardiovascular outcome of post-transplant patients is reviewed in this article. PMID:26722649

  6. Multiple vibration intensities and frequencies for bone mineral density improvement.

    PubMed

    Ezenwa, Bertram; Burns, Edith; Wilson, Charles

    2008-01-01

    Devices that deliver controlled quantum vibration intensities at multiple frequencies (QVIMF) provide optimal stress to the musculoskeletal system for improved bone mineral density and muscle strength. This paper presents development of a QVIMF system and pilot study to determine device performance. Development is centered on specially-designed actuators that comprise multiple nodes of controlled and smooth, but variable rates of contact on a telescoping platform through sets of damping subsystems. The combination of specially-designed actuators and damping subsystems, powered by a DC controlled motor, delivers quantum busts of vibration at multiple frequencies resulting in whole body vibration. An initial feasibility study involved a 79 year old adult male. After IRB approval from both the University of Wisconsin-Milwaukee (UWM) and the Zablocki VA Medical Center, Milwaukee, the subject's bone mineral density (BMD) was measured by dual x-ray absorptimetry (DXA) at baseline. The subject then visited the UWM laboratory for two fifteen-minute vibration sessions per visit, three times a week for a total of 60 visits. Post-vibration BMD was again measured by DXA. Comparison pre- and post-vibration test results showed increases in BMD at the femoral neck, trochanter, total hip, forearm and lower lumbar spine (L1-4). PMID:19163635

  7. How does long-term parenteral nutrition impact the bone mineral status of children with intestinal failure?

    PubMed

    Diamanti, Antonella; Bizzarri, Carla; Bizzarri, Claudia; Basso, Maria Sole; Gambarara, Manuela; Cappa, Marco; Daniele, Antonella; Noto, Cristian; Castro, Massimo

    2010-05-01

    Patients on long-term parenteral nutrition (PN) are at significantly increased risk for the development of metabolic bone disease (MBD); this condition is characterized by incomplete mineralization of osteoid with consequent disturbances ranging from osteopenia to severe bone disease with fractures. The aim of the study was: (1) to evaluate the prevalence of MBD, (2) to identify the PN- or intestinal failure (IF)-related factors and (3) to assess annual changes of bone mineral status. Since September 2005 all patients affected by IF and treated with PN started a BMD evaluation program using dual-energy X-ray absorptiometry (DXA). Twenty-four IF patients were included [15 with short bowel syndrome (SBS), 5 with severe protracted diarrhea and 4 with chronic intestinal pseudostruction]. The bone mineral density (BMD) Z-score was significantly lower in patients than in the control group. In our series SBS patients showed a BMD Z-score significantly higher in comparison with the medical causes of IF. No significant correlations were found between bone mineral status and PN duration and nutrient intake. Nine IF patients were submitted to a second DXA evaluation after 1 year from the baseline. All bone mineral variables were significantly increased at the second DXA evaluation. The high prevalence of MBD in IF patients undergoing long-term treatment with PN requires that these patients undergo careful and periodic monitoring of their bone mineral status; patients with congenital gut dysfunctions, such as epithelium defects and motility anomalies, are at major risk of developing this complication, probably due to the association with extra-intestinal causes of bone loss. PMID:20033239

  8. Accelerated Growth Plate Mineralization and Foreshortened Proximal Limb Bones in Fetuin-A Knockout Mice

    PubMed Central

    Gupta, Himadri S.; Schäfer, Cora; Krauss, Stefanie; Dunlop, John W. C.; Masic, Admir; Kerschnitzki, Michael; Zaslansky, Paul; Boesecke, Peter; Catalá-Lehnen, Philip; Schinke, Thorsten; Fratzl, Peter; Jahnen-Dechent, Willi

    2012-01-01

    The plasma protein fetuin-A/alpha2-HS-glycoprotein (genetic symbol Ahsg) is a systemic inhibitor of extraskeletal mineralization, which is best underscored by the excessive mineral deposition found in various tissues of fetuin-A deficient mice on the calcification-prone genetic background DBA/2. Fetuin-A is known to accumulate in the bone matrix thus an effect of fetuin-A on skeletal mineralization is expected. We examined the bones of fetuin-A deficient mice maintained on a C57BL/6 genetic background to avoid bone disease secondary to renal calcification. Here, we show that fetuin-A deficient mice display normal trabecular bone mass in the spine, but increased cortical thickness in the femur. Bone material properties, as well as mineral and collagen characteristics of cortical bone were unaffected by the absence of fetuin-A. In contrast, the long bones especially proximal limb bones were severely stunted in fetuin-A deficient mice compared to wildtype littermates, resulting in increased biomechanical stability of fetuin-A deficient femora in three-point-bending tests. Elevated backscattered electron signal intensities reflected an increased mineral content in the growth plates of fetuin-A deficient long bones, corroborating its physiological role as an inhibitor of excessive mineralization in the growth plate cartilage matrix - a site of vigorous physiological mineralization. We show that in the case of fetuin-A deficiency, active mineralization inhibition is a necessity for proper long bone growth. PMID:23091616

  9. [Clinical evaluation for abnormalities of bone and mineral metabolism in ESKD].

    PubMed

    Yano, Shozo

    2016-09-01

    In patients with end-stage kidney disease(ESKD), bone disorders are characterized by cortical porosity and by abnormal turnover of bone metabolism:adynamic(low turnover)bone disease and high turnover bone due to various degrees of secondary hyperparathyroidism. Abnormalities of bone metabolism are generally assessed by interview, X-ray, bone mineral density(BMD), serum phosphorus, calcium, and parathyroid hormone levels, and bone metabolic markers. Recent clinical studies have demonstrated that high turnover bone representing elevated bone metabolic markers and low BMD are independent risks of bone fractures as well as mortality among this population. Treatment of bone disorders in ESKD patients should be aiming at the normalization of mineral metabolism and the maintenance and/or improvement of BMD. PMID:27561341

  10. Modifications of histamine receptor signaling affect bone mechanical properties in rats.

    PubMed

    Folwarczna, Joanna; Janas, Aleksandra; Pytlik, Maria; Śliwiński, Leszek; Wiercigroch, Marek; Brzęczek, Anna

    2014-02-01

    Histamine receptors are expressed on bone cells and histamine may be involved in regulation of bone metabolism. The aim of the present study was to investigate the effects of loratadine (an H(1) receptor antagonist), ranitidine (an H(2) receptor antagonist) and betahistine (an H(3) receptor antagonist and H(1) receptor agonist) on bone mechanical properties in rats. Loratadine (5 mg/kg/day, po), ranitidine (50 mg/kg/day, po), or betahistine dihydrochloride (5 mg/kg/day, po), were administered for 4 weeks to non-ovariectomized and bilaterally ovariectomized (estrogen-deficient) 3-month-old rats, and their effects were compared with appropriate controls. Serum levels of bone turnover markers, bone mineralization and mechanical properties of the proximal tibial metaphysis, femoral diaphysis and femoral neck were studied. In rats with normal estrogen level, administration of loratadine slightly favorably affected mechanical properties of compact bone, significantly increasing the strength of the femoral neck (p < 0.05), and tending to increase the strength of the femoral diaphysis. Ranitidine did not significantly affect the investigated parameters, and betahistine decreased the strength of the tibial metaphysis (cancellous bone, p < 0.01). There were no significant effects of the drugs on serum bone turnover markers. In estrogen-deficient rats, the drugs did not significantly affect the investigated skeletal parameters. In conclusion, the effects of histamine H(1), H(2) and H(3) receptor antagonists on the skeletal system in rats were differential and dependent on estrogen status. PMID:24905313

  11. Bone mineral density and changes in bone metabolism in patients with obstructive sleep apnea syndrome.

    PubMed

    Terzi, Rabia; Yılmaz, Zahide

    2016-07-01

    The aim of this study was to evaluate the differences between patients with obstructive sleep apnea syndrome (OSAS) and phenotypically similar subjects without OSAS in terms of bone mineral density (BMD) and bone turnover markers. The study was conducted on 30 males diagnosed with OSAS and 20 healthy males. All subjects underwent polysomnographic testing. Calcium, phosphorus parathyroid hormone, thyroid stimulating hormone, bone-specific alkaline phosphatase, 25-hydroxyvitamin D3, osteocalcin, and beta-CrossLaps (β-CTx) were measured. BMD in the lumbar spine (L1-L4) and femoral neck was measured by dual energy X-ray absorptiometry. There was no statistically significant difference between the two groups in terms of demographic data with the exception of bone mass index and waist circumference. (p < 0.05). Analyses showed significantly lower BMD measurements in the femoral neck and T-scores in the femoral neck in patients diagnosed with OSAS. Serum β-CTx levels were found to be statistically significantly higher in the OSAS group (p = 0.017). In multivariate assessments performed for apnea/hypopnea index values, mean saturation O2 levels were found to be significantly associated with osteocalcin levels and neck BMD. OSAS patients might represent a risk group with respect to loss of BMD and bone resorption. It is important to evaluate bone loss in these patients. Further studies should be carried out on larger study populations to evaluate the effects of chronic hypoxia on BMD in detail. PMID:26204846

  12. Serum Bicarbonate and Bone Mineral Density in US Adults

    PubMed Central

    Chen, Wei; Melamed, Michal L.; Abramowitz, Matthew K.

    2014-01-01

    Background Chronic metabolic acidosis leads to bone mineral loss and results in lower bone mineral density (BMD), which is a risk factor for osteoporosis-related fractures. The effect of low-level metabolic acidosis on bone density in the general population is unknown. Study Design Cross-sectional study. Setting & Participants 9,724 nationally representative adults aged 20 years or older in the National Health and Nutrition Examination Survey 1999-2004. Factor Serum bicarbonate level. Outcomes Lumbar and total BMD as well as low lumbar and total bone mass defined as 1.0 SD below sex-specific mean of young adults. Measurements BMD was measured by dual-energy X-ray absorptiometry and serum bicarbonate levels were measured in all participants. Results Both men and women with lower serum bicarbonate levels were more likely to be current smokers and had higher body mass index and estimated net endogenous acid production. There was a significant linear trend across quartiles of serum bicarbonate with lumbar BMD among the total population as well as in sex-specific models (p=0.02 for all three models, p=0.1 for interaction). For total BMD, a significant association was seen with serum bicarbonate levels among women but not men (p=0.02 and p=0.1, respectively; p=0.8 for interaction); and a significant association was seen among post-menopausal women but not pre-menopausal women (p=0.02 and p=0.2, respectively; p=0.5 for interaction). Compared to women with serum bicarbonate level <24 mEq/L, those with serum bicarbonate ≥27 mEq/L had 0.018 g/cm2 higher total BMD (95% CI, 0.004-0.032; p=0.01) and had 31% lower odds of having low total bone mass (OR, 0.68; 95% CI, 0.46-0.99; p=0.05). Limitations Cross-sectional study using a single measurement of serum bicarbonate level. The subgroup differences are not definitive. Conclusions Lower serum bicarbonate levels are associated with lower BMD in US adults. Further studies should examine whether serum bicarbonate levels should be

  13. Comparison of the effects of whey mineral complexes on bone metabolism in male growing rats.

    PubMed

    Tsuchita, H; Sekiguchi, I; Kuwata, T

    1993-10-01

    The effects of whey mineral complexes (WMC1 and WMC2) on bone metabolism were studied in male growing rats. The contents of Ca, P, and protein in WMC1 were 18.2, 8.4, 2.3%, respectively, whereas those of WMC2 were 26.4, 14.6, and 10.5%, respectively. WMCs were added to diets as a sole source of Ca: the levels of dietary Ca were 0.3 and 0.6%. CaCO3 was used as a reference. There was no difference in body weight gain and quantitative values for Ca balance among the groups at the same level of dietary Ca. Rats fed WMC2 had a higher femoral Ca and bone density of humerus. The bone properties in rats fed WMC1 were not as high as those in rats fed WMC2. The P absorption and absorption rate were affected significantly by the type of dietary Ca source as well as the levels of dietary Ca. The percent of tubular reabsorption of P of rats fed WMC1 or WMC2 had a tendency to be higher than that of rats fed CaCO3 at each dietary Ca level. The results of urinary cAMP excretion showed that the parathyroid hormone function in rats fed WMC2 was relatively lower. The differences in minerals and other constituents between WMC1 and WMC2 are discussed from the viewpoint of bone metabolism. PMID:8120671

  14. Ethnic and sex differences in bone marrow adipose tissue and bone mineral density relationship

    PubMed Central

    Chen, J.; Gantz, M.; Punyanitya, M.; Heymsfield, S. B.; Gallagher, D.; Albu, J.; Engelson, E.; Kotler, D.; Pi-Sunyer, X.; Shapses, S.

    2012-01-01

    Summary The relationship between bone marrow adipose tissue and bone mineral density is different between African Americans and Caucasians as well as between men and women. This suggests that the mechanisms that regulate the differentiation and proliferation of bone marrow stromal cells may differ in these populations. Introduction It has long been established that there are ethnic and sex differences in bone mineral density (BMD) and fracture risk. Recent studies suggest that bone marrow adipose tissue (BMAT) may play a role in the pathogenesis of osteoporosis. It is unknown whether ethnic and sex differences exist in the relationship between BMAT and BMD. Methods Pelvic BMAT was evaluated in 455 healthy African American and Caucasian men and women (age 18–88 years) using whole-body T1-weighted magnetic resonance imaging. BMD was measured using whole-body dual-energy X-ray absorptiometry. Results A negative correlation was observed between pelvic BMAT and total body BMD or pelvic BMD (r=−0.533, −0.576, respectively; P<0.001). In multiple regression analyses with BMD as the dependent variable, ethnicity significantly entered the regression models as either an individual term or an interaction with BMAT. Menopausal status significantly entered the regression model with total body BMD as the dependent variable. African Americans had higher total body BMD than Caucasians for the same amount of BMAT, and the ethnic difference for pelvic BMD was greater in those participants with a higher BMAT. Men and premeno-pausal women had higher total body BMD levels than postmenopausal women for the same amount of BMAT. Conclusions An inverse relationship exists between BMAT and BMD in African American and Caucasian men and women. The observed ethnic and sex differences between BMAT and BMD in the present study suggest the possibility that the mechanisms regulating the differentiation and proliferation of bone marrow stromal cells may differ in these populations. PMID

  15. Gonadal steroid–dependent effects on bone turnover and bone mineral density in men

    PubMed Central

    Finkelstein, Joel S.; Lee, Hang; Leder, Benjamin Z.; Goldstein, David W.; Hahn, Christopher W.; Hirsch, Sarah C.; Linker, Alex; Perros, Nicholas; Servais, Andrew B.; Taylor, Alexander P.; Webb, Matthew L.; Youngner, Jonathan M.; Yu, Elaine W.

    2016-01-01

    BACKGROUND. Severe gonadal steroid deficiency induces bone loss in adult men; however, the specific roles of androgen and estrogen deficiency in hypogonadal bone loss are unclear. Additionally, the threshold levels of testosterone and estradiol that initiate bone loss are uncertain. METHODS. One hundred ninety-eight healthy men, ages 20–50, received goserelin acetate, which suppresses endogenous gonadal steroid production, and were randomized to treatment with 0, 1.25, 2.5, 5, or 10 grams of testosterone gel daily for 16 weeks. An additional cohort of 202 men was randomized to receive these treatments plus anastrozole, which suppresses conversion of androgens to estrogens. Thirty-seven men served as controls and received placebos for goserelin and testosterone. Changes in bone turnover markers, bone mineral density (BMD) by dual-energy x-ray absorptiometry (DXA), and BMD by quantitative computed tomography (QCT) were assessed in all men. Bone microarchitecture was assessed in 100 men. RESULTS. As testosterone dosage decreased, the percent change in C-telopeptide increased. These increases were considerably greater when aromatization of testosterone to estradiol was also suppressed, suggesting effects of both testosterone and estradiol deficiency. Decreases in DXA BMD were observed when aromatization was suppressed but were modest in most groups. QCT spine BMD fell substantially in all testosterone-dose groups in which aromatization was also suppressed, and this decline was independent of testosterone dose. Estradiol deficiency disrupted cortical microarchitecture at peripheral sites. Estradiol levels above 10 pg/ml and testosterone levels above 200 ng/dl were generally sufficient to prevent increases in bone resorption and decreases in BMD in men. CONCLUSIONS. Estrogens primarily regulate bone homeostasis in adult men, and testosterone and estradiol levels must decline substantially to impact the skeleton. TRIAL REGISTRATION. ClinicalTrials.gov, NCT00114114

  16. Pyridoxine deficiency affects biomechanical properties of chick tibial bone

    NASA Technical Reports Server (NTRS)

    Masse, P. G.; Rimnac, C. M.; Yamauchi, M.; Coburn, S. P.; Rucker, R. B.; Howell, D. S.; Boskey, A. L.

    1996-01-01

    The mechanical integrity of bone is dependent on the bone matrix, which is believed to account for the plastic deformation of the tissue, and the mineral, which is believed to account for the elastic deformation. The validity of this model is shown in this study based on analysis of the bones of vitamin B6-deficient and vitamin B6-replete chick bones. In this model, when B6-deficient and control animals are compared, vitamin B6 deficiency has no effect on the mineral content or composition of cortical bone as measured by ash weight (63 +/- 6 vs. 58 +/- 3); mineral to matrix ratio of the FTIR spectra (4.2 +/- 0.6 vs. 4.5 +/- 0.2), line-broadening analyses of the X-ray diffraction 002 peak (beta 002 = 0.50 +/- 0.1 vs. 0.49 +/- 0.01), or other features of the infrared spectra. In contrast, collagen was significantly more extractable from vitamin B6-deficient chick bones (20 +/- 2% of total hydroxyproline extracted vs. 10 +/- 3% p < or = 0.001). The B6-deficient bones also contained an increased amount of the reducible cross-links DHLNL, dehydro-dihydroxylysinonorleucine, (1.03 +/- 0.07 vs. 0.84 +/- 0.13 p < or = 0.001); and a nonsignificant increase in HLNL, dehydro-hydroxylysinonorleucine, (0.51 +/- 0.03 vs. 0.43 +/- 0.03, p < or = 0.10). There were no significant changes in bone length, bone diameter, or area moment of inertia. In four-point bending, no significant changes in elastic modulus, stiffness, offset yield deflection, or fracture deflection were detected. However, fracture load in the B6-deficient animals was decreased from 203 +/- 35 MPa to 151 +/- 23 MPa, p < or = 0.01, and offset yield load was decreased from 165 +/- 9 MPa to 125 +/- 14 MPa, p < or = 0.05. Since earlier histomorphometric studies had demonstrated that the B6-deficient bones were osteopenic, these data suggest that although proper cortical bone mineralization occurred, the alterations of the collagen resulted in changes to bone mechanical performance.

  17. Bone morphometry and mineral density measurement using quantitative computed tomography

    SciTech Connect

    Jacobson, D.R.

    1991-01-01

    Application of computed tomography (CT) to the study of bone structure and density was explored and developed. A review of bone mineral densitometry (BMD) methodology and general principles of quantitative CT (QCT) are presented. A method for QCT of the spine was developed using a flexible tissue equivalent reference placed adjacent to the patient. A methodology for the development and production of tissue equivalent materials is also presented. Patient equivalent phantoms were used to characterize the method, and phantom studies were performed at five clinical sites. A protocol is defined for measuring the inside diameter of the lumbar pedicular canal. Data generated from this study has proven invaluable in the planning for lumbar fusion surgery when screws are to be used for immobilization. Pedicular canal data from 33 patients is presented. QCT was also used to quantify several parameters of the femoral shaft for use in hip replacement surgical planning. Parameters studied include inside diameter, BMD, endosteal BMD and proximal shaft morphology. The structure and trabecular BMD of the proximal femur was extensively studied using QCT. A large variation was found in the fat content of marrow within the proximal femur, and phantom studies were performed to quantify the effect of fat on trabecular QCT BMD. Cadaveric trabecular bone samples with marrow were analyzed physically to determine water, fat, non-fat soft tissue, and ash content. Multiple thin-slice CT studies were performed on cadaveric femurs. A structural model of the proximal femur was developed in which the structural support is provided primarily by trabecular bone. This model may have profound implications in the study of femoral fractures and prosthetic hardware design.

  18. [MINERAL BONE DENSITY AND BODY COMPOSITION IN PARTICIPANTS IN EXPERIMENT MARS-500].

    PubMed

    Novikov, V E; Oganov, V S; Kabitskaya, O E; Murashko, L M; Naidina, V P; Chernikhova, E A

    2016-01-01

    Investigations of the bone system and body composition in Mars-500 test-subjects (prior to and on completion of the experiment) involved dual-energy X-ray absorptiometry (DXA) using the HOLOGIC Delphy densitometer and the protocol performed to examine cosmonauts. Bone density of lumber vertebrae and femoral proximal epiphysis, and body composition were measured. Reliable changes in vertebral density found in 3 test-subjects displayed different trends from +2.6 to -2.4%. At the same time, the experiment decreased significantly mineral density of the femoral proximal epiphysis, including the neck, in all test-subjects. Four test-subjects had cranial mineralization increased by 5-9%, same as in some cosmonauts after space flight. All tests-subjects incurred adipose loss from 2 to 7 kg; one test-subject lost 20 kg, i.e. his adipose mass became three times less. Changes in lean mass (1-3 kg) typically were negative; as for changes in lean mass of extremities, they could be linked with adherence to one or another type of physical activity. Therefore, extended exposure to confinement may affect mineralization of some parts of the skeleton. Unlike real space missions and long-term bedrest studies conducted at the Institute of Biomedical Problems in the past, Mars-500 did not cause clinically significant mineral losses (osteoporosis, osteopenia), probably because of the absence of effects of microgravity. PMID:27344855

  19. Bone Mineral Density in Postmenopausal Women Heterozygous for the C282Y HFE Mutation

    PubMed Central

    Gates, Frances; Fulcher, Greg R.

    2016-01-01

    Mutations in the HFE gene may be associated with increased tissue iron stores reflected in an elevated serum ferritin. With homozygous mutation C282Y, the increase in serum ferritin may be associated with tissue damage in the liver, pancreas, and pituitary and with a reduced bone mineral density. With heterozygous mutation C282Y, the degree of iron retention is less but information relating to how a heterozygous C282Y mutation might impact bone mineral density is uncertain. The present study was undertaken to study the relationships between bone mineral density measured by dual energy X-ray absorptiometry and the serum ferritin and serum iron in postmenopausal women heterozygous for the C282Y mutation. The spinal bone mineral density, L2–4, was significantly less than age matched community controls (P = 0.016). There was no significant change in the femoral neck bone mineral density compared to age matched community controls. The correlation between the spinal bone mineral density, L2–4, the femoral neck bone mineral density, and the serum ferritin was not significant. The serum iron correlated significantly inversely with the femoral neck bone mineral density (P = 0.048). The heterozygous C282Y mutation may be associated with impairment of bone cell function in postmenopausal women when only small increases in the serum iron or serum ferritin have occurred. PMID:27123357

  20. Autologous implantation of BMP2-expressing dermal fibroblasts to improve bone mineral density and architecture in rabbit long bones.

    PubMed

    Ishihara, Akikazu; Weisbrode, Steve E; Bertone, Alicia L

    2015-10-01

    Cell-mediated gene therapy may treat bone fragility disorders. Dermal fibroblasts (DFb) may be an alternative cell source to stem cells for orthopedic gene therapy because of their rapid cell yield and excellent plasticity with bone morphogenetic protein-2 (BMP2) gene transduction. Autologous DFb or BMP2-expressing autologous DFb were administered in twelve rabbits by two delivery routes; a transcortical intra-medullar infusion into tibiae and delayed intra-osseous injection into femoral drill defects. Both delivery methods of DFb-BMP2 resulted in a successful cell engraftment, increased bone volume, bone mineral density, improved trabecular bone microarchitecture, greater bone defect filling, external callus formation, and trabecular surface area, compared to non-transduced DFb or no cells. Cell engraftment within trabecular bone and bone marrow tissue was most efficiently achieved by intra-osseous injection of DFb-BMP2. Our results suggested that BMP2-expressing autologous DFb have enhanced efficiency of engraftment in target bones resulting in a measurable biologic response by the bone of improved bone mineral density and bone microarchitecture. These results support that autologous implantation of DFb-BMP2 warrants further study on animal models of bone fragility disorders, such as osteogenesis imperfecta and osteoporosis to potentially enhance bone quality, particularly along with other gene modification of these diseases. PMID:25418909

  1. Agave fructans: their effect on mineral absorption and bone mineral content.

    PubMed

    García-Vieyra, María Isabel; Del Real, Alicia; López, Mercedes G

    2014-11-01

    In this study we investigate the effect that Agave fructans as new prebiotics have on mineral absorption improvement. Forty-eight 12-week-old C57BL/6J mice were used in this study. Forty mice were ovariectomized and eight were sham-operated controls. Mice were fed standard diets or diets supplemented with 10% Agave fructans or 10% inulin fructans. Calcium and magnesium were evaluated as well as their excretion in feces. Osteocalcin levels were also measured; femur structure was studied by scanning electron microscopy. Other parameters, such as food intake, body weight, glucose, and short-chain fatty acid content, were recorded. Calcium in plasma and bone increased in Agave fructan groups (from 53.1 to 56 and 85 mg/L and from 0.402 to 0.474 and 0.478 g/g, respectively) and osteocalcin increased in all fructan groups (>50%). Scanning electron microscopy showed that fructans were able to mitigate bone loss. In conclusion, we demonstrated that supplementation with Agave fructans prevents bone loss and improves bone formation. PMID:25069021

  2. Genetic selection to increase bone strength affects prevalence of keel bone damage and egg parameters in commercially housed laying hens.

    PubMed

    Stratmann, A; Fröhlich, E K F; Gebhardt-Henrich, S G; Harlander-Matauschek, A; Würbel, H; Toscano, M J

    2016-05-01

    The prevalence of keel bone damage as well as external egg parameters of 2 pure lines divergently selected for high (H) and low (L) bone strength were investigated in 2 aviary systems under commercial conditions. A standard LSL hybrid was used as a reference group. Birds were kept mixed per genetic line (77 hens of the H and L line and 201 or 206 hens of the LSL line, respectively, per pen) in 8 pens of 2 aviary systems differing in design. Keel bone status and body mass of 20 focal hens per line and pen were assessed at 17, 18, 23, 30, 36, 43, 52, and 63 wk of age. External egg parameters (i.e., egg mass, eggshell breaking strength, thickness, and mass) were measured using 10 eggs per line at both 38 and 57 wk of age. Body parameters (i.e. tarsus and third primary wing feather length to calculate index of wing loading) were recorded at 38 wk of age and mortality per genetic line throughout the laying cycle. Bone mineral density (BMD) of 15 keel bones per genetic line was measured after slaughter to confirm assignment of the experimental lines. We found a greater BMD in the H compared with the L and LSL lines. Fewer keel bone fractures and deviations, a poorer external egg quality, as well as a lower index of wing loading were found in the H compared with the L line. Mortality was lower and production parameters (e.g., laying performance) were higher in the LSL line compared with the 2 experimental lines. Aviary design affected prevalence of keel bone damage, body mass, and mortality. We conclude that selection of specific bone traits associated with bone strength as well as the related differences in body morphology (i.e., lower index of wing loading) have potential to reduce keel bone damage in commercial settings. Also, the housing environment (i.e., aviary design) may have additive effects. PMID:26944960

  3. Low bone mineral density is related to atherosclerosis in postmenopausal Moroccan women

    PubMed Central

    Hmamouchi, Ihsane; Allali, Fadoua; Khazzani, Hamza; Bennani, Loubna; Mansouri, Leila EL; Ichchou, Linda; Cherkaoui, Mohammed; Abouqal, Redouane; Hajjaj-Hassouni, Najia

    2009-01-01

    Background Some studies have implicated several possible metabolic linkages between osteoporosis and vascular calcification, including estrogen deficiency, vitamin D excess, vitamin K deficiency and lipid oxidation products. Nevertheless, it remains unclear whether osteoporosis and atherosclerosis are related to each other or are independent processes, both related to aging. The aim of this cross-sectional study was to evaluate the correlation between arterial thickening and bone status in a sample of apparently healthy Moroccan women. Methods Seventy-two postmenopausal women were studied. All patients were without secondary causes that might affect bone density. Bone status was assessed by bone mineral density (BMD) in lumbar spine and all femoral sites. Arterial wall thickening was assessed by intima-media thickness (IMT) in carotid artery (CA) and femoral artery (FA). Prevalent plaques were categorized into four groups ranging from low echogenicity to high echogenicity. Results The mean age was 59.2 ± 8.3 years. 84.7% had at least one plaque. By Spearman Rank correlation, CA IMT was negatively correlated to Femoral total BMD (r = -0.33), Femoral neck BMD (r = -0.23), Ward triangle BMD (r = -0.30) and Trochanter BMD (r = -0.28) while there was no association with lumbar BMD. In multiple regression analysis, CA IMT emerged as an independent factor significantly associated with all femoral sites BMD after adjusting of confounding factors. FA IMT failed to be significantly associated with both Femoral and Lumbar BMD. No significant differences between echogenic, predominantly echogenic, predominantly echolucent and echolucent plaques groups were found concerning lumbar BMD and all femoral sites BMD Conclusion Our results demonstrate a negative correlation between bone mineral density (BMD) qnd carotid intima-media thickness (IMT) in postmenopausal women, independently of confounding factors. We suggest that bone status should be evaluated in patients with vascular

  4. Influence of the mineral staggering on the elastic properties of the mineralized collagen fibril in lamellar bone.

    PubMed

    Vercher-Martínez, Ana; Giner, Eugenio; Arango, Camila; Fuenmayor, F Javier

    2015-02-01

    In this work, a three-dimensional finite element model of the staggered distribution of the mineral within the mineralized collagen fibril has been developed to characterize the lamellar bone elastic behavior at the sub-micro length scale. Minerals have been assumed to be embedded in a collagen matrix, and different degrees of mineralization have been considered allowing the growth of platelet-shaped minerals both in the axial and the transverse directions of the fibril, through the variation of the lateral space between platelets. We provide numerical values and trends for all the elastic constants of the mineralized collagen fibril as a function of the volume fraction of mineral. In our results, we verify the high influence of the mineral overlapping on the mechanical response of the fibril and we highlight that the lateral distance between crystals is relevant to the mechanical behavior of the fibril and not only the mineral overlapping in the axial direction. PMID:25498297

  5. Lack of deleterious effect on bone mineral density of long-term thyroxine suppressive therapy for differentiated thyroid carcinoma.

    PubMed

    Reverter, J L; Holgado, S; Alonso, N; Salinas, I; Granada, M L; Sanmartí, A

    2005-12-01

    The effect of subclinical hyperthyroidism on bone mineral density is controversial and could be significant in patients with differentiated thyroid carcinoma who receive suppressive doses of levothyroxine (LT4). To ascertain whether prolonged treatment with LT4 to suppress thyrotropin had a deleterious effect on bone mineral density and/or calcium metabolism in patients thyroidectomized for differentiated thyroid cancer we have performed a cross-sectional study in a group of 88 women (mean +/- SD age: 51 +/- 12 years) treated with LT4 after near-total thyroidectomy and in a control group of 88 healthy women (51 +/- 11 years) matched for body mass index and menopausal status. We determined calcium metabolism parameters, bone turnover marker N-telopeptide and bone mass density by dual-energy X-ray absorptiometry. No differences were found between patients and controls in calcium metabolism parameters or N-telopeptide except for PTH, which was significantly increased in controls. No differences were found between groups in bone mineral density in femoral neck (0.971 +/- 0.148 gr/cm(2) vs 0.956 +/- 0.130 gr/cm(2) in patients and controls respectively, P = 0.5). In lumbar spine, bone mineral density values were lower in controls than in patients (1.058 +/- 0.329 gr/cm(2) vs 1.155 +/- 0.224 gr/cm(2) respectively, P < 0.05). When premenopausal (n = 44) and postmenopausal (n = 44) patients were compared with their respective controls, bone mineral density was similar both in femoral neck and lumbar spine. The proportion of women with normal bone mass density, osteopenia and osteoporosis in patient and control groups was similar in pre- and postmenopausal women. In conclusion, long-term suppressive LT4 treatment does not appear to affect skeletal integrity in women with differentiated thyroid carcinoma. PMID:16322336

  6. Dietary Strontium Increases Bone Mineral Density in Intact Zebrafish (Danio rerio): A Potential Model System for Bone Research

    PubMed Central

    Padgett-Vasquez, Steve; Garris, Heath W.; Nagy, Tim R.; D'Abramo, Louis R.; Watts, Stephen A.

    2010-01-01

    Abstract Zebrafish (Danio rerio) skeletal bone possesses properties similar to human bone, which suggests that they may be used as a model to study mineralization characteristics of the human Haversian system, as well as human bone diseases. One prerequisite for the use of zebrafish as an alternative osteoporotic bone model is to determine whether their bone displays functional plasticity similar to that observed in other bone models. Strontium citrate was supplemented into a laboratory-prepared diet (45% crude protein) to produce dietary strontium levels of 0%, 0.63%, 1.26%, 1.89%, and 2.43% and fed ad libitum twice daily for 12 weeks to 28-day-old intact zebrafish. Length was determined at 4-week intervals, and both weight and length were recorded at 12 weeks. At 12 weeks, seven zebrafish from each dietary level were analyzed for total bone mineral density by microcomputed tomography. Dietary strontium citrate supplementation significantly (p < 0.05) increased zebrafish whole-body and spinal column bone mineral density. In addition, trace amounts of strontium were incorporated into the scale matrix in those zebrafish that consumed strontium-supplemented diets. These findings suggest that zebrafish bone displays plasticity similar to that reported for other bone models (i.e., rat, mouse, and monkey) that received supplements of strontium compounds and zebrafish should be viewed as an increasingly valuable bone model. PMID:20874492

  7. Dietary strontium increases bone mineral density in intact zebrafish (Danio rerio): a potential model system for bone research.

    PubMed

    Siccardi, Anthony J; Padgett-Vasquez, Steve; Garris, Heath W; Nagy, Tim R; D'Abramo, Louis R; Watts, Stephen A

    2010-09-01

    Zebrafish (Danio rerio) skeletal bone possesses properties similar to human bone, which suggests that they may be used as a model to study mineralization characteristics of the human Haversian system, as well as human bone diseases. One prerequisite for the use of zebrafish as an alternative osteoporotic bone model is to determine whether their bone displays functional plasticity similar to that observed in other bone models. Strontium citrate was supplemented into a laboratory-prepared diet (45% crude protein) to produce dietary strontium levels of 0%, 0.63%, 1.26%, 1.89%, and 2.43% and fed ad libitum twice daily for 12 weeks to 28-day-old intact zebrafish. Length was determined at 4-week intervals, and both weight and length were recorded at 12 weeks. At 12 weeks, seven zebrafish from each dietary level were analyzed for total bone mineral density by microcomputed tomography. Dietary strontium citrate supplementation significantly (p < 0.05) increased zebrafish whole-body and spinal column bone mineral density. In addition, trace amounts of strontium were incorporated into the scale matrix in those zebrafish that consumed strontium-supplemented diets. These findings suggest that zebrafish bone displays plasticity similar to that reported for other bone models (i.e., rat, mouse, and monkey) that received supplements of strontium compounds and zebrafish should be viewed as an increasingly valuable bone model. PMID:20874492

  8. Understanding processes affecting mineral deposits in humid environments

    USGS Publications Warehouse

    Seal, Robert R., II; Ayuso, Robert A.

    2011-01-01

    Recent interdisciplinary studies by the U.S. Geological Survey have resulted in substantial progress toward understanding the influence that climate and hydrology have on the geochemical signatures of mineral deposits and the resulting mine wastes in the eastern United States. Specific areas of focus include the release, transport, and fate of acid, metals, and associated elements from inactive mines in temperate coastal areas and of metals from unmined mineral deposits in tropical to subtropical areas; the influence of climate, geology, and hydrology on remediation options for abandoned mines; and the application of radiogenic isotopes to uniquely apportion source contributions that distinguish natural from mining sources and extent of metal transport. The environmental effects of abandoned mines and unmined mineral deposits result from a complex interaction of a variety of chemical and physical factors. These include the geology of the mineral deposit, the hydrologic setting of the mineral deposit and associated mine wastes, the chemistry of waters interacting with the deposit and associated waste material, the engineering of a mine as it relates to the reactivity of mine wastes, and climate, which affects such factors as temperature and the amounts of precipitation and evapotranspiration; these factors, in turn, influence the environmental behavior of mineral deposits. The role of climate is becoming increasingly important in environmental investigations of mineral deposits because of the growing concerns about climate change.

  9. Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering.

    PubMed

    Dhand, Chetna; Ong, Seow Theng; Dwivedi, Neeraj; Diaz, Silvia Marrero; Venugopal, Jayarama Reddy; Navaneethan, Balchandar; Fazil, Mobashar H U T; Liu, Shouping; Seitz, Vera; Wintermantel, Erich; Beuerman, Roger W; Ramakrishna, Seeram; Verma, Navin K; Lakshminarayanan, Rajamani

    2016-10-01

    Bone disorders are the most common cause of severe long term pain and physical disability, and affect millions of people around the world. In the present study, we report bio-inspired preparation of bone-like composite structures by electrospinning of collagen containing catecholamines and Ca(2+). The presence of divalent cation induces simultaneous partial oxidative polymerization of catecholamines and crosslinking of collagen nanofibers, thus producing mats that are mechanically robust and confer photoluminescence properties. Subsequent mineralization of the mats by ammonium carbonate leads to complete oxidative polymerization of catecholamines and precipitation of amorphous CaCO3. The collagen composite scaffolds display outstanding mechanical properties with Young's modulus approaching the limits of cancellous bone. Biological studies demonstrate that human fetal osteoblasts seeded on to the composite scaffolds display enhanced cell adhesion, penetration, proliferation, differentiation and osteogenic expression of osteocalcin, osteopontin and bone matrix protein when compared to pristine collagen or tissue culture plates. Among the two catecholamines, mats containing norepinephrine displayed superior mechanical, photoluminescence and biological properties than mats loaded with dopamine. These smart multifunctional scaffolds could potentially be utilized to repair and regenerate bone defects and injuries. PMID:27475728

  10. Moderate-intensity rotating magnetic fields do not affect bone quality and bone remodeling in hindlimb suspended rats.

    PubMed

    Jing, Da; Cai, Jing; Wu, Yan; Shen, Guanghao; Zhai, Mingming; Tong, Shichao; Xu, Qiaoling; Xie, Kangning; Wu, Xiaoming; Tang, Chi; Xu, Xinmin; Liu, Juan; Guo, Wei; Jiang, Maogang; Luo, Erping

    2014-01-01

    Abundant evidence has substantiated the positive effects of pulsed electromagnetic fields (PEMF) and static magnetic fields (SMF) on inhibiting osteopenia and promoting fracture healing. However, the osteogenic potential of rotating magnetic fields (RMF), another common electromagnetic application modality, remains poorly characterized thus far, although numerous commercial RMF treatment devices have been available on the market. Herein the impacts of RMF on osteoporotic bone microarchitecture, bone strength and bone metabolism were systematically investigated in hindlimb-unloaded (HU) rats. Thirty two 3-month-old male Sprague-Dawley rats were randomly assigned to the Control (n = 10), HU (n = 10) and HU with RMF exposure (HU+RMF, n = 12) groups. Rats in the HU+RMF group were subjected to daily 2-hour exposure to moderate-intensity RMF (ranging from 0.60 T to 0.38 T) at 7 Hz for 4 weeks. HU caused significant decreases in body mass and soleus muscle mass of rats, which were not obviously altered by RMF. Three-point bending test showed that the mechanical properties of femurs in HU rats, including maximum load, stiffness, energy absorption and elastic modulus were not markedly affected by RMF. µCT analysis demonstrated that 4-week RMF did not significantly prevent HU-induced deterioration of femoral trabecular and cortical bone microarchitecture. Serum biochemical analysis showed that RMF did not significantly change HU-induced decrease in serum bone formation markers and increase in bone resorption markers. Bone histomorphometric analysis further confirmed that RMF showed no impacts on bone remodeling in HU rats, as evidenced by unchanged mineral apposition rate, bone formation rate, osteoblast numbers and osteoclast numbers in cancellous bone. Together, our findings reveal that RMF do not significantly affect bone microstructure, bone mechanical strength and bone remodeling in HU-induced disuse osteoporotic rats. Our study indicates potentially

  11. Moderate-Intensity Rotating Magnetic Fields Do Not Affect Bone Quality and Bone Remodeling in Hindlimb Suspended Rats

    PubMed Central

    Shen, Guanghao; Zhai, Mingming; Tong, Shichao; Xu, Qiaoling; Xie, Kangning; Wu, Xiaoming; Tang, Chi; Xu, Xinmin; Liu, Juan; Guo, Wei; Jiang, Maogang; Luo, Erping

    2014-01-01

    Abundant evidence has substantiated the positive effects of pulsed electromagnetic fields (PEMF) and static magnetic fields (SMF) on inhibiting osteopenia and promoting fracture healing. However, the osteogenic potential of rotating magnetic fields (RMF), another common electromagnetic application modality, remains poorly characterized thus far, although numerous commercial RMF treatment devices have been available on the market. Herein the impacts of RMF on osteoporotic bone microarchitecture, bone strength and bone metabolism were systematically investigated in hindlimb-unloaded (HU) rats. Thirty two 3-month-old male Sprague-Dawley rats were randomly assigned to the Control (n = 10), HU (n = 10) and HU with RMF exposure (HU+RMF, n = 12) groups. Rats in the HU+RMF group were subjected to daily 2-hour exposure to moderate-intensity RMF (ranging from 0.60 T to 0.38 T) at 7 Hz for 4 weeks. HU caused significant decreases in body mass and soleus muscle mass of rats, which were not obviously altered by RMF. Three-point bending test showed that the mechanical properties of femurs in HU rats, including maximum load, stiffness, energy absorption and elastic modulus were not markedly affected by RMF. µCT analysis demonstrated that 4-week RMF did not significantly prevent HU-induced deterioration of femoral trabecular and cortical bone microarchitecture. Serum biochemical analysis showed that RMF did not significantly change HU-induced decrease in serum bone formation markers and increase in bone resorption markers. Bone histomorphometric analysis further confirmed that RMF showed no impacts on bone remodeling in HU rats, as evidenced by unchanged mineral apposition rate, bone formation rate, osteoblast numbers and osteoclast numbers in cancellous bone. Together, our findings reveal that RMF do not significantly affect bone microstructure, bone mechanical strength and bone remodeling in HU-induced disuse osteoporotic rats. Our study indicates potentially

  12. The Development of Bone Mineral Lateralization in the Arms

    PubMed Central

    Siminoski, Kerry; Lee, Kwok-Choy; Abish, Sharon; Alos, Nathalie; Bell, Lorraine; Blydt-Hansen, Tom; Couch, Robert; Cummings, Elizabeth A.; Ellsworth, Janet; Feber, Janusz; Fernandez, Conrad V.; Halton, Jacqueline; Huber, Adam M.; Israels, Sara; Jurencak, Roman; Lang, Bianca; Laverdière, Caroline; LeBlanc., Claire; Lewis, Victor; Midgley, Julian; Miettunen, Paivi M.; Oen, Kiem; Phan, Veronique; Pinsk, Maury; Rauch, Frank; Rodd, Celia; Roth, Johannes; Saint-Cyr, Claire; Scuccimarri, Rosie; Stephure, David; Taback, Shayne; Wilson, Beverly; Ward, Leanne M.

    2014-01-01

    Purpose Bone mineral content (BMC) exhibits sidedness in the arms after the age of 8 years, but it is not known whether BMC is greater in the dominant arm from birth or whether lateralization develops in early childhood. To address this, we examined bone mineral status in relation to handedness and age. Methods Subjects (n = 158) were children recently initiating glucocorticoid for underlying disease (leukemia 43%, rheumatic conditions 39%, nephrotic syndrome 18%). Handedness was determined by questionnaire and BMC by dual-energy x-ray absorptiometry. Results Median age was 7.2 years (range, 1.5 to 17.0 years), 49% were male, and the spine BMD Z-score was −0.9 (SD, 1.3). By linear regression, BMC sidedness in the arms was significantly related to age (r = 0.294, p = 0.0005). Breakpoint analysis revealed two lines with a knot at 6.0 years (95% CI, 4.5–7.5 years). The formula for the first line was: dominant:nondominant arm BMC ratio = 0.029 × age [in years] + 0.850 (r = 0.323, p = 0.017). The slope of the second line was not different from 0 (p = 0.332), while the slopes for the two lines were significantly different (p = 0.027). Conclusions These results show that arm BMC sidedness in this patient group develops up to age six years and then remains stable into late adolescence. This temporal profile is consistent with mechanical stimulation of the skeleton in response to asymmetrical muscle use as handedness becomes manifest. PMID:22744715

  13. Photon absorptiometry for non-invasive measurement of bone mineral content

    SciTech Connect

    Gupta, S.; Luna, E.; Belsky, J.; Gelfman, N.; Miller, K.; Davies, T.

    1984-08-01

    Bone mineral content of the distal radius was determined in 106 patients by single photon absorptiometry using iodine-125 monochromatic source. The technique provided a reliable means to assess the degree of mineral loss in conditions such as osteoporosis, renal osteodystrophy in patients on chronic maintenance dialysis, subjects on long-term steroid therapy, and those with diabetes mellitus. It is more sensitive than conventional radiography and completely noninvasive compared to bone biopsy. It is suggested that photon absorptiometry is a simple, sensitive, and reliable technique for assessment and follow-up of the bone mineral content in a host of disorders associated with bone demineralization.

  14. Bone mineral density and blood metals in premenopausal women

    PubMed Central

    Pollack, AZ; Mumford, SL; Wactawski-Wende, J; Yeung, E; Mendola, P; Mattison, DR; Schisterman, EF

    2012-01-01

    Exposure to metals, specifically cadmium, lead, and mercury, is widespread and is associated with reduced bone mineral density (BMD) in older populations, but the associations among premenopausal women are unclear. Therefore, we evaluated the relationship between these metals in blood and BMD (whole body, total hip, lumbar spine, and non-dominant wrist) quantified by dual energy x-ray absorptiometry in 248 premenopausal women, aged 18–44. Participants were of normal body mass index (mean BMI 24.1), young (mean age 27.4), 60% were white, 20% non-Hispanic black, 15% Asian, and 6% other race group, and were from the Buffalo, New York region. The median (interquartile range) level of cadmium was 0.30 μg/l (0.19–0.43), of lead was 0.86 μg/dl (0.68–1.20), and of mercury was, 1.10 μg/l (0.58–2.00). BMD was treated both as a continuous variable in linear regression and dichotomized at the 10th percentile for logistic regression analyses. Mercury was associated with reduced odds of decreased lumbar spine BMD (0.66, 95% confidence interval: 0.44, 0.99), but overall, metals at environmentally relevant levels of exposure were not associated with reduced BMD in this population of healthy, reproductive-aged women. Further research is needed to determine if the blood levels of cadmium, lead, and mercury in this population are sufficiently low that there is no substantive impact on bone, or if effects on bone can be expected only at older ages. PMID:23122770

  15. Bone mineral density and blood metals in premenopausal women

    SciTech Connect

    Pollack, A.Z.; Mumford, S.L.; Wactawski-Wende, J.; Yeung, E.; Mendola, P.; Mattison, D.R.; Schisterman, E.F.

    2013-01-15

    Exposure to metals, specifically cadmium, lead, and mercury, is widespread and is associated with reduced bone mineral density (BMD) in older populations, but the associations among premenopausal women are unclear. Therefore, we evaluated the relationship between these metals in blood and BMD (whole body, total hip, lumbar spine, and non-dominant wrist) quantified by dual energy X-ray absorptiometry in 248 premenopausal women, aged 18-44. Participants were of normal body mass index (mean BMI 24.1), young (mean age 27.4), 60% were white, 20% non-Hispanic black, 15% Asian, and 6% other race group, and were from the Buffalo, New York region. The median (interquartile range) level of cadmium was 0.30 {mu}g/l (0.19-0.43), of lead was 0.86 {mu}g/dl (0.68-1.20), and of mercury was 1.10 {mu}g/l (0.58-2.00). BMD was treated both as a continuous variable in linear regression and dichotomized at the 10th percentile for logistic regression analyses. Mercury was associated with reduced odds of decreased lumbar spine BMD (0.66, 95% confidence interval: 0.44, 0.99), but overall, metals at environmentally relevant levels of exposure were not associated with reduced BMD in this population of healthy, reproductive-aged women. Further research is needed to determine if the blood levels of cadmium, lead, and mercury in this population are sufficiently low that there is no substantive impact on bone, or if effects on bone can be expected only at older ages.

  16. Factors affecting ex-situ aqueous mineral carbonation using calcium and magnesium silicate minerals

    SciTech Connect

    Gerdemann, Stephen J.; Dahlin, David C.; O'Connor, William K.; Penner, Larry R.; Rush, G.E.

    2004-01-01

    Carbonation of magnesium- and calcium-silicate minerals to form their respective carbonates is one method to sequester carbon dioxide. Process development studies have identified reactor design as a key component affecting both the capital and operating costs of ex-situ mineral sequestration. Results from mineral carbonation studies conducted in a batch autoclave were utilized to design and construct a unique continuous pipe reactor with 100% recycle (flow-loop reactor). Results from the flow-loop reactor are consistent with batch autoclave tests, and are being used to derive engineering data necessary to design a bench-scale continuous pipeline reactor.

  17. Age-related differences in the bone mineralization pattern of rats following exercise

    SciTech Connect

    McDonald, R.; Hegenauer, J.; Saltman, P.

