Science.gov

Sample records for affect calcium homeostasis

  1. Bax inhibitor 1, a modulator of calcium homeostasis, confers affective resilience.

    PubMed

    Hunsberger, Joshua G; Machado-Vieira, Rodrigo; Austin, Daniel R; Zarate, Carlos; Chuang, De-Maw; Chen, Guang; Reed, John C; Manji, Husseini K

    2011-07-27

    The endoplasmic reticulum (ER) is a critical site for intracellular calcium storage as well as protein synthesis, folding, and trafficking. Disruption of these processes is gaining support for contributing to heritable vulnerability of certain diseases. Here, we investigated Bax inhibitor 1 (BI-1), an anti-apoptotic protein that primarily resides in the ER and associates with B-cell lymphoma 2 (Bcl-2) and Bcl-XL, as an affective resiliency factor through its modulation of calcium homeostasis. We found that transgenic (TG) mice with BI-1 reinforced expression, via the neuronal specific enolase promoter, showed protection against the learned helplessness (LH) paradigm, an animal model to test stress coping. TG mice were also protected against anhedonia following both serotonin and catecholamine depletion as measured in two different models, the female urine sniffing test and the saccharine preference test. In addition, we used primary mouse cortical cultures to explore the ability of BI-1 to influence calcium homeostasis under basal conditions and also following challenge with thapsigargin (THPS), an inhibitor of sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) that disrupts calcium homeostasis. TG neurons showed decreased basal cytosolic calcium levels and decreased Ca(2+) cytosolic accumulation following challenge with THPS as compared to WT neuronal cultures. Together, these data suggest that BI-1, through its actions on calcium homeostasis, may confer affective resiliency in multiple animal models of depression and anhedonia. PMID:21718971

  2. Orphan nuclear receptor Nur77 affects cardiomyocyte calcium homeostasis and adverse cardiac remodelling

    PubMed Central

    Medzikovic, Lejla; Schumacher, Cees A.; Verkerk, Arie O.; van Deel, Elza D.; Wolswinkel, Rianne; van der Made, Ingeborg; Bleeker, Natascha; Cakici, Daniella; van den Hoogenhof, Maarten M. G.; Meggouh, Farid; Creemers, Esther E.; Ann Remme, Carol; Baartscheer, Antonius; de Winter, Robbert J.; de Vries, Carlie J. M.; Arkenbout, E. Karin; de Waard, Vivian

    2015-01-01

    Distinct stressors may induce heart failure. As compensation, β-adrenergic stimulation enhances myocardial contractility by elevating cardiomyocyte intracellular Ca2+ ([Ca2+]i). However, chronic β-adrenergic stimulation promotes adverse cardiac remodelling. Cardiac expression of nuclear receptor Nur77 is enhanced by β-adrenergic stimulation, but its role in cardiac remodelling is still unclear. We show high and rapid Nur77 upregulation in cardiomyocytes stimulated with β-adrenergic agonist isoproterenol. Nur77 knockdown in culture resulted in hypertrophic cardiomyocytes. Ventricular cardiomyocytes from Nur77-deficient (Nur77-KO) mice exhibited elevated diastolic and systolic [Ca2+]i and prolonged action potentials compared to wild type (WT). In vivo, these differences resulted in larger cardiomyocytes, increased expression of hypertrophic genes, and more cardiac fibrosis in Nur77-KO mice upon chronic isoproterenol stimulation. In line with the observed elevated [Ca2+]i, Ca2+-activated phosphatase calcineurin was more active in Nur77-KO mice compared to WT. In contrast, after cardiac pressure overload by aortic constriction, Nur77-KO mice exhibited attenuated remodelling compared to WT. Concluding, Nur77-deficiency results in significantly altered cardiac Ca2+ homeostasis and distinct remodelling outcome depending on the type of insult. Detailed knowledge on the role of Nur77 in maintaining cardiomyocyte Ca2+ homeostasis and the dual role Nur77 plays in cardiac remodelling will aid in developing personalized therapies against heart failure. PMID:26486271

  3. Evaluation of energy metabolism and calcium homeostasis in cells affected by Shwachman-Diamond syndrome

    PubMed Central

    Ravera, Silvia; Dufour, Carlo; Cesaro, Simone; Bottega, Roberta; Faleschini, Michela; Cuccarolo, Paola; Corsolini, Fabio; Usai, Cesare; Columbaro, Marta; Cipolli, Marco; Savoia, Anna; Degan, Paolo; Cappelli, Enrico

    2016-01-01

    Isomorphic mutation of the SBDS gene causes Shwachman-Diamond syndrome (SDS). SDS is a rare genetic bone marrow failure and cancer predisposition syndrome. SDS cells have ribosome biogenesis and their protein synthesis altered, which are two high-energy consuming cellular processes. The reported changes in reactive oxygen species production, endoplasmic reticulum stress response and reduced mitochondrial functionality suggest an energy production defect in SDS cells. In our work, we have demonstrated that SDS cells display a Complex IV activity impairment, which causes an oxidative phosphorylation metabolism defect, with a consequent decrease in ATP production. These data were confirmed by an increased glycolytic rate, which compensated for the energetic stress. Moreover, the signalling pathways involved in glycolysis activation also appeared more activated; i.e. we reported AMP-activated protein kinase hyper-phosphorylation. Notably, we also observed an increase in a mammalian target of rapamycin phosphorylation and high intracellular calcium concentration levels ([Ca2+]i), which probably represent new biochemical equilibrium modulation in SDS cells. Finally, the SDS cell response to leucine (Leu) was investigated, suggesting its possible use as a therapeutic adjuvant to be tested in clinical trials. PMID:27146429

  4. Evaluation of energy metabolism and calcium homeostasis in cells affected by Shwachman-Diamond syndrome.

    PubMed

    Ravera, Silvia; Dufour, Carlo; Cesaro, Simone; Bottega, Roberta; Faleschini, Michela; Cuccarolo, Paola; Corsolini, Fabio; Usai, Cesare; Columbaro, Marta; Cipolli, Marco; Savoia, Anna; Degan, Paolo; Cappelli, Enrico

    2016-01-01

    Isomorphic mutation of the SBDS gene causes Shwachman-Diamond syndrome (SDS). SDS is a rare genetic bone marrow failure and cancer predisposition syndrome. SDS cells have ribosome biogenesis and their protein synthesis altered, which are two high-energy consuming cellular processes. The reported changes in reactive oxygen species production, endoplasmic reticulum stress response and reduced mitochondrial functionality suggest an energy production defect in SDS cells. In our work, we have demonstrated that SDS cells display a Complex IV activity impairment, which causes an oxidative phosphorylation metabolism defect, with a consequent decrease in ATP production. These data were confirmed by an increased glycolytic rate, which compensated for the energetic stress. Moreover, the signalling pathways involved in glycolysis activation also appeared more activated; i.e. we reported AMP-activated protein kinase hyper-phosphorylation. Notably, we also observed an increase in a mammalian target of rapamycin phosphorylation and high intracellular calcium concentration levels ([Ca(2+)]i), which probably represent new biochemical equilibrium modulation in SDS cells. Finally, the SDS cell response to leucine (Leu) was investigated, suggesting its possible use as a therapeutic adjuvant to be tested in clinical trials. PMID:27146429

  5. [Mitochondria, calcium homeostasis and calcium signaling].

    PubMed

    Zavodnik, I B

    2016-03-01

    Са2+ is a very important and versatile intracellular signal which controls numerous biochemical and physiological (pathophysiological) processes in the cell. Good evidence exists that mitochondria are sensors, decoders and regulators of calcium signaling. Precise regulation of calcium signaling in the cell involves numerous molecular targets, which induce and decode changes of Са2+ concentrations in the cell (pumps, channels, Са2+-binding proteins, Са2+-dependent enzymes, localized in the cytoplasm and organelles). Mitochondrial Са2+ uniporter accumulates excess of Са2+ in mitochondria, while Na+/Са2+- and H+/Са2+-antiporters extrude Са2+ in the cytoplasm. Mitochondrial Са2+ overloading results in formation of mitochondria permeability transition pores which play an important role in cell death under many pathological conditions. Mitochondria regulate Са2+ homeostasis and control important cellular functions such as metabolism, proliferation, survival. Identification of cellular and mitochondrial Ca2+ transporters and understanding their functional mechanisms open up new prospects for their using as therapeutic targets. PMID:27420625

  6. Calcium homeostasis in barley aleurone

    SciTech Connect

    Jones, R.L.

    1990-02-21

    Under the auspices of the Department of Energy we investigated calcium homeostasis in aleurone cells of barley. This investigation was initiated to explore the role played by extracellular Ca{sup 2+} in gibberellic acid (GA)-induced synthesis and secretion of hydrolases in the aleurone layer. We have focused our attention on four topics that relate to the role of Ca{sup 2+} in regulating the synthesis of {alpha}-amylase. First, we determined the stoichiometry of Ca{sup 2+} binding to the two principal classes of barley {alpha}-amylase and examined some of the biochemical and physical properties of the native and Ca{sup 2+}-depleted forms of the enzyme. Second, since {alpha}-amylase is a Ca{sup 2+} containing metalloenzyme that binds one atom of Ca{sup 2+} per molecule, we developed methods to determine the concentration of Ca{sup 2+} in the cytosol of the aleurone cell. We developed a technique for introducing Ca{sup 2+}-sensitive dyes into aleurone protoplasts that allows the measurement of Ca{sup 2+} in both cytosol and endoplasmic reticulum (ER). Third, because the results of our Ca{sup 2+} measurements showed higher levels of Ca{sup 2+} in the ER than in the cytosol, we examined Ca{sup 2+} transport into the ER of control and GA-treated aleurone tissue. And fourth, we applied the technique of patch-clamping to the barley aleurone protoplast to examine ion transport at the plasma membrane. Our results with the patch-clamp technique established the presence of K{sup +} channels in the plasma membrane of the aleurone protoplast, and they showed that this cell is ideally suited for the application of this methodology for studying ion transport. 34 refs.

  7. Timothy hays differing in dietary cation-anion difference affect the capability of dairy cows to maintain their calcium homeostasis.

    PubMed

    Heron, V S; Tremblay, G F; Oba, M

    2009-01-01

    Forages low in dietary cation-anion difference (DCAD) can be used to decrease the DCAD in prepartum diet but the extent to which DCAD needs to be reduced is of recent interest. The objective of this study was to evaluate the effectiveness of timothy hays differing in DCAD at maintaining Ca homeostasis. Six nonlactating and nonpregnant multiparous Holstein cows were fed diets containing timothy (Phleum pratense L.) hay with DCAD values of 4.1 +/- 3.6 (LOW), 14.1 +/- 3.0 (MED), or 25.1 +/- 2.5 (HIGH) mEq per 100 g of DM in a duplicated 3 x 3 Latin square design with 14-d experimental periods. The LOW and MED hays were produced by fertilizing established timothy fields at a rate of 224 kg CaCl(2) per ha, and HIGH hay was obtained from the same field where LOW hay was produced, but from a section not fertilized with CaCl(2). Experimental diets, containing LOW, MED, or HIGH timothy hay at 71% of dietary DM, had DCAD values of 0.7, 7.3, and 14.4 mEq per 100 g of DM, respectively. Animals were fed at 6% of metabolic body weight, which provided 108% of their daily energy requirement. For each period, after a 12 d diet adaptation, cows were subjected to an EDTA challenge (3 cows each on d 13 and 14). Infusion of EDTA solution into the jugular vein decreases the concentration of blood ionized Ca, and the EDTA challenge protocol determined the resistance time and recovery time: the time required for the blood ionized Ca concentration to decrease to 60%, and the time required to recover to 90% of the prechallenge concentrations, respectively. Urine pH was lower when cows were fed LOW compared with HIGH diet (6.88 vs. 7.83), but urine pH when cows were fed MED diet (7.15) did not differ from that when cows received the LOW or HIGH diet. However, immediately before the EDTA challenge, blood pH was lower when cows were fed LOW or MED compared with HIGH diet (7.44 vs. 7.47). Although the resistance time was not affected by treatments, the recovery time was shorter when cows were

  8. Exposure to GSM RF Fields Does Not Affect Calcium Homeostasis in Human Endothelial Cells, Rat Pheocromocytoma Cells or Rat Hippocampal Neurons

    PubMed Central

    O'Connor, Rodney P.; Madison, Steve D.; Leveque, Philippe; Roderick, H. Llewelyn; Bootman, Martin D.

    2010-01-01

    In the course of modern daily life, individuals are exposed to numerous sources of electromagnetic radiation that are not present in the natural environment. The strength of the electromagnetic fields from sources such as hairdryers, computer display units and other electrical devices is modest. However, in many home and office environments, individuals can experience perpetual exposure to an “electromagnetic smog”, with occasional peaks of relatively high electromagnetic field intensity. This has led to concerns that such radiation can affect health. In particular, emissions from mobile phones or mobile phone masts have been invoked as a potential source of pathological electromagnetic radiation. Previous reports have suggested that cellular calcium (Ca2+) homeostasis is affected by the types of radiofrequency fields emitted by mobile phones. In the present study, we used a high-throughput imaging platform to monitor putative changes in cellular Ca2+ during exposure of cells to 900 MHz GSM fields of differing power (specific absorption rate 0.012–2 W/Kg), thus mimicking the type of radiation emitted by current mobile phone handsets. Data from cells experiencing the 900 Mhz GSM fields were compared with data obtained from paired experiments using continuous wave fields or no field. We employed three cell types (human endothelial cells, PC-12 neuroblastoma and primary hippocampal neurons) that have previously been suggested to be sensitive to radiofrequency fields. Experiments were designed to examine putative effects of radiofrequency fields on resting Ca2+, in addition to Ca2+ signals evoked by an InsP3-generating agonist. Furthermore, we examined putative effects of radiofrequency field exposure on Ca2+ store emptying and store-operated Ca2+ entry following application of the Ca2+ATPase inhibitor thapsigargin. Multiple parameters (e.g., peak amplitude, integrated Ca2+ signal, recovery rates) were analysed to explore potential impact of radiofrequency field

  9. Exposure to GSM RF fields does not affect calcium homeostasis in human endothelial cells, rat pheocromocytoma cells or rat hippocampal neurons.

    PubMed

    O'Connor, Rodney P; Madison, Steve D; Leveque, Philippe; Roderick, H Llewelyn; Bootman, Martin D

    2010-01-01

    In the course of modern daily life, individuals are exposed to numerous sources of electromagnetic radiation that are not present in the natural environment. The strength of the electromagnetic fields from sources such as hairdryers, computer display units and other electrical devices is modest. However, in many home and office environments, individuals can experience perpetual exposure to an "electromagnetic smog", with occasional peaks of relatively high electromagnetic field intensity. This has led to concerns that such radiation can affect health. In particular, emissions from mobile phones or mobile phone masts have been invoked as a potential source of pathological electromagnetic radiation. Previous reports have suggested that cellular calcium (Ca2+) homeostasis is affected by the types of radiofrequency fields emitted by mobile phones. In the present study, we used a high-throughput imaging platform to monitor putative changes in cellular Ca2+ during exposure of cells to 900 MHz GSM fields of differing power (specific absorption rate 0.012-2 W/Kg), thus mimicking the type of radiation emitted by current mobile phone handsets. Data from cells experiencing the 900 Mhz GSM fields were compared with data obtained from paired experiments using continuous wave fields or no field. We employed three cell types (human endothelial cells, PC-12 neuroblastoma and primary hippocampal neurons) that have previously been suggested to be sensitive to radiofrequency fields. Experiments were designed to examine putative effects of radiofrequency fields on resting Ca2+, in addition to Ca2+ signals evoked by an InsP(3)-generating agonist. Furthermore, we examined putative effects of radiofrequency field exposure on Ca2+ store emptying and store-operated Ca2+ entry following application of the Ca2+ATPase inhibitor thapsigargin. Multiple parameters (e.g., peak amplitude, integrated Ca2+ signal, recovery rates) were analysed to explore potential impact of radiofrequency field

  10. Effect of Trisetum flavescens P.B. on calcium and phosphorus metabolism in rats. Experimental evidence for the principle actively affecting phospho-calcium homeostasis.

    PubMed

    Wilczek, H; Ston, J; Pacovský, V

    1978-01-01

    After reviewing the literature on the vitamin D3-like activity of certain plants [Solanum malacoxylon, Cestrum diurnum and Trisetum flavescens], the authors present results of experiments in which dried Trisetum flavescens was administered perorally to rats. The addition of 2.5% dried Trisetum flavescens to the standard laboratory diet caused a drop in blood phosphate levels and a simultaneous marked increase in the calcium and phosphorus content of bones of the experimental animals. The mechanism of the action of Trisetum flavescens on phosphocalcium metabolism is discussed. PMID:150612

  11. Streptozotocin induces endoplasmic reticulum stress and apoptosis via disruption of calcium homeostasis in mouse pancreas.

    PubMed

    Ahn, Changhwan; An, Beum-Soo; Jeung, Eui-Bae

    2015-09-01

    Calcium homeostasis refers to the regulation of calcium ion concentration in the body. This concentration is tightly controlled by a stabilizing system consisting of calcium channels and calcium buffering proteins. Calcium homeostasis is crucial for cell survival. Various forms of cell death (e.g., necrosis and apoptosis) also share calcium signaling pathways and molecular effectors. Calcium acts not only as a ubiquitous second messenger involved in apoptosis along with various cell death inducers but also a regulator for the synthesis of enzymes/hormones such as insulin. We hypothesized that streptozotocin disrupts calcium homeostasis and the altered intracellular calcium levels may induce cell death. After streptozotocin administration, blood glucose level was increased while insulin levels decreased. The expression of insulin response markers also decreased relative to the vehicle group. L-type voltage-gated calcium channel expression and sarcoplasmic reticulum Ca(2+) ATPase were increased by streptozotocin. Calcium buffering protein calbindin-D9k and calmodulin family members were also increased. The expression of genes involved in transporting calcium ions to the endoplasmic reticulum (ER) was decrease while the expression of those affecting the removal of calcium from the ER was increased. Depletion of calcium from the ER leads to ER-stress and can induce apoptosis. In the streptozotocin-treatment group, apoptosis markers were increased. Taken together, these results imply that the disruption of calcium homeostasis by streptozotocin induces ER-stress and leads to the apoptosis of pancreatic cells. Additionally, findings from this study suggest that imbalances in calcium homeostasis could promote pancreatic beta cell death and result in type I diabetes. PMID:26003140

  12. Abnormal calcium homeostasis in peripheral neuropathies

    PubMed Central

    Fernyhough, Paul; Calcutt, Nigel A.

    2010-01-01

    Abnormal neuronal calcium (Ca2+) homeostasis has been implicated in numerous diseases of the nervous system. The pathogenesis of two increasingly common disorders of the peripheral nervous system, namely neuropathic pain and diabetic polyneuropathy, has been associated with aberrant Ca2+ channel expression and function. Here we review the current state of knowledge regarding the role of Ca2+ dyshomeostasis and associated mitochondrial dysfunction in painful and diabetic neuropathies. The central impact of both alterations of Ca2+ signalling at the plasma membrane and also intracellular Ca2+ handling on sensory neuron function is discussed and related to abnormal endoplasmic reticulum performance. We also present new data highlighting sub-optimal axonal Ca 2+ signalling in diabetic neuropathy and discuss the putative role for this abnormality in the induction of axonal degeneration in peripheral neuropathies. The accumulating evidence implicating Ca2+ dysregulation with both painful and degenerative neuropathies, along with recent advances in understanding of regional variations in Ca2+ channel and pump structures, makes modulation of neuronal Ca2+ handling an increasingly viable approach for therapeutic interventions against the painful and degenerative aspects of many peripheral neuropathies. PMID:20034667

  13. Calcium homeostasis modulator (CALHM) ion channels.

    PubMed

    Ma, Zhongming; Tanis, Jessica E; Taruno, Akiyuki; Foskett, J Kevin

    2016-03-01

    Calcium homeostasis modulator 1 (CALHM1), formerly known as FAM26C, was recently identified as a physiologically important plasma membrane ion channel. CALHM1 and its Caenorhabditis elegans homolog, CLHM-1, are regulated by membrane voltage and extracellular Ca(2+) concentration ([Ca(2+)]o). In the presence of physiological [Ca(2+)]o (∼1.5 mM), CALHM1 and CLHM-1 are closed at resting membrane potentials but can be opened by strong depolarizations. Reducing [Ca(2+)]o increases channel open probability, enabling channel activation at negative membrane potentials. Together, voltage and Ca(2+) o allosterically regulate CALHM channel gating. Through convergent evolution, CALHM has structural features that are reminiscent of connexins and pannexins/innexins/LRRC8 (volume-regulated anion channel (VRAC)) gene families, including four transmembrane helices with cytoplasmic amino and carboxyl termini. A CALHM1 channel is a hexamer of CALHM1 monomers with a functional pore diameter of ∼14 Å. CALHM channels discriminate poorly among cations and anions, with signaling molecules including Ca(2+) and ATP able to permeate through its pore. CALHM1 is expressed in the brain where it plays an important role in cortical neuron excitability induced by low [Ca(2+)]o and in type II taste bud cells in the tongue that sense sweet, bitter, and umami tastes where it functions as an essential ATP release channel to mediate nonsynaptic neurotransmitter release. CLHM-1 is expressed in C. elegans sensory neurons and body wall muscles, and its genetic deletion causes locomotion defects. Thus, CALHM is a voltage- and Ca(2+) o-gated ion channel, permeable to large cations and anions, that plays important roles in physiology. PMID:26603282

  14. Chemistry Misconceptions Associated with Understanding Calcium and Phosphate Homeostasis

    ERIC Educational Resources Information Center

    Cliff, William H.

    2009-01-01

    Successful learning of many aspects in physiology depends on a meaningful understanding of fundamental chemistry concepts. Two conceptual diagnostic questions measured student understanding of the chemical equilibrium underlying calcium and phosphate homeostasis. One question assessed the ability to predict the change in phosphate concentration…

  15. Space medicine considerations: Skeletal and calcium homeostasis

    NASA Technical Reports Server (NTRS)

    Schneider, Victor B.

    1989-01-01

    Based on the information obtained from space missions, particularly Skylab and the longer Salyut missions, it is clear that bone and mineral metabolism is substantially altered during space flight. Calcium balance becomes increasingly more negative throughout the flight, and the bone mineral content of the os calcis declines. The major health hazards associated with skeletal changes include the signs and symptoms of hypercalcemia with rapid bone turnover, the risk of kidney stones because of hypercalciuria, the lengthy recovery of lost bone mass after flight, the possibility of irreversible bone loss (particularly the trabecular bone), the possible effects of metastated calcification in the soft tissues, and the possible increase in fracture potential. For these reasons, major efforts need to be directed toward elucidating the fundamental mechanisms by which bone is lost in space and developing more effective countermeasures to prevent both short-term and long-term complications.

  16. Vitamin D: calcium and bone homeostasis during evolution

    PubMed Central

    Bouillon, Roger; Suda, Tatsuo

    2014-01-01

    Vitamin D3 is already found early in the evolution of life but essentially as inactive end products of the photochemical reaction of 7-dehydrocholestol with ultraviolet light B. A full vitamin D (refers to vitamin D2 and D3) endocrine system, characterized by a specific VDR (vitamin D receptor, member of the nuclear receptor family), specific vitamin D metabolizing CYP450 enzymes regulated by calciotropic hormones and a dedicated plasma transport-protein is only found in vertebrates. In the earliest vertebrates (lamprey), vitamin D metabolism and VDR may well have originated from a duplication of a common PRX/VDR ancestor gene as part of a xenobiotic detoxification pathway. The vitamin D endocrine system, however, subsequently became an important regulator of calcium supply for an extensive calcified skeleton. Vitamin D is essential for normal calcium and bone homeostasis as shown by rickets in vitamin D-deficient growing amphibians, reptiles, birds and mammals. From amphibians onward, bone is gradually more dynamic with regulated bone resorption, mainly by combined action of PTH and 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) on the generation and function of multinucleated osteoclasts. Therefore, bone functions as a large internal calcium reservoir, under the control of osteoclasts. Osteocytes also display a remarkable spectrum of activities, including mechanical sensing and regulating mineral homeostasis, but also have an important role in global nutritional and energy homeostasis. Mineralization from reptiles onward is under the control of well-regulated SIBLING proteins and associated enzymes, nearly all under the control of 1,25(OH)2D3. The vitamin D story thus started as inert molecule but gained an essential role for calcium and bone homeostasis in terrestrial animals to cope with the challenge of higher gravity and calcium-poor environment. PMID:24466411

  17. Mathematical model for calcium-assisted epidermal homeostasis.

    PubMed

    Kobayashi, Yasuaki; Sawabu, Yusuke; Kitahata, Hiroyuki; Denda, Mitsuhiro; Nagayama, Masaharu

    2016-05-21

    Using a mathematical model of the epidermis, we propose a mechanism of epidermal homeostasis mediated by calcium dynamics. We show that calcium dynamics beneath the stratum corneum can reduce spatio-temporal fluctuations of the layered structure of the epidermis. We also demonstrate that our model can reproduce experimental results that the recovery from a barrier disruption is faster when the disrupted site is exposed to air. In particular, simulation results indicate that the recovery speed depends on the size of barrier disruption. PMID:26953648

  18. Calcium homeostasis disruption - a bridge connecting cadmium-induced apoptosis, autophagy and tumorigenesis.

    PubMed

    Zhou, Xuehai; Hao, Weiming; Shi, Haifeng; Hou, Yongzhong; Xu, Qinggang

    2015-01-01

    Calcium and cadmium are divalent metals and have similar chemical properties. Both can enter cells through, albeit different, channels, or through protein-dependent permeation. However, cadmium disturbs the calcium homeostasis by inhibiting calcium channels and/or related proteins. Cadmium can also alter membrane phospholipid concentrations, and so induce a calcium homeostasis disorder. The altered calcium homeostasis induced by cadmium results in cell apoptosis, autophagy or tumorigenesis. In this review, calcium homeostasis disruption is summarized as a bridge connecting cadmium-induced apoptosis, autophagy, and tumorigenesis. PMID:26045029

  19. Renal Control of Calcium, Phosphate, and Magnesium Homeostasis

    PubMed Central

    Chonchol, Michel; Levi, Moshe

    2015-01-01

    Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. PMID:25287933

  20. How High Glucose Levels Affect Tendon Homeostasis.

    PubMed

    Snedeker, Jess G

    2016-01-01

    Among the many factors playing a role in tendon disease, unregulated biochemical reactions between glucose and the collagen extracellular matrix are coming increasingly into focus. We have shown that formation of advanced glycation end-products that cross-link the collagen extracellular matrix can drastically affect cellular level mechanical properties of the matrix, and in turn affect cell-level biomechanical stimuli during physiological loading of the tissue. We suggest that these may adversely affect tendon cell response to matrix damage, as well as the quality of the consequent repair. If such mechanical feedback loops are altered, the ability of tendon cells to maintain tissue in a functional, healthy state may be compromised. Although key foundational elements of biochemical, biomechanical, and biological understanding are now in place, the full extent of how these aspects interact, including the precise mechanisms by which advanced glycation end-products pathologically disrupt connective tissue homeostasis and damage repair, are only beginning to be adequately appreciated. PMID:27535261

  1. Zeolite A effect on calcium homeostasis in growing goats.

    PubMed

    Schwaller, D; Wilkens, M R; Liesegang, A

    2016-04-01

    The purpose of this study was to investigate the influence of 2 different concentrations of zeolite A on calcium homeostasis. Seventeen growing goats were divided into 3 groups. Whereas the control group (5 animals) received no supplementation, 2 treatment groups were supplemented with zeolite A at either 1.2 (6 animals) or 1.6 g/kg BW (6 animals), respectively. Blood and urine samples were continually drawn and bone mineral density was measured weekly by peripheral quantitative computed tomography. After 3 wks, the animals were slaughtered and samples were taken from the rumen, duodenum, and kidneys. Plasma concentrations of phosphate ( < 0.001), magnesium ( < 0.001), and 1.25-dihydroxycholecalciferol ( < 0.01) as well as renal excretion of phosphate ( < 0.05) were significantly lower in the treatment groups compared with the control group. Although bone resorption was increased in both treatment groups ( < 0.05), no alterations in bone structure were detected. Determination of gastrointestinal absorption of calcium by Ussing chamber technique and quantification of RNA and protein expression of genes known to be involved in active calcium absorption did not reveal any stimulating effect of zeolite. Plasma calcium concentrations were not altered, probably because of the sufficient dietary calcium supply. However due to the effects of zeolite on 1,25 dihydroxycholecalciferol, bone metabolism and serum concentrations of phosphate and magenesium shown in the present study, potential negative long-termin effects on the animals should be considered whenever rations with zeolite are designed. PMID:27136016

  2. Calcium homeostasis in Pseudomonas aeruginosa requires multiple transporters and modulates swarming motility

    PubMed Central

    Guragain, Manita; Lenaburg, Dirk L.; Moore, Frank S.; Reutlinger, Ian; Patrauchan, Marianna A.

    2015-01-01

    Pseudomonas aeruginosa is an opportunistic human pathogen causing severe acute and chronic infections. Earlier we have shown that calcium (Ca2+) induces P. aeruginosa biofilm formation and production of virulence factors. To enable further studies of the regulatory role of Ca2+, we characterized Ca2+ homeostasis in P. aeruginosa PAO1 cells. By using Ca2+-binding photoprotein aequorin, we determined that the concentration of free intracellular Ca2+ ([Ca2+]in) is 0.14±0.05 μM. In response to external Ca2+, the [Ca2+]in quickly increased at least 13 fold followed by a multi-phase decline by up to 73%. Growth at elevated Ca2+ modulated this response. Treatment with inhibitors known to affect Ca2+ channels, monovalent cations gradient, or P-type and F-type ATPases impaired [Ca2+]in response, suggesting the importance of the corresponding mechanisms in Ca2+ homeostasis. To identify Ca2+ transporters maintaining this homeostasis, bioinformatic and LC-MS/MS-based membrane proteomic analyses were used. [Ca2+]in homeostasis was monitored for seven Ca2+-affected and eleven bioinformatically predicted transporters by using transposon insertion mutants. Disruption of P-type ATPases PA2435, PA3920, and ion exchanger PA2092 significantly impaired Ca2+ homeostasis. The lack of PA3920 and vanadate treatment abolished Ca2+- induced swarming, suggesting the role of the P-type ATPase in regulating P. aeruginosa response to Ca2+. PMID:24074964

  3. Calcium homeostasis in human placenta: role of calcium-handling proteins.

    PubMed

    Lafond, Julie; Simoneau, Lucie

    2006-01-01

    The human placenta is a transitory organ, representing during pregnancy the unique connection between the mother and her fetus. The syncytiotrophoblast represents the specialized unit in the placenta that is directly involved in fetal nutrition, mainly involving essential nutrients, such as lipids, amino acids, and calcium. This ion is of particular interest since it is actively transported by the placenta throughout pregnancy and is associated with many roles during intrauterine life. At term, the human fetus has accumulated about 25-30 g of calcium. This transfer allows adequate fetal growth and development, since calcium is vital for fetal skeleton mineralization and many cellular functions, such as signal transduction, neurotransmitter release, and cellular growth. Thus, there are many proteins involved in calcium homeostasis in the human placenta. PMID:16861065

  4. The role of the gastrointestinal tract in calcium homeostasis and bone remodeling.

    PubMed

    Keller, J; Schinke, T

    2013-11-01

    While skeletal biology was approached in a rather isolated fashion in the past, an increasing understanding of the interplay between extraskeletal organs and bone remodeling has been obtained in recent years. This review will discuss recent advances in the field that have shed light on how the gastrointestinal tract and bone relate to each other. In particular, the importance of the GI tract in maintaining calcium homeostasis and skeletal integrity will be reviewed as impaired gastric acid production represents a major public health problem with possible implications for sufficient calcium absorption. Osteoporosis, the most prevalent bone disease worldwide, is caused not only by intrinsic defects affecting bone cell differentiation and function but also by a large set of extrinsic factors including hormonal disturbances, malnutrition, and iatrogenic drug application. Given the skeletal requirements of calcium, amino acids, and energy for bone turnover and renewal, it is not surprising that the gastrointestinal (GI) tract is of major importance for skeletal integrity. PMID:23536255

  5. Changes in parathyroid hormone receptor binding affinity during egg laying: implications for calcium homeostasis in chicken.

    PubMed

    Yasuoka, T; Kawashima, M; Takahashi, T; Iwata, A; Oka, N; Tanaka, K

    1996-12-01

    Parathyroid hormone (PTH) receptor bindings were examined in the membrane fraction of the calvaria and the kidney of the hen by the use of [125I]PTH-related protein (PTHrP) binding assays. The binding specificity, reversibility, and saturation of the receptor were demonstrated. The equilibrium dissociation constant (Kd) and the maximum binding capacity (Bmax) were obtained by Scatchard analyses. In both calvaria and kidney, Kd and Bmax values decreased at 3 h before oviposition in egg-laying hens, but not in nonlaying hens. Administration of 17 beta-estradiol or progesterone in vivo caused a decrease in the Kd and Bmax values. Ionized calcium concentrations in the blood plasma showed a decrease at 13 h before oviposition. The results suggest that the PTH receptor binding in the calvaria and the kidney is affected by ovarian steroid hormones and may play a role in maintaining the calcium homeostasis in the egg-laying hen. PMID:8970893

  6. [Role of endoplasmic reticulum-plasma membrane junctions in intracellular calcium homeostasis and cardiovascular disease].

    PubMed

    Zhao, Ming; Jia, Hang-Huan; Xu, Man; Yu, Xiao-Jiang; Liu, Long-Zhu; Zang, Wei-Jin

    2016-08-25

    Calcium overload is one of the important mechanisms of cardiovascular disease. Endoplasmic reticulum is an important organelle which regulates intracellular calcium homeostasis by uptake, storage and mobilization of calcium. So it plays a critical role in regulation of intracellular calcium homeostasis. Endoplasmic reticulum, which is widely distributed in cytoplasm, has a large number of membrane junction sites. Recent studies have reported that these junction sites are distributed on plasma membrane and organelle membranes (mitochondria, lysosomes, Golgi apparatus, etc.), separately. They could form complexes to regulate calcium transport. In this review, we briefly outlined the recent research progresses of endoplasmic reticulum-plasma membrane junctions in intracellular calcium homeostasis and cardiovascular disease, which may offer a new strategy for prevention and treatment of cardiovascular disease. PMID:27546511

  7. Serotonin and calcium homeostasis during the transition period.

    PubMed

    Weaver, S R; Laporta, J; Moore, S A E; Hernandez, L L

    2016-07-01

    , preliminary data suggest that manipulation of the serotonergic axis precalving may positively affect postcalving calcium dynamics. Combined, our research suggests a potential mechanism by which serotonin acts on the mammary gland to maintain circulating maternal calcium concentrations. Further research into serotonin's potential as a therapeutic target could contribute significantly as a preventive strategy against hypocalcemia in early lactation dairy cows. PMID:27345312

  8. SERCaMP: a carboxy-terminal protein modification that enables monitoring of ER calcium homeostasis

    PubMed Central

    Henderson, Mark J.; Wires, Emily S.; Trychta, Kathleen A.; Richie, Christopher T.; Harvey, Brandon K.

    2014-01-01

    Endoplasmic reticulum (ER) calcium homeostasis is disrupted in diverse pathologies, including neurodegeneration, cardiovascular diseases, and diabetes. Temporally defining calcium dysregulation during disease progression, however, has been challenging. Here we describe secreted ER calcium-monitoring proteins (SERCaMPs), which allow for longitudinal monitoring of ER calcium homeostasis. We identified a carboxy-terminal modification that is sufficient to confer release of a protein specifically in response to ER calcium depletion. A Gaussia luciferase (GLuc)–based SERCaMP provides a simple and sensitive method to monitor ER calcium homeostasis in vitro or in vivo by analyzing culture medium or blood. GLuc-SERCaMPs revealed ER calcium depletion in rat primary neurons exposed to various ER stressors. In vivo, ER calcium disruption in rat liver was monitored over several days by repeated sampling of blood. Our results suggest that SERCaMPs will have broad applications for the long-term monitoring of ER calcium homeostasis and the development of therapeutic approaches to counteract ER calcium dysregulation. PMID:25031430

  9. Calcium homeostasis is altered in skeletal muscle of spontaneously hypertensive rats: cytofluorimetric and gene expression analysis.

    PubMed

    Liantonio, Antonella; Camerino, Giulia M; Scaramuzzi, Antonia; Cannone, Maria; Pierno, Sabata; De Bellis, Michela; Conte, Elena; Fraysse, Bodvael; Tricarico, Domenico; Conte Camerino, Diana

    2014-10-01

    Hypertension is often associated with skeletal muscle pathological conditions related to function and metabolism. The mechanisms underlying the development of these pathological conditions remain undefined. Because calcium homeostasis is a biomarker of muscle function, we assessed whether it is altered in hypertensive muscles. We measured resting intracellular calcium and store-operated calcium entry (SOCE) in fast- and slow-twitch muscle fibers from normotensive Wistar-Kyoto rats and spontaneously hypertensive rats (SHRs) by cytofluorimetric technique and determined the expression of SOCE gene machinery by real-time PCR. Hypertension caused a phenotype-dependent dysregulation of calcium homeostasis; the resting intracellular calcium of extensor digitorum longus and soleus muscles of SHRs were differently altered with respect to the related muscle of normotensive animals. In addition, soleus muscles of SHR showed reduced activity of the sarcoplasmic reticulum and decreased sarcolemmal calcium permeability at rest and after SOCE activation. Accordingly, we found an alteration of the expression levels of some SOCE components, such as stromal interaction molecule 1, calcium release-activated calcium modulator 1, and transient receptor potential canonical 1. The hypertension-induced alterations of calcium homeostasis in the soleus muscle of SHRs occurred with changes of some functional outcomes as excitability and resting chloride conductance. We provide suitable targets for therapeutic interventions aimed at counterbalancing muscle performance decline in hypertension, and propose the reported calcium-dependent parameters as indexes to predict how the antihypertensive drugs could influence muscle function. PMID:25084345

  10. Sequestration of sorcin by aberrant forms of tau results in the defective calcium homeostasis

    PubMed Central

    Kim, Song-In; Lee, Hee Jae; Kim, Sung-Soo; Kwon, Yong-Soo

    2016-01-01

    Neurofi brillary tangles (NFTs) of microtubule-associated protein tau are a pathological hallmark of Alzheimer's disease (AD). Endoplasmic reticulum (ER) stress has been known to be involved in the pathogenesis of AD. However, the exact role of ER stress in tau pathology has not yet been clearly elucidated. In present study, the possible relationship between tau pathology and ER stress was examined in terms of sorcin, which is a calcium binding protein and plays an important role in calcium homeostasis. Our previous yeast two hybrid study showed that sorcin is a novel tau interacting protein. Caspase-3-cleaved tau (T4C3) showed significantly increased tau-sorcin interaction compared to wild type tau (T4). Thapsigargin-induced ER stress and co-expression of constitutively active GSK3β (GSK3β-S9A) also exhibited significantly increased tau-sorcin interactions. T4C3-expressing cells showed potentiated thapsigargin-induced apoptosis and disruption of intracellular calcium homeostasis compared to T4-expressing cells. Overexpression of sorcin signifi cantly attenuated thapsigargin-induced apoptosis and disruption of calcium homeostasis. In contrary, siRNA-mediated knock-down of sorcin showed significantly increased thapsigargin-induced apoptosis and disruption of calcium homeostasis. These data strongly suggest that sequestration of sorcin by aberrant forms of tau compromises the function of sorcin, such as calcium homeostasis and cellular resistance by ER stress, which may consequently result in the contribution to the progression of AD. PMID:27382355

  11. TMEM203 Is a Novel Regulator of Intracellular Calcium Homeostasis and Is Required for Spermatogenesis

    PubMed Central

    Shambharkar, Prashant B.; Bittinger, Mark; Latario, Brian; Xiong, ZhaoHui; Bandyopadhyay, Somnath; Davis, Vanessa; Lin, Victor; Yang, Yi; Valdez, Reginald; Labow, Mark A.

    2015-01-01

    Intracellular calcium signaling is critical for initiating and sustaining diverse cellular functions including transcription, synaptic signaling, muscle contraction, apoptosis and fertilization. Trans-membrane 203 (TMEM203) was identified here in cDNA overexpression screens for proteins capable of modulating intracellular calcium levels using activation of a calcium/calcineurin regulated transcription factor as an indicator. Overexpression of TMEM203 resulted in a reduction of Endoplasmic Reticulum (ER) calcium stores and elevation in basal cytoplasmic calcium levels. TMEM203 protein was localized to the ER and found associated with a number of ER proteins which regulate ER calcium entry and efflux. Mouse Embryonic Fibroblasts (MEFs) derived from Tmem203 deficient mice had reduced ER calcium stores and altered calcium homeostasis. Tmem203 deficient mice were viable though male knockout mice were infertile and exhibited a severe block in spermiogenesis and spermiation. Expression profiling studies showed significant alternations in expression of calcium channels and pumps in testes and concurrently Tmem203 deficient spermatocytes demonstrated significantly altered calcium handling. Thus Tmem203 is an evolutionarily conserved regulator of cellular calcium homeostasis, is required for spermatogenesis and provides a causal link between intracellular calcium regulation and spermiogenesis. PMID:25996873

  12. Cytosolic calcium homeostasis in fungi: Roles of plasma membrane transport and intracellular sequestration of calcium

    SciTech Connect

    Miller, A.J.; Vogg, G.; Sanders, D. )

    1990-12-01

    Cytosolic free calcium ((Ca{sup 2+}){sub c}) has been measured in the mycelial fungus Neurospora crassa with Ca{sup 2+} - selective microelectrodes. The mean value of (Ca{sup 2+}){sub c} is 92 {plus minus} 15 nM and it is insensitive to external pH values between 5.8 and 8.4. Simultaneous measurement of membrane potential enables the electrochemical potential difference for Ca{sup 2+} across the plasma membrane to be estimated as about {minus}60 kJmol{sup {minus}1} - a value that cannot be sustained either by a simple Ca{sup 2+} - ATPase, or, in alkaline conditions, by straightforward H{sup +}/Ca{sup 2+} exchange with a stoichiometric ratio of {lt}5 H{sup +}/Ca{sup 2+}. The authors propose that the most likely alternative mechanism of Ca{sup 2+} efflux is ATP-driven H{sup +}/Ca{sup 2+} exchange, with a stoichiometric ratio of at least 2 H{sup +}/Ca{sup 2+}. The increase in (Ca{sup 2+}){sub c} in the presence of CN{sup {minus}} at pH 8.4 is compared with {sup 45}Ca{sup 2+} influx under the same conditions. The proportion of entering Ca{sup 2+} remaining free in the cytosol is only 8 {times} 10{sup {minus}5}, and since the concentration of available chelation sites on Ca{sup 2+} binding proteins is unlikely to exceed 100 {mu}M, a major role for the fungal vacuole in short-term Ca{sup 2+} homeostasis is indicated. This notion is supported by the observation that cytosolic Ca{sup 2+} homeostasis is disrupted by a protonophore, which rapidly abolishes the driving force for Ca{sup 2+} uptake into fungal vacuoles.

  13. Calcium homeostasis in thyroid disease in dogs and cats.

    PubMed

    Schenck, Patricia A

    2007-07-01

    Hyperthyroidism is the most common endocrine disorder of cats, and hypothyroidism is the most common endocrine disorder of dogs. Little is known regarding the effects of hyperthyroidism, hypothyroidism, or treatment of these disorders on calcium metabolism in the dog or cat, however, especially any potential effects on bone. With better diagnostic tools, better treatments, and increased longevity of pets, the clinical impact of thyroid disorders on calcium metabolism and bone may be uncovered. PMID:17619006

  14. Partial Restoration of Mutant Enzyme Homeostasis in Three Distinct Lysosomal Storage Disease Cell Lines by Altering Calcium Homeostasis

    PubMed Central

    Mu, Ting-Wei; Fowler, Douglas M; Kelly, Jeffery W

    2008-01-01

    A lysosomal storage disease (LSD) results from deficient lysosomal enzyme activity, thus the substrate of the mutant enzyme accumulates in the lysosome, leading to pathology. In many but not all LSDs, the clinically most important mutations compromise the cellular folding of the enzyme, subjecting it to endoplasmic reticulum–associated degradation instead of proper folding and lysosomal trafficking. A small molecule that restores partial mutant enzyme folding, trafficking, and activity would be highly desirable, particularly if one molecule could ameliorate multiple distinct LSDs by virtue of its mechanism of action. Inhibition of L-type Ca2+ channels, using either diltiazem or verapamil—both US Food and Drug Administration–approved hypertension drugs—partially restores N370S and L444P glucocerebrosidase homeostasis in Gaucher patient–derived fibroblasts; the latter mutation is associated with refractory neuropathic disease. Diltiazem structure-activity studies suggest that it is its Ca2+ channel blocker activity that enhances the capacity of the endoplasmic reticulum to fold misfolding-prone proteins, likely by modest up-regulation of a subset of molecular chaperones, including BiP and Hsp40. Importantly, diltiazem and verapamil also partially restore mutant enzyme homeostasis in two other distinct LSDs involving enzymes essential for glycoprotein and heparan sulfate degradation, namely α-mannosidosis and type IIIA mucopolysaccharidosis, respectively. Manipulation of calcium homeostasis may represent a general strategy to restore protein homeostasis in multiple LSDs. However, further efforts are required to demonstrate clinical utility and safety. PMID:18254660

  15. Genetic Bypass of Aspergillus nidulans crzA Function in Calcium Homeostasis

    PubMed Central

    Almeida, Ricardo S.; Loss, Omar; Colabardini, Ana Cristina; Brown, Neil Andrew; Bignell, Elaine; Savoldi, Marcela; Pantano, Sergio; Goldman, Maria Helena S.; Arst, Herbert N.; Goldman, Gustavo H.

    2013-01-01

    After dephosphorylation by the phosphatase calcineurin, the fungal transcription factor CrzA enters the nucleus and activates the transcription of genes responsible for calcium homeostasis and many other calcium-regulated activities. A lack of CrzA confers calcium-sensitivity to the filamentous fungus Aspergillus nidulans. To further understand calcium signaling in filamentous fungi and to identify genes that interact genetically with CrzA, we selected for mutations that were able to suppress crzAΔ calcium intolerance and identified three genes. Through genetic mapping, gene sequencing, and mutant rescue, we were able to identify these as cnaB (encoding the calcineurin regulatory subunit), folA (encoding an enzyme involved in folic acid biosynthesis, dihydroneopterin aldolase), and scrC (suppression of crzA-, encoding a hypothetical protein). By using a calcium indicator, Fluo-3, we were able to determine that the wild-type and the suppressor strains were either able to regulate intracellular calcium levels or were able to take up and or store calcium correctly. The increased expression of calcium transporters, pmcA and/or pmcB, in suppressor mutants possibly enabled tolerance to high levels of calcium. Our results suggest that a cnaB suppressor mutation confers calcium tolerance to crzAΔ strains through restoration of calcium homeostasis. These results stress that in A. nidulans there are calcineurin-dependent and CrzA-independent pathways. In addition, it is possible that CrzA is able to contribute to the modulation of folic acid biosynthesis. PMID:23665873

  16. Affect development as a need to preserve homeostasis.

    PubMed

    Dönmez, Aslıhan; Ceylan, Mehmet Emin; Ünsalver, Barış Önen

    2016-03-01

    In this review, we aim to present our hypothesis about the neural development of affect. According to this view, affect develops at a multi-layered process, and as a mediator between drives, emotion and cognition. This development is parallel to the evolution of the brain from reptiles to mammals. There are five steps in this process: (1) Because of the various environmental challenges, changes in the autonomic nervous system occur and homeostasis becomes destabilized; (2) Drives arise from the destabilized homeostasis; (3) Drives trigger the neural basis of the basic emotional systems; (4) These basic emotions evolve into affect to find the particular object to invest the emotional energy; and (5) In the final stage, cognition is added to increase the possibility of identifying a particular object. In this paper, we will summarize the rationale behind this view, which is based on neuroscientific proofs, such as evolution of autonomic nervous system, neural basis the raw affective states, the interaction between affect and cognition, related brain areas, related neurotransmitters, as well as some clinical examples. PMID:26762485

  17. Effects of gastrin on calcium homeostasis in chickens

    SciTech Connect

    Persson, P.; Gagnemo-Persson, R.; Orberg, J.; Chen, D.; Hakanson, R. )

    1991-09-01

    As in the rat, gastrin and an extract of the acid-producing part of the stomach (proventriculus) were found to lower the blood Ca2+ concentration in the chicken. Furthermore, gastrin enhanced the uptake of 45Ca into the femur. It has been suggested previously that gastrin causes hypocalcemia in the rat by releasing gastrocalcin, a hypothetical hormone thought to reside in the acid-producing part of the stomach. The results of the present study in the chicken are in agreement with this concept. Not only exogenous, but also endogenous gastrin lowered blood calcium levels. Thus, the serum gastrin concentration was increased in response to ranitidine-evoked blockade of the gastric acid output; the rise in gastrin was associated with a transient drop in blood calcium. Also, food intake produced a rise in the serum gastrin concentration and a transient drop in blood calcium. However, injection of ranitidine or food intake in proventriclectomized (acid-producing part of the stomach extirpated) chickens failed to lower blood calcium, supporting the view that the gastrin-evoked hypocalcemia depends upon an agent in the gastric (proventriculus) mucosa. The authors suggest that endogenous and exogenous gastrin evoke hypocalcemia in the chicken by the same mechanism as that which has been postulated in the rat, i.e. by mobilization of the candidate hormone gastrocalcin from endocrine cells in the acid-producing gastric mucosa.

  18. Exposure to lithium through drinking water and calcium homeostasis during pregnancy: A longitudinal study.

    PubMed

    Harari, Florencia; Åkesson, Agneta; Casimiro, Esperanza; Lu, Ying; Vahter, Marie

    2016-05-01

    There is increasing evidence of adverse health effects due to elevated lithium exposure through drinking water but the impact on calcium homeostasis is unknown. This study aimed at elucidating if lithium exposure through drinking water during pregnancy may impair the maternal calcium homeostasis. In a population-based mother-child cohort in the Argentinean Andes (n=178), with elevated lithium concentrations in the drinking water (5-1660μg/L), blood lithium concentrations (correlating significantly with lithium in water, urine and plasma) were measured repeatedly during pregnancy by inductively coupled plasma mass spectrometry and used as exposure biomarker. Markers of calcium homeostasis included: plasma 25-hydroxyvitamin D3, serum parathyroid hormone (PTH), and calcium, phosphorus and magnesium concentrations in serum and urine. The median maternal blood lithium concentration was 25μg/L (range 1.9-145). In multivariable-adjusted mixed-effects linear regression models, blood lithium was inversely associated with 25-hydroxyvitamin D3 (-6.1nmol/L [95%CI -9.5; -2.6] for a 25μg/L increment in blood lithium). The estimate increased markedly with increasing percentiles of 25-hydroxyvitamin D3. In multivariable-adjusted mixed-effects logistic regression models, the odds ratio of having 25-hydroxyvitamin D3<30nmol/L (19% of the women) was 4.6 (95%CI 1.1; 19.3) for a 25μg/L increment in blood lithium. Blood lithium was also positively associated with serum magnesium, but not with serum calcium and PTH, and inversely associated with urinary calcium and magnesium. In conclusion, our study suggests that lithium exposure through drinking water during pregnancy may impair the calcium homeostasis, particularly vitamin D. The results reinforce the need for better control of lithium in drinking water, including bottled water. PMID:26828622

  19. Calcium homeostasis and bone metabolic responses to high-protein diets during energy deficit in healthy young adults: a randomized control trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although consuming dietary protein above current recommendations during energy deficit enhances blood lipid profiles and preserves lean body mass, concerns have been raised regarding effects of high-protein diets on bone health. To determine whether calcium homeostasis and bone turnover are affected...

  20. Effects of microgravity on bone and calcium homeostasis

    NASA Astrophysics Data System (ADS)

    Zérath, E.

    Mechanical function is known to be of crucial importance for the maintenance of bone tissue. Gravity on one hand and muscular effort on the other hand are required for normal skeletal structure. It has been shown by numerous experimental studies that loss of total-body calcium, and marked skeletal changes occur in people who have flown in space. However, most of the pertinent investigations have been conducted on animal models, including rats and non-human primates, and a reasonably clear picture of bone response to spaceflight has emerged during the past few years. Osteopenia induced by microgravity was found to be associated with reduction in both cortical and trabecular bone formation, alteration in mineralization patterns, and disorganization of collagen, and non-collagenous protein metabolism. Recently, cell-culture techniques have offered a direct approach of altered gravity effects at the osteoblastic-cell level. But the fundamental mechanisms by which bone and calcium are lost during spaceflight are not yet fully known. Infrequenccy and high financial cost of flights have created the necessity to develop on-Earth models designed to mimic weightlessness effects. Antiorthostatic suspension devices are now commonly used to obtain hindlimb unloading in rats, with skeletal effects similar to those observed after spaceflight. Therefore, actual and ``simulated'' spaceflights, with investigations conducted at whole body and cellular levels, are needed to elucidate pathogeny of bone loss in space, to develop effective countermeasures, and to study recovery processes of bone changes after return to Earth.

  1. Maleic Acid – but Not Structurally Related Methylmalonic Acid – Interrupts Energy Metabolism by Impaired Calcium Homeostasis

    PubMed Central

    Wang, Bei-Tzu; Okun, Jürgen Günther; Kölker, Stefan; Morath, Marina Alexandra; Sauer, Sven Wolfgang

    2015-01-01

    Maleic acid (MA) has been shown to induce Fanconi syndrome via disturbance of renal energy homeostasis, though the underlying pathomechanism is still under debate. Our study aimed to examine the pathomechanism underlying maleic acid-induced nephrotoxicity. Methylmalonic acid (MMA) is structurally similar to MA and accumulates in patients affected with methymalonic aciduria, a defect in the degradation of branched-chain amino acids, odd-chain fatty acids and cholesterol, which is associated with the development of tubulointerstitial nephritis resulting in chronic renal failure. We therefore used MMA application as a control experiment in our study and stressed hPTECs with MA and MMA to further validate the specificity of our findings. MMA did not show any toxic effects on proximal tubule cells, whereas maleic acid induced concentration-dependent and time-dependent cell death shown by increased lactate dehydrogenase release as well as ethidium homodimer and calcein acetoxymethyl ester staining. The toxic effect of MA was blocked by administration of single amino acids, in particular L-alanine and L-glutamate. MA application further resulted in severe impairment of cellular energy homeostasis on the level of glycolysis, respiratory chain, and citric acid cycle resulting in ATP depletion. As underlying mechanism we could identify disturbance of calcium homeostasis. MA toxicity was critically dependent on calcium levels in culture medium and blocked by the extra- and intracellular calcium chelators EGTA and BAPTA-AM respectively. Moreover, MA-induced cell death was associated with activation of calcium-dependent calpain proteases. In summary, our study shows a comprehensive pathomechanistic concept for MA-induced dysfunction and damage of human proximal tubule cells. PMID:26086473

  2. Familial Alzheimer's disease-associated presenilin-1 alters cerebellar activity and calcium homeostasis.

    PubMed

    Sepulveda-Falla, Diego; Barrera-Ocampo, Alvaro; Hagel, Christian; Korwitz, Anne; Vinueza-Veloz, Maria Fernanda; Zhou, Kuikui; Schonewille, Martijn; Zhou, Haibo; Velazquez-Perez, Luis; Rodriguez-Labrada, Roberto; Villegas, Andres; Ferrer, Isidro; Lopera, Francisco; Langer, Thomas; De Zeeuw, Chris I; Glatzel, Markus

    2014-04-01

    Familial Alzheimer's disease (FAD) is characterized by autosomal dominant heritability and early disease onset. Mutations in the gene encoding presenilin-1 (PS1) are found in approximately 80% of cases of FAD, with some of these patients presenting cerebellar damage with amyloid plaques and ataxia with unclear pathophysiology. A Colombian kindred carrying the PS1-E280A mutation is the largest known cohort of PS1-FAD patients. Here, we investigated PS1-E280A-associated cerebellar dysfunction and found that it occurs early in PS1-E208A carriers, while cerebellar signs are highly prevalent in patients with dementia. Postmortem analysis of cerebella of PS1-E280A carrier revealed greater Purkinje cell (PC) loss and more abnormal mitochondria compared with controls. In PS1-E280A tissue, ER/mitochondria tethering was impaired, Ca2+ channels IP3Rs and CACNA1A were downregulated, and Ca2+-dependent mitochondrial transport proteins MIRO1 and KIF5C were reduced. Accordingly, expression of PS1-E280A in a neuronal cell line altered ER/mitochondria tethering and transport compared with that in cells expressing wild-type PS1. In a murine model of PS1-FAD, animals exhibited mild ataxia and reduced PC simple spike activity prior to cerebellar β-amyloid deposition. Our data suggest that impaired calcium homeostasis and mitochondrial dysfunction in PS1-FAD PCs reduces their activity and contributes to motor coordination deficits prior to Aβ aggregation and dementia. We propose that PS1-E280A affects both Ca2+ homeostasis and Aβ precursor processing, leading to FAD and neurodegeneration. PMID:24569455

  3. Familial Alzheimer’s disease–associated presenilin-1 alters cerebellar activity and calcium homeostasis

    PubMed Central

    Sepulveda-Falla, Diego; Barrera-Ocampo, Alvaro; Hagel, Christian; Korwitz, Anne; Vinueza-Veloz, Maria Fernanda; Zhou, Kuikui; Schonewille, Martijn; Zhou, Haibo; Velazquez-Perez, Luis; Rodriguez-Labrada, Roberto; Villegas, Andres; Ferrer, Isidro; Lopera, Francisco; Langer, Thomas; De Zeeuw, Chris I.; Glatzel, Markus

    2014-01-01

    Familial Alzheimer’s disease (FAD) is characterized by autosomal dominant heritability and early disease onset. Mutations in the gene encoding presenilin-1 (PS1) are found in approximately 80% of cases of FAD, with some of these patients presenting cerebellar damage with amyloid plaques and ataxia with unclear pathophysiology. A Colombian kindred carrying the PS1-E280A mutation is the largest known cohort of PS1-FAD patients. Here, we investigated PS1-E280A–associated cerebellar dysfunction and found that it occurs early in PS1-E208A carriers, while cerebellar signs are highly prevalent in patients with dementia. Postmortem analysis of cerebella of PS1-E280A carrier revealed greater Purkinje cell (PC) loss and more abnormal mitochondria compared with controls. In PS1-E280A tissue, ER/mitochondria tethering was impaired, Ca2+ channels IP3Rs and CACNA1A were downregulated, and Ca2+-dependent mitochondrial transport proteins MIRO1 and KIF5C were reduced. Accordingly, expression of PS1-E280A in a neuronal cell line altered ER/mitochondria tethering and transport compared with that in cells expressing wild-type PS1. In a murine model of PS1-FAD, animals exhibited mild ataxia and reduced PC simple spike activity prior to cerebellar β-amyloid deposition. Our data suggest that impaired calcium homeostasis and mitochondrial dysfunction in PS1-FAD PCs reduces their activity and contributes to motor coordination deficits prior to Aβ aggregation and dementia. We propose that PS1-E280A affects both Ca2+ homeostasis and Aβ precursor processing, leading to FAD and neurodegeneration. PMID:24569455

  4. Calcium Homeostasis and Ionic Mechanisms in Pulmonary Fibroblasts.

    PubMed

    Janssen, Luke J; Mukherjee, Subhendu; Ask, Kjetil

    2015-08-01

    Fibroblasts are key cellular mediators of many chronic interstitial lung diseases, including idiopathic pulmonary fibrosis, scleroderma, sarcoidosis, drug-induced interstitial lung disease, and interstitial lung disease in connective tissue disease. A great deal of effort has been expended to understand the signaling mechanisms underlying the various cellular functions of fibroblasts. Recently, it has been shown that Ca(2+) oscillations play a central role in the regulation of gene expression in human pulmonary fibroblasts. However, the mechanisms whereby cytosolic [Ca(2+)] are regulated and [Ca(2+)] oscillations transduced are both poorly understood. In this review, we present the general concepts of [Ca(2+)] homeostasis, of ionic mechanisms responsible for various Ca(2+) fluxes, and of regulation of gene expression by [Ca(2+)]. In each case, we then also summarize the original findings that pertain specifically to pulmonary fibroblasts. From these data, we propose an overall signaling cascade by which excitation of the fibroblasts triggers pulsatile release of internally sequestered Ca(2+), which, in turn, activates membrane conductances, including voltage-dependent Ca(2+) influx pathways. Collectively, these events produce recurring Ca(2+) oscillations, the frequency of which is transduced by Ca(2+)-dependent transcription factors, which, in turn, orchestrate a variety of cellular events, including proliferation, synthesis/secretion of extracellular matrix proteins, autoactivation (production of transforming growth factor-β), and transformation into myofibroblasts. That unifying hypothesis, in turn, allows us to highlight several specific cellular targets and therapeutic intervention strategies aimed at controlling unwanted pulmonary fibrosis. The relationships between Ca(2+) signaling events and the unfolded protein response and apoptosis are also explored. PMID:25785898

  5. Acute Calcium Ingestion Attenuates Exercise-induced Disruption of Calcium Homeostasis

    PubMed Central

    Barry, Daniel W; Hansen, Kent C; Van Pelt, Rachael E; Witten, Michael; Wolfe, Pamela; Kohrt, Wendy M

    2011-01-01

    Purpose Exercise is associated with a decrease in bone mineral density under certain conditions. One potential mechanism is increased bone resorption due to an exercise-induced increase in parathyroid hormone (PTH), possibly triggered by dermal calcium loss. The purpose of this investigation was to determine whether calcium supplementation either before or during exercise attenuates exercise-induced increases in PTH and C-terminal telopeptide of type I collagen (CTX; a marker of bone resorption). Methods Male endurance athletes (n=20) completed three 35-km cycling time trials under differing calcium supplementation conditions: 1) 1000 mg calcium 20 minutes before exercise and placebo during, 2) placebo before and 250 mg calcium every 15 minutes during exercise (1000 mg total), or 3) placebo before and during exercise. Calcium was delivered in a 1000 mg/L solution. Supplementation was double-blinded and trials were performed in random order. PTH, CTX, bone-specific alkaline phosphatase (BAP; a marker of bone formation), and ionized calcium (iCa) were measured before and immediately after exercise. Results CTX increased and iCa decreased similarly in response to exercise under all test conditions. When compared to placebo, calcium supplementation before exercise attenuated the increase in PTH (55.8 ± 15.0 vs. 74.0 ± 14.2; mean ± SE; p=0.04); there was a similar trend (58.0 ± 17.4; p=0.07) for calcium supplementation during exercise. There were no effects of calcium on changes in CTX, BAP, and iCa. Conclusions Calcium supplementation before exercise attenuated the disruption of PTH. Further research is needed to determine the effects of repeated increases in PTH and CTX on bone (i.e., exercise training), and whether calcium supplementation can diminish any exercise-induced demineralization. PMID:20798655

  6. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin

    NASA Technical Reports Server (NTRS)

    Yang, T.; Poovaiah, B. W.

    2002-01-01

    Environmental stimuli such as UV, pathogen attack, and gravity can induce rapid changes in hydrogen peroxide (H(2)O(2)) levels, leading to a variety of physiological responses in plants. Catalase, which is involved in the degradation of H(2)O(2) into water and oxygen, is the major H(2)O(2)-scavenging enzyme in all aerobic organisms. A close interaction exists between intracellular H(2)O(2) and cytosolic calcium in response to biotic and abiotic stresses. Studies indicate that an increase in cytosolic calcium boosts the generation of H(2)O(2). Here we report that calmodulin (CaM), a ubiquitous calcium-binding protein, binds to and activates some plant catalases in the presence of calcium, but calcium/CaM does not have any effect on bacterial, fungal, bovine, or human catalase. These results document that calcium/CaM can down-regulate H(2)O(2) levels in plants by stimulating the catalytic activity of plant catalase. Furthermore, these results provide evidence indicating that calcium has dual functions in regulating H(2)O(2) homeostasis, which in turn influences redox signaling in response to environmental signals in plants.

  7. A longitudinal study of calcium homeostasis during human pregnancy and lactation and after resumption of menses.

    PubMed

    Ritchie, L D; Fung, E B; Halloran, B P; Turnlund, J R; Van Loan, M D; Cann, C E; King, J C

    1998-04-01

    To clarify the role of the intestine, kidney, and bone in maintaining calcium homeostasis during pregnancy and lactation and after the resumption of menses, a longitudinal comparison was undertaken of 14 well-nourished women consuming approximately 1200 mg Ca/d. Measurements were made before conception (prepregnancy), once during each trimester of pregnancy (T1, T2, and T3), early in lactation at 2 mo postpartum (EL), and 5 mo after resumption of menses. Intestinal calcium absorption was determined from the enrichment of the first 24-h urine sample collected after administration of stable calcium isotopes. Bone mineral of the total body and lumbar spine was measured by dual-energy X-ray absorptiometry and quantitative computerized tomography, respectively. Twenty-four-hour urine and fasting serum samples were analyzed for calcium, calcitropic hormones, and biochemical markers of bone turnover. Despite an increase in calcium intake during pregnancy, true percentage absorption of calcium increased from 32.9+/-9.1% at prepregnancy to 49.9+/-10.2% at T2 and 53.8+/-11.3% at T3 (P < 0.001). Urinary calcium increased from 4.32+/-2.20 mmol/d at prepregnancy to 6.21+/-3.72 mmol/d at T3 (P < 0.001), but only minor changes in maternal bone mineral were detected. At EL, dietary calcium and calcium absorption were not significantly different from that at prepregnancy, but urinary calcium decreased to 1.87+/-1.22 mmol/d (P < 0.001) and trabecular bone mineral density of the spine decreased to 147.7+/-21.2 mg/cm3 from 162.9+/-25.0 mg/cm3 at prepregnancy (P < 0.001). Calcium absorption postmenses increased nonsignificantly to 36.0+/-8.1% whereas urinary calcium decreased to 2.72+/-1.52 mmol/d (P < 0.001). We concluded that fetal calcium demand was met by increased maternal intestinal absorption; early breast-milk calcium was provided by maternal renal calcium conservation and loss of spinal trabecular bone, a loss that was recovered postmenses. PMID:9537616

  8. The plasma membrane protein Rch1 is a negative regulator of cytosolic calcium homeostasis and positively regulated by the calcium/calcineurin signaling pathway in budding yeast.

    PubMed

    Zhao, Yunying; Yan, Hongbo; Happeck, Ricardo; Peiter-Volk, Tina; Xu, Huihui; Zhang, Yan; Peiter, Edgar; van Oostende Triplet, Chloë; Whiteway, Malcolm; Jiang, Linghuo

    2016-01-01

    Saccharomyces cerevisiae Rch1 is structurally similar to both the vertebrate solute carrier SLC10A7 and Candida albicans Rch1. We show here that ScRCH1 is a functional homolog of CaRCH1. In S. cerevisiae, overexpression of ScRCH1 suppresses, but deletion of ScRCH1 does not affect, the lithium and rapamycin tolerance of pmr1 cells. Overexpression of ScRCH1 reduces expression of ENA1, prevents sustained accumulation of cytosolic calcium and reduces the activation level of calcium/calcineurin signaling in pmr1 cells. Therefore, similar to the situation in the pathogen C. albicans, ScRch1 negatively regulates the cytosolic homeostasis in response to high levels of extracellular calcium. ScRch1 proteins distribute as multiple foci in the plasma membrane prior to cell division, move toward and concentrate at the bud neck as the bud grows in size, and disperse again along the plasma membrane immediately prior to cytokinesis. Furthermore, our genetic and biochemical data also demonstrate that transcriptional expression of RCH1 is positively regulated by calcium/calcineurin signaling through the sole CDRE element in its promoter. PMID:26832117

  9. Calcium and Bone Homeostasis During 4-6 Months Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; OBrien, K.; Wastney, M.; Morukov, B.; Larina, I.; Abrams, S.; Lane, H.; Nillen, J.; Davis-Street, J.; Paloski, W. H. (Technical Monitor)

    2000-01-01

    Bone and calcium homeostasis are altered by weightlessness. We previously reported calcium studies on three subjects from the first joint US/Russian mission to Mir. We report here data on an additional three male subjects, whose stays on Mir were 4 (n= 1) and 6 (n=2) mos. Data were collected before, during, and after the missions. Inflight studies were conducted at 2-3 mos. Endocrine and biochemical indices were measured, along with 3-wk calcium tracer studies. Percent differences are reported compared to preflight. Ionized calcium was unchanged (2.8 +/-2.1 %) during flight. Calcium absorption was variable inflight, but was decreased after landing. Vitamin D stores were decreased 35 +/-24% inflight, similar to previous reports. Serum PTH was decreased 59 +/-9% during flight (greater than we previously reported), while 1,25(OH)(sub 2)-Vitamin D was decreased in 2 of 3 subjects. Markers of bone resorption (e.g., crosslinks) were increased in all subjects. Bone-specific alkaline phosphatase was decreased (n=1) or unchanged (n=2), while osteocalcin was decreased 34 +/-23%. Previously presented data showed that inflight bone loss is associated with increased resorption and unchanged/decreased formation. The data reported here support these earlier findings. These studies will help to extend our understanding of space flight-induced bone loss, and of bone loss associated with diseases such as osteoporosis or paralysis.

  10. Glucagon-like peptide-1 regulates calcium homeostasis and electrophysiological activities of HL-1 cardiomyocytes.

    PubMed

    Huang, Jen-Hung; Chen, Yao-Chang; Lee, Ting-I; Kao, Yu-Hsun; Chazo, Tze-Fan; Chen, Shih-Ann; Chen, Yi-Jen

    2016-04-01

    Glucagon like-peptide-1 (GLP-1) is an incretin hormone with antidiabetic effects through stimulating insulin secretion, β cell neogenesis, satiety sensation, and inhibiting glucagon secretion. Administration of GLP-1 provides cardioprotective effects through attenuating cardiac inflammation and insulin resistance. GLP-1 also modulates the heart rate and systolic pressure, which suggests that GLP-1 may have cardiac electrical effects. Therefore, the purposes of this study were to evaluate whether GLP-1 has direct cardiac effects and identify the underlying mechanisms. Patch clamp, confocal microscopy with Fluo-3 fluorescence, and Western blot analyses were used to evaluate the electrophysiological characteristics, calcium homeostasis, and calcium regulatory proteins in HL-1 atrial myocytes with and without GLP-1 (1 and 10nM) incubation for 24h. GLP-1 (1 and 10nM) and control cells had similar action potential durations. However, GLP-1 at 10nM significantly increased calcium transients and sarcoplasmic reticular Ca(2+) contents. Compared to the control, GLP-1 (10nM)-treated cells significantly decreased phosphorylation of the ryanodine receptor at S2814 and total phospholamban, but there were similar protein levels of sarcoplasmic reticular Ca(2+)-ATPase and the sodium-calcium exchanger. Moreover, exendin (9-39) amide (a GLP-1 receptor antagonist, 10nM) attenuated GLP-1-mediated effects on total SR content and phosphorylated ryanodine receptor S2814. This study demonstrates GLP-1 may regulate HL-1 cell arrhythmogenesis through modulating calcium handling proteins. PMID:26930508

  11. Red blood cell calcium homeostasis in patients with end-stage renal disease

    SciTech Connect

    Gafter, U.; Malachi, T.; Barak, H.; Djaldetti, M.; Levi, J. )

    1989-09-01

    Low cell calcium level is essential for preservation of red blood cell (RBC) membrane deformability and survival. RBCs from patients with end-stage renal disease (ESRD) demonstrate reduction in membrane deformability, possibly as a result of increased RBC cellular calcium level. To evaluate calcium homeostasis in RBCs from patients with ESRD, we measured cell calcium level, basal and calmodulin-stimulated calcium-stimulated Mg-dependent ATPase (CaATPase) activity, and calcium 45 efflux were measured before and after hemodialysis. The in vitro effect of uremic plasma and of urea on CaATPase activity of normal RBCs was tested, and 45Ca influx into RBCs of patients undergoing hemodialysis also was determined. A morphologic evaluation of red cells from patients with ESRD was performed with a scanning electron microscope. RBC calcium level in patients (mean +/- SEM 21.2 +/- 2.8 mumol/L of cells; n = 28) was higher than in controls (4.9 +/- 0.3 mumol/L of cells; n = 24; p less than 0.001). Hemodialysis had no effect on cell calcium level. Both basal and calmodulin-stimulated RBC CaATPase activities in patients with ESRD (n = 9) were reduced by approximately 50% (p less than 0.01), but after hemodialysis, enzyme activity returned to normal. 45Ca efflux from calcium-loaded cells, which was 2574.0 +/- 217.0 mumol/L of cells per 0.5 hours before hemodialysis, increased to 3140.7 +/- 206.8 mumol/L of cells per 0.5 hours after hemodialysis (p less than 0.005). In vitro incubation of normal RBCs with uremic plasma depressed CaATPase activity, but incubation with urea had no effect. RBCs of patients with ESRD revealed increased 45Ca influx, 7.63 +/- 1.15 mumol/L of cells per hour versus 4.61 +/- 0.39 mumol/L of cells per hour (p less than 0.025). RBCs of patients revealed a high incidence of spherocytosis and echynocytosis, which correlated with a high cell calcium level (r = 0.894, p less than 0.01).

  12. Calcium current homeostasis and synaptic deficits in hippocampal neurons from Kelch-like 1 knockout mice

    PubMed Central

    Perissinotti, Paula P.; Ethington, Elizabeth A.; Almazan, Erik; Martínez-Hernández, Elizabeth; Kalil, Jennifer; Koob, Michael D.; Piedras-Rentería, Erika S.

    2015-01-01

    Kelch-like 1 (KLHL1) is a neuronal actin-binding protein that modulates voltage-gated CaV2.1 (P/Q-type) and CaV3.2 (α1H T-type) calcium channels; KLHL1 knockdown experiments (KD) cause down-regulation of both channel types and altered synaptic properties in cultured rat hippocampal neurons (Perissinotti et al., 2014). Here, we studied the effect of ablation of KLHL1 on calcium channel function and synaptic properties in cultured hippocampal neurons from KLHL1 knockout (KO) mice. Western blot data showed the P/Q-type channel α1A subunit was less abundant in KO hippocampus compared to wildtype (WT); and P/Q-type calcium currents were smaller in KO neurons than WT during early days in vitro, although this decrease was compensated for at late stages by increases in L-type calcium current. In contrast, T-type currents did not change in culture. However, biophysical properties and western blot analysis revealed a differential contribution of T-type channel isoforms in the KO, with CaV3.2 α1H subunit being down-regulated and CaV3.1 α1G up-regulated. Synapsin I levels were also reduced in the KO hippocampus and cultured neurons displayed a concomitant reduction in synapsin I puncta and decreased miniature excitatory postsynaptic current (mEPSC) frequency. In summary, genetic ablation of the calcium channel modulator resulted in compensatory mechanisms to maintain calcium current homeostasis in hippocampal KO neurons; however, synaptic alterations resulted in a reduction of excitatory synapse number, causing an imbalance of the excitatory-inhibitory synaptic input ratio favoring inhibition. PMID:25610372

  13. Abnormal calcium homeostasis in heart failure with preserved ejection fraction is related to both reduced contractile function and incomplete relaxation: an electromechanically detailed biophysical modeling study

    PubMed Central

    Adeniran, Ismail; MacIver, David H.; Hancox, Jules C.; Zhang, Henggui

    2015-01-01

    Heart failure with preserved ejection fraction (HFpEF) accounts for about 50% of heart failure cases. It has features of incomplete relaxation and increased stiffness of the left ventricle. Studies from clinical electrophysiology and animal experiments have found that HFpEF is associated with impaired calcium homeostasis, ion channel remodeling and concentric left ventricle hypertrophy (LVH). However, it is still unclear how the abnormal calcium homeostasis, ion channel and structural remodeling affect the electro-mechanical dynamics of the ventricles. In this study we have developed multiscale models of the human left ventricle from single cells to the 3D organ, which take into consideration HFpEF-induced changes in calcium handling, ion channel remodeling and concentric LVH. Our simulation results suggest that at the cellular level, HFpEF reduces the systolic calcium level resulting in a reduced systolic contractile force, but elevates the diastolic calcium level resulting in an abnormal residual diastolic force. In our simulations, these abnormal electro-mechanical features of the ventricular cells became more pronounced with the increase of the heart rate. However, at the 3D organ level, the ejection fraction of the left ventricle was maintained due to the concentric LVH. The simulation results of this study mirror clinically observed features of HFpEF and provide new insights toward the understanding of the cellular bases of impaired cardiac electromechanical functions in heart failure. PMID:25852567

  14. Calcium transport and homeostasis in gill cells of a freshwater crab Dilocarcinus pagei.

    PubMed

    Granado e Sá, Marina; Baptista, B B; Farah, L S; Leite, V P; Zanotto, F P

    2010-03-01

    Crustaceans present a very interesting model system to study the process of calcification and calcium (Ca(2+)) transport because of molting-related events and the deposition of CaCO(3) in the new exoskeleton. Dilocarcinus pagei, a freshwater crab endemic to Brazil, was studied to understand Ca(2+) transport in whole gill cells using a fluorescent probe. Cells were dissociated, all of the gill cell types were loaded with fluo-3 and intracellular Ca(2+) change was monitored by adding Ca as CaCl(2) (0, 0.1, 0.25, 0.50, 1.0 and 5 mM), with a series of different inhibitors. For control gill cells, Ca(2+) transport followed Michaelis-Menten kinetics with K(m) = 0.42 +/- 0.04 mM and V(max) = 0.50 +/- 0.02 microM (Ca(2+) change x initial intracellular Ca(-1) x 180 s(-1); N = 14, r (2) = 0.99). Verapamil (a Ca(2+) channel inhibitor) and amiloride (a Na(+)/Ca(2+) exchanger [NCX] inhibitor) completely reduced intracellular Ca(2+) transport, while nifedipine, another Ca(2+) channel inhibitor, did not. Vanadate, a plasma membrane Ca(2+)-ATPase inhibitor (PMCA), increased intracellular Ca(2+) in gill cells through a decrease in the efflux of Ca(2+). Ouabain increased intracellular Ca(2+), similar to the effect of KB-R, a specific NCX inhibitor for Ca(2+) in the influx mode. Alterations in extracellular [Na] in the saline did not affect intracellular Ca(2+) transport. Caffeine, responsible for inducing Ca release from sarcoplasmic reticulum in vertebrate muscle, increased intracellular Ca(2+) compared to control, suggesting an effect of this inhibitor in gill epithelial cells of Dilocarcinus pagei, probably through release of intracellular stores. We also demonstrate here that intracellular Ca(2+) in gill cells of Dilocarcinus pagei was kept relatively constant in face of an extracellular Ca concentration of 50-fold, suggesting that crustaceans are able to display Ca(2+) homeostasis through various Ca(2+) intracellular sequestration mechanisms and/or plasma membrane Ca(2+) influx

  15. Alterations in calcium homeostasis and bone during actual and simulated space flight.

    PubMed

    Wronski, T J; Morey, E R

    1983-01-01

    The weightlessness experienced in space produces alterations in calcium homeostasis. Gemini, Apollo, and Skylab astronauts exhibited a negative calcium balance due primarily to hypercalciuria. In addition, the bone mineral density of the calcaneus declined by approximately 4% in Skylab crew members after 84 d of orbital flight. The negative calcium balance and loss of calcaneal bone mineral in normal adults subjected to prolonged bed rest was comparable to that observed in space. The pathogenesis of bone loss during space flight and bed rest is not well understood due to the lack of histomorphometric data. It is also uncertain whether osteoporotic changes in astronauts are corrected postflight. The observed bone loss would be reversible and of no long-term consequence if the only abnormality was an increased remodeling rate. However, altered bone cell activity would probably result in irreversible bone loss with the premature development of senile osteoporosis many years after space flight. The main skeletal defect in growing rats placed in orbit aboard Soviet Cosmos biosatellites appears to be diminished bone formation. Bone resorption was not elevated during weightlessness. Although cortical bone returned to normal postflight, the decline in trabecular bone mass was somewhat persistent. These studies established that the modeling of a growing skeleton was altered in a weightless environment, but do not necessarily imply that a remodeling imbalance occurs in adults during space flight. However, various forms of simulated space flight inhibited bone formation during both skeletal modeling and the remodeling of adult bone.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6645871

  16. Mechanisms of intracellular calcium homeostasis in developing and mature bovine corpora lutea.

    PubMed

    Wright, Marietta F; Bowdridge, Elizabeth; McDermott, Erica L; Richardson, Samuel; Scheidler, James; Syed, Qaisar; Bush, Taylor; Inskeep, E Keith; Flores, Jorge A

    2014-03-01

    Although calcium (Ca(2+)) is accepted as an intracellular mediator of prostaglandin F2 alpha (PGF2alpha) actions on luteal cells, studies defining mechanisms of Ca(2+) homeostasis in bovine corpora lutea (CL) are lacking. The increase in intracellular Ca(2+) concentration ([Ca(2+)]i) induced by PGF2alpha in steroidogenic cells from mature CL is greater than in those isolated from developing CL. Our hypothesis is that differences in signal transduction associated with developing and mature CL contribute to the increased efficacy of PGF2alpha to induce a Ca(2+) signal capable of inducing regression in mature CL. To test this hypothesis, major genes participating in Ca(2+) homeostasis in the bovine CL were identified, and expression of mRNA, protein, or activity, in the case of phospholipase Cbeta (PLCbeta), in developing and mature bovine CL was compared. In addition, we examined the contribution of external and internal Ca(2+) to the PGF2alpha stimulated rise in [Ca(2+)]i in LLCs isolated from developing and mature bovine CL. Three differences were identified in mechanisms of calcium homeostasis between developing and mature CL, which could account for the lesser increase in [Ca(2+)]i in response to PGF2alpha in developing than in mature CL. First, there were lower concentrations of inositol 1,4,5-trisphosphate (IP3) after similar PGF2alpha challenge, indicating reduced phospholipase C beta (PLCbeta) activity, in developing than mature CL. Second, there was an increased expression of sorcin (SRI) in developing than in mature CL. This cytoplasmic Ca(2+) binding protein modulates the endoplasmic reticulum (ER) Ca(2+) release channel, ryanodine receptor (RyR), to be in the closed configuration. Third, there was greater expression of ATP2A2 or SERCA, which causes calcium reuptake into the ER, in developing than in mature CL. Developmental differences in expression detected in whole CL were confirmed by Western blots using protein samples from steroidogenic cells

  17. Effects of deoxynivalenol on calcium homeostasis of concanavalin A-Stimulated splenic lymphocytes of chickens in vitro.

    PubMed

    Ren, Zhihua; Wang, Yachao; Deng, Huidan; Deng, Youtian; Deng, Junliang; Zuo, Zhicai; Wang, Ya; Peng, Xi; Cui, Hengmin; Shen, Liuhong; Yu, Shumin; Cao, Suizhong

    2016-04-01

    In this study, the in vitro effects of the treatment of concanavalin A (Con A)-stimulated splenic lymphocytes with DON were examined. Splenic lymphocytes isolated from chickens were stimulated with 12.5μg/mL Con A and exposed to deoxynivalenol (DON) (0-50μg/mL) for 48h. The intracellular calcium concentration ([Ca(2+)]i), pH, calmodulin (CaM) mRNA levels, and Na(+),K(+)-ATPase and Ca(2+)-ATPase activities were detected. With the DON exposure concentrations increased, the [Ca(2+)]i and CaM mRNA levels gradually increased in a dose-dependent manner, and all the evaluated conconcentrations affected ATPase activity to the same extent. There were significant differences (P<0.05 or P<0.01) between the treatment groups and the control group. These results indicate that an imbalance in calcium homeostasis and intracellular acidification are components of DON cytotoxicity in chicken lymphocytes. PMID:26809658

  18. Altered Calcium and Vitamin D Homeostasis in First-Time Calcium Kidney Stone-Formers

    PubMed Central

    Ketha, Hemamalini; Singh, Ravinder J.; Grebe, Stefan K.; Bergstralh, Eric J.; Rule, Andrew D.; Lieske, John C.; Kumar, Rajiv

    2015-01-01

    Background Elevated serum 1,25-dihydroxyvitamin D (1,25(OH)2D) concentrations have been reported among cohorts of recurrent calcium (Ca) kidney stone-formers and implicated in the pathogenesis of hypercalciuria. Variations in Ca and vitamin D metabolism, and excretion of urinary solutes among first-time male and female Ca stone-formers in the community, however, have not been defined. Methods In a 4-year community-based study we measured serum Ca, phosphorus (P), 25-hydroxyvitamin D (25(OH)D), 1,25(OH)2D, 24,25-dihydroxyvitamin D (24,25(OH)2D), parathyroid hormone (PTH), and fibroblast growth factor-23 (FGF-23) concentrations in first-time Ca stone-formers and age- and gender frequency-matched controls. Results Serum Ca and 1,25(OH)2D were increased in Ca stone-formers compared to controls (P = 0.01 and P = 0.001). Stone-formers had a lower serum 24,25(OH)2D/25(OH)D ratio compared to controls (P = 0.008). Serum PTH and FGF-23 concentrations were similar in the groups. Urine Ca excretion was similar in the two groups (P = 0.82). In controls, positive associations between serum 25(OH)D and 24,25(OH)2D, FGF-23 and fractional phosphate excretion, and negative associations between serum Ca and PTH, and FGF-23 and 1,25(OH)2D were observed. In SF associations between FGF-23 and fractional phosphate excretion, and FGF-23 and 1,25(OH)2D, were not observed. 1,25(OH)2D concentrations associated more weakly with FGF-23 in SF compared with C (P <0.05). Conclusions Quantitative differences in serum Ca and 1,25(OH)2D and reductions in 24-hydroxylation of vitamin D metabolites are present in first-time SF and might contribute to first-time stone risk. PMID:26332888

  19. Calcium homeostasis and bone metabolic responses to protein diets and energy restriction: a randomized control trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite some beneficial effects on bone, high protein diets are conventionally considered a primary dietary risk factor for osteoporosis and bone fracture due to the acid load associated with protein catabolism. To test the hypothesis that high dietary protein diets do not negatively affect calcium ...

  20. Trimetazidine protects cardiomyocytes against hypoxia-induced injury through ameliorates calcium homeostasis.

    PubMed

    Wei, Jinhong; Xu, Hao; Shi, Liang; Tong, Jie; Zhang, Jianbao

    2015-07-01

    Intracellular calcium (Ca(2+)i) overload induced by chronic hypoxia alters Ca(2+)i homeostasis, which plays an important role on mediating myocardial injury. We tested the hypothesis that treatment with trimetazidine (TMZ) would improve Ca(2+)i handling in hypoxic myocardial injury. Cardiomyocytes isolated from neonatal Sprague-Dawley rats were exposed to chronic hypoxia (1% O2, 5% CO2, 37 °C). Intracellular calcium concentration ([Ca(2+)]i) was measured with Fura-2/AM. Perfusion of cardiomyocytes with a high concentration of caffeine (10 mM) was carried out to verify the function of the cardiac Na(+)/Ca(2+) exchanger (NCX) and the activity of sarco(endo)-plasmic reticulum Ca(2+)-ATPase (SERCA2a). For TMZ-treated cardiomyocytes exposured in hypoxia, we observed a decrease in mRNA expression of proapoptotic Bax, caspase-3 activation and enhanced expression of anti-apoptotic Bcl-2. The cardiomyocyte hypertrophy were also alleviated in hypoxic cardiomyocyte treated with TMZ. Moreover, we found that TMZ treatment cardiomyocytes enhanced "metabolic shift" from lipid oxidation to glucose oxidation. Compared with hypoxic cardiomyocyte, the diastolic [Ca(2+)]i was decreased, the amplitude of Ca(2+)i oscillations and sarcoplasmic reticulum Ca(2+) load were recovered, the activities of ryanodine receptor 2 (RyR2), NCX and SERCA2a were increased in cardiomyocytes treated with TMZ. TMZ attenuated abnormal changes of RyR2 and SERCA2a genes in hypoxic cardiomyocytes. In addition, cholinergic signaling are involved in hypoxic stress and the cardioprotective effects of TMZ. These results suggest that TMZ ameliorates Ca(2+)i homeostasis through switch of lipid to glucose metabolism, thereby producing the cardioprotective effect and reduction in hypoxic cardiomyocytes damage. PMID:25937560

  1. The influence of lithium on calcium and magnesium homeostasis in serum and tissues of rats.

    PubMed

    Kiełczykowska, Małgorzata; Pasternak, Kazimierz; Musik, Irena

    2003-01-01

    Lithium is used in medicine. However, its administration can have negative side effects, disturb the water-electrolyte equilibrium and affect the level of essential elements. For these reasons the influence of oral lithium intoxication at the dose of 150 mg Li dm(-3) on magnesium and calcium levels in serum and tissues of rats was investigated. The concentration of Mg and Ca in serum increased throughout the experiment. The concentration of magnesium in tissues decreased after three weeks in liver, kidney, brain and femoral muscle. The trend of the changes of calcium tissue concentration was opposite to the one observed in the case of magnesium. PMID:15323205

  2. DL-Homocysteic acid application disrupts calcium homeostasis and induces degeneration of spinal motor neurons in vivo.

    PubMed

    Adalbert, Róbert; Engelhardt, József I; Siklós, László

    2002-05-01

    Excitotoxicity, autoimmunity and free radicals have been postulated to play a role in the pathomechanism of amyotrophic lateral sclerosis (ALS), the most frequent motor neuron disease. Altered calcium homeostasis has already been demonstrated in Cu/Zn superoxide dismutase transgenic animals, suggesting a role for free radicals in the pathogenesis of ALS, and in passive transfer experiments, modeling autoimmunity. These findings also suggested that yet-confined pathogenic insults, associated with ALS, could trigger the disruption of calcium homeostasis of motor neurons. To test the possibility that excitotoxic processes may also be able to increase calcium in motor neurons, we applied the glutamate analogue DL-homocysteic acid to the spinal cord of rats in vivo and analyzed the calcium distribution of the motor neurons over a 24-h survival period by electron microscopy. Initially, an elevated cytoplasmic calcium level, with no morphological sign of degeneration, was noticed. Later, increasing calcium accumulation was seen in different cellular compartments with characteristic features of alteration at different survival times. This calcium accumulation in organelles was paralleled by their progressive degeneration, which culminated in cell death by the end of the observation time. These findings confirm that increased calcium also plays a role in excitotoxic lesion of motor neurons, in line with previous studies documenting the involvement of calcium ions in motor neuronal injury in other models of the disease as well as elevated calcium in biopsy samples from ALS patients. We suggest that intracellular calcium might be responsible for the interplay between the different pathogenic processes resulting in a uniform clinicopathological picture of the disease. PMID:11935257

  3. Candidate genes that affect aging through protein homeostasis.

    PubMed

    Argon, Yair; Gidalevitz, Tali

    2015-01-01

    Because aging is a multifactorial, pleiotropic process where many interacting mechanisms contribute to the organismal decline, the candidate gene approach rarely provides a clear message. This chapter discusses some of the inherent complexity, focusing on aspects that impinge upon protein homeostasis and maintain a healthy proteome. We discuss candidate genes that operate in these pathways, and compare their actions in invertebrates, mice and humans. We highlight several themes that emerge from recent research—the interconnections of pathways that regulate aging, the pleiotropic effects of mutations and other manipulations of the candidate proteins and the tissue specificity in these pleiotropic outcomes. This body of knowledge highlights the need for multiple specific readouts of manipulating longevity genes, beyond measuring lifespan, as well as the need to understand the integrated picture, beyond examining the immediate outputs of individual longevity pathways. PMID:25916585

  4. Putative Nanobacteria Represent Physiological Remnants and Culture By-Products of Normal Calcium Homeostasis

    PubMed Central

    Young, John D.; Young, Lena; Wu, Cheng-Yeu; Young, Andrew

    2009-01-01

    described earlier as NB may thus represent remnants and by-products of physiological mechanisms used for calcium homeostasis, a concept which explains the vast body of NB literature as well as explains the true origin of NB as lifeless protein-mineralo entities with questionable role in pathogenesis. PMID:19198665

  5. Putative nanobacteria represent physiological remnants and culture by-products of normal calcium homeostasis.

    PubMed

    Young, John D; Martel, Jan; Young, Lena; Wu, Cheng-Yeu; Young, Andrew; Young, David

    2009-01-01

    earlier as NB may thus represent remnants and by-products of physiological mechanisms used for calcium homeostasis, a concept which explains the vast body of NB literature as well as explains the true origin of NB as lifeless protein-mineralo entities with questionable role in pathogenesis. PMID:19198665

  6. Increased LDL electronegativity in chronic kidney disease disrupts calcium homeostasis resulting in cardiac dysfunction.

    PubMed

    Chang, Kuan-Cheng; Lee, An-Sheng; Chen, Wei-Yu; Lin, Yen-Nien; Hsu, Jing-Fang; Chan, Hua-Chen; Chang, Chia-Ming; Chang, Shih-Sheng; Pan, Chia-Chi; Sawamura, Tatsuya; Chang, Chi-Tzong; Su, Ming-Jai; Chen, Chu-Huang

    2015-07-01

    Chronic kidney disease (CKD), an independent risk factor for cardiovascular disease, is associated with abnormal lipoprotein metabolism. We examined whether electronegative low-density lipoprotein (LDL) is mechanistically linked to cardiac dysfunction in patients with early CKD. We compared echocardiographic parameters between patients with stage 2 CKD (n = 88) and normal controls (n = 89) and found that impaired relaxation was more common in CKD patients. Reduction in estimated glomerular filtration rate was an independent predictor of left ventricular relaxation dysfunction. We then examined cardiac function in a rat model of early CKD induced by unilateral nephrectomy (UNx) by analyzing pressure-volume loop data. The time constant of isovolumic pressure decay was longer and the maximal velocity of pressure fall was slower in UNx rats than in controls. When we investigated the mechanisms underlying relaxation dysfunction, we found that LDL from CKD patients and UNx rats was more electronegative than LDL from their respective controls and that LDL from UNx rats induced intracellular calcium overload in H9c2 cardiomyocytes in vitro. Furthermore, chronic administration of electronegative LDL, which signals through lectin-like oxidized LDL receptor-1 (LOX-1), induced relaxation dysfunction in wild-type but not LOX-1(-/-) mice. In in vitro and in vivo experiments, impaired cardiac relaxation was associated with increased calcium transient resulting from nitric oxide (NO)-dependent nitrosylation of SERCA2a due to increases in inducible NO synthase expression and endothelial NO synthase uncoupling. In conclusion, LDL becomes more electronegative in early CKD. This change disrupts SERCA2a-regulated calcium homeostasis, which may be the mechanism underlying cardiorenal syndrome. PMID:25871829

  7. Calcium homeostasis in myogenic differentiation factor 1 (MyoD)-transformed, virally-transduced, skin-derived equine myotubes.

    PubMed

    Fernandez-Fuente, Marta; Terracciano, Cesare M; Martin-Duque, Pilar; Brown, Susan C; Vassaux, Georges; Piercy, Richard J

    2014-01-01

    Dysfunctional skeletal muscle calcium homeostasis plays a central role in the pathophysiology of several human and animal skeletal muscle disorders, in particular, genetic disorders associated with ryanodine receptor 1 (RYR1) mutations, such as malignant hyperthermia, central core disease, multiminicore disease and certain centronuclear myopathies. In addition, aberrant skeletal muscle calcium handling is believed to play a pivotal role in the highly prevalent disorder of Thoroughbred racehorses, known as Recurrent Exertional Rhabdomyolysis. Traditionally, such defects were studied in human and equine subjects by examining the contractile responses of biopsied muscle strips exposed to caffeine, a potent RYR1 agonist. However, this test is not widely available and, due to its invasive nature, is potentially less suitable for valuable animals in training or in the human paediatric setting. Furthermore, increasingly, RYR1 gene polymorphisms (of unknown pathogenicity and significance) are being identified through next generation sequencing projects. Consequently, we have investigated a less invasive test that can be used to study calcium homeostasis in cultured, skin-derived fibroblasts that are converted to the muscle lineage by viral transduction with a MyoD (myogenic differentiation 1) transgene. Similar models have been utilised to examine calcium homeostasis in human patient cells, however, to date, there has been no detailed assessment of the cells' calcium homeostasis, and in particular, the responses to agonists and antagonists of RYR1. Here we describe experiments conducted to assess calcium handling of the cells and examine responses to treatment with dantrolene, a drug commonly used for prophylaxis of recurrent exertional rhabdomyolysis in horses and malignant hyperthermia in humans. PMID:25148524

  8. Calcium Homeostasis in Myogenic Differentiation Factor 1 (MyoD)-Transformed, Virally-Transduced, Skin-Derived Equine Myotubes

    PubMed Central

    Fernandez-Fuente, Marta; Terracciano, Cesare M.; Martin-Duque, Pilar; Brown, Susan C.; Vassaux, Georges; Piercy, Richard J.

    2014-01-01

    Dysfunctional skeletal muscle calcium homeostasis plays a central role in the pathophysiology of several human and animal skeletal muscle disorders, in particular, genetic disorders associated with ryanodine receptor 1 (RYR1) mutations, such as malignant hyperthermia, central core disease, multiminicore disease and certain centronuclear myopathies. In addition, aberrant skeletal muscle calcium handling is believed to play a pivotal role in the highly prevalent disorder of Thoroughbred racehorses, known as Recurrent Exertional Rhabdomyolysis. Traditionally, such defects were studied in human and equine subjects by examining the contractile responses of biopsied muscle strips exposed to caffeine, a potent RYR1 agonist. However, this test is not widely available and, due to its invasive nature, is potentially less suitable for valuable animals in training or in the human paediatric setting. Furthermore, increasingly, RYR1 gene polymorphisms (of unknown pathogenicity and significance) are being identified through next generation sequencing projects. Consequently, we have investigated a less invasive test that can be used to study calcium homeostasis in cultured, skin-derived fibroblasts that are converted to the muscle lineage by viral transduction with a MyoD (myogenic differentiation 1) transgene. Similar models have been utilised to examine calcium homeostasis in human patient cells, however, to date, there has been no detailed assessment of the cells’ calcium homeostasis, and in particular, the responses to agonists and antagonists of RYR1. Here we describe experiments conducted to assess calcium handling of the cells and examine responses to treatment with dantrolene, a drug commonly used for prophylaxis of recurrent exertional rhabdomyolysis in horses and malignant hyperthermia in humans. PMID:25148524

  9. Dietary factors affecting calcium and zinc absorption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rickets is common in Nigerian children and responds better to calcium (Ca) than to vitamin D supplementation. We reported in previous studies in which oral isotopes were given with maize pap that Ca intakes are similarly low and Ca absorption (abs) similarly high in rachitic and non-rachitic Nigeria...

  10. Affected chromosome homeostasis and genomic instability of clonal yeast cultures.

    PubMed

    Adamczyk, Jagoda; Deregowska, Anna; Panek, Anita; Golec, Ewelina; Lewinska, Anna; Wnuk, Maciej

    2016-05-01

    Yeast cells originating from one single colony are considered genotypically and phenotypically identical. However, taking into account the cellular heterogeneity, it seems also important to monitor cell-to-cell variations within a clone population. In the present study, a comprehensive yeast karyotype screening was conducted using single chromosome comet assay. Chromosome-dependent and mutation-dependent changes in DNA (DNA with breaks or with abnormal replication intermediates) were studied using both single-gene deletion haploid mutants (bub1, bub2, mad1, tel1, rad1 and tor1) and diploid cells lacking one active gene of interest, namely BUB1/bub1, BUB2/bub2, MAD1/mad1, TEL1/tel1, RAD1/rad1 and TOR1/tor1 involved in the control of cell cycle progression, DNA repair and the regulation of longevity. Increased chromosome fragility and replication stress-mediated chromosome abnormalities were correlated with elevated incidence of genomic instability, namely aneuploid events-disomies, monosomies and to a lesser extent trisomies as judged by in situ comparative genomic hybridization (CGH). The tor1 longevity mutant with relatively balanced chromosome homeostasis was found the most genomically stable among analyzed mutants. During clonal yeast culture, spontaneously formed abnormal chromosome structures may stimulate changes in the ploidy state and, in turn, promote genomic heterogeneity. These alterations may be more accented in selected mutated genetic backgrounds, namely in yeast cells deficient in proper cell cycle regulation and DNA repair. PMID:26581629

  11. Processes affecting the oceanic distributions of dissolved calcium and alkalinity

    SciTech Connect

    Shiller, A.M.; Gieskes, J.M.

    1980-05-20

    Recent studies of the CO/sub 2/ system have suggested that chemical processes in addition to the dissolution and precipitation of calcium carbonate affect the oceanic calcium and alkalinity distributions. Calcium and alkalinity data from the North Pacific have been examined both by using the simple physical-chemical model of previous workers and by a study involving the broader oceanographic context of these data. The simple model is shown to be an inadequate basis for these studies. Although a proton flux associated with organic decomposition may affect the alkalinity, previously reported deviations of calcium-alkalinity correlations from expected trends appear to be related to boundary processes that have been neglected rather than to this proton flux. The distribution of calcium in the surface waters of the Pacific Ocean is examined.

  12. Bone Is a Major Target of PTH/PTHrP Receptor Signaling in Regulation of Fetal Blood Calcium Homeostasis

    PubMed Central

    Hirai, Takao; Kobayashi, Tatsuya; Nishimori, Shigeki; Karaplis, Andrew C.; Goltzman, David

    2015-01-01

    The blood calcium concentration during fetal life is tightly regulated within a narrow range by highly interactive homeostatic mechanisms that include transport of calcium across the placenta and fluxes in and out of bone; the mechanisms of this regulation are poorly understood. Our findings that endochondral bone-specific PTH/PTHrP receptor (PPR) knockout (KO) mice showed significant reduction of fetal blood calcium concentration compared with that of control littermates at embryonic day 18.5 led us to focus on bone as a possibly major determinant of fetal calcium homeostasis. We found that the fetal calcium concentration of Runx2 KO mice was significantly higher than that of control littermates, suggesting that calcium flux into bone had a considerable influence on the circulating calcium concentration. Moreover, Runx2:PTH double mutant fetuses showed calcium levels similar to those of Runx2 KO mice, suggesting that part of the fetal hypocalcemia in PTH KO mice was caused by the increment of the mineralized bone mass allowed by the formation of osteoblasts. Finally, Rank:PTH double mutant mice had a blood calcium concentration even lower than that of the either Rank KO or PTH KO mice alone at embryonic day 18.5. These observations in our genetic models suggest that PTH/PTHrP receptor signaling in bones has a significant role of the regulation of fetal blood calcium concentration and that both placental transport and osteoclast activation contribute to PTH's hypercalcemic action. They also show that PTH-independent deposition of calcium in bone is the major controller of fetal blood calcium level. PMID:26052897

  13. Bone Is a Major Target of PTH/PTHrP Receptor Signaling in Regulation of Fetal Blood Calcium Homeostasis.

    PubMed

    Hirai, Takao; Kobayashi, Tatsuya; Nishimori, Shigeki; Karaplis, Andrew C; Goltzman, David; Kronenberg, Henry M

    2015-08-01

    The blood calcium concentration during fetal life is tightly regulated within a narrow range by highly interactive homeostatic mechanisms that include transport of calcium across the placenta and fluxes in and out of bone; the mechanisms of this regulation are poorly understood. Our findings that endochondral bone-specific PTH/PTHrP receptor (PPR) knockout (KO) mice showed significant reduction of fetal blood calcium concentration compared with that of control littermates at embryonic day 18.5 led us to focus on bone as a possibly major determinant of fetal calcium homeostasis. We found that the fetal calcium concentration of Runx2 KO mice was significantly higher than that of control littermates, suggesting that calcium flux into bone had a considerable influence on the circulating calcium concentration. Moreover, Runx2:PTH double mutant fetuses showed calcium levels similar to those of Runx2 KO mice, suggesting that part of the fetal hypocalcemia in PTH KO mice was caused by the increment of the mineralized bone mass allowed by the formation of osteoblasts. Finally, Rank:PTH double mutant mice had a blood calcium concentration even lower than that of the either Rank KO or PTH KO mice alone at embryonic day 18.5. These observations in our genetic models suggest that PTH/PTHrP receptor signaling in bones has a significant role of the regulation of fetal blood calcium concentration and that both placental transport and osteoclast activation contribute to PTH's hypercalcemic action. They also show that PTH-independent deposition of calcium in bone is the major controller of fetal blood calcium level. PMID:26052897

  14. Serotonin Regulates Calcium Homeostasis in Lactation by Epigenetic Activation of Hedgehog Signaling

    PubMed Central

    Laporta, Jimena; Keil, Kimberly P.; Weaver, Samantha R.; Cronick, Callyssa M.; Prichard, Austin P.; Crenshaw, Thomas D.; Heyne, Galen W.; Vezina, Chad M.; Lipinski, Robert J.

    2014-01-01

    Calcium homeostasis during lactation is critical for maternal and neonatal health. We previously showed that nonneuronal/peripheral serotonin [5-hydroxytryptamine (5-HT)] causes the lactating mammary gland to synthesize and secrete PTHrP in an acute fashion. Here, using a mouse model, we found that genetic inactivation of tryptophan hydroxylase 1 (Tph1), which catalyzes the rate-limiting step in peripheral 5-HT synthesis, reduced circulating and mammary PTHrP expression, osteoclast activity, and maternal circulating calcium concentrations during the transition from pregnancy to lactation. Tph1 inactivation also reduced sonic hedgehog signaling in the mammary gland during lactation. Each of these deficiencies was rescued by daily injections of 5-hydroxy-L-tryptophan (an immediate precursor of 5-HT) to Tph1-deficient dams. We used immortalized mouse embryonic fibroblasts to demonstrate that 5-HT induces PTHrP through a sonic hedgehog-dependent signal transduction mechanism. We also found that 5-HT altered DNA methylation of the Shh gene locus, leading to transcriptional initiation at an alternate start site and formation of a variant transcript in mouse embryonic fibroblasts in vitro and in mammary tissue in vivo. These results support a new paradigm of 5-HT-mediated Shh regulation involving DNA methylation remodeling and promoter switching. In addition to having immediate implications for lactation biology, identification and characterization of a novel functional regulatory relationship between nonneuronal 5-HT, hedgehog signaling, and PTHrP offers new avenues for the study of these important factors in development and disease. PMID:25192038

  15. Colchicine modulates calcium homeostasis and electrical property of HL-1 cells.

    PubMed

    Lu, Yen-Yu; Chen, Yao-Chang; Kao, Yu-Hsun; Lin, Yung-Kuo; Yeh, Yung-Hsin; Chen, Shih-Ann; Chen, Yi-Jen

    2016-06-01

    Colchicine is a microtubule disruptor that reduces the occurrence of atrial fibrillation (AF) after an operation or ablation. However, knowledge of the effects of colchicine on atrial myocytes is limited. The aim of this study was to determine if colchicine can regulate calcium (Ca(2+) ) homeostasis and attenuate the electrical effects of the extracellular matrix on atrial myocytes. Whole-cell clamp, confocal microscopy with fluorescence, and western blotting were used to evaluate the action potential and ionic currents of HL-1 cells treated with and without (control) colchicine (3 nM) for 24 hrs. Compared with control cells, colchicine-treated HL-1 cells had a longer action potential duration with smaller intracellular Ca(2+) transients and sarcoplasmic reticulum (SR) Ca(2+) content by 10% and 47%, respectively. Colchicine-treated HL-1 cells showed a smaller L-type Ca(2+) current, reverse mode sodium-calcium exchanger (NCX) current and transient outward potassium current than control cells, but had a similar ultra-rapid activating outward potassium current and apamin-sensitive small-conductance Ca(2+) -activated potassium current compared with control cells. Colchicine-treated HL-1 cells expressed less SERCA2a, total, Thr17-phosphorylated phospholamban, Cav1.2, CaMKII, NCX, Kv1.4 and Kv1.5, but they expressed similar levels of the ryanodine receptor, Ser16-phosphorylated phospholamban and Kv4.2. Colchicine attenuated the shortening of the collagen-induced action potential duration in HL-1 cells. These findings suggest that colchicine modulates the atrial electrical activity and Ca(2+) regulation and attenuates the electrical effects of collagen, which may contribute to its anti-AF activity. PMID:26928894

  16. Arsenite promotes apoptosis and dysfunction in microvascular endothelial cells via an alteration of intracellular calcium homeostasis.

    PubMed

    Suriyo, Tawit; Watcharasit, Piyajit; Thiantanawat, Apinya; Satayavivad, Jutamaad

    2012-04-01

    Vascular endothelium has been considered as a target for arsenic-induced cardiovascular toxicity. The present study demonstrated that arsenite caused slow and sustained elevation of intracellular free calcium levels ([Ca2+]i) in HMEC-1, a human microvessel-derived endothelial cell line, in a concentration-dependent manner. Pretreatment with U-73122 (a specific PLC inhibitor) or 2-APB (a specific IP3 receptor antagonist) attenuated this effect, suggesting that PLC/IP3 signaling cascade is involved in arsenite-induced elevation of [Ca2+]i. Cytotoxic concentrations of arsenite (5 and 10 μM) significantly enhanced endothelial nitric oxide synthase (eNOS) phosphorylation, nitric oxide (NO) production and apoptosis after 24-h exposure. Additionally, 2-APB attenuated eNOS phosphorylation and apoptosis induced by arsenite, indicating that Ca2+ -mediated eNOS activation participates in arsenite-induced endothelial cell apoptosis. Moreover, we also found that non-apoptotic concentrations of arsenite (0.5 and 1 μM) dramatically mitigated thrombin-induced rapid transient rise of [Ca2+]i, eNOS phosphorylation and NO production, suggesting functional disruption of endothelial by arsenite, and these effects occurred without an alteration of PLC-β1 and thrombin receptor levels. Altogether, the results reveal that arsenite induces apoptotic cell death and endothelial dysfunction as indicated by the reduction of thrombin responses, particularly related to an alteration of intracellular Ca2+ homeostasis. PMID:22244921

  17. Development and Implementation of a High-Throughput Compound Screening Assay for Targeting Disrupted ER Calcium Homeostasis in Alzheimer's Disease

    PubMed Central

    Honarnejad, Kamran; Daschner, Alexander; Giese, Armin; Zall, Andrea; Schmidt, Boris; Szybinska, Aleksandra; Kuznicki, Jacek; Herms, Jochen

    2013-01-01

    Disrupted intracellular calcium homeostasis is believed to occur early in the cascade of events leading to Alzheimer's disease (AD) pathology. Particularly familial AD mutations linked to Presenilins result in exaggerated agonist-evoked calcium release from endoplasmic reticulum (ER). Here we report the development of a fully automated high-throughput calcium imaging assay utilizing a genetically-encoded FRET-based calcium indicator at single cell resolution for compound screening. The established high-throughput screening assay offers several advantages over conventional high-throughput calcium imaging technologies. We employed this assay for drug discovery in AD by screening compound libraries consisting of over 20,000 small molecules followed by structure-activity-relationship analysis. This led to the identification of Bepridil, a calcium channel antagonist drug in addition to four further lead structures capable of normalizing the potentiated FAD-PS1-induced calcium release from ER. Interestingly, it has recently been reported that Bepridil can reduce Aβ production by lowering BACE1 activity. Indeed, we also detected lowered Aβ, increased sAPPα and decreased sAPPβ fragment levels upon Bepridil treatment. The latter findings suggest that Bepridil may provide a multifactorial therapeutic modality for AD by simultaneously addressing multiple aspects of the disease. PMID:24260442

  18. Lipidome analysis reveals antifungal polyphenol curcumin affects membrane lipid homeostasis.

    PubMed

    Sharma, Monika; Dhamgaye, Sanjiveeni; Singh, Ashutosh; Prasad, Rajendra

    2012-01-01

    This study shows that antifungal curcumin (CUR), significantly depletes ergosterol levels in Candida albicans. CUR while displaying synergy with fluconazole (FLC) lowers ergosterol. However, CUR alone at its synergistic concentration (lower than MIC50), could not affect ergosterol contents. For deeper insight of CUR effects on lipids, we performed high throughput mass spectroscopy (MS) based lipid profiling of C. albicans cells. The lipidome analysis revealed that there were no major changes in phosphoglycerides (PGLs) composition following CUR treatment of Candida, however, significant differences in molecular species of PGLs were detected. Among major SPLs, CUR treatment resulted in the reduction of ceramide and accumulation of IPCs levels. The lipidome of CUR treated cells confirmed a dramatic drop in the ergosterol levels with a simultaneous accumulation of its biosynthetic precursors. This was further supported by the fact that the mutants defective in ergosterol biosynthesis (ERG2 and ERG11) and those lacking the transcription factor regulating ergosterol biosynthesis, UPC2, were highly susceptible to CUR. Our study first time shows that CUR, for its antifungal activity, targets and down regulates delta 5, 6 desaturase (ERG3) resulting in depletion of ergosterol. This results in parallel accumulation of ergosterol biosynthetic precursors, generation of reactive oxygen species (ROS) and cell death. PMID:22201946

  19. Calcium carbonate does not affect imatinib pharmacokinetics in healthy volunteers

    PubMed Central

    Tawbi, Hussein; Christner, Susan M.; Lin, Yan; Johnson, Matthew; Mowrey, Emily T.; Cherrin, Craig; Chu, Edward; Lee, James J.; Puhalla, Shannon; Stoller, Ronald; Appleman, Leonard R.; Miller, Brian M.; Beumer, Jan H.

    2013-01-01

    Purpose Imatinib mesylate (Gleevec®/Glivec®), has revolutionized the treatment of chronic myeloid leukemias (CML) and gastrointestinal stromal tumors (GIST), and there is evidence for an exposure response relationship. Calcium carbonate is increasingly used as a calcium supplement and in the setting of gastric upset associated with imatinib therapy. Calcium carbonate could conceivably elevate gastric pH and complex imatinib, thereby influencing imatinib absorption and exposure. We aimed to evaluate whether use of calcium carbonate has a significant effect on imatinib pharmacokinetics. Methods Eleven healthy subjects were enrolled in a 2-period, open-label, single-institution, randomized cross-over, fixed-schedule study. In one period, each subject received 400 mg of imatinib p.o.. In the other period, 4000 mg calcium carbonate (Tums Ultra®) was administered p.o. 15 min before 400 mg of imatinib. Plasma concentrations of imatinib and its active N-desmethyl metabolite CGP74588 were assayed by LC-MS; data were analyzed non-compartmentally, and compared after log transformation. Results Calcium carbonate administration did not significantly affect the imatinib area under the plasma concentration versus time curve (AUC) (41.2 μg/mL•h alone versus 40.8 μg/mL•h with calcium carbonate, P=0.99), maximum plasma concentration (Cmax) (2.35 μg/mL alone versus 2.39 μg/mL with calcium carbonate, P=0.89). Conclusions Our results indicate that the use of calcium carbonate does not significantly affect imatinib pharmacokinetics. PMID:24170263

  20. iPSC-derived neurons from GBA1-associated Parkinson's disease patients show autophagic defects and impaired calcium homeostasis.

    PubMed

    Schöndorf, David C; Aureli, Massimo; McAllister, Fiona E; Hindley, Christopher J; Mayer, Florian; Schmid, Benjamin; Sardi, S Pablo; Valsecchi, Manuela; Hoffmann, Susanna; Schwarz, Lukas Kristoffer; Hedrich, Ulrike; Berg, Daniela; Shihabuddin, Lamya S; Hu, Jing; Pruszak, Jan; Gygi, Steven P; Sonnino, Sandro; Gasser, Thomas; Deleidi, Michela

    2014-01-01

    Mutations in the acid β-glucocerebrosidase (GBA1) gene, responsible for the lysosomal storage disorder Gaucher's disease (GD), are the strongest genetic risk factor for Parkinson's disease (PD) known to date. Here we generate induced pluripotent stem cells from subjects with GD and PD harbouring GBA1 mutations, and differentiate them into midbrain dopaminergic neurons followed by enrichment using fluorescence-activated cell sorting. Neurons show a reduction in glucocerebrosidase activity and protein levels, increase in glucosylceramide and α-synuclein levels as well as autophagic and lysosomal defects. Quantitative proteomic profiling reveals an increase of the neuronal calcium-binding protein 2 (NECAB2) in diseased neurons. Mutant neurons show a dysregulation of calcium homeostasis and increased vulnerability to stress responses involving elevation of cytosolic calcium. Importantly, correction of the mutations rescues such pathological phenotypes. These findings provide evidence for a link between GBA1 mutations and complex changes in the autophagic/lysosomal system and intracellular calcium homeostasis, which underlie vulnerability to neurodegeneration. PMID:24905578

  1. The structural alteration and aggregation propensity of glycated lens crystallins in the presence of calcium: Importance of lens calcium homeostasis in development of diabetic cataracts.

    PubMed

    Zm, Sara Zafaranchi; Khoshaman, Kazem; Masoudi, Raheleh; Hemmateenejad, Bahram; Yousefi, Reza

    2017-01-01

    The imbalance of the calcium homeostasis in the lenticular tissues of diabetic patients is an important risk factor for development of cataract diseases. In the current study, the impact of elevated levels of calcium ions were investigated on structure and aggregation propensity of glycated lens crystallins using gel electrophoresis and spectroscopic assessments. The glycated proteins indicated significant resistance against calcium-induced structural insults and aggregation. While, glycated crystallins revealed an increased conformational stability; a slight instability was observed for these proteins upon interaction with calcium ions. Also, in the presence of calcium, the proteolytic pattern of native crystallins was altered and that of glycated protein counterparts remained almost unchanged. According to results of this study it is suggested that the structural alteration of lens crystallins upon glycation may significantly reduce their calcium buffering capacity in eye lenses. Therefore, under chronic hyperglycemia accumulation of this cataractogenic metal ion in the lenticular tissues may subsequently culminate in activation of different pathogenic pathways, leading to development of lens opacity and cataract diseases. PMID:27434877

  2. Effect of neurotrophin-3 precursor on glutamate-induced calcium homeostasis deregulation in rat cerebellum granule cells.

    PubMed

    Safina, Dina R; Surin, Alexander M; Pinelis, Vsevolod G; Kostrov, Sergey V

    2015-12-01

    Neurotrophin-3 (NT-3) belongs to the family of highly conserved dimeric growth factors that controls the differentiation and activity of various neuronal populations. Mammals contain both the mature (NT-3) and the precursor (pro-NT-3) forms of neurotrophin. Members of the neurotrophin family are involved in the regulation of calcium homeostasis in neurons; however, the role of NT-3 and pro-NT-3 in this process remains unclear. The current study explores the effects of NT-3 and pro-NT-3 on disturbed calcium homeostasis and decline of mitochondrial potential induced by a neurotoxic concentration of glutamate (Glu; 100 µM) in the primary culture of rat cerebellar granule cells. In this Glu excitotoxicity model, mature NT-3 had no effect on the induced changes in Ca²⁺ homeostasis. In contrast, pro-NT-3 decreased the period of delayed calcium deregulation (DCD) and concurrent strong mitochondrial depolarization. According to the amplitude of the increase in the intracellular free Ca²⁺ concentration ([Ca²⁺]i ) and Fura-2 fluorescence quenching by Mn²⁺ within the first 20 sec of exposure to Glu, pro-NT-3 had no effect on the initial rate of Ca²⁺ entry into neurons. During the lag period preceding DCD, the mean amplitude of [Ca²⁺]i rise was 1.2-fold greater in the presence of pro-NT-3 than in the presence of Glu alone (1.67 ±  0.07 and 1.39 ± 0.04, respectively, P < 0.05). The Glu-induced changes in Са²⁺ homeostasis in the presence of pro-NT-3 likely are due to the decreased rate of Са²⁺ removal from the cytosol during the DCD latency period. PMID:26346533

  3. The dual origins of affect in nightmares: the roles of physiological homeostasis and memory.

    PubMed

    Schulze, Georg

    2006-01-01

    Strong negative affect is a key and distressing ingredient of nightmares. Affect in nightmares arises either from the new generation of affective states due to physiological imbalances that occur during sleep or from the reactivation of affect-laden memories. The disruption of physiological balance produces a negative hedonic state, restoration of this balance produces a positive hedonic state, and when balance is attained, a neutral hedonic state results. As a result, hedonic states provoke behaviors in defense of homeostasis, then guide and terminate them. When, due to inadvertent behavior, a pronounced disruption of homeostasis occurs after sleep onset, the resultant strong negative hedonic state is likely to precipitate a nightmare and may lead to awakening. During normal wakefulness, associations of the interplay between stimuli and behaviors that disrupt homeostasis, those that restore homeostasis, and the affective states generated in the process, are committed to memory as affecto-cognitive ensembles. Sleep serves to build or rebuild neural architecture to effect development or to compensate for use- or disease-related wear (e.g. repair oxidative damage). Dreaming serves to synchronize or resynchronize such modified neural circuits with each other and those not modified. Hence, during dreaming, affecto-cognitive ensembles may get reactivated as part of the synchronization process. Where such an ensemble contains strong negative affect (i.e., due to strong affect generated during the original experience), a nightmare may be precipitated. Although both can occur throughout life, the latter type of nightmare is more likely in adults and the former in young children. For the latter memory-based behavioral therapy and for the former education and care are expected to be useful. For both types of nightmare, because strong negative affect is deemed dependent on noradrenergic outflow from the locus coeruleus, the administration of alpha-adrenergic antagonists will

  4. Variability in State-Dependent Plasticity of Intrinsic Properties during Cell-Autonomous Self-Regulation of Calcium Homeostasis in Hippocampal Model Neurons(1,2,3).

    PubMed

    Srikanth, Sunandha; Narayanan, Rishikesh

    2015-01-01

    How do neurons reconcile the maintenance of calcium homeostasis with perpetual switches in patterns of afferent activity? Here, we assessed state-dependent evolution of calcium homeostasis in a population of hippocampal pyramidal neuron models, through an adaptation of a recent study on stomatogastric ganglion neurons. Calcium homeostasis was set to emerge through cell-autonomous updates to 12 ionic conductances, responding to different types of synaptically driven afferent activity. We first assessed the impact of theta-frequency inputs on the evolution of ionic conductances toward maintenance of calcium homeostasis. Although calcium homeostasis emerged efficaciously across all models in the population, disparate changes in ionic conductances that mediated this emergence resulted in variable plasticity to several intrinsic properties, also manifesting as significant differences in firing responses across models. Assessing the sensitivity of this form of plasticity, we noted that intrinsic neuronal properties and the firing response were sensitive to the target calcium concentration and to the strength and frequency of afferent activity. Next, we studied the evolution of calcium homeostasis when afferent activity was switched, in different temporal sequences, between two behaviorally distinct types of activity: theta-frequency inputs and sharp-wave ripples riding on largely silent periods. We found that the conductance values, intrinsic properties, and firing response of neurons exhibited differential robustness to an intervening switch in the type of afferent activity. These results unveil critical dissociations between different forms of homeostasis, and call for a systematic evaluation of the impact of state-dependent switches in afferent activity on neuronal intrinsic properties during neural coding and homeostasis. PMID:26464994

  5. Variability in State-Dependent Plasticity of Intrinsic Properties during Cell-Autonomous Self-Regulation of Calcium Homeostasis in Hippocampal Model Neurons1,2,3

    PubMed Central

    Srikanth, Sunandha

    2015-01-01

    Abstract How do neurons reconcile the maintenance of calcium homeostasis with perpetual switches in patterns of afferent activity? Here, we assessed state-dependent evolution of calcium homeostasis in a population of hippocampal pyramidal neuron models, through an adaptation of a recent study on stomatogastric ganglion neurons. Calcium homeostasis was set to emerge through cell-autonomous updates to 12 ionic conductances, responding to different types of synaptically driven afferent activity. We first assessed the impact of theta-frequency inputs on the evolution of ionic conductances toward maintenance of calcium homeostasis. Although calcium homeostasis emerged efficaciously across all models in the population, disparate changes in ionic conductances that mediated this emergence resulted in variable plasticity to several intrinsic properties, also manifesting as significant differences in firing responses across models. Assessing the sensitivity of this form of plasticity, we noted that intrinsic neuronal properties and the firing response were sensitive to the target calcium concentration and to the strength and frequency of afferent activity. Next, we studied the evolution of calcium homeostasis when afferent activity was switched, in different temporal sequences, between two behaviorally distinct types of activity: theta-frequency inputs and sharp-wave ripples riding on largely silent periods. We found that the conductance values, intrinsic properties, and firing response of neurons exhibited differential robustness to an intervening switch in the type of afferent activity. These results unveil critical dissociations between different forms of homeostasis, and call for a systematic evaluation of the impact of state-dependent switches in afferent activity on neuronal intrinsic properties during neural coding and homeostasis. PMID:26464994

  6. TMTC1 and TMTC2 Are Novel Endoplasmic Reticulum Tetratricopeptide Repeat-containing Adapter Proteins Involved in Calcium Homeostasis*

    PubMed Central

    Sunryd, Johan C.; Cheon, Banyoon; Graham, Jill B.; Giorda, Kristina M.; Fissore, Rafael A.; Hebert, Daniel N.

    2014-01-01

    The endoplasmic reticulum (ER) is organized in part by adapter proteins that nucleate the formation of large protein complexes. Tetratricopeptide repeats (TPR) are well studied protein structural motifs that support intermolecular protein-protein interactions. TMTC1 and TMTC2 were identified by an in silico search as TPR-containing proteins possessing N-terminal ER targeting signal sequences and multiple hydrophobic segments, suggestive of polytopic membrane proteins that are targeted to the secretory pathway. A variety of cell biological and biochemical assays was employed to demonstrate that TMTC1 and TMTC2 are both ER resident integral membrane proteins with multiple clusters of TPR domains oriented within the ER lumen. Proteomic analysis followed by co-immunoprecipitation verification found that both proteins associated with the ER calcium uptake pump SERCA2B, and TMTC2 also bound to the carbohydrate-binding chaperone calnexin. Live cell calcium measurements revealed that overexpression of either TMTC1 or TMTC2 caused a reduction of calcium released from the ER following stimulation, whereas the knockdown of TMTC1 or TMTC2 increased the stimulated calcium released. Together, these results implicate TMTC1 and TMTC2 as ER proteins involved in ER calcium homeostasis. PMID:24764305

  7. The common inhaled anesthetic isoflurane increases aggregation of huntingtin and alters calcium homeostasis in a cell model of Huntington's disease

    SciTech Connect

    Wang Qiujun; Liang Ge; Yang Hui; Wang Shouping; Eckenhoff, Maryellen F.; Wei Huafeng

    2011-02-01

    Isoflurane is known to increase {beta}-amyloid aggregation and neuronal damage. We hypothesized that isoflurane will have similar effects on the polyglutamine huntingtin protein and will cause alterations in intracellular calcium homeostasis. We tested this hypothesis in striatal cells from the expanded glutamine huntingtin knock-in mouse (STHdh{sup Q111/Q111}) and wild type (STHdh{sup Q7/Q7}) striatal neurons. The primary cultured neurons were exposed for 24 h to equipotent concentrations of isoflurane, sevoflurane, and desflurane in the presence or absence of extracellular calcium and with or without xestospongin C, a potent endoplasmic reticulum inositol 1,4,5-trisphosphate (InsP{sub 3}) receptor antagonist. Aggregation of huntingtin protein, cell viability, and calcium concentrations were measured. Isoflurane, sevoflurane, and desflurane all increased the aggregation of huntingtin in STHdh{sup Q111/Q111} cells, with isoflurane having the largest effect. Isoflurane induced greater calcium release from the ER and relatively more cell damage in the STHdh{sup Q111/Q111} huntingtin cells than in the wild type STHdh{sup Q7/Q7} striatal cells. However, sevoflurane and desflurane caused less calcium release from the ER and less cell damage. Xestospongin C inhibited the isoflurane-induced calcium release from the ER, aggregation of huntingtin, and cell damage in the STHdh{sup Q111/Q111} cells. In summary, the Q111 form of huntingtin increases the vulnerability of striatal neurons to isoflurane neurotoxicity through combined actions on the ER IP{sub 3} receptors. Calcium release from the ER contributes to the anesthetic induced huntingtin aggregation in STHdh{sup Q111/Q111} striatal cells.

  8. The Effects of a Calcium-Rich Pre-Exercise Meal on Biomarkers of Calcium Homeostasis in Competitive Female Cyclists: A Randomised Crossover Trial

    PubMed Central

    Haakonssen, Eric C.; Ross, Megan L.; Knight, Emma J.; Cato, Louise E.; Nana, Alisa; Wluka, Anita E.; Cicuttini, Flavia M.; Wang, Bing H.; Jenkins, David G.; Burke, Louise M.

    2015-01-01

    Cycling is recognised as a sport in which there is a high incidence of poor bone health. Sweat calcium losses may contribute to this. Purpose To examine whether a calcium-rich pre-exercise meal attenuates exercise-induced perturbations of bone calcium homeostasis caused by maintenance of sweat calcium losses. Methods Using a randomized, counterbalanced crossover design, 32 well-trained female cyclists completed two 90 min cycling trials separated by 1 day. Exercise trials were preceded 2 hours by either a calcium-rich (1352 ± 53 mg calcium) dairy based meal (CAL) or a control meal (CON; 46 ± 7 mg calcium). Blood was sampled pre-trial; pre-exercise; and immediately, 40 min, 100 min and 190 min post-exercise. Blood was analysed for ionized calcium and biomarkers of bone resorption (Cross Linked C-Telopeptide of Type I Collagen (CTX-I), Cross Linked C-Telopeptide of Type II Collagen (CTX-II), Parathyroid Hormone (PTH), and bone formation (Procollagen I N-Terminal Propeptide (PINP)) using the established enzyme-linked immunosorbent assay technique. Results PTH and CTX-I increased from pre-exercise to post-exercise in both conditions but was attenuated in CAL (p < 0.001). PTH was 1.55 [1.20, 2.01] times lower in CAL immediately post-exercise and 1.45 [1.12, 1.88] times lower at 40 min post-exercise. CTX-I was 1.40 [1.15, 1.70] times lower in CAL at immediately post-exercise, 1.30 [1.07, 1.57] times lower at 40 min post-exercise and 1.22 [1.00, 1.48] times lower at 190 min post-exercise (p < 0.05). There was no significant interaction between pre-exercise meal condition and time point for CTX-II (p = 0.732) or PINP (p = 0.819). Conclusion This study showed that a calcium-rich pre-exercise breakfast meal containing ~1350 mg of calcium consumed ~90 min before a prolonged and high intensity bout of stationary cycling attenuates the exercise induced rise in markers of bone resorption – PTH and CTX-I. Trial Registration Australian New Zealand Clinical Trials Registry

  9. Newly identified protein Imi1 affects mitochondrial integrity and glutathione homeostasis in Saccharomyces cerevisiae.

    PubMed

    Kowalec, Piotr; Grynberg, Marcin; Pająk, Beata; Socha, Anna; Winiarska, Katarzyna; Fronk, Jan; Kurlandzka, Anna

    2015-09-01

    Glutathione homeostasis is crucial for cell functioning. We describe a novel Imi1 protein of Saccharomyces cerevisiae affecting mitochondrial integrity and involved in controlling glutathione level. Imi1 is cytoplasmic and, except for its N-terminal Flo11 domain, has a distinct solenoid structure. A lack of Imi1 leads to mitochondrial lesions comprising aberrant morphology of cristae and multifarious mtDNA rearrangements and impaired respiration. The mitochondrial malfunctioning is coupled to significantly decrease the level of intracellular reduced glutathione without affecting oxidized glutathione, which decreases the reduced/oxidized glutathione ratio. These defects are accompanied by decreased cadmium sensitivity and increased phytochelatin-2 level. PMID:26091838

  10. TRPV4 and AQP4 Channels Synergistically Regulate Cell Volume and Calcium Homeostasis in Retinal Müller Glia

    PubMed Central

    Jo, Andrew O.; Phuong, Tam T.T.; Verkman, Alan S.; Yarishkin, Oleg; MacAulay, Nanna

    2015-01-01

    fine-tunes astroglial volume regulation by integrating osmosensing, calcium signaling, and water transport and, when overactivated, triggers pathological swelling. SIGNIFICANCE STATEMENT We characterize the physiological features of interactions between the astroglial swelling sensor transient receptor potential isoform 4 (TRPV4) and the aquaporin 4 (AQP4) water channel in retinal Müller cells. Our data reveal an elegant and complex set of mechanisms involving reciprocal interactions at the level of glial gene expression, calcium homeostasis, swelling, and volume regulation. Specifically, water influx through AQP4 drives calcium influx via TRPV4 in the glial end foot, which regulates expression of Aqp4 and Kir4.1 genes and facilitates the time course and amplitude of hypotonicity-induced swelling and regulatory volume decrease. We confirm the crucial facets of the signaling mechanism in heterologously expressing oocytes. These results identify the molecular mechanism that contributes to dynamic regulation of glial volume but also provide new insights into the pathophysiology of glial reactivity and edema formation. PMID:26424896

  11. Inulin and fructooligosaccharide affect in vitro calcium uptake and absorption from calcium-enriched gluten-free bread.

    PubMed

    Krupa-Kozak, U; Swiątecka, D; Bączek, N; Brzóska, M M

    2016-04-01

    Compromised intestinal calcium absorption affecting a deterioration of bone state is a sign of coeliac disease. Experimental calcium-fortified gluten-free bread (GFB) of improved calcium bioavailability could increase calcium content in the diets of coeliac disease patients, allowing them to obtain the amount of calcium they need for therapeutic use. Prebiotics, including inulin-type fructans (IFs) have a beneficial effect on calcium bioavailability. In the present study, the in vitro model composed of the intestinal-like Caco-2 cells and the human intestinal bacteria (Lactobacillus, Enterococcus and Enterobacteriaceae) were used to analyse the effect of inulin and fructooligosaccharide (FOS) of different chain lengths, on calcium uptake and absorption from experimental GFB. Analysed IFs, especially short-chain FOS, significantly (p < 0.05) increased cellular calcium uptake from GFB digest and stimulated the intestinal bacteria applied in the cultures to the intensive synthesis of organic acids. In particular, the concentration of butyric, valeric and lactic acids increased significantly. Similarly, in the calcium absorption experiment, IFs increased the cellular calcium retention but concomitantly reduced its content in basolateral filtrates. The results obtained suggest that the applied IFs affected differentially calcium uptake and absorption from the experimental calcium-enriched GFB, therefore a further study is needed to assess whether these observations made in vitro contribute to IF effects on calcium absorption from experimental GFB in vivo. PMID:26965706

  12. Proteomic analysis of imatinib-resistant CML-T1 cells reveals calcium homeostasis as a potential therapeutic target

    PubMed Central

    Toman, O.; Kabickova, T.; Vit, O.; Fiser, R.; Polakova, K. Machova; Zach, J.; Linhartova, J.; Vyoral, D.; Petrak, J.

    2016-01-01

    Chronic myeloid leukemia (CML) therapy has markedly improved patient prognosis after introduction of imatinib mesylate for clinical use. However, a subset of patients develops resistance to imatinib and other tyrosine kinase inhibitors (TKIs), mainly due to point mutations in the region encoding the kinase domain of the fused BCR-ABL oncogene. To identify potential therapeutic targets in imatinib-resistant CML cells, we derived imatinib-resistant CML-T1 human cell line clone (CML-T1/IR) by prolonged exposure to imatinib in growth media. Mutational analysis revealed that the Y235H mutation in BCR-ABL is probably the main cause of CML-T1/IR resistance to imatinib. To identify alternative therapeutic targets for selective elimination of imatinib-resistant cells, we compared the proteome profiles of CML-T1 and CML-T1/IR cells using 2-DE-MS. We identified eight differentially expressed proteins, with strongly upregulated Na+/H+ exchanger regulatory factor 1 (NHERF1) in the resistant cells, suggesting that this protein may influence cytosolic pH, Ca2+ concentration or signaling pathways such as Wnt in CML-T1/IR cells. We tested several compounds including drugs in clinical use that interfere with the aforementioned processes and tested their relative toxicity to CML-T1 and CML-T1/IR cells. Calcium channel blockers, calcium signaling antagonists and modulators of calcium homeostasis, namely thapsigargin, ionomycin, verapamil, carboxyamidotriazole and immunosuppressive drugs cyclosporine A and tacrolimus (FK-506) were selectively toxic to CML-T1/IR cells. The putative cellular targets of these compounds in CML-T1/IR cells are postulated in this study. We propose that Ca2+ homeostasis can be a potential therapeutic target in CML cells resistant to TKIs. We demonstrate that a proteomic approach may be used to characterize a TKI-resistant population of CML cells enabling future individualized treatment options for patients. PMID:27430982

  13. Altered calcium homeostasis in spinal motoneurons but not in oculomotor neurons of SOD-1 knockout mice.

    PubMed

    Siklós, L; Engelhardt, J I; Reaume, A G; Scott, R W; Adalbert, R; Obál, I; Appel, S H

    2000-05-01

    SOD-1-deficient mice demonstrate no loss of motoneurons but are still vulnerable to axotomy and ischemic insults. To investigate possible reasons for vulnerability of motoneuron populations, we studied changes in ultrastructural calcium distribution during maturation in spinal- and oculomotor neurons in SOD-1(-/-) mice. Between 3 and 11 months the cytoplasmic component of the intracellular calcium changed at a lower rate in spinal motoneurons and motor axon terminals in the interosseus muscle of SOD-1(-/-) animals compared to wild-type controls. No such dissimilarities were noted in the oculomotor system, or in mitochondrial calcium contents of either cell type. These data suggest that the lack of SOD-1 may be associated with vulnerability to insult by depletion of non-mitochondrial calcium stores selectively in motoneurons lacking parvalbumin and/or calbindin D28K. PMID:10805095

  14. Serotonin and insulin-like peptides modulate leucokinin-producing neurons that affect feeding and water homeostasis in Drosophila.

    PubMed

    Liu, Yiting; Luo, Jiangnan; Carlsson, Mikael A; Nässel, Dick R

    2015-08-15

    Metabolic homeostasis and water balance is maintained by tight hormonal and neuronal regulation. In Drosophila, insulin-like peptides (DILPs) are key regulators of metabolism, and the neuropeptide leucokinin (LK) is a diuretic hormone that also modulates feeding. However, it is not known whether LK and DILPs act together to regulate feeding and water homeostasis. Because LK neurons express the insulin receptor (dInR), we tested functional links between DILP and LK signaling in feeding and water balance. Thus, we performed constitutive and conditional manipulations of activity in LK neurons and insulin-producing cells (IPCs) in adult flies and monitored food intake, responses to desiccation, and peptide expression levels. We also measured in vivo changes in LK and DILP levels in neurons in response to desiccation and drinking. Our data show that activated LK cells stimulate diuresis in vivo, and that LK and IPC signaling affect food intake in opposite directions. Overexpression of the dInR in LK neurons decreases the LK peptide levels, but only caused a subtle decrease in feeding, and had no effect on water balance. Next we demonstrated that LK neurons express the serotonin receptor 5-HT1B . Knockdown of this receptor in LK neurons diminished LK expression, increased desiccation resistance, and diminished food intake. Live calcium imaging indicates that serotonin inhibits spontaneous activity in abdominal LK neurons. Our results suggest that serotonin via 5-HT1B diminishes activity in the LK neurons and thereby modulates functions regulated by LK peptide, but the action of the dInR in these neurons remains less clear. PMID:25732325

  15. Statin Therapy and the Expression of Genes that Regulate Calcium Homeostasis and Membrane Repair in Skeletal Muscle

    PubMed Central

    Draeger, Annette; Sanchez-Freire, Verónica; Monastyrskaya, Katia; Hoppeler, Hans; Mueller, Matthias; Breil, Fabio; Mohaupt, Markus G.; Babiychuk, Eduard B.

    2010-01-01

    In skeletal muscle of patients with clinically diagnosed statin-associated myopathy, discrete signs of structural damage predominantly localize to the T-tubular region and are suggestive of a calcium leak. The impact of statins on skeletal muscle of non-myopathic patients is not known. We analyzed the expression of selected genes implicated in the molecular regulation of calcium and membrane repair, in lipid homeostasis, myocyte remodeling and mitochondrial function. Microscopic and gene expression analyses were performed using validated TaqMan custom arrays on skeletal muscle biopsies of 72 age-matched subjects who were receiving statin therapy (n = 38), who had discontinued therapy due to statin-associated myopathy (n = 14), and who had never undergone statin treatment (n = 20). In skeletal muscle, obtained from statin-treated, non-myopathic patients, statins caused extensive changes in the expression of genes of the calcium regulatory and the membrane repair machinery, whereas the expression of genes responsible for mitochondrial function or myocyte remodeling was unaffected. Discontinuation of treatment due to myopathic symptoms led to a normalization of gene expression levels, the genes encoding the ryanodine receptor 3, calpain 3, and dystrophin being the most notable exceptions. Hence, even in clinically asymptomatic (non-myopathic) patients, statin therapy leads to an upregulation in the expression of genes that are concerned with skeletal muscle regulation and membrane repair. PMID:20489141

  16. Solanum malacoxylon: a toxic plant which affects animal calcium metabolism.

    PubMed

    Boland, R L

    1988-12-01

    The "enteque seco" is a disease of calcinosis, i.e., pathological deposition of calcium phosphate in soft tissues, which occurs in grazing cattle in Argentina and is of considerable economic importance. The ingestion of leaves of Solanum malacoxylon has been identified as the cause of the disease. Hypercalcemia and/or hyperphosphatemia and mineralization of the cardiovascular and pulmonary systems are usually seen in bovines or experimental animals exposed to this plant. The symptoms of the disease resemble those of vitamin D intoxication. In agreement with these observations, a glycoside derivative of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), the hormonally active form of vitamin D in animals, has been identified as the toxic principle of S. malacoxylon. Glycoside conjugates of its precursors, 25-hydroxyvitamin D3 and vitamin D3, may also be present. Recent studies indicate that the plant factor is modified in the rumen of bovines through cleavage of the glycosidic linkage and further conversion of the released 1,25(OH)2D3 to a more polar metabolite, possibly 1,24,25-trihydroxyvitamin D3. Excess free 1,25(OH)2D3 may alter extracellular and intracellular Ca homeostasis in intoxicated animals through a receptor-mediated mechanism and activation of membrane Ca channels. In addition, 1,24,25(OH)3D3 may potentiate the effects of 1,25(OH)2D3 on intestinal Ca transport. PMID:3077267

  17. Retinoic acid affects calcium signaling in adult molluscan neurons.

    PubMed

    Vesprini, Nicholas D; Dawson, Taylor F; Yuan, Ye; Bruce, Doug; Spencer, Gaynor E

    2015-01-01

    Retinoic acid, the active metabolite of vitamin A, is important for nervous system development, regeneration, as well as cognitive functions of the adult central nervous system. These central nervous system functions are all highly dependent on neuronal activity. Retinoic acid has previously been shown to induce changes in the firing properties and action potential waveforms of adult molluscan neurons in a dose- and isomer-dependent manner. In this study, we aimed to determine the cellular pathways by which retinoic acid might exert such effects, by testing the involvement of pathways previously shown to be affected by retinoic acid. We demonstrated that the ability of all-trans retinoic acid (atRA) to induce electrophysiological changes in cultured molluscan neurons was not prevented by inhibitors of protein synthesis, protein kinase A or phospholipase C. However, we showed that atRA was capable of rapidly reducing intracellular calcium levels in the same dose- and isomer-dependent manner as shown previously for changes in neuronal firing. Moreover, we also demonstrated that the transmembrane ion flux through voltage-gated calcium channels was rapidly modulated by retinoic acid. In particular, the peak current density was reduced and the inactivation rate was increased in the presence of atRA, over a similar time course as the changes in cell firing and reductions in intracellular calcium. These studies provide further evidence for the ability of atRA to induce rapid effects in mature neurons. PMID:25343782

  18. The LXR ligand GW3965 inhibits Newcastle disease virus infection by affecting cholesterol homeostasis.

    PubMed

    Sheng, Xiang-Xiang; Sun, Ying-Jie; Zhan, Yuan; Qu, Yu-Rong; Wang, Hua-Xia; Luo, Miao; Liao, Ying; Qiu, Xu-Sheng; Ding, Chan; Fan, Hong-Jie; Mao, Xiang

    2016-09-01

    Newcastle disease (ND) is a contagious disease that affects most species of birds. Its causative pathogen, Newcastle disease virus (NDV), also exhibits considerable oncolytic activity against mammalian cancers. A better understanding of the pathogenesis of NDV will help us design efficient vaccines and novel anticancer strategies. GW3965, a widely used synthetic ligand of liver X receptor (LXR), induces the expression of LXRs and its downstream genes, including ATP-binding cassette transporter A1 (ABCA1). ABCA1 regulates cellular cholesterol homeostasis. Here, we found that GW3965 inhibited NDV infection in DF-1 cells. It also inhibited NF-κB activation and reduced the upregulation of proinflammatory cytokines induced by the infection. Further studies showed that GW3965 exerted its inhibitory effects on virus entry and replication. NDV infection increased the mRNA levels of several lipogenic genes but decreased the ABCA1 mRNA level. Overexpression of ABCA1 inhibited NDV infection and reduced the cholesterol content in DF-1 cells, but when the cholesterol was replenished, NDV infection was restored. GW3965 treatment prevented cholesterol accumulation in the perinuclear area of the infected cells. In summary, our studies suggest that GW3965 inhibits NDV infection, probably by affecting cholesterol homeostasis. PMID:27357231

  19. A voltage-gated calcium channel regulates lysosomal fusion with endosomes and autophagosomes and is required for neuronal homeostasis.

    PubMed

    Tian, Xuejun; Gala, Upasana; Zhang, Yongping; Shang, Weina; Nagarkar Jaiswal, Sonal; di Ronza, Alberto; Jaiswal, Manish; Yamamoto, Shinya; Sandoval, Hector; Duraine, Lita; Sardiello, Marco; Sillitoe, Roy V; Venkatachalam, Kartik; Fan, Hengyu; Bellen, Hugo J; Tong, Chao

    2015-03-01

    Autophagy helps deliver sequestered intracellular cargo to lysosomes for proteolytic degradation and thereby maintains cellular homeostasis by preventing accumulation of toxic substances in cells. In a forward mosaic screen in Drosophila designed to identify genes required for neuronal function and maintenance, we identified multiple cacophony (cac) mutant alleles. They exhibit an age-dependent accumulation of autophagic vacuoles (AVs) in photoreceptor terminals and eventually a degeneration of the terminals and surrounding glia. cac encodes an α1 subunit of a Drosophila voltage-gated calcium channel (VGCC) that is required for synaptic vesicle fusion with the plasma membrane and neurotransmitter release. Here, we show that cac mutant photoreceptor terminals accumulate AV-lysosomal fusion intermediates, suggesting that Cac is necessary for the fusion of AVs with lysosomes, a poorly defined process. Loss of another subunit of the VGCC, α2δ or straightjacket (stj), causes phenotypes very similar to those caused by the loss of cac, indicating that the VGCC is required for AV-lysosomal fusion. The role of VGCC in AV-lysosomal fusion is evolutionarily conserved, as the loss of the mouse homologues, Cacna1a and Cacna2d2, also leads to autophagic defects in mice. Moreover, we find that CACNA1A is localized to the lysosomes and that loss of lysosomal Cacna1a in cerebellar cultured neurons leads to a failure of lysosomes to fuse with endosomes and autophagosomes. Finally, we show that the lysosomal CACNA1A but not the plasma-membrane resident CACNA1A is required for lysosomal fusion. In summary, we present a model in which the VGCC plays a role in autophagy by regulating the fusion of AVs with lysosomes through its calcium channel activity and hence functions in maintaining neuronal homeostasis. PMID:25811491

  20. T-type calcium channels promote predictive homeostasis of input-output relations in thalamocortical neurons of lateral geniculate nucleus

    PubMed Central

    Hong, Su Z.; Kim, Haram R.; Fiorillo, Christopher D.

    2014-01-01

    A general theory views the function of all neurons as prediction, and one component of this theory is that of “predictive homeostasis” or “prediction error.” It is well established that sensory systems adapt so that neuronal output maintains sensitivity to sensory input, in accord with information theory. Predictive homeostasis applies the same principle at the cellular level, where the challenge is to maintain membrane excitability at the optimal homeostatic level so that spike generation is maximally sensitive to small gradations in synaptic drive. Negative feedback is a hallmark of homeostatic mechanisms, as exemplified by depolarization-activated potassium channels. In contrast, T-type calcium channels exhibit positive feedback that appears at odds with the theory. In thalamocortical neurons of lateral geniculate nucleus (LGN), T-type channels are capable of causing bursts of spikes with an all-or-none character in response to excitation from a hyperpolarized potential. This “burst mode” would partially uncouple visual input from spike output and reduce the information spikes convey about gradations in visual input. However, past observations of T-type-driven bursts may have resulted from unnaturally high membrane excitability. Here we have mimicked within rat brain slices the patterns of synaptic conductance that occur naturally during vision. In support of the theory of predictive homeostasis, we found that T-type channels restored excitability toward its homeostatic level during periods of hyperpolarization. Thus, activation of T-type channels allowed two retinal input spikes to cause one output spike on average, and we observed almost no instances in which output count exceeded input count (a “burst”). T-type calcium channels therefore help to maintain a single optimal mode of transmission rather than creating a second mode. More fundamentally our results support the general theory, which seeks to predict the properties of a neuron's ion

  1. A Voltage-Gated Calcium Channel Regulates Lysosomal Fusion with Endosomes and Autophagosomes and Is Required for Neuronal Homeostasis

    PubMed Central

    Zhang, Yongping; Shang, Weina; Nagarkar Jaiswal, Sonal; di Ronza, Alberto; Jaiswal, Manish; Yamamoto, Shinya; Sandoval, Hector; Duraine, Lita; Sardiello, Marco; Sillitoe, Roy V.; Venkatachalam, Kartik; Fan, Hengyu; Bellen, Hugo J.; Tong, Chao

    2015-01-01

    Autophagy helps deliver sequestered intracellular cargo to lysosomes for proteolytic degradation and thereby maintains cellular homeostasis by preventing accumulation of toxic substances in cells. In a forward mosaic screen in Drosophila designed to identify genes required for neuronal function and maintenance, we identified multiple cacophony (cac) mutant alleles. They exhibit an age-dependent accumulation of autophagic vacuoles (AVs) in photoreceptor terminals and eventually a degeneration of the terminals and surrounding glia. cac encodes an α1 subunit of a Drosophila voltage-gated calcium channel (VGCC) that is required for synaptic vesicle fusion with the plasma membrane and neurotransmitter release. Here, we show that cac mutant photoreceptor terminals accumulate AV-lysosomal fusion intermediates, suggesting that Cac is necessary for the fusion of AVs with lysosomes, a poorly defined process. Loss of another subunit of the VGCC, α2δ or straightjacket (stj), causes phenotypes very similar to those caused by the loss of cac, indicating that the VGCC is required for AV-lysosomal fusion. The role of VGCC in AV-lysosomal fusion is evolutionarily conserved, as the loss of the mouse homologues, Cacna1a and Cacna2d2, also leads to autophagic defects in mice. Moreover, we find that CACNA1A is localized to the lysosomes and that loss of lysosomal Cacna1a in cerebellar cultured neurons leads to a failure of lysosomes to fuse with endosomes and autophagosomes. Finally, we show that the lysosomal CACNA1A but not the plasma-membrane resident CACNA1A is required for lysosomal fusion. In summary, we present a model in which the VGCC plays a role in autophagy by regulating the fusion of AVs with lysosomes through its calcium channel activity and hence functions in maintaining neuronal homeostasis. PMID:25811491

  2. IMPAIRMENT OF CALCIUM HOMEOSTASIS BY HEXACHLOROBENZENE (HCB) EXPOSURE IN FISCHER 344 RATS (JOURNAL VERSION)

    EPA Science Inventory

    Human exposure to hexachlorobenzene (HCB) has resulted in demineralization of bone with osteoporosis resulting. Experiments were undertaken to investigate the effects of HCB on the homeostatic mechanism of calcium metabolism. Fischer 344 rats were dosed with 0, 0.1, 1.0, 10.0 or ...

  3. Homeostasis and secretion of calcium in the oviductal mucosa of toad Rhinella arenarum.

    PubMed

    Crespo, Claudia A; Medina, Marcela F; Ramos, Inés; Fernández, Silvia N

    2014-10-01

    The presence of a calcium pump, calbindin D-28KD, and calmodulin in the secretory cells (SC) of the oviductal pars convoluta (PC) of Rhinella arenarum was established for the first time in amphibians using immunohistochemical techniques. Marked variations were observed in the localization and degree of expression of these proteins according to the duct segment and the period of the sexual cycle analyzed. During the preovulatory and ovulatory periods the calcium pump colocalized with calbindin D-28KD can be seen mainly in the apical border of the SC, which are located in the first zones of PC and synthesize and secrete the components of the inner jelly coat layers. These envelopes, which surround the oocytes, contain the molecules indispensable for fertilization, probably inducing the sperm acrosome reaction (AR). Our results suggest that calmodulin, colocalized with the calcium pump at the SC cytoplasmic level, would be involved in the active transport of the cation inside the secretory granules, maintaining adequate levels of intracellular Ca(2+) . During the postreproductive period, a calcium pump colocalized with calbindin D-28KD appears for the first time in the cycle in the basal zones of the SC. This system may be related to the replenishing of intracellular Ca(2+) stores. In contrast, in R. arenarum the Ca(2+) present in the jelly coats that surround the oocytes participates in the AR during fertilization, suggesting that this secretion system of the cation provided by the oviductal mucosa is functionally more active during the reproductive period of this species. PMID:24888474

  4. Re-evaluation of the Role of Calcium Homeostasis Endoplasmic Reticulum Protein (CHERP) in Cellular Calcium Signaling*

    PubMed Central

    Lin-Moshier, Yaping; Sebastian, Peter J.; Higgins, LeeAnn; Sampson, Natalie D.; Hewitt, Jane E.; Marchant, Jonathan S.

    2013-01-01

    Changes in cytoplasmic Ca2+ concentration, resulting from activation of intracellular Ca2+ channels within the endoplasmic reticulum, regulate several aspects of cellular growth and differentiation. Ca2+ homeostasis endoplasmic reticulum protein (CHERP) is a ubiquitously expressed protein that has been proposed as a regulator of both major families of endoplasmic reticulum Ca2+ channels, inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs), with resulting effects on mitotic cycling. However, the manner by which CHERP regulates intracellular Ca2+ channels to impact cellular growth is unknown. Here, we challenge previous findings that CHERP acts as a direct cytoplasmic regulator of IP3Rs and RyRs and propose that CHERP acts in the nucleus to impact cellular proliferation by regulating the function of the U2 snRNA spliceosomal complex. The previously reported effects of CHERP on cellular growth therefore are likely indirect effects of altered spliceosomal function, consistent with prior data showing that loss of function of U2 snRNP components can interfere with cell growth and induce cell cycle arrest. PMID:23148228

  5. Calcium homeostasis in mitochondrion-mediated apoptosis of chick embryo cecal epithelial cells induced by Eimeria tenella infection.

    PubMed

    Cui, Xiao-zhen; Zheng, Ming-xue; Zhang, Yan; Liu, Rui-li; Yang, Sha-sha; Li, Shan; Xu, Zhi-yong; Bai, Rui; Lv, Qiang-hua; Zhao, Wen-long

    2016-02-01

    In this study, the process of Eimeria tenella-induced apoptosis and the effect of calcium homeostasis were investigated in chick embryo cecal epithelial cells. In particular, we examined cytochrome c release into the cytoplasm, mitochondrial permeability transition pore (MPTP) opening, and changes in [Ca(2+)]c and apoptosis in host cells. Apoptosis, MPTP opening, cytochrome c release, and [Ca(2+)]c in host cells increased following infection. This trend was reversed by blocking the increase in [Ca(2+)]c using BAPTA/AM and EGTA (intra- and extracellular chelators of Ca(2+), respectively) and by applying heparin sodium and ryanodine (blockers of the inositol triphosphate and ryanodine receptors of the endoplasmic reticulum, respectively). These results indicate that [Ca(2+)]c plays a significant role in host cell mitochondrial apoptosis, which is induced via modulation of extracellular Ca(2+) levels and endoplasmic reticulum Ca(2+) channels. Thus, agents that restore Ca(2+) homeostasis may be useful for managing E. tenella infection in chickens. PMID:26850556

  6. Maturation of intracellular calcium homeostasis in sheep pulmonary arterial smooth muscle cells.

    PubMed

    Goyal, Ravi; Creel, Kara D; Chavis, Erica; Smith, Gregory D; Longo, Lawrence D; Wilson, Sean M

    2008-11-01

    Cytosolic Ca(2+) signaling dynamics are important to pulmonary arterial reactivity, and alterations are implicated in pulmonary vascular disorders. Yet, adaptations in cellular Ca(2+) homeostasis and receptor-mediated Ca(2+) signaling with maturation from fetal to adult life in pulmonary arterial smooth muscle cells (PASMCs) are not known. The present study tested the hypothesis that cytosolic Ca(2+) homeostasis and receptor-generated Ca(2+) signaling adapt with maturation in sheep PASMCs. Digitalized fluorescence microscopy was performed using isolated PASMCs from fetal and adult sheep that were loaded with the Ca(2+) indicator fura 2. The results show that basal cytosolic and sarcoplasmic reticulum Ca(2+) levels are attained before birth. Similarly, Ca(2+) efflux pathways from the cytosol and basal as well as capacitative Ca(2+) entry (CCE) are also developed before birth. However, receptor-mediated Ca(2+) signaling adapts with maturation. Prominently, serotonin stimulation elicited Ca(2+) elevations in very few fetal compared with adult PASMCs; in contrast, phenylephrine elevated Ca(2+) in a similar percentage of fetal and adult PASMCs. Serotonin and phenylephrine elicited Ca(2+) increases of a similar magnitude in reactive cells of fetus and adult, supporting the assertion that inositol trisphosphate signaling is intact. Caffeine and ATP elevated Ca(2+) in equivalent numbers of fetal and adult PASMCs. However, the caffeine-induced cytosolic Ca(2+) increase was significantly greater in fetal PASMCs, whereas the ATP-elicited increase was greater in adult cells. Overall, the results of this study demonstrate selective adaptations in receptor-mediated Ca(2+) signaling, but not in cellular Ca(2+) homeostasis. PMID:18776056

  7. Astrocyte glycogenolysis is triggered by store-operated calcium entry and provides metabolic energy for cellular calcium homeostasis.

    PubMed

    Müller, Margit S; Fox, Rebecca; Schousboe, Arne; Waagepetersen, Helle S; Bak, Lasse K

    2014-04-01

    Astrocytic glycogen, the only storage form of glucose in the brain, has been shown to play a fundamental role in supporting learning and memory, an effect achieved by providing metabolic support for neurons. We have examined the interplay between glycogenolysis and the bioenergetics of astrocytic Ca(2+) homeostasis, by analyzing interdependency of glycogen and store-operated Ca(2+) entry (SOCE), a mechanism in cellular signaling that maintains high endoplasmatic reticulum (ER) Ca(2+) concentration and thus provides the basis for store-dependent Ca(2+) signaling. We stimulated SOCE in primary cultures of murine cerebellar and cortical astrocytes, and determined glycogen content to investigate the effects of SOCE on glycogen metabolism. By blocking glycogenolysis, we tested energetic dependency of SOCE-related Ca(2+) dynamics on glycogenolytic ATP. Our results show that SOCE triggers astrocytic glycogenolysis. Upon inhibition of adenylate cyclase with 2',5'-dideoxyadenosine, glycogen content was no longer significantly different from that in unstimulated control cells, indicating that SOCE triggers astrocytic glycogenolysis in a cAMP-dependent manner. When glycogenolysis was inhibited in cortical astrocytes by 1,4-dideoxy-1,4-imino-D-arabinitol, the amount of Ca(2+) loaded into ER via sarco/endoplasmic reticulum Ca(2)-ATPase (SERCA) was reduced, which suggests that SERCA pumps preferentially metabolize glycogenolytic ATP. Our study demonstrates SOCE as a novel pathway in stimulating astrocytic glycogenolysis. We also provide first evidence for a new functional role of brain glycogen, in providing local ATP to SERCA, thus establishing the bioenergetic basis for astrocytic Ca(2+) signaling. This mechanism could offer a novel explanation for the impact of glycogen on learning and memory. PMID:24464850

  8. Defects in calcium homeostasis and mitochondria can be reversed in Pompe disease

    PubMed Central

    Lim, Jeong-A; Li, Lishu; Kakhlon, Or; Myerowitz, Rachel; Raben, Nina

    2015-01-01

    Mitochondria-induced oxidative stress and flawed autophagy are common features of neurodegenerative and lysosomal storage diseases (LSDs). Although defective autophagy is particularly prominent in Pompe disease, mitochondrial function has escaped examination in this typical LSD. We have found multiple mitochondrial defects in mouse and human models of Pompe disease, a life-threatening cardiac and skeletal muscle myopathy: a profound dysregulation of Ca2+ homeostasis, mitochondrial Ca2+ overload, an increase in reactive oxygen species, a decrease in mitochondrial membrane potential, an increase in caspase-independent apoptosis, as well as a decreased oxygen consumption and ATP production of mitochondria. In addition, gene expression studies revealed a striking upregulation of the β 1 subunit of L-type Ca2+ channel in Pompe muscle cells. This study provides strong evidence that disturbance of Ca2+ homeostasis and mitochondrial abnormalities in Pompe disease represent early changes in a complex pathogenetic cascade leading from a deficiency of a single lysosomal enzyme to severe and hard-to-treat autophagic myopathy. Remarkably, L-type Ca2+channel blockers, commonly used to treat other maladies, reversed these defects, indicating that a similar approach can be beneficial to the plethora of lysosomal and neurodegenerative disorders. PMID:25758767

  9. Platelet activating factors alters calcium homeostasis in cultured vascular endothelial cells

    SciTech Connect

    Brock, T.A.; Gimbrone, M.A. Jr.

    1986-06-01

    Platelet activating factor (1-O-alkyl-2-acetyl-sn-glycerol-3-phosphorylcholine; PAF), a potent in vivo mediator of allergic and inflammatory reactions, induced a rapid (onset less than 30 s), concentration-dependent (threshold approximately 10(-11) M, half-maximal approximately 10(-10) M, maximal approximately 10(-8)-10(-7) M) efflux of /sup 45/Ca/sup 2 +/ from preloaded cultured bovine aortic endothelial cells (BAEC). In contrast, deacetylated and other PAF analogues were essentially ineffective. PAF (10(-7) M) was also shown to increase cytosolic free calcium (49 +/- 5%) in suspensions of quin 2 (calcium-sensitive fluorescent dye)-loaded BAEC. PAF-stimulated /sup 45/Ca/sup 2 +/ efflux was not blocked by aspirin treatment (100 or 500 microM, 30 min). In the absence of external calcium, PAF was still highly effective in stimulating unidirectional /sup 45/Ca/sup 2 +/ efflux, thus suggesting that PAF mobilized a sequestered pool of intracellular calcium. CV-3988, a PAF antagonist, inhibited PAF-stimulated /sup 45/Ca/sup 2 +/ efflux in a dose-dependent manner. Pretreatment of BAEC with PAF (10(-8) M, 15 min), but not with other PAF analogues, resulted in a decrease in subsequent PAF-stimulated /sup 45/Ca/sup 2 +/ efflux, thus suggesting an agonist-specific desensitization. PAF also stimulated a 30% net decrease in the equilibrium /sup 45/Ca/sup 2 +/ content of BAEC within 1 min, which gradually recovered to prestimulus levels in 10-15 min. PAF-stimulated /sup 45/Ca/sup 2 +/ efflux was also observed in endothelial cells cultured from human umbilical vein and baboon cephalic vein but not from cultured human dermal fibroblasts or bovine aortic smooth muscle. These studies provide direct evidence for agonist- and cell-specific effects of PAF on vascular endothelium.

  10. Proteomic analysis of imatinib-resistant CML-T1 cells reveals calcium homeostasis as a potential therapeutic target.

    PubMed

    Toman, O; Kabickova, T; Vit, O; Fiser, R; Polakova, K Machova; Zach, J; Linhartova, J; Vyoral, D; Petrak, J

    2016-09-01

    Chronic myeloid leukemia (CML) therapy has markedly improved patient prognosis after introduction of imatinib mesylate for clinical use. However, a subset of patients develops resistance to imatinib and other tyrosine kinase inhibitors (TKIs), mainly due to point mutations in the region encoding the kinase domain of the fused BCR-ABL oncogene. To identify potential therapeutic targets in imatinib‑resistant CML cells, we derived imatinib-resistant CML-T1 human cell line clone (CML-T1/IR) by prolonged exposure to imatinib in growth media. Mutational analysis revealed that the Y235H mutation in BCR-ABL is probably the main cause of CML-T1/IR resistance to imatinib. To identify alternative therapeutic targets for selective elimination of imatinib-resistant cells, we compared the proteome profiles of CML-T1 and CML-T1/IR cells using 2-DE-MS. We identified eight differentially expressed proteins, with strongly upregulated Na+/H+ exchanger regulatory factor 1 (NHERF1) in the resistant cells, suggesting that this protein may influence cytosolic pH, Ca2+ concentration or signaling pathways such as Wnt in CML-T1/IR cells. We tested several compounds including drugs in clinical use that interfere with the aforementioned processes and tested their relative toxicity to CML-T1 and CML-T1/IR cells. Calcium channel blockers, calcium signaling antagonists and modulators of calcium homeostasis, namely thapsigargin, ionomycin, verapamil, carboxyamidotriazole and immunosuppressive drugs cyclosporine A and tacrolimus (FK-506) were selectively toxic to CML-T1/IR cells. The putative cellular targets of these compounds in CML-T1/IR cells are postulated in this study. We propose that Ca2+ homeostasis can be a potential therapeutic target in CML cells resistant to TKIs. We demonstrate that a proteomic approach may be used to characterize a TKI-resistant population of CML cells enabling future individualized treatment options for patients. PMID:27430982

  11. Calcium release channel RyR2 regulates insulin release and glucose homeostasis

    PubMed Central

    Santulli, Gaetano; Pagano, Gennaro; Sardu, Celestino; Xie, Wenjun; Reiken, Steven; D’Ascia, Salvatore Luca; Cannone, Michele; Marziliano, Nicola; Trimarco, Bruno; Guise, Theresa A.; Lacampagne, Alain; Marks, Andrew R.

    2015-01-01

    The type 2 ryanodine receptor (RyR2) is a Ca2+ release channel on the endoplasmic reticulum (ER) of several types of cells, including cardiomyocytes and pancreatic β cells. In cardiomyocytes, RyR2-dependent Ca2+ release is critical for excitation-contraction coupling; however, a functional role for RyR2 in β cell insulin secretion and diabetes mellitus remains controversial. Here, we took advantage of rare RyR2 mutations that were identified in patients with a genetic form of exercise-induced sudden death (catecholaminergic polymorphic ventricular tachycardia [CPVT]). As these mutations result in a “leaky” RyR2 channel, we exploited them to assess RyR2 channel function in β cell dynamics. We discovered that CPVT patients with mutant leaky RyR2 present with glucose intolerance, which was heretofore unappreciated. In mice, transgenic expression of CPVT-associated RyR2 resulted in impaired glucose homeostasis, and an in-depth evaluation of pancreatic islets and β cells from these animals revealed intracellular Ca2+ leak via oxidized and nitrosylated RyR2 channels, activated ER stress response, mitochondrial dysfunction, and decreased fuel-stimulated insulin release. Additionally, we verified the effects of the pharmacological inhibition of intracellular Ca2+ leak in CPVT-associated RyR2-expressing mice, in human islets from diabetic patients, and in an established murine model of type 2 diabetes mellitus. Taken together, our data indicate that RyR2 channels play a crucial role in the regulation of insulin secretion and glucose homeostasis. PMID:25844899

  12. Functional Analysis of Picornavirus 2B Proteins: Effects on Calcium Homeostasis and Intracellular Protein Trafficking▿

    PubMed Central

    de Jong, Arjan S.; de Mattia, Fabrizio; Van Dommelen, Michiel M.; Lanke, Kjerstin; Melchers, Willem J. G.; Willems, Peter H. G. M.; van Kuppeveld, Frank J. M.

    2008-01-01

    The family Picornaviridae consists of a large group of plus-strand RNA viruses that share a similar genome organization. The nomenclature of the picornavirus proteins is based on their position in the viral RNA genome but does not necessarily imply a conserved function of proteins of different genera. The enterovirus 2B protein is a small hydrophobic protein that, upon individual expression, is localized to the endoplasmic reticulum (ER) and the Golgi complex, reduces ER and Golgi complex Ca2+ levels, most likely by forming transmembrane pores, and inhibits protein trafficking through the Golgi complex. At present, little is known about the function of the other picornavirus 2B proteins. Here we show that rhinovirus 2B, which is phylogenetically closely related to enterovirus 2B, shows a similar subcellular localization and function to those of enterovirus 2B. In contrast, 2B proteins of hepatitis A virus, foot-and-mouth disease virus, and encephalomyocarditis virus, all of which are more distantly related to enteroviruses, show a different localization and have little, if any, effects on Ca2+ homeostasis and intracellular protein trafficking. Our data suggest that the 2B proteins of enterovirus and rhinovirus share the same function in virus replication, while the other picornavirus 2B proteins support the viral life cycle in a different manner. Moreover, we show that an enterovirus 2B protein that is retained in the ER is unable to modify Ca2+ homeostasis and inhibit protein trafficking, demonstrating the importance of Golgi complex localization for its functioning. PMID:18216106

  13. Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance.

    PubMed

    Sun, Jian; Dai, Songxiang; Wang, Ruigang; Chen, Shaoliang; Li, Niya; Zhou, Xiaoyang; Lu, Cunfu; Shen, Xin; Zheng, Xiaojiang; Hu, Zanmin; Zhang, Zengkai; Song, Jin; Xu, Yue

    2009-09-01

    Using the non-invasively ion-selective microelectrode technique, flux profiles of K(+), Na(+) and H(+) in mature roots and apical regions, and the effects of Ca(2+) on ion fluxes were investigated in salt-tolerant poplar species, Populus euphratica Oliver and salt-sensitive Populus simonii x (P. pyramidalis + Salix matsudana) (Populus popularis 35-44, P. popularis). Compared to P. popularis, P. euphratica roots exhibited a greater capacity to retain K(+) after exposure to a salt shock (SS, 100 mM NaCl) and a long-term (LT) salinity (50 mM NaCl, 3 weeks). Salt shock-induced K(+) efflux in the two species was markedly restricted by K(+) channel blocker, tetraethylammonium chloride, but enhanced by sodium orthovanadate, the inhibitor of plasma membrane (PM) H(+)-ATPase, suggesting that the K(+) efflux is mediated by depolarization-activated (DA) channels, e.g., KORCs (outward rectifying K(+) channels) and NSCCs (non-selective cation channels). Populus euphratica roots were more effective to exclude Na(+) than P. popularis in an LT experiment, resulting from the Na(+)/H(+) antiport across the PM. Moreover, pharmacological evidence implies that the greater ability to control K(+)/Na(+) homeostasis in salinized P. euphratica roots is associated with the higher H(+)-pumping activity, which provides an electrochemical H(+) gradient for Na(+)/H(+) exchange and simultaneously decreases the NaCl-induced depolarization of PM, thus reducing Na(+) influx via NSCCs and K(+) efflux through DA-KORCs and DA-NSCCs. Ca(2+) application markedly limited salt-induced K(+) efflux but enhanced the apparent Na(+) efflux, thus enabling the two species, especially the salt-sensitive poplar, to retain K(+)/Na(+) homeostasis in roots exposed to prolonged NaCl treatment. PMID:19638360

  14. Expression of Arabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity.

    PubMed Central

    Hirschi, K D

    1999-01-01

    Calcium (Ca(2)+) efflux from the cytosol modulates Ca(2+) concentrations in the cytosol, loads Ca(2+) into intracellular compartments, and supplies Ca(2+) to organelles to support biochemical functions. The Ca(2+)/H(+) antiporter CAX1 (for CALCIUM EXCHANGER 1) of Arabidopsis is thought to be a key mediator of these processes. To clarify the regulation of CAX1, we examined CAX1 RNA expression in response to various stimuli. CAX1 was highly expressed in response to exogenous Ca(2+). Transgenic tobacco plants expressing CAX1 displayed symptoms of Ca(2+) deficiencies, including hypersensitivity to ion imbalances, such as increased magnesium and potassium concentrations, and to cold shock, but increasing the Ca(2+) in the media abrogated these sensitivities. Tobacco plants expressing CAX1 also demonstrated increased Ca(2+) accumulation and altered activity of the tonoplast-enriched Ca(2+)/H(+) antiporter. These results emphasize that regulated expression of Ca(2+)/H(+) antiport activity is critical for normal growth and adaptation to certain stresses. PMID:10559438

  15. Calcium homeostasis in the outer segments of retinal rods from the tiger salamander.

    PubMed Central

    Lagnado, L; Cervetto, L; McNaughton, P A

    1992-01-01

    1. The processes regulating intracellular calcium in the outer segments of salamander rods have been investigated. The main preparation used was the isolated rod loaded with the Ca(2+)-sensitive photoprotein aequorin, from which outer segment membrane current and free [Ca2+]i could be recorded simultaneously. Two other preparations were also used: outer segment membrane current was recorded from intact, isolated rods using a suction pipette, and from detached outer segments using a whole-cell pipette. 2. Measurements of free intracellular [Ca2+] in Ringer solution were obtained from two aequorin-loaded rods. Mean [Ca2+]i in darkness was 0.41 microM, and after a bright flash [Ca2+]i fell to below detectable levels ( < 0.3 microM). No release of intracellular Ca2+ by a bright flash of light could be detected ( < 0.2 microM). 3. Application of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) caused an increase in the size of the light-sensitive current and a rise in [Ca2+]i, but application of IBMX either when the light-sensitive channels had been closed by a bright light or in the absence of external Ca2+ caused no detectable rise in [Ca2+]i. It is concluded that IBMX increases [Ca2+]i by opening light-sensitive channels, and does not release Ca2+ from stores within the outer segment. 4. Removal of external Na+ caused a rise in [Ca2+]i to around 2 microM and completely suppressed the light-sensitive current. 5. The Na(+)-Ca2+, K+ exchange current in aequorin-loaded rods was activated in first-order manner by internal free calcium, with a mean Michaelis constant, KCa, of 1.6 microM. 6. The KCa of the Na(+)-Ca2+, K+ exchange was increased by elevating internal [Na+]. 7. The Michaelis relation between [Ca2+]i and the activity of the Na(+)-Ca2+, K+ exchange was used to calculate the change in [Ca2+]i occurring during the response to a bright light. In aequorin-loaded rods in Ringer solution the mean change in free [Ca2+]i after a bright flash was 0

  16. Rare Mutations of CACNB2 Found in Autism Spectrum Disease-Affected Families Alter Calcium Channel Function

    PubMed Central

    Breitenkamp, Alexandra F. S.; Matthes, Jan; Nass, Robert Daniel; Sinzig, Judith; Lehmkuhl, Gerd; Nürnberg, Peter; Herzig, Stefan

    2014-01-01

    Autism Spectrum Disorders (ASD) are complex neurodevelopmental diseases clinically defined by dysfunction of social interaction. Dysregulation of cellular calcium homeostasis might be involved in ASD pathogenesis, and genes coding for the L-type calcium channel subunits CaV1.2 (CACNA1C) and CaVβ2 (CACNB2) were recently identified as risk loci for psychiatric diseases. Here, we present three rare missense mutations of CACNB2 (G167S, S197F, and F240L) found in ASD-affected families, two of them described here for the first time (G167S and F240L). All these mutations affect highly conserved regions while being absent in a sample of ethnically matched controls. We suggest the mutations to be of physiological relevance since they modulate whole-cell Ba2+ currents through calcium channels when expressed in a recombinant system (HEK-293 cells). Two mutations displayed significantly decelerated time-dependent inactivation as well as increased sensitivity of voltage-dependent inactivation. In contrast, the third mutation (F240L) showed significantly accelerated time-dependent inactivation. By altering the kinetic parameters, the mutations are reminiscent of the CACNA1C mutation causing Timothy Syndrome, a Mendelian disease presenting with ASD. In conclusion, the results of our first-time biophysical characterization of these three rare CACNB2 missense mutations identified in ASD patients support the hypothesis that calcium channel dysfunction may contribute to autism. PMID:24752249

  17. Calcium homeostasis and low-frequency magnetic and electric field exposure: A systematic review and meta-analysis of in vitro studies.

    PubMed

    Golbach, Lieke A; Portelli, Lucas A; Savelkoul, Huub F J; Terwel, Sofie R; Kuster, Niels; de Vries, Rob B M; Verburg-van Kemenade, B M Lidy

    2016-01-01

    Low frequency magnetic field (LF MF) exposure is recurrently suggested to have the ability to induce health effects in society. Therefore, in vitro model systems are used to investigate biological effects of exposure. LF MF induced changes of the cellular calcium homeostasis are frequently hypothesised to be the possible target, but this hypothesis is both substantiated and rejected by numerous studies in literature. Despite the large amount of data, no systematic analysis of in vitro studies has been conducted to address the strength of evidence for an association between LF MF exposure and calcium homeostasis. Our systematic review, with inclusion of 42 studies, showed evidence for an association of LF MF with internal calcium concentrations and calcium oscillation patterns. The oscillation frequency increased, while the amplitude and the percentage of oscillating cells remained constant. The intracellular calcium concentration increased (SMD 0.351, 95% CI 0.126, 0.576). Subgroup analysis revealed heterogeneous effects associated with the exposure frequency, magnetic flux density and duration. Moreover, we found support for the presence of MF-sensitive cell types. Nevertheless, some of the included studies may introduce a great risk of bias as a result of uncontrolled or not reported exposure conditions, temperature ranges and ambient fields. In addition, mathematical calculations of the parasitic induced electric fields (IEFs) disclosed their association with increased intracellular calcium. Our results demonstrate that LF MF might influence the calcium homeostasis in cells in vitro, but the risk of bias and high heterogeneity (I(2)>75%) weakens the analyses. Therefore any potential clinical implications await further investigation. PMID:26872872

  18. A putative mitochondrial calcium uniporter in A. fumigatus contributes to mitochondrial Ca(2+) homeostasis and stress responses.

    PubMed

    Song, Jinxing; Liu, Xiao; Zhai, Pengfei; Huang, Jingjing; Lu, Ling

    2016-09-01

    Ca(2+) uptake into mitochondria plays a central role in cell physiology by stimulating ATP production, shaping cytosolic Ca(2+) transients and regulating cell survival or death. Although this system has been studied extensively in mammalian cells, the physiological implications of Ca(2+) uptake into mitochondria in fungal cells are still unknown. In this study, a bi-directional best-hit BLASTP search revealed that the genome of Aspergillus fumigatus encodes a homolog of a putative mitochondrial Ca(2+) uniporter (MCU) and a mitochondrial carrier protein AGC1/MICU1 homolog. Both putative homologs are mitochondrially localized and required for the response to azole and oxidative stress such that the loss of either McuA or AgcA results in reduced susceptibility to azole and oxidative stress, suggesting a role in environmental stress adaptation. Overexpressing mcuA restores the azole-resistance phenotype of the ΔagcA strain to wild-type levels, but not vice versa, indicating McuA plays a dominant role during these stress responses. Using a mitochondrially targeted version of the calcium-sensitive photoprotein aequorin, we found that only mcuA deletion leads to dysfunctional [Ca(2+)]mt and [Ca(2+)]c homeostasis, suggesting that McuA, but not AgcA, contributes to Ca(2+) uptake into mitochondria. Further point-mutation experiments combined with extracellular Ca(2+) chelator treatment verified that two predicted Ca(2+)-binding sites in McuA are required for Ca(2+) uptake into mitochondria and stress responses through the regulation of [Ca(2+)]c homeostasis. PMID:27378202

  19. Calcium Homeostasis and ER Stress in Control of Autophagy in Cancer Cells

    PubMed Central

    Kania, Elżbieta; Pająk, Beata

    2015-01-01

    Autophagy is a basic catabolic process, serving as an internal engine during responses to various cellular stresses. As regards cancer, autophagy may play a tumor suppressive role by preserving cellular integrity during tumor development and by possible contribution to cell death. However, autophagy may also exert oncogenic effects by promoting tumor cell survival and preventing cell death, for example, upon anticancer treatment. The major factors influencing autophagy are Ca2+ homeostasis perturbation and starvation. Several Ca2+ channels like voltage-gated T- and L-type channels, IP3 receptors, or CRAC are involved in autophagy regulation. Glucose transporters, mainly from GLUT family, which are often upregulated in cancer, are also prominent targets for autophagy induction. Signals from both Ca2+ perturbations and glucose transport blockage might be integrated at UPR and ER stress activation. Molecular pathways such as IRE 1-JNK-Bcl-2, PERK-eIF2α-ATF4, or ATF6-XBP 1-ATG are related to autophagy induced through ER stress. Moreover ER molecular chaperones such as GRP78/BiP and transcription factors like CHOP participate in regulation of ER stress-mediated autophagy. Autophagy modulation might be promising in anticancer therapies; however, it is a context-dependent matter whether inhibition or activation of autophagy leads to tumor cell death. PMID:25821797

  20. Mineral and Skeletal Homeostasis Influence the Manner of Bone Loss in Metabolic Osteoporosis due to Calcium-Deprived Diet in Different Sites of Rat Vertebra and Femur

    PubMed Central

    Cavani, Francesco; Smargiassi, Alberto

    2015-01-01

    Rats fed calcium-deprived diet develop osteoporosis due to enhanced bone resorption, secondary to parathyroid overactivity resulting from nutritional hypocalcemia. Therefore, rats provide a good experimental animal model for studying bone modelling alterations during biochemical osteoporosis. Three-month-old Sprague-Dawley male rats were divided into 4 groups: (1) baseline, (2) normal diet for 4 weeks, (3) calcium-deprived diet for 4 weeks, and (4) calcium-deprived diet for 4 weeks and concomitant administration of PTH (1-34) 40 µg/Kg/day. Histomorphometrical analyses were made on cortical and trabecular bone of lumbar vertebral body as well as of mid-diaphysis and distal metaphysis of femur. In all rats fed calcium-deprived diet, despite the reduction of trabecular number (due to the maintenance of mineral homeostasis), an intense activity of bone deposition occurs on the surface of the few remaining trabeculae (in answering to mechanical stresses and, consequently, to maintain the skeletal homeostasis). Different responses were detected in different sites of cortical bone, depending on their main function in answering mineral or skeletal homeostasis. This study represents the starting point for work-in-progress researches, with the aim of defining in detail timing and manners of evolution and recovery of biochemical osteoporosis. PMID:26064895

  1. Tonoplast CBL-CIPK calcium signaling network regulates magnesium homeostasis in Arabidopsis.

    PubMed

    Tang, Ren-Jie; Zhao, Fu-Geng; Garcia, Veder J; Kleist, Thomas J; Yang, Lei; Zhang, Hong-Xia; Luan, Sheng

    2015-03-10

    Although Mg(2+) is essential for a myriad of cellular processes, high levels of Mg(2+) in the environment, such as those found in serpentine soils, become toxic to plants. In this study, we identified two calcineurin B-like (CBL) proteins, CBL2 and CBL3, as key regulators for plant growth under high-Mg conditions. The Arabidopsis mutant lacking both CBL2 and CBL3 displayed severe growth retardation in the presence of excess Mg(2+), implying elevated Mg(2+) toxicity in these plants. Unexpectedly, the cbl2 cbl3 mutant plants retained lower Mg content than wild-type plants under either normal or high-Mg conditions, suggesting that CBL2 and CBL3 may be required for vacuolar Mg(2+) sequestration. Indeed, patch-clamp analysis showed that the cbl2 cbl3 mutant exhibited reduced Mg(2+) influx into the vacuole. We further identified four CBL-interacting protein kinases (CIPKs), CIPK3, -9, -23, and -26, as functionally overlapping components downstream of CBL2/3 in the signaling pathway that facilitates Mg(2+) homeostasis. The cipk3 cipk9 cipk23 cipk26 quadruple mutant, like the cbl2 cbl3 double mutant, was hypersensitive to high-Mg conditions; furthermore, CIPK3/9/23/26 physically interacted with CBL2/3 at the vacuolar membrane. Our results thus provide evidence that CBL2/3 and CIPK3/9/23/26 constitute a multivalent interacting network that regulates the vacuolar sequestration of Mg(2+), thereby protecting plants from Mg(2+) toxicity. PMID:25646412

  2. Role of mitochondrial calcium uptake homeostasis in resting state fMRI brain networks.

    PubMed

    Kannurpatti, Sridhar S; Sanganahalli, Basavaraju G; Herman, Peter; Hyder, Fahmeed

    2015-11-01

    Mitochondrial Ca(2+) uptake influences both brain energy metabolism and neural signaling. Given that brain mitochondrial organelles are distributed in relation to vascular density, which varies considerably across brain regions, we hypothesized different physiological impacts of mitochondrial Ca(2+) uptake across brain regions. We tested the hypothesis by monitoring brain "intrinsic activity" derived from the resting state functional MRI (fMRI) blood oxygen level dependent (BOLD) fluctuations in different functional networks spanning the somatosensory cortex, caudate putamen, hippocampus and thalamus, in normal and perturbed mitochondrial Ca(2+) uptake states. In anesthetized rats at 11.7 T, mitochondrial Ca(2+) uptake was inhibited or enhanced respectively by treatments with Ru360 or kaempferol. Surprisingly, mitochondrial Ca(2+) uptake inhibition by Ru360 and enhancement by kaempferol led to similar dose-dependent decreases in brain-wide intrinsic activities in both the frequency domain (spectral amplitude) and temporal domain (resting state functional connectivity; RSFC). The fact that there were similar dose-dependent decreases in the frequency and temporal domains of the resting state fMRI-BOLD fluctuations during mitochondrial Ca(2+) uptake inhibition or enhancement indicated that mitochondrial Ca(2+) uptake and its homeostasis may strongly influence the brain's functional organization at rest. Interestingly, the resting state fMRI-derived intrinsic activities in the caudate putamen and thalamic regions saturated much faster with increasing dosage of either drug treatment than the drug-induced trends observed in cortical and hippocampal regions. Regional differences in how the spectral amplitude and RSFC changed with treatment indicate distinct mitochondrion-mediated spontaneous neuronal activity coupling within the various RSFC networks determined by resting state fMRI. PMID:26439799

  3. Perfluorooctanoic acid exposure for 28 days affects glucose homeostasis and induces insulin hypersensitivity in mice

    NASA Astrophysics Data System (ADS)

    Yan, Shengmin; Zhang, Hongxia; Zheng, Fei; Sheng, Nan; Guo, Xuejiang; Dai, Jiayin

    2015-06-01

    Perfluoroalkyl acids (PFAAs) are widely used in many applications due to their unique physical and chemical characteristics. Because of the increasing prevalence of metabolic syndromes, including obesity, dyslipidemia and insulin resistance, concern has arisen about the roles of environmental pollutants in such diseases. Earlier epidemiologic studies showed a potential association between perfluorooctanoic acid (PFOA) and glucose metabolism, but how PFOA influences glucose homeostasis is still unknown. Here, we report on the modulation of the phosphatidylinositol 3-kinase-serine/threonine protein kinase (PI3K-AKT) signaling pathway in the livers of mice after 28 d of exposure to PFOA. Compared with normal mice, PFOA exposure significantly decreased the expression of the phosphatase and tensin homologue (PTEN) protein and affected the PI3K-AKT signaling pathway in the liver. Tolerance tests further indicated that PFOA exposure induced higher insulin sensitivity and glucose tolerance in mice. Biochemical analysis revealed that PFOA exposure reduced hepatic glycogen synthesis, which might be attributed to gluconeogenesis inhibition. The levels of several circulating proteins were altered after PFOA exposure, including proteins potentially related to diabetes and liver disease. Our results suggest that PFOA affected glucose metabolism and induced insulin hypersensitivity in mice.

  4. Perfluorooctanoic acid exposure for 28 days affects glucose homeostasis and induces insulin hypersensitivity in mice

    PubMed Central

    Yan, Shengmin; Zhang, Hongxia; Zheng, Fei; Sheng, Nan; Guo, Xuejiang; Dai, Jiayin

    2015-01-01

    Perfluoroalkyl acids (PFAAs) are widely used in many applications due to their unique physical and chemical characteristics. Because of the increasing prevalence of metabolic syndromes, including obesity, dyslipidemia and insulin resistance, concern has arisen about the roles of environmental pollutants in such diseases. Earlier epidemiologic studies showed a potential association between perfluorooctanoic acid (PFOA) and glucose metabolism, but how PFOA influences glucose homeostasis is still unknown. Here, we report on the modulation of the phosphatidylinositol 3-kinase-serine/threonine protein kinase (PI3K-AKT) signaling pathway in the livers of mice after 28 d of exposure to PFOA. Compared with normal mice, PFOA exposure significantly decreased the expression of the phosphatase and tensin homologue (PTEN) protein and affected the PI3K-AKT signaling pathway in the liver. Tolerance tests further indicated that PFOA exposure induced higher insulin sensitivity and glucose tolerance in mice. Biochemical analysis revealed that PFOA exposure reduced hepatic glycogen synthesis, which might be attributed to gluconeogenesis inhibition. The levels of several circulating proteins were altered after PFOA exposure, including proteins potentially related to diabetes and liver disease. Our results suggest that PFOA affected glucose metabolism and induced insulin hypersensitivity in mice. PMID:26066376

  5. Interplay Between the Oxidoreductase PDIA6 and microRNA-322 Controls the Response to Disrupted Endoplasmic Reticulum Calcium Homeostasis

    PubMed Central

    Groenendyk, Jody; Peng, Zhenling; Dudek, Elzbieta; Fan, Xiao; Mizianty, Marcin J.; Dufey, Estefanie; Urra, Hery; Sepulveda, Denisse; Rojas-Rivera, Diego; Lim, Yunki; Kim, Do Han; Baretta, Kayla; Srikanth, Sonal; Gwack, Yousang; Ahnn, Joohong; Kaufman, Randal J.; Lee, Sun-Kyung; Hetz, Claudio; Kurgan, Lukasz; Michalak, Marek

    2016-01-01

    The disruption of the energy or nutrient balance triggers endoplasmic reticulum (ER) stress, a process that mobilizes various strategies, collectively called the unfolded protein response (UPR), which reestablish homeostasis of the ER and cell. Activation of the UPR stress sensor IRE1α (inositol-requiring enzyme 1α) stimulates its endoribonuclease activity, leading to the generation of the mRNA encoding the transcription factor XBP1 (X-box binding protein 1), which regulates the transcription of genes encoding factors involved in controlling the quality and folding of proteins. We found that the activity of IRE1α was regulated by the ER oxidoreductase PDIA6 (protein disulfide isomerase A6) and the microRNA miR-322 in response to disruption of ER Ca2+ homeostasis. PDIA6 interacted with IRE1α and enhanced IRE1α activity as monitored by phosphorylation of IRE1α and XBP1 mRNA splicing, but PDIA6 did not substantially affect the activity of other pathways that mediate responses to ER stress. ER Ca2+ depletion and activation of store operated Ca2+ entry reduced the abundance of the microRNA miR-322, which increased PDIA6 mRNA stability and consequently IRE1α activity during the ER stress response. In vivo experiments with mice and worms showed that the induction of ER stress correlated with decreased miR-322 abundance, increased PDIA6 mRNA abundance, or both. Together these findings demonstrated that ER Ca2+, PDIA6, IRE1α, and miR-322 function in a dynamic feedback loop modulating the UPR under conditions of disrupted ER Ca2+ homeostasis. PMID:24917591

  6. Long-term mTOR inhibitors administration evokes altered calcium homeostasis and platelet dysfunction in kidney transplant patients.

    PubMed

    López, Esther; Berna-Erro, Alejandro; Bermejo, Nuria; Brull, José María; Martinez, Rocío; Garcia Pino, Guadalupe; Alvarado, Raul; Salido, Ginés María; Rosado, Juan Antonio; Cubero, Juan José; Redondo, Pedro Cosme

    2013-05-01

    The use of the mammal target of rapamycin (mTOR) inhibitors has been consolidated as the therapy of election for preventing graft rejection in kidney transplant patients, despite their immunosuppressive activity is less strong than anti-calcineurin agents like tacrolimus and cyclosporine A. Furthermore, as mTOR is widely expressed, rapamycin (a macrolide antibiotic produced by Streptomyces hygroscopicus) is recommended in patients presenting neoplasia due to its antiproliferative actions. Hence, we have investigated whether rapamycin presents side effects in the physiology of other cell types different from leucocytes, such as platelets. Blood samples were drawn from healthy volunteers and kidney transplant patients long-term medicated with rapamycin: sirolimus and everolimus. Platelets were either loaded with fura-2 or directly stimulated, and immunoassayed or fixed with Laemmli's buffer to perform the subsequent analysis of platelet physiology. Our results indicate that rapamycin evokes a biphasic time-dependent alteration in calcium homeostasis and function in platelets from kidney transplant patients under rapamycin regime, as demonstrated by the reduction in granule secretion observed and subsequent impairment of platelet aggregation in these patients compared with healthy volunteers. Platelet count was also reduced in these patients, thus 41% of patients presented thrombocytopenia. All together our results show that long-term administration of rapamycin to kidney transplant patients evokes alteration in platelet function. PMID:23577651

  7. Calcium oxalate content affects the nutritional availability of calcium from Medicago truncatula leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is known that oxalate, present in edible plants, can bind calcium in a crystalline form that reduces the availability of the bound calcium for nutritional absorption by humans. It is unknown, however, the degree to which the calcium oxalate content of a plant can be genetically altered and how mu...

  8. A Novel Aerosol Foam Formulation of Calcipotriol and Betamethasone Has No Impact on HPA Axis and Calcium Homeostasis in Patients With Extensive Psoriasis Vulgaris

    PubMed Central

    Taraska, Victoria; Tuppal, Raj; Olesen, Martin; Bang Pedersen, Claus; Papp, Kim

    2016-01-01

    Background: Fixed combination calcipotriol 50 µg/g (Cal; as hydrate) plus betamethasone 0.5 mg/g (as dipropionate; BD) has been formulated in an innovative aerosol foam. Objective: To assess systemic safety of Cal/BD aerosol foam. Methods: In a multicentre, single-arm, open-label, maximal-use systemic-exposure trial, adult patients with moderate to severe, extensive psoriasis (15%-30% of body surface area, including ≥30% of scalp) applied Cal/BD foam once daily. Endpoints were week 4 abnormal adrenocorticotropic hormone (ACTH) challenge test and change in albumin-corrected serum calcium, 24-hour urinary calcium excretion, and urinary calcium-creatinine ratio. Results: 35 patients reaching week 4 exhibited normal ACTH responses. At week 4, changes in calcium homeostasis were minor and not clinically relevant; no patients experienced elevations above normal. Disease severity generally improved, and 49% of patients achieved treatment success according to the Physician’s Global Assessment of Disease Severity. Conclusion: No clinically relevant HPA axis or calcium homeostasis impact was observed with 4 weeks of once-daily Cal/BD foam in patients with extensive psoriasis vulgaris. PMID:26224733

  9. Inhibition of diabetic-cataract by vitamin K1 involves modulation of hyperglycemia-induced alterations to lens calcium homeostasis.

    PubMed

    Sai Varsha, M K N; Raman, Thiagarajan; Manikandan, Ramar

    2014-11-01

    This study investigated the potential of vitamin K1 against streptozotocin-induced diabetic cataract in Wistar rats. A single, intraperitoneal injection of streptozotocin (STZ) (35 mg/kg) resulted in hyperglycemia, accumulation of sorbitol and formation of advanced glycation end product (AGE) in eye lens. Hyperglycemia in lens also resulted in superoxide anion and hydroxyl radical generation and less reduced glutathione suggesting oxidative stress in lens. Hyperglycemia also resulted in increase in lens Ca2+ and significant inhibition of lens Ca2+ ATPase activity. These changes were associated with cataract formation in diabetic animals. By contrast treatment of diabetic rats with vitamin K1 (5 mg/kg, sc, twice a week) resulted in animals with partially elevated blood glucose and with transparent lenses having normal levels of sorbitol, AGE, Ca2+ ATPase, Ca2+, and oxidative stress. Vitamin K 1 may function to protect against cataract formation in the STZ induced diabetic rat by affecting the homeostasis of blood glucose and minimizing subsequent oxidative and osmotic stress. Thus, these results show that Vitamin K1 inhibits diabetic-cataract by modulating lens Ca2+ homeostasis and its hypoglycemic effect through its direct action on the pancreas. PMID:25257692

  10. Tonoplast calcium sensors CBL2 and CBL3 control plant growth and ion homeostasis through regulating V-ATPase activity in Arabidopsis

    PubMed Central

    Tang, Ren-Jie; Liu, Hua; Yang, Yang; Yang, Lei; Gao, Xiao-Shu; Garcia, Veder J; Luan, Sheng; Zhang, Hong-Xia

    2012-01-01

    Plant responses to developmental and environmental cues are often mediated by calcium (Ca2+) signals that are transmitted by diverse calcium sensors. The calcineurin B-like (CBL) protein family represents calcium sensors that decode calcium signals through specific interactions with a group of CBL-interacting protein kinases. We report functional analysis of Arabidopsis CBL2 and CBL3, two closely related CBL members that are localized to the vacuolar membrane through the N-terminal tonoplast-targeting sequence. While cbl2 or cbl3 single mutant did not show any phenotypic difference from the wild type, the cbl2 cbl3 double mutant was stunted with leaf tip necrosis, underdeveloped roots, shorter siliques and fewer seeds. These defects were reminiscent of those in the vha-a2 vha-a3 double mutant deficient in vacuolar H+-ATPase (V-ATPase). Indeed, the V-ATPase activity was reduced in the cbl2 cbl3 double mutant, connecting tonoplast CBL-type calcium sensors to the regulation of V-ATPase. Furthermore, cbl2 cbl3 double mutant was compromised in ionic tolerance and micronutrient accumulation, consistent with the defect in V-ATPase activity that has been shown to function in ion compartmentalization. Our results suggest that calcium sensors CBL2 and CBL3 serve as molecular links between calcium signaling and V-ATPase, a central regulator of intracellular ion homeostasis. PMID:23184060

  11. Effect of toluene diisocyanate on homeostasis of intracellular-free calcium in human neuroblastoma SH-SY5Y Cells

    SciTech Connect

    Liu, P.-S. . E-mail: psliu@mail.scu.edu.tw; Chiung, Y.-M.; Kao, Y.-Y.

    2006-03-01

    The mechanisms of TDI (2,4-toluene diisocyanate)-induced occupational asthma are not fully established. Previous studies have indicated that TDI induces non-specific bronchial hyperreactivity to methacholine and induces contraction of smooth muscle tissue by activating 'capsaicin-sensitive' nerves resulting asthma. Cytosolic-free calcium ion concentrations ([Ca{sup 2+}]{sub c}) are elevated when either capsaicin acts at vanilloid receptors, or methacholine at muscarinic receptors. This study therefore investigated the effects of TDI on Ca{sup 2+} mobilization in human neuroblastoma SH-SY5Y cells. TDI was found to elevate [Ca{sup 2+}]{sub c} by releasing Ca{sup 2+} from the intracellular stores and extracellular Ca{sup 2+} influx. 500 {mu}M TDI induced a net [Ca{sup 2+}]{sub c} increase of 112 {+-} 8 and 78 {+-} 6 nM in the presence and absence of extracellular Ca{sup 2+}, respectively. In Ca{sup 2+}-free buffer, TDI induced Ca{sup 2+} release from internal stores to reduce their Ca{sup 2+} content and this reduction was evidenced by a suppression occurring on the [Ca{sup 2+}]{sub c} rise induced by thapsigargin, ionomycin, and methacholine after TDI incubation. In the presence of extracellular Ca{sup 2+}, simultaneous exposure to TDI and methacholine led a higher level of [Ca{sup 2+}]{sub c} compared to single methacholine stimulation, that might explain that TDI induces bronchial hyperreactivity to methacholine. We conclude that TDI is capable of interfering the [Ca{sup 2+}]{sub c} homeostasis including releasing Ca{sup 2+} from internal stores and inducing extracellular Ca{sup 2+} influx. The interaction of this novel character and bronchial hyperreactivity need further investigation.

  12. Accumulation of distinct prelamin A variants in human diploid fibroblasts differentially affects cell homeostasis.

    PubMed

    Candelario, Jose; Borrego, Stacey; Reddy, Sita; Comai, Lucio

    2011-02-01

    levels of the basal transcription factor TATA-binding protein (TBP) and global transcription, and severely limited cell growth. Expression of a prelamin A variant that cannot be farnesylated, although did not appreciably influence cell growth, resulted in the formation of lamin A nucleoplasmic foci and caused, in a minor subpopulation of cells, changes in nuclear morphology that were accompanied by reduced levels of TBP and transcription. In contrast, expression of mature lamin A did not affect any of these parameters. These data demonstrate that accumulation of any partially processed prelamin A protein alters cellular homeostasis to some degree, even though the most dramatic effects are caused by variants with a permanently farnesylated carboxyl-terminal tail. PMID:20974128

  13. Accumulation of distinct prelamin A variants in human diploid fibroblasts differentially affects cell homeostasis

    SciTech Connect

    Candelario, Jose; Borrego, Stacey; Reddy, Sita; Comai, Lucio

    2011-02-01

    levels of the basal transcription factor TATA-binding protein (TBP) and global transcription, and severely limited cell growth. Expression of a prelamin A variant that cannot be farnesylated, although did not appreciably influence cell growth, resulted in the formation of lamin A nucleoplasmic foci and caused, in a minor subpopulation of cells, changes in nuclear morphology that were accompanied by reduced levels of TBP and transcription. In contrast, expression of mature lamin A did not affect any of these parameters. These data demonstrate that accumulation of any partially processed prelamin A protein alters cellular homeostasis to some degree, even though the most dramatic effects are caused by variants with a permanently farnesylated carboxyl-terminal tail.

  14. Angiotensin II modulates mouse skeletal muscle resting conductance to chloride and potassium ions and calcium homeostasis via the AT1 receptor and NADPH oxidase

    PubMed Central

    Cozzoli, Anna; Liantonio, Antonella; Conte, Elena; Cannone, Maria; Massari, Ada Maria; Giustino, Arcangela; Scaramuzzi, Antonia; Pierno, Sabata; Mantuano, Paola; Capogrosso, Roberta Francesca; Camerino, Giulia Maria

    2014-01-01

    Angiotensin II (ANG II) plays a role in muscle wasting and remodeling; however, little evidence shows its direct effects on specific muscle functions. We presently investigated the acute in vitro effects of ANG II on resting ionic conductance and calcium homeostasis of mouse extensor digitorum longus (EDL) muscle fibers, based on previous findings that in vivo inhibition of ANG II counteracts the impairment of macroscopic ClC-1 chloride channel conductance (gCl) in the mdx mouse model of muscular dystrophy. By means of intracellular microelectrode recordings we found that ANG II reduced gCl in the nanomolar range and in a concentration-dependent manner (EC50 = 0.06 μM) meanwhile increasing potassium conductance (gK). Both effects were inhibited by the ANG II receptors type 1 (AT1)-receptor antagonist losartan and the protein kinase C inhibitor chelerythrine; no antagonism was observed with the AT2 antagonist PD123,319. The scavenger of reactive oxygen species (ROS) N-acetyl cysteine and the NADPH-oxidase (NOX) inhibitor apocynin also antagonized ANG II effects on resting ionic conductances; the ANG II-dependent gK increase was blocked by iberiotoxin, an inhibitor of calcium-activated potassium channels. ANG II also lowered the threshold for myofiber and muscle contraction. Both ANG II and the AT1 agonist L162,313 increased the intracellular calcium transients, measured by fura-2, with a two-step pattern. These latter effects were not observed in the presence of losartan and of the phospholipase C inhibitor U73122 and the in absence of extracellular calcium, disclosing a Gq-mediated calcium entry mechanism. The data show for the first time that the AT1-mediated ANG II pathway, also involving NOX and ROS, directly modulates ion channels and calcium homeostasis in adult myofibers. PMID:25080489

  15. Rice ORMDL controls sphingolipid homeostasis affecting fertility resulting from abnormal pollen development.

    PubMed

    Chueasiri, Chutharat; Chunthong, Ketsuwan; Pitnjam, Keasinee; Chakhonkaen, Sriprapai; Sangarwut, Numphet; Sangsawang, Kanidta; Suksangpanomrung, Malinee; Michaelson, Louise V; Napier, Johnathan A; Muangprom, Amorntip

    2014-01-01

    The orosomucoids (ORM) are ER-resisdent polypeptides encoded by ORM and ORMDL (ORM-like) genes. In humans, ORMDL3 was reported as genetic risk factor associated to asthma. In yeast, ORM proteins act as negative regulators of sphingolipid synthesis. Sphingolipids are important molecules regulating several processes including stress responses and apoptosis. However, the function of ORM/ORMDL genes in plants has not yet been reported. Previously, we found that temperature sensitive genetic male sterility (TGMS) rice lines controlled by tms2 contain a deletion of about 70 kb in chromosome 7. We identified four genes expressed in panicles, including an ORMDL ortholog, as candidates for tms2. In this report, we quantified expression of the only two candidate genes normally expressed in anthers of wild type plants grown in controlled growth rooms for fertile and sterile conditions. We found that only the ORMDL gene (LOC_Os07g26940) showed differential expression under these conditions. To better understand the function of rice ORMDL genes, we generated RNAi transgenic rice plants suppressing either LOC_Os07g26940, or all three ORMDL genes present in rice. We found that the RNAi transgenic plants with low expression of either LOC_Os07g26940 alone or all three ORMDL genes were sterile, having abnormal pollen morphology and staining. In addition, we found that both sphingolipid metabolism and expression of genes involved in sphingolipid synthesis were perturbed in the tms2 mutant, analogous to the role of ORMs in yeast. Our results indicated that plant ORMDL proteins influence sphingolipid homeostasis, and deletion of this gene affected fertility resulting from abnormal pollen development. PMID:25192280

  16. Differential Effects of Phosphatase Inhibitors on the Calcium Homeostasis and Migration of HaCaT Keratinocytes

    PubMed Central

    Oláh, Tamás; Vincze, János; Gáll, Tamás; Balogh, Enikő; Nagy, Gábor; Bátori, Róbert; Lontay, Beáta; Erdődi, Ferenc; Csernoch, Laszlo

    2013-01-01

    Changes in intracellular calcium concentration ([Ca2+]i) as well as in the phosphorylation state of proteins have been implicated in keratinocyte wound healing revealed in scratch assays. Scratching confluent HaCaT monolayers decreased the number of cells displaying repetitive Ca2+ oscillations as well as the frequency of their Ca2+-transients in cells close to the wounded area and initiated migration of the cells into the wound bed. In contrast, calyculin-A (CLA) and okadaic acid (OA), known cell permeable inhibitors of protein phosphatase-1 and 2A, increased the level of resting [Ca2+]i and suppressed cell migration and wound healing of HaCaT cells. Furthermore, neither CLA nor OA influenced how scratching affected Ca2+ oscillations. It is assumed that changes in and alterations of the phosphorylation level of Ca2+-transport and contractile proteins upon phosphatase inhibition mediates cell migration and wound healing. PMID:23646108

  17. Identification of Novel Ryanodine Receptor 1 (RyR1) Protein Interaction with Calcium Homeostasis Endoplasmic Reticulum Protein (CHERP)*♦

    PubMed Central

    Ryan, Timothy; Sharma, Parveen; Ignatchenko, Alex; MacLennan, David H.; Kislinger, Thomas; Gramolini, Anthony O.

    2011-01-01

    The ryanodine receptor type 1 (RyR1) is a homotetrameric Ca2+ release channel located in the sarcoplasmic reticulum of skeletal muscle where it plays a role in the initiation of skeletal muscle contraction. A soluble, 6×-histidine affinity-tagged cytosolic fragment of RyR1 (amino acids 1–4243) was expressed in HEK-293 cells, and metal affinity chromatography under native conditions was used to purify the peptide together with interacting proteins. When analyzed by gel-free liquid chromatography mass spectrometry (LC-MS), 703 proteins were identified under all conditions. This group of proteins was filtered to identify putative RyR interacting proteins by removing those proteins found in only 1 RyR purification and proteins for which average spectral counts were enriched by less than 4-fold over control values. This resulted in 49 potential RyR1 interacting proteins, and 4 were selected for additional interaction studies: calcium homeostasis endoplasmic reticulum protein (CHERP), endoplasmic reticulum-Golgi intermediate compartment 53-kDa protein (LMAN1), T-complex protein, and phosphorylase kinase. Western blotting showed that only CHERP co-purified with affinity-tagged RyR1 and was eluted with imidazole. Immunofluorescence showed that endogenous CHERP co-localizes with endogenous RyR1 in the sarcoplasmic reticulum of rat soleus muscle. A combination of overexpression of RyR1 in HEK-293 cells with siRNA-mediated suppression of CHERP showed that CHERP affects Ca2+ release from the ER via RyR1. Thus, we propose that CHERP is an RyR1 interacting protein that may be involved in the regulation of excitation-contraction coupling. PMID:21454501

  18. Dual actions of lindane ({gamma}-hexachlorocyclohexane) on calcium homeostasis and exocytosis in rat PC12 cells

    SciTech Connect

    Heusinkveld, Harm J.; Thomas, Gareth O.; Lamot, Ischa; Berg, Martin van den; Kroese, Alfons B.A.; Westerink, Remco H.S.

    2010-10-01

    The persistent organochlorine pesticide lindane is still abundantly found in the environment and in human and animal tissue samples. Lindane induces a wide range of adverse health effects, which are at least partially mediated via the known inhibition of GABA{sub A} and glycine receptors. Additionally, lindane has been reported to increase the basal intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}). As Ca{sup 2+} triggers many cellular processes, including cell death and vesicular neurotransmitter release (exocytosis), we investigated whether lindane affects exocytosis, Ca{sup 2+} homeostasis, production of reactive oxygen species (ROS) and cytotoxicity in neuroendocrine PC12 cells. Amperometric recordings and [Ca{sup 2+}]{sub i} imaging experiments with fura-2 demonstrated that lindane ({>=} 10 {mu}M) rapidly increases basal exocytosis and basal [Ca{sup 2+}]{sub i}. Additional imaging and electrophysiological recordings revealed that this increase was largely due to a lindane-induced membrane depolarization and subsequent opening of N- and P/Q-type voltage-gated Ca{sup 2+} channels (VGCC). On the other hand, lindane ({>=} 3 {mu}M) induced a concentration-dependent but non-specific inhibition of VGCCs, thereby limiting the lindane-induced increase in basal [Ca{sup 2+}]{sub i} and exocytosis. Importantly, the non-specific inhibition of VGCCs also reduced stimulation-evoked exocytosis and Ca{sup 2+} influx. Though lindane exposure concentration-dependently increased ROS production, cell viability was not affected indicating that the used concentrations were not acute cytotoxic. These combined findings indicate that lindane has two, partly counteracting effects. Lindane causes membrane depolarization, thereby increasing basal [Ca{sup 2+}]{sub i} and exocytosis. In parallel, lindane inhibits VGCCs, thereby limiting the basal effects and reducing stimulation-evoked [Ca{sup 2+}]{sub i} and exocytosis. This study further underlines the need to consider

  19. Calcium Kinetics During Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Wastney, Meryl E.; OBrien, Kimberly O.; Lane, Helen W.

    1999-01-01

    Bone loss is one of the most detrimental effects of space flight, threatening to limit the duration of human space missions. The ability to understand and counteract this loss will be critical for crew health and safety during and after extended-duration missions. The hypotheses to be tested in this project are that space flight alters calcium homeostasis and bone mineral metabolism, and that calcium homeostasis and bone mineral metabolism will return to baseline within days to weeks of return to Earth. These hypotheses will be evidenced by elevated rates of bone mineral resorption and decreased bone mineral deposition, decreased absorption of dietary calcium, altered calcitropic endocrine profiles, elevated excretion of calcium in urine and feces, and elevated excretion of markers of bone resorption. The second hypothesis will be evidenced by return of indices of calcium homeostasis and bone metabolism to preflight levels within days to weeks of return to Earth. Studies will be conducted on International Space Station astronauts before, during, and after extended-duration flights. Measurements of calcium kinetics, bone mass, and endocrine/biochemical markers of bone and calcium homeostasis will be conducted. Kinetic studies utilizing dual isotope tracer kinetic studies and mathematical modeling techniques will allow for determination of bone calcium deposition, bone calcium resorption, dietary calcium absorption and calcium excretion (both urinary and endogenous fecal excretion). These studies will build upon preliminary work conducted on the Russian Mir space station. The results from this project will be critical for clarifying how microgravity affects bone and calcium homeostasis, and will provide an important control point for assessment of countermeasure efficacy. These results are expected to aid in developing countermeasures for bone loss, both for space crews and for individuals on Earth who have metabolic bone diseases.

  20. A terD Domain-Encoding Gene (SCO2368) Is Involved in Calcium Homeostasis and Participates in Calcium Regulation of a DosR-Like Regulon in Streptomyces coelicolor

    PubMed Central

    Daigle, François; Lerat, Sylvain; Bucca, Giselda; Sanssouci, Édith; Smith, Colin P.; Malouin, François

    2014-01-01

    Although Streptomyces coelicolor is not resistant to tellurite, it possesses several TerD domain-encoding (tdd) genes of unknown function. To elucidate the function of tdd8, the transcriptomes of S. coelicolor strain M145 and of a tdd8 deletion mutant derivative (the Δtdd8 strain) were compared. Several orthologs of Mycobacterium tuberculosis genes involved in dormancy survival were upregulated in the deletion mutant at the visual onset of prodiginine production. These genes are organized in a putative redox stress response cluster comprising two large loci. A binding motif similar to the dormancy survival regulator (DosR) binding site of M. tuberculosis has been identified in the upstream sequences of most genes in these loci. A predicted role for these genes in the redox stress response is supported by the low NAD+/NADH ratio in the Δtdd8 strain. This S. coelicolor gene cluster was shown to be induced by hypoxia and NO stress. While the tdd8 deletion mutant (the Δtdd8 strain) was unable to maintain calcium homeostasis in a calcium-depleted medium, the addition of Ca2+ in Δtdd8 culture medium reduced the expression of several genes of the redox stress response cluster. The results shown in this work are consistent with Tdd8 playing a significant role in calcium homeostasis and redox stress adaptation. PMID:25535276

  1. Gel-free proteomic analysis of soybean root proteins affected by calcium under flooding stress

    PubMed Central

    Oh, MyeongWon; Nanjo, Yohei; Komatsu, Setsuko

    2014-01-01

    Soybean is sensitive to flooding stress and exhibits reduced growth under flooding conditions. To better understand the flooding-responsive mechanisms of soybean, the effect of exogenous calcium on flooding-stressed soybeans was analyzed using proteomic technique. An increase in exogenous calcium levels enhanced soybean root elongation and suppressed the cell death of root tip under flooding stress. Proteins were extracted from the roots of 4-day-old soybean seedlings exposed to flooding stress without or with calcium for 2 days and analyzed using gel-free proteomic technique. Proteins involved in protein degradation/synthesis/posttranslational modification, hormone/cell wall metabolisms, and DNA synthesis were decreased by flooding stress; however, their reductions were recovered by calcium treatment. Development, lipid metabolism, and signaling-related proteins were increased in soybean roots when calcium was supplied under flooding stress. Fermentation and glycolysis-related proteins were increased in response to flooding; however, these proteins were not affected by calcium supplementation. Furthermore, urease and copper chaperone proteins exhibited similar profiles in 4-day-old untreated soybeans and 4-day-old soybeans exposed to flooding for 2 days in the presence of calcium. These results suggest that calcium might affect the cell wall/hormone metabolisms, protein degradation/synthesis, and DNA synthesis in soybean roots under flooding stress. PMID:25368623

  2. Impact of deteriorated calcium-phosphate homeostasis on amputation-free survival after endovascular revascularization in patients with critical limb ischemia on hemodialysis.

    PubMed

    Hioki, Hirofumi; Miyashita, Yusuke; Shiraki, Tatsuya; Iida, Osamu; Uematsu, Masaaki; Miura, Takashi; Ebisawa, Souichirou; Ikeda, Uichi

    2016-04-01

    Patients on hemodialysis (HD) have abnormalities of calcium-phosphate (CaP) homeostasis and high CaP product contributes to atherosclerosis pathogenesis and adverse events. Patients on HD with critical limb ischemia (CLI) are at risk for major amputation and death because of advanced systemic atherosclerotic disease. The aim of this study was to evaluate the relationship between CaP product and amputation-free survival (AFS) in CLI after endovascular treatment (EVT). We retrospectively analyzed 221 CLI patients on HD. In Kaplan-Meier analysis, AFS was significantly lower in patients with CaP product ⩾ 55 mg(2)/dL(2) compared to those with CaP product <55 mg(2)/dL(2) (54.3% vs 78.5%, p = 0.002). However, neither serum phosphate nor calcium levels were individually associated with AFS. In multivariate analysis, CaP product ⩾ 55 mg(2)/dL(2) was an independent predictor for AFS in CLI patients on HD (hazard ratio, 3.03; 95% confidence interval, 1.78-5.15; p-value < 0.001). We concluded abnormal CaP homeostasis was associated with lower AFS after EVT in CLI patients on HD, and can serve for their risk stratification. PMID:26681436

  3. Resistant starch does not affect zinc homeostasis in rural Malawian children☆,☆☆

    PubMed Central

    Thakwalakwa, Chrissie; Ordiz, M. Isabel; Maleta, Ken; Westcott, Jamie; Ryan, Kelsey; Hambidge, K. Michael; Miller, Leland V.; Young, Graeme; Mortimer, Elissa; Manary, Mark J.; Krebs, Nancy F.

    2015-01-01

    Objective This study tested the hypothesis that Malawian children at risk for zinc deficiency will have reduced endogenous fecal zinc (EFZ) and increased net absorbed zinc (NAZ) following the addition of high amylose maize resistant starch (RS) to their diet. Methods This was a small controlled clinical trial to determine the effects of added dietary RS on zinc homeostasis among 17 stunted children, aged 3–5 years consuming a plant-based diet and at risk for perturbed zinc homeostasis. Dual zinc stable isotope studies were performed before and after 28 d of intervention with RS, so that each child served as their own control. The RS was incorporated into fried wheat flour dough and given under direct observation twice daily for 28 d. Changes in zinc homeostatic measures were compared using paired Student's t-tests and linear regression analysis. Results Children had a mean height-for-age Z-score of −3.3, and consumed animal source foods ≤twice per month. Their habitual diet contained a phytate:zinc molar ratio of 34:1. Children avidly consumed the RS without complaints. EFZ was 0.8±0.4 mg/d (mean±SD) both before and after the intervention. Fractional absorption of zinc was 0.38±0.08 and 0.35±0.06 before and after the RS intervention respectively. NAZ was 1.1±0.5 and 0.6±0.7 before and after the RS intervention. This reduction of NAZ corresponded with diminished dietary zinc intake on the study day following intervention with RS. Regression analysis indicated no change in zinc absorption relative to dietary intake as a result of the RS intervention. Conclusion Consumption of RS did not improve zinc homeostasis in rural African children without zinc deficiency. RS was well tolerated in this setting. PMID:25744509

  4. Native store-operated calcium channels are functionally expressed in mouse spinal cord dorsal horn neurons and regulate resting calcium homeostasis

    PubMed Central

    Xia, Jingsheng; Pan, Rong; Gao, Xinghua; Meucci, Olimpia; Hu, Huijuan

    2014-01-01

    Store-operated calcium channels (SOCs) are calcium-selective cation channels that mediate calcium entry in many different cell types. Store-operated calcium entry (SOCE) is involved in various cellular functions. Increasing evidence suggests that impairment of SOCE is responsible for numerous disorders. A previous study demonstrated that YM-58483, a potent SOC inhibitor, strongly attenuates chronic pain by systemic or intrathecal injection and completely blocks the second phase of formalin-induced spontaneous nocifensive behaviour, suggesting a potential role of SOCs in central sensitization. However, the expression of SOCs, their molecular identity and function in spinal cord dorsal horn neurons remain elusive. Here, we demonstrate that SOCs are expressed in dorsal horn neurons. Depletion of calcium stores from the endoplasmic reticulum (ER) induced large sustained calcium entry, which was blocked by SOC inhibitors, but not by voltage-gated calcium channel blockers. Depletion of ER calcium stores activated inward calcium-selective currents, which was reduced by replacing Ca2+ with Ba2+ and reversed by SOC inhibitors. Using the small inhibitory RNA knockdown approach, we identified both STIM1 and STIM2 as important mediators of SOCE and SOC current, and Orai1 as a key component of the Ca2+ release-activated Ca2+ channels in dorsal horn neurons. Knockdown of STIM1, STIM2 or Orai1 decreased resting Ca2+ levels. We also found that activation of neurokinin 1 receptors led to SOCE and activation of SOCs produced an excitatory action in dorsal horn neurons. Our findings reveal that a novel SOC signal is present in dorsal horn neurons and may play an important role in pain transmission. PMID:24860175

  5. The molecular mechanisms affecting N-acetylaspartate homeostasis following experimental graded traumatic brain injury.

    PubMed

    Di Pietro, Valentina; Amorini, Angela Maria; Tavazzi, Barbara; Vagnozzi, Roberto; Logan, Ann; Lazzarino, Giacomo; Signoretti, Stefano; Lazzarino, Giuseppe; Belli, Antonio

    2014-01-01

    To characterize the molecular mechanisms of N-acetylaspartate (NAA) metabolism following traumatic brain injury (TBI), we measured the NAA, adenosine triphosphate (ATP) and adenosine diphosphate (ADP) concentrations and calculated the ATP/ADP ratio at different times from impact, concomitantly evaluating the gene and protein expressions controlling NAA homeostasis (the NAA synthesizing and degrading enzymes N-acetyltransferase 8-like and aspartoacylase, respectively) in rats receiving either mild or severe TBI. The reversible changes in NAA induced by mild TBI were due to a combination of transient mitochondrial malfunctioning with energy crisis (decrease in ATP and in the ATP/ADP ratio) and modulation in the gene and protein levels of N-acetyltransferase 8-like and increase of aspartoacylase levels. The irreversible decrease in NAA following severe TBI, was instead characterized by profound mitochondrial malfunctioning (constant 65% decrease of the ATP/ADP indicating permanent impairment of the mitochondrial phosphorylating capacity), dramatic repression of the N-acetyltransferase 8-like gene and concomitant remarkable increase in the aspartoacylase gene and protein levels. The mechanisms underlying changes in NAA homeostasis following graded TBI might be of note for possible new therapeutic approaches and will help in understanding the effects of repeat concussions occurring during particular periods of the complex NAA recovery process, coincident with the so called window of brain vulnerability. PMID:24515258

  6. Calcium ions affect the hepatitis B virus core assembly

    SciTech Connect

    Choi, Yongwook; Gyoo Park, Sung; Yoo, Jun-hi; Jung, Guhung . E-mail: drjung@snu.ac.kr

    2005-02-05

    Previous report showed that cytosolic Ca{sup 2+} induced by hepatitis B virus X protein (HBx) promotes HBV replication. In this study, in vitro experiments showed that (i) HBV core assembly in vitro was promoted by Ca{sup 2+} through the sucrose density gradient and the analytical ultracentrifuge analysis. Also (ii) transmission electron microscope analysis demonstrated these assembled HBV core particles were the capsids. Ex vivo experiments showed that the treatment of BAPