Science.gov

Sample records for affect brain dopamine

  1. Nutrition and dopamine: An intake of tyrosine in royal jelly can affect the brain levels of dopamine in male honeybees (Apis mellifera L.).

    PubMed

    Sasaki, Ken

    2016-04-01

    Precursors of neuroactive substances can be obtained from dietary sources, which can affect the resulting production of such substances in the brain. In social species, an intake of the precursor in food could be controlled by social interactions. To test the effects of dietary tyrosine on the brain dopamine levels in social insect colonies, male and worker honeybees were fed tyrosine or royal jelly under experimental conditions and the brain levels of dopamine and its metabolite were then measured. The results showed that the levels of dopamine and its metabolite in the brains of 4- and 8-day-old workers and 8-day-old males were significantly higher in tyrosine-fed bees than in control bees, but the levels in 4-day-old males were not. The brain levels of dopamine and its metabolite in 4- and 8-day-old males and workers were significantly higher in royal jelly-fed bees than in control bees, except for one group of 4-day-old workers. Food exchanges with workers were observed in males during 1-3 days, but self-feedings were also during 5-7 days. These results suggest that the brain levels of dopamine in males can be controlled by an intake of tyrosine in food via exchanging food with nestmates and by self-feeding.

  2. Dopamine Transporter Gene Variant Affecting Expression in Human Brain is Associated with Bipolar Disorder

    PubMed Central

    Pinsonneault, Julia K; Han, Dawn D; Burdick, Katherine E; Kataki, Maria; Bertolino, Alessandro; Malhotra, Anil K; Gu, Howard H; Sadee, Wolfgang

    2011-01-01

    The gene encoding the dopamine transporter (DAT) has been implicated in CNS disorders, but the responsible polymorphisms remain uncertain. To search for regulatory polymorphisms, we measured allelic DAT mRNA expression in substantia nigra of human autopsy brain tissues, using two marker SNPs (rs6347 in exon 9 and rs27072 in the 3′-UTR). Allelic mRNA expression imbalance (AEI), an indicator of cis-acting regulatory polymorphisms, was observed in all tissues heterozygous for either of the two marker SNPs. SNP scanning of the DAT locus with AEI ratios as the phenotype, followed by in vitro molecular genetics studies, demonstrated that rs27072 C>T affects mRNA expression and translation. Expression of the minor T allele was dynamically regulated in transfected cell cultures, possibly involving microRNA interactions. Both rs6347 and rs3836790 (intron8 5/6 VNTR) also seemed to affect DAT expression, but not the commonly tested 9/10 VNTR in the 3′UTR (rs28363170). All four polymorphisms (rs6347, intron8 5/6 VNTR, rs27072 and 3′UTR 9/10 VNTR) were genotyped in clinical cohorts, representing schizophrenia, bipolar disorder, depression, and controls. Only rs27072 was significantly associated with bipolar disorder (OR=2.1, p=0.03). This result was replicated in a second bipolar/control population (OR=1.65, p=0.01), supporting a critical role for DAT regulation in bipolar disorder. PMID:21525861

  3. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms.

    PubMed

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-10-05

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs.

  4. Peripheral vagus nerve stimulation significantly affects lipid composition and protein secondary structure within dopamine-related brain regions in rats.

    PubMed

    Surowka, Artur Dawid; Krygowska-Wajs, Anna; Ziomber, Agata; Thor, Piotr; Chrobak, Adrian Andrzej; Szczerbowska-Boruchowska, Magdalena

    2015-06-01

    Recent immunohistochemical studies point to the dorsal motor nucleus of the vagus nerve as the point of departure of initial changes which are related to the gradual pathological developments in the dopaminergic system. In the light of current investigations, it is likely that biochemical changes within the peripheral nervous system may influence the physiology of the dopaminergic system, suggesting a putative role for it in the development of neurodegenerative disorders. By using Fourier transform infrared microspectroscopy, coupled with statistical analysis, we examined the effect of chronic, unilateral electrical vagus nerve stimulation on changes in lipid composition and in protein secondary structure within dopamine-related brain structures in rats. It was found that the chronic vagal nerve stimulation strongly affects the chain length of fatty acids within the ventral tegmental area, nucleus accumbens, substantia nigra, striatum, dorsal motor nucleus of vagus and the motor cortex. In particular, the level of lipid unsaturation was found significantly increasing in the ventral tegmental area, substantia nigra and motor cortex as a result of vagal nerve stimulation. When it comes to changes in protein secondary structure, we could see that the mesolimbic, mesocortical and nigrostriatal dopaminergic pathways are particularly affected by vagus nerve stimulation. This is due to the co-occurrence of statistically significant changes in the content of non-ordered structure components, alpha helices, beta sheets, and the total area of Amide I. Macromolecular changes caused by peripheral vagus nerve stimulation may highlight a potential connection between the gastrointestinal system and the central nervous system in rat during the development of neurodegenerative disorders.

  5. Dopamine receptors in a songbird brain

    PubMed Central

    Kubikova, Lubica; Wada, Kazuhiro; Jarvis, Erich D

    2010-01-01

    Dopamine is a key neuromodulatory transmitter in the brain. It acts through dopamine receptors to affect changes in neural activity, gene expression, and behavior. In songbirds, dopamine is released into the striatal song nucleus Area X, and the levels depend on social contexts of undirected and directed singing. This differential release is associated with differential expression of activity-dependent genes, such as egr1 (avian zenk), which in mammalian brain are modulated by dopamine receptors. Here we cloned from zebra finch brain cDNAs of all avian dopamine receptors: the D1 (D1A, D1B, D1D) and D2 (D2, D3, D4) families. Comparative sequence analyses of predicted proteins revealed expected phylogenetic relationships, in which the D1 family exists as single exon and the D2 family exists as spliced exon genes. In both zebra finch and chicken, the D1A, D1B, and D2 receptors were highly expressed in the striatum, the D1D and D3 throughout the pallium and within the mesopallium, respectively, and the D4 mainly in the cerebellum. Furthermore, within the zebra finch, all receptors, except for D4, showed differential expression in song nuclei relative to the surrounding regions and developmentally regulated expression that decreased for most receptors during the sensory acquisition and sensorimotor phases of song learning. Within Area X, half of the cells expressed both D1A and D2 receptors, and a higher proportion of the D1A-only-containing neurons expressed egr1 during undirected but not during directed singing. Our findings are consistent with hypotheses that dopamine receptors may be involved in song development and social context-dependent behaviors. J. Comp. Neurol. 518:741–769, 2010. © 2009 Wiley-Liss, Inc. PMID:20058221

  6. Quantitative mapping shows that serotonin rather than dopamine receptor mRNA expressions are affected after repeated intermittent administration of MDMA in rat brain.

    PubMed

    Kindlundh-Högberg, Anna M S; Svenningsson, Per; Schiöth, Helgi B

    2006-09-01

    Ecstasy, (+/-)-3,4-methylenedioxy-metamphetamine (MDMA), is a popular recreational drug among young people. The present study aims to mimic MDMA intake among adolescents at dance clubs, taking repeated doses in the same evening on an intermittent basis. Male Sprague-Dawley rats received either 3x1 or 3x5 mg/kg/day (3 h apart) every seventh day during 4 weeks. We used real-time RT-PCR to determine the gene expression of serotonin 5HT1A, 5HT1B, 5HT2A, 5HT2C, 5HT3, 5HT6 receptors and dopamine D1, D2, D3 receptors in seven brain nuclei. The highest dose of MDMA extensively increased the 5HT1B-receptor mRNA in the cortex, caudate putamen, nucleus accumbens, and hypothalamus. The 5HT2A-receptor mRNA was reduced at the highest MDMA dose in the cortex. The 5HT2C mRNA was significantly increased in a dose-dependent manner in the cortex and the hypothalamus, as well as the 5HT3-receptor mRNA was in the hypothalamus. The 5HT6 mRNA level was increased in the forebrain cortex and the amygdala. Dopamine receptor mRNAs were only affected in the hypothalamus. In conclusion, this study provides evidence for a unique implication of serotonin rather than dopamine receptor mRNA levels, in response to repeated intermittent MDMA administration. We therefore suggest that serotonin regulated functions also primarily underlie repeated MDMA intake at rave parties.

  7. Detection of Dopamine Dynamics in the Brain.

    ERIC Educational Resources Information Center

    Wightman, R. Mark; And Others

    1988-01-01

    Explores neurochemical events in the extra cellular space of the brain by use of in vivo voltammetric microelectrodes. Reports dopamine concentrations and pathways, and discusses techniques used for analysis. Recognizes current problems and future directions for research. (ML)

  8. Imaging of Brain Dopamine Pathways

    PubMed Central

    Wang, Gene-Jack; Volkow, Nora D.; Thanos, Panayotis K.; Fowler, Joanna S.

    2011-01-01

    Obesity is typically associated with abnormal eating behaviors. Brain imaging studies in humans implicate the involvement of dopamine (DA)-modulated circuits in pathologic eating behavior(s). Food cues increase striatal extracellular DA, providing evidence for the involvement of DA in the nonhedonic motivational properties of food. Food cues also increase metabolism in the orbitofrontal cortex indicating the association of this region with the motivation for food consumption. Similar to drug-addicted subjects, striatal DA D2 receptor availability is reduced in obese subjects, which may predispose obese subjects to seek food as a means to temporarily compensate for understimulated reward circuits. Decreased DA D2 receptors in the obese subjects are also associated with decreased metabolism in prefrontal regions involved in inhibitory control, which may underlie their inability to control food intake. Gastric stimulation in obese subjects activates cortical and limbic regions involved with self-control, motivation, and memory. These brain regions are also activated during drug craving in drug-addicted subjects. Obese subjects have increased metabolism in the somatosensory cortex, which suggests an enhanced sensitivity to the sensory properties of food. The reduction in DA D2 receptors in obese subjects coupled with the enhanced sensitivity to food palatability could make food their most salient reinforcer putting them at risk for compulsive eating and obesity. The results from these studies suggest that multiple but similar brain circuits are disrupted in obesity and drug addiction and suggest that strategies aimed at improving DA function might be beneficial in the treatment and prevention of obesity. PMID:21603099

  9. Metabolic sensing in brain dopamine systems.

    PubMed

    de Araujo, Ivan E; Ren, Xueying; Ferreira, Jozélia G

    2010-01-01

    The gustatory system allows the brain to monitor the presence of chemicals in the oral cavity and initiate appropriate responses of acceptance or rejection. Among such chemicals are the nutrients that must be rapidly recognized and ingested for immediate oxidation or storage. In the periphery, the gustatory system consists of a highly efficient sensing mechanism, where distinct cell types express receptors that bind specifically to chemicals associated with one particular taste quality. These specialized receptors connect to the brain via dedicated pathways, the stimulation of which triggers stereotypic behavioral responses as well as neurotransmitter release in brain reward dopamine systems. However, evidence also exists in favor of the concept that the critical regulators of long-term nutrient choice are physiological processes taking place after ingestion and independently of gustation. We will appraise the hypothesis that organisms can develop preferences for nutrients independently of oral taste stimulation. Of particular interest are recent findings indicating that disrupting nutrient utilization interferes with activity in brain dopamine pathways. These findings establish the metabolic fate of nutrients as previously unanticipated reward signals that regulate the reinforcing value of foods. In particular, it suggests a role for brain dopamine reward systems as metabolic sensors, allowing for signals generated by the metabolic utilization of nutrients to regulate neurotransmitter release and food reinforcement.

  10. PET evaluation of the dopamine system of the human brain

    SciTech Connect

    Volkow, N.D.; Fowler, J.S.; Gatley, S. |

    1996-07-01

    Dopamine plays a pivotal role in the regulation and control of movement, motivation and cognition. It also is closely linked to reward, reinforcement and addiction. Abnormalities in brain dopamine are associated with many neurological and psychiatric disorders including Parkinson`s disease, schizophrenia and substance abuse. This close association between dopamine and neurological and psychiatric diseases and with substance abuse make it an important topic in research in the neurosciences and an important molecular target in drug development. PET enables the direct measurement of components of the dopamine system in the living human brain. It relies on radiotracers which label dopamine receptors, dopamine transporters, precursors of dopamine or compounds which have specificity for the enzymes which degrade dopamine. Additionally, by using tracers that provide information on regional brain metabolism or blood flow as well as neurochemically specific pharmacological interventions, PET can be used to assess the functional consequences of change in brain dopamine activity. PET dopamine measurements have been used to investigate the normal human brain and its involvement in psychiatric and neurological diseases. It has also been used in psychopharmacological research to investigate dopamine drugs used in the treatment of Parkinson`s disease and of schizophrenia as well as to investigate the effects of drugs of abuse on the dopamine system. Since various functional and neurochemical parameters can be studied in the same subject, PET enables investigation of the functional integrity of the dopamine system in the human brain and investigation of the interactions of dopamine with other neurotransmitters. This paper summarizes the different tracers and experimental strategies developed to evaluate the various elements of the dopamine system in the human brain with PET and their applications to clinical research. 254 refs., 7 figs., 3 tabs.

  11. Simulating the Effects of Dopamine Imbalance on Cognition: From Positive Affect to Parkinson’s Disease

    PubMed Central

    Hélie, Sébastien; Paul, Erick J.; Ashby, F. Gregory

    2012-01-01

    Cools (2006) suggested that prefrontal dopamine levels are related to cognitive stability whereas striatal dopamine levels are related to cognitive plasticity. With such a wide ranging role, almost all cognitive activities should be affected by dopamine levels in the brain. Not surprisingly, factors influencing brain dopamine levels have been shown to improve/worsen performance in many behavioral experiments. On the one hand, Nadler and her colleagues (2010) showed that positive affect (which is thought to increase cortical dopamine levels) improves a type of categorization that depends on explicit reasoning (rule-based) but not a type that depends on procedural learning (information-integration). On the other hand, Parkinson’s disease (which is known to decrease dopamine levels in both the striatum and cortex) produces proactive interference in the odd-man-out task (Flowers & Robertson, 1985) and renders subjects insensitive to negative feedback during reversal learning (Cools et al., 2006). This article uses the COVIS model of categorization to simulate the effects of different dopamine levels in categorization, reversal learning, and the odd-man-out task. The results show a good match between the simulated and human data, which suggests that the role of dopamine in COVIS can account for several cognitive enhancements and deficits related to dopamine levels in healthy and patient populations. PMID:22402326

  12. Deep brain light stimulation effects on glutamate and dopamine concentration.

    PubMed

    Kuo, Jinn-Rung; Lin, Shih-Shian; Liu, Janelle; Chen, Shih-How; Chio, Chung-Chin; Wang, Jhi-Joung; Liu, Jia-Ming

    2015-01-01

    Compared to deep brain electrical stimulation, which has been applied to treating pathological brain diseases, little work has been done on the effect of deep brain light stimulation. A fiber-coupled laser stimulator at 840 nm wavelength and 130 Hz pulse repetition rate is developed in this work for deep brain light stimulation in a rat model. Concentration changes in glutamate and dopamine in the striatum are observed using a microdialysis probe when the subthalamic nucleus (STN) is stimulated at various optical power levels. Experimental results show that light stimulation causes the concentration of glutamate to decrease while that of dopamine is increased. This suggests that deep brain light stimulation of the STN is a promising therapeutic strategy for dopamine-related diseases such as Parkinson's disease. The stimulator developed for this work is useful for deep brain light stimulation in biomedical research.

  13. Can hepatic coma be caused by a reduction of brain noradrenaline or dopamine?

    PubMed Central

    Zieve, L; Olsen, R L

    1977-01-01

    Intraventricular infusions of octopamine which raised brain octopamine concentrations more than 20 000-fold resulted in reductions in brain noradrenaline and dopamine by as much as 90% without affecting the alertness or activity of normal rats. As this reduction of brain catecholamines is much greater than any reported in hepatic coma, we do not believe that values observed in experimental hepatic failure have aetiological significance for the encephalopathy that ensues. PMID:342358

  14. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats.

    PubMed

    Pahuja, Richa; Seth, Kavita; Shukla, Anshi; Shukla, Rajendra Kumar; Bhatnagar, Priyanka; Chauhan, Lalit Kumar Singh; Saxena, Prem Narain; Arun, Jharna; Chaudhari, Bhushan Pradosh; Patel, Devendra Kumar; Singh, Sheelendra Pratap; Shukla, Rakesh; Khanna, Vinay Kumar; Kumar, Pradeep; Chaturvedi, Rajnish Kumar; Gupta, Kailash Chand

    2015-05-26

    Sustained and safe delivery of dopamine across the blood brain barrier (BBB) is a major hurdle for successful therapy in Parkinson's disease (PD), a neurodegenerative disorder. Therefore, in the present study we designed neurotransmitter dopamine-loaded PLGA nanoparticles (DA NPs) to deliver dopamine to the brain. These nanoparticles slowly and constantly released dopamine, showed reduced clearance of dopamine in plasma, reduced quinone adduct formation, and decreased dopamine autoxidation. DA NPs were internalized in dopaminergic SH-SY5Y cells and dopaminergic neurons in the substantia nigra and striatum, regions affected in PD. Treatment with DA NPs did not cause reduction in cell viability and morphological deterioration in SH-SY5Y, as compared to bulk dopamine-treated cells, which showed reduced viability. Herein, we report that these NPs were able to cross the BBB and capillary endothelium in the striatum and substantia nigra in a 6-hydroxydopamine (6-OHDA)-induced rat model of PD. Systemic intravenous administration of DA NPs caused significantly increased levels of dopamine and its metabolites and reduced dopamine-D2 receptor supersensitivity in the striatum of parkinsonian rats. Further, DA NPs significantly recovered neurobehavioral abnormalities in 6-OHDA-induced parkinsonian rats. Dopamine delivered through NPs did not cause additional generation of ROS, dopaminergic neuron degeneration, and ultrastructural changes in the striatum and substantia nigra as compared to 6-OHDA-lesioned rats. Interestingly, dopamine delivery through nanoformulation neither caused alterations in the heart rate and blood pressure nor showed any abrupt pathological change in the brain and other peripheral organs. These results suggest that NPs delivered dopamine into the brain, reduced dopamine autoxidation-mediated toxicity, and ultimately reversed neurochemical and neurobehavioral deficits in parkinsonian rats.

  15. How Body Affects Brain.

    PubMed

    Suzuki, Wendy A

    2016-08-09

    Studies show that physical exercise can affect a range of brain and cognitive functions. However, little is known about the peripheral signals that initiate these central changes. Moon et al. (2016) provide exciting new evidence that a novel myokine, cathepsin B (CTSB), released with exercise is associated with improved memory.

  16. Role of brain dopamine in food reward and reinforcement

    PubMed Central

    Wise, Roy A

    2006-01-01

    The ability of food to establish and maintain response habits and conditioned preferences depends largely on the function of brain dopamine systems. While dopaminergic transmission in the nucleus accumbens appears sufficient for some forms of reward, the role of dopamine in food reward does not appear to be restricted to this region. Dopamine plays an important role in both the ability to energize feeding and to reinforce food-seeking behaviour; the role in energizing feeding is secondary to the prerequisite role in reinforcement. Dopaminergic activation is triggered by the auditory and visual as well as the tactile, olfactory, and gustatory stimuli of foods. While dopamine plays a central role in the feeding and food-seeking of normal animals, some food rewarded learning can be seen in genetically engineered dopamine-deficient mice. PMID:16874930

  17. The primate thalamus is a key target for brain dopamine.

    PubMed

    Sánchez-González, Miguel Angel; García-Cabezas, Miguel Angel; Rico, Beatriz; Cavada, Carmen

    2005-06-29

    The thalamus relays information to the cerebral cortex from subcortical centers or other cortices; in addition, it projects to the striatum and amygdala. The thalamic relay function is subject to modulation, so the flow of information to the target regions may change depending on behavioral demands. Modulation of thalamic relay by dopamine is not currently acknowledged, perhaps because dopamine innervation is reportedly scant in the rodent thalamus. We show that dopaminergic axons profusely target the human and macaque monkey thalamus using immunolabeling with three markers of the dopaminergic phenotype (tyrosine hydroxylase, dopamine, and the dopamine transporter). The dopamine innervation is especially prominent in specific association, limbic, and motor thalamic nuclei, where the densities of dopaminergic axons are as high as or higher than in the cortical area with the densest dopamine innervation. We also identified the dopaminergic neurons projecting to the macaque thalamus using retrograde tract-tracing combined with immunohistochemistry. The origin of thalamic dopamine is multiple, and thus more complex, than in any other dopaminergic system defined to date: dopaminergic neurons of the hypothalamus, periaqueductal gray matter, ventral mesencephalon, and the lateral parabrachial nucleus project bilaterally to the monkey thalamus. We propose a novel dopaminergic system that targets the primate thalamus and is independent from the previously defined nigrostriatal, mesocortical, and mesolimbic dopaminergic systems. Investigating this "thalamic dopaminergic system" should further our understanding of higher brain functions and conditions such as Parkinson's disease, schizophrenia, and drug addiction.

  18. Sleep Deprivation Decreases [11C]Raclopride’s Binding to Dopamine D2/D3 Receptors in the Human Brain

    PubMed Central

    Volkow, Nora D.; Wang, Gene-Jack; Telang, Frank; Fowler, Joanna S.; Logan, Jean; Wong, Christopher; Ma, Jim; Pradhan, Kith; Tomasi, Dardo; Thanos, Peter K.; Ferré, Sergi; Jayne, Millard

    2009-01-01

    Sleep deprivation can markedly impair human performance contributing to accidents and poor productivity. The mechanisms underlying this impairment are not well understood but brain dopamine systems have been implicated. Here we test whether one night of sleep deprivation changes dopamine brain activity. We studied fifteen healthy subjects using positron emission tomography and [11C]raclopride (dopamine D2/3 receptor radioligand) and [11C]cocaine (dopamine transporter radioligand). Subjects were tested twice; after one night of rested sleep and after on night of sleep deprivation. [11C]Raclopride’s specific binding in striatum and thalamus were significantly reduced after sleep deprivation and the magnitude of this reduction correlated with increases in fatigue (tiredness and sleepiness) and with deterioration in cognitive performance (visual attention and working memory). In contrast sleep deprivation did not affect the specific binding of [11C]cocaine in striatum. Since [11C]raclopride competes with endogenous dopamine for binding to D2/D3 receptors, we interpret the decreases in binding to reflect dopamine increases with sleep deprivation. However, we can not rule out the possibility that decreased [11C]raclopride binding reflects decreases in receptor levels or affinity. Sleep deprivation did not affect dopamine transporters (target for most wake-promoting medications) and thus dopamine increases are likely to reflect increases in dopamine cell firing and/or release rather than decreases in dopamine reuptake. Inasmuch as dopamine-enhancing drugs increase wakefulness we postulate that dopamine increases after sleep deprivation is a mechanism by which the brain maintains arousal as the drive to sleep increases but one that is insufficient to counteract behavioral and cognitive impairment. PMID:18716203

  19. Impaired Brain Dopamine and Serotonin Release and Uptake in Wistar Rats Following Treatment with Carboplatin.

    PubMed

    Kaplan, Sam V; Limbocker, Ryan A; Gehringer, Rachel C; Divis, Jenny L; Osterhaus, Gregory L; Newby, Maxwell D; Sofis, Michael J; Jarmolowicz, David P; Newman, Brooke D; Mathews, Tiffany A; Johnson, Michael A

    2016-06-15

    Chemotherapy-induced cognitive impairment, known also as "chemobrain", is a medical complication of cancer treatment that is characterized by a general decline in cognition affecting visual and verbal memory, attention, complex problem solving skills, and motor function. It is estimated that one-third of patients who undergo chemotherapy treatment will experience cognitive impairment. Alterations in the release and uptake of dopamine and serotonin, central nervous system neurotransmitters that play important roles in cognition, could potentially contribute to impaired intellectual performance in those impacted by chemobrain. To investigate how chemotherapy treatment affects these systems, fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes was used to measure dopamine and serotonin release and uptake in coronal brain slices containing the striatum and dorsal raphe nucleus, respectively. Measurements were taken from rats treated weekly with selected doses of carboplatin and from control rats treated with saline. Modeling the stimulated dopamine release plots revealed an impairment of dopamine release per stimulus pulse (80% of saline control at 5 mg/kg and 58% at 20 mg/kg) after 4 weeks of carboplatin treatment. Moreover, Vmax, the maximum uptake rate of dopamine, was also decreased (55% of saline control at 5 mg/kg and 57% at 20 mg/kg). Nevertheless, overall dopamine content, measured in striatal brain lysates by high performance liquid chromatography, and reserve pool dopamine, measured by FSCV after pharmacological manipulation, did not significantly change, suggesting that chemotherapy treatment selectively impairs the dopamine release and uptake processes. Similarly, serotonin release upon electrical stimulation was impaired (45% of saline control at 20 mg/kg). Measurements of spatial learning discrimination were taken throughout the treatment period and carboplatin was found to alter cognition. These studies support the need for additional

  20. Impaired Brain Dopamine and Serotonin Release and Uptake in Wistar Rats Following Treatment with Carboplatin

    PubMed Central

    2016-01-01

    Chemotherapy-induced cognitive impairment, known also as “chemobrain”, is a medical complication of cancer treatment that is characterized by a general decline in cognition affecting visual and verbal memory, attention, complex problem solving skills, and motor function. It is estimated that one-third of patients who undergo chemotherapy treatment will experience cognitive impairment. Alterations in the release and uptake of dopamine and serotonin, central nervous system neurotransmitters that play important roles in cognition, could potentially contribute to impaired intellectual performance in those impacted by chemobrain. To investigate how chemotherapy treatment affects these systems, fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes was used to measure dopamine and serotonin release and uptake in coronal brain slices containing the striatum and dorsal raphe nucleus, respectively. Measurements were taken from rats treated weekly with selected doses of carboplatin and from control rats treated with saline. Modeling the stimulated dopamine release plots revealed an impairment of dopamine release per stimulus pulse (80% of saline control at 5 mg/kg and 58% at 20 mg/kg) after 4 weeks of carboplatin treatment. Moreover, Vmax, the maximum uptake rate of dopamine, was also decreased (55% of saline control at 5 mg/kg and 57% at 20 mg/kg). Nevertheless, overall dopamine content, measured in striatal brain lysates by high performance liquid chromatography, and reserve pool dopamine, measured by FSCV after pharmacological manipulation, did not significantly change, suggesting that chemotherapy treatment selectively impairs the dopamine release and uptake processes. Similarly, serotonin release upon electrical stimulation was impaired (45% of saline control at 20 mg/kg). Measurements of spatial learning discrimination were taken throughout the treatment period and carboplatin was found to alter cognition. These studies support the need for additional

  1. Formation of dopamine adducts derived from brain polyunsaturated fatty acids: mechanism for Parkinson disease.

    PubMed

    Liu, Xuebo; Yamada, Naruomi; Maruyama, Wakako; Osawa, Toshihiko

    2008-12-12

    Oxidative stress appears to be directly involved in the pathogenesis of the neurodegeneration of dopaminergic systems in Parkinson disease. In this study, we formed four dopamine modification adducts derived from docosahexaenoic acid (C22:6/omega-3) and arachidonic acid (C18:4/omega-6), which are known as the major polyunsaturated fatty acids in the brain. Upon incubation of dopamine with fatty acid hydroperoxides and an in vivo experiment using rat brain tissue, all four dopamine adducts were detected. Furthermore, hexanoyl dopamine (HED), an arachidonic acid-derived adduct, caused severe cytotoxicity in human dopaminergic neuroblastoma SH-SY5Y cells, whereas the other adducts were only slightly affected. The HED-induced cell death was found to include apoptosis, which also seems to be mediated by reactive oxygen species generation and mitochondrial abnormality. Additionally, the experiments using monoamine transporter inhibitor and mouse embryonic fibroblast NIH-3T3 cells that lack the monoamine transporter indicate that the HED-induced cytotoxicity might specially occur in the neuronal cells. These data suggest that the formation of the docosahexaenoic acid- and arachidonic acid-derived dopamine adducts in vitro and in vivo, and HED, the arachidonic acid-derived dopamine modification adduct, which caused selective cytotoxicity of neuronal cells, may indicate a novel mechanism responsible for the pathogenesis in Parkinson disease.

  2. Developmental origins of brain disorders: roles for dopamine

    PubMed Central

    Money, Kelli M.; Stanwood, Gregg D.

    2013-01-01

    Neurotransmitters and neuromodulators, such as dopamine, participate in a wide range of behavioral and cognitive functions in the adult brain, including movement, cognition, and reward. Dopamine-mediated signaling plays a fundamental neurodevelopmental role in forebrain differentiation and circuit formation. These developmental effects, such as modulation of neuronal migration and dendritic growth, occur before synaptogenesis and demonstrate novel roles for dopaminergic signaling beyond neuromodulation at the synapse. Pharmacologic and genetic disruptions demonstrate that these effects are brain region- and receptor subtype-specific. For example, the striatum and frontal cortex exhibit abnormal neuronal structure and function following prenatal disruption of dopamine receptor signaling. Alterations in these processes are implicated in the pathophysiology of neuropsychiatric disorders, and emerging studies of neurodevelopmental disruptions may shed light on the pathophysiology of abnormal neuronal circuitry in neuropsychiatric disorders. PMID:24391541

  3. Pharmacological characterization of the dopamine-sensitive adenylate cyclase in cockroach brain: evidence for a distinct dopamine receptor

    SciTech Connect

    Orr, G.L.; Gole, J.W.D.; Notman, H.J.; Downer, R.G.H.

    1987-12-21

    Dopamine increases cyclic AMP production in crude membrane preparations of cockroach brain with plateaus in cyclic AMP production occurring between 1-10 ..mu..M and 10 mM. Maximal production of cyclic AMP is 2.25 fold greater than that of control values. Octopamine also increases cyclic AMP production with a Ka of 1.4 ..mu..M and maximal production 3.5 fold greater than that of control. 5-Hydroxytryptamine does not increase cyclic AMP production. The effects of octopamine and dopamine are fully additive. The vertebrate dopamine agonists ADTN and epinine stimulate the dopamine-sensitive adenylate cyclase (AC) with Ka values of 4.5 and 0.6 ..mu..M respectively and with maximal effectiveness 1.7 fold greater than that of control. The selective D/sub 2/-dopamine agonist LY-171555 stimulates cyclic AMP production to a similar extent with a Ka of 50 ..mu..M. Other dopamine agonists have no stimulatory effects. With the exception of mianserin, /sup 3/H-piflutixol is displaced from brain membranes by dopamine antagonists with an order of potency similar to that observed for the inhibition of dopamine-sensitive AC. The results indicate that the octopamine- and dopamine-sensitive AC in cockroach brain can be distinguished pharmacologically and the dopamine receptors coupled to AC have pharmacological characteristics distinct from vertebrate D/sup 1/- and D/sup 2/-dopamine receptors. 33 references, 3 figures, 2 tables.

  4. Dopamine therapy does not affect cerebral autoregulation during hypotension in newborn piglets

    PubMed Central

    Hahn, Gitte Holst; Greisen, Gorm

    2017-01-01

    Background Hypotensive neonates who have been treated with dopamine have poorer neurodevelopmental outcome than those who have not been treated with dopamine. We speculate that dopamine stimulates adrenoceptors on cerebral arteries causing cerebral vasoconstriction. This vasoconstriction might lead to a rightward shift of the cerebral autoregulatory curve; consequently, infants treated with dopamine would have a higher risk of low cerebral blood flow at a blood pressure that is otherwise considered “safe”. Methods In anaesthetized piglets, perfusion of the brain, monitored with laser-doppler flowmetry, and cerebral venous saturation was measured at different levels of hypotension. Each piglet was studied in two phases: a phase with stepwise decreases in MAP and a phase with stepwise increases in MAP. We randomized the order of the two phases, whether dopamine was given in the first or second phase, and the infusion rate of dopamine (10, 25, or 40 μg/kg/min). In/deflation of a balloon catheter, placed in vena cava, induced different levels of hypotension. At each level of hypotension, fluctuations in MAP were induced by in/deflations of a balloon catheter in descending aorta. Results During measurements, PaCO2 and arterial saturation were stable. MAP levels ranged between 14 and 82 mmHg. Cerebral autoregulation (CA) capacity was calculated as the ratio between %-change in cerebrovascular resistance and %-change in MAP induced by the in/deflation of the arterial balloon. A breakpoint in CA capacity was identified at a MAP of 38±18 mmHg without dopamine and at 44±18, 31±14, and 24±14 mmHg with dopamine infusion rates of 10, 25, and 40 μg/kg/min (p = 0.057). Neither the index of steady-state cerebral perfusion nor cerebral venous saturation were affected by dopamine infusion. Conclusion Dopamine infusion tended to improve CA capacity at low blood pressures while an index of steady-state cerebral blood flow and cerebral venous saturation were unaffected by

  5. Development of specificity and stereoselectivity of rat brain dopamine receptors.

    PubMed

    Miller, J C; Friedhoff, A J

    1986-01-01

    Prenatal exposure to the neuroleptic haloperidol has been reported to produce an enduring decrement in the number of dopamine D2 receptors in rat striatum and a persistent diminution of a dopamine dependent behavior, stereotypy. The ontogeny of rat brain dopamine binding sites has been studied in terms of the kinetic properties and phenotypic specificity in rat fetal brain through early postnatal development. Sites showing some properties of the D2 binding site can be found prior to gestational day (GD) 18, can be labeled with [3H]dopamine or [3H]spiroperidol and can be displaced with dopaminergic agonists and antagonists. Saturation kinetics for specific [3H]spiroperidol has previously been found to occur on or about GD 18. It is of interest that the critical period for the prenatal effect of haloperidol to reduce striatal D2 binding sites, GD's 15-18, coincides with the period during which dopamine binding sites lack true specificity, but can be labeled with dopaminergic ligands. In these experiments the development of stereoselectivity of brain dopamine binding sites has been examined. When rat mothers were given either the neuroleptic (+)-butaclamol or its therapeutically inactive isomer (-)-butaclamol during the critical period GD's 15-18, the number of [3H]spiroperidol binding sites in striata of offspring was significantly reduced by both stereoisomers. This is in marked contrast to the postnatal treatment effect by a neuroleptic in which upregulation of striatal D2 binding sites occurs only by treatment with the therapeutically active isomer (+)-butaclamol. In vitro studies of the direct effect of the stereoisomers of butaclamol indicate that the recognition sites detected during fetal brain development with [3H]spiroperidol do not distinguish between the isomers of butaclamol.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Measuring dopamine release in the human brain with PET

    SciTech Connect

    Volkow, N.D. |; Fowler, J.S.; Logan, J.; Wang, G.J.

    1995-12-01

    The dopamine system is involved in the regulation of brain regions that subserve motor, cognitive and motivational behaviors. Disruptions of dopamine (DA) function have ben implicated in neurological and psychiatric illnesses including substance abuse as well as on some of the deficits associated with aging of the human brain. This has made the DA system an important topic in research in the neurosciences and neuroimaging as well as an important molecular target for drug development. Positron Emission Tomography (PET), was the first technology that enabled direct measurement of components of the DA system in the living human brain. Imaging studies of DA in the living brain have been indirect, relying on the development of radiotracers to label DA receptors, DA transporters, compounds which have specificity for the enzymes which degrade synaptic DA. Additionally, through the use of tracers that provide information on regional brain activity (ie brain glucose metabolism and cerebral blood flow) and of appropriate pharmacological interventions, it has been possible to assess the functional consequences of changes in brain DA activity. DA specific ligands have been useful in the evaluation of patients with neuropsychiatric illnesses as well as to investigate receptor blockade by antipsychotic drugs. A limitation of strategies that rely on the use of DA specific ligands is that the measures do not necessarily reflect the functional state of the dopaminergic system and that there use to study the effects of drugs is limited to the investigation of receptor or transporter occupancy. Newer strategies have been developed in an attempt to provide with information on dopamine release and on the functional responsivity of the DA system in the human brain. This in turn allows to investigate the effects of pharmacological agent in an analogous way to what is done with microdialysis techniques.

  7. Brain dopamine and amino acid concentrations in Lurcher mutant mice.

    PubMed

    Reader, T A; Strazielle, C; Botez, M I; Lalonde, R

    1998-03-15

    Lurcher mutant mice are characterized by massive degeneration of the cerebellum, including Purkinje cells and granule cells, as well as for the loss of neurons from the inferior olive. Concentrations of dopamine and two of its metabolites and of several amino acid neurotransmitters were determined in the cerebellum and in other brain regions of these mutants. By comparison to wild-type mice of the same background strain, glutamate and taurine concentrations were reduced in the Lurcher cerebellum. No decrease was found for aspartate, gamma-aminobutyric acid (GABA), glycine, as well as dopamine and its metabolites. Moreover, no neurochemical alterations occurred in the brain stem, thalamus, or neostriatum of Lurcher mutants. A selective reduction of glutamate concentration was found in the hippocampus, while all amino acids measured were decreased in the entorhinal-piriform areas. These results indicate region-selective reductions of neurotransmitter concentrations in a mouse mutant with a defined cerebellar cortical pathology.

  8. Distribution of D1- and D2-dopamine receptors, and dopamine and its metabolites in the human brain.

    PubMed

    Hall, H; Sedvall, G; Magnusson, O; Kopp, J; Halldin, C; Farde, L

    1994-12-01

    Densities and distribution of D1-dopamine and D2-dopamine receptors were investigated in vitro using [3H]SCH 23390 and [3H]raclopride in receptor binding assays and autoradiography on human post mortem whole hemisphere slices to serve as anatomical correlates to PET studies using [11C]SCH 23390 and [11C]raclopride. In addition, the levels of dopamine and its metabolites were determined by HPLC in various brain regions. Both dopamine receptor subtypes, as well as dopamine, HVA and DOPAC, were primarily found in the basal ganglia. Very high densities of D1-dopamine receptors were found particularly in the medial caudate nucleus, whereas D2-dopamine receptors were evenly distributed throughout the caudate. The densities of D1- and D2-dopamine receptors were similar in the caudate nucleus and the putamen, whereas there were 4 to 7 times higher densities of the D1- than of the D2-dopamine receptors in several limbic and neocortical regions. The receptor distribution in the autoradiographic study was consistent with that demonstrated in the living human brain using [11C]SCH 23390 and [11C]raclopride.

  9. Invariance of the density of dopamine uptake sites and dopamine metabolism in the rat brain after a chronic treatment with the dopamine uptake inhibitor GBR 12783.

    PubMed

    Boulay, D; Leroux-Nicollet, I; Duterte-Boucher, D; Naudon, L; Costentin, J

    1994-01-01

    A chronic treatment (10 mg/kg, twice daily during 9 days) with the dopamine uptake inhibitor GBR 12783 was performed in rats at a dose increasing their locomotor activity. Forty-eight hours after the last administration, animals were sacrificed and 3H mazindol binding was performed on brain slices. Autoradiographic analysis revealed no change in this binding relatively to control animals in regions with high dopamine contents: striatum, nucleus accumbens, olfactory tubercle, substantia nigra and ventral tegmentum area. The treatment did not either modify the levels of dopamine (DA) and metabolites (HVA, DOPAC) both in the striatum and the nucleus accumbens. Thus, early after the end of the treatment, the chronic blockade of the dopamine uptake complex regulates neither the dopamine uptake complex nor the dopamine metabolism.

  10. Androgen-induced sexual dimorphism in high affinity dopamine binding in the brain transcends the hypothalamic-limbic region.

    PubMed Central

    Jalilian-Tehrani, M. H.; Karakiulakis, G.; Le Blond, C. B.; Powell, R.; Thomas, P. J.

    1982-01-01

    1 High affinity binding of [3H]-dopamine and [3H]-5-hydroxytryptamine ([3H]-5-HT) was measured in membrane fractions prepared from cerebral cortex, amygdala, hypothalamus, thalamus and brain stem of rats of either sex and of rats which had been either neonatally castrated or androgenized. 2 Binding was measured in rats of 8, 20 and 30 days old as well as in adults. 3 [3H]-dopamine bound with approximately 30 nM affinity ahd [3H]-5-HT with approximately 10 nM affinity to all areas of the brain tested. The relative inhibitory effects of haloperidol, apomorphine, cis-flupenthixol, unlabelled dopamine, noradrenaline, spiroperone, (+)-butaclamol, fluphenazine, pimozide and 5-HT on [3H]-dopamine binding in the cerebral cortex was consistent with receptor status for the binding components there as were the relative inhibitory effects of methysergide, dopamine, fluoxetine and ouabain on [3H]-5-HT binding in the fore brain. 4 Neither [3H]-dopamine nor [3H]-5-HT binding varied with the state of the sexual cycle in females. 5 There were no sexual differences in [3H]-5-HT binding in any of the brain areas tested nor was it affected by neonatal androgenization or neonatal castration. 6 [3H]-dopamine binding was greater in the cerebral cortex and amygdala of male than of female rats. These differences could be mimicked artificially by neonatal castration of males (female type development) or neonatal androgenization of females (male type development). Sexual dimorphism did not become overt until 20 days of age and did not extend to hypothalamus, thalamus or brain stem. 7 It is concluded that neonatal sex differences in exposure to steroid hormones has permanent effects on the number of dopamine binding sites in the cerebral cortex and is suggested that this sexual dimorphism extends to the amygdala. PMID:7074286

  11. Effects of chronic methamphetamine on psychomotor and cognitive functions and dopamine signaling in the brain.

    PubMed

    Thanos, Panayotis K; Kim, Ronald; Delis, Foteini; Rocco, Mark J; Cho, Jacob; Volkow, Nora D

    2017-03-01

    Methamphetamine (MA) studies in animals usually involve acute, binge, or short-term exposure to the drug. However, addicts take substantial amounts of MA for extended periods of time. Here we wished to study the effects of MA exposure on brain and behavior, using an animal model analogous to this pattern of MA intake. MA doses, 4 and 8mg/kg/day, were based on previously reported average daily freely available MA self-administration levels. We examined the effects of 16 week MA treatment on psychomotor and cognitive function in the rat using open field and novel object recognition tests and we studied the adaptations of the dopaminergic system, using in vitro and in vivo receptor imaging. We show that chronic MA treatment, at doses that correspond to the average daily freely available self-administration levels in the rat, disorganizes open field activity, impairs alert exploratory behavior and anxiety-like state, and downregulates dopamine transporter in the striatum. Under these treatment conditions, dopamine terminal functional integrity in the nucleus accumbens is also affected. In addition, lower dopamine D1 receptor binding density, and, to a smaller degree, lower dopamine D2 receptor binding density were observed. Potential mechanisms related to these alterations are discussed.

  12. Serotonin and Dopamine: Unifying Affective, Activational, and Decision Functions

    PubMed Central

    Cools, Roshan; Nakamura, Kae; Daw, Nathaniel D

    2011-01-01

    Serotonin, like dopamine (DA), has long been implicated in adaptive behavior, including decision making and reinforcement learning. However, although the two neuromodulators are tightly related and have a similar degree of functional importance, compared with DA, we have a much less specific understanding about the mechanisms by which serotonin affects behavior. Here, we draw on recent work on computational models of dopaminergic function to suggest a framework by which many of the seemingly diverse functions associated with both DA and serotonin—comprising both affective and activational ones, as well as a number of other functions not overtly related to either—can be seen as consequences of a single root mechanism. PMID:20736991

  13. In vivo brain dopaminergic receptor site mapping using /sup 75/Se-labeled pergolide analogs: the effects of various dopamine receptor agonists and antagonists

    SciTech Connect

    Weaver, A.

    1986-01-01

    Perogolide mesylate is a new synthetic ergoline derivative which is reported to possess agonistic activity at central dopamine receptor sites in the brain. The authors have synthesized a (/sup 75/Se)-radiolabeled pergolide mesylate derivative, (/sup 75/Se)-pergolide tartrate, which, after i.v. administration to mature male rats, showed a time course differentiation in the uptake of this radiolabeled compound in isolated peripheral and central (brain) tissues that are known to be rich in dopamine receptor sites. Further studies were conducted in which the animals were preexposed to the dopamine receptor agonist SKF-38393, as well as the dopamine receptor antagonists (+)-butaclamol, (-)-butaclamol, (+/-)-butaclamol and (-)-chloroethylnorapomorphine, to substantiate the specific peripheral and central localization patterns of (/sup 75/Se)-pergolide tartrate. Further investigations were also conducted in which the animals received an i.v. administration of N-isopropyl-l-123-p-iodoamphetamine ((/sup 123/I)-iodoamphetamine). However, (/sup 123/I)-iodoamphetamine did not demonstrate a specific affinity for any type of receptor site in the brain. These investigations further substantiated the fact that (/sup 75/Se)-pergolide tartrate does cross the blood-brain barrier is quickly localized at specific dopamine receptor sites in the intact rat brain and that this localization pattern can be affected by preexposure to different dopamine receptor agonists and antagonists. Therefore, these investigations provided further evidence that (/sup 75/Se)-pergolide tartrate and other radiolabeled ergoline analogs might be useful as brain dopamine receptor localization radiopharmaceuticals.

  14. Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    PubMed Central

    Zhang, Xiaowei; Bearer, Elaine L.; Boulat, Benoit; Hall, F. Scott; Uhl, George R.; Jacobs, Russell E.

    2010-01-01

    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn2+ into the prefrontal cortex indicated that DAT KO mice have a truncated Mn2+ distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn2+ transport into more posterior midbrain nuclei and contralateral mesolimbic structures at

  15. Brain dopamine-serotonin vesicular transport disease presenting as a severe infantile hypotonic parkinsonian disorder.

    PubMed

    Jacobsen, Jessie C; Wilson, Callum; Cunningham, Vicki; Glamuzina, Emma; Prosser, Debra O; Love, Donald R; Burgess, Trent; Taylor, Juliet; Swan, Brendan; Hill, Rosamund; Robertson, Stephen P; Snell, Russell G; Lehnert, Klaus

    2016-03-01

    Two male siblings from a consanguineous union presented in early infancy with marked truncal hypotonia, a general paucity of movement, extrapyramidal signs and cognitive delay. By mid-childhood they had made little developmental progress and remained severely hypotonic and bradykinetic. They developed epilepsy and had problems with autonomic dysfunction and oculogyric crises. They had a number of orthopaedic problems secondary to their hypotonia. Cerebrospinal fluid (CSF) neurotransmitters were initially normal, apart from mildly elevated 5-hydroxyindolacetic acid, and the children did not respond favourably to a trial of levodopa-carbidopa. The youngest died from respiratory complications at 10 years of age. Repeat CSF neurotransmitters in the older sibling at eight years of age showed slightly low homovanillic acid and 5-hydroxyindoleacetic acid levels. Whole-exome sequencing revealed a novel mutation homozygous in both children in the monoamine transporter gene SLC18A2 (p.Pro237His), resulting in brain dopamine-serotonin vesicular transport disease. This is the second family to be described with a mutation in this gene. Treatment with the dopamine agonist pramipexole in the surviving child resulted in mild improvements in alertness, communication, and eye movements. This case supports the identification of the causal mutation in the original case, expands the clinical phenotype of brain dopamine-serotonin vesicular transport disease and confirms that pramipexole treatment may lead to symptomatic improvement in affected individuals.

  16. Monitoring axonal and somatodendritic dopamine release using fast-scan cyclic voltammetry in brain slices.

    PubMed

    Patel, Jyoti C; Rice, Margaret E

    2013-01-01

    Brain dopamine pathways serve wide-ranging functions including the control of movement, reward, cognition, learning, and mood. Consequently, dysfunction of dopamine transmission has been implicated in clinical conditions such as Parkinson's disease, schizophrenia, addiction, and depression. Establishing factors that regulate dopamine release can provide novel insights into dopaminergic communication under normal conditions, as well as in animal models of disease in the brain. Here we describe methods for the study of somatodendritic and axonal dopamine release in brain slice preparations. Topics covered include preparation and calibration of carbon-fiber microelectrodes for use with fast-scan cyclic voltammetry, preparation of midbrain and forebrain slices, and procedures of eliciting and recording electrically evoked dopamine release from in vitro brain slices.

  17. CD24 expression does not affect dopamine neuronal survival in a mouse model of Parkinson's disease

    PubMed Central

    Hayat, Shaista; Carnwath, Tom; Garas, Shaady; Sleeman, Jonathan P.; Barker, Roger A.

    2017-01-01

    Parkinson’s disease (PD) is a progressive neurodegenerative condition that is characterised by the loss of specific populations of neurons in the brain. The mechanisms underlying this selective cell death are unknown but by using laser capture microdissection, the glycoprotein, CD24 has been identified as a potential marker of the populations of cells that are affected in PD. Using in situ hybridization and immunohistochemistry on sections of mouse brain, we confirmed that CD24 is robustly expressed by many of these subsets of cells. To determine if CD24 may have a functional role in PD, we modelled the dopamine cell loss of PD in Cd24 mutant mice using striatal delivery of the neurotoxin 6-OHDA. We found that Cd24 mutant mice have an anatomically normal dopamine system and that this glycoprotein does not modulate the lesion effects of 6-OHDA delivered into the striatum. We then undertook in situ hybridization studies on sections of human brain and found—as in the mouse brain—that CD24 is expressed by many of the subsets of the cells that are vulnerable in PD, but not those of the midbrain dopamine system. Finally, we sought to determine if CD24 is required for the neuroprotective effect of Glial cell-derived neurotrophic factor (GDNF) on the dopaminergic nigrostriatal pathway. Our results indicate that in the absence of CD24, there is a reduction in the protective effects of GDNF on the dopaminergic fibres in the striatum, but no difference in the survival of the cell bodies in the midbrain. While we found no obvious role for CD24 in the normal development and maintenance of the dopaminergic nigrostriatal system in mice, it may have a role in mediating the neuroprotective aspects of GDNF in this system. PMID:28182766

  18. Brain Region-Specific Trafficking of the Dopamine Transporter

    PubMed Central

    Block, Ethan R.; Nuttle, Jacob; Balcita-Pedicino, Judith Joyce; Caltagarone, John; Watkins, Simon C.

    2015-01-01

    The dopamine (DA) transporter (DAT) controls dopaminergic neurotransmission by removing extracellular DA. Although DA reuptake is proposed to be regulated by DAT traffic to and from the cell surface, the membrane trafficking system involved in the endocytic cycling of DAT in the intact mammalian brain has not been characterized. Hence, we performed immunolabeling and quantitative analysis of the subcellular and regional distribution of DAT using the transgenic knock-in mouse expressing hemagglutinin (HA) epitope-tagged DAT (HA-DAT) and by using a combination of electron microscopy and a novel method for immunofluorescence labeling of HA-DAT in acute sagittal brain slices. Both approaches demonstrated that, in midbrain somatodendritic regions, HA-DAT was present in the plasma membrane, endoplasmic reticulum, and Golgi complex, with a small fraction in early and recycling endosomes and an even smaller fraction in late endosomes and lysosomes. In the striatum and in axonal tracts between the midbrain and striatum, HA-DAT was detected predominantly in the plasma membrane, and quantitative analysis revealed increased DAT density in striatal compared with midbrain plasma membranes. Endosomes were strikingly rare and lysosomes were absent in striatal axons, in which there was little intracellular HA-DAT. Acute administration of amphetamine in vivo (60 min) or to slices ex vivo (10–60 min) did not result in detectable changes in DAT distribution. Altogether, these data provide evidence for regional differences in DAT plasma membrane targeting and retention and suggest a surprisingly low level of endocytic trafficking of DAT in the striatum along with limited DAT endocytic activity in somatodendritic areas. SIGNIFICANCE STATEMENT The dopamine transporter (DAT) is the key regulator of the dopamine neurotransmission in the CNS. In the present study, we developed a new approach for studying DAT localization and dynamics in intact neurons in acute sagittal brain slices from

  19. Dual role of medial A10 dopamine neurons in affective encoding.

    PubMed

    Liu, Zhong-Hua; Shin, Rick; Ikemoto, Satoshi

    2008-11-01

    Increasing evidence suggests that the activation of medial A10 neurons mediates positive affective encoding. However, little is known about the functions of the inhibition of midbrain dopamine neurons. Here we show evidence suggesting that the inhibition of medial A10 neurons mediates a negative affective state, leading to negative affective encoding, whereas blunting the activation of medial A10 neurons disrupts positive affective encoding involving food reward. We used a microinjection procedure, in which the D(2) dopamine receptor agonist quinpirole was administered into the cell body region of the dopamine neurons, a procedure that reduces dopamine cell firing. Microinjections of quinpirole into the posteromedial ventral tegmental area, but not its more lateral counterparts, led to conditioned place aversion. Quinpirole administration to this site also decreased food intake and basal dopamine concentration in the ventromedial striatum, a major projection area of medial A10 neurons. In addition, moderate quinpirole doses that did not lead to conditioned place aversion or disrupt food intake abolished food-conditioned place preference, suggesting that blunting dopamine impulse activity in response to food reward disrupts positive affective encoding in associated external stimuli. Our data support the hypothesis that activation of medial A10 dopamine neurons mediates a positive affective state, leading to positive affective encoding, while their inhibition mediates a negative affective state, leading to negative affective encoding. Together with previous findings, we propose that medial A10 neurons are an important component of the mechanism via which animals learn to avoid negative incentive stimuli.

  20. Dual Role of Medial A10 Dopamine Neurons in Affective Encoding

    PubMed Central

    Liu, Zhong-Hua; Shin, Rick; Ikemoto, Satoshi

    2008-01-01

    Increasing evidence suggests that the activation of medial A10 neurons mediates positive affective encoding. However, little is known about the functions of the inhibition of midbrain dopamine neurons. Here we show evidence suggesting that the inhibition of medial A10 neurons mediates a negative affective state, leading to negative affective encoding, whereas blunting the activation of medial A10 neurons disrupts positive affective encoding involving food reward. We used a microinjection procedure, in which the D2 dopamine receptor agonist quinpirole was administered into the cell body region of the dopamine neurons, a procedure that reduces dopamine cell firing. Microinjections of quinpirole into the posteromedial ventral tegmental area, but not its more lateral counterparts, led to conditioned place aversion. Quinpirole administration to this site also decreased food intake and basal dopamine concentration in the ventromedial striatum, a major projection area of medial A10 neurons. In addition, moderate quinpirole doses that did not lead to conditioned place aversion or disrupt food intake abolished food-conditioned place preference, suggesting that blunting dopamine impulse activity in response to food reward disrupts positive affective encoding in associated external stimuli. Our data support the hypothesis that activation of medial A10 dopamine neurons mediates a positive affective state, leading to positive affective encoding, while their inhibition mediates a negative affective state, leading to negative affective encoding. Together with previous findings, we propose that medial A10 neurons are an important component of the mechanism via which animals learn to avoid negative incentive stimuli. PMID:18256592

  1. Sex differences in the brain's dopamine signature of cigarette smoking.

    PubMed

    Cosgrove, Kelly P; Wang, Shuo; Kim, Su-Jin; McGovern, Erin; Nabulsi, Nabeel; Gao, Hong; Labaree, David; Tagare, Hemant D; Sullivan, Jenna M; Morris, Evan D

    2014-12-10

    Cigarette smoking is a major public health danger. Women and men smoke for different reasons and cessation treatments, such as the nicotine patch, are preferentially beneficial to men. The biological substrates of these sex differences are unknown. Earlier PET studies reported conflicting findings but were each hampered by experimental and/or analytical limitations. Our new image analysis technique, lp-ntPET (Normandin et al., 2012; Morris et al., 2013; Kim et al., 2014), has been optimized for capturing brief (lasting only minutes) and highly localized dopaminergic events in dynamic PET data. We coupled our analysis technique with high-resolution brain scanning and high-frequency motion correction to create the optimal experiment for capturing and characterizing the effects of smoking on the mesolimbic dopamine system in humans. Our main finding is that male smokers smoking in the PET scanner activate dopamine in the right ventral striatum during smoking but female smokers do not. This finding-men activating more ventrally than women-is consistent with the established notion that men smoke for the reinforcing drug effect of cigarettes whereas women smoke for other reasons, such as mood regulation and cue reactivity. lp-ntPET analysis produces a novel multidimensional endpoint: voxel-level temporal patterns of neurotransmitter release ("DA movies") in individual subjects. By examining these endpoints quantitatively, we demonstrate that the timing of dopaminergic responses to cigarette smoking differs between men and women. Men respond consistently and rapidly in the ventral striatum whereas women respond faster in a discrete subregion of the dorsal putamen.

  2. Depression of brain dopamine and its metabolite after mating in European honeybee (Apis mellifera) queens

    NASA Astrophysics Data System (ADS)

    Harano, Ken-Ichi; Sasaki, Ken; Nagao, Takashi

    2005-07-01

    To explore neuro-endocrinal changes in the brain of European honeybee (Apis mellifera) queens before and after mating, we measured the amount of several biogenic amines, including dopamine and its metabolite in the brain of 6- and 12-day-old virgins and 12-day-old mated queens. Twelve-day-old mated queens showed significantly lower amounts of dopamine and its metabolite (N-acetyldopamine) than both 6- and 12-day-old virgin queens, whereas significant differences in the amounts of these amines were not detected between 6- and 12-day-old virgin queens. These results are explained by down-regulation of both synthesis and secretion of brain dopamine after mating. It is speculated that higher amounts of brain dopamine in virgin queens might be involved in activation of ovarian follicles arrested in previtellogenic stages, as well as regulation of their characteristic behaviors.

  3. Proteomic analysis of rat brain mitochondria following exposure to dopamine quinone: implications for Parkinson disease.

    PubMed

    Van Laar, Victor S; Dukes, April A; Cascio, Michael; Hastings, Teresa G

    2008-03-01

    Oxidative stress and mitochondrial dysfunction have been linked to dopaminergic neuron degeneration in Parkinson disease. We have previously shown that dopamine oxidation leads to selective dopaminergic terminal degeneration in vivo and alters mitochondrial function in vitro. In this study, we utilized 2-D difference in-gel electrophoresis to assess changes in the mitochondrial proteome following in vitro exposure to reactive dopamine quinone. A subset of proteins exhibit decreased fluorescence labeling following dopamine oxidation, suggesting a rapid loss of specific proteins. Amongst these proteins are mitochondrial creatine kinase, mitofilin, mortalin, the 75 kDa subunit of NADH dehydrogenase, and superoxide dismutase 2. Western blot analyses for mitochondrial creatine kinase and mitofilin confirmed significant losses in isolated brain mitochondria exposed to dopamine quinone and PC12 cells exposed to dopamine. These results suggest that specific mitochondrial proteins are uniquely susceptible to changes in abundance following dopamine oxidation, and carry implications for mitochondrial stability in Parkinson disease neurodegeneration.

  4. Cocaine exposure modulates dopamine and adenosine signaling in the fetal brain

    PubMed Central

    Kubrusly, Regina C. C.; Bhide, Pradeep G.

    2009-01-01

    Exposure to cocaine during the fetal period can produce significant lasting changes in the structure and function of the brain. Cocaine exerts its effects on the developing brain by blocking monoamine transporters and impairing monoamine receptor signaling. Dopamine is a major central target of cocaine. In a mouse model, we show that cocaine exposure from embryonic day 8 (E8) to E14 produces significant reduction in dopamine transporter activity, attenuation of dopamine D1-receptor function and upregulation of dopamine D2-receptor function. Cocaine’s effects on the D1-receptor are at the level of protein expression as well as activity. The cocaine exposure also produces significant increases in basal cAMP levels in the striatum and cerebral cortex. The increase in the basal cAMP levels was independent of dopamine receptor activity. In contrast, blocking the adenosine A2a receptor downregulated of the basal cAMP levels in the cocaine-exposed brain to physiological levels, suggesting the involvement of adenosine receptors in mediating cocaine’s effects on the embryonic brain. In support of this suggestion, we found that the cocaine exposure downregulated adenosine transporter function. We also found that dopamine D2- and adenosine A2a-receptors antagonize each other’s function in the embryonic brain in a manner consistent with their interactions in the mature brain. Thus, our data show that prenatal cocaine exposure produces direct effects on both the dopamine and adenosine systems. Furthermore, the dopamine D2 and adenosine A2a receptor interactions in the embryonic brain discovered in this study unveil a novel substrate for cocaine’s effects on the developing brain. PMID:19765599

  5. Dopamine- and Tyrosine Hydroxylase-Immunoreactive Neurons in the Brain of the American Cockroach, Periplaneta americana.

    PubMed

    Hamanaka, Yoshitaka; Minoura, Run; Nishino, Hiroshi; Miura, Toru; Mizunami, Makoto

    2016-01-01

    The catecholamine dopamine plays several vital roles in the central nervous system of many species, but its neural mechanisms remain elusive. Detailed neuroanatomical characterization of dopamine neurons is a prerequisite for elucidating dopamine's actions in the brain. In the present study, we investigated the distribution of dopaminergic neurons in the brain of the American cockroach, Periplaneta americana, using two antisera: 1) an antiserum against dopamine, and 2) an antiserum against tyrosine hydroxylase (TH, an enzyme required for dopamine synthesis), and identified about 250 putatively dopaminergic neurons. The patterns of dopamine- and TH-immunoreactive neurons were strikingly similar, suggesting that both antisera recognize the same sets of "dopaminergic" neurons. The dopamine and TH antibodies intensively or moderately immunolabeled prominent brain neuropils, e.g. the mushroom body (memory center), antennal lobe (first-order olfactory center) and central complex (motor coordination center). All subdivisions of the mushroom body exhibit both dopamine and TH immunoreactivity. Comparison of immunolabeled neurons with those filled by dye injection revealed that a group of immunolabeled neurons with cell bodies near the calyx projects into a distal region of the vertical lobe, which is a plausible site for olfactory memory formation in insects. In the antennal lobe, ordinary glomeruli as well as macroglomeruli exhibit both dopamine and TH immunoreactivity. It is noteworthy that the dopamine antiserum labeled tiny granular structures inside the glomeruli whereas the TH antiserum labeled processes in the marginal regions of the glomeruli, suggesting a different origin. In the central complex, all subdivisions excluding part of the noduli and protocerebral bridge exhibit both dopamine and TH immunoreactivity. These anatomical findings will accelerate our understanding of dopaminergic systems, specifically in neural circuits underlying aversive memory formation

  6. The addictive brain: all roads lead to dopamine.

    PubMed

    Blum, Kenneth; Chen, Amanda L C; Giordano, John; Borsten, Joan; Chen, Thomas J H; Hauser, Mary; Simpatico, Thomas; Femino, John; Braverman, Eric R; Barh, Debmalya

    2012-01-01

    This article will touch on theories, scientific research and conjecture about the evolutionary genetics of the brain function and the impact of genetic variants called polymorphisms on drug-seeking behavior. It will cover the neurological basis of pleasure-seeking and addiction, which affects multitudes in a global atmosphere where people are seeking "pleasure states".

  7. Advances in studying phasic dopamine signaling in brain reward mechanisms

    PubMed Central

    Wickham, Robert J.; Solecki, Wojciech; Rathbun, Liza R.; Neugebauer, Nichole M.; Wightman, R. Mark; Addy, Nii A.

    2013-01-01

    The last sixty years of research have provided extraordinary advances of our knowledge of the reward system. Since its initial discovery as a neurotransmitter by Carlsson and colleagues (Carlsson et al., 1957), dopamine (DA) has emerged as an important mediator of reward processing. As a result, a number of electrochemical techniques have been developed to directly measure DA levels in the brain using various preparations. Many of these techniques and preparations differ in the types of questions that they can address. Together, these techniques have begun to elucidate the complex roles of tonic and phasic DA signaling in reward processing and in addiction. In this review, we will first provide a guide for the most commonly used electrochemical methods for DA detection and describe their utility in furthering our knowledge about DA's role in reward and addiction. Second, we will review the value of common in vitro and in vivo preparations and describe their ability to address different types of questions. Last, we will review recent data that has provided new insight of the mechanisms of in vivo phasic DA signaling and its role in reward processing and reward-mediated behavior. PMID:23747914

  8. Interaction Between Brain Histamine and Serotonin, Norepinephrine, and Dopamine Systems: In Vivo Microdialysis and Electrophysiology Study.

    PubMed

    Flik, Gunnar; Folgering, Joost H A; Cremers, Thomas I H F; Westerink, Ben H C; Dremencov, Eliyahu

    2015-06-01

    Brain monoamines (serotonin, norepinephrine, dopamine, and histamine) play an important role in emotions, cognition, and pathophysiology and treatment of mental disorders. The interactions between serotonin, norepinephrine, and dopamine were studied in numerous works; however, histamine system received less attention. The aim of this study was to investigate the interactions between histamine and other monoamines, using in vivo microdialysis and electrophysiology. It was found that the inverse agonist of histamine-3 receptors, thioperamide, increased the firing activity of dopamine neurons in the ventral tegmental area. Selective agonist of histamine-3 receptors, immepip, reversed thiperamide-induced stimulation of firing activity of dopamine neurons. The firing rates of serotonin and norpeinephrine neurons were not attenuated by immepip or thioperamide. Thioperamide robustly and significantly increased extracellular concentrations of serotonin, norepinephrine, and dopamine in the rat prefrontal cortex and slightly increased norepinephrine and dopamine levels in the tuberomammillary nucleus of the hypothalamus. It can be concluded that histamine stimulates serotonin, norepinephrine, and dopamine transmission in the brain. Modulation of firing of dopamine neurons is a key element in functional interactions between histamine and other monoamines. Antagonists of histamine-3 receptors, because of their potential ability to stimulate monoamine neurotransmission, might be beneficial in the treatment of mental disorders.

  9. Dopamine- and Tyrosine Hydroxylase-Immunoreactive Neurons in the Brain of the American Cockroach, Periplaneta americana

    PubMed Central

    Hamanaka, Yoshitaka; Minoura, Run; Nishino, Hiroshi; Miura, Toru; Mizunami, Makoto

    2016-01-01

    The catecholamine dopamine plays several vital roles in the central nervous system of many species, but its neural mechanisms remain elusive. Detailed neuroanatomical characterization of dopamine neurons is a prerequisite for elucidating dopamine’s actions in the brain. In the present study, we investigated the distribution of dopaminergic neurons in the brain of the American cockroach, Periplaneta americana, using two antisera: 1) an antiserum against dopamine, and 2) an antiserum against tyrosine hydroxylase (TH, an enzyme required for dopamine synthesis), and identified about 250 putatively dopaminergic neurons. The patterns of dopamine- and TH-immunoreactive neurons were strikingly similar, suggesting that both antisera recognize the same sets of “dopaminergic” neurons. The dopamine and TH antibodies intensively or moderately immunolabeled prominent brain neuropils, e.g. the mushroom body (memory center), antennal lobe (first-order olfactory center) and central complex (motor coordination center). All subdivisions of the mushroom body exhibit both dopamine and TH immunoreactivity. Comparison of immunolabeled neurons with those filled by dye injection revealed that a group of immunolabeled neurons with cell bodies near the calyx projects into a distal region of the vertical lobe, which is a plausible site for olfactory memory formation in insects. In the antennal lobe, ordinary glomeruli as well as macroglomeruli exhibit both dopamine and TH immunoreactivity. It is noteworthy that the dopamine antiserum labeled tiny granular structures inside the glomeruli whereas the TH antiserum labeled processes in the marginal regions of the glomeruli, suggesting a different origin. In the central complex, all subdivisions excluding part of the noduli and protocerebral bridge exhibit both dopamine and TH immunoreactivity. These anatomical findings will accelerate our understanding of dopaminergic systems, specifically in neural circuits underlying aversive memory

  10. Imaging dopamine receptors in the human brain by position tomography

    SciTech Connect

    Wagner, H.N. Jr.; Burns, H.D.; Dannals, R.F.; Wong, D.F.; Langstrom, B.; Duelfer, T.; Frost, J.J.; Ravert, H.T.; Links, J.M.; Rosenbloom, S.B.

    1983-01-01

    Neurotransmitter receptors may be involved in a number of neuropsychiatric disease states. The ligand 3-N-(/sup 11/C)methylspiperone, which preferentially binds to dopamine receptors in vivo, was used to image the receptors by positron emission tomography scanning in baboons and in humans. This technique holds promise for noninvasive clinical studies of dopamine receptors in humans.

  11. [Spectrofluorometric determination of dopamine in small areas of rat brain (author's transl)].

    PubMed

    López-Novoa, J M; Martínez-Conde, E; Fraile, A

    1977-03-01

    A method for the extraction and quantification of Dopamine from small areas of rat brain has been developed. The extraction with solvents eliminates the column cromatography separations and allows the simultaneous processing of a good number of samples. Sample retrieval is quite high (70%) and very reproducible. The evaluation was made from areas with a minimal weight of 0.225 g. The quantification of Dopamine was obtained using spectrofluorometric techniques, reading the fluorescence of the trihydroxy indol derivate. The linear relation between the instrument readings and the concentration of Dopamine is from 0 to 0.5 microng/ml. The maximal concentration of Dopamine was found in the decorticated cerebral hemispheres (1.485 microng/g), the next highest values in the diencephalon (1.046 microng/), and the minimal concentration in the cerebellum (0.283 microng/g). The concentration of the whole brain was 0.701 microng/g.

  12. Assessment of dopamine receptor densities in the human brain with carbon-11-labeled N-methylspiperone

    SciTech Connect

    Wagner, H.N. Jr.; Burns, H.D.; Dannals, R.F.; Wong, D.F.; Langstroem, B.; Duelfer, T.; Frost, J.J.; Ravert, H.T.; Links, J.M.; Rosenbloom, S.B.

    1984-01-01

    We describe the use of carbon-11-labeled 3-N-methylspiperone, a ligand that preferentially binds to dopamine receptors in vivo, to image the receptors by positron emission tomography scanning in baboons and, for the first time, in a human. The method has now been used in 58 humans for noninvasive assessment of the state of brain dopamine receptors under normal and pathological conditions.

  13. Dopamine treatment during acute hypoxia is neuroprotective in the developing sheep brain.

    PubMed

    Brew, N; Azhan, A; den Heijer, I; Boomgardt, M; Davies, G I; Nitsos, I; Miller, S L; Walker, A M; Walker, D W; Wong, F Y

    2016-03-01

    Dopamine is often used to treat hypotension in preterm infants; these infants are at risk of developing brain injury due to impaired autoregulation and cerebral hypoperfusion. However the effects of dopamine on the immature brain under conditions of cerebral hypoxia are not known. We hypothesized that pretreatment with dopamine would protect the immature brain from injury caused by cerebral hypoxia. Preterm fetal sheep were used to determine the effects of intravenous dopamine on hypoxia-induced brain injury. In 16 pregnant sheep at 90days of gestation (0.6 of term, term=147days) catheters were implanted aseptically into the fetal carotid artery and jugular vein; an inflatable occluder was placed loosely around the umbilical cord for later induction of fetal hypoxemia. At 5days after surgery, dopamine (10μg/kg/min, n=7 fetuses) or saline (n=9 fetuses) was infused for 74h. Two hours after commencing the dopamine/saline infusion, we induced umbilical cord occlusion (UCO) for up to 25min to produce fetal asphyxia. Fetuses were allowed to recover, and brains were collected 72h later for assessment of neuropathology. Un-operated twin fetuses were used as age-matched non-UCO controls (n=8). In UCO+saline fetuses, microglial and apoptotic cell density in the subcortical and periventricular white matter, caudate nucleus and hippocampus was greater than that in age-matched controls; oxidative stress was elevated in the subcortical and periventricular white matter and caudate nucleus compared to that in age-matched controls. In UCO+dopamine fetuses microglial density and oxidative stress in the cerebral white matter and caudate nucleus were not different to that of age-matched controls. Apoptotic cell death was decreased in the cerebral white matter of UCO+dopamine brains, relative to UCO+saline brains. We conclude that pretreatment with dopamine does not exacerbate hypoxia-induced injury in the immature brain and may be neuroprotective because it led to decreased apoptosis

  14. Dopamine D4 receptor polymorphism and sex interact to predict children’s affective knowledge

    PubMed Central

    Ben-Israel, Sharon; Uzefovsky, Florina; Ebstein, Richard P.; Knafo-Noam, Ariel

    2015-01-01

    Affective knowledge, the ability to understand others’ emotional states, is considered to be a fundamental part in efficient social interaction. Affective knowledge can be seen as related to cognitive empathy, and in the framework of theory of mind (ToM) as affective ToM. Previous studies found that cognitive empathy and ToM are heritable, yet little is known regarding the specific genes involved in individual variability in affective knowledge. Investigating the genetic basis of affective knowledge is important for understanding brain mechanisms underlying socio-cognitive abilities. The 7-repeat (7R) allele within the third exon of the dopamine D4 receptor gene (DRD4-III) has been a focus of interest, due to accumulated knowledge regarding its relevance to individual differences in social behavior. A recent study suggests that an interaction between the DRD4-III polymorphism and sex is associated with cognitive empathy among adults. We aimed to examine the same association in two childhood age groups. Children (N = 280, age 3.5 years, N = 283, age 5 years) participated as part of the Longitudinal Israel Study of Twins. Affective knowledge was assessed through children’s responses to an illustrated story describing different emotional situations, told in a laboratory setting. The findings suggest a significant interaction between sex and the DRD4-III polymorphism, replicated in both age groups. Boy carriers of the 7R allele had higher affective knowledge scores than girls, whereas in the absence of the 7R there was no significant sex effect on affective knowledge. The results support the importance of DRD4-III polymorphism and sex differences to social development. Possible explanations for differences from adult findings are discussed, as are pathways for future studies. PMID:26157401

  15. Flow of affective information between communicating brains.

    PubMed

    Anders, Silke; Heinzle, Jakob; Weiskopf, Nikolaus; Ethofer, Thomas; Haynes, John-Dylan

    2011-01-01

    When people interact, affective information is transmitted between their brains. Modern imaging techniques permit to investigate the dynamics of this brain-to-brain transfer of information. Here, we used information-based functional magnetic resonance imaging (fMRI) to investigate the flow of affective information between the brains of senders and perceivers engaged in ongoing facial communication of affect. We found that the level of neural activity within a distributed network of the perceiver's brain can be successfully predicted from the neural activity in the same network in the sender's brain, depending on the affect that is currently being communicated. Furthermore, there was a temporal succession in the flow of affective information from the sender's brain to the perceiver's brain, with information in the perceiver's brain being significantly delayed relative to information in the sender's brain. This delay decreased over time, possibly reflecting some 'tuning in' of the perceiver with the sender. Our data support current theories of intersubjectivity by providing direct evidence that during ongoing facial communication a 'shared space' of affect is successively built up between senders and perceivers of affective facial signals.

  16. Serotonin levels in the dorsal raphe nuclei of both chipmunks and mice are enhanced by long photoperiod, but brain dopamine level response to photoperiod is species-specific.

    PubMed

    Goda, Ryosei; Otsuka, Tsuyoshi; Iwamoto, Ayaka; Kawai, Misato; Shibata, Satomi; Furuse, Mitsuhiro; Yasuo, Shinobu

    2015-04-23

    Seasonal affective disorder (SAD) is a subtype of major depressive or bipolar disorders associated with the shortened photoperiod in winter. This depressive disorder is integrally tied to the seasonal regulation of the brain's serotonergic system. Recently, we found that C57BL/6J mice subjected to a forced-swim test exhibited immobility, a photoperiod-dependent depression-associated behavior, and suppression of brain serotonin levels. However, mice are nocturnal animals, and it is unclear whether the brain serotonergic system responds similarly to photoperiod in nocturnal and diurnal species. This study compared the responses of brain serotonergic and dopaminergic systems to photoperiod in diurnal chipmunks and nocturnal C57BL/6J mice. In both species, serotonin levels in the dorsal raphe nuclei were higher under long-day conditions than short-day conditions, suggesting a similarity in the photoperiod responses of the serotonergic systems. However, photoperiod affected dopamine levels in various brain regions differently in the two species. Some chipmunk brain regions exhibited stronger photoperiod-induced changes in dopamine levels than those of C57BL/6J mice, and the direction of the changes in the hypothalamus was opposite. In conclusion, photoperiod may regulate the brain serotonergic system through similar mechanisms, regardless of whether the animals are diurnal or nocturnal, but photoperiod-dependent regulation of brain dopamine is species-specific.

  17. Combination Training in Aging Individuals Modifies Functional Connectivity and Cognition, and Is Potentially Affected by Dopamine-Related Genes

    PubMed Central

    Pieramico, Valentina; Esposito, Roberto; Sensi, Francesca; Cilli, Franco; Mantini, Dante; Mattei, Peter A.; Frazzini, Valerio; Ciavardelli, Domenico; Gatta, Valentina; Ferretti, Antonio; Romani, Gian Luca; Sensi, Stefano L.

    2012-01-01

    Background Aging is a major co-risk factor in many neurodegenerative diseases. Cognitive enrichment positively affects the structural plasticity of the aging brain. In this study, we evaluated effects of a set of structured multimodal activities (Combination Training; CT) on cognitive performances, functional connectivity, and cortical thickness of a group of healthy elderly individuals. CT lasted six months. Methodology Neuropsychological and occupational performances were evaluated before and at the end of the training period. fMRI was used to assess effects of training on resting state network (RSN) functional connectivity using Independent Component Analysis (ICA). Effects on cortical thickness were also studied. Finally, we evaluated whether specific dopamine-related genes can affect the response to training. Principal Findings Results of the study indicate that CT improves cognitive/occupational performances and reorganizes functional connectivity. Intriguingly, individuals responding to CT showed specific dopamine-related genotypes. Indeed, analysis of dopamine-related genes revealed that carriers of DRD3 ser9gly and COMT Val158Met polymorphisms had the greatest benefits from exposure to CT. Conclusions and Significance Overall, our findings support the idea that exposure to a set of structured multimodal activities can be an effective strategy to counteract aging-related cognitive decline and also indicate that significant capability of functional and structural changes are maintained in the elderly. PMID:22937122

  18. Altered pattern of brain dopamine synthesis in male adolescents with attention deficit hyperactivity disorder

    PubMed Central

    Forssberg, Hans; Fernell, Elisabeth; Waters, Susanna; Waters, Nicholas; Tedroff, Joakim

    2006-01-01

    Background Limited data from positron emission tomography (PET) studies of subjects with attention-deficit/hyperactivity disorder (ADHD) indicate alterations in brain dopamine neurotransmission. However, these studies have used conventional univariate approaches that are less sensitive to detect complex interactions that may exist between different brain dopamine pathways and individual symptoms of ADHD. We aimed to investigate these potential interactions in adolescents with ADHD. Methods We used a 3D PET scan to measure utilization of native L-[11C]-DOPA to map dopamine presynaptic function in various cortical, striatal and midbrain regions in a group of 8 male adolescents with ADHD and 6 age matched controls. To evaluate the interactions between the studied brain regions, multivariate statistical methods were used. Results Abnormal dopaminergic function was found in multiple brain regions of patients with ADHD. A main finding was lower L-[11C]-DOPA utilization in adolescent with ADHD as compared to control subjects, especially in subcortical regions. This pattern of dopaminergic activity was correlated specifically with symptoms of inattention. Conclusion Dopamine signalling in the brain plays an important modulatory role in a variety of motor and cognitive functions. We have identified region-specific functional abnormalities in dopaminergic function, which may help better account for the symptoms of ADHD. PMID:17144907

  19. The costs and benefits of brain dopamine for cognitive control.

    PubMed

    Cools, Roshan

    2016-09-01

    Cognitive control helps us attain our goals by resisting distraction and temptations. Dopaminergic drugs are well known to enhance cognitive control. However, there is great variability in the effects of dopaminergic drugs across different contexts, with beneficial effects on some tasks but detrimental effects on other tasks. The mechanisms underlying this variability across cognitive task demands remain unclear. I aim to elucidate this across-task variability in dopaminergic drug efficacy by going beyond classic models that emphasize the importance of dopamine in the prefrontal cortex for cognitive control and working memory. To this end, I build on recent advances in cognitive neuroscience that highlight a role for dopamine in cost-benefit decision making. Specifically, I reconceptualize cognitive control as involving not just prefrontal dopamine but also modulation of cost-benefit decision making by striatal dopamine. This approach will help us understand why we sometimes fail to (choose to) exert cognitive control while also identifying mechanistic factors that predict dopaminergic drug effects on cognitive control. WIREs Cogn Sci 2016, 7:317-329. doi: 10.1002/wcs.1401 For further resources related to this article, please visit the WIREs website.

  20. Dopamine from the brain promotes spinal motor neuron generation during development and adult regeneration.

    PubMed

    Reimer, Michell M; Norris, Anneliese; Ohnmacht, Jochen; Patani, Rickie; Zhong, Zhen; Dias, Tatyana B; Kuscha, Veronika; Scott, Angela L; Chen, Yu-Chia; Rozov, Stanislav; Frazer, Sarah L; Wyatt, Cameron; Higashijima, Shin-ichi; Patton, E Elizabeth; Panula, Pertti; Chandran, Siddharthan; Becker, Thomas; Becker, Catherina G

    2013-06-10

    Coordinated development of brain stem and spinal target neurons is pivotal for the emergence of a precisely functioning locomotor system. Signals that match the development of these far-apart regions of the central nervous system may be redeployed during spinal cord regeneration. Here we show that descending dopaminergic projections from the brain promote motor neuron generation at the expense of V2 interneurons in the developing zebrafish spinal cord by activating the D4a receptor, which acts on the hedgehog pathway. Inhibiting this essential signal during early neurogenesis leads to a long-lasting reduction of motor neuron numbers and impaired motor responses of free-swimming larvae. Importantly, during successful spinal cord regeneration in adult zebrafish, endogenous dopamine promotes generation of spinal motor neurons, and dopamine agonists augment this process. Hence, we describe a supraspinal control mechanism for the development and regeneration of specific spinal cell types that uses dopamine as a signal.

  1. Occupancy of dopamine D2/3 receptors in rat brain by endogenous dopamine measured with the agonist positron emission tomography radioligand [11C]MNPA.

    PubMed

    Seneca, Nicholas; Zoghbi, Sami S; Skinbjerg, Mette; Liow, Jeih-San; Hong, Jinsoo; Sibley, David R; Pike, Victor W; Halldin, Christer; Innis, Robert B

    2008-10-01

    Estimates of dopamine D(2/3) receptor occupancy by endogenous dopamine using positron emission tomography (PET) in animals have varied almost threefold. This variability may have been caused by incomplete depletion of dopamine or by the use of antagonist radioligands, which appear less sensitive than agonist radioligands to changes in endogenous dopamine. PET scans were performed in rats with the agonist PET radioligand [(11)C]MNPA ([O-methyl-(11)C]2-methoxy-N-propylnorapomorphine). [(11)C]MNPA was injected as a bolus plus constant infusion to achieve steady-state concentration in the body and equilibrium receptor binding in the brain. Radioligand binding was compared at baseline and after treatment with reserpine plus alpha-methyl-para-tyrosine, which cause approximately 95% depletion of endogenous dopamine. Depletion of dopamine increased radioligand binding in striatum but had little effect in cerebellum. Striatal [(11)C]MNPA binding potential was 0.93 +/- 0.12 at baseline and increased to 1.99 +/- 0.25 after dopamine depletion. Occupancy of D(2/3) receptors by endogenous dopamine at baseline was calculated to be approximately 53%. Striatal binding was displaceable with raclopride, but not with BP 897 (a selective D(3) compound), thus confirming the D(2) receptor specificity of [(11)C]MNPA binding. Radioactivity extracted from rat brain contained only 8-10% radiometabolites and was insignificantly altered by administration of reserpine plus alpha-methyl-para-tyrosine. Hence, dopamine depletion did not increase the PET measurements via an effect on radiotracer metabolism. Our in vivo estimate of dopamine's occupancy of D(2/3) receptors at baseline is higher than that previously reported using antagonist radioligands and PET, but is similar to that reported using agonist radioligands and ex vivo measurements.

  2. Dopamine release in the nucleus accumbens is altered following traumatic brain injury.

    PubMed

    Chen, Yuan-Hao; Huang, Eagle Yi-Kung; Kuo, Tung-Tai; Hoffer, Barry J; Miller, Jonathan; Chou, Yu-Ching; Chiang, Yung-Hsiao

    2017-04-21

    Mild-to-severe traumatic brain injury (TBI) is frequently associated with prolonged dysfunction of reward circuitry, including motivation and salience, which suggests alterations of dopamine (DA) processing within the core and shell of the nucleus accumbens (NAC). Using fast-scan cyclic voltammetry in a rodent model of traumatic brain injury, we found that stimulus-evoked DA release is distinct in the core and shell of the NAC, with the shell being less responsive to tonic stimulation and more sensitive to the number of pulses when phasic stimulation is applied. Exposure to TBI was associated with major changes in both release and reuptake of DA in both the core and shell of NAC, with greater changes seen in the core. These alterations evolved over time, becoming most severe 1-2weeks after injury with subsequent recovery, and the extent and progression of these abnormalities was correlated with severity of injury. Taken together, these data support behavior and anatomical studies suggesting the NAC core and striatum may subserve parallel functions, whereas the shell is distinct. These data offer a unique window on how different neurological systems respond to TBI and may help explain affective and cognitive changes that are seen.

  3. Dynamic Connectivity between Brain Networks Supports Working Memory: Relationships to Dopamine Release and Schizophrenia

    PubMed Central

    Van Snellenberg, Jared X.; Benavides, Caridad; Slifstein, Mark; Wang, Zhishun; Moore, Holly; Abi-Dargham, Anissa

    2016-01-01

    Connectivity between brain networks may adapt flexibly to cognitive demand, a process that could underlie adaptive behaviors and cognitive deficits, such as those observed in neuropsychiatric conditions like schizophrenia. Dopamine signaling is critical for working memory but its influence on internetwork connectivity is relatively unknown. We addressed these questions in healthy humans using functional magnetic resonance imaging (during an n-back working-memory task) and positron emission tomography using the radiotracer [11C]FLB457 before and after amphetamine to measure the capacity for dopamine release in extrastriatal brain regions. Brain networks were defined by spatial independent component analysis (ICA) and working-memory-load-dependent connectivity between task-relevant pairs of networks was determined via a modified psychophysiological interaction analysis. For most pairs of task-relevant networks, connectivity significantly changed as a function of working-memory load. Moreover, load-dependent changes in connectivity between left and right frontoparietal networks (Δ connectivity lFPN-rFPN) predicted interindividual differences in task performance more accurately than other fMRI and PET imaging measures. Δ Connectivity lFPN-rFPN was not related to cortical dopamine release capacity. A second study in unmedicated patients with schizophrenia showed no abnormalities in load-dependent connectivity but showed a weaker relationship between Δ connectivity lFPN-rFPN and working memory performance in patients compared with matched healthy individuals. Poor working memory performance in patients was, in contrast, related to deficient cortical dopamine release. Our findings indicate that interactions between brain networks dynamically adapt to fluctuating environmental demands. These dynamic adaptations underlie successful working memory performance in healthy individuals and are not well predicted by amphetamine-induced dopamine release capacity. SIGNIFICANCE

  4. Apo-Ghrelin Receptor (apo-GHSR1a) Regulates Dopamine Signaling in the Brain

    PubMed Central

    Kern, Andras; Grande, Cristina; Smith, Roy G.

    2014-01-01

    The orexigenic peptide hormone ghrelin is synthesized in the stomach and its receptor growth hormone secretagogue receptor (GHSR1a) is expressed mainly in the central nervous system (CNS). In this review, we confine our discussion to the physiological role of GHSR1a in the brain. Paradoxically, despite broad expression of GHSR1a in the CNS, other than trace amounts in the hypothalamus, ghrelin is undetectable in the brain. In our efforts to elucidate the function of the ligand-free ghrelin receptor (apo-GHSR1a), we identified subsets of neurons that co-express GHSR1a and dopamine receptors. In this review, we focus on interactions between apo-GHSR1a and dopamine-2 receptor (DRD2) and formation of GHSR1a:DRD2 heteromers in hypothalamic neurons that regulate appetite, and discuss implications for the treatment of Prader–Willi syndrome (PWS). GHSR1a antagonists of distinct chemical structures, a quinazolinone and a triazole, respectively, enhance and inhibit dopamine signaling through GHSR1a:DRD2 heteromers by an allosteric mechanism. This finding illustrates a potential strategy for designing the next generation of drugs for treating eating disorders as well as psychiatric disorders caused by abnormal dopamine signaling. Treatment with a GHSR1a antagonist that enhances dopamine/DRD2 activity in GHSR1a:DRD2 expressing hypothalamic neurons has the potential to inhibit the uncontrollable hyperphagia associated with PWS. DRD2 antagonists are prescribed for treating schizophrenia, but these block dopamine signaling in all DRD2 expressing neurons and are associated with adverse side effects, including enhanced appetite and excessive weight gain. A GHSR1a antagonist of structural class that allosterically blocks dopamine/DRD2 action in GHSR1a:DRD2 expressing neurons would have no effect on neurons expressing DRD2 alone; therefore, the side effects of DRD2 antagonists would potentially be reduced thereby enhancing patient compliance. PMID:25183960

  5. Expression of a Novel D4 Dopamine Receptor in the Lamprey Brain. Evolutionary Considerations about Dopamine Receptors

    PubMed Central

    Pérez-Fernández, Juan; Megías, Manuel; Pombal, Manuel A.

    2016-01-01

    Numerous data reported in lampreys, which belong to the phylogenetically oldest branch of vertebrates, show that the dopaminergic system was already well developed at the dawn of vertebrate evolution. The expression of dopamine in the lamprey brain is well conserved when compared to other vertebrates, and this is also true for the D2 receptor. Additionally, the key role of dopamine in the striatum, modulating the excitability in the direct and indirect pathways through the D1 and D2 receptors, has also been recently reported in these animals. The moment of divergence regarding the two whole genome duplications occurred in vertebrates suggests that additional receptors, apart from the D1 and D2 previously reported, could be present in lampreys. We used in situ hybridization to characterize the expression of a novel dopamine receptor, which we have identified as a D4 receptor according to the phylogenetic analysis. The D4 receptor shows in the sea lamprey a more restricted expression pattern than the D2 subtype, as reported in mammals. Its main expression areas are the striatum, lateral and ventral pallial sectors, several hypothalamic regions, habenula, and mesencephalic and rhombencephalic motoneurons. Some expression areas are well conserved through vertebrate evolution, as is the case of the striatum or the habenula, but the controversies regarding the D4 receptor expression in other vertebrates hampers for a complete comparison, especially in rhombencephalic regions. Our results further support that the dopaminergic system in vertebrates is well conserved and suggest that at least some functions of the D4 receptor were already present before the divergence of lampreys. PMID:26778974

  6. Reconsidering Food Reward, Brain Stimulation, and Dopamine: Incentives Act Forward.

    PubMed

    Newquist, Gunnar; Gardner, R Allen

    2015-01-01

    In operant conditioning, rats pressing levers and pigeons pecking keys depend on contingent food reinforcement. Food reward agrees with Skinner's behaviorism, undergraduate textbooks, and folk psychology. However, nearly a century of experimental evidence shows, instead, that food in an operant conditioning chamber acts forward to evoke species-specific feeding behavior rather than backward to reinforce experimenter-defined responses. Furthermore, recent findings in neuroscience show consistently that intracranial stimulation to reward centers and dopamine release, the proposed reward molecule, also act forward to evoke inborn species-specific behavior. These results challenge longstanding views of hedonic learning and must be incorporated into contemporary learning theory.

  7. The Michelin red guide of the brain: role of dopamine in goal-oriented navigation.

    PubMed

    Retailleau, Aude; Boraud, Thomas

    2014-01-01

    Spatial learning has been recognized over the years to be under the control of the hippocampus and related temporal lobe structures. Hippocampal damage often causes severe impairments in the ability to learn and remember a location in space defined by distal visual cues. Such cognitive disabilities are found in Parkinsonian patients. We recently investigated the role of dopamine in navigation in the 6-Hydroxy-dopamine (6-OHDA) rat, a model of Parkinson's disease (PD) commonly used to investigate the pathophysiology of dopamine depletion (Retailleau et al., 2013). We demonstrated that dopamine (DA) is essential to spatial learning as its depletion results in spatial impairments. Our results showed that the behavioral effect of DA depletion is correlated with modification of the neural encoding of spatial features and decision making processes in hippocampus. However, the origin of these alterations in the neural processing of the spatial information needs to be clarified. It could result from a local effect: dopamine depletion disturbs directly the processing of relevant spatial information at hippocampal level. Alternatively, it could result from a more distributed network effect: dopamine depletion elsewhere in the brain (entorhinal cortex, striatum, etc.) modifies the way hippocampus processes spatial information. Recent experimental evidence in rodents, demonstrated indeed, that other brain areas are involved in the acquisition of spatial information. Amongst these, the cortex-basal ganglia (BG) loop is known to be involved in reinforcement learning and has been identified as an important contributor to spatial learning. In particular, it has been shown that altered activity of the BG striatal complex can impair the ability to perform spatial learning tasks. The present review provides a glimpse of the findings obtained over the past decade that support a dialog between these two structures during spatial learning under DA control.

  8. The Michelin red guide of the brain: role of dopamine in goal-oriented navigation

    PubMed Central

    Retailleau, Aude; Boraud, Thomas

    2014-01-01

    Spatial learning has been recognized over the years to be under the control of the hippocampus and related temporal lobe structures. Hippocampal damage often causes severe impairments in the ability to learn and remember a location in space defined by distal visual cues. Such cognitive disabilities are found in Parkinsonian patients. We recently investigated the role of dopamine in navigation in the 6-Hydroxy-dopamine (6-OHDA) rat, a model of Parkinson’s disease (PD) commonly used to investigate the pathophysiology of dopamine depletion (Retailleau et al., 2013). We demonstrated that dopamine (DA) is essential to spatial learning as its depletion results in spatial impairments. Our results showed that the behavioral effect of DA depletion is correlated with modification of the neural encoding of spatial features and decision making processes in hippocampus. However, the origin of these alterations in the neural processing of the spatial information needs to be clarified. It could result from a local effect: dopamine depletion disturbs directly the processing of relevant spatial information at hippocampal level. Alternatively, it could result from a more distributed network effect: dopamine depletion elsewhere in the brain (entorhinal cortex, striatum, etc.) modifies the way hippocampus processes spatial information. Recent experimental evidence in rodents, demonstrated indeed, that other brain areas are involved in the acquisition of spatial information. Amongst these, the cortex—basal ganglia (BG) loop is known to be involved in reinforcement learning and has been identified as an important contributor to spatial learning. In particular, it has been shown that altered activity of the BG striatal complex can impair the ability to perform spatial learning tasks. The present review provides a glimpse of the findings obtained over the past decade that support a dialog between these two structures during spatial learning under DA control. PMID:24672436

  9. The identification of a selective dopamine D2 partial agonist, D3 antagonist displaying high levels of brain exposure.

    PubMed

    Holmes, Ian P; Blunt, Richard J; Lorthioir, Olivier E; Blowers, Stephen M; Gribble, Andy; Payne, Andrew H; Stansfield, Ian G; Wood, Martyn; Woollard, Patrick M; Reavill, Charlie; Howes, Claire M; Micheli, Fabrizio; Di Fabio, Romano; Donati, Daniele; Terreni, Silvia; Hamprecht, Dieter; Arista, Luca; Worby, Angela; Watson, Steve P

    2010-03-15

    The identification of a highly selective D(2) partial agonist, D(3) antagonist tool molecule which demonstrates high levels of brain exposure and selectivity against an extensive range of dopamine, serotonin, adrenergic, histamine, and muscarinic receptors is described.

  10. Dopamine D1, D2, D3 Receptors, Vesicular Monoamine Transporter Type-2 (VMAT2) and Dopamine Transporter (DAT) Densities in Aged Human Brain

    PubMed Central

    Sun, Jianjun; Xu, Jinbin; Cairns, Nigel J.; Perlmutter, Joel S.; Mach, Robert H.

    2012-01-01

    The dopamine D1, D2, D3 receptors, vesicular monoamine transporter type-2 (VMAT2), and dopamine transporter (DAT) densities were measured in 11 aged human brains (aged 77–107.8, mean: 91 years) by quantitative autoradiography. The density of D1 receptors, VMAT2, and DAT was measured using [3H]SCH23390, [3H]dihydrotetrabenazine, and [3H]WIN35428, respectively. The density of D2 and D3 receptors was calculated using the D3-preferring radioligand, [3H]WC-10 and the D2-preferring radioligand [3H]raclopride using a mathematical model developed previously by our group. Dopamine D1, D2, and D3 receptors are extensively distributed throughout striatum; the highest density of D3 receptors occurred in the nucleus accumbens (NAc). The density of the DAT is 10–20-fold lower than that of VMAT2 in striatal regions. Dopamine D3 receptor density exceeded D2 receptor densities in extrastriatal regions, and thalamus contained a high level of D3 receptors with negligible D2 receptors. The density of dopamine D1 linearly correlated with D3 receptor density in the thalamus. The density of the DAT was negligible in the extrastriatal regions whereas the VMAT2 was expressed in moderate density. D3 receptor and VMAT2 densities were in similar level between the aged human and aged rhesus brain samples, whereas aged human brain samples had lower range of densities of D1 and D2 receptors and DAT compared with the aged rhesus monkey brain. The differential density of D3 and D2 receptors in human brain will be useful in the interpretation of PET imaging studies in human subjects with existing radiotracers, and assist in the validation of newer PET radiotracers having a higher selectivity for dopamine D2 or D3 receptors. PMID:23185343

  11. Dopamine in the Brain: Hypothesizing Surfeit or Deficit Links to Reward and Addiction.

    PubMed

    Blum, Kenneth; Thanos, Peter K; Oscar-Berman, Marlene; Febo, Marcelo; Baron, David; Badgaiyan, Rajendra D; Gardner, Eliot; Demetrovics, Zsolt; Fahlke, Claudia; Haberstick, Brett C; Dushaj, Kristina; Gold, Mark S

    Recently there has been debate concerning the role of brain dopamine in reward and addiction. David Nutt and associates eloquently proposed that dopamine (DA) may be central to psycho stimulant dependence and some what important for alcohol, but not important for opiates, nicotine or even cannabis. Others have also argued that surfeit theories can explain for example cocaine seeking behavior as well as non-substance-related addictive behaviors. It seems prudent to distinguish between what constitutes "surfeit" compared to" deficit" in terms of short-term (acute) and long-term (chronic) brain reward circuitry responsivity. In an attempt to resolve controversy regarding the contributions of mesolimbic DA systems to reward, we review the three main competing explanatory categories: "liking", "learning", and "wanting". They are (a) the hedonic impact -liking reward, (b) the ability to predict rewarding effects-learning and (c) the incentive salience of reward-related stimuli -wanting. In terms of acute effects, most of the evidence seems to favor the "surfeit theory". Due to preferential dopamine release at mesolimbic-VTA-caudate-accumbens loci most drugs of abuse and Reward Deficiency Syndrome (RDS) behaviors have been linked to heightened feelings of well-being and hyperdopaminergic states.The "dopamine hypotheses" originally thought to be simple, is now believed to be quite complex and involves encoding the set point of hedonic tone, encoding attention, reward expectancy, and incentive motivation. Importantly, Willuhn et al. shows that in a self-administration paradigm, (chronic) excessive use of cocaine is caused by decreased phasic dopamine signaling in the striatum. In terms of chronic addictions, others have shown a blunted responsivity at brain reward sites with food, nicotine, and even gambling behavior. Finally, we are cognizant of the differences in dopaminergic function as addiction progresses and argue that relapse may be tied to dopamine deficiency

  12. Dopamine in the Brain: Hypothesizing Surfeit or Deficit Links to Reward and Addiction

    PubMed Central

    Blum, Kenneth; Thanos, Peter K.; Oscar-Berman, Marlene; Febo, Marcelo; Baron, David; Badgaiyan, Rajendra D.; Gardner, Eliot; Demetrovics, Zsolt; Fahlke, Claudia; Haberstick, Brett C.; Dushaj, Kristina; Gold, Mark S.

    2016-01-01

    Recently there has been debate concerning the role of brain dopamine in reward and addiction. David Nutt and associates eloquently proposed that dopamine (DA) may be central to psycho stimulant dependence and some what important for alcohol, but not important for opiates, nicotine or even cannabis. Others have also argued that surfeit theories can explain for example cocaine seeking behavior as well as non-substance-related addictive behaviors. It seems prudent to distinguish between what constitutes “surfeit” compared to” deficit” in terms of short-term (acute) and long-term (chronic) brain reward circuitry responsivity. In an attempt to resolve controversy regarding the contributions of mesolimbic DA systems to reward, we review the three main competing explanatory categories: “liking”, “learning”, and “wanting”. They are (a) the hedonic impact -liking reward, (b) the ability to predict rewarding effects-learning and (c) the incentive salience of reward-related stimuli -wanting. In terms of acute effects, most of the evidence seems to favor the “surfeit theory”. Due to preferential dopamine release at mesolimbic-VTA-caudate-accumbens loci most drugs of abuse and Reward Deficiency Syndrome (RDS) behaviors have been linked to heightened feelings of well-being and hyperdopaminergic states.The “dopamine hypotheses” originally thought to be simple, is now believed to be quite complex and involves encoding the set point of hedonic tone, encoding attention, reward expectancy, and incentive motivation. Importantly, Willuhn et al. shows that in a self-administration paradigm, (chronic) excessive use of cocaine is caused by decreased phasic dopamine signaling in the striatum. In terms of chronic addictions, others have shown a blunted responsivity at brain reward sites with food, nicotine, and even gambling behavior. Finally, we are cognizant of the differences in dopaminergic function as addiction progresses and argue that relapse may be tied

  13. Endocannabinoid signaling system and brain reward: emphasis on dopamine.

    PubMed

    Gardner, Eliot L

    2005-06-01

    The brain's reward circuitry consists of an "in series" circuit of dopaminergic (DA) neurons in the ventral tegmental area (VTA), nucleus accumbens (Acb), and that portion of the medial forebrain bundle (MFB) which links the VTA and Acb. Drugs which enhance brain reward (and have derivative addictive potential) have common actions on this core DA reward system and on animal behaviors relating to its function. Such drugs enhance electrical brain-stimulation reward in this reward system; enhance neural firing and DA tone within it; produce conditioned place preference (CPP), a behavioral model of incentive motivation; are self-administered; and trigger reinstatement of drug-seeking behavior in animals extinguished from drug self-administration. Cannabinoids were long considered different from other reward-enhancing drugs in reward efficacy and in underlying neurobiological substrates activated. However, it is now clear that cannabinoids activate these brain reward processes and reward-related behaviors in similar fashion to other reward-enhancing drugs. This brief review discusses the roles that endogenous cannabinoids (especially activation of the CB1 receptor) may play within the core reward system, and concludes that while cannabinoids activate the reward pathways in a manner consistent with other reward-enhancing drugs, the neural mechanisms by which this occurs may differ.

  14. Chronic Carbamazepine Administration Attenuates Dopamine D2-like Receptor-Initiated Signaling via Arachidonic Acid in Rat Brain

    PubMed Central

    Chang, Lisa; Chen, Mei; Bell, Jane M.; Rapoport, Stanley I.

    2016-01-01

    Observations that dopaminergic antagonists are beneficial in bipolar disorder and that dopaminergic agonists can produce mania suggest that bipolar disorder involves excessive dopaminergic transmission. Thus, mood stabilizers used to treat the disease might act in part by downregulating dopaminergic transmission. In agreement, we reported that dopamine D2-like receptor mediated signaling involving arachidonic acid (AA, 20:4n-6) was downregulated in rats chronically treated with lithium. To see whether chronic carbamazepine, another mood stabilizer, did this as well, we injected i.p. saline or the D2-like receptor agonist, quinpirole (1 mg/kg), into unanesthetized rats that had been pretreated for 30 days with i.p. carbamazepine (25 mg/kg/day) or vehicle, and used quantitative autoradiography to measure regional brain incorporation coefficients (k*) for AA, markers of signaling. We also measured brain prostaglandin E2 (PGE2), an AA metabolite. In vehicle-treated rats, quinpirole compared with saline significantly increased k* for AA in 35 of 82 brain regions examined, as well as brain PGE2 concentration. Affected regions belong to dopaminergic circuits and have high D2-like receptor densities. Chronic carbamazepine pretreatment prevented the quinpirole-induced increments in k* and in PGE2. These findings are consistent with the hypothesis that effective mood stabilizers generally downregulate brain AA signaling via D2-like receptors, and that this signaling is upregulated in bipolar disorder. PMID:18302021

  15. Nutrients affecting brain composition and behavior

    NASA Technical Reports Server (NTRS)

    Wurtman, R. J.

    1987-01-01

    This review examines the changes in brain composition and in various brain functions, including behavior, that can follow the ingestion of particular foods or nutrients. It details those that are best understood: the increases in serotonin, catecholamine, or acetylcholine synthesis that can occur subsequent to food-induced increases in brain levels of tryptophan, tyrosine, or choline; it also discusses the various processes that must intervene between the mouth and the synapse, so to speak, in order for a nutrient to affect neurotransmission, and it speculates as to additional brain chemicals that may ultimately be found to be affected by changes in the availability of their nutrient precursors. Because the brain chemicals best known to be nutrient dependent overlap with those thought to underlie the actions of most of the drugs used to treat psychiatric diseases, knowledge of this dependence may help the psychiatrist to understand some of the pathologic processes occurring in his/her patients, particularly those with appetitive symptoms. At the very least, such knowledge should provide the psychiatrist with objective criteria for judging when to take seriously assertions that particular foods or nutrients do indeed affect behavior (e.g., in hyperactive children). If the food can be shown to alter neurotransmitter release, it may be behaviorally-active; however, if it lacks a discernible neurochemical effect, the likelihood that it really alters behavior is small.

  16. Mechanisms of amphetamine action illuminated through optical monitoring of dopamine synaptic vesicles in Drosophila brain

    PubMed Central

    Freyberg, Zachary; Sonders, Mark S.; Aguilar, Jenny I.; Hiranita, Takato; Karam, Caline S.; Flores, Jorge; Pizzo, Andrea B.; Zhang, Yuchao; Farino, Zachary J.; Chen, Audrey; Martin, Ciara A.; Kopajtic, Theresa A.; Fei, Hao; Hu, Gang; Lin, Yi-Ying; Mosharov, Eugene V.; McCabe, Brian D.; Freyberg, Robin; Wimalasena, Kandatege; Hsin, Ling-Wei; Sames, Dalibor; Krantz, David E.; Katz, Jonathan L.; Sulzer, David; Javitch, Jonathan A.

    2016-01-01

    Amphetamines elevate extracellular dopamine, but the underlying mechanisms remain uncertain. Here we show in rodents that acute pharmacological inhibition of the vesicular monoamine transporter (VMAT) blocks amphetamine-induced locomotion and self-administration without impacting cocaine-induced behaviours. To study VMAT's role in mediating amphetamine action in dopamine neurons, we have used novel genetic, pharmacological and optical approaches in Drosophila melanogaster. In an ex vivo whole-brain preparation, fluorescent reporters of vesicular cargo and of vesicular pH reveal that amphetamine redistributes vesicle contents and diminishes the vesicle pH-gradient responsible for dopamine uptake and retention. This amphetamine-induced deacidification requires VMAT function and results from net H+ antiport by VMAT out of the vesicle lumen coupled to inward amphetamine transport. Amphetamine-induced vesicle deacidification also requires functional dopamine transporter (DAT) at the plasma membrane. Thus, we find that at pharmacologically relevant concentrations, amphetamines must be actively transported by DAT and VMAT in tandem to produce psychostimulant effects. PMID:26879809

  17. Short-term manganese inhalation decreases brain dopamine transporter levels without disrupting motor skills in rats.

    PubMed

    Saputra, Devina; Chang, JuOae; Lee, Byeong-Jae; Yoon, Jin-Ha; Kim, Jonghan; Lee, Kyuhong

    2016-01-01

    Manganese (Mn) is used in industrial metal alloys and can be released into the atmosphere during methylcyclopentadienyl manganese tricarbonyl combustion. Increased Mn deposition in the brain after long-term exposure to the metal by inhalation is associated with altered dopamine metabolism and neurobehavioral problems, including impaired motor skills. However, neurotoxic effects of short-term exposure to inhaled Mn are not completely characterized. The purpose of this study is to define the neurobehavioral and neurochemical effects of short-term inhalation exposure to Mn at a high concentration using rats. Male Sprague-Dawley rats were exposed to MnCl2 aerosol in a nose-only inhalation chamber for 3 weeks (1.2 µm, 39 mg/m(3)). Motor coordination was tested on the day after the last exposure using a rotarod device at a fixed speed of 10 rpm for 2 min. Also, dopamine transporter and dopamine receptor protein expression levels in the striatum region of the brain were determined by Western blot analysis. At a rotarod speed of 10 rpm, there were no significant differences in the time on the bar before the first fall or the number of falls during the two-minute test observed in the exposed rats, as compared with controls. The Mn-exposed group had significantly higher Mn levels in the lung, blood, olfactory bulb, prefrontal cortex, striatum, and cerebellum compared with the control group. A Mn concentration gradient was observed from the olfactory bulb to the striatum, supporting the idea that Mn is transported via the olfactory pathway. Our results demonstrated that inhalation exposure to 39 mg/m(3) Mn for 3 weeks induced mild lung injury and modulation of dopamine transporter expression in the brain, without altering motor activity.

  18. Quantitation of dopamine, serotonin and adenosine content in a tissue punch from a brain slice using capillary electrophoresis with fast-scan cyclic voltammetry detection.

    PubMed

    Fang, Huaifang; Pajski, Megan L; Ross, Ashley E; Venton, B Jill

    2013-01-01

    Methods to determine neurochemical concentrations in small samples of tissue are needed to map interactions among neurotransmitters. In particular, correlating physiological measurements of neurotransmitter release and the tissue content in a small region would be valuable. HPLC is the standard method for tissue content analysis but it requires microliter samples and the detector often varies by the class of compound being quantified; thus detecting molecules from different classes can be difficult. In this paper, we develop capillary electrophoresis with fast-scan cyclic voltammetry detection (CE-FSCV) for analysis of dopamine, serotonin, and adenosine content in tissue punches from rat brain slices. Using field-amplified sample stacking, the limit of detection was 5 nM for dopamine, 10 nM for serotonin, and 50 nM for adenosine. Neurotransmitters could be measured from a tissue punch as small as 7 µg (7 nL) of tissue, three orders of magnitude smaller than a typical HPLC sample. Tissue content analysis of punches in successive slices through the striatum revealed higher dopamine but lower adenosine content in the anterior striatum. Stimulated dopamine release was measured in a brain slice, then a tissue punch collected from the recording region. Dopamine content and release had a correlation coefficient of 0.71, which indicates much of the variance in stimulated release is due to variance in tissue content. CE-FSCV should facilitate measurements of tissue content in nanoliter samples, leading to a better understanding of how diseases or drugs affect dopamine, serotonin, and adenosine content.

  19. Miniaturized and Wireless Optical Neurotransmitter Sensor for Real-Time Monitoring of Dopamine in the Brain

    PubMed Central

    Kim, Min H.; Yoon, Hargsoon; Choi, Sang H.; Zhao, Fei; Kim, Jongsung; Song, Kyo D.; Lee, Uhn

    2016-01-01

    Real-time monitoring of extracellular neurotransmitter concentration offers great benefits for diagnosis and treatment of neurological disorders and diseases. This paper presents the study design and results of a miniaturized and wireless optical neurotransmitter sensor (MWONS) for real-time monitoring of brain dopamine concentration. MWONS is based on fluorescent sensing principles and comprises a microspectrometer unit, a microcontroller for data acquisition, and a Bluetooth wireless network for real-time monitoring. MWONS has a custom-designed application software that controls the operation parameters for excitation light sources, data acquisition, and signal processing. MWONS successfully demonstrated a measurement capability with a limit of detection down to a 100 nanomole dopamine concentration, and high selectivity to ascorbic acid (90:1) and uric acid (36:1). PMID:27834927

  20. Polychlorinated biphenyls and methylmercury act synergistically to reduce rat brain dopamine content in vitro.

    PubMed Central

    Bemis, J C; Seegal, R F

    1999-01-01

    Consumption of contaminated Great Lakes fish by pregnant women is associated with decreased birth weight and deficits in cognitive function in their infants and children. These fish contain many known and suspected anthropogenic neurotoxicants, making it difficult to determine which contaminant(s) are responsible for the observed deficits. We have undertaken a series of experiments to determine the relevant toxicants by comparing the neurotoxic effects of two of these contaminants--polychlorinated biphenyls (PCBs) and methylmercury (MeHg)--both of which are recognized neurotoxicants. Striatal punches obtained from adult rat brain were exposed to PCBs only, MeHg only, or the two in combination, and tissue and media concentrations of dopamine (DA) and its metabolites were determined by high performance liquid chromatography. Exposure to PCBs only reduced tissue DA and elevated media DA in a dose-dependent fashion. Exposure to MeHg only did not significantly affect either measure. However, when striatal punches were simultaneously exposed to PCBs and MeHg, there were significantly greater decreases in tissue DA concentrations and elevations in media DA than those caused by PCBs only, in the absence of changes in media lactate dehydrogenase concentrations. Elevations in both tissue and media 3, 4-dihydroxyphenylacetic acid concentrations were also observed. We suggest that the significant interactions between these two toxicants may be due to a common site of action (i.e., toxicant-induced increases in intracellular calcium and changes in second messenger systems) that influences DA function. The synergism between these contaminants suggests that future revisions of fish-consumption guidelines should consider contaminant interactions. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:10544155

  1. The novel nonapeptide acein targets angiotensin converting enzyme in the brain and induces dopamine release

    PubMed Central

    Neasta, Jérémie; Valmalle, Charlène; Coyne, Anne‐Claire; Carnazzi, Eric; Subra, Gilles; Galleyrand, Jean‐Claude; Gagne, Didier; M'Kadmi, Céline; Bernad, Nicole; Bergé, Gilbert; Cantel, Sonia; Marin, Philippe; Marie, Jacky; Banères, Jean‐Louis; Kemel, Marie‐Lou; Daugé, Valérie; Puget, Karine

    2016-01-01

    Background and Purpose Using an in‐house bioinformatics programme, we identified and synthesized a novel nonapeptide, H‐Pro‐Pro‐Thr‐Thr‐Thr‐Lys‐Phe‐Ala‐Ala‐OH. Here, we have studied its biological activity, in vitro and in vivo, and have identified its target in the brain. Experimental Approach The affinity of the peptide was characterized using purified whole brain and striatal membranes from guinea pigs and rats . Its effect on behaviour in rats following intra‐striatal injection of the peptide was investigated. A photoaffinity UV cross‐linking approach combined with subsequent affinity purification of the ligand covalently bound to its receptor allowed identification of its target. Key Results The peptide bound with high affinity to a single class of binding sites, specifically localized in the striatum and substantia nigra of brains from guinea pigs and rats. When injected within the striatum of rats, the peptide stimulated in vitro and in vivo dopamine release and induced dopamine‐like motor effects. We purified the target of the peptide, a ~151 kDa protein that was identified by MS/MS as angiotensin converting enzyme (ACE I). Therefore, we decided to name the peptide acein. Conclusion and Implications The synthetic nonapeptide acein interacted with high affinity with brain membrane‐bound ACE. This interaction occurs at a different site from the active site involved in the well‐known peptidase activity, without modifying the peptidase activity. Acein, in vitro and in vivo, significantly increased stimulated release of dopamine from the brain. These results suggest a more important role for brain ACE than initially suspected. PMID:27027724

  2. Decreased vesicular monoamine transporter 2 (VMAT2) and dopamine transporter (DAT) function in knockout mice affects aging of dopaminergic systems

    PubMed Central

    Hall, F. S.; Itokawa, K.; Schmitt, A.; Moessner, R.; Sora, I.; Lesch, K. P.; Uhl, G. R.

    2013-01-01

    Dopamine (DA) is accumulated and compartmentalized by the dopamine transporter (DAT; SLC3A6) and the vesicular monoamine transporter 2 (VMAT2; SLC18A2). These transporters work at the plasma and vesicular membranes of dopaminergic neurons, respectively, and thus regulate levels of DA in neuronal compartments that include the extravesicular cytoplasmic compartment. DA in this compartment has been hypothesized to contribute to oxidative damage that can reduce the function of dopaminergic neurons in aging brains and may contribute to reductions in dopaminergic neurochemical markers, locomotor behavior and responses to dopaminergic drugs that are found in aged animals. The studies reported here examined aged mice with heterozygous deletions of VMAT2 or of DAT, which each reduce transporter expression to about 50% of levels found in wild-type (WT) mice. Aged mice displayed reduced locomotor responses under a variety of circumstances, including in response to locomotor stimulants, as well as changes in monoamine levels and metabolites in a regionally dependent manner. Several effects of aging were more pronounced in heterozygous VMAT2 knockout (KO) mice, including aging induced reductions in locomotion and reduced locomotor responses to cocaine. By contrast, some effects of aging were reduced or not observed in heterozygous DAT KO mice. These findings support the idea that altered DAT and VMAT2 expression affect age-related changes in dopaminergic function. These effects are most likely mediated by alterations in DA compartmentalization, and might be hypothesized to be more exacerbated by other factors that affect the metabolism of cytosolic DA. PMID:23978383

  3. In vivo comparison of norepinephrine and dopamine release in rat brain by simultaneous measurements with fast-scan cyclic voltammetry.

    PubMed

    Park, Jinwoo; Takmakov, Pavel; Wightman, R Mark

    2011-12-01

    Brain norepinephrine and dopamine regulate a variety of critical behaviors such as stress, learning, memory, and drug addiction. In this study, we demonstrate differences in the regulation of in vivo neurotransmission for dopamine in the anterior nucleus accumbens (NAc) and norepinephrine in the ventral bed nucleus of the stria terminalis (vBNST) of the anesthetized rat. Release of the two catecholamines was measured simultaneously using fast-scan cyclic voltammetry at two different carbon-fiber microelectrodes, each implanted in the brain region of interest. Simultaneous dopamine and norepinephrine release was evoked by electrical stimulation of a region where the ventral noradrenergic bundle, the pathway of noradrenergic neurons, courses through the ventral tegmental area/substantia nigra, the origin of dopaminergic cell bodies. The release and uptake of norepinephrine in the vBNST were both significantly slower than for dopamine in the NAc. Pharmacological manipulations in the same animal demonstrated that the two catecholamines are differently regulated. The combination of a dopamine autoreceptor antagonist and amphetamine significantly increased basal extracellular dopamine whereas a norepinephrine autoreceptor antagonist and amphetamine did not change basal norepinephrine concentration. α-Methyl-p-tyrosine, a tyrosine hydroxylase inhibitor, decreased electrically evoked dopamine release faster than norepinephrine. The dual-microelectrode fast-scan cyclic voltammetry technique along with anatomical and pharmacological evidence confirms that dopamine in the NAc and norepinephrine in the vBNST can be monitored selectively and simultaneously in the same animal. The high temporal and spatial resolution of the technique enabled us to examine differences in the dynamics of extracellular norepinephrine and dopamine concurrently in two different limbic structures.

  4. Affective brain-computer music interfacing

    NASA Astrophysics Data System (ADS)

    Daly, Ian; Williams, Duncan; Kirke, Alexis; Weaver, James; Malik, Asad; Hwang, Faustina; Miranda, Eduardo; Nasuto, Slawomir J.

    2016-08-01

    Objective. We aim to develop and evaluate an affective brain-computer music interface (aBCMI) for modulating the affective states of its users. Approach. An aBCMI is constructed to detect a user's current affective state and attempt to modulate it in order to achieve specific objectives (for example, making the user calmer or happier) by playing music which is generated according to a specific affective target by an algorithmic music composition system and a case-based reasoning system. The system is trained and tested in a longitudinal study on a population of eight healthy participants, with each participant returning for multiple sessions. Main results. The final online aBCMI is able to detect its users current affective states with classification accuracies of up to 65% (3 class, p\\lt 0.01) and modulate its user's affective states significantly above chance level (p\\lt 0.05). Significance. Our system represents one of the first demonstrations of an online aBCMI that is able to accurately detect and respond to user's affective states. Possible applications include use in music therapy and entertainment.

  5. Diagnosing pseudobulbar affect in traumatic brain injury

    PubMed Central

    Engelman, William; Hammond, Flora M; Malec, James F

    2014-01-01

    Pseudobulbar affect (PBA) is defined by episodes of involuntary crying and/or laughing as a result of brain injury or other neurological disease. Epidemiology studies show that 5.3%–48.2% of people with traumatic brain injury (TBI) may have symptoms consistent with (or suggestive of) PBA. Yet it is a difficult and often overlooked condition in individuals with TBI, and is easily confused with depression or other mood disorders. As a result, it may be undertreated and persist for longer than it should. This review presents the signs and symptoms of PBA in patients with existing TBI and outlines how to distinguish PBA from other similar conditions. It also compares and contrasts the different diagnostic criteria found in the literature and briefly mentions appropriate treatments. This review follows a composite case with respect to the clinical course and treatment for PBA and presents typical challenges posed to a provider when diagnosing PBA. PMID:25336956

  6. Effects of dopamine D1 receptor activation and blockade on dopamine and noradrenaline levels in the rat brain.

    PubMed

    Avila-Luna, Alberto; Verduzco-Mendoza, Antonio; Bueno-Nava, Antonio

    2016-01-26

    The noradrenergic and dopaminergic systems are associated with the motor system and have anatomical and functional connections that have not yet been studied. The present study aimed to examine the specific role of D1 receptors (D1Rs) on noradrenergic and dopaminergic responses in the rat brain. Male Wistar rats were assigned to eight groups to receive systemic injection of a D1R agonist (SKF-38393) at 0, 1, 5 or 10mg/kg or injection of a D1R antagonist (SCH-23390) at 0, 0.25, 0.5 or 1mg/kg. Dopamine (DA) and noradrenaline (NA) levels were measured using high-performance liquid chromatography. Injection of SKF-38393 alone at 1, 5 and 10mg/kg did not alter DA levels in the midbrain, cerebral cortex or pons, while it significantly increased these levels in the striatum (at 1 and 10mg/kg), hippocampus (at 1mg/kg) and cerebellum (at 1 and 5mg/kg). Administration of SKF-38393 at 1, 5, and 10mg/kg decreased the NA levels in the midbrain, pons, hippocampus (except at 1mg/kg) and cortex (except at 5mg/kg), whereas the opposite effect was observed in the striatum. SCH-23390 decreased the DA levels in the cortex (at 0.25 and 0.5mg/kg) and pons (at 0.5mg/kg). In contrast, 0.25, 0.5 and 1mg/kg SCH-23390 increased the DA levels in the cerebellum, whereas no differences from the control levels were observed for the DA levels in the striatum, midbrain and hippocampus. SCH-23390 at 0.5 and 1mg/kg increased the NA levels in the striatum. In contrast, the midbrain, hippocampus, cortex, pons and cerebellum did not exhibit altered NA levels. Our results demonstrate that the activation of D1Rs modulates the response of the noradrenergic system in nearly all of the investigated brain structures; thus, the blockade of D1Rs attenuates the effects induced by D1R activation.

  7. Effects of cadmium on the uptake of dopamine and norepinephrine in rat brain synaptosomes

    SciTech Connect

    Not Available

    1986-09-01

    Cadmium (Cd) a known environmental contaminant is neurotoxic. Kinetics of cadmium inhibition indicate that the metal may compete with ATP and Na/sup +/ sites on Na/sup +/-K/sup +/ ATPase in rat brain synaptosomes. Uptake and release processes of catecholamines into the central nervous system are dependent on membrane bound Na/sup +/-K/sup +/ ATPase. It is suggested that the uptake and release processes of dopamine (DA) and norepinephrine (NE) in neurons are energy utilizing and hence are dependent on active ion transport. If the two aforementioned mechanisms are truly interdependent, then any alteration caused by a toxin to either of the above two mechanisms should also cause a parallel change in the other. The purpose of this study was to examine in vitro effects of cadmium chloride on the uptake of DA and NE and the activity of ATPase in the rat brain synaptosome.

  8. Evidence that dopamine within motivation and song control brain regions regulates birdsong context-dependently.

    PubMed

    Heimovics, Sarah A; Riters, Lauren V

    2008-09-03

    Vocal communication is critical for successful social interactions among conspecifics, but little is known about how the brain regulates context-appropriate communication. The neurotransmitter dopamine (DA) is involved in modulating highly motivated, goal-directed behaviors (including sexually motivated singing behavior), and emerging data suggest that the role of DA in vocal communication may differ depending on the context in which it occurs. To address this possibility, relationships between immunolabeled tyrosine hydroxylase (TH, the rate-limiting enzyme in catecholamine synthesis) and song produced within versus outside of a breeding context were explored in male European starlings (Sturnus vulgaris). Immunocytochemistry for dopamine beta-hydroxylase (DBH; the enzyme that converts DA to norepinephrine) was also performed to provide insight into whether relationships between song and TH immunoreactivity reflected dopaminergic or noradrenergic neurotransmission. Measures of TH and DBH were quantified in song control regions (HVC, Area X, robust nucleus of the acropallium) and regions implicated in motivation (medial preoptic nucleus (POM), ventral tegmental area (VTA), and midbrain central gray). In Area X, POM, and VTA measures of TH correlated with song produced within, but not outside of a breeding context. DBH in these regions did not correlate with song in either context. Together, these data suggest DA in both song control and motivation brain regions may be more tightly linked to the regulation of highly goal-directed, sexually motivated vocal behavior.

  9. Effects of isomers of apomorphines on dopamine receptors in striatal and limbic tissue of rat brain

    SciTech Connect

    Kula, N.S.; Baldessarini, R.J.; Bromley, S.; Neumeyer, J.L.

    1985-09-16

    The optical isomers of apomorphine (APO) and N-propylnorapomorphine (NPA) were interacted with three biochemical indices of dopamine (Da) receptors in extrapyramidal and limbic preparations of rat brain tissues. There were consistent isomeric preferences for the R(-) configuration of both DA analogs in stimulation adenylate cyclase (D-1 sites) and in competing for high affinity binding of /sup 3/H-spiroperidol (D-2 sites) and of /sup 3/H-ADTN (DA agonist binding sites) in striatal tissue, with lesser isomeric differences in the limbic tissue. The S(+) apomorphines did not inhibit stimulation of adenylate cyclase by DA. The tendency for greater activity of higher apparent affinity of R(-) apomorphines in striatum may reflect the evidently greater abundance of receptor sites in that region. There were only small regional differences in interactions of the apomorphine isomers with all three receptor sites, except for a strong preference of (-)NPA for striatal D-2 sites. These results do not parallel our recent observations indicating potent and selective antidopaminergic actions of S(+) apomorphines in the rat limbic system. They suggest caution in assuming close parallels between current biochemical functional, especially behavioral, methods of evaluating dopamine receptors of mammalian brain.

  10. Examining the complex regulation and drug-induced plasticity of dopamine release and uptake using voltammetry in brain slices.

    PubMed

    Ferris, Mark J; Calipari, Erin S; Yorgason, Jordan T; Jones, Sara R

    2013-05-15

    Fast scan cyclic voltammetry in brain slices (slice voltammetry) has been used over the last several decades to increase substantially our understanding of the complex local regulation of dopamine release and uptake in the striatum. This technique is routinely used for the study of changes that occur in the dopamine system associated with various disease states and pharmacological treatments, and to study mechanisms of local circuitry regulation of dopamine terminal function. In the context of this Review, we compare the relative advantages of voltammetry using striatal slice preparations versus in vivo preparations, and highlight recent advances in our understanding of dopamine release and uptake in the striatum specifically from studies that use slice voltammetry in drug-naïve animals and animals with a history of psychostimulant self-administration.

  11. Effects of exposure to pyrethroid cyfluthrin on serotonin and dopamine levels in brain regions of male rats.

    PubMed

    Rodríguez, J L; Ares, I; Castellano, V; Martínez, M; Martínez-Larrañaga, M R; Anadón, A; Martínez, M A

    2016-04-01

    The effects of cyfluthrin oral exposure (1, 5, 10 and 20mg/kg bw, 6 days) on brain region monoamine levels of male rats were examined. Cyfluthrin-treated rats (1, 5 and 10mg/kg bw, orally 6 days), had no visible injury, i.e., no clinical signs of dysfunction were observed. However, rats treated with cyfluthrin at the highest dose (20mg/kg bw, orally 6 days) showed skeletal muscle contraction in the hind limbs, slight movement incoordination without any signs of dyskinesia and tremor after 1-2h of treatment. These signs were reversible at 6h after dose. After last dose of cyfluthrin, dopamine (DA) and serotonin (5-HT) and its metabolites levels were determined in brain regions hypothalamus, midbrain, hippocampus, striatum and prefrontal cortex by HPLC. Cyfluthrin (1mg/kg bw, orally 6 days) did not affect the DA, 5-HT and metabolites levels in the brain regions studied. Cyfluthrin (5, 10 and 20mg/kg bw, orally 6 days) caused a statistically significant decrease in DA and its metabolites DOPAC and HVA levels and in 5-HT and its metabolite 5-HIAA levels in a brain region- and dose-related manner. Moreover, cyfluthrin (20mg/kg bw, orally 6 days) evoked a statistically significant increase in 5-HT turnover in striatum and midbrain, and in DA turnover in striatum and prefrontal cortex. These findings indicate that serotoninergic and dopaminergic neurotransmission is affected by exposure to cyfluthrin and may contribute to the overall spectrum of neurotoxicity caused by this pyrethroid.

  12. Dopamine transporter DAT and receptor DRD2 variants affect risk of lethal cocaine abuse: a gene–gene–environment interaction

    PubMed Central

    Sullivan, D; Pinsonneault, J K; Papp, A C; Zhu, H; Lemeshow, S; Mash, D C; Sadee, W

    2013-01-01

    Epistatic gene–gene interactions could contribute to the heritability of complex multigenic disorders, but few examples have been reported. Here, we focus on the role of aberrant dopaminergic signaling, involving the dopamine transporter DAT, a cocaine target, and the dopamine D2 receptor, which physically interacts with DAT. Splicing polymorphism rs2283265 of DRD2, encoding D2 receptors, were shown to confer risk of cocaine overdose/death (odds ratio ∼3) in subjects and controls from the Miami Dade County Brain Bank.1 Risk of cocaine-related death attributable to the minor allele of rs2283265 was significantly enhanced to OR=7.5 (P=0.0008) in homozygous carriers of the main 6-repeat allele of DAT rs3836790, a regulatory VNTR in intron8 lacking significant effect itself. In contrast, carriers of the minor 5-repeat DAT allele showed no significant risk (OR=1.1, P=0.84). DAT rs3836790 and DRD2 rs2283265 also interacted by modulating DAT protein activity in the ventral putamen of cocaine abusers. In high-linkage disequilibrium with the VNTR, DAT rs6347 in exon9 yielded similar results. Assessing the impact of DAT alone, a rare DAT haplotype formed by the minor alleles of rs3836790 and rs27072, a regulatory DAT variant in the 3′-UTR, occurred in nearly one-third of the cocaine abusers but was absent in African American controls, apparently conferring strong risk. These results demonstrate gene–gene–drug interaction affecting risk of fatal cocaine intoxication. PMID:23340505

  13. Loss of NMDA receptors in dopamine neurons leads to the development of affective disorder-like symptoms in mice

    PubMed Central

    Jastrzębska, Kamila; Walczak, Magdalena; Cieślak, Przemysław Eligiusz; Szumiec, Łukasz; Turbasa, Mateusz; Engblom, David; Błasiak, Tomasz; Parkitna, Jan Rodriguez

    2016-01-01

    The role of changes in dopamine neuronal activity during the development of symptoms in affective disorders remains controversial. Here, we show that inactivation of NMDA receptors on dopaminergic neurons in adult mice led to the development of affective disorder-like symptoms. The loss of NMDA receptors altered activity and caused complete NMDA-insensitivity in dopamine-like neurons. Mutant mice exhibited increased immobility in the forced swim test and a decrease in social interactions. Mutation also led to reduced saccharin intake, however the preference of sweet taste was not significantly decreased. Additionally, we found that while mutant mice were slower to learn instrumental tasks, they were able to reach the same performance levels, had normal sensitivity to feedback and showed similar motivation to exert effort as control animals. Taken together these results show that inducing the loss of NMDA receptor-dependent activity in dopamine neurons is associated with development of affective disorder-like symptoms. PMID:27853270

  14. No evidence of association between dopamine D4 receptor variants and bipolar affective disorder

    SciTech Connect

    Lim, L.C.C.; Castle, D.; Murray, R.

    1994-09-15

    Disturbance in the dopamine neurotransmitter system has been implicated in the pathogenesis of affective disorder. In this study, we examine the possibility that functional variants of the recently cloned dopamine D4 receptor gene contribute to the genetic component of manic depression. The polymorphism, a 48 bp tandem repeat coding for part of the third cytoplasmic loop, was detected using a PCR based method. In a first sample of 57 patients and 59 controls, we found allele 7 to be in excess in the patients. In contrast, allele 3 was less frequent in patients. A second, larger sample of 90 patients and 91 controls was utilized to test these hypotheses. Data from the two samples were then pooled together for further analyses. We calculated the power of our samples, and if the frequency of 7 repeat allele obtained from sample 1 is true, i.e., 25% (28/114) for patients and 14% (16/188) for controls, then the power of the combined sample is 62% at 5% (two-tailed) significance level. However, both observations were not replicated; we therefore conclude that variations in this repeat of the DRD4 gene do not contribute to the genetic component of manic depression. 51 refs., 5 tabs.

  15. Grafted dopamine neurons: Morphology, neurochemistry, and electrophysiology.

    PubMed

    Strömberg, Ingrid; Bickford, Paula; Gerhardt, Greg A

    2010-02-09

    Grafting of dopamine-rich tissue to counteract the symptoms in Parkinson's disease became a promising tool for future treatment. This article discusses how to improve the functional outcome with respect to graft outgrowth and functions of dopamine release and electrophysiological responses to graft implantation in the host brain striatal target. It has been documented that a subpopulation of the dopamine neurons innervates the host brain in a target-specific manner, while some of the grafted dopamine neurons never project to the host striatum. Neurochemical studies have demonstrated that the graft-induced outgrowth synthesize, store, metabolize and release dopamine and possibly other neurotransmitters such as 5-HT. Furthermore, the released dopamine affects the dopamine-depleted brain in areas that are larger than the graft-derived nerve fibers reach. While stem cells will most likely be the future source of cells to be used in grafting, it is important to find the guiding cues for how to reinnervate the dopamine-depleted striatum in a proper way with respect to the dopamine subpopulations of A9 and A10 to efficiently treat the motor abnormalities seen in Parkinson's disease.

  16. Insulin resistance in brain alters dopamine turnover and causes behavioral disorders

    PubMed Central

    Kleinridders, Andre; Cai, Weikang; Cappellucci, Laura; Ghazarian, Armen; Collins, William R.; Vienberg, Sara G.; Pothos, Emmanuel N.; Kahn, C. Ronald

    2015-01-01

    Diabetes and insulin resistance are associated with altered brain imaging, depression, and increased rates of age-related cognitive impairment. Here we demonstrate that mice with a brain-specific knockout of the insulin receptor (NIRKO mice) exhibit brain mitochondrial dysfunction with reduced mitochondrial oxidative activity, increased levels of reactive oxygen species, and increased levels of lipid and protein oxidation in the striatum and nucleus accumbens. NIRKO mice also exhibit increased levels of monoamine oxidase A and B (MAO A and B) leading to increased dopamine turnover in these areas. Studies in cultured neurons and glia cells indicate that these changes in MAO A and B are a direct consequence of loss of insulin signaling. As a result, NIRKO mice develop age-related anxiety and depressive-like behaviors that can be reversed by treatment with MAO inhibitors, as well as the tricyclic antidepressant imipramine, which inhibits MAO activity and reduces oxidative stress. Thus, insulin resistance in brain induces mitochondrial and dopaminergic dysfunction leading to anxiety and depressive-like behaviors, demonstrating a potential molecular link between central insulin resistance and behavioral disorders. PMID:25733901

  17. Possible association between the dopamine D3 receptor gene and bipolar affective disorder

    SciTech Connect

    Todd, R.D.; Chakraverty, S.; Parsian, A.

    1994-09-01

    A variety of studies have reported possible genetic associations between bipolar affective disorder and different loci using relative risk approaches. An alternative approach is to determine untransmitted genotypes from families selected through a single affected individual. We have used both approaches to test for possible associations between alleles of the dopamine D3 receptor gene and bipolar affective disorder. For relative risk studies, the probands of multiple incidence bipolar affective disorder (n=66) and alcoholism (n=132) families and psychiatric normal controls (n=91) have been compared. Non-transmitted allele approaches have used bipolar affective disorder (n=28) and alcoholic (n=25) probands in which both parents were available for genotyping. Using the Bal I restriction enzyme site polymorphism of Lannfelt, we have found no differences in the allele or genotype frequencies for bipolar or alcoholic probands versus psychiatrically normal controls. In contrast, we have found evidence for an increased frequency of allele 1 and allele 1 containing genotypes in transmitted alleles from bipolar families.

  18. Possible association between the dopamine D{sub 3} receptor gene and bipolar affective disorder

    SciTech Connect

    Parsian, A.; Chakraverty, S.; Todd, R.D.

    1995-06-19

    A variety of studies have reported possible genetic associations between bipolar affective disorder and different loci using relative risk (case-control) comparisons. An alternative approach is to construct a contrast group using parental alleles which were not transmitted to an affected individual. We have used both approaches to test for possible associations between alleles of the dopamine D{sub 3} receptor gene and bipolar affective disorder. For relative risk studies, the probands of multiple incidence bipolar affective disorder families have been compared to alcoholic and psychiatrically normal contrast groups. Nontransmitted allele approaches have used bipolar affective disorder and alcoholic probands in which both parents were available for genotyping. Using the BalI restriction enzyme site polymorphism of Lannfelt et al., we have found no differences in the allele or genotype frequencies for bipolar vs. alcoholic or psychiatrically normal controls. In contrast, we have found evidence for an increased frequency of allele 1 and allele 1 containing genotypes in transmitted alleles from bipolar families. 21 refs., 4 tabs.

  19. Western Diet Chow Consumption in Rats Induces Striatal Neuronal Activation While Reducing Dopamine Levels without Affecting Spatial Memory in the Radial Arm Maze.

    PubMed

    Nguyen, Jason C D; Ali, Saher F; Kosari, Sepideh; Woodman, Owen L; Spencer, Sarah J; Killcross, A Simon; Jenkins, Trisha A

    2017-01-01

    Rats fed high fat diets have been shown to be impaired in hippocampal-dependent behavioral tasks, such as spatial recognition in the Y-maze and reference memory in the Morris water maze (MWM). It is clear from previous studies, however, that motivation and reward factor into the memory deficits associated with obesity and high-fat diet consumption, and that the prefrontal cortex and striatum and neurotransmitter dopamine play important roles in cognitive performance. In this series of studies we extend our research to investigate the effect of a high fat diet on striatal neurochemistry and performance in the delayed spatial win-shift radial arm maze task, a paradigm highly reliant on dopamine-rich brain regions, such as the striatum after high fat diet consumption. Memory performance, neuronal activation and brain dopaminergic levels were compared in rats fed a "Western" (21% fat, 0.15% cholesterol) chow diet compared to normal diet (6% fat, 0.15% cholesterol)-fed controls. Twelve weeks of dietary manipulation produced an increase in weight in western diet-fed rats, but did not affect learning and performance in the delayed spatial win-shift radial arm maze task. Concurrently, there was an observed decrease in dopamine levels in the striatum and a reduction of dopamine turnover in the hippocampus in western diet-fed rats. In a separate cohort of rats Fos levels were measured after rats had been placed in a novel arena and allowed to explore freely. In normal rats, this exposure to a unique environment did not affect neuronal activation. In contrast, rats fed a western diet were found to have significantly increased Fos expression in the striatum, but not prefrontal cortex or hippocampus. Our study demonstrates that while western diet consumption in rats produces weight gain and brain neuronal and neurotransmitter changes, it did not affect performance in the delayed spatial win-shift paradigm in the radial arm maze. We conclude that modeling the cognitive decline

  20. Western Diet Chow Consumption in Rats Induces Striatal Neuronal Activation While Reducing Dopamine Levels without Affecting Spatial Memory in the Radial Arm Maze

    PubMed Central

    Nguyen, Jason C. D.; Ali, Saher F.; Kosari, Sepideh; Woodman, Owen L.; Spencer, Sarah J.; Killcross, A. Simon; Jenkins, Trisha A.

    2017-01-01

    Rats fed high fat diets have been shown to be impaired in hippocampal-dependent behavioral tasks, such as spatial recognition in the Y-maze and reference memory in the Morris water maze (MWM). It is clear from previous studies, however, that motivation and reward factor into the memory deficits associated with obesity and high-fat diet consumption, and that the prefrontal cortex and striatum and neurotransmitter dopamine play important roles in cognitive performance. In this series of studies we extend our research to investigate the effect of a high fat diet on striatal neurochemistry and performance in the delayed spatial win-shift radial arm maze task, a paradigm highly reliant on dopamine-rich brain regions, such as the striatum after high fat diet consumption. Memory performance, neuronal activation and brain dopaminergic levels were compared in rats fed a “Western” (21% fat, 0.15% cholesterol) chow diet compared to normal diet (6% fat, 0.15% cholesterol)-fed controls. Twelve weeks of dietary manipulation produced an increase in weight in western diet-fed rats, but did not affect learning and performance in the delayed spatial win-shift radial arm maze task. Concurrently, there was an observed decrease in dopamine levels in the striatum and a reduction of dopamine turnover in the hippocampus in western diet-fed rats. In a separate cohort of rats Fos levels were measured after rats had been placed in a novel arena and allowed to explore freely. In normal rats, this exposure to a unique environment did not affect neuronal activation. In contrast, rats fed a western diet were found to have significantly increased Fos expression in the striatum, but not prefrontal cortex or hippocampus. Our study demonstrates that while western diet consumption in rats produces weight gain and brain neuronal and neurotransmitter changes, it did not affect performance in the delayed spatial win-shift paradigm in the radial arm maze. We conclude that modeling the cognitive

  1. Characterization of reduced and oxidized dopamine and 3,4-dihydrophenylacetic acid, on brain mitochondrial electron transport chain activities.

    PubMed

    Gautam, Alpa H; Zeevalk, Gail D

    2011-07-01

    Loss of dopamine (DA) homeostasis may be a contributing factor to cell damage in Parkinson's disease (PD). Past studies showing deleterious effects of DA on mitochondrial function, however, have been inconsistent raising questions about mitochondria as a downstream target for DA. Issues such as the dopamine species i.e., reduced or oxidized, time of exposure and the effect of major metabolites such as 3,4-dihydrophenylacetic acid (DOPAC) may contribute to the disparate findings. The present study used isolated, lysed rat brain mitochondria to characterize the effects of oxidized or reduced DA and DOPAC on complex activities of the electron transport chain (ETC). Time of exposure and quantitation of reduced or oxidized catachols for DA and DOPAC were monitored for all experiments. Reduced DA and DOPAC with or without a 30min preincubation had no affect on NADH oxidase activity which monitors the activities of complexes I, III and IV. Complex II activity was inhibited by reduced DA (≥500μM), but not by reduced DOPAC and was significantly attenuated by SOD suggesting reactive oxygen species involvement. In contrast, fully oxidized DA and DOPAC dose dependently inhibited NADH oxidase, complex I and complex III activities with IC(50s) in the 50-200μM range. No preincubation was required for inhibition with the catechols when they were fully oxidized. Oxidized DA inhibited complex I only when exposure occurred during stimulated electron flow, suggesting covalent binding of quinones to proteins within active sites of the complex. In intact, well coupled mitochondria, extramitochondrial DA was shown to access the mitochondrial matrix in a dose, time and energy-dependent fashion. The findings suggest that many of the reported inconsistencies with regards to the effects of DA and DOPAC on ETC function can be attributed to the oxidized state of the catechol at the time of exposure. In addition, the findings provide possible downstream targets for DA that could contribute

  2. Regulation of dopamine synthesis and release in striatal and prefrontal cortical brain slices

    SciTech Connect

    Wolf, M.E.

    1986-01-01

    Brain slices were used to investigate the role of nerve terminal autoreceptors in modulating dopamine (DA) synthesis and release in striatum and prefrontal cortex. Accumulation of dihydroxyphenylalanine (DOPA) was used as an index of tyrosine hydroxylation in vitro. Nomifensine, a DA uptake blocker, inhibited DOPA synthesis in striatal but not prefrontal slices. This effect was reversed by the DA antagonist sulpiride, suggesting it involved activation of DA receptors by elevated synaptic levels of DA. The autoreceptor-selective agonist EMD-23-448 also inhibited striatal but not prefrontal DOPA synthesis. DOPA synthesis was stimulated in both brain regions by elevated K/sup +/, however only striatal synthesis could be further enhanced by sulpiride. DA release was measured by following the efflux of radioactivity from brain slices prelabeled with (/sup 3/H)-DA. EMD-23-448 and apomorphine inhibited, while sulpiride enhanced, the K/sup +/-evoked overflow of radioactivity from both striatal and prefrontal cortical slices. These findings suggest that striatal DA nerve terminals possess autoreceptors which modulate tyrosine hydroxylation as well as autoreceptors which modulate release. Alternatively, one site may be coupled to both functions through distinct transduction mechanisms. In contrast, autoreceptors on prefrontal cortical terminals appear to regulate DA release but not DA synthesis.

  3. Neurochemostat: A Neural Interface SoC With Integrated Chemometrics for Closed-Loop Regulation of Brain Dopamine.

    PubMed

    Bozorgzadeh, Bardia; Schuweiler, Douglas R; Bobak, Martin J; Garris, Paul A; Mohseni, Pedram

    2016-06-01

    This paper presents a 3.3×3.2 mm(2) system-on-chip (SoC) fabricated in AMS 0.35 μm 2P/4M CMOS for closed-loop regulation of brain dopamine. The SoC uniquely integrates neurochemical sensing, on-the-fly chemometrics, and feedback-controlled electrical stimulation to realize a "neurochemostat" by maintaining brain levels of electrically evoked dopamine between two user-set thresholds. The SoC incorporates a 90 μW, custom-designed, digital signal processing (DSP) unit for real-time processing of neurochemical data obtained by 400 V/s fast-scan cyclic voltammetry (FSCV) with a carbon-fiber microelectrode (CFM). Specifically, the DSP unit executes a chemometrics algorithm based upon principal component regression (PCR) to resolve in real time electrically evoked brain dopamine levels from pH change and CFM background-current drift, two common interferents encountered using FSCV with a CFM in vivo. Further, the DSP unit directly links the chemically resolved dopamine levels to the activation of the electrical microstimulator in on-off-keying (OOK) fashion. Measured results from benchtop testing, flow injection analysis (FIA), and biological experiments with an anesthetized rat are presented.

  4. Evaluation of the Dopamine Hypothesis of ADHD with PET Brain Imaging

    SciTech Connect

    Swanson, James

    2010-04-28

    The Dopamine (DA) Hypothesis of ADHD (Wender, 1971; Levy, 1990) suggests that abnormalities in the synaptic mechanisms of DA transmission may be disrupted, and specific abnormalities in DA receptors and DA transporters (DAT) have been proposed (see Swanson et al, 1998). Early studies with small samples (e.g., n = 6, Dougherty et al, 1999) used single photon emission tomography (SPECT) and the radioligand (123I Altropane) to test a theory that ADHD may be caused by an over expression of DAT and reported 'a 70% increase in age-corrected dopamine transporter density in patients with attention deficit hyperactivity disorder compared with healthy controls' and suggested that treatment with stimulant medication decreased DAT density in ADHD patients and corrected an underlying abnormality (Krause et al, 2000). The potential importance of these findings was noted by Swanson (1999): 'If true, this is a major finding and points the way for new investigations of the primary pharmacological treatment for ADHD (with the stimulant drugs - e.g., methylphenidate), for which the dopamine transporter is the primary site of action. The potential importance of this finding demands special scrutiny'. This has been provided over the past decade using Positron Emission Tomography (PET). Brain imaging studies were conducted at Brookhaven National Laboratory (BNL) in a relatively large sample of stimulant-naive adults assessed for DAT (11C cocaine) density and DA receptors (11C raclopride) availability. These studies (Volkow et al, 2007; Volkow et al, 2009) do not confirm the hypothesis of increased DAT density and suggest the opposite (i.e., decreased rather than increased DAT density), and follow-up after treatment (Wang et al, 2010) does not confirm the hypothesis that therapeutic doses of methylphenidate decrease DAT density and suggests the opposite (i.e., increased rather than decreased DAT density). The brain regions implicated by these PET imaging studies also suggest that a

  5. Evaluation of the Dopamine Hypothesis of ADHD with PET Brain Imaging

    ScienceCinema

    Swanson, James [University of California, Irvine, California, United States

    2016-07-12

    The Dopamine (DA) Hypothesis of ADHD (Wender, 1971; Levy, 1990) suggests that abnormalities in the synaptic mechanisms of DA transmission may be disrupted, and specific abnormalities in DA receptors and DA transporters (DAT) have been proposed (see Swanson et al, 1998). Early studies with small samples (e.g., n = 6, Dougherty et al, 1999) used single photon emission tomography (SPECT) and the radioligand (123I Altropane) to test a theory that ADHD may be caused by an over expression of DAT and reported 'a 70% increase in age-corrected dopamine transporter density in patients with attention deficit hyperactivity disorder compared with healthy controls' and suggested that treatment with stimulant medication decreased DAT density in ADHD patients and corrected an underlying abnormality (Krause et al, 2000). The potential importance of these findings was noted by Swanson (1999): 'If true, this is a major finding and points the way for new investigations of the primary pharmacological treatment for ADHD (with the stimulant drugs - e.g., methylphenidate), for which the dopamine transporter is the primary site of action. The potential importance of this finding demands special scrutiny'. This has been provided over the past decade using Positron Emission Tomography (PET). Brain imaging studies were conducted at Brookhaven National Laboratory (BNL) in a relatively large sample of stimulant-naive adults assessed for DAT (11C cocaine) density and DA receptors (11C raclopride) availability. These studies (Volkow et al, 2007; Volkow et al, 2009) do not confirm the hypothesis of increased DAT density and suggest the opposite (i.e., decreased rather than increased DAT density), and follow-up after treatment (Wang et al, 2010) does not confirm the hypothesis that therapeutic doses of methylphenidate decrease DAT density and suggests the opposite (i.e., increased rather than decreased DAT density). The brain regions implicated by these PET imaging studies also suggest that a

  6. COBRA: A prospective multimodal imaging study of dopamine, brain structure and function, and cognition.

    PubMed

    Nevalainen, N; Riklund, K; Andersson, M; Axelsson, J; Ögren, M; Lövdén, M; Lindenberger, U; Bäckman, L; Nyberg, L

    2015-07-01

    Cognitive decline is a characteristic feature of normal human aging. Previous work has demonstrated marked interindividual variability in onset and rate of decline. Such variability has been linked to factors such as maintenance of functional and structural brain integrity, genetics, and lifestyle. Still, few, if any, studies have combined a longitudinal design with repeated multimodal imaging and a comprehensive assessment of cognition as well as genetic and lifestyle factors. The present paper introduces the Cognition, Brain, and Aging (COBRA) study, in which cognitive performance and brain structure and function are measured in a cohort of 181 older adults aged 64 to 68 years at baseline. Participants will be followed longitudinally over a 10-year period, resulting in a total of three equally spaced measurement occasions. The measurement protocol at each occasion comprises a comprehensive set of behavioral and imaging measures. Cognitive performance is evaluated via computerized testing of working memory, episodic memory, perceptual speed, motor speed, implicit sequence learning, and vocabulary. Brain imaging is performed using positron emission tomography with [(11)C]-raclopride to assess dopamine D2/D3 receptor availability. Structural magnetic resonance imaging (MRI) is used for assessment of white and gray-matter integrity and cerebrovascular perfusion, and functional MRI maps brain activation during rest and active task conditions. Lifestyle descriptives are collected, and blood samples are obtained and stored for future evaluation. Here, we present selected results from the baseline assessment along with a discussion of sample characteristics and methodological considerations that determined the design of the study. This article is part of a Special Issue entitled SI: Memory & Aging.

  7. Arsenic exposure in drinking water alters the dopamine system in the brains of C57BL/6 mice.

    PubMed

    Kim, Minjeong; Seo, Sangwook; Sung, Kyunghwa; Kim, Kisok

    2014-12-01

    Although exposure to arsenic (As) induces neurotoxic changes, there is a lack of data regarding its specific effects on neurotransmission, particularly dopaminergic neurotransmission. In this study, the dopamine content and expression of tyrosine hydroxylase (TH) and dopamine receptors (DRs) were examined in the striatum and cerebral cortex of the mouse brain following the administration of As (1-100 mg/L NaAsO2 in drinking water). After 3 weeks, significantly decreased TH expression and dopamine content, both in the striatum and the cerebral cortex of mice treated with 100 mg/L As, were observed when compared with controls. Although DR expression was similar in the cerebral cortex of As-treated mice, DRD1 to DRD4 expression significantly increased in the striatum of 100 mg/L As-exposed mice. These data indicate that altered dopaminergic neurotransmission may contribute to As-induced neurotoxic effects.

  8. Conjugated Polymer Nanoparticles for Fluorescence Imaging and Sensing of Neurotransmitter Dopamine in Living Cells and the Brains of Zebrafish Larvae.

    PubMed

    Qian, Cheng-Gen; Zhu, Sha; Feng, Pei-Jian; Chen, Yu-Lei; Yu, Ji-Cheng; Tang, Xin; Liu, Yun; Shen, Qun-Dong

    2015-08-26

    Nanoscale materials are now attracting a great deal of attention for biomedical applications. Conjugated polymer nanoparticles have remarkable photophysical properties that make them highly advantageous for biological fluorescence imaging. We report on conjugated polymer nanoparticles with phenylboronic acid tags on the surface for fluorescence detection of neurotransmitter dopamine in both living PC12 cells and brain of zebrafish larvae. The selective enrichment of dopamine and fluorescence signal amplification characteristics of the nanoparticles show rapid and high-sensitive probing such neurotransmitter with the detection limit of 38.8 nM, and minimum interference from other endogenous molecules. It demonstrates the potential of nanomaterials as a multifunctional nanoplatform for targeting, diagnosis, and therapy of dopamine-relative disease.

  9. Glutamate-evoked release of endogenous brain dopamine: inhibition by an excitatory amino acid antagonist and an enkephalin analogue.

    PubMed Central

    Jhamandas, K.; Marien, M.

    1987-01-01

    The present study examined the effect of a selective delta-opioid receptor agonist [D-Ala2-D-Leu5] enkephalin (DADL) on the spontaneous and the L-glutamic acid (L-Glu)-evoked release of endogenous dopamine from superfused slices of rat caudate-putamen. The amount of dopamine in slice superfusates was measured by a sensitive method employing high-performance liquid chromatography with electrochemical detection (h.p.l.c.-e.d.) after a two-step separation procedure. The spontaneous release of endogenous dopamine was partially dependent on Ca2+, enhanced in Mg2+-free superfusion medium, partially reduced by tetrodotoxin (TTX, 0.3 microM), partially reduced by the putative excitatory amino acid receptor antagonist DL-2-amino-7-phosphonoheptanoic acid (DL-APH, 1 mM), and increased 10 fold by the dopamine uptake blocker, nomifensine (10 microM). DADL (5 and 50 nM) did not significantly affect spontaneous dopamine release. L-Glu (0.1-10 mM) produced a concentration-dependent release of endogenous dopamine from slices of caudate-putamen. This effect was Ca2+-dependent, strongly inhibited by 1.2 mM Mg2+, attenuated by DL-APH (1 mM), attenuated by TTX (0.3 microM), and enhanced by nomifensine (10 microM). In the presence of nomifensine DADL (50 nM) reduced significantly the L-Glu-evoked release of endogenous dopamine by 20%. The inhibitory effect of DADL was blocked by 10 microM naloxone. These results indicate that L-Glu stimulates the Ca2+-dependent release of endogenous dopamine in the caudate-putamen by activation of N-methy-D-aspartate-type of excitatory amino acid receptors. This release can be selectively modified by the delta-opioid agonist DADL in a naloxone-sensitive manner. PMID:2884003

  10. Biochemical effects of baclofen (beta-parachlorophenyl-GABA) on the dopamine and the noradrenaline in the rat brain.

    PubMed

    Andén, N E; Wachtel, H

    1977-02-01

    Baclofen (beta-parachlorophenyl-GABA) caused an increase in the concentration of dopamine in the rat brain with a maximum of about 170% of the control value after 1 hr and after doses of 50 mg/kg or more intraperitoneally. The alpha-methyltyrosine-induced disappearance of dopamine was inhibited to about the same extent in the corpus striatum and in the limbic system by baclofen. The accumulation of DOPA following decarboxylase inhibition was stimulated more in the corpus striatum than in the limbic system by baclofen, thus accounting for the fact that the concentration of dopamine was elevated about three times as much in the corpus striatum as in the limbic system. Amphetamine almost completely inhibited the rise in dopamine produced by baclofen. Baclofen did not cause any consistent changes in the concentration, the synthesis and the utilization of noradrenaline. These effects of baclofen are similar to those described following gammahydroxybutyric acid or axotomy. Hence, baclofen might also interrupt the nerve impulse flow in central dopamine neurones, perhaps by stimulating a central GABA mechanism.

  11. Foods and food constituents that affect the brain and human behavior

    NASA Technical Reports Server (NTRS)

    Lieberman, Harris R.; Wurtman, Richard J.

    1986-01-01

    Until recently, it was generally believed that brain function was usually independent of day-to-day metabolic changes associated with consumption of food. Although it was acknowledged that peripheral metabolic changes associated with hunger or satiety might affect brain function, other effects of foods on the brain were considered unlikely. However, in 1971, Fernstrom and Wurtman discovered that under certain conditions, the protein-to-carbohydrate ratio of a meal could affect the concentration of a particular brain neurotransmitter. That neurotransmitter, serotonin, participates in the regulation of a variety of central nervous system (CNS) functions including sleep, pain sensitivity, aggression, and patterns of nutrient selection. The activity of other neurotransmitter systems has also been shown to be, under certain conditions, affected by dietary constituents which are given either as ordinary foods or in purified form. For example, the CNS turnover of two catecholamine neurotransmitters, dopamine and norepinephrine, can be altered by ingestion of their amino acid precursor, tyrosine, when neurons that release these monoamines are firing frequently. Similarly, lecithin, a dietary source of choline, and choline itself have been shown to increase the synthesis of acetylcholine when cholinergic neurons are very active. It is possible that other neurotransmitters could also be affected by precursor availability or other, as yet undiscovered peripheral factors governed by food consumption. The effects of food on neurotransmitters and behavior are discussed.

  12. Dopamine D1 receptors, regulation of gene expression in the brain, and neurodegeneration.

    PubMed

    Cadet, Jean Lud; Jayanthi, Subramaniam; McCoy, Michael T; Beauvais, Genevieve; Cai, Ning Sheng

    2010-11-01

    Dopamine (DA), the most abundant catecholamine in the basal ganglia, participates in the regulation of motor functions and of cognitive processes such as learning and memory. Abnormalities in dopaminergic systems are thought to be the bases for some neuropsychiatric disorders including addiction, Parkinson's disease, and Schizophrenia. DA exerts its arrays of functions via stimulation of D1-like (D1 and D5) and D2-like (D2, D3, and D4) DA receptors which are located in various regions of the brain. The DA D1 and D2 receptors are very abundant in the basal ganglia where they exert their functions within separate neuronal cell types. The present paper focuses on a review of the effects of stimulation of DA D1 receptors on diverse signal transduction pathways and gene expression patterns in the brain. We also discuss the possible involvement of the DA D1 receptors in DA-mediated toxic effects observed both in vitro and in vivo. Future studies using more selective agonist and antagonist agents and the use of genetically modified animals should help to further clarify the role of these receptors in the normal physiology and in pathological events that involve DA.

  13. Substituted benzamides as ligands for visualization of dopamine receptor binding in the human brain by positron emission tomography

    SciTech Connect

    Farde, L.; Ehrin, E.; Eriksson, L.; Greitz, T.; Hall, H.; Hedstroem, C.G.; Litton, J.E.; Sedvall, G.

    1985-06-01

    Two substituted benzamides, FLB 524 and raclopride, were labeled with C and examined for their possible use as ligands for positron emission tomography (PET) scan studies on dopamine-2 (D-2) receptors in the brains of monkeys and healthy human subjects. Both ligands allowed the in vivo visualization of D-2 receptor binding in the corpus striatum caudate nucleus/putamen complex in PET-scan images. ( C)Raclopride showed a high ratio of specific striatal to nonspecific cerebellar binding, and the kinetics of binding of this ligand made it optimal for PET studies. The in vivo binding of ( C)raclopride in the striatum of cynomolgus monkeys was markedly reduced by displacement with haloperidol. In healthy human subjects, ( C)raclopride binding in the caudate nucleus/putamen was 4- to 5-fold greater than nonspecific binding in the cerebellum. In comparison with previously available ligands for PET-scan studies on central dopamine receptors in man, ( C)raclopride appears to be advantageous with regard to (i) specificity of binding to D-2 receptors, (ii) the high ratio between binding in dopamine-rich (caudate, putamen) and dopamine-poor (cerebellum) human brain regions, and (iii) rapid association and reversibility of specific binding.

  14. Assessment of dopamine receptor blockade by neuroleptic drugs in the living human brain

    SciTech Connect

    Wong, D.F.; Wagner, H.N. Jr.; Coyle, J.; Snyder, S.; Dannals, R.; LaFrance, N.; Bice, A.; Pearlson, G.; Links, J.; Paulos, M.

    1985-05-01

    Positron emission tomography (PET) makes it possible to attempt to relate directly the antipsychotic effect of neuroleptic drugs and their blocking effect on dopamine receptors (D2) in vivo. The authors have examined the ability of haloperidol (HAL) and molindone (MOL) to block the binding of C-11 n-methylspiperone (NMSP) in 6 normal subjects. A dose of 0.05 mg/kg of HAL resulted in a 68% drop in the slope of the caudate/cerebellum (Ca/Cb) vs. time. This slope is related to the rate of specific binding of NMSP to the receptor. A dose response was seen with both drugs. With increasing doses of HAL from .05 to 0.082 mg/kg, CA/Cb vs. time slope fell from .235 to .156/min. (N=4), progressively. Similarly with increasing doses of MOL of .16-.44 mg/kg slopes decreased from .0335 to .0155/min. (N=4). Similar degrees of post injection Ca/Cb ratio were produced with quantities of MOL and HAL administered in the oral dose ratio of doses 3-5:1 times greater than HAL. This is also the dose ratio at which we found similar dopamine receptor blockade by PET in vivo. A question that arises is why the in vitro affinity of HAL for D2 is 30 times greater than that of MOL in the human brain. The results raise the possibility that MOL metabolites are not only active in blocking D2 but indeed may possibly be more potent than MOL itself. It also helps confirm the site of action of MOL and its in vivo metabolites.

  15. Waterborne lead affects circadian variations of brain neurotransmitters in fathead minnows

    SciTech Connect

    Spieler, R.E.; Russo, A.C.; Weber, D.N.

    1995-09-01

    Lead is a potent neurotoxin affecting brain levels of a number of vertebrate neurotransmitters. Reports on these effects are, however, not consistent either among or within species. For example, with lead-intoxicated rats there are reports of decreased acetylcholine (ACh) release and decreased ACh brain levels as well as reports of increased levels or no change in levels. Also, with rats there are reports of increased levels, decreased levels, or no change in brain catecholamines, with lead producing similar changes in both norephinephrine (NE) and dopamine (DA) in some cases and differences in response between the two in others. Although most early reports dealt with whole brain levels, reports on neurotransmitter levels in specific brain regions can be equally conflicting. Similar sorts of discrepancies exist among studies with fishes. Much of the variation among studies on lead effects on neurotransmitters is, no doubt, due to differences among the studies in variables such as: species, age, dosage and duration, route of administration. However, lead can apparently affect circadian locomotor rhythms of both rats and fishes. Therefore, another possible cause for the variation among studies is that there is an interaction among dosage, sampling time and endogenous rhythms. A lead-produced phase shift or disruption in endogenous neurotransmitter rhythms could in turn elicit a host of varying results and interpretations depending on the circadian time of sampling. We elected to examine this possibility in the fathead minnow, Pimephales promelas, a freshwater species widely used for toxicity studies. 15 refs., 3 figs.

  16. The influence of electrical stimulation of vagus nerve on elemental composition of dopamine related brain structures in rats.

    PubMed

    Szczerbowska-Boruchowska, Magdalena; Krygowska-Wajs, Anna; Ziomber, Agata; Thor, Piotr; Wrobel, Pawel; Bukowczan, Mateusz; Zizak, Ivo

    2012-07-01

    Recent studies of Parkinson's disease indicate that dorsal motor nucleus of nerve vagus is one of the earliest brain areas affected by alpha-synuclein and Lewy bodies pathology. The influence of electrical stimulation of vagus nerve on elemental composition of dopamine related brain structures in rats is investigated. Synchrotron radiation based X-ray fluorescence was applied to the elemental micro-imaging and quantification in thin tissue sections. It was found that elements such as P, S, Cl, K, Ca, Fe, Cu, Zn, Se, Br and Rb are present in motor cortex, corpus striatum, nucleus accumbens, substantia nigra, ventral tectal area, and dorsal motor nucleus of vagus. The topographic analysis shows that macro-elements like P, S, Cl and K are highly concentrated within the fiber bundles of corpus striatum. In contrast the levels of trace elements like Fe and Zn are the lowest in these structures. It was found that statistically significant differences between the animals with electrical stimulation of vagus nerve and the control are observed in the left side of corpus striatum for P (p = 0.04), S (p = 0.02), Cl (p = 0.05), K (p = 0.02), Fe (p = 0.04) and Zn (p = 0.02). The mass fractions of these elements are increased in the group for which the electrical stimulation of vagus nerve was performed. Moreover, the contents of Ca (p = 0.02), Zn (p = 0.07) and Rb (p = 0.04) in substantia nigra of right hemisphere are found to be significantly lower in the group with stimulation of vagus nerve than in the control rats.

  17. Dopamine Increases CD14(+)CD16(+) Monocyte Transmigration across the Blood Brain Barrier: Implications for Substance Abuse and HIV Neuropathogenesis.

    PubMed

    Calderon, Tina M; Williams, Dionna W; Lopez, Lillie; Eugenin, Eliseo A; Cheney, Laura; Gaskill, Peter J; Veenstra, Mike; Anastos, Kathryn; Morgello, Susan; Berman, Joan W

    2017-01-29

    In human immunodeficiency virus-1 (HIV) infected individuals, substance abuse may accelerate the development and/or increase the severity of HIV associated neurocognitive disorders (HAND). It is proposed that CD14(+)CD16(+) monocytes mediate HIV entry into the central nervous system (CNS) and that uninfected and infected CD14(+)CD16(+) monocyte transmigration across the blood brain barrier (BBB) contributes to the establishment and propagation of CNS HIV viral reservoirs and chronic neuroinflammation, important factors in the development of HAND. The effects of substance abuse on the frequency of CD14(+)CD16(+) monocytes in the peripheral circulation and on the entry of these cells into the CNS during HIV neuropathogenesis are not known. PBMC from HIV infected individuals were analyzed by flow cytometry and we demonstrate that the frequency of peripheral blood CD14(+)CD16(+) monocytes in HIV infected substance abusers is increased when compared to those without active substance use. Since drug use elevates extracellular dopamine concentrations in the CNS, we examined the effects of dopamine on CD14(+)CD16(+) monocyte transmigration across our in vitro model of the human BBB. The transmigration of this monocyte subpopulation is increased by dopamine and the dopamine receptor agonist, SKF 38393, implicating D1-like dopamine receptors in the increase in transmigration elicited by this neurotransmitter. Thus, elevated extracellular CNS dopamine may be a novel common mechanism by which active substance use increases uninfected and HIV infected CD14(+)CD16(+) monocyte transmigration across the BBB. The influx of these cells into the CNS may increase viral seeding and neuroinflammation, contributing to the development of HIV associated neurocognitive impairments.

  18. Regional Homogeneity of Resting-State Brain Activity Suppresses the Effect of Dopamine-Related Genes on Sensory Processing Sensitivity

    PubMed Central

    Chen, Chuansheng; Moyzis, Robert; Xia, Mingrui; He, Yong; Xue, Gui; Li, Jin; He, Qinghua; Lei, Xuemei; Wang, Yunxin; Liu, Bin; Chen, Wen; Zhu, Bi; Dong, Qi

    2015-01-01

    Sensory processing sensitivity (SPS) is an intrinsic personality trait whose genetic and neural bases have recently been studied. The current study used a neural mediation model to explore whether resting-state brain functions mediated the effects of dopamine-related genes on SPS. 298 healthy Chinese college students (96 males, mean age = 20.42 years, SD = 0.89) were scanned with magnetic resonance imaging during resting state, genotyped for 98 loci within the dopamine system, and administered the Highly Sensitive Person Scale. We extracted a “gene score” that summarized the genetic variations representing the 10 loci that were significantly linked to SPS, and then used path analysis to search for brain regions whose resting-state data would help explain the gene-behavior association. Mediation analysis revealed that temporal homogeneity of regional spontaneous activity (ReHo) in the precuneus actually suppressed the effect of dopamine-related genes on SPS. The path model explained 16% of the variance of SPS. This study represents the first attempt at using a multi-gene voxel-based neural mediation model to explore the complex relations among genes, brain, and personality. PMID:26308205

  19. Reduced levels of dopamine and altered metabolism in brains of HPRT knock-out rats: a new rodent model of Lesch-Nyhan Disease

    PubMed Central

    Meek, Stephen; Thomson, Alison J.; Sutherland, Linda; Sharp, Matthew G. F.; Thomson, Julie; Bishop, Valerie; Meddle, Simone L.; Gloaguen, Yoann; Weidt, Stefan; Singh-Dolt, Karamjit; Buehr, Mia; Brown, Helen K.; Gill, Andrew C.; Burdon, Tom

    2016-01-01

    Lesch-Nyhan disease (LND) is a severe neurological disorder caused by loss-of-function mutations in the gene encoding hypoxanthine phosphoribosyltransferase (HPRT), an enzyme required for efficient recycling of purine nucleotides. Although this biochemical defect reconfigures purine metabolism and leads to elevated levels of the breakdown product urea, it remains unclear exactly how loss of HPRT activity disrupts brain function. As the rat is the preferred rodent experimental model for studying neurobiology and diseases of the brain, we used genetically-modified embryonic stem cells to generate an HPRT knock-out rat. Male HPRT-deficient rats were viable, fertile and displayed normal caged behaviour. However, metabolomic analysis revealed changes in brain biochemistry consistent with disruption of purine recycling and nucleotide metabolism. Broader changes in brain biochemistry were also indicated by increased levels of the core metabolite citrate and reduced levels of lipids and fatty acids. Targeted MS/MS analysis identified reduced levels of dopamine in the brains of HPRT-deficient animals, consistent with deficits noted previously in human LND patients and HPRT knock-out mice. The HPRT-deficient rat therefore provides a new experimental platform for future investigation of how HPRT activity and disruption of purine metabolism affects neural function and behaviour. PMID:27185277

  20. In vivo brain microdialysis studies on the striatal dopamine and serotonin release in zitter mutant rats.

    PubMed

    Yoshimoto, Kanji; Nishimura, Akira; Hattori, Hiroyuki; Joyce, Jeffery N; Yoshida, Toshihide; Hioki, Chizuko; Kogure, Akinori; Ueda, Shuichi

    2006-07-01

    In the present study, using in vivo brain microdialysis, we investigated the basal extracellular dopamine (DA) and serotonin (5-HT) release in the caudal striatum (cSTR) of young (4-6 months old) and aged (10-12 months old) zitter mutant rats. The basal extracellular levels of DA release in both young and aged zitter rats were significantly lower than that of age-matched Sprague-Dawley (SD) rats, whereas only aged zitter rats showed a significant difference in the basal 5-HT release. Dopaminergic neurons were more vulnerable than serotonergic neurons in the cSTR of zitter mutant rats during aging. Perfusion of 60 mM potassium (K+) enhanced the extracellular levels of cSTR DA in the young zitter rats and the extracellular levels of both DA and 5-HT in the cSTR of the aged zitter rats. The firing rate of K+-stimulated monoamine release in the cSTR was significantly higher in the zitter rats than in the age-matched SD rats. These findings suggest that there are innate quantitative differences in the releasable pool and the availability of monoamines in the cSTR of zitter mutant rats.

  1. Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain

    DOE PAGES

    Volkow, N. D.; Wang, G. -J.; Logan, J.; ...

    2015-04-14

    Caffeine, the most widely consumed psychoactive substance in the world, is used to promote wakefulness and enhance alertness. Like other wake-promoting drugs (stimulants and modafinil), caffeine enhances dopamine (DA) signaling in the brain, which it does predominantly by antagonizing adenosine A2A receptors (A2AR). However, it is unclear if caffeine, at the doses consumed by humans, increases DA release or whether it modulates the functions of postsynaptic DA receptors through its interaction with adenosine receptors, which modulate them. We used positron emission tomography and [11C]raclopride (DA D2/D3 receptor radioligand sensitive to endogenous DA) to assess if caffeine increased DA release inmore » striatum in 20 healthy controls. Caffeine (300mg p.o.) significantly increased the availability of D2/D3 receptors in putamen and ventral striatum, but not in caudate, when compared with placebo. In addition, caffeine-induced increases in D2/D3 receptor availability in the ventral striatum were associated with caffeine-induced increases in alertness. Our findings indicate that in the human brain, caffeine, at doses typically consumed, increases the availability of DA D2/D3 receptors, which indicates that caffeine does not increase DA in the striatum for this would have decreased D2/D3 receptor availability. Instead, we interpret our findings to reflect an increase in D2/D3 receptor levels in striatum with caffeine (or changes in affinity). Furthermore, the association between increases in D2/D3 receptor availability in ventral striatum and alertness suggests that caffeine might enhance arousal, in part, by upregulating D2/D3 receptors.« less

  2. Pituitary and Brain Dopamine D2 Receptors Regulate Liver Gene Sexual Dimorphism

    PubMed Central

    Ramirez, Maria Cecilia; Ornstein, Ana Maria; Luque, Guillermina Maria; Perez Millan, Maria Ines; Garcia-Tornadu, Isabel; Rubinstein, Marcelo

    2015-01-01

    Liver sexual gene dimorphism, which depends mainly on specific patterns of GH secretion, may underlie differential susceptibility to some liver diseases. Because GH and prolactin secretion are regulated by dopaminergic pathways, we studied the participation of brain and lactotrope dopamine 2 receptors (D2Rs) on liver gene sexual dimorphism, to explore a link between the brain and liver gene expression. We used global D2R knockout mice (Drd2−/−) and conducted a functional dissection strategy based on cell-specific Drd2 inactivation in neurons (neuroDrd2KO) or pituitary lactotropes. Disruption of neuronal D2Rs (which impaired the GH axis) decreased most of male or female-predominant class I liver genes and increased female–predominant class II genes in males, consistent with the positive (class I) or negative (class II) regulation of these genes by GH. Notably, sexual dimorphism was lost for class I and II genes in neuroDrd2KO mice. Disruption of lactotrope D2Rs did not modify class I or II genes in either sex, because GH axis was preserved. But surprisingly, 1 class II gene (Prlr) and female-predominant class I genes were markedly up-regulated in lacDrd2KO females, pointing to direct or indirect effects of prolactin in the regulation of selected female-predominant liver genes. This suggestion was strengthened in the hyperprolactinemic Drd2−/− female mouse, in which increased expression of the same 4 liver genes was observed, despite a decreased GH axis. We hereby demonstrate endocrine-mediated D2R actions on sexual dimorphic liver gene expression, which may be relevant during chronic dopaminergic medications in psychiatric disease. PMID:25545383

  3. Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain.

    PubMed

    Volkow, N D; Wang, G-J; Logan, J; Alexoff, D; Fowler, J S; Thanos, P K; Wong, C; Casado, V; Ferre, S; Tomasi, D

    2015-04-14

    Caffeine, the most widely consumed psychoactive substance in the world, is used to promote wakefulness and enhance alertness. Like other wake-promoting drugs (stimulants and modafinil), caffeine enhances dopamine (DA) signaling in the brain, which it does predominantly by antagonizing adenosine A2A receptors (A2AR). However, it is unclear if caffeine, at the doses consumed by humans, increases DA release or whether it modulates the functions of postsynaptic DA receptors through its interaction with adenosine receptors, which modulate them. We used positron emission tomography and [(11)C]raclopride (DA D2/D3 receptor radioligand sensitive to endogenous DA) to assess if caffeine increased DA release in striatum in 20 healthy controls. Caffeine (300 mg p.o.) significantly increased the availability of D2/D3 receptors in putamen and ventral striatum, but not in caudate, when compared with placebo. In addition, caffeine-induced increases in D2/D3 receptor availability in the ventral striatum were associated with caffeine-induced increases in alertness. Our findings indicate that in the human brain, caffeine, at doses typically consumed, increases the availability of DA D2/D3 receptors, which indicates that caffeine does not increase DA in the striatum for this would have decreased D2/D3 receptor availability. Instead, we interpret our findings to reflect an increase in D2/D3 receptor levels in striatum with caffeine (or changes in affinity). The association between increases in D2/D3 receptor availability in ventral striatum and alertness suggests that caffeine might enhance arousal, in part, by upregulating D2/D3 receptors.

  4. Human brain dopamine metabolism in levodopa-induced dyskinesia and wearing-off.

    PubMed

    Rajput, Ali H; Fenton, Mark E; Di Paolo, Thérèse; Sitte, Harold; Pifl, Christian; Hornykiewicz, Oleh

    2004-06-01

    The objective of this study was to identify dopamine (DA) metabolism pattern in Lewy body Parkinson's disease (PD) patients with dyskinesia (Dysk) only, with wearing-off (WO) only, or no motor complications (NMC) induced by levodopa (LD). DA, homovanillic acid (HVA), 3,4-dihydroxyphenylacetic acid (DOPAC), and 3-methoxytyramine (3-MT) were measured individual basal ganglia nuclei of nine PD patients who received LD for 6-18 years. Three patients had only Dysk, three only WO, and three had neither Dysk nor WO. Biochemical measurements in PD brains were compared with four non-neurological control brains from individuals matched for age and post-mortem retrieval time. DA levels in the PD were reduced in the caudate by 87% and putamen by 99%. In the caudates, the HVA/DA molar ratio as an index of DA metabolism was similar in the WO and the Dysk patients. However, in the putamen, the ratio of HVA/DA was significantly higher in the WO compared with the Dysk (p = 0.03)and the NMC (p = 0.04) groups of patients. In the putamen, the DOPAC levels were higher in the WO cases while in the Dysk cases, 3-MT levels were higher. The results suggest that in the WO only cases, the putaminal DA was in large measure metabolized intraneuronally while the DA metabolism in our Dysk only patients was mainly extraneuronal. We conclude that the magnitude and the site (intra vs. extraneuronal) of the synaptic DA metabolism in the putamen plays a significant role in LD-induced Dysk and WO.

  5. 18F-labeled FECNT: a selective radioligand for PET imaging of brain dopamine transporters.

    PubMed

    Goodman, M M; Kilts, C D; Keil, R; Shi, B; Martarello, L; Xing, D; Votaw, J; Ely, T D; Lambert, P; Owens, M J; Camp, V M; Malveaux, E; Hoffman, J M

    2000-01-01

    Fluorine-18 labeled 2beta-carbomethoxy-3beta-(4-chlorophenyl)-8-(2-fluoroethyl)nort ropane (FECNT) was synthesized in the development of a dopamine transporter (DAT) imaging ligand for positron emission tomography (PET). The methods of radiolabeling and ligand synthesis of FECNT, and the results of the in vitro characterization and in vivo tissue distribution in rats and in vivo PET imaging in rhesus monkeys of [18F]FECNT are described. Fluorine-18 was introduced into 2beta-carbomethoxy-3beta-(4-chlorophenyl)-8-(2-fluoroethyl)nort ropane (4) by preparation of 1-[18F]fluoro-2-tosyloxyethane (2) followed by alkylation of 2beta-carbomethoxy-3beta-(4-chlorophenyl)nortropane (3) in 21% radiochemical yield (decay corrected to end of bombardment [EOB]). Competition binding in cells stably expressing the transfected human DAT serotonin transporter (SERT) and norepinephrine transporter (NET) labeled by [3H]WIN 35428, [3H]citalopram, and [3H]nisoxetine, respectively, indicated the following order of DAT affinity: GBR 12909 > CIT > 2beta-carbomethoxy-3beta-(4-chlorophenyl)-8-(3-fluoropropyl) nortropane (FPCT) > FECNT. The affinity of FECNT for SERT and NET was 25- and 156-fold lower, respectively, than for DAT. Blocking studies were performed in rats with a series of transporter-specific agents and demonstrated that the brain uptake of [18F]FECNT was selective and specific for DAT-rich regions. PET brain imaging studies in monkeys demonstrated high [18F]FECNT uptake in the caudate and putamen that resulted in caudate-to-cerebellum and putamen-to-cerebellum ratios of 10.5 at 60 min. [18F]FECNT uptake in the caudate/putamen peaked in less than 75 min and exhibited higher caudate- and putamen-to-cerebellum ratios at transient equilibrium than reported for 11C-WIN 35,428, [11C]CIT/RTI-55, or [18F]beta-CIT-FP. Analysis of monkey arterial plasma samples using high performance liquid chromatography determined that there was no detectable formation of lipophilic radiolabeled

  6. Deep brain stimulation of the nucleus accumbens shell increases impulsive behavior and tissue levels of dopamine and serotonin.

    PubMed

    Sesia, Thibaut; Bulthuis, Vincent; Tan, Sonny; Lim, Lee Wei; Vlamings, Rinske; Blokland, Arjan; Steinbusch, Harry W M; Sharp, Trevor; Visser-Vandewalle, Veerle; Temel, Yasin

    2010-10-01

    The nucleus accumbens (NAc) is gaining interest as a target for deep brain stimulation (DBS) in refractory neuropsychiatric disorders with impulsivity as core symptom. The nucleus accumbens is composed of two subterritories, core and shell, which have different anatomical connections. In animal models, it has been shown that DBS of the NAc changes impulsive action. Here, we tested the hypothesis that a change in impulsive action by DBS of the NAc is associated with changes in dopamine levels. Rats received stimulating electrodes either in the NAc core or shell, and underwent behavioral testing in a reaction time task. In addition, in a second experiment, the effect of DBS of the NAc core and shell on extracellular dopamine and serotonin levels was assessed in the NAc and medial prefrontal cortex. Control subjects received sham surgery. We have found that DBS of the NAc shell stimulation induced more impulsive action but less perseverative checking. These effects were associated with increased levels of dopamine and serotonin in the NAc, but not in the medial prefrontal cortex. DBS of the NAc core had no effect on impulsive action, but decreased perseverative responses indicative of a better impulse control. In these subjects, no effects were found on neurotransmitter levels. Our data point out that DBS of the NAc shell has negative effects on impulsive action which is accompanied by increases of dopamine and serotonin levels in the NAc, whereas DBS of the NAc core has beneficial behavioral effects.

  7. Effect of paraoxon on muscarinic, dopamine and. gamma. -aminobutyric acid receptors of brain and sensitivity to muscarinic antagonists

    SciTech Connect

    Fernando, J.C.R.; Hoskins, B.; Ho, I.K.

    1986-03-05

    Several acetylcholinesterase (AChE) inhibitors decrease muscarinic cholinergic (mACh) receptors in the brain, alteration of dopamine (DA) and ..gamma..-aminobutyric acid (GABA) receptors after AChE inhibition was also reported. In view of the important interactions among DA, GABA and ACh systems, whether this is a common effect of AChE inhibitors should be established. They report the effect of the AChE inhibitor, paraoxon, on DA, GABA and mACh receptors in the rat. The binding of /sup 3/H-QNB (for mACh), /sup 3/H-spiperone (for DA) and /sup 3/H-muscimol (for GABA) to striatal and hippocampal membranes was analyzed. Also, behavioral sensitivity to atropine was studied. Twenty-four hr after a single dose (0.75 mg/kg, s.c.) of paraoxon, the density of mACh receptors in the striatum was decreased but, at 3 days, no change was seen. In the hippocampus, the mACh receptors were not affected. Repeated treatment with paraoxon (0.3 mg/kg, 48 hourly) for 2 weeks reduced the mACh receptor density in both regions. Neither single nor repeated paraoxon treatment had an effect on DA or GABA receptors. After single or repeated dosing with paraoxon, myoclonus induced by atropine (10 mg/kg, i.p.) was enhanced. The results show rapid downregulation of mACh receptors by paraoxon. DA or GABA, however, appear not to be affected under these treatment regimens.

  8. Dynamics of intracellular dopamine contents in the rat brain during the formation of conditioned contextual fear and extinction of an acoustic startle reaction.

    PubMed

    Storozheva, Z I; Afanas'ev, I I; Proshin, A T; Kudrin, V S

    2003-05-01

    Extracellular dopamine contents in the caudate nucleus, nucleus accumbens, and prefrontal cortex of the rat brain were measured during two sessions of extinction of an acoustic startle reaction--each consisting of ten sound stimuli, the two sessions separated by 24 h--with simultaneous recording of freezing behavior. The results demonstrated a decrease in extracellular dopamine levels in the caudate nucleus and an increase in the nucleus accumbens during both sessions of extinction, with return to initial immediately after sessions ended. During the second session, the amplitude of startle responses and the magnitude of changes in dopamine levels in both structures were significantly smaller than during the first session. Between the sessions, dopamine levels in the caudate nucleus remained constant, while those in the nucleus accumbens decreased. The prefrontal cortex showed increases in dopamine levels during both sessions of extinction, as well as between the two sessions. The amplitude of the startle reaction was found to correlate with dopamine levels in the prefrontal cortex after the end of the corresponding extinction session and with the dopamine level before the start of the second session. The freezing time before the start of sound stimulation in the second session, this being a measure of conditioned fear, correlated with the dopamine level in the caudate nucleus on the training day and with the dopamine level in the nucleus accumbens before the start of the second session. The role of the dopaminergic system in the mechanisms forming and realizing the various components of defensive behavior are discussed.

  9. [The effect of bromantane on the dopamin- and serotoninergic systems of the rat brain].

    PubMed

    Kudrin, V S; Sergeeva, S A; Krasnykh, L M; Miroshnichenko, I I; Grekhova, T V; Gaĭnetdinov, R R

    1995-01-01

    The effect of acute and chronic administration (50 mg/kg, p.o.) of a new immunostimulator, bromantan exhibiting psychostimulant features on the content of NE, DA and 5-HT, and their metabolites are studied. Bromantan induced a significant increase in the 5-HT and 5-HIAA content in the frontal cortex and delayed an increase in their content in subcortical brain regions. A stable decrease in the 5-HT and 5-HIAA levels in the cerebellum is observed. The drug also affected the DA parameters of the brain thus suggesting an important role of dopaminergic system in the mechanism of pharmacological effects of the drug.

  10. Whole-brain mapping of direct inputs to midbrain dopamine neurons.

    PubMed

    Watabe-Uchida, Mitsuko; Zhu, Lisa; Ogawa, Sachie K; Vamanrao, Archana; Uchida, Naoshige

    2012-06-07

    Recent studies indicate that dopamine neurons in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) convey distinct signals. To explore this difference, we comprehensively identified each area's monosynaptic inputs using the rabies virus. We show that dopamine neurons in both areas integrate inputs from a more diverse collection of areas than previously thought, including autonomic, motor, and somatosensory areas. SNc and VTA dopamine neurons receive contrasting excitatory inputs: the former from the somatosensory/motor cortex and subthalamic nucleus, which may explain their short-latency responses to salient events; and the latter from the lateral hypothalamus, which may explain their involvement in value coding. We demonstrate that neurons in the striatum that project directly to dopamine neurons form patches in both the dorsal and ventral striatum, whereas those projecting to GABAergic neurons are distributed in the matrix compartment. Neuron-type-specific connectivity lays a foundation for studying how dopamine neurons compute outputs.

  11. Chronic nicotine administration in the drinking water affects the striatal dopamine in mice.

    PubMed

    Pietilä, K; Ahtee, L

    2000-05-01

    Although tobacco contains a large variety of substances, its addictive properties are most probably due to the reinforcing actions of nicotine that motivates continued tobacco use. Animals and humans self-administer nicotine, a response that appears to involve the mesolimbic dopamine system and to be common to other abused drugs. The present article reviews animal models to administer nicotine chronically. We also describe a new animal model in which nicotine is given to mice in drinking water as their sole source of fluid. This treatment produced nicotine plasma concentrations comparable to or above those found in smokers. We found that mice withdrawn from nicotine were tolerant to the effects of nicotine challenge on striatal dopamine metabolism as well as on body temperature and locomotor activity. Furthermore, 3H-nicotine binding in the cortex and midbrain was significantly increased in mice withdrawn from nicotine. The last part of the article will focus on the effects of this chronic nicotine treatment on striatal dopamine. Dopamine and its metabolites and locomotor activity were increased in the forenoon in mice still drinking nicotine solutions. We also report recent data in which chronic nicotine administration in the drinking water enhanced the effect of dopamine receptor agonist, quinpirole, on striatal metabolism. The animal model described appears to be a relevant method for studying the mechanisms that are thought to be involved in nicotine dependence.

  12. Evidence That Sleep Deprivation Downregulates Dopamine D2R in Ventral Striatum in the Human Brain

    SciTech Connect

    Volkow N. D.; Fowler J.; Volkow, N.D.; Tomasi, D.; Wang, G.-J.; Fowler, J.S.; Logan, J.; Benveniste, H.; Kin, R.; Thanos, P.K.; Sergi F.

    2012-03-23

    Dopamine D2 receptors are involved with wakefulness, but their role in the decreased alertness associated with sleep deprivation is unclear. We had shown that sleep deprivation reduced dopamine D2/D3 receptor availability (measured with PET and [{sup 11}C]raclopride in controls) in striatum, but could not determine whether this reflected dopamine increases ([{sup 11}C]raclopride competes with dopamine for D2/D3 receptor binding) or receptor downregulation. To clarify this, we compared the dopamine increases induced by methylphenidate (a drug that increases dopamine by blocking dopamine transporters) during sleep deprivation versus rested sleep, with the assumption that methylphenidate's effects would be greater if, indeed, dopamine release was increased during sleep deprivation. We scanned 20 controls with [{sup 11}C]raclopride after rested sleep and after 1 night of sleep deprivation; both after placebo and after methylphenidate. We corroborated a decrease in D2/D3 receptor availability in the ventral striatum with sleep deprivation (compared with rested sleep) that was associated with reduced alertness and increased sleepiness. However, the dopamine increases induced by methylphenidate (measured as decreases in D2/D3 receptor availability compared with placebo) did not differ between rested sleep and sleep deprivation, and were associated with the increased alertness and reduced sleepiness when methylphenidate was administered after sleep deprivation. Similar findings were obtained by microdialysis in rodents subjected to 1 night of paradoxical sleep deprivation. These findings are consistent with a downregulation of D2/D3 receptors in ventral striatum with sleep deprivation that may contribute to the associated decreased wakefulness and also corroborate an enhancement of D2 receptor signaling in the arousing effects of methylphenidate in humans.

  13. Effect of pre-ischaemic conditioning on hypoxic depolarization of dopamine efflux in the rat caudate brain slice measured in real-time with fast cyclic voltammetry.

    PubMed

    Davidson, Colin; Coomber, Ben; Gibson, Claire L; Young, Andrew M J

    2011-10-01

    Fast cyclic voltammetry can be used to measure dopamine release after oxygen and glucose deprivation (OGD) induced anoxic depolarization in vitro. Here we measure dopamine efflux with 1s time resolution, which is appropriate to measure OGD-evoked dopamine efflux accurately. In the present study, we examined whether OGD-evoked dopamine efflux could be used to show pre-ischaemic conditioning in the rat caudate brain slice. Caudate slices were exposed to 0, 2, or 10 min OGD pre-ischaemic conditioning, then 60 min later exposed to a second OGD event of 15 min duration. We measured the OGD-evoked dopamine efflux using fast cyclic voltammetry and in some experiments caudate dopamine and DOPAC tissue levels were measured using HPLC and 20 μm cryostat sections were Nissl stained to indicate neuronal loss. We found that 10 but not 2 min OGD pre-ischaemic conditioning resulted in a longer time to onset of OGD-evoked dopamine efflux on the main OGD event (475 ± 31 and 287 ± 30 s for 10 Vs 0 min pre-ischaemic conditioning respectively). Further, 10 min OGD pre-ischaemic conditioning resulted in less dopamine efflux on the second OGD event (4.23 ± 1.12 and 8.14 ± 0.82 μM for 10 Vs 0 min pre-ischaemic conditioning respectively), despite these slices having similar tissue dopamine content and DOPAC/DA ratio, and the rate of dopamine release was slower in the main OGD event (21 ± 5 and 74 ± 8 nM/s for 10 Vs 0 min pre-ischaemic conditioning respectively). These data suggest that 10 min OGD pre-ischaemic conditioning can evoke tolerance to a second OGD event and that voltammetric recording of OGD-evoked dopamine efflux is a useful model of pre-ischaemic conditioning in neuronal tissue.

  14. Influence of age and juvenile hormone on brain dopamine level in male honeybee (Apis mellifera): association with reproductive maturation.

    PubMed

    Harano, Ken-ichi; Sasaki, Ken; Nagao, Takashi; Sasaki, Masami

    2008-05-01

    Dopamine (DA) is a major functional biogenic amine in insects and has been suggested to regulate reproduction in female honeybees. However, its function has not been investigated in male drones. To clarify developmental changes of DA in drones, brain DA levels were investigated at various ages and showed a similar pattern to the previously reported juvenile hormone (JH) hemolymph titer. The DA level was lowest at emergence and peaked at day 7 or 8, followed by decline. Application of JH analog increased brain DA levels in young drones (2-4-days-old), suggesting regulation of DA by JH in drones. In young drones, maturation of male reproductive organs closely matched the increase in brain DA. The dry weight of testes decreased and that of seminal vesicles increased from emergence to day 8. The dry weight of mucus glands increased up to day 4. Consequently, DA regulated by JH might have reproductive behavior and/or physiological functions in drones.

  15. Striatal Neurons Expressing D1 and D2 Receptors are Morphologically Distinct and Differently Affected by Dopamine Denervation in Mice

    PubMed Central

    Gagnon, D.; Petryszyn, S.; Sanchez, M. G.; Bories, C.; Beaulieu, J. M.; De Koninck, Y.; Parent, A.; Parent, M.

    2017-01-01

    The loss of nigrostriatal dopamine neurons in Parkinson’s disease induces a reduction in the number of dendritic spines on medium spiny neurons (MSNs) of the striatum expressing D1 or D2 dopamine receptor. Consequences on MSNs expressing both receptors (D1/D2 MSNs) are currently unknown. We looked for changes induced by dopamine denervation in the density, regional distribution and morphological features of D1/D2 MSNs, by comparing 6-OHDA-lesioned double BAC transgenic mice (Drd1a-tdTomato/Drd2-EGFP) to sham-lesioned animals. D1/D2 MSNs are uniformly distributed throughout the dorsal striatum (1.9% of MSNs). In contrast, they are heterogeneously distributed and more numerous in the ventral striatum (14.6% in the shell and 7.3% in the core). Compared to D1 and D2 MSNs, D1/D2 MSNs are endowed with a smaller cell body and a less profusely arborized dendritic tree with less dendritic spines. The dendritic spine density of D1/D2 MSNs, but also of D1 and D2 MSNs, is significantly reduced in 6-OHDA-lesioned mice. In contrast to D1 and D2 MSNs, the extent of dendritic arborization of D1/D2 MSNs appears unaltered in 6-OHDA-lesioned mice. Our data indicate that D1/D2 MSNs in the mouse striatum form a distinct neuronal population that is affected differently by dopamine deafferentation that characterizes Parkinson’s disease. PMID:28128287

  16. Effects of phenylethanolamine N-methyltransferase inhibitors on uptake and release of norepinephrine and dopamine from rat brain

    SciTech Connect

    Liang, N.Y.; Hower, J.A.; Borchardt, R.T.

    1985-09-01

    Inhibitors of phenylethanolamine N-methyltransferase (PNMT) and amphetamine were evaluated for their effects on the uptake of (TH)-norepinephrine (TH-NE) and the release of endogenous NE and dopamine (DA) from chopped rat brain tissues. Unlike amphetamine, all of PNMT inhibitors tested produced only slight inhibition of (TH)-NE uptake into chopped cerebral cortex. 2,3-Dichloro-alpha-methylbenzylamine (DCMB) and 7,8-dichloro-1,2,3,4-tetrahydroisoquinoline (SKF64139), but not 2-cyclooctyl-2-hydroxyethylamine (CONH) and 1-aminomethylcycloundecanol (CUNH) produced slight release of endogenous NE and DA from chopped hypothalami, but their effects were less pronounced than those produced by amphetamine.

  17. The presence of perforated synapses in the striatum after dopamine depletion, is this a sign of maladaptive brain plasticity?

    PubMed

    Anaya-Martínez, Verónica; Gutierrez-Valdez, Ana Luisa; Ordoñez-Librado, Jose Luis; Montiel-Flores, Enrique; Sánchez-Betancourt, Javier; Sánchez Vázquez del Mercado, César; Reynoso-Erazo, Leonardo; Tron-Alvarez, Rocío; Avila-Costa, Maria Rosa

    2014-12-01

    Synaptic plasticity is the process by which long-lasting changes take place at synaptic connections. The phenomenon itself is complex and can involve many levels of organization. Some authors separate forms into adaptations that have positive or negative consequences for the individual. It has been hypothesized that an increase in the number of synapses may represent a structural basis for the enduring expression of synaptic plasticity during some events that involve memory and learning; also, it has been suggested that perforated synapses increase in number after some diseases and experimental situations. The aim of this study was to analyze whether dopamine depletion induces changes in the synaptology of the corpus striatum of rats after the unilateral injection of 6-OHDA. The findings suggest that after the lesion, both contralateral and ipsilateral striata exhibit an increased length of the synaptic ending in ipsilateral (since third day) and contralateral striatum (since Day 20), loss of axospinous synapses in ipsilateral striatum and a significant increment in the number of perforated synapses, suggesting brain plasticity that might be deleterious for the spines, because this type of synaptic contacts are presumably excitatory, and in the absence of the modulatory effects of dopamine, the neuron could die through excitotoxic mechanisms. Thus, we can conclude that the presence of perforated synapses after striatal dopamine depletion might be a form of maladaptive synaptic plasticity.

  18. Radioiodinated tracers for the evaluation of dopamine receptors in the neonatal rat brain after hypoxic-ischemic injury.

    PubMed

    Zouakia, A; Chalon, S; Kung, H F; Dognon, A M; Saliba, E; Besnard, J C; Guilloteau, D

    1994-06-01

    In order to evaluate in vivo single-photon emission tomography (SPET) method of assessing cerebral function after hypoxic-ischemic injury in human neonates, we studied D1 and D2 dopamine receptors in a rat model. Seven-day-old rats underwent permanent unilateral common carotid ligation followed by exposure to 8% O2. Two weeks later, in brains with no visible loss of hemispheric volume, striatal dopaminergic receptors were studied, with [125I]TISCH and [125I]IBZM for the D1 and D2 dopamine receptors, respectively. Using [125I]TISCH, we observed no modifications of D1 receptors, but in contrast, ex vivo and in vitro autoradiographic experiments showed a 40% decrease in the striatal binding of [125I]IBZM on both the ipsilateral and the contralateral side to the carotid ligation. These alterations were detected with IBZM, a D2 dopamine receptor ligand usable for SPET imaging. Therefore, exploration of D2 receptors by SPET in human neonates suffering from perinatal hypoxia-ischemia may be valuable for the diagnosis and follow-up of cerebral function damages.

  19. Secretion of brain-derived neurotrophic factor from PC12 cells in response to oxidative stress requires autocrine dopamine signaling.

    PubMed

    Wang, Hong; Yuan, Guoxiang; Prabhakar, Nanduri R; Boswell, Mark; Katz, David M

    2006-02-01

    Expression of brain-derived neurotrophic factor (BDNF) is sensitive to changes in oxygen availability, suggesting that BDNF may be involved in adaptive responses to oxidative stress. However, it is unknown whether or not oxidative stress actually increases availability of BDNF by stimulating BDNF secretion. To approach this issue we examined BDNF release from PC12 cells, a well-established model of neurosecretion, in response to hypoxic stimuli. BDNF secretion from neuronally differentiated PC12 cells was strongly stimulated by exposure to intermittent hypoxia (IH). This response was inhibited by N-acetyl-l-cysteine, a potent scavenger of reactive oxygen species (ROS) and mimicked by exogenous ROS. IH-induced BDNF release requires activation of tetrodotoxin sensitive Na+ channels and Ca2+ influx through N- and L-type channels, as well as mobilization of internal Ca2+ stores. These results demonstrate that oxidative stress can stimulate BDNF release and that underlying mechanisms are similar to those previously described for activity-dependent BDNF secretion from neurons. Surprisingly, we also found that IH-induced secretion of BDNF was blocked by dopamine D2 receptor antagonists or by inhibition of dopamine synthesis with alpha-methyl-p-tyrosine. These data indicate that oxidative stress can stimulate BDNF release through an autocrine or paracrine loop that requires dopamine receptor activation.

  20. Further association study on dopamine D2 receptor variant S311C in Schizophrenia and affective disorders

    SciTech Connect

    Arinami, Tadao; Hamaguchi, Hideo; Itokawa, Masanari; Aoki, Junichi; Shibuya, Haruo

    1996-04-09

    The dopamine D2 receptor gene is a candidate gene for schizophrenia because the potency of certain neuroleptics correlates with their affinity for this receptor. Case-control studies in 291 schizophrenics, 78 patients with affective disorders, and 579 controls on an association of a molecular variant of S311C of the dopamine D2 receptor with psychiatric disorders were conducted. The frequency of individuals with S311C was significantly higher in schizophrenics with the absence of negative symptoms (17.1%, P < 0.00001), but similar in schizophrenics with the presence of negative symptoms (5.7%, P = 0.46) when compared with the controls (4.1%). The frequency of S311C was significantly higher in familiar schizophrenics from one local area but not in those from other areas. It was significant that S311C was frequently present in patients with mood-incongruent psychotic affective disorders (33.3%, P < 0.0001), but not in those with other affective disorders. These data suggest that S311C might be one of the genetic factors for symptomatic dimensions of delusions and hallucinations and might be involved in underlying clinical heterogeneity in schizophrenia and affective disorders. 48 refs., 3 tabs.

  1. Brain response to affective pictures in the chimpanzee.

    PubMed

    Hirata, Satoshi; Matsuda, Goh; Ueno, Ari; Fukushima, Hirokata; Fuwa, Koki; Sugama, Keiko; Kusunoki, Kiyo; Tomonaga, Masaki; Hiraki, Kazuo; Hasegawa, Toshikazu

    2013-01-01

    Advancement of non-invasive brain imaging techniques has allowed us to examine details of neural activities involved in affective processing in humans; however, no comparative data are available for chimpanzees, the closest living relatives of humans. In the present study, we measured event-related brain potentials in a fully awake adult chimpanzee as she looked at affective and neutral pictures. The results revealed a differential brain potential appearing 210 ms after presentation of an affective picture, a pattern similar to that in humans. This suggests that at least a part of the affective process is similar between humans and chimpanzees. The results have implications for the evolutionary foundations of emotional phenomena, such as emotional contagion and empathy.

  2. Knocking out the dopamine reuptake transporter (DAT) does not change the baseline brain arachidonic acid signal in the mouse

    PubMed Central

    Ramadan, Epolia; Chang, Lisa; Chen, Mei; Ma, Kaizong; Hall, F. Scott; Uhl, George R.; Rapoport, Stanley I.; Basselin, Mireille

    2012-01-01

    Background Dopamine transporter (DAT) homozygous knockout (DAT−/−) mice have a 10-fold higher extracellular DA concentration in the caudate-putamen and nucleus accumbens than do wildtype (DAT+/+) mice, but show reduced presynaptic DA synthesis and fewer postsynaptic D2 receptors. One aspect of neurotransmission involves DA binding to postsynaptic D2-like receptors coupled to cytosolic phospholipase A2 (cPLA2), releasing second messenger arachidonic acid (AA) from synaptic membrane phospholipid. We hypothesized that tonic overactivation of D2-like receptors in DAT−/− mice due to elevated DA would not increase brain AA signaling, because of compensatory downregulation of postsynaptic signaling mechanisms. Methods [1-14C]AA was infused intravenously for 3 min in unanesthetized DAT+/+, heterozygous (DAT+/−) and DAT−/− mice. AA incorporation coefficients k* and rates Jin, markers of AA metabolism and signaling, were imaged in 83 brain regions using quantitative autoradiography brain cPLA2-IV activity also was measured. Results Neither k* nor Jin for AA in any brain region, or in brain cPLA2-IV activity, differed significantly between DAT−/−, DAT+/− and DAT+/+ mice. Conclusions These results differ from reported increases in k* and Jin for AA, and brain cPLA2 expression, in serotonin reuptake transporter (5-HTT) knockout mice, and suggest that postsynaptic dopaminergic neurotransmission mechanisms involving AA are downregulated despite elevated DA in DAT−/− mice. PMID:22376027

  3. Quantitative Analysis of D2 Dopamine Receptor Binding in the Living Human Brain by PET

    NASA Astrophysics Data System (ADS)

    Farde, Lars; Hall, Hakan; Ehrin, Erling; Sedvall, Goran

    1986-01-01

    D2 dopamine receptors in the putamen of living human subjects were characterized by using the selective, high-affinity D2 dopamine receptor antagonist carbon-11-labeled raclopride and positron emission tomography. Experiments in four healthy men demonstrated saturability of [11C]raclopride binding to an apparently homogeneous population of sites with Hill coefficients close to unity. In the normal putamen, maximum binding ranged from 12 to 17 picomoles per cubic centimeter and dissociation constants from 3.4 to 4.7 nanomolar. Maximum binding for human putamen at autopsy was 15 picomoles per cubic centimeter. Studies of [11C]raclopride binding indicate that clinically effective doses of chemically distinct neuroleptic drugs result in 85 to 90 percent occupancy of D2 dopamine receptors in the putamen of schizophrenic patients.

  4. Repeated electrical stimulation of reward-related brain regions affects cocaine but not "natural" reinforcement.

    PubMed

    Levy, Dino; Shabat-Simon, Maytal; Shalev, Uri; Barnea-Ygael, Noam; Cooper, Ayelet; Zangen, Abraham

    2007-12-19

    Drug addiction is associated with long-lasting neuronal adaptations including alterations in dopamine and glutamate receptors in the brain reward system. Treatment strategies for cocaine addiction and especially the prevention of craving and relapse are limited, and their effectiveness is still questionable. We hypothesized that repeated stimulation of the brain reward system can induce localized neuronal adaptations that may either potentiate or reduce addictive behaviors. The present study was designed to test how repeated interference with the brain reward system using localized electrical stimulation of the medial forebrain bundle at the lateral hypothalamus (LH) or the prefrontal cortex (PFC) affects cocaine addiction-associated behaviors and some of the neuronal adaptations induced by repeated exposure to cocaine. Repeated high-frequency stimulation in either site influenced cocaine, but not sucrose reward-related behaviors. Stimulation of the LH reduced cue-induced seeking behavior, whereas stimulation of the PFC reduced both cocaine-seeking behavior and the motivation for its consumption. The behavioral findings were accompanied by glutamate receptor subtype alterations in the nucleus accumbens and the ventral tegmental area, both key structures of the reward system. It is therefore suggested that repeated electrical stimulation of the PFC can become a novel strategy for treating addiction.

  5. Quantitative autoradiographic distribution of [3H]mazindol-labeled dopamine uptake sites in the brains of superoxide dismutase transgenic mice.

    PubMed

    Cadet, J L; Przedborski, S; Kostic, V; Jackson-Lewis, V; Carlson, E; Epstein, C J

    1990-07-01

    Superoxide dismutase (SOD) is an important enzyme which is involved in the dismutation of the toxic radical, superoxide anion. The activity of CuZnSOD is increased in patients who suffer from Down's Syndrome, Alzheimer's disease, and in Parkinson's disease. In order to evaluate the contribution of this enzyme to the neuropathology of these neurodegenerative diseases, transgenic mice have been constructed which express the human CuZnSOD gene. As a first step towards exploring these issues, we have carried out an autoradiographic binding study of the distribution of the catecholaminergic uptake blocker mazindol in the brain of these transgenic mice and of their littermates. Desmethylimipramine (DMI)-insensitive [3H]mazindol binding sites which correspond to dopamine uptake sites were located in the striatum, the nucleus accumbens, the olfactory tubercle and in the substantia nigra. Within the striatum, there was a lateromedial gradient, with higher concentration of dopamine uptake sites being found laterally. These findings suggest that subregions of the basal ganglia may be more susceptible to the deleterious effects of dopaminotoxic drugs which are taken up into the dopaminergic neurons via these uptake sites. Saturation experiments revealed no differences in the characteristics of [3H]mazindol binding sites between the two groups of mice. Thus, increased activity of SOD is not associated with diffuse changes in the molecular structures of receptors in mice brain.

  6. Dietary long chain n-3 polyunsaturated fatty acids prevent impaired social behaviour and normalize brain dopamine levels in food allergic mice.

    PubMed

    de Theije, Caroline G M; van den Elsen, Lieke W J; Willemsen, Linette E M; Milosevic, Vanja; Korte-Bouws, Gerdien A H; Lopes da Silva, Sofia; Broersen, Laus M; Korte, S Mechiel; Olivier, Berend; Garssen, Johan; Kraneveld, Aletta D

    2015-03-01

    Allergy is suggested to exacerbate impaired behaviour in children with neurodevelopmental disorders. We have previously shown that food allergy impaired social behaviour in mice. Dietary fatty acid composition may affect both the immune and nervous system. The aim of this study was to assess the effect of n-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) on food allergy-induced impaired social behaviour and associated deficits in prefrontal dopamine (DA) in mice. Mice were fed either control or n-3 LCPUFA-enriched diet before and during sensitization with whey. Social behaviour, acute allergic skin response and serum immunoglobulins were assessed. Monoamine levels were measured in brain and intestine and fatty acid content in brain. N-3 LCPUFA prevented impaired social behaviour of allergic mice. Moreover, n-3 LCPUFA supplementation increased docosahexaenoic acid (DHA) incorporation into the brain and restored reduced levels of prefrontal DA and its metabolites 3,4-dihydroxyphenylacetic acid, 3-methoxytyramine and homovanillic acid in allergic mice. In addition to these brain effects, n-3 LCPUFA supplementation reduced the allergic skin response and restored decreased intestinal levels of serotonin metabolite 5-hydroxyindoleacetic acid in allergic mice. N-3 LCPUFA may have beneficial effects on food allergy-induced deficits in social behaviour, either indirectly by reducing the allergic response and restoring intestinal 5-HT signalling, or directly by DHA incorporation into neuronal membranes, affecting the DA system. Therefore, it is of interest to further investigate the relevance of food allergy-enhanced impairments in social behaviour in humans and the potential benefits of dietary n-3 LCPUFA supplementation.

  7. Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages

    PubMed Central

    Gaskill, Peter J.; Yano, Hideaki H.; Kalpana, Ganjam V.; Javitch, Jonathan A.; Berman, Joan W.

    2014-01-01

    Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers. PMID:25268786

  8. Genetic Variation in the Human Brain Dopamine System Influences Motor Learning and Its Modulation by L-Dopa

    PubMed Central

    Pearson-Fuhrhop, Kristin M.; Minton, Brian; Acevedo, Daniel; Shahbaba, Babak; Cramer, Steven C.

    2013-01-01

    Dopamine is important to learning and plasticity. Dopaminergic drugs are the focus of many therapies targeting the motor system, where high inter-individual differences in response are common. The current study examined the hypothesis that genetic variation in the dopamine system is associated with significant differences in motor learning, brain plasticity, and the effects of the dopamine precursor L-Dopa. Skilled motor learning and motor cortex plasticity were assessed using a randomized, double-blind, placebo-controlled, crossover design in 50 healthy adults during two study weeks, one with placebo and one with L-Dopa. The influence of five polymorphisms with established effects on dopamine neurotransmission was summed using a gene score, with higher scores corresponding to higher dopaminergic neurotransmission. Secondary hypotheses examined each polymorphism individually. While training on placebo, higher gene scores were associated with greater motor learning (p = .03). The effect of L-Dopa on learning varied with the gene score (gene score*drug interaction, p = .008): participants with lower gene scores, and thus lower endogenous dopaminergic neurotransmission, showed the largest learning improvement with L-Dopa relative to placebo (p<.0001), while L-Dopa had a detrimental effect in participants with higher gene scores (p = .01). Motor cortex plasticity, assessed via transcranial magnetic stimulation (TMS), also showed a gene score*drug interaction (p = .02). Individually, DRD2/ANKK1 genotype was significantly associated with motor learning (p = .02) and its modulation by L-Dopa (p<.0001), but not with any TMS measures. However, none of the individual polymorphisms explained the full constellation of findings associated with the gene score. These results suggest that genetic variation in the dopamine system influences learning and its modulation by L-Dopa. A polygene score explains differences in L-Dopa effects on learning and plasticity

  9. Visualization of the dopamine transporter in the human brain postmortem with the new selective ligand [125I]PE2I.

    PubMed

    Hall, H; Halldin, C; Guilloteau, D; Chalon, S; Emond, P; Besnard, J; Farde, L; Sedvall, G

    1999-01-01

    Using a new, 125I-labeled, selective high affinity dopamine transporter ligand, N-(3-iodoprop-2E-enyl)-2beta-carbomethoxy-3beta-(4'-methy lph enyl)nort ropane (PE2I), the distribution of the dopamine transporter was characterized in the normal postmortem human brain using whole hemisphere autoradiography. PE2I was radioiodinated to high specific radioactivity (2200 Ci/mmol, 81 GBq/micromol). PE2I binds to the dopamine transporter with high potency and, in contrast to beta-CIT, it has very low affinities for the serotonin and noradrenaline transporters. The autoradiograms showed very intense binding in basal ganglia (putamen, nucleus caudatus, nucleus accumbens) and lower binding in substantia nigra. Very low or no binding was found in other brain structures, including the neocortex or cerebellum. The labeling of human dopamine transporters with [125I]PE2I was inhibited by the dopamine transporter inhibitors GBR 12909 and beta-CIT, but not by citalopram (serotonin transporter inhibitor) or maprotiline (noradrenaline transporter inhibitor). Possibly due to the relatively high lipophilicity of the compound (theoretical log p = 4.68), it accumulated slightly in white matter. Thus, in vitro autoradiography using [125I]PE2I provided detailed qualitative and quantitative evidence that the dopamine transporter is almost exclusively localized in the basal ganglia of the human brain. Moreover, the autoradiograms indicate that [11C]PE2I and [123I]PE2I should be suitable for the in vivo visualization of the human dopamine transporter with PET or SPECT, respectively.

  10. Affective state and community integration after traumatic brain injury.

    PubMed

    Juengst, Shannon B; Arenth, Patricia M; Raina, Ketki D; McCue, Michael; Skidmore, Elizabeth R

    2014-12-01

    Previous studies investigating the relationship between affective state and community integration have focused primarily on the influence of depression and anxiety. In addition, they have focused on frequency of participation in various activities, failing to address an individual's subjective satisfaction with participation. The purpose of this study was to examine how affective state contributes to frequency of participation and satisfaction with participation after traumatic brain injury among participants with and without a current major depressive episode. Sixty-four community-dwelling participants with a history of complicated mild-to-severe traumatic brain injury participated in this cross-sectional cohort study. High positive affect contributed significantly to frequency of participation (β = 0.401, P = 0.001), and both high positive affect and low negative affect significantly contributed to better satisfaction with participation (F2,61 = 13.63, P < 0.001). Further investigation to assess the direction of these relationships may better inform effective targets for intervention. These findings highlight the importance of assessing affective state after traumatic brain injury and incorporating a subjective measure of participation when considering community integration outcomes.

  11. Neuroscience of affect: brain mechanisms of pleasure and displeasure.

    PubMed

    Berridge, Kent C; Kringelbach, Morten L

    2013-06-01

    Affective neuroscience aims to understand how affect (pleasure or displeasure) is created by brains. Progress is aided by recognizing that affect has both objective and subjective features. Those dual aspects reflect that affective reactions are generated by neural mechanisms, selected in evolution based on their real (objective) consequences for genetic fitness. We review evidence for neural representation of pleasure in the brain (gained largely from neuroimaging studies), and evidence for the causal generation of pleasure (gained largely from brain manipulation studies). We suggest that representation and causation may actually reflect somewhat separable neuropsychological functions. Representation reaches an apex in limbic regions of prefrontal cortex, especially orbitofrontal cortex, influencing decisions and affective regulation. Causation of core pleasure or 'liking' reactions is much more subcortically weighted, and sometimes surprisingly localized. Pleasure 'liking' is especially generated by restricted hedonic hotspot circuits in nucleus accumbens (NAc) and ventral pallidum. Another example of localized valence generation, beyond hedonic hotspots, is an affective keyboard mechanism in NAc for releasing intense motivations such as either positively valenced desire and/or negatively valenced dread.

  12. Modulation of Memory Consolidation by the Basolateral Amygdala or Nucleus Accumbens Shell Requires Concurrent Dopamine Receptor Activation in Both Brain Regions

    ERIC Educational Resources Information Center

    LaLumiere, Ryan T.; Nawar, Erene M.; McGaugh, James L.

    2005-01-01

    Previous findings indicate that the basolateral amygdala (BLA) and the nucleus accumbens (NAc) interact in influencing memory consolidation. The current study investigated whether this interaction requires concurrent dopamine (DA) receptor activation in both brain regions. Unilateral, right-side cannulae were implanted into the BLA and the…

  13. N-Methyl-d-aspartate Modulation of Nucleus Accumbens Dopamine Release by Metabotropic Glutamate Receptors: Fast Cyclic Voltammetry Studies in Rat Brain Slices in Vitro.

    PubMed

    Yavas, Ersin; Young, Andrew M J

    2017-02-15

    The N-methyl-d-aspartate (NMDA) receptor antagonist, phencyclidine, induces behavioral changes in rodents mimicking symptoms of schizophrenia, possibly mediated through dysregulation of glutamatergic control of mesolimbic dopamine release. We tested the hypothesis that NMDA receptor activation modulates accumbens dopamine release, and that phencyclidine pretreatment altered this modulation. NMDA caused a receptor-specific, dose-dependent decrease in electrically stimulated dopamine release in nucleus accumbens brain slices. This decrease was unaffected by picrotoxin, making it unlikely to be mediated through GABAergic neurones, but was decreased by the metabotropic glutamate receptor antagonist, (RS)-α-methyl-4-sulfonophenylglycine, indicating that NMDA activates mechanisms controlled by these receptors to decrease stimulated dopamine release. The effect of NMDA was unchanged by in vivo pretreatment with phencyclidine (twice daily for 5 days), with a washout period of at least 7 days before experimentation, which supports the hypothesis that there is no enduring direct effect of PCP at NMDA receptors after this pretreatment procedure. We propose that NMDA depression of accumbal dopamine release is mediated by metabotropic glutamate receptors located pre- or perisynaptically, and suggest that NMDA evoked increased extrasynaptic spillover of glutamate is sufficient to activate these receptors that, in turn, inhibit dopamine release. Furthermore, we suggest that enduring functional changes brought about by subchronic phencyclidine pretreatment, modeling deficits in schizophrenia, are downstream effects consequent on chronic blockade of NMDA receptors, rather than direct effects on NMDA receptors themselves.

  14. Receptor binding and selectivity of three 11C-labelled dopamine receptor antagonists in the brain of rhesus monkeys studied with positron emission tomography.

    PubMed

    Hartvig, P; Eckernäs, S A; Ekblom, B; Lindström, L; Lundqvist, H; Axelsson, S; Fasth, K J; Gullberg, P; Långström, B

    1988-04-01

    The regional distribution of 3 11C-labelled dopamine receptor antagonists, N-methyl spiperone, raclopride and clozapine, in the brain of Rhesus monkeys was studied by positron emission tomography (PET). The measured radioactivities in the striatal area were similar for the 3 antagonists, although the highest selectivity as compared to cerebellum was found for 11C-raclopride 60 min after administration. The selectivity of the radiotracers for the serotonin and D2-dopamine receptors was evaluated after pretreatment of the monkeys with serotonin and dopamine receptor antagonists. 11C-N-methylspiperone and 11C-clozapine both bound to serotonin receptors in the frontal cortex and to D2-dopamine receptors in the striatal area. Raclopride was selectively bound to the D2-dopamine receptors. The radioactivities measured in the striatal area with cerebellum as reference were fitted to a 3-compartment model which made possible evaluation of receptor binding characteristics. The rate proportional to the association rate constant for the receptor, kon and number of receptors, Bmax, varied from 0.02-0.07 min-1 between the studied radiolabelled drugs, whereas the apparent dissociation rate was highest for clozapine. This means that clozapine had the lowest affinity for the receptors in the striatum, assuming that the Bmax values are identical. The observed difference in selective receptor binding and binding characteristics of the 3 tracers may have an influence both on the clinical efficacy and side effects of the studied dopamine receptor antagonists.

  15. Localization of dopamine D4 receptors in GABAergic neurons of the primate brain.

    PubMed

    Mrzljak, L; Bergson, C; Pappy, M; Huff, R; Levenson, R; Goldman-Rakic, P S

    1996-05-16

    Dopamine receptors are the principal targets of drugs used in the treatment of schizophrenia. Among the five mammalian dopamine-receptor subtypes, the D4 subtype is of particular interest because of its high affinity for the atypical neuroleptic clozapine. Interest in clozapine stems from its effectiveness in reducing positive and negative symptoms in acutely psychotic and treatment-resistant schizophrenic patients without eliciting extrapyramidal side effects. We have produced a subtype-specific antibody against the D4 receptor and localized it within specific cellular elements and synaptic circuits of the central nervous system. The D4-receptor antibody labelled GABAergic neurons in the cerebral cortex, hippocampus, thalamic reticular nucleus, globus pallidus and the substantia nigra (pars reticulata). Labelling was also observed in a subset of cortical pyramidal cells. Our findings suggest that clozapine's beneficial effects in schizophrenia may be achieved, in part, through D4-mediated GABA modulation, possibly implicating disinhibition of excitatory transmission in intrinsic cortical, thalamocortical and extrapyramidal pathways.

  16. Co-operative action of calcium ions in dopamine release from rat brain synaptosomes.

    PubMed Central

    Nachshen, D A; Sanchez-Armass, S

    1987-01-01

    1. The release of [3H]dopamine from isolated presynaptic nerve terminals (synaptosomes) prepared from rat striata was measured as a function of the external Ca2+ concentration ([Ca2+]o). 2. In synaptosomes depolarized by the addition of 50 mM-K+, release of [3H]dopamine increased in a highly non-linear manner with [Ca2+]o. The release could be described as a third power function of [Ca2+]o. 3. Both 45Ca2+ influx and the change in the free cytosolic Ca2+ concentration ([Ca2+]i, measured with the fluorescent Ca2+ indicator fura-2) that were evoked by depolarization increased in a linear manner with [Ca2+]o. 4. These results suggest that non-linearity in the [Ca2+]o dependence of transmitter release originates in a co-operative relation between [Ca2+]i and exocytosis. PMID:3656180

  17. Aggressive behavior, related conduct problems, and variation in genes affecting dopamine turnover.

    PubMed

    Grigorenko, Elena L; De Young, Colin G; Eastman, Maria; Getchell, Marya; Haeffel, Gerald J; Klinteberg, Britt af; Koposov, Roman A; Oreland, Lars; Pakstis, Andrew J; Ponomarev, Oleg A; Ruchkin, Vladislav V; Singh, Jay P; Yrigollen, Carolyn M

    2010-01-01

    A number of dopamine-related genes have been implicated in the etiology of violent behavior and conduct problems. Of these genes, the ones that code for the enzymes that influence the turnover of dopamine (DA) have received the most attention. In this study, we investigated 12 genetic polymorphisms in four genes involved with DA functioning (COMT, MAOA and MAOB, and DbetaH) in 179 incarcerated male Russian adolescents and two groups of matched controls: boys without criminal records referred to by their teachers as (a) "troubled-behavior-free" boys, n=182; and (b) "troubled-behavior" boys, n=60. The participants were classified as (1) being incarcerated or not, (2) having the DSM-IV diagnosis of conduct disorder (CD) or not, and (3) having committed violent or nonviolent crimes (for the incarcerated individuals only). The findings indicate that, although no single genetic variant in any of the four genes differentiated individuals in the investigated groups, various linear combinations (i.e., haplotypes) and nonlinear combinations (i.e., interactions between variants within and across genes) of genetic variants resulted in informative and robust classifications for two of the three groupings. These combinations of genetic variants differentiated individuals in incarceration vs. nonincarcerated and CD vs. no-CD groups; no informative combinations were established consistently for the grouping by crime within the incarcerated individuals. This study underscores the importance of considering multiple rather than single markers within candidate genes and their additive and interactive combinations, both with themselves and with nongenetic indicators, while attempting to understand the genetic background of such complex behaviors as serious conduct problems.

  18. Differential subcellular distribution of rat brain dopamine receptors and subtype-specific redistribution induced by cocaine

    PubMed Central

    Voulalas, Pamela J.; Schetz, John; Undieh, Ashiwel S.

    2011-01-01

    We investigated the subcellular distribution of dopamine D1, D2 and D5 receptor subtypes in rat frontal cortex, and examined whether psychostimulant-induced elevation of synaptic dopamine could alter the receptor distribution. Differential detergent solubilization and density gradient centrifugation were used to separate various subcellular fractions, followed by semi-quantitative determination of the relative abundance of specific receptor proteins in each fraction. D1 receptors were predominantly localized to detergent-resistant membranes, and a portion of these receptors also floated on sucrose gradients. These properties are characteristic of proteins found in lipid rafts and caveolae. D2 receptors exhibited variable distribution between cytoplasmic, detergent-soluble and detergent-resistant membrane fractions, yet were not present in buoyant membranes. Most D5 receptor immunoreactivity was distributed into the cytoplasmic fraction, failing to sediment at forces up to 300,000g, while the remainder was localized to detergent-soluble membranes in cortex. D5 receptors were undetectable in detergent-resistant fractions or raft-like subdomains. Following daily cocaine administration for seven days, a significant portion of D1 receptors translocated from detergent-resistant membranes to detergent-soluble membranes and the cytoplasmic fraction. The distributions of D5 and D2 receptor subtypes were not significantly altered by cocaine treatment. These data imply that D5 receptors are predominantly cytoplasmic, D2 receptors are diffusely distributed within the cell, whereas D1 receptors are mostly localized to lipid rafts within the rat frontal cortex. Dopamine receptor subtype localization is susceptible to modulation by pharmacological manipulations that elevate synaptic dopamine, however the functional implications of such drug-induced receptor warrant further investigation. PMID:21236347

  19. Novel Neuroimaging Methods to Understand How HIV Affects the Brain

    PubMed Central

    Thompson, Paul

    2015-01-01

    In much of the developed world, the HIV epidemic has largely been controlled by anti-retroviral treatment. Even so, there is growing concern that HIV-infected individuals may be at risk for accelerated brain aging, and a range of cognitive impairments. What promotes or resists these changes is largely unknown. There is also interest in discovering factors that promote resilience to HIV, and combat its adverse effects in children. Here we review recent developments in brain imaging that reveal how the virus affects the brain. We relate these brain changes to changes in blood markers, cognitive function, and other patient outcomes or symptoms, such as apathy or neuropathic pain. We focus on new and emerging techniques, including new variants of brain MRI. Diffusion tensor imaging, for example, can map the brain’s structural connections while fMRI can uncover functional connections. Finally, we suggest how large-scale global research alliances, such as ENIGMA, may resolve controversies over effects where evidence is now lacking. These efforts pool scans from tens of thousands of individuals, and offer a source of power not previously imaginable for brain imaging studies. PMID:25902966

  20. Amantadine preserves dopamine level and attenuates depression-like behavior induced by traumatic brain injury in rats.

    PubMed

    Tan, Liang; Ge, Hongfei; Tang, Jun; Fu, Chuhua; Duanmu, Wangsheng; Chen, Yujie; Hu, Rong; Sui, Jianfeng; Liu, Xin; Feng, Hua

    2015-02-15

    Traumatic brain injury (TBI) often results in multiple neuropsychiatric sequelae, including cognitive, emotional, and behavioral problems. Among them, depression is a common psychiatric symptom, and links to poorer recovery. Amantadine, as an antiparkinsonian, increases dopamine release, and blocks dopamine reuptake, but has recently received attention for its effectiveness as an antidepressant. In the present study, we first induced a post-TBI depression rat model to probe the efficacy of amantadine therapy in reducing post-TBI depression. The DA concentration in the striatum of the injured rats, as well as the degeneration and apoptosis of dopaminergic neurons in the substantia nigra (SN), were checked along with the depression-like behavior. The results showed that amantadine therapy could significantly ameliorate the depression-like behavior, improving the DA level in the striatum and decreasing the degeneration and apoptosis of dopaminergic neurons in the SN. The results indicated that the anti-depression effect may result from the increase of extracellular DA concentration in the striatum and/or the indirect neuroprotection on the dopaminergic neurons in the SN. We conclude that DA plays a critical role in post-TBI depression, and that amantadine shows its potential value in anti-depression treatment for TBI.

  1. Three modality image registration of brain SPECT/CT and MR images for quantitative analysis of dopamine transporter imaging

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yuzuho; Takeda, Yuta; Hara, Takeshi; Zhou, Xiangrong; Matsusako, Masaki; Tanaka, Yuki; Hosoya, Kazuhiko; Nihei, Tsutomu; Katafuchi, Tetsuro; Fujita, Hiroshi

    2016-03-01

    Important features in Parkinson's disease (PD) are degenerations and losses of dopamine neurons in corpus striatum. 123I-FP-CIT can visualize activities of the dopamine neurons. The activity radio of background to corpus striatum is used for diagnosis of PD and Dementia with Lewy Bodies (DLB). The specific activity can be observed in the corpus striatum on SPECT images, but the location and the shape of the corpus striatum on SPECT images only are often lost because of the low uptake. In contrast, MR images can visualize the locations of the corpus striatum. The purpose of this study was to realize a quantitative image analysis for the SPECT images by using image registration technique with brain MR images that can determine the region of corpus striatum. In this study, the image fusion technique was used to fuse SPECT and MR images by intervening CT image taken by SPECT/CT. The mutual information (MI) for image registration between CT and MR images was used for the registration. Six SPECT/CT and four MR scans of phantom materials are taken by changing the direction. As the results of the image registrations, 16 of 24 combinations were registered within 1.3mm. By applying the approach to 32 clinical SPECT/CT and MR cases, all of the cases were registered within 0.86mm. In conclusions, our registration method has a potential in superimposing MR images on SPECT images.

  2. Forward shift of feeding buzz components of dolphins and belugas during associative learning reveals a likely connection to reward expectation, pleasure and brain dopamine activation.

    PubMed

    Ridgway, S H; Moore, P W; Carder, D A; Romano, T A

    2014-08-15

    For many years, we heard sounds associated with reward from dolphins and belugas. We named these pulsed sounds victory squeals (VS), as they remind us of a child's squeal of delight. Here we put these sounds in context with natural and learned behavior. Like bats, echolocating cetaceans produce feeding buzzes as they approach and catch prey. Unlike bats, cetaceans continue their feeding buzzes after prey capture and the after portion is what we call the VS. Prior to training (or conditioning), the VS comes after the fish reward; with repeated trials it moves to before the reward. During training, we use a whistle or other sound to signal a correct response by the animal. This sound signal, named a secondary reinforcer (SR), leads to the primary reinforcer, fish. Trainers usually name their whistle or other SR a bridge, as it bridges the time gap between the correct response and reward delivery. During learning, the SR becomes associated with reward and the VS comes after the SR rather than after the fish. By following the SR, the VS confirms that the animal expects a reward. Results of early brain stimulation work suggest to us that SR stimulates brain dopamine release, which leads to the VS. Although there are no direct studies of dopamine release in cetaceans, we found that the timing of our VS is consistent with a response after dopamine release. We compared trained vocal responses to auditory stimuli with VS responses to SR sounds. Auditory stimuli that did not signal reward resulted in faster responses by a mean of 151 ms for dolphins and 250 ms for belugas. In laboratory animals, there is a 100 to 200 ms delay for dopamine release. VS delay in our animals is similar and consistent with vocalization after dopamine release. Our novel observation suggests that the dopamine reward system is active in cetacean brains.

  3. Vasopressin induces dopamine release and cyclic AMP efflux from the brain of water-deprived rats: inhibitory effect of vasopressin V2 receptor-mediated phosphorylation.

    PubMed

    Tyagi, M G; Handa, R K; Stephen, P M; Bapna, J S

    1998-01-01

    The neurohypophyseal hormone vasopressin (AVP) is widely distributed throughout the central nervous system. It acts as an excitatory transmitter in the CNS and plays an important physiological role in water and electrolyte homeostasis. However, water deprivation has been shown to induce changes in the levels of monoamines, but there is little knowledge about the influence of AVP on monoamine levels after water deprivation. In this study, we investigated the effect of AVP and its receptor antagonists on alterations in dopamine (DA) release and cyclic adenosine 3',5' monophosphate (cAMP) efflux from rat brain slices following water deprivation. Striatal brain slices (500 microm thick) were incubated in a medium with or without AVP (0. 1-1.0 microM) for 30 min. After 2 h of washout in normal medium, high KCl (40 mM)-evoked DA release and cAMP efflux from the rat brain slices were examined. In the brain slices of euhydrated animals, treatment with AVP slightly altered DA release and cAMP efflux from the brain. This increase in DA release and cAMP efflux was not significantly affected by the addition of a calcium/calmodulin-dependent protein phosphatase, calcineurin (20 microM), to the incubation medium or either by a V1 or V2 AVP receptor antagonist. In contrast, AVP significantly increased the DA release and enhanced the cAMP efflux from the brain slices of water-deprived animals. The AVP-induced increase of brain response in the water-deprived animals was significantly attenuated by a V2 receptor antagonist, partially by calcineurin, but not by a V1 receptor antagonist. The present results suggest that AVP may play a role in water-deprivation-induced DA release and cAMP efflux, which is possibly mediated through the activation of the V2 receptor. The V2 receptor action is attenuated by calcium/calmodulin-dependent dephosphorlyation of some cellular proteins critical for signal transduction.

  4. Factors affecting intellectual outcome in pediatric brain tumor patients

    SciTech Connect

    Ellenberg, L.; McComb, J.G.; Siegel, S.E.; Stowe, S.

    1987-11-01

    A prospective study utilizing repeated intellectual testing was undertaken in 73 children with brain tumors consecutively admitted to Childrens Hospital of Los Angeles over a 3-year period to determine the effect of tumor location, extent of surgical resection, hydrocephalus, age of the child, radiation therapy, and chemotherapy on cognitive outcome. Forty-three patients were followed for at least two sequential intellectual assessments and provide the data for this study. Children with hemispheric tumors had the most general cognitive impairment. The degree of tumor resection, adequately treated hydrocephalus, and chemotherapy had no bearing on intellectual outcome. Age of the child affected outcome mainly as it related to radiation. Whole brain radiation therapy was associated with cognitive decline. This was especially true in children below 7 years of age, who experienced a very significant loss of function after whole brain radiation therapy.

  5. Dopamine D1-like receptor in lateral habenula nucleus affects contextual fear memory and long-term potentiation in hippocampal CA1 in rats.

    PubMed

    Chan, Jiangping; Guan, Xin; Ni, Yiling; Luo, Lilu; Yang, Liqiang; Zhang, Pengyue; Zhang, Jichuan; Chen, Yanmei

    2017-03-15

    The Lateral Habenula (LHb) plays an important role in emotion and cognition. Recent experiments suggest that LHb has functional interaction with the hippocampus and plays an important role in spatial learning. LHb is reciprocally connected with midbrain monoaminergic brain areas such as the ventral tegmental area (VTA). However, the role of dopamine type 1 receptor (D1R) in LHb in learning and memory is not clear yet. In the present study, D1R agonist or antagonist were administered bilaterally into the LHb in rats. We found that both D1R agonist and antagonist impaired the acquisition of contextual fear memory in rats. D1R agonist or antagonist also impaired long term potentiation (LTP) in hippocampal CA3-CA1 synapses in freely moving rats and attenuated learning induced phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) subunit 1 (GluA1) at Ser831 and Ser845 in hippocampus. Taken together, our results suggested that dysfunction of D1R in LHb affected the function of hippocampus.

  6. Development of dopamine and N-methyl-D-aspartate systems in rat brain: the effect of prenatal phencyclidine exposure.

    PubMed

    Ali, S F; Holson, R R; Newport, G D; Slikker, W; Bowyer, J F

    1993-05-21

    Phencyclidine (PCP) inhibits the uptake of the neurotransmitter dopamine (DA), and blocks N-methyl-D-aspartate (NMDA) receptor-regulated ion channels. PCP also binds to sigma receptors in vivo and in vitro in rat brain. Prolonged exposure to PCP in adults has been observed to reduce the number of PCP binding sites in brain. We designed these experiments to evaluate whether prolonged prenatal exposure to PCP produces alterations in the development of DA and NMDA systems in brain. To do so, we characterized the normal course of development of basal and stimulated DA release in striatal slices, the ontogeny of striatal DA concentrations, and the development of NMDA receptor channels and associated glutamate binding sites in frontal cortex. We compared these developmental profiles to those in rats exposed to prenatal PCP, in an attempt to characterize the effect of prenatal PCP exposure on the pattern of brain development. Pregnant CD rats were injected s.c. with either 0, 10 or 20 mg/kg PCP daily on gestational days 8 through 20. On postnatal days (PND) 8, 21, 45, or 100, rats were sacrificed and brain tissues isolated for in vitro assessment. In vitro [3H]DA release from striatal slices evoked by either 40 microM glutamate or 15 mM K+ increased over 250% from PND 8 to PND 45, and glutamate-stimulated release was still significantly below adult levels at PND 45. In contrast, D-methamphetamine (D-METH)-evoked [3H]DA release, frontal cortical glutamate binding sites and NMDA channels developed early, reaching adult levels on or before PND 21.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Proline affects brain function in 22q11DS children with the low activity COMT 158 allele.

    PubMed

    Vorstman, Jacob A S; Turetsky, Bruce I; Sijmens-Morcus, Monique E J; de Sain, Monique G; Dorland, Bert; Sprong, Mirjam; Rappaport, Eric F; Beemer, Frits A; Emanuel, Beverly S; Kahn, René S; van Engeland, Herman; Kemner, Chantal

    2009-02-01

    The association between the 22q11.2 deletion syndrome (22q11DS) and psychiatric disorders, particularly psychosis, suggests a causal relationship between 22q11DS genes and abnormal brain function. The genes catechol-O-methyl-transferase (COMT) and proline dehydrogenase both reside within the commonly deleted region of 22q11.2. COMT activity and proline levels may therefore be altered in 22q11DS individuals. Associations of both COMT(158) genotype and elevated serum proline levels with abnormal brain function have been reported. Fifty-six 22q11DS children and 75 healthy controls were assessed on physiological measures of brain function, including prepulse inhibition (PPI) of startle, P50 auditory sensory gating and smooth pursuit eye movements (SPEM). COMT(158) genotype and plasma proline levels were determined in the 22q11DS children. We hypothesized an interaction between the COMT(158) genotype and proline, predicting the strongest negative effect of high proline on brain function to occur in 22q11DS children who are carriers of the COMT(met) allele. Of the three physiological measures, only SPEM and PPI were abnormal in the patient sample. With regard to the SPEM performance, there was a significant interaction between the COMT(158) genotype and proline level with significantly decreased SPEM performance in children with high plasma proline levels and the low activity COMT(met) allele. A similar interaction effect was not observed with regard to PPI. These findings are consistent with a model in which elevated proline negatively affects brain function by an increase in dopamine in the prefrontal cortex. 22q11DS patients with low dopamine catabolic capacity are therefore especially vulnerable to this functional disruption.

  8. Factors affecting the cerebral network in brain tumor patients.

    PubMed

    Heimans, Jan J; Reijneveld, Jaap C

    2012-06-01

    Brain functions, including cognitive functions, are frequently disturbed in brain tumor patients. These disturbances may result from the tumor itself, but also from the treatment directed against the tumor. Surgery, radiotherapy and chemotherapy all may affect cerebral functioning, both in a positive as well as in a negative way. Apart from the anti-tumor treatment, glioma patients often receive glucocorticoids and anti-epileptic drugs, which both also have influence on brain functioning. The effect of a brain tumor on cerebral functioning is often more global than should be expected on the basis of the local character of the disease, and this is thought to be a consequence of disturbance of the cerebral network as a whole. Any network, whether it be a neural, a social or an electronic network, can be described in parameters assessing the topological characteristics of that particular network. Repeated assessment of neural network characteristics in brain tumor patients during their disease course enables study of the dynamics of neural networks and provides more insight into the plasticity of the diseased brain. Functional MRI, electroencephalography and especially magnetoencephalography are used to measure brain function and the signals that are being registered with these techniques can be analyzed with respect to network characteristics such as "synchronization" and "clustering". Evidence accumulates that loss of optimal neural network architecture negatively impacts complex cerebral functioning and also decreases the threshold to develop epileptic seizures. Future research should be focused on both plasticity of neural networks and the factors that have impact on that plasticity as well as the possible role of assessment of neural network characteristics in the determination of cerebral function during the disease course.

  9. Age and hypothyroidism affect dopamine modulation of breathing and D₂ receptor levels.

    PubMed

    Sykora, Cory; Amor, Mitch; Schlenker, Evelyn

    2013-01-15

    During and following hypoxic exposure young male hypothyroid hamsters treated with the dopamine D(2) receptor agonist bromocriptine increased breathing, while ventilation was depressed in bromocriptine-treated euthyroid hamsters. Moreover, D(2) receptor expression was increased in carotid bodies and striatum, but not in the nucleus tractus solitaries (NTS) of hypothyroid relative to euthyroid hamsters. Here ventilation was determined in older male hypothyroid and euthyroid hamsters given vehicle or bromocriptine, and exposed to baseline air, hypoxia, and then air. Bromocriptine without hypoxia served as a time control. Relative to vehicle, bromocriptine depressed ventilation in both groups exposed to air or to hypoxia, but hypothyroid bromocriptine-treated hamsters increased ventilatory responsiveness to hypoxia, while euthyroid hamsters decreased ventilatory responsiveness to hypoxia and exhibited post-hypoxic depression. Hypothyroidism had no effect on D(2) receptor expression in carotid bodies or striatum, but increased it in the NTS. Thus, in hamsters bromocriptine modulates breathing and expression of D(2) receptor depending on the length of hypothyroidism.

  10. Determination of Serotonin and Dopamine Metabolites in Human Brain Microdialysis and Cerebrospinal Fluid Samples by UPLC-MS/MS: Discovery of Intact Glucuronide and Sulfate Conjugates

    PubMed Central

    Suominen, Tina; Uutela, Päivi; Ketola, Raimo A.; Bergquist, Jonas; Hillered, Lars; Finel, Moshe; Zhang, Hongbo; Laakso, Aki; Kostiainen, Risto

    2013-01-01

    An UPLC-MS/MS method was developed for the determination of serotonin (5-HT), dopamine (DA), their phase I metabolites 5-HIAA, DOPAC and HVA, and their sulfate and glucuronide conjugates in human brain microdialysis samples obtained from two patients with acute brain injuries, ventricular cerebrospinal fluid (CSF) samples obtained from four patients with obstructive hydrocephalus, and a lumbar CSF sample pooled mainly from patients undergoing spinal anesthesia in preparation for orthopedic surgery. The method was validated by determining the limits of detection and quantification, linearity, repeatability and specificity. The direct method enabled the analysis of the intact phase II metabolites of 5-HT and DA, without hydrolysis of the conjugates. The method also enabled the analysis of the regioisomers of the conjugates, and several intact glucuronide and sulfate conjugates were identified and quantified for the first time in the human brain microdialysis and CSF samples. We were able to show the presence of 5-HIAA sulfate, and that dopamine-3-O-sulfate predominates over dopamine-4-O-sulfate in the human brain. The quantitative results suggest that sulfonation is a more important phase II metabolism pathway than glucuronidation in the human brain. PMID:23826355

  11. Traumatic Brain Injury Severity Affects Neurogenesis in Adult Mouse Hippocampus.

    PubMed

    Wang, Xiaoting; Gao, Xiang; Michalski, Stephanie; Zhao, Shu; Chen, Jinhui

    2016-04-15

    Traumatic brain injury (TBI) has been proven to enhance neural stem cell (NSC) proliferation in the hippocampal dentate gyrus. However, various groups have reported contradictory results on whether TBI increases neurogenesis, partially due to a wide range in the severities of injuries seen with different TBI models. To address whether the severity of TBI affects neurogenesis in the injured brain, we assessed neurogenesis in mouse brains receiving different severities of controlled cortical impact (CCI) with the same injury device. The mice were subjected to mild, moderate, or severe TBI by a CCI device. The effects of TBI severity on neurogenesis were evaluated at three stages: NSC proliferation, immature neurons, and newly-generated mature neurons. The results showed that mild TBI did not affect neurogenesis at any of the three stages. Moderate TBI promoted NSC proliferation without increasing neurogenesis. Severe TBI increased neurogenesis at all three stages. Our data suggest that the severity of injury affects adult neurogenesis in the hippocampus, and thus it may partially explain the inconsistent results of different groups regarding neurogenesis following TBI. Further understanding the mechanism of TBI-induced neurogenesis may provide a potential approach for using endogenous NSCs to protect against neuronal loss after trauma.

  12. Effects of Acute Tryptophan Depletion on Brain Serotonin Function and Concentrations of Dopamine and Norepinephrine in C57BL/6J and BALB/cJ Mice

    PubMed Central

    Biskup, Caroline Sarah; Sánchez, Cristina L.; Arrant, Andrew; Van Swearingen, Amanda E. D.; Kuhn, Cynthia; Zepf, Florian Daniel

    2012-01-01

    Acute tryptophan depletion (ATD) is a method of lowering brain serotonin (5-HT). Administration of large neutral amino acids (LNAA) limits the transport of endogenous tryptophan (TRP) across the blood brain barrier by competition with other LNAAs and subsequently decreases serotonergic neurotransmission. A recent discussion on the specificity and efficacy of the ATD paradigm for inhibition of central nervous 5-HT has arisen. Moreover, side effects such as vomiting and nausea after intake of amino acids (AA) still limit its use. ATD Moja-De is a revised mixture of AAs which is less nauseating than conventional protocols. It has been used in preliminary clinical studies but its effects on central 5-HT mechanisms and other neurotransmitter systems have not been validated in an animal model. We tested ATD Moja-De (TRP−) in two strains of mice: C57BL/6J, and BALB/cJ, which are reported to have impaired 5-HT synthesis and a more anxious phenotype relative to other strains of mice. ATD Moja-De lowered brain TRP, significantly decreased 5-HT synthesis as indexed by 5-HTP levels after decarboxlyase inhibition, and lowered 5-HT and 5-HIAA in both strains of mice, however more so in C57BL/6J than in BALB/cJ. Dopamine and its metabolites as well as norepinephrine were not affected. A balanced (TRP+) control mixture did not raise 5-HT or 5-HIAA. The present findings suggest that ATD Moja-De effectively and specifically suppresses central serotonergic function. These results also demonstrate a strain- specific effect of ATD Moja-De on anxiety-like behavior. PMID:22629305

  13. Differences between high-affinity forskolin binding sites in dopamine-riche and other regions of rat brain

    SciTech Connect

    Poat, J.A.; Cripps, H.E.; Iversen, L.L.

    1988-05-01

    Forskolin labelled with (/sup 3/H) bound to high- and low-affinity sites in the rat brain. The high-affinity site was discretely located, with highest densities in the striatum, nucleus accumbens, olfactory tubercule, substantia nigra, hippocampus, and the molecular layers of the cerebellum. This site did not correlate well with the distribution of adenylate cyclase. The high-affinity striatal binding site may be associated with a stimulatory guanine nucleotide-binding protein. Thus, the number of sites was increased by the addition of Mg/sup 2 +/ and guanylyl imidodiphosphate. Cholera toxin stereotaxically injected into rat striatum increased the number of binding sites, and no further increase was noted following the subsequent addition of guanyl nucleotide. High-affinity forskolin binding sites in non-dopamine-rich brain areas (hippocampus and cerebullum) were modulated in a qualitatively different manner by guanyl nucleotides. In these areas the number of binding sites was significantly reduced by the addition of guanyl nucleotide. These results suggest that forskolin may have a potential role in identifying different functional/structural guanine nucleotide-binding proteins.

  14. (/sup 18/F)-N-methylspiroperidol: the radioligand of choice for PETT studies of the dopamine receptor in human brain

    SciTech Connect

    Arnett, C.D.; Fowler, J.S.; Wolf, A.P.; Shiue, C.Y.; McPherson, D.W.

    1985-01-01

    N-Methylspiroperidol, the amide N-methyl analogue of the neuroleptic spiroperidol, was radiolabeled with fluorine-18, and its distribution in the baboon brain was studied using positron emission transaxial tomography. Stereospecific binding was demonstrated in the striatum (but not in the cerebellum) by pretreatment with (-)- or (+)-butaclamol. The kinetic distribution was similar to that of (/sup 18/F)spiroperidol, but the absolute striatal uptake (in percent of administered dose) was at least two-fold higher. Analysis of baboon blood at 10 min after injection indicated that less than half of the radioactivity in the plasma was due to unchanged radioligand. Analysis of the metabolic stability of (/sup 18/F)-N-methylspiroperidol in rat brain for 4 hr indicated that, like (/sup 18/F)spiroperidol, it is very stable to metabolic transformation in the rat central nervous system. Striatal uptake and retention in the rat was five-fold higher for (/sup 18/F)-N-methyl-spiroperidol than for (/sup 18/F)spiroperidol. The results suggest that (/sup 18/F)-N-methylspiroperidol is an ideal choice for studies of the dopamine receptor in humans. 25 references, 2 figures, 2 tables.

  15. Fibromyalgia patients show an abnormal dopamine response to pain.

    PubMed

    Wood, Patrick B; Schweinhardt, Petra; Jaeger, Erik; Dagher, Alain; Hakyemez, Helene; Rabiner, Eugenii A; Bushnell, M Catherine; Chizh, Boris A

    2007-06-01

    Fibromyalgia is characterized by chronic widespread pain and bodily tenderness and is often accompanied by affective disturbances. Accumulating evidence indicates that fibromyalgia may involve a dysfunction of modulatory systems in the brain. While brain dopamine is best known for its role in pleasure, motivation and motor control, recent evidence suggests that it is also involved in pain modulation. Because dopamine is implicated in both pain modulation and affective processing, we hypothesized that fibromyalgia may involve a disturbance of dopaminergic neurotransmission. Fibromyalgia patients and matched healthy control subjects were subjected to deep muscle pain produced by injection of hypertonic saline into the anterior tibialis muscle. In order to determine the endogenous release of dopamine in response to painful stimulation, we used positron emission tomography to examine binding of [(11)C]-raclopride (D2/D3 ligand) in the brain during injection of painful hypertonic saline and nonpainful normal saline. Fibromyalgia patients experienced the hypertonic saline as more painful than healthy control subjects. Control subjects released dopamine in the basal ganglia during the painful stimulation, whereas fibromyalgia patients did not. In control subjects, the amount of dopamine release correlated with the amount of perceived pain but in fibromyalgia patients no such correlation was observed. These findings provide the first direct evidence that fibromyalgia patients have an abnormal dopamine response to pain. The disrupted dopaminergic reactivity in fibromyalgia patients could be a critical factor underlying the widespread pain and discomfort in fibromyalgia and suggests that the therapeutic effects of dopaminergic treatments for this intractable disorder should be explored.

  16. A biosensor utilizing quince (Cydonia vulgaris) tissue homogenate for dopamine determination in pharmaceutical preparations.

    PubMed

    Sezgintürk, Mustafa Kemal; Akin, A Samil; Dinçkaya, Erhan

    2010-01-01

    Dopamine is a hormone and neurotransmitter occurring in a wide variety of animals, including both vertebrates and invertebrates. Chemically, it is a phenethylamine. Dopamine can be supplied as a medication that acts on the sympathetic nervous system, producing effects such as increased heart rate and blood pressure. However, since dopamine cannot cross the blood-brain barrier, dopamine given as a drug does not directly affect the central nervous system. To increase the amount of dopamine in the brains of patients with diseases such as Parkinson's disease and Dopa-Responsive Dystonia, L-DOPA (levodopa), which is the precursor of dopamine, can be given because it can cross the blood-brain barrier. In this study, a biosensor based on quince tissue homogenate was constructed for determination of dopamine. For the best results, some optimization studies such as the amount of quince tissue homogenate, gelatin and glutaraldehyde percentage, optimum temperature and pH were carried out. A linear range from 5 microM to 200 microM dopamine was obtained. Moreover, repeatability, and operational and storage stability of the biosensor were determined. Finally, the biosensor was applied to a real drug sample for the determination of dopamine content.

  17. Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain.

    PubMed

    Bergson, C; Mrzljak, L; Smiley, J F; Pappy, M; Levenson, R; Goldman-Rakic, P S

    1995-12-01

    The pathways governing signal transduction in the mesocortical and nigrostriatal dopamine systems of the brain are of central importance in a variety of drug actions and neurological diseases. We have analyzed the regional, cellular, and subcellular distribution of the closely related D1 and D5 subtypes of dopamine receptors in the cerebral cortex and selected subcortical structures of rhesus monkey using subtype specific antibodies. The distribution of D1 and D5 receptors was highly differentiated in subcortical structures. In the neostriatum, both D1 and to a lesser extent D5 antibodies labeled medium spiny neurons, while only D5 antibodies labeled the large aspiny neurons typical of cholinergic interneurons. In the caudate nucleus, D1 labeling was concentrated in the spines and shafts of projection neurons, whereas D5 antibodies predominantly labeled the shafts, and less commonly, the spines of these cells. The D1 receptor was abundantly expressed in the neuropil of the substantia nigra pars reticulata while the D5 antibodies labeled only a few scattered cell bodies in this structure. Conversely, D5 antibodies labeled cholinergic neurons in the basal forebrain more intensely than D1 antibodies. Within the cerebral cortex and hippocampus, D1 and D5 antibody labeling was prominent in pyramidal cells. Double-label experiments revealed that the two receptors were frequently coexpressed in neurons of both structures. Ultrastructurally, D1 receptors were especially prominent in dendritic spines whereas dendritic shafts were more prominently labeled by the D5 receptor. The anatomical segregation of the D1 and D5 receptors at the subcellular level in cerebral cortex and at the cellular level in subcortical areas suggest that these closely related receptors may be preferentially associated with different circuit elements and may play distinct regulatory roles in synaptic transmission.

  18. Association between striatal dopamine D2/D3 receptors and brain activation during visual attention: effects of sleep deprivation

    PubMed Central

    Tomasi, D; Wang, G-J; Volkow, N D

    2016-01-01

    Sleep deprivation (SD) disrupts dopamine (DA) signaling and impairs attention. However, the interpretation of these concomitant effects requires a better understanding of dopamine's role in attention processing. Here we test the hypotheses that D2/D3 receptors (D2/D3R) in dorsal and ventral striatum would distinctly regulate the activation of attention regions and that, by decreasing D2/D3, SD would disrupt these associations. We measured striatal D2/D3R using positron emission tomography with [11C]raclopride and brain activation to a visual attention (VA) task using 4-Tesla functional magnetic resonance imaging. Fourteen healthy men were studied during rested wakefulness and also during SD. Increased D2/D3R in striatum (caudate, putamen and ventral striatum) were linearly associated with higher thalamic activation. Subjects with higher D2/D3R in caudate relative to ventral striatum had higher activation in superior parietal cortex and ventral precuneus, and those with higher D2/D3R in putamen relative to ventral striatum had higher activation in anterior cingulate. SD impaired the association between striatal D2/D3R and VA-induced thalamic activation, which is essential for alertness. Findings suggest a robust DAergic modulation of cortical activation during the VA task, such that D2/D3R in dorsal striatum counterbalanced the stimulatory influence of D2/D3R in ventral striatum, which was not significantly disrupted by SD. In contrast, SD disrupted thalamic activation, which did not show counterbalanced DAergic modulation but a positive association with D2/D3R in both dorsal and ventral striatum. The counterbalanced dorsal versus ventral striatal DAergic modulation of VA activation mirrors similar findings during sensorimotor processing (Tomasi et al., 2015) suggesting a bidirectional influence in signaling between the dorsal caudate and putamen and the ventral striatum. PMID:27219347

  19. Changes in brain striatum dopamine and acetylcholine receptors induced by chronic CDP-choline treatment of aging mice.

    PubMed Central

    Giménez, R.; Raïch, J.; Aguilar, J.

    1991-01-01

    1. Spiroperidol binding (dopamine D2 receptors) and quinuclidinyl benzilate binding (muscarinic receptors) in striata of 19-month old mice was analyzed for animals that had received chronic administration of cytidine 5'-diphosphocholine (CDP-choline) incorporated into the chow consumed (100 or 500 mg kg-1 added per day) for the 7 months before they were killed. 2. Treated animals displayed an increase in the dopamine receptor densities of 11% for those receiving 100 mg kg-1 and 18% for those receiving 500 mg kg-1 as compared to the control aged animals that had received no CDP-choline. Control animals showed, from 2 months to 19 months of life, a 28% decrease in the receptor density. No change in the affinity of the receptors for spiroperidol was found in the treated or untreated animals. 3. Muscarinic acetylcholine receptor densities were also partially recovered by the same treatment in aged animals that showed a 14% decrease of these receptors in this case. The muscarinic receptor density increased 6% for the animals that received 100 mg kg-1 and 17% for the animals that received 500 mg kg-1 without any change in the affinity of the receptor for quinuclidinyl benzilate. 4. Aged animals displayed a slight increase in brain membrane fluidity as indicated by a decrease in the polarization value of the non-polar fluorophore 1,6-diphenyl-1,3,5-hexatriene. Interestingly, in the treated animals a greater increase in membrane fluidity was determined and found to be very similar for the two doses.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1839138

  20. Sex differences in methamphetamine toxicity in mice: effect on brain dopamine signaling pathways.

    PubMed

    Bourque, Mélanie; Liu, Bin; Dluzen, Dean E; Di Paolo, Thérèse

    2011-08-01

    Male mice were reported to display greater methamphetamine-induced neurotoxicity than females. The present study evaluated the involvement of phosphatidylinositol-3 kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK1/2) pathways in this sex-dependent methamphetamine toxicity. Intact female and male mice were administered methamphetamine (20 or 40mg/kg) and euthanized a week later. Dopamine transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) autoradiography in the lateral striatum showed a greater sensitivity in male mice treated with 20mg/kg methamphetamine compared to female mice. Striatal dopamine concentration and DAT autoradiography showed a more extensive depletion in male mice given 40mg/kg methamphetamine compared to female mice. Mice administered 40mg/kg methamphetamine showed no sex difference in striatal VMAT2 autoradiography. In the substantia nigra, DAT specific binding was decreased only in male mice treated with 40mg/kg methamphetamine and DAT mRNA levels decreased in methamphetamine-treated female and male mice. Methamphetamine-treated male mice presented a dose-dependent decrease of VMAT2 mRNA levels. Methamphetamine reduced insulin-like growth factor 1 receptor levels in females at both methamphetamine doses tested whereas it elevated G protein-coupled estrogen receptor 1 (GPER1) only in male mice. Phosphorylated Akt levels decreased only in male mice treated with 40mg/kg methamphetamine. Glycogen synthase kinase 3β levels were reduced in male mice at both methamphetamine doses tested and in females receiving 40mg/kg. Bcl-2 levels were increased in male mice treated with methamphetamine, whereas ERK1/2 and BAD levels were unchanged. These results implicate some of the signaling pathways associated with the sex differences in methamphetamine-induced toxicity.

  1. L-DOPA-induced dyregulation of extrastriatal dopamine and serotonin and affective symptoms in a bilateral rat model of Parkinson’s disease

    PubMed Central

    Jaunarajs, Karen L. Eskow; George, Jessica A.; Bishop, Christopher

    2012-01-01

    Convergent evidence indicates that raphestriatal serotonin (5-HT) neurons can convert and release dopamine (DA) derived from exogenous administration of the pharmacotherapeutic L-3,4-dihydroxyphenyl-L-alanine(L-DOPA) as a treatment for Parkinson’s disease (PD). While aspects of such neuroplasticity may be beneficial, chronic L-DOPA may also modify native 5-HT function, precipitating the appearance prevalent non-motor PD symptoms such as anxiety and depression. To examine this, male Sprague-Dawley rats were rendered parkinsonian with bilateral medial forebrain bundle 6-OHDA infusions and treated for at least 28 days with vehicle or L-DOPA. In the first experiment, striatal, hippocampal, amygdalar, and prefrontal cortex DA and 5-HT levels were examined at various post-treatment time-points. In experiment 2, L-DOPA’s effects on DA and 5-HT cell bodies in the substantia nigra pars compacta and dorsal raphe, respectively, were examined. Finally, the effects of L-DOPA on affective behaviors were assessed in locomotor chambers, social interaction, forced swim, and elevated plus maze behavioral tests. Bilateral 6-OHDA lesion induced approximately 80% DA and 30% 5-HT depletion in the striatum compared to sham-lesioned controls, while monoamine levels remained largely unchanged in extrastriatal regions. Tissue levels of DA were increased at the expense of 5-HT levels in parkinsonian rats subjected to chronic L-DOPA injections in all regions sampled, though DA or 5-HT cell bodies were unaffected. Behaviorally, rats could only be tested 24 hours after their last L-DOPA injection due to severe dyskinesia. Despite this, prior exposure to chronic L-DOPA treatment exerted a pronounced anxiogenic phenotype. Collectively, these results suggest that chronic L-DOPA treatment may interfere with the balance of DA and 5-HT function in affect-related brain regions and could induce and/or exacerbate non-motor symptoms in PD. PMID:22659568

  2. Disrupting Glutamate Co-transmission Does Not Affect Acquisition of Conditioned Behavior Reinforced by Dopamine Neuron Activation.

    PubMed

    Wang, Dong V; Viereckel, Thomas; Zell, Vivien; Konradsson-Geuken, Åsa; Broker, Carl J; Talishinsky, Aleksandr; Yoo, Ji Hoon; Galinato, Melissa H; Arvidsson, Emma; Kesner, Andrew J; Hnasko, Thomas S; Wallén-Mackenzie, Åsa; Ikemoto, Satoshi

    2017-03-14

    Dopamine neurons in the ventral tegmental area (VTA) were previously found to express vesicular glutamate transporter 2 (VGLUT2) and to co-transmit glutamate in the ventral striatum (VStr). This capacity may play an important role in reinforcement learning. Although it is known that activation of the VTA-VStr dopamine system readily reinforces behavior, little is known about the role of glutamate co-transmission in such reinforcement. By combining electrode recording and optogenetics, we found that stimulation of VTA dopamine neurons in vivo evoked fast excitatory responses in many VStr neurons of adult mice. Whereas conditional knockout of the gene encoding VGLUT2 in dopamine neurons largely eliminated fast excitatory responses, it had little effect on the acquisition of conditioned responses reinforced by dopamine neuron activation. Therefore, glutamate co-transmission appears dispensable for acquisition of conditioned responding reinforced by DA neuron activation.

  3. Family poverty affects the rate of human infant brain growth.

    PubMed

    Hanson, Jamie L; Hair, Nicole; Shen, Dinggang G; Shi, Feng; Gilmore, John H; Wolfe, Barbara L; Pollak, Seth D

    2013-01-01

    Living in poverty places children at very high risk for problems across a variety of domains, including schooling, behavioral regulation, and health. Aspects of cognitive functioning, such as information processing, may underlie these kinds of problems. How might poverty affect the brain functions underlying these cognitive processes? Here, we address this question by observing and analyzing repeated measures of brain development of young children between five months and four years of age from economically diverse backgrounds (n = 77). In doing so, we have the opportunity to observe changes in brain growth as children begin to experience the effects of poverty. These children underwent MRI scanning, with subjects completing between 1 and 7 scans longitudinally. Two hundred and three MRI scans were divided into different tissue types using a novel image processing algorithm specifically designed to analyze brain data from young infants. Total gray, white, and cerebral (summation of total gray and white matter) volumes were examined along with volumes of the frontal, parietal, temporal, and occipital lobes. Infants from low-income families had lower volumes of gray matter, tissue critical for processing of information and execution of actions. These differences were found for both the frontal and parietal lobes. No differences were detected in white matter, temporal lobe volumes, or occipital lobe volumes. In addition, differences in brain growth were found to vary with socioeconomic status (SES), with children from lower-income households having slower trajectories of growth during infancy and early childhood. Volumetric differences were associated with the emergence of disruptive behavioral problems.

  4. Family Poverty Affects the Rate of Human Infant Brain Growth

    PubMed Central

    Hanson, Jamie L.; Hair, Nicole; Shen, Dinggang G.; Shi, Feng; Gilmore, John H.; Wolfe, Barbara L.; Pollak, Seth D.

    2013-01-01

    Living in poverty places children at very high risk for problems across a variety of domains, including schooling, behavioral regulation, and health. Aspects of cognitive functioning, such as information processing, may underlie these kinds of problems. How might poverty affect the brain functions underlying these cognitive processes? Here, we address this question by observing and analyzing repeated measures of brain development of young children between five months and four years of age from economically diverse backgrounds (n = 77). In doing so, we have the opportunity to observe changes in brain growth as children begin to experience the effects of poverty. These children underwent MRI scanning, with subjects completing between 1 and 7 scans longitudinally. Two hundred and three MRI scans were divided into different tissue types using a novel image processing algorithm specifically designed to analyze brain data from young infants. Total gray, white, and cerebral (summation of total gray and white matter) volumes were examined along with volumes of the frontal, parietal, temporal, and occipital lobes. Infants from low-income families had lower volumes of gray matter, tissue critical for processing of information and execution of actions. These differences were found for both the frontal and parietal lobes. No differences were detected in white matter, temporal lobe volumes, or occipital lobe volumes. In addition, differences in brain growth were found to vary with socioeconomic status (SES), with children from lower-income households having slower trajectories of growth during infancy and early childhood. Volumetric differences were associated with the emergence of disruptive behavioral problems. PMID:24349025

  5. Do brain lesions in stroke affect basic emotions and attachment?

    PubMed

    Farinelli, Marina; Panksepp, Jaak; Gestieri, Laura; Maffei, Monica; Agati, Raffaele; Cevolani, Daniela; Pedone, Vincenzo; Northoff, Georg

    2015-01-01

    The aim of the current study was to investigate basic emotions and attachment in a sample of 86 stroke patients. We included a control group of 115 orthopedic patients (matched for age and cognitive status) without brain lesions to control for unspecific general illness effects of a traumatic recent event on basic emotions and attachment. In order to measure basic emotions and attachment style we applied the Affective Neuroscience Personality Scale (ANPS) and the Attachment Style Questionnaire (ASQ). The stroke patients showed significantly different scores in the SEEKING, SADNESS, and ANGER subscales of the ANPS as well as in the Relationship as Secondary Attachment dimension of the ASQ when compared to the control group. These differences show a pattern influenced by lesion location mainly as concerns basic emotions. Anterior, medial, left, and subcortical patients provide scores significantly lower in ANPS-SEEKING than the control group; ANPS-SADNESS scores in anterior, right, medial, and subcortical patients were significantly higher than those of the control group. ANPS-ANGER scores in posterior, right, and lateral patients were significantly higher than those in the control group; finally, the ANPS-FEAR showed slightly lower scores in posterior patients than in the control group. Minor effects on brain lesions were also individuated in the attachment style. Anterior lesion patients showed a significantly higher average score in the ASQ-Need for Approval subscale than the control group. ASQ-Confidence subscale scores differed significantly in stroke patients with lesions in medial brain regions when compared to control subjects. Scores at ANPS and ASQ subscales appear significantly more correlated in stroke patients than in the control group. Such finding of abnormalities, especially concerning basic emotions in stroke brain-lesioned patients, indicates that the effect of brain lesions may enhance the interrelation between basic emotions and attachment with

  6. X-linked dystonia parkinsonism syndrome (XDP, lubag): disease-specific sequence change DSC3 in TAF1/DYT3 affects genes in vesicular transport and dopamine metabolism.

    PubMed

    Herzfeld, Thilo; Nolte, Dagmar; Grznarova, Maria; Hofmann, Andrea; Schultze, Joachim L; Müller, Ulrich

    2013-03-01

    X-chromosomal dystonia parkinsonism syndrome (XDP, 'lubag') is associated with sequence changes within the TAF1/DYT3 multiple transcript system. Although most sequence changes are intronic, one, disease-specific single-nucleotide change 3 (DSC3), is located within an exon (d4). Transcribed exon d4 occurs as part of multiple splice variants. These variants include exons d3 and d4 spliced to exons of TAF1, and an independent transcript composed of exons d2-d4. Location of DSC3 in exon d4 and utilization of this exon in multiple splice variants suggest an important role of DSC3 in the XDP pathogenesis. To test this hypothesis, we transfected neuroblastoma cells with four expression constructs, including exons d2-d4 [d2-d4/wild-type (wt) and d2-d4/DSC3] and d3-d4 (d3-d4/wt and d3-d4/DSC3). Expression profiling revealed a dramatic effect of DSC3 on overall gene expression. Three hundred and sixty-two genes differed between cells containing d2-d4/wt and d2-d4/DSC3. Annotation clustering revealed enrichment of genes related to vesicular transport, dopamine metabolism, synapse function, Ca(2+) metabolism and oxidative stress. Two hundred and eleven genes were differentially expressed in d3-d4/wt versus d3-d4/DSC3. Annotation clustering highlighted genes in signal transduction and cell-cell interaction. The data show an important role of physiologically occurring transcript d2-d4 in normal brain function. Interference with this role by DSC3 is a likely pathological mechanism in XDP. Disturbance of dopamine function and of Ca(2+) metabolism can explain abnormal movement; loss of protection against reactive oxygen species may account for the neurodegenerative changes in XDP. Although d3-d4 also affect genes potentially related to neurodegenerative processes, their physiologic role as splice variants of TAF1 awaits further exploration.

  7. Low-Resolution Electromagnetic Tomography (LORETA) of changed Brain Function Provoked by Pro-Dopamine Regulator (KB220z) in one Adult ADHD case

    PubMed Central

    Steinberg, Bruce; Blum, Kenneth; McLaughlin, Thomas; Lubar, Joel; Febo, Marcelo; Braverman, Eric R.; Badgaiyan, Rajendra D

    2016-01-01

    Attention Deficit-Hyperactivity Disorder (ADHD) often continues into adulthood. Recent neuroimaging studies found lowered baseline dopamine tone in the brains of affected individuals that may place them at risk for Substance Use Disorder (SUD). This is an observational case study of the potential for novel management of Adult ADHD with a non-addictive glutaminergic-dopaminergic optimization complex KB200z. Low-resolution electromagnetic tomography (LORETA) was used to evaluate the effects of KB220z on a 72-year-old male with ADHD, at baseline and one hour following administration. The resultant z-scores, averaged across Eyes Closed, Eyes Open and Working Memory conditions, increased for each frequency band, in the anterior, dorsal and posterior cingulate regions, as well as the right dorsolateral prefrontal cortex during Working Memory, with KB220z. These scores are consistent with other human and animal neuroimaging studies that demonstrated increased connectivity volumes in reward circuitry and may offer a new approach to ADHD treatment. However, larger randomized trials to confirm these results are required. PMID:27610420

  8. Obesity is associated with decreased μ-opioid but unaltered dopamine D2 receptor availability in the brain.

    PubMed

    Karlsson, Henry K; Tuominen, Lauri; Tuulari, Jetro J; Hirvonen, Jussi; Parkkola, Riitta; Helin, Semi; Salminen, Paulina; Nuutila, Pirjo; Nummenmaa, Lauri

    2015-03-04

    Neurochemical pathways involved in pathological overeating and obesity are poorly understood. Although previous studies have shown increased μ-opioid receptor (MOR) and decreased dopamine D2 receptor (D2R) availability in addictive disorders, the role that these systems play in human obesity still remains unclear. We studied 13 morbidly obese women [mean body mass index (BMI), 42 kg/m(2)] and 14 nonobese age-matched women, and measured brain MOR and D2R availability using PET with selective radioligands [(11)C]carfentanil and [(11)C]raclopride, respectively. We also used quantitative meta-analytic techniques to pool previous evidence on the effects of obesity on altered D2R availability. Morbidly obese subjects had significantly lower MOR availability than control subjects in brain regions relevant for reward processing, including ventral striatum, insula, and thalamus. Moreover, in these areas, BMI correlated negatively with MOR availability. Striatal MOR availability was also negatively associated with self-reported food addiction and restrained eating patterns. There were no significant differences in D2R availability between obese and nonobese subjects in any brain region. Meta-analysis confirmed that current evidence for altered D2R availability in obesity is only modest. Obesity appears to have unique neurobiological underpinnings in the reward circuit, whereby it is more similar to opioid addiction than to other addictive disorders. The opioid system modulates motivation and reward processing, and low μ-opioid availability may promote overeating to compensate decreased hedonic responses in this system. Behavioral and pharmacological strategies for recovering opioidergic function might thus be critical to curb the obesity epidemic.

  9. Alterations in brain extracellular dopamine and glycine levels following combined administration of the glycine transporter type-1 inhibitor Org-24461 and risperidone.

    PubMed

    Nagy, Katalin; Marko, Bernadett; Zsilla, Gabriella; Matyus, Peter; Pallagi, Katalin; Szabo, Geza; Juranyi, Zsolt; Barkoczy, Jozsef; Levay, Gyorgy; Harsing, Laszlo G

    2010-12-01

    The most dominant hypotheses for the pathogenesis of schizophrenia have focused primarily upon hyperfunctional dopaminergic and hypofunctional glutamatergic neurotransmission in the central nervous system. The therapeutic efficacy of all atypical antipsychotics is explained in part by antagonism of the dopaminergic neurotransmission, mainly by blockade of D(2) dopamine receptors. N-methyl-D-aspartate (NMDA) receptor hypofunction in schizophrenia can be reversed by glycine transporter type-1 (GlyT-1) inhibitors, which regulate glycine concentrations at the vicinity of NMDA receptors. Combined drug administration with D(2) dopamine receptor blockade and activation of hypofunctional NMDA receptors may be needed for a more effective treatment of positive and negative symptoms and the accompanied cognitive deficit in schizophrenia. To investigate this type of combined drug administration, rats were treated with the atypical antipsychotic risperidone together with the GlyT-1 inhibitor Org-24461. Brain microdialysis was applied in the striatum of conscious rats and determinations of extracellular dopamine, DOPAC, HVA, glycine, glutamate, and serine concentrations were carried out using HPLC/electrochemistry. Risperidone increased extracellular concentrations of dopamine but failed to influence those of glycine or glutamate measured in microdialysis samples. Org-24461 injection reduced extracellular dopamine concentrations and elevated extracellular glycine levels but the concentrations of serine and glutamate were not changed. When risperidone and Org-24461 were added in combination, a decrease in extracellular dopamine concentrations was accompanied with sustained elevation of extracellular glycine levels. Interestingly, the extracellular concentrations of glutamate were also enhanced. Our data indicate that coadministration of an antipsychotic with a GlyT-1 inhibitor may normalize hypofunctional NMDA receptor-mediated glutamatergic neurotransmission with reduced

  10. Countercurrent transfer of dopamine from venous blood in the cavernous sinus to the arterial blood supplying the brain - the perfused rabbit head as an experimental model.

    PubMed

    Muszak, J; Krzymowski, T; Gilun, P; Stefanczyk-Krzymowska, S

    2014-10-01

    The objective of the current study was to check whether countercurrent transfer of dopamine occurs in the cavernous sinus of the rabbit and whether the rabbit can be used as an animal model to study cavernous sinus function. After exsanguination of the animal, oxygenated and warmed (37°C) Hanseneleit-Krebs buffer with autologous or homologous blood (in a 3:1 or 1:1 ratio) was pumped through both common carotid arteries into the head (60 ml/min; 80-100 mm Hg) and radiolabeled dopamine (3(H)-DA, 10 μCi) was infused into the cavernous sinus through the angular oculi vein. Cerebral blood from the basilar artery was collected from the cannulated vertebral artery during 3(H)-DA infusion and for 10 minutes after completion of infusion. Selected brain tissue samples were collected after completion of the head perfusion. It was demonstrated that dopamine can penetrate from the rabbit's cavernous sinus to the internal carotid artery supplying the brain. Dopamine permeation was greater when the rabbit head was perfused with buffer and blood in a 3:1 ratio than with 1:1 (P<0.01). When the head was perfused with buffer and blood in a 3:1 ratio, significant radioactivity was found in samples collected from the brain basilar artery during and after 3(H)-DA infusion (P<0.001). The radioactivity was identified as 34.13 ± 2.7% unmetabolized 3(H)-DA and 65.9 ± 2.7% its metabolites. Significant radioactivity was also found in some brain tissue samples in both groups (P<0.05). The concentration of free radiolabeled dopamine particles in the dialysate of blood plasma and plasma diluted with buffer did not differ significantly. Because the structures of the cavernous sinus and cavernous fragment of the internal carotid artery of the rabbit are similar to those in humans, it suggests that rabbits can serve as a model for experimental physiological studies of cavernous sinus function and retrograde dopamine transfer in the cavernous sinus should be considered as an important link in

  11. Dehydration affects brain structure and function in healthy adolescents.

    PubMed

    Kempton, Matthew J; Ettinger, Ulrich; Foster, Russell; Williams, Steven C R; Calvert, Gemma A; Hampshire, Adam; Zelaya, Fernando O; O'Gorman, Ruth L; McMorris, Terry; Owen, Adrian M; Smith, Marcus S

    2011-01-01

    It was recently observed that dehydration causes shrinkage of brain tissue and an associated increase in ventricular volume. Negative effects of dehydration on cognitive performance have been shown in some but not all studies, and it has also been reported that an increased perceived effort may be required following dehydration. However, the effects of dehydration on brain function are unknown. We investigated this question using functional magnetic resonance imaging (fMRI) in 10 healthy adolescents (mean age = 16.8, five females). Each subject completed a thermal exercise protocol and nonthermal exercise control condition in a cross-over repeated measures design. Subjects lost more weight via perspiration in the thermal exercise versus the control condition (P < 0.0001), and lateral ventricle enlargement correlated with the reduction in body mass (r = 0.77, P = 0.01). Dehydration following the thermal exercise protocol led to a significantly stronger increase in fronto-parietal blood-oxygen-level-dependent (BOLD) response during an executive function task (Tower of London) than the control condition, whereas cerebral perfusion during rest was not affected. The increase in BOLD response after dehydration was not paralleled by a change in cognitive performance, suggesting an inefficient use of brain metabolic activity following dehydration. This pattern indicates that participants exerted a higher level of neuronal activity in order to achieve the same performance level. Given the limited availability of brain metabolic resources, these findings suggest that prolonged states of reduced water intake may adversely impact executive functions such as planning and visuo-spatial processing.

  12. [Neuroprotective effects of semax in MPTP-induced disturbances of brain dopamine system].

    PubMed

    Levitskaia, N G; Sebentsova, E A; Andreeva, L A; Alfeeva, L Iu; Kamenskiĭ, A A; Miasoedov, N F

    2002-11-01

    Effects of an ACTH (4-10) analogue Semax (MEHFPGP) on behaviour of white rats with MPTP-induced disturbances of brain DA-system have been studied. It was shown that MPTP administration (25 mg/kg) reduced motor activity and auhmented the anxiety level in rats. Semax administration (daily intranasal 0.2 mg/kg) attenuated behaviour disturbances induced by neurotoxin. The observed protective action of Semax in rats with MFTP-induced DA system disturbances may be due to both its modulating influence on the brain DA system and peptide neuroprotective effects.

  13. Use of deep brain stimulation for major affective disorders

    PubMed Central

    Mi, Kuanqing

    2016-01-01

    The multifactorial etiology of major affective disorders, such as major depression and bipolar disorder, poses a challenge for identification of effective treatments. In a substantial number of patients, psychopharmacologic treatment does not lead to effective continuous symptom relief. The use of deep brain stimulation (DBS) for treatment-resistant patients is an investigational approach that has recently produced promising results. The recent development of safer stereotaxic neurosurgery, and the combination with functional neuroimaging to map the affected brain circuits, have led to the investigation of DBS as a potential strategy to treat major mood disorders. Several independent clinical studies have recently shown that chronic DBS treatment leads to remission of symptoms in a high number of treatment-resistant patients for major depression and bipolar disorder. In conclusion, the existing proof-of-principle that DBS can be an effective intervention for treatment-resistant depression opens new avenues for treatment. However, multicenter, randomized and blind trials need to confirm efficacy and be approved after the most recent failures. Patient selection and surgical-related improvements are key issues that remain to be addressed to help deliver more precise and customized treatment. PMID:27698736

  14. COMT genotype affects brain white matter pathways in attention-deficit/hyperactivity disorder.

    PubMed

    Hong, Soon-Beom; Zalesky, Andrew; Park, Subin; Yang, Young-Hui; Park, Min-Hyeon; Kim, BoAh; Song, In-Chan; Sohn, Chul-Ho; Shin, Min-Sup; Kim, Bung-Nyun; Cho, Soo-Churl; Kim, Jae-Won

    2015-01-01

    Increased dopamine availability may be associated with impaired structural maturation of brain white matter connectivity. This study aimed to derive a comprehensive, whole-brain characterization of large-scale axonal connectivity differences in attention-deficit/hyperactivity disorder (ADHD) associated with catechol-O-methyltransferase gene (COMT) Val158Met polymorphism. Using diffusion tensor imaging, whole-brain tractography, and an imaging connectomics approach, we characterized altered white matter connectivity in youth with ADHD who were COMT Val-homozygous (N = 29) compared with those who were Met-carriers (N = 29). Additionally, we examined whether dopamine transporter gene (DAT1) and dopamine D4 receptor gene (DRD4) polymorphisms were associated with white matter differences. Level of attention was assessed using the continuous performance test before and after an 8-week open-label trial of methylphenidate (MPH). A network of white matter connections linking 18 different brain regions was significantly weakened in youth with ADHD who were COMT Met-carriers compared to those who were Val-homozygous (P < 0.05, family-wise error-corrected). A measure of white matter integrity, fractional anisotropy, was correlated with impaired pretreatment performance in continuous performance test omission errors and response time variability, as well as with improvement in continuous performance test response time variability after MPH treatment. Altered white matter connectivity was exclusively based on COMT genotypes, and was not evident in DAT1 or DRD4. We demonstrated that white matter connectivity in youth with ADHD is associated with COMT Val158Met genotypes. The present findings suggest that different layers of dopamine-related genes and interindividual variability in the genetic polymorphisms should be taken into account when investigating the human connectome.

  15. A neurocomputational model of dopamine and prefrontal-striatal interactions during multicue category learning by Parkinson patients.

    PubMed

    Moustafa, Ahmed A; Gluck, Mark A

    2011-01-01

    Most existing models of dopamine and learning in Parkinson disease (PD) focus on simulating the role of basal ganglia dopamine in reinforcement learning. Much data argue, however, for a critical role for prefrontal cortex (PFC) dopamine in stimulus selection in attentional learning. Here, we present a new computational model that simulates performance in multicue category learning, such as the "weather prediction" task. The model addresses how PD and dopamine medications affect stimulus selection processes, which mediate reinforcement learning. In this model, PFC dopamine is key for attentional learning, whereas basal ganglia dopamine, consistent with other models, is key for reinforcement and motor learning. The model assumes that competitive dynamics among PFC neurons is the neural mechanism underlying stimulus selection with limited attentional resources, whereas competitive dynamics among striatal neurons is the neural mechanism underlying action selection. According to our model, PD is associated with decreased phasic and tonic dopamine levels in both PFC and basal ganglia. We assume that dopamine medications increase dopamine levels in both the basal ganglia and PFC, which, in turn, increase tonic dopamine levels but decrease the magnitude of phasic dopamine signaling in these brain structures. Increase of tonic dopamine levels in the simulated PFC enhances attentional shifting performance. The model provides a mechanistic account for several phenomena, including (a) medicated PD patients are more impaired at multicue probabilistic category learning than unmedicated patients and (b) medicated PD patients opt out of reversal when there are alternative and redundant cue dimensions.

  16. Delivery of dopamine transporter tracer (PE2I) through blood brain barrier with ultrasound and microbubbles

    NASA Astrophysics Data System (ADS)

    Serrière, Sophie; Escoffre, Jean-Michel; Bodard, Sylvie; Novell, Anthony; Vergote, Jackie; Vercouillie, Johnny; Thiéry, Jean-Claude; Chalon, Sylvie; Bouakaz, Ayache

    2012-10-01

    The blood-brain barrier plays a major role in controlling the delivery of therapeutic and imaging agents to the brain. The aim of this study was to investigate the use of ultrasound and microbubbles to increase its delivery through the BBB and by determining the optimal experimental conditions that achieve a transient and safe BBB disruption. First, we established the ultrasound conditions that achieved a transient BBB disruption in rats using a non-permeant marker, Evans blue. Hence SonoVue® (450 μL/kg) and Evans blue (100 mg/kg) were intravenously administered. BBB leakage was obtained using ultrasound insonation through the rat skull at 1.6 MPa, PRF 1 Hz, duty cycle 12%, burst 10 ms during 120 sec. BBB disruption was observed in all treated animals (N=4) by histological analysis. The same experimental conditions were applied to enhance brain uptake of PE2I. Biological samples were analyzed using a scintillation counter apparatus. The results showed 50% and 20% increase of 125I-PE2I uptake in the striatum and cerebral cortex, respectively, in the treated rats (N=5) versus control (N=4). Similar enhancements were observed using SonoVue® at half concentration. This innovative method provides a great potential for intracerebral delivery of molecular ligands that could be used for the therapy of brain diseases.

  17. Differential effects of dopamine-directed treatments on cognition.

    PubMed

    Ashby, F Gregory; Valentin, Vivian V; von Meer, Stella S

    2015-01-01

    Dopamine, a prominent neuromodulator, is implicated in many neuropsychiatric disorders. It has wide-ranging effects on both cortical and subcortical brain regions and on many types of cognitive tasks that rely on a variety of different learning and memory systems. As neuroscience and behavioral evidence for the existence of multiple memory systems and their corresponding neural networks accumulated, so did the notion that dopamine's role is markedly different depending on which memory system is engaged. As a result, dopamine-directed treatments will have different effects on different types of cognitive behaviors. To predict what these effects will be, it is critical to understand: which memory system is mediating the behavior; the neural basis of the mediating memory system; the nature of the dopamine projections into that system; and the time course of dopamine after its release into the relevant brain regions. Consideration of these questions leads to different predictions for how changes in brain dopamine levels will affect automatic behaviors and behaviors mediated by declarative, procedural, and perceptual representation memory systems.

  18. Thyroid, brain and mood modulation in affective disorder: insights from molecular research and functional brain imaging.

    PubMed

    Bauer, M; London, E D; Silverman, D H; Rasgon, N; Kirchheiner, J; Whybrow, P C

    2003-11-01

    The efficacy resulting from adjunctive use of supraphysiological doses of levothyroxine has emerged as a promising approach to therapy and prophylaxis for refractory mood disorders. Most patients with mood disorders who receive treatment with supraphysiological doses of levothyroxine have normal peripheral thyroid hormone levels, and also respond differently to the hormone and tolerate it better than healthy individuals and patients with primary thyroid diseases. Progress in molecular and functional brain imaging techniques has provided a new understanding of these phenomena, illuminating the relationship between thyroid function, mood modulation and behavior. Thyroid hormones are widely distributed in the brain and have a multitude of effects on the central nervous system. Notably many of the limbic system structures where thyroid hormone receptors are prevalent have been implicated in the pathogenesis of mood disorders. The influence of the thyroid system on neurotransmitters (particularly serotonin and norepinephrine), which putatively play a major role in the regulation of mood and behavior, may contribute to the mechanisms of mood modulation. Recent functional brain imaging studies using positron emission tomography (PET) with [ (18)F]-fluorodeoxyglucose demonstrated that thyroid hormone treatment with levothyroxine affects regional brain metabolism in patients with hypothyroidism and bipolar disorder. Theses studies confirm that thyroid hormones are active in modulating metabolic function in the mature adult brain, and provide intriging neuroanatomic clues that may guide future research.

  19. Enhanced motor activity and brain dopamine turnover in mice during long-term nicotine administration in the drinking water.

    PubMed

    Gäddnäs, H; Pietilä, K; Piepponen, T P; Ahtee, L

    2001-12-01

    Nicotine was administered chronically to NMRI mice in their drinking water in gradually increasing concentrations to measure gross motor activity and brain nicotine concentrations over 24 h on the 50th day of nicotine administration. Also, the striatal postmortem tissue concentrations and accumbal extracellular concentrations of dopamine (DA) and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were measured to study the role of dopaminergic systems in nicotine-induced hyperactivity in mice. The cerebral nicotine concentration was at its highest at the end of the dark period. The activity of nicotine-treated mice and their striatal DA metabolism were parallelly increased at 2 to 3 h after midnight and in the forenoon. Microdialysis experiments carried out in the forenoon showed that the extracellular levels of DA and DOPAC were elevated in the nucleus accumbens of these mice. Nicotine did not alter the circadian rhythmicity of activity in the mice. Rather, our findings suggest that the mice consume more nicotine when active and this might lead to enhanced release and metabolism of DA and further, to enhanced motor behavior. These findings support the suggestions that nicotine's effects on limbic and striatal DA are critical for its stimulating effects.

  20. Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain

    SciTech Connect

    Volkow, N. D.; Wang, G. -J.; Logan, J.; Alexoff, D.; Fowler, J. S.; Thanos, P. K.; Wong, C.; Casado, V.; Ferre, S.; Tomasi, D.

    2015-04-14

    Caffeine, the most widely consumed psychoactive substance in the world, is used to promote wakefulness and enhance alertness. Like other wake-promoting drugs (stimulants and modafinil), caffeine enhances dopamine (DA) signaling in the brain, which it does predominantly by antagonizing adenosine A2A receptors (A2AR). However, it is unclear if caffeine, at the doses consumed by humans, increases DA release or whether it modulates the functions of postsynaptic DA receptors through its interaction with adenosine receptors, which modulate them. We used positron emission tomography and [11C]raclopride (DA D2/D3 receptor radioligand sensitive to endogenous DA) to assess if caffeine increased DA release in striatum in 20 healthy controls. Caffeine (300mg p.o.) significantly increased the availability of D2/D3 receptors in putamen and ventral striatum, but not in caudate, when compared with placebo. In addition, caffeine-induced increases in D2/D3 receptor availability in the ventral striatum were associated with caffeine-induced increases in alertness. Our findings indicate that in the human brain, caffeine, at doses typically consumed, increases the availability of DA D2/D3 receptors, which indicates that caffeine does not increase DA in the striatum for this would have decreased D2/D3 receptor availability. Instead, we interpret our findings to reflect an increase in D2/D3 receptor levels in striatum with caffeine (or changes in affinity). Furthermore, the association between increases in D2/D3 receptor availability in ventral striatum and alertness suggests that caffeine might enhance arousal, in part, by upregulating D2/D3 receptors.

  1. Electrophysiological impact of trazodone on the dopamine and norepinephrine systems in the rat brain.

    PubMed

    Ghanbari, Ramez; El Mansari, Mostafa; Blier, Pierre

    2012-07-01

    Previous study has documented the long-term effects of the antidepressant trazodone on the serotonin (5-HT) system. The present work examined the impact of sustained trazodone on ventral tegmental area (VTA) dopamine (DA) and locus ceruleus (LC) norepinephrine (NE) neurons firing activity, and characterized its effects at 5-HT(2C), 5-HT(2A) receptors and α₁- and α₂-adrenoceptors. Electrophysiological recordings were carried out in anesthetized rats. Subcutaneously implanted minipumps delivered vehicle or trazodone (10 mg/kg/day) for 2 or 14 days. Administration of trazodone for 2 and 14 days did not alter the firing activity of DA neurons. Systemic injection of trazodone, however, reversed the inhibitory effect of the 5-HT(2C) receptor agonist Ro 60,0175 on the DA neuronal firing, suggesting an antagonistic action of trazodone at this receptor. Administration of trazodone for 2 days significantly enhanced the NE neurons firing. Despite a return of the NE neurons firing rate to the baseline following 14-day trazodone, the percentage of neurons discharging in burst was increased by this regimen. Administration of trazodone for 14 days enhanced the tonic activation of postsynaptic α₂-adrenoceptors, as indicated by the disinhibitory effect of the α₂-adrenoceptor antagonist idazoxan on hippocampus pyramidal neurons firing. The inhibitory effect of acute trazodone on dorsal raphe (DR) 5-HT neurons firing was shown to be through the 5-HT(1A) receptor. Systemic injection of trazodone reversed the inhibitory action of 5-HT(2A) agonist DOI on the NE neurons firing rate, indicating its antagonistic action at 5-HT(2A) receptors. The enhancement in α₂-adrenergic transmission by trazodone, and its 5-HT(2A) and 5-HT(2C) receptor antagonism may contribute to its therapeutic action in major depression.

  2. Evidence against an essential role of endogenous brain dopamine in methamphetamine-induced dopaminergic neurotoxicity.

    PubMed

    Yuan, J; Callahan, B T; McCann, U D; Ricaurte, G A

    2001-06-01

    The present studies examined the role of endogenous dopamine (DA) in methamphetamine (METH)-induced dopaminergic neurotoxicity while controlling for temperature-related neuroprotective effects of the test compounds, reserpine and alpha-methyl-p-tyrosine (AMPT). To determine if the vesicular pool of DA was essential for the expression of METH-induced DA neurotoxicity, reserpine (3 mg/kg, given iintraperitoneally 24-26 h prior to METH) was given prior to a toxic dose regimen of METH. Despite severe striatal DA deficits during the period of METH exposure, mice treated with reserpine prior to METH developed long-term reductions in striatal DA axonal markers, suggesting that vesicular DA stores were not crucial for the development of METH neurotoxicity, but leaving open the possibility that cytoplasmic DA might be involved. To evaluate this possibility, cytoplasmic DA stores were depleted with AMPT prior to METH administration. When this study was carried out at 28 degrees C, complete neuroprotection was observed, likely due to lingering effects on core temperature because when the same study was repeated at 33 degrees C (to eliminate AMPT's hypothermic effect in METH-treated animals), the previously observed neuroprotection was no longer evident. In the third and final set of experiments, mice were pretreated with a combination of reserpine and AMPT, to deplete both vesicular and cytoplasmic DA pools, and to reduce striatal DA levels to negligible values during the period of METH administration (< 0.05%). When core temperature differences were eliminated by raising ambient temperature, METH-induced DA neurotoxic changes were evident in mice pretreated with reserpine and AMPT. Collectively, these findings bring into question the view that endogenous DA plays an essential role in METH-induced DA neurotoxicity.

  3. Effect of GDNF on depressive-like behavior, spatial learning and key genes of the brain dopamine system in genetically predisposed to behavioral disorders mouse strains.

    PubMed

    Naumenko, Vladimir S; Kondaurova, Elena M; Bazovkina, Daria V; Tsybko, Anton S; Ilchibaeva, Tatyana V; Khotskin, Nikita V; Semenova, Alina A; Popova, Nina K

    2014-11-01

    The effect of glial cell line-derived neurotrophic factor (GDNF) on behavior and brain dopamine system in predisposed to depressive-like behavior ASC (Antidepressant Sensitive Cataleptics) mice in comparison with the parental "nondepressive" CBA mice was studied. In 7days after administration (800ng, i.c.v.) GDNF decreased escape latency time and the path traveled to reach hidden platform in Morris water maze in ASC mice. GDNF enhanced depressive-like behavioral traits in both "nondepressive" CBA and "depressive" ASC mice. In CBA mice, GDNF decreased functional response to agonists of D1 (chloro-APB hydrobromide) and D2 (sumanirole maleate) receptors in tail suspension test, reduced D2 receptor gene expression in the substantia nigra and increased monoamine oxydase A (MAO A) gene expression in the striatum. GDNF increased D1 and D2 receptor genes expression in the nucleus accumbens of ASC mice but failed to alter expression of catechol-O-methyltransferase, dopamine transporter, MAO B and tyrosine hydroxylase genes in both investigated mouse strains. Thus, GDNF produced long-term genotype-dependent effect on behavior and the brain dopamine system. GDNF pretreatment (1) reduced D1 and D2 receptors functional responses and D2 receptor gene expression in s. nigra of CBA mice; (2) increased D1 and D2 receptor genes expression in n. accumbens of ASC mice and (3) improved spatial learning in ASC mice. GDNF enhanced depressive-like behavior both in CBA and ASC mice. The data suggest that genetically defined variance in the cross-talk between GDNF and brain dopamine system contributes to the variability of GDNF-induced responses and might be responsible for controversial GDNF effects.

  4. Dopamine D4 receptors modulate brain metabolic activity in the prefrontal cortex and cerebellum at rest and in response to methylphenidate

    SciTech Connect

    Michaelides, M.; Wang, G.; Michaelides, M.; Pascau, J.; Gispert, J.-D.; Delis, F.; Grandy, D.K.; Wang, G.-J.; Desco, M.; Rubinstein, M.; Volkow, N.D.; Thanos, P.K.

    2010-07-16

    Methylphenidate (MP) is widely used to treat attention deficit hyperactivity disorder (ADHD). Variable number of tandem repeats polymorphisms in the dopamine D4 receptor (D{sub 4}) gene have been implicated in vulnerability to ADHD and the response to MP. Here we examined the contribution of dopamine D4 receptors (D4Rs) to baseline brain glucose metabolism and to the regional metabolic responses to MP. We compared brain glucose metabolism (measured with micro-positron emission tomography and [{sup 18}F]2-fluoro-2-deoxy-D-glucose) at baseline and after MP (10 mg/kg, i.p.) administration in mice with genetic deletion of the D{sub 4}. Images were analyzed using a novel automated image registration procedure. Baseline D{sub 4}{sup -/-} mice had lower metabolism in the prefrontal cortex (PFC) and greater metabolism in the cerebellar vermis (CBV) than D{sub 4}{sup +/+} and D{sub 4}{sup +/-} mice; when given MP, D{sub 4}{sup -/-} mice increased metabolism in the PFC and decreased it in the CBV, whereas in D{sub 4}{sup +/+} and D{sub 4}{sup +/-} mice, MP decreased metabolism in the PFC and increased it in the CBV. These findings provide evidence that D4Rs modulate not only the PFC, which may reflect the activation by dopamine of D4Rs located in this region, but also the CBV, which may reflect an indirect modulation as D4Rs are minimally expressed in this region. As individuals with ADHD show structural and/or functional abnormalities in these brain regions, the association of ADHD with D4Rs may reflect its modulation of these brain regions. The differential response to MP as a function of genotype could explain differences in brain functional responses to MP between patients with ADHD and healthy controls and between patients with ADHD with different D{sub 4} polymorphisms.

  5. Differential effects of dopamine and opioid receptor blockade on motivated Coca-Cola drinking behavior and associated changes in brain, skin and muscle temperatures.

    PubMed

    Kiyatkin, E A

    2010-05-05

    Although pharmacological blockade of both dopamine (DA) and opiate receptors has an inhibiting effect on appetitive motivated behaviors, it is still unclear which physiological mechanisms affected by these treatments underlie the behavioral deficit. To clarify this issue, we examined how pharmacological blockade of either DA (SCH23390+eticlopride at 0.2 mg/kg each) or opioid receptors (naloxone 1 mg/kg) affects motor activity and temperature fluctuations in the nucleus accumbens (NAcc), temporal muscle, and facial skin associated with motivated Coca-Cola drinking behavior in rats. In drug-free conditions, presentation of a cup containing 5 ml of Coca-Cola induced locomotor activation and rapid NAcc temperature increases, which both transiently decreased during drinking, and phasically increased again after the cup was emptied. Muscle temperatures followed this pattern, but increases were weaker and more delayed than those in the NAcc. Skin temperature rapidly dropped after cup presentation, remained at low levels during consumption, and slowly restored during post-consumption behavioral activation. By itself, DA receptor blockade induced robust decrease in spontaneous locomotion, moderate increases in brain and muscle temperatures, and a relative increase in skin temperatures, suggesting metabolic activation coupled with adynamia. Following this treatment (approximately 180 min), motor activation to cup presentation and Coca-Cola consumption were absent, but rats showed NAcc and muscle temperature increases following cup presentation comparable to control. Therefore, DA receptor blockade does not affect significantly central and peripheral autonomic responses to appetitive stimuli, but eliminates their behavior-activating effects, thus disrupting appetitive behavior and blocking consumption. Naloxone alone slightly decreased brain and muscle temperatures and increased skin temperatures, pointing at the enhanced heat loss and possible minor inhibition of basal

  6. Timing of light exposure affects mood and brain circuits

    PubMed Central

    Bedrosian, T A; Nelson, R J

    2017-01-01

    Temporal organization of physiology is critical for human health. In the past, humans experienced predictable periods of daily light and dark driven by the solar day, which allowed for entrainment of intrinsic circadian rhythms to the environmental light–dark cycles. Since the adoption of electric light, however, pervasive exposure to nighttime lighting has blurred the boundaries of day and night, making it more difficult to synchronize biological processes. Many systems are under circadian control, including sleep–wake behavior, hormone secretion, cellular function and gene expression. Circadian disruption by nighttime light perturbs those processes and is associated with increasing incidence of certain cancers, metabolic dysfunction and mood disorders. This review focuses on the role of artificial light at night in mood regulation, including mechanisms through which aberrant light exposure affects the brain. Converging evidence suggests that circadian disruption alters the function of brain regions involved in emotion and mood regulation. This occurs through direct neural input from the clock or indirect effects, including altered neuroplasticity, neurotransmission and clock gene expression. Recently, the aberrant light exposure has been recognized for its health effects. This review summarizes the evidence linking aberrant light exposure to mood. PMID:28140399

  7. Timing of light exposure affects mood and brain circuits.

    PubMed

    Bedrosian, T A; Nelson, R J

    2017-01-31

    Temporal organization of physiology is critical for human health. In the past, humans experienced predictable periods of daily light and dark driven by the solar day, which allowed for entrainment of intrinsic circadian rhythms to the environmental light-dark cycles. Since the adoption of electric light, however, pervasive exposure to nighttime lighting has blurred the boundaries of day and night, making it more difficult to synchronize biological processes. Many systems are under circadian control, including sleep-wake behavior, hormone secretion, cellular function and gene expression. Circadian disruption by nighttime light perturbs those processes and is associated with increasing incidence of certain cancers, metabolic dysfunction and mood disorders. This review focuses on the role of artificial light at night in mood regulation, including mechanisms through which aberrant light exposure affects the brain. Converging evidence suggests that circadian disruption alters the function of brain regions involved in emotion and mood regulation. This occurs through direct neural input from the clock or indirect effects, including altered neuroplasticity, neurotransmission and clock gene expression. Recently, the aberrant light exposure has been recognized for its health effects. This review summarizes the evidence linking aberrant light exposure to mood.

  8. How Early Events Affect Growing Brains. An Interview with Neuroscientist Pat Levitt

    ERIC Educational Resources Information Center

    National Scientific Council on the Developing Child, 2006

    2006-01-01

    Recent advances in neuroscience show clearly how experience can change brain neurochemicals, and how this in turn affects the way the brain functions. As a result, early negative events actually get built into the growing brain's neurochemistry, altering the brain's architecture. Research is continuing to investigate how children with genetic…

  9. Characterization of subtype-specific antibodies to the human D5 dopamine receptor: studies in primate brain and transfected mammalian cells.

    PubMed

    Bergson, C; Mrzljak, L; Lidow, M S; Goldman-Rakic, P S; Levenson, R

    1995-04-11

    To achieve a better understanding of how D5 dopamine receptors mediate the actions of dopamine in brain, we have developed antibodies specific for the D5 receptor. D5 antibodies reacted with recombinant baculovirus-infected Sf9 cells expressing the D5 receptor but not with the D1 receptor or a variety of other catecholaminergic and muscarinic receptors. Epitope-tagged D5 receptors expressed in mammalian cells were reactive with both D5 antibodies and an epitope-specific probe. A mixture of N-linked glycosylated polypeptides and higher molecular-mass species was detected on immunoblots of membrane fractions of D5-transfected cells and also of primate brain. D5 receptor antibodies intensely labeled pyramidal neurons in the prefrontal cortex, whereas spiny medium-sized neurons and aspiny large interneurons of the caudate nucleus were relatively lightly labeled. Antibodies to the D5 dopamine receptor should prove important in experimentally determining specific roles for the D5 and D1 receptors in cortical processes and diseases.

  10. Separate serotonin and dopamine receptors modulate the duration of post-tetanic potentiation at an Aplysia synapse without affecting other aspects of synaptic transmission.

    PubMed

    Newlin, S A; Schlapfer, W T; Barondes, S H

    1980-01-06

    We have studied the effect of the biogenic amines, serotonin and dopamine, on post-tetanic potentiation (PTP) at an identified synapse in the abdominal ganglion of Aplysia californica. We found that: (1) 10(-7) M perfused serotonin doubles the rate constant of decay of PTP. The effect is specific in that neither the size of the non-potentiated (isolated) EPSP nor the amplitude of PTP is affected. As reported previously, higher doses of serotonin will also increase the amplitude of PTP and decrease the size of the isolated EPSP; (2) 5 X 10(-7) M dopamine in the perfusate increases the rate constant of decay of PTP by about 50%. The effect is also specific in that neither PTP amplitude nor the size of the isolated EPSP is affected; (3) SQ10,631, a serotonin antagonist, blocks the effect of perfused serotonin on PTP decay rate. It does not antagonize the dopamine effect. SQ10,631 also slows the endogenous decay of PTP in some preparations which exhibit an unusually fast PTP decay rate, suggesting a naturally occurring source of serotonin within the ganglion capable of affecting the rate constant of PTP decay; (4) (+)-butaclamol, a dopamine antagonist, blocks the effect of dopamine on the rate constant of PTP decay, whereas (-)-butaclamol has little effect. Butaclamol does not block the effect of serotonin on the rate constant of PTP decay; (5) phosphodiesterase inhibitors potentiate the effect of serotonin on the rate constant of PTP decay, and cyclic AMP analogues mimic the effect of the biogenic amines, suggesting that the aminergic modulation of the rate of decay of PTP is coupled with activation of adenylate cyclase and accumulation of cyclic AMP; and (6) the evidence presented is consistent with the hypothesis that serotonin and dopamine are capable of specifically modifying the rate of change in the efficacy of transmitter release which underlies PTP. It also suggests that the two biogenic amines operate separately and in parallel via presynaptic receptor

  11. On the nature of extraversion: variation in conditioned contextual activation of dopamine-facilitated affective, cognitive, and motor processes

    PubMed Central

    Depue, Richard A.; Fu, Yu

    2013-01-01

    Research supports an association between extraversion and dopamine (DA) functioning. DA facilitates incentive motivation and the conditioning and incentive encoding of contexts that predict reward. Therefore, we assessed whether extraversion is related to the efficacy of acquiring conditioned contextual facilitation of three processes that are dependent on DA: motor velocity, positive affect, and visuospatial working memory. We exposed high and low extraverts to three days of association of drug reward (methylphenidate, MP) with a particular laboratory context (Paired group), a test day of conditioning, and three days of extinction in the same laboratory. A Placebo group and an Unpaired group (that had MP in a different laboratory context) served as controls. Conditioned contextual facilitation was assessed by (i) presenting video clips that varied in their pairing with drug and laboratory context and in inherent incentive value, and (ii) measuring increases from day 1 to Test day on the three processes above. Results showed acquisition of conditioned contextual facilitation across all measures to video clips that had been paired with drug and laboratory context in the Paired high extraverts, but no conditioning in the Paired low extraverts (nor in either of the control groups). Increases in the Paired high extraverts were correlated across the three measures. Also, conditioned facilitation was evident on the first day of extinction in Paired high extraverts, despite the absence of the unconditioned effects of MP. By the last day of extinction, responding returned to day 1 levels. The findings suggest that extraversion is associated with variation in the acquisition of contexts that predict reward. Over time, this variation may lead to differences in the breadth of networks of conditioned contexts. Thus, individual differences in extraversion may be maintained by activation of differentially encoded central representations of incentive contexts that predict reward

  12. Population pharmacokinetics, brain distribution, and pharmacodynamics of 2nd generation dopamine transporter selective benztropine analogs developed as potential substitute therapeutics for treatment of cocaine abuse.

    PubMed

    Syed, Shariq A; Newman, Amy H; Othman, Ahmed A; Eddington, Natalie D

    2008-05-01

    A second generation of N-substituted 3alpha-[bis(4'-fluorophenyl)methoxy]-tropanes (GA 1-69, JHW 005 and JHW 013) binds with high affinity to the dopamine transporter (DAT) and are highly selective toward DAT compared to muscarinic receptor binding (M1). The objective of this study was to characterize brain distribution, pharmacokinetics, and pharmacodynamics [extracellular brain dopamine (DA) levels] of three novel N-substituted benztropine (BZT) analogs in male Sprague-Dawley rats. The BZT analogs displayed a higher distribution (Vd = 8.69-34.3 vs. 0.9 L/kg) along with longer elimination (t l/2: 4.1-5.4 vs. 0.5 h) than previously reported for cocaine. Brain-to-plasma partition coefficients were 1.3-2.5 vs. 2.1 for cocaine. The effect of the BZT analogs on extracellular brain (DA) levels ranged from minimal effects (GA 1-69) to several fold elevation (approximately 850% of basal DA for JHW 013) at the highest dose evaluated. PK/PD analysis of exposure-response data resulted in lower IC50 values for the BZT analogs compared to cocaine indicating their higher potency to inhibit DA reuptake (0.1-0.3 vs. 0.7 mg/L). These BZT analogs possess significantly different PK and PD profiles as compared to cocaine suggesting that further evaluation as cocaine abuse therapeutics is warranted.

  13. Nonmotor outcomes in Parkinson’s disease: is deep brain stimulation better than dopamine replacement therapy?

    PubMed Central

    Kandadai, Rukmini Mridula; Jabeen, Afshan; Kannikannan, Meena A.

    2012-01-01

    Nonmotor symptoms are an integral part of Parkinson’s disease and cause significant morbidity. Pharmacological therapy helps alleviate the disease but produces nonmotor manifestations. While deep brain stimulation (DBS) has emerged as the treatment of choice for motor dysfunction, the effect on nonmotor symptoms is not well known. Compared with pharmacological therapy, bilateral subthalamic nucleus (STN)-DBS or globus pallidum interna (GPi)-DBS has significant beneficial effects on pain, sleep, gastrointestinal and urological symptoms. STN-DBS is associated with a mild worsening in verbal fluency while GPi-DBS has no effect on cognition. STN-DBS may improve cardiovascular autonomic disturbances by reducing the dose of dopaminergic drugs. Because the motor effects of STN-DBS and GPi-DBS appear to be similar, nonmotor symptoms may determine the target choice in surgery of future patients. PMID:22276074

  14. Acute intraperitoneal injection of caffeine improves endurance exercise performance in association with increasing brain dopamine release during exercise.

    PubMed

    Zheng, Xinyan; Takatsu, Satomi; Wang, Hongli; Hasegawa, Hiroshi

    2014-07-01

    The purpose of this study was to examine changes of thermoregulation, neurotransmitters in the preoptic area and anterior hypothalamus (PO/AH), which is the thermoregulatory center, and endurance exercise performance after the intraperitoneal injection of caffeine in rats. Core body temperature (Tcore), oxygen consumption (VO₂) and tail skin temperature (Ttail) were measured. A microdialysis probe was inserted in the PO/AH, and samples for the measurements of extracellular dopamine (DA), noradrenaline (NA) and serotonin (5-HT) levels were collected. During the rest experiment, 1 h after baseline collections in the chamber (23 °C), the rats were intraperitoneally injected with saline, or 3 mg kg(-1) or 10 mg kg(-1) caffeine. The duration of the test was 4 h. During the exercise experiment, baseline collections on the treadmill were obtained for 1 h. One hour before the start of exercise, rats were intraperitoneally injected with either 10 mg kg(-1) caffeine (CAF) or saline (SAL). Animals ran until fatigue at a speed of 18 m min(-1), at a 5% grade, on the treadmill in a normal environment (23 °C). At rest, 3 mg kg(-1) caffeine did not influence Tcore, Ttail, VO₂, extracellular DA, NA and 5-HT. 10 mg kg(-1) caffeine caused significant increases in Tcore, VO₂, Ttail and extracellular DA in the PO/AH. In addition, 10 mg kg(-1) caffeine increased the run time to fatigue (SAL: 104.4 ± 30.9 min, CAF: 134.0 ± 31.1 min, p<0.05). The combination of caffeine and exercise increased Tcore, VO₂, Ttail and extracellular DA in the PO/AH. NA increased during exercise, while neither caffeine nor exercise changed 5-HT. These results indicate that caffeine has ergogenic and hyperthermic effects, and these effects may be related to changes of DA release in the brain.

  15. Inhibition of stimulated dopamine release and hemodynamic response in the brain through electrical stimulation of rat forepaw.

    PubMed Central

    Chen, Y Iris; Ren, Jiaqian; Wang, Fu-Nien; Xu, Haibo; Mandeville, Joseph B; Kim, Young; Rosen, Bruce R; Jenkins, Bruce G; Hui, Kathleen KS; Kwong, Kenneth K

    2008-01-01

    The subcortical response to peripheral somatosensory stimulation is not well studied. Prior literature suggests that somatosensory stimulation can affect dopaminergic tone. We studied the effects of electrical stimulation near the median nerve on the response to an amphetamine induced increase in synaptic dopamine. We applied the electrical stimulation close to the median nerve 20 minutes after administration of 3mg/kg amphetamine. We used fMRI and microdialysis to measure markers of DA release, together with the release of associated neurotransmitters of striatal Glutamate (Glu) and GABA. Result 1) Changes in cerebral blood volume (CBV), a marker used in fMRI, indicate that electrical stimulation significantly attenuated increased DA release (due to AMPH) in the striatum, thalamus, medial prefrontal and cingulate cortices. 2) Microdialysis showed that electrical stimulation increased Glu and GABA release and attenuated the AMPH-enhanced DA release. The striatal DA dynamics correlated with the CBV response. Conclusion These results demonstrate that electrical stimulation near the median nerve activates Glu/GABA release which subsequently attenuate excess striatal DA release. These data provide evidence for physiologic modulation caused by electroacupuncture at points near the median nerve. PMID:18178315

  16. Starting Smart: How Early Experiences Affect Brain Development. Second Edition.

    ERIC Educational Resources Information Center

    Hawley, Theresa

    Based on recent research, it is now believed that brain growth is highly dependent upon children's early experiences. Neurons allow communication and coordinated functioning among various brain areas. Brain development after birth consists of an ongoing process of wiring and rewiring the connections among neurons. The forming and breaking of…

  17. Dopamine depresses cholinergic oscillatory network activity in rat hippocampus.

    PubMed

    Weiss, Torsten; Veh, Rüdiger W; Heinemann, Uwe

    2003-11-01

    The dopaminergic neuronal system is implicated in cognitive processes in a variety of brain regions including the mesolimbic system. We have investigated whether dopamine also affects synchronized network activity in the hippocampus, which has been ascribed to play a pivotal role in memory formation. Gamma frequency (20-80 Hz) oscillations were induced by the cholinergic agonist carbachol. Oscillatory activity was examined in area CA3 of Wistar rat hippocampal slices, employing field potential and intracellular recordings. Application of carbachol initiated synchronized population activity in the gamma band at 40 Hz. Induced gamma activity persisted over hours and required GABAA receptors. Dopamine reversibly decreased the integrated gamma band power of the carbachol rhythm by 62%, while its frequency was not changed. By contrast, individual pyramidal cells recorded during carbachol-induced field gamma activity exhibited theta frequency (5-15 Hz) membrane potential oscillations that were not altered by dopamine. The dopamine effect on the field gamma activity was mimicked by the D1 receptor agonist SKF-383393 and partially antagonized by the D1 antagonist SCH-23390. Conversely, the D2 receptor agonist quinpirole failed to depress the oscillations, and the D2 antagonist sulpiride did not prevent the suppressive dopamine effect. The data indicate that dopamine strongly depresses cholinergic gamma oscillations in area CA3 of rat hippocampus by activation of D1-like dopamine receptors and that this effect is most likely mediated via impairment of interneurons involved in generation and maintenance of the carbachol-induced network rhythm.

  18. [{sup 11}C]d-threo-Methylphenidate, a new radiotracer for the dopamine transporter. Characterization in baboon and human brain

    SciTech Connect

    Ding, Y.S.; Volkow, N.D.; Fowler, J.S.

    1995-05-01

    dl-threo Methylphenidate (MP, Ritalin) is a psychostimulant drug which binds to the dopamine transporter (DAT). We evaluated [{sup 11}C]d-threo-methylphenidate ([{sup 11}C]d-MP), the more active enantiomer, as a radiotracer for the DAT in baboons and human brain. Stereoselectivity, saturability and pharmacological specificity and reproducibility were examined. Stereoselectivity was examined in baboons by comparing [{sup 11C}]d-MP,[{sup 11}C]l-MP and [{sup 11}C]dl-MP. Unlabeled MP was used to assess the reversibility and saturability of the binding. GBR 12909,{beta}-(4-iodophenyl)tropane-2-carboxylic acid methyl ester ({beta}-CIT), tomoxetine and citalopram were used to assess the specificity of the binding. The ratios between the radioactivity in the striatum to that in cerebellum (ST/CB) were 3.3,2.2 and 1.1 for [{sup 11}C]d-MP,[{sup 11}C]dl-MP and [{sup 11}C]l-MP respectively. Most of the striatal binding of [{sup 11}C]d-threo-MP was displaced by injection of nonradioactive MP demonstrating reversibility. Pretreatment with MP (0.5 mg/kg), GBR12909 (1.5 mg/kg) or {beta}-CIT (0.3 mg/kg) reduced ST/CB by about 60% and the ratios of distribution volumes at the steady-state for the triatum to cerebellum (DV{sub st/}DV{sub cb}) by about 50%. Pretreatment with tomoxetine (3.0 mg/kg) or citalopram (2.0 mg/kg), inhibitors of the norepinephrine and serotonin transporter, had no effect. Studies of [{sup 11}C]d-MP in the human brain showed highest uptake in basal ganglia with a half clearance time of about 60 minutes. Repeated studies in 6 normal human subjects showed differences in DV{sub st/}DV{sub cb} between -7% and 8%. MP pretreatment decreased BG but no cortical or cerebellar binding and reduced Bmax/Kd by 91%.

  19. Large-scale brain networks in affective and social neuroscience: towards an integrative functional architecture of the brain.

    PubMed

    Barrett, Lisa Feldman; Satpute, Ajay Bhaskar

    2013-06-01

    Understanding how a human brain creates a human mind ultimately depends on mapping psychological categories and concepts to physical measurements of neural response. Although it has long been assumed that emotional, social, and cognitive phenomena are realized in the operations of separate brain regions or brain networks, we demonstrate that it is possible to understand the body of neuroimaging evidence using a framework that relies on domain general, distributed structure-function mappings. We review current research in affective and social neuroscience and argue that the emerging science of large-scale intrinsic brain networks provides a coherent framework for a domain-general functional architecture of the human brain.

  20. Dopamine D4 receptor, but not the ADHD-associated D4.7 variant, forms functional heteromers with the dopamine D2S receptor in the brain

    PubMed Central

    González, Sergio; Rangel-Barajas, Claudia; Peper, Marcela; Lorenzo, Ramiro; Moreno, Estefanía; Ciruela, Francisco; Borycz, Janusz; Ortiz, Jordi; Lluís, Carme; Franco, Rafael; McCormick, Peter J.; Volkow, Nora D.; Rubinstein, Marcelo; Floran, Benjamin; Ferré, Sergi

    2011-01-01

    Polymorphic variants of the dopamine D4 receptor have been consistently associated with attention-deficit hyperactivity disorder (ADHD). However the functional significance of the risk polymorphism (variable number of tandem repeats in exon 3) is still unclear. Here we show that whereas the most frequent 4-repeat (D4.4) and the 2-repeat (D4.2) variants form functional heteromers with the short isoform of the dopamine D2 receptor (D2S), the 7-repeat risk allele (D4.7) does not. D2 receptor activation in the D2S-D4 receptor heteromer potentiates D4 receptor-mediated MAPK signaling in transfected cells and in the striatum, which did not occur in cells expressing D4.7 or in the striatum of knock-in mutant mice carrying the 7 repeats of the human D4.7 in the third intracellular loop of the D4 receptor. In the striatum D4 receptors are localized in cortico-striatal glutamatergic terminals, where they selectively modulate glutamatergic neurotransmission by interacting with D2S receptors. This interaction shows the same qualitative characteristics than the D2S-D4 receptor heteromer-mediated MAPK signaling and D2S receptor activation potentiates D4 receptor-mediated inibition of striatal glutamate release. It is therefore postulated that dysfunctional D2S-D4.7 heteromers may impair presynaptic dopaminergic control of corticostriatal glutamatergic neurotransmission and explain functional deficits associated with ADHD. PMID:21844870

  1. Genetic defects in folate and cobalamin pathways affecting the brain.

    PubMed

    Kirsch, Susanne H; Herrmann, Wolfgang; Obeid, Rima

    2013-01-01

    Folate and cobalamin are necessary for early brain development and function. Deficiency of folate or cobalamin during pregnancy can cause severe malformation in the central nervous system such as neural tube defects. After birth, folate and cobalamin deficiency can cause anemia, failure to thrive, recurrent infections, psychiatric and neurological symptoms. The folate and the homocysteine metabolic pathways interact at a central step where 5-methyltetrahydrofolate donates its methyl group to homocysteine to produce methionine and tetrahydrofolate. Methyl cobalamin and folate interact at this critical step. Both nutrients have a crucial role in DNA synthesis and in delivering S-adenosylmethionine, the universal methyl donor. Severe and mild inherited disorders in folate and cobalamin pathways have been described. The two groups of disorders share some similarities, but differ in the molecular mechanism, metabolic dysregulation, and disease management. This review summarizes selected disorders, including rare and common mutations that affect folate and cobalamin absorption, transport, or dependent enzymes. When the mutations are discovered early enough, many of the described disorders are easily treatable by B vitamin supplementation, which often prevents or reverses the manifestation of the disease. Therefore, the screening for mutations is recommended and should be carried out as early as possible: after occurrence of the first symptoms or when a certain constellations of the folate and cobalamin related markers are measured, such as elevated homocysteine and/or methylmalonic acid.

  2. Differential effects of dopamine-directed treatments on cognition

    PubMed Central

    Ashby, F Gregory; Valentin, Vivian V; von Meer, Stella S

    2015-01-01

    Dopamine, a prominent neuromodulator, is implicated in many neuropsychiatric disorders. It has wide-ranging effects on both cortical and subcortical brain regions and on many types of cognitive tasks that rely on a variety of different learning and memory systems. As neuroscience and behavioral evidence for the existence of multiple memory systems and their corresponding neural networks accumulated, so did the notion that dopamine’s role is markedly different depending on which memory system is engaged. As a result, dopamine-directed treatments will have different effects on different types of cognitive behaviors. To predict what these effects will be, it is critical to understand: which memory system is mediating the behavior; the neural basis of the mediating memory system; the nature of the dopamine projections into that system; and the time course of dopamine after its release into the relevant brain regions. Consideration of these questions leads to different predictions for how changes in brain dopamine levels will affect automatic behaviors and behaviors mediated by declarative, procedural, and perceptual representation memory systems. PMID:26251602

  3. Consumption of tyrosine in royal jelly increases brain levels of dopamine and tyramine and promotes transition from normal to reproductive workers in queenless honey bee colonies.

    PubMed

    Matsuyama, Syuhei; Nagao, Takashi; Sasaki, Ken

    2015-01-15

    Dopamine (DA) and tyramine (TA) have neurohormonal roles in the production of reproductive workers in queenless colonies of honey bees, but the regulation of these biogenic amines in the brain are still largely unclear. Nutrition is an important factor in promoting reproduction and might be involved in the regulation of these biogenic amines in the brain. To test this hypothesis, we examined the effect of oral treatments of tyrosine (Tyr; a common precursor of DA, TA and octopamine, and a component of royal jelly) in queenless workers and quantified the resulting production of biogenic amines. Tyrosine treatments enhanced the levels of DA, TA and their metabolites in the brain. Workers fed royal jelly had significantly larger brain levels of Tyr, DA, TA and the metabolites in the brains compared with those bees fed honey or sucrose (control). Treatment with Tyr also inhibited the behavior of workers outside of the hive and promoted ovarian development. These results suggest that there is a link between nutrition and the regulation of DA and TA in the brain to promote the production of reproductive workers in queenless honey bee colonies.

  4. Striatal and extrastriatal dopamine release in the common marmoset brain measured by positron emission tomography and [(18)F]fallypride.

    PubMed

    Ota, Miho; Ogawa, Shintaro; Kato, Koichi; Masuda, Chiaki; Kunugi, Hiroshi

    2015-12-01

    Previous studies have demonstrated that patients with schizophrenia show greater sensitivity to psychostimulants than healthy subjects. Sensitization to psychostimulants and resultant alteration of dopaminergic neurotransmission in rodents has been suggested as a useful model of schizophrenia. This study sought to examine the use of methylphenidate as a psychostimulant to induce dopamine release and that of [(18)F]fallypride as a radioligand to quantify the release in a primate model of schizophrenia. Four common marmosets were scanned by positron emission tomography twice, before and after methylphenidate challenge, to evaluate dopamine release. Four other marmosets were sensitized by repeated methamphetamine (MAP) administration. Then, they were scanned twice, before and after methylphenidate challenge, to evaluate whether MAP-sensitization induced greater sensitivity to methylphenidate. We revealed a main effect of the methylphenidate challenge but not the MAP pretreatment on the striatal binding potential. These results suggest that methylphenidate-induced striatal dopamine release in the common marmoset could be evaluated by [(18)F]fallypride.

  5. Persistent behavioral impairments and alterations of brain dopamine system after early postnatal administration of thimerosal in rats.

    PubMed

    Olczak, Mieszko; Duszczyk, Michalina; Mierzejewski, Pawel; Meyza, Ksenia; Majewska, Maria Dorota

    2011-09-30

    The neurotoxic organomercurial thimerosal (THIM), used for decades as vaccine preservative, is a suspected factor in the pathogenesis of some neurodevelopmental disorders. Previously we showed that neonatal administration of THIM at doses equivalent to those used in infant vaccines or higher, causes lasting alterations in the brain opioid system in rats. Here we investigated neonatal treatment with THIM (at doses 12, 240, 1440 and 3000 μg Hg/kg) on behaviors, which are characteristically altered in autism, such as locomotor activity, anxiety, social interactions, spatial learning, and on the brain dopaminergic system in Wistar rats of both sexes. Adult male and female rats, which were exposed to the entire range of THIM doses during the early postnatal life, manifested impairments of locomotor activity and increased anxiety/neophobia in the open field test. In animals of both sexes treated with the highest THIM dose, the frequency of prosocial interactions was reduced, while the frequency of asocial/antisocial interactions was increased in males, but decreased in females. Neonatal THIM treatment did not significantly affect spatial learning and memory. THIM-exposed rats also manifested reduced haloperidol-induced catalepsy, accompanied by a marked decline in the density of striatal D₂ receptors, measured by immunohistochemical staining, suggesting alterations to the brain dopaminergic system. Males were more sensitive than females to some neurodisruptive/neurotoxic actions of THIM. These data document that early postnatal THIM administration causes lasting neurobehavioral impairments and neurochemical alterations in the brain, dependent on dose and sex. If similar changes occur in THIM/mercurial-exposed children, they could contribute do neurodevelopmental disorders.

  6. Serotonin-S2 and dopamine-D2 receptors are the same size in membranes

    SciTech Connect

    Brann, M.R.

    1985-12-31

    Target size analysis was used to compare the sizes of serotonin-S2 and dopamine-D2 receptors in rat brain membranes. The sizes of these receptors were standardized by comparison with the muscarinic receptor, a receptor of known size. The number of serotonin-S2 receptors labeled with (3H)ketanserin or (3H)spiperone in frontal cortex decreased as an exponential function of radiation dose, and receptor affinity was not affected. The number of dopamine-D2 receptors labeled with (3H)spiperone in striatum also decreased as an exponential function of radiation dose, and D2 and S2 receptors were equally sensitive to radiation. In both striatum and frontal cortex, the number of muscarinic receptors labeled with (3H)QNB decreased as an exponential function of radiation dose, and were much less sensitive to radiation than S2 and D2 receptors. These data indicate that in rat brain membranes, S2 and D2 receptors are of similar size, and both molecules are much larger than the muscarinic receptor.

  7. Brain size affects female but not male survival under predation threat

    PubMed Central

    Kotrschal, Alexander; Buechel, Séverine D; Zala, Sarah M; Corral-Lopez, Alberto; Penn, Dustin J; Kolm, Niclas; Sorci, Gabriele

    2015-01-01

    There is remarkable diversity in brain size among vertebrates, but surprisingly little is known about how ecological species interactions impact the evolution of brain size. Using guppies, artificially selected for large and small brains, we determined how brain size affects survival under predation threat in a naturalistic environment. We cohoused mixed groups of small- and large-brained individuals in six semi-natural streams with their natural predator, the pike cichlid, and monitored survival in weekly censuses over 5 months. We found that large-brained females had 13.5% higher survival compared to small-brained females, whereas the brain size had no discernible effect on male survival. We suggest that large-brained females have a cognitive advantage that allows them to better evade predation, whereas large-brained males are more colourful, which may counteract any potential benefits of brain size. Our study provides the first experimental evidence that trophic interactions can affect the evolution of brain size. PMID:25960088

  8. Physical Activity Affects Brain Integrity in HIV + Individuals

    PubMed Central

    Ortega, Mario; Baker, Laurie M.; Vaida, Florin; Paul, Robert; Basco, Brian; Ances, Beau M.

    2015-01-01

    Prior research has suggested benefits of aerobic physical activity (PA) on cognition and brain volumes in HIV uninfected (HIV−) individuals, however, few studies have explored the relationships between PA and brain integrity (cognition and structural brain volumes) in HIV-infected (HIV +) individuals. Seventy HIV + individuals underwent neuropsychological testing, structural neuroimaging, laboratory tests, and completed a PA questionnaire, recalling participation in walking, running, and jogging activities over the last year. A PA engagement score of weekly metabolic equivalent (MET) hr of activity was calculated using a compendium of PAs. HIV + individuals were classified as physically active (any energy expended above resting expenditure, n = 22) or sedentary (n = 48). Comparisons of neuropsychological performance, grouped by executive and motor domains, and brain volumes were completed between groups. Physically active and sedentary HIV + individuals had similar demographic and laboratory values, but the active group had higher education (14.0 vs. 12.6 years, p = .034). Physically active HIV + individuals performed better on executive (p = .040, unadjusted; p = .043, adjusted) but not motor function (p = .17). In addition, among the physically active group the amount of physical activity (METs) positively correlated with executive (Pearson’s r = 0.45, p = 0.035) but not motor (r = 0.21; p = .35) performance. In adjusted analyses the physically active HIV + individuals had larger putamen volumes (p = .019). A positive relationship exists between PA and brain integrity in HIV + individuals. Results from the present study emphasize the importance to conduct longitudinal interventional investigation to determine if PA improves brain integrity in HIV + individuals. PMID:26581799

  9. Haemopexin affects iron distribution and ferritin expression in mouse brain

    PubMed Central

    Morello, Noemi; Tonoli, Elisabetta; Logrand, Federica; Fiorito, Veronica; Fagoonee, Sharmila; Turco, Emilia; Silengo, Lorenzo; Vercelli, Alessandro; Altruda, Fiorella; Tolosano, Emanuela

    2009-01-01

    Haemopexin (Hx) is an acute phase plasma glycoprotein, mainly produced by the liver and released into plasma where it binds heme with high affinity and delivers it to the liver. This system provides protection against free heme-mediated oxidative stress, limits access by pathogens to heme and contributes to iron homeostasis by recycling heme iron. Hx protein has been found in the sciatic nerve, skeletal muscle, retina, brain and cerebrospinal fluid (CSF). Recently, a comparative proteomic analysis has shown an increase of Hx in CSF from patients with Alzheimer’s disease, thus suggesting its involvement in heme detoxification in brain. Here, we report that Hx is synthesised in brain by the ventricular ependymal cells. To verify whether Hx is involved in heme scavenging in brain, and consequently, in the control of iron level, iron deposits and ferritin expression were analysed in cerebral regions known for iron accumulation. We show a twofold increase in the number of iron-loaded oligodendrocytes in the basal ganglia and thalamus of Hx-null mice compared to wild-type controls. Interestingly, there was no increase in H- and L-ferritin expression in these regions. This condition is common to several human neurological disorders such as Alzheimer’s disease and Parkinson’s disease in which iron loading is not associated with an adequate increase in ferritin expression. However, a strong reduction in the number of ferritin-positive cells was observed in the cerebral cortex of Hx-null animals. Consistent with increased iron deposits and inadequate ferritin expression, malondialdehyde level and Cu–Zn superoxide dismutase-1 expression were higher in the brain of Hx-null mice than in that of wild-type controls. These data demonstrate that Hx plays an important role in controlling iron distribution within brain, thus suggesting its involvement in iron-related neurodegenerative diseases. PMID:19120692

  10. Default, Cognitive, and Affective Brain Networks in Human Tinnitus

    DTIC Science & Technology

    2014-10-01

    fMRI session 1 in which subjects perform a working memory task (“2-Back”) and a simple detection task (“Detect 1’s”) based on (a) visual and (b...two major brain networks: the cognitive control network (CCN) and the default mode network (DMN). Using fMRI , we are examining brain activation in...subjects performing cognitive tasks that engage the CCN and DMN. One task is heavily reliant on working memory (N-back) and the other on selective

  11. Dopamine depletion impairs precursor cell proliferation in Parkinson disease.

    PubMed

    Höglinger, Günter U; Rizk, Pamela; Muriel, Marie P; Duyckaerts, Charles; Oertel, Wolfgang H; Caille, Isabelle; Hirsch, Etienne C

    2004-07-01

    Cerebral dopamine depletion is the hallmark of Parkinson disease. Because dopamine modulates ontogenetic neurogenesis, depletion of dopamine might affect neural precursors in the subependymal zone and subgranular zone of the adult brain. Here we provide ultrastructural evidence showing that highly proliferative precursors in the adult subependymal zone express dopamine receptors and receive dopaminergic afferents. Experimental depletion of dopamine in rodents decreases precursor cell proliferation in both the subependymal zone and the subgranular zone. Proliferation is restored completely by a selective agonist of D2-like (D2L) receptors. Experiments with neural precursors from the adult subependymal zone grown as neurosphere cultures confirm that activation of D2L receptors directly increases the proliferation of these precursors. Consistently, the numbers of proliferating cells in the subependymal zone and neural precursor cells in the subgranular zone and olfactory bulb are reduced in postmortem brains of individuals with Parkinson disease. These observations suggest that the generation of neural precursor cells is impaired in Parkinson disease as a consequence of dopaminergic denervation.

  12. Testosterone affects language areas of the adult human brain

    PubMed Central

    Hahn, Andreas; Kranz, Georg S.; Sladky, Ronald; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Vanicek, Thomas; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F.

    2016-01-01

    Abstract Although the sex steroid hormone testosterone is integrally involved in the development of language processing, ethical considerations mostly limit investigations to single hormone administrations. To circumvent this issue we assessed the influence of continuous high‐dose hormone application in adult female‐to‐male transsexuals. Subjects underwent magnetic resonance imaging before and after 4 weeks of testosterone treatment, with each scan including structural, diffusion weighted and functional imaging. Voxel‐based morphometry analysis showed decreased gray matter volume with increasing levels of bioavailable testosterone exclusively in Broca's and Wernicke's areas. Particularly, this may link known sex differences in language performance to the influence of testosterone on relevant brain regions. Using probabilistic tractography, we further observed that longitudinal changes in testosterone negatively predicted changes in mean diffusivity of the corresponding structural connection passing through the extreme capsule. Considering a related increase in myelin staining in rodents, this potentially reflects a strengthening of the fiber tract particularly involved in language comprehension. Finally, functional images at resting‐state were evaluated, showing increased functional connectivity between the two brain regions with increasing testosterone levels. These findings suggest testosterone‐dependent neuroplastic adaptations in adulthood within language‐specific brain regions and connections. Importantly, deteriorations in gray matter volume seem to be compensated by enhancement of corresponding structural and functional connectivity. Hum Brain Mapp 37:1738–1748, 2016. © 2016 Wiley Periodicals, Inc. PMID:26876303

  13. Early life stress affects limited regional brain activity in depression.

    PubMed

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-05-03

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without controlling for ELS, and determined whether ELS level was correlated with regional brain activity in each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few impacts on MDD patients.

  14. Early life stress affects limited regional brain activity in depression

    PubMed Central

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-01-01

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without controlling for ELS, and determined whether ELS level was correlated with regional brain activity in each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few impacts on MDD patients. PMID:27138376

  15. Testosterone affects language areas of the adult human brain.

    PubMed

    Hahn, Andreas; Kranz, Georg S; Sladky, Ronald; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Vanicek, Thomas; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F; Lanzenberger, Rupert

    2016-05-01

    Although the sex steroid hormone testosterone is integrally involved in the development of language processing, ethical considerations mostly limit investigations to single hormone administrations. To circumvent this issue we assessed the influence of continuous high-dose hormone application in adult female-to-male transsexuals. Subjects underwent magnetic resonance imaging before and after 4 weeks of testosterone treatment, with each scan including structural, diffusion weighted and functional imaging. Voxel-based morphometry analysis showed decreased gray matter volume with increasing levels of bioavailable testosterone exclusively in Broca's and Wernicke's areas. Particularly, this may link known sex differences in language performance to the influence of testosterone on relevant brain regions. Using probabilistic tractography, we further observed that longitudinal changes in testosterone negatively predicted changes in mean diffusivity of the corresponding structural connection passing through the extreme capsule. Considering a related increase in myelin staining in rodents, this potentially reflects a strengthening of the fiber tract particularly involved in language comprehension. Finally, functional images at resting-state were evaluated, showing increased functional connectivity between the two brain regions with increasing testosterone levels. These findings suggest testosterone-dependent neuroplastic adaptations in adulthood within language-specific brain regions and connections. Importantly, deteriorations in gray matter volume seem to be compensated by enhancement of corresponding structural and functional connectivity. Hum Brain Mapp 37:1738-1748, 2016. © 2016 Wiley Periodicals, Inc.

  16. Default, Cognitive, and Affective Brain Networks in Human Tinnitus

    DTIC Science & Technology

    2015-10-01

    Mapping (SPM8; a freely available fMRI analysis package), fMRI and structural imaging data from each session were aligned to a standard brain atlas...maps are superimposed on a mean of structural scans (average over subjects contributing to the activation maps). 3.3 Implication of results for the

  17. ENIGMA and the individual: Predicting factors that affect the brain in 35 countries worldwide.

    PubMed

    Thompson, Paul M; Andreassen, Ole A; Arias-Vasquez, Alejandro; Bearden, Carrie E; Boedhoe, Premika S; Brouwer, Rachel M; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cannon, Dara M; Cohen, Ronald A; Conrod, Patricia J; Dale, Anders M; Deary, Ian J; Dennis, Emily L; de Reus, Marcel A; Desrivieres, Sylvane; Dima, Danai; Donohoe, Gary; Fisher, Simon E; Fouche, Jean-Paul; Francks, Clyde; Frangou, Sophia; Franke, Barbara; Ganjgahi, Habib; Garavan, Hugh; Glahn, David C; Grabe, Hans J; Guadalupe, Tulio; Gutman, Boris A; Hashimoto, Ryota; Hibar, Derrek P; Holland, Dominic; Hoogman, Martine; Pol, Hilleke E Hulshoff; Hosten, Norbert; Jahanshad, Neda; Kelly, Sinead; Kochunov, Peter; Kremen, William S; Lee, Phil H; Mackey, Scott; Martin, Nicholas G; Mazoyer, Bernard; McDonald, Colm; Medland, Sarah E; Morey, Rajendra A; Nichols, Thomas E; Paus, Tomas; Pausova, Zdenka; Schmaal, Lianne; Schumann, Gunter; Shen, Li; Sisodiya, Sanjay M; Smit, Dirk J A; Smoller, Jordan W; Stein, Dan J; Stein, Jason L; Toro, Roberto; Turner, Jessica A; van den Heuvel, Martijn P; van den Heuvel, Odile L; van Erp, Theo G M; van Rooij, Daan; Veltman, Dick J; Walter, Henrik; Wang, Yalin; Wardlaw, Joanna M; Whelan, Christopher D; Wright, Margaret J; Ye, Jieping

    2017-01-15

    In this review, we discuss recent work by the ENIGMA Consortium (http://enigma.ini.usc.edu) - a global alliance of over 500 scientists spread across 200 institutions in 35 countries collectively analyzing brain imaging, clinical, and genetic data. Initially formed to detect genetic influences on brain measures, ENIGMA has grown to over 30 working groups studying 12 major brain diseases by pooling and comparing brain data. In some of the largest neuroimaging studies to date - of schizophrenia and major depression - ENIGMA has found replicable disease effects on the brain that are consistent worldwide, as well as factors that modulate disease effects. In partnership with other consortia including ADNI, CHARGE, IMAGEN and others(1), ENIGMA's genomic screens - now numbering over 30,000 MRI scans - have revealed at least 8 genetic loci that affect brain volumes. Downstream of gene findings, ENIGMA has revealed how these individual variants - and genetic variants in general - may affect both the brain and risk for a range of diseases. The ENIGMA consortium is discovering factors that consistently affect brain structure and function that will serve as future predictors linking individual brain scans and genomic data. It is generating vast pools of normative data on brain measures - from tens of thousands of people - that may help detect deviations from normal development or aging in specific groups of subjects. We discuss challenges and opportunities in applying these predictors to individual subjects and new cohorts, as well as lessons we have learned in ENIGMA's efforts so far.

  18. Continuous theta burst transcranial magnetic stimulation affects brain functional connectivity.

    PubMed

    Dan Cao; Yingjie Li; Ling Wei; Yingying Tang

    2016-08-01

    Prefrontal cortex (PFC) plays an important role in the emotional processing as well as in the functional brain network. Hyperactivity in the right dorsolateral prefrontal cortex (DLPFC) would be found in anxious participants. However, it is still unclear what the role of PFC played in a resting functional network. Continuous theta burst transcranial magnetic stimulation (cTBS) is an effective tool to create virtual lesions on brain regions. In this paper, we applied cTBS over right prefrontal area, and investigated the effects of cTBS on the brain activity for functional connectivity by the method of graph theory. We recorded 64-channels EEG on thirteen healthy participants in the resting condition and emotional tasks before and after 40 s of cTBS. This work focused on the effect of cTBS on cortical activities in the resting condition by calculating the coherence between EEG channels and building functional networks before and after cTBS in the delta, theta, alpha and beta bands. Results revealed that 1) The functional connectivity after cTBS was significantly increased compared with that before cTBS in delta, theta, alpha and beta bands in the resting condition; 2) The efficiency-cost reached the maximum before and after cTBS both with the cost about 0.3 in the bands above, which meant that the information transmission of functional brain network with this cost was highly efficient; 3) the clustering coefficient and path length after cTBS was significantly increased in delta, theta and beta bands. In conclusion, cTBS over PFC indeed enhanced the functional connectivity in the resting condition. In addition, the information transmission in the resting brain network was highly efficient with the cost about 0.3.

  19. The dopamine and cAMP regulated phosphoprotein, 32 kDa (DARPP-32) signaling pathway: a novel therapeutic target in traumatic brain injury.

    PubMed

    Bales, James W; Yan, Hong Q; Ma, Xiecheng; Li, Youming; Samarasinghe, Ranmal; Dixon, C Edward

    2011-06-01

    Traumatic brain injury (TBI) causes persistent neurologic deficits. Current therapies, predominantly focused upon cortical and hippocampal cellular survival, have limited benefit on cognitive outcomes. Striatal damage is associated with deficits in executive function, learning, and memory. Dopamine and cAMP regulated phosphoprotein 32 (DARPP-32) is expressed within striatal medium spiny neurons and regulates striatal function. We found that controlled cortical impact injury in rats produces a chronic decrease in DARPP-32 phosphorylation at threonine-34 and an increase in protein phosphatase-1 activity. There is no effect of injury on threonine-75 phosphorylation or on DARPP-32 protein. Amantadine, shown to be efficacious in treating post-TBI cognitive deficits, given daily for two weeks is able to restore the loss of DARPP-32 phosphorylation and reduce protein phosphatase-1 activity. Amantadine also decreases the phosphorylation of threonine-75 consistent with activity as a partial N-methyl-D-aspartate (NMDA) receptor antagonist and partial dopamine agonist. These data demonstrate that targeting the DARPP-32 signaling cascade represents a promising novel therapeutic approach in the treatment of persistent deficits following a TBI.

  20. Effects of Methylphenidate on Resting-State Functional Connectivity of the Mesocorticolimbic Dopamine Pathways in Cocaine Addiction

    SciTech Connect

    Konova, Anna B.; Moeller, Scott J.; Tomasi, Dardo; Volkow, Nora D.; Goldstein, Rita Z.

    2013-08-01

    Cocaine addiction is associated with altered resting-state functional connectivity among regions of the mesocorticolimbic dopamine pathways. Methylphenidate hydrochloride, an indirect dopamine agonist, normalizes task-related regional brain activity and associated behavior in cocaine users; however, the neural systems–level effects of methylphenidate in this population have not yet been described. To use resting-state functional magnetic resonance imaging to examine changes in mesocorticolimbic connectivity with methylphenidate and how connectivity of affected pathways relates to severity of cocaine addiction.

  1. Placental Barrier and Autism Spectrum Disorders: The Role of Prolactin and Dopamine on the Developing Fetal Brain

    PubMed Central

    Acharya, Ganesh; Kasaraneni, Jayaprada; Hampe, Christiane S.; Clayton, Anita H.

    2015-01-01

    Dopamine and prolactin exhibit opposite effects on lactation. However, a possible role for increased prolactin/dopamine ratio in postpartum mood and thought disorders and as a prognostic indicator of the mother’s future mental health has not been well investigated. Postpartum depression is a serious condition with potentially devastating outcomes for both the mother and the infant. Early detection and treatment of this condition can have impressive results. Treatment options include antidepressant medications for mood disorders and use of antipsychotics and electroconvulsive therapy to address postpartum psychosis. Although there are obvious benefits of such treatments on the welfare of the mother and her child, broader implications of these treatments on lactation and child growth and development are not known. This review article explores a possible link between in-utero exposure to a high maternal prolactin/dopamine ratio and subsequent development of autism spectrum disorders. We hypothesize that a comprehensive, biologically oriented approach to the use of psychotropics in the regulation of neurotransmission during pre- and postpartum periods may result in better outcomes in this population. PMID:26634176

  2. Vibrotactile Discrimination Training Affects Brain Connectivity in Profoundly Deaf Individuals.

    PubMed

    González-Garrido, Andrés A; Ruiz-Stovel, Vanessa D; Gómez-Velázquez, Fabiola R; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Salido-Ruiz, Ricardo A; Espinoza-Valdez, Aurora; Campos, Luis R

    2017-01-01

    Early auditory deprivation has serious neurodevelopmental and cognitive repercussions largely derived from impoverished and delayed language acquisition. These conditions may be associated with early changes in brain connectivity. Vibrotactile stimulation is a sensory substitution method that allows perception and discrimination of sound, and even speech. To clarify the efficacy of this approach, a vibrotactile oddball task with 700 and 900 Hz pure-tones as stimuli [counterbalanced as target (T: 20% of the total) and non-target (NT: 80%)] with simultaneous EEG recording was performed by 14 profoundly deaf and 14 normal-hearing (NH) subjects, before and after a short training period (five 1-h sessions; in 2.5-3 weeks). A small device worn on the right index finger delivered sound-wave stimuli. The training included discrimination of pure tone frequency and duration, and more complex natural sounds. A significant P300 amplitude increase and behavioral improvement was observed in both deaf and normal subjects, with no between group differences. However, a P3 with larger scalp distribution over parietal cortical areas and lateralized to the right was observed in the profoundly deaf. A graph theory analysis showed that brief training significantly increased fronto-central brain connectivity in deaf subjects, but not in NH subjects. Together, ERP tools and graph methods depicted the different functional brain dynamic in deaf and NH individuals, underlying the temporary engagement of the cognitive resources demanded by the task. Our findings showed that the index-fingertip somatosensory mechanoreceptors can discriminate sounds. Further studies are necessary to clarify brain connectivity dynamics associated with the performance of vibrotactile language-related discrimination tasks and the effect of lengthier training programs.

  3. Vibrotactile Discrimination Training Affects Brain Connectivity in Profoundly Deaf Individuals

    PubMed Central

    González-Garrido, Andrés A.; Ruiz-Stovel, Vanessa D.; Gómez-Velázquez, Fabiola R.; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Salido-Ruiz, Ricardo A.; Espinoza-Valdez, Aurora; Campos, Luis R.

    2017-01-01

    Early auditory deprivation has serious neurodevelopmental and cognitive repercussions largely derived from impoverished and delayed language acquisition. These conditions may be associated with early changes in brain connectivity. Vibrotactile stimulation is a sensory substitution method that allows perception and discrimination of sound, and even speech. To clarify the efficacy of this approach, a vibrotactile oddball task with 700 and 900 Hz pure-tones as stimuli [counterbalanced as target (T: 20% of the total) and non-target (NT: 80%)] with simultaneous EEG recording was performed by 14 profoundly deaf and 14 normal-hearing (NH) subjects, before and after a short training period (five 1-h sessions; in 2.5–3 weeks). A small device worn on the right index finger delivered sound-wave stimuli. The training included discrimination of pure tone frequency and duration, and more complex natural sounds. A significant P300 amplitude increase and behavioral improvement was observed in both deaf and normal subjects, with no between group differences. However, a P3 with larger scalp distribution over parietal cortical areas and lateralized to the right was observed in the profoundly deaf. A graph theory analysis showed that brief training significantly increased fronto-central brain connectivity in deaf subjects, but not in NH subjects. Together, ERP tools and graph methods depicted the different functional brain dynamic in deaf and NH individuals, underlying the temporary engagement of the cognitive resources demanded by the task. Our findings showed that the index-fingertip somatosensory mechanoreceptors can discriminate sounds. Further studies are necessary to clarify brain connectivity dynamics associated with the performance of vibrotactile language-related discrimination tasks and the effect of lengthier training programs. PMID:28220063

  4. Aging. Aging-induced type I interferon response at the choroid plexus negatively affects brain function.

    PubMed

    Baruch, Kuti; Deczkowska, Aleksandra; David, Eyal; Castellano, Joseph M; Miller, Omer; Kertser, Alexander; Berkutzki, Tamara; Barnett-Itzhaki, Zohar; Bezalel, Dana; Wyss-Coray, Tony; Amit, Ido; Schwartz, Michal

    2014-10-03

    Aging-associated cognitive decline is affected by factors produced inside and outside the brain. By using multiorgan genome-wide analysis of aged mice, we found that the choroid plexus, an interface between the brain and the circulation, shows a type I interferon (IFN-I)-dependent gene expression profile that was also found in aged human brains. In aged mice, this response was induced by brain-derived signals, present in the cerebrospinal fluid. Blocking IFN-I signaling within the aged brain partially restored cognitive function and hippocampal neurogenesis and reestablished IFN-II-dependent choroid plexus activity, which is lost in aging. Our data identify a chronic aging-induced IFN-I signature, often associated with antiviral response, at the brain's choroid plexus and demonstrate its negative influence on brain function, thereby suggesting a target for ameliorating cognitive decline in aging.

  5. Application of fast-scan cyclic voltammetry for the in vivo characterization of optically evoked dopamine in the olfactory tubercle of the rat brain.

    PubMed

    Wakabayashi, Ken T; Bruno, Michael J; Bass, Caroline E; Park, Jinwoo

    2016-06-21

    The olfactory tubercle (OT), as a component of the ventral striatum, serves as an important multisensory integration center for reward-related processes in the brain. Recent studies show that dense dopaminergic innervation from the ventral tegmental area (VTA) into the OT may play an outsized role in disorders such as psychostimulant addiction and disorders of motivation, increasing recent scientific interest in this brain region. However, due to its anatomical inaccessibility, relative small size, and proximity to other dopamine-rich structures, neurochemical assessments using conventional methods cannot be readily employed. Here, we investigated dopamine (DA) regulation in the OT of urethane-anesthetized rats using in vivo fast-scan voltammetry (FSCV) coupled with carbon-fiber microelectrodes, following optogenetic stimulation of the VTA. The results were compared with DA regulation in the nucleus accumbens (NAc), a structure located adjacent to the OT and which also receives dense DA innervation from the VTA. FSCV coupled with optically evoked release allowed us to investigate the spatial distribution of DA in the OT and characterize OT DA dynamics (release and clearance) with subsecond temporal and micrometer spatial resolution for the first time. In this study, we demonstrated that DA transporters play an important role in regulating DA in the OT. However, the control of extracellular DA by uptake in the OT was less than in the NAc. The difference in DA transmission in the terminal fields of the OT and NAc may be involved in region-specific responses to drugs of abuse and contrasting roles in mediating reward-related behavior.

  6. Repeat variation in the human PER2 gene as a new genetic marker associated with cocaine addiction and brain dopamine D2 receptor availability.

    PubMed

    Shumay, E; Fowler, J S; Wang, G-J; Logan, J; Alia-Klein, N; Goldstein, R Z; Maloney, T; Wong, C; Volkow, N D

    2012-03-06

    Low dopamine D2 receptor (D2R) levels in the striatum are consistently reported in cocaine abusers; inter-individual variations in the degree of the decrease suggest a modulating effect of genetic makeup on vulnerability to addiction. The PER2 (Period 2) gene belongs to the clock genes family of circadian regulators; circadian oscillations of PER2 expression in the striatum was modulated by dopamine through D2Rs. Aberrant periodicity of PER2 contributes to the incidence and severity of various brain disorders, including drug addiction. Here we report a newly identified variable number tandem repeat (VNTR) polymorphism in the human PER2 gene (VNTR in the third intron). We found significant differences in the VNTR alleles prevalence across ethnic groups so that the major allele (4 repeats (4R)) is over-represented in non-African population (4R homozygosity is 88%), but not in African Americans (homozygosity 51%). We also detected a biased PER2 genotype distribution among healthy controls and cocaine-addicted individuals. In African Americans, the proportion of 4R/three repeat (3R) carriers in healthy controls is much lower than that in cocaine abusers (23% vs 39%, P=0.004), whereas among non-Africans most 3R/4R heterozygotes are healthy controls (10.5% vs 2.5%, P=0.04). Analysis of striatal D2R availability measured with positron emission tomography and [(11)C]raclopride revealed higher levels of D2R in carriers of 4R/4R genotype (P<0.01). Taken together, these results provide preliminary evidence for the role of the PER2 gene in regulating striatal D2R availability in the human brain and in vulnerability for cocaine addiction.

  7. Circadian influences on dopamine circuits of the brain: regulation of striatal rhythms of clock gene expression and implications for psychopathology and disease

    PubMed Central

    Verwey, Michael; Dhir, Sabine; Amir, Shimon

    2016-01-01

    Circadian clock proteins form an autoregulatory feedback loop that is central to the endogenous generation and transmission of daily rhythms in behavior and physiology. Increasingly, circadian rhythms in clock gene expression are being reported in diverse tissues and brain regions that lie outside of the suprachiasmatic nucleus (SCN), the master circadian clock in mammals. For many of these extra-SCN rhythms, however, the region-specific implications are still emerging. In order to gain important insights into the potential behavioral, physiological, and psychological relevance of these daily oscillations, researchers have begun to focus on describing the neurochemical, hormonal, metabolic, and epigenetic contributions to the regulation of these rhythms. This review will highlight important sites and sources of circadian control within dopaminergic and striatal circuitries of the brain and will discuss potential implications for psychopathology and disease . For example, rhythms in clock gene expression in the dorsal striatum are sensitive to changes in dopamine release, which has potential implications for Parkinson’s disease and drug addiction. Rhythms in the ventral striatum and limbic forebrain are sensitive to psychological and physical stressors, which may have implications for major depressive disorder. Collectively, a rich circadian tapestry has emerged that forces us to expand traditional views and to reconsider the psychopathological, behavioral, and physiological importance of these region-specific rhythms in brain areas that are not immediately linked with the regulation of circadian rhythms. PMID:27635233

  8. [A comparative study of hemantane and amantadine effects on dopamine transporter expression in brain of normal and MPTP-treated C57BL/6 mice].

    PubMed

    Zimin, I A; Logvinov, I O; Antipova, T A; Kovalev, G I

    2011-01-01

    The effects of acute and subchronic administration of antiparkinsonian drugs hemantane and amantadine on dopamine transporter (DAT) content in the brain of normal and MPTP-treated mice have been studied. MPTP treatment (30 mg/kg, daily for 2 days, i.p.) led to an insignificant decrease of the DAT level in striatum, while not influencing the DAT content in the frontal cortex of mice. The acute administration of hemantane (20 mg/kg, i.p.) failed to influence the DAT levels in the tested structures of mice brain, while amantadine (13.9 mg/kg, i.p) decreased the DAT level but only in striatum. The acute administration of a drug (hemantane or amantadine) simultaneously with MPTP toxin reduced the DAT levels in striatum but did change the DAT concentration in the frontal cortex. On the contrary, the subchronic injection of hemantane alone (7 x 20 mg/kg, i.p.) and in combination with the toxin increased the DAT levels in the brain structures, while amantadine (7 x 13.9 mg/kg, i.p.) led to a pronounced increase of DAT concentration only in the striatum. Thus, both similar and dissimilar trends in the neurochemical effects of hemantane and amantadine have been experimentally revealed.

  9. Circadian influences on dopamine circuits of the brain: regulation of striatal rhythms of clock gene expression and implications for psychopathology and disease.

    PubMed

    Verwey, Michael; Dhir, Sabine; Amir, Shimon

    2016-01-01

    Circadian clock proteins form an autoregulatory feedback loop that is central to the endogenous generation and transmission of daily rhythms in behavior and physiology. Increasingly, circadian rhythms in clock gene expression are being reported in diverse tissues and brain regions that lie outside of the suprachiasmatic nucleus (SCN), the master circadian clock in mammals. For many of these extra-SCN rhythms, however, the region-specific implications are still emerging. In order to gain important insights into the potential behavioral, physiological, and psychological relevance of these daily oscillations, researchers have begun to focus on describing the neurochemical, hormonal, metabolic, and epigenetic contributions to the regulation of these rhythms. This review will highlight important sites and sources of circadian control within dopaminergic and striatal circuitries of the brain and will discuss potential implications for psychopathology and disease . For example, rhythms in clock gene expression in the dorsal striatum are sensitive to changes in dopamine release, which has potential implications for Parkinson's disease and drug addiction. Rhythms in the ventral striatum and limbic forebrain are sensitive to psychological and physical stressors, which may have implications for major depressive disorder. Collectively, a rich circadian tapestry has emerged that forces us to expand traditional views and to reconsider the psychopathological, behavioral, and physiological importance of these region-specific rhythms in brain areas that are not immediately linked with the regulation of circadian rhythms.

  10. Tasting calories differentially affects brain activation during hunger and satiety.

    PubMed

    van Rijn, Inge; de Graaf, Cees; Smeets, Paul A M

    2015-02-15

    An important function of eating is ingesting energy. Our objectives were to assess whether oral exposure to caloric and non-caloric stimuli elicits discriminable responses in the brain and to determine in how far these responses are modulated by hunger state and sweetness. Thirty women tasted three stimuli in two motivational states (hunger and satiety) while their brain responses were measured using functional magnetic resonance imaging in a randomized crossover design. Stimuli were solutions of sucralose (sweet, no energy), maltodextrin (non-sweet, energy) and sucralose+maltodextrin (sweet, energy). We found no main effect of energy content and no interaction between energy content and sweetness. However, there was an interaction between hunger state and energy content in the median cingulate (bilaterally), ventrolateral prefrontal cortex, anterior insula and thalamus. This indicates that the anterior insula and thalamus, areas in which hunger state and taste of a stimulus are integrated, also integrate hunger state with caloric content of a taste stimulus. Furthermore, in the median cingulate and ventrolateral prefrontal cortex, tasting energy resulted in more activation during satiety compared to hunger. This finding indicates that these areas, which are known to be involved in processes that require approach and avoidance, are also involved in guiding ingestive behavior. In conclusion, our results suggest that energy sensing is a hunger state dependent process, in which the median cingulate, ventrolateral prefrontal cortex, anterior insula and thalamus play a central role by integrating hunger state with stimulus relevance.

  11. Affective psychosis, Hashimoto's thyroiditis, and brain perfusion abnormalities: case report

    PubMed Central

    2007-01-01

    Background It has recently become evident that circulating thyroid antibodies are found in excess among patients suffering from mood disorders. Moreover, a manic episode associated with Hashimoto's thyroiditis has recently been reported as the first case of bipolar disorder due to Hashimoto's encephalopathy. We report a case in which Hashimoto's thyroiditis was suspected to be involved in the deteriorating course of mood disorder and discuss potential pathogenic mechanisms linking thyroid autoimmunity with psychopathology. Case presentation A 43-year-old woman, with a history of recurrent depression since the age of 31, developed manic, psychotic, and soft neurological symptoms across the last three years in concomitance with her first diagnosis of Hashimoto's thyroiditis. The patient underwent a thorough medical and neurological workup. Circulating thyroperoxidase antibodies were highly elevated but thyroid function was adequately maintained with L-thyroxine substitution. EEG was normal and no other signs of current CNS inflammation were evidenced. However, brain magnetic resonance imaging evidenced several non-active lesions in the white matter from both hemispheres, suggestive of a non-specific past vasculitis. Brain single-photon emission computed tomography showed cortical perfusion asymmetry particularly between frontal lobes. Conclusion We hypothesize that abnormalities in cortical perfusion might represent a pathogenic link between thyroid autoimmunity and mood disorders, and that the rare cases of severe Hashimoto's encephalopathy presenting with mood disorder might be only the tip of an iceberg. PMID:18096026

  12. A preliminary comparison of flat affect schizophrenics and brain-damaged patients on measures of affective processing.

    PubMed

    Borod, J C; Alpert, M; Brozgold, A; Martin, C; Welkowitz, J; Diller, L; Peselow, E; Angrist, B; Lieberman, A

    1989-04-01

    Flat affect is a major component of schizophrenia and is often also seen in neurological disorders. A preliminary set of comparisons were conducted to delineate neuropsychological mechanisms underlying flat affect in schizophrenia, and new measures are described for the assessment of affective deficits in clinical populations. Subjects were schizophrenic with flat affect (SZs), right brain-damaged (RBD), Parkinson's Disease (PDs), and normal control (NC) right-handed adults. Subjects were administered affective measures of expression and perception in both facial and vocal channels. For both perceptual and expressive tasks the SZs performed significantly less accurately than the NCs and the PDs but did not differ from the RBDs. This was the case for both face and voice. This finding lends support to the speculation that right hemisphere mechanisms, especially cortical ones, may be compromised among schizophrenics with flat affect.

  13. Effect of morphine and lacosamide on levels of dopamine and 5-HIAA in brain regions of rats with induced hypoglycemia.

    PubMed

    Guzman, D Calderon; Garcia, E Hernandez; Mejia, G Barragan; Olguin, H Juarez; Gonzalez, J A Saldivar; Labra Ruiz, N A

    2014-01-15

    The study aimed to determine the effect of morphine and lacosamide on levels of dopamine and 5-HIAA in a hypoglycemic model. Female Wistar rats (n = 30), mean weight of 180 g were treated as follow: Group 1 (control) received 0.9% NaCl, Group II; morphine (10 mg kg(-1)), Group III; lacosamide (10 mg kg(-1)), Group IV; insulin (10 U.I. per rat), Group V; morphine (10 mg kg(-1))+insulin, Group VI; lacosamide (10 mg kg(-1))+ insulin. All administrations were made intraperitoneally every 24 h, for 5 days. Animals were sacrificed after the last dose to measure the levels of glucose in blood; dopamine and 5-HIAA in cortex, hemispheres and cerebellum/medulla oblongata regions. Levels of glucose decreased significantly in animals treated with morphine, lacosamide and all groups that received insulin alone or combined with respect to control group. Levels of Dopamine diminished significantly in cortex and increased significantly in hemispheres of animals that received morphine. In cortex, 5-HIAA increase significantly in the groups treated with morphine, morphine+insulin and lacosamide+insulin, however a significant decrease of the same substance was witnessed in cerebellum and medulla oblongata of animals that received morphine or lacosamide plus insulin. GSH increased significantly in cortex and cerebellum/medulla oblongata of animals treated with morphine and lacosamide alone or combined with insulin. Lipid peroxidation decreased significantly in cortex and cerebellum/medulla oblongata of groups that received lacosamide alone or combined with insulin. These results indicate that hypoglycemia induced changes in cellular regulation while morphine and lacosamide are accompanied by biochemical responses.

  14. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods

    PubMed Central

    Barth, Claudia; Villringer, Arno; Sacher, Julia

    2015-01-01

    Sex hormones have been implicated in neurite outgrowth, synaptogenesis, dendritic branching, myelination and other important mechanisms of neural plasticity. Here we review the evidence from animal experiments and human studies reporting interactions between sex hormones and the dominant neurotransmitters, such as serotonin, dopamine, GABA and glutamate. We provide an overview of accumulating data during physiological and pathological conditions and discuss currently conceptualized theories on how sex hormones potentially trigger neuroplasticity changes through these four neurochemical systems. Many brain regions have been demonstrated to express high densities for estrogen- and progesterone receptors, such as the amygdala, the hypothalamus, and the hippocampus. As the hippocampus is of particular relevance in the context of mediating structural plasticity in the adult brain, we put particular emphasis on what evidence could be gathered thus far that links differences in behavior, neurochemical patterns and hippocampal structure to a changing hormonal environment. Finally, we discuss how physiologically occurring hormonal transition periods in humans can be used to model how changes in sex hormones influence functional connectivity, neurotransmission and brain structure in vivo. PMID:25750611

  15. Brain network analysis reveals affected connectome structure in bipolar I disorder.

    PubMed

    Collin, Guusje; van den Heuvel, Martijn P; Abramovic, Lucija; Vreeker, Annabel; de Reus, Marcel A; van Haren, Neeltje E M; Boks, Marco P M; Ophoff, Roel A; Kahn, René S

    2016-01-01

    The notion that healthy brain function emerges from coordinated neural activity constrained by the brain's network of anatomical connections--i.e., the connectome--suggests that alterations in the connectome's wiring pattern may underlie brain disorders. Corroborating this hypothesis, studies in schizophrenia are indicative of altered connectome architecture including reduced communication efficiency, disruptions of central brain hubs, and affected "rich club" organization. Whether similar deficits are present in bipolar disorder is currently unknown. This study examines structural connectome topology in 216 bipolar I disorder patients as compared to 144 healthy controls, focusing in particular on central regions (i.e., brain hubs) and connections (i.e., rich club connections, interhemispheric connections) of the brain's network. We find that bipolar I disorder patients exhibit reduced global efficiency (-4.4%, P =0.002) and that this deficit relates (r = 0.56, P < 0.001) to reduced connectivity strength of interhemispheric connections (-13.0%, P = 0.001). Bipolar disorder patients were found not to show predominant alterations in the strength of brain hub connections in general, or of connections spanning brain hubs (i.e., "rich club" connections) in particular (all P > 0.1). These findings highlight a role for aberrant brain network architecture in bipolar I disorder with reduced global efficiency in association with disruptions in interhemispheric connectivity, while the central "rich club" system appears not to be particularly affected.

  16. Can Cholesterol Metabolism Modulation Affect Brain Function and Behavior?

    PubMed

    Cartocci, Veronica; Servadio, Michela; Trezza, Viviana; Pallottini, Valentina

    2017-02-01

    Cholesterol is an important component for cell physiology. It regulates the fluidity of cell membranes and determines the physical and biochemical properties of proteins. In the central nervous system, cholesterol controls synapse formation and function and supports the saltatory conduction of action potential. In recent years, the role of cholesterol in the brain has caught the attention of several research groups since a breakdown of cholesterol metabolism has been associated with different neurodevelopmental and neurodegenerative diseases, and interestingly also with psychiatric conditions. The aim of this review is to summarize the current knowledge about the connection between cholesterol dysregulation and various neurologic and psychiatric disorders based on clinical and preclinical studies. J. Cell. Physiol. 232: 281-286, 2017. © 2016 Wiley Periodicals, Inc.

  17. Dopamine regulates body size in Caenorhabditis elegans.

    PubMed

    Nagashima, Takashi; Oami, Eitaro; Kutsuna, Natsumaro; Ishiura, Shoichi; Suo, Satoshi

    2016-04-01

    The nervous system plays a critical role in the regulation of animal body sizes. In Caenorhabditis elegans, an amine neurotransmitter, dopamine, is required for the tactile perception of food and food-dependent behavioral changes, while its role in development is unknown. In this study, we show that dopamine negatively regulates body size through a D2-like dopamine receptor, DOP-3, in C. elegans. Dopamine alters body size without affecting food intake or developmental rate. We also found that dopamine promotes egg-laying, although the regulation of body size by dopamine was not solely caused by this effect. Furthermore, dopamine negatively regulates body size through the suppression of signaling by octopamine and Gq-coupled octopamine receptors, SER-3 and SER-6. Our results demonstrate that dopamine and octopamine regulate the body size of C. elegans and suggest a potential role for perception in addition to ingestion of food for growth.

  18. Dopamine, reward learning, and active inference

    PubMed Central

    FitzGerald, Thomas H. B.; Dolan, Raymond J.; Friston, Karl

    2015-01-01

    Temporal difference learning models propose phasic dopamine signaling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behavior. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings. PMID:26581305

  19. Chronic morphine induces visible changes in the morphology of mesolimbic dopamine neurons.

    PubMed Central

    Sklair-Tavron, L; Shi, W X; Lane, S B; Harris, H W; Bunney, B S; Nestler, E J

    1996-01-01

    The mesolimbic dopamine system, which arises in the ventral tegmental area (VTA), is an important neural substrate for opiate reinforcement and addiction. Chronic exposure to opiates is known to produce biochemical adaptations in this brain region. We now show that these adaptations are associated with structural changes in VTA dopamine neurons. Individual VTA neurons in paraformaldehyde-fixed brain sections from control or morphine-treated rats were injected with the fluorescent dye Lucifer yellow. The identity of the injected cells as dopaminergic or nondopaminergic was determined by immunohistochemical labeling of the sections for tyrosine hydroxylase. Chronic morphine treatment resulted in a mean approximately 25% reduction in the area and perimeter of VTA dopamine neurons. This reduction in cell size was prevented by concomitant treatment of rats with naltrexone, an opioid receptor antagonist, as well as by intra-VTA infusion of brain-derived neurotrophic factor. In contrast, chronic morphine treatment did not alter the size of nondopaminergic neurons in the VTA, nor did it affect the total number of dopaminergic neurons in this brain region. The results of these studies provide direct evidence for structural alterations in VTA dopamine neurons as a consequence of chronic opiate exposure, which could contribute to changes in mesolimbic dopamine function associated with addiction. Images Fig. 2 Fig. 4 PMID:8855333

  20. Impact of microdialysis probes on vasculature and dopamine in the rat striatum: a combined fluorescence and voltammetric study.

    PubMed

    Mitala, Christina M; Wang, Yuexiang; Borland, Laura M; Jung, Moon; Shand, Stuart; Watkins, Simon; Weber, Stephen G; Michael, Adrian C

    2008-09-30

    Measuring extracellular dopamine in the brain of living animals by means of microdialysis and/or voltammetry is a route towards understanding both normal brain function and pathology. Previous reports, however, suggest that the tissue response to implantation of devices may affect the outcome of the measurements. To address the source of the tissue response and its impact on striatal dopamine systems microdialysis probes were placed in the striatum of anesthetized rats. Images obtained by dual-label fluorescence microscopy show signs of ischemia and opening of the blood-brain barrier near the probe tracks. Opening of the blood-brain barrier was further examined by determining dialysate concentrations of carbi-DOPA, a drug that normally does not penetrate the brain. Although carbi-DOPA was recovered in brain dialysate, it did not alter dialysate dopamine levels or evoked dopamine release as measured by voltammetry near the probes. Microdialysis probes also significantly diminished the effect of intrastriatal infusion of kynurenate on extracellular dopamine levels as measured by voltammetry near the probes.

  1. Functional variation of the dopamine D2 receptor gene is associated with emotional control as well as brain activity and connectivity during emotion processing in humans.

    PubMed

    Blasi, Giuseppe; Lo Bianco, Luciana; Taurisano, Paolo; Gelao, Barbara; Romano, Raffaella; Fazio, Leonardo; Papazacharias, Apostolos; Di Giorgio, Annabella; Caforio, Grazia; Rampino, Antonio; Masellis, Rita; Papp, Audrey; Ursini, Gianluca; Sinibaldi, Lorenzo; Popolizio, Teresa; Sadee, Wolfgang; Bertolino, Alessandro

    2009-11-25

    Personality traits related to emotion processing are, at least in part, heritable and genetically determined. Dopamine D(2) receptor signaling is involved in modulation of emotional behavior and activity of associated brain regions such as the amygdala and the prefrontal cortex. An intronic single nucleotide polymorphism within the D(2) receptor gene (DRD2) (rs1076560, guanine > thymine or G > T) shifts splicing of the two protein isoforms (D(2) short, mainly presynaptic, and D(2) long) and has been associated with modulation of memory performance and brain activity. Here, our aim was to investigate the association of DRD2 rs1076560 genotype with personality traits of emotional stability and with brain physiology during processing of emotionally relevant stimuli. DRD2 genotype and Big Five Questionnaire scores were evaluated in 134 healthy subjects demonstrating that GG subjects have reduced "emotion control" compared with GT subjects. Functional magnetic resonance imaging in a sample of 24 individuals indicated greater amygdala activity during implicit processing and greater dorsolateral prefrontal cortex (DLPFC) response during explicit processing of facial emotional stimuli in GG subjects compared with GT. Other results also demonstrate an interaction between DRD2 genotype and facial emotional expression on functional connectivity of both amygdala and dorsolateral prefrontal regions with overlapping medial prefrontal areas. Moreover, rs1076560 genotype is associated with differential relationships between amygdala/DLPFC functional connectivity and emotion control scores. These results suggest that genetically determined D(2) signaling may explain part of personality traits related to emotion processing and individual variability in specific brain responses to emotionally relevant inputs.

  2. Tracheal decannulation protocol in patients affected by traumatic brain injury.

    PubMed

    Zanata, Isabel de Lima; Santos, Rosane Sampaio; Hirata, Gisela Carmona

    2014-04-01

    Introduction The frequency of tracheostomy in patients with traumatic brain injury (TBI) contrasts with the lack of objective criteria for its management. The study arose from the need for a protocol in the decision to remove the tracheal tube. Objective To evaluate the applicability of a protocol for tracheal decannulation. Methods A prospective study with 20 patients, ranging between 21 and 85 years of age (average 33.55), 4 of whom were women (20%) and 16 were men (80%). All patients had been diagnosed by a neurologist as having TBI, and the anatomical region of the lesion was known. Patients were evaluated following criteria for tracheal decannulation through a clinical evaluation protocol developed by the authors. Results Decannulation was performed in 12 (60%) patients. Fourteen (70%) had a score greater than 8 on the Glasgow Coma Scale and only 2 (14%) of these were not able to undergo decannulation. Twelve (60%) patients maintained the breathing pattern with occlusion of the tube and were successfully decannulated. Of the 20 patients evaluated, 11 (55%) showed no signs suggestive of tracheal aspiration, and of these, 9 (82%) began training on occlusion of the cannula. The protocol was relevant to establish the beginning of the decannulation process. The clinical assessment should focus on the patient's condition to achieve early tracheal decannulation. Conclusion This study allowed, with the protocol, to establish six criteria for tracheal decannulation: level of consciousness, respiration, tracheal secretion, phonation, swallowing, and coughing.

  3. Brain systems for assessing the affective value of faces

    PubMed Central

    Said, Christopher P.; Haxby, James V.; Todorov, Alexander

    2011-01-01

    Cognitive neuroscience research on facial expression recognition and face evaluation has proliferated over the past 15 years. Nevertheless, large questions remain unanswered. In this overview, we discuss the current understanding in the field, and describe what is known and what remains unknown. In §2, we describe three types of behavioural evidence that the perception of traits in neutral faces is related to the perception of facial expressions, and may rely on the same mechanisms. In §3, we discuss cortical systems for the perception of facial expressions, and argue for a partial segregation of function in the superior temporal sulcus and the fusiform gyrus. In §4, we describe the current understanding of how the brain responds to emotionally neutral faces. To resolve some of the inconsistencies in the literature, we perform a large group analysis across three different studies, and argue that one parsimonious explanation of prior findings is that faces are coded in terms of their typicality. In §5, we discuss how these two lines of research—perception of emotional expressions and face evaluation—could be integrated into a common, cognitive neuroscience framework. PMID:21536552

  4. Tracheal Decannulation Protocol in Patients Affected by Traumatic Brain Injury

    PubMed Central

    Zanata, Isabel de Lima; Santos, Rosane Sampaio; Hirata, Gisela Carmona

    2014-01-01

    Introduction The frequency of tracheostomy in patients with traumatic brain injury (TBI) contrasts with the lack of objective criteria for its management. The study arose from the need for a protocol in the decision to remove the tracheal tube. Objective To evaluate the applicability of a protocol for tracheal decannulation. Methods A prospective study with 20 patients, ranging between 21 and 85 years of age (average 33.55), 4 of whom were women (20%) and 16 were men (80%). All patients had been diagnosed by a neurologist as having TBI, and the anatomical region of the lesion was known. Patients were evaluated following criteria for tracheal decannulation through a clinical evaluation protocol developed by the authors. Results Decannulation was performed in 12 (60%) patients. Fourteen (70%) had a score greater than 8 on the Glasgow Coma Scale and only 2 (14%) of these were not able to undergo decannulation. Twelve (60%) patients maintained the breathing pattern with occlusion of the tube and were successfully decannulated. Of the 20 patients evaluated, 11 (55%) showed no signs suggestive of tracheal aspiration, and of these, 9 (82%) began training on occlusion of the cannula. The protocol was relevant to establish the beginning of the decannulation process. The clinical assessment should focus on the patient's condition to achieve early tracheal decannulation. Conclusion This study allowed, with the protocol, to establish six criteria for tracheal decannulation: level of consciousness, respiration, tracheal secretion, phonation, swallowing, and coughing. PMID:25992074

  5. Cloning, molecular characterization, and chromosomal assignment of a gene encoding a second D1 dopamine receptor subtype: differential expression pattern in rat brain compared with the D1A receptor.

    PubMed Central

    Tiberi, M; Jarvie, K R; Silvia, C; Falardeau, P; Gingrich, J A; Godinot, N; Bertrand, L; Yang-Feng, T L; Fremeau, R T; Caron, M G

    1991-01-01

    Multiple D1 dopaminergic receptor subtypes have been postulated on the basis of pharmacological, biochemical, and genetic studies. We describe the isolation and characterization of a rat gene encoding a dopamine receptor that is structurally and functionally similar to the D1 dopamine receptor. The coding region, which is intronless, encodes a protein of 475 amino acids (Mr 52,834) with structural features that are consistent with receptors coupled to guanine nucleotide-binding regulatory proteins. The expressed protein binds dopaminergic ligands and mediates stimulation of adenylyl cyclase with pharmacological properties similar to those of the D1 dopamine receptor. The gene encoding the human homologue of this receptor subtype is located to the short arm of chromosome 4 (4p16.3), the same region as the Huntington disease gene. In striking contrast to the previously cloned D1 receptor, little or no mRNA for the receptor described here was observed in striatum, nucleus accumbens, olfactory tubercle, and frontal cortex. High levels of mRNA for this receptor were found in distinct layers of the hippocampus, the mammillary nuclei, and the anterior pretectal nuclei, brain regions that have been shown to exhibit little or no D1 dopamine receptor binding. On the basis of its properties we propose that this dopamine receptor subtype be called D1B. Images PMID:1831904

  6. DOPAMINE RECEPTOR INACTIVATION IN THE CAUDATE-PUTAMEN DIFFERENTIALLY AFFECTS THE BEHAVIOR OF PREWEANLING AND ADULT RATS

    PubMed Central

    DER-GHAZARIAN, T.; GUTIERREZ, A.; VARELA, F. A.; HERBERT, M. S.; AMODEO, L. R.; CHARNTIKOV, S.; CRAWFORD, C. A.; MCDOUGALL, S. A.

    2012-01-01

    The irreversible receptor antagonist N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) has been used to study the ontogeny of dopamine (DA) receptor functioning in the young and adult rat. Most notably, systemic administration of EEDQ blocks the DA agonist-induced behaviors of adult rats, while leaving the behavior of preweanling rats unaffected. The purpose of the present study was to: (a) determine whether the age-dependent actions of EEDQ involve receptors located in the dorsal caudate-putamen (CPu) and (b) confirm that EEDQ's behavioral effects result from the inactivation of DA receptors rather than some other receptor type. In Experiment 1, EEDQ or DMSO were bilaterally infused into the CPu on PD 17 or PD 84. After 24 h, rats were given bilateral microinjections of the full DA agonist R(–)-propylnorapomorphine (NPA) or vehicle into the dorsal CPu and behavior was assessed for 40 min. In Experiment 2, preweanling rats were treated as just described, except that DA receptors were protected from EEDQ-induced alkylation by administering systemic injections of D1 (SCH23390) and D2 (sulpiride) receptor antagonists. As predicted, microinjecting EEDQ into the dorsal CPu attenuated the NPA-induced locomotor activity and stereotypy of adult rats. In contrast, rats given bilateral EEDQ infusions on PD 17 exhibited a potentiated locomotor response when treated with NPA. Experiment 2 showed that DA receptor inactivation was responsible for NPA's actions. A likely explanation for these results is that EEDQ inactivates a sizable percentage of DA receptors on PD 17, but leaves the remaining receptors in a supersensitive state. This receptor supersensitivity, which probably involves alterations in G protein coupling, could account for NPA-induced locomotor potentiation. Either adult rats do not show a similar EEDQ-induced change in receptor dynamics or DA receptor inactivation was more complete in older animals and effectively eliminated the expression of DA agonist

  7. Putative Dopamine Agonist (KB220Z) Attenuates Lucid Nightmares in PTSD Patients: Role of Enhanced Brain Reward Functional Connectivity and Homeostasis Redeeming Joy

    PubMed Central

    McLaughlin, Thomas; Blum, Kenneth; Oscar-Berman, Marlene; Febo, Marcelo; Agan, Gozde; Fratantonio, James L.; Simpatico, Thomas; Gold, Mark S.

    2015-01-01

    Background Lucid dreams are frequently pleasant and training techniques have been developed to teach dreamers to induce them. In addition, the induction of lucid dreams has also been used as a way to ameliorate nightmares. On the other hand, lucid dreams may be associated with psychiatric conditions, including Post-Traumatic Stress Disorder (PTSD) and Reward Deficiency Syndrome-associated diagnoses. In the latter conditions, lucid dreams can assume an unpleasant and frequently terrifying character. Case Presentations We present two cases of dramatic alleviation of terrifying lucid dreams in patients with PTSD. In the first case study, a 51-year-old, obese woman, diagnosed with PTSD and depression, had attempted suicide and experienced terrifying lucid nightmares linked to sexual/physical abuse from early childhood by family members including her alcoholic father. Her vivid “bad dreams” remained refractory in spite of 6 months of treatment with Dialectical Behavioral Therapy (DBT) and standard pharmaceutical agents which included prazosin, clonidie and Adderall. The second 39-year-old PTSD woman patient had also suffered from lucid nightmares. Results The medication visit notes reveal changes in the frequency, intensity and nature of these dreams after the complex putative dopamine agonist KB220Z was added to the first patient’s regimen. The patient reported her first experience of an extended period of happy dreams. The second PTSD patient, who had suffered from lucid nightmares, was administered KB220Z to attenuate methadone withdrawal symptoms and incidentally reported dreams full of happiness and laughter. Conclusions These cases are discussed with reference to the known effects of KB220Z including enhanced dopamine homeostasis and functional connectivity of brain reward circuitry in rodents and humans. Their understanding awaits intensive investigation involving large-population, double-blinded studies. PMID:26132915

  8. Deep brain stimulation of the nucleus accumbens shell induces anti-obesity effects in obese rats with alteration of dopamine neurotransmission.

    PubMed

    Zhang, Chao; Wei, Nai-Li; Wang, Yao; Wang, Xiu; Zhang, Jian-Guo; Zhang, Kai

    2015-03-04

    The aim of this study was to assess the anti-obesity effects of nucleus accumbens shell (NAc-sh) deep brain stimulation (DBS) in diet-induced obese (DIO) and chow-fed (chow) rats. The influence of DBS on dopamine (DA) signaling in the NAc-sh was also evaluated. DIO and chow rats were subjected to DBS for 14 consecutive days. Food intake and weight gain were measured daily. The gene expression of the dopamine D1 and D2 receptors was evaluated by qPCR. In addition, the extracellular levels of DA and its metabolite, dihydroxyphenylacetic acid (DOPAC), were determined by microdialysis. We observed that chronic DBS induced significant reductions in total energy intake (596.0±65.0kcal vs. 1161.6±22.2kcal, p<0.001) and weight gain (1.45±0.57% vs. 9.64±0.38%, p<0.001) in DIO rats compared to sham-DIO rats. Up-regulated D2 receptor gene expression (2.43±0.12 vs. 0.64±0.04, p<0.001) and increased DA levels (2.73±0.15pmol/mL vs. 0.62±0.05pmol/mL, p<0.001) were observed in DIO rats compared to sham-DIO rats. DBS had no influence on food intake, weight gain, or DA neurotransmission in chow rats. Our results support an association of the anorexigenic effects of NAc-sh DBS with mesolimbic DA signaling and indicate that the positive alteration of DA function in DIO rats may be responsible for the different effects of DBS in DIO and chow rats.

  9. Link between D sub 1 and D sub 2 dopamine receptors is reduced in schizophrenia and Huntington diseased brain

    SciTech Connect

    Seeman, P.; Niznik, H.B.; Guan, H.C.; Booth, G.; Ulpian, C. )

    1989-12-01

    Dopamine receptor types D{sub 1} and D{sub 2} can oppose enhance each other's actions for electrical, biochemical, and psychomotor effects. The authors report a D{sub 1}-D{sub 2} interaction in homogenized tissue as revealed by ligand binding. D{sub 2} agonists lowered the binding of ({sup 3}H)raclopride to D{sub 2} receptors in striatal and anterior pituitary tissues. Pretreating the tissue with the D{sub 1}-selective antagonist SCH 23390 prevented the agonist-induced decrease in ({sup 3}H)raclopride binding to D{sub 2} sites in the striatum but not in the anterior pituitary, which has no D{sub 1} receptors. Conversely, a dopamine-induced reduction in the binding of ({sup 3}H)SCH 23390 to D{sub 1} receptors could be prevented by the D{sub 2}-selective antagonist eticlopride. Receptor photolabeling experiments confirmed both these D{sub 1}-D{sub 2} interactions. The blocking effect by SCH 23390 was similar to that produced by a nonhydrolyzable guanine nucleotide analogue, and SCH 23390 reduced the number of agonist-labeled D{sub 2} receptors in the high-affinity state. Thus, the D{sub 1}-D{sub 2} link may be mediated by guanine nucleotide-binding protein components. The link may underlie D{sub 1}-D{sub 2} interactions influencing behavior, since the link was missing in over half the postmortem striata from patients with schizophrenia and Huntington disease (both diseases that show some hyperdopamine signs) but was present in human control, Alzheimer, and Parkinson striata.

  10. The effect of striatal dopamine depletion on striatal and cortical glutamate: A mini-review

    PubMed Central

    Caravaggio, Fernando; Nakajima, Shinichiro; Plitman, Eric; Gerretsen, Philip; Chung, Jun Ku; Iwata, Yusuke; Graff-Guerrero, Ariel

    2017-01-01

    Understanding the interplay between the neurotransmitters dopamine and glutamate in the striatum has become the highlight of several theories of neuropsychiatric illnesses, such as schizophrenia. Using in vivo brain imaging in humans, alterations in dopamine and glutamate concentrations have been observed in several neuropsychiatric disorders. However, it is unclear a priori how alterations in striatal dopamine should modulate glutamate concentrations in the basal ganglia. In this selective mini-review, we examine the consequence of reducing striatal dopamine functioning on glutamate concentrations in the striatum and cortex; regions of interest heavily examined in the human brain imaging studies. We examine the predictions of the classical model of the basal ganglia, and contrast it with findings in humans and animals. The review concludes that chronic dopamine depletion (>4 months) produces decreases in striatal glutamate levels which are consistent with the classical model of the basal ganglia. However, acute alterations in striatal dopamine functioning, specifically at the D2 receptors, may produce opposite affects. This has important implications for models of the basal ganglia and theorizing about neurochemical alterations in neuropsychiatric diseases. Moreover, these findings may help guide a priori hypotheses for 1H-MRS studies measuring glutamate changes given alterations in dopaminergic functioning in humans. PMID:26334687

  11. [C-11]{beta}CNT: A new monoamine uptake ligand for studying serotonin and dopamine transporter sites in the living brain with PET

    SciTech Connect

    Mulholland, G.K.; Zheng, Q.H.; Zhou, F.C.

    1996-05-01

    There is considerable interest in measuring serotonin (5HT) and dopamine (DA) function in the human brain. Altered levels of 5HT and DA are recognized in drug abuse, neurotoxicities, psychiatric disorders, and neurodegenerative conditions including Alzheimer`s and Parkinson`s disease. Several phenyltropane analogs of cocaine bind tightly to both DA and 5HT uptake proteins. We have made a new agent from this class called {beta}CNT, 2{beta}-carboxymethyl-3{beta}-(2-naphthyl)-tropane, the isosteric O-for-CH{sub 2} analog of a compound reported to have among the highest measured affinities for DA and 5HT transporters and studied its in vivo brain distributions in animals for the first time. Optically pure {beta}CNT was made from cocaine, and labeled at the O-methyl position by esterification of {beta}CNT-acid with [C-11]CH{sub 3}OTfl under conditions similar to Wilson`s. HPLC-purified (99+%) final products (15-50% eob yield from CO{sub 2}, 40 min synth) had specific activities 0.1-1.2 Ci/{mu}mol at the time of injection. Preliminary [C-11]{beta}{beta}CNT rodent distribution showed very high brain uptake (3% ID at 60 min) and localization (striat: fr cort: hypo: cer: blood, 11: 5: 4: 1: 06). {beta}CNT-PET studies in juvenile pigs (5-20 mCi, 20-35 kg) found rapid brain uptake, and prominent retention (85 min) in midbrain, anterior brainstem and striatum, followed by cortex and olfactory bulb. Paroxetine pretreatment (5HT uptake blocker, 2mg/kg), diminished retention in most brain areas; nomifensine (DA/NE uptake blocker, 6 mg/kg) reduced striatum selectively. Direct comparisons of [C-11]{beta}CNT with other PET transporter radioligands {beta}CFT, {beta}CIT, and {beta}CTT (RTI-32) in the same pig found {beta}CNT had highest overall brain uptake among the agents. These initial results suggest {beta}CNT has favorable properties for imaging both 5HT and DA transporters in vivo, and further evaluation of its potential as a human PET agent is warranted.

  12. Dopamine and anorexia nervosa.

    PubMed

    Södersten, P; Bergh, C; Leon, M; Zandian, M

    2016-01-01

    We have suggested that reduced food intake increases the risk for anorexia nervosa by engaging mesolimbic dopamine neurons, thereby initially rewarding dieting. Recent fMRI studies have confirmed that dopamine neurons are activated in anorexia nervosa, but it is not clear whether this response is due to the disorder or to its resulting nutritional deficit. When the body senses the shortage of nutrients, it rapidly shifts behavior toward foraging for food as a normal physiological response and the mesolimbic dopamine neurons may be involved in that process. On the other hand, the altered dopamine status of anorexics has been suggested to result from a brain abnormality that underlies their complex emotional disorder. We suggest that the outcomes of the treatments that emerge from that perspective remain poor because they target the mental symptoms that are actually the consequences of the food deprivation that accompanies anorexia. On the other hand, a method that normalizes the disordered eating behavior of anorexics results in much better physiological, behavioral, and emotional outcomes.

  13. Dopamine and γ-aminobutyric acid are colocalized in restricted groups of neurons in the sea lamprey brain: insights into the early evolution of neurotransmitter colocalization in vertebrates

    PubMed Central

    Barreiro-Iglesias, Antón; Villar-Cerviño, Verona; Anadón, Ramón; Rodicio, María Celina

    2009-01-01

    Since its discovery, the possible corelease of classic neurotransmitters from neurons has received much attention. Colocalization of monoamines and amino acidergic neurotransmitters [mainly glutamate and dopamine (DA) or serotonin] in mammalian neurons has been reported. However, few studies have dealt with the colocalization of DA and γ-aminobutyric acid (GABA) in neurons. With the aim of providing some insight into the colocalization of neurotransmitters during early vertebrate phylogeny, we studied GABA expression in dopaminergic neurons in the sea lamprey brain by using double-immunofluorescence methods with anti-DA and anti-GABA antibodies. Different degrees of colocalization of DA and GABA were observed in different dopaminergic brain nuclei. A high degree of colocalization (GABA in at least 25% of DA-immunoreactive neurons) was observed in populations of the caudal rhombencephalon, ventral isthmus, postoptic commissure nucleus, preoptic nucleus and in granule-like cells of the olfactory bulb. A new DA-immunoreactive striatal population that showed colocalization with GABA in about a quarter of its neurons was observed. In the periventricular hypothalamus, colocalization was observed in only a few cells, despite the abundance of DA- and GABA-immunoreactive neurons, and no double-labelled cells were observed in the paratubercular nucleus. The frequent colocalization of DA and GABA reveals that the dopaminergic populations of lampreys are more complex than previously reported. Double-labelled fibres or terminals were observed in different brain regions, suggesting possible corelease of DA and GABA by these lamprey neurons. The present results suggest that colocalization of DA and GABA in neurons appeared early in vertebrate evolution. PMID:19840024

  14. Peripheral lipopolysaccharide administration transiently affects expression of brain-derived neurotrophic factor, corticotropin and proopiomelanocortin in mouse brain.

    PubMed

    Schnydrig, Sabine; Korner, Lukas; Landweer, Svenja; Ernst, Beat; Walker, Gaby; Otten, Uwe; Kunz, Dieter

    2007-12-11

    Peripheral inflammation induced by intraperitoneal (i.p.) injection of Lipopolysaccharide (LPS) is known to cause functional impairments in the brain affecting memory and learning. One of mechanisms may be the interference with neurotrophin (NT) expression and function. In the current study we administered a single, high dose of LPS (3mg/kg, i.p.) into mice and investigated changes in brain-derived neurotrophic factor (BDNF) gene expression within 1-6 days after LPS injection. Crude synaptosomes were isolated from brain tissue and subjected to Western-blot analyses. We found transient reductions in synaptosomal proBDNF- and BDNF protein expression, with a maximal decrease at day 3 as compared to saline injected controls. The time course of reduction of BDNF mRNA in whole brain extracts parallels the decrease in protein levels in synaptosomes. LPS effects in the central nervous system (CNS) are known to crucially involve the activation of the hypothalamic-pituitary-adrenal (HPA) axis. We analysed the time course of corticotropin releasing hormone (CRH)- and proopiomelanocortin (POMC) mRNA expression. As observed for BDNF-, CRH- and POMC mRNA levels are also significantly reduced on day 3 indicating a comparable time course. These results suggest that peripheral inflammation causes a reduction of trophic supply in the brain, including BDNF at synaptic sites. The mechanisms involved could be a negative feedback of the activated HPA axis.

  15. Effects of intracerebroventricular administration of 5-(glutathion-S-yl)-alpha-methyldopamine on brain dopamine, serotonin, and norepinephrine concentrations in male Sprague-Dawley rats.

    PubMed

    Miller, R T; Lau, S S; Monks, T J

    1996-03-01

    alpha-Methyldopamine (alpha-MeDA) is a metabolite of the serotonergic neurotoxicants 3,4-(+/-)-(methylenedioxy)amphetamine (MDA) and 3,4-(+/-)-(methylenedioxy)methamphetamine (MDMA). alpha-MeDA readily oxidizes, and in the presence of glutathione (GSH) it forms 5-(glutathion-S-yl)-alpha-methyldopamine [5-(glutathion-S-yl)-alpha-MeDA]. Since GSH conjugates of many polyphenols are biologically (re)active, we investigated the role of 5-(glutathion-S-yl)-alpha-MeDA in the acute and long-term neurochemical changes observed after administration of MDA. Intracerebroventricular (icv) administration of 5-(glutathion-S-yl)-alpha-MeDA (720 nmol) to male Sprague-Dawley rats produced behavioral changes similar to those reported after subcutaneous administration of MDA. Thus, animals became hyperactive and aggressive and displayed forepaw treading and Straub tails, behaviors usually seen after administration of serotonin (5-HT) releasers, and consistent with a role for 5-(glutathion-S-yl)-alpha-MeDA in some of the behavioral alterations seen after administration of MDA and MDMA. In addition to the behavioral changes, 5-(glutathion-S-yl)-alpha-MeDA also caused short-term alterations in the dopaminergic, serotonergic, and noradrenergic systems. An increase in dopamine synthesis appears to be a prerequisite for the long-term depletion of brain 5-HT following MDMA administration. However, although 5-(glutathion-S-yl)-alpha-MeDA reproduced some of the effects of MDA on the dopaminergic system and was capable of causing acute increases in 5-HT turnover, a single icv injection of 5-(glutathion-S-yl)-alpha-MeDA did not result in long-term serotonergic toxicity. Thus, although acute stimulation of dopamine turnover may be necessary for long-term serotonergic toxicity, such changes are not sufficient to produce these effects. The effects of a multiple dosing schedule of 5-(glutathion-S-yl)-alpha-MeDA will therefore require investigation before we can define a role for this metabolite in

  16. Methylphenidate and cocaine have a similar in vivo potency to block dopamine transporters in the human brain

    SciTech Connect

    Volkow, N.D. |; Wang, G.J.; Fowler, J.S.

    1999-05-28

    The reinforcing effects of cocaine and methylphenidate have been linked to their ability to block dopamine transporters (DAT). Though cocaine and methylphenidate have similar in vitro affinities for DAT the abuse of methylphenidate in humans is substantially lower than of cocaine. To test if differences in in vivo potency at the DAT between these two drugs could account for the differences in their abuse liability the authors compared the levels of DAT occupancies that they had previously reported separately for intravenous methylphenidate in controls and for intravenous cocaine in cocaine abusers. DAT occupancies were measured with Positron Emission Tomography using [{sup 11}C]cocaine, as a DAT ligand, in 8 normal controls for the methylphenidate study and in 17 active cocaine abusers for the cocaine study. The ratio of the distribution volume of [{sup 11}C]cocaine in striatum to that in cerebellum, which corresponds to Bmax/Kd+1, was used as measure of DAT availability. Parallel measures were obtained to assess the cardiovascular effects of these two drugs. Methylphenidate and cocaine produced comparable dose-dependent blockage of DAT with an estimated ED{sub 50} for methylphenidate of 0.07 mg/kg and for cocaine of 0.13 mg/kg. Both drugs induced similar increases in heart rate and blood pressure but the duration of the effects were significantly longer for methylphenidate than for cocaine.

  17. Rapid and Quantitative Assay of Amyloid-Seeding Activity in Human Brains Affected with Prion Diseases

    PubMed Central

    Takatsuki, Hanae; Satoh, Katsuya; Sano, Kazunori; Fuse, Takayuki; Nakagaki, Takehiro; Mori, Tsuyoshi; Ishibashi, Daisuke; Mihara, Ban; Takao, Masaki; Iwasaki, Yasushi; Yoshida, Mari; Atarashi, Ryuichiro; Nishida, Noriyuki

    2015-01-01

    The infectious agents of the transmissible spongiform encephalopathies are composed of amyloidogenic prion protein, PrPSc. Real-time quaking-induced conversion can amplify very small amounts of PrPSc seeds in tissues/body fluids of patients or animals. Using this in vitro PrP-amyloid amplification assay, we quantitated the seeding activity of affected human brains. End-point assay using serially diluted brain homogenates of sporadic Creutzfeldt–Jakob disease patients demonstrated that 50% seeding dose (SD50) is reached approximately 1010/g brain (values varies 108.79–10.63/g). A genetic case (GSS-P102L) yielded a similar level of seeding activity in an autopsy brain sample. The range of PrPSc concentrations in the samples, determined by dot-blot assay, was 0.6–5.4 μg/g brain; therefore, we estimated that 1 SD50 unit was equivalent to 0.06–0.27 fg of PrPSc. The SD50 values of the affected brains dropped more than three orders of magnitude after autoclaving at 121°C. This new method for quantitation of human prion activity provides a new way to reduce the risk of iatrogenic prion transmission. PMID:26070208

  18. Dynamic changes in brain activations and functional connectivity during affectively different tactile stimuli.

    PubMed

    Hua, Qing-Ping; Zeng, Xiang-Zhu; Liu, Jian-Yu; Wang, Jin-Yan; Guo, Jian-You; Luo, Fei

    2008-01-01

    In the present study, we compared brain activations produced by pleasant, neutral and unpleasant touch, to the anterior lateral surface of lower leg of human subjects. It was found that several brain regions, including the contralateral primary somatosensory area (SI), bilateral secondary somatosensory area (SII), as well as contralateral middle and posterior insula cortex were commonly activated under the three touch conditions. In addition, pleasant and unpleasant touch conditions shared a few brain regions including the contralateral posterior parietal cortex (PPC) and bilateral premotor cortex (PMC). Unpleasant touch specifically activated a set of pain-related brain regions such as contralateral supplementary motor area (SMA) and dorsal parts of bilateral anterior cingulated cortex, etc. Brain regions specifically activated by pleasant touch comprised bilateral lateral orbitofrontal cortex (OFC), posterior cingulate cortex (PCC), medial prefrontal cortex (mPFC), intraparietal cortex and left dorsal lateral prefrontal cortex (DLPFC). Using a novel functional connectivity model based on graph theory, we showed that a series of brain regions related to affectively different touch had significant functional connectivity during the resting state. Furthermore, it was found that such a network can be modulated between affectively different touch conditions.

  19. Alcohol-induced brain growth restrictions (microencephaly) were not affected by concurrent exposure to cocaine during the brain growth spurt.

    PubMed

    Chen, W J; Andersen, K H; West, J R

    1994-09-01

    The prevalence of concomitant use of alcohol and cocaine among drug abusers has raised concern about the possible increased risk of fetal damage. The aim of this study was to assess the interactive effects of alcohol and cocaine on lethality, somatic growth, and brain growth using an animal model system. Sprague-Dawley rat pups were used as subjects. They were randomly assigned to 1 of the 9 artificially reared groups which varied with respect to the combination treatments of cocaine (0, 40, or 60 mg/kg) and alcohol (0, 3.3, or 4.5 g/kg). All artificially reared pups were given daily cocaine and alcohol treatments during a major part of the brain growth spurt period (postnatal days 4-9). An additional group of suckled control animals raised by their natural dams was included to control for artificial rearing. The results are summarized as follows: 1) Drug-induced lethality was higher in cocaine-treated groups when compared with non-cocaine-treated groups, and the concurrent administration of high doses of alcohol and cocaine significantly increased the mortality rate. 2) Somatic growth, in terms of body weight, was not affected by alcohol, cocaine, or the combination of both drugs using the artificial rearing technique. 3) Alcohol exposure during this brain growth spurt period significantly reduced whole brain weight, as well as forebrain, cerebellum, and brain stem weights. 4) In contrast to alcohol, cocaine failed to exert a detrimental effect on brain weight measures during this early postnatal period.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Affection of Fundamental Brain Activity By Using Sounds For Patients With Prosodic Disorders: A Pilot Study

    NASA Astrophysics Data System (ADS)

    Imai, Emiko; Katagiri, Yoshitada; Seki, Keiko; Kawamata, Toshio

    2011-06-01

    We present a neural model of the production of modulated speech streams in the brain, referred to as prosody, which indicates the limbic structure essential for producing prosody both linguistically and emotionally. This model suggests that activating the fundamental brain including monoamine neurons at the basal ganglia will potentially contribute to helping patients with prosodic disorders coming from functional defects of the fundamental brain to overcome their speech problem. To establish effective clinical treatment for such prosodic disorders, we examine how sounds affect the fundamental activity by using electroencephalographic measurements. Throughout examinations with various melodious sounds, we found that some melodies with lilting rhythms successfully give rise to the fast alpha rhythms at the electroencephalogram which reflect the fundamental brain activity without any negative feelings.

  1. Free-choice and no-choice high-fat diets affect striatal dopamine D2/3 receptor availability, caloric intake, and adiposity.

    PubMed

    van de Giessen, Elsmarieke; la Fleur, Susanne E; de Bruin, Kora; van den Brink, Wim; Booij, Jan

    2012-08-01

    Different types of high-fat (HF) diets are used to study diet-induced obesity (DIO) in rodents and this has led to different phenotypes. This study assesses whether different HF diets differentially affect striatal dopamine D(2/3) receptor (DRD(2/3)) availability, as decreased striatal DRD(2/3) availability has been implicated in obesity in relation to reward deficiency for food. Thirty rats were randomized to either a free-choice HF diet (HF-choice), a premixed HF diet (HF-no-choice), or a standard chow diet for 28 days. Striatal DRD(2/3) was measured using (123)I-IBZM storage phosphor imaging at day 29. DRD(2/3) availability was significantly decreased in the dorsal striatum in the HF-choice rats compared to chow rats, but not in HF-no-choice rats. Additionally, caloric intake of the HF-choice rats was significantly higher than that of HF-no-choice rats and serum leptin and percentage abdominal fat store weight of total body weight were significantly higher in the HF-choice rats compared to chow rats. These preliminary results suggest that the choice element in HF diets, which is possibly related to the motivational aspects of eating, leads to overconsumption and to a distinct state of obesity. These results are relevant for future studies on DIO when considering choice of diet type.

  2. Restoration of nigrostriatal dopamine neurons in post-MPTP treatment by the novel multifunctional brain-permeable iron chelator-monoamine oxidase inhibitor drug, M30.

    PubMed

    Gal, Shunit; Zheng, Hailin; Fridkin, Mati; Youdim, Moussa B H

    2010-01-01

    The anti-Parkinson iron chelator-monoamine oxidase inhibitor M30 [5-(N-methyl-N-propargyaminomethyl)-8-hydroxyquinoline] was shown to possess neuroprotective activities in vitro and in vivo, against several insults applicable to several neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and ALS. In the present study we sought to examine the effect of M30 on a pre-existing lesion induced by the parkinsonism-inducing toxin, MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). In this neurorescue paradigm, M30 orally administered to mice for 14 days (2.5 mg/kg/day) following MPTP was shown to significantly elevate striatal dopamine levels, reduce its metabolism, and elevate tyrosine-hydroxylase protein levels (from 25.86 +/- 5.10 to 68.35 +/- 10.67% of control) and activity (from 7.52 +/- 0.98 to 16.33 +/- 2.92 pmol/mg protein/min). Importantly, M30 elevated MPTP-reduced dopaminergic (from 62.8 +/- 4.1 to 84.2 +/- 5.9% of control) and transferrin receptor (from 31.3 +/- 2.6 to 80.4 +/- 7.6% of control) cell count in the SNpc. Finally, M30 was shown to decrease mitosis, thus providing additional protection. These findings suggest that brain-permeable M30 may clearly be of clinical importance for the treatment of PD.

  3. Transcriptional activation of the human brain-derived neurotrophic factor gene promoter III by dopamine signaling in NT2/N neurons.

    PubMed

    Fang, Hung; Chartier, Joanne; Sodja, Caroline; Desbois, Angele; Ribecco-Lutkiewicz, Maria; Walker, P Roy; Sikorska, Marianna

    2003-07-18

    We have identified a functional cAMP-response element (CRE) in the human brain-derived neurotrophic factor (BDNF) gene promoter III and established that it participated in the modulation of BDNF expression in NT2/N neurons via downstream signaling from the D1 class of dopamine (DA) receptors. The up-regulation of BDNF expression, in turn, produced neuroprotective signals through receptor tyrosine kinase B (TrkB) and promoted cell survival under the conditions of oxygen and glucose deprivation. To our knowledge this is the first evidence showing the presence of a functional CRE in the human BDNF gene and the role of DA signaling in establishing transcriptional competence of CRE in post-mitotic NT2/N neurons. This ability of DA to regulate the expression of the BDNF survival factor has a profound significance for the nigrostriatal pathway, because it indicates the existence of a feedback loop between the neutrophin, which promotes both the maturation and survival of dopaminergic neurons, and the neurotransmitter, which the mature neurons ultimately produce and release.

  4. Affective neuroscience of the emotional BrainMind: evolutionary perspectives and implications for understanding depression

    PubMed Central

    Panksepp, Jaak

    2010-01-01

    Cross-species affective neuroscience studies confirm that primary-process emotional feelings are organized within primitive subcortical regions of the brain that are anatomically, neurochemically, and functionally homologous in all mammals that have been studied. Emotional feelings (affects) are intrinsic values that inform animals how they are faring in the quest to survive. The various positive affects indicate that animals are returning to “comfort zones” that support survival, and negative affects reflect “discomfort zones” that indicate that animals are in situations that may impair survival. They are ancestral tools for living - evolutionary memories of such importance that they were coded into the genome in rough form (as primary brain processes), which are refined by basic learning mechanisms (secondary processes) as well as by higher-order cognitions/thoughts (tertiary processes). To understand why depression feels horrible, we must fathom the affective infrastructure of the mammalian brain. Advances in our understanding of the nature of primary-process emotional affects can promote the development of better preclinical models of psychiatric disorders and thereby also allow clinicians new and useful ways to understand the foundational aspects of their clients' problems. These networks are of clear importance for understanding psychiatric disorders and advancing psychiatric practice. PMID:21319497

  5. Developing Connections for Affective Regulation: Age-Related Changes in Emotional Brain Connectivity

    ERIC Educational Resources Information Center

    Perlman, Susan B.; Pelphrey, Kevin A.

    2011-01-01

    The regulation of affective arousal is a critical aspect of children's social and cognitive development. However, few studies have examined the brain mechanisms involved in the development of this aspect of "hot" executive functioning. This process has been conceptualized as involving prefrontal control of the amygdala. Here, using functional…

  6. Affective-Motivational Brain Responses to Direct Gaze in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Kylliainen, Anneli; Wallace, Simon; Coutanche, Marc N.; Leppanen, Jukka M.; Cusack, James; Bailey, Anthony J.; Hietanen, Jari K.

    2012-01-01

    Background: It is unclear why children with autism spectrum disorders (ASD) tend to be inattentive to, or even avoid eye contact. The goal of this study was to investigate affective-motivational brain responses to direct gaze in children with ASD. To this end, we combined two measurements: skin conductance responses (SCR), a robust arousal…

  7. The Sad, the Angry, and the Asymmetrical Brain: Dichotic Listening Studies of Negative Affect and Depression

    ERIC Educational Resources Information Center

    Gadea, Marien; Espert, Raul; Salvador, Alicia; Marti-Bonmati, Luis

    2011-01-01

    Dichotic Listening (DL) is a valuable tool to study emotional brain lateralization. Regarding the perception of sadness and anger through affective prosody, the main finding has been a left ear advantage (LEA) for the sad but contradictory data for the anger prosody. Regarding an induced mood in the laboratory, its consequences upon DL were a…

  8. Studies on the role of dopamine in the degeneration of 5-HT nerve endings in the brain of Dark Agouti rats following 3,4-methylenedioxymethamphetamine (MDMA or ‘ecstasy') administration

    PubMed Central

    Colado, M I; O'Shea, E; Granados, R; Esteban, B; Martín, A B; Green, A R

    1999-01-01

    We investigated whether dopamine plays a role in the neurodegeneration of 5-hydroxytryptamine (5-HT) nerve endings occurring in Dark Agouti rat brain after 3,4-methylenedioxymethamphetamine (MDMA or ‘ecstasy') administration. Haloperidol (2 mg kg−1 i.p.) injected 5 min prior and 55 min post MDMA (15 mg kg−1 i.p.) abolished the acute MDMA-induced hyperthermia and attenuated the neurotoxic loss of 5-HT 7 days later. When the rectal temperature of MDMA+haloperidol treated rats was kept elevated, this protective effect was marginal. MDMA (15 mg kg−1) increased the dopamine concentration in the dialysate from a striatal microdialysis probe by 800%. L-DOPA (25 mg kg−1 i.p., plus benserazide, 6.25 mg kg−1 i.p.) injected 2 h after MDMA (15 mg kg−1) enhanced the increase in dopamine in the dialysate, but subsequent neurodegeneration was unaltered. L-DOPA (25 mg kg−1) injected before a sub-toxic dose of MDMA (5 mg kg−1) failed to induce neurodegeneration. The MDMA-induced increase in free radical formation in the hippocampus (indicated by increased 2,3- and 2,5-dihydroxybenzoic acid in a microdialysis probe perfused with salicylic acid) was unaltered by L-DOPA. The neuroprotective drug clomethiazole (50 mg kg−1 i.p.) did not influence the MDMA-induced increase in extracellular dopamine. These data suggest that previous observations on the protective effect of haloperidol and potentiating effect of L-DOPA on MDMA-induced neurodegeneration may have resulted from effects on MDMA-induced hyperthermia. The increased extracellular dopamine concentration following MDMA may result from effects of MDMA on dopamine re-uptake, monoamine oxidase and 5-HT release rather than an ‘amphetamine-like' action on dopamine release, thus explaining why the drug does not induce degeneration of dopamine nerve endings. PMID:10193771

  9. In vivo binding of [11C]SKF 75670 and [11C]SKF 82957 in rat brain: two dopamine D-1 receptor agonist ligands.

    PubMed

    DaSilva, J N; Wilson, A A; Valente, C M; Hussey, D; Wilson, D; Houle, S

    1996-01-01

    The high affinity benzazepine D1 agonists SKF 75670 and SKF 82957 labeled with C-11 were evaluated in vivo in rats as potential radioligands for imaging dopamine D1 receptors with positron emission tomography (PET). Their in vivo pharmacological profile revealed selective binding for both tracers in rat brain regions rich in D1 receptors such as the caudate-putamen. The more lipophilic [11C]SKF 82957 (6-chloro-[11C]SKF 75670) showed a higher brain uptake (more than 2-fold up to 30 min), higher specific uptake in the striatum and higher signal-to-noise ratio (striatum-to-cerebellum = 3.2 +/- 0.4 for [11C]SKF 75670 and 9.7 +/- 2.5 for [11C]SKF 82957 at 60 min post-injection) as compared to [11C]SKF 75670. Both radiotracers exhibited high specificity and selectivity for D1 receptors, since only D1 competitors but not the D2 antagonist sulpiride or the 5-HT2 antagonist ritanserin reduced significantly their binding the striatum with [11C]SKF 75670 or the striatum and olfactory tubercles with [11C]SKF 82957. Previous reports have shown that only D1 agonists can recognize the functional high-affinity state from the low-affinity state of D1 receptors. [11C]SKF 75670 and especially [11C]SKF 82957 are D1 agonist radioligands that can potentially be used to study in vivo the functional high-affinity state of D1 receptors using PET.

  10. Characterization and distribution of (125I)epidepride binding to dopamine D2 receptors in basal ganglia and cortex of human brain

    SciTech Connect

    Joyce, J.N.; Janowsky, A.; Neve, K.A. )

    1991-06-01

    The distribution and pharmacology of the binding of {sup 125}I-epidepride, a substituted benzamide with high affinity and selectivity for dopamine (DA) D2 receptors in rat brain is described in human brain. Saturation analysis of the binding of {sup 125}I-epidepride to membranes derived from striatum and regions of cortex demonstrated similar Kd values (34 and 28-33 pM, respectively) but differing maximum density of binding site values (152 and 3-8 fmol/mg of protein, respectively). The pharmacological profile of binding in cortex was also similar to striatum (epidepride greater than spiperone greater than butaclamol = flupenthixol greater than clozapine) except that an additional low-affinity site, blocked by the alpha-2 adrenergic antagonist idazoxan, was present in cortex. Quantification by autoradiography also demonstrated the greatest binding in the basal ganglia, with the striatum exhibiting greater binding than the pallidal complex or midbrain regions. For the pallidum, binding in the external segment was higher than the internal segment. Within the midbrain the binding of {sup 125}I-epidepride correlated well with the known distribution of DA-containing cell bodies, with the substantia nigra (pars compacta and pars lateralis) and ventral tegmental area (A10) higher than area A8 and central gray. Binding in frontal and parietal cortex was highest in the internal layers (layers V and VI). Temporal cortex showed a 2-fold higher density of binding than other cortical regions and a trilaminar pattern; binding was greater in the external (layers I and II) and internal layers than in the middle layers (III and IV). This pattern changed in the parahippocampal complex. Within the lateral occipitotemporal cortex, binding was densest in layers I to III and very low in layers IV to VI, but binding was almost nonexistent in the adjacent entorhinal cortex.

  11. [123I]beta-CIT SPECT demonstrates decreased brain dopamine and serotonin transporter levels in untreated parkinsonian patients.

    PubMed

    Haapaniemi, T H; Ahonen, A; Torniainen, P; Sotaniemi, K A; Myllylä, V V

    2001-01-01

    Striatal dopamine transporters (DATs) and serotonin transporters (SERTs) were evaluated in untreated patients with Parkinson's disease (PD) and controls using single-photon emission computed tomography (SPECT) with 2beta-carboxymethoxy-3beta-(4-iodophenyl)tropane ([123I]beta-CIT). The striatal DAT specific to non-displaceable uptake ratios of 29, and the SERT uptake measurements of 27, PD patients were compared with those of 21 and 16 controls, respectively. The results were correlated with Unified Parkinson's Disease Rating Scale (UPDRS) scores, the Hoehn & Yahr stage, age, duration of the disease, and the major PD signs. The specific DAT binding in the caudate, the putamen and the caudate/putamen ratio were measured. In all of the PD patients the striatal uptake values were bilaterally reduced, being 36.9% (P < 0.001) lower than those of the controls. In the hemiparkinsonian patients the reduction was greater on the side contralateral to the initial symptoms (33.3% vs. 27.8%) and the uptake ratios indicated a more pronounced deficit in the putamen (39.1%) than in the caudate (27.9%). The DAT uptake correlated with the UPDRS total score and activities of daily living (ADL) and motor subscores, the Hoehn & Yahr stage, and rigidity score. PD patients had significantly higher caudate to putamen ratios than the controls. In the PD patients the SERT values were lower in the thalamic and frontal regions. The SERT uptake ratio of the frontal area correlated with the UPDRS subscore I. [123I]beta-CIT SPECT provides a useful method for confirming the clinical diagnosis of PD with correlation to disease severity. Additionally, this technique allows the simultaneous measurement of SERT uptake and shows that PD patients, interestingly, seem to have decreased SERT availability in the thalamic and frontal areas.

  12. Dopamine Release Dynamics Change during Adolescence and after Voluntary Alcohol Intake

    PubMed Central

    Palm, Sara; Nylander, Ingrid

    2014-01-01

    Adolescence is associated with high impulsivity and risk taking, making adolescent individuals more inclined to use drugs. Early drug use is correlated to increased risk for substance use disorders later in life but the neurobiological basis is unclear. The brain undergoes extensive development during adolescence and disturbances at this time are hypothesized to contribute to increased vulnerability. The transition from controlled to compulsive drug use and addiction involve long-lasting changes in neural networks including a shift from the nucleus accumbens, mediating acute reinforcing effects, to recruitment of the dorsal striatum and habit formation. This study aimed to test the hypothesis of increased dopamine release after a pharmacological challenge in adolescent rats. Potassium-evoked dopamine release and uptake was investigated using chronoamperometric dopamine recordings in combination with a challenge by amphetamine in early and late adolescent rats and in adult rats. In addition, the consequences of voluntary alcohol intake during adolescence on these effects were investigated. The data show a gradual increase of evoked dopamine release with age, supporting previous studies suggesting that the pool of releasable dopamine increases with age. In contrast, a gradual decrease in evoked release with age was seen in response to amphetamine, supporting a proportionally larger storage pool of dopamine in younger animals. Dopamine measures after voluntary alcohol intake resulted in lower release amplitudes in response to potassium-chloride, indicating that alcohol affects the releasable pool of dopamine and this may have implications for vulnerability to addiction and other psychiatric diagnoses involving dopamine in the dorsal striatum. PMID:24788731

  13. Kinetic brain analysis and whole-body imaging in monkey of [11C]MNPA: a dopamine agonist radioligand.

    PubMed

    Seneca, Nicholas; Skinbjerg, Mette; Zoghbi, Sami S; Liow, Jeih-San; Gladding, Robert L; Hong, Jinsoo; Kannan, Pavitra; Tuan, Edward; Sibley, David R; Halldin, Christer; Pike, Victor W; Innis, Robert B

    2008-09-01

    With a view to future extension of the use of the agonist radioligand [(11)C]MNPA ([O-methyl-(11)C]2-methoxy-N-propylnorapomorphine) from animals to humans, we performed two positron emission tomography (PET) studies in monkeys. First, we assessed the ability to quantify the brain uptake of [(11)C]MNPA with compartmental modeling. Second, we estimated the radiation exposure of [(11)C]MNPA to human subjects based on whole-body imaging in monkeys. Brain PET scans were acquired for 90 min and included concurrent measurements of the plasma concentration of unchanged radioligand. Time-activity data from striatum and cerebellum were quantified with two methods, a reference tissue model and distribution volume. Whole-body PET scans were acquired for 120 min using four bed positions from head to mid thigh. Regions of interest were drawn on compressed planar whole-body images to identify organs with the highest radiation exposures. After injection of [(11)C]MNPA, the highest concentration of radioactivity in brain was in striatum, with lowest levels in cerebellum. Distribution volume was well identified with a two-tissue compartmental model and was quite stable from 60 to 90 min. Whole-body PET scans showed the organ with the highest radiation burden (muSv/MBq) was the urinary bladder wall (26.0), followed by lungs (22.5), gallbladder wall (21.9), and heart wall (16.1). With a 2.4-h voiding interval, the effective dose was 6.4 muSv/MBq (23.5 mrem/mCi). In conclusion, brain uptake of [(11)C]MNPA reflected the density of D(2/3) receptors, quantified relative to serial arterial measurements, and caused moderate to low radiation exposure.

  14. Variability in Dopamine Genes Dissociates Model-Based and Model-Free Reinforcement Learning

    PubMed Central

    Bath, Kevin G.; Daw, Nathaniel D.; Frank, Michael J.

    2016-01-01

    Considerable evidence suggests that multiple learning systems can drive behavior. Choice can proceed reflexively from previous actions and their associated outcomes, as captured by “model-free” learning algorithms, or flexibly from prospective consideration of outcomes that might occur, as captured by “model-based” learning algorithms. However, differential contributions of dopamine to these systems are poorly understood. Dopamine is widely thought to support model-free learning by modulating plasticity in striatum. Model-based learning may also be affected by these striatal effects, or by other dopaminergic effects elsewhere, notably on prefrontal working memory function. Indeed, prominent demonstrations linking striatal dopamine to putatively model-free learning did not rule out model-based effects, whereas other studies have reported dopaminergic modulation of verifiably model-based learning, but without distinguishing a prefrontal versus striatal locus. To clarify the relationships between dopamine, neural systems, and learning strategies, we combine a genetic association approach in humans with two well-studied reinforcement learning tasks: one isolating model-based from model-free behavior and the other sensitive to key aspects of striatal plasticity. Prefrontal function was indexed by a polymorphism in the COMT gene, differences of which reflect dopamine levels in the prefrontal cortex. This polymorphism has been associated with differences in prefrontal activity and working memory. Striatal function was indexed by a gene coding for DARPP-32, which is densely expressed in the striatum where it is necessary for synaptic plasticity. We found evidence for our hypothesis that variations in prefrontal dopamine relate to model-based learning, whereas variations in striatal dopamine function relate to model-free learning. SIGNIFICANCE STATEMENT Decisions can stem reflexively from their previously associated outcomes or flexibly from deliberative

  15. Different contributions of dopamine D1 and D2 receptor activity to alcohol potentiation of brain stimulation reward in C57BL/6J and DBA/2J mice.

    PubMed

    Fish, Eric W; DiBerto, Jeffrey F; Krouse, Michael C; Robinson, J Elliott; Malanga, C J

    2014-08-01

    C57BL/6J (C57) and DBA/2J (DBA) mice respond differently to drugs that affect dopamine systems, including alcohol. The current study compared effects of D1 and D2 receptor agonists and antagonists, and the interaction between D1/D2 antagonists and alcohol, on intracranial self-stimulation in male C57 and DBA mice to determine the role of dopamine receptors in the effects of alcohol on brain stimulation reward (BSR). In the initial strain comparison, dose effects on BSR thresholds and maximum operant response rates were determined for the D1 receptor agonist SKF-82958 (±-6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine; 0.1-0.56 mg/kg) and antagonist SCH 23390 (+-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepinehydrochloride; 0.003-0.056 mg/kg), and the D2 receptor agonist quinpirole (0.1-3.0 mg/kg) and antagonist raclopride (0.01-0.56 mg/kg). For the alcohol interaction, SCH 23390 (0.003 mg/kg) or raclopride (0.03 mg/kg) was given before alcohol (0.6-2.4 g/kg p.o.). D1 antagonism dose-dependently elevated and SKF-82958 dose-dependently lowered BSR threshold in both strains; DBA mice were more sensitive to SKF-82958 effects. D2 antagonism dose-dependently elevated BSR threshold only in C57 mice. Low doses of quinpirole elevated BSR threshold equally in both strains, whereas higher doses of quinpirole lowered BSR threshold only in C57 mice. SCH 23390, but not raclopride, prevented lowering of BSR threshold by alcohol in DBA mice. Conversely, raclopride, but not SCH 23390, prevented alcohol potentiation of BSR in C57 mice. These results extend C57 and DBA strain differences to D1/D2 sensitivity of BSR, and suggest differential involvement of D1 and D2 receptors in the acute rewarding effects of alcohol in these two mouse strains.

  16. Different Contributions of Dopamine D1 and D2 Receptor Activity to Alcohol Potentiation of Brain Stimulation Reward in C57BL/6J and DBA/2J Mice

    PubMed Central

    Fish, Eric W.; DiBerto, Jeffrey F.; Krouse, Michael C.; Robinson, J. Elliott

    2014-01-01

    C57BL/6J (C57) and DBA/2J (DBA) mice respond differently to drugs that affect dopamine systems, including alcohol. The current study compared effects of D1 and D2 receptor agonists and antagonists, and the interaction between D1/D2 antagonists and alcohol, on intracranial self-stimulation in male C57 and DBA mice to determine the role of dopamine receptors in the effects of alcohol on brain stimulation reward (BSR). In the initial strain comparison, dose effects on BSR thresholds and maximum operant response rates were determined for the D1 receptor agonist SKF-82958 (±-6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine; 0.1–0.56 mg/kg) and antagonist SCH 23390 (+-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepinehydrochloride; 0.003–0.056 mg/kg), and the D2 receptor agonist quinpirole (0.1–3.0 mg/kg) and antagonist raclopride (0.01–0.56 mg/kg). For the alcohol interaction, SCH 23390 (0.003 mg/kg) or raclopride (0.03 mg/kg) was given before alcohol (0.6–2.4 g/kg p.o.). D1 antagonism dose-dependently elevated and SKF-82958 dose-dependently lowered BSR threshold in both strains; DBA mice were more sensitive to SKF-82958 effects. D2 antagonism dose-dependently elevated BSR threshold only in C57 mice. Low doses of quinpirole elevated BSR threshold equally in both strains, whereas higher doses of quinpirole lowered BSR threshold only in C57 mice. SCH 23390, but not raclopride, prevented lowering of BSR threshold by alcohol in DBA mice. Conversely, raclopride, but not SCH 23390, prevented alcohol potentiation of BSR in C57 mice. These results extend C57 and DBA strain differences to D1/D2 sensitivity of BSR, and suggest differential involvement of D1 and D2 receptors in the acute rewarding effects of alcohol in these two mouse strains. PMID:24917543

  17. Affective Interaction with a Virtual Character Through an fNIRS Brain-Computer Interface.

    PubMed

    Aranyi, Gabor; Pecune, Florian; Charles, Fred; Pelachaud, Catherine; Cavazza, Marc

    2016-01-01

    Affective brain-computer interfaces (BCI) harness Neuroscience knowledge to develop affective interaction from first principles. In this article, we explore affective engagement with a virtual agent through Neurofeedback (NF). We report an experiment where subjects engage with a virtual agent by expressing positive attitudes towards her under a NF paradigm. We use for affective input the asymmetric activity in the dorsolateral prefrontal cortex (DL-PFC), which has been previously found to be related to the high-level affective-motivational dimension of approach/avoidance. The magnitude of left-asymmetric DL-PFC activity, measured using functional near infrared spectroscopy (fNIRS) and treated as a proxy for approach, is mapped onto a control mechanism for the virtual agent's facial expressions, in which action units (AUs) are activated through a neural network. We carried out an experiment with 18 subjects, which demonstrated that subjects are able to successfully engage with the virtual agent by controlling their mental disposition through NF, and that they perceived the agent's responses as realistic and consistent with their projected mental disposition. This interaction paradigm is particularly relevant in the case of affective BCI as it facilitates the volitional activation of specific areas normally not under conscious control. Overall, our contribution reconciles a model of affect derived from brain metabolic data with an ecologically valid, yet computationally controllable, virtual affective communication environment.

  18. Affective Interaction with a Virtual Character Through an fNIRS Brain-Computer Interface

    PubMed Central

    Aranyi, Gabor; Pecune, Florian; Charles, Fred; Pelachaud, Catherine; Cavazza, Marc

    2016-01-01

    Affective brain-computer interfaces (BCI) harness Neuroscience knowledge to develop affective interaction from first principles. In this article, we explore affective engagement with a virtual agent through Neurofeedback (NF). We report an experiment where subjects engage with a virtual agent by expressing positive attitudes towards her under a NF paradigm. We use for affective input the asymmetric activity in the dorsolateral prefrontal cortex (DL-PFC), which has been previously found to be related to the high-level affective-motivational dimension of approach/avoidance. The magnitude of left-asymmetric DL-PFC activity, measured using functional near infrared spectroscopy (fNIRS) and treated as a proxy for approach, is mapped onto a control mechanism for the virtual agent’s facial expressions, in which action units (AUs) are activated through a neural network. We carried out an experiment with 18 subjects, which demonstrated that subjects are able to successfully engage with the virtual agent by controlling their mental disposition through NF, and that they perceived the agent’s responses as realistic and consistent with their projected mental disposition. This interaction paradigm is particularly relevant in the case of affective BCI as it facilitates the volitional activation of specific areas normally not under conscious control. Overall, our contribution reconciles a model of affect derived from brain metabolic data with an ecologically valid, yet computationally controllable, virtual affective communication environment. PMID:27462216

  19. Increasing Dopamine Levels in the Brain Improves Feedback-Based Procedural Learning in Healthy Participants: An Artificial-Grammar-Learning Experiment

    ERIC Educational Resources Information Center

    de Vries, Meinou H.; Ulte, Catrin; Zwitserlood, Pienie; Szymanski, Barbara; Knecht, Stefan

    2010-01-01

    Recently, an increasing number of studies have suggested a role for the basal ganglia and related dopamine inputs in procedural learning, specifically when learning occurs through trial-by-trial feedback (Shohamy, Myers, Kalanithi, & Gluck. (2008). "Basal ganglia and dopamine contributions to probabilistic category learning." "Neuroscience and…

  20. Comparison of two I-123 labeled SPECT probes, for the dopamine transporter in non-human primate brain

    SciTech Connect

    Gandelman, M.S.; Scanley, B.E.; Al-Tikrite, M.S.

    1994-05-01

    A comparative SPECT evaluation of the regional uptake of 28-carboisopropoxy-3{beta}-(4-iodophenyl)tropane (IP-CIT) and 2{beta}-carbomethoxy-3{beta}-(4-iodophenyl)tropane ({beta}-CIT) was performed to assess the improved specificity of IP-CIT over {beta}-CIT for the dopamine (DE) transporter, as shown previously by in vitro studies (n=10), ranging from 7 to 10 hours with 6.9 to 15 mCi injected dose, were completed in 3 baboons. Peripheral metabolism of the two ligands were similar The SPECT images utilized ROIs over striatum (which reflect DA transporters), midbrain (previously shown for {beta}-CIT to reflect primarily serotonin transporters), and the occipital lobe (a region of non-specific uptake). The time to peak specific striatal uptake (striatal minus occipital activity) was similar for IP-CIT and {beta}-CIT (377{plus_minus}60 and 410{plus_minus}60 min, respectively); whereas midbrain peak activity occurred at a significantly earlier time for IP-CIT (21{plus_minus}4 min) as compared to {beta}-CIT (60{plus_minus}17 min). At time of peak specific striatal activity, striatal to occipital ratios were 2.7+0.6 for IP-CIT and 7.6{plus_minus}0.7 for {beta}-CIT, and at time of peak midbrain activity, midbrain to occipital ratios were 1.1{plus_minus}0.1 for IP-CIT, and 1.7{plus_minus}0.2 for {beta}-CIT. At peak specific striatal time, normalized regional uptake values ({mu}Ci/cc per {mu}Ci injected dose per g body mass) for the striatum were 4.9{plus_minus}1.1 IP-CIT and 5.2{plus_minus}0.7 {beta}-CIT, whereas for the occipital lobe normalized regional uptake values were 1.9{plus_minus}0.4 IP-CIT and 0.7{plus_minus}0.2 for {beta}-CIT. Similar regional kinetics in the striatum were observed, as both ligands demonstrate comparable peak striatal uptake and time to peak.

  1. Female brain size affects the assessment of male attractiveness during mate choice

    PubMed Central

    Corral-López, Alberto; Bloch, Natasha I.; Kotrschal, Alexander; van der Bijl, Wouter; Buechel, Severine D.; Mank, Judith E.; Kolm, Niclas

    2017-01-01

    Mate choice decisions are central in sexual selection theory aimed to understand how sexual traits evolve and their role in evolutionary diversification. We test the hypothesis that brain size and cognitive ability are important for accurate assessment of partner quality and that variation in brain size and cognitive ability underlies variation in mate choice. We compared sexual preference in guppy female lines selected for divergence in relative brain size, which we have previously shown to have substantial differences in cognitive ability. In a dichotomous choice test, large-brained and wild-type females showed strong preference for males with color traits that predict attractiveness in this species. In contrast, small-brained females showed no preference for males with these traits. In-depth analysis of optomotor response to color cues and gene expression of key opsins in the eye revealed that the observed differences were not due to differences in visual perception of color, indicating that differences in the ability to process indicators of attractiveness are responsible. We thus provide the first experimental support that individual variation in brain size affects mate choice decisions and conclude that differences in cognitive ability may be an important underlying mechanism behind variation in female mate choice. PMID:28345039

  2. Associations between early adrenarche, affective brain function and mental health in children.

    PubMed

    Whittle, Sarah; Simmons, Julian G; Byrne, Michelle L; Strikwerda-Brown, Cherie; Kerestes, Rebecca; Seal, Marc L; Olsson, Craig A; Dudgeon, Paul; Mundy, Lisa K; Patton, George C; Allen, Nicholas B

    2015-09-01

    Early timing of adrenarche, associated with relatively high levels of Dehydroepiandrosterone (DHEA) in children, has been associated with mental health and behavioral problems. However, little is known about effects of adreneracheal timing on brain function. The aim of this study was to investigate the effects of early adrenarche (defined by high DHEA levels independent of age) on affective brain function and symptoms of psychopathology in late childhood (N = 83, 43 females, M age 9.53 years, s.d. 0.34 years). Results showed that higher DHEA levels were associated with decreased affect-related brain activity (i) in the mid-cingulate cortex in the whole sample, and (ii) in a number of cortical and subcortical regions in female but not male children. Higher DHEA levels were also associated with increased externalizing symptoms in females, an association that was partly mediated by posterior insula activation to happy facial expressions. These results suggest that timing of adrenarche is an important moderator of affect-related brain function, and that this may be one mechanism linking early adrenarche to psychopathology.

  3. Associations between early adrenarche, affective brain function and mental health in children

    PubMed Central

    Whittle, Sarah; Simmons, Julian G.; Byrne, Michelle L.; Strikwerda-Brown, Cherie; Kerestes, Rebecca; Seal, Marc L.; Olsson, Craig A.; Dudgeon, Paul; Mundy, Lisa K.; Patton, George C.

    2015-01-01

    Early timing of adrenarche, associated with relatively high levels of Dehydroepiandrosterone (DHEA) in children, has been associated with mental health and behavioral problems. However, little is known about effects of adreneracheal timing on brain function. The aim of this study was to investigate the effects of early adrenarche (defined by high DHEA levels independent of age) on affective brain function and symptoms of psychopathology in late childhood (N = 83, 43 females, M age 9.53 years, s.d. 0.34 years). Results showed that higher DHEA levels were associated with decreased affect-related brain activity (i) in the mid-cingulate cortex in the whole sample, and (ii) in a number of cortical and subcortical regions in female but not male children. Higher DHEA levels were also associated with increased externalizing symptoms in females, an association that was partly mediated by posterior insula activation to happy facial expressions. These results suggest that timing of adrenarche is an important moderator of affect-related brain function, and that this may be one mechanism linking early adrenarche to psychopathology. PMID:25678548

  4. Regional brain activation as a biological marker of affective responsivity to acute exercise: influence of fitness.

    PubMed

    Petruzzello, S J; Hall, E E; Ekkekakis, P

    2001-01-01

    Previous research has shown that regional brain activation, assessed via frontal electroencephalographic (EEG) asymmetry, predicts affective responsivity to aerobic exercise. To replicate and extend this work, in the present study we examined whether resting brain activation was associated with affective responses to an acute bout of aerobic exercise and the extent to which aerobic fitness mediated this relationship. Participants (high-fit, n = 22; low/moderate-fit, n = 45) ran on a treadmill for 30 min at 75% VO2max. EEG and affect were assessed pre- and 0-, 10-, 20-, and 30-min postexercise. Resting EEG asymmetry predicted positive affect (as measured by the energetic arousal subscale of the Activation Deactivation Adjective Check List) postexercise. Furthermore, resting frontal EEG asymmetry predicted affect only in the high-fit group, suggesting the effect might be mediated by some factor related to fitness. It was also shown that subjects with relatively greater left frontal activation had significantly more energy (i.e., activated pleasant affect) following exercise than subjects with relatively greater right frontal activation. In conclusion, aerobic fitness influenced the relationship between resting frontal asymmetry and exercise-related affective responsivity.

  5. Sparteine monooxygenase in brain and liver: Identified by the dopamine uptake blocker ( sup 3 H)GBR-12935

    SciTech Connect

    Kalow, W.; Tyndale, R.F.; Niznik, H.B.; Inaba, T. )

    1990-02-26

    P450IID6 (human sparteine monooxygenase) metabolizes many drugs including neuroleptics, antidepressants, and beta-blockers. The P450IID6 exists in human, bovine, rat and canine brains, but in very low quantities causing methodological difficulties in its assessment. Work with ({sup 3}H)GBR-12935; 1-(2-(diphenylmethoxy) ethyl)-4-(3-phenyl propyl) piperazine has shown that it binds a neuronal/hepatic protein with high affinity ({approximately}7nM) and a rank order of inhibitory potency suggesting that the binding protein is cytochrome P450IID6. The binding was used to predict that d-amphetamine and methamphetamine would interact with P450IID6. Inhibition studies indicated that these compounds were competitive inhibitors of P450IID6. Haloperidol (HAL) and it's metabolite hydroxy-haloperidol (RHAL) are both competitive inhibitors of P450IID6 activity and were found to inhibit ({sup 3}H)GBR-12935 binding. K{sub i} values of twelve compounds (known to interact with the DA transporter or P450IID6) for ({sup 3}H)GRB-12935 binding and P450IID6 activity. The techniques are now available for measurements of cytochrome P450IID6 in healthy and diseased brain/liver tissue using radio-receptor binding assay techniques with ({sup 3}H)GBR-12935.

  6. Dopamine receptor alterations in female rats with diet-induced decreased brain docosahexaenoic acid (DHA): interactions with reproductive status

    PubMed Central

    Davis, Paul F.; Ozias, Marlies K.; Carlson, Susan E.; Reed, Gregory A.; Winter, Michelle K.; McCarson, Kenneth E.; Levant, Beth

    2010-01-01

    Decreased tissue levels of n-3 (omega-3) fatty acids, particularly docosahexaenoic acid (DHA), are implicated in the etiologies of non-puerperal and postpartum depression. This study examined the effects of a diet-induced loss of brain DHA content and concurrent reproductive status on dopaminergic parameters in adult female Long–Evans rats. An α-linolenic acid-deficient diet and breeding protocols were used to produce virgin and parous female rats with cortical phospholipid DHA levels 20–22% lower than those fed a control diet containing adequate α-linolenic acid. Decreased brain DHA produced a significant main effect of decreased density of ventral striatal D2-like receptors. Virgin females with decreased DHA also exhibited higher density of D1-like receptors in the caudate nucleus than virgin females with normal DHA. These receptor alterations are similar to those found in several rodent models of depression, and are consistent with the proposed hypodopaminergic basis for anhedonia and motivational deficits in depression. PMID:20670471

  7. Use of LC/MS to assess brain tracer distribution in preclinical, in vivo receptor occupancy studies: dopamine D2, serotonin 2A and NK-1 receptors as examples.

    PubMed

    Chernet, Eyassu; Martin, Laura J; Li, Dominic; Need, Anne B; Barth, Vanessa N; Rash, Karen S; Phebus, Lee A

    2005-12-12

    High performance liquid chromatography combined with either single quad or triple quad mass spectral detectors (LC/MS) was used to measure the brain distribution of receptor occupancy tracers targeting dopamine D2, serotonin 5-HT2A and neurokinin NK-1 receptors using the ligands raclopride, MDL-100907 and GR205171, respectively. All three non-radiolabeled tracer molecules were easily detectable in discrete rat brain areas after intravenous doses of 3, 3 and 30 microg/kg, respectively. These levels showed a differential brain distribution caused by differences in receptor density, as demonstrated by the observation that pretreatment with compounds that occupy these receptors reduced this differential distribution in a dose-dependent manner. Intravenous, subcutaneous and oral dose-occupancy curves were generated for haloperidol at the dopamine D2 receptor as were oral curves for the antipsychotic drugs olanzapine and clozapine. In vivo dose-occupancy curves were also generated for orally administered clozapine, olanzapine and haloperidol at the cortical 5-HT2A binding site. In vivo occupancy at the striatal neurokinin NK-1 binding site by various doses of orally administered MK-869 was also measured. Our results demonstrate the utility of LC/MS to quantify tracer distribution in preclinical brain receptor occupancy studies.

  8. Phasic dopamine release in appetitive behaviors and drug abuse

    PubMed Central

    Wanat, Matthew J.; Willuhn, Ingo; Clark, Jeremy J.; Phillips, Paul E. M.

    2010-01-01

    Short phasic bursts of neuronal activity in dopamine neurons produce rapid and transient increases in extracellular dopamine concentrations throughout the mesocorticolimbic system, which are associated with the initiation of goal-directed behaviors. It is well established that acute exposure to many addictive drugs produce increases in tonic dopamine levels that occur on the order of minutes. However, recent studies suggest that abused drugs similarly enhance phasic dopamine release events that occur on a subsecond time scale. Furthermore, drug experience modulates the synaptic and intrinsic properties of dopamine neurons, which could affect dopamine burst firing and phasic dopamine release. This review will provide a general introduction to the mesolimbic dopamine system, as well as the primary methods used to detect dopamine neurons and dopamine release. We present the role of phasic dopamine release in appetitive behaviors in the context of contemporary theories regarding the function of dopamine. Next we discuss the known drug-induced changes to dopamine neurons and phasic release in both in vitro and in vivo preparations. Finally, we offer a simple model that chronic drug experience attenuates tonic/basal dopamine levels but promotes phasic dopamine release, which may result in aberrant goal-directed behaviors contributing to the development of addiction. PMID:19630749

  9. Dopamine neurons modulate neural encoding and expression of depression-related behaviour

    PubMed Central

    Ferenczi, Emily A.; Tsai, Hsing-Chen; Finkelstein, Joel; Kim, Sung-Yon; Adhikari, Avishek; Thompson, Kimberly R.; Andalman, Aaron S.; Gunaydin, Lisa A.; Witten, Ilana B.; Deisseroth, Karl

    2014-01-01

    Major depression is characterized by diverse debilitating symptoms that include hopelessness and anhedonia1. Dopamine neurons involved in reward and motivation2–9 are among many neural populations that have been hypothesized to be relevant10, and certain antidepressant treatments, including medications and brain stimulation therapies, can influence the complex dopamine system. Until now it has not been possible to test this hypothesis directly, even in animal models, as existing therapeutic interventions are unable to specifically target dopamine neurons. Here we investigated directly the causal contributions of defined dopamine neurons to multidimensional depression-like phenotypes induced by chronic mild stress, by integrating behavioural, pharmacological, optogenetic and electrophysiological methods in freely moving rodents. We found that bidirectional control (inhibition or excitation) of specified midbrain dopamine neurons immediately and bidirectionally modulates (induces or relieves) multiple independent depression symptoms caused by chronic stress. By probing the circuit implementation of these effects, we observed that optogenetic recruitment of these dopamine neurons potently alters the neural encoding of depression-related behaviours in the downstream nucleus accumbens of freely moving rodents, suggesting that processes affecting depression symptoms may involve alterations in the neural encoding of action in limbic circuitry. PMID:23235822

  10. How Acute Total Sleep Loss Affects the Attending Brain: A Meta-Analysis of Neuroimaging Studies

    PubMed Central

    Ma, Ning; Dinges, David F.; Basner, Mathias; Rao, Hengyi

    2015-01-01

    Study Objectives: Attention is a cognitive domain that can be severely affected by sleep deprivation. Previous neuroimaging studies have used different attention paradigms and reported both increased and reduced brain activation after sleep deprivation. However, due to large variability in sleep deprivation protocols, task paradigms, experimental designs, characteristics of subject populations, and imaging techniques, there is no consensus regarding the effects of sleep loss on the attending brain. The aim of this meta-analysis was to identify brain activations that are commonly altered by acute total sleep deprivation across different attention tasks. Design: Coordinate-based meta-analysis of neuroimaging studies of performance on attention tasks during experimental sleep deprivation. Methods: The current version of the activation likelihood estimation (ALE) approach was used for meta-analysis. The authors searched published articles and identified 11 sleep deprivation neuroimaging studies using different attention tasks with a total of 185 participants, equaling 81 foci for ALE analysis. Results: The meta-analysis revealed significantly reduced brain activation in multiple regions following sleep deprivation compared to rested wakefulness, including bilateral intraparietal sulcus, bilateral insula, right prefrontal cortex, medial frontal cortex, and right parahippocampal gyrus. Increased activation was found only in bilateral thalamus after sleep deprivation compared to rested wakefulness. Conclusion: Acute total sleep deprivation decreases brain activation in the fronto-parietal attention network (prefrontal cortex and intraparietal sulcus) and in the salience network (insula and medial frontal cortex). Increased thalamic activation after sleep deprivation may reflect a complex interaction between the de-arousing effects of sleep loss and the arousing effects of task performance on thalamic activity. Citation: Ma N, Dinges DF, Basner M, Rao H. How acute total

  11. Early Supplementation of Phospholipids and Gangliosides Affects Brain and Cognitive Development in Neonatal Piglets123

    PubMed Central

    Liu, Hongnan; Radlowski, Emily C; Conrad, Matthew S; Li, Yao; Dilger, Ryan N; Johnson, Rodney W

    2014-01-01

    Background: Because human breast milk is a rich source of phospholipids and gangliosides and breastfed infants have improved learning compared with formula-fed infants, the importance of dietary phospholipids and gangliosides for brain development is of interest. Objective: We sought to determine the effects of phospholipids and gangliosides on brain and cognitive development. Methods: Male and female piglets from multiple litters were artificially reared and fed formula containing 0% (control), 0.8%, or 2.5% Lacprodan PL-20 (PL-20; Arla Foods Ingredients), a phospholipid/ganglioside supplement, from postnatal day (PD) 2 to PD28. Beginning on PD14, performance in a spatial T-maze task was assessed. At PD28, brain MRI data were acquired and piglets were killed to obtain hippocampal tissue for metabolic profiling. Results: Diet affected maze performance, with piglets that were fed 0.8% and 2.5% PL-20 making fewer errors than control piglets (80% vs. 75% correct on average; P < 0.05) and taking less time to make a choice (3 vs. 5 s/trial; P < 0.01). Mean brain weight was 5% higher for piglets fed 0.8% and 2.5% PL-20 (P < 0.05) than control piglets, and voxel-based morphometry revealed multiple brain areas with greater volumes and more gray and white matter in piglets fed 0.8% and 2.5% PL-20 than in control piglets. Metabolic profiling of hippocampal tissue revealed that multiple phosphatidylcholine-related metabolites were altered by diet. Conclusion: In summary, dietary phospholipids and gangliosides improved spatial learning and affected brain growth and composition in neonatal piglets. PMID:25411030

  12. Cognition and affective style: Individual differences in brain electrical activity during spatial and verbal tasks.

    PubMed

    Bell, Martha Ann; Fox, Nathan A

    2003-12-01

    Relations between brain electrical activity and performance on two cognitive tasks were examined in a normal population selected to be high on self-reported measures of Positive or Negative Affectivity. Twenty-five right-handed women, from an original pool of 308 college undergraduates, were the participants. EEG was recorded during baseline and during psychometrically matched spatial and verbal tasks. As predicted, participants who were high in Positive Affectivity performed equally well on the verbal and spatial tasks, while participants who were high in Negative Affectivity had spatial scores that were lower than their verbal scores. There were no group differences in baseline EEG. Both groups exhibited left central activation (i.e., alpha suppression) during the verbal and spatial tasks. When EEG data were analyzed separately for the group high in Positive Affectivity, there was evidence of parietal activation for the spatial task relative to the verbal task. The EEG data for the group high in Negative Affectivity had comparable EEG power values during verbal and spatial tasks at parietal scalp locations. These data suggest that, within a selected normal population, differences in affective style may interact with cognitive performance and with the brain electrical activity associated with that performance.

  13. Dopamine receptors – IUPHAR Review 13

    PubMed Central

    Beaulieu, Jean-Martin; Espinoza, Stefano; Gainetdinov, Raul R

    2015-01-01

    The variety of physiological functions controlled by dopamine in the brain and periphery is mediated by the D1, D2, D3, D4 and D5 dopamine GPCRs. Drugs acting on dopamine receptors are significant tools for the management of several neuropsychiatric disorders including schizophrenia, bipolar disorder, depression and Parkinson's disease. Recent investigations of dopamine receptor signalling have shown that dopamine receptors, apart from their canonical action on cAMP-mediated signalling, can regulate a myriad of cellular responses to fine-tune the expression of dopamine-associated behaviours and functions. Such signalling mechanisms may involve alternate G protein coupling or non-G protein mechanisms involving ion channels, receptor tyrosine kinases or proteins such as β-arrestins that are classically involved in GPCR desensitization. Another level of complexity is the growing appreciation of the physiological roles played by dopamine receptor heteromers. Applications of new in vivo techniques have significantly furthered the understanding of the physiological functions played by dopamine receptors. Here we provide an update of the current knowledge regarding the complex biology, signalling, physiology and pharmacology of dopamine receptors. PMID:25671228

  14. The impoverished brain: disparities in maternal education affect the neural response to sound.

    PubMed

    Skoe, Erika; Krizman, Jennifer; Kraus, Nina

    2013-10-30

    Despite the prevalence of poverty worldwide, little is known about how early socioeconomic adversity affects auditory brain function. Socioeconomically disadvantaged children are underexposed to linguistically and cognitively stimulating environments and overexposed to environmental toxins, including noise pollution. This kind of sensory impoverishment, we theorize, has extensive repercussions on how the brain processes sound. To characterize how this impoverishment affects auditory brain function, we compared two groups of normal-hearing human adolescents who attended the same schools and who were matched in age, sex, and ethnicity, but differed in their maternal education level, a correlate of socioeconomic status (SES). In addition to lower literacy levels and cognitive abilities, adolescents from lower maternal education backgrounds were found to have noisier neural activity than their classmates, as reflected by greater activity in the absence of auditory stimulation. Additionally, in the lower maternal education group, the neural response to speech was more erratic over repeated stimulation, with lower fidelity to the input signal. These weaker, more variable, and noisier responses are suggestive of an inefficient auditory system. By studying SES within a neuroscientific framework, we have the potential to expand our understanding of how experience molds the brain, in addition to informing intervention research aimed at closing the achievement gap between high-SES and low-SES children.

  15. Radiosynthesis and validation of 18F-FP-CMT, a phenyltropane with superior properties for imaging the dopamine transporter in living brain

    PubMed Central

    Cumming, Paul; Maschauer, Simone; Riss, Patrick J; Tschammer, Nuska; Fehler, Stefanie K; Heinrich, Markus R; Kuwert, Torsten; Prante, Olaf

    2014-01-01

    To date there is no validated, 18F-labeled dopamine transporter (DAT) radiotracer with a rapid kinetic profile suitable for preclinical small-animal positron emission tomography (PET) studies in rodent models of human basal ganglia disease. Herein we report radiosynthesis and validation of the phenyltropane 18F-FP-CMT. Dynamic PET recordings were obtained for 18F-FP-CMT in six untreated rats, and six rats pretreated with the high-affinity DAT ligand GBR 12909; mean parametric maps of binding potential (BPND) relative to the cerebellum reference region, and maps of total distribution volume (VT) relative to the metabolite-corrected arterial input were produced. 18F-FP-CMT BPND maps showed peak values of ∼4 in the striatum, versus ∼0.4 in the vicinity of the substantia nigra. Successive truncation of the PET recordings indicated that stable BPND estimates could be obtained with recordings lasting only 45 minutes, reflecting rapid kinetics of 18F-FP-CMT. Pretreatment with GBR 12909 reduced the striatal binding by 72% to 76%. High-performance liquid chromatography analysis revealed rapid metabolism of 18F-FP-CMT to a single, non-brain penetrant hydrophilic metabolite. Total distribution of volume calculated relative to the metabolite-corrected arterial input was 4.4 mL/g in the cerebellum. The pharmacological selectivity of 18F-FP-CMT, rapid kinetic profile, and lack of problematic metabolites constitute optimal properties for quantitation of DAT in rat, and may also predict applicability in human PET studies. PMID:24714035

  16. Affective Brain-Computer Interfaces As Enabling Technology for Responsive Psychiatric Stimulation

    PubMed Central

    Widge, Alik S.; Dougherty, Darin D.; Moritz, Chet T.

    2014-01-01

    There is a pressing clinical need for responsive neurostimulators, which sense a patient’s brain activity and deliver targeted electrical stimulation to suppress unwanted symptoms. This is particularly true in psychiatric illness, where symptoms can fluctuate throughout the day. Affective BCIs, which decode emotional experience from neural activity, are a candidate control signal for responsive stimulators targeting the limbic circuit. Present affective decoders, however, cannot yet distinguish pathologic from healthy emotional extremes. Indiscriminate stimulus delivery would reduce quality of life and may be actively harmful. We argue that the key to overcoming this limitation is to specifically decode volition, in particular the patient’s intention to experience emotional regulation. Those emotion-regulation signals already exist in prefrontal cortex (PFC), and could be extracted with relatively simple BCI algorithms. We describe preliminary data from an animal model of PFC-controlled limbic brain stimulation and discuss next steps for pre-clinical testing and possible translation. PMID:25580443

  17. Affective Brain-Computer Interfaces As Enabling Technology for Responsive Psychiatric Stimulation.

    PubMed

    Widge, Alik S; Dougherty, Darin D; Moritz, Chet T

    2014-04-01

    There is a pressing clinical need for responsive neurostimulators, which sense a patient's brain activity and deliver targeted electrical stimulation to suppress unwanted symptoms. This is particularly true in psychiatric illness, where symptoms can fluctuate throughout the day. Affective BCIs, which decode emotional experience from neural activity, are a candidate control signal for responsive stimulators targeting the limbic circuit. Present affective decoders, however, cannot yet distinguish pathologic from healthy emotional extremes. Indiscriminate stimulus delivery would reduce quality of life and may be actively harmful. We argue that the key to overcoming this limitation is to specifically decode volition, in particular the patient's intention to experience emotional regulation. Those emotion-regulation signals already exist in prefrontal cortex (PFC), and could be extracted with relatively simple BCI algorithms. We describe preliminary data from an animal model of PFC-controlled limbic brain stimulation and discuss next steps for pre-clinical testing and possible translation.

  18. Dopamine-independent locomotor actions of amphetamines in a novel acute mouse model of Parkinson disease.

    PubMed

    Sotnikova, Tatyana D; Beaulieu, Jean-Martin; Barak, Larry S; Wetsel, William C; Caron, Marc G; Gainetdinov, Raul R

    2005-08-01

    Brain dopamine is critically involved in movement control, and its deficiency is the primary cause of motor symptoms in Parkinson disease. Here we report development of an animal model of acute severe dopamine deficiency by using mice lacking the dopamine transporter. In the absence of transporter-mediated recycling mechanisms, dopamine levels become entirely dependent on de novo synthesis. Acute pharmacological inhibition of dopamine synthesis in these mice induces transient elimination of striatal dopamine accompanied by the development of a striking behavioral phenotype manifested as severe akinesia, rigidity, tremor, and ptosis. This phenotype can be reversed by administration of the dopamine precursor, L-DOPA, or by nonselective dopamine agonists. Surprisingly, several amphetamine derivatives were also effective in reversing these behavioral abnormalities in a dopamine-independent manner. Identification of dopamine transporter- and dopamine-independent locomotor actions of amphetamines suggests a novel paradigm in the search for prospective anti-Parkinsonian drugs.

  19. Dopamine receptor-interacting proteins: the Ca(2+) connection in dopamine signaling.

    PubMed

    Bergson, Clare; Levenson, Robert; Goldman-Rakic, Patricia S; Lidow, Michael S

    2003-09-01

    Abnormal activity of the dopamine system has been implicated in several psychiatric and neurological illnesses; however, lack of knowledge about the precise sites of dopamine dysfunction has compromised our ability to improve the efficacy and safety of dopamine-related drugs used in treatment modalities. Recent work suggests that dopamine transmission is regulated via the concerted efforts of a cohort of cytoskeletal, adaptor and signaling proteins called dopamine receptor-interacting proteins (DRIPs). The discovery that two DRIPs, calcyon and neuronal Ca(2+) sensor 1 (NCS-1), are upregulated in schizophrenia highlights the possibility that altered protein interactions and defects in Ca(2+) homeostasis might contribute to abnormalities in the brain dopamine system in neuropsychiatric diseases.

  20. The brain's emotional foundations of human personality and the Affective Neuroscience Personality Scales.

    PubMed

    Davis, Kenneth L; Panksepp, Jaak

    2011-10-01

    Six of the primary-process subcortical brain emotion systems - SEEKING, RAGE, FEAR, CARE, GRIEF and PLAY - are presented as foundational for human personality development, and hence as a potentially novel template for personality assessment as in the Affective Neurosciences Personality Scales (ANPS), described here. The ANPS was conceptualized as a potential clinical research tool, which would help experimentalists and clinicians situate subjects and clients in primary-process affective space. These emotion systems are reviewed in the context of a multi-tiered framing of consciousness spanning from primary affect, which encodes biological valences, to higher level tertiary (thought mediated) processing. Supporting neuroscience research is presented along with comparisons to Cloninger's Temperament and Character Inventory and the Five Factor Model (FFM). Suggestions are made for grounding the internal structure of the FFM on the primal emotional systems recognized in affective neuroscience, which may promote substantive dialog between human and animal research traditions. Personality is viewed in the context of Darwinian "continuity" with the inherited subcortical brain emotion systems being foundational, providing major forces for personality development in both humans and animals, and providing an affective infrastructure for an expanded five factor descriptive model applying to normal and clinical human populations as well as mammals generally. Links with ontogenetic and epigenetic models of personality development are also presented. Potential novel clinical applications of the CARE maternal-nurturance system and the PLAY system are also discussed.

  1. Opponency Revisited: Competition and Cooperation Between Dopamine and Serotonin

    PubMed Central

    Boureau, Y-Lan; Dayan, Peter

    2011-01-01

    Affective valence lies on a spectrum ranging from punishment to reward. The coding of such spectra in the brain almost always involves opponency between pairs of systems or structures. There is ample evidence for the role of dopamine in the appetitive half of this spectrum, but little agreement about the existence, nature, or role of putative aversive opponents such as serotonin. In this review, we consider the structure of opponency in terms of previous biases about the nature of the decision problems that animals face, the conflicts that may thus arise between Pavlovian and instrumental responses, and an additional spectrum joining invigoration to inhibition. We use this analysis to shed light on aspects of the role of serotonin and its interactions with dopamine. PMID:20881948

  2. Quadruplex Integrated DNA (QuID) Nanosensors for Monitoring Dopamine

    PubMed Central

    Morales, Jennifer M.; Skipwith, Christopher G.; Clark, Heather A.

    2015-01-01

    Dopamine is widely innervated throughout the brain and critical for many cognitive and motor functions. Imbalances or loss in dopamine transmission underlie various psychiatric disorders and degenerative diseases. Research involving cellular studies and disease states would benefit from a tool for measuring dopamine transmission. Here we show a Quadruplex Integrated DNA (QuID) nanosensor platform for selective and dynamic detection of dopamine. This nanosensor exploits DNA technology and enzyme recognition systems to optically image dopamine levels. The DNA quadruplex architecture is designed to be compatible in physically constrained environments (110 nm) with high flexibility, homogeneity, and a lower detection limit of 110 µM. PMID:26287196

  3. Glucocorticoid Receptors, Brain-Derived Neurotrophic Factor, Serotonin and Dopamine Neurotransmission are Associated with Interferon-Induced Depression

    PubMed Central

    Udina, M; Navinés, R; Egmond, E; Oriolo, G; Langohr, K; Gimenez, D; Valdés, M; Gómez-Gil, E; Grande, I; Gratacós, M; Kapczinski, F; Artigas, F; Vieta, E; Solà, R

    2016-01-01

    Background: The role of inflammation in mood disorders has received increased attention. There is substantial evidence that cytokine therapies, such as interferon alpha (IFN-alpha), can induce depressive symptoms. Indeed, proinflammatory cytokines change brain function in several ways, such as altering neurotransmitters, the glucocorticoid axis, and apoptotic mechanisms. This study aimed to evaluate the impact on mood of initiating IFN-alpha and ribavirin treatment in a cohort of patients with chronic hepatitis C. We investigated clinical, personality, and functional genetic variants associated with cytokine-induced depression. Methods: We recruited 344 Caucasian outpatients with chronic hepatitis C, initiating IFN-alpha and ribavirin therapy. All patients were euthymic at baseline according to DSM-IV-R criteria. Patients were assessed at baseline and 4, 12, 24, and 48 weeks after treatment initiation using the Patient Health Questionnaire (PHQ), the Hospital Anxiety and Depression Scale (HADS), and the Temperament and Character Inventory (TCI). We genotyped several functional polymorphisms of interleukin-28 (IL28B), indoleamine 2,3-dioxygenase (IDO-1), serotonin receptor-1A (HTR1A), catechol-O-methyl transferase (COMT), glucocorticoid receptors (GCR1 and GCR2), brain-derived neurotrophic factor (BDNF), and FK506 binding protein 5 (FKBP5) genes. A survival analysis was performed, and the Cox proportional hazards model was used for the multivariate analysis. Results: The cumulative incidence of depression was 0.35 at week 24 and 0.46 at week 48. The genotypic distributions were in Hardy-Weinberg equilibrium. Older age (p = 0.018, hazard ratio [HR] per 5 years = 1.21), presence of depression history (p = 0.0001, HR = 2.38), and subthreshold depressive symptoms at baseline (p = 0.005, HR = 1.13) increased the risk of IFN-induced depression. So too did TCI personality traits, with high scores on fatigability (p = 0.0037, HR = 1.17), impulsiveness (p = 0.0200 HR = 1

  4. Early developmental gene enhancers affect subcortical volumes in the adult human brain.

    PubMed

    Becker, Martin; Guadalupe, Tulio; Franke, Barbara; Hibar, Derrek P; Renteria, Miguel E; Stein, Jason L; Thompson, Paul M; Francks, Clyde; Vernes, Sonja C; Fisher, Simon E

    2016-05-01

    Genome-wide association screens aim to identify common genetic variants contributing to the phenotypic variability of complex traits, such as human height or brain morphology. The identified genetic variants are mostly within noncoding genomic regions and the biology of the genotype-phenotype association typically remains unclear. In this article, we propose a complementary targeted strategy to reveal the genetic underpinnings of variability in subcortical brain volumes, by specifically selecting genomic loci that are experimentally validated forebrain enhancers, active in early embryonic development. We hypothesized that genetic variation within these enhancers may affect the development and ultimately the structure of subcortical brain regions in adults. We tested whether variants in forebrain enhancer regions showed an overall enrichment of association with volumetric variation in subcortical structures of >13,000 healthy adults. We observed significant enrichment of genomic loci that affect the volume of the hippocampus within forebrain enhancers (empirical P = 0.0015), a finding which robustly passed the adjusted threshold for testing of multiple brain phenotypes (cutoff of P < 0.0083 at an alpha of 0.05). In analyses of individual single nucleotide polymorphisms (SNPs), we identified an association upstream of the ID2 gene with rs7588305 and variation in hippocampal volume. This SNP-based association survived multiple-testing correction for the number of SNPs analyzed but not for the number of subcortical structures. Targeting known regulatory regions offers a way to understand the underlying biology that connects genotypes to phenotypes, particularly in the context of neuroimaging genetics. This biology-driven approach generates testable hypotheses regarding the functional biology of identified associations. Hum Brain Mapp 37:1788-1800, 2016. © 2016 Wiley Periodicals, Inc.

  5. Brain histamine depletion enhances the behavioural sequences complexity of mice tested in the open-field: Partial reversal effect of the dopamine D2/D3 antagonist sulpiride.

    PubMed

    Santangelo, Andrea; Provensi, Gustavo; Costa, Alessia; Blandina, Patrizio; Ricca, Valdo; Crescimanno, Giuseppe; Casarrubea, Maurizio; Passani, M Beatrice

    2017-02-01

    Markers of histaminergic dysregulation were found in several neuropsychiatric disorders characterized by repetitive behaviours, thoughts and stereotypies. We analysed the effect of acute histamine depletion by means of i. c.v. injections of alpha-fluoromethylhistidine, a blocker of histidine decarboxylase, on the temporal organization of motor sequences of CD1 mice behaviour in the open-field test. An ethogram encompassing 9 behavioural components was employed. Durations and frequencies were only slightly affected by treatments. However, as revealed by multivariate t-pattern analysis, histamine depletion was associated with a striking increase in the number of behavioural patterns. We found 42 patterns of different composition occurring, on average, 520.90 ± 50.23 times per mouse in the histamine depleted (HD) group, whereas controls showed 12 different patterns occurring on average 223.30 ± 20.64 times. Exploratory and grooming behaviours clustered separately, and the increased pattern complexity involved exclusively exploratory patterns. To test the hypothesis of a histamine-dopamine interplay on behavioural pattern phenotype, non-sedative doses of the D2/D3 antagonist sulpiride (12.5-25-50 mg/kg) were additionally administered to different groups of HD mice. Sulpiride counterbalanced the enhancement of exploratory patterns of different composition, but it did not affect the mean number of patterns at none of the doses used. Our results provide new insights on the role of histamine on repetitive behavioural sequences of freely moving mice. Histamine deficiency is correlated with a general enhancement of pattern complexity. This study supports a putative involvement of histamine in the pathophysiology of tics and related disorders.

  6. Evidence against a role for dopamine D1 receptors in the myocardium of the pig.

    PubMed Central

    Van Woerkens, L. J.; Duncker, D. J.; Den Boer, M. O.; McFalls, E. O.; Sassen, L. M.; Saxena, P. R.; Verdouw, P. D.

    1991-01-01

    1. We investigated the presence of dopamine D1 receptors in the myocardium of anesthetized pigs using intravenous infusions of dopamine, alone and after alpha- and beta-adrenoceptor blockade and intracoronary infusions of the selective D1 receptor agonist, fenoldopam. 2. Intravenous infusion of dopamine (2.5, 5 and 10 micrograms kg-1 min-1 for 10 min, n = 6) caused dose-dependent changes in heart rate (from 94 +/- 6 to 132 +/- 10 beats min-1, P less than 0.05), the maximal rate of rise of left ventricular pressure (LVdP/dtmax; from 2280 +/- 170 to 4800 +/- 410 mmHgs-1, P less than 0.05), mean arterial blood pressure (from 87 +/- 5 to 62 +/- 3 mmHg) and systemic vascular resistance (from 40 +/- 4 to 28 +/- 2 mmHgl-1 min, P less than 0.05). The increases in heart rate and LVdP/dtmax were abolished when dopamine was infused after alpha- and beta-adrenoceptor blockade. The vasodilator response was, however, only minimally affected. 3. Intravenous infusions of dopamine decreased coronary vascular resistance from 0.90 +/- 0.06 to 0.53 +/- 0.07 mmHg ml-1 min 100 g (P less than 0.05). This action of dopamine was not observed when dopamine was infused after blockade of the alpha- and beta-adrenoceptors. 4. Pretreatment with alpha- and beta-adrenoceptor blockade had no effect or only slightly attenuated the dopamine-induced decrease in vascular resistance of the brain, kidneys, adrenals and small intestine.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1686206

  7. A Double Blind Trial of Divalproex Sodium for Affective Liability and Alcohol Use Following Traumatic Brain Injury

    DTIC Science & Technology

    2016-01-01

    Award Number: W81XWH-08-2-0652 TITLE: A Double Blind Trial of Divalproex Sodium for Affective Liability and Alcohol Use Following Traumatic Brain...of Divalproex Sodium for Affective Liability and Alcohol Use Following Traumatic Brain Injury 5b. GRANT NUMBER PT075168 5c. PROGRAM ELEMENT...expressed as affective lability, will decrease significantly in TBI subjects treated with divalproex sodium , a mood stabilizing medication, as

  8. Dopamine transporter mutant animals: a translational perspective

    PubMed Central

    Efimova, Evgenia V.; Gainetdinov, Raul R.; Budygin, Evgeny A.; Sotnikova, Tatiana D.

    2016-01-01

    The dopamine transporter (DAT) plays an important homeostatic role in the control of both the extracellular and intraneuronal concentrations of dopamine, thereby providing effective control over activity of dopaminergic transmission. Since brain dopamine is known to be involved in numerous neuropsychiatric disorders, investigations using mice with genetically altered DAT function and thus intensity of dopamine-mediated signaling have provided numerous insights into the pathology of these disorders and highlight novel pathological mechanisms that could be targeted to provide new therapeutic approaches for these disorders. In this brief overview we discuss recent investigations involving animals with genetically altered DAT function, particularly focusing on translational studies providing new insights into pathology and pharmacology of dopamine-related disorders. Perspective applications of these and newly developed models of DAT dysfunction are also discussed. PMID:27276191

  9. Prenatal caffeine intake differently affects synaptic proteins during fetal brain development.

    PubMed

    Mioranzza, Sabrina; Nunes, Fernanda; Marques, Daniela M; Fioreze, Gabriela T; Rocha, Andréia S; Botton, Paulo Henrique S; Costa, Marcelo S; Porciúncula, Lisiane O

    2014-08-01

    Caffeine is the psychostimulant most consumed worldwide. However, little is known about its effects during fetal brain development. In this study, adult female Wistar rats received caffeine in drinking water (0.1, 0.3 and 1.0 g/L) during the active cycle in weekdays, two weeks before mating and throughout pregnancy. Cerebral cortex and hippocampus from embryonic stages 18 or 20 (E18 or E20, respectively) were collected for immunodetection of the following synaptic proteins: brain-derived neurotrophic factor (BDNF), TrkB receptor, Sonic Hedgehog (Shh), Growth Associated Protein 43 (GAP-43) and Synaptosomal-associated Protein 25 (SNAP-25). Besides, the estimation of NeuN-stained nuclei (mature neurons) and non-neuronal nuclei was verified in both brain regions and embryonic periods. Caffeine (1.0 g/L) decreased the body weight of embryos at E20. Cortical BDNF at E18 was decreased by caffeine (1.0 g/L), while it increased at E20, with no major effects on TrkB receptors. In the hippocampus, caffeine decreased TrkB receptor only at E18, with no effects on BDNF. Moderate and high doses of caffeine promoted an increase in Shh in both brain regions at E18, and in the hippocampus at E20. Caffeine (0.3g/L) decreased GAP-43 only in the hippocampus at E18. The NeuN-stained nuclei increased in the cortex at E20 by lower dose and in the hippocampus at E18 by moderate dose. Our data revealed that caffeine transitorily affect synaptic proteins during fetal brain development. The increased number of NeuN-stained nuclei by prenatal caffeine suggests a possible acceleration of the telencephalon maturation. Although some modifications in the synaptic proteins were transient, our data suggest that caffeine even in lower doses may alter the fetal brain development.

  10. Implantable Microsystems for Anatomical Rewiring of Cortical Circuitry: A New Approach for Brain Repair

    DTIC Science & Technology

    2009-03-01

    dopamine or serotonin, provide outputs to large regions of the brain that affect mood, learning, and cognition [4]. Hence, understanding brain function on a...Sutton, B. T. Higashikubo, C. A. Chestek, H. J. Chiel, and H. B. Martin, “Diamond electrodes for neurodynamic studies in Aplysia californica,” Diam

  11. β-asarone and levodopa co-administration increase striatal dopamine level in 6-hydroxydopamine induced rats by modulating P-glycoprotein and tight junction proteins at the blood-brain barrier and promoting levodopa into the brain.

    PubMed

    Huang, Liping; Deng, Minzhen; He, Yuping; Lu, Shiyao; Ma, Ruanxin; Fang, Yongqi

    2016-06-01

    Levodopa (L-dopa) is widely considered as one of the most effective drug constituents in the treatment of Parkinson's disease (PD), but the blood-brain barrier (BBB) permeability of L-dopa is <5%, which causes low efficacy. Neuroprotective effects of β-asarone on 6-hydroxydopamine (6-OHDA)-induced PD rats were demonstrated by our previous studies. Co-administration of β-asarone and L-dopa has not been explored until being investigated on PD rats in this study. PD rats were divided into four groups: untreated, L-dopa-treated, β-asarone-treated and co-administered-treated groups. All of the treatments were administered to the rats twice per day for 30 days. The L-dopa, dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), S100β and neuron-specific enolase (NSE) levels were subsequently determined. The P-glycoprotein (P-gp), zonula occludens-1 (ZO-1), claudin-5, occludin and actin expression was also assessed in cortex. Changes in BBB ultrastructure were observed using transmission electron microscopy. Our results showed that the co-administered treatment increased levels of L-dopa, DA, DOPAC and HVA in striatum, and S100β in plasma, but down-regulated NSE, P-gp, ZO-1, occludin, actin and claudin-5 in cortex. Crevices were observed between capillary endothelial cells at intercellular tight junction of the striatum in co-administered-treated group, while the endothelial cells in untreated group were tightly jointing each other. In addition, the correlations of L-dopa or DA and P-gp or tight junction proteins respectively were significantly negative in co-administered- and β-asarone-treated groups. These findings suggest that co-administered treatment may enhance the L-dopa BBB permeability and attenuate brain injury, which may be beneficial to PD treatment.

  12. The Dopamine Receptor D4 7-Repeat Allele and Prenatal Smoking in ADHD-Affected Children and Their Unaffected Siblings: No Gene-Environment Interaction

    ERIC Educational Resources Information Center

    Altink, Marieke E.; Arias-Vasquez, Alejandro; Franke, Barbara; Slaats-Willemse, Dorine I. E.; Buschgens, Cathelijne J. M.; Rommelse, Nanda N. J.; Fliers, Ellen A.; Anney, Richard; Brookes, Keeley-Joanne; Chen, Wai; Gill, Michael; Mulligan, Aisling; Sonuga-Barke, Edmund; Thompson, Margaret; Sergeant, Joseph A.; Faraone, Stephen V.; Asherson, Philip; Buitelaar, Jan K.

    2008-01-01

    Background: The dopamine receptor D4 ("DRD4") 7-repeat allele and maternal smoking during pregnancy are both considered as risk factors in the aetiology of attention deficit hyperactivity disorder (ADHD), but few studies have been conducted on their interactive effects in causing ADHD. The purpose of this study is to examine the gene by…

  13. Evaluating ambivalence: social-cognitive and affective brain regions associated with ambivalent decision-making.

    PubMed

    Nohlen, Hannah U; van Harreveld, Frenk; Rotteveel, Mark; Lelieveld, Gert-Jan; Crone, Eveline A

    2014-07-01

    Ambivalence is a state of inconsistency that is often experienced as affectively aversive. In this functional magnetic resonance imaging study, we investigated the role of cognitive and social-affective processes in the experience of ambivalence and coping with its negative consequences. We examined participants' brain activity during the dichotomous evaluation (pro vs contra) of pretested ambivalent (e.g. alcohol), positive (e.g. happiness) and negative (e.g. genocide) word stimuli. We manipulated evaluation relevance by varying the probability of evaluation consequences, under the hypothesis that ambivalence is experienced as more negative when outcomes are relevant. When making ambivalent evaluations, more activity was found in the anterior cingulate cortex, the insula, the temporal parietal junction (TPJ) and the posterior cingulate cortex (PCC)/precuneus, for both high and low evaluation relevance. After statistically conservative corrections, activity in the TPJ and PCC/precuneus was negatively correlated with experienced ambivalence after scanning, as measured by Priester and Petty's felt ambivalence scale (1996). The findings show that cognitive and social-affective brain areas are involved in the experience of ambivalence. However, these networks are differently associated with subsequent reduction of ambivalence, thus highlighting the importance of understanding both cognitive and affective processes involved in ambivalent decision-making.

  14. Cloning of the cocaine-sensitive bovine dopamine transporter

    SciTech Connect

    Usdin, T.B.; Chen, C.; Brownstein, M.J.; Hoffman, B.J. ); Mezey, E. )

    1991-12-15

    A cDNA encoding the dopamine transporter from bovine brain substantia nigra was identified on the basis of its structural homology to other, recently cloned, neurotransmitter transporters. The sequence of the 693-amino acid protein is quite similar to those of the rat {gamma}-aminobutyric acid, human norepinephrine, and rat serotonin transporters. Dopamine transporter mRNA was detected by in situ hybridization in the substantia nigra but not in the locus coeruleus, raphe, caudate, or other brain areas. ({sup 3}H)Dopamine accumulation in tissue culture cells transfected with the cDNA was inhibited by amphetamine, cocaine, and specific inhibitors of dopamine transports, including GBR12909.

  15. Methamphetamine-induced short-term increase and long-term decrease in spatial working memory affects protein Kinase M zeta (PKMζ), dopamine, and glutamate receptors

    PubMed Central

    Braren, Stephen H.; Drapala, Damian; Tulloch, Ingrid K.; Serrano, Peter A.

    2014-01-01

    Methamphetamine (MA) is a toxic, addictive drug shown to modulate learning and memory, yet the neural mechanisms are not fully understood. We investigated the effects of 2 weekly injections of MA (30 mg/kg) on working memory using the radial 8-arm maze (RAM) across 5 weeks in adolescent-age mice. MA-treated mice show a significant improvement in working memory performance 1 week following the first MA injection compared to saline-injected controls. Following 5 weeks of MA abstinence mice were re-trained on a reference and working memory version of the RAM to assess cognitive flexibility. MA-treated mice show significantly more working memory errors without effects on reference memory performance. The hippocampus and dorsal striatum were assessed for expression of glutamate receptors subunits, GluA2 and GluN2B; dopamine markers, dopamine 1 receptor (D1), dopamine transporter (DAT) and tyrosine hydroxylase (TH); and memory markers, protein kinase M zeta (PKMζ) and protein kinase C zeta (PKCζ). Within the hippocampus, PKMζ and GluA2 are both significantly reduced after MA supporting the poor memory performance. Additionally, a significant increase in GluN2B and decrease in D1 identifies dysregulated synaptic function. In the striatum, MA treatment increased cytosolic DAT and TH levels associated with dopamine hyperfunction. MA treatment significantly reduced GluN2B while increasing both PKMζ and PKCζ within the striatum. We discuss the potential role of PKMζ/PKCζ in modulating dopamine and glutamate receptors after MA treatment. These results identify potential underlying mechanisms for working memory deficits induced by MA. PMID:25566006

  16. Factors affecting post-stroke motor recovery: Implications on neurotherapy after brain injury.

    PubMed

    Alawieh, Ali; Zhao, Jing; Feng, Wuwei

    2016-08-13

    Neurological disorders are a major cause of chronic disability globally among which stroke is a leading cause of chronic disability. The advances in the medical management of stroke patients over the past decade have significantly reduced mortality, but at the same time increased numbers of disabled survivors. Unfortunately, this reduction in mortality was not paralleled by satisfactory therapeutics and rehabilitation strategies that can improve functional recovery of patients. Motor recovery after brain injury is a complex, dynamic, and multifactorial process in which an interplay among genetic, pathophysiologic, sociodemographic and therapeutic factors determines the overall recovery trajectory. Although stroke recovery is the most well-studied form of post-injury neuronal recovery, a thorough understanding of the pathophysiology and determinants affecting stroke recovery is still lacking. Understanding the different variables affecting brain recovery after stroke will not only provide an opportunity to develop therapeutic interventions but also allow for developing personalized platforms for patient stratification and prognosis. We aim to provide a narrative review of major determinants for post-stroke recovery and their implications in other forms of brain injury.

  17. The roles of the amygdala in the affective regulation of body, brain, and behaviour

    NASA Astrophysics Data System (ADS)

    Mirolli, Marco; Mannella, Francesco; Baldassarre, Gianluca

    2010-09-01

    Despite the great amount of knowledge produced by the neuroscientific literature on affective phenomena, current models tackling non-cognitive aspects of behaviour are often bio-inspired but rarely bio-constrained. This paper presents a theoretical account of affective systems centred on the amygdala (Amg). This account aims to furnish a general framework and specific pathways to implement models that are more closely related to biological evidence. The Amg, which receives input from brain areas encoding internal states, innately relevant stimuli, and innately neutral stimuli, plays a fundamental role in the motivational and emotional processes of organisms. This role is based on the fact that Amg implements the two associative processes at the core of Pavlovian learning (conditioned stimulus (CS)-unconditioned stimulus (US) and CS-unconditioned response (UR) associations), and that it has the capacity of modulating these associations on the basis of internal states. These functionalities allow the Amg to play an important role in the regulation of the three fundamental classes of affective responses (namely, the regulation of body states, the regulation of brain states via neuromodulators, and the triggering of a number of basic behaviours fundamental for adaptation) and in the regulation of three high-level cognitive processes (namely, the affective labelling of memories, the production of goal-directed behaviours, and the performance of planning and complex decision-making). Our analysis is conducted within a methodological approach that stresses the importance of understanding the brain within an evolutionary/adaptive framework and with the aim of isolating general principles that can potentially account for the wider possible empirical evidence in a coherent fashion.

  18. Early-Life Stress Affects Stress-Related Prefrontal Dopamine Activity in Healthy Adults, but Not in Individuals with Psychotic Disorder.

    PubMed

    Kasanova, Zuzana; Hernaus, Dennis; Vaessen, Thomas; van Amelsvoort, Thérèse; Winz, Oliver; Heinzel, Alexander; Pruessner, Jens; Mottaghy, Felix M; Collip, Dina; Myin-Germeys, Inez

    2016-01-01

    Early life stress may have a lasting impact on the developmental programming of the dopamine (DA) system implicated in psychosis. Early adversity could promote resilience by calibrating the prefrontal stress-regulatory dopaminergic neurotransmission to improve the individual's fit with the predicted stressful environment. Aberrant reactivity to such match between proximal and distal environments may, however, enhance psychosis disease risk. We explored the combined effects of childhood adversity and adult stress by exposing 12 unmedicated individuals with a diagnosis of non-affective psychotic disorder (NAPD) and 12 healthy controls (HC) to psychosocial stress during an [18F]fallypride positron emission tomography. Childhood trauma divided into early (ages 0-11 years) and late (12-18 years) was assessed retrospectively using a questionnaire. A significant group x childhood trauma interaction on the spatial extent of stress-related [18F]fallypride displacement was observed in the mPFC for early (b = -8.45, t(1,23) = -3.35, p = .004) and late childhood trauma (b = -7.86, t(1,23) = -2.48, p = .023). In healthy individuals, the spatial extent of mPFC DA activity under acute psychosocial stress was positively associated with the severity of early (b = 7.23, t(11) = 3.06, p = .016) as well as late childhood trauma (b = -7.86, t(1,23) = -2.48, p = .023). Additionally, a trend-level main effect of early childhood trauma on subjective stress response emerged within this group (b = -.7, t(11) = -2, p = .07), where higher early trauma correlated with lower subjective stress response to the task. In the NAPD group, childhood trauma was not associated with the spatial extent of the tracer displacement in mPFC (b = -1.22, t(11) = -0.67), nor was there a main effect of trauma on the subjective perception of stress within this group (b = .004, t(11) = .01, p = .99). These findings reveal a potential mechanism of neuroadaptation of prefrontal DA transmission to early life stress

  19. Striatal dopamine and glutamate receptors modulate methamphetamine-induced cortical Fos expression

    PubMed Central

    Gross, Noah B.; Marshall, John F.

    2009-01-01

    Methamphetamine (mAMPH) is a psychostimulant drug that increases extracellular levels of monoamines throughout the brain. It has previously been observed that a single injection of mAMPH increases immediate early gene (IEG) expression in both the striatum and cerebral cortex. Moreover, this effect is modulated by dopamine and glutamate receptors since systemic administration of dopamine or glutamate antagonists has been found to alter mAMPH-induced striatal and cortical IEG expression. However, because dopamine and glutamate receptors are found in extra-striatal as well as striatal brain regions, studies employing systemic injection of dopamine or glutamate antagonists fail to localize the effects of mAMPH-induced activation. In the present experiments, the roles of striatal dopamine and glutamate receptors in mAMPH-induced gene expression in the striatum and cerebral cortex were examined. The nuclear expression of Fos, the protein product of the IEG c-fos, was quantified in both the striatum and the cortex of animals receiving intrastriatal dopamine or glutamate antagonist administration. Intrastriatal infusion of dopamine (D1 or D2) or glutamate [N-methyl-D-aspartic acid (NMDA) or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)] antagonists affected not only mAMPH-induced striatal, but also cortical, Fos expression. Overall, the effects of the antagonists occurred dose-dependently, in both the infused and non-infused hemispheres, with greater influences occurring in the infused hemisphere. Finally, unilateral intrastriatal infusion of dopamine or glutamate antagonists changed the behavior of the rats from characteristic mAMPH-induced stereotypy to rotation ipsilateral to the infusion. These results demonstrate that mAMPH’s actions on striatal dopamine and glutamate receptors modulate the widespread cortical activation induced by mAMPH. It is hypothesized that dopamine release from nigrostriatal terminals modulates activity within striatal

  20. Microdialysis and SPECT measurements of amphetamine-induced dopamine release in nonhuman primates.

    PubMed

    Laruelle, M; Iyer, R N; al-Tikriti, M S; Zea-Ponce, Y; Malison, R; Zoghbi, S S; Baldwin, R M; Kung, H F; Charney, D S; Hoffer, P B; Innis, R B; Bradberry, C W

    1997-01-01

    The competition between endogenous transmitters and radiolabeled ligands for in vivo binding to neuroreceptors might provide a method to measure endogenous transmitter release in the living human brain with noninvasive techniques such as positron emission tomography (PET) or single photon emission computerized tomography (SPECT). In this study, we validated the measure of amphetamine-induced dopamine release with SPECT in nonhuman primates. Microdialysis experiments were conducted to establish the dose-response curve of amphetamine-induced dopamine release and to document how pretreatment with the dopamine depleter alpha-methyl-para-tyrosine (alpha MPT) affects this response. SPECT experiments were performed with two iodinated benzamides, [123I]IBZM and [123I]IBF, under sustained equilibrium condition. Both radio-tracers are specific D2 antagonists, but the affinity of [123I]IBZM (KD-0.4 nM) is lower than that of [123I]IBF (KD 0.1 nM). With both tracers, we observed a prolonged reduction in binding to D2 receptors following amphetamine injection. [123I]IBZM binding to D2 receptors was more affected than [123I]IBF by high doses of amphetamine, indicating that a lower affinity increases the vulnerability of a tracer to endogenous competition. With [123I]IBZM, we observed an excellent correlation between reduction of D2 receptor binding measured with SPECT and peak dopamine release measured with microdialysis after various doses of amphetamine. Pretreatment with alpha MPT significantly reduced the effect of amphetamine on [123I]IBZM binding to D2 receptors, confirming that this effect was mediated by intrasynaptic dopamine release. Together, these results validate the use of this SPECT paradigm as a noninvasive measurement of intrasynaptic dopamine release in the living brain.

  1. Coadministration of β-asarone and levodopa increases dopamine in rat brain by accelerating transformation of levodopa: a different mechanism from Madopar.

    PubMed

    Huang, Liping; Deng, Minzhen; Zhang, Sheng; Fang, Yongqi; Li, Ling

    2014-09-01

    The aim of the present study was to investigate the effect of coadministration of β-asarone and levodopa (l-dopa) on increasing dopamine (DA) in the striatum of healthy rats. Rats were randomly divided into four groups: (i) a normal group, administered normal saline; (ii) a Madopar group, administered 75 mg/kg Madopar (l-dopa : benserazide, 4 : 1); (iii) an l-dopa group, administered 60 mg/kg l-dopa; and (iv) a group coadministered 15 mg/kg β-asarone and 60 mg/kg l-dopa. All drugs (or normal saline) were administered intragastrically twice a day for 7 days. Then, plasma and striatum concentrations of DA, l-dopa, 5-hydroxytryptamine (5-HT), homovanillic acid (HVA), 3,4-dihydroxyphenylacetic acid (DOPAC), tyrosine hydroxylase (TH), catechol-O-methyltransferase (COMT) and monoamine oxidase B (MAO-B) were determined. In the group coadministered β-asarone and l-dopa, there was a decline in plasma and striatal concentrations of l-dopa; however, DA and DOPAC concentrations increased in the striatum and plasma and plasma HVA concentrations increased, whereas there was no significant change in striatal levels. Concentrations of 5-HT in the striatum and plasma were similar in the coadministered and Madopar-treated groups. In addition, plasma and striatal COMT levels decreased after coadministration of β-asarone and l-dopa, whereas there were no significant differences in MAO-B concentrations among groups. Furthermore, coadministration of β-asarone and l-dopa increased plasma TH concentrations. Altogether, β-asarone affects the conversion of l-dopa to DA by modulating COMT activity and DA metabolism. The mechanism of coadministration is different from that of Madopar in Parkinson's disease (PD) treatment. Thus, the coadministration of β-asarone and l-dopa may be beneficial in the treatment of PD.

  2. 5-hydroxytryptamine- and dopamine-releasing effects of ring-substituted amphetamines on rat brain: a comparative study using in vivo microdialysis.

    PubMed

    Matsumoto, T; Maeno, Y; Kato, H; Seko-Nakamura, Y; Monma-Ohtaki, J; Ishiba, A; Nagao, M; Aoki, Y

    2014-08-01

    Using in vivo microdialysis, a comparative study was conducted to examine the effects of amphetamine-related compounds (methamphetamine, MAP; 3,4-methylenedioxymethamphetamine, MDMA; p-methoxyamphetamine, PMA; p-methoxymethamphetamine, PMMA; 4-methylthioamphetamine, 4-MTA; 3,4,5-trimethoxyamphetamine, TMA; 2,5-dimethoxy-4-iodoamphetamine, DOI) on extracellular levels of serotonin (5-HT) and dopamine (DA). Dialysates were assayed using HPLC equipped with electrochemical detector following i.p. administration with each drug at a dose of 5 mg/kg. MAP was found to drastically and rapidly increase 5-HT and DA levels (870% and 1460%, respectively). PMA, PMMA, and 4-MTA slightly increased DA levels (150-290%) but remarkably increased 5-HT levels (540-900%). In contrast, TMA and DOI caused no detectable changes in levels of both monoamines. We observed that the potent DA-releasing action of MAP was remarkably decreased by introduction of methoxy or methylthio group at the para position (MAP vs. PMMA or 4-MTA), but introduction of two additional adjacent methoxy groups into PMA totally abolished its 5-HT-/DA-releasing action (PMA vs. TMA). In addition, para-mono-substituted compounds inhibited both monoamine oxidase (MAO) enzymes more strongly than other compounds; PMA and 4-MTA exhibited submicromolar IC50 values for MAO-A. On the other hand, TMA scarcely affected the activity of both MAO enzymes as well as extracellular levels of 5-HT and DA. In this comparative study, MDMA, PMA, and 4-MTA functioned similar to PMMA, a typical empathogen; these findings therefore could be helpful in clarifying the psychopharmacological properties of amphetamine-related, empathogenic designer drugs.

  3. The Importance of Vocal Affect to Bimodal Processing of Emotion: Implications for Individuals with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Zupan, Barbra; Neumann, Dawn; Babbage, Duncan R.; Willer, Barry

    2009-01-01

    Persons with traumatic brain injury (TBI) often have difficulty recognizing emotion in others. This is likely due to difficulties in interpreting non-verbal cues of affect. Although deficits in interpreting facial cues of affect are being widely explored, interpretation of vocal cues of affect has received much less attention. Accurate…

  4. Towards Tunable Consensus Clustering for Studying Functional Brain Connectivity During Affective Processing.

    PubMed

    Liu, Chao; Abu-Jamous, Basel; Brattico, Elvira; Nandi, Asoke K

    2017-03-01

    In the past decades, neuroimaging of humans has gained a position of status within neuroscience, and data-driven approaches and functional connectivity analyses of functional magnetic resonance imaging (fMRI) data are increasingly favored to depict the complex architecture of human brains. However, the reliability of these findings is jeopardized by too many analysis methods and sometimes too few samples used, which leads to discord among researchers. We propose a tunable consensus clustering paradigm that aims at overcoming the clustering methods selection problem as well as reliability issues in neuroimaging by means of first applying several analysis methods (three in this study) on multiple datasets and then integrating the clustering results. To validate the method, we applied it to a complex fMRI experiment involving affective processing of hundreds of music clips. We found that brain structures related to visual, reward, and auditory processing have intrinsic spatial patterns of coherent neuroactivity during affective processing. The comparisons between the results obtained from our method and those from each individual clustering algorithm demonstrate that our paradigm has notable advantages over traditional single clustering algorithms in being able to evidence robust connectivity patterns even with complex neuroimaging data involving a variety of stimuli and affective evaluations of them. The consensus clustering method is implemented in the R package "UNCLES" available on http://cran.r-project.org/web/packages/UNCLES/index.html .

  5. Functional connectivity in the resting brain as biological correlate of the Affective Neuroscience Personality Scales.

    PubMed

    Deris, Nadja; Montag, Christian; Reuter, Martin; Weber, Bernd; Markett, Sebastian

    2017-02-15

    According to Jaak Panksepp's Affective Neuroscience Theory and the derived self-report measure, the Affective Neuroscience Personality Scales (ANPS), differences in the responsiveness of primary emotional systems form the basis of human personality. In order to investigate neuronal correlates of personality, the underlying neuronal circuits of the primary emotional systems were analyzed in the present fMRI-study by associating the ANPS to functional connectivity in the resting brain. N=120 healthy participants were invited for the present study. The results were reinvestigated in an independent, smaller sample of N=52 participants. A seed-based whole brain approach was conducted with seed-regions bilaterally in the basolateral and superficial amygdalae. The selection of seed-regions was based on meta-analytic data on affective processing and the Juelich histological atlas. Multiple regression analyses on the functional connectivity maps revealed associations with the SADNESS-scale in both samples. Functional resting-state connectivity between the left basolateral amygdala and a cluster in the postcentral gyrus, and between the right basolateral amygdala and clusters in the superior parietal lobe and subgyral in the parietal lobe was associated with SADNESS. No other ANPS-scale revealed replicable results. The present findings give first insights into the neuronal basis of the SADNESS-scale of the ANPS and support the idea of underlying neuronal circuits. In combination with previous research on genetic associations of the ANPS functional resting-state connectivity is discussed as a possible endophenotype of personality.

  6. Stress shifts brain activation towards ventral 'affective' areas during emotional distraction.

    PubMed

    Oei, Nicole Y L; Veer, Ilya M; Wolf, Oliver T; Spinhoven, Philip; Rombouts, Serge A R B; Elzinga, Bernet M

    2012-04-01

    Acute stress has been shown to impair working memory (WM), and to decrease prefrontal activation during WM in healthy humans. Stress also enhances amygdala responses towards emotional stimuli. Stress might thus be specifically detrimental to WM when one is distracted by emotional stimuli. Usually, emotional stimuli presented as distracters in a WM task slow down performance, while evoking more activation in ventral 'affective' brain areas, and a relative deactivation in dorsal 'executive' areas. We hypothesized that after acute social stress, this reciprocal dorsal-ventral pattern would be shifted towards greater increase of ventral 'affective' activation during emotional distraction, while impairing WM performance. To investigate this, 34 healthy men, randomly assigned to a social stress or control condition, performed a Sternberg WM task with emotional and neutral distracters inside an MRI scanner. Results showed that WM performance after stress tended to be slower during emotional distraction. Brain activations during emotional distraction was enhanced in ventral affective areas, while dorsal executive areas tended to show less deactivation after stress. These results suggest that acute stress shifts priority towards processing of emotionally significant stimuli, at the cost of WM performance.

  7. ARPP-21, a cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions. I. Purification and characterization of the protein from bovine caudate nucleus.

    PubMed

    Hemmings, H C; Greengard, P

    1989-03-01

    ARPP-21 (cAMP-regulated phosphoprotein, Mr = 21,000 as determined by SDS/PAGE) is a major cytosolic substrate for cAMP-stimulated protein phosphorylation in dopamine-innervated regions of rat CNS (Walaas et al., 1983c). This acidic phosphoprotein has now been identified in bovine caudate nucleus cytosol and purified to homogeneity from this source. The purification procedure involved diethylaminoethyl-cellulose chromatography, ammonium sulfate fractionation, phenyl-Sepharose CL-4B chromatography, and fast protein liquid chromatography using Mono Q anion-exchange resin. Two isoforms of ARPP-21 (ARPP-21A and ARPP-21B) were obtained, which were present in approximately equal amounts in the starting material. ARPP-21A was purified 2610-fold with a final yield of 20% and ARPP-21B was purified 2940-fold with a final yield of 21%. The purified preparations of both isoforms were judged to be homogenous by SDS/PAGE. ARPP-21A and ARPP-21B yielded identical 2-dimensional thin-layer tryptic phosphopeptide maps, identical amino acid compositions and closely related, but distinct, reverse-phase high-pressure liquid chromatograms of tryptic digests. The amino acid composition of ARPP-21 showed a high content of glutamic acid/glutamine, and no methionine, tryptophan, tyrosine, phenylalanine, or histidine. ARPP-21 was stable to heat denaturation and to 50% (vol/vol) ethanol treatment and was partially soluble at pH 2. The Mr determined for ARPP-21 by SDS/PAGE was 21,000. The Stokes radius of ARPP-21 was 26.3 A, and the sedimentation coefficient of ARPP-21 was 1.3 S; these values yield a calculated molecular mass of 13,700 Da and a frictional ratio of 1.7, indicative of an elongated tertiary structure. ARPP-21 was an excellent substrate for cAMP-dependent protein kinase and was either not phosphorylated or only poorly phosphorylated by cGMP-dependent protein kinase, calcium/calmodulin-dependent protein kinase I, calcium/calmodulin-dependent protein kinase II, casein kinase II, or

  8. Identification of Differentially Expressed Genes through Integrated Study of Alzheimer’s Disease Affected Brain Regions

    PubMed Central

    Berretta, Regina; Moscato, Pablo

    2016-01-01

    Background Alzheimer’s disease (AD) is the most common form of dementia in older adults that damages the brain and results in impaired memory, thinking and behaviour. The identification of differentially expressed genes and related pathways among affected brain regions can provide more information on the mechanisms of AD. In the past decade, several studies have reported many genes that are associated with AD. This wealth of information has become difficult to follow and interpret as most of the results are conflicting. In that case, it is worth doing an integrated study of multiple datasets that helps to increase the total number of samples and the statistical power in detecting biomarkers. In this study, we present an integrated analysis of five different brain region datasets and introduce new genes that warrant further investigation. Methods The aim of our study is to apply a novel combinatorial optimisation based meta-analysis approach to identify differentially expressed genes that are associated to AD across brain regions. In this study, microarray gene expression data from 161 samples (74 non-demented controls, 87 AD) from the Entorhinal Cortex (EC), Hippocampus (HIP), Middle temporal gyrus (MTG), Posterior cingulate cortex (PC), Superior frontal gyrus (SFG) and visual cortex (VCX) brain regions were integrated and analysed using our method. The results are then compared to two popular meta-analysis methods, RankProd and GeneMeta, and to what can be obtained by analysing the individual datasets. Results We find genes related with AD that are consistent with existing studies, and new candidate genes not previously related with AD. Our study confirms the up-regualtion of INFAR2 and PTMA along with the down regulation of GPHN, RAB2A, PSMD14 and FGF. Novel genes PSMB2, WNK1, RPL15, SEMA4C, RWDD2A and LARGE are found to be differentially expressed across all brain regions. Further investigation on these genes may provide new insights into the development of AD

  9. Breakfast staple types affect brain gray matter volume and cognitive function in healthy children.

    PubMed

    Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Asano, Michiko; Asano, Kohei; Kawashima, Ryuta

    2010-12-08

    Childhood diet is important for brain development. Furthermore, the quality of breakfast is thought to affect the cognitive functioning of well-nourished children. To analyze the relationship among breakfast staple type, gray matter volume, and intelligence quotient (IQ) in 290 healthy children, we used magnetic resonance images and applied voxel-based morphometry. We divided subjects into rice, bread, and both groups according to their breakfast staple. We showed that the rice group had a significantly larger gray matter ratio (gray matter volume percentage divided by intracranial volume) and significantly larger regional gray matter volumes of several regions, including the left superior temporal gyrus. The bread group had significantly larger regional gray and white matter volumes of several regions, including the right frontoparietal region. The perceptual organization index (POI; IQ subcomponent) of the rice group was significantly higher than that of the bread group. All analyses were adjusted for age, gender, intracranial volume, socioeconomic status, average weekly frequency of having breakfast, and number of side dishes eaten for breakfast. Although several factors may have affected the results, one possible mechanism underlying the difference between the bread and the rice groups may be the difference in the glycemic index (GI) of these two substances; foods with a low GI are associated with less blood-glucose fluctuation than are those with a high GI. Our study suggests that breakfast staple type affects brain gray and white matter volumes and cognitive function in healthy children; therefore, a diet of optimal nutrition is important for brain maturation during childhood and adolescence.

  10. Predicting acute affective symptoms after deep brain stimulation surgery in Parkinson's disease.

    PubMed

    Schneider, Frank; Reske, Martina; Finkelmeyer, Andreas; Wojtecki, Lars; Timmermann, Lars; Brosig, Timo; Backes, Volker; Amir-Manavi, Atoosa; Sturm, Volker; Habel, Ute; Schnitzler, Alfons

    2010-01-01

    The current study aimed to investigate predictive markers for acute symptoms of depression and mania following deep brain stimulation (DBS) surgery of the subthalamic nucleus for the treatment of motor symptoms in Parkinson's disease (PD). Fourteen patients with PD (7 males) were included in a prospective longitudinal study. Neuropsychological tests, psychopathology scales and tests of motor functions were administered at several time points prior to and after neurosurgery. Pre-existing psychopathological and motor symptoms predicted postoperative affective side effects of DBS surgery. As these can easily be assessed, they should be considered along with other selection criteria for DBS surgery.

  11. Facial Affect Recognition Training Through Telepractice: Two Case Studies of Individuals with Chronic Traumatic Brain Injury.

    PubMed

    Williamson, John; Isaki, Emi

    2015-01-01

    The use of a modified Facial Affect Recognition (FAR) training to identify emotions was investigated with two case studies of adults with moderate to severe chronic (> five years) traumatic brain injury (TBI). The modified FAR training was administered via telepractice to target social communication skills. Therapy consisted of identifying emotions through static facial expressions, personally reflecting on those emotions, and identifying sarcasm and emotions within social stories and role-play. Pre- and post-therapy measures included static facial photos to identify emotion and the Prutting and Kirchner Pragmatic Protocol for social communication. Both participants with chronic TBI showed gains on identifying facial emotions on the static photos.

  12. Facial Affect Recognition Training Through Telepractice: Two Case Studies of Individuals with Chronic Traumatic Brain Injury

    PubMed Central

    WILLIAMSON, JOHN; ISAKI, EMI

    2015-01-01

    The use of a modified Facial Affect Recognition (FAR) training to identify emotions was investigated with two case studies of adults with moderate to severe chronic (> five years) traumatic brain injury (TBI). The modified FAR training was administered via telepractice to target social communication skills. Therapy consisted of identifying emotions through static facial expressions, personally reflecting on those emotions, and identifying sarcasm and emotions within social stories and role-play. Pre- and post-therapy measures included static facial photos to identify emotion and the Prutting and Kirchner Pragmatic Protocol for social communication. Both participants with chronic TBI showed gains on identifying facial emotions on the static photos. PMID:27563379

  13. Beating a dead horse: dopamine and Parkinson disease.

    PubMed

    Ahlskog, J Eric

    2007-10-23

    Our collective thinking about Parkinson disease (PD) has been heavily influenced by the dramatic response to dopamine replacement therapy. For progress to continue, however, we need to take a broad view of this disorder, which includes recognition of the following. First, substantial evidence now indicates that dopamine oxidation is unlikely to substantially contribute to the pathogenesis of PD. Second, levodopa therapy is not associated with neurotoxicity. Third, the first neurons affected in PD are nondopaminergic; the substantia nigra and other dopaminergic nuclei are affected only later in the course. Thus, PD is much more than degeneration of the dopaminergic nigrostriatal system. Fourth, in the current era, most of the disability of advancing PD is from involvement of nondopaminergic systems, including levodopa-refractory motor symptoms, dementia, and dysautonomia. Motor complications associated with levodopa therapy can be problematic, but they can be controlled in most, using available medications and deep brain stimulation surgery. We have reached the point of diminishing therapeutic returns with drugs acting on dopamine systems; more dopaminergic medications will provide only modest incremental benefit over current therapies. Finally, the benefits from transplantation surgeries aimed at restoring dopaminergic neurotransmission will be limited because later-stage PD disability comes from nondopaminergic substrates. Scale.

  14. [Regulation of neurogenesis: factors affecting of new neurons formation in adult mammals brain].

    PubMed

    Respondek, Michalina; Buszman, Ewa

    2015-12-31

    Neurogenesis is a complex and multi-step process of generating completely functional neurons. This process in adult brain is based on pluripotentional neuronal stem cells (NSC), which are able to proliferation and differentiation into mature neurons or glial cells. NSC are located in subgranular zone inside hippocampus and in subventricular zone. The new neurons formation depends on many endo- and exogenous factors which modulate each step of neurogenesis. This article describes the most important regulators of adult neurogenesis, mainly: neurotrophins, growth factors, hormones, neurotransmitters and microenvironment of NSC. Some drugs, especially antipsychotics, antidepressants and normothymics may affect the neurogenic properties of adult brain. Moreover pathological processes such as neuroinflammation, stroke or epilepsy are able to induce proliferation of NSC. The proneurogenic effects of psychotropic drugs and pathological processes are associated with their ability to increase some hormones and neurotrophins level, as well as with rising the expression of antiapoptotic Bcl-2 protein and metalloproteinase MMP-2. Additionaly, some drugs, for example haloperidol, are able to block prolactin and dopaminergic neuroblasts receptors. Down-regulation of adult neurogenesis is associated with alcohol abuse and high stress level. Negative effect of many drugs, such as cytostatics, COX-2 inhibitors and opioides was also observed. The proneurogenic effect of described factors suggest their broad therapeutic potential and gives a new perspective on an effective and modern treatment of many neuropsychiatric disorders. This effect can also help to clarify the pathogenesis of disorders associated with proliferation and degeneration of adult brain cells.

  15. How genetics affects the brain to produce higher-level dysfunctions in myotonic dystrophy type 1.

    PubMed

    Serra, Laura; Petrucci, Antonio; Spanò, Barbara; Torso, Mario; Olivito, Giusy; Lispi, Ludovico; Costanzi-Porrini, Sandro; Giulietti, Giovanni; Koch, Giacomo; Giacanelli, Manlio; Caltagirone, Carlo; Cercignani, Mara; Bozzali, Marco

    2015-01-01

    Myotonic dystrophy type 1 (DM1) is a multisystemic disorder dominated by muscular impairment and brain dysfunctions. Although brain damage has previously been demonstrated in DM1, its associations with the genetics and clinical/neuropsychological features of the disease are controversial. This study assessed the differential role of gray matter (GM) and white matter (WM) damage in determining higher-level dysfunctions in DM1. Ten patients with genetically confirmed DM1 and 16 healthy How genetics affects the brain to produce higher-level dysfunctions in myotonic dystrophy type 1 matched controls entered the study. The patients underwent a neuropsychological assessment and quantification of CTG triplet expansion. All the subjects underwent MR scanning at 3T, with studies including T1-weighted volumes and diffusion-weighted images. Voxel-based morphometry and tractbased spatial statistics were used for unbiased quantification of regional GM atrophy and WM integrity. The DM1 patients showed widespread involvement of both tissues. The extent of the damage correlated with CTG triplet expansion and cognition. This study supports the idea that genetic abnormalities in DM1mainly target the WM, but GM involvement is also crucial in determining the clinical characteristics of DM1.

  16. Reconciling cognitive and affective neuroscience perspectives on the brain basis of emotional experience.

    PubMed

    Panksepp, Jaak; Lane, Richard D; Solms, Mark; Smith, Ryan

    2016-09-15

    The "affective" and "cognitive" neuroscience approaches to understanding emotion (AN and CN, respectively) represent potentially synergistic, but as yet unreconciled, theoretical perspectives, which may in part stem from the methods that these distinct perspectives routinely employ-one focusing on animal brain emotional systems (AN) and one on diverse human experimental approaches (CN). Here we present an exchange in which each approach (1) describes its own theoretical perspective, (2) offers a critique of the other perspective, and then (3) responds to each other's critique. We end with a summary of points of agreement and disagreement, and describe possible future experiments that could help resolve the remaining controversies. Future work should (i) further characterize the structure/function of subcortical circuitry with respect to its role in generating emotion, and (ii) further investigate whether sub-neocortical activations alone are sufficient (as opposed to merely necessary) for affective experiences, or whether subsequent cortical representation of an emotional response is also required.

  17. Social brain development and the affective consequences of ostracism in adolescence.

    PubMed

    Sebastian, Catherine; Viding, Essi; Williams, Kipling D; Blakemore, Sarah-Jayne

    2010-02-01

    Recent structural and functional imaging studies have provided evidence for continued development of brain regions involved in social cognition during adolescence. In this paper, we review this rapidly expanding area of neuroscience and describe models of neurocognitive development that have emerged recently. One implication of these models is that neural development underlies commonly observed adolescent phenomena such as susceptibility to peer influence and sensitivity to peer rejection. Experimental behavioural evidence of rejection sensitivity in adolescence is currently sparse. Here, we describe a study that directly compared the affective consequences of an experimental ostracism manipulation (Cyberball) in female adolescents and adults. The ostracism condition led to significantly greater affective consequences in the adolescents compared with adults. This suggests that the ability to regulate distress resulting from ostracism continues to develop between adolescence and adulthood. The results are discussed in the context of models of neurocognitive development.

  18. Dopamine Modulates Cell Cycle in the Lateral Ganglionic Eminence

    PubMed Central

    Ohtani, Nobuyo; Goto, Tomohide; Waeber, Christian; Bhide, Pradeep G.

    2005-01-01

    Dopamine is a neuromodulator the functions of which in the regulation of complex behaviors such as mood, motivation, and attention are well known. Dopamine appears in the brain early in the embryonic period when none of those behaviors is robust, raising the possibility that dopamine may influence brain development. The effects of dopamine on specific developmental processes such as neurogenesis are not fully characterized. The neostriatum is a dopamine-rich region of the developing and mature brain. If dopamine influenced neurogenesis, the effects would likely be pronounced in the neostriatum. Therefore, we examined whether dopamine influenced neostriatal neurogenesis by influencing the cell cycle of progenitor cells in the lateral ganglionic eminence (LGE), the neuroepithelial precursor of the neostriatum. We show that dopamine arrives in the LGE via the nigrostriatal pathway early in the embryonic period and that neostriatal neurogenesis progresses in a dopamine-rich milieu. Dopamine D1-like receptor activation reduces entry of progenitor cells from the G1-to S-phase of the cell cycle, whereas D2-like receptor activation produces the opposite effects by promoting G1- to S-phase entry. D1-like effects are prominent in the ventricular zone, and D2-like effects are prominent in the subventricular zone. The overall effects of dopamine on the cell cycle are D1-like effects, most likely because of the preponderance of D1-like binding sites in the embryonic neostriatum. These data reveal a novel developmental role for dopamine and underscore the relevance of dopaminergic signaling in brain development. PMID:12684471

  19. Chaotic behavior in dopamine neurodynamics.

    PubMed Central

    King, R; Barchas, J D; Huberman, B A

    1984-01-01

    We report the results of the dynamics of a model of the central dopaminergic neuronal system. In particular, for certain values of a parameter k, which monitors the efficacy of dopamine at the postsynaptic receptor, chaotic solutions of the dynamical equations appear--a prediction that correlates with the observed increased variability in behavior among schizophrenics, the rapid fluctuations in motor activity among Parkinsonian patients treated chronically with L-dopa, and the lability of mood in some patients with an affective disorder. Moreover our hypothesis offers specific results concerning the appearance or disappearance of erratic solutions as a function of k and the external input to the dopamine neuronal system. PMID:6583705

  20. Chaotic behavior in dopamine neurodynamics.

    PubMed

    King, R; Barchas, J D; Huberman, B A

    1984-02-01

    We report the results of the dynamics of a model of the central dopaminergic neuronal system. In particular, for certain values of a parameter k, which monitors the efficacy of dopamine at the postsynaptic receptor, chaotic solutions of the dynamical equations appear--a prediction that correlates with the observed increased variability in behavior among schizophrenics, the rapid fluctuations in motor activity among Parkinsonian patients treated chronically with L-dopa, and the lability of mood in some patients with an affective disorder. Moreover our hypothesis offers specific results concerning the appearance or disappearance of erratic solutions as a function of k and the external input to the dopamine neuronal system.

  1. Environmental enrichment lessens cognitive decline in APP23 mice without affecting brain sirtuin expression.

    PubMed

    Polito, Letizia; Chierchia, Armando; Tunesi, Marta; Bouybayoune, Ihssane; Kehoe, Patrick Gavin; Albani, Diego; Forloni, Gianluigi

    2014-01-01

    Environmental enrichment (EE) is a non-pharmacological intervention reported to counteract pathological signs in models of Alzheimer's disease (AD). We developed EE protocols in APP23 mice and evaluated how they influenced cognitive decline and brain amyloid-β (Aβ) burden. We also investigated the involvement of sirtuins (SIRTs) as a possible molecular mediator of EE, by assessing hippocampal and cortical mRNA and protein levels of the SIRT family members (SIRT1 to SIRT7). APP23 transgenic mice were moved to EE cages (TG-EEs) starting from 3 months of age. TG-EEs were compared to transgenic mice housed in standard cages (TG-SHs) and to wild-type littermates in the two housing conditions (WT-EEs and WT-SHs). At 7 months of age, all mice were tested for behavioral performance with Morris Water Maze (MWM) and visual novel Object Recognition Test (vORT). After a month, a group underwent biochemical analyses, while another group continued in the EE environment till 18 months of age, when Aβ plaque load was assessed. At 7 months, TG-SHs had impaired behavioral performance in MWM and vORT. In contrast, TG-EE mice had restored behavioral performance. At 8 months, EE did not affect AβPP expression or processing, Aβ40/42, pGlu-Aβ3-40/3-42, or Aβ oligomer level. The expression of two Aβ degrading enzymes (insulin degrading enzyme and neprilysin) was not modulated by EE. Brain sirtuin mRNA and protein levels were unchanged, while brain-derived neurotrophic factor expression increased after EE. Aβ deposition was attenuated in 18-month-old TG-EE mice, without apparent reduction of neuroinflammatory signs. We suggest that EE had a beneficial effect on cognitive performance and lessened long-term Aβ accumulation, but brain sirtuin expression was not modulated when cognitive impairment was restored.

  2. APOE Polymorphism Affects Brain Default Mode Network in Healthy Young Adults

    PubMed Central

    Su, Yun Yan; Liang, Xue; Schoepf, U. Joseph; Varga-Szemes, Akos; West, Henry C.; Qi, Rongfeng; Kong, Xiang; Chen, Hui Juan; Lu, Guang Ming; Zhang, Long Jiang

    2015-01-01

    Abstract To investigate the effect of apolipoprotein E (APOE) gene polymorphism on the resting-state brain function, structure, and blood flow in healthy adults younger than 35 years, using multimodality magnetic resonance (MR) imaging. Seventy-six healthy adults (34 men, 23.7 ± 2.8 y; 31 APOE ε4/ε3 carriers, 31 ε3/ε3 carriers, and 14 ε2/ε3 carriers) were included. For resting-state functional MRI data, default mode network (DMN) and amplitude of low-frequency fluctuation maps were extracted and analyzed. Voxel-based morphometry, diffusion tensor imaging from structural imaging, and cerebral blood flow based on arterial spin labeling MR imaging were also analyzed. Correlation analysis was performed between the above mentioned brain parameters and neuropsychological tests. There were no differences in neuropsychological performances, amplitude of low-frequency fluctuation, gray/white matter volumes, fractional anisotropy, mean diffusivity, or whole brain cerebral blood flow among the 3 groups. As for DMN, the ε4/ε3 group showed increased functional connectivities (FCs) in the left medial prefrontal cortex and bilateral posterior cingulate cortices/precuneus compared with the ε3/ε3 group, and increased FCs in the left medial prefrontal cortex and right temporal lobe compared with the ε2/ε3 group (P < 0.05, Alphasim corrected). No differences of DMN FCs were found between the ε2/ε3 and ε3/ε3 groups. FCs in the right temporal lobe positively correlated with the performances of vocabulary learning, delayed recall, and graph recall in all participants (P < 0.05). APOE ε4 carriers exhibited significantly increased DMN FCs when compared with ε3 and ε2 carriers. The ε4 affects DMN FCs before brain structure and blood flow in cognitively intact young patients, suggesting DMN FC may serve as a potential biomarker for the detection of early manifestations of genetic effect. PMID:26717353

  3. Large-scale brain networks are distinctly affected in right and left mesial temporal lobe epilepsy.

    PubMed

    de Campos, Brunno Machado; Coan, Ana Carolina; Lin Yasuda, Clarissa; Casseb, Raphael Fernandes; Cendes, Fernando

    2016-09-01

    Mesial temporal lobe epilepsy (MTLE) with hippocampus sclerosis (HS) is associated with functional and structural alterations extending beyond the temporal regions and abnormal pattern of brain resting state networks (RSNs) connectivity. We hypothesized that the interaction of large-scale RSNs is differently affected in patients with right- and left-MTLE with HS compared to controls. We aimed to determine and characterize these alterations through the analysis of 12 RSNs, functionally parceled in 70 regions of interest (ROIs), from resting-state functional-MRIs of 99 subjects (52 controls, 26 right- and 21 left-MTLE patients with HS). Image preprocessing and statistical analysis were performed using UF(2) C-toolbox, which provided ROI-wise results for intranetwork and internetwork connectivity. Intranetwork abnormalities were observed in the dorsal default mode network (DMN) in both groups of patients and in the posterior salience network in right-MTLE. Both groups showed abnormal correlation between the dorsal-DMN and the posterior salience, as well as between the dorsal-DMN and the executive-control network. Patients with left-MTLE also showed reduced correlation between the dorsal-DMN and visuospatial network and increased correlation between bilateral thalamus and the posterior salience network. The ipsilateral hippocampus stood out as a central area of abnormalities. Alterations on left-MTLE expressed a low cluster coefficient, whereas the altered connections on right-MTLE showed low cluster coefficient in the DMN but high in the posterior salience regions. Both right- and left-MTLE patients with HS have widespread abnormal interactions of large-scale brain networks; however, all parameters evaluated indicate that left-MTLE has a more intricate bihemispheric dysfunction compared to right-MTLE. Hum Brain Mapp 37:3137-3152, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  4. Seasonal difference in brain serotonin transporter binding predicts symptom severity in patients with seasonal affective disorder.

    PubMed

    Mc Mahon, Brenda; Andersen, Sofie B; Madsen, Martin K; Hjordt, Liv V; Hageman, Ida; Dam, Henrik; Svarer, Claus; da Cunha-Bang, Sofi; Baaré, William; Madsen, Jacob; Hasholt, Lis; Holst, Klaus; Frokjaer, Vibe G; Knudsen, Gitte M

    2016-05-01

    Cross-sectional neuroimaging studies in non-depressed individuals have demonstrated an inverse relationship between daylight minutes and cerebral serotonin transporter; this relationship is modified by serotonin-transporter-linked polymorphic region short allele carrier status. We here present data from the first longitudinal investigation of seasonal serotonin transporter fluctuations in both patients with seasonal affective disorder and in healthy individuals. Eighty (11)C-DASB positron emission tomography scans were conducted to quantify cerebral serotonin transporter binding; 23 healthy controls with low seasonality scores and 17 patients diagnosed with seasonal affective disorder were scanned in both summer and winter to investigate differences in cerebral serotonin transporter binding across groups and across seasons. The two groups had similar cerebral serotonin transporter binding in the summer but in their symptomatic phase during winter, patients with seasonal affective disorder had higher serotonin transporter than the healthy control subjects (P = 0.01). Compared to the healthy controls, patients with seasonal affective disorder changed their serotonin transporter significantly less between summer and winter (P < 0.001). Further, the change in serotonin transporter was sex- (P = 0.02) and genotype- (P = 0.04) dependent. In the patients with seasonal affective disorder, the seasonal change in serotonin transporter binding was positively associated with change in depressive symptom severity, as indexed by Hamilton Rating Scale for Depression - Seasonal Affective Disorder version scores (P = 0.01). Our findings suggest that the development of depressive symptoms in winter is associated with a failure to downregulate serotonin transporter levels appropriately during exposure to the environmental stress of winter, especially in individuals with high predisposition to affective disorders.media-1vid110.1093/brain/aww043_video_abstractaww043_video_abstract.

  5. The effects of catechol O-methyltransferase genotype on brain activation elicited by affective stimuli and cognitive tasks.

    PubMed

    Heinz, Andreas; Smolka, Michael N

    2006-01-01

    Catechol-O-methyltransferase (COMT) degrades the catecholamine neurotransmitters dopamine, epinephrine, and norepinephrine. A functional polymorphism in the COMT gene (val158 met) accounts for a four-fold variation in enzyme activity. The low activity met158 allele has been associated with improved working memory, executive functioning, and attentional control, but also with a higher risk of anxiety-related behaviors. In spite of the strong effect of the COMT genotype on enzyme activity, its effects on behavior are moderate, accounting for only 4% of variance in task performance. Studies of individuals with intermediate phenotypes during activities such as task-dependent brain activation, may more sensitively detect gene effects on the brain. A series of studies using functional magnetic resonance imaging (fMRI) assessed the effects of the COMT val158 met genotype on central processing during working memory, attentional control, and emotional tasks. fMRI revealed a more focused response in the prefrontal cortex (PFC) of met158 allele carriers during a working memory task. A comparable effect during the performance of an attentional control task in the cingulate cortex was also observed. These data indicate that met158 allele load is associated with improved processing efficiency in the PFC and cingulate, which might be due to lower prefrontal dopamine (DA) metabolism, higher DA concentrations, and an increased neuronal signal-to-noise ratio during information processing. During performance of an emotional task, reactivity to unpleasant visual stimuli was positively correlated with the number of met158 alleles in the amygdala, as well as in other limbic and paralimbic nodes. This increased limbic reactivity to unpleasant stimuli might be the underlying cause of the lower emotional resilience against negative mood states observed in individuals with a higher met158 allele load. Thus the met158 allele seems to be beneficial during the performance of working memory and

  6. Alcohol Affects Brain Functional Connectivity and its Coupling with Behavior: Greater Effects in Male Heavy Drinkers

    PubMed Central

    Shokri-Kojori, Ehsan; Tomasi, Dardo; Wiers, Corinde E.; Wang, Gene-Jack; Volkow, Nora D.

    2016-01-01

    Acute and chronic alcohol exposure significantly affect behavior but the underlying neurobiological mechanisms are still poorly understood. Here we used functional connectivity density (FCD) mapping to study alcohol-related changes in resting brain activity and their association with behavior. Heavy drinkers (HD; N=16; 16 males) and normal controls (NM; N=24; 14 males) were tested after placebo and after acute alcohol administration. Group comparisons showed that NM had higher FCD in visual and prefrontal cortices, default-mode network regions, and thalamus, while HD had higher FCD in cerebellum. Acute alcohol significantly increased FCD within the thalamus, impaired cognitive and motor functions, and affected self-reports of mood/drug effects in both groups. Partial least squares regression showed alcohol-induced changes in mood/drug effects were associated with changes in thalamic FCD in both groups. Disruptions in motor function were associated with increases in cerebellar FCD in NM and thalamus FCD in HD. Alcohol-induced declines in cognitive performance were associated with connectivity increases in visual cortex and thalamus in NM, but in HD, increases in precuneus FCD were associated with improved cognitive performance. Acute alcohol reduced “neurocognitive coupling”, the association between behavioral performance and FCD (indexing brain activity), an effect that was accentuated in HD compared to NM. Findings suggest that reduced cortical connectivity in HD contribute to decline in cognitive abilities associated with heavy alcohol consumption, whereas increased cerebellar connectivity in HD may have compensatory effects on behavioral performance. The results reveal how drinking history alters the association between brain functional connectivity density and individual differences in behavioral performance. PMID:27021821

  7. Alcohol affects brain functional connectivity and its coupling with behavior: greater effects in male heavy drinkers.

    PubMed

    Shokri-Kojori, E; Tomasi, D; Wiers, C E; Wang, G-J; Volkow, N D

    2016-03-29

    Acute and chronic alcohol exposure significantly affect behavior but the underlying neurobiological mechanisms are still poorly understood. Here, we used functional connectivity density (FCD) mapping to study alcohol-related changes in resting brain activity and their association with behavior. Heavy drinkers (HD, N=16, 16 males) and normal controls (NM, N=24, 14 males) were tested after placebo and after acute alcohol administration. Group comparisons showed that NM had higher FCD in visual and prefrontal cortices, default mode network regions and thalamus, while HD had higher FCD in cerebellum. Acute alcohol significantly increased FCD within the thalamus, impaired cognitive and motor functions, and affected self-reports of mood/drug effects in both groups. Partial least squares regression showed that alcohol-induced changes in mood/drug effects were associated with changes in thalamic FCD in both groups. Disruptions in motor function were associated with increases in cerebellar FCD in NM and thalamus FCD in HD. Alcohol-induced declines in cognitive performance were associated with connectivity increases in visual cortex and thalamus in NM, but in HD, increases in precuneus FCD were associated with improved cognitive performance. Acute alcohol reduced 'neurocognitive coupling', the association between behavioral performance and FCD (indexing brain activity), an effect that was accentuated in HD compared with NM. Findings suggest that reduced cortical connectivity in HD contribute to decline in cognitive abilities associated with heavy alcohol consumption, whereas increased cerebellar connectivity in HD may have compensatory effects on behavioral performance. The results reveal how drinking history alters the association between brain FCD and individual differences in behavioral performance.Molecular Psychiatry advance online publication, 29 March 2016; doi:10.1038/mp.2016.25.

  8. Affective responses after different intensities of exercise in patients with traumatic brain injury

    PubMed Central

    Rzezak, Patricia; Caxa, Luciana; Santolia, Patricia; Antunes, Hanna K. M.; Suriano, Italo; Tufik, Sérgio; de Mello, Marco T.

    2015-01-01

    Background: Patients with traumatic brain injury (TBI) usually have mood and anxiety symptoms secondary to their brain injury. Exercise may be a cost-effective intervention for the regulation of the affective responses of this population. However, there are no studies evaluating the effects of exercise or the optimal intensity of exercise for this clinical group. Methods: Twelve male patients with moderate or severe TBI [mean age of 31.83 and SD of 9.53] and 12 age- and gender-matched healthy volunteers [mean age of 30.58 and SD of 9.53] participated in two sessions of exercise of high and moderate-intensity. Anxiety and mood was evaluated, and subjective assessment of experience pre- and post-exercise was assessed. A mixed between and within-subjects general linear model (GLM) analysis was conducted to compare groups [TBI, control] over condition [baseline, session 1, session 2] allowing for group by condition interaction to be determined. Planned comparisons were also conducted to test study hypotheses. Results: Although no group by condition interaction was observed, planned comparisons indicated that baseline differences between patients and controls in anxiety (Cohens’ d = 1.80), tension (d = 1.31), depression (d = 1.18), anger (d = 1.08), confusion (d = 1.70), psychological distress (d = 1.28), and physical symptoms (d = 1.42) disappear after one session of exercise, independently of the intensity of exercise. Conclusion: A single-section of exercise, regardless of exercise intensity, had a positive effect on the affective responses of patients with TBI both by increasing positive valence feelings and decreasing negative ones. Exercise can be an easily accessible intervention that may alleviate depressive symptoms related to brain injury. PMID:26161074

  9. Provocative motion causes fall in brain temperature and affects sleep in rats.

    PubMed

    Del Vecchio, Flavia; Nalivaiko, Eugene; Cerri, Matteo; Luppi, Marco; Amici, Roberto

    2014-08-01

    Neural substrate of nausea is poorly understood, contrasting the wealth of knowledge about the emetic reflex. One of the reasons for this knowledge deficit is limited number and face validity of animal models of nausea. Our aim was to search for new physiological correlates of nausea in rats. Specifically, we addressed the question whether provocative motion (40-min rotation at 0.5 Hz) affects sleep architecture, brain temperature, heart rate (HR) and arterial pressure. Six adult male Sprague–Dawley rats were instrumented for recordings of EEG, nuchal electromyographic, hypothalamic temperature and arterial pressure. Provocative motion had the following effects: (1) total abolition of REM sleep during rotation and its substantial reduction during the first hour post-rotation (from 20 ± 3 to 5 ± 1.5%); (2) reduction in NREM sleep, both during rotation (from 57 ± 6 to 19 ± 5%) and during the first hour post-rotation (from 56 ± 3 to 41 ± 9%); (3) fall in the brain temperature (from 37.1 ± 0.1 to 36.0 ± 0.1 °C); and (4) reduction in HR (from 375 ± 6 to 327 ± 7 bpm); arterial pressure was not affected. Ondansetron, a 5-HT3 antagonist, had no major effect on all observed parameters during both baseline and provocative motion. We conclude that in rats, provocative motion causes prolonged arousing effects, however without evidence of sympathetic activation that usually accompanies heightened arousal. Motion induced fall in the brain temperature complements and extends our previous observations in rats and suggests that similar to humans, provocative motion triggers coordinated thermoregulatory response, leading to hypothermia in this species.

  10. Trans-synaptic (GABA-dopamine) modulation of cocaine induced dopamine release: A potential therapeutic strategy for cocaine abuse

    SciTech Connect

    Dewey, S.L.; Straughter-Moore, R.; Chen, R.

    1995-05-01

    We recently developed a new experimental strategy for measuring interactions between functionally-linked neurotransmitter systems in the primate and human brain with PET. As part of this research, we demonstrated that increases in endogenous GABA concentrations significantly reduced striatal dopamine concentrations in the primate brain. We report here the application of the neurotransmitter interaction paradigm with PET and with microdialysis to the investigation of a novel therapeutic strategy for treating cocaine abuse based on the ability of GABA to inhibit cocaine induced increases in striatal dopamine. Using gamma-vinyl GABA (GVG, a suicide inhibitor of GABA transaminase), we performed a series of PET studies where animals received a baseline PET scan with labeled raclopride injection, animals received cocaine (2.0 mg/kg). Normally, a cocaine challenge significantly reduces the striatal binding of {sup 11}C-raclopride. However, in animals pretreated with GVG, {sup 11}C-raclopride binding was less affected by a cocaine challenge compared to control studies. Furthermore, microdialysis studies in freely moving rats demonstrate that GVG (300 mg/kg) significantly inhibited cocaine-induced increases in extracellular dopamine release. GVG also attenuated cocaine-induced increases in locomotor activity. However, at a dose of 100 mg/kg, GVG had no effect. Similar findings were obtained with alcohol. Alcohol pretreatment dose dependantly (1-4 g/kg) inhibited cocaine-induced increases in extracellular dopamine concentrations in freely moving rats. Taken together, these studies suggest that therapeutic strategies targeted at increasing central GABA concentrations may be beneficial for the treatment of cocaine abuse.

  11. The affective and cognitive processing of touch, oral texture, and temperature in the brain.

    PubMed

    Rolls, Edmund T

    2010-02-01

    Some of the principles of the representation of affective touch in the brain are described. Positively affective touch and temperature are represented in parts of the orbitofrontal and pregenual cingulate cortex. The orbitofrontal cortex is implicated in some of the affective aspects of touch that may be mediated through C fibre touch afferents, in that it is activated more by light touch to the forearm (a source of C-tactile (CT) afferents) than by light touch to the glabrous skin of the hand. Oral somatosensory afferents implicated in sensing the texture of food including fat in the mouth also activate the orbitofrontal and pregenual cingulate cortex, as well as the insular taste cortex. Top-down cognitive modulation of the representation of affective touch produced by word labels is found in parietal cortex area 7, the insula and ventral striatum. The cognitive labels also influence activations to the sight of touch and also the correlations with pleasantness in the pregenual cingulate/orbitofrontal cortex and ventral striatum.

  12. Neurotoxic Profiles of HIV, Psychostimulant Drugs of Abuse, and their Concerted Effect on the Brain: Current Status of Dopamine System Vulnerability in NeuroAIDS

    PubMed Central

    Ferris, Mark J.; Mactutus, Charles F.; Booze, Rosemarie M.

    2008-01-01

    There are roughly 30 to 40 million HIV infected individuals in the world as of December 2007, and drug abuse directly contributes to one-third of all HIV-infections in the United States. Antiretroviral therapy has increased the lifespan of HIV-seropositives, but CNS function often remains diminished, effectively decreasing quality of life. A modest proportion may develop HIV-associated dementia, the severity and progression of which is increased with drug abuse. HIV and drugs of abuse in the CNS target subcortical brain structures and DA systems in particular. This toxicity is mediated by a number of neurotoxic mechanisms, including but not limited to, aberrant immune response and oxidative stress. Therefore, novel therapeutic strategies must be developed that can address a wide variety of disparate neurotoxic mechanisms and apoptotic cascades. This paper reviews the research pertaining to the where, what, and how of HIV and cocaine/methamphetamine toxicity in the CNS. Specifically, where these toxins most affect the brain, what aspects of the virus are neurotoxic, and how these toxins mediate neurotoxicity. PMID:18430470

  13. Biosensors for brain trauma and dual laser doppler flowmetry: enoxaparin simultaneously reduces stroke-induced dopamine and blood flow while enhancing serotonin and blood flow in motor neurons of brain, in vivo.

    PubMed

    Broderick, Patricia A; Kolodny, Edwin H

    2011-01-01

    Neuromolecular Imaging (NMI) based on adsorptive electrochemistry, combined with Dual Laser Doppler Flowmetry (LDF) is presented herein to investigate the brain neurochemistry affected by enoxaparin (Lovenox(®)), an antiplatelet/antithrombotic medication for stroke victims. NMI with miniature biosensors enables neurotransmitter and neuropeptide (NT) imaging; each NT is imaged with a response time in milliseconds. A semiderivative electronic reduction circuit images several NT's selectively and separately within a response time of minutes. Spatial resolution of NMI biosensors is in the range of nanomicrons and electrochemically-induced current ranges are in pico- and nano-amperes. Simultaneously with NMI, the LDF technology presented herein operates on line by illuminating the living brain, in this example, in dorso-striatal neuroanatomic substrates via a laser sensor with low power laser light containing optical fiber light guides. NMI biotechnology with BRODERICK PROBE(®) biosensors has a distinct advantage over conventional electrochemical methodologies both in novelty of biosensor formulations and on-line imaging capabilities in the biosensor field. NMI with unique biocompatible biosensors precisely images NT in the body, blood and brain of animals and humans using characteristic experimentally derived half-wave potentials driven by oxidative electron transfer. Enoxaparin is a first line clinical treatment prescribed to halt the progression of acute ischemic stroke (AIS). In the present studies, BRODERICK PROBE(®) laurate biosensors and LDF laser sensors are placed in dorsal striatum (DStr) dopaminergic motor neurons in basal ganglia of brain in living animals; basal ganglia influence movement disorders such as those correlated with AIS. The purpose of these studies is to understand what is happening in brain neurochemistry and cerebral blood perfusion after causal AIS by middle cerebral artery occlusion in vivo as well as to understand consequent enoxaparin

  14. The dopamine transporter and attention-deficit/hyperactivity disorder.

    PubMed

    Madras, Bertha K; Miller, Gregory M; Fischman, Alan J

    2005-06-01

    The high incidence of attention-deficit/hyperactivity disorder (ADHD) and escalating use of ADHD medications present a compelling case for clarifying the pathophysiology of, and developing laboratory or radiologic tests for, ADHD. Currently, the majority of specific genes implicated in ADHD encode components of catecholamine signaling systems. Of these, the dopamine transporter (DAT) is a principal target of the most widely used antihyperactivity medications (amphetamine and methylphenidate); the DAT gene is associated with ADHD, and some studies have detected abnormal levels of the DAT in brain striatum of ADHD subjects. Medications for ADHD interfere with dopamine transport by brain-region- and drug-specific mechanisms, indirectly activating dopamine- and possibly norepinephrine-receptor subtypes that are implicated in enhancing attention and experiential salience. The most commonly used DAT-selective ADHD medications raise extracellular dopamine levels in DAT-rich brain regions. In brain regions expressing both the DAT and the norepinephrine transporter (NET), the relative contributions of dopamine and norepinephrine to ADHD pathophysiology and therapeutic response are obfuscated by the capacity of the NET to clear dopamine as well as norepinephrine. Thus, ADHD medications targeting DAT or NET might disperse dopamine widely and consign dopamine storage and release to regulation by noradrenergic, as well as dopaminergic neurons.

  15. Dopamine transporter: expression in Xenopus oocytes.

    PubMed

    Uhl, G R; O'Hara, B; Shimada, S; Zaczek, R; DiGiorgianni, J; Nishimori, T

    1991-01-01

    Xenopus oocytes can express biologically relevant transport activity after injection of mRNAs encoding several carrier molecules. mRNA from PC12 cells, as well as transcripts from a rat ventral midbrain library, can be expressed in these oocytes and allow them to display pharmacologically specific dopamine uptake. mRNA-injected oocytes incubated with tritiated dopamine contain tritiated dopamine and metabolites; lower amounts of radiolabeled dopamine and more radiolabeled metabolites are found in oocytes co-incubated with cocaine or in water-injected oocytes. Tritiated dopamine uptake into mRNA-injected oocytes is time, sodium, and temperature dependent. It is blocked by cocaine and mazindol, but not by haloperidol. It is not found after injection of mRNA from other brain regions. A size-selected rat midbrain library constructed in the plasma vector pCDM8 yields mRNA transcripts whose injection into oocytes causes cocaine-blockable [3H]dopamine uptake. These findings provide an assay for purification of the dopamine transporter cDNA by sib selection techniques.

  16. Synapsins Differentially Control Dopamine and Serotonin Release

    PubMed Central

    Kile, Brian M.; Guillot, Thomas S.; Venton, B. Jill; Wetsel, William C.; Augustine, George J.; Wightman, R. Mark

    2010-01-01

    Synapsins are a family of synaptic vesicle proteins that are important for neurotransmitter release. Here we have used triple knockout (TKO) mice lacking all three synapsin genes to determine the roles of synapsins in the release of two monoamine neurotransmitters, dopamine and serotonin. Serotonin release evoked by electrical stimulation was identical in substantia nigra pars reticulata slices prepared from TKO and wild-type mice. In contrast, release of dopamine in response to electrical stimulation was approximately doubled in striatum of TKO mice, both in vivo and in striatal slices, in comparison to wild-type controls. This was due to loss of synapsin III, because deletion of synapsin III alone was sufficient to increase dopamine release. Deletion of synapsins also increased the sensitivity of dopamine release to extracellular calcium ions. Although cocaine did not affect the release of serotonin from nigral tissue, this drug did enhance dopamine release. Cocaine-induced facilitation of dopamine release was a function of external calcium, an effect that was reduced in TKO mice. We conclude that synapsins play different roles in the control of release of dopamine and serotonin, with release of dopamine being negatively regulated by synapsins, specifically synapsin III, while serotonin release appears to be relatively independent of synapsins. These results provide further support for the concept that synapsin function in presynaptic terminals varies according to the neurotransmitter being released. PMID:20660258

  17. Changing brains: how longitudinal functional magnetic resonance imaging studies can inform us about cognitive and social-affective growth trajectories.

    PubMed

    Crone, Eveline A; Elzinga, Bernet M

    2015-01-01

    Brain imaging studies have demonstrated widespread changes in brain networks which support cognitive and social-affective development. These conclusions, however, are largely based on cross-sectional comparisons, which limits the possibility to investigate growth trajectories and detect individual changes. Understanding individual growth patterns is crucial if we want to ultimately understand how brain development is sensitive to environmental influences such as educational or psychological interventions or childhood maltreatment. Recently, longitudinal brain imaging studies in children and adolescents have taken the first steps into examining cognitive and social-affective brain functions longitudinally with several compelling findings. First, longitudinal measurements show that activations in some brain regions, such as the prefrontal, temporal, and parietal cortex, are relatively stable over time and can be used as predictors for cognitive functions, whereas activations in other brain regions, such as the amygdala and ventral striatum, are much more variable over time. Second, developmental studies reveal how these changes are related to age, puberty, and changes in performance. These findings have implications for understanding how environmental factors influence brain development. An important future direction will be to examine individual characteristics (e.g., genetic, temperamental, personality) which make individuals differentially susceptible to their environment.

  18. Delusions, superstitious conditioning and chaotic dopamine neurodynamics.

    PubMed

    Shaner, A

    1999-02-01

    Excessive mesolimbic dopaminergic neurotransmission is closely related to the psychotic symptoms of schizophrenia. A mathematical model of dopamine neuron firing rates, developed by King and others, suggests a mechanism by which excessive dopaminergic transmission could produce psychotic symptoms, especially delusions. In this model, firing rates varied chaotically when the efficacy of dopaminergic transmission was enhanced. Such non-contingent changes in firing rates in mesolimbic reward pathways could produce delusions by distorting thinking in the same way that non-contingent reinforcement produces superstitious conditioning. Though difficult to test in humans, the hypothesis is testable as an explanation for a common animal model of psychosis--amphetamine stereotypy in rats. The hypothesis predicts that: (1) amphetamine will cause chaotic firing rates in mesolimbic dopamine neurons; (2) non-contingent brain stimulation reward will produce stereotypy; (3) non-contingent microdialysis of dopamine into reward areas will produce stereotypy; and (4) dopamine antagonists will block all three effects.

  19. Multiple Psychopharmacological Effects of the Traditional Japanese Kampo Medicine Yokukansan, and the Brain Regions it Affects

    PubMed Central

    Mizoguchi, Kazushige; Ikarashi, Yasushi

    2017-01-01

    Yokukansan (YKS), a traditional Japanese Kampo medicine, has indications for use in night crying and irritability in children, as well as neurosis and insomnia. It is currently also used for the remedy of the behavioral and psychological symptoms of dementia (BPSD), such as aggressiveness, agitation, and hallucinations. In parallel with clinical evidence, a significant amount of fundamental researches have been undertaken to clarify the neuropsychopharmacological efficacies of YKS, with approximately 70 articles, including our own, being published to date. Recently, we reviewed the neuropharmacological mechanisms of YKS, including its effects on glutamatergic, serotonergic, and dopaminergic neurotransmission, and pharmacokinetics of the ingredients responsible for the effects. This review is aimed to integrate the information regarding the psychopharmacological effects of YKS with the brain regions known to be affected, to facilitate our understanding of the clinical efficacy of YKS. In this review, we first show that YKS has several effects that act to improve symptoms that are similar to BPSDs, like aggressiveness, hallucinations, anxiety, and sleep disturbance, as well as symptoms like tardive dyskinesia and cognitive deficits. We next provide the evidence showing that YKS can interact with various brain regions, including the cerebral cortex, hippocampus, striatum, and spinal cord, dysfunctions of which are related to psychiatric symptoms, cognitive deficits, abnormal behaviors, and dysesthesia. In addition, the major active ingredients of YKS, geissoschizine methyl ether and 18β-glycyrrhetinic acid, are shown to predominantly bind to the frontal cortex and hippocampus, respectively. Our findings suggest that YKS has multiple psychopharmacological effects, and that these are probably mediated by interactions among several brain regions. In this review, we summarize the available information about the valuable effects of a multicomponent medicine YKS on complex

  20. Diazepam affects the nuclear thyroid hormone receptor density and their expression levels in adult rat brain.

    PubMed

    Constantinou, Caterina; Bolaris, Stamatis; Valcana, Theony; Margarity, Marigoula

    2005-07-01

    Thyroid hormones (THs) are involved in the occurrence of anxiety and affective disorders; however, the effects following an anxiolytic benzodiazepine treatment, such as diazepam administration, on the mechanism of action of thyroid hormones has not yet been investigated. The effect of diazepam on the in vitro nuclear T3 binding, on the relative expression of the TH receptors (TRs) and on the synaptosomal TH availability were examined in adult rat cerebral hemispheres 24 h after a single intraperitoneal dose (5 mg/kg BW) of this tranquillizer. Although, diazepam did not affect the availability of TH either in blood circulation or in the synaptosomal fraction, it decreased (33%) the nuclear T3 maximal binding density (B(max)). No differences were observed in the equilibrium dissociation constant (K(d)). The TRalpha2 variant (non-T3-binding) mRNA levels were increased by 33%, whereas no changes in the relative expression of the T3-binding isoforms of TRs (TRalpha1, TRbeta1) were observed. This study shows that a single intraperitoneal injection of diazepam affects within 24 h, the density of the nuclear TRs and their expression pattern. The latest effect occurs in an isoform-specific manner involving specifically the TRalpha2 mRNA levels in adult rat brain.

  1. TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation.

    PubMed

    Ji, Rui; Tian, Shifu; Lu, Helen J; Lu, Qingjun; Zheng, Yan; Wang, Xiaomin; Ding, Jixiang; Li, Qiutang; Lu, Qingxian

    2013-12-15

    TAM tyrosine kinases play multiple functional roles, including regulation of the target genes important in homeostatic regulation of cytokine receptors or TLR-mediated signal transduction pathways. In this study, we show that TAM receptors affect adult hippocampal neurogenesis and loss of TAM receptors impairs hippocampal neurogenesis, largely attributed to exaggerated inflammatory responses by microglia characterized by increased MAPK and NF-κB activation and elevated production of proinflammatory cytokines that are detrimental to neuron stem cell proliferation and neuronal differentiation. Injection of LPS causes even more severe inhibition of BrdU incorporation in the Tyro3(-/-)Axl(-/-)Mertk(-/-) triple-knockout (TKO) brains, consistent with the LPS-elicited enhanced expression of proinflammatory mediators, for example, IL-1β, IL-6, TNF-α, and inducible NO synthase, and this effect is antagonized by coinjection of the anti-inflammatory drug indomethacin in wild-type but not TKO brains. Conditioned medium from TKO microglia cultures inhibits neuron stem cell proliferation and neuronal differentiation. IL-6 knockout in Axl(-/-)Mertk(-/-) double-knockout mice overcomes the inflammatory inhibition of neurogenesis, suggesting that IL-6 is a major downstream neurotoxic mediator under homeostatic regulation by TAM receptors in microglia. Additionally, autonomous trophic function of the TAM receptors on the proliferating neuronal progenitors may also promote progenitor differentiation into immature neurons.

  2. Sustained sleep fragmentation affects brain temperature, food intake and glucose tolerance in mice.

    PubMed

    Baud, Maxime O; Magistretti, Pierre J; Petit, Jean-Marie

    2013-02-01

    Sleep fragmentation is present in numerous sleep pathologies and constitutes a major feature of patients with obstructive sleep apnea. A prevalence of metabolic syndrome, diabetes and obesity has been shown to be associated to obstructive sleep apnea. While sleep fragmentation has been shown to impact sleep homeostasis, its specific effects on metabolic variables are only beginning to emerge. In this context, it is important to develop realistic animal models that would account for chronic metabolic effects of sleep fragmentation. We developed a 14-day model of instrumental sleep fragmentation in mice, and show an impact on both brain-specific and general metabolism. We first report that sleep fragmentation increases food intake without affecting body weight. This imbalance was accompanied by the inability to adequately decrease brain temperature during fragmented sleep. In addition, we report that sleep-fragmented mice develop glucose intolerance. We also observe that sleep fragmentation slightly increases the circadian peak level of glucocorticoids, a factor that may be involved in the observed metabolic effects. Our results confirm that poor-quality sleep with sustained sleep fragmentation has similar effects on general metabolism as actual sleep loss. Altogether, these results strongly suggest that sleep fragmentation is an aggravating factor for the development of metabolic dysfunctions that may be relevant for sleep disorders such as obstructive sleep apnea.

  3. Prenatal ethanol exposure differentially affects hippocampal neurogenesis in the adolescent and aged brain.

    PubMed

    Gil-Mohapel, J; Titterness, A K; Patten, A R; Taylor, S; Ratzlaff, A; Ratzlaff, T; Helfer, J; Christie, B R

    2014-07-25

    Exposure to ethanol in utero is associated with a myriad of sequelae for the offspring. Some of these effects are morphological in nature and noticeable from birth, while others involve more subtle changes to the brain that only become apparent later in life when the individuals are challenged cognitively. One brain structure that shows both functional and structural deficits following prenatal ethanol exposure is the hippocampus. The hippocampus is composed of two interlocking gyri, the cornu ammonis (CA) and the dentate gyrus (DG), and they are differentially affected by prenatal ethanol exposure. The CA shows a more consistent loss in neuronal numbers, with different ethanol exposure paradigms, than the DG, which in contrast shows more pronounced and consistent deficits in synaptic plasticity. In this study we show that significant deficits in adult hippocampal neurogenesis are apparent in aged animals following prenatal ethanol exposure. Deficits in hippocampal neurogenesis were not apparent in younger animals. Surprisingly, even when ethanol exposure occurred in conjunction with maternal stress, deficits in neurogenesis did not occur at this young age, suggesting that the capacity for neurogenesis is highly conserved early in life. These findings are unique in that they demonstrate for the first time that deficits in neurogenesis associated with prenatal ethanol consumption appear later in life.

  4. Evaluating How Circle of Willis Topology Affects Embolus Distribution in the Brain

    NASA Astrophysics Data System (ADS)

    Jani, Neel; Mukherjee, Debanjan; Shadden, Shawn

    2016-11-01

    Embolic stroke occurs when fragmented cellular or acellular material (emboli) travels to the brain to occlude an artery. Understanding the transport of emboli across unsteady, pulsatile flow in complex arterial geometries is challenging and influenced by a range of factors, including patient anatomy. The work herein develops the modeling and mechanistic understanding of how embolus transport is affected by the arterial connections at the base of the brain known as the Circle of Willis (CoW). A majority of the human population has an incomplete CoW anatomy, with connections either missing or ill-developed. We employ numerical simulations combining image-based modeling, computational fluid dynamics, discrete particle dynamics, and a sampling based analysis to compare collateral flow through the most prevalent CoW topologies, to determine embolus distribution fractions among vessels in the CoW, and to investigate the role of inertial effects in causing differences in flow and embolus distribution. The computational framework developed enables characterization of the complex interplay of anatomy, hemodynamics, and embolus properties in the context of embolic stroke as well as statistical analysis of embolism risks across common CoW variations.

  5. Two dopamine receptors play different roles in phase change of the migratory locust.

    PubMed

    Guo, Xiaojiao; Ma, Zongyuan; Kang, Le

    2015-01-01

    The migratory locust, Locusta migratoria, shows remarkable phenotypic plasticity at behavioral, physiological, and morphological levels in response to fluctuation in population density. Our previous studies demonstrated that dopamine (DA) and the genes in the dopamine metabolic pathway mediate phase change in Locusta. However, the functions of different dopamine receptors in modulating locust phase change have not been fully explored. In the present study, DA concentration in the brain increased during crowding and decreased during isolation. The expression level of dopamine receptor 1 (Dop1) increased from 1 to 4 h of crowding, but remained unchanged during isolation. Injection of Dop1 agonist SKF38393 into the brains of solitary locusts promoted gregarization, induced conspecific attraction-response and increased locomotion. RNAi knockdown of Dop1 and injection of antagonist SCH23390 in gregarious locusts induced solitary behavior, promoted the shift to repulsion-response and reduced locomotion. By contrast, the expression level of dopamine receptor 2 (Dop2) gradually increased during isolation, but remained stable during crowding. During the isolation of gregarious locusts, injection of Dop2 antagonist S(-)-sulpiride or RNAi knockdown of Dop2 inhibited solitarization, maintained conspecific attraction-response and increased locomotion; by comparison, the isolated controls displayed conspecific repulsion-response and weaker motility. Activation of Dop2 in solitary locusts through injection of agonist, R(-)-TNPA, did not affect their behavioral state. Thus, DA-Dop1 signaling in the brain of Locusta induced the gregariousness, whereas DA-Dop2 signaling mediated the solitariness. Our study demonstrated that Dop1 and Dop2 modulated locust phase change in two different directions. Further investigation of Locusta Dop1 and Dop2 functions in modulating phase change will improve our understanding of the molecular mechanism underlying phenotypic plasticity in locusts.

  6. Starting Smart: How Early Experiences Affect Brain Development. An Ounce of Prevention Fund Paper.

    ERIC Educational Resources Information Center

    Ounce of Prevention Fund.

    Recent research has provided great insight into the impact of early experience on brain development. It is now believed that brain growth is highly dependent upon early experiences. Neurons allow communication and coordinated functioning among various brain areas. Brain development after birth consists of an ongoing process of wiring and rewiring…

  7. Gonadotropic effects of dopamine in isolated workers of the primitively eusocial wasp, Polistes chinensis

    NASA Astrophysics Data System (ADS)

    Sasaki, Ken; Yamasaki, Kazuhisa; Tsuchida, Koji; Nagao, Takashi

    2009-05-01

    In social insects, biogenic amines are thought to play regulatory roles in the transition between reproductive states in females. To determine the effect of dopamine on the reproductive development of workers in primitively eusocial societies, isolated workers of the paper wasp Polistes chinensis were supplied with oral dopamine. Ovarian development was accelerated in dopamine-fed workers as compared to control workers of the same age fed only sucrose solution. Oral dopamine increased brain levels of dopamine and its metabolite ( N-acetyldopamine). Brain levels of tyramine or octopamine were also increased by dopamine application in one of two colonies; levels of the tyramine metabolite N-acetyltyramine were unchanged. These results indicate that dopamine plays a gonadotropic role in isolated workers in the primitively eusocial wasp, similar to the gonadotropic role previously reported for juvenile hormone. This is the first study to report effects of dopamine on ovarian development in workers of the paper wasp.

  8. CFH Variants Affect Structural and Functional Brain Changes and Genetic Risk of Alzheimer's Disease.

    PubMed

    Zhang, Deng-Feng; Li, Jin; Wu, Huan; Cui, Yue; Bi, Rui; Zhou, He-Jiang; Wang, Hui-Zhen; Zhang, Chen; Wang, Dong; Kong, Qing-Peng; Li, Tao; Fang, Yiru; Jiang, Tianzi; Yao, Yong-Gang

    2016-03-01

    The immune response is highly active in Alzheimer's disease (AD). Identification of genetic risk contributed by immune genes to AD may provide essential insight for the prognosis, diagnosis, and treatment of this neurodegenerative disease. In this study, we performed a genetic screening for AD-related top immune genes identified in Europeans in a Chinese cohort, followed by a multiple-stage study focusing on Complement Factor H (CFH) gene. Effects of the risk SNPs on AD-related neuroimaging endophenotypes were evaluated through magnetic resonance imaging scan, and the effects on AD cerebrospinal fluid biomarkers (CSF) and CFH expression changes were measured in aged and AD brain tissues and AD cellular models. Our results showed that the AD-associated top immune genes reported in Europeans (CR1, CD33, CLU, and TREML2) have weak effects in Chinese, whereas CFH showed strong effects. In particular, rs1061170 (P(meta)=5.0 × 10(-4)) and rs800292 (P(meta)=1.3 × 10(-5)) showed robust associations with AD, which were confirmed in multiple world-wide sample sets (4317 cases and 16 795 controls). Rs1061170 (P=2.5 × 10(-3)) and rs800292 (P=4.7 × 10(-4)) risk-allele carriers have an increased entorhinal thickness in their young age and a higher atrophy rate as the disease progresses. Rs800292 risk-allele carriers have higher CSF tau and Aβ levels and severe cognitive decline. CFH expression level, which was affected by the risk-alleles, was increased in AD brains and cellular models. These comprehensive analyses suggested that CFH is an important immune factor in AD and affects multiple pathological changes in early life and during disease progress.

  9. Sex differences in the brain response to affective scenes with or without humans.

    PubMed

    Proverbio, Alice Mado; Adorni, Roberta; Zani, Alberto; Trestianu, Laura

    2009-10-01

    Recent findings have demonstrated that women might be more reactive than men to viewing painful stimuli (vicarious response to pain), and therefore more empathic [Han, S., Fan, Y., & Mao, L. (2008). Gender difference in empathy for pain: An electrophysiological investigation. Brain Research, 1196, 85-93]. We investigated whether the two sexes differed in their cerebral responses to affective pictures portraying humans in different positive or negative contexts compared to natural or urban scenarios. 440 IAPS slides were presented to 24 Italian students (12 women and 12 men). Half the pictures displayed humans while the remaining scenes lacked visible persons. ERPs were recorded from 128 electrodes and swLORETA (standardized weighted Low-Resolution Electromagnetic Tomography) source reconstruction was performed. Occipital P115 was greater in response to persons than to scenes and was affected by the emotional valence of the human pictures. This suggests that processing of biologically relevant stimuli is prioritized. Orbitofrontal N2 was greater in response to positive than negative human pictures in women but not in men, and not to scenes. A late positivity (LP) to suffering humans far exceeded the response to negative scenes in women but not in men. In both sexes, the contrast suffering-minus-happy humans revealed a difference in the activation of the occipito/temporal, right occipital (BA19), bilateral parahippocampal, left dorsal prefrontal cortex (DPFC) and left amygdala. However, increased right amygdala and right frontal area activities were observed only in women. The humans-minus-scenes contrast revealed a difference in the activation of the middle occipital gyrus (MOG) in men, and of the left inferior parietal (BA40), left superior temporal gyrus (STG, BA38) and right cingulate (BA31) in women (270-290 ms). These data indicate a sex-related difference in the brain response to humans, possibly supporting human empathy.

  10. Reinforcement signalling in Drosophila; dopamine does it all after all.

    PubMed

    Waddell, Scott

    2013-06-01

    Reinforcement systems are believed to drive synaptic plasticity within neural circuits that store memories. Recent evidence from the fruit fly suggests that anatomically distinct dopaminergic neurons ultimately provide the key instructive signals for both appetitive and aversive learning. This dual role for dopamine overturns the previous model that octopamine signalled reward and dopamine punishment. More importantly, this anatomically segregated double role for dopamine in reward and aversion mirrors that emerging in mammals. Therefore, an antagonistic organization of distinct reinforcing dopaminegic neurons is a conserved feature of brains. It now seems crucial to understand how the dopaminergic neurons are controlled and what the released dopamine does to the underlying circuits to convey opposite valence.

  11. Immunohistochemical localization of the D1 dopamine receptor in rat brain reveals its axonal transport, pre- and postsynaptic localization, and prevalence in the basal ganglia, limbic system, and thalamic reticular nucleus.

    PubMed Central

    Huang, Q; Zhou, D; Chase, K; Gusella, J F; Aronin, N; DiFiglia, M

    1992-01-01

    D1 dopamine receptor localization was examined by immunohistochemistry using a polyclonal anti-peptide antibody which (i) immunoprecipitated a protein fragment encoded by a D1 receptor cDNA and (ii) on Western blots of solubilized striatal and hippocampal membranes recognized two proteins of approximately 50 kDa and 75 kDa, corresponding to reported sizes of D1 receptor proteins. Immunoreactivity overlapped with dopamine-containing pathways, patterns of D1 receptor binding, and mRNA expression. Staining was concentrated in prefrontal, cingulate, parietal, piriform, entorhinal, and hippocampal cortical areas and subcortically in the basal ganglia, amygdala, septal area, substantia inominata, thalamus, hypothalamus, and neurohypophysis. Prominent labeling was seen in the thalamic reticular nucleus, a region known to integrate ascending basal forebrain inputs with thalamocortical and corticothalamic pathways and in fiber bundles interconnecting limbic areas. In striatal neuropil, staining appeared in spines (heads and necks), at postsynaptic sites in dendrites, and in axon terminals; in the pars reticulata of the substantia nigra, labeling was prevalent in myelinated and unmyelinated axons and dendrites. These data provide direct evidence for the regional and subcellular distribution of D1 receptor protein in the brain and for its pre- and postsynaptic localization in the basal ganglia. The prominent immunoreactivity seen in the limbic system and thalamic reticular nucleus supports an important role for this receptor subtype in mediating integrative processes involved with learning, memory, and cognition. Images PMID:1281547

  12. Dopamine D2 receptors labeled with ( sup 3 H)raclopride in rat and rabbit brains. Equilibrium binding, kinetics, distribution and selectivity

    SciTech Connect

    Dewar, K.M.; Montreuil, B.; Grondin, L.; Reader, T.A. )

    1989-08-01

    The binding properties of the substituted benzamide raclopride to dopamine D2 receptors were studied with membrane preparations from rat and rabbit neostriatum. An analysis of the association kinetics suggested a single binding site but the data from the dissociation experiments were better described by a two-site model. Examination of saturation curves at equilibrium revealed a single class of binding sites in the neostriatum from both species (rat: maximum binding capacity (Bmax) = 247 fmol/mg of protein; rabbit: Bmax = 337 fmol/mg of protein). In cortical regions known to possess a distinct dopaminergic innervation (piriform-entorhinal areas and cingulate cortex) the Bmax values ranged between 9 and 22 fmol/mg of protein. ({sup 3}H)Raclopride binding sites (less than 12 fmol/mg of protein) were also detectable in the dorsal and ventral hippocampus as well as in the somatosensory and visual cortices. The selectivity in the neostriatum was examined by competition experiments with dopaminergic drugs. The rank of potency of agonists and antagonists to displace ({sup 3}H)raclopride binding revealed its selectivity for the dopamine D2 receptor and was essentially the same for both species. Antagonist competition curves could be fitted to a single site but inhibition by agonists was better described assuming a two-site model. The stereospecificity of binding was demonstrated by the use of the enantiomer pairs. These results validate the utilization of the novel benzamide ({sup 3}H)raclopride as a selective marker of dopamine D2 receptors.

  13. Effect of chronic treatment with angiotensin type 1 receptor antagonists on striatal dopamine levels in normal rats and in a rat model of Parkinson's disease treated with L-DOPA.

    PubMed

    Dominguez-Meijide, Antonio; Villar-Cheda, Begoña; Garrido-Gil, Pablo; Sierrra-Paredes, German; Guerra, Maria J; Labandeira-Garcia, Jose L

    2014-01-01

    Beneficial effects of angiotensin type-1 receptor (AT1) inhibition have been observed in a number of brain processes mediated by oxidative stress and neuroinflammation, including Parkinson's disease. However, important counterregulatory interactions between dopamine and angiotensin systems have recently been demonstrated in several peripheral tissues, and it is possible that a decrease in dopamine levels due to AT1 inhibition may interfere with neuroprotective strategies. The present experiments involving rats with normal dopaminergic innervation indicate that chronic treatment with the AT1 antagonist candesartan does not significantly affect striatal levels of dopamine, serotonin or metabolites, as does not significantly affect motor behavior, as evaluated by the rotarod test. Interestingly, chronic administration of candesartan to normal rats induced a marked increase in dopamine D1 and a decrease in dopamine D2 receptor expression. In a rat model of Parkinson's disease treated with L-DOPA, no differences in striatal dopamine and serotonin levels were observed between candesartan-treated rats and untreated, which suggests that chronic treatment with candesartan does not significantly affect the process of L-DOPA decarboxylation and dopamine release in Parkinson's disease patients. Candesartan did not induce any differences in the striatal expression of dopamine D1 and D2 and serotonin 5-HT1B receptors in 6ydroxydopamine-lesioned rats treated with L-DOPA. The results suggest that chronic treatment with AT1 antagonists as a neuroprotective strategy does not significantly affect striatal dopamine release or motor behavior. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'.

  14. Affective three-dimensional brain-computer interface created using a prism array-based display

    NASA Astrophysics Data System (ADS)

    Mun, Sungchul; Park, Min-Chul

    2014-12-01

    To avoid the vergence-accommodation mismatch and provide a strong sense of presence to users, we applied a prism array-based display when presenting three-dimensional (3-D) objects. Emotional pictures were used as visual stimuli to increase the signal-to-noise ratios of steady-state visually evoked potentials (SSVEPs) because involuntarily motivated selective attention by affective mechanisms can enhance SSVEP amplitudes, thus producing increased interaction efficiency. Ten male and nine female participants voluntarily participated in our experiments. Participants were asked to control objects under three viewing conditions: two-dimension (2-D), stereoscopic 3-D, and prism. The participants performed each condition in a counter-balanced order. One-way repeated measures analysis of variance showed significant increases in the positive predictive values in the prism condition compared to the 2-D and 3-D conditions. Participants' subjective ratings of realness and engagement were also significantly greater in the prism condition than in the 2-D and 3-D conditions, while the ratings for visual fatigue were significantly reduced in the prism condition than in the 3-D condition. The proposed methods are expected to enhance the sense of reality in 3-D space without causing critical visual fatigue. In addition, people who are especially susceptible to stereoscopic 3-D may be able to use the affective brain-computer interface.

  15. Sleep deprivation does not affect neuronal susceptibility to mild traumatic brain injury in the rat

    PubMed Central

    Caron, Aimee M; Stephenson, Richard

    2015-01-01

    Mild and moderate traumatic brain injuries (TBIs) (and concussion) occur frequently as a result of falls, automobile accidents, and sporting activities, and are a major cause of acute and chronic disability. Fatigue and excessive sleepiness are associated with increased risk of accidents, but it is unknown whether prior sleep debt also affects the pathophysiological outcome of concussive injury. Using the “dark neuron” (DN) as a marker of reversible neuronal damage, we tested the hypothesis that acute (48 hours) total sleep deprivation (TSD) and chronic sleep restriction (CSR; 10 days, 6-hour sleep/day) affect DN formation following mild TBI in the rat. TSD and CSR were administered using a walking wheel apparatus. Mild TBI was administered under anesthesia using a weight-drop impact model, and the acute neuronal response was observed without recovery. DNs were detected using standard bright-field microscopy with toluidine blue stain following appropriate tissue fixation. DN density was low under home cage and sleep deprivation control conditions (respective median DN densities, 0.14% and 0.22% of neurons), and this was unaffected by TSD alone (0.1%). Mild TBI caused significantly higher DN densities (0.76%), and this was unchanged by preexisting acute or chronic sleep debt (TSD, 0.23%; CSR, 0.7%). Thus, although sleep debt may be predicted to increase the incidence of concussive injury, the present data suggest that sleep debt does not exacerbate the resulting neuronal damage. PMID:26124685

  16. NEUROBIOLOGICAL CHARACTERIZATION OF BIPOLAR AFFECTIVE DISORDERS : A FOCUS ON TARDIVE DYSKINESIA AND SOFT NEUROLOGICAL SIGNS IN RELATION TO SERUM DOPAMINE BETA HYDROXYLASE ACTIVITY

    PubMed Central

    Goswami, Utpal; Basu, S.; Khastgir, U.; Kumar, Unnati; Chandrasekaran, R.; Gangadhar, B.N.; Sagar, Rajesh; Bapna, J.S.; Channabasavanna, S.M.; Moore, P. Brain; Ferrier, I. Nicol

    1998-01-01

    In this study, the prognostic determinants were investigated involving bipolar patients classified into two groups-one with favourable course and outcome, and the other with clearly unfavourable prognosis, based on certain recommended criteria, with intermediate prognosis were excluded. As compared to the poor prognosis group, the good prognosis group had lower social dysfunctions, lower ratings on psychopathotogy fewer indicators of neurodysfunction in form of neurological soft signs (NSS) and tardive dyskinesia (TD). The poor prognosis group was characterized by: (i) older age at onset; (ii) more manic than depressive episodes (5:1) and (HI) lower levels of serum dopamine-β-hydroxylase activity (DBH). The association between poor prognosis bipolar disorder having neuroleptic intolerance (TD and NSS) with low serum DBH, suggests that it is genetically governed. Further research in this direction seems in order, particularly the follow up of first episode manic disorders. PMID:21494474

  17. The Brain Basis of Positive and Negative Affect: Evidence from a Meta-Analysis of the Human Neuroimaging Literature.

    PubMed

    Lindquist, Kristen A; Satpute, Ajay B; Wager, Tor D; Weber, Jochen; Barrett, Lisa Feldman

    2016-05-01

    The ability to experience pleasant or unpleasant feelings or to represent objects as "positive" or "negative" is known as representing hedonic "valence." Although scientists overwhelmingly agree that valence is a basic psychological phenomenon, debate continues about how to best conceptualize it scientifically. We used a meta-analysis of 397 functional magnetic resonance imaging (fMRI) and positron emission tomography studies (containing 914 experimental contrasts and 6827 participants) to test 3 competing hypotheses about the brain basis of valence: the bipolarity hypothesis that positive and negative affect are supported by a brain system that monotonically increases and/or decreases along the valence dimension, the bivalent hypothesis that positive and negative affect are supported by independent brain systems, and the affective workspace hypothesis that positive and negative affect are supported by a flexible set of valence-general regions. We found little evidence for the bipolar or bivalent hypotheses. Findings instead supported the hypothesis that, at the level of brain activity measurable by fMRI, valence is flexibly implemented across instances by a set of valence-general limbic and paralimbic brain regions.

  18. ILLICIT DOPAMINE TRANSIENTS: RECONCILING ACTIONS OF ABUSED DRUGS

    PubMed Central

    Covey, Dan P.; Roitman, Mitchell F.; Garris, Paul A.

    2014-01-01

    Phasic increases in brain dopamine are required for cue-directed reward seeking. While compelling within the framework of appetitive behavior, the view that illicit drugs hijack reward circuits by hyper-activating these dopamine transients is inconsistent with established psychostimulant pharmacology. However, recent work reclassifying amphetamine (AMPH), cocaine, and other addictive dopamine-transporter inhibitors (DAT-Is) supports transient hyper-activation as a unifying hypothesis of abused drugs. We argue here that reclassification also identifies generating burst firing by dopamine neurons as a keystone action. Unlike natural rewards, which are processed by sensory systems, drugs act directly on the brain. Consequently, to mimic natural reward and exploit reward circuits, dopamine transients must be elicited de novo. Of available drug targets, only burst firing achieves this essential outcome. PMID:24656971

  19. Exchange diffusion of dopamine induced in planar lipid bilayer membranes by the ionophore X537A

    PubMed Central

    Holz, RW

    1977-01-01

    The ionophore X537A causes a large increase in the [(14)C]dopamine (a catecholamine) permeability of planar bilayer membranes. Dopamine transport increases linearly with the ionophore concentration. At relatively high concentrations in the presence of dopamine, the ionophore omdices a conductance which is nearly ideally selective for the dopamine cation. However, the total dopamine flux as determined in tracer experiments is not affected by an electric field and is over 10(5) times larger than predicted from the estimated dopamine conductance. Increasing the dopamine concentration on the side containing radioactive dopamine (the cis side) saturates the dopamine transport. This saturation is relieved by trans addition of nonradioactive dopamine, tyramine, H(+), or K(+). With unequal concentrations of dopamine cis and trans (49 and 12.5 mM), the unidirectional dopamine fluxes are equal. Increasing H(+) cis and trans decreases dopamine transport. It is concluded that at physiological pH, the X537A-induced transport of dopamine occurs via an electrically silent exchange diffusion of dopamine cation with another cation (e.g., dopamine(+), H(+), or K(+)). X537A induces a Ca(++)-independent release of catecholamines from sympathetic nerves by interfering with intracellular storage within storage vesicles (R.W. Holz. 1975. Biochim. Biophys. Acta. 375:138-152). It is suggested that X537A causes an exchange of intravesicular catecholamine with a cytoplasmic cation (perhaps K(+) or H(+)) across the storage vesicle membrane. PMID:16982

  20. D2 dopamine receptor but not AMPA and kainate glutamate receptor genes show altered expression in response to long term treatment with trans- and cis-flupenthixol in the rat brain.

    PubMed

    Chen, A C; Gurling, H M

    1999-05-07

    Glutamate receptor function has been hypothesized as an important factor in both the aetiology and treatment of schizophrenia. We have used a multiprobe oligonucleotide solution hybridization (MOSH) technique to examine the regulation of gene expression of the GluR1-7, KA1, and KA2 glutamate receptor subunits in the left rat brain following treatment with the optical isomers of flupenthixol at a dose of 0.2 mg kg-1 day-1 over a period of 4, 12, 24 weeks in order to understand how specific glutamate receptor genes are involved in the treatment of schizophrenia. The GluR2/3 and GluR6/7 subunit immunoreactivity in the right brain following 4 and 24 weeks of drug treatment was also examined by Western blotting. Neither trans- nor cis-flupenthixol was found to alter the gene expression of any of the 9 non-NMDA glutamate receptor subunits. On the other hand, we found a nearly two-fold increase in gene expression of the D2 dopamine receptor in specific brain regions. These results suggest that non-NMDA types of glutamate receptor subunits, in contrast to NMDA receptors, are less likely to have a role in the action of antipsychotic drugs.

  1. Application of feedback-controlled bolus plus infusion (FC-B/I) method for quantitative PET imaging of dopamine transporters with [(18)F]β-CFT-FE in conscious monkey brain.

    PubMed

    Harada, Norihiro; Ohba, Hiroyuki; Kakiuchi, Takeharu; Tsukada, Hideo

    2013-01-01

    The competitive inhibition of dopamine transporters (DAT) with cocaine, a specific DAT inhibitor, was evaluated with a feedback-controlled bolus plus infusion (FC-B/I) method using animal positron emission tomography (PET) in the living brain of conscious monkey. 2β-Carbomethoxy-3β-(4-fluorophenyl)-8-(2-[(18)F]fluoroethyl) nortropane ([(18)F]β-CFT-FE; Harada et al. [2004] Synapse 54:37-45) was used for this study because it provided specific, fast, and reversible kinetic properties to DAT in the striatum. In FC-B/I method, the real-time image reconstruction was started just after intravenous bolus injection of [(18)F]β-CFT-FE to generate a time-activity curve in the striatum, and the infusion rate was adjusted to achieve an equilibrium state of the striatal radioactivity concentrations by means of a feedback-control algorithm. The first equilibrium state in the brain was reached within 20 min after the infusion start. Intravenous administration of cocaine at the doses of 0.02, 0.1, and 0.5 mg/kg shifted the equilibrium radioactivity level to the second equilibrium state in a dose-dependent manner, while no significant alterations was observed in the cerebellum. The present results demonstrated that the combined use of FC-B/I method and PET probe with fast kinetics like [(18)F]β-CFT-FE could be useful to assess the occupancy of drugs in the living brain with PET.

  2. Manganese accumulation in striatum of mice exposed to toxic doses is dependent upon a functional dopamine transporter.

    PubMed

    Erikson, Keith M; John, Carrie E; Jones, Sara R; Aschner, Michael

    2005-11-01

    The objective of this study was to determine the importance of the dopamine transporter (DAT) in manganese transport. Excessive manganese exposure is associated with a neurotoxicological disease known as manganism characterized by a specific accumulation of manganese in dopamine-rich brain regions. It has been hypothesized that the DAT mediates this specific transport, but its role in manganese neurotoxicity has not been directly examined. We examined brain tissues from manganese-exposed dopamine transporter knockout (DAT-KO) and wild-type (WT) mice. There was significantly less (p<0.05) manganese in the striatum of exposed DAT-KO mice compared to WT. However, the absence of a functioning DAT did not affect manganese accumulation in other brain regions examined. Furthermore, both iron and divalent metal transporter levels (two known modulators of brain manganese) were similar between DAT-KO and WT mice in all brain regions. These studies demonstrate that the DAT is involved in the facilitation of striatal manganese accumulation and that it may play a critical role in mediating manganese neurotoxicity.

  3. Emotional Granularity Effects on Event-Related Brain Potentials during Affective Picture Processing

    PubMed Central

    Lee, Ja Y.; Lindquist, Kristen A.; Nam, Chang S.

    2017-01-01

    There is debate about whether emotional granularity, the tendency to label emotions in a nuanced and specific manner, is merely a product of labeling abilities, or a systematic difference in the experience of emotion during emotionally evocative events. According to the Conceptual Act Theory of Emotion (CAT) (Barrett, 2006), emotional granularity is due to the latter and is a product of on-going temporal differences in how individuals categorize and thus make meaning of their affective states. To address this question, the present study investigated the effects of individual differences in emotional granularity on electroencephalography-based brain activity during the experience of emotion in response to affective images. Event-related potentials (ERP) and event-related desynchronization and synchronization (ERD/ERS) analysis techniques were used. We found that ERP responses during the very early (60–90 ms), middle (270–300 ms), and later (540–570 ms) moments of stimulus presentation were associated with individuals’ level of granularity. We also observed that highly granular individuals, compared to lowly granular individuals, exhibited relatively stable desynchronization of alpha power (8–12 Hz) and synchronization of gamma power (30–50 Hz) during the 3 s of stimulus presentation. Overall, our results suggest that emotional granularity is related to differences in neural processing throughout emotional experiences and that high granularity could be associated with access to executive control resources and a more habitual processing of affective stimuli, or a kind of “emotional complexity.” Implications for models of emotion are also discussed. PMID:28392761

  4. Valence of physical stimuli, not housing conditions, affects behaviour and frontal cortical brain activity in sheep.

    PubMed

    Vögeli, Sabine; Lutz, Janika; Wolf, Martin; Wechsler, Beat; Gygax, Lorenz

    2014-07-01

    Modulation of short-term emotions by long-term mood is little understood but relevant to understand the affective system and of importance in respect to animal welfare: a negative mood might taint experiences, whilst a positive mood might alleviate single negative events. To induce different mood states in sheep housing conditions were varied. Fourteen ewes were group-housed in an unpredictable, stimulus-poor and 15 ewes in a predictable, stimulus-rich environment. Sheep were tested individually for mood in a behavioural cognitive bias paradigm. Also, their reactions to three physical stimuli thought to differ in their perceived valence were observed (negative: pricking, intermediate: slight pressure, positive: kneading). General behaviour, activity, ear movements and positions, and haemodynamic changes in the cortical brain were recorded during stimulations. Generalised mixed-effects models and model probabilities based on the BIC (Bayesian information criterion) were used. Only weak evidence for mood difference was found. Sheep from the unpredictable, stimulus-poor housing condition had a somewhat more negative cognitive bias, showed slightly more aversive behaviour, were slightly more active and moved their ears somewhat more. Sheep most clearly differentiated the negative from the intermediate and positive stimulus in that they exhibited more aversive behaviour, less nibbling, were more active, showed more ear movements, more forward ear postures, fewer backward ear postures, and a stronger decrease in deoxyhaemoglobin when subjected to the negative stimulus. In conclusion, sheep reacted towards stimuli according to their presumed valence but their mood was not strongly influenced by housing conditions. Therefore, behavioural reactions and cortical brain activity towards the stimuli were hardly modulated by housing conditions.

  5. Regulation of Dopamine Uptake by Vasoactive Peptides in the Kidney

    PubMed Central

    Gironacci, M. M.

    2016-01-01

    Considering the key role of renal dopamine in tubular sodium handling, we hypothesized that c-type natriuretic peptide (CNP) and Ang-(1-7) may regulate renal dopamine availability in tubular cells, contributing to Na+, K+-ATPase inhibition. Present results show that CNP did not affect either 3H-dopamine uptake in renal tissue or Na+, K+-ATPase activity; meanwhile, Ang-(1-7) was able to increase 3H-dopamine uptake and decreased Na+, K+-ATPase activity in renal cortex. Ang-(1-7) and dopamine together decreased further Na+, K+-ATPase activity showing an additive effect on the sodium pump. In addition, hydrocortisone reversed Ang-(1-7)-dopamine overinhibition on the enzyme, suggesting that this inhibition is closely related to Ang-(1-7) stimulation on renal dopamine uptake. Both anantin and cANP (4-23-amide) did not modify CNP effects on 3H-dopamine uptake by tubular cells. The Mas receptor antagonist, A-779, blocked the increase elicited by Ang-(1-7) on 3H-dopamine uptake. The stimulatory uptake induced by Ang-(1-7) was even more pronounced in the presence of losartan, suggesting an inhibitory effect of Ang-(1-7) on AT1 receptors on 3H-dopamine uptake. By increasing dopamine bioavailability in tubular cells, Ang-(1-7) enhances Na+, K+-ATPase activity inhibition, contributing to its natriuretic and diuretic effects. PMID:27635280

  6. Regulation of Dopamine Uptake by Vasoactive Peptides in the Kidney.

    PubMed

    Rukavina Mikusic, N L; Kouyoumdzian, N M; Rouvier, E; Gironacci, M M; Toblli, J E; Fernández, B E; Choi, M R

    2016-01-01

    Considering the key role of renal dopamine in tubular sodium handling, we hypothesized that c-type natriuretic peptide (CNP) and Ang-(1-7) may regulate renal dopamine availability in tubular cells, contributing to Na(+), K(+)-ATPase inhibition. Present results show that CNP did not affect either (3)H-dopamine uptake in renal tissue or Na(+), K(+)-ATPase activity; meanwhile, Ang-(1-7) was able to increase (3)H-dopamine uptake and decreased Na(+), K(+)-ATPase activity in renal cortex. Ang-(1-7) and dopamine together decreased further Na(+), K(+)-ATPase activity showing an additive effect on the sodium pump. In addition, hydrocortisone reversed Ang-(1-7)-dopamine overinhibition on the enzyme, suggesting that this inhibition is closely related to Ang-(1-7) stimulation on renal dopamine uptake. Both anantin and cANP (4-23-amide) did not modify CNP effects on (3)H-dopamine uptake by tubular cells. The Mas receptor antagonist, A-779, blocked the increase elicited by Ang-(1-7) on (3)H-dopamine uptake. The stimulatory uptake induced by Ang-(1-7) was even more pronounced in the presence of losartan, suggesting an inhibitory effect of Ang-(1-7) on AT1 receptors on (3)H-dopamine uptake. By increasing dopamine bioavailability in tubular cells, Ang-(1-7) enhances Na(+), K(+)-ATPase activity inhibition, contributing to its natriuretic and diuretic effects.

  7. A phosphorylation cascade in the basal ganglia of the mammalian brain: regulation by the D-1 dopamine receptor. A mathematical model of known biochemical reactions.

    PubMed

    Kebabian, J W

    1997-01-01

    Stimulation of the dopamine D-1 receptor in the corpus striatum initiates a cascade of biochemical events. These events include: activation of adenylate cyclase, stimulation of cAMP-dependent protein kinase, protein phosphorylation and inhibition of phosphoprotein phosphotase-1. This article presents and discusses a mathematical model of these biochemical events (and their dependence upon the concentration of cytosolic calcium). According to this model, the activity of calcineurin (which is regulated by the concentration of cytosolic calcium ions) counterbalances the activity of the "D-1 cascade". The combined activity of the "D-1 cascade" and calcineurin can regulate the activity of calcium- and calmodulin-dependent protein kinase II.

  8. Oral Administration of Methylphenidate (Ritalin) Affects Dopamine Release Differentially Between the Prefrontal Cortex and Striatum: A Microdialysis Study in the Monkey.

    PubMed

    Kodama, Tohru; Kojima, Takashi; Honda, Yoshiko; Hosokawa, Takayuki; Tsutsui, Ken-Ichiro; Watanabe, Masataka

    2017-03-01

    Methylphenidate (MPH; trade name Ritalin) is a widely used drug for the treatment of attention deficit hyperactivity disorder (ADHD) and is often used as a cognitive enhancer. Because MPH increases dopamine (DA) release by blocking the DA transporter in the human striatum, MPH is supposed to work on attention and cognition through a DA increase in the striatum. However, ADHD patients show impaired prefrontal cortex (PFC) function and MPH administration is associated with increased neural activity in the PFC. Although MPH is indicated to increase DA release in the rat PFC, there has been no study to examine MPH-induced DA changes in the human PFC because of technical difficulties associated with the low level of PFC DA receptors. Using the microdialysis technique, we examined the effects of oral administration of MPH on DA release in both the PFC and striatum in the monkey. We also tested the effect of MPH on cognitive task performance. As in human studies, in the striatum, both high and low doses of MPH induced consistent increases in DA release ∼30 min after their administrations. In the PFC, a consistent increase in DA release was observed 1 h after a high dose, but not low doses, of MPH. Low doses of MPH improved cognitive task performance, but a high dose of MPH made the monkey drowsy. Therefore, low-dose MPH-induced cognitive enhancement is supported by striatum DA increase.SIGNIFICANCE STATEMENT Methylphenidate (MPH) is a widely used drug for the treatment of attention deficit hyperactivity disorder and is often used as a cognitive enhancer. Although human positron emission tomography studies suggest that MPH works on attention and cognition through dopamine (DA) changes in the striatum, there has been no study to examine MPH-induced DA changes in the human prefrontal cortex (PFC). Using the microdialysis technique in monkeys, we found, for the first time, that low doses of MPH consistently increased DA release in the striatum but did not in the PFC

  9. A Double Blind Trial of Divalproex Sodium for Affective Liability and Alcohol Use Following Traumatic Brain Injury

    DTIC Science & Technology

    2014-10-01

    TITLE: A Double Blind Trial of Divalproex Sodium for Affective L ability and Alcohol Use Following Traumatic Brain Injury PRINCIPAL...Final 3. DATES COVERED 15 Sep 2013 to 14 Sep 2014 4. TITLE AND SUBTITLE A Double Blind Trial of Divalproex Sodium for Affective 5a. CONTRACT...subjects treated with divalproex sodium , a mood stabilizing medication, as compared to placebo. To test the primary hypothesis, we propose an 8 week

  10. Maternal administration of flutamide during late gestation affects the brain and reproductive organs development in the rat male offspring.

    PubMed

    Pallarés, M E; Adrover, E; Imsen, M; González, D; Fabre, B; Mesch, V; Baier, C J; Antonelli, M C

    2014-10-10

    We have previously demonstrated that male rats exposed to stress during the last week of gestation present age-specific impairments of brain development. Since the organization of the fetal developing brain is subject to androgen exposure and prenatal stress was reported to disrupt perinatal testosterone surges, the aim of this research was to explore whether abnormal androgen concentrations during late gestation affects the morphology of the prefrontal cortex (PFC), hippocampus (HPC) and ventral tegmental area (VTA), three major areas that were shown to be affected by prenatal stress in our previous studies. We administered 10-mg/kg/day of the androgen receptor antagonist flutamide (4'nitro-3'-trifluoromethylsobutyranilide) or vehicle injections to pregnant rats from days 15-21 of gestation. The antiandrogenic effects of flutamide were confirmed by the analysis of androgen-dependent developmental markers: flutamide-exposed rats showed reduced anogenital distance, delay in the completion of testis descent, hypospadias, cryptorchidism and atrophied seminal vesicles. Brain morphological studies revealed that prenatal flutamide decreased the number of MAP2 (a microtubule-associated protein type 2, present almost exclusively in dendrites) immunoreactive neuronal processes in all evaluated brain areas, both in prepubertal and adult offspring, suggesting that prenatal androgen disruption induces long-term reductions of the dendritic arborization of several brain structures, affecting the normal connectivity between areas. Moreover, the number of tyrosine hydroxylase (TH)-immunopositive neurons in the VTA of prepubertal offspring was reduced in flutamide rats but reach normal values at adulthood. Our results demonstrate that the effects of prenatal flutamide on the offspring brain morphology resemble several prenatal stress effects suggesting that the mechanism of action of prenatal stress might be related to the impairment of the organizational role of androgens on brain

  11. A model of dopamine modulated glutamatergic synapse.

    PubMed

    Di Maio, Vito; Ventriglia, Francesco; Santillo, Silvia

    2015-10-01

    The dopamine neurotransmitter regulates important neural pathways and its action in the brain is very complex. When dopaminergic neurons make synapses on spiny neurons of the striatum nucleus, they tune the responsiveness of glutamatergic synapses by means of the dopamine D1 and D2 receptors. We studied the effect of dopamine D1 receptors on glutamatergic synapse of GABAergic spiny neurons in striatum nucleus where they are located on the neck of the same spine. The action of dopamine consists essentially in promoting the phosphorylation of AMPA and NMDA receptors thus increasing the Excitatory Post Synaptic Current peak amplitude. The consequence is a cooperative effect of glutamatergic and dopaminergic synapses for the regulation of the GABAergic neuronal code. The mechanisms by which the phosphorylation induces the increase of the EPSC amplitude still remain unclear although the lack of this regulation can be involved in several pathologies as, for example, the Parkinson's disease. We tested, by computational experiments based on our model of glutamatergic synapse, three parameters of the synaptic function that could be involved in dopamine action: (a) time binding of glutamate to receptors; (b) open probability of the receptors; and (c) single receptor conductance. For different reasons, any of the three parameters could be responsible of the increased EPSC-dopamine-dependent. Our computational results were compared and discussed with experimental results found in literature. Although for our model both the open probability and the single receptor conductance can reproduce the phosphorylation effect of dopamine, we argue that the dopamine effect consists essentially in an increase of the single receptor conductance due to a 3D rearrangement of the phosphorylated receptors.

  12. Minimal changes of thyroid axis activity influence brain functions in young females affected by subclinical hypothyroidism.

    PubMed

    Menicucci, D; Sebastiani, L; Comparini, A; Pingitore, A; Ghelarducci, B; L'Abbate, A; Iervasi, G; Gemignani, A

    2013-03-01

    There is evidence of an association between thyroid hormones (TH) alterations and mental dysfunctions related to procedural and working memory functions, but the physiological link between these domains is still under debate, also for the presence of age as a confounding factor. Thus, we investigated the TH tuning of cerebral functions in young females affected by the borderline condition of subclinical hypothyroidism (SH) and in euthyroid females of the same age. The experiment consisted in the characterization of the affective state and cognitive abilities of the subjects by means of specific neuropsychological questionnaires, and of brain activity (EEG) in resting state and during the passive viewing of emotional video-clips. We found that SH had i) increased anxiety for Physical Danger; ii) better scores for both Mental Control and no-working-memory-related functions; iii) association between anxiety for Physical Danger and fT4 levels. Thus, in young adults, SH increases inward attention and paradoxically improves some cognitive functions. In addition, self-assessed questionnaires showed that SH had a greater susceptibility to unpleasant emotional stimulation. As for EEG data, SH compared to controls showed: i) reduction of alpha activity and of gamma left lateralization in resting state; ii) increased, and lateralized to the right, beta2 activity during stimulations. Both results indicated that SH have higher levels of arousal and greater susceptibility to negative emotion than controls. In conclusion, our study indicates that minimal changes in TH levels produce subtle but well-defined mental changes, thus encouraging further studies for the prediction of pathology evolution.

  13. Sex differences in perceived pain are affected by an anxious brain.

    PubMed

    Goffaux, Philippe; Michaud, Karine; Gaudreau, Janou; Chalaye, Philippe; Rainville, Pierre; Marchand, Serge

    2011-09-01

    Decades of research confirm that women have greater pain sensitivity than men. Women also show greater overall anxiety sensitivity than men. Given these differences, we hypothesized that sex differences in anxiety would explain sex differences in experienced pain and physiological responses to pain (at both spinal and cortical levels). By measuring subjective pain, state/trait anxiety, nociceptive flexion reflexes, and somatosensory evoked potentials (SEPs), it was possible to test the effects of anxiety on the processing of painful drives at different levels of the neuraxis while also documenting the role played by anxiety on sex differences in experienced pain. Results confirm that women are indeed more sensitive to pain than men. Importantly, this difference was accompanied by a significant sex difference in cortical activity (SEP amplitude) but not spinal nociceptive activity, suggesting that much of the sex difference in experienced pain is attributable to variations in thalamocortical processing and to ensuing changes in the appraisal of and/or emotional response to noxious insult. In support of this claim, we found that sex differences in cortical activity and subjective pain disappeared when trait anxiety was controlled for. This means that stable predispositions to respond with heightened apprehension contribute to baseline pain sensitivity differences between the sexes. These results indicate that the modulatory effect of affect on pain-related brain processes may explain why men and women experience painful shocks so differently. In our study, the mediating role of anxiety on sex differences in pain was tested and confirmed using path analysis.

  14. The cerebrovascular effects of adrenaline, noradrenaline and dopamine infusions under propofol and isoflurane anaesthesia in sheep.

    PubMed

    Myburgh, J A; Upton, R N; Grant, C; Martinez, A

    2002-12-01

    Infusions of catecholamines are frequently administered to patients receiving propofol or isoflurane anaesthesia. Interactions between these drugs may affect regional circulations, such as the brain. The aim of this animal (sheep) study was to determine the effects of ramped infusions of adrenaline, noradrenaline (10, 20, 40 micrograms/min) and dopamine (10, 20, 40 micrograms/kg/min) on cerebral blood flow (CBF), intracranial pressure (ICP), cerebrovascular resistance (CVR) and cerebral metabolic rate for oxygen (CMRO2). These measurements were made under awake physiological conditions, and during continuous propofol (15 mg/min) or 2% isoflurane anaesthesia. All three catecholamines significantly and equivalently increased mean arterial pressure from baseline in a dose-dependent manner in the three cohorts (P < 0.001). In the awake cohort (n = 8), dopamine (P < 0.01) significantly increased CBF from baseline whilst adrenaline and noradrenaline did not (P > 0.05). Under propofol (n = 6) and isoflurane (n = 6), all three catecholamines significantly increased CBF (P < 0.001). Dopamine caused the greatest increase in CBF, and was associated with significant increases in ICP (awake: P < 0.001; propofol P < 0.05; isoflurane P < 0.001) and CVR (isoflurane P < 0.05). No significant changes in CMRO2 were demonstrated. Under propofol and isoflurane anaesthesia, the cerebrovascular effects of catecholamines were significantly different from the awake, physiological state, with dopamine demonstrating the most pronounced effects, particularly under propofol. Dopamine-induced hyperaemia was associated with other cerebrovascular changes. In the presence of an equivalent effect on mean arterial pressure, the exaggerated cerebrovascular effects under anaesthesia appear to be centrally mediated, possibly induced by propofol- or isoflurane-dependent changes in blood-brain barrier permeability, thereby causing a direct influence on the cerebral vasculature.

  15. Interactions of taurine and dopamine in the striatum.

    PubMed

    Kontro, P

    1987-01-01

    Both spontaneous and K+-stimulated taurine release from rat striatal slices were affected by dopamine and apomorphine, suggesting that dopaminergic systems are able to modulate taurine release. K+-stimulated dopamine release was potentiated by taurine, which effect may not involve dopamine autoreceptors. Taurine was able to inhibit spiperone binding to striatal membranes in a uncompetitive manner and thus interfere with the function of dopaminergic receptors.

  16. Protein v. carbohydrate intake differentially affects liking- and wanting-related brain signalling.

    PubMed

    Born, Jurriaan M; Martens, Mieke J I; Lemmens, Sofie G T; Goebel, Rainer; Westerterp-Plantenga, Margriet S

    2013-01-28

    Extreme macronutrient intakes possibly lead to different brain signalling. The aim of the present study was to determine the effects of ingesting high-protein v. high-carbohydrate food on liking and wanting task-related brain signalling (TRS) and subsequent macronutrient intake. A total of thirty female subjects (21.6 (SD 2.2) years, BMI 25.0 (SD 3.7) kg/m²) completed four functional MRI scans: two fasted and two satiated on two different days. During the scans, subjects rated all food items for liking and wanting, thereby choosing the subsequent meal. The results show that high-protein (PROT) v. high-carbohydrate (CARB) conditions were generated using protein or carbohydrate drinks at the first meal. Energy intake and hunger were recorded. PROT (protein: 53.7 (SD 2.1) percentage of energy (En%); carbohydrate: 6.4 (SD 1.3) En%) and CARB conditions (protein: 11.8 (SD 0.6) En%; carbohydrate: 70.0 (SD 2.4) En%) were achieved during the first meal, while the second meals were not different between the conditions. Hunger, energy intake, and behavioural liking and wanting ratings were decreased after the first meal (P< 0.001). Comparing the first with the second meal, the macronutrient content changed: carbohydrate -26.9 En% in the CARB condition, protein -37.8 En% in the PROT condition. After the first meal in the CARB condition, wanting TRS was increased in the hypothalamus. After the first meal in the PROT condition, liking TRS was decreased in the putamen (P< 0.05). The change in energy intake from the first to the second meal was inversely related to the change in liking TRS in the striatum and hypothalamus in the CARB condition and positively related in the PROT condition (P< 0.05). In conclusion, wanting and liking TRS were affected differentially with a change in carbohydrate or protein intake, underscoring subsequent energy intake and shift in macronutrient composition.

  17. Dopamine D2-receptor blockade enhances decoding of prefrontal signals in humans.

    PubMed

    Kahnt, Thorsten; Weber, Susanna C; Haker, Helene; Robbins, Trevor W; Tobler, Philippe N

    2015-03-04

    The prefrontal cortex houses representations critical for ongoing and future behavior expressed in the form of patterns of neural activity. Dopamine has long been suggested to play a key role in the integrity of such representations, with D2-receptor activation rendering them flexible but weak. However, it is currently unknown whether and how D2-receptor activation affects prefrontal representations in humans. In the current study, we use dopamine receptor-specific pharmacology and multivoxel pattern-based functional magnetic resonance imaging to test the hypothesis that blocking D2-receptor activation enhances prefrontal representations. Human subjects performed a simple reward prediction task after double-blind and placebo controlled administration of the D2-receptor antagonist amisulpride. Using a whole-brain searchlight decoding approach we show that D2-receptor blockade enhances decoding of reward signals in the medial orbitofrontal cortex. Examination of activity patterns suggests that amisulpride increases the separation of activity patterns related to reward versus no reward. Moreover, consistent with the cortical distribution of D2 receptors, post hoc analyses showed enhanced decoding of motor signals in motor cortex, but not of visual signals in visual cortex. These results suggest that D2-receptor blockade enhances content-specific representations in frontal cortex, presumably by a dopamine-mediated increase in pattern separation. These findings are in line with a dual-state model of prefrontal dopamine, and provide new insights into the potential mechanism of action of dopaminergic drugs.

  18. Physiological fluctuations in brain temperature as a factor affecting electrochemical evaluations of extracellular glutamate and glucose in behavioral experiments.

    PubMed

    Kiyatkin, Eugene A; Wakabayashi, Ken T; Lenoir, Magalie

    2013-05-15

    The rate of any chemical reaction or process occurring in the brain depends on temperature. While it is commonly believed that brain temperature is a stable, tightly regulated homeostatic parameter, it fluctuates within 1-4 °C following exposure to salient arousing stimuli and neuroactive drugs, and during different behaviors. These temperature fluctuations should affect neural activity and neural functions, but the extent of this influence on neurochemical measurements in brain tissue of freely moving animals remains unclear. In this Review, we present the results of amperometric evaluations of extracellular glutamate and glucose in awake, behaving rats and discuss how naturally occurring fluctuations in brain temperature affect these measurements. While this temperature contribution appears to be insignificant for glucose because its extracellular concentrations are large, it is a serious factor for electrochemical evaluations of glutamate, which is present in brain tissue at much lower levels, showing smaller phasic fluctuations. We further discuss experimental strategies for controlling the nonspecific chemical and physical contributions to electrochemical currents detected by enzyme-based biosensors to provide greater selectivity and reliability of neurochemical measurements in behaving animals.

  19. Experimental exposure to urban and pink noise affects brain development and song learning in zebra finches (Taenopygia guttata)

    PubMed Central

    Curcio, Michael T.; Swaddle, John P.; MacDougall-Shackleton, Scott A.

    2016-01-01

    Recently, numerous studies have observed changes in bird vocalizations—especially song—in urban habitats. These changes are often interpreted as adaptive, since they increase the active space of the signal in its environment. However, the proximate mechanisms driving cross-generational changes in song are still unknown. We performed a captive experiment to identify whether noise experienced during development affects song learning and the development of song-control brain regions. Zebra finches (Taeniopygia guttata) were bred while exposed, or not exposed, to recorded traffic urban noise (Study 1) or pink noise (Study 2). We recorded the songs of male offspring and compared these to fathers’ songs. We also measured baseline corticosterone and measured the size of song-control brain regions when the males reached adulthood (Study 1 only). While male zebra finches tended to copy syllables accurately from tutors regardless of noise environment, syntax (the ordering of syllables within songs) was incorrectly copied affected by juveniles exposed to noise. Noise did not affect baseline corticosterone, but did affect the size of brain regions associated with song learning: these regions were smaller in males that had been had been exposed to recorded traffic urban noise in early development. These findings provide a possible mechanism by which noise affects behaviour, leading to potential population differences between wild animals occupying noisier urban environments compared with those in quieter habitats. PMID:27602270

  20. A rapid and simple method for the determination of 3,4-dihydroxyphenylacetic acid, norepinephrine, dopamine, and serotonin in mouse brain homogenate by HPLC with fluorimetric detection.

    PubMed

    De Benedetto, Giuseppe Egidio; Fico, Daniela; Pennetta, Antonio; Malitesta, Cosimino; Nicolardi, Giuseppe; Lofrumento, Dario Domenico; De Nuccio, Francesco; La Pesa, Velia

    2014-09-01

    A fast and simple isocratic high-performance liquid chromatography method for the determination of 3,4-dihydroxyphenylacetic acid (DOPAC), norepinephrine (NE), dopamine (DA), and serotonin (5-HT) in homogenate samples of mouse striatum employing the direct fluorescence of the neurotransmitters is described. The method has been optimized and validated. The analytes were separated in 15min on a reversed-phase column (C18) with acetate buffer (pH 4.0, 12mM)-methanol (86:14, v/v) as mobile phase; the flow rate was 1ml/min. The fluorescence measurements were carried out at 320nm with excitation at 279nm. The calibration curve for DA was linear up to about 2.5μg/ml, with a coefficient of determination (r(2)) of 0.9995 with a lower limit of quantification of 0.031μg/ml. Since the procedure does not involve sample pre-purification or derivatisation, the recovery ranged from 97% to 102% and relative standard deviation (RSD) was better than 2.9%, the use of the internal standard is not mandatory, further simplifying the method. Similar performance was obtained for the other analytes. As a result, thanks to its simplicity, rapidity and adequate working range, the method can be used for the determination of 3,4-dihydroxyphenylacetic acid, dopamine, norepinephrine and serotonin in animal tissues. An experimental 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson-like disease has been used to demonstrate the method is fit-for-purpose.

  1. The serotonin-dopamine interaction measured with positron emission tomography (PET) and C-11 raclopride in normal human subjects

    SciTech Connect

    Smith, G.S.; Dewey, S.L.; Logan, J.

    1994-05-01

    Our previous studies have shown that the interaction between serotonin and dopamine can be measured with C-11 raclopride and PET in the baboon brain. A series of studies was undertaken to extend dim findings to the normal human brain. PET studies were conducted in male control subjects (n=8) using the CTI 931 tomograph. Two C-11 raclopride scans were performed, prior to and 180 minutes following administration of the selective serotonin releasing agent, fenfluramine (60mg/PO). The neuroendocrine response to fenfluramine challenge is commonly used in psychiatric research as an index of serotonin activity. The C-11 raclopride data were analyzed with the distribution volume method. For the group of subjects, an increase was observed in the striatum to cerebellum ratio (specific to non-specific binding ratio), in excess of the test-retest variability of the ligand. Variability in response was observed across subjects. These results are consistent with our previous findings in the baboon that citalopram administration increased C-11 raclopride binding, consistent with a decrease in endogenous dopamine. In vivo microdialysis studies in freely moving rats confirmed that citalopram produces a time-dependent decrease in extracellular dopamine levels, consistent with the PET results. In vivo PET studies of the serotonin-dopamine interaction are relevant to the evaluation of etiologic and therapeutic mechanisms in schizophrenia and affective disorder.

  2. Exposure to the polybrominated diphenyl ether mixture DE-71 damages the nigrostriatal dopamine system: role of dopamine handling in neurotoxicity.

    PubMed

    Bradner, Joshua M; Suragh, Tiffany A; Wilson, W Wyatt; Lazo, Carlos R; Stout, Kristen A; Kim, Hye Mi; Wang, Min Z; Walker, Douglas I; Pennell, Kurt D; Richardson, Jason R; Miller, Gary W; Caudle, W Michael

    2013-03-01

    In the last several decades polybrominated diphenyl ethers (PBDEs) have replaced the previously banned polychlorinated biphenyls (PCBs) in multiple flame retardant utilities. As epidemiological and laboratory studies have suggested PCBs as a risk factor for Parkinson's disease (PD), the similarities between PBDEs and PCBs suggest that PBDEs have the potential to be neurotoxic to the dopamine system. The purpose of this study was to evaluate the neurotoxic effects of the PBDE mixture, DE-71, on the nigrostriatal dopamine system and address the role of altered dopamine handling in mediating this neurotoxicity. Using an in vitro model system we found DE-71 effectively caused cell death in a dopaminergic cell line as well as reducing the number of TH+ neurons isolated from VMAT2 WT and LO animals. Assessment of DE-71 neurotoxicity in vivo demonstrated significant deposition of PBDE congeners in the brains of mice, leading to reductions in striatal dopamine and dopamine handling, as well as reductions in the striatal dopamine transporter (DAT) and VMAT2. Additionally, DE-71 elicited a significant locomotor deficit in the VMAT2 WT and LO mice. However, no change was seen in TH expression in dopamine terminal or in the number of dopamine neurons in the substantia nigra pars compacta (SNpc). To date, these are the first data to demonstrate that exposure to PBDEs disrupts the nigrostriatal dopamine system. Given their similarities to PCBs, additional laboratory and epidemiological research should be considered to assess PBDEs as a potential risk factor for PD and other neurological disorders.

  3. Brain activation, affect, and aerobic exercise: an examination of both state-independent and state-dependent relationships.

    PubMed

    Petruzzello, S J; Tate, A K

    1997-09-01

    Resting electroencephalograph (EEG) asymmetry is a biological marker of the propensity to respond affectively to, and a measure of change in affect associated with, acute aerobic exercise. This study examined the EEG-affect-exercise relationship. Twenty participants performed each of three randomly assigned 30-min conditions: (a) a nonexercise control, (b) a cycling exercise at 55% VO2max, and (c) a cycling exercise at 70% VO2max. EEG and affect were assessed pre- and 0, 5, 10, 20, and 30 min postcondition. No significant results were seen in the control or 55% conditions. In the 70% exercise condition, greater relative left frontal activation preexercise predicted increased positive affect and reduced state anxiety postexercise. Participants (n = 7) with extreme relative left frontal activation postexercise reported concomitant decreases in anxiety, whereas participants (n = 7) with extreme relative right frontal activation postexercise reported increases in anxiety. These findings (a) replicate prior work, (b) suggest a dose-response intensity effect, and (c) support the idea that exercise is an emotion-eliciting event. Affective responses seem to be mediated in part by differential resting levels of activation in the anterior brain regions. Ongoing anterior brain activation reflected concurrent postexercise affect.

  4. Alcohol-induced alterations in dopamine modulation of prefrontal activity.

    PubMed

    Trantham-Davidson, Heather; Chandler, L Judson

    2015-12-01

    Long-term alcohol use leads to persistent cognitive deficits that may be associated with maladaptive changes in the neurocircuitry that mediates executive functions. Impairments caused by these changes can persist well into abstinence and have a negative impact on quality of life and job performance, and can increase the probability of relapse. Many of the changes that affect cognitive function appear to involve dysregulation of the mesocortical dopamine system. This includes changes in dopamine release and alterations in dopamine receptor expression and function in the medial prefrontal cortex (PFC). This review summarizes the cellular effects of acute and chronic ethanol exposure on dopamine release and dopamine receptor function in the PFC with the goal of providing greater understanding of the effects of alcohol-use disorders on the dopamine system and how this relates to deficits in the executive function of the PFC.

  5. Alcohol-induced alterations in dopamine modulation of prefrontal activity

    PubMed Central

    Trantham-Davidson, Heather; Chandler, L. Judson

    2015-01-01

    Long-term alcohol use leads to persistent cognitive deficits that may be associated with maladaptive changes in the neurocircuitry that mediates executive functions. Impairments caused by these changes can persist well into abstinence and have a negative impact on quality of life and job performance, and can increase the probability of relapse. Many of the changes that affect cognitive function appear to involve dysregulation of the mesocortical dopamine system. This includes changes in dopamine release and alterations in dopamine receptor expression and function in the medial prefrontal cortex (PFC). This review summarizes the cellular effects of acute and chronic ethanol exposure on dopamine release and dopamine receptor function in the PFC with the goal of providing greater understanding of the effects of alcohol-use disorders on the dopamine system and how this relates to deficits in the executive function of the PFC. PMID:26558348

  6. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease

    SciTech Connect

    Lindvall, O.; Brundin, P.; Widner, H.; Rehncrona, S.; Gustavii, B.; Frackowiak, R.; Leenders, K.L.; Sawle, G.; Rothwell, J.C.; Marsden, C.D. )

    1990-02-02

    Neural transplantation can restore striatal dopaminergic neurotransmission in animal models of Parkinson's disease. It has now been shown that mesencephalic dopamine neurons, obtained from human fetuses of 8 to 9 weeks gestational age, can survive in the human brain and produce marked and sustained symptomatic relief in a patient severely affected with idiopathic Parkinson's disease. The grafts, which were implanted unilaterally into the putamen by stereotactic surgery, restored dopamine synthesis and storage in the grafted area, as assessed by positron emission tomography with 6-L-({sup 18}F)fluorodopa. This neurochemical change was accompanied by a therapeutically significant reduction in the patient's severe rigidity and bradykinesia and a marked diminuation of the fluctuations in the patient's condition during optimum medication (the on-off phenomenon). The clinical improvement was most marked on the side contralateral to the transplant.

  7. PET study of 11C-acetoacetate kinetics in rat brain during dietary treatments affecting ketosis.

    PubMed

    Bentourkia, M'hamed; Tremblay, Sébastien; Pifferi, Fabien; Rousseau, Jacques; Lecomte, Roger; Cunnane, Stephen

    2009-04-01

    Normally, the brain's fuel is glucose, but during fasting it increasingly relies on ketones (beta-hydroxybutyrate, acetoacetate, and acetone) produced in liver mitochondria from fatty acid beta-oxidation. Although moderately raised blood ketones produced on a very high fat ketogenic diet have important clinical effects on the brain, including reducing seizures, ketone metabolism by the brain is still poorly understood. The aim of the present work was to assess brain uptake of carbon-11-labeled acetoacetate (11C-acetoacetate) by positron emission tomography (PET) imaging in the intact, living rat. To vary plasma ketones, we used three dietary conditions: high carbohydrate control diet (low plasma ketones), fat-rich ketogenic diet (raised plasma ketones), and 48-h fasting (raised plasma ketones). 11C-acetoacetate metabolism was measured in the brain, heart, and tissue in the mouth area. Using 11C-acetoacetate and small animal PET imaging, we have noninvasively quantified an approximately seven- to eightfold enhanced brain uptake of ketones on a ketogenic diet or during fasting. This opens up an opportunity to study brain ketone metabolism in humans.

  8. Dopamine D2 receptors mediate the increase in reinstatement of the conditioned rewarding effects of cocaine induced by acute social defeat.

    PubMed

    Reguilón, Marina Daiana; Montagud-Romero, Sandra; Ferrer-Pérez, Carmen; Roger-Sánchez, Concepción; Aguilar, María Asunción; Miñarro, José; Rodríguez-Arias, Marta

    2017-03-15

    Social stress modifies the activity of brain areas involved in the rewarding effects of psychostimulants, inducing neuroadaptations in the dopaminergic mesolimbic system and modifying the sensitivity of dopamine receptors. In the present study we evaluated the effect of the dopamine D1- and D2-like receptor antagonists (SCH23390 and raclopride, respectively) on the short-time effects of acute social defeat (ASD). Male OF1 mice were socially defeated before each conditioning session of the conditioned place preference (CPP) induced by 1mg/kg or 25mg/kg of cocaine plus the corresponding dopamine antagonist. A final experiment was designed to evaluate the effect of the dopamine antagonists on the CPP induced by 3mg/kg of cocaine with or without a stress experience. Mice exposed to ASD showed an increase in reinstatement of the conditioned reinforcing effects of cocaine that was blocked by all of the dopamine receptor antagonists. Blockade of dopamine D2-like receptors with raclopride specifically prevented the effects of stress without affecting the rewarding properties of cocaine. However, SCH23390 inhibited cocaine-induced preference in the control groups and even induced aversion in defeated mice conditioned with the lower dose of cocaine. Moreover, the lowest dose of SCH23390 blocked the rewarding effects of 3mg/kg of cocaine-induced CPP. Our results confirm that the dopamine D2 receptor is involved in the short-term effects of ASD on the rewarding effects of cocaine. The dopamine D1 receptor is clearly involved in the rewarding effects of cocaine, but its role in the effects of ASD remains to be demonstrated.

  9. Chronic betahistine co-treatment reverses olanzapine's effects on dopamine D₂ but not 5-HT2A/2C bindings in rat brains.

    PubMed

    Lian, Jiamei; Huang, Xu-Feng; Pai, Nagesh; Deng, Chao

    2015-01-02

    Olanzapine is widely prescribed for treating schizophrenia and other mental disorders, although it leads to severe body weight gain/obesity. Chronic co-treatment with betahistine has been found to significantly decrease olanzapine-induced weight gain; however, it is not clear whether this co-treatment affects the therapeutic effects of olanzapine. This study investigated the effects of chronic treatment of olanzapine and/or betahistine on the binding density of the serotonergic 5-HT2A (5-HT2AR) and 5-HT2C (5-HT2CR) receptors, 5-HT transporter (5-HTT), and dopaminergic D₂ receptors (D₂R) in the brain regions involved in antipsychotic efficacy, including the prefrontal cortex (PFC), cingulate cortex (Cg), nucleus accumbens (NAc), and caudate putamen (CPu). Rats were treated with olanzapine (1 mg/kg, t.i.d.) or vehicle for 3.5 weeks, and then olanzapine treatment was withdrawn for 19 days. From week 6, the two groups were divided into 4 groups (n=6) for 5 weeks' treatment: (1) olanzapine-only (1 mg/kg, t.i.d.), (2) betahistine-only (9.6 mg/kg, t.i.d.), (3) olanzapine and betahistine co-treatment (O+B), and (4) vehicle. Compared to the control, the olanzapine-only treatment significantly decreased the bindings of 5-HT2AR, 5-HT2CR, and 5-HTT in the PFC, Cg, and NAc. Similar changes were observed in the rats receiving the O+B co-treatment. The olanzapine-only treatment significantly increased the D₂R binding in the Cg, NAc, and CPu, while the betahistine-only treatment reduced D₂R binding. The co-treatment of betahistine reversed the D₂R bindings in the NAc and CPu that were increased by olanzapine. Therefore, chronic O+B co-treatment has similar effects on serotonin transmission as the olanzapine-only treatment, but reverses the D₂R that is up-regulated by chronic olanzapine treatment. The co-treatment maintains the therapeutic effects of olanzapine but decreases/prevents the excess weight gain.

  10. [Effects of monorecessive and double recessive mutations affecting coat color on the monoamine content of the brain of the American mink (Mustela vison Schreber, 1777)].

    PubMed

    Trapezov, O V; Trapezova, L I; alekhina, T A; Klochkov, D V; Ivanov, Iu N

    2009-12-01

    The effects of mutations affecting the coat color on the dopamine, noradrenaline, and serotonin contents of the hypothalamus and brainstem of the American mink have been studied. The sample comprised standard (+/+) and mutant minks, including the monorecessive pastel (b/b), silver-blue (p/p), and white hedlund (h/h) and the combination double recessive sapphire (a/a p/p) and pearl (k/k p/p) ones. The dopamine content of the brainstem of the monorecessive pastel (b/b) and silver-blue (p/p) minks has been found to be higher than in standard (+/+) minks. Conversely, the homozigosity for two coat color loci in double recessive pearl minks (k/k p/p) significantly decreases the noradrenaline and serotonin contents of the hypothalamus. In addition, monorecessive and double recessive minks differ from each other in the serotonin contents of the midbrain and medulla.

  11. Arithmetic and local circuitry underlying dopamine prediction errors

    PubMed Central

    Eshel, Neir; Bukwich, Michael; Rao, Vinod; Hemmelder, Vivian; Tian, Ju; Uchida, Naoshige

    2015-01-01

    Dopamine neurons are thought to facilitate learning by comparing actual and expected reward1,2. Despite two decades of investigation, little is known about how this comparison is made. To determine how dopamine neurons calculate prediction error, we combined optogenetic manipulations with extracellular recordings in the ventral tegmental area (VTA) while mice engaged in classical conditioning. By manipulating the temporal expectation of reward, we demonstrate that dopamine neurons perform subtraction, a computation that is ideal for reinforcement learning but rarely observed in the brain. Furthermore, selectively exciting and inhibiting neighbouring GABA neurons in the VTA reveals that these neurons are a source of subtraction: they inhibit dopamine neurons when reward is expected, causally contributing to prediction error calculations. Finally, bilaterally stimulating VTA GABA neurons dramatically reduces anticipatory licking to conditioned odours, consistent with an important role for these neurons in reinforcement learning. Together, our results uncover the arithmetic and local circuitry underlying dopamine prediction errors. PMID:26322583

  12. Systematic screening for mutations in the 5{prime}-regulatory region of the human dopamine D{sub 1} receptor (DRD1) gene in patients with schizophrenia and bipolar affective disorder

    SciTech Connect

    Cichon, S.; Noethen, M.M.; Stoeber, G.

    1996-07-26

    A possible dysregulation of dopaminergic neurotransmission has been implicated in a variety of neuropsychiatric diseases. In the present study we systematically searched for the presence of mutations in the 5{prime}-flanking region of the dopamine D{sub 1} receptor (DRD1) gene. This region has previously been shown to contain a functional promoter. We investigated 119 unrelated individuals (including 36 schizophrenic patients, 38 bipolar affective patients, and 45 healthy controls) using single-strand conformation analysis (SSCA). Eleven overlapping PCR fragments covered 2,189 bp of DNA sequence. We identified six single base substitutions: -2218T/C, -2102C/A, -2030T/C, -1992G/A, -1251G/C, and -800T/C. None of the mutations was found to be located in regions which have important influence on the level of transcriptional activity. Allele frequencies were similar in patients and controls, indicating that genetic variation in the 5{prime}-regulatory region of the DRD1 gene is unlikely to play a frequent, major role in the genetic predisposition to either schizophrenia or bipolar affective disorder. 31 refs., 3 tabs.

  13. Neonatal hypothyroidism affects the adenine nucleotides metabolism in astrocyte cultures from rat brain.

    PubMed

    Braganhol, Elizandra; Bruno, Alessandra Nejar; Bavaresco, Luci; Barreto-Chaves, Maria Luiza M; Sarkis, João José Freitas; Battastini, Ana Maria Oliveira

    2006-04-01

    Neonatal hypothyroidism is associated with multiple and severe brain alterations. We recently demonstrated a significant increase in hydrolysis of AMP to adenosine in brain of hypothyroid rats at different ages. However, the origin of this effect was unclear. Considering the effects of adenine nucleotides to brain functions and the harmful effects of neonatal hypothyroidism to normal development of the central nervous system, in this study we investigated the metabolism of adenine nucleotides in hippocampal, cortical and cerebellar astrocyte cultures from rats submitted to neonatal hypothyroidism. ATP and AMP hydrolysis were enhanced by 52 and 210%, respectively, in cerebellar astrocytes from hypothyroid rats. In hippocampus of hypothyroid rats, the 47% increase in AMP hydrolysis was significantly reverted when the astrocytes were treated with T3. Therefore, the imbalance in the ATP and adenosine levels in astrocytes, during brain development, may contribute to some of the effects described in neonatal hypothyroidism.

  14. Liver irradiation causes distal bystander effects in the rat brain and affects animal behaviour.

    PubMed

    Kovalchuk, Anna; Mychasiuk, Richelle; Muhammad, Arif; Hossain, Shakhawat; Ilnytskyy, Slava; Ghose, Abhijit; Kirkby, Charles; Ghasroddashti, Esmaeel; Kovalchuk, Olga; Kolb, Bryan

    2016-01-26

    Radiation therapy can not only produce effects on targeted organs, but can also influence shielded bystander organs, such as the brain in targeted liver irradiation. The brain is sensitive to radiation exposure, and irradiation causes significant neuro-cognitive deficits, including deficits in attention, concentration, memory, and executive and visuospatial functions. The mechanisms of their occurrence are not understood, although they may be related to the bystander effects.We analyzed the induction, mechanisms, and behavioural repercussions of bystander effects in the brain upon liver irradiation in a well-established rat model.Here, we show for the first time that bystander effects occur in the prefrontal cortex and hippocampus regions upon liver irradiation, where they manifest as altered gene expression and somewhat increased levels of γH2AX. We also report that bystander effects in the brain are associated with neuroanatomical and behavioural changes, and are more pronounced in females than in males.

  15. Pericyte abundance affects sucrose permeability in cultures of rat brain microvascular endothelial cells.

    PubMed

    Parkinson, Fiona E; Hacking, Cindy

    2005-07-05

    The blood-brain barrier is a physical and metabolic barrier that restricts diffusion of blood-borne substances into brain. In vitro models of the blood-brain barrier are used to characterize this structure, examine mechanisms of damage and repair and measure permeability of test substances. The core component of in vitro models of the blood-brain barrier is brain microvascular endothelial cells. We cultured rat brain microvascular endothelial cells (RBMEC) from isolated rat cortex microvessels. After 2-14 days in vitro (DIV), immunohistochemistry of these cells showed strong labeling for zona occludens 1 (ZO-1), a tight junction protein expressed in endothelial cells. Pericytes were also present in these cultures, as determined by expression of alpha-actin. The present study was performed to test different cell isolation methods and to compare the resulting cell cultures for abundance of pericytes and for blood-brain barrier function, as assessed by 14C-sucrose flux. Two purification strategies were used. First, microvessels were preabsorbed onto uncoated plastic for 4 h, then unattached microvessels were transferred to coated culture ware. Second, microvessels were incubated with an antibody to platelet-endothelial cell adhesion molecule 1 (PECAM-1; CD31) precoupled to magnetic beads, and a magnetic separation procedure was performed. Our results indicate that immunopurification, but not preadsorption, was an effective method to purify microvessels and reduce pericyte abundance in the resulting cultures. This purification significantly reduced 14C-sucrose fluxes across cell monolayers. These data indicate that pericytes can interfere with the development of blood-brain barrier properties in in vitro models that utilize primary cultures of RBMECs.

  16. Accurately assessing the risk of schizophrenia conferred by rare copy-number variation affecting genes with brain function.

    PubMed

    Raychaudhuri, Soumya; Korn, Joshua M; McCarroll, Steven A; Altshuler, David; Sklar, Pamela; Purcell, Shaun; Daly, Mark J

    2010-09-09

    Investigators have linked rare copy number variation (CNVs) to neuropsychiatric diseases, such as schizophrenia. One hypothesis is that CNV events cause disease by affecting genes with specific brain functions. Under these circumstances, we expect that CNV events in cases should impact brain-function genes more frequently than those events in controls. Previous publications have applied "pathway" analyses to genes within neuropsychiatric case CNVs to show enrichment for brain-functions. While such analyses have been suggestive, they often have not rigorously compared the rates of CNVs impacting genes with brain function in cases to controls, and therefore do not address important confounders such as the large size of brain genes and overall differences in rates and sizes of CNVs. To demonstrate the potential impact of confounders, we genotyped rare CNV events in 2,415 unaffected controls with Affymetrix 6.0; we then applied standard pathway analyses using four sets of brain-function genes and observed an apparently highly significant enrichment for each set. The enrichment is simply driven by the large size of brain-function genes. Instead, we propose a case-control statistical test, cnv-enrichment-test, to compare the rate of CNVs impacting specific gene sets in cases versus controls. With simulations, we demonstrate that cnv-enrichment-test is robust to case-control differences in CNV size, CNV rate, and systematic differences in gene size. Finally, we apply cnv-enrichment-test to rare CNV events published by the International Schizophrenia Consortium (ISC). This approach reveals nominal evidence of case-association in neuronal-activity and the learning gene sets, but not the other two examined gene sets. The neuronal-activity genes have been associated in a separate set of schizophrenia cases and controls; however, testing in independent samples is necessary to definitively confirm this association. Our method is implemented in the PLINK software package.

  17. One-year high fat diet affects muscle-but not brain mitochondria.

    PubMed

    Jørgensen, Tenna; Grunnet, Niels; Quistorff, Bjørn

    2015-06-01

    It is well known that few weeks of high fat (HF) diet may induce metabolic disturbances and mitochondrial dysfunction in skeletal muscle. However, little is known about the effects of long-term HF exposure and effects on brain mitochondria are unknown. Wistar rats were fed either chow (13E% fat) or HF diet (60E% fat) for 1 year. The HF animals developed obesity, dyslipidemia, insulin resistance, and dysfunction of isolated skeletal muscle mitochondria: state 3 and state 4 were 30% to 50% increased (P<0.058) with palmitoyl carnitine (PC), while there was no effect with pyruvate as substrate. Adding also succinate in state 3 resulted in a higher substrate control ratio (SCR) with PC, but a lower SCR with pyruvate (P<0.05). The P/O2 ratio was lower with PC (P<0.004). However, similar tests on isolated brain mitochondria from the same animal showed no changes with the substrates relevant for brain (pyruvate and 3-hydroxybutyrate). Thus, long-term HF diet was associated with obesity, dyslipidemia, insulin resistance, and significantly altered mitochondrial function in skeletal muscle. Yet, brain mitochondria were unaffected. We suggest that the relative isolation of the brain due to the blood-brain barrier may play a role in this strikingly different phenotype of mitochondria from the two tissues of the same animal.

  18. Tunes stuck in your brain: The frequency and affective evaluation of involuntary musical imagery correlate with cortical structure.

    PubMed

    Farrugia, Nicolas; Jakubowski, Kelly; Cusack, Rhodri; Stewart, Lauren

    2015-09-01

    Recent years have seen a growing interest in the neuroscience of spontaneous cognition. One form of such cognition is involuntary musical imagery (INMI), the non-pathological and everyday experience of having music in one's head, in the absence of an external stimulus. In this study, aspects of INMI, including frequency and affective evaluation, were measured by self-report in 44 subjects and related to variation in brain structure in these individuals. Frequency of INMI was related to cortical thickness in regions of right frontal and temporal cortices as well as the anterior cingulate and left angular gyrus. Affective aspects of INMI, namely the extent to which subjects wished to suppress INMI or considered them helpful, were related to gray matter volume in right temporopolar and parahippocampal cortices respectively. These results provide the first evidence that INMI is a common internal experience recruiting brain networks involved in perception, emotions, memory and spontaneous thoughts.

  19. Homeostatic mechanisms in dopamine synthesis and release: a mathematical model

    PubMed Central

    Best, Janet A; Nijhout, H Frederik; Reed, Michael C

    2009-01-01

    Background Dopamine is a catecholamine that is used as a neurotransmitter both in the periphery and in the central nervous system. Dysfunction in various dopaminergic systems is known to be associated with various disorders, including schizophrenia, Parkinson's disease, and Tourette's syndrome. Furthermore, microdialysis studies have shown that addictive drugs increase extracellular dopamine and brain imaging has shown a correlation between euphoria and psycho-stimulant-induced increases in extracellular dopamine [1]. These consequences of dopamine dysfunction indicate the importance of maintaining dopamine functionality through homeostatic mechanisms that have been attributed to the delicate balance between synthesis, storage, release, metabolism, and reuptake. Methods We construct a mathematical model of dopamine synthesis, release, and reuptake and use it to study homeostasis in single dopaminergic neuron terminals. We investigate the substrate inhibition of tyrosine hydroxylase by tyrosine, the consequences of the rapid uptake of extracellular dopamine by the dopamine transporters, and the effects of the autoreceoptors on dopaminergic function. The main focus is to understand the regulation and control of synthesis and release and to explicate and interpret experimental findings. Results We show that the substrate inhibition of tyrosine hydroxylase by tyrosine stabilizes cytosolic and vesicular dopamine against changes in tyrosine availability due to meals. We find that the autoreceptors dampen the fluctuations in extracellular dopamine caused by changes in tyrosine hydroxylase expression and changes in the rate of firing. We show that short bursts of action potentials create significant dopamine signals against the background of tonic firing. We explain the observed time courses of extracellular dopamine responses to stimulation in wild type mice and mice that have genetically altered dopamine transporter densities and the observed half-lives of extracellular

  20. Taurine fails to protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced striatal dopamine depletion in mice.

    PubMed

    Navneet, A K; Appukuttan, T A; Pandey, M; Mohanakumar, K P

    2008-08-01

    Taurine, a known antioxidant and neuroprotector has been investigated for its free radical scavenging action in vitro in isolated mitochondria, and tested whether it protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration in mice. Taurine (0.1-10 mM) did not affect 1-methyl-4-phenyl pyridinium-induced hydroxyl radical production in isolated mitochondria. Systemic administration of taurine (250 mg/kg, i.p.) caused a small, but significant loss of dopamine levels in the striatum of mice. Taurine failed to reverse MPTP-induced striatal dopamine depletion, but caused significant increase in dopamine turnover in these animals. In the light of the present study it may be suggested that consumption of taurine may neither help in scavenging of neurotoxic hydroxyl radicals in the brain mitochondria, nor would it help in blocking the process of neurodegeneration.

  1. Impulse control disorders and dopamine dysregulation syndrome associated with dopamine agonist therapy in Parkinson's disease.

    PubMed

    Fenu, Sandro; Wardas, Jadwiga; Morelli, Micaela

    2009-09-01

    Over the last decade, evidence has emerged linking disorders in the impulsive-compulsive spectrum in Parkinson's disease to dopamine receptor agonist treatment. These disorders include hypersexuality, gambling and, to a minor extent, compulsive shopping and eating, as well as dopamine dysregulation syndrome, characterized by an addictive pattern toward dopamine replacement therapy and stereotyped behaviors, such as punding. These syndromes, which have only recently been recognized and are still underdiagnosed, have deleterious social consequences that warrant interventions at the clinical level and promotion of research at the preclinical level. In this review, we first provide a summary of features of Parkinson's disease and current pharmacological therapies associated with the development of dopamine dysregulation syndrome and impulsive-compulsive disorders. We also examine the dopamine receptors and brain areas important in reward and compulsive behaviors. We then critically examine the neuroadaptations in dopaminergic circuitries and the literature concerning gambling, hypersexuality, and other addictive behaviors in parkinsonian patients. Finally, we focus on suggestions pointing to a role for dopamine D(3) receptors and sensitization phenomena as the main factors which may be the origin of these disorders.

  2. Transient Dysregulation of Dopamine Signaling in a Developing Drosophila Arousal Circuit Permanently Impairs Behavioral Responsiveness in Adults

    PubMed Central

    Ferguson, Lachlan; Petty, Alice; Rohrscheib, Chelsie; Troup, Michael; Kirszenblat, Leonie; Eyles, Darryl W.; van Swinderen, Bruno

    2017-01-01

    The dopamine ontogeny hypothesis for schizophrenia proposes that transient dysregulation of the dopaminergic system during brain development increases the likelihood of this disorder in adulthood. To test this hypothesis in a high-throughput animal model, we have transiently manipulated dopamine signaling in the developing fruit fly Drosophila melanogaster and examined behavioral responsiveness in adult flies. We found that either a transient increase of dopamine neuron activity or a transient decrease of dopamine receptor expression during fly brain development permanently impairs behavioral responsiveness in adults. A screen for impaired responsiveness revealed sleep-promoting neurons in the central brain as likely postsynaptic dopamine targets modulating these behavioral effects. Transient dopamine receptor knockdown during development in a restricted set of ~20 sleep-promoting neurons recapitulated the dopamine ontogeny phenotype, by permanently reducing responsiveness in adult animals. This suggests that disorders involving impaired behavioral responsiveness might result from defective ontogeny of sleep/wake circuits. PMID:28243212

  3. Adenosine transiently modulates stimulated dopamine release in the caudate-putamen via A1 receptors.

    PubMed

    Ross, Ashley E; Venton, B Jill

    2015-01-01

    Adenosine modulates dopamine in the brain via A1 and A2A receptors, but that modulation has only been characterized on a slow time scale. Recent studies have characterized a rapid signaling mode of adenosine that suggests a possible rapid modulatory role. Here, fast-scan cyclic voltammetry was used to characterize the extent to which transient adenosine changes modulate stimulated dopamine release (5 pulses at 60 Hz) in rat caudate-putamen brain slices. Exogenous adenosine was applied and dopamine concentration monitored. Adenosine only modulated dopamine when it was applied 2 or 5 s before stimulation. Longer time intervals and bath application of 5 μM adenosine did not decrease dopamine release. Mechanical stimulation of endogenous adenosine 2 s before dopamine stimulation also decreased stimulated dopamine release by 41 ± 7%, similar to the 54 ± 6% decrease in dopamine after exogenous adenosine application. Dopamine inhibition by transient adenosine was recovered within 10 min. The A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine blocked the dopamine modulation, whereas dopamine modulation was unaffected by the A2A receptor antagonist SCH 442416. Thus, transient adenosine changes can transiently modulate phasic dopamine release via A1 receptors. These data demonstrate that adenosine has a rapid, but transient, modulatory role in the brain. Here, transient adenosine was shown to modulate phasic dopamine release on the order of seconds by acting at the A1 receptor. However, sustained increases in adenosine did not regulate phasic dopamine release. This study demonstrates for the first time a transient, neuromodulatory function of rapid adenosine to regulate rapid neurotransmitter release.

  4. Enhanced striatal dopamine release during food stimulation in binge eating disorder.

    PubMed

    Wang, Gene-Jack; Geliebter, Allan; Volkow, Nora D; Telang, Frank W; Logan, Jean; Jayne, Millard C; Galanti, Kochavi; Selig, Peter A; Han, Hao; Zhu, Wei; Wong, Christopher T; Fowler, Joanna S

    2011-08-01

    Subjects with binge eating disorder (BED) regularly consume large amounts of food in short time periods. The neurobiology of BED is poorly understood. Brain dopamine, which regulates motivation for food intake, is likely to be involved. We assessed the involvement of brain dopamine in the motivation for food consumption in binge eaters. Positron emission tomography (PET) scans with [(11)C]raclopride were done in 10 obese BED and 8 obese subjects without BED. Changes in extracellular dopamine in the striatum in response to food stimulation in food-deprived subjects were evaluated after placebo and after oral methylphenidate (MPH), a drug that blocks the dopamine reuptake transporter and thus amplifies dopamine signals. Neither the neutral stimuli (with or without MPH) nor the food stimuli when given with placebo increased extracellular dopamine. The food stimuli when given with MPH significantly increased dopamine in the caudate and putamen in the binge eaters but not in the nonbinge eaters. Dopamine increases in the caudate were significantly correlated with the binge eating scores but not with BMI. These results identify dopamine neurotransmission in the caudate as being of relevance to the neurobiology of BED. The lack of correlation between BMI and dopamine changes suggests that dopamine release per se does not predict BMI within a group of obese individuals but that it predicts binge eating.

  5. Enhanced striatal dopamine release during food stimulation in binge eating disorder

    SciTech Connect

    Wang, g.j.; Wang, G.-J.; Geliebter, A.; Volkow, N.D.; Telang, F.W.; Logan, Jaynbe, M.C.; Galanti, K.; Selig, P.A.; Han, H.; Zhu, W.; Wong, C.T.; Fowler, J.S.

    2011-01-13

    Subjects with binge eating disorder (BED) regularly consume large amounts of food in short time periods. The neurobiology of BED is poorly understood. Brain dopamine, which regulates motivation for food intake, is likely to be involved. We assessed the involvement of brain dopamine in the motivation for food consumption in binge eaters. Positron emission tomography (PET) scans with [{sup 11}C]raclopride were done in 10 obese BED and 8 obese subjects without BED. Changes in extracellular dopamine in the striatum in response to food stimulation in food-deprived subjects were evaluated after placebo and after oral methylphenidate (MPH), a drug that blocks the dopamine reuptake transporter and thus amplifies dopamine signals. Neither the neutral stimuli (with or without MPH) nor the food stimuli when given with placebo increased extracellular dopamine. The food stimuli when given with MPH significantly increased dopamine in the caudate and putamen in the binge eaters but not in the nonbinge eaters. Dopamine increases in the caudate were significantly correlated with the binge eating scores but not with BMI. These results identify dopamine neurotransmission in the caudate as being of relevance to the neurobiology of BED. The lack of correlation between BMI and dopamine changes suggests that dopamine release per se does not predict BMI within a group of obese individuals but that it predicts binge eating.

  6. Exploring the relationship between social attachment and dopamine D2/3 receptor availability in the brains of healthy humans using [11C]-(+)-PHNO

    PubMed Central

    Caravaggio, Fernando; Chung, Jun Ku; Gerretsen, Philip; Fervaha, Gagan; Nakajima, Shinichiro; Plitman, Eric; Iwata, Yusuke; Wilson, Alan; Graff-Guerrero, Ariel

    2017-01-01

    Differences in striatal dopamine (DA) function may be related to differences in the degree of social attachment to others. Using positron emission tomography (PET), socially detached persons demonstrate reduced DA D2/3 receptor (D2/3R) availability in the striatum. However, previous PET studies have only used antagonist radiotracers for D2/3R and have not specifically examined regions of interest (ROIs) such as the ventral striatum (VS). In 32 healthy persons, we investigated the relationship between self-reported attachment and DA D2/3R availability in striatal and extrastriatal ROIs as measured using the agonist radiotracer [11C]-(+)-PHNO. Surprisingly, more social attachment—as measured by the attachment subscale of the temperament and character inventory—was related to less [11C]-(+)-PHNO binding in the VS (r(30) =−.43, p = .01). This relationship held in a subsample who also completed the detachment subscale of the Karolinska Scales of Personality (r(10) = .62, p = .03). However, no relationships were observed with BPND in the dorsal striatum or D3R-specific ROIs. One potential explanation for these findings is that persons who are more socially detached have less endogenous DA occupying D2/3R in the VS. This interpretation warrants investigation by future research. These findings may help us better understand the neurochemical basis of attachment. PMID:26873034

  7. Cerebral endothelial expression of Robo1 affects brain infiltration of polymorphonuclear neutrophils during mouse stroke recovery.

    PubMed

    Gangaraju, Sandhya; Sultan, Khadeejah; Whitehead, Shawn N; Nilchi, Ladan; Slinn, Jacqueline; Li, Xuesheng; Hou, Sheng T

    2013-06-01

    Increased brain infiltration of polymorphonuclear neutrophils (PMNs) occurs early after stroke and is important in eliciting brain inflammatory response during stroke recovery. In order to understand the molecular mechanism of PMN entry, we investigated the expression and requirement for Slit1, a chemorepulsive guidance cue, and its cognate receptor, Robo1, in a long-term recovery mouse model of cerebral ischemia. The expression levels of Robo1 were significantly decreased bilaterally at 24h following reperfusion. Robo1 expression levels remained suppressed in the ipsilateral cortex until 28d post MCAO-reperfusion, while the levels of Robo1 in the contralateral cortex recovered to the level of sham-operated mouse by 7d reperfusion. Circulating PMNs express high levels of Slit1, but not Robo1. Influx of PMNs into the ischemic core area occurred early (24h) after cerebral ischemia, when endothelial Robo1 expression was significantly reduced in the ischemic brain, indicating that Robo1 may form a repulsive barrier to PMN entry into the brain parenchyma. Indeed, blocking Slit1 on PMNs in a transwell migration assay in combination with an antibody blocking of Robo1 on human umbilical vein endothelial cells (