    1986-07-01

    The effect of 12 weeks of treadmill exercise on the mineralization of trabecular and cortical bone was studied in rats 7, 14, and 19 months of age. Bone mineralization was evaluated by measuring concentrations of Ca, Mg, and hydroxyproline as well as uptake of 45Ca concentration in the femur, humerus, rib and calvaria. The 7- and 14-month-old rats increased mineralization in those cortical bones directly involved in exercise. The 19-month animal responded to exercise by increasing mineralization in all bones examined, including the nonweight bearing trabecular calvaria and cortical rib. From these data, it is apparent that the older animals undergo a total skeletal mineralization in response to exercise compared with local adaptation in the younger animal. Further, we provide evidence to support the use of the rat as a model in which to study mammalian bone physiology during the aging process.

  18. The size exclusion characteristics of type I collagen: implications for the role of noncollagenous bone constituents in mineralization.

    PubMed

    Toroian, Damon; Lim, Joo Eun; Price, Paul A

    2007-08-01

    The mineral in bone is located primarily within the collagen fibril, and during mineralization the fibril is formed first and then water within the fibril is replaced with mineral. The collagen fibril therefore provides the aqueous compartment in which mineral grows. Although knowledge of the size of molecules that can diffuse into the fibril to affect crystal growth is critical to understanding the mechanism of bone mineralization, there have been as yet no studies on the size exclusion properties of the collagen fibril. To determine the size exclusion characteristics of collagen, we developed a gel filtration-like procedure that uses columns containing collagen from tendon and bone. The elution volumes of test molecules show the volume within the packed column that is accessible to the test molecules, and therefore reveal the size exclusion characteristics of the collagen within the column. These experiments show that molecules smaller than a 6-kDa protein diffuse into all of the water within the collagen fibril, whereas molecules larger than a 40-kDa protein are excluded from this water. These studies provide an insight into the mechanism of bone mineralization. Molecules and apatite crystals smaller than a 6-kDa protein can diffuse into all water within the fibril and so can directly impact mineralization. Although molecules larger than a 40-kDa protein are excluded from the fibril, they can initiate mineralization by forming small apatite crystal nuclei that diffuse into the fibril, or can favor fibril mineralization by inhibiting apatite growth everywhere but within the fibril. PMID:17562713

  19. Genetically Low Vitamin D Levels, Bone Mineral Density, and Bone Metabolism Markers: a Mendelian Randomisation Study.

    PubMed

    Li, Shan-Shan; Gao, Li-Hong; Zhang, Xiao-Ya; He, Jin-We; Fu, Wen-Zhen; Liu, Yu-Juan; Hu, Yun-Qiu; Zhang, Zhen-Lin

    2016-01-01

    Low serum 25-hydroxyvitamin D (25OHD) is associated with osteoporosis and osteoporotic fracture, but it remains uncertain whether these associations are causal. We conducted a Mendelian randomization (MR) study of 1,824 postmenopausal Chinese women to examine whether the detected associations between serum 25OHD and bone mineral density (BMD) and bone metabolism markers were causal. In observational analyses, total serum 25OHD was positively associated with BMD at lumbar spine (P = 0.003), femoral neck (P = 0.006) and total hip (P = 0.005), and was inversely associated with intact parathyroid hormone (PTH) (P = 8.18E-09) and procollagen type 1 N-terminal propeptide (P1NP) (P = 0.020). By contract, the associations of bioavailable and free 25OHD with all tested outcomes were negligible (all P > 0.05). The use of four single nucleotide polymorphisms, GC-rs2282679, NADSYN1-rs12785878, CYP2R1-rs10741657 and CYP24A1-rs6013897, as candidate instrumental variables in MR analyses showed that none of the two stage least squares models provided evidence for associations between serum 25OHD and either BMD or bone metabolism markers (all P > 0.05). We suggest that after controlling for unidentified confounding factors in MR analyses, the associations between genetically low serum 25OHD and BMD and bone metabolism markers are unlikely to be causal. PMID:27625044

  20. [The effect of magnesium sulfate electrophoresis and galvanization on the mineralization of teeth and bones].

    PubMed

    Varava, G N; Podorozhnaia, R P; Genesina, T I; Sukmanskiĭ, V B

    1990-01-01

    Effects of Mg2+ electrophoresis and galvanization on tooth and bone mineralization was experimentally studied with the use of radioactive Ca and P isotopes. Mg2+ electrophoresis and, to a lesser degree, galvanization enhanced 32P incorporation in incisors and maxillary bones. Mg2+ significantly increased 45Ca incorporation in teeth and maxillary bones. Experimental data permit clinical trials of Mg2+ efficacy in patients with disordered mineralization and remineralization. PMID:2389264

  1. Relationship of bone mineralization density distribution (BMDD) in cortical and cancellous bone within the iliac crest of healthy premenopausal women.

    PubMed

    Misof, B M; Dempster, D W; Zhou, Hua; Roschger, P; Fratzl-Zelman, N; Fratzl, P; Silverberg, S J; Shane, E; Cohen, A; Stein, E; Nickolas, T L; Recker, R R; Lappe, J; Bilezikian, J P; Klaushofer, K

    2014-10-01

    Bone mineralization density distribution (BMDD) is an important determinant of bone mechanical properties. The most available skeletal site for access to the BMDD is the iliac crest. Compared to cancellous bone much less information on BMDD is available for cortical bone. Hence, we analyzed complete transiliac crest bone biopsy samples from premenopausal women (n = 73) aged 25-48 years, clinically classified as healthy, by quantitative backscattered electron imaging for cortical (Ct.) and cancellous (Cn.) BMDD. The Ct.BMDD was characterized by the arithmetic mean of the BMDD of the cortical plates. We found correlations between Ct. and Cn. BMDD variables with correlation coefficients r between 0.42 and 0.73 (all p < 0.001). Additionally to this synchronous behavior of cortical and cancellous compartments, we found that the heterogeneity of mineralization densities (Ct.Ca(Width)), as well as the cortical porosity (Ct.Po) was larger for a lower average degree of mineralization (Ct.Ca(Mean)). Moreover, Ct.Po correlated negatively with the percentage of highly mineralized bone areas (Ct.Ca(High)) and positively with the percentage of lowly mineralized bone areas (Ct.Ca(Low)). In conclusion, the correlation of cortical with cancellous BMDD in the iliac crest of the study cohort suggests coordinated regulation of bone turnover between both bone compartments. Only in a few cases, there was a difference in the degree of mineralization of >1wt % between both cortices suggesting a possible modeling situation. This normative dataset of healthy premenopausal women will provide a reference standard by which disease- and treatment-specific effects can be assessed at the level of cortical bone BMDD. PMID:25134800

  2. Bone geometry, structure and mineral distribution using Dual energy X ray Absorptiometry (DXA)

    NASA Technical Reports Server (NTRS)

    Whalen, Robert; Cleek, Tammy

    1993-01-01

    Dual energy x-ray absorptiometry (DXA) is currently the most widely used method of analyzing regional and whole body changes in bone mineral content (BMC) and areal (g/sq cm) bone mineral density (BMD). However, BMC and BMD do not provide direct measures of long bone geometry, structure, or strength nor do regional measurements detect localized changes in other regions of the same bone. The capabilities of DXA can be enhanced significantly by special processing of pixel BMC data which yields cross-sectional geometric and structural information. We have extended this method of analysis in order to develop non-uniform structural beam models of long bones.

  3. The turnover of mineralized growth plate cartilage into bone may be regulated by osteocytes.

    PubMed

    Cox, Lieke G E; van Rietbergen, B; van Donkelaar, C C; Ito, K

    2011-06-01

    During endochondral ossification, growth plate cartilage is replaced with bone. Mineralized cartilage matrix is resorbed by osteoclasts, and new bone tissue is formed by osteoblasts. As mineralized cartilage does not contain any cells, it is unclear how this process is regulated. We hypothesize that, in analogy with bone remodeling, osteoclast and osteoblast activity are regulated by osteocytes, in response to mechanical loading. Since the cartilage does not contain osteocytes, this means that cartilage turnover during endochondral ossification would be regulated by the adjacent bone tissue. We investigated this hypothesis with an established computational bone adaptation model. In this model, osteocytes stimulate osteoblastic bone formation in response to the mechanical bone tissue loading. Osteoclasts resorb bone near randomly occurring microcracks that are assumed to block osteocyte signals. We used finite element modeling to evaluate our hypothesis in a 2D-domain representing part of the growth plate and adjacent bone. Cartilage was added at a constant physiological rate to simulate growth. Simulations showed that osteocyte signals from neighboring bone were sufficient for successful cartilage turnover, since equilibrium between cartilage remodeling and growth was obtained. Furthermore, there was good agreement between simulated bone structures and rat tibia histology, and the development of the trabecular architecture resembled that of infant long bones. Additionally, prohibiting osteoclast invasion resulted in thickened mineralized cartilage, similar to observations in a knock-out mouse model. We therefore conclude that it is well possible that osteocytes regulate the turnover of mineralized growth plate cartilage. PMID:21546025

  4. Dietary phylloquinone depletion and repletion in postmenopausal women: effects on bone and mineral metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vitamin K has been implicated in increased bone fracture risk. Despite a potential role of vitamin K in bone, little is known about the effects of altered dietary vitamin K intake on the underlying components of bone and mineral metabolism. This study was undertaken to assess the effects of vitamin ...

  5. Effects of Statins on Bone Mineral Density and Fracture Risk

    PubMed Central

    Wang, Zongze; Li, Ying; Zhou, Fengxin; Piao, Zhe; Hao, Jian

    2016-01-01

    Abstract Although observational studies have identified the protective effect of statins on bone health, the effects remain controversial in randomized controlled trials (RCTs). We conducted a meta-analysis of RCTs to evaluate the effects of statins on bone mineral density (BMD) and fracture risk among adults. We searched electronic databases of Medline, Embase, and the Cochrane Central Register of Controlled Trials (CENTRAL) and conducted a bibliography review to identify articles published until May, 2015. Studies included in this meta-analysis should be randomized controlled trials conducted in adults, using statins in the intervention group. Information on changes in BMD or odds ratio, relative risk or hazard ratio (HR) for fracture risk with the corresponding 95% confidence interval (CI) was provided. Two investigators independently reviewed the title or abstract, further reviewed the full-texts and extracted information on study characteristics and study outcomes. Net change estimates of BMD and pooled HR of fracture risk comparing the intervention group with the control group were estimated across trials using random-effects models. Of the relevant 334 citations, 7 trials (including 27,900 randomized participants in total) meeting the eligibility criteria were included. Of the 7 trials, 5 were conducted to assess the association of statins use with BMD change and 2 with fracture risk. Compared with the control group, statins use was associated with significant increase in BMD of 0.03 g/cm2 (95% CI: 0.006, 0.053; I2 = 99.2%; P < 0.001), but null association with fracture risk, with the pooled HR of 1.00 (95% CI: 0.87, 1.15; I2 = 0; P = 0.396). Sensitivity analyses revealed that the associations were consistent and robust. The effect of statins use on bone health among subpopulation could not be identified due to limited number of trials. These findings provide evidence that statins could be used to increase BMD other than decreasing fracture

  6. Bone mineral density in children with familial Mediterranean fever.

    PubMed

    Duzova, Ali; Ozaltin, Fatih; Ozon, Alev; Besbas, Nesrin; Topaloglu, Rezan; Ozen, S; Bakkaloglu, A

    2004-06-01

    The aim of this study was to evaluate bone mineral content (BMC), serum and urinary bone turnover parameters in patients with familial Mediterranean fever (FMF), an autosomal recessive disease characterized by recurrent episodes of inflammation of serous membranes. Demographic characteristics and MEFV mutations were defined in 48 children diagnosed with FMF (23 F, 25 M; median age 7.0 years (3.0-10.0)). We evaluated the blood counts, acute-phase proteins and serum and urinary bone turnover parameters during attack-free periods. The BMC and BA (bone area) of vertebrae L1-L4 were measured by DEXA. Thirty-eight age-, sex- and ethnicity-matched healthy children constituted the control group. Mean L1-L4 BMC in Group I (patients with two mutations) and II (patients with no or single mutations) were 15.49+/-5.99 g and 15.68+/-4.89 g, respectively, both significantly lower than the mean L1-L4 BMC of control patients, which was 19.59+/-6.7 g (p<0.05). Mean L1-L4 BMD in Group I, Group II and the control group were 0.466+/-0.066 g/cm(2), 0.487+/-0.085 g/cm(2 )and 0.513+/-0.079 g/cm(2), respectively. Mean z-scores in Group I, Group II and the control group were -1.87+/-0.74, -1.55+/-0.92 and -1.39+/-0.84, respectively. Mean L1-L4 BMD and z-score of Group I were lower than in the control group (p<0.05). ESR and SAA (serum amyloid A) levels were higher in Group I patients: 28.3+/-14.5 mm/h and 350+/-62 mg/l in Group I; and 20.5+/-11.7 mm/h and 190+/-68 mg/l in Group II, respectively. In conclusion, FMF patients had lower BMC, BMD and z-scores than a control group. We suggest that decreased BMD, BMC and z-score in FMF patients may be secondary to subclinical inflammation. PMID:15168151

  7. Novel anatomic adaptation of cortical bone to meet increased mineral demands of reproduction.

    PubMed

    Macica, Carolyn M; King, Helen E; Wang, Meina; McEachon, Courtney L; Skinner, Catherine W; Tommasini, Steven M

    2016-04-01

    The goal of this study was to investigate the effects of reproductive adaptations to mineral homeostasis on the skeleton in a mouse model of compromised mineral homeostasis compared to adaptations in control, unaffected mice. During pregnancy, maternal adaptations to high mineral demand include more than doubling intestinal calcium absorption by increasing calcitriol production. However, calcitriol biosynthesis is impaired in HYP mice, a murine model of X-linked hypophosphatemia (XLH). In addition, there is a paucity of mineralized trabecular bone, a primary target of bone resorption during pregnancy and lactation. Because the highest density of mineral is in mature cortical bone, we hypothesized that mineral demand is met by utilizing intracortical mineral reserves. Indeed, analysis of HYP mice revealed dramatic increases in intracortical porosity characterized by elevated serum PTH and type-I collagen matrix-degrading enzyme MMP-13. We discovered an increase in carbonate ion substitution in the bone mineral matrix during pregnancy and lactation of HYP mice, suggesting an alternative mechanism of bone remodeling that maintains maternal bone mass during periods of high mineral demand. This phenomenon is not restricted to XLH, as increased carbonate in the mineral matrix also occurred in wild-type mice during lactation. Taken together, these data suggest that increased intracortical perilacunar mineral turnover also contributes to maintaining phosphate levels during periods of high mineral demand. Understanding the mechanisms of skeletal contribution to mineral homeostasis is important to improving the treatment and prevention of fracture risk and bone fragility for female patients with XLH, but also provides important insight into the role and unique adaptations of the maternal skeleton to the demands of fetal development and the needs of postnatal nutrition. PMID:26825813

  8. Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes

    PubMed Central

    Morgan, Jennifer L. L.; Skulan, Joseph L.; Gordon, Gwyneth W.; Romaniello, Stephen J.; Smith, Scott M.; Anbar, Ariel D.

    2012-01-01

    The ability to rapidly detect changes in bone mineral balance (BMB) would be of great value in the early diagnosis and evaluation of therapies for metabolic bone diseases such as osteoporosis and some cancers. However, measurements of BMB are hampered by difficulties with using biochemical markers to quantify the relative rates of bone resorption and formation and the need to wait months to years for altered BMB to produce changes in bone mineral density large enough to resolve by X-ray densitometry. We show here that, in humans, the natural abundances of Ca isotopes in urine change rapidly in response to changes in BMB. In a bed rest experiment, use of high-precision isotope ratio MS allowed the onset of bone loss to be detected in Ca isotope data after about 1 wk, long before bone mineral density has changed enough to be detectable with densitometry. The physiological basis of the relationship between Ca isotopes and BMB is sufficiently understood to allow quantitative translation of changes in Ca isotope abundances to changes in bone mineral density using a simple model. The rate of change of bone mineral density inferred from Ca isotopes is consistent with the rate observed by densitometry in long-term bed rest studies. Ca isotopic analysis provides a powerful way to monitor bone loss, potentially making it possible to diagnose metabolic bone disease and track the impact of treatments more effectively than is currently possible. PMID:22652567

  9. Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes

    NASA Astrophysics Data System (ADS)

    Morgan, Jennifer L. L.; Skulan, Joseph L.; Gordon, Gwyneth W.; Romaniello, Stephen J.; Smith, Scott M.; Anbar, Ariel D.

    2012-06-01

    The ability to rapidly detect changes in bone mineral balance (BMB) would be of great value in the early diagnosis and evaluation of therapies for metabolic bone diseases such as osteoporosis and some cancers. However, measurements of BMB are hampered by difficulties with using biochemical markers to quantify the relative rates of bone resorption and formation and the need to wait months to years for altered BMB to produce changes in bone mineral density large enough to resolve by X-ray densitometry. We show here that, in humans, the natural abundances of Ca isotopes in urine change rapidly in response to changes in BMB. In a bed rest experiment, use of high-precision isotope ratio MS allowed the onset of bone loss to be detected in Ca isotope data after about 1 wk, long before bone mineral density has changed enough to be detectable with densitometry. The physiological basis of the relationship between Ca isotopes and BMB is sufficiently understood to allow quantitative translation of changes in Ca isotope abundances to changes in bone mineral density using a simple model. The rate of change of bone mineral density inferred from Ca isotopes is consistent with the rate observed by densitometry in long-term bed rest studies. Ca isotopic analysis provides a powerful way to monitor bone loss, potentially making it possible to diagnose metabolic bone disease and track the impact of treatments more effectively than is currently possible.

  10. Comparative Analysis of Linear and Angular Measurements on Digital Orthopantomogram with Calcaneus Bone Mineral Density

    PubMed Central

    Daniel, Mariappan Jonathan; Srinivasan, Subramaniam Vasudevan; Koliyan, Ramadoss; Kumar, Jimsha Vannathan

    2015-01-01

    Background Bone remodeling is a continuous and complex process which occurs throughout life. Radiomorphometric and radioangular indices on the orthopantomogram are the predictors of bone remodeling associated with mandible. Bone mineral density is the amount of calcified tissue in a certain volume of the bone. Materials and Methods Fifty normal healthy individuals within the age range of 25-55 years were included in the study. Linear measurements including mandibular cortical width (MCW) and panoramic mandibular index (PMI); and angular measurements including mandibular angle (MA) and antegonial angle (AGA) were recorded. Quantitative ultrasound bone mineral density (BMD) scan of the heel bone (calcaneus) of the same patient were also performed. Results In our study, for both males and females, antegonial angle (AGA) had highest correlation with calcaneus bone mineral density. In the age group of less than 35 years, PMI in males, and AGA in females had highest correlation. In the age range of more than 35 years, MA in males and AGA in females had highest correlation. Conclusion There is a correlation between the mandibular bone remodelling changes and calcaneal bone mineral density in case of elder subjects and thus these parameters may be used as an inexpensive alternative screening method to assess the bone mineral density and identify individuals at risk for osteoporosis and fractures and also for dental treatment planning. PMID:26393197

  11. The effect of 5alpha-reductase inhibition with finasteride and dutasteride on bone mineral density in older men with benign prostatic hyperplasia.

    PubMed

    Mačukat, Indira Radin; Spanjol, Josip; Orlič, Zeljka Crncevič; Butorac, Marta Zuvič; Marinovič, Marin; Ćupič, Dora Fučkar

    2014-09-01

    Testosterone is converted to dihyrotestosterone by two isoenzymes of 5alpha-reductase. Finasteride and dutasteride are 5alpha-reductase inhibitors commonly used in the treatment of benign prostatic hyperplasia. We compared indices of bone mineral density in 50 men treated with finasteride, 50 men treated with dutasteride and 50 men as control. Bone mineral density of spine and hip were measured using dual energy X-ray absorptiometry. Bone formation was assessed by measuring serum osteocalcin and bone resorptionby measuring serum C-terminal telopeptide of collagen type 1. In addition serum total testosteron and estradiol were determined. The dutasteride group had significantly higher mean bone min- eral density, mean bone mineral content, mean T score, mean Z score at femoral neck and mean total hip Z score than control. Mean total testosterone and estradiol levels were higher in the dutasteride group. There were no significant dif- ferences between the groups in lumbar spine bone density parameters or bone turnover markers. Our results provide evidence that long-term 5alpha-reductase suppression does not adversely affect bone mineral density. Dutasteride therapy could have beneficial effect on bone density. PMID:25507347

  12. The effect of 5alpha-reductase inhibition with finasteride and dutasteride on bone mineral density in older men with benign prostatic hyperplasia.

    PubMed

    Mačukat, Indira Radin; Spanjol, Josip; Orlič, Zeljka Crncevič; Butorac, Marta Zuvič; Marinovič, Marin; Ćupič, Dora Fučkar

    2014-09-01

    Testosterone is converted to dihyrotestosterone by two isoenzymes of 5alpha-reductase. Finasteride and dutasteride are 5alpha-reductase inhibitors commonly used in the treatment of benign prostatic hyperplasia. We compared indices of bone mineral density in 50 men treated with finasteride, 50 men treated with dutasteride and 50 men as control. Bone mineral density of spine and hip were measured using dual energy X-ray absorptiometry. Bone formation was assessed by measuring serum osteocalcin and bone resorptionby measuring serum C-terminal telopeptide of collagen type 1. In addition serum total testosteron and estradiol were determined. The dutasteride group had significantly higher mean bone min- eral density, mean bone mineral content, mean T score, mean Z score at femoral neck and mean total hip Z score than control. Mean total testosterone and estradiol levels were higher in the dutasteride group. There were no significant dif- ferences between the groups in lumbar spine bone density parameters or bone turnover markers. Our results provide evidence that long-term 5alpha-reductase suppression does not adversely affect bone mineral density. Dutasteride therapy could have beneficial effect on bone density. PMID:25420363

  13. Calcium supplementation, bone mineral density and bone mineral content. Predictors of bone mass changes in adolescent mothers during the 6-month postpartum period.

    PubMed

    Malpeli, Agustina; Apezteguia, María; Mansur, José L; Armanini, Alicia; Macías Couret, Melisa; Villalobos, Rosa; Kuzminczuk, Marta; Gonzalez, Horacio F

    2012-03-01

    We determined the effect of calcium supplementation on bone mineral density (BMD) and bone mineral content (BMC) and identified predictors of bone mass changes in adolescent mothers 6 months postpartum. A prospective, analytical, clinical study was performed in adolescent mothers (< or = 19 years old; n = 37) from La Plata, Argentina. At 15 days postpartum, mothers were randomly assigned into one of two groups and started with calcium supplementation; one group received dairy products (932 mg Ca; n = 19) and the other calcium citrate tablets (1000 mg calcium/day; n = 18). Weight, height and dietary intake were measured and BMD was determined by DEXA at 15 days (baseline) and 6 months postpartum. BMC, total body BMD and BMD were assessed in lumbar spine, femoral neck, trochanter and total hip. Regression models were used to identify the relationship of total body BMD and BMC with independent variables (calcium supplementation, months of lactation, weight at 6 months, percent weight change, lean mass at 6 months, percent lean mass change, total calcium intake). Results showed that changes in BMD and BMC at the different sites were similar in both groups, and changes in percent body weight and total calcium intake were the main predictive factors. In conclusion, the effect of calcium was similar with either form of supplementation, i.e., dairy products or tablets, and changes in percent body weight and total calcium intake were predictors of total body BMD and BMC changes. PMID:23477205

  14. Null mutation of chloride channel 7 (Clcn7) impairs dental root formation but does not affect enamel mineralization.

    PubMed

    Guo, Jing; Bervoets, Theodore J M; Henriksen, Kim; Everts, Vincent; Bronckers, Antonius L J J

    2016-02-01

    ClC-7, located in late endosomes and lysosomes, is critical for the function of osteoclasts. Secretion of Cl(-) by the ruffled border of osteoclasts enables H(+) secretion by v-H(+)-ATPases to dissolve bone mineral. Mice lacking ClC-7 show altered lysosomal function that leads to severe lysosomal storage. Maturation ameloblasts are epithelial cells with a ruffled border that secrete Cl(-) as well as endocytose and digest large quantities of enamel matrix proteins during formation of dental enamel. We tested the hypothesis that ClC-7 in maturation ameloblasts is required for intracellular digestion of matrix fragments to complete enamel mineralization. Craniofacial bones and developing teeth in Clcn7(-/-) mice were examined by micro-CT, immunohistochemistry, quantified histomorphometry and electron microscopy. Osteoclasts and ameloblasts in wild-type mice stained intensely with anti-ClC-7 antibody but not in Clcn7(-/-) mice. Craniofacial bones in Clcn7(-/-) mice were severely osteopetrotic and contained 1.4- to 1.6-fold more bone volume, which was less mineralized than the wild-type littermates. In Clcn7(-/-) mice maturation ameloblasts and osteoclasts highly expressed Ae2 as in wild-type mice. However, teeth failed to erupt, incisors were much shorter and roots were disfigured. Molars formed a normal dental crown. In compacted teeth, dentin was slightly less mineralized, enamel did not retain a matrix and mineralized fairly normal. We concluded that ClC-7 is essential for osteoclasts to resorb craniofacial bones to enable tooth eruption and root development. Disruption of Clcn7 reduces bone and dentin mineral density but does not affect enamel mineralization. PMID:26346547

  15. Microscale Material Properties of Bone and the Mineralized Tissues of the Intervertebral Disc-Vertebral Body Interface

    NASA Astrophysics Data System (ADS)

    Paietta, Rachel C.

    mineralized biological tissues and at the bone-cartilage interface plays an important mechanical role. Nanoindentation measurements in osteonal bone are affected by location within the lamellar structure, even though mineral volume fraction within a single osteon is relatively consistent compared to the differences observed between bone and calcified cartilage. While increasing mineral volume fraction contributes to increases in modulus in the calcified cartilage layer of the vertebral body-intervertebral disc interface, significant scatter remains. The collagenous matrix structure and type of collagen appear to have a significant influence on modulus as well. Collagen fibers of the disc mineralize adjacent to the bone of the vertebral body, and the persistence of this attachment zone from adolescence through senescence indicates that it likely serves a mechanical function. Fiber insertions into thick calcified cartilage regions likely create mechanically robust anchor points at the osteochondral interface.

  16. Effects of ethnicity and vitamin D supplementation on vitamin D status and changes in bone mineral content in infants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To evaluate the effects on serum 25(OH)D and bone mineralization of supplementation of breast-fed Hispanic and non-Hispanic Caucasian infants with vitamin D in infants in Houston, Texas. We measured cord serum 25(OH)D levels, bone mineral content (BMC), bone mineral density (BMD) and their changes o...

  17. Controllable mineral coatings on scaffolds as carriers for growth factor release for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Saurez-Gonzalez, Darilis

    The work presented in this document, focused on the development and characterization of mineral coatings on scaffold materials to serve as templates for growth factor binding and release. Mineral coatings were formed using a biomimetic approach that consisted in the incubation of scaffolds in modified simulated body fluids (mSBF). To modulate the properties of the mineral coating, which we hypothesized would dictate growth factor release, we used carbonate (HCO3) concentration in mSBF of 4.2 mM, 25mM, and 100mM. Analysis of the mineral coatings formed using scanning electron microscopy indicated growth of a continuous layer of mineral with different morphologies. X-ray diffraction analysis showed peaks associated with hydroxyapatite. FTIR data confirmed the substitution of HCO3 in the mineral. As the extent of HCO3 substitution increased, the coating exhibited more rapid dissolution kinetics in an environment deficient in calcium and phosphate. The mineral coatings provided an effective mechanism for bioactive growth factor binding and release. Peptide versions of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP2) were bound with efficiencies up to 90% to mineral-coated PCL scaffolds. Recombinant human vascular endothelial growth factor (rhVEGF) also bound to mineral coated scaffolds with lower efficiency (20%) and released with faster release kinetics compared to peptides growth factor. Released rhVEGF induced human umbilical vein endothelial cell (HUVEC) proliferation in vitro and enhanced blood vessel formation in vivo in an intramuscular sheep model. In addition to the use the mineral coatings for single growth factor release, we expanded the concept and bound both an angiogenic (rhVEGF) and osteogenic (mBMP2) growth factor by a simple double dipping process. Sustained release of both growth factors was demonstrated for over 60 days. Released rhVEGF enhanced blood vessel formation in vivo in sheep and its biological activity was

  18. Bone mineral homeostasis, bone growth, and mineralisation during years of pubertal growth: a unifying concept.

    PubMed Central

    Krabbe, S; Transbøl, I; Christiansen, C

    1982-01-01

    Serum calcium, magnesium proteins, phosphate, and immunoparathyroid hormone were measured in 338 normal children and adolescents aged between 7 and 20 years and in 123 normal adults aged between 21 and 50 years. Protein corrected serum calcium and magnesium remained stable throughout the study. Despite hyperphosphataemia protein corrected calcium exceeded the concentrations of normal adults. Serum phosphate and the Ca X P product greatly exceeded adult values and fell rather slowly towards adult levels after the pubertal growth spurt. Serum immunoparathyroid hormone tended to exceed normal adult values and was judged high for the level of serum calcium. Similarities between mineral metabolism in childhood an adolescence and in acromegaly were striking. On this basis in the light of studies demonstrating stimulatory actions of gonadal hormones on growth hormone and of growth hormone on the secretion of parathyroid hormone and 1,25-dihydroxyvitamin D3, a unifying concept is developed. This concept places growth hormone in the unique position of being the main driver and co-ordinator during childhood and adolescence of bone growth an mineralisation on the one hand, and of blood mineral homeostasis on the other. Gonadal hormones probably express some of their actions through stimulation of growth hormone secretion and others by different mechanisms. According to this concept growth hormone is maintaining th Ca X P product at a suitable high level as long as growth hormone and gonadal hormones deliver bone matrix for mineralisation at a high rate. PMID:7092291

  19. Transport of membrane-bound mineral particles in blood vessels during chicken embryonic bone development.

    PubMed

    Kerschnitzki, Michael; Akiva, Anat; Ben Shoham, Adi; Koifman, Naama; Shimoni, Eyal; Rechav, Katya; Arraf, Alaa A; Schultheiss, Thomas M; Talmon, Yeshayahu; Zelzer, Elazar; Weiner, Stephen; Addadi, Lia

    2016-02-01

    During bone formation in embryos, large amounts of calcium and phosphate are taken up and transported to the site where solid mineral is first deposited. The initial mineral forms in vesicles inside osteoblasts and is deposited as a highly disordered calcium phosphate phase. The mineral is then translocated to the extracellular space where it penetrates the collagen matrix and crystallizes. To date little is known about the transport mechanisms of calcium and phosphate in the vascular system, especially when high transport rates are needed and the concentrations of these ions in the blood serum may exceed the solubility product of the mineral phase. Here we used a rapidly growing biological model, the chick embryo, to study the bone mineralization pathway taking advantage of the fact that large amounts of bone mineral constituents are transported. Cryo scanning electron microscopy together with cryo energy dispersive X-ray spectroscopy and focused-ion beam imaging in the serial surface view mode surprisingly reveal the presence of abundant vesicles containing small mineral particles in the lumen of the blood vessels. Morphologically similar vesicles are also found in the cells associated with bone formation. This observation directly implicates the vascular system in solid mineral distribution, as opposed to the transport of ions in solution. Mineral particle transport inside vesicles implies that far larger amounts of the bone mineral constituents can be transported through the vasculature, without the danger of ectopic precipitation. This introduces a new stage into the bone mineral formation pathway, with the first mineral being formed far from the bone itself. PMID:26481471

  20. Factors associated with bone mineral density in healthy African women

    PubMed Central

    Kelly, Cliff; Gati, Brenda; Greenspan, Susan; Dai, James Y.; Bragg, Vivian; Livant, Edward; Piper, Jeanna M.; Nakabiito, Clemensia; Magure, Tsitsi; Marrazzo, Jeanne M.; Chirenje, Z. Mike; Riddler, Sharon A.

    2015-01-01

    Summary There is a paucity of normative bone mineral density (BMD) data in healthy African women. Baseline total hip and lumbar spine BMD was measured in premenopausal women. BMD distribution was comparable to that of a reference population and was impacted by several factors including contraception and duration of lactation. Introduction Normative data on bone mineral density (BMD) and the cumulative impact of lactation, contraceptive use, and other factors on BMD in healthy African women have not been well studied. Objectives The objective of this study was to determine the factors associated with BMD in healthy premenopausal women in Uganda and Zimbabwe. Methods Baseline total hip (TH) and lumbar spine (LS) BMD was measured by dual x-ray absorptiometry in 518 healthy, premenopausal black women enrolling in VOICE, an HIV-1 chemoprevention trial, at sites in Uganda and Zimbabwe. Contraceptive and lactation histories, physical activity assessment, calcium intake, and serum vitamin D levels were assessed. Independent factors associated with BMD were identified using an analysis of covariance model. Results The study enrolled 331 women from Zimbabwe and 187 women from Uganda. Median age was 29 years (IQR 25, 32) and median body mass index (BMI) was 24.8 kg/m2 (IQR 22.2, 28.6). In univariate analyses, lower TH BMD values were associated with residence in Uganda (p<0.001), lower BMI (p<0.001), and any use of and duration of depot-medroxyprogresterone acetate. Use of oral contraceptives, progestin-only implants, and higher physical activity levels were protective against reduced BMD. Similarly, lower LS BMD values were associated with these same factors but also higher parity and history of breastfeeding. In a multivariable analysis, lower TH and LS BMD values were associated with enrollment in Uganda, lower BMI, and lower physical activity level; contraceptive use was associated with lower spine BMD, and breastfeeding contributed to lower total hip BMD. Conclusions

  1. Improved accuracy of cortical bone mineralization measured by polychromatic microcomputed tomography using a novel high mineral density composite calibration phantom

    SciTech Connect

    Deuerling, Justin M.; Rudy, David J.; Niebur, Glen L.; Roeder, Ryan K.

    2010-09-15

    Purpose: Microcomputed tomography (micro-CT) is increasingly used as a nondestructive alternative to ashing for measuring bone mineral content. Phantoms are utilized to calibrate the measured x-ray attenuation to discrete levels of mineral density, typically including levels up to 1000 mg HA/cm{sup 3}, which encompasses levels of bone mineral density (BMD) observed in trabecular bone. However, levels of BMD observed in cortical bone and levels of tissue mineral density (TMD) in both cortical and trabecular bone typically exceed 1000 mg HA/cm{sup 3}, requiring extrapolation of the calibration regression, which may result in error. Therefore, the objectives of this study were to investigate (1) the relationship between x-ray attenuation and an expanded range of hydroxyapatite (HA) density in a less attenuating polymer matrix and (2) the effects of the calibration on the accuracy of subsequent measurements of mineralization in human cortical bone specimens. Methods: A novel HA-polymer composite phantom was prepared comprising a less attenuating polymer phase (polyethylene) and an expanded range of HA density (0-1860 mg HA/cm{sup 3}) inclusive of characteristic levels of BMD in cortical bone or TMD in cortical and trabecular bone. The BMD and TMD of cortical bone specimens measured using the new HA-polymer calibration phantom were compared to measurements using a conventional HA-polymer phantom comprising 0-800 mg HA/cm{sup 3} and the corresponding ash density measurements on the same specimens. Results: The HA-polymer composite phantom exhibited a nonlinear relationship between x-ray attenuation and HA density, rather than the linear relationship typically employed a priori, and obviated the need for extrapolation, when calibrating the measured x-ray attenuation to high levels of mineral density. The BMD and TMD of cortical bone specimens measured using the conventional phantom was significantly lower than the measured ash density by 19% (p<0.001, ANCOVA) and 33% (p<0

  2. Effects of resistance training on bone mineral content and density in adolescent females.

    PubMed

    Blimkie, C J; Rice, S; Webber, C E; Martin, J; Levy, D; Gordon, C L

    1996-09-01

    Postmenarcheal adolescent girls performed resistance training (RT) for 26 weeks, which consisted of 4 sets of 13 exercises of varying and progressive intensity performed 3 times weekly on hydraulic resistance machines. Bone mineral was assessed by dual photon absorptiometry. Resistance training resulted in significant increases (pre-post) in biceps curl (21.4%), triceps press (21.5%), knee extension (25.1%), knee flexion (52.8%), and squat press (21.5%) strength. There were no significant differences between RT and control (C) groups initially, and no significant effects of training (pre-post) for total body (TB) or lumbar spine (LS) bone mineral content (BMC) or bone mineral density (BMD). The largest increases in LS bone mineral occurred during the first 13 weeks, and although not significant, the increases in LS BMC (g) (3.9 vs. 5.9%), LS BMC (g.cm-1) (2.6 vs. 5.9%), LS areal BMD (g.cm-2) (1.48 vs. 4.75%), and LS bone mineral apparent density (BMAD, g.cm-3) (0.47 vs. 4.13%) were greater in the RT compared with the C group during this period. In conclusion, resistance training resulted in a trend towards a transient increase in LS bone mineral during the first 13 weeks, but despite significant strength gains, there were no significant changes in TB or LS bone mineral after 26 weeks of training. PMID:8960394

  3. Bio-inspired mineralization of hydroxyapatite in 3D silk fibroin hydrogel for bone tissue engineering.

    PubMed

    Jin, Yashi; Kundu, Banani; Cai, Yurong; Kundu, Subhas C; Yao, Juming

    2015-10-01

    To fabricate hard tissue implants with bone-like structure using a biomimetic mineralization method is drawing much more attentions in bone tissue engineering. The present work focuses in designing 3D silk fibroin hydrogel to modulate the nucleation and growth of hydroxyapatite crystals via a simple ion diffusion method. The study indicates that Ca(2+) incorporation within the hydrogel provides the nucleation sites for hydroxyapatite crystals and subsequently regulates their oriented growth. The mineralization process is regulated in a Ca(2+) concentration- and minerlization time-dependent way. Further, the compressive strength of the mineralized hydrogels is directly proportional with the mineral content in hydrogel. The orchestrated organic/inorganic composite supports well the viability and proliferation of human osteoblast cells; improved cyto-compatibility with increased mineral content. Together, the present investigation reports a simple and biomimetic process to fabricate 3D bone-like biomaterial with desired efficacy to repair bone defects. PMID:26209967

  4. Association of chemerin levels and bone mineral density in Chinese obese postmenopausal women.

    PubMed

    Shi, Liang; Mao, Chaoming; Wang, Xuefeng; Liu, Rencong; Li, Lin; Mou, Xiao; Xu, Ping; Li, Hongli; Xu, Chengcheng; Yuan, Guoyue; Wang, Bin; Zhang, Hao

    2016-08-01

    Increasing evidence suggests the association between obesity and bone metabolism. However, whether excessive fat accumulation has a beneficial or adverse effect on bone health remains controversial. Chemerin is a novel adipocyte-derived hormone and a chemoattractant cytokine that regulates adipogenesis. This study was performed to investigate the associations of serum chemerin with bone mineral density (BMD) and serum pro-inflammatory cytokine levels in 543 Chinese obese postmenopausal women. BMD of the femoral neck and lumbar spine, lean mass, and fat mass were measured using dual energy X-ray absorptiometry. Anthropometric assessment and laboratory measurements were performed. The age, time after menopause, and fat mass were negatively correlated with femoral and lumbar BMD, whereas lean mass was positively correlated with aforementioned variables. Furthermore, BMD at the lumbar spine was inversely associated with serum chemerin and TNF-α levels (r = -0.155, P = 0.001; r = -0.147, P = 0.001). Multiple linear regression analyses showed that serum chemerin levels were negatively correlated with BMD at the lumbar site after controlling for the age, lean, and fat mass (β = -0.125, P = 0.001). Chronic low-grade inflammation state in obese population has an inverse effect on bone mass. Chemerin as an adipocytokine and chemoattractant negatively affects the bone mass of Chinese obese postmenopausal women. Further studies are needed to confirm the potential role of chemerin in the crosstalk between bone and fat accumulation in obese population. PMID:27583869

  5. Association of chemerin levels and bone mineral density in Chinese obese postmenopausal women

    PubMed Central

    Shi, Liang; Mao, Chaoming; Wang, Xuefeng; Liu, Rencong; Li, Lin; Mou, Xiao; Xu, Ping; Li, Hongli; Xu, Chengcheng; Yuan, Guoyue; Wang, Bin; Zhang, Hao

    2016-01-01

    Abstract Increasing evidence suggests the association between obesity and bone metabolism. However, whether excessive fat accumulation has a beneficial or adverse effect on bone health remains controversial. Chemerin is a novel adipocyte-derived hormone and a chemoattractant cytokine that regulates adipogenesis. This study was performed to investigate the associations of serum chemerin with bone mineral density (BMD) and serum pro-inflammatory cytokine levels in 543 Chinese obese postmenopausal women. BMD of the femoral neck and lumbar spine, lean mass, and fat mass were measured using dual energy X-ray absorptiometry. Anthropometric assessment and laboratory measurements were performed. The age, time after menopause, and fat mass were negatively correlated with femoral and lumbar BMD, whereas lean mass was positively correlated with aforementioned variables. Furthermore, BMD at the lumbar spine was inversely associated with serum chemerin and TNF-α levels (r = −0.155, P = 0.001; r = −0.147, P = 0.001). Multiple linear regression analyses showed that serum chemerin levels were negatively correlated with BMD at the lumbar site after controlling for the age, lean, and fat mass (β = −0.125, P = 0.001). Chronic low-grade inflammation state in obese population has an inverse effect on bone mass. Chemerin as an adipocytokine and chemoattractant negatively affects the bone mass of Chinese obese postmenopausal women. Further studies are needed to confirm the potential role of chemerin in the crosstalk between bone and fat accumulation in obese population. PMID:27583869

  6. Alteration of proteoglycan sulfation affects bone growth and remodeling

    PubMed Central

    Gualeni, Benedetta; de Vernejoul, Marie-Christine; Marty-Morieux, Caroline; De Leonardis, Fabio; Franchi, Marco; Monti, Luca; Forlino, Antonella; Houillier, Pascal; Rossi, Antonio; Geoffroy, Valerie

    2013-01-01

    Diastrophic dysplasia (DTD) is a chondrodysplasia caused by mutations in the SLC26A2 gene, leading to reduced intracellular sulfate pool in chondrocytes, osteoblasts and fibroblasts. Hence, proteoglycans are undersulfated in the cartilage and bone of DTD patients. To characterize the bone phenotype of this skeletal dysplasia we used the Slc26a2 knock-in mouse (dtd mouse), that was previously validated as an animal model of DTD in humans. X-rays, bone densitometry, static and dynamic histomorphometry, and in vitro studies revealed a primary bone defect in the dtd mouse model. We showed in vivo that this primary bone defect in dtd mice is due to decreased bone accrual associated with a decreased trabecular and periosteal appositional rate at the cell level in one month-old mice. Although the osteoclast number evaluated by histomorphometry was not different in dtd compared to wild-type mice, urine analysis of deoxypyridinoline cross-links and serum levels of type I collagen C-terminal telopeptides showed a higher resorption rate in dtd mice compared to wild-type littermates. Electron microscopy studies showed that collagen fibrils in bone were thinner and less organized in dtd compared to wild-type mice. These data suggest that the low bone mass observed in mutant mice could possibly be linked to the different bone matrix compositions/organizations in dtd mice triggering changes in osteoblast and osteoclast activities. Overall, these results suggest that proteoglycan undersulfation not only affects the properties of hyaline cartilage, but can also lead to unbalanced bone modeling and remodeling activities, demonstrating the importance of proteoglycan sulfation in bone homeostasis. PMID:23369989

  7. A comparative study of zwitterionic ligands-mediated mineralization and the potential of mineralized zwitterionic matrices for bone tissue engineering

    PubMed Central

    Liu, Pingsheng; Emmons, Erin

    2014-01-01

    Cationic and anionic residues of the extracellular matrices (ECM) of bone play synergistic roles in recruiting precursor ions and templating the nucleation, growth and crystalline transformations of calcium apatite in natural biomineralization. We previously reported that zwitterionic sulfobetaine ligands can template extensive 3-dimensional (3-D) hydroxyapaptite (HA)-mineralization of photo-crosslinked polymethacrylatehydrogels. Here, we compared the potency of two other major zwitterionic ligands, phosphobetaine and carboxybetaine, with that of the sulfobetaine in mediating 3-D mineralization using the crosslinked polymethacrylate hydrogel platform. We confirmed that all three zwitterionic hydrogels were able to effectively template 3-D mineralization, supporting the general ability of zwitterions to mediate templated mineralization. Among them, however, sulfobetaine and phosphobetaine hydrogels templated denser 3-D mineralizationthan the carboxybetaine hydrogel, likely due to their higher free water fractions and better maintenance of zwitterionic nature throughout the pH-changes during the in vitro mineralization process. We further demonstrated that the extensively mineralized zwitterionic hydrogels could be exploited for efficient retention (e.g. 99% retention after 24-h incubation in PBS) of osteogenic growth factor recombinant bone morphogenetic protein-2 (rhBMP-2) and subsequent sustained local release with retained bioactivity. Combined with the excellent cytocompatibility of all three zwitterionic hydrogels and the significantly improved cell adhesive properties of their mineralized matrices, these materials could find promising applications in bone tissue engineering. PMID:25558374

  8. High Salt Diets, Bone Strength and Mineral Content of Mature Femur After Skeletal Unloading

    NASA Technical Reports Server (NTRS)

    Liang, Michael T. C.

    1998-01-01

    It is known that high salt diets increase urinary calcium (Ca) loss, but it is not known whether this effect weakens bone during space flight. The Bone Hormone Lab has studied the effect of high salt diets on Ca balance and whole body Ca in a space flight model (2,8). Neither the strength nor mineral content of the femurs from these studies has been evaluated. The purpose of this study was to determine the effect of high salt diets (HiNa) and skeletal unloading on femoral bone strength and bone mineral content (BMC) in mature rats.

  9. Correlations Between Abnormal Glucose Metabolism and Bone Mineral Density or Bone Metabolism.

    PubMed

    Qu, Yang; Kang, Ming-Yang; Dong, Rong-Peng; Zhao, Jian-Wu

    2016-01-01

    BACKGROUND The aim of this meta-analysis was to explore the correlations of abnormal glucose metabolism (AGM) with bone mineral density (BMD) and bone metabolism. MATERIAL AND METHODS Relevant studies were identified using computerized and manual search strategies. The included studies were in strict accordance with inclusion and exclusion criteria. Statistical analyses were conducted with the Comprehensive Meta-analysis 2.0 (Biostat Inc., Englewood, NJ, USA). RESULTS Our present meta-analysis initially searched 844 studies, and 7 studies were eventually incorporated in the present meta-analysis. These 7 cohort studies included 1123 subjects altogether (560 patients with AGM and 563 healthy controls). The results showed that bone mass index (BMI), insulin, and insulin resistance (IR) of patients with AGM were significantly higher than that of the population with normal glucose metabolism (BMI: SMD=1.658, 95% CI=0.663~2.654, P=0.001; insulin: SMD=0.544, 95% CI=0.030~1.058, P=0.038; IR: SMD=8.767, 95% CI=4.178~13.356, P<0.001). However, the results also indicated there was no obvious difference in osteocalcin (OC) and BMD in patients with AGM and the population with normal glucose metabolism (OC: SMD=0.293, 95% CI=-0.023~0.609, P=0.069; BMD: SMD=0.805, 95% CI=-0. 212~1.821, P=0.121). CONCLUSIONS Our meta-analysis results suggest that AGM might lead to increased BMI, insulin, and IR, while it has no significant correlation with BMD or bone metabolism. PMID:26970713

  10. Correlations Between Abnormal Glucose Metabolism and Bone Mineral Density or Bone Metabolism

    PubMed Central

    Qu, Yang; Kang, Ming-Yang; Dong, Rong-Peng; Zhao, Jian-Wu

    2016-01-01

    Background The aim of this meta-analysis was to explore the correlations of abnormal glucose metabolism (AGM) with bone mineral density (BMD) and bone metabolism. Material/Methods Relevant studies were identified using computerized and manual search strategies. The included studies were in strict accordance with inclusion and exclusion criteria. Statistical analyses were conducted with the Comprehensive Meta-analysis 2.0 (Biostat Inc., Englewood, NJ, USA). Results Our present meta-analysis initially searched 844 studies, and 7 studies were eventually incorporated in the present meta-analysis. These 7 cohort studies included 1123 subjects altogether (560 patients with AGM and 563 healthy controls). The results showed that bone mass index (BMI), insulin, and insulin resistance (IR) of patients with AGM were significantly higher than that of the population with normal glucose metabolism (BMI: SMD=1.658, 95% CI=0.663~2.654, P=0.001; insulin: SMD=0.544, 95% CI=0.030~1.058, P=0.038; IR: SMD=8.767, 95% CI=4.178~13.356, P<0.001). However, the results also indicated there was no obvious difference in osteocalcin (OC) and BMD in patients with AGM and the population with normal glucose metabolism (OC: SMD=0.293, 95% CI=−0.023~0.609, P=0.069; BMD: SMD=0.805, 95% CI=−0. 212~1.821, P=0.121). Conclusions Our meta-analysis results suggest that AGM might lead to increased BMI, insulin, and IR, while it has no significant correlation with BMD or bone metabolism. PMID:26970713

  11. Characteristics of bone turnover in the long bone metaphysis fractured patients with normal or low Bone Mineral Density (BMD).

    PubMed

    Wölfl, Christoph; Schweppenhäuser, Daniela; Gühring, Thorsten; Takur, Caner; Höner, Bernd; Kneser, Ulrich; Grützner, Paul Alfred; Kolios, Leila

    2014-01-01

    The incidence of osteoporotic fractures increases as our population ages. Until now, the exact biochemical processes that occur during the healing of metaphyseal fractures remain unclear. Diagnostic instruments that allow a dynamic insight into the fracture healing process are as yet unavailable. In the present matched pair analysis, we study the time course of the osteoanabolic markers bone specific alkaline phosphatase (BAP) and transforming growth factor β1 (TGFβ1), as well as the osteocatabolic markers crosslinked C-telopeptide of type-I-collagen (β-CTX) and serum band 5 tartrate-resistant acid phosphatase (TRAP5b), during the healing of fractures that have a low level of bone mineral density (BMD) compared with fractures that have a normal BMD. Between March 2007 and February 2009, 30 patients aged older than 50 years who suffered a metaphyseal fracture were included in our study. BMDs were verified by dual energy Xray absorptiometry (DXEA) scans. The levels of BTMs were examined over an 8-week period. Osteoanabolic BAP levels in those with low levels of BMD were significantly different from the BAP levels in those with normal BMD. BAP levels in the former group increased constantly, whereas the latter group showed an initial strong decrease in BAP followed by slowly rising values. Osteocatabolic β-CTX increased in the bone of the normal BMD group constantly, whereas these levels decreased significantly in the bone of the group with low BMD from the first week. TRAP5b was significantly reduced in the low level BMD group. With this work, we conduct first insights into the molecular biology of the fracture healing process in patients with low levels of BMD that explains the mechanism of its fracture healing. The results may be one reason for the reduced healing qualities in bones with low BMD. PMID:24788647

  12. Delay of natural bone loss by higher intakes of specific minerals and vitamins.

    PubMed

    Schaafsma, A; de Vries, P J; Saris, W H

    2001-05-01

    For early prevention or inhibition of postmenopausal and age-related bone loss, nutritional interventions might be a first choice. For some vitamins and minerals an important role in bone metabolism is known or suggested. Calcium and vitamin D support bone mineral density and are basic components in most preventive strategies. Magnesium is involved in a number of activities supporting bone strength, preservation, and remodeling. Fluorine and strontium have bone-forming effects. However, high amounts of both elements may reduce bone strength. Boron is especially effective in case of vitamin D, magnesium, and potassium deficiency. Vitamin K is essential for the activation of osteocalcin. Vitamin C is an important stimulus for osteoblast-derived proteins. Increasing the recommended amounts (US RDA 1989), adequate intakes (US DRI 1997), or assumed normal intakes of mentioned food components may lead to a considerable reduction or even prevention of bone loss, especially in late postmenopausal women and the elderly. PMID:11401244

  13. Relationship between spine osteoarthritis, bone mineral density and bone turn over markers in post menopausal women

    PubMed Central

    2010-01-01

    Background Several studies have observed an inverse relationship between osteoporosis and spinal osteoarthritis, the latter being considered as possibly delaying the development of osteoporosis. The aim of this study was to determine the association between individual radiographic features of spine degeneration, bone mineral density (BMD) and bone-turn over markers. Methods It was a cross sectional study of 277 post menopausal women. BMD of all patients was assessed at the spine and hip using dual-energy X-ray absorptiometry. Lateral spinal radiographs were evaluated for features of disc degeneration. Each vertebral level from L1/2 to L4/5 was assessed for the presence and severity of osteophytes and disc space narrowing (DSN). For Bone turn-over markers, we assessed serum osteocalcin and C-terminal cross-linking telopeptide of type I collagen (CTX). Linear regressions and partial correlation were used respectively to determine the association between each of disc degeneration features, BMD, and both CTX and osteocalcin. Results Mean age of patients was 58.7 ± 7.7 years. Eighty four patients (31.2%) were osteoporotic and 88.44% had spine osteoarthritis. At all measured sites, there was an increase in BMD with increasing severity of disc narrowing while there was no association between severity of osteophytes and BMD. After adjustment for age and BMI, there was a significant negative correlation between CTX and DSN. However, no significant correlation was found between CTX and osteophytes and between osteocalcin and both osteophytes or DSN. Conclusion In post menopausal women the severity of disc narrowing, but not osteophytes, is associated with a generalized increase in BMD and a decreased rate of bone resorption. These results are consistent with the hypothesis that osteoarthritis, through DSN, has a protective effect against bone loss, mediated by a lower rate of bone resorption. However, spine BMD is not a relevant surrogate marker for the assessment of

  14. Single x-ray transmission system for bone mineral density determination

    NASA Astrophysics Data System (ADS)

    Jimenez-Mendoza, Daniel; Espinosa-Arbelaez, Diego G.; Giraldo-Betancur, Astrid L.; Hernandez-Urbiola, Margarita I.; Vargas-Vazquez, Damian; Rodriguez-Garcia, Mario E.

    2011-12-01

    Bones are the support of the body. They are composed of many inorganic compounds and other organic materials that all together can be used to determine the mineral density of the bones. The bone mineral density is a measure index that is widely used as an indicator of the health of the bone. A typical manner to evaluate the quality of the bone is a densitometry study; a dual x-ray absorptiometry system based study that has been widely used to assess the mineral density of some animals' bones. However, despite the success stories of utilizing these systems in many different applications, it is a very expensive method that requires frequent calibration processes to work properly. Moreover, its usage in small species applications (e.g., rodents) has not been quite demonstrated yet. Following this argument, it is suggested that there is a need for an instrument that would perform such a task in a more reliable and economical manner. Therefore, in this paper we explore the possibility to develop a new, affordable, and reliable single x-ray absorptiometry system. The method consists of utilizing a single x-ray source, an x-ray image sensor, and a computer platform that all together, as a whole, will allow us to calculate the mineral density of the bone. Utilizing an x-ray transmission theory modified through a version of the Lambert-Beer law equation, a law that expresses the relationship among the energy absorbed, the thickness, and the absorption coefficient of the sample at the x-rays wavelength to calculate the mineral density of the bone can be advantageous. Having determined the parameter equation that defines the ratio of the pixels in radiographies and the bone mineral density [measured in mass per unit of area (g/cm2)], we demonstrated the utility of our novel methodology by calculating the mineral density of Wistar rats' femur bones.

  15. Single x-ray transmission system for bone mineral density determination.

    PubMed

    Jimenez-Mendoza, Daniel; Espinosa-Arbelaez, Diego G; Giraldo-Betancur, Astrid L; Hernandez-Urbiola, Margarita I; Vargas-Vazquez, Damian; Rodriguez-Garcia, Mario E

    2011-12-01

    Bones are the support of the body. They are composed of many inorganic compounds and other organic materials that all together can be used to determine the mineral density of the bones. The bone mineral density is a measure index that is widely used as an indicator of the health of the bone. A typical manner to evaluate the quality of the bone is a densitometry study; a dual x-ray absorptiometry system based study that has been widely used to assess the mineral density of some animals' bones. However, despite the success stories of utilizing these systems in many different applications, it is a very expensive method that requires frequent calibration processes to work properly. Moreover, its usage in small species applications (e.g., rodents) has not been quite demonstrated yet. Following this argument, it is suggested that there is a need for an instrument that would perform such a task in a more reliable and economical manner. Therefore, in this paper we explore the possibility to develop a new, affordable, and reliable single x-ray absorptiometry system. The method consists of utilizing a single x-ray source, an x-ray image sensor, and a computer platform that all together, as a whole, will allow us to calculate the mineral density of the bone. Utilizing an x-ray transmission theory modified through a version of the Lambert-Beer law equation, a law that expresses the relationship among the energy absorbed, the thickness, and the absorption coefficient of the sample at the x-rays wavelength to calculate the mineral density of the bone can be advantageous. Having determined the parameter equation that defines the ratio of the pixels in radiographies and the bone mineral density [measured in mass per unit of area (g/cm(2))], we demonstrated the utility of our novel methodology by calculating the mineral density of Wistar rats' femur bones. PMID:22225247

  16. Single x-ray transmission system for bone mineral density determination

    SciTech Connect

    Jimenez-Mendoza, Daniel; Vargas-Vazquez, Damian; Giraldo-Betancur, Astrid L.; Hernandez-Urbiola, Margarita I.; Rodriguez-Garcia, Mario E.

    2011-12-15

    Bones are the support of the body. They are composed of many inorganic compounds and other organic materials that all together can be used to determine the mineral density of the bones. The bone mineral density is a measure index that is widely used as an indicator of the health of the bone. A typical manner to evaluate the quality of the bone is a densitometry study; a dual x-ray absorptiometry system based study that has been widely used to assess the mineral density of some animals' bones. However, despite the success stories of utilizing these systems in many different applications, it is a very expensive method that requires frequent calibration processes to work properly. Moreover, its usage in small species applications (e.g., rodents) has not been quite demonstrated yet. Following this argument, it is suggested that there is a need for an instrument that would perform such a task in a more reliable and economical manner. Therefore, in this paper we explore the possibility to develop a new, affordable, and reliable single x-ray absorptiometry system. The method consists of utilizing a single x-ray source, an x-ray image sensor, and a computer platform that all together, as a whole, will allow us to calculate the mineral density of the bone. Utilizing an x-ray transmission theory modified through a version of the Lambert-Beer law equation, a law that expresses the relationship among the energy absorbed, the thickness, and the absorption coefficient of the sample at the x-rays wavelength to calculate the mineral density of the bone can be advantageous. Having determined the parameter equation that defines the ratio of the pixels in radiographies and the bone mineral density [measured in mass per unit of area (g/cm{sup 2})], we demonstrated the utility of our novel methodology by calculating the mineral density of Wistar rats' femur bones.

  17. Natural variations in calcium isotope composition as a monitor of bone mineral balance in humans.

    NASA Astrophysics Data System (ADS)

    Skulan, J.; Anbar, A.; Thomas, B.; Smith, S.

    2004-12-01

    The skeleton is the largest reservoir of calcium in the human body and is responsible for the short term control of blood levels of this element. Accurate measurement of changes in bone calcium balance is critical to understanding how calcium metabolism responds to physiological and environmental changes and, more specifically, to diagnosing and evaluating the effectiveness of treatments for osteoporosis and other serious calcium-related disorders. It is very difficult to measure bone calcium balance using current techniques, however, because these techniques rely either on separate estimates of bone resorption and formation that are not quantitatively comparable, or on complex and expensive studies of calcium kinetics using administered isotopic tracers. This difficulty is even more apparent and more severe for measurements of short-term changes in bone calcium balance that do not produce detectable changes in bone mineral density. Calcium isotopes may provide a novel means of addressing this problem. The foundation of this isotope application is the ca. 1.3 per mil fractionation of calcium during bone formation, favoring light calcium in the bone. This fractionation results in a steady-state isotopic offset between calcium in bone and calcium in soft tissues, blood and urine. Perturbations to this steady state due to changes in the net formation or resorption of bone should be reflected in changes in the isotopic composition of soft tissues and fluids. Here we present evidence that easily detectable shifts in the natural calcium isotope composition of human urine rapidly reflect changes in bone calcium balance. Urine from subjects in a 17-week bed rest study was analyzed for calcium isotopic composition. Bed rest promotes net resorption of bone, shifting calcium from bone to soft tissues, blood and urine. The calcium isotope composition of patients in this study shifted toward lighter values during bed rest, consistent with net resorption of isotopically

  18. Increased calcium content and inhomogeneity of mineralization render bone toughness in osteoporosis: mineralization, morphology and biomechanics of human single trabeculae.

    PubMed

    Busse, Björn; Hahn, Michael; Soltau, Markus; Zustin, Jozef; Püschel, Klaus; Duda, Georg N; Amling, Michael

    2009-12-01

    The differentiation and degree of the effects of mineral content and/or morphology on bone quality remain, to a large extent, unanswered due to several microarchitectural particularities in spatial measuring fields (e.g., force transfer, trajectories, microcalli). Therefore, as the smallest basic component of cancellous bone, we focused on single trabeculae to investigate the effects of mineralization and structure, both independently and in superposition. Transiliac Bordier bone cores and T12 vertebrae were obtained from 20 females at autopsy for specimen preparation, enabling radiographical analyses, histomorphometry, Bone Mineral Density Distribution (BMDD) analyses, and trabecular singularization to be performed. Evaluated contact X-rays and histomorphometric limits from cases with osteoporotic vertebral fractures generated two subdivisions, osteoporotic (n=12, Ø 78 years) and non-osteoporotic (n=8, Ø 49 years) cases, based on fracture appearance and bone volume (BV/TV). Measurements of trabecular number (Tb.N.), trabecular separation (Tb.Sp.), trabecular thickness (Tb.Th.), trabecular bone pattern factor (TBPf) and eroded surface (ES/BS) were carried out to provide detailed structural properties of the investigated groups. The mechanical properties of 400 rod-like single vertebral trabeculae, assessed by three-point bending, were matched with mineral properties as quantified by BMDD analyses of cross-sectioned rod-like and plate-like trabeculae, both in superposition and independently. Non-osteoporotic iliac crests and vertebrae displayed linear dependency on structure parameters, whereas osteoporotic compartments proved to be non-correlated with bone structure. Independent of trabecular thickness, osteoporotic rod-like trabeculae showed decreases in Young's modulus, fracture load, yield strength, ultimate stress, work to failure and bending stiffness, along with significantly increased mean calcium content and calcium width. Non-osteoporotic trabeculae

  19. Cooperative deformation of mineral and collagen in bone at the nanoscale

    PubMed Central

    Gupta, Himadri S.; Seto, Jong; Wagermaier, Wolfgang; Zaslansky, Paul; Boesecke, Peter; Fratzl, Peter

    2006-01-01

    In biomineralized tissues such as bone, the recurring structural motif at the supramolecular level is an anisotropic stiff inorganic component reinforcing the soft organic matrix. The high toughness and defect tolerance of natural biomineralized composites is believed to arise from these nanometer scale structural motifs. Specifically, load transfer in bone has been proposed to occur by a transfer of tensile strains between the stiff inorganic (mineral apatite) particles via shearing in the intervening soft organic (collagen) layers. This raises the question as to how and to what extent do the mineral particles and fibrils deform concurrently in response to tissue deformation. Here we show that both mineral nanoparticles and the enclosing mineralized fibril deform initially elastically, but to different degrees. Using in situ tensile testing with combined high brilliance synchrotron X-ray diffraction and scattering on the same sample, we show that tissue, fibrils, and mineral particles take up successively lower levels of strain, in a ratio of 12:5:2. The maximum strain seen in mineral nanoparticles (≈0.15–0.20%) can reach up to twice the fracture strain calculated for bulk apatite. The results are consistent with a staggered model of load transfer in bone matrix, exemplifying the hierarchical nature of bone deformation. We believe this process results in a mechanism of fibril–matrix decoupling for protecting the brittle mineral phase in bone, while effectively redistributing the strain energy within the bone tissue. PMID:17095608

  20. Varying ratios of omega-6: omega-3 fatty acids on the pre-and postmortem bone mineral density, bone ash, and bone breaking strength of laying chickens.

    PubMed

    Baird, H T; Eggett, D L; Fullmer, S

    2008-02-01

    The purpose of this study was to investigate the effects of varying ratios of n-6 to n-3 fatty acids in the diets of White Leghorn chickens on tibia bone characteristics [bone mineral density, bone mineral content (BMC), ash bone mineral content, bone morphology, and cortical thickness] and tibia bone strength parameters (ultimate force, bending stress, maximum strain, Young's modulus of elasticity, area under the curve, and moment of inertia). Seventy-five 16-wk-old female White Leghorn chickens were randomly assigned to 1 of 5 dietary ratios of n-6 to n-3 fatty acids: 47.8:1, 18.0:1, 7.6:1, 5.9:1, or 4.7:1. Corn oil was the n-6 fatty acid source, whereas flax oil provided the n-3 fatty acids. Bone density was measured on the left tibia via dual-energy x-ray absorptiometry (DXA) prior to killing and after excision. Bones were ashed in a muffle furnace at 500 degrees F. Tibia bones were broken by using a 3-point bending rig. Results showed no significant effect of diet on bone characteristics. There were no significant differences among diet groups for parameters of bone strength except cortical thickness (P < or = 0.01). Bone mineral content determined by ashing was significantly different by 9.2% (P < or = 0.0001) from BMC determined in vivo by DXA; however, there were no differences in ex vivo BMC and BMC ash, although they were highly correlated (r = 0.99, P < or = 0.0001). We concluded that there was no effect of n-3 fatty acids on tibia bone in mature White Leghorn chickens. The GE Lunar Prodigy DXA instrument significantly underestimated the in vivo BMC in chickens. PMID:18212376

  1. In Vitro Mineralization of an Osteoid-Like Dense Collagen Construct for Bone Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Marelli, Benedetto

    The aim of this doctoral research was to design and evaluate strategies to rapidly achieve an acellular mineralization of an osteoid-like dense collagen gel for potential applications in bone regeneration. It was hypothesized that the collagen fibrillar density (CFD) affects the microenvironment and the physical properties of the framework of collagen gels. To test this hypothesis, and as a first objective, the mineralization of collagen gel sheets, rolls and strips with increasing CFDs was investigated in vitro in simulated body fluid (SBF). Collagen gels with physiologically relevant CFDs (14.1 wt%) led to greater extent of mineralization (12 dry wt% at day 14 in SBF), when compared to highly hydrated gels. Chemical characterization confirmed this mineral phase to be CHA, which significantly increased the gel apparent modulus and ultimate tensile strength (UTS). Surprisingly, CFD also affected the electrostatic properties of collagen gel, as investigated by quantifying the extent of anionic and cationic dyes bound to collagen gels with different CFDs. It was therefore proposed that the increase in gel CFD led to a more physiological microenvironment, resulting in a higher number of fibril-to-fibril contact points and an increase in charge concentration, which facilitated the mineral formation and validated the proposed osteoid model. As a second objective, the mineralization of dense collagen (DC) gels with physiologically relevant CFD (14.1 wt%) was enhanced and accelerated by mimicking the role of anionic non collagenous proteins (NCPs) in the native osteoid, which act as CHA nucleators. Two strategies were implemented: first, the influence of collagen fibrillization pH on the extent of DC gel mineralization was investigated. Since the collagen molecule is slightly positively charged at physiological pH (isoelectric point at pH 7.8), it was hypothesized that it would be more negatively charged if formed in an alkaline environment, i.e., above its isoelectric

  2. Mineralization of Synthetic Polymer Scaffolds: A Bottom-upApproach for the Development of Artificial Bone

    SciTech Connect

    Song, Jie; Viengkham, Malathong; Bertozzi, Carolyn R.

    2004-09-27

    The controlled integration of organic and inorganic components confers natural bone with superior mechanical properties. Bone biogenesis is thought to occur by templated mineralization of hard apatite crystals by an elastic protein scaffold, a process we sought to emulate with synthetic biomimetic hydrogel polymers. Crosslinked polymethacrylamide and polymethacrylate hydrogels were functionalized with mineral-binding ligands and used to template the formation of hydroxyapatite. Strong adhesion between the organic and inorganic materials was achieved for hydrogels functionalized with either carboxylate or hydroxy ligands. The mineral-nucleating potential of hydroxyl groups identified here broadens the design parameters for synthetic bone-like composites and suggests a potential role for hydroxylated collagen proteins in bone mineralization.

  3. Bone mineral density and biochemical markers of bone metabolism in predialysis patients with chronic kidney disease.

    PubMed

    Fidan, Nuri; Inci, Ayca; Coban, Melahat; Ulman, Cevval; Kursat, Seyhun

    2016-04-01

    The aim of the study was to evaluate the usefulness of serum bone turnover markers (BTM) and bone mineral density (BMD) determined by dual-energy X-ray absorptiometry (DEXA) in predialysis patients with chronic kidney disease (CKD). We enrolled 83 patients with CKD, 41 (49.4%) males, 42 (50.6%) females, with mean estimated glomerular filtration rate (eGFR) 23.90±12 (range=6.0-56.0). BMD of the lumbar spine (LS) (anteroposterior, L2 through L4), femoral neck (FN) and femoral trochanter (FT) were measured by DEXA. Biochemical BTM, including calcium (Ca), phosphorus (P), intact parathyroid hormone (PTH), serum specific alkaline phosphatase (serum AP), bone-specific AP (BSAP), plasma bicarbonate and 25-hydroxy-vitamin D (25hD) were used for the prediction of BMD loss. T score results of LS and FN were worse than FT. BMD levels were lower in females than in males (all p<0.05). According to different BMD T score levels, patients with age ≥65 years and patients in menopause were significantly more osteopenic (p=0.026) and there was no relation between different BMD T scores and presence of diabetes (p=0.654). A positive correlation was identified between the BMD of FN T-Z scores (r=0.270, p=0.029, r=0.306, p=0.012), FT T-Z scores (r=0.220, p=0.076, r:0.250, p=0.043) and serum HCO3, while the correlation with serum alkaline phosphatase (AP) and BSAP was considered to be negative. No statistically significant association was found between BMD of all the measured skeletal sites and eGFR. Loss of BMD was identified mostly in females over ≥65 years of age and after menopause. Higher serum levels of BSAP and AP can be determined in the advanced stages of renal failure and they reflect fracture risk of the femur, but not spine. Measurements of BMD by DEXA are useful to demonstrate bone loss, but not technical enough to distinguish the quantity of bone loss between different stages of CKD. PMID:26969749

  4. Practice of martial arts and bone mineral density in adolescents of both sexes

    PubMed Central

    Ito, Igor Hideki; Mantovani, Alessandra Madia; Agostinete, Ricardo Ribeiro; Costa, Paulo; Zanuto, Edner Fernando; Christofaro, Diego Giulliano Destro; Ribeiro, Luis Pedro; Fernandes, Rômulo Araújo

    2016-01-01

    Abstract Objective: The purpose of this study was to analyze the relationship between martial arts practice (judo, karate and kung-fu) and bone mineral density in adolescents. Methods: The study was composed of 138 (48 martial arts practitioners and 90 non-practitioners) adolescents of both sexes, with an average age of 12.6 years. Bone mineral density was measured using Dual-Energy X-ray Absorptiometry in arms, legs, spine, trunk, pelvis and total. Weekly training load and previous time of engagement in the sport modality were reported by the coach. Partial correlation tested the association between weekly training load and bone mineral density, controlled by sex, chronological age, previous practice and somatic maturation. Analysis of covariance was used to compare bone mineral density values according to control and martial arts groups, controlled by sex, chronological age, previous practice and somatic maturation. Significant relationships between bone mineral density and muscle mass were inserted into a multivariate model and the slopes of the models were compared using the Student t test (control versus martial art). Results: Adolescents engaged in judo practice presented higher values of bone mineral density than the control individuals (p-value=0.042; Medium Effect size [Eta-squared=0.063]), while the relationship between quantity of weekly training and bone mineral density was significant among adolescents engaged in judo (arms [r=0.308] and legs [r=0.223]) and kung-fu (arms [r=0.248] and spine [r=0.228]). Conclusions: Different modalities of martial arts are related to higher bone mineral density in different body regions among adolescents. PMID:27017002

  5. Bone mineral density, muscle strength, and recreational exercise in men

    NASA Technical Reports Server (NTRS)

    Snow-Harter, C.; Whalen, R.; Myburgh, K.; Arnaud, S.; Marcus, R.

    1992-01-01

    Muscle strength has been shown to predict bone mineral density (BMD) in women. We examined this relationship in 50 healthy men who ranged in age from 28 to 51 years (average 38.3 years). BMD of the lumbar spine, proximal femur, whole body, and tibia were measured by dual-energy x-ray absorptiometry (Hologic QDR 1000W). Dynamic strength using one repetition maximum was assessed for the biceps, quadriceps, and back extensors and for the hip abductors, adductors, and flexors. Isometric grip strength was measured by dynamometry. Daily walking mileage was assessed by 9 week stepmeter records and kinematic analysis of video filming. Subjects were designated as exercisers and nonexercisers. Exercisers participated in recreational exercise at least two times each week. The results demonstrated that BMD at all sites correlated with back and biceps strength (p < 0.01 to p = 0.0001). Body weight correlated with tibia and whole-body BMD (p < 0.001); age negatively correlated with Ward's triangle BMD (p < 0.01). In stepwise multiple regressions, back strength was the only independent predictor of spine and femoral neck density (R2 = 0.27). Further, back strength was the most robust predictor of BMD at the trochanter, Ward's triangle, whole body, and tibia, although biceps strength, age, body weight, and leg strength contributed significantly to BMD at these skeletal sites, accounting for 35-52% of the variance in BMD. Exercisers and nonexercisers were similar for walking (3.97 versus 3.94 miles/day), age (37.8 versus 38.5) years, and weight (80.0 versus 77.7 kg). However, BMD and muscle strength were significantly greater in exercises than in nonexercisers.(ABSTRACT TRUNCATED AT 250 WORDS).

  6. Prolactinoma: A Massive Effect on Bone Mineral Density in a Young Patient.

    PubMed

    Sperling, Scott; Bhatt, Harikrashna

    2016-01-01

    This case highlights a prolactinoma in a young male, and its impact on bone health. Osteoporosis has been noted to be an issue in postmenopausal women with prolactinomas. This case shows a similar impact on bone health in a young male resulting in low bone mineral density for age based on Z-score. This case report highlights the possible mechanisms for the bone loss in the setting of prolactinoma and the need for assessing bone health in such patients. Furthermore it highlights the need for a thorough evaluation in such patients. PMID:27446618

  7. Prolactinoma: A Massive Effect on Bone Mineral Density in a Young Patient

    PubMed Central

    2016-01-01

    This case highlights a prolactinoma in a young male, and its impact on bone health. Osteoporosis has been noted to be an issue in postmenopausal women with prolactinomas. This case shows a similar impact on bone health in a young male resulting in low bone mineral density for age based on Z-score. This case report highlights the possible mechanisms for the bone loss in the setting of prolactinoma and the need for assessing bone health in such patients. Furthermore it highlights the need for a thorough evaluation in such patients. PMID:27446618

  8. Revised Reference Curves for Bone Mineral Content and Areal Bone Mineral Density According to Age and Sex for Black and Non-Black Children: Results of the Bone Mineral Density in Childhood Study

    PubMed Central

    Kalkwarf, Heidi J.; Gilsanz, Vicente; Lappe, Joan M.; Oberfield, Sharon; Shepherd, John A.; Frederick, Margaret M.; Huang, Xiangke; Lu, Ming; Mahboubi, Soroosh; Hangartner, Thomas; Winer, Karen K.

    2011-01-01

    Context: Deficits in bone acquisition during growth may increase fracture risk. Assessment of bone health during childhood requires appropriate reference values relative to age, sex, and population ancestry to identify bone deficits. Objective: The objective of this study was to provide revised and extended reference curves for bone mineral content (BMC) and areal bone mineral density (aBMD) in children. Design: The Bone Mineral Density in Childhood Study was a multicenter longitudinal study with annual assessments for up to 7 yr. Setting: The study was conducted at five clinical centers in the United States. Participants: Two thousand fourteen healthy children (992 males, 22% African-Americans) aged 5–23 yr participated in the study. Intervention: There were no interventions. Main Outcome Measures: Reference percentiles for BMC and aBMD of the total body, lumbar spine, hip, and forearm were obtained using dual-energy x-ray absorptiometry for Black and non-Black children. Adjustment factors for height status were also calculated. Results: Extended reference curves for BMC and aBMD of the total body, total body less head, lumbar spine, total hip, femoral neck, and forearm for ages 5–20 yr were constructed relative to sex and age for Black and non-Black children. Curves are similar to those previously published for 7–17 year olds. BMC and aBMD values were greater for Black vs. non-Black children at all measurement sites. Conclusions: We provide here dual-energy x-ray absorptiometry reference data on a well-characterized cohort of 2012 children and adolescents. These reference curves provide the most robust reference values for the assessment and monitoring of bone health in children and adolescents in the literature to date. PMID:21917867

  9. [Bone mineral density in residents living on radioactive territories of Cheliabinsk Region].

    PubMed

    Tolstykh, E I; Shagina, N B; Peremyslova, L M; Degteva, M O

    2010-01-01

    Operation of "Mayak" plutonium production complex resulted in radioactive contamination of the part of Chelyabinsk Region in 1950-60s. Significant gas-aerosol emissions of 1311 occurred since 1948; in 1957, a radiation accident resulted in 90Sr contamination of large territories. This paper presents comparison of bone mineral density of persons lived on territories with different levels of soil 90Sr-contamination with a control group. It was found that in 1970-1975 the bone mineral density, estimated from mineral content in bone samples, in residents of contaminated areas born in 1936-1952 was significantly lower compared with the control group. For persons born in 1880-1935 such differences were not found. It was shown that the decrease in bone mineral density was not related to 90Sr exposure of osteogenic cells in the dose range from 0.1 to 1300 mGy: the coefficient of correlation between individual 90Sr-doses and bone mineral contents was not significant. The decrease in bone mineral density of persons born in 1936-1952 could be associated with exposure of thyroid and parathyroid glands (systemic regulators of calcium turnover) by 131I from gas-aerosol emissions from "Mayak". Maximum gas-aerosol emissions occurred in 1948-1954 and coincided with growth and development of thyroid gland, characterizing by intensive accumulation of 131I, and with growth and maturation of the skeleton of persons born in these calendar years. PMID:20968060

  10. Response Of Mineralizing And Non-Mineralizing Bone Cells To Fluid Flow: An In Vitro Model For Mechanotransruction

    NASA Technical Reports Server (NTRS)

    Makuch, Lauren A.

    2004-01-01

    osteoblasts, including increased proliferation, osteoblastic differentiation, alkaline phosphatase activity, and production of nitric oxide, prostaglandins, and osteopontin. Several proteins have been implicated in osteoblastic mechanotransduction including Bone Morphogenetic Protein-2 (BMP-2), parathyroid hormone, 1,25-dihydroxyvitamin D3 receptor, osteopontin (OPN), osteoprotegerin (OPG), and alkaline phosphatase (AP). We will characterize relative levels of each protein in mineralizing or non-mineralizing MC3T3 osteoblastic cells that have been exposed to fluid flow compared to non-fluid flow using immunofluorescent staining and two- photon laser microscopy as well as western blotting. Because calcium-mediated pathways are important in osteoblastic signaling, we will transfect MC3T3 cells with cameleon probes for Ca2+ containing YFP and CFP. Results will be analyzed using FRET/FLIM to study differential release of intracellular Ca(2+) in response to fluid flow and conditions inducing matrix mineralization. In addition, we plan to conduct several microarray experiments to determine differential gene expression in MC3T3 cells in response to fluid flow and conditions inducing mineralization.

  11. The role of water and mineral-collagen interfacial bonding on microdamage progression in bone.

    PubMed

    Luo, Qing; Leng, Huijie; Wang, Xiaodu; Zhou, Yanheng; Rong, Qiguo

    2014-02-01

    Microdamage would be accumulated in bone due to high-intensity training or even normal daily activity, which may consequently cause fragility fracture or stress fracture. On the other hand, microdamage formation serves as a toughening mechanism in bone. However, the mechanisms that control microdamage initiation and accumulation in bone are still poorly understood. Our previous finite element model indicated that different interfacial properties between mineral and collagen in bone may lead to distinct patterns of microdamage accumulation. Therefore, the current study was designed to examine such prediction and to investigate the role of water and mineral-collagen interactions on microdamage accumulation in bone. To address these issues, 48 mice femurs were divided randomly into four groups. These groups were dehydrated or treated with perfluorotripropylamine (PFTA) or NaF solution to change water distribution and mineral-collagen interfacial bonding in bone. After three-point bending fatigue tests, the types of microdamage (i.e., linear microcracks or diffuse damage) formed in bone were compared between different groups. The results suggested that (1) bone tissues with strong mineral-collagen interfacial bonding facilitate the formation of linear microcraks, and (2) water has little contribution to the growth of microcracks. PMID:24122969

  12. DLX3 regulates bone mass by targeting genes supporting osteoblast differentiation and mineral homeostasis in vivo.

    PubMed

    Isaac, J; Erthal, J; Gordon, J; Duverger, O; Sun, H-W; Lichtler, A C; Stein, G S; Lian, J B; Morasso, M I

    2014-09-01

    Human mutations and in vitro studies indicate that DLX3 has a crucial function in bone development, however, the in vivo role of DLX3 in endochondral ossification has not been established. Here, we identify DLX3 as a central attenuator of adult bone mass in the appendicular skeleton. Dynamic bone formation, histologic and micro-computed tomography analyses demonstrate that in vivo DLX3 conditional loss of function in mesenchymal cells (Prx1-Cre) and osteoblasts (OCN-Cre) results in increased bone mass accrual observed as early as 2 weeks that remains elevated throughout the lifespan owing to increased osteoblast activity and increased expression of bone matrix genes. Dlx3OCN-conditional knockout mice have more trabeculae that extend deeper in the medullary cavity and thicker cortical bone with an increased mineral apposition rate, decreased bone mineral density and increased cortical porosity. Trabecular TRAP staining and site-specific Q-PCR demonstrated that osteoclastic resorption remained normal on trabecular bone, whereas cortical bone exhibited altered osteoclast patterning on the periosteal surface associated with high Opg/Rankl ratios. Using RNA sequencing and chromatin immunoprecipitation-Seq analyses, we demonstrate that DLX3 regulates transcription factors crucial for bone formation such as Dlx5, Dlx6, Runx2 and Sp7 as well as genes important to mineral deposition (Ibsp, Enpp1, Mepe) and bone turnover (Opg). Furthermore, with the removal of DLX3, we observe increased occupancy of DLX5, as well as increased and earlier occupancy of RUNX2 on the bone-specific osteocalcin promoter. Together, these findings provide novel insight into mechanisms by which DLX3 attenuates bone mass accrual to support bone homeostasis by osteogenic gene pathway regulation. PMID:24948010

  13. DLX3 regulates bone mass by targeting genes supporting osteoblast differentiation and mineral homeostasis in vivo

    PubMed Central

    Isaac, J; Erthal, J; Gordon, J; Duverger, O; Sun, H-W; Lichtler, A C; Stein, G S; Lian, J B; Morasso, M I

    2014-01-01

    Human mutations and in vitro studies indicate that DLX3 has a crucial function in bone development, however, the in vivo role of DLX3 in endochondral ossification has not been established. Here, we identify DLX3 as a central attenuator of adult bone mass in the appendicular skeleton. Dynamic bone formation, histologic and micro-computed tomography analyses demonstrate that in vivo DLX3 conditional loss of function in mesenchymal cells (Prx1-Cre) and osteoblasts (OCN-Cre) results in increased bone mass accrual observed as early as 2 weeks that remains elevated throughout the lifespan owing to increased osteoblast activity and increased expression of bone matrix genes. Dlx3OCN-conditional knockout mice have more trabeculae that extend deeper in the medullary cavity and thicker cortical bone with an increased mineral apposition rate, decreased bone mineral density and increased cortical porosity. Trabecular TRAP staining and site-specific Q-PCR demonstrated that osteoclastic resorption remained normal on trabecular bone, whereas cortical bone exhibited altered osteoclast patterning on the periosteal surface associated with high Opg/Rankl ratios. Using RNA sequencing and chromatin immunoprecipitation-Seq analyses, we demonstrate that DLX3 regulates transcription factors crucial for bone formation such as Dlx5, Dlx6, Runx2 and Sp7 as well as genes important to mineral deposition (Ibsp, Enpp1, Mepe) and bone turnover (Opg). Furthermore, with the removal of DLX3, we observe increased occupancy of DLX5, as well as increased and earlier occupancy of RUNX2 on the bone-specific osteocalcin promoter. Together, these findings provide novel insight into mechanisms by which DLX3 attenuates bone mass accrual to support bone homeostasis by osteogenic gene pathway regulation. PMID:24948010

  14. Factors affecting the direct mineralization of CO2 with olivine.

    PubMed

    Kwon, Soonchul; Fan, Maohong; DaCosta, Herbert F M; Russell, Armistead G

    2011-01-01

    Olivine, one of the most abundant minerals existing in nature, is explored as a CO2 carbonation agent for direct carbonation of CO2 in flue gas. Olivine based CO2 capture is thermodynamically favorable and can form a stable carbonate for long-term storage. Experimental results have shown that water vapor plays an important role in improving CO2 carbonation rate and capacities. Other operation conditions including reaction temperature, initial CO2 concentration, residence time corresponding to the flow rate of CO2 gas stream, and water vapor concentration also considerably affect the performance of the technology. PMID:22128528

  15. Short-Term Effects of TNF Inhibitors on Bone Turnover Markers and Bone Mineral Density in Rheumatoid Arthritis.

    PubMed

    Orsolini, Giovanni; Adami, Giovanni; Adami, Silvano; Viapiana, Ombretta; Idolazzi, Luca; Gatti, Davide; Rossini, Maurizio

    2016-06-01

    TNFα inhibitors (TNFαI) exert positive effects on disease activity in rheumatoid arthritis (RA). Bone involvement is a major determinant of functional impairment in this disease. Here we investigated the short-term effects of TNFαI therapy on bone metabolism and density. We studied 54 patients with RA starting a TNFαI biologic drug, in whom any factor known to interfere with bone metabolism was excluded or rigorously accounted for. We measured at baseline and after 6-month therapy bone turnover markers: N-propeptide of type I collagen (P1NP), and bone alkaline phosphates for bone formation and serum C-terminal telopeptide of type I collagen (CTX) for bone resorption. We also evaluated bone mineral density (BMD) at hip and lumbar by dual-energy X-ray absorptiometry. All bone markers rose significantly and these changes were not dependent on steroid dosage. A significant decrease in femoral neck BMD was also observed. These results indicate that TNFαI therapy in RA over 6 months is associated with an early increase in bone turnover and a decline in hip BMD. PMID:26887973

  16. Effects of graded levels of montmorillonite on performance, hematological parameters and bone mineralization in weaned pigs.

    PubMed

    Duan, Q W; Li, J T; Gong, L M; Wu, H; Zhang, L Y

    2013-11-01

    The aim of this study was to investigate the effects of graded levels of montmorillonite, a constituent of clay, on performance, hematological parameters and bone mineralization in weaned pigs. One hundred and twenty, 35-d-old crossbred pigs (Duroc×Large White×Landrace, 10.50±1.20 kg) were used in a 28-d experiment and fed either an unsupplemented corn-soybean meal basal diet or similar diets supplemented with 0.5, 1.0, 2.5 or 5.0% montmorillonite added at the expense of wheat bran. Each treatment was replicated six times with four pigs (two barrows and two gilts) per replicate. Feed intake declined (linear and quadratic effect, p< 0.01) with increasing level of montmorillonite while feed conversion was improved (linear and quadratic effect, p<0.01). Daily gain was unaffected by dietary treatment. Plasma myeloperoxidase declined linearly (p = 0.03) with increasing dietary level of montmorillonite. Plasma malondialdehyde and nitric oxide levels were quadratically affected (p<0.01) by montmorillonite with increases observed for pigs fed the 0.5 and 1.0% levels which then declined for pigs fed the 2.5 and 5.0% treatments. In bone, the content of potassium, sodium, copper, iron, manganese and magnesium were decreased (linear and quadratic effect, p<0.01) in response to an increase of dietary montmorillonite. These results suggest that dietary inclusion of montmorillonite at levels as high as 5.0% does not result in overt toxicity but could induce potential oxidative damage and reduce bone mineralization in pigs. PMID:25049749

  17. Effects of Graded Levels of Montmorillonite on Performance, Hematological Parameters and Bone Mineralization in Weaned Pigs

    PubMed Central

    Duan, Q. W.; Li, J. T.; Gong, L. M.; Wu, H.; Zhang, L. Y.

    2013-01-01

    The aim of this study was to investigate the effects of graded levels of montmorillonite, a constituent of clay, on performance, hematological parameters and bone mineralization in weaned pigs. One hundred and twenty, 35-d-old crossbred pigs (Duroc×Large White×Landrace, 10.50±1.20 kg) were used in a 28-d experiment and fed either an unsupplemented corn-soybean meal basal diet or similar diets supplemented with 0.5, 1.0, 2.5 or 5.0% montmorillonite added at the expense of wheat bran. Each treatment was replicated six times with four pigs (two barrows and two gilts) per replicate. Feed intake declined (linear and quadratic effect, p< 0.01) with increasing level of montmorillonite while feed conversion was improved (linear and quadratic effect, p<0.01). Daily gain was unaffected by dietary treatment. Plasma myeloperoxidase declined linearly (p = 0.03) with increasing dietary level of montmorillonite. Plasma malondialdehyde and nitric oxide levels were quadratically affected (p<0.01) by montmorillonite with increases observed for pigs fed the 0.5 and 1.0% levels which then declined for pigs fed the 2.5 and 5.0% treatments. In bone, the content of potassium, sodium, copper, iron, manganese and magnesium were decreased (linear and quadratic effect, p<0.01) in response to an increase of dietary montmorillonite. These results suggest that dietary inclusion of montmorillonite at levels as high as 5.0% does not result in overt toxicity but could induce potential oxidative damage and reduce bone mineralization in pigs. PMID:25049749

  18. Longitudinal bone mineral content and density in Rett syndrome and their contributing factors.

    PubMed

    Jefferson, Amanda; Fyfe, Sue; Downs, Jenny; Woodhead, Helen; Jacoby, Peter; Leonard, Helen

    2015-05-01

    Bone mass and density are low in females with Rett syndrome. This study used Dual energy x-ray absorptiometry to measure annual changes in z-scores for areal bone mineral density (aBMD) and bone mineral content (BMC) in the lumbar spine and total body in an Australian Rett syndrome cohort at baseline and then after three to four years. Bone mineral apparent density (BMAD) was calculated in the lumbar spine. Annual changes in lean tissue mass (LTM) and bone area (BA) were also assessed. The effects of age, genotype, mobility, menstrual status and epilepsy diagnosis on these parameters were also investigated. The baseline sample included 97 individuals who were representative of the total live Australian Rett syndrome population under 30years in 2005 (n=274). Of these 74 had a follow-up scan. Less than a quarter of females were able to walk on their own at follow-up. Bone area and LTM z-scores declined over the time between the baseline and follow-up scans. Mean height-standardised z-scores for the bone outcomes were obtained from multiple regression models. The lumbar spine showed a positive mean annual BMAD z-score change (0.08) and a marginal decrease in aBMD (-0.04). The mean z-score change per annum for those 'who could walk unaided' was more positive for LS BMAD (p=0.040). Total body BMD mean annual z-score change from baseline to follow-up was negative (-0.03). However this change was positive in those who had achieved menses prior to the study (0.03, p=0,040). Total body BMC showed the most negative change (-0.60), representing a decrease in bone mineral content over time. This normalised to a z-score change of 0.21 once adjusted for the reduced lean tissue mass mean z-score change (-0.21) and bone area mean z-score change (-0.14). Overall, the bone mineral content, bone mineral density, bone area and lean tissue mass z-scores for all outcome measures declined, with the TB BMC showing significant decreases. Weight, height and muscle mass appear to have

  19. Bone mineral density predicts posttransplant survival among hepatocellular carcinoma liver transplant recipients.

    PubMed

    Sharma, Pratima; Parikh, Neehar D; Yu, Jessica; Barman, Pranab; Derstine, Brian A; Sonnenday, Christopher J; Wang, Stewart C; Su, Grace L

    2016-08-01

    Hepatocellular carcinoma (HCC) is a common indication for liver transplantation (LT). Recent data suggest that body composition features strongly affect post-LT mortality. We examined the impact of body composition on post-LT mortality in patients with HCC. Data on adult LT recipients who received Model for End-Stage Liver Disease exception for HCC between February 29, 2002, and December 31, 2013, and who had a computed tomography (CT) scan any time 6 months prior to LT were reviewed (n = 118). All available CT scan Digital Imaging and Communication in Medicine files were analyzed using a semiautomated high throughput methodology with algorithms programmed in MATLAB. Analytic morphomics measurements including dorsal muscle group (DMG) area, visceral and subcutaneous fat, and bone mineral density (BMD) were taken at the bottom of the eleventh thoracic vertebral level. Thirty-two (27%) patients died during the median follow-up of 4.4 years. The number of HCC lesions (hazard ratio [HR], 2.81; P < 0.001), BMD (HR = 0.90/Hounsfield units [HU]; P = 0.03), pre-LT locoregional therapy (HR = 0.14; P < 0.001), and donor age (HR = 1.05; P < 0.001) were the independent predictors of post-LT mortality. DMG area did not affect post-LT survival. In conclusion, in addition to number of HCC lesions and pre-LT locoregional therapy, low BMD, a surrogate for bone loss rather than DMG area, was independently associated with post-LT mortality in HCC patients. Bone loss may be an early marker of deconditioning that precedes sarcopenia and may affect transplant outcomes. Liver Transplantation 22 1092-1098 2016 AASLD. PMID:27064263

  20. Bone mineral content in hereditary polycystic osteodysplasia associated with progressive dementia.

    PubMed

    Hakola, H P; Karjalainen, P

    1975-07-01

    Measurements of the bone mineral content were made in five patients with a disease characterized by progressive dementia and lipomembranous polycystic osteodysplasia. Decreased bone mineral density (g/cm3) was observed not only in the region of cysts in the distal radius but also in the diaphyses of radius and ulna. The 85Sr vertebral uptake was low in the youngest patient, normal in two and raised in another two. The observations were compatible with the hypothesis of a general metabolic disorder of the bone. PMID:1189965

  1. State of the mineral component of rat bone tissue during hypokinesia and the recovery period

    NASA Technical Reports Server (NTRS)

    Volozhin, A. I.; Stupakov, G. P.; Pavlova, M. N.; Muradov, I. S.

    1980-01-01

    Experiments were conducted on young growing rats. Hypokinesia lasting from 20 to 200 days caused retarded gain in weight and volume of the femur and delayed development of the cortical layer of the diaphysis. In contrast, the density of the cortical layer of the femoral diaphysis increased due to elevation of the mineral saturation of the bone tissue microstructures. Incorporation of Ca into the bone tissue in hypokinesia had a tendency to reduce. Partial normalization of the bone tissue mineral component occurred during a 20 day recovery period following hypokinesia.

  2. Osteopenia of Prematurity: Does Physical Activity Improve Bone Mineralization in Preterm Infants?

    PubMed

    Stalnaker, Kelsey A; Poskey, Gail A

    2016-01-01

    Bone mineralization of preterm infants is significantly less than full-term infants at birth, placing preterm infants at risk for osteopenia of prematurity and other metabolic bone diseases. Advances in nutritional supplementation and standard nursing care alone have been unsuccessful in improving bone mineralization postnatally. Research supports a daily physical activity protocol of passive range of motion and gentle joint compression when combined with adequate nutritional supplementation reduces osteopenia of prematurity. This article provides a systematic review of the current evidence surrounding early physical activity and neonatal massage for the treatment of osteopenia and indicates the need for universal handling protocols in caring for this unique population. PMID:27052984

  3. Lack of Association between Pulse Steroid Therapy and Bone Mineral Density in Patients with Multiple Sclerosis

    PubMed Central

    Zengin Karahan, Serap; Boz, Cavit; Kilic, Sevgi; Can Usta, Nuray; Ozmenoglu, Mehmet; Altunayoglu Cakmak, Vildan; Gazioglu, Sibel

    2016-01-01

    Multiple sclerosis (MS) has been associated with reduced bone mineral density (BMD). The purpose of this study was to determine the possible factors affecting BMD in patients with MS. We included consecutive 155 patients with MS and 90 age- and sex-matched control subjects. Patients with MS exhibited significantly lower T-scores and Z-scores in the femoral neck and trochanter compared to the controls. Ninety-four (61%) patients had reduced bone mass in either the lumbar spine or the femoral neck; of these, 64 (41.3%) had osteopenia and 30 (19.4%) had osteoporosis. The main factors affecting BMD were disability, duration of MS, and smoking. There was a negative relationship between femoral BMD and EDSS and disease duration. No association with lumbar BMD was determined. There were no correlations between BMD at any anatomic region and cumulative corticosteroid dose. BMD is significantly lower in patients with MS than in healthy controls. Reduced BMD in MS is mainly associated with disability and duration of the disease. Short courses of high dose steroid therapy did not result in an obvious negative impact on BMD in the lumbar spine and femoral neck in patients with MS. PMID:26966578

  4. Correlation of vitamin D, bone mineral density and parathyroid hormone levels in adults with low bone density

    PubMed Central

    Kota, Sunil; Jammula, Sruti; Kota, Siva; Meher, Lalit; Modi, Kirtikumar

    2013-01-01

    Background: Bone mineral densiy (BMD) is known to be affected by serum 25-hydroxyvitamin D (25(OH) D) levels, intact parathyroid hormone (iPTH) levels. Indian data pertinent to above observation is scant. Our study aimed to investigate the relationships between serum 25-hydroxyvitamin D (25(OH) D) levels, intact parathyroid hormone (iPTH) levels and bone mineral density (BMD) in a cohort of Indian patients. Materials and Methods: Adults with or without fragility fractures with low BMD at the hip or lumbar spine were evaluated clinically along with laboratory investigations. T-scores of the hip and spine were derived from BMD-DEXA (dual-energy X-ray absorptiometry). Multivariate regression models were used to investigate the relationships between serum 25(OH) D, iPTH and BMD. Results: Total of 102 patients (male:female = 38:64) with a mean age of 62.5 ± 6.4 years were included in the study. Forty-four patients had osteopenia. Osteoporosis was present in 58 patients. The mean values for serum 25(OH) D and iPTH levels were 21.3 ± 0.5 ng/ml and 53.1 ± 22.3 pg/ml, respectively. In 84.3% of patients, serum 25(OH) D levels were below 30 ng/ml (Normal = 30-74 ng/ml), confirming vitamin D deficiency. There was no association between 25(OH) D levels and BMD at the hip or lumbar spine (P = 0.473 and 0.353, respectively). Both at the hip and lumbar spine; iPTH levels, male gender, body mass index (BMI) and age were found to be significant predictors of BMD. Patients with higher BMI had significantly lower BMD and T-score. At levels <30 ng/ml, 25(OH) D was negatively associated with iPTH (P = 0.041). Conclusion: Among our cohort of patients with low BMD, no direct relationship between serum 25(OH) D levels and BMD was observed. However, a negative correlation between iPTH and 25(OH) D at serum 25(OH) D concentrations <30 ng/ml. Serum iPTH levels showed a significant negative association with BMD at the hip and lumbar spine. Our findings underscore the critical role of

  5. Rapidly Assessing Changes in Bone Mineral Balance Using Natural Stable Calcium Isotopes

    NASA Technical Reports Server (NTRS)

    Morgan, J. L. L.; Gordon, G. W.; Romaniello, S. J.; Skulan, J. L.; Smith, S. M.; Anbar, A. D.

    2011-01-01

    We demonstrate that variations in the Ca isotope ratios in urine rapidly and quantitatively reflect changes in bone mineral balance. This variation occurs because bone formation depletes soft tissue of light Ca isotopes, while bone resorption releases that isotopically light Ca back into soft tissue. In a study of 12 individuals confined to bed rest, a condition known to induce bone resorption, we show that Ca isotope ratios shift in a direction consistent with net bone loss after just 7 days, long before detectible changes in bone density occur. Consistent with this interpretation, the Ca isotope variations track changes observed in N-teleopeptide, a bone resorption biomarker, while bone-specific alkaline phosphatase, a bone formation biomarker, is unchanged. Ca isotopes can in principle be used to quantify net changes in bone mass. Ca isotopes indicate an average loss of 0.62 +/- 0.16 % in bone mass over the course of this 30-day study. The Ca isotope technique should accelerate the pace of discovery of new treatments for bone disease and provide novel insights into the dynamics of bone metabolism.

  6. [The quantitative determination of bone mineral content--a system comparison of similarly built computed tomographs].

    PubMed

    Andresen, R; Radmer, S; Banzer, D; Felsenberg, D; Wolf, K J

    1994-03-01

    An intercomparison of 4 CT scanners of the same manufacturer was performed. The bone mineral content of 11 lumbar vertebral columns removed directly post mortem was determined in a specially constructed lucite-water phantom. Even devices of the same construction were shown to yield a variation in the quantitative evaluation markedly exceeding the annual physiological mineral loss. As long as scanner adjustment by physical calibration phantoms has not yet been established, a course assessment and therapy control of bone mineral content should always be carried out on the same QCT scanner. PMID:8136480

  7. Stanozolol Decreases Bone Turnover Markers, Increases Mineralization, and Alters Femoral Geometry in Male Rats.

    PubMed

    Nebot, E; Aparicio, V A; Camiletti-Moirón, D; Martinez, R; Erben, R G; Kapravelou, G; Sánchez-González, C; De Teresa, C; Porres, J M; López-Jurado, M; Aranda, P; Pietschmann, P

    2016-06-01

    Stanozonol (ST) is a synthetic derivative of testosterone; it has anabolic/androgenic activity, increasing both the turnover of trabecular bone and the endocortical apposition of bone. The present study aimed to examine the effects of ST on bone status in rats by bone mineral content, markers of formation and resorption, bone density, and structural and microarchitectural parameters. Twenty male Wistar rats were randomly distributed into two experimental groups corresponding to placebo or ST administration, which consisted of weekly intramuscular injections of 10 mg/kg body weight of ST. Plasma parameters were analyzed by immunoassay. Bone mineral content was determined by spectrophotometry. Bone mineral density (BMD) and structural parameters were measured by peripheral quantitative computed tomography, and trabecular and cortical microarchitecture by micro-computed tomography. Plasma Ca, Mg, and alkaline phosphatase were higher, and urinary Ca excretion, corticosterone, and testosterone concentrations lower in the ST group. Femur Ca content was higher and P content was lower in the ST, whereas osteocalcin, aminoterminal propeptides of type I procollagen, and C-terminal telopeptides of type I collagen were lower. Total cross-sectional, trabecular, and cortical/subcortical areas were lower in the ST. No differences were observed on BMD and area parameters of the diaphysis as well as on trabecular and cortical microarchitecture. The use of ST increases bone mineralization, ash percentage, and Ca and Mg content in femur. In spite of an absence of changes in BMD, geometric metaphyseal changes were observed. We conclude that ST alters bone geometry, leads to low bone turnover, and thus may impair bone quality. PMID:26801156

  8. Long-term safety of antiresorptive treatment: bone material, matrix and mineralization aspects

    PubMed Central

    Misof, Barbara M; Fratzl-Zelman, Nadja; Paschalis, Eleftherios P; Roschger, Paul; Klaushofer, Klaus

    2015-01-01

    It is well established that long-term antiresorptive use is effective in the reduction of fracture risk in high bone turnover osteoporosis. Nevertheless, during recent years, concerns emerged that longer bone turnover reduction might favor the occurrence of fatigue fractures. However, the underlying mechanisms for both beneficial and suspected adverse effects are not fully understood yet. There is some evidence that their effects on the bone material characteristics have an important role. In principle, the composition and nanostructure of bone material, for example, collagen cross-links and mineral content and crystallinity, is highly dependent on tissue age. Bone turnover determines the age distribution of the bone structural units (BSUs) present in bone, which in turn is decisive for its intrinsic material properties. It is noteworthy that the effects of bone turnover reduction on bone material were observed to be dependent on the duration of the antiresorptive therapy. During the first 2–3 years, significant decreases in the heterogeneity of material properties such as mineralization of the BSUs have been observed. In the long term (5–10 years), the mineralization pattern reverts towards normal heterogeneity and degree of mineralization, with no signs of hypermineralization in the bone matrix. Nevertheless, it has been hypothesized that the occurrence of fatigue fractures (such as atypical femoral fractures) might be linked to a reduced ability of microdamage repair under antiresorptive therapy. The present article examines results from clinical studies after antiresorptive, in particular long-term, therapy with the aforementioned potentially positive or negative effects on bone material. PMID:25709811

  9. Disordered-Eating Attitudes in Relation to Bone Mineral Density and Markers of Bone Turnover in Overweight Adolescents

    PubMed Central

    Schvey, Natasha A.; Tanofsky-Kraff, Marian; Yanoff, Lisa B.; Checchi, Jenna M.; Shomaker, Lauren B.; Brady, Sheila; Savastano, David M.; Ranzenhofer, Lisa M.; Yanovski, Susan Z.; Reynolds, James C.; Yanovski, Jack A.

    2009-01-01

    Purpose To examine the relationships between cognitive eating restraint and both bone mineral density (BMD) and markers of bone turnover in overweight adolescents. Methods 137 overweight (BMI 39.1±6.8 kg/m2) African American and Caucasian adolescent (age=14.4 ± 1.4y) girls (66.4%) and boys were administered the Eating Disorder Examination (EDE) interview and Eating Inventory (EI) questionnaire and underwent dual energy x-ray absorptiometry (DXA) to measure total lumbar spine BMD. Markers of bone formation (serum bone specific alkaline phosphatase and osteocalcin), bone resorption (24-hour urine N-telopeptides), and stress (urine free cortisol) were measured. Results After accounting for the contribution of demographics, height, weight, serum 25-hydroxyvitamin D, and depressive symptoms, adolescents’ weight concern, as assessed by interview, was a significant contributor to a model of urine free cortisol (β =.30, p <.05). Shape concern, as also assessed by interview, was significantly associated with lumbar spine bone mineral density (β =.−.15, p < 05). Dietary restraint was not a significant predictor in any of these models. Conclusions These findings suggest that among severely overweight adolescents, dissatisfaction with shape and weight may be salient stressors. Future research is required to illuminate the relationship between bone health and disordered-eating attitudes in overweight adolescents. PMID:19541247

  10. Association between mean platelet volume and bone mineral density in postmenopausal women

    PubMed Central

    Aypak, Cenk; Türedi, Özlem; Bircan, Mustafa A.; Civelek, Gul M.; Araz, Mine

    2016-01-01

    [Purpose] Osteoporosis is an inflammatory disease, and platelets play a critical role in bone remodeling. Mean platelet volume has been shown to be influenced by inflammation. Our aim was to evaluate the relationship between mean platelet volume and bone mineral density in postmenopausal women. [Subjects and Methods] The records of female patients who had been referred to a tertiary hospital for bone mineral density analysis were retrospectively reviewed. [Results] A total of 175 patients (mean age: 61.3 ± 9.0 years) were enrolled. Overall, 72% (126/175) of patients met the criteria for osteoporosis. Mean platelet volume was found to be inversely correlated with body mass index. There was a significant positive correlation between mean platelet volume and femoral neck bone mineral density in our normal weight osteoporotic group, whereas there was a significant negative correlation in our overweight-obese osteoporotic group. The negative correlation between mean platelet volume and femoral neck bone mineral density in the overweight-obese osteoporotic group persisted after adjustment for confounding factors. Multivariate analyses revealed that mean platelet volume was significantly associated with femoral neck bone mineral density in osteoporotic patients in both our normal weight and overweight-obese groups. [Conclusion] Regardless of mechanisms, mean platelet volume might be used as a biomarker for osteoporosis in clinical settings. PMID:27390409

  11. Bone mineral density and risk of postmenopausal breast cancer.

    PubMed

    Grenier, Debjani; Cooke, Andrew L; Lix, Lisa; Metge, Colleen; Lu, Huimin; Leslie, William D

    2011-04-01

    To determine if higher bone mineral density (BMD) is a risk factor for breast cancer in women age 50 years and older. 37,860 women ≥ 50-year old with no previous breast cancer diagnosis had baseline BMD assessment between January 1999 and December 2007. Cox proportional hazards models were created for time to a new breast cancer as a function of lumbar spine or femoral neck BMD quartile (1st = lowest as reference) with adjustment for relevant covariates. A secondary analysis was performed to look for an association with estrogen receptor-positive (ER-positive) breast cancers. 794 invasive and in situ breast cancers (484 ER-positive) occurred with a median follow up of 5.4 years. Increased breast cancer risk was seen for the 3rd and 4th quartiles of lumbar spine BMD with hazard ratios (HRs) of 1.26 (95% CI, 1.01-1.58) and 1.45 (95% CI, 1.16-1.81), respectively and for the 3rd quartile of femoral neck BMD with a HR of 1.33 (95% CI, 1.07-1.64). A test for linear trend showed that lumbar spine BMD (P < 0.001) and femoral neck BMD (P = 0.04) were associated with increased risk. Higher lumbar spine BMD was also associated with increased risk of ER-positive breast cancer with HR of 1.45 (95% CI, 1.08-1.94), and 1.68 (95% CI, 1.24-2.27) for women in the 2nd and 4th quartiles, respectively. A test for linear trend showed lumbar spine BMD was associated with increasing risk of ER-positive breast cancer (P = 0.003). Increased ER-positive breast cancer risk was seen for the 3rd quartile of femoral neck BMD with a HR of 1.43 (95% CI, 1.08-1.89). Higher lumbar spine and femoral neck BMD are associated with higher risk of breast cancer in women ≥50-year old. Lumbar spine and femoral neck BMD are associated with increased risk of ER-positive breast cancer. PMID:20838879

  12. Osteoclastogenesis inhibitory factor/osteoprotegerin ameliorates the decrease in both bone mineral density and bone strength in immobilized rats.

    PubMed

    Mochizuki, Shin-ichi; Fujise, Nobuaki; Higashio, Kanji; Tsuda, Eisuke

    2002-01-01

    Rat models of immobilization-induced osteopenia are characterized by uncoupling of bone metabolism, i.e., increased bone resorption and decreased bone formation in trabecular bone. Using such a rat model, the efficacy of osteoclastogenesis inhibitory factor (OCIF)/osteoprotegerin, a novel secreted protein that inhibits osteoclastogenesis, in reducing bone loss was investigated. Male Fischer rats were neurectomized and injected intramuscularly with either OCIF (0.2, 1.0, or 5.0 mg/kg body weight) or vehicle once daily for 7 days. On the eighth day after sciatic neurectomy, significant bone loss was observed in the vehicle-injected rats. OCIF ameliorated the decrease in bone mineral density (BMD) of both the proximal and distal femur in a dose-dependent manner. OCIF also ameliorated the decrease in bone strength of the femoral neck at the highest dose. A high correlation (r = 0.805) was detected between the BMD of the distal femur and the bone strength of the femoral neck. When OCIF was administered intermittently to the immobilized rats twice weekly (on days 1 and 4) after immobilization, it also ameliorated the decrease in BMD of the distal femur. These results suggest that OCIF has therapeutic potential for the treatment of immobilization-induced osteopenia. PMID:11810411

  13. Relationship of serum GDF11 levels with bone mineral density and bone turnover markers in postmenopausal Chinese women

    PubMed Central

    Chen, Yusi; Guo, Qi; Zhang, Min; Song, Shumin; Quan, Tonggui; Zhao, Tiepeng; Li, Hongliang; Guo, Lijuan; Jiang, Tiejian; Wang, Guangwei

    2016-01-01

    Growth differentiation factor 11 (GDF11) is an important circulating factor that regulates aging. However, the role of GDF11 in bone metabolism remains unclear. The present study was undertaken to investigate the relationship between serum GDF11 level, bone mass, and bone turnover markers in postmenopausal Chinese women. Serum GDF11 level, bone turnover biochemical markers, and bone mineral density (BMD) were determined in 169 postmenopausal Chinese women (47–78 years old). GDF11 serum levels increased with aging. There were negative correlations between GDF11 and BMD at the various skeletal sites. After adjusting for age and body mass index (BMI), the correlations remained statistically significant. In the multiple linear stepwise regression analysis, age or years since menopause, BMI, GDF11, and estradiol were independent predictors of BMD. A significant negative correlation between GDF11 and bone alkaline phosphatase (BAP) was identified and remained significant after adjusting for age and BMI. No significant correlation was noted between cross-linked N-telopeptides of type I collagen (NTX) and GDF11. In conclusion, GDF11 is an independent negative predictor of BMD and correlates with a biomarker of bone formation, BAP, in postmenopausal Chinese women. GDF11 potentially exerts a negative effect on bone mass by regulating bone formation. PMID:27408764

  14. Relationship of serum GDF11 levels with bone mineral density and bone turnover markers in postmenopausal Chinese women.

    PubMed

    Chen, Yusi; Guo, Qi; Zhang, Min; Song, Shumin; Quan, Tonggui; Zhao, Tiepeng; Li, Hongliang; Guo, Lijuan; Jiang, Tiejian; Wang, Guangwei

    2016-01-01

    Growth differentiation factor 11 (GDF11) is an important circulating factor that regulates aging. However, the role of GDF11 in bone metabolism remains unclear. The present study was undertaken to investigate the relationship between serum GDF11 level, bone mass, and bone turnover markers in postmenopausal Chinese women. Serum GDF11 level, bone turnover biochemical markers, and bone mineral density (BMD) were determined in 169 postmenopausal Chinese women (47-78 years old). GDF11 serum levels increased with aging. There were negative correlations between GDF11 and BMD at the various skeletal sites. After adjusting for age and body mass index (BMI), the correlations remained statistically significant. In the multiple linear stepwise regression analysis, age or years since menopause, BMI, GDF11, and estradiol were independent predictors of BMD. A significant negative correlation between GDF11 and bone alkaline phosphatase (BAP) was identified and remained significant after adjusting for age and BMI. No significant correlation was noted between cross-linked N-telopeptides of type I collagen (NTX) and GDF11. In conclusion, GDF11 is an independent negative predictor of BMD and correlates with a biomarker of bone formation, BAP, in postmenopausal Chinese women. GDF11 potentially exerts a negative effect on bone mass by regulating bone formation. PMID:27408764

  15. Assessment of bone mineral status in children with Marfan syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder with skeletal involvement. It is caused by mutations in fibrillin1 (FBN1) gene resulting in activation of TGF-ßeta, which developmentally regulates bone mass and matrix properties. There is no consensus regarding bone minerali...

  16. Bone mineral density in elite adolescent female figure skaters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elite adolescent figure skaters must accommodate both the physical demands of competitive training and the accelerated rate of bone growth that is associated with adolescence. Although, these athletes apparently undergo sufficient physical activity to develop healthy bones, it is possible that other...

  17. Physical activity and lifestyle effects on bone mineral density among young adults: sociodemographic and biochemical analysis.

    PubMed

    Alghadir, Ahmad H; Gabr, Sami A; Al-Eisa, Einas

    2015-07-01

    [Purpose] The purpose of this study was to assess the possible role of physical activities, calcium consumption and lifestyle factors in both bone mineral density and bone metabolism indices in 350 young adult volunteers. [Subjects and Methods] All volunteers were recruited for the assessment of lifestyle behaviors and physical activity traits using validated questioners, and bone mineral density (BMD), serum osteocalcin (s-OC), bone-specific alkaline phosphatase (BAP), and calcium were estimated using dual-energy X-ray absorptiometry analysis, and immunoassay techniques. [Results] Male participants showed a significant increase in BMD along with an increase in bone metabolism markers compared with females in all groups. However, younger subjects showed a significant increase in BMD, OC, BAP, and calcium compared with older subjects. Osteoporosis was more common in older subjects linked with abnormal body mass index and waist circumference. Bone metabolism markers correlated positively with BMD, physically activity and negatively with osteoporosis in all stages. Also, moderate to higher calcium and milk intake correlated positively with higher BMD. However, low calcium and milk intake along with higher caffeine, and carbonated beverage consumption, and heavy cigarette smoking showed a negative effect on the status of bone mineral density. Stepwise regression analysis showed that life style factors including physical activity and demographic parameters explained around 58-69.8% of the bone mineral density variation in young adults especially females. [Conclusion] body mass index, physical activity, low calcium consumption, and abnormal lifestyle have role in bone mineral density and prognosis of osteoporosis in young adults. PMID:26311965

  18. Multi-Generational Drinking of Bottled Low Mineral Water Impairs Bone Quality in Female Rats

    PubMed Central

    Zeng, Hui; Wang, Lingqiao; Wang, Dahua; Luo, Jiaohua; Zhang, Liang; Huang, Yujing; Chen, Ji-an; Shu, Weiqun

    2015-01-01

    Background Because of reproductions and hormone changes, females are more sensitive to bone mineral loss during their lifetime. Bottled water has become more popular in recent years, and a large number of products are low mineral water. However, research on the effects of drinking bottled low mineral water on bone health is sparse. Objective To elucidate the skeletal effects of multi-generational bottled water drinking in female rats. Methods Rats continuously drank tap water (TW), bottled natural water (bNW), bottled mineralized water (bMW), or bottled purified water (bPW) for three generations. Results The maximum deflection, elastic deflection, and ultimate strain of the femoral diaphysis in the bNW, bMW, and bPW groups and the fracture strain in the bNW and bMW groups were significantly decreased. The tibiae calcium levels in both the bNW and bPW groups were significantly lower than that in the TW group. The tibiae and teeth magnesium levels in both the bNW and bPW groups were significantly lower than those in the TW group. The collagen turnover markers PICP (in both bNW and bPW groups) were significantly lower than that in the TW group. In all three low mineral water groups, the 1,25-dihydroxy-vitamin D levels were significantly lower than those in the TW group. Conclusion Long-term drinking of low mineral water may disturb bone metabolism and biochemical properties and therefore weaken biomechanical bone properties in females. Drinking tap water, which contains adequate minerals, was found to be better for bone health. To our knowledge, this is the first report on drinking bottled low mineral water and female bone quality on three generation model. PMID:25803851

  19. [Exercise and bone mineral density in old subjects: theorical and practical implications].

    PubMed

    Paillard, Thierry

    2014-09-01

    With age advancement, the decrease of bone mineral density is ineluctable. Physical exercise constitutes a physiological approach likely to attenuate or limit the effects of normal bone demineralization (i.e. not pathological) particularly in elderly subjects. Indeed, physical exercise induces mechanical constraints generating bone deformation which stimulates osteogenesis and favors bone remodelage. Physical activities achieved in condition of body discharge (e.g. swimming, cycling) or in static condition (e.g. stretching, balance) do not stimulate (or very weakly) osteogenesis. The osteogenic function of aerobic training (e.g. walking, running) is effective only if the intensity of exercise is high (i.e. the impacts on the ground and thus the bone deformation) and that of strength training is effective only if the completed muscular contractions are dynamic and carried out with heavy loads. The calcium concentration increase is greater on the concave side than on the convex side for the bones which undergo strong mechanical pressures during exercise. Hence, it is advisable to vary the directions of mechanical constraints during physical activity to strengthen the resistance of the bone in all the plans. In order to obtain significant effects in terms of bone remodelage, the optimal duration of training programs should last at least 4 to 6 months. The osteogenic effects of regular exercise begin from 2-3 weekly sessions. The activation of osteogenesis by means of physical exercise is more difficult in aging women than in aging men because of hormonal factors that are not favorable in aging women. At last, regular exercise is fundamental not only to maintain bone mineral density but also to reduce the risk of bone fracture since there is a relationship between the bone mineral density and the risk of bone fracture. PMID:25245313

  20. A versatile new mineralized bone stain for simultaneous assessment of tetracycline and osteoid seams.

    PubMed

    Villanueva, A R; Lundin, K D

    1989-05-01

    A versatile mineralized bone stain (MIBS) for demonstrating osteoid seams and tetracycline fluorescence simultaneously in thin or thick undecalcified sections has been developed. Bone specimens are fixed in 70% ethanol, but 10% buffered formalin is permissible. Depending upon one's preference, these specimens can be left unstained or be prestained before plastic embedding. Osteoid seams are stained green to jade green, or light to dark purple. Mineralized bone matrix is unstained or green. Osteoblast and osteoclast nuclei are light to dark purple, cytoplasm varies from slightly gray to pink. The identification of osteoid seams by this method agrees closely with identification by in vivo tetracycline uptake using the same section from the same biopsy. The method demonstrates halo volumes, an abnormal, lacunar, low density bone around viable osteocytes in purple. This phenomenon is commonly seen in vitamin D-resistant rickets, fluorosis, renal osteodystrophy, hyperparathyroidism, and is sometimes seen in fluoride treated osteoporotic patients. In osteomalacic bone, most osteoid seams are irregularly stained as indicated by the presence of unmineralized osteoid between mineralized lamellae. The method has been used effectively in staining new bone formation in hydroxyapatite implants and bone grafts. Old, unstained, plastic embedded undecalcified sections are stained as well as fresh sections after removal of the coverslip. This stain also promises to be valuable in the study of different metabolic bone diseases from the point of view of remodeling, histomorphometry, and pathology. PMID:2480003

  1. Mineral Metabolism and Cortical Volumetric Bone Mineral Density in Childhood Chronic Kidney Disease

    PubMed Central

    Tsampalieros, Anne K.; de Boer, Ian H.; Shults, Justine; Kalkwarf, Heidi J.; Zemel, Babette S.; Foerster, Debbie; Stokes, David; Leonard, Mary B.

    2013-01-01

    Context: The relationships among cortical volumetric bone mineral density (CortBMD) and comprehensive measures of mineral metabolism have not been addressed in chronic kidney disease (CKD). Objective: The aim of the study was to identify the determinants of CortBMD in childhood CKD. A secondary objective was to assess whether CortBMD was associated with subsequent fracture. Design and Participants: This prospective cohort study included 171 children, adolescents, and young adults (aged 5–21 years) with CKD stages 2–5D at enrollment and 89 1 year later. Outcomes: Serum measures included vitamin D [25-hydroxyvitamin D (25[OH]D), 1,25-dihydroxyvitamin D (1,25(OH)2D), 24,25-dihydroxyvitamin D], vitamin D-binding protein, intact PTH, fibroblast growth factor 23, calcium, and phosphorus. Tibia quantitative computed tomography measures of CortBMD were expressed as sex-, race-, and age-specific Z-scores based on 675 controls. Multivariable linear regression identified the independent correlates of CortBMD Z-scores and the change in CortBMD Z-scores. Results: Lower calcium (β = .31/1 mg/dL, P = .01) and 25(OH)D (β = .18/10 ng/mL, P = .04) and higher PTH (β = −.02/10%, P = .002) and 1,25(OH)2D (β = −.07/10%, P < .001) were independently associated with lower CortBMD Z-scores at baseline. The correlations of total, free, and bioavailable 25(OH)D with CortBMD did not differ. Higher baseline 1,25(OH)2D (P < .05) and greater increases in PTH (P < .001) were associated with greater declines in CortBMD Z-scores. Greater increases in calcium concentrations were associated with greater increases in CortBMD Z-scores in growing children (interaction P = .009). The hazard ratio for fracture was 1.75 (95% confidence interval 1.15–2.67; P = .009) per SD lower baseline CortBMD. Conclusions: Greater PTH and 1,25(OH)2D and lower calcium concentrations were independently associated with baseline and progressive cortical deficits in childhood CKD. Lower CortBMD Z-score was

  2. Correlating chemical changes in subchondral bone mineral due to aging or defective type II collagen by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Dehring, Karen A.; Roessler, Blake J.; Morris, Michael D.

    2007-02-01

    We show that early indicators of osteoarthritis are observed in Raman spectroscopy by probing femur surfaces excised from mouse models of early-onset osteoarthritis. Current clinical methods to examine arthritic joints include radiological examination of the joint, but may not be capable of detecting subtle chemical changes in the bone tissue, which may provide the earliest indications of osteoarthritis. Recent research has indicated that the subchondral bone may have a more significant role in the onset of osteoarthritis than previously realized. We will report the effect of age and defective type II collagen on Raman band area ratios used to describe bone structure and function. The carbonate-to-phosphate ratio is used to assess carbonate substitution into the bone mineral and the mineral-to-matrix ratio is used to measure bone mineralization. Mineral-to-matrix ratios indicate that subchondral bone becomes less mineralized as both the wild-type and Del1 (+/-) transgenic mice age. Moreover, the mineral-to-matrix ratios show that the subchondral bone of Del1 (+/-) transgenic mice is less mineralized than that of the wild-type mice. Carbonate-to-phosphate ratios from Del1 (+/-) transgenic mice follow the same longitudinal trend as wild-type mice. The ratio is slightly higher in the transgenic mice, indicating more carbonate content in the bone mineral. Raman characterization of bone mineralization provides an invaluable insight into the process of cartilage degeneration and the relationship with subchondral bone at the ultrastructural level.

  3. Tibolone increases bone mineral density but also relapse in breast cancer survivors: LIBERATE trial bone substudy

    PubMed Central

    2012-01-01

    Introduction The Livial Intervention Following Breast Cancer: Efficacy, Recurrence and Tolerability Endpoints (LIBERATE: Clinical http://Trials.gov number NCT00408863), a randomized, placebo-controlled, double-blind trial that demonstrated that tibolone (Livial), a tissue-selective hormone-replacement therapy (HRT), increased breast cancer (BC) recurrence HR 1.40 (95% CI, 1.14 to 1.70; P = 0.001). A subgroup of women was entered into a study of bone mineral density (BMD). Methods Women with surgically excised primary BC (T1-3, N0-2, M-0) within the last 5 years, complaining of vasomotor symptoms, were assigned to tibolone, 2.5 mg daily, or placebo treatment for a maximum of 5 years. The BMD substudy enrolled 763 patients, using dual-energy X-ray absorptiometry (DXA) scanning at baseline and at 2 years. Results In the bone substudy, 699 of 763 women were eligible (345 allocated to tibolone, and 354, to placebo). After undergoing DXA scans, 300 (43%) women had normal BMD; 317 (45%), osteopenia; and 82 (11.7%), osteoporosis. Low body-mass index (P < 0.001), Asian race (P < 0.001), and late age at menarche (P < 0.04) predicted low bone mass at baseline. Tibolone increased BMD by 3.2% at the lumbar spine and 2.9% at the hip compared with placebo (both P < 0.001). The majority of fractures (55%) occurred in osteopenic patients. Women with normal BMD had increased recurrence with tibolone, 22 (15.6%) of 141 compared with placebo, 11 (6.9%) of 159 (P = 0.016), whereas no increased BC recurrence was seen in women with low BMD; 15 (7.4%) of 204 taking tibolone versus 13 (6.7%) of 195 taking placebo. Conclusions Tibolone is contraindicated after BC treatment, as it increases BMD and BC recurrence. Risk of BC recurrence was elevated in BC women with normal BMD (compared with low) who took tibolone. PMID:22251615

  4. Tracking Circadian Rhythms of Bone Mineral Deposition in Murine Calvarial Organ Cultures

    PubMed Central

    McElderry, John-David P.; Zhao, Guisheng; Khmaladze, Alexander; Wilson, Christopher G.; Franceschi, Renny T.; Morris, Michael D.

    2013-01-01

    Osteoblasts, which orchestrate the deposition of small apatite crystals through the expression of nucleating proteins, have been shown to also express clock genes associated with the circadian signaling pathway. We hypothesized that protein-mediated bone mineralization may be linked to circadian oscillator mechanisms functioning in peripheral bone tissue. In this study, Per1 expression in ex vivo neonatal murine calvaria organ cultures was monitored for 6 days using a Per1-luciferase transgene as a bioluminescent indicator of clock function. Fluctuations in Per1 expression had a period of 25±4 hours (n=14) with early expression at CT09:59±03:37 (circadian time). We also established the kinetics of mineral deposition in developing bone by using non-invasive Raman microscopy to track mineral accumulation in calvarial tissue. The content and quality of newly deposited mineral was continually examined at the interparietal bone/fontanel boundary for a period of 6 days with 1 hour temporal resolution. Using this approach, mineralization over time exhibited bursts of mineral deposition followed by little or no deposition, which was recurrent with a periodicity of 26.8±9.6 hours. As many as 6 near-daily mineralization events were observed in the calvaria before deposition ceased. Earliest mineralization events occurred at CT16:51±03:45, which is 6 hours behind Per1 expression. These findings are consistent with the hypothesis that mineralization in developing bone tissue is regulated by a local circadian oscillator mechanism. PMID:23505073

  5. Bone mineral changes - The second manned Skylab mission

    NASA Technical Reports Server (NTRS)

    Vogel, J. M.; Whittle, M. W.

    1976-01-01

    The mineral content of the central os calcis, and distal radius and ulna was measured by the monoenergetic photon absorptiometric technique pre- and postflight on the SL-3 crewmen. No significant changes were observed in the radius and ulna. Only the SPT showed a loss in calcaneal mineral which slowly returned to preflight levels by the 87th postflight day.

  6. Effect of Bone Mineral Density on Rotator Cuff Tear: An Osteoporotic Rabbit Model

    PubMed Central

    Chen, Xiaobin; Giambini, Hugo; Ben-Abraham, Ephraim; An, Kai-Nan; Nassr, Ahmad; Zhao, Chunfeng

    2015-01-01

    Introduction An increased bone mineral density (BMD) in the proximity to tendon insertion can improve rotator cuff repair and healing. However, how a decrease of BMD in the humeral head affects the biomechanical properties of the rotator cuff tendon is still unclear. Previous studies have demonstrated ovariectomy in animals to lead to osteoporosis and decreased BMD, and Teriparatide (PTH) administration to improve BMD and strength of bone. This study aimed to explore the correlation between humeral head BMD and infraspinatus (ISP) tendon insertion strength, and if an increase in bone quantity of the humeral head can improve the strength of the rotator cuff. Materials and Methods Eighteen New England white rabbits were divided into the 3 groups: Control, Ovariectomy-Saline (OVX-Saline), and Ovariectomy-PTH (OVX-PTH). The OVX-Saline group and the OVX-PTH were administered daily saline and Teriparatide injections for 8 weeks starting at 17 weeks of OVX. BMD of the humeral head was measured, the ISP tendon failure load was tested and the failure stress was calculated. One specimen from each group was used for histological analysis. Linear regression analysis was used to derive equations for the BMD and failure stress. Results Significant differences were observed in the measured humeral head BMD of the Control and OVX-PTH groups compared to the OVX-Saline group (P = 0.0004 and P = 0.0024, respectively). No significant difference was found in failure stress among the three groups, but an expected trend with the control group and OVX-PTH group presenting higher failure strength compared to the OVX-Saline group. BMD at the humeral head showed a positive linear correlation with stress (r2 = 0.54). Histology results showed the superiority in OVX-PTH group ISP enthesis compared to the OVX-Saline group. Conclusion Bone loss of the humeral head leads to decreased tendon/bone insertion strength of the infraspinatus tendon enthesis. Teriparatide administration can increase bone

  7. X-ray microscopy study of bone mineralization

    NASA Astrophysics Data System (ADS)

    Salomé, M.; Lafage-Proust, M. H.; Vico, L.; Amblard, D.; Kaulich, B.; Oestreich, S.; Susini, J.; Barrett, R.

    2000-05-01

    Transmission spectro-microscopy around the calcium K-edge and fluorescence microscopy were performed respectively on the Transmission X-ray Microscope (TXM) and Scanning X-ray Microscope (SXM) end-stations of ID21 beamline at ESRF, to map the calcium distribution and the Ca/P ratio in bone samples. Preliminary results are presented. The motivation for these experiments is the study of the genetic determinism of bone mineralisation parameters in two different strains of mice.

  8. Comparison of nutritional intake, body composition, bone mineral density, and isokinetic strength in collegiate female dancers.

    PubMed

    Lim, Se-Na; Chai, Joo-Hee; Song, Jong Kook; Seo, Myong-Won; Kim, Hyun-Bae

    2015-12-01

    This study compared nutritional intake, body composition, bone mineral density, and isokinetic strength by dance type in collegiate female dancers. The study subjects included Korean dancers (n=12), ballet dancers (n=13), contemporary dancers (n=8), and controls (n=12). Nutritional intake was estimated using the Computer Aided Nutritional Analysis Program. Body composition and bone mineral density were measured using dual-energy X-ray absorptiometry. Isokinetic knee joint strength was measured by Cybex 770-NORM. All statistical analyses were performed by SAS 9.2. Means and standard deviations were calculated using descriptive statistics. One-way analysis of variance was applied to evaluate nutritional intake, body composition, bone mineral density, and isokinetic strength differences. Duncan multiple range test was used for post hoc testing. A level of significance was set at P<0.05. The study results indicated no significant differences in nutritional in-take among dancer types. Despite no significant differences in body composition among dancer types, contemporary and ballet dancers had lower body fat percentages than controls (P<0.05). No significant differences were seen in bone mineral density and bone mineral contents among dancer types. No significant differences were found in isokinetic strength in right or left knee flexion and extension at 60°/sec (P<0.05). There were significant differences in body composition and isokinetic strength between dancer groups and the control group. Further studies of different professional dance type and more scientific methods of dance training are needed. PMID:26730387

  9. Collagen and mineral deposition in rabbit cortical bone during maturation and growth: effects on tissue properties.

    PubMed

    Isaksson, Hanna; Harjula, Terhi; Koistinen, Arto; Iivarinen, Jarkko; Seppänen, Kari; Arokoski, Jari P A; Brama, Pieter A; Jurvelin, Jukka S; Helminen, Heikki J

    2010-12-01

    We characterized the composition and mechanical properties of cortical bone during maturation and growth and in adult life in the rabbit. We hypothesized that the collagen network develops earlier than the mineralized matrix. Growth was monitored, and the rabbits were euthanized at birth (newborn), and at 1, 3, 6, 9, and 18 months of age. The collagen network was assessed biochemically (collagen content, enzymatic and non-enzymatic cross-links) in specimens from the mid-diaphysis of the tibia and femur and biomechanically (tensile testing) from decalcified whole tibia specimens. The mineralized matrix was analyzed using pQCT and 3-point bend tests from intact femur specimens. The collagen content and the Young's modulus of the collagen matrix increased significantly until the rabbits were 3 months old, and thereafter remained stable. The amount of HP and LP collagen cross-links increased continuously from newborn to 18 months of age, whereas PEN cross-links increased after 6 months of age. Bone mineral density and the Young's modulus of the mineralized bone increased until the rabbits were at least 6 months old. We concluded that substantial changes take place during the normal process of development in both the biochemical and biomechanical properties of rabbit cortical bone. In cortical bone, the collagen network reaches its mature composition and mechanical strength prior to the mineralized matrix. PMID:20540098

  10. Comparison of nutritional intake, body composition, bone mineral density, and isokinetic strength in collegiate female dancers

    PubMed Central

    Lim, Se-Na; Chai, Joo-Hee; Song, Jong Kook; Seo, Myong-Won; Kim, Hyun-Bae

    2015-01-01

    This study compared nutritional intake, body composition, bone mineral density, and isokinetic strength by dance type in collegiate female dancers. The study subjects included Korean dancers (n=12), ballet dancers (n=13), contemporary dancers (n=8), and controls (n=12). Nutritional intake was estimated using the Computer Aided Nutritional Analysis Program. Body composition and bone mineral density were measured using dual-energy X-ray absorptiometry. Isokinetic knee joint strength was measured by Cybex 770-NORM. All statistical analyses were performed by SAS 9.2. Means and standard deviations were calculated using descriptive statistics. One-way analysis of variance was applied to evaluate nutritional intake, body composition, bone mineral density, and isokinetic strength differences. Duncan multiple range test was used for post hoc testing. A level of significance was set at P<0.05. The study results indicated no significant differences in nutritional in-take among dancer types. Despite no significant differences in body composition among dancer types, contemporary and ballet dancers had lower body fat percentages than controls (P<0.05). No significant differences were seen in bone mineral density and bone mineral contents among dancer types. No significant differences were found in isokinetic strength in right or left knee flexion and extension at 60°/sec (P<0.05). There were significant differences in body composition and isokinetic strength between dancer groups and the control group. Further studies of different professional dance type and more scientific methods of dance training are needed. PMID:26730387

  11. Bone mineral density, bone mineral content, gingival crevicular fluid (matrix metalloproteinases, cathepsin K, osteocalcin), and salivary and serum osteocalcin levels in human mandible and alveolar bone under conditions of simulated microgravity.

    PubMed

    Rai, Balwant; Kaur, Jasdeep; Catalina, Maria

    2010-09-01

    In astronauts and cosmonauts, exposure to microgravity has been associated with several physiological changes, including an osteoporosis like loss of bone mass. It has been reported that head-down tilt bed-rest studies mimic many of the observations seen in space flights. There has been no study of the effects of mandibular bone and alveolar bone loss in both sexes under conditions of simulated microgravity. This study was designed to investigate bone mineral density; bone mineral content; matrix metalloproteinase (MMP)-8, MMP-9, cathepsin K, and osteocalcin levels in gingival crevicular fluid (GCF); and salivary and serum osteocalcin levels in normal healthy men and women under conditions of simulated microgravity, namely, -6° head-down-tilt (HDT) bed rest. The subjects of this investigation were 10 male and 10 female volunteers who were exposed to 3 weeks of -6° HDT bed rest. Dual-energy X-ray absorptiometry was used to measure bone density and bone mineral content in alveolar bone from the mandibular canine to the third molar, as well as in the mandibular ramus, before, during, and after exposure to conditions of simulated microgravity. GCF (ie, MMP-8, MMP-9, cathepsin K, and osteocalcin) and salivary and serum osteocalcin levels were measured by enzyme-linked immunosorbent assays. Bone mineral density and bone mineral content were significantly lower under conditions of simulated microgravity in both sexes. The decreases were greater in women than in men, but the differences between sexes were not significant. Cathepsin, osteocalcin, MMP-8, and MMP-9 levels were significantly higher under conditions of simulated microgravity than under normal conditions; the increases were greater in women than in men, but the differences were not significant. Additional, more comprehensive, studies with larger sample sizes are now necessary for the investigation of simulated microgravity and microgravity. PMID:20881330

  12. Bone mineral density of skeletal remains: Discordant results between chemical analysis and DXA method.

    PubMed

    Sutlovic, Davorka; Boric, Igor; Sliskovic, Livia; Popovic, Marijana; Knezovic, Zlatka; Nikolic, Ivana; Vucinovic, Ana; Vucinovic, Zoran

    2016-05-01

    Dual-energy X-ray absorptiometry (DXA) scanning is a gold standard for bone mineral density measurement and diagnosis of primary and secondary osteoporosis in living persons. DXA is becoming widespread when analysing archaeological material, and is considered to provide an accurate diagnosis of osteoporosis in skeletal samples. The aim of this study was to explain the differences in results between bone mineral density (obtained with DXA) and chemical determination of calcium and phosphorus concentrations in skeletal remains. We examined bone mineral density (BMD) and mineral content of femoral bone samples exhumed from mass graves of the Second World War. BMD was determined by Hologic QDR 4500 C (S/N 48034) Bone Densitometer. Concentrations of calcium and phosphorus were determined with AAS (Atomic absorption spectroscopy) and UV/VIS (Ultraviolet-visible) spectroscopy. The results obtained in this study do not support the hypothesis according to which BMD measured by DXA scan has positive correlation with chemically determined concentrations of calcium and phosphorus in bones, especially in acidic soils where there was significant impact of diagenesis observed. PMID:27161916

  13. Distinct Tissue Mineral Density in Plate- and Rod-like Trabeculae of Human Trabecular Bone.

    PubMed

    Wang, Ji; Kazakia, Galateia J; Zhou, Bin; Shi, X Tony; Guo, X Edward

    2015-09-01

    Trabecular bone quality includes both microstructural and intrinsic tissue mineralization properties. However, the tissue mineralization in individual trabeculae of different trabecular types and orientations has not yet been investigated. The aim of this study was to develop an individual trabecula mineralization (ITM) analysis technique to determine tissue mineral density (TMD) distributions in plate- and rod-like trabeculae, respectively, and to compare the TMD of trabeculae along various orientations in micro-computed tomography (μCT) images of trabecular bone samples from the femoral neck, greater trochanter, and proximal tibia. ITM analyses indicated that trabecular plates, on average, had significantly higher TMD than trabecular rods. In addition, the distribution of TMD in trabecular plates depended on trabecular orientation with the lowest TMD in longitudinal plates and the highest TMD in transverse plates. Conversely, there was a relatively uniform distribution of TMD among trabecular rods, with respect to trabecular orientation. Further analyses of TMD distribution revealed that trabecular plates had higher mean and peak TMD, whereas trabecular rods had a wider TMD distribution and a larger portion of low mineralized trabeculae. Comparison of apparent Young's moduli derived from micro-finite element models with and without heterogeneous TMD demonstrated that heterogeneous TMD in trabecular plates had a significant influence on the elastic mechanical property of trabecular bone. In conclusion, this study revealed differences in TMD between plate- and rod-like trabeculae and among various trabecular orientations. The observation of less mineralized longitudinal trabecular plates suggests interesting implications of these load-bearing plates in bone remodeling. The newly developed ITM analysis can be a valuable technique to assess the influence of metabolic bone diseases and their pharmaceutical treatments on not only microstructure of trabecular bone but

  14. Chemistry of bone mineral, based on the hypermineralized rostrum of the beaked whale Mesoplodon densirostris

    PubMed Central

    Li, Zhen

    2014-01-01

    Carbonate-substituted hydroxylapatite is the inorganic component in bone. The nanometer size of bone crystallites and their interweaving with subequal volumes of collagen fibrils make the chemical analysis of the bone mineral extremely difficult. The few chemical analyses that are available commonly were made on ashed bone, which, in addition to mineral, also includes chemical residues of collagen. For the present study, we chose the rostrum of the whale Mesoplodon densirostris. Its mineral content of up to 96 wt% makes it an ideal material for pursuing the chemistry of bioapatite within bone. Both bulk (X-ray fluorescence, thermogravimetry, and carbon analysis) and point analyses and element mapping (electron microprobe) were applied to this densest of bone materials. Its bioapatite has an average carbonate content of ~8 wt% and an average Ca/P atomic ratio of 1.7. The rostrum shows extremely low-concentration trace elements (Al, Si, Fe, Ti and Sr) and some minor elements (K and Cl) as in typical bone materials. Homogeneity of elemental distribution is demonstrated in typical mineral-dominated areas within the rostrum sections except around a few vascular holes and vessels. The very good correlation between electron microprobe point analyses and the XRF bulk analyses of the rostrum indicate the latter to be a useful chemical model of bone mineral. The bulk analysis shows that the bioapatite in the rostrum has an average composition of (Ca8.40Mg0.20Na0.54)[(PO4)4.87(CO3)1.13] (OH)0.87. PMID:25484370

  15. Chemistry of bone mineral, based on the hypermineralized rostrum of the beaked whale Mesoplodon densirostris.

    PubMed

    Li, Zhen; Pasteris, Jill D

    2014-04-01

    Carbonate-substituted hydroxylapatite is the inorganic component in bone. The nanometer size of bone crystallites and their interweaving with subequal volumes of collagen fibrils make the chemical analysis of the bone mineral extremely difficult. The few chemical analyses that are available commonly were made on ashed bone, which, in addition to mineral, also includes chemical residues of collagen. For the present study, we chose the rostrum of the whale Mesoplodon densirostris. Its mineral content of up to 96 wt% makes it an ideal material for pursuing the chemistry of bioapatite within bone. Both bulk (X-ray fluorescence, thermogravimetry, and carbon analysis) and point analyses and element mapping (electron microprobe) were applied to this densest of bone materials. Its bioapatite has an average carbonate content of ~8 wt% and an average Ca/P atomic ratio of 1.7. The rostrum shows extremely low-concentration trace elements (Al, Si, Fe, Ti and Sr) and some minor elements (K and Cl) as in typical bone materials. Homogeneity of elemental distribution is demonstrated in typical mineral-dominated areas within the rostrum sections except around a few vascular holes and vessels. The very good correlation between electron microprobe point analyses and the XRF bulk analyses of the rostrum indicate the latter to be a useful chemical model of bone mineral. The bulk analysis shows that the bioapatite in the rostrum has an average composition of (Ca8.40Mg0.20Na0.54)[(PO4)4.87(CO3)1.13] (OH)0.87. PMID:25484370

  16. Alveolar ridge augmentation using chin bone graft, bovine bone mineral, and titanium mesh: Clinical, histological, and histomorphomtric study

    PubMed Central

    Khamees, Jihad; Darwiche, Mohammad Atef; Kochaji, Nabil

    2012-01-01

    Background: Resorption of the alveolar ridge often leaves insufficient bone volume. Very few studies have investigated the quantity and quality of bone formation in humans, following alveolar ridge augmentation, using autogenous bone and bovine bone mineral (BBM) under titanium mesh. Materials and Methods: Sixteen alveolar bone defects divided into two groups; control group with symphyseal autogenous bone covered by titanium mesh; and test group with symphyseal autogenous bone mixed with BBM in 1: 1 ratio and covered by titanium mesh. The outcomes were evaluated clinically, histologically, and histomorphometrically. Results: Clinical measurements showed that the horizontal bone gain was 3.44±0.54 mm and 2.88±0.57 mm, on average, for control group and test group, respectively. While graft absorption was 2.66±0.98 mm (43.62%) and 1.67±1.00 mm (36.65%), on average, for control group and test group, respectively. In the test group, BBM particles were still recognizable, on histologic analysis. They were surrounded completely or partly by newly formed bone. Clear signs of resorption of the BBM were found, with osteoclast cell noticed in the area. Histomorphometrically, the newly formed bone was 78.40%±13.97% and 65.58%±6.59%, whereas connective tissue constituted 21.60%±13.97% and 23.87%±4.79% for control group and test group, respectively. The remaining BBM particles occupied 10.55%±1.80%. All differences between the control and test groups were not significant (P>.05). Conclusion: This investigation suggests that horizonal ridge augmentation with titanium mesh and autogenous bone alone or mixed with BBM are predictable and ridges were augmented even if mesh exposure occurs. PMID:23055591

  17. Bone mineral density and body composition of collegiate modern dancers.

    PubMed

    Friesen, Karlie J; Rozenek, Ralph; Clippinger, Karen; Gunter, Kathy; Russo, Albert C; Sklar, Susan E

    2011-03-01

    This study investigates body composition (BC), bone mineral density (BMD), eating behaviors, and menstrual dysfunction in collegiate modern dancers. Thirty-one female collegiate modern dance majors (D), 18 to 25 years of age, and 30 age-matched controls (C) participated in the study. BC and BMD were measured using dual energy x-ray absorptiometry (DXA). Upper and lower body strength was assessed by chest and leg press one-repetition maximum tests. Participants completed three-day food records, and the diet was analyzed using nutritional software. Menstrual dysfunction (MD) and history of eating disorder (ED) data were collected via questionnaires. BC and BMD variables were analyzed using MANCOVA and frequency of ED and MD by Chi-Square analysis. BMD was greater in D than C at the spine (1.302 ± 0.135 g/cm(2) vs. 1.245 ± 0.098 g/cm(2)), and both the right hip (1.163 ± 0.111 g/cm(2) vs. 1.099 ± 0.106 g/cm(2)) and left hip (1.160 ± 0.114 g/cm(2) vs. 1.101 ± 0.104 g/cm(2); p ≤ 0.05). Total body fat percentage was lower in D than C (25.9 ± 4.2% vs. 32.0 ± 5.9%; p ≤ 0.05), and percent of fat distributed in the android region was also lower in D than C (28.0 ± 6.2% vs. 37.6 ± 8.6%; p ≤ 0.05). With regard to diet composition, only percent fat intake was lower in D than C (27.54 ± 6.8% vs. 31.5 ± 7.4%, p ≤ 0.05). A greater incidence of ED was reported by D than C (12.9% vs. 0%; p ≤ 0.05), as well as a greater incidence of secondary amenorrhea (41.9% vs 13.3%; p ≤ 0.05). No differences were found for incidence of primary amenorrhea, oligomenorrhea, or use of birth control. Strength values were higher in D than C for both chest press (30.1 ± 0.9 kg vs. 28.4 ± 1.0 kg; p ≤ 0.05) and leg press (170.7 ± 4.2 kg vs.163.1 ± 3.9 kg; p ≤ 0.05). It is concluded that the dancers in our study had a healthy body weight, yet reported a higher incidence of eating disorders and menstrual dysfunction, than non-dancers. These dancers' higher BMD may be

  18. Bone mineral metabolism in patients with neurofibromatosis type 1 (von Recklingausen disease).

    PubMed

    Petramala, Luigi; Giustini, Sandra; Zinnamosca, Laura; Marinelli, Cristiano; Colangelo, Luciano; Cilenti, Giuseppina; Formicuccia, Maria Chiara; D'Erasmo, Emilio; Calvieri, Stefano; Letizia, Claudio

    2012-05-01

    The neurofibromatosis type 1 (NF1) is characterized by specific cutaneous features (neurofibromas, "café-au-lait" spots of the skin) and alterations of several tissue (nervous, vascular) and bone deformities, such as scoliosis, congenital pseudoarthrosis and bone dysplasia of tibia. Moreover, several studies have shown systemic involvement of bone tissue in NF1 patients, leading to reduced bone mass. The aim of our study was to evaluate some bone mineral metabolism parameters before and after calcium and vitamin D supplementation in NF1 patients. We evaluated in 70 NF1 consecutive patients the mineral metabolism and bone mineral density compared with 40 normal subjects. We showed bone alterations in 35% of patients and the increase of bone formation markers, such as bone isoenzyme of alkaline phosphatase (41.2 ± 15.5 vs. 25.6 ± 8.7 UI; P < 0.05, respectively) and osteocalcin (18.1 ± 5.6 vs. 7.6 ± 1.9 ng/ml; P < 0.05) and reduction of circulating levels of (25OH)-vitamin D (21.8 ± 12.3 ng/ml) with an high percentage of hypovitaminosys D (>60%). Moreover, we revealed a significant reduction of bone mass density at spine (L1-L4) (0.935 ± 0.13 vs. 1.110 ± 0.17 g/cm(2); P < 0.001) and femoral neck side (0.765 ± 0.09 vs. 0.839 ± 0.12 g/cm(2); P < 0.02), with high prevalence of osteopenia (44%) and osteoporosis (18%). After 12 months of calcium (1,200 mg/die) and cholecalciferol (800 UI/die) supplementation, we found a significant increase of (25) OH-vitamin D level (21.8 ± 12.3 vs. 35 ± 13 ng/ml; P < 0.01), without changes in bone mass density. In conclusion, NF1 patients may present a mineral bone involvement, with vitamin D deficiency; calcium and vitamin D supplementation is necessary to restore these bone mineral metabolic alterations. PMID:22120694

  19. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils.

    PubMed

    Georgiadis, Marios; Müller, Ralph; Schneider, Philipp

    2016-06-01

    Bone's remarkable mechanical properties are a result of its hierarchical structure. The mineralized collagen fibrils, made up of collagen fibrils and crystal platelets, are bone's building blocks at an ultrastructural level. The organization of bone's ultrastructure with respect to the orientation and arrangement of mineralized collagen fibrils has been the matter of numerous studies based on a variety of imaging techniques in the past decades. These techniques either exploit physical principles, such as polarization, diffraction or scattering to examine bone ultrastructure orientation and arrangement, or directly image the fibrils at the sub-micrometre scale. They make use of diverse probes such as visible light, X-rays and electrons at different scales, from centimetres down to nanometres. They allow imaging of bone sections or surfaces in two dimensions or investigating bone tissue truly in three dimensions, in vivo or ex vivo, and sometimes in combination with in situ mechanical experiments. The purpose of this review is to summarize and discuss this broad range of imaging techniques and the different modalities of their use, in order to discuss their advantages and limitations for the assessment of bone ultrastructure organization with respect to the orientation and arrangement of mineralized collagen fibrils. PMID:27335222

  20. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils

    PubMed Central

    Georgiadis, Marios; Müller, Ralph; Schneider, Philipp

    2016-01-01

    Bone's remarkable mechanical properties are a result of its hierarchical structure. The mineralized collagen fibrils, made up of collagen fibrils and crystal platelets, are bone's building blocks at an ultrastructural level. The organization of bone's ultrastructure with respect to the orientation and arrangement of mineralized collagen fibrils has been the matter of numerous studies based on a variety of imaging techniques in the past decades. These techniques either exploit physical principles, such as polarization, diffraction or scattering to examine bone ultrastructure orientation and arrangement, or directly image the fibrils at the sub-micrometre scale. They make use of diverse probes such as visible light, X-rays and electrons at different scales, from centimetres down to nanometres. They allow imaging of bone sections or surfaces in two dimensions or investigating bone tissue truly in three dimensions, in vivo or ex vivo, and sometimes in combination with in situ mechanical experiments. The purpose of this review is to summarize and discuss this broad range of imaging techniques and the different modalities of their use, in order to discuss their advantages and limitations for the assessment of bone ultrastructure organization with respect to the orientation and arrangement of mineralized collagen fibrils. PMID:27335222

  1. Sustained swimming increases the mineral content and osteocyte density of salmon vertebral bone

    PubMed Central

    Totland, Geir K; Fjelldal, Per Gunnar; Kryvi, Harald; Løkka, Guro; Wargelius, Anna; Sagstad, Anita; Hansen, Tom; Grotmol, Sindre

    2011-01-01

    This study addresses the effects of increased mechanical load on the vertebral bone of post-smolt Atlantic salmon by forcing them to swim at controlled speeds. The fish swam continuously in four circular tanks for 9 weeks, two groups at 0.47 body lengths (bl) × s−1 (non-exercised group) and two groups at 2 bl × s−1 (exercised group), which is just below the limit for maximum sustained swimming speed in this species. Qualitative data concerning the vertebral structure were obtained from histology and electron microscopy, and quantitative data were based on histomorphometry, high-resolution X-ray micro-computed tomography images and analysis of bone mineral content, while the mechanical properties were tested by compression. Our key findings are that the bone matrix secreted during sustained swimming had significantly higher mineral content and mechanical strength, while no effect was detected on bone in vivo architecture. mRNA levels for two mineralization-related genes bgp and alp were significantly upregulated in the exercised fish, indicating promotion of mineralization. The osteocyte density of the lamellar bone of the amphicoel was also significantly higher in the exercised than non-exercised fish, while the osteocyte density in the cancellous bone was similar in the two groups. The vertebral osteocytes did not form a functional syncytium, which shows that salmon vertebral bone responds to mechanical loading in the absence of an extensive connecting syncytial network of osteocytic cell processes as found in mammals, indicating the existence of a different mechanosensing mechanism. The adaptive response to increased load is thus probably mediated by osteoblasts or bone lining cells, a system in which signal detection and response may be co-located. This study offers new insight into the teleost bone biology, and may have implications for maintaining acceptable welfare for farmed salmon. PMID:21615400

  2. HDL cholesterol and bone mineral density: Is there a genetic link?

    PubMed Central

    Ackert-Bicknell, Cheryl L.

    2011-01-01

    Overwhelming evidence has linked cardiovascular disease and osteoporosis, but the shared root cause of these two diseases of the elderly remains unknown. Low levels of high-density lipoprotein cholesterol (HDL) and bone mineral density (BMD) are risk factors for cardiovascular disease and osteoporosis respectively. A number of correlation studies have attempted to determine if there is a relationship between serum HDL and BMD but these studies are confounded by a number of variables including age, diet, genetic background, gender and hormonal status. Collectively, these data suggest that there is a relationship between these two phenotypes, but that the nature of this relationship is context specific. Studies in mice plainly demonstrate that genetic loci for BMD and HDL co-map and transgenic mouse models have been used to show that a single gene can affect both serum HDL and BMD. Work completed to date has demonstrated that HDL can interact directly with both osteoblasts and osteoclasts, but no direct evidence links bone back to the regulation of HDL levels. Understanding the genetic relationship between BMD and HDL has huge implications for understanding the clinical relationship between CVD and osteoporosis and for the development of safe treatment options for both diseases. PMID:21810493

  3. Forty mouse strain survey of voluntary calcium intake, blood calcium, and bone mineral content.

    PubMed

    Tordoff, Michael G; Bachmanov, Alexander A; Reed, Danielle R

    2007-08-15

    We measured voluntary calcium intake, blood calcium, and bone mineral content of male and female mice from 40 inbred strains. Calcium intakes were assessed using 48-h two-bottle tests with a choice between water and one of the following: water, 7.5, 25, and 75 mM CaCl(2), then 7.5, 25, and 75 mM calcium lactate (CaLa). Intakes were affected by strain, sex, anion, and concentration. In 11 strains females consumed more calcium than did males and in the remaining 29 strains there were no sex differences. Nine strains drank more CaLa than CaCl(2) whereas only one strain (JF1/Ms) drank more CaCl(2) than CaLa. Some strains had consistently high calcium intakes and preferred all calcium solutions relative to water (e.g., PWK/PhJ, BTBR T(+)tf/J, JF1/Ms). Others had consistently low calcium intakes and avoided all calcium solutions relative to water (e.g., KK/H1J, C57BL/10J, CE/J, C58/J). After behavioral tests, blood was sampled and assayed for pH, ionized calcium concentration, and plasma total calcium concentration. Bone mineral density and content were assessed by DEXA. There were no significant correlations between any of these physiological measures and calcium intake. However, strains of mice that had the highest calcium intakes generally fell at the extremes of the physiological distributions. We conclude that the avidity for calcium is determined by different genetic architecture and thus different physiological mechanisms in different strains. PMID:17493644

  4. Effect of excess dietary salt on calcium metabolism and bone mineral in a spaceflight rat model

    NASA Technical Reports Server (NTRS)

    Navidi, Meena; Wolinsky, Ira; Fung, Paul; Arnaud, Sara B.

    1995-01-01

    High levels of salt promote urinary calcium (UCa) loss and have the potential to cause bone mineral deficits if intestinal Ca absorption does not compensate for these losses. To determine the effect of excess dietary salt on the osteopenia that follows skeletal unloading, we used a spaceflight model that unloads the hindlimbs of 200-g rats by tail suspension (S). Rats were studied for 2 wk on diets containing high salt (4 and 8%) and normal calcium (0.45%) and for 4 wk on diets containing 8% salt (HiNa) and 0.2% Ca (LoCa). Final body weights were 9-11% lower in S than in control rats (C) in both experiments, reflecting lower growth rates in S than in C during pair feeding. UCa represented 12% of dietary Ca on HiNA diets and was twofold higher in S than in C transiently during unloading. Net intestinal Ca absorption was consistently 11-18% lower in S than in C. Serum 1,25-dihydroxyvitamin D was unaffected by either LoCa or HiNa diets in S but was increased by LoCa and HiNa diets in C. Despite depressed intestinal Ca absoption in S and a sluggish response of the Ca endocrine system to HiNa diets, UCa loss did not appear to affect the osteopenia induced by unloading. Although any deficit in bone mineral content from HiNa diets may have been too small to detect or the duration of the study too short to manifest, there were clear differences in Ca metabolism from control levels in the response of the spaceflight model to HiNa diets, indicated by depression of intestinal Ca absorption and its regulatory hormone.

  5. Bone mineral density and factors influencing it in Asian Indian population with type 2 diabetes mellitus

    PubMed Central

    Kamalanathan, Sadishkumar; Nambiar, Vimal; Shivane, Vyankatesh; Bandgar, Tushar; Menon, Padmavathy; Shah, Nalini

    2014-01-01

    Objective: To assess bone mineral density (BMD) in type 2 diabetes mellitus (T2DM) patients and its relation, if any, to clinical, hormonal and metabolic factors. Materials and Methods: A prospective evaluation of 194 T2DM patients (97 men and 97 women) was carried out. BMD was done with dual energy X-ray absorptiometry (DXA) at the lumbar spine and total hip. Physical activity, nutritional intake and sunlight exposure were calculated. Biochemical and hormonal tests included serum 25 hydroxy vitamin D [25(OH) D], parathyroid hormone, estrogen, testosterone and urinary calcium-creatinine ratio. Glycosylated hemoglobin and complete lipid profiles were done in patients with diabetes. Five hundred and seventy one non-diabetic controls (262 males and 309 females) were evaluated for BMD alone. Results: BMD was normal (Z score > -2) in 156 (80.5%) and low (Z score ≤ -2) in 38 (19.5%) patients in the diabetes study group. BMD in the diabetes group was significantly higher than the control group in both sexes at the hip and spine. The difference was no longer significant on analysis of a BMI matched control subgroup. Weight and BMI showed significant correlation to BMD. Duration of T2DM, degree of glycemic control, use of drugs like statins and thiazolidinediones, 25(OH) D levels, calcium intake, sunlight exposure and physical activity did not significantly affect BMD in this cohort of individuals with diabetes. Conclusions: Bone mineral density of Asian Indian T2DM subjects was similar to that of healthy volunteers in this study. PMID:25364679

  6. Forty mouse strain survey of voluntary calcium intake, blood calcium, and bone mineral content

    PubMed Central

    Tordoff, Michael G.; Bachmanov, Alexander A.; Reed, Danielle R.

    2007-01-01

    We measured voluntary calcium intake, blood calcium, and bone mineral content of male and female mice from 40 inbred strains. Calcium intakes were assessed using 48-h two-bottle tests with a choice between water and one of the following: water, 7.5, 25, and 75 mM CaCl2, then 7.5, 25, and 75 mM calcium lactate (CaLa). Intakes were affected by strain, sex, anion, and concentration. In 11 strains females consumed more calcium than did males and in the remaining 29 strains there were no sex differences. Nine strains drank more CaLa than CaCl2 whereas only one strain (JF1/Ms) drank more CaCl2 than CaLa. Some strains had consistently high calcium intakes and preferred all calcium solutions relative to water (e.g., PWK/PhJ, BTBR T+tf/J, JF1/Ms). Others had consistently low calcium intakes and avoided all calcium solutions relative to water (e.g., KK/H1J, C57BL/10J, CE/J, C58/J). After behavioral tests, blood was sampled and assayed for pH, ionized calcium concentration, and plasma total calcium concentration. Bone mineral density and content were assessed by DEXA. There were no significant correlations between any of these physiological measures and calcium intake. However, strains of mice that had the highest calcium intakes generally fell at the extremes of the physiological distributions. We conclude that the avidity for calcium is determined by different genetic architecture and thus different physiological mechanisms in different strains. PMID:17493644

  7. Fibroblast growth factor 23 contributes to diminished bone mineral density in childhood inflammatory bowel disease

    PubMed Central

    2012-01-01

    Background Diminished bone mineral density (BMD) is of significant concern in pediatric inflammatory bowel disease (IBD). Exact etiology is debatable. The recognition of fibroblast growth factor 23 (FGF23), a phosphaturic hormone related to tumor necrosis factor alpha (TNF-α) makes it plausible to hypothesize its possible relation to this pathology. Methods In this follow up case control study, BMD as well as serum levels of FGF23, calcium, phosphorus, alkaline phosphatase, creatinine, parathyroid hormone, 25 hydroxy vitamin D3 and 1, 25 dihydroxy vitamin D3 were measured in 47 children with IBD during flare and reassessed in the next remission. Results Low BMD was frequent during IBD flare (87.2%) with significant improvement after remission (44.7%). During disease flare, only 21.3% of patients had vitamin D deficiency, which was severe in 12.8%. During remission, all patients had normal vitamin D except for two patients with Crohn’s disease (CD) who remained vitamin D deficient. Mean value of serum FGF23 was significantly higher among patients with IBD during flare compared to controls. It showed significant improvement during remission but not to the control values. 1, 25 dihydroxy vitamin D3, FGF23, serum calcium and urinary phosphorus were significant determinants of BMD in IBD patients. Conclusions We can conclude that diminished BMD in childhood IBD is a common multifactorial problem. Elevated FGF23 would be a novel addition to the list of factors affecting bone mineral density in this context. Further molecular studies are warranted to display the exact interplay of these factors. PMID:22551310

  8. A Piece of the Puzzle: The Bone Health Index of the BoneXpert Software Reflects Cortical Bone Mineral Density in Pediatric and Adolescent Patients

    PubMed Central

    Schündeln, Michael M.; Marschke, Laura; Bauer, Jens J.; Hauffa, Pia K.; Schweiger, Bernd; Führer-Sakel, Dagmar; Lahner, Harald; Poeppel, Thorsten D.; Kiewert, Cordula; Hauffa, Berthold P.; Grasemann, Corinna

    2016-01-01

    Introduction Suspected osteopathology in chronically ill children often necessitates the assessment of bone mineral density. The most frequently used methods are dual-energy X-ray-absorption (DXA) and peripheral quantitative computed tomography (pQCT). The BoneXpert software provides an automated radiogrammatic method to assess skeletal age from digitalized X-rays of the left hand. Furthermore, the program calculates the Bone Health Index (BHI), a measure of cortical thickness and mineralization, which is obtained from indices of three metacarpal bones. In our study, we analyzed the manner in which BHI information provided by BoneXpert compares with DXA or pQCT measurements in youths. Study Design The BHI was retrospectively obtained using digitalized X-rays of the left hand and compared with the results of 203 corresponding DXA readings (Lunar Prodigy, GE Healthcare) of the lumbar vertebrae and femur as well as 117 pQCT readings (XCT 900, Stratec) of the distal radius. Results The BHI values showed a strong positive correlation with the DXA readings at each and all lumbar vertebrae (L1 –L4: r = 0.73; P < 0.0001). The age-adjusted Z-score of L1 –L4 and the height-adjusted score showed a positive correlation with the BHI-SDS (standard deviation score, r = 0.23; P < 0.002 and r = 0.27; P < 0.001, respectively). Total bone mineral density, as assessed via pQCT, also positively correlated with the BHI (r = 0.39; P < 0.0001), but the trabecular values displayed only a weak correlation. Conclusions The BHI obtained using BoneXpert can be a useful parameter in the assessment of bone health in children in most cases. This technique provides observer-independent information on cortical thickness and mineralization based on X-ray imaging of the hands. PMID:27014874

  9. Comparison of radiograph-based texture analysis and bone mineral density with three-dimensional microarchitecture of trabecular bone

    SciTech Connect

    Ranjanomennahary, P.; Ghalila, S. Sevestre; Malouche, D; Marchadier, A.; Rachidi, M.; Benhamou, Cl.; Chappard, C.

    2011-01-15

    Purpose: Hip fracture is a serious health problem and textural methods are being developed to assess bone quality. The authors aimed to perform textural analysis at femur on high-resolution digital radiographs compared to three-dimensional (3D) microarchitecture comparatively to bone mineral density. Methods: Sixteen cadaveric femurs were imaged with an x-ray device using a C-MOS sensor. One 17 mm square region of interest (ROI) was selected in the femoral head (FH) and one in the great trochanter (GT). Two-dimensional (2D) textural features from the co-occurrence matrices were extracted. Site-matched measurements of bone mineral density were performed. Inside each ROI, a 16 mm diameter core was extracted. Apparent density (D{sub app}) and bone volume proportion (BV/TV{sub Arch}) were measured from a defatted bone core using Archimedes' principle. Microcomputed tomography images of the entire length of the core were obtained (Skyscan 1072) at 19.8 {mu}m of resolution and usual 3D morphometric parameters were computed on the binary volume after calibration from BV/TV{sub Arch}. Then, bone surface/bone volume, trabecular thickness, trabecular separation, and trabecular number were obtained by direct methods without model assumption and the structure model index was calculated. Results: In univariate analysis, the correlation coefficients between 2D textural features and 3D morphological parameters reached 0.83 at the FH and 0.79 at the GT. In multivariate canonical correlation analysis, coefficients of the first component reached 0.95 at the FH and 0.88 at the GT. Conclusions: Digital radiographs, widely available and economically viable, are an alternative method for evaluating bone microarchitectural structure.

  10. Correlation between bone mineral density and serum trace element contents of elderly males in Beijing urban area

    PubMed Central

    Wang, Liang; Yu, Haotian; Yang, Guohua; Zhang, Yan; Wang, Wenjiao; Su, Tianjiao; Ma, Weifeng; Yang, Fan; Chen, Liying; He, Li; Ma, Yuanzheng; Zhang, Yan

    2015-01-01

    Trace element levels are associated with the incidence of osteoporotic fractures, but related mechanisms remain unknown. Trace elements may interfere with growth, development and maintenance of bones. Therefore, we investigated whether plasma trace element levels are associated with bone mineral density in elderly males in Beijing. After epidemiologically investigating 91 elderly males with age ranging from 50 years to 80 years, we obtained a total of 30 healthy (group 1), 31 osteopoenic (group 2) and 30 osteoporotic (group 3) subjects. Blood was collected, and serum concentrations of trace elements were detected. Elderly males in the three groups were carefully matched in terms of body mass index. Iron, manganese, zinc, copper, selenium, cadmium and lead were analysed by inductively coupled plasma-mass spectrometry. Bone mineral density (BMD) was measured by QDR-2000 dual-energy X-ray absorptiometry. Correlation between BMD and serum element contents was analysed using SPSS16.0. The plasma levels of manganese, zinc, copper, selenium and lead were similar in all of the groups (P>0.05). Cadmium was significantly and negatively correlated with BMD of the lumbar vertebrae (P<0.05). Moreover, cadmium and iron contents significantly differed in osteoporotic and healthy groups. These elements may directly and correlatively affect BMD in elderly males. Many trace elements may directly and correlatively influence BMD. Future studies should be conducted to evaluate serum and bone levels of these trace elements to determine the relationship of these trace elements with osteoporosis. PMID:26770561

  11. High vitamin D3 diet administered during active colitis negatively affects bone metabolism in an adoptive T cell transfer model

    PubMed Central

    Larmonier, C. B.; McFadden, R.-M. T.; Hill, F. M.; Schreiner, R.; Ramalingam, R.; Besselsen, D. G.; Ghishan, F. K.

    2013-01-01

    Decreased bone mineral density (BMD) represents an extraintestinal complication of inflammatory bowel disease (IBD). Vitamin D3 has been considered a viable adjunctive therapy in IBD. However, vitamin D3 plays a pleiotropic role in bone modeling and regulates the bone formation-resorption balance, depending on the physiological environment, and supplementation during active IBD may have unintended consequences. We evaluated the effects of vitamin D3 supplementation during the active phase of disease on colonic inflammation, BMD, and bone metabolism in an adoptive IL-10−/− CD4+ T cell transfer model of chronic colitis. High-dose vitamin D3 supplementation for 12 days during established disease had negligible effects on mucosal inflammation. Plasma vitamin D3 metabolites correlated with diet, but not disease, status. Colitis significantly reduced BMD. High-dose vitamin D3 supplementation did not affect cortical bone but led to a further deterioration of trabecular bone morphology. In mice fed a high vitamin D3 diet, colitis more severely impacted bone formation markers (osteocalcin and bone alkaline phosphatase) and increased bone resorption markers, ratio of receptor activator of NF-κB ligand to osteoprotegrin transcript, plasma osteoprotegrin level, and the osteoclast activation marker tartrate-resistant acid phosphatase (ACp5). Bone vitamin D receptor expression was increased in mice with chronic colitis, especially in the high vitamin D3 group. Our data suggest that vitamin D3, at a dose that does not improve inflammation, has no beneficial effects on bone metabolism and density during active colitis or may adversely affect BMD and bone turnover. These observations should be taken into consideration in the planning of further clinical studies with high-dose vitamin D3 supplementation in patients with active IBD. PMID:23639807

  12. Optimal bone strength and mineralization requires the type 2 iodothyronine deiodinase in osteoblasts

    PubMed Central

    Bassett, J. H. Duncan; Boyde, Alan; Howell, Peter G. T.; Bassett, Richard H.; Galliford, Thomas M.; Archanco, Marta; Evans, Holly; Lawson, Michelle A.; Croucher, Peter; St. Germain, Donald L.; Galton, Valerie Anne; Williams, Graham R.

    2010-01-01

    Hypothyroidism and thyrotoxicosis are each associated with an increased risk of fracture. Although thyroxine (T4) is the predominant circulating thyroid hormone, target cell responses are determined by local intracellular availability of the active hormone 3,5,3′-L-triiodothyronine (T3), which is generated from T4 by the type 2 deiodinase enzyme (D2). To investigate the role of locally produced T3 in bone, we characterized mice deficient in D2 (D2KO) in which the serum T3 level is normal. Bones from adult D2KO mice have reduced toughness and are brittle, displaying an increased susceptibility to fracture. This phenotype is characterized by a 50% reduction in bone formation and a generalized increase in skeletal mineralization resulting from a local deficiency of T3 in osteoblasts. These data reveal an essential role for D2 in osteoblasts in the optimization of bone strength and mineralization. PMID:20368437

  13. Tenofovir treatment of primary osteoblasts alters gene expression profiles: implications for bone mineral density loss

    PubMed Central

    Grigsby, Iwen F.; Pham, Lan; Mansky, Louis M.; Gopalakrishnan, Raj; Carlson, Ann E.; Mansky, Kim C.

    2010-01-01

    There is strong clinical evidence that implicates tenofovir in the loss of bone mineral density during treatment of human immunodeficiency virus infection. In this study, we sought to test the hypothesis that tenofovir treatment of osteoblasts causes changes in the gene expression profile that would impact osteoblast function during bone formation. Primary osteoblasts were isolated and then treated with the tenofovir prodrug, tenofovir disoproxil fumarate (TDF). Total RNA from TDF-treated and untreated osteoblasts were extracted and used for microarray analysis to assess TDF-associated changes in the gene expression profile. Strikingly, the changes in gene expression profiles involved in cell signaling, cell cycle and amino acid metabolism, which would likely impact osteoblast function in bone formation. Our findings demonstrate for the first time that tenofovir treatment of primary osteoblasts results in gene expression changes that implicate loss of osteoblast function in tenofovir-associated bone mineral density loss. PMID:20171173

  14. Effects of lactation on bone mineral content in healthy postpartum women

    SciTech Connect

    Hayslip, C.C.; Klein, T.A.; Wray, H.L.; Duncan, W.E.

    1989-04-01

    Bone mineral contents were estimated by dual photon absorptiometry of the lumbar spine (L2-L4) and single photon absorptiometry of the mid- and distal radius in 19 healthy women on their second postpartum day and at 6 months postpartum. All bone mineral measurements were performed by one technician, and the single and dual photon absorptiometry results were read by one observer. Daily oral calcium intakes were estimated from dietary histories obtained by a dietitian. Twelve women who breast-fed exclusively throughout the first 6 months postpartum were compared with seven formula-feeding women who did not breast-feed or who breast-fed for less than 3 months postpartum. No differences were found in age, parity, height, weight, or daily calcium intake between the breast- and formula-feeding women. Breast-feeding women had a significant decrease (averaging 6.5%) in bone mineral of the lumbar spine at 6 months postpartum as compared with 2 days postpartum (1.14 +/- 0.03 versus 1.22 +/- 0.03 g/cm2, mean +/- SEM; P less than .001), whereas no significant change occurred in the formula-feeding women at 6 months (1.24 +/- 0.03 versus 1.26 +/- 0.04 g/cm2). At 6 months postpartum, the breast-feeding women had a significantly lower mean bone mineral content of the lumbar spine than did formula-feeding women (P less than .05). No significant changes were noted in bone mineral content of the mid- or distal radius in either group of women during the period of evaluation. We conclude that during the first 6 months postpartum, breast-feeding is associated with bone mineral loss from the lumbar spine, but not from the mid- or distal radius.

  15. Cortical Bone Mineral Density in Patients with Congenital Adrenal Hyperplasia due to 21-Hydroxylase Deficiency

    PubMed Central

    El-Maouche, Diala; Collier, Suzanne; Prasad, Mala; Reynolds, James C; Merke, Deborah P.

    2014-01-01

    Background Prior studies reveal that bone mineral density (BMD) in congenital adrenal hyperplasia (CAH) is mostly in the osteopenic range and is associated with lifetime glucocorticoid dose. The forearm, a measure of cortical bone density, has not been evaluated. Objective We aimed to evaluate BMD at various sites, including the forearm, and the factors associated with low BMD in CAH patients. Methods Eighty CAH adults (47 classic, 33 nonclassic) underwent dual-energy-x-ray absorptiometry and laboratory and clinical evaluation. BMD Z-scores at the AP spine, total hip, femoral neck, forearm, and whole body were examined in relation to phenotype, body mass index, current glucocorticoid dose, average 5-year glucocorticoid dose, vitamin D, 17-hydroxyprogesterone, androstenedione, testosterone, dehydroepiandrosterone, and dehydroepiandrosterone sulfate (DHEAS). Results Reduced BMD (T-score < −1 at hip, spine, or forearm) was present in 52% and was more common in classic than nonclassic patients (P = .005), with the greatest difference observed at the forearm (P = .01). Patients with classic compared to nonclassic CAH, had higher 17-hydroxyprogesterone (P = .005), lower DHEAS (P = .0002), and higher non-traumatic fracture rate (P = .0005). In a multivariate analysis after adjusting for age, sex, height standard deviation, phenotype, and cumulative glucocorticoid exposure, higher DHEAS was independently associated with higher BMD at the spine, radius, and whole body. Conclusion Classic CAH patients have lower BMD than nonclassic patients, with the most affected area being the forearm. This first study of forearm BMD in CAH patients suggests that low DHEAS may be associated with weak cortical bone independent of glucocorticoid exposure. PMID:24862755

  16. Associations Between Bone Mineral Density, Grip Strength, and Lead Body Burden Among Older Men

    PubMed Central

    Khalil, Naila; Faulkner, Kimberly A.; Greenspan, Susan L.; Cauley, Jane A.

    2013-01-01

    Objectives To study the association of blood lead concentration (BPb) to bone mineral density (BMD), physical, and cognitive function in non-institutionalized community dwelling older men. Design Cross sectional study. Setting University of Pittsburgh clinic, Pittsburgh, PA. Participants Non-Hispanic Caucasian men aged 65 or older (N=445) recruited as a subset of a prospective cohort Osteoporotic Fractures in Men (MrOS) study. Measurement BPb was measured in 2007-2008. From 2007-2009 BMD (g/cm2) was measured using dual energy x-ray absorptiometry (DXA). At the same time physical performance was measured with five tests: grip strength, leg extension power, walking speed, narrow-walk pace, and chair stands. Cognitive performance was assessed using the Modified Mini-Mental State Examination and the Trail Making Test Part B. Participants were categorized into quartiles of BPb. Multivariate regression analysis was used to evaluate independent relationship between BPb, BMD, cognitive and physical function. Results Mean ±sd BPb was 2.25±1.20 μg/dL (median =2 μg/dL, range 1-10). In multivariable adjusted models, men in higher BPb quartiles had lower BMD at femoral neck, and total hip (p-trend =<0.001 for both). Men with higher BPb had lower age adjusted score for grip strength (p-trend<0.001). However, this association was not significant in multivariate adjusted models (p-trend <0.148). BPb was not associated with lumbar spine BMD, cognition, leg extension power, walking speed, narrow-walk pace, and chair stands. Conclusion Environmental lead exposure may adversely affect bone health in older men. These findings support consideration of environmental exposures in age associated bone fragility. PMID:24383935

  17. Effect of deproteination on bone mineral morphology: implications for biomaterials and aging.

    PubMed

    Carter, D H; Scully, A J; Heaton, D A; Young, M P J; Aaron, J E

    2002-09-01

    Bone mineral morphology is altered by processing and this is rarely considered when preparing bone as a bioimplant material. To examine the degree of transformation, a commercial, coarsely particulate bone mineral biomaterial produced by prolonged deproteination, defatting, dehydration, and heating (donor material) was compared with similar particles of human bone (recipient material) prepared optimally by low-temperature milling. The two powders were freeze-substituted and embedded without thawing in Lowicryl K4M before sectioning for transmission electron microscopy (TEM) (other aliquots were processed by traditional TEM methods). To maximize resolution, electron micrographs were image-enhanced by digitization and printed as negatives using a Polaroid Sprint Scan 45. In addition to their morphology, the particles were examined for antigenicity (specific by reference to fluorescein isothiocyanate [FITC]-conjugated fibronectin, and nonspecific by reference to general FITC-conjugated immunoglobulins). Results showed that the optimally prepared human bone fragments stained discretely for fibronectin with negligible background autofluorescence. In contrast, the bioimplant fragments stained extensively with this and any other FITC-conjugated antibody and, unlike fresh bone, it also autofluoresced a uniform yellow. This difference was also expressed structurally and, although the bioimplant mineral consisted of rhomboidal plates up to 200 nm across and 10 nm thick, the optimally prepared bone mineral was composed of numerous clusters of 5-nm-wide sinuous calcified filaments of variable density and indeterminate length (which became straight needles 50 nm long and 5 nm thick following traditional chemical TEM fixation/staining). It was concluded that the inorganic phase of bone is both morphologically and immunologically transmutable and that, in biomaterials, the transformation is apparently so great that a broad indigenous antigenicity is unmasked, increasing the

  18. Association of Circulating Renin and Aldosterone With Osteocalcin and Bone Mineral Density in African Ancestry Families.

    PubMed

    Kuipers, Allison L; Kammerer, Candace M; Pratt, J Howard; Bunker, Clareann H; Wheeler, Victor W; Patrick, Alan L; Zmuda, Joseph M

    2016-05-01

    Hypertension is associated with accelerated bone loss, and the renin-angiotensin-aldosterone system is a key regulator of blood pressure. Although components of this system are expressed in human bone cells, studies in humans are sparse. Thus, we studied the association of circulating renin and aldosterone with osteocalcin and bone mineral density. We recruited 373 African ancestry family members without regard to health status from 6 probands (mean family size: 62 and relative pairs: 1687). Participants underwent a clinical examination, dual-energy x-ray absorptiometry, and quantitative computed tomographic scans. Renin activity, aldosterone concentration, and osteocalcin were measured in fasting blood samples. Aldosterone/renin ratio was calculated as aldosterone concentration/renin activity. All models were analyzed using pedigree-based variance components methods. Full models included adjustment for age, sex, body composition, comorbidities, lifestyle factors, blood pressure, and antihypertensive medication. Higher renin activity was significantly associated with lower total osteocalcin and with higher trabecular bone mineral density (bothP<0.01). There were also significant genetic correlations between renin activity and whole-body bone mineral density. There were no associations with aldosterone concentration in any model and results for aldosterone/renin ratio were similar to those for renin activity. This is the first study to report a significant association between renin activity and a marker of bone turnover and bone mineral density in generally healthy individuals. Also, there is evidence for significant genetic pleiotropy and, thus, there may be a shared biological mechanism underlying both the renin-angiotensin-aldosterone system and bone metabolism that is independent of hypertension. PMID:26975710

  19. Prediction of microdamage formation using a mineral-collagen composite model of bone

    PubMed Central

    Wang, Xiaodu; Qian, Chunjiang

    2007-01-01

    Age-related changes in bone quality are mainly manifested in the reduced toughness. Since the post-yield deformation of bone is realized through microdamage formation (e.g., microcracking and diffuse damage), it is necessary to understand the mechanism of microdamage formation in bone in order to elucidate underlying mechanisms of age-related bone fractures. In this study, a two-dimensional shear lag model was developed to predict stress concentration fields around an initial crack in a mineral-collagen composite. In this model, non-linear elasticity was assumed for the collagen phase, and linear elasticity for the mineral. Based on the pattern of the stress concentration fields, the condition for microdamage formation was discussed. The results of our analyses indicate that: (1) an initial crack formed in mineral phase may cause stress concentration in the adjacent mineral layers; (2) the pattern of stress concentration fields depends not only on the spatial but also mechanical properties of the collagen and mineral phases; (3) the pattern of the stress concentration fields could determine either coalescence or scattering of nano cracks around the initial crack. PMID:16439230

  20. Cortical and Trabecular Bone, Bone Mineral Density, and Resistance to ex Vivo Fracture Are Not Altered in Response to Life-Long Vitamin A Supplementation in Aging Rats123

    PubMed Central

    Wray, Amanda E.; Okita, Nori; Ross, A. Catharine

    2011-01-01

    High vitamin A (VA) intakes have been correlated with increased risk of bone fracture. Over 50% of the U.S. adult population reports use of dietary supplements, which can result in VA intakes > 200% of the RDA. In this study, 2 experiments were designed to determine the effect of dietary VA on cortical and trabecular bone properties and resistance to ex vivo fracture. In Expt. 1, we investigated whether orally administered VA accumulates in bone. Seven-week-old rats were treated daily with VA (6 mg/d for 14 d). Total retinol increased in both the tibia and femur (P < 0.01). In Expt. 2, we conducted a longitudinal study in which rats were fed 1 of 3 levels of dietary VA (marginal, adequate, and supplemented, equal to 0.35, 4, and 50 μg retinol/g diet, respectively) from weaning until the ages of 2–3 mo (young), 8–10 mo (middle-age), and 18–20 mo (old). Tibial trabecular and cortical bone structure, bone mineral density, and resistance to fracture were measured using micro-computed tomography and material testing system analysis, respectively. The VA-marginal diet affected measures of cortical bone dimension, suggesting bone remodeling was altered. VA supplementation increased medullary area and decreased cortical thickness in young rats (P < 0.05), but these changes were not present during aging. VA supplementation did not affect resistance to fracture or bone mineral content in old rats. From these results, we conclude that VA-marginal status affects trabecular bone more than cortical bone, and VA supplementation at a moderate level over the lifetime is unlikely to increase the risk of age-related bone fracture in rats. PMID:21310867

  1. Effects of cadmium, calcium, age and parity on bone mineral, density and strength in female rats

    SciTech Connect

    Hammond, B.F.

    1985-06-01

    Weanling female rats were fed diets containing one of three levels of calcium and one of four levels of cadmium in the drinking water. Approximately 10 animals from each group were sacrificed after the first pregnancy and the remaining animals after the fourth pregnancy. Reproductive performance, plasma and bone Ca and P and bone density and strength were measured. After the first pregnancy, offspring of dams treated with 5 or 10 ppM Cd were smaller at birth than offspring of dams treated with 0 or 1 ppM Cd. Offspring of dams fed 5 or 10 ppM Cd or the 0.3% Ca diet had decreased weaning weight regardless of parity. Cadmium treatment had no effect on the plasma Ca or the Ca-P ratio. At Cd levels of 5 or 10 ppM the plasma P was increased. The 0.3% Ca diet depressed the plasma Ca and the 0.9% Ca diet elevated the plasma Ca and depressed the plasma P when compared to the 0.6% diet. Parity did not affect plasma Ca but, after four pregnancies, plasma P was decreased. Plasma Ca of mature dams was higher than that of adolescent dams but plasma P was unaffected. Bone mineral, density and strength were decreased by the 0.3% Ca diet especially when Cd levels reached 10 ppM. Increasing dietary Ca above normal increased femur Ca of dams fed 1 ppM Cd but did not increase the Ca of the femur of dams given higher levels of Cd. After the first pregnancy, femur Ca of mature dams was greater than that of adolescent dams. After the fourth pregnancy, femurs of mature dams were less strong than those of adolescent dams; however, the density was the same. Increasing dietary Ca above 0.6% lessened the detrimental effects of 5 ppM Cd ingestion on bone density. Mature dams were less affected by the 0.3% Ca 10 ppM Cd treatment than were adolescent dams. 60 refs., 3 figs., 26 tabs.

  2. Are Volumetric Bone Mineral Density and Bone Micro-Architecture Associated with Leptin and Soluble Leptin Receptor Levels in Adolescent Idiopathic Scoliosis? – A Case-Control Study

    PubMed Central

    Tam, Elisa M. S.; Yu, Fiona W. P.; Hung, Vivian W. Y.; Liu, Zhen; Liu, King Lok; Ng, Bobby K. W.; Lee, Simon K. M.; Qiu, Yong; Cheng, Jack C. Y.; Lam, Tsz-Ping

    2014-01-01

    Background Adolescent idiopathic scoliosis (AIS) is associated with low bone mineral density (BMD). The underlying etiology and how it may relate to the development of osteopenia remains unknown. Leptin has been postulated as one of the etiologic factors of AIS because of its profound effects on bone metabolism and pubertal growth. Its modulator, soluble leptin receptor (sOB-R), may affect leptin bioavailability and signaling. This study aimed to investigate whether serum leptin and sOB-R levels may be associated with bone quality, and whether these relationships may differ between young adolescent girls with and without AIS. Methods This was a case-control study involving 94 newly diagnosed AIS girls (Cobb angle 12–48°) aged 12 to 14 years old and 87 age and gender-matched normal controls. Subjects with BMI>23.0 Kg/m2 were excluded. Anthropometric measurements including body weight, height, arm span and sitting height were taken. Serum total leptin and sOB-R were assayed with ELISA. Non-dominant distal radius was scanned with High Resolution pQCT for assessing bone quality in terms of bone morphometry, volumetric BMD (vBMD) and trabecular bone micro-architecture. Results Compared with normal controls, AIS girls had numerically higher sOB-R (p = 0.006), lower average vBMD (p = 0.048), lower cortical vBMD (p = 0.029), higher cortical bone perimeter (p = 0.014) and higher trabecular area (p = 0.027), but none remained statistically significant after the Hochberg-Benjamini procedure. Correlation analysis on serum leptin level indicated that distinctive correlations with trabecular bone parameters occurred only in AIS. Conclusion This study showed that bone quality in AIS girls was deranged as compared with controls. In addition, the distinct differences in correlation pattern between leptin and trabecular bone parameters indicated possible abnormalities in bone metabolism and dysfunction of the leptin signaling pathway in AIS. PMID:24516571

  3. The Soy Isoflavones to Reduce Bone Loss (SIRBL) Study: Three Year Effects on pQCT Bone Mineral Density and Strength Measures in Postmenopausal Women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soy isoflavones exert inconsistent bone density preserving effects, but the bone strength preserving effects in humans are unknown. Our double-blind randomized controlled trial examined 2 soy isoflavone doses (80 or 120 mg/d) vs placebo tablets on volumetric bone mineral density (vBMD) and strength ...

  4. The recent prevalence of Osteoporosis and low bone mass in the United States based on bone mineral density at the Femoral Neck or Lumbar Spine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of our study was to estimate the prevalence of osteoporosis and low bone mass based on bone mineral density (BMD) at the femoral neck and the lumbar spine in adults 50 years and older in the United States (US). We applied prevalence estimates of osteoporosis or low bone mass at the femoral ...

  5. Using Natural Stable Calcium Isotopes to Rapidly Assess Changes in Bone Mineral Balance Using a Bed Rest Model to Induce Bone Loss

    NASA Technical Reports Server (NTRS)

    Morgan, J. L. L.; Skulan, J. L.; Gordon, G. E.; Smith, Scott M.; Romaniello, S. J.; Anbar, A. D.

    2012-01-01

    Metabolic bone diseases like osteoporosis result from the disruption of normal bone mineral balance (BMB) resulting in bone loss. During spaceflight astronauts lose substantial bone. Bed rest provides an analog to simulate some of the effects of spaceflight; including bone and calcium loss and provides the opportunity to evaluate new methods to monitor BMB in healthy individuals undergoing environmentally induced-bone loss. Previous research showed that natural variations in the Ca isotope ratio occur because bone formation depletes soft tissue of light Ca isotopes while bone resorption releases that isotopically light Ca back into soft tissue (Skulan et al, 2007). Using a bed rest model, we demonstrate that the Ca isotope ratio of urine shifts in a direction consistent with bone loss after just 7 days of bed rest, long before detectable changes in bone mineral density (BMD) occur. The Ca isotope variations tracks changes observed in urinary N-teleopeptide, a bone resorption biomarker. Bone specific alkaline phosphatase, a bone formation biomarker, is unchanged. The established relationship between Ca isotopes and BMB can be used to quantitatively translate the changes in the Ca isotope ratio to changes in BMD using a simple mathematical model. This model predicts that subjects lost 0.25 0.07% ( SD) of their bone mass from day 7 to day 30 of bed rest. Given the rapid signal observed using Ca isotope measurements and the potential to quantitatively assess bone loss; this technique is well suited to study the short-term dynamics of bone metabolism.

  6. Osteoblast autonomous Pi regulation via Pit1 plays a role in bone mineralization.

    PubMed

    Yoshiko, Yuji; Candeliere, G Antonio; Maeda, Norihiko; Aubin, Jane E

    2007-06-01

    The complex pathogenesis of mineralization defects seen in inherited and/or acquired hypophosphatemic disorders suggests that local inorganic phosphate (P(i)) regulation by osteoblasts may be a rate-limiting step in physiological bone mineralization. To test whether an osteoblast autonomous phosphate regulatory system regulates mineralization, we manipulated well-established in vivo and in vitro models to study mineralization stages separately from cellular proliferation/differentiation stages of osteogenesis. Foscarnet, an inhibitor of NaP(i) transport, blocked mineralization of osteoid formation in osteoblast cultures and local mineralization after injection over the calvariae of newborn rats. Mineralization was also down- and upregulated, respectively, with under- and overexpression of the type III NaP(i) transporter Pit1 in osteoblast cultures. Among molecules expressed in osteoblasts and known to be related to P(i) handling, stanniocalcin 1 was identified as an early response gene after foscarnet treatment; it was also regulated by extracellular P(i), and itself increased Pit1 accumulation in both osteoblast cultures and in vivo. These results provide new insights into the functional role of osteoblast autonomous P(i) handling in normal bone mineralization and the abnormalities seen in skeletal tissue in hypophosphatemic disorders. PMID:17438129

  7. Comparisons of bone mineral density and bone quality in adult rock climbers, resistance-trained men, and untrained men.

    PubMed

    Sherk, Vanessa D; Bemben, Michael G; Bemben, Debra A

    2010-09-01

    The nature of muscular contractions and episodes of impact loading during technical rock climbing are often varied and complex, and the resulting effects on bone health are unclear. The purpose of this study was to compare total body, lumbar spine, proximal femur, and forearm areal bone mineral density (aBMD) and tibia and forearm bone quality in male rock climbers (RC) (n = 15), resistance trained men (RT) (n = 16), and untrained male controls (CTR) (n = 16). Total body, anteroposterior (AP) lumbar spine, proximal femur, and forearm aBMD and body composition were measured using dual-energy X-ray absorptiometry (DXA) (Lunar Prodigy, v. 10.50.086; GE Healthcare, Waukesha, Wisconsin, U.S.A.). Volumetric BMD (vBMD), bone content, bone area, and muscle cross-sectional area (MCSA) of the tibia and forearm were measured using pQCT (peripheral quantitative computed tomography; Stratec XCT 3000, Pforzheim, Germany). No significant group differences were seen in bone-free lean body mass. CTR had significantly (p < 0.05) greater body fat % than RC and RT and significantly (p < 0.05) greater fat mass than RC. Lumbar spine and femoral neck aBMD were significantly (p < 0.05) greater in RT compared to both RC and CTR. RC had significantly (p < 0.05) lower aBMD at the 33% radius site than CTR. Forearm MCSA was significantly (p < 0.05) lower in CTR than in the other groups. No significant differences were seen between groups for vBMD or bone area of the tibia and forearm. In conclusion, resistance-trained men had higher bone density at the central skeletal sites than rock climbers; however, bone quality variables of the peripheral limbs were similar in rock climber and resistance-trained groups. PMID:20093970

  8. Bone Mineral Density and Bone Turnover Markers Under Bisphosphonate Therapy Used in the First Year After Liver Transplantation.

    PubMed

    Nowacka-Cieciura, Ewa; Sadowska, Anna; Pacholczyk, Marek; Chmura, Andrzej; Tronina, Olga; Durlik, Magdalena

    2016-01-01

    BACKGROUND Rapid bone loss occurs early after liver transplantation (Tx), concomitantly with intensified bone turnover. In the present study we investigated the effect of bisphosphonates (bisph) added to vitamin D (vitD) and calcium on bone mineral density (BMD) and bone biomarkers in liver graft recipients in the first posttransplant year. MATERIAL AND METHODS In 28 patients BMD was determined at the third month after Tx. In case of osteopenia (Tscore ≤-1.0) and no contraindications, oral bisph was started for 1 year (group BP, n=14); other patients served as controls (CON, n=14). The changes in BMD and biomarkers of bone formation were osteocalcin (OC), bone alkaline phosphatase (BAP), and resorption. Study endpoints were active isoform 5b of the tartrate-resistant acid phosphatase (TRACP5b), serum pyridinoline crosslinks (PYD), and urine excretion of deoxypyridinoline (Dpd) crosslinks. RESULTS In 19 (68%) patients, reduced BMD (T-score ≤1.0) was observed at baseline. The changes in lumbar BMD in BP and CON groups were 5.2% and 1.5%, respectively, not reaching statistical significance. Baseline PYD, Dpd/creat, and OC were elevated in all patients, indicating high bone turnover. We observed decrease in PYD and Dpd/creat in both groups; however, OC decreased only under bisph therapy. Increase in BAP was observed in the control group but not in the BP group. The changes in BAP and OC were significantly different (p<0.01). CONCLUSIONS Combining bisph with vitD and calcium is an effective bone- sparing strategy in liver transplant recipients in the first posttransplant year. Bisph more efficiently decreased the rate of bone turnover than vitD and calcium alone. PMID:27112626

  9. Steroidal contraceptive use is associated with lower bone mineral density in polycystic ovary syndrome.

    PubMed

    Moran, Lisa J; Thomson, R L; Buckley, J D; Noakes, M; Clifton, P M; Norman, R J; Brinkworth, G D

    2015-12-01

    Polycystic ovary syndrome (PCOS) is a common condition affecting reproductive-aged women with features including hyperandrogenism and menstrual irregularity frequently treated with hormonal steroidal contraceptives. Women with PCOS appear to have lower bone mineral density (BMD). While steroidal contraceptives may positively affect bone health, their effect on BMD in PCOS is not known. The aim of this study was to assess BMD in women with PCOS according to recent contraceptive use. A cross-sectional analysis of 95 pre-menopausal overweight or obese sedentary women with PCOS [age 29.4 ± 6.4 years, body mass index (BMI) 36.1 ± 5.3 kg/m(2)] who either recently took steroidal contraceptives (ceased 3 months prior) or were not taking steroidal contraceptives was conducted. Clinical outcomes included BMD, anthropometry, insulin, glucose, reproductive hormones, dietary intake and vitamin use. BMD was significantly lower for women who used contraceptives compared to those who did not (mean difference 0.06 g/cm(2) 95 % confidence interval -0.11, -0.02, p = 0.005). In regression models, lower BMD was independently associated with contraceptive use (β = -0.05, 95 % CI -0.094, -0.002, p = 0.042), higher testosterone (β = -0.03, 95 % CI -0.05, -0.0008, p = 0.043) and lower BMI (β = 0.006, 95 % CI 0.002, 0.01, p = 0.007) (r (2) = 0.22, p = 0.001 for entire model). We report for the first time that overweight and obese women with PCOS with recent steroidal contraceptive use had lower BMD in comparison to non-users independent of factors known to contribute to BMD. Whether this observation is directly related to steroidal contraceptive use or other factors requires further investigation. PMID:25957668

  10. Prolonged Practice of Swimming Is Negatively Related to Bone Mineral Density Gains in Adolescents

    PubMed Central

    Ribeiro-dos-Santos, Marcelo R.; Lynch, Kyle R.; Maillane-Vanegas, Santiago; Turi-Lynch, Bruna; Ito, Igor H.; Luiz-de-Marco, Rafael; Rodrigues-Junior, Mario A.; Fernandes, Rômulo A.

    2016-01-01

    Background The practice of swimming in "hypogravity" conditions has potential to decrease bone formation because it decreases the time engaged in weight-bearing activities usually observed in the daily activities of adolescents. Therefore, adolescents competing in national levels would be more exposed to these deleterious effects, because they are engaged in long routines of training during most part of the year. To analyze the effect of swimming on bone mineral density (BMD) gain among adolescents engaged in national level competitions during a 9-month period. Methods Fifty-five adolescents; the control group contained 29 adolescents and the swimming group was composed of 26 athletes. During the cohort study, BMD, body fat (BF) and fat free mass (FFM) were assessed using a dual-energy x-ray absorptiometry scanner. Body weight was measured with an electronic scale, and height was assessed using a stadiometer. Results During the follow-up, swimmers presented higher gains in FFM (Control 2.35 kg vs. Swimming 5.14 kg; large effect size [eta-squared (ES-r)=0.168]) and BMD-Spine (Swimming 0.087 g/cm2 vs. Control 0.049 g/cm2; large effect size [ES-r=0.167]) compared to control group. Male swimmers gained more FFM (Male 10.63% vs. Female 3.39%) and BMD-Spine (Male 8.47% vs. Female 4.32%) than females. Longer participation in swimming negatively affected gains in upper limbs among males (r=-0.438 [-0.693 to -0.085]), and in spine among females (r=-0.651 [-0.908 to -0.036]). Conclusions Over a 9-month follow-up, BMD and FFM gains were more evident in male swimmers, while longer engagement in swimming negatively affected BMD gains, independently of sex. PMID:27622179

  11. Quantitative evaluation of bone-mineral density loss using X-ray coherent scattering

    NASA Astrophysics Data System (ADS)

    Barroso, Regina Cély; Oliveira, Luis Fernando; Castro, Carlos Roberto Ferreira; Lima, João Carlos; Braz, Delson; Lopes, Ricardo Tadeu; Droppa, Roosevel; Tromba, Giuliana; Mancini, Lucia; Zanini, Franco; Rigon, Luigi; Dreossi, Diego

    2007-08-01

    In this work, we intend to relate the mineral to non-mineral bone scattering intensity ratio with the bone-mineral density (BMD) reduction. In this way, EDXRD can be a novel technique to measure BMD loss in function of the mineral and non-mineral scattering intensity. The scattering profiles were obtained at Laboratório Nacional de Luz Síncrotron (LNLS) at the X-ray diffraction beamline XD2. A double-crystal Si(1 1 1) pre-monochromator, upstream of the beamline, was used to select a small energy bandwidth (Δ λ/ λ≈10 -4) at 11 keV. The sample holder has a circle depression in the center to contain a range of bone and fat mixture ratios. The mixture consists of powdered cortical bone and fat, which together simulate in vivo bone. The diffraction patterns were carried out with 0.5 mm slits after and behind of the sample holder. The data were collected in 0.05° increments every 0.5 s. EDXRD results show an indication of different bone densities may be distinguished which suggested that X-ray coherent scattering technique may have a role in monitoring changes in BMD via changes in the related scattering intensity of mineral and non-mineral bone. The main aim of the Synchrotron Radiation for MEdical Physics (SYRMEP) project at the ELETTRA is the investigation and the development of innovative techniques for medical imaging. The beamline provides, at a distance of about 23 m from the source, a monochromatic, laminar section X-ray beam with a maximum area of about 160×5 mm 2 at 20 keV. The monochromator, that covers the entire angular acceptance of the beamline, is based on a double-Si (1 1 1) crystal system working in Bragg configuration. A micrometric vertical and horizontal translation stage allows the positioning and scanning of the sample with respect to the stationary beam. In this case, the detector is kept stationary in front of the beam, while the object is rotated in discrete steps in front of it. At each rotation, a projection is acquired. A goniometric

  12. Novel Regulators of Fgf23 Expression and Mineralization in Hyp Bone

    PubMed Central

    Liu, Shiguang; Tang, Wen; Fang, Jianwen; Ren, Jinyu; Li, Hua; Xiao, Zhousheng; Quarles, L. D.

    2009-01-01

    We used gene array analysis of cortical bone to identify Phex-dependent gene transcripts associated with abnormal Fgf23 production and mineralization in Hyp mice. We found evidence that elevation of Fgf23 expression in osteocytes is associated with increments in Fgf1, Fgf7, and Egr2 and decrements in Sost, an inhibitor in the Wnt-signaling pathway, were observed in Hyp bone. β-Catenin levels were increased in Hyp cortical bone, and TOPflash luciferase reporter assay showed increased transcriptional activity in Hyp-derived osteoblasts, consistent with Wnt activation. Moreover, activation of Fgf and Wnt-signaling stimulated Fgf23 promoter activity in osteoblasts. We also observed reductions in Bmp1, a metalloproteinase that metabolizes the extracellular matrix protein Dmp1. Alterations were also found in enzymes regulating the posttranslational processing and stability of Fgf23, including decrements in the glycosyltransferase Galnt3 and the proprotein convertase Pcsk5. In addition, we found that the Pcsk5 and the glycosyltransferase Galnt3 were decreased in Hyp bone, suggesting that reduced posttranslational processing of FGF23 may also contribute to increased Fgf23 levels in Hyp mice. With regard to mineralization, we identified additional candidates to explain the intrinsic mineralization defect in Hyp osteoblasts, including increases in the mineralization inhibitors Mgp and Thbs4, as well as increases in local pH-altering factors, carbonic anhydrase 12 (Car12) and 3 (Car3) and the sodium-dependent citrate transporter (Slc13a5). These studies demonstrate the complexity of gene expression alterations in bone that accompanies inactivating Phex mutations and identify novel pathways that may coordinate Fgf23 expression and mineralization of extracellular matrix in Hyp bone. PMID:19556340

  13. Reproducible methods for calibrating the backscattered electron signal for quantitative assessment of mineral content in bone

    SciTech Connect

    Boyce, T.M.; Bloebaum, R.D.; Bachus, K.N.; Skedros, J.G. )

    1990-09-01

    Backscattered electron (BSE) imaging shows promise for orthopaedic and bone research. BSE images of bone may be captured on-line directly from the scanning electron microscope (SEM), and then analyzed to produce a backscattered electron profile (BSEP), a modified image graylevel histogram which is representative of the mineral content in bone. The goals of this work were (1) develop a reproducible graylevel calibration technique for bone specimens, and (2) determine a conservative time interval during which SEM operating conditions would remain stable. Calibration standards containing pure aluminum and pure magnesium wires were placed in the SEM with human cancellous bone. Baseline imaging conditions were first established by adjusting the SEM until the bone image displayed good resolution and graylevel separation between regions of different mineral content. Microscope brightness and contrast controls were randomly changed to initiate the new operating conditions of another imaging session, and graylevel values from the calibration metals were used to readjust the microscope back to baseline operating conditions. Weighted mean graylevel values of the BSEPs from calibration trials were compared to those of the baseline. Data showed that bone images could be reproduced within 1.2 percent. It was also concluded that our equipment required calibration checks at 20 minute intervals.

  14. Relating crack-tip deformation to mineralization and fracture resistance in human femur cortical bone.

    PubMed

    Chan, Kwai S; Chan, Candace K; Nicolella, Daniel P

    2009-09-01

    The risk of bone fracture increases with age because of a variety of factors that include, among others, decreasing bone quantity and quality. Despite recent advances, the roles of bone microstructure and trace mineralization in the fracture process are not well understood. In this study, we utilize a combination of in-situ fracture toughness testing, digital strain mapping, and X-ray photoelectron spectroscopy techniques to characterize the near-tip strain field, fracture toughness, and chemical elements on the fracture surface of bone specimens from donors of two ages (48-year-old and 78-year-old females). We show that age-related embrittlement of bone fracture is associated with higher near-tip strains by lamellar shear and crack deflection at lamellar interfaces in the young bone and their absence in the old bone. The different near-tip deformation behaviors may be associated with the presence of Si and Zn in the young bone but more Ca and P and the lack of Si and Zn in the old bone. PMID:19497396

  15. Association of Renal Function and Menopausal Status with Bone Mineral Density in Middle-aged Women

    PubMed Central

    Sheng, Yueh-Hsuan; Chen, Jen-Hau; Chiou, Jeng-Min; Tsai, Keh-Sung; Lee, Yue-Yuan; Tsao, Chwen-Keng; Chen, Yen-Ching

    2015-01-01

    The association between mild renal dysfunction and bone mineral density (BMD) has not been fully explored. It is also unclear how menopausal status and the use of Chinese herb affect this association. This is a cross-sectional study that included a total of 1,419 women aged 40 to 55 years old who were recruited from the MJ Health Management Institution in Taiwan between 2009 and 2010. Spinal BMD was assessed by dual-energy X-ray absorptiometry. Renal function was assessed using estimated glomerular filtration rate (eGFR) and creatinine clearance rate (CCr). The multivariable logistic regression and general linear models were employed to assess the association between renal function and BMD. Stratification analyses were performed by menopausal status and use of Chinese herbs. Low CCr levels were significantly associated with low BMD [adjusted odds ratio (AOR) = 1.48, 95% confidence interval (CI) = 1.15–1.90]. This association was observed in premenopausal women (AOR = 1.43, 95% CI = 1.07–1.92) and in women not taking Chinese herbs (AOR = 1.48, 95% CI = 1.14–1.94). CCr is a better predictor for low BMD in middle-aged women. Menopausal status and the use of Chinese herbs also affected this association. PMID:26459876

  16. Bone mineral density and body composition in a myelomeningocele children population: effects of walking ability and sport activity.

    PubMed

    Ausili, E; Focarelli, B; Tabacco, F; Fortunelli, G; Caradonna, P; Massimi, L; Sigismondi, M; Salvaggio, E; Rendeli, C

    2008-01-01

    Myelomeningocele causes serious locomotor disability, osteoporosis and pathologic fractures. The aim of this study was to investigate the relationship between body composition, bone mineral density, walking ability and sport activity in myelomeningocele children. 60 patients aged between 5 and 14 yrs with myelomeningocele (22 ambulatory and 38 non-ambulatory), were studied. Fat mass and fat-free-mass were calculated by anthropometry. The bone mineral density at lumbar and femoral neck were evaluated. Bone mineral density at the lumbar and femoral neck was lower than in the normal population. In the non-ambulaty group, bone mineral density was approximately 1 SD lower than in the ambulatory one (p < 0.01). Fat mass was greater than expected but without significantly differences between walking group (mean 26%) and wheel-chair users (25%). Patients practised sport activity had a better bone mineral density and body fat compared with other patients with the same disability. Patients with myelomeningocele have decreased bone mineral density and are at higher risk of pathologic bone fractures. All subjects showed an excess of fat as percentage of body weight and are shorter than normal children. The measurement of bone mineral density may help to identify those patients at greatest risk of suffering of multiple fractures. Walk ability and sport activity, associated with the development of muscle mass, are important factors in promoting bone and body growth, to reduce the risk of obesity and of pathological fractures. PMID:19146196

  17. Maxillary sinus grafting with fresh frozen allograft versus bovine bone mineral: A tomographic and histological study.

    PubMed

    Xavier, Samuel Porfirio; Santos, Thiago de Santana; Sehn, Felipe Perraro; Silva, Erick Ricardo; Garcez-Filho, João de Andrade; Martins-Filho, Paulo Ricardo Saquete

    2016-06-01

    We evaluated histologically and tomographically the effects of fresh frozen bone allograft (FFB) or bovine bone mineral (BBM) in maxillary sinus floor augmentations. In total, 30 maxillary sinuses from 30 patients (mean age = 51.17 ± 10.86 years) underwent sinus augmentation. Patients were divided in two test groups (15 sinuses each). The first group was grafted with allograft bone, and the second group received bovine bone mineral. After 6 months, bone samples from each group were collected for histological examination. Implant survival rates were 97.78% (FFB group) and 100% (BBM group) 6 months after functional loading. Median volumetric reductions of 31.2% (11.33-40.56) and 12.22% (9.91-20.59) were observed in the FFB and BBM groups, respectively. Comparisons between the groups for differences in initial and final volumes of bone (p = 0.015) and the rate of resorption (p = 0.009) showed statistically significant differences. The FFB group showed osteoblastic cells in close contact with osteoid matrix, connected through bridges between allograft bone particles and new bone formation. The BBM group showed BBM particles in close contact with new bone, with visible osteoid matrix bridges and osteoblastic cells surrounding it. None showed signs of acute or chronic inflammatory infiltrate. Despite better results with BBM, both FFB and BBM in maxillary sinus augmentation resulted in high percentages of new bone formation, and allowed implant placement with a low rate of failure of osseointegration at a 6-month follow-up. PMID:27107475

  18. Risk Factors for Low Bone Mineral Density in Individuals Residing in a Facility for the People with Intellectual Disability

    ERIC Educational Resources Information Center

    Jaffe, J. S.; Timell, A. M.; Elolia, R.; Thatcher, S. S.

    2005-01-01

    Background: Individuals with intellectual disability (ID) are known to have a high prevalence of both low bone mineral density (BMD) and fractures with significant attendant morbidity. Effective strategies aimed at reducing fractures will be facilitated by the identification of predisposing risk factors. Methods: Bone mineral density was measured…

  19. Bone mineral properties in growing Col1a2(+/G610C) mice, an animal model of osteogenesis imperfecta.

    PubMed

    Masci, Marco; Wang, Min; Imbert, Laurianne; Barnes, Aileen M; Spevak, Lyudmila; Lukashova, Lyudmila; Huang, Yihe; Ma, Yan; Marini, Joan C; Jacobsen, Christina M; Warman, Matthew L; Boskey, Adele L

    2016-06-01

    The Col1a2(+/G610C) knock-in mouse, models osteogenesis imperfecta in a large old order Amish family (OOA) with type IV OI, caused by a G-to-T transversion at nucleotide 2098, which alters the gly-610 codon in the triple-helical domain of the α2(I) chain of type I collagen. Mineral and matrix properties of the long bones and vertebrae of male Col1a2(+/G610C) and their wild-type controls (Col1a2(+/+)), were characterized to gain insight into the role of α2-chain collagen mutations in mineralization. Additionally, we examined the rescuability of the composition by sclerostin inhibition initiated by crossing Col1a2(+/G610C) with an LRP(+/A214V) high bone mass allele. At age 10-days, vertebrae and tibia showed few alterations by micro-CT or Fourier transform infrared imaging (FTIRI). At 2-months-of-age, Col1a2(+/G610C) tibias had 13% fewer secondary trabeculae than Col1a2(+/+), these were thinner (11%) and more widely spaced (20%) than those of Col1a2(+/+) mice. Vertebrae of Col1a2(+/G610C) mice at 2-months also had lower bone volume fraction (38%), trabecular number (13%), thickness (13%) and connectivity density (32%) compared to Col1(a2+/+). The cortical bone of Col1a2(+/G610C) tibias at 2-months had 3% higher tissue mineral density compared to Col1a2(+/+); Col1a2(+/G610C) vertebrae had lower cortical thickness (29%), bone area (37%) and polar moment of inertia (38%) relative to Col1a2(+/+). FTIRI analysis, which provides information on bone chemical composition at ~7μm-spatial resolution, showed tibias at 10-days did not differ between genotypes. Comparing identical bone types in Col1a2(+/G610C) to Col1a2(+/+) at 2-months-of-age, tibias showed higher mineral-to-matrix ratio in trabeculae (17%) and cortices (31%). and in vertebral cortices (28%). Collagen maturity was 42% higher at 10-days-of-age in Col1a2(+/G610C) vertebral trabeculae and in 2-month tibial cortices (12%), vertebral trabeculae (42%) and vertebral cortices (12%). Higher acid-phosphate substitution

  20. Decreased bone mineralization in Children with Noonan Syndrome: Another Consequence of Dysregulated RAS MAPKinase Pathway?

    PubMed Central

    Choudhry, Kiran S.; Grover, Monica; Tran, Alyssa; O'Brian Smith, E.; Ellis, Kenneth J.; Lee, Brendan H.

    2012-01-01

    Introduction Noonan syndrome (NS) is a disorder of RAS- mitogen activated protein kinase (MAPK) pathway with clinical features of skeletal dysplasia. This pathway is essential for regulation of cell differentiation and growth including bone homeostasis. Currently, limited information exists regarding bone mineralization in NS. Material and Methods Using dual-energy X-ray absorptiometry (DXA), bone mineralization was evaluated in 12 subjects (mean age 8.7 years) with clinical features of NS. All subjects underwent genetic testing which showed mutations in PTPN11 gene (N=9) and SOS1 gene (N=1). In a subgroup of subjects with low bone mass, indices of calcium-phosphate metabolism and bone turnover were obtained. Results 50% of subjects had low bone mass as measured by DXA. Z-scores for bone mineral content (BMC) were calculated based on age, gender, height, and ethnicity. Mean BMC z-score was marginally decreased at -0.89 {95% CI -2.01 to 0.23; p=0.1}. Mean total body bone mineral density (BMD) z-score was significantly reduced at -1.87 {95% CI -2.73 to -1.0; p= 0.001}. Mean height percentile was close to -2 SD for this cohort, thus total body BMD z-scores were recalculated, adjusting for height age. Adjusted mean total body BMD z-score was less reduced but still significant at -0.82 {95% CI -1.39 to -0.25; p= 0.009}. Biochemical evaluation for bone turnover was unremarkable except serum IGF- I and IGF-BP3 levels which were low-normal for age. Discussion Children with Noonan syndrome have a significantly lower total body BMD compared to age, gender, ethnicity and height matched controls. In addition, total BMC appears to trend lower in children with Noonan syndrome compared to controls. We conclude that the metabolic bone disease present resulted from a subtle variation in the interplay of osteoclast and osteoblast activity, without clear abnormalities being defined in the metabolism of either. Clinical significance of this finding needs to be validated by larger

  1. Minodronic acid ameliorates vertebral bone strength by increasing bone mineral density in 9-month treatment of ovariectomized cynomolgus monkeys.

    PubMed

    Tanaka, Makoto; Mori, Hiroshi; Kawabata, Kazuhito; Mashiba, Tasuku

    2016-07-01

    The effect of treatment for 9months with minodronic acid, a nitrogen-containing bisphosphonate, on vertebral mechanical strength was examined in ovariectomized (OVX) cynomolgus monkeys. Forty skeletally mature female monkeys were randomized into four OVX groups and one sham group (n=8) based on lumbar bone mineral density (BMD). OVX animals were treated orally with 15 and 150μg/kg QD of minodronic acid or 500μg/kg QD alendronate as a reference drug. Measurements of bone turnover markers and lumbar BMD were conducted at 0, 4 and 8months. Measurements of bone mechanical strength and minodronic acid concentration in vertebral bodies were also performed. OVX resulted in a decrease in lumbar BMD and an increase in bone turnover markers at 4 and 8months, compared to the sham group, and the ultimate load on the lumbar vertebra was decreased in OVX animals. Minodronic acid and alendronate prevented the OVX-induced increase in bone turnover markers and decrease in lumbar BMD. Minodronic acid at 150μg/kg increased the ultimate load on lumbar vertebra compared to untreated OVX animals. Regression analysis revealed that the ultimate load was correlated with lumbar BMD and bone mineral content (BMC), and most strongly with the increase in lumbar BMD and BMC over 8months. In a separate analysis within the sham-OVX controls and minodronic acid and alendronate treatment groups, the ultimate loads were also correlated with BMD and BMC. The load-BMD (BMC) correlation in the minodronic acid group showed a trend for a shift to a higher load from the basal relationship in the sham-OVX controls. These results indicate that treatment with minodronic acid for 9months increases vertebral mechanical strength in OVX monkeys, mainly by increasing BMD and BMC. PMID:27155564

  2. Bone Mineral Density in Adults With Down Syndrome, Intellectual Disability, and Nondisabled Adults

    ERIC Educational Resources Information Center

    Geijer, Justin R.; Stanish, Heidi I.; Draheim, Christopher C.; Dengel, Donald R.

    2014-01-01

    Individuals with intellectual disability (ID) or Down syndrome (DS) may be at greater risk of osteoporosis. The purpose of this study was to compare bone mineral density (BMD) of DS, ID, and non-intellectually disabled (NID) populations. In each group, 33 participants between the ages of 28 and 60 years were compared. BMD was measured with…

  3. Effects of Physical Training and Calcium Intake on Bone Mineral Density of Students with Mental Retardation

    ERIC Educational Resources Information Center

    Hemayattalab, Rasool

    2010-01-01

    The purpose of this study was to investigate the effects of physical training and calcium intake on bone mineral density (BMD) of students with mental retardation. Forty mentally retarded boys (age 7-10 years old) were randomly assigned to four groups (no differences in age, BMD, calcium intake and physical activity): training groups with or…

  4. Mechanism by Sambucus nigra Extract Improves Bone Mineral Density in Experimental Diabetes.

    PubMed

    Badescu, Laurentiu; Badulescu, Oana; Badescu, Magda; Ciocoiu, Manuela

    2012-01-01

    The effects of polyphenols extracted from Sambucus nigra fruit were studied in streptozotocin- (STZ-) induced hyperglycemic rats to evaluate its possible antioxidant, anti-inflammatory, antiglycosylation activity, and antiosteoporosis effects in diabetes. DEXA bone mineral density tests were performed in order to determine bone mineral density (BMD), bone mineral content (BMC), and fat (%Fat) in control and diabetic animals, before and after polyphenol delivery. As compared to the normoglycemic group, the rats treated with STZ (60 mg/kg body weight) revealed a significant malondialdehyde (MDA) increase, as an index of the lipid peroxidation level, by 69%, while the total antioxidant activity (TAS) dropped by 36%, with a consistently significant decrease (P < 0.05) in the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPX). Also, the treatment of rats with STZ revealed a significant increase of IL-6, glycosylated haemoglobin (HbA(1c)), and osteopenia detected by DEXA bone mineral density tests. The recorded results highlight a significant improvement (P < 0.001) in the antioxidative capacity of the serum in diabetic rats treated with natural polyphenols, bringing back to normal the concentration of reduced glutathione (GSH), as well as an important decrease in the serum concentration of MDA, with improved osteoporosis status. Knowing the effects of polyphenols could lead to the use of the polyphenolic extract of Sambucus nigra as a dietary supplement in diabetic osteoporosis. PMID:23024697

  5. Adolescence: How do we increase intestinal calcium absorption to allow for bone mineral mass accumulation?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An increase in calcium absorptive efficiency (fractional absorption of dietary calcium) during adolescence is associated with a rapid increase in total body bone mineral mass (BMM) accumulation. This increase occurs across a range of calcium intakes. It appears to be principally mediated by hormonal...

  6. Strong Association Between Tibial Plateau Bone Mineral Density and Cartilage Damage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tibial bone mineral density (BMD) is associated with radiographic features of osteoarthritis (OA), but no study has looked at its relationship with a direct measure of cartilage damage. We hypothesize that a relative increase in medial and lateral tibial BMD will be associated with cartilage damage...

  7. Associations of APOE gene polymorphisms with bone mineral density and fracture risk: a meta-analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apolipoprotein E (APOE) has been studied for its potential role in osteoporosis risk. It is hypothesized that genetic variation at common APOE loci, known as E2, E3, and E4, may modulate bone mineral density (BMD) through its effects on lipoproteins and vitamin K transport. To determine the associa...

  8. Exercise Effects on Fitness and Bone Mineral Density in Early Postmenopausal Women: 1-Year EFOPS Results.

    ERIC Educational Resources Information Center

    Kemmler, Wolfgang; Engelke, Klaus; Lauber, Dirk; Weineck, Juergen; Hensen, Johannes; Kalender, Willi A.

    2002-01-01

    Investigated the effect of intense exercise training on physical fitness, coronary heart disease, bone mineral density (BMD), and parameters related to quality of life in early postmenopausal women with osteopenia. Data on woman in control and exercise training groups indicated that the intense exercise training program was effective in improving…

  9. Association between sleep duration, insomnia symptoms and bone mineral density in older Puerto Rican adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To examine the association between sleep patterns (sleep duration and insomnia symptoms) and total and regional bone mineral density (BMD) among older Boston Puerto Rican adults. Materials/Methods: We conducted a cross-sectional study including 750 Puerto Rican adults, aged 47–79 y livi...

  10. Electromagnetic field versus circuit weight training on bone mineral density in elderly women

    PubMed Central

    Elsisi, Hany Farid Eid Morsy; Mousa, Gihan Samir Mohamed; ELdesoky, Mohamed Taher Mahmoud

    2015-01-01

    Background and purpose Osteoporosis is a common skeletal disorder with costly complications and a global health problem and one of the leading causes of morbidity and mortality worldwide. Magnetic field therapy and physical activity have been proven as beneficial interventions for prevention and treatment of osteoporosis. The purpose of this study was to compare the response of bone mineral content and bone mineral density (BMD) in elderly women to either low-frequency low-intensity pulsed magnetic field (LFLIPMF) or circuit weight training (CWT) on short-run basis (after 12 weeks). Patients and methods Thirty elderly women, aged 60–70 years, were randomly assigned into two groups (magnetic field and CWT) (n=15 each group). The session was performed three times per week for magnetic field and CWT groups, for 12 weeks. BMD and bone mineral content of lumbar spine (L2–L4) and femoral neck, trochanter, and Ward’s triangle were evaluated before and after 12 weeks of treatment. Results Both magnetic field and CWT for 12 weeks in elderly women seem to yield beneficial and statistically significant increasing effect on BMD and bone mineral content (P<0.05). But magnetic field seems to have more beneficially and statistically significant effect than does CWT. Conclusion It is possible to conclude that LFLIPMF and CWT programs are effective modalities in increasing BMD but LFLIPMF is more effective in elderly women. PMID:25834412

  11. Serum Dickkopf-1 Level in Postmenopausal Females: Correlation with Bone Mineral Density and Serum Biochemical Markers

    PubMed Central

    Fouda, Neveen; Abbas, Amal Ahmed

    2013-01-01

    Objective. To assess serum level of Dickkopf-1 in postmenopausal females and its correlation with bone mineral density and serum biochemical markers. Methods. Bone densitometry, serum Dickkopf-1, calcium, phosphorus, and alkaline phosphatase were done in sixty postmenopausal females. Patients were divided according to T score into osteoporosis (group I), osteopenia (group II), and normal bone mineral density that served as controls. Results. There was highly significant increase in serum Dickkopf-1 levels in postmenopausal females with abnormal T score versus controls (P < 0.001). Serum DKK-1 levels correlated negatively with both lumbar T score (r = −0.69, P < 0.001) and femur T score (r = −0.64, P < 0.001) and correlated positively with duration of menopause (r = 0.61, P < 0.001), while there was no significant correlation between serum levels of either calcium, phosphorus or alkaline phosphatase, and both serum Dickkopf-1 levels and the level of bone mineral density (P > 0.05). Conclusion. Postmenopausal females may suffer from osteoporosis as evidenced by bone densitometry. Postmenopausal women with significantly increased serum Dickkopf-1 had more significant osteoporosis. Prolonged duration of menopause and increased serum Dickkopf-1 are important risk factors for the development and severity of osteoporosis. PMID:23878759

  12. Reloading partly recovers bone mineral density and mechanical properties in hind limb unloaded rats

    NASA Astrophysics Data System (ADS)

    Zhao, Fan; Li, Dijie; Arfat, Yasir; Chen, Zhihao; Liu, Zonglin; Lin, Yu; Ding, Chong; Sun, Yulong; Hu, Lifang; Shang, Peng; Qian, Airong

    2014-12-01

    Skeletal unloading results in decreased bone formation and bone mass. During long-term space flight, the decreased bone mass is impossible to fully recover. Therefore, it is necessary to develop the effective countermeasures to prevent spaceflight-induced bone loss. Hindlimb Unloading (HLU) simulates effects of weightlessness and is utilized extensively to examine the response of musculoskeletal systems to certain aspects of space flight. The purpose of this study is to investigate the effects of a 4-week HLU in rats and subsequent reloading on the bone mineral density (BMD) and mechanical properties of load-bearing bones. After HLU for 4 weeks, the rats were then subjected to reloading for 1 week, 2 weeks and 3 weeks, and then the BMD of the femur, tibia and lumbar spine in rats were assessed by dual energy X-ray absorptiometry (DXA) every week. The mechanical properties of the femur were determined by three-point bending test. Dry bone and bone ash of femur were obtained through Oven-Drying method and were weighed respectively. Serum alkaline phosphatase (ALP) and serum calcium were examined through ELISA and Atomic Absorption Spectrometry. The results showed that 4 weeks of HLU significantly decreased body weight of rats and reloading for 1 week, 2 weeks or 3 weeks did not recover the weight loss induced by HLU. However, after 2 weeks of reloading, BMD of femur and tibia of HLU rats partly recovered (+10.4%, +2.3%). After 3 weeks of reloading, the reduction of BMD, energy absorption, bone mass and mechanical properties of bone induced by HLU recovered to some extent. The changes in serum ALP and serum calcium induced by HLU were also recovered after reloading. Our results indicate that a short period of reloading could not completely recover bone after a period of unloading, thus some interventions such as mechanical vibration or pharmaceuticals are necessary to help bone recovery.

  13. Bone mineral density and diet of teachers of College of Home Economics at Lahore

    PubMed Central

    Javed, Zahra; Imam, Sardar Fakhar; Imam, Neelam; Saba, Kanwal; Bukhari, Mulazim Hussain

    2015-01-01

    Objective: To evaluate the Bone Mineral Density (BMD) and diet of teachers of a Govt. College of Home Economics in Lahore. Methods: It was survey research. Purposive sampling technique was adopted for the selection of 50 teachers from Govt. College of Home Economics of age group 30 – 60 years. Results: About 46% of the subjects had BMD ratio in between -2.58 to -4.0 (Osteoporotic category). The root cause of low BMD ratio was not really age related but in majority of the sample it was due to sedentary life style and lack of awareness about the importance of exercise in relation to bone health. Conclusion: The total mineral and vitamin intake required for bone health (calcium, magnesium, phosphorus & vitamin D) was below the recommended, among majority of the sample. PMID:26430440

  14. Dihydrophylloquinone intake is associated with low bone mineral density in men and women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poor diet may affect bone status by displacement of nutrients involved in bone health. Dihydrophylloquinone, a form of vitamin K present in foods made with partially-hydrogenated fat, is a potential marker of a low quality dietary pattern. We examined cross-sectional associations between dihydroph...

  15. Histological evaluation of an impacted bone graft substitute composed of a combination of mineralized and demineralized allograft in a sheep vertebral bone defect.

    PubMed

    Fujishiro, Takaaki; Bauer, Thomas W; Kobayashi, Naomi; Kobayashi, Hideo; Sunwoo, Moon Hae; Seim, Howard B; Turner, A Simon

    2007-09-01

    Demineralized bone matrix (DBMs) preparations are a potential alternative or supplement to autogenous bone graft, but many DBMs have not been adequately tested in clinically relevant animal models. The aim of current study was to compare the efficacy of a new bone graft substitute composed of a combination of mineralized and demineralized allograft, along with hyaluronic acid (AFT Bone Void Filler) with several other bone graft materials in a sheep vertebral bone void model. A drilled defect in the sheep vertebral body was filled with either the new DBM preparation, calcium sulfate (OsteoSet), autologous bone graft, or left empty. The sheep were euthanized after 6 or 12 weeks, and the defects were examined by histology and quantitative histomorphometry. The morphometry data were analyzed by one-way analysis of variance with the post hoc Tukey-Kramer test or the Student's t-test. All of the bone defects in the AFT DBM preparation group showed good new bone formation with variable amounts of residual DBM and mineralized bone graft. The DBM preparation group at 12 weeks contained significantly more new bone than the defects treated with calcium sulfate or left empty (respectively, p < 0.05, p < 0.01). There was no significant difference between the DBM and autograft groups. No adverse inflammatory reactions were associated with any of the three graft materials. The AFT preparation of a mixture of mineralized and demineralized allograft appears to be an effective autograft substitute as tested in this sheep vertebral bone void model. PMID:17309059

  16. Aging bone in men and women: beyond changes in bone mineral density.

    PubMed

    Russo, C R; Lauretani, F; Bandinelli, S; Bartali, B; Di Iorio, A; Volpato, S; Guralnik, J M; Harris, T; Ferrucci, L

    2003-07-01

    Using peripheral quantitative computed tomography (pQCT) we assessed trabecular and cortical bone density, mass and geometric distribution at the tibia level in 512 men and 693 women, age range 20-102 years, randomly selected from the population living in the Chianti area, Tuscany, Italy. Total, trabecular and cortical bone density decreased linearly with age ( p<0.0001 in both sexes), and the slope of age-associated decline was steeper in women than in men. In men, the cortical bone area was similar in different age groups, while in women older than 60 years it was significantly smaller by approximately 1% per year. The total cross-sectional area of the bone became progressively wider with age, but the magnitude of the age-associated increment was significantly higher in men than in women ( p<0.001). The minimum moment of inertia, an index of mechanical resistance to bending, remained stable with age in men, while it was significantly lower in older compared with younger women (0.5% per year). The increase in bone cross-sectional area in aging men may contribute to the maintenance of adequate bone mechanical competence in the face of declining bone density. In women this compensatory mechanism appears to be less efficient and, accordingly, the bone mechanical competence declines with age. The geometric adaptation of increasing cross-sectional bone size is an important component in the assessment of bone mechanical resistance which is completely overlooked, and potentially misinterpreted, by traditional planar densitometry. PMID:12827220

  17. Natural calcium isotonic composition of urine as a marker of bone mineral balance

    USGS Publications Warehouse

    Skulan, J.; Bullen, T.; Anbar, A.D.; Puzas, J.E.; Shackelford, L.; LeBlanc, A.; Smith, S.M.

    2007-01-01

    Background: We investigated whether changes in the natural isotopic composition of calcium in human urine track changes in net bone mineral balance, as predicted by a model of calcium isotopic behavior in vertebrates. If so, isotopic analysis of natural urine or blood calcium could be used to monitor short-term changes in bone mineral balance that cannot be detected with other techniques. Methods: Calcium isotopic compositions are expressed as ??44Ca, or the difference in parts per thousand between the 44Ca/40Ca of a sample and the 44Ca/ 40Ca of a standard reference material. ??44Ca was measured in urine samples from 10 persons who participated in a study of the effectiveness of countermeasures to bone loss in spaceflight, in which 17 weeks of bed rest was used to induce bone loss. Study participants were assigned to 1 of 3 treatment groups: controls received no treatment, one treatment group received alendronate, and another group performed resistive exercise. Measurements were made on urine samples collected before, at 2 or 3 points during, and after bed rest. Results: Urine ??44Ca values during bed rest were lower in controls than in individuals treated with alendronate (P <0.05, ANOVA) or exercise (P <0.05), and lower than the control group baseline (P <0.05, Mest). Results were consistent with the model and with biochemical and bone mineral density data. Conclusion: Results confirm the predicted relationship between bone mineral balance and calcium isotopes, suggesting that calcium isotopic analysis of urine might be refined into a clinical and research tool. ?? 2007 American Association for Clinical Chemistry.

  18. Single-walled carbon nanotubes functionalized with sodium hyaluronate enhance bone mineralization

    PubMed Central

    Sá, M.A.; Ribeiro, H.J.; Valverde, T.M.; Sousa, B.R.; Martins-Júnior, P.A.; Mendes, R.M.; Ladeira, L.O.; Resende, R.R.; Kitten, G.T.; Ferreira, A.J.

    2015-01-01

    The aim of this study was to evaluate the effects of sodium hyaluronate (HY), single-walled carbon nanotubes (SWCNTs) and HY-functionalized SWCNTs (HY-SWCNTs) on the behavior of primary osteoblasts, as well as to investigate the deposition of inorganic crystals on titanium surfaces coated with these biocomposites. Primary osteoblasts were obtained from the calvarial bones of male newborn Wistar rats (5 rats for each cell extraction). We assessed cell viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay and by double-staining with propidium iodide and Hoechst. We also assessed the formation of mineralized bone nodules by von Kossa staining, the mRNA expression of bone repair proteins, and the deposition of inorganic crystals on titanium surfaces coated with HY, SWCNTs, or HY-SWCNTs. The results showed that treatment with these biocomposites did not alter the viability of primary osteoblasts. Furthermore, deposition of mineralized bone nodules was significantly increased by cells treated with HY and HY-SWCNTs. This can be partly explained by an increase in the mRNA expression of type I and III collagen, osteocalcin, and bone morphogenetic proteins 2 and 4. Additionally, the titanium surface treated with HY-SWCNTs showed a significant increase in the deposition of inorganic crystals. Thus, our data indicate that HY, SWCNTs, and HY-SWCNTs are potentially useful for the development of new strategies for bone tissue engineering. PMID:26648087

  19. The application of backscattered ultrasound and photoacoustic signals for assessment of bone collagen and mineral contents

    PubMed Central

    Lashkari, Bahman; Yang, Lifeng

    2015-01-01

    Background This study examines the backscattered ultrasound (US) and back-propagating photoacoustic (PA) signals from trabecular bones, and their variations with reduction in bone minerals and collagen content. While the collagen status is directly related to the strength of the bone, diagnosis of its condition using US remains a challenge. Methods For both PA and US methods, coded-excitation signals and matched filtering were utilized to provide high sensitivity of the detected signal. The optical source was a 805-nm CW laser and signals were detected employing a 2.2-MHz ultrasonic transducer. Bone decalcification and decollagenization were induced with mild ethylenediaminetetraacetic acid (EDTA) and sodium hypochlorite solutions, respectively. Results The PA and US signals were measured on cattle bones, and apparent integrated backscatter/back-propagating (AIB) parameters were compared before and after demineralization and decollagenization. Conclusions The results show that both PA and US are sensitive to mineral changes. In addition, PA is also sensitive to changes in the collagen content of the bone, but US is not significantly sensitive to these changes. PMID:25694953

  20. Single-walled carbon nanotubes functionalized with sodium hyaluronate enhance bone mineralization.

    PubMed

    Sá, M A; Ribeiro, H J; Valverde, T M; Sousa, B R; Martins-Júnior, P A; Mendes, R M; Ladeira, L O; Resende, R R; Kitten, G T; Ferreira, A J

    2016-02-01

    The aim of this study was to evaluate the effects of sodium hyaluronate (HY), single-walled carbon nanotubes (SWCNTs) and HY-functionalized SWCNTs (HY-SWCNTs) on the behavior of primary osteoblasts, as well as to investigate the deposition of inorganic crystals on titanium surfaces coated with these biocomposites. Primary osteoblasts were obtained from the calvarial bones of male newborn Wistar rats (5 rats for each cell extraction). We assessed cell viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay and by double-staining with propidium iodide and Hoechst. We also assessed the formation of mineralized bone nodules by von Kossa staining, the mRNA expression of bone repair proteins, and the deposition of inorganic crystals on titanium surfaces coated with HY, SWCNTs, or HY-SWCNTs. The results showed that treatment with these biocomposites did not alter the viability of primary osteoblasts. Furthermore, deposition of mineralized bone nodules was significantly increased by cells treated with HY and HY-SWCNTs. This can be partly explained by an increase in the mRNA expression of type I and III collagen, osteocalcin, and bone morphogenetic proteins 2 and 4. Additionally, the titanium surface treated with HY-SWCNTs showed a significant increase in the deposition of inorganic crystals. Thus, our data indicate that HY, SWCNTs, and HY-SWCNTs are potentially useful for the development of new strategies for bone tissue engineering. PMID:26648087

  1. Effects of ultrasound on estradiol level, bone mineral density, bone biomechanics and matrix metalloproteinase-13 expression in ovariectomized rabbits

    PubMed Central

    XIA, LU; HE, HONGCHEN; GUO, HUA; QING, YUXI; HE, CHENG-QI

    2015-01-01

    The aim of the present study was to observe the effect of ultrasound (US) on estradiol level, bone mineral density (BMD), bone biomechanics and matrix metalloproteinase-13 (MMP-13) expression in ovariectomized (OVX) rabbits. A total of 28 virgin New Zealand white rabbits were randomly assigned into the following groups: Control (control group), ovariectomy (OVX group), ovariectomy with ultrasound therapy (US group) and ovariectomy with estrogen replacement therapy group (ERT group). At 8 weeks after ovariectomy, the US group received ultrasound treatment while the ERT group were orally treated with conjugated estrogens, and the control and OVX groups remained untreated. The estradiol level, BMD and bone biomechanics, cartilage histology and the MMP-13 expression were analyzed after the intervention. The results indicate that the US treatment increased estradiol level, BMD and bone biomechanical function. Furthermore, the US treatment appeared to improve the recovery of cartilage morphology and decreased the expression of MMP-13 in OVX models. Furthermore, the results suggest that 10 days of US therapy was sufficient to prevent the reduction of estradiol, BMD and bone biomechanical function, to protect osteoarthritis cartilage structure, and to reduce MMP-13 transcription and expression in OVX rabbits. Therefore, US treatment may be a potential treatment for postmenopausal osteoarthritis and osteoporosis. PMID:26622502

  2. Subgroup Variations in Bone Mineral Density Response to Zoledronic Acid After Hip Fracture

    PubMed Central

    Magaziner, Jay S; Orwig, Denise L; Lyles, Kenneth W; Nordsletten, Lars; Boonen, Steven; Adachi, Jonathan D; Recknor, Chris; Colón-Emeric, Cathleen S; Mesenbrink, Peter; Bucci-Rechtweg, Christina; Su, Guoqin; Johnson, Rasheeda; Pieper, Carl F

    2014-01-01

    Minimizing post-fracture bone loss is an important aspect of recovery from hip fracture, and determination of factors that affect bone mineral density (BMD) response to treatment after hip fracture may assist in the development of targeted therapeutic interventions. A post hoc analysis of the HORIZON Recurrent Fracture Trial was done to determine the effect of zoledronic acid (ZOL) on total hip (TH) and femoral neck (FN) BMD in subgroups with low-trauma hip fracture. A total of 2127 patients were randomized (1:1) to yearly infusions of ZOL 5 mg (n = 1065) or placebo (n = 1062) within 90 days of operation for low-trauma hip fracture. The 1486 patients with a baseline and at least one post-baseline BMD assessment at TH or FN (ZOL = 745, placebo = 741) were included in the analyses. Percentage change from baseline in TH and FN BMD was assessed at months 12 and 24 and compared across subgroups of hip fracture patients. Percentage change from baseline in TH and FN BMD at months 12 and 24 was greater (p < 0.05) in ZOL-treated patients compared with placebo in most subgroups. Treatment-by-subgroup interactions (p < 0.05) indicated that a greater effect on BMD was observed for TH BMD at month 12 in females, in patients in the lower tertile body mass index at baseline (≤22.6 kg/m2), and in patients with baseline FN BMD T-score of ≤ –2.5; for FN BMD in patients who received ZOL for >6 weeks post-surgery; and for TH and FN BMD in patients with a history of one or more prior fractures. All interactions were limited to the first 12 months after treatment with none observed for the 24-month comparisons. (Clinical trial registration number NCT00046254.) PMID:24839241

  3. Effects of menstrual history and use of medications on bone mineral density: the EVOS Study.

    PubMed

    Masaryk, P; Lunt, M; Benevolenskaya, L; Cannata, J; Dequeker, J; Dohenhof, C; Falch, J A; Felsenberg, D; Pols, H A; Poor, G; Reid, D M; Scheidt-Nave, C; Weber, K; O'Neill, T; Silman, A J; Reeve, J

    1998-10-01

    We have previously shown considerable between-center variation in bone mineral density (BMD) in the 13 EVOS centers that performed bone densitometry on their sex- and age-stratified population samples, after adjusting for weight and age. We have now investigated whether part of the between-center variability may be attributed to between-center variations in the use of medications. Information was collected from 2088 women and 1908 men at baseline on whether the subjects had ever been prescribed calcium, calcitonin, anabolic steroids, fluoride, vitamin D, or glucocorticoids and, for the women, whether they had ever used the oral contraceptive pill (OCP) or hormone replacement therapy (HRT). Each of these variables was fitted into a regression model adjusted for age, height, weight, and center. Only OCP and HRT significantly affected BMD. Those who had ever used OCPs had spinal BMD 0.029 g/cm2 greater than those who had never used them. Users of HRT had higher BMD than nonusers: 0. 037 g/cm2 at the spine, 0.018 g/cm2 at the trochanter, and 0.018 g/cm2 at the femoral neck. As expected, there was a great variation between centers in the use of OCP and HRT, but there were no significant correlations between mean BMD at any site in a given center and the prevalence of OCP or HRT use in that center. The between-center variance in BMD at all three sites remained highly significant after adjusting for treatment (P < 0.001). We conclude that HRT and OCP use are associated with moderate increases in BMD. The geographical variability of BMD in Europe was not explained by treatment with pharmaceuticals. PMID:9744982

  4. Influences of Endplate Removal and Bone Mineral Density on the Biomechanical Properties of Lumbar Spine

    PubMed Central

    Yuan, Wen; Liu, Yang

    2013-01-01

    Purpose To investigate (1) effects of endplate removal and bone mineral density (BMD) on biomechanical properties of lumbar vertebrae (2) whether the distributions of mechanical strength and stiffness of endplate are affected by BMD. Methods A total of thirty-one lumbar spines (L1-L5) collected from fresh cadavers were used in this study. Bone density was measured using lateral DEXA scans and parts of samples were performed with partial or entire endplate removal. All the specimens were divided into three BMD groups. According to endplate integrity of the lumbar vertebrae, each BMD group was then divided into three subgroups: subgroup A: intact endplate; subgroup B: central region of endplate removal; subgroup C: entire endplate removal. The axial compression test was conducted with material testing system at a speed of 2mm/min. The experimental results were statistically analyzed using SPSS 17.0. Results (1) Significant differences of biomechanical properties occurred among normal BMD, osteoporotic and serious osteoporotic group (P<0.05). (2) Spearman analysis showed that BMD was positively correlated with the failure load and stiffness of lumbar vertebrae. (3) For each BMD group, significant differences of biomechanical properties were found between subgroup A and C, and between subgroup B and C (P<0.05). (4) For each BMD group, there was no statistical difference of biomechanical properties between subgroup A and B (P>0.05). Conclusions Entire endplate removal can significantly decrease the structural properties of lumbar vertebrae with little change in biomechanical properties by preservation of peripheral region of the endplate. BMD is positively correlated to the structural properties of the lumbar vertebrae. PMID:24244269

  5. Angiopoietin-1 peptide QHREDGS promotes osteoblast differentiation, bone matrix deposition and mineralization on biomedical materials†

    PubMed Central

    Feric, Nicole; Cheng, Calvin C.H.; Goh, M. Cynthia; Dudnyk, Vyacheslav; Di Tizio, Val; Radisic, Milica

    2014-01-01

    Bone loss occurs as a consequence of a variety of diseases as well as from traumatic injuries, and often requires therapeutic intervention. Strategies for repairing and replacing damaged and/or lost bone tissue include the use of biomaterials and medical implant devices with and without osteoinductive coatings. The soluble growth factor angiopoietin-1 (Ang-1) has been found to promote cell adhesion and survival in a range of cell types including cardiac myocytes, endothelial cells and fibroblasts through an integrin-dependent mechanism. Furthermore, the short sequence QHREDGS has been identified as the integrin-binding sequence of Ang-1 and as a synthetic peptide has been found to possess similar integrin-dependent effects as Ang-1 in the aforementioned cell types. Integrins have been implicated in osteoblast differentiation and bone mineralization, processes critical to bone regeneration. By binding integrins on the osteoblast surface, QHREDGS could promote cell survival and adhesion, as well as conceivably osteoblast differentiation and bone mineralization. Here we immobilized QHREDGS onto polyacrylate (PA)-coated titanium (Ti) plates and polyethylene glycol (PEG) hydrogels. The osteoblast differentiation marker, alkaline phosphatase, peaked in activity 4-12 days earlier on the QHREDGS-immobilized PA-coated Ti plates than on the unimmobilized, DGQESHR (scrambled)- and RGDS-immobilized surfaces. Significantly more bone matrix was deposited on the QHREDGS-immobilized Ti surface than on the other surfaces as determined by atomic force microscopy. The QHREDGS-immobilized hydrogels also had a significantly higher mineral-to-matrix (M/M) ratio determined by Fourier transform infrared spectroscopy. Alizarin Red S and von Kossa staining and quantification, and environmental scanning electron microscopy showed that while both the QHREDGS- and RGDS-immobilized surfaces had extensive mineralization relative to the unimmobilized and DGQESHR-immobilized surfaces, the

  6. The effect of micro-gravity and bioactive surfaces on the mineralization of bone

    NASA Astrophysics Data System (ADS)

    Maroothynaden, J.; Hench, J. J.

    2006-07-01

    The loss of bone density with age especially for women, is one of the most serious health complications affecting humans An increased incidence of fractured hips and long bones, and collapse of vertebrae are all due to loss of bone density. Demineralization of bone also poses one of the most severe limitations on long-duration manned space flight. This study investigates the hypothesis that chemical effects responsible for enhanced osteoblast differentiation and proliferation observed in-vitro and in-vivo at 1-gravity with bioactive glasses may be sufficient to prevent the turn-off of bone cells that occurs in μ-g or other reduced loading environments as a consequence of age or immobility. To conduct this work, the authors developed an embryonic mouse long-bone model to examine the interaction of bioactive surfaces and ions with the influence of a simulated μ-g environment.

  7. Bone: from a reservoir of minerals to a regulator of energy metabolism.

    PubMed

    Confavreux, Cyrille B

    2011-04-01

    Besides locomotion, organ protection, and calcium-phosphorus homeostasis, the three classical functions of the skeleton, bone remodeling affects energy metabolism through uncarboxylated osteocalcin, a recently discovered hormone secreted by osteoblasts. This review traces how energy metabolism affects osteoblasts through the central control of bone mass involving leptin, serotoninergic neurons, the hypothalamus, and the sympathetic nervous system. Next, the role of osteocalcin (insulin secretion, insulin sensitivity, and pancreas β-cell proliferation) in the regulation of energy metabolism is described. Then, the connections between insulin signaling on osteoblasts and the release of uncarboxylated osteocalcin during osteoclast bone resorption through osteoprotegerin are reported. Finally, the understanding of this new bone endocrinology will provide some insights into bone, kidney, and energy metabolism in patients with chronic kidney disease. PMID:21346725

  8. Bone: from a reservoir of minerals to a regulator of energy metabolism.

    PubMed

    Confavreux, Cyrille B

    2011-04-01

    Besides locomotion, organ protection, and calcium-phosphorus homeostasis, the three classical functions of the skeleton, bone remodeling affects energy metabolism through uncarboxylated osteocalcin, a recently discovered hormone secreted by osteoblasts. This review traces how energy metabolism affects osteoblasts through the central control of bone mass involving leptin, serotoninergic neurons, the hypothalamus, and the sympathetic nervous system. Next, the role of osteocalcin (insulin secretion, insulin sensitivity, and pancreas β-cell proliferation) in the regulation of energy metabolism is described. Then, the connections between insulin signaling on osteoblasts and the release of uncarboxylated osteocalcin during osteoclast bone resorption through osteoprotegerin are reported. Finally, the understanding of this new bone endocrinology will provide some insights into bone, kidney, and energy metabolism in patients with chronic kidney disease. PMID:26746856

  9. Expanding the Description of Spaceflight Effects beyond Bone Mineral Density [BMD]: Trabecular Bone Score [TBS] in ISS Astronauts

    NASA Technical Reports Server (NTRS)

    Sibonga, J. D.; Spector, E. R.; King, L. J.; Evans, H. J.; Smith, S. A.

    2014-01-01

    Dual-energy x-ray absorptiometry [DXA] is the widely-applied bone densitometry method used to diagnose osteoporosis in a terrestrial population known to be at risk for age-related bone loss. This medical test, which measures areal bone mineral density [aBMD] of clinically-relevant skeletal sites (e.g., hip and spine), helps the clinician to identify which persons, among postmenopausal women and men older than 50 years, are at high risk for low trauma or fragility fractures and might require an intervention. The most recognized osteoporotic fragility fracture is the vertebral compression fracture which can lead to kyphosis or hunched backs typically seen in the elderly. DXA measurement of BMD however is recognized to be insufficient as a sole index for assessing fracture risk. DXA's limitation may be related to its inability to monitor changes in structural parameters, such as trabecular vs. cortical bone volumes, bone geometry or trabecular microarchitecture. Hence, in order to understand risks to human health and performance due to space exposure, NASA needs to expand its measurements of bone to include other contributors to skeletal integrity. To this aim, the Bone and Mineral Lab conducted a pilot study for a novel measurement of bone microarchitecture that can be obtained by retrospective analysis of DXA scans. Trabecular Bone Score (TBS) assesses changes to trabecular microarchitecture by measuring the grey color "texture" information extracted from DXA images of the lumbar spine. An analysis of TBS in 51 ISS astronauts was conducted to assess if TBS could detect 1) an effect of spaceflight and 2) a response to countermeasures independent of DXA BMD. In addition, changes in trunk body lean tissue mass and in trunk body fat tissue mass were also evaluated to explore an association between body composition, as impacted by ARED exercise, and bone microarchitecture. The pilot analysis of 51 astronaut scans of the lumbar spine suggests that, following an ISS

  10. The Progression of Bone Mineral Density Abnormalities After Chemotherapy for Childhood Acute Lymphoblastic Leukemia.

    PubMed

    Vitanza, Nicholas A; Hogan, Laura E; Zhang, Guangxiang; Parker, Robert I

    2015-07-01

    Although reduced bone mineral density in survivors of childhood acute lymphoblastic leukemia (ALL) is well documented, the degree of demineralization and relation to age are not well described. This is a retrospective chart analysis of 58 patients consecutively treated for ALL without relapse, cranial irradiation, or transplantation. Bone mineral densities were measured by dual-energy x-ray absorptiometry and patients were divided by sex and age (≤5, 6 to 10, and >10 y) at diagnosis. Serial scans for 6 years after therapy were analyzed as Z-scores. Over 6 years after therapy, 93.1% of patients exhibited a decreased Z-score in at least 1 anatomic site. The difference in Z-score among the age cohorts was significant at both the lumbar spine and femoral neck. Patients older than 10 years at diagnosis had the lowest Z-scores: -2.78 and -2.87 for boys and -2.39 and -2.91 for girls at the lumbar spine and femoral neck, respectively. Children after ALL therapy exhibit a significant bone mineral deficit shortly after completion of therapy that persists for at least 6 years. The degree of bone demineralization can be followed up by a dual-energy x-ray absorptiometry scan and is most severe in patients older than 10 years at the initiation of therapy. PMID:25222061

  11. A review of the effect of swim training and nutrition on bone mineral density in female athletes

    PubMed Central

    Lee, Namju; Kim, Jongkyu

    2015-01-01

    [Purpose] The present paper reviews the physiological adaptation to swim training and dietary supplementation relating to bone mineral density (BMD) in female swimmers. Swim training still seems to have conflicting effects on bone health maintenance in athletes. [Methods] This review article focuses on swim training combined with dietary supplementation with respect to BMD in female athletes. [Results] Upon review of previous studies, it became obvious that the majority of studies did not collect physical activity data on the swimmers outside of their swimming activities. These activities may have some influence on the BMD of swimmers and therefore, future studies need to examine additional physical activity history data as well as swim training. This additional information may help to explain why swimmers' BMD tends to be lower than the BMD of control individuals in many studies. Moreover, dietary supplementation such as calcium, magnesium, and vitamin D also affect bone health in swimmers, and it is extremely important to evaluate BMD in the context of dietary supplementation. [Conclusion] A review of the literature suggests that exercise intervention studies, including longitudinal and randomized control trials, need to attempt to introduce various exercise programs to female swimmers in order to determine the optimal exercise prescription for bone health. PMID:27274459

  12. Evaluation of Posterolateral Lumbar Fusion in Sheep Using Mineral Scaffolds Seeded with Cultured Bone Marrow Cells

    PubMed Central

    Cuenca-López, María D.; Andrades, José A.; Gómez, Santiago; Zamora-Navas, Plácido; Guerado, Enrique; Rubio, Nuria; Blanco, Jerónimo; Becerra, José

    2014-01-01

    The objective of this study is to investigate the efficacy of hybrid constructs in comparison to bone grafts (autograft and allograft) for posterolateral lumbar fusion (PLF) in sheep, instrumented with transpedicular screws and bars. Hybrid constructs using cultured bone marrow (BM) mesenchymal stem cells (MSCs) have shown promising results in several bone healing models. In particular, hybrid constructs made by calcium phosphate-enriched cells have had similar fusion rates to bone autografts in posterolateral lumbar fusion in sheep. In our study, four experimental spinal fusions in two animal groups were compared in sheep: autograft and allograft (reference group), hydroxyapatite scaffold, and hydroxyapatite scaffold seeded with cultured and osteoinduced bone marrow MSCs (hybrid construct). During the last three days of culture, dexamethasone (dex) and beta-glycerophosphate (β-GP) were added to potentiate osteoinduction. The two experimental situations of each group were tested in the same spinal segment (L4–L5). Spinal fusion and bone formation were studied by clinical observation, X-ray, computed tomography (CT), histology, and histomorphometry. Lumbar fusion rates assessed by CT scan and histology were higher for autograft and allograft (70%) than for mineral scaffold alone (22%) and hybrid constructs (35%). The quantity of new bone formation was also higher for the reference group, quite similar in both (autograft and allograft). Although the hybrid scaffold group had a better fusion rate than the non-hybrid scaffold group, the histological analysis revealed no significant differences between them in terms of quantity of bone formation. The histology results suggested that mineral scaffolds were partly resorbed in an early phase, and included in callus tissues. Far from the callus area the hydroxyapatite alone did not generate bone around it, but the hybrid scaffold did. In nude mice, labeled cells were induced to differentiate in vivo and monitored by

  13. [Physical activity/sports and bone mineral density].

    PubMed

    Inomoto, Takeaki

    2008-09-01

    This study observed the amount of exercise of Japanese schoolchildren as recorded by pedometer. Schools are necessary venues to increase children's mobility, but home environments are hotbeds for lack of exercise on weekends and during holidays and vacations. This research measured the L(2 - 4)BMD of 185 male and female primary schoolchildren using a DEXA method. Results showed significant partial correlations for measurements of boys' grip strength, boys' standing broad jump, and girls' grip strength, indicating the influence of mechanical stress. In a parallel study, L(2 - 4)BMD measurements for high school athletic club members (14 and 10 sports for boys and girls respectively) were taken, and it was found that the L(2 - 4)BMD (60 kg/weight) values were significantly higher than the control values for boys' boxing and weightlifting but significantly lower for boys' sumo. No significance was found in L(2 - 4)BMD (50 kg/weight) among the different girls' sports. From both studies, it was concluded that with approximately 2 hours of moderate play and exercise daily, the bone density of children rises with increase of overall muscle quantity, resulting in higher athletic ability and overall physical strength. PMID:18758041

  14. Effects of Trypsinization and Mineralization on Intrasynovial Tendon Allograft Healing to Bone

    PubMed Central

    Qu, Jin; van Alphen, Nick A.; Thoreson, Andrew R.; Chen, Qingshan; An, Kai-Nan; Amadio, Peter C.; Schmid, Thomas M.; Zhao, Chunfeng

    2014-01-01

    The purpose of the current study was to develop a novel technology to enhance tendon-to-bone interface healing by trypsinizing and mineralizing (TM) an intrasynovial tendon allograft in a rabbit bone tunnel model. Eight rabbit flexor digitorum profundus (FDP) tendons were used to optimize the trypsinization process. An additional 24 FDP tendons were stratified into control and TM groups; in each group, 4 tendons were used for in vitro evaluation of TM and 8 were transplanted into proximal tibial bone tunnels in rabbits. The samples were evaluated histologically and with mechanical testing at postoperative week 8. Maximum failure strength and linear stiffness were not significantly different between the control and TM tendons. A thin fibrous band of scar tissue formed at the graft-to-bone interface in the control group. However, only the TM group showed obvious new bone formation inside the tendon graft and a visible fibrocartilage layer at the bone tunnel entrance. This study is the first to explore effects of TM on the intrasynovial allograft healing to a bone tunnel. TM showed beneficial effects on chondrogenesis, osteogenesis, and integration of the intrasynovial tendon graft, but mechanical strength was the same as the control tendons in this short-term in vivo study. PMID:25611186

  15. Deficiency of the bone mineralization inhibitor NPP1 protects mice against obesity and diabetes

    PubMed Central

    Huesa, Carmen; Zhu, Dongxing; Glover, James D.; Ferron, Mathieu; Karsenty, Gerard; Milne, Elspeth M.; Millan, José Luis; Ahmed, S. Faisal; Farquharson, Colin; Morton, Nicholas M.; MacRae, Vicky E.

    2014-01-01

    The emergence of bone as an endocrine regulator has prompted a re-evaluation of the role of bone mineralization factors in the development of metabolic disease. Ectonucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) controls bone mineralization through the generation of pyrophosphate, and levels of NPP1 are elevated both in dermal fibroblast cultures and muscle of individuals with insulin resistance. We investigated the metabolic phenotype associated with impaired bone metabolism in mice lacking the gene that encodes NPP1 (Enpp1−/− mice). Enpp1−/− mice exhibited mildly improved glucose homeostasis on a normal diet but showed a pronounced resistance to obesity and insulin resistance in response to chronic high-fat feeding. Enpp1−/− mice had increased levels of the insulin-sensitizing bone-derived hormone osteocalcin but unchanged insulin signalling within osteoblasts. A fuller understanding of the pathways of NPP1 could inform the development of novel therapeutic strategies for treating insulin resistance. PMID:25368121

  16. Measurement of humerus and radius bone mineral content in the term and preterm infant

    SciTech Connect

    Vyhmeister, N.R.; Linkhart, T.A.

    1988-07-01

    We compared two anatomic sites for single-photon absorptiometric measurement of bone mineral content (BMC) in term and preterm infants. The distal one third of the radius and the midportion of the humerus were evaluated for measurements of BMC with an unmodified, commercially available bone densitometer. We assessed reproducibility of BMC and bone width (BW) measurements and defined normal at-birth ranges of BMC, BW, and BMC/BW ratio for infants with gestational ages of 24 to 42 weeks. Humerus BMC correlated with gestational age, birth weight, and BW of patients and did not differ from humerus BMC values determined over the same range of gestational ages at another center. Representative serial measurements of two very low birth weight (VLBW) infants are presented to demonstrate the feasibility of using humerus BMC in longitudinal studies to assess changes in bone mineralization. We conclude that bone densitometer measurements of mid-humerus BMC can be successfully performed and are preferable to similar measurements of the radius for VLBW infants. Normal humerus BMC values were defined for use in diagnosis and evaluation of the efficacy of treatment in VLBW infants who are at high risk of developing osteopenia of prematurity.

  17. Bone development in black ducks as affected by dietary toxaphene

    USGS Publications Warehouse

    Mehrle, P.M.; Finley, M.T.; Ludke, J.L.; Mayer, F.L.; Kaiser, T.E.

    1979-01-01

    Black ducks, Anas rubripes, were exposed to dietary toxaphene concentrations of 0, 10, or 50 μg/g of food for 90 days prior to laying and through the reproductive season. Toxaphene did not affect reproduction or survival, but reduced growth and impaired backbone development in ducklings. Collagen, the organic matrix of bone, was decreased significantly in cervical vertebrae of ducklings fed 50 μg/g, and calcium conentrations increased in vertebrae of ducklings fed 10 or 50 μg/g. The effects of toxaphene were observed only in female ducklings. In contrast to effects on vertebrae, toxaphene exposure did not alter tibia development. Toxaphene residues in carcasses of these ducklings averaged slightly less than the dietary levels.

  18. Parathyroid hormone increases bone formation and improves mineral balance in vitamin D-deficient female rats.

    PubMed

    Toromanoff, A; Ammann, P; Mosekilde, L; Thomsen, J S; Riond, J L

    1997-06-01

    The present study was designed to investigate whether enhanced bone formation due to intermittent PTH administration is dependent on vitamin D metabolites. Forty-eight female Sprague-Dawley rats were randomized into four groups: 1) vitamin D-sufficient, saline-injected (+D Sal); 2) vitamin D-sufficient, human (h) PTH-(1-38)-treated (+D PTH); 3) vitamin D-deficient, saline-injected (-D Sal); and 4) vitamin D-deficient, hPTH-(1-38)-treated (-D PTH) animals. The -D diet contained 2% calcium (Ca), 1.25% phosphorus (P), and 20% lactose to maintain normocalcemia and normophosphatemia despite vitamin D deficiency. The +D diet contained 0.8% Ca, 0.5% P, 20% lactose, and 1000 IU/kg vitamin D. After 45 days of either diet, the rats were injected with 50 microg/kg BW PTH or saline, s.c., daily for 2 weeks. Serum Ca, Mg, P, albumin, and creatinine were similar in all groups. PTH administration decreased endogenous PTH concentrations in the -D PTH compared with those in the - D Sal group. Serum alkaline phosphatase activity, bone mass measurements, dual energy x-ray absortiometric analysis of mineral density, and mechanical testing values in vertebrae and femora of the -D Sal animals did not significantly differ from those in +D Sal animals. Moreover, in both diet groups, PTH improved bone biochemical activity (as assessed by serum alkaline phosphatase), bone mass, mineral density, and biomechanical properties. These results indicate that mineral supply, more than vitamin D itself, may be important for normal bone mineralization and to enable PTH to enhance bone formation. A balance study performed during the last 3 days of the experiment revealed that PTH increased apparent intestinal magnesium absorption in the +D group only. Ca and P retention, however, were augmented in both diet groups after PTH treatment. In conclusion, in normocalcemic and normophosphatemic -D rats, PTH treatment reduced the increased endogenous hormone concentration and improved Ca and P retention

  19. Milk consumption throughout life and bone mineral content and density in elderly men and women

    PubMed Central

    Eysteinsdottir, T.; Halldorsson, T. I.; Thorsdottir, I.; Sigurdsson, G.; Sigurðsson, S.; Harris, T.; Launer, L. J.; Gudnason, V.; Gunnarsdottir, I.

    2016-01-01

    Summary Association between bone mineral density and bone mineral content in old age and milk consumption in adolescence, midlife, and old age was assessed. The association was strongest for milk consumption in midlife: those drinking milk daily or more often had higher bone mineral density and content in old age than those drinking milk seldom or never. Introduction The role of lifelong milk consumption for bone mineral density (BMD) and bone mineral content (BMC) in old age is not clear. Here we assess the association between hip BMD and BMC in old age and milk consumption in adolescence, midlife, and current old age. Methods Participants of the Age, Gene/Environment Susceptibility-Reykjavik Study, aged 66–96 years (N=4,797), reported retrospective milk intake during adolescence and midlife as well as in current old age, using a validated food frequency questionnaire. BMC of femoral neck and trochanteric area was measured by volumetric quantitative computed tomography and BMD obtained. Association was assessed using linear regression models. Differences in BMC, bone volume, and BMD in relation to milk intake were portrayed as gender-specific Z-scores. Results Men consuming milk≥once/day during midlife had 0.21 higher Z-scores for BMD and 0.18 for BMC in femoral neck (95 % confidence interval 0.05–0.39 and 0.01–0.35, respectively) compared withbone volume. The strongest associations are seen for

  20. Effect of High Impact or Non-impact Loading Activity on Bone Bending Stiffness and Mineral Density

    NASA Technical Reports Server (NTRS)

    Liang, Michael T. C.; Arnnud, Sara B.; Steele, Charles R.; Moreno, Alexjandro

    2003-01-01

    Material properties of conical bone, including mineral density (BMD) and its geometry is closely related to its load-carrying capacity. These two primary components determine the strength of conical bone. High impact loading involving acceleration and deceleration movements used in gymnastics induce higher BMD of the affected bone compared to the non-impact acceleration and deceleration movements used in swimming. Study of these two groups of athletes on bone bending stiffness has not been reported. The purpose of this study was to compare differences in bone bending stiffness and BMD between competitive female synchronized swimmers and female gymnasts. Thirteen world class female synchronized swimmers (SYN) and 8 female gymnasts (GYM), mean age 21 +/- 2.9 yr. were recruited for this study. We used a mechanical response tissue analyzer (Gaitscan, NJ) to calculate EI, where E is Young's modulus of elasticity and I is the cross-sectional moment of inertia. EI was obtained from tissue response to a vibration probe placed directly on the skin of the mid-region of tibia and ulna. BMD of the heel and wrist were measured with a probe densitometer (PIXI, Lunor, WI). The SYN were taller than (p < 0.05) the GYM but weighed the same as the GYM. EI obtained from tibia and ulna of the SYN (291 +/- 159 and 41 +/- 19.4, respectively) were not significantly different from thc GYM (285 +/- 140 and 44 +/- 18.3, respectively). BMD of the heel and wrist in GYM were higher than in SYN (p < 0.001). High impact weight-bearing activities promote similar bone strength but greater BMD response than non-impact activities performed in a buoyant environment.

  1. Effect of chronic activity-based therapy on bone mineral density and bone turnover in persons with spinal cord injury

    PubMed Central

    Harness, Eric T.; Witzke, Kara A.

    2014-01-01

    Purpose Osteoporosis is a severe complication of spinal cord injury (SCI). Many exercise modalities are used to slow bone loss, yet their efficacy is equivocal. This study examined the effect of activity-based therapy (ABT) targeting the lower extremities on bone health in individuals with SCI. Methods Thirteen men and women with SCI (age and injury duration = 29.7 ± 7.8 and 1.9 ± 2.7 years) underwent 6 months of ABT. At baseline and after 3 and 6 months of training, blood samples were obtained to assess bone formation (serum procollagen type 1 N propeptide (PINP) and bone resorption (serum C-terminal telopeptide of type I collagen (CTX), and participants underwent dual-energy X-ray absorptiometry scans to obtain total body and regional estimates of bone mineral density (BMD). Results Results demonstrated significant increases (p < 0.05) in spine BMD (+4.8 %; 1.27 ± 0.22–1.33 ± 0.24 g/cm2) and decreases (p < 0.01) in total hip BMD (−6.1 %; 0.98 ± 0.18–0.91 ± 0.16 g/cm2) from 0 to 6 months of training. BMD at the bilateral distal femur (−7.5 to −11.0 %) and proximal tibia (− 8.0 to −11.2 %) declined but was not different (p > 0.05) versus baseline. Neither PINP nor CTX was altered (p> 0.05) with training. Conclusions Chronic activity-based therapy did not reverse bone loss typically observed soon after injury, yet reductions in BMD were less than the expected magnitude of decline in lower extremity BMD in persons with recent SCI. PMID:24097172

  2. Effects of electromagnetic radiation exposure on bone mineral density, thyroid, and oxidative stress index in electrical workers

    PubMed Central

    Kunt, Halil; Şentürk, İhsan; Gönül, Yücel; Korkmaz, Mehmet; Ahsen, Ahmet; Hazman, Ömer; Bal, Ahmet; Genç, Abdurrahman; Songur, Ahmet

    2016-01-01

    Background In the literature, some articles report that the incidence of numerous diseases increases among the individuals who live around high-voltage electric transmission lines (HVETL) or are exposed vocationally. However, it was not investigated whether HVETL affect bone metabolism, oxidative stress, and the prevalence of thyroid nodule. Methods Dual-energy X-ray absorptiometry (DEXA) bone density measurements, serum free triiodothyronine (FT3), free thyroxine (FT4), RANK, RANKL, osteoprotegerin (OPG), alkaline phosphatase (ALP), phosphor, total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) levels were analyzed to investigate this effect. Results Bone mineral density levels of L1–L4 vertebrae and femur were observed significantly lower in the electrical workers. ALP, phosphor, RANK, RANKL, TOS, OSI, and anteroposterior diameter of the left thyroid lobe levels were significantly higher, and OPG, TAS, and FT4 levels were detected significantly lower in the study group when compared with the control group. Conclusion Consequently, it was observed that the balance between construction and destruction in the bone metabolism of the electrical workers who were employed in HVETL replaced toward destruction and led to a decrease in OPG levels and an increase in RANK and RANKL levels. In line with the previous studies, long-term exposure to an electromagnetic field causes disorders in many organs and systems. Thus, it is considered that long-term exposure to an electromagnetic field affects bone and thyroid metabolism and also increases OSI by increasing the TOS and decreasing the antioxidant status. PMID:26929645

  3. Detecting low bone mineral density from dental radiographs: a mini-review

    PubMed Central

    Graham, James

    2015-01-01

    Summary Over a number of years researchers have reported associations between osteoporosis or low bone mineral density and signs that can be detected on dental radiographs, particularly in the width of the inferior mandibular cortex and the texture of the trabecular bone. As patients visit the dentist more regularly than they visit their doctor, there is the possibility that such signs could be used as a means of identifying individuals at risk of developing osteoporosis or suffering from consequent fracture. This paper reviews the historical background behind this research and the current status, including recent developments in automation of measurement using computer image analysis. PMID:26604946

  4. Manganese Supplementation in Deer under Balanced Diet Increases Impact Energy and Contents in Minerals of Antler Bone Tissue.

    PubMed

    Cappelli, Jamil; Garcia, Andrés; Ceacero, Francisco; Gomez, Santiago; Luna, Salvador; Gallego, Laureano; Gambin, Pablo; Landete-Castillejos, Tomás

    2015-01-01

    Bone ash, collagen, Ca and P composition, are considered the main factors affecting mechanical properties in bones. However, a series of studies in bone and antler have shown that some trace minerals, such as manganese, may play a role whose importance exceeds what may be expected considering their low content. A previous study showed that a reduction in manganese in antlers during a year of late winter frosts led to generalized antler breakage in Spain, which included a reduction of 30% of cortical thickness, 27% reduction in impact energy, and 10% reduction in work to peak force. Starting for this observation, we experimentally studied the effects of manganese supplementation in adults and yearling (yearlings) red deer under a balanced diet. Subjects were 29 deer of different age classes (adult n = 19, yearlings n = 10) that were divided in a manganese injected group (n = 14) and a control group (n = 15). Antler content in ashes and minerals, intrinsic mechanical properties and cross section structure were examined at 4 points along the antler beam. A one way ANOVA (mean per antler) showed that in yearlings, manganese supplementation only increased its content and that of Fe. However, in adults, Mn supplementation increased the mean content per antler of Ca, Na, P, B, Co, Cu, K, Mn, Ni, Se (while Si content was reduced), and impact work but not Young's modulus of elasticity, bending strength or work to peak force. A GLM series on characteristics in the uppermost part examined in the antler, often showing physiological exhaustion and depletion of body stores, showed also a 16% increase in work to peak force in the antlers of the treated group. Thus, manganese supplementation altered mineral composition of antler and improved structure and some mechanical properties despite animals having a balanced diet. PMID:26177083

  5. Manganese Supplementation in Deer under Balanced Diet Increases Impact Energy and Contents in Minerals of Antler Bone Tissue

    PubMed Central

    Cappelli, Jamil; Garcia, Andrés; Ceacero, Francisco; Gomez, Santiago; Luna, Salvador; Gallego, Laureano; Gambin, Pablo; Landete-Castillejos, Tomás

    2015-01-01

    Bone ash, collagen, Ca and P composition, are considered the main factors affecting mechanical properties in bones. However, a series of studies in bone and antler have shown that some trace minerals, such as manganese, may play a role whose importance exceeds what may be expected considering their low content. A previous study showed that a reduction in manganese in antlers during a year of late winter frosts led to generalized antler breakage in Spain, which included a reduction of 30% of cortical thickness, 27% reduction in impact energy, and 10% reduction in work to peak force. Starting for this observation, we experimentally studied the effects of manganese supplementation in adults and yearling (yearlings) red deer under a balanced diet. Subjects were 29 deer of different age classes (adult n = 19, yearlings n = 10) that were divided in a manganese injected group (n = 14) and a control group (n = 15). Antler content in ashes and minerals, intrinsic mechanical properties and cross section structure were examined at 4 points along the antler beam. A one way ANOVA (mean per antler) showed that in yearlings, manganese supplementation only increased its content and that of Fe. However, in adults, Mn supplementation increased the mean content per antler of Ca, Na, P, B, Co, Cu, K, Mn, Ni, Se (while Si content was reduced), and impact work but not Young’s modulus of elasticity, bending strength or work to peak force. A GLM series on characteristics in the uppermost part examined in the antler, often showing physiological exhaustion and depletion of body stores, showed also a 16% increase in work to peak force in the antlers of the treated group. Thus, manganese supplementation altered mineral composition of antler and improved structure and some mechanical properties despite animals having a balanced diet. PMID:26177083

  6. Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays.

    PubMed

    Mahamid, Julia; Aichmayer, Barbara; Shimoni, Eyal; Ziblat, Roy; Li, Chenghao; Siegel, Stefan; Paris, Oskar; Fratzl, Peter; Weiner, Steve; Addadi, Lia

    2010-04-01

    The continuously forming fin bony rays of zebrafish represent a simple bone model system in which mineralization is temporally and spatially resolved. The mineralized collagen fibrils of the fin bones are identical in structure to those found in all known bone materials. We study the continuous mineralization process within the tissue by using synchrotron microbeam x-ray diffraction and small-angle scattering, combined with cryo-scanning electron microscopy. The former provides information on the mineral phase and the mineral particles size and shape, whereas the latter allows high-resolution imaging of native hydrated tissues. The integration of the two techniques demonstrates that new mineral is delivered and deposited as packages of amorphous calcium phosphate nanospheres, which transform into platelets of crystalline apatite within the collagen matrix. PMID:20308589

  7. Forearm bone mineral density in familial hypocalciuric hypercalcemia and primary hyperparathyroidism: a comparative study.

    PubMed

    Isaksen, Troels; Nielsen, Christian Stoltz; Christensen, Signe Engkjær; Nissen, Peter H; Heickendorff, Lene; Mosekilde, Leif

    2011-10-01

    Studies have shown that cancellous bone is relatively preserved in primary hyperparathyroidism (PHPT), whereas bone loss is seen in cortical bone. Familial hypocalciuric hypercalcemia (FHH) patients seem to preserve bone mineral in spite of hypercalcemia and often elevated plasma parathyroid hormone (PTH). The objective of this study was to compare total and regional forearm bone mineral density (BMD) in patients with PHPT and FHH and to examine if differences can be used to separate the two disorders. We included 63 FHH, and 121 PHPT patients in a cross-sectional study. We performed dual-energy X-ray absorptiometry scans of the forearm, hip and lumbar spine and measured a number of biochemical variables. PTH patients had significantly lower Z-scores in all parts of the forearm compared to FHH. This was also the case after adjustment for body mass index. When stratifying for age, gender and PTH, T-scores were still significantly lower in PHPT patients than in FHH patients at the total, the mid and the ultradistal forearm, but not at the proximal 1/3 forearm. In a multiple regression analysis BMD Z-score was lower in PHPT compared to FHH at the total forearm, the mid forearm and the ultradistal forearm but not the proximal forearm when adjusting for biochemical variables including PTH, 1,25(OH)(2)D and Ca(2+). These observations support that inactivating mutations in the CASR gene in bone cells in FHH may protect against forearm bone loss. Differences between the two groups in total or regional forearm BMD were inferior to the calcium/creatinine clearance ratio as a diagnostic tool to separate FHH from PHPT. PMID:21785908

  8. Electrical and dielectric properties of bovine trabecular bone - relationships with mechanical properties and mineral density

    NASA Astrophysics Data System (ADS)

    Sierpowska, J.; Töyräs, J.; Hakulinen, M. A.; Saarakkala, S.; Jurvelin, J. S.; Lappalainen, R.

    2003-03-01

    Interrelationships of trabecular bone electrical and dielectric properties with mechanical characteristics and density are poorly known. While electrical stimulation is used for healing fractures, better understanding of these relations has clinical importance. Furthermore, earlier studies have suggested that bone electrical and dielectric properties depend on the bone density and could, therefore, be used to predict bone strength. To clarify these issues, volumetric bone mineral density (BMDvol), electrical and dielectric as well as mechanical properties were determined from 40 cylindrical plugs of bovine trabecular bone. Phase angle, relative permittivity, loss factor and conductivity of wet bovine trabecular bone were correlated with Young's modulus, yield stress, ultimate strength, resilience and BMDvol. The reproducibility of in vitro electrical and dielectric measurements was excellent (standardized coefficient of variation less than 1%, for all parameters), especially at frequencies higher than 1 kHz. Correlations of electrical and dielectric parameters with the bone mechanical properties or density were frequency-dependent. The relative permittivity showed the strongest linear correlations with mechanical parameters (r > 0.547, p < 0.01, n = 40, at 50 kHz) and with BMDvol (r = 0.866, p < 0.01, n = 40, at 50 kHz). In general, linear correlations between relative permittivity and mechanical properties or BMDvol were highest at frequencies over 6 kHz. In addition, a significant site-dependent variation of electrical and dielectric characteristics, mechanical properties and BMDvol was revealed in bovine femur (p < 0.05, Kruskall-Wallis H-test). Based on the present results, we conclude that the measurement of electrical and dielectric properties provides quantitative information that is related to bone quantity and quality.

  9. Evidence of associations between feto-maternal vitamin D status, cord parathyroid hormone and bone-specific alkaline phosphatase, and newborn whole body bone mineral content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In spite of a high prevalence of vitamin D inadequacy in pregnant women and neonates, relationships among vitamin D status [25(OH)D], parathyroid hormone (PTH), bone specific alkaline phosphatase (BALP), and whole body bone mineral content (WBBMC) in the newborn are poorly characterized. The purpose...

  10. Comparison of Bone Mineral Density in Thalassemia Major Patients with Healthy Controls

    PubMed Central

    Meena, Mahesh Chand; Hemal, Alok; Satija, Mukul; Arora, Shilpa Khanna; Bano, Shahina

    2015-01-01

    Chronic hemoglobinopathies like thalassemia are associated with many osteopathies like osteoporosis. Methods. This observational study was carried out to compare the bone mineral density (BMD) in transfusion dependent thalassemics with that of healthy controls. Thirty-two thalassemia patients, aged 2–18 years, and 32 age and sex matched controls were studied. The bone mineral concentration (BMC) and BMD were assessed at lumbar spine, distal radius, and neck of femur. Biochemical parameters like serum calcium and vitamin D levels were also assessed. Results. The BMC of neck of femur was significantly low in cases in comparison to controls. We also observed significantly lower BMD at the lumbar spine in cases in comparison to controls. A significantly positive correlation was observed between serum calcium levels and BMD at neck of femur. Conclusion. Hence, low serum calcium may be used as a predictor of low BMD especially in populations where incidence of hypovitaminosis D is very high. PMID:26880923

  11. Nano-mechanical properties of individual mineralized collagen fibrils from bone tissue.

    PubMed

    Hang, Fei; Barber, Asa H

    2011-04-01

    Mineralized collagen fibrils (MCFs) are distinct building blocks for bone material and perform an important mechanical function. A novel experimental technique using combined atomic force microscopy and scanning electron microscopy is used to manipulate and measure the mechanical properties of individual MCFs from antler, which is a representative bone tissue. The recorded stress-strain response of individual MCFs under tension shows an initial linear deformation region for all fibrils, followed by inhomogeneous deformation above a critical strain. This inhomogeneous deformation is indicative of fibrils exhibiting either yield or strain hardening and suggests possible mineral compositional changes within each fibril. A phenomenological model is used to describe the fibril nano-mechanical behaviour. PMID:20961895

  12. Comparison of vertebral and femoral bone mineral density in adult females

    PubMed Central

    Choe, Han Seong; Lee, Jae Hong; Min, Dong Ki; Shin, So Hong

    2016-01-01

    [Purpose] This study assessed vertebral and femoral bone mineral density in adult females. [Subjects and Methods] A total of 314 females in their 40s to 70s were divided into normal, osteopenia, and osteoporosis groups and their vertebral and femoral bone mineral densities were compared. [Results] Comparisons of T scores revealed significant differences among measurements of the third lumbar vertebra, femoral neck, Ward’s triangle, and femoral trochanter. Pearson correlation coefficients were used to assess differences between the vertebral and femoral measurements, and significant differences and positive correlations were observed among third lumbar vertebra, femoral neck, Ward’s triangle, and femur trochanter in the normal group. [Conclusion] Females in the normal, osteopenia, and osteoporosis groups showed significant differences in their third lumbar vertebrae. The lack of significant differences among measurements in the osteoporosis group in this study suggests that patients with osteoporosis require careful and accurate diagnosis. PMID:27390449

  13. Comparison of vertebral and femoral bone mineral density in adult females.

    PubMed

    Choe, Han Seong; Lee, Jae Hong; Min, Dong Ki; Shin, So Hong

    2016-06-01

    [Purpose] This study assessed vertebral and femoral bone mineral density in adult females. [Subjects and Methods] A total of 314 females in their 40s to 70s were divided into normal, osteopenia, and osteoporosis groups and their vertebral and femoral bone mineral densities were compared. [Results] Comparisons of T scores revealed significant differences among measurements of the third lumbar vertebra, femoral neck, Ward's triangle, and femoral trochanter. Pearson correlation coefficients were used to assess differences between the vertebral and femoral measurements, and significant differences and positive correlations were observed among third lumbar vertebra, femoral neck, Ward's triangle, and femur trochanter in the normal group. [Conclusion] Females in the normal, osteopenia, and osteoporosis groups showed significant differences in their third lumbar vertebrae. The lack of significant differences among measurements in the osteoporosis group in this study suggests that patients with osteoporosis require careful and accurate diagnosis. PMID:27390449

  14. Bones of Contention: Bone Mineral Density Recovery in Celiac Disease—A Systematic Review

    PubMed Central

    Grace-Farfaglia, Patricia

    2015-01-01

    Metabolic bone disease is a frequent co-morbidity in newly diagnosed adults with celiac disease (CD), an autoimmune disorder triggered by the ingestion of dietary gluten. This systematic review of studies looked at the efficacy of the gluten-free diet, physical activity, nutrient supplementation, and bisphosphonates for low bone density treatment. Case control and cohort designs were identified from PubMed and other academic databases (from 1996 to 2015) that observed newly diagnosed adults with CD for at least one year after diet treatment using the dual-energy x-ray absorptiometry (DXA) scan. Only 20 out of 207 studies met the inclusion criteria. Methodological quality was assessed using the Strengthening of the Reporting of Observational Studies in Epidemiology (STROBE) statement checklist. Gluten-free diet adherence resulted in partial recovery of bone density by one year in all studies, and full recovery by the fifth year. No treatment differences were observed between the gluten-free diet alone and diet plus bisphosphonates in one study. For malnourished patients, supplementation with vitamin D and calcium resulted in significant improvement. Evidence for the impact of physical activity on bone density was limited. Therapeutic strategies aimed at modifying lifestyle factors throughout the lifespan should be studied. PMID:25961322

  15. Bone Mineral and Predictors of Bone Mass in White, Hispanic, and Asian Early Pubertal Girls

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Racial differences in body size have been suggested to explain racial differences in bone in black and white youth. Previous studies of nonblack racial differences during growth used small cohorts spread over a large developmental age and cannot adequately address this question. Mater...

  16. Bones of contention: bone mineral density recovery in celiac disease--a systematic review.

    PubMed

    Grace-Farfaglia, Patricia

    2015-05-01

    Metabolic bone disease is a frequent co-morbidity in newly diagnosed adults with celiac disease (CD), an autoimmune disorder triggered by the ingestion of dietary gluten. This systematic review of studies looked at the efficacy of the gluten-free diet, physical activity, nutrient supplementation, and bisphosphonates for low bone density treatment. Case control and cohort designs were identified from PubMed and other academic databases (from 1996 to 2015) that observed newly diagnosed adults with CD for at least one year after diet treatment using the dual-energy x-ray absorptiometry (DXA) scan. Only 20 out of 207 studies met the inclusion criteria. Methodological quality was assessed using the Strengthening of the Reporting of Observational Studies in Epidemiology (STROBE) statement checklist. Gluten-free diet adherence resulted in partial recovery of bone density by one year in all studies, and full recovery by the fifth year. No treatment differences were observed between the gluten-free diet alone and diet plus bisphosphonates in one study. For malnourished patients, supplementation with vitamin D and calcium resulted in significant improvement. Evidence for the impact of physical activity on bone density was limited. Therapeutic strategies aimed at modifying lifestyle factors throughout the lifespan should be studied. PMID:25961322

  17. Natural Ca Isotope Composition of Urine as a Rapid Measure of Bone Mineral Balance

    NASA Astrophysics Data System (ADS)

    Skulan, J.; Gordon, G. W.; Morgan, J.; Romaniello, S. J.; Smith, S. M.; Anbar, A. D.

    2011-12-01

    Naturally occurring stable Ca isotope variations in urine are emerging as a powerful tool to detect changes in bone mineral balance. Bone formation depletes soft tissue of light Ca isotopes while bone resorption releases isotopically light Ca into soft tissue. Previously published work found that variations in Ca isotope composition could be detected at 4 weeks of bed rest in a 90-day bed rest study (data collected at 4, 8 and 12 weeks). A new 30-day bed rest study involved 12 patients on a controlled diet, monitored for 7 days prior to bed rest and 7 days post bed rest. Samples of urine, blood and food were collected throughout the study. Four times daily blood samples and per void urine samples were collected to monitor diurnal or high frequency variations. An improved chemical purification protocol, followed by measurement using multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) allowed accurate and precise determinations of mass-dependent Ca isotope variations in these biological samples to better than ±0.2% (δ44/42Ca) on <25 μg of Ca. Results from this new study show that Ca isotope ratios shift in a direction consistent with net bone loss after just 7 days, long before detectible changes in bone density by X-ray measurements occur. Consistent with this interpretation, the Ca isotope variations track changes observed in N-teleopeptide, a bone resorption biomarker. Bone-specific alkaline phosphatase, a bone formation biomarker, is unchanged over this period. Ca isotopes can in principle be used to quantify net changes in bone mass. Using a mass-balance model, our results indicate an average loss of 0.62 ± 0.16 % in bone mass over the course of this 30-day study. This is consistent with the rate of bone loss in longer-term studies as seen by X-ray measurements. This Ca isotope technique should accelerate the pace of discovery of new treatments for bone disease and provide novel insights into the dynamics of bone metabolism.

  18. Sclerostin regulates release of bone mineral by osteocytes by induction of carbonic anhydrase 2.

    PubMed

    Kogawa, Masakazu; Wijenayaka, Asiri R; Ormsby, Renee T; Thomas, Gethin P; Anderson, Paul H; Bonewald, Lynda F; Findlay, David M; Atkins, Gerald J

    2013-12-01

    The osteocyte product sclerostin is emerging as an important paracrine regulator of bone mass. It has recently been shown that osteocyte production of receptor activator of NF-κB ligand (RANKL) is important in osteoclastic bone resorption, and we reported that exogenous treatment of osteocytes with sclerostin can increase RANKL-mediated osteoclast activity. There is good evidence that osteocytes can themselves liberate mineral from bone in a process known as osteocytic osteolysis. In the current study, we investigated sclerostin-stimulated mineral dissolution by human primary osteocyte-like cells (hOCy) and mouse MLO-Y4 cells. We found that sclerostin upregulated osteocyte expression of carbonic anhydrase 2 (CA2/Car2), cathepsin K (CTSK/Ctsk), and tartrate-resistant acid phosphatase (ACP5/Acp5). Because acidification of the extracellular matrix is a critical step in the release of mineral from bone, we further examined the regulation by sclerostin of CA2. Sclerostin stimulated CA2 mRNA and protein expression in hOCy and in MLO-Y4 cells. Sclerostin induced a decrease in intracellular pH (pHi) in both cell types as well as a decrease in extracellular pH (pHo) and the release of calcium ions from mineralized substrate. These effects were reversed in the co-presence of the carbonic anhydrase inhibitor, acetozolamide. Car2-siRNA knockdown in MLO-Y4 cells significantly inhibited the ability of sclerostin to both reduce the pHo and release calcium from a mineralized substrate. Knockdown in MLO-Y4 cells of each of the putative sclerostin receptors, Lrp4, Lrp5 and Lrp6, using siRNA, inhibited the sclerostin induction of Car2, Catk and Acp5 mRNA, as well as pHo and calcium release. Consistent with this activity of sclerostin resulting in osteocytic osteolysis, human trabecular bone samples treated ex vivo with recombinant human sclerostin for 7 days exhibited an increased osteocyte lacunar area, an effect that was reversed by the co-addition of acetozolamide. These findings

  19. Experimental investigation of bone mineral density in Thoroughbreds using quantitative computed tomography.

    PubMed

    Yamada, Kazutaka; Sato, Fumio; Higuchi, Tohru; Nishihara, Kaori; Kayano, Mitsunori; Sasaki, Naoki; Nambo, Yasuo

    2015-01-01

    Bone mineral density (BMD) is one of the indications of the strength and health. BMD measured by quantitative computed tomography (QCT) was compared with that measured by dual energy X-ray absorptiometry (DXA) and radiographic bone aluminum equivalence (RBAE). Limbs were removed from horses that had been euthanized for reasons not associated with this study. Sixteen limbs (left and right metacarpals and metatarsals) from 4 horses were used to compare BMD as measured by QCT with those measured by DXA and RBAE. There was a strong correlation between BMD values measured by QCT and those measured by DXA (R(2)=0.85); correlation was also observed between values obtained by QCT and those obtained by RBAE (R(2)=0.61). To investigate changes in BMD with age, 37 right metacarpal bones, including 7 from horses euthanized because of fracture were examined by QCT. The BMD value of samples from horses dramatically increased until 2 years of age and then plateaued, a pattern similar to the growth curve. The BMD values of bone samples from horses euthanized because of fracture were within the population range, and samples of morbid fracture were not included. The relationship between BMD and age provides a reference for further quantitative studies of bone development and remodeling. Quantitative measurement of BMD using QCT may have great potential for the evaluation of bone biology for breeding and rearing management. PMID:26435681

  20. Experimental investigation of bone mineral density in Thoroughbreds using quantitative computed tomography

    PubMed Central

    YAMADA, Kazutaka; SATO, Fumio; HIGUCHI, Tohru; NISHIHARA, Kaori; KAYANO, Mitsunori; SASAKI, Naoki; NAMBO, Yasuo

    2015-01-01

    ABSTRACT Bone mineral density (BMD) is one of the indications of the strength and health. BMD measured by quantitative computed tomography (QCT) was compared with that measured by dual energy X-ray absorptiometry (DXA) and radiographic bone aluminum equivalence (RBAE). Limbs were removed from horses that had been euthanized for reasons not associated with this study. Sixteen limbs (left and right metacarpals and metatarsals) from 4 horses were used to compare BMD as measured by QCT with those measured by DXA and RBAE. There was a strong correlation between BMD values measured by QCT and those measured by DXA (R2=0.85); correlation was also observed between values obtained by QCT and those obtained by RBAE (R2=0.61). To investigate changes in BMD with age, 37 right metacarpal bones, including 7 from horses euthanized because of fracture were examined by QCT. The BMD value of samples from horses dramatically increased until 2 years of age and then plateaued, a pattern similar to the growth curve. The BMD values of bone samples from horses euthanized because of fracture were within the population range, and samples of morbid fracture were not included. The relationship between BMD and age provides a reference for further quantitative studies of bone development and remodeling. Quantitative measurement of BMD using QCT may have great potential for the evaluation of bone biology for breeding and rearing management. PMID:26435681

  1. Lycopene intake facilitates the increase of bone mineral density in growing female rats.

    PubMed

    Iimura, Yuki; Agata, Umon; Takeda, Satoko; Kobayashi, Yuki; Yoshida, Shigeki; Ezawa, Ikuko; Omi, Naomi

    2014-01-01

    Intake of the antioxidant lycopene has been reported to decrease oxidative stress and have beneficial effects on bone health. However, few in vivo studies have addressed these beneficial effects in growing female rodents or young women. The aim of this study was to investigate the effect of lycopene intake on bone metabolism through circulating oxidative stress in growing female rats. Six-week-old Sprague-Dawley female rats were randomly divided into 3 groups according to the lycopene content in their diet: 0, 50, and 100 ppm. The bone mineral density (BMD) of the lumbar spine and the tibial proximal metaphysis increased with lycopene content in a dose-dependent manner; the BMD in 100 ppm group was significantly higher than in the 0 ppm group. The urine deoxypyridinoline concentrations were significantly lower in the 50 and 100 ppm groups than in the 0 ppm group, and the serum bone-type alkaline phosphatase activity was significantly higher in 100 ppm group than in the 0 ppm group. No difference in systemic oxidative stress level was observed; however, the oxidative stress level inversely correlated with the tibial BMD. Our findings suggested that lycopene intake facilitates bone formation and inhibits bone resorption, leading to an increase of BMD in growing female rats. PMID:24975219

  2. Assessment of bone mineral density in the jaws and its relationship to radiomorphometric indices

    PubMed Central

    Gulsahi, A; Paksoy, CS; Ozden, S; Kucuk, NO; Cebeci, ARI; Genc, Y

    2010-01-01

    Objectives The aim of this study was to evaluate maxillary, mandibular and femoral neck bone mineral density using dual energy X-ray absorptiometry (DXA) and to determine any correlation between the bone mineral density of the jaws and panoramic radiomorphometric indices. Methods 49 edentulous patients (18 males and 31 females) aged between 41 and 78 years (mean age 60.2 ± 11.04) were examined by panoramic radiography. Bone mineral density (BMD) of the jaws and femoral neck was measured with a DXA; bone mineral density was calculated at the anterior, premolar and molar regions of the maxilla and mandible. Results The mean maxillary molar BMD (0.45 g cm−2) was significantly greater than the maxillary anterior and premolar BMD (0.31 g cm−2, P < 0.05). Furthermore, the mean mandibular anterior and premolar BMD (1.39 g cm−2 and 1.28 g cm−2, respectively) was significantly greater than the mean mandibular molar BMD (1.09 g cm−2, P < 0.01). Although BMD in the maxillary anterior and premolar regions were correlated, BMD in all the mandibular regions were highly correlated. Maxillary and mandibular BMD were not correlated with femoral BMD. In addition, mandibular cortical index (MCI) classification, mental index (MI) or panoramic mandibular index (PMI) values were not significantly correlated with the maxillary and mandibular BMDs (P > 0.05). Conclusions The BMD in this study was highest in the mandibular anterior region and lowest in the maxillary anterior and premolar regions. The BMD of the jaws was not correlated with either femoral BMD or panoramic radiomorphometric indices. PMID:20587652

  3. Kinin B1 Receptor Deletion Affects Bone Healing in Type 1 Diabetic Mice.

    PubMed

    Cignachi, Natália P; Pesquero, João B; Oliveira, Rogério B; Etges, Adriana; Campos, Maria M

    2015-12-01

    The effects of kinin B1 receptor (B1 R) deletion were examined on femur bone regeneration in streptozotocin (STZ)-type 1 diabetes. Diabetes induction in wild-type C57/BL6 (WTC57BL6) mice led to decrease in body weight and hyperglycemia, compared to the non-diabetic group of the same strain. The lack of B1 R did not affect STZ-elicited body weight loss, but partially prevented hyperglycemia. Diabetic mice had a clear delay in bone regeneration, and displayed large areas of loose connective tissue within the defects, with a reduced expression of the mineralization-related protein osteonectin, when compared to the non-diabetic WTC57/BL6. The non-diabetic and diabetic B1 R knockout (B1 RKO) mice had bone regeneration levels and osteonectin expression comparable to that seen in control WTC57/BL6 mice. WTC57/BL6 STZ-diabetic mice also showed a marked reduction of collagen contents, with increased immunolabeling for the apoptosis marker caspase-3, whereas diabetic B1 RKO had collagen levels and caspase-3 activity comparable to those observed in non-diabetic WTC57/BL6 or B1 RKO mice. No significant difference was detected in the number of tartrate-resistant acid phosphatase (TRAP)-stained cells, or in RANK/RANKL/OPG system immunolabeling throughout the experimental groups. Data bring novel evidence on the relevance of kinin B1 R under type 1 diabetes with regards to its role in bone regeneration. PMID:25969420

  4. Nonenzymatic Glycation and Degree of Mineralization Are Higher in Bone From Fractured Patients With Type 1 Diabetes Mellitus.

    PubMed

    Farlay, Delphine; Armas, Laura A G; Gineyts, Evelyne; Akhter, Mohammed P; Recker, Robert R; Boivin, Georges

    2016-01-01

    Low-energy fractures are frequent complications in type 1 diabetes mellitus patients (T1DM). Modifications of bone intrinsic composition might be a potential cause of fragility observed in diabetic subjects. Advanced glycation end products (AGEs) were found in numerous connective tissues from T1DM patients. However, whether AGEs are present at high levels in bone matrix from diabetic subjects is unknown. Moreover, whether elevated AGEs in the bone matrix impair mineralization has not been addressed in humans. The purposes of this study were 1) to determine whether bone matrix from fracturing and nonfracturing T1DM contained more AGEs than bone from healthy patients (CTL), and 2) to compare the degree of mineralization of bone and hardness between fracturing and nonfracturing T1DM versus CTL. We analyzed iliac crest bone biopsies from 5 fracturing T1DM patients, 5 nonfracturing T1DM patients, and 5 healthy subjects, all age- and sex-matched. AGEs (pentosidine) in bone matrix was measured by high-performance liquid chromatography separately in trabecular and cortical bone. The degree of mineralization of bone (DMB) was assessed by digitized microradiography, and mechanical properties by micro- and nanohardness tests. Trabecular bone from fracturing T1DM exhibited significantly higher levels of pentosidine than CTL (p = 0.04) and was more mineralized than nonfracturing T1DM (p = 0.04) and CTL (p = 0.04). Trabecular bone was not significantly different in pentosidine between nonfracturing T1DM and CTL. Cortical bone from nonfracturing T1DM was not significantly different from CTL. Positive correlations were found between HbA1c and pentosidine (r' = 0.79, p < 0.003) and between HbA1c and DMB (r' = 0.64, p < 0.02). Both modifications could lead to less flexible bone (reduced modulus of elasticity) and a tendency toward low-energy fractures in T1DM patients. PMID:26234180

  5. Effect of Denosumab on Bone Mineral Density and Markers of Bone Turnover among Postmenopausal Women with Osteoporosis

    PubMed Central

    Salerni, H.; González, D.; Bagur, A.; Oliveri, B.; Farías, V.; Maffei, L.; Mansur, J. L.; Larroudé, M. S.; Pavlove, M. M.; Karlsbrum, S.

    2016-01-01

    The aim of this study was to evaluate the effect of denosumab (Dmab) on bone mineral density (BMD) and bone turnover markers after 1 year of treatment. Additionally, the effect of Dmab in bisphosphonate-naïve patients (BP-naïve) compared to patients previously treated with bisphosphonates (BP-prior) was analyzed. This retrospective study included 425 postmenopausal women treated with Dmab for 1 year in clinical practice conditions in specialized centers from Argentina. Participants were also divided according to previous bisphosphonate treatment into BP-naïve and BP-prior. A control group of patients treated with BP not switched to Dmab matched by sex, age, and body mass index was used. Data are expressed as mean ± SEM. After 1 year of treatment with Dmab the bone formation markers total alkaline phosphatase and osteocalcin were significantly decreased (23.36% and 43.97%, resp.), as was the bone resorption marker s-CTX (69.61%). Significant increases in BMD were observed at the lumbar spine, femoral neck, and total hip without differences between BP-naïve and BP-prior. A better BMD response was found in BP-prior group compared with BP treated patients not switched to Dmab. Conclusion. Dmab treatment increased BMD and decreased bone turnover markers in the whole group, with similar response in BP-naïve and BP-prior patients. A better BMD response in BP-prior patients versus BP treated patients not switched to Dmab was observed. PMID:27579211

  6. Effect of Denosumab on Bone Mineral Density and Markers of Bone Turnover among Postmenopausal Women with Osteoporosis.

    PubMed

    Sánchez, A; Brun, L R; Salerni, H; Costanzo, P R; González, D; Bagur, A; Oliveri, B; Zanchetta, M B; Farías, V; Maffei, L; Premrou, V; Mansur, J L; Larroudé, M S; Sarli, M A; Rey, P; Ulla, M R; Pavlove, M M; Karlsbrum, S; Brance, M L

    2016-01-01

    The aim of this study was to evaluate the effect of denosumab (Dmab) on bone mineral density (BMD) and bone turnover markers after 1 year of treatment. Additionally, the effect of Dmab in bisphosphonate-naïve patients (BP-naïve) compared to patients previously treated with bisphosphonates (BP-prior) was analyzed. This retrospective study included 425 postmenopausal women treated with Dmab for 1 year in clinical practice conditions in specialized centers from Argentina. Participants were also divided according to previous bisphosphonate treatment into BP-naïve and BP-prior. A control group of patients treated with BP not switched to Dmab matched by sex, age, and body mass index was used. Data are expressed as mean ± SEM. After 1 year of treatment with Dmab the bone formation markers total alkaline phosphatase and osteocalcin were significantly decreased (23.36% and 43.97%, resp.), as was the bone resorption marker s-CTX (69.61%). Significant increases in BMD were observed at the lumbar spine, femoral neck, and total hip without differences between BP-naïve and BP-prior. A better BMD response was found in BP-prior group compared with BP treated patients not switched to Dmab. Conclusion. Dmab treatment increased BMD and decreased bone turnover markers in the whole group, with similar response in BP-naïve and BP-prior patients. A better BMD response in BP-prior patients versus BP treated patients not switched to Dmab was observed. PMID:27579211

  7. Dual-Energy X-Ray Absorptiometry: Beyond Bone Mineral Density Determination

    PubMed Central

    2016-01-01

    Significant improvements in dual-energy X-ray absorptiometry (DXA) concerning quality, image resolution and image acquisition time have allowed the development of various functions. DXA can evaluate bone quality by indirect analysis of micro- and macro-architecture of the bone, which and improve the prediction of fracture risk. DXA can also detect existing fractures, such as vertebral fractures or atypical femur fractures, without additional radiologic imaging and radiation exposure. Moreover, it can assess the metabolic status by the measurement of body composition parameters like muscle mass and visceral fat. Although more studies are required to validate and clinically use these parameters, it is clear that DXA is not just for bone mineral densitometry. PMID:26996419

  8. Bone mineral density evaluation among patients with neuromuscular scoliosis secondary to cerebral palsy☆

    PubMed Central

    Rezende, Rodrigo; Cardoso, Igor Machado; Leonel, Rayana Bomfim; Perim, Larissa Grobério Lopes; Oliveira, Tarcísio Guimarães Silva; Jacob Júnior, Charbel; Júnior, José Lucas Batista; Lourenço, Rafael Burgomeister

    2014-01-01

    Objective To evaluate bone mineral density among patients with neuromuscular scoliosis secondary to quadriplegic cerebral palsy. Methods This was a descriptive prospective study in which both bone densitometric and anthropometric data were evaluated. The inclusion criteria used were that the patients should present quadriplegic cerebral palsy, be confined to a wheelchair, be between 10 and 20 years of age and present neuromuscular scoliosis. Results We evaluated 31 patients (20 females) with a mean age of 14.2 years. Their mean biceps circumference, calf circumference and body mass index were 19.4 cm, 18.6 cm and 16.9 kg/m2, respectively. The mean standard deviation from bone densitometry was −3.2 (z-score), which characterizes osteoporosis. Conclusion There is high incidence of osteoporosis in patients with neuromuscular scoliosis secondary to quadriplegic cerebral palsy. PMID:26229882

  9. Dual-Energy X-Ray Absorptiometry: Beyond Bone Mineral Density Determination.

    PubMed

    Choi, Yong Jun

    2016-03-01

    Significant improvements in dual-energy X-ray absorptiometry (DXA) concerning quality, image resolution and image acquisition time have allowed the development of various functions. DXA can evaluate bone quality by indirect analysis of micro- and macro-architecture of the bone, which and improve the prediction of fracture risk. DXA can also detect existing fractures, such as vertebral fractures or atypical femur fractures, without additional radiologic imaging and radiation exposure. Moreover, it can assess the metabolic status by the measurement of body composition parameters like muscle mass and visceral fat. Although more studies are required to validate and clinically use these parameters, it is clear that DXA is not just for bone mineral densitometry. PMID:26996419

  10. Effects of lead shot ingestion on bone mineralization in a population of red-legged partridge (Alectoris rufa).

    PubMed

    Álvarez-Lloret, Pedro; Rodríguez-Navarro, Alejandro B; Romanek, Christopher S; Ferrandis, Pablo; Martínez-Haro, Mónica; Mateo, Rafael

    2014-01-01

    The effect of lead (Pb) toxicity on bone mineralization was investigated in a wild population of red-legged partridge (Alectoris rufa) inhabiting a farmland area contaminated with Pb-shot from recreational hunting activities in Albacete, a southeastern province of Spain. Femora from 40 specimens of red-legged partridge were analyzed for Pb by graphite furnace atomic absorption spectroscopy (GF-AAS), and for bone composition by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The FTIR and DRX data of bone were analyzed in detail to determine possible alterations in bone mineral chemistry and crystallinity due to Pb toxicity. Results showed a marked decrease in the degree of mineralization as Pb concentrations in bone tissue increased while XRD analyses showed that the crystallinity of apatite crystals increased with the Pb load in bone. These load-dependent effects are indicative that Pb contamination altered bone remodeling by reducing new bone mineral formation and demonstrate that bone quality is a sensitive indicator of adverse effects on wild bird populations exposed to Pb pollution. PMID:23892021

  11. Spontaneous gene transfection of human bone cells using 3D mineralized alginate-chitosan macrocapsules.

    PubMed

    Green, David W; Kim, Eun-Jung; Jung, Han-Sung

    2015-09-01

    The effectiveness of nonviral gene therapy remains uncertain because of low transfection efficiencies and high toxicities compared with viral-based strategies. We describe a simple system for transient transfection of continuous human cell lines, with low toxicity, using mineral-coated chitosan and alginate capsules. As proof-of-concept, we demonstrate transfection of Saos-2 and MG63 human osteosarcoma continuous cell lines with gfp, LacZ reporter genes, and a Sox-9 carrying plasmid, to illustrate expression of a functional gene with therapeutic relevance. We show that continuous cell lines transfect with significant efficiency of up to 65% possibly through the interplay between chitosan and DNA complexation and calcium/phosphate-induced translocation into cells entrapped within the 3D polysaccharide based environment, as evidenced by an absence of transfection in unmineralized and chitosan-free capsules. We demonstrated that our transfection system was equally effective at transfection of primary human bone marrow stromal cells. To illustrate, the Sox-9, DNA plasmid was spontaneously expressed in primary human bone marrow stromal cells at 7 days with up to 90% efficiency in two repeats. Mineralized polysaccharide macrocapsules are gene delivery vehicles with a number of biological and practical advantages. They are highly efficient at self-transfecting primary bone cells, with programmable spatial and temporal delivery prospects, premineralized bone-like environments, and have no cytotoxic effects, as compared with many other nonviral systems. PMID:25645372

  12. Study of bone mineral metabolism. [during body immobilization, bed rest, and space flight

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.

    1975-01-01

    The use of Sr-85 as an indicator of the skeletal location and relative amount of bone demineralization which occurs during immobilization of the body or body parts, bed-rest or space flight was studied. The bone mineral replacement which occurs after immobilization was measured rather than the bone loss which occurs during immobilization. In a study with two adult beagle dogs, the Sr-85 uptake in a leg which had been immobilized for two months was 400 percent higher than the uptake in the legs in regular use. This increased uptake probably resulted from only a few percent loss in bone mineral and indicates that losses less than one percent can be easily detected and located. The sensitivity, simplicity, and low radiation dose associated with the use of this method indicates that it should receive consideration for use on humans in bed-rest and space flight studies. Methods for measuring changes in total body nitrogen and in assisting the Johnson Space Center in calibrating a whole body counter for total body potassium measurements were also investigated.

  13. Ultrastructure of regenerated bone mineral surrounding hydroxyapatite-alginate composite and sintered hydroxyapatite.

    PubMed

    Rossi, Andre L; Barreto, Isabela C; Maciel, William Q; Rosa, Fabiana P; Rocha-Leão, Maria H; Werckmann, Jacques; Rossi, Alexandre M; Borojevic, Radovan; Farina, Marcos

    2012-01-01

    We report the ultrastructure of regenerated bone surrounding two types of biomaterials: hydroxyapatite-alginate composite and sintered hydroxyapatite. Critical defects in the calvaria of Wistar rats were filled with micrometer-sized spherical biomaterials and analyzed after 90 and 120 days of implantation by high-resolution transmission electron microscopy and Fourier transform infrared attenuated total reflectance microscopy, respectively. Infrared spectroscopy showed that hydroxyapatite of both biomaterials became more disordered after implantation in the rat calvaria, indicating that the biological environment induced modifications in biomaterials structure. We observed that the regenerated bone surrounding both biomaterials had a lamellar structure with type I collagen fibers alternating in adjacent lamella with angles of approximately 90°. In each lamella, plate-like apatite crystals were aligned in the c-axis direction, although a rotation around the c-axis could be present. Bone plate-like crystal dimensions were similar in regenerated bone around biomaterials and pre-existing bone in the rat calvaria. No epitaxial growth was observed around any of the biomaterials. A distinct mineralized layer was observed between new bone and hydroxyapatite-alginate biomaterial. This region presented a particular ultrastructure with crystallites smaller than those of the bulk of the biomaterial, and was possibly formed during the synthesis of alginate-containing composite or in the biological environment after implantation. Round nanoparticles were observed in regions of newly formed bone. The findings of this work contribute to a better understanding of the role of hydroxyapatite based biomaterials in bone regeneration processes at the nanoscale. PMID:22057083

  14. Age-related decrements in bone mineral density in women over 65

    NASA Technical Reports Server (NTRS)

    Steiger, P.; Cummings, S. R.; Black, D. M.; Spencer, N. E.; Genant, H. K.

    1992-01-01

    Age-related changes in bone density contribute to the risk of fractures. To describe the relationship between age and bone mass in elderly women, we studied a large cohort of women over age 65 years who were recruited from population-based lists in four cities in the United States. Bone density in g/cm2 was measured by single-photon absorptiometry (SPA) and dual x-ray absorptiometry (DXA) at the distal and proximal radius, the calcaneus, the lumbar spine, and the proximal femur. Centralized data collection was used to control data quality and consistency. We found a strong inverse relationship between bone density and age for most sites. Decrements in bone density between women aged 65-69 years and women 85 years and older exceeded 16% in all regions except the spine, where the difference between the two age groups was 6%. Ward's triangle and the calcaneus exhibited the largest decrements, with 26 and 21%, respectively. The estimates of annual changes in bone mineral density by linear regression at sites other than the spine ranged from -0.82% at the femoral neck and trochanter to -1.30% at Ward's triangle. Correlations between the different regions ranged from r = 0.51 between the proximal radius and Ward's triangle to r = 0.66 between the distal radius and calcaneus. We conclude that the inverse relationship between age and bone mass measured by absorptiometry techniques in white women continues into the ninth decade of life. The relationship is strongest for bone density of Ward's triangle and the calcaneus and weakest for the spine.

  15. Relationship of Volumetric Bone Mineral Density and Structural Parameters with ERα Gene Polymorphisms

    PubMed Central

    Cepollaro, C.; Lauretani, F.; Gozzini, A.; Masi, L.; Falchetti, A.; Monte, F.; Carbonell-Sala, S.; Tanini, A.; Corsi, A.M.; Bandinelli, S.; Ferrucci, L.; Brandi, M.L.

    2009-01-01

    Bone mineral density (BMD) contributes to bone strength, and methods for clinical assessment of bone quality characteristics beyond what can be gathered by BMD are awaited. Peripheral quantitative computed tomography (pQCT) allows for separate assessments of cortical and trabecular bone, providing information on bone geometry. Previous studies examining the relationship between estrogen receptor α (ERα) gene polymorphisms and BMD have been performed in large populations. However, only limited information is available on the possible segregation of ERα gene polymorphisms with bone structural properties. The aim of our study was to evaluate the association of XbaI and PvuII ERα gene polymorphisms with QCT parameters. We studied 900 subjects (541 women, 449 men) participating to the InCHIANTI study. By tibial pQCT we evaluated trabecular volumetric BMD, cortical volumetric BMD, cortical bone area, and cortical thickness (CtTh). Subjects were genotyped for ERα gene PvuII and XbaI polymorphisms. Analysis of variance was used for statistical analysis. Male subjects with PP and XX genotypes had higher geometric parameters, and female subjects with XX and PP genotypes showed higher densitometric parameters than other genotypes; however, the differences did not reach statistical significance. After adjustment for potential confounders, we found a significant (P = 0.002) CtTh difference across PvuII polymorphism in male subjects, with higher CtTh values in PP genotypes with respect to Pp and pp genotypes. These results show a relationship between the presence of the P allele and higher values of CtTh in male subjects, indicating for ERα a role in the control of tibial bone geometry. PMID:17505773

  16. In ovo feeding with minerals and vitamin D3 improves bone properties in hatchlings and mature broilers.

    PubMed

    Yair, R; Shahar, R; Uni, Z

    2015-11-01

    The objective of this study was to examine the effect of in ovo feeding (IOF) with inorganic minerals or organic minerals and vitamin D3 on bone properties and mineral consumption. Eggs were incubated and divided into 4 groups: IOF with organic minerals, phosphate, and vitamin D3 (IOF-OMD); IOF with inorganic minerals and phosphate (IOF-IM); sham; and non-treated controls (NTC). IOF was performed on embryonic day (E) 17; tibiae and yolk samples were taken on E19 and E21. Post-hatch, only chicks from the IOF-OMD, sham, and NTC were raised, and tibiae were taken on d 10 and 38. Yolk mineral content was examined by inductively coupled plasma spectroscopy. Tibiae were tested for their whole-bone mechanical properties, and mid-diaphysis bone sections were indented in a micro-indenter to determine bone material stiffness (Young's modulus). Micro-computed tomography (μCT) was used to examine cortical and trabecular bone structure. Ash content analysis was used to examine bone mineralization. A latency-to-lie (LTL) test was used to measure standing ability of the d 38 broilers. The results showed that embryos from both IOF-OMD and IOF-IM treatments had elevated Cu, Mn, and Zn amounts in the yolk on E19 and E21 and consumed more of these minerals (between E19 and E21) in comparison to the sham and NTC. On E21, these hatchlings had higher whole-bone stiffness in comparison to the NTC. On d 38, the IOF-OMD had higher ash content, elevated whole-bone stiffness, and elevated Young's modulus (in males) in comparison to the sham and NTC; however, no differences in standing ability were found. Very few structural differences were seen during the whole experiment. This study demonstrates that mineral supplementation by in ovo feeding is sufficient to induce higher mineral consumption from the yolk, regardless of its chemical form or the presence of vitamin D3. Additionally, IOF with organic minerals and vitamin D3 can increase bone ash content, as well as stiffness of the whole

  17. Preservation and promotion of bone formation in the mandible as a response to a novel calcium-phosphate based biomaterial in mineral deficiency induced low bone mass male versus female rats

    PubMed Central

    Srinivasan, Kritika; Naula, Diana P.; Mijares, Dindo Q.; Janal, Malvin N.; LeGeros, Raquel Z.; Zhang, Yu

    2016-01-01

    Calcium and other trace mineral supplements have previously demonstrated to safely improve bone quality. We hypothesize that our novel calcium-phosphate based biomaterial (SBM) preserves and promotes mandibular bone formation in male and female rats on mineral deficient diet (MD). Sixty Sprague-Dawley rats were randomly assigned to receive one of three diets (n = 10): basic diet (BD), MD or mineral deficient diet with 2% SBM. Rats were sacrificed after 6 months. Micro-Computed Tomography (μCT) was used to evaluate bone volume and 3D-microarchitecture while microradiography (Faxitron) was used to measure bone mineral density from different sections of the mandible. Results showed that bone quality varied with region, gender and diet. MD reduced bone mineral density (BMD) and volume and increased porosity. SBM preserved BMD and bone mineral content (BMC) in the alveolar bone and condyle in both genders. In the alveolar crest and mandibular body, while preserving more bone in males, SBM also significantly supplemented female bone. Results indicate that mineral deficiency leads to low bone mass in skeletally immature rats, comparatively more in males. Furthermore, SBM administered as a dietary supplement was effective in preventing mandibular bone loss in all subjects. This study suggests that the SBM preparation has potential use in minimizing low peak bone mass induced by mineral deficiency and related bone loss irrespective of gender. PMID:26914814

  18. Preservation and promotion of bone formation in the mandible as a response to a novel calcium-phosphate based biomaterial in mineral deficiency induced low bone mass male versus female rats.

    PubMed

    Srinivasan, Kritika; Naula, Diana P; Mijares, Dindo Q; Janal, Malvin N; LeGeros, Racquel Z; Zhang, Yu

    2016-07-01

    Calcium and other trace mineral supplements have previously demonstrated to safely improve bone quality. We hypothesize that our novel calcium-phosphate based biomaterial (SBM) preserves and promotes mandibular bone formation in male and female rats on mineral deficient diet (MD). Sixty Sprague-Dawley rats were randomly assigned to receive one of three diets (n = 10): basic diet (BD), MD or mineral deficient diet with 2% SBM. Rats were sacrificed after 6 months. Micro-computed tomography (µCT) was used to evaluate bone volume and 3D-microarchitecture while microradiography (Faxitron) was used to measure bone mineral density from different sections of the mandible. Results showed that bone quality varied with region, gender and diet. MD reduced bone mineral density (BMD) and volume and increased porosity. SBM preserved BMD and bone mineral content (BMC) in the alveolar bone and condyle in both genders. In the alveolar crest and mandibular body, while preserving more bone in males, SBM also significantly supplemented female bone. Results indicate that mineral deficiency leads to low bone mass in skeletally immature rats, comparatively more in males. Furthermore, SBM administered as a dietary supplement was effective in preventing mandibular bone loss in all subjects. This study suggests that the SBM preparation has potential use in minimizing low peak bone mass induced by mineral deficiency and related bone loss irrespective of gender. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1622-1632, 2016. PMID:26914814

  19. Quantitative Analysis of the Orientation of Mineral in Bone from Small-Angle X-Ray Scattering Patterns

    NASA Astrophysics Data System (ADS)

    Matsushima, Norio; Akiyama, Morio; Terayama, Yoshio

    1982-01-01

    The small-angle X-ray scattering data from a rabbit femur is quantitatively evaluated with respect to the mineral distribution in bone. The results show the existence of a needle-like mineral with a length of at least 300 A and a preferred orientation of the needle axes parallel to the long axis of the bone. The angular distribution of the needle axes gives a value of 30° for the mean inclination.

  20. Analysis of bone mineralization on uncemented femoral stems by [18F]-fluoride-PET

    PubMed Central

    2013-01-01

    Purpose We present the first study using fluoride-positron emission CT (F-PET/CT) to analyze mineralization of bone in the femur adjacent to uncemented stems following total hip arthroplasty (THA). We studied patients who were operated bilaterally for osteoarthritis with 2 different stems during the same surgical session. Patients and methods THA was performed bilaterally during the same surgical session in 8 patients with bilateral osteoarthritis of the hip. An SL-PLUS stem was inserted in one hip and a BetaCone stem was inserted in the contralateral hip, with randomization of side and sequence. A second group of 12 individuals with a normal healthy hip was used as reference for normal bone metabolism. Clinical and radiographic evaluation was performed preoperatively, postoperatively, and at 2 years. We used [18F]-fluoride-PET/CT to analyze bone mineralization adjacent to the stems 1 week, 4 months, and 12 months after surgery. We modified the Polar Map system to fit the upper femur for analysis and presentation of the PET results from 12 regions of interest adjacent to the whole stem. Results The clinical results were good at 2 years. By radiography, all stems were stable. At PET analyses 1 week after surgery, the activity was higher for the SL-PLUS group than for the BetaCone group. The activity was statistically significantly higher for both stems than the reference values at 4 months, and was most pronounced in the upper femur. At one year, the activity had declined more for the BC group than for the SL group. Interpretation The bone mineralization activity varied between different regions for the same stem and between different time periods for each group. F-PET/CT is a novel and valuable tool for analysis of bone mineralization patterns around uncemented femoral stems in detail. The combination of PET/CT analysis and the modified Polar Map system may provide a useful tool for future studies of metabolic bone responses to prosthetic implants. PMID:23506163

  1. Potential role of proprotein convertase SKI-1 in the mineralization of primary bone.

    PubMed

    Gorski, Jeff P; Huffman, Nichole T; Cui, Chaoying; Henderson, Ellen P; Midura, Ronald J; Seidah, Nabil G

    2009-01-01

    The biochemical mechanism controlling nucleation of mineral crystals in developing bone, along with the growth and propagation of these crystals once formed, remains poorly understood. To define the nucleation mechanism, a proteomics analysis was begun on isolated biomineralization foci (BMF), sites of initial crystal nucleation in osteoblastic cell cultures and in primary bone. Comparative analyses of the protein profile for mineralized BMF with that for total osteoblast cultures revealed the latter were enriched in several proteins including BAG-75 and BSP, as well as fragments of each. When 12 protease inhibitors were added separately to UMR 106-01 osteoblastic cultures, only the serine protease inhibitor 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF) blocked cleavage of BAG-75 and BSP, and prevented mineral crystal nucleation within BMF. Consideration of the specificities of the inhibitors tested and the fact that AEBSF inhibition was not dependent upon inclusion of FBS in the culture media indicated that mineral nucleation does not require serine protease plasmin, thrombin, kallikrein, urokinase, C1s or furin. In contrast, SKI-1 (S1P or site-1) is a membrane-bound serine protease inhibitable by AEBSF. We show here for the first time that mineralizing UMR 106 cells express a 98-kDa active, soluble form of SKI-1 within BMF. In contrast, nonmineralizing UMR cells appear to differentially process SKI-1 into smaller immunoreactive fragments (<35 kDa). These findings suggest that SKI-1 plays a direct or indirect role in assembly of functional nucleation complexes containing BAG-75 and BSP and their fragments, thus facilitating initial mineral nucleation within these biomineralization foci. PMID:18728345

  2. Selenium Status Is Positively Associated with Bone Mineral Density in Healthy Aging European Men

    PubMed Central

    Beukhof, Carolien M.; Medici, Marco; van den Beld, Annewieke W.; Hollenbach, Birgit; Hoeg, Antonia; Visser, W. Edward; de Herder, Wouter W.; Visser, Theo J.; Schomburg, Lutz; Peeters, Robin P.

    2016-01-01

    Objective It is still a matter of debate if subtle changes in selenium (Se) status affect thyroid function tests (TFTs) and bone mineral density (BMD). This is particularly relevant for the elderly, whose nutritional status is more vulnerable. Design and Methods We investigated Se status in a cohort of 387 healthy elderly men (median age 77 yrs; inter quartile range 75–80 yrs) in relation to TFTs and BMD. Se status was determined by measuring both plasma selenoprotein P (SePP) and Se. Results The overall Se status in our population was low normal with only 0.5% (2/387) of subjects meeting the criteria for Se deficiency. SePP and Se levels were not associated with thyroid stimulating hormone (TSH), free thyroxine (FT4), thyroxine (T4), triiodothyronine (T3) or reverse triiodothyronine (rT3) levels. The T3/T4 and T3/rT3 ratios, reflecting peripheral metabolism of thyroid hormone, were not associated with Se status either. SePP and Se were positively associated with total BMD and femoral trochanter BMD. Se, but not SePP, was positively associated with femoral neck and ward's BMD. Multivariate linear analyses showed that these associations remain statistically significant in a model including TSH, FT4, body mass index, physical performance score, age, smoking, diabetes mellitus and number of medication use. Conclusion Our study demonstrates that Se status, within the normal European marginally supplied range, is positively associated with BMD in healthy aging men, independent of thyroid function. Thyroid function tests appear unaffected by Se status in this population. PMID:27055238

  3. Living near a Freeway is Associated with Lower Bone Mineral Density among Mexican Americans

    PubMed Central

    Chen, Zhanghua; Salam, Muhammad T.; Karim, Roksana; Toledo-Corral, Claudia M.; Watanabe, Richard M.; Xiang, Anny H.; Buchanan, Thomas A.; Habre, Rima; Bastain, Theresa M.; Lurmann, Fred; Taher, Maryam; Wilson, John P.; Trigo, Enrique; Gilliland, Frank D.

    2015-01-01

    Purpose Adults residing in rural areas have been linked with higher bone mineral density (BMD). We aimed to determine if this difference is due in part to air pollution by examining the relationships between traffic metrics and ambient air pollution with total body and pelvic BMD. Methods Mexican-American adults (n=1,175; mean 34 years; 72% female) who had participated in the BetaGene study of air pollution, obesity and insulin resistance were included in this analysis. Total body and pelvic BMD were estimated using dual-energy X-ray absorptiometry. Traffic and ambient air pollutant exposures were estimated at residences using location and ambient monitoring data. Variance component models were used to analyze the associations between residential distance to the nearest freeway and ambient air pollutants with BMD. Results Residential proximity to a freeway was associated with lower total body BMD (p-trend=0.01) and pelvic BMD (p-trend=0.03) after adjustment for age, sex, weight and height. The adjusted mean total body and pelvic BMD in participants living within 500m of a freeway were 0.02 g/cm2 and 0.03 g/cm2 lower than participants living greater than 1,500m from a freeway. These associations did not differ significantly by age, sex or obesity status. Results were similar after further adjustment for body fat and weekly physical activity minutes. Ambient air pollutants (NO2, O3 and PM2.5) were not significantly associated with BMD. Conclusions Traffic-related exposures in overweight and obese Mexican-Americans may adversely affect BMD. Our findings indicate that long-term exposures to traffic may contribute to the occurrence of osteoporosis and its consequences. PMID:25677718

  4. Bone Mineral Density Changes Among Women Initiating Blood Pressure Lowering Drugs: A SWAN Cohort Study

    PubMed Central

    Solomon, Daniel H.; Ruppert, Kristine; Zhao, Zhenping; Lian, YinJuan; Kuo, I-Hsin; Greendale, Gail A.; Finkelstein, Joel S.

    2016-01-01

    Purpose Several blood pressure lowering drugs may affect bone mineral density (BMD), leading to altered fracture risk. We examined the effect of blood pressure lowering drugs on BMD using data from the Study of Women’s Health Across the Nation. Methods We conducted a propensity score matched cohort study. Women were initiators of ACE inhibitors (ACEi), beta-blockers (BB), or thiazide diuretics (THZD). Their annualized BMD changes during the 14-years of observation were compared with non-users. Results Among the 2312 eligible women, we found 69 ACEi, 71 BB, and 74 THZD users who were matched by a propensity score with the same number of non-users. THZD users had a slower annual percent decline in BMD compared to nonusers at the femoral neck (FN) (−0.28% vs −0.88%; p = 0.008) and the spine (−0.74% vs −1.0%; p = 0.34), albeit not statistically significant. Annual percent changes in BMD among ACEi and BB users were similar to rates in non-users. In comparison with BB, THZD use was associated with a trend toward less annualized BMD loss at the spine (−0.35% vs −0.60%; p = 0.08) and a similar trend at the FN (−0.39% vs −0.64%; p = 0.08); in comparisons with ACEi, THZD was also associated with less loss at the FN (−0.48% vs −0.82%; p = 0.02), but not at the spine (−0.40% vs −0.56%; p = 0.23). Conclusions Neither ACEi nor BB were associated with improvements in BMD. THZD use was associated with less annualized loss of BMD compared with non-users, as well as compared with ACEi and BB. PMID:26449354

  5. Calcium intake and bone mineral density: systematic review and meta-analysis

    PubMed Central

    Tai, Vicky; Leung, William; Grey, Andrew; Reid, Ian R

    2015-01-01

    Objective To determine whether increasing calcium intake from dietary sources affects bone mineral density (BMD) and, if so, whether the effects are similar to those of calcium supplements. Design Random effects meta-analysis of randomised controlled trials. Data sources Ovid Medline, Embase, Pubmed, and references from relevant systematic reviews. Initial searches were undertaken in July 2013 and updated in September 2014. Eligibility criteria for selecting studies Randomised controlled trials of dietary sources of calcium or calcium supplements (with or without vitamin D) in participants aged over 50 with BMD at the lumbar spine, total hip, femoral neck, total body, or forearm as an outcome. Results We identified 59 eligible randomised controlled trials: 15 studied dietary sources of calcium (n=1533) and 51 studied calcium supplements (n=12 257). Increasing calcium intake from dietary sources increased BMD by 0.6-1.0% at the total hip and total body at one year and by 0.7-1.8% at these sites and the lumbar spine and femoral neck at two years. There was no effect on BMD in the forearm. Calcium supplements increased BMD by 0.7-1.8% at all five skeletal sites at one, two, and over two and a half years, but the size of the increase in BMD at later time points was similar to the increase at one year. Increases in BMD were similar in trials of dietary sources of calcium and calcium supplements (except at the forearm), in trials of calcium monotherapy versus co-administered calcium and vitamin D, in trials with calcium doses of ≥1000 versus <1000 mg/day and ≤500 versus >500 mg/day, and in trials where the baseline dietary calcium intake was <800 versus ≥800 mg/day. Conclusions Increasing calcium intake from dietary sources or by taking calcium supplements produces small non-progressive increases in BMD, which are unlikely to lead to a clinically significant reduction in risk of fracture. PMID:26420598

  6. Exposure to cadmium and persistent organochlorine pollutants and its association with bone mineral density and markers of bone metabolism on postmenopausal women

    SciTech Connect

    Rignell-Hydbom, A.; Skerfving, S.; Lundh, T.; Lindh, C.H.; Elmstahl, S.; Bjellerup, P.; Juensson, B.A.G.; Struemberg, U.; Akesson, A.

    2009-11-15

    Environmental contaminants such as cadmium and persistent organochlorine pollutants have been proposed as risk factors of osteoporosis, and women may be at an increased risk. To assess associations between exposure to cadmium and two different POPs (2,2',4,4',5,5'-hexachlorobiphenyl CB-153, 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethylene p,p'-DDE), on one hand, and bone effects, on the other, in a population-based study among postmenopausal (60-70 years) Swedish women with biobanked blood samples. The study included 908 women and was designed to have a large contrast of bone mineral densities, measured with a single photon absorptiometry technique in the non-dominant forearm. Biochemical markers related to bone metabolism were analyzed in serum. Exposure assessment was based on cadmium concentrations in erythrocytes and serum concentrations of CB-153 and p,p'-DDE. Cadmium was negatively associated with bone mineral density and parathyroid hormone, positively with the marker of bone resorption. However, this association disappeared after adjustment for smoking. The major DDT metabolite (p,p'-DDE) was positively associated with bone mineral density, an association which remained after adjustment for confounders, but the effect was weak. There was no evidence that the estrogenic congener (CB-153) was associated with any of the bone markers. In conclusion, no convincing associations were observed between cadmium and POPs, on one hand, and bone metabolism markers and BMD, on the other.

  7. Pilot study of bone mineral density in breast cancer patients treated with adjuvant chemotherapy

    NASA Technical Reports Server (NTRS)

    Headley, J. A.; Theriault, R. L.; LeBlanc, A. D.; Vassilopoulou-Sellin, R.; Hortobagyi, G. N.

    1998-01-01

    The objective of this cross-sectional study was to determine lumbar spine bone mineral density (BMD) in breast cancer patients previously treated with adjuvant chemotherapy. Sixteen of 27 patients who received adjuvant chemotherapy became permanently amenorrheic as a result of chemotherapy. BMD was measured at the lumbar spine using dual energy X-ray absorptiometry (DEXA). Chemotherapy drugs and dosages along with a history of risk factors for reduced bone density including activity level, tobacco and/or alcohol use, metabolic bone disease, family history, and hormone exposure were identified. Results showed that women who became permanently amenorrheic as a result of chemotherapy had BMD 14% lower than women who maintained menses after chemotherapy. Chemotherapy-treated women who maintained ovarian function had normal BMD. This study suggests that women who have premature menopause as a result of chemotherapy for breast cancer are at increased risk of bone loss and may be at risk for early development of osteoporosis. Women who maintain menses do not appear to be at risk for accelerated trabecular bone loss.

  8. Dual photon absorptiometry using a gadolinium-153 source applied to measure equine bone mineral content

    NASA Astrophysics Data System (ADS)

    Moure, Alessandro; Reichmann, Peter; Remigio Gamba, Humberto

    2003-12-01

    The application of the dual photon absorptiometry (DPA) technique, using gadolinium-153 as the photon source, to evaluate the bone mineral density (BMD) of the third metacarpal bone of horses is presented. The radiation detector was implemented with a NaI(TI) scintillator coupled to a 14 stage photomultiplier. A modular mechanical system allows the position of the prototype to be adjusted in relation to the animal. A moveable carrier makes it possible to scan the third metacarpal with a velocity adjustable between 1 and 12 mm s-1, in steps of 1 mm s-1, for a total distance of 250 mm. The prototype was evaluated with a phantom of the third metacarpal bone made of perspex and aluminium, and in vitro with a transverse slice of the third metacarpal bone of a horse. The tests showed that the prototype has an accuracy and precision of, approximately, 10% and 6%, respectively, for a 6 s acquisition time. Preliminary studies carried out in three foals from birth to one year of age indicated that the prototype is well suited to in vivo and in situ analysis of the BMD of the third metacarpal bones of horses, making it possible to evaluate the changes of BMD levels on a monthly basis. Also, results indicated an exponential behaviour of the BMD curve during the first year of life of the studied horses.

  9. Pycnogenol® treatment inhibits bone mineral density loss and trabecular deterioration in ovariectomized rats

    PubMed Central

    Huang, Gangyong; Wu, Jianguo; Wang, Siqun; Wei, Yibing; Chen, Feiyan; Chen, Jie; Shi, Jingsheng; Xia, Jun

    2015-01-01

    Context: Pycnogenol® extracted from French maritime pine bark (Pinus pinaster Ait. subsp. atlantica) is functional for its antioxidant activity. Objective: To investigate the effects of Pycnogenol® on bone mineral density (BMD), trabecular microarchitecture and bone metabolism in ovariectomized (OVX) rats. Materials and methods: Thirty Sprague-Dawley rats were randomized into 3 groups: SHAM group (sham-operated rats), OVX group (OVX rats), and treatment group (OVX rats supplemented with 40 mg/kg Pycnogenol® by oral gavage). Serum levels of procollagen type I N-terminal propeptide (PINP), alkaline phosphatase (ALP) and minerals were detected at the end of 9 weeks of gavage. Deoxypyridinoline/creatinine (DPYD/Cr) and N-telopeptide of type I collagen/creatinine (NTX/Cr) rate in urine were also calculated. Left femora were collected for BMD determination, and the right distal femora were made into undecalcified specimens for histomorphometry analysis. Results: At the end of study, PINP level, DPYD/Cr and NTX/Cr rate were significantly increased, and femoral BMD were dramatically decreased in OVX group compared with SHAM group (P < 0.01) while serum minerals and ALP concentrations showed no significant difference. The treatment group had dramatically decreased biomarkers and increased BMD than OVX group (P < 0.01). Histomorphometry analysis showed worse bone microarchitecture parameters in the OVX group compared with the SHAM group which were significantly improved in the treatment group compared with the OVX group (P < 0.01). Discussion and conclusion: Pycnogenol® (40 mg/kg) can inhibit aggravated bone resorption, prevent BMD loss, and restore the impaired trabecular microarchitecture in OVX rats after 9-week-intervention. PMID:26379883

  10. Corticosteroid use and bone mineral accretion in children with asthma: effect modification by vitamin D

    PubMed Central

    Tse, Sze Man; Kelly, H. William; Litonjua, Augusto; Van Natta, Mark L.; Weiss, Scott T.; Tantisira, Kelan

    2012-01-01

    Background The adverse effects of corticosteroids on bone mineral accretion (BMA) have been well documented. Vitamin D insufficiency, a prevalent condition in the pediatric population, has also been associated with decreased bone mineral density (BMD). Objective To determine whether children with asthma who have lower vitamin D levels are more susceptible to the negative effects of corticosteroids on BMD over time. Methods Children aged 5–12 years with mild-to-moderate asthma who participated in the Childhood Asthma Management Program were followed for a mean of 4.3 years. Total doses of inhaled and oral corticosteroids (OCS) were recorded, serum 25-hydroxyvitamin D3 levels were measured at the beginning of the trial and serial DEXA scans of the lumbar spine were performed. Annual BMA rates were defined as: [(BMD at 4 years follow-up − BMD at baseline)/4 years]. Results BMA was calculated for 780 subjects. In boys, baseline vitamin D levels significantly modified the relationship between OCS and BMA (vitamin D x OCS interaction, p=0.023). Stratification by vitamin D levels showed a decrease in BMA with increased use of OCS in vitamin D insufficient boys only (p<0.001). Compared to vitamin D sufficient boys, vitamin D insufficient boys exposed to more than 2 courses of oral corticosteroids per year had twice the decrease in BMA rate (relative to boys who were OCS-unexposed). Conclusions Vitamin D levels significantly modified the effect of oral corticosteroids on bone mineral accretion in boys. Further research is needed to examine whether vitamin D supplementation in children with poorly controlled asthma may confer benefits to bone health. PMID:22608570

  11. Small-Angle X-ray Study of the Three-Dimensional Collagen/Mineral Superstructure in Intramuscular Fish Bone

    SciTech Connect

    Zhou,H.; Burger, C.; Sics, I.; Hsiao, B.; Chu, B.; Graham, L.; Glimcher, M.

    2007-01-01

    Synchrotron small-angle X-ray scattering (SAXS) was conducted on native intramuscular shad/herring bone samples. Two-dimensional SAXS patterns were quantitatively analyzed with special consideration for preferred orientation effects, leading to new insights into the three-dimensional superstructure of mineralized collagen fibrils in shad/herring bone.

  12. The Association between Metabolic Syndrome, Bone Mineral Density, Hip Bone Geometry and Fracture Risk: The Rotterdam Study

    PubMed Central

    Muka, Taulant; Trajanoska, Katerina; Kiefte-de Jong, Jessica C.; Oei, Ling; Uitterlinden, André G; Hofman, Albert; Dehghan, Abbas; Zillikens, M. Carola; Franco, Oscar H.; Rivadeneira, Fernando

    2015-01-01

    The association between metabolic syndrome (MS) and bone health remains unclear. We aimed to study the association between MS and hip bone geometry (HBG), femoral neck bone mineral density (FN-BMD), and the risk of osteoporosis and incident fractures. Data of 2040 women and 1510 men participants in the third visit (1997–1999) of the Rotterdam Study (RSI-3), a prospective population based cohort, were available (mean follow-up 6.7 years). MS was defined according to the recent harmonized definition. HBG parameters were measured at the third round visit whereas FN-BMD was assessed at the third round and 5 years later. Incident fractures were identified from medical registry data. After correcting for age, body mass index (BMI), lifestyle factors and medication use, individuals with MS had lower bone width (β = -0.054, P = 0.003), lower cortical buckling ratio (β = -0.81, P = 0.003) and lower odds of having osteoporosis (odds ratio =0.56, P = 0.007) in women but not in men. Similarly, MS was associated with higher FN-BMD only in women (β = 0.028, P=0.001). In the analyses of MS components, the glucose component (unrelated to diabetes status) was positively associated with FN-BMD in both genders (β = 0.016, P = 0.01 for women and β = 0.022, P = 0.004 for men). In men, waist circumference was inversely associated with FN-BMD (β = -0.03, P = 0.004). No association was observed with fracture risk in either sex. In conclusion, women with MS had higher FN-BMD independent of BMI. The glucose component of MS was associated with high FN-BMD in both genders, highlighting the need to preserve glycemic control to prevent skeletal complications. PMID:26066649

  13. An Increase in Forearm Cortical Bone Size After Menopause May Influence the Estimated Bone Mineral Loss--A 28-Year Prospective Observational Study.

    PubMed

    Karlsson, Magnus K; Ahlborg, Henrik G; Svejme, Ola; Nilsson, Jan-Åke; Rosengren, Björn E

    2016-01-01

    Areal bone mineral density (aBMD) is the most common estimate of bone mass, incorporated in the World Health Organization definition of osteoporosis. However, aBMD depends on not only the amount of mineral but also the bone size. The estimated postmenopausal decline in aBMD could because of this be influenced by changes in bone size.We measured bone mineral content (BMC; mg), aBMD (mg/cm2), and bone width (mm) by single-photon absorptiometry at the cortical site of the forearm in a population-based sample of 105 Caucasian women. We conducted 12 measurements during a 28-yr period from mean 5 yr (range: 2-9) before menopause to mean 24 yr (range: 18-28) after menopause. We calculated individual slopes for changes in the periods before menopause, 0-<8, 8-<16, and 16-28 yr after menopause. Data are presented as means with 95% confidence intervals. The annual BMC changes in the 4 periods were -1.4% (-0.1, -2.6), -1.1% (-0.9, -1.4), -1.2% (-0.9, -1.6), and -1.1% (-0.8, -1.4) and the annual increase in bone width 0.4% (-1.2, 1.9), 0.7% (0.5, 0.9), 0.1% (-0.2, 0.4), and 0.1% (-0.2, 0.4). BMC loss was similar in all periods, whereas the increase in bone width was higher in the first postmenopausal period than in the second (p=0.003) and the third (p=0.01) postmenopausal periods. Menopause is followed by a transient increase in forearm bone size that will influence the by aBMD estimated cortical loss in bone minerals. PMID:25708121

  14. Severity and pattern of bone mineral loss in endocrine causes of osteoporosis as compared to age-related bone mineral loss

    PubMed Central

    Dutta, D; Dharmshaktu, P; Aggarwal, A; Gaurav, K; Bansal, R; Devru, N; Garga, UC; Kulshreshtha, B

    2016-01-01

    Background: Data are scant on bone health in endocrinopathies from India. This study evaluated bone mineral density (BMD) loss in endocrinopathies [Graves’ disease (GD), type 1 diabetes mellitus (T1DM), hypogonadotrophic hypogonadism (HypoH), hypergonadotropic hypogonadism (HyperH), hypopituitarism, primary hyperparathyroidism (PHPT)] as compared to age-related BMD loss [postmenopausal osteoporosis (PMO), andropause]. Materials and Methods: Retrospective audit of records of patients >30 years age attending a bone clinic from August 2014 to January 2016 was done. Results: Five-hundred and seven records were screened, out of which 420 (females:male = 294:126) were analyzed. A significantly higher occurrence of vitamin D deficiency and insufficiency was noted in T1DM (89.09%), HyperH (85%), and HypoH (79.59%) compared to age-related BMD loss (60.02%; P < 0.001). The occurrence of osteoporosis among females and males was 55.41% and 53.97%, respectively, and of osteopenia among females and males was 28.91% and 32.54%, respectively. In females, osteoporosis was significantly higher in T1DM (92%), HyperH (85%), and HypoH (59.26%) compared to PMO (49.34%; P < 0.001). Z score at LS, TF, NOF, and greater trochanter (GT) was consistently lowest in T1DM women. Among men, osteoporosis was significantly higher in T1DM (76.67%) and HypoH (54.55%) compared to andropause (45.45%; P = 0.001). Z score at LS, TF, NOF, GT, and TR was consistently lowest in T1DM men. In GD, the burden of osteoporosis was similar to PMO and andropause. BMD difference among the study groups was not significantly different after adjusting for body mass index (BMI) and vitamin D. Conclusion: Low bone mass is extremely common in endocrinopathies, warranting routine screening and intervention. Concomitant vitamin D deficiency compounds the problem. Calcium and vitamin D supplementations may improve bone health in this setting. PMID:27241810

  15. Bone Mass and Mineral Metabolism Alterations in Adult Celiac Disease: Pathophysiology and Clinical Approach

    PubMed Central

    Di Stefano, Michele; Mengoli, Caterina; Bergonzi, Manuela; Corazza, Gino Roberto

    2013-01-01

    Osteoporosis affects many patients with celiac disease (CD), representing the consequence of calcium malabsorption and persistent activation of mucosal inflammation. A slight increase of fracture risk is evident in this condition, particularly in those with overt malabsorption and in postmenopausal state. The adoption of a correct gluten-free diet (GFD) improves bone derangement, but is not able to normalize bone mass in all the patients. Biomarkers effective in the prediction of bone response to gluten-free diet are not yet available and the indications of guidelines are still imperfect and debated. In this review, the pathophysiology of bone loss is correlated to clinical aspects, defining an alternative proposal of management for this condition. PMID:24284619

  16. Bone mass and mineral metabolism alterations in adult celiac disease: pathophysiology and clinical approach.

    PubMed

    Di Stefano, Michele; Mengoli, Caterina; Bergonzi, Manuela; Corazza, Gino Roberto

    2013-11-01

    Osteoporosis affects many patients with celiac disease (CD), representing the consequence of calcium malabsorption and persistent activation of mucosal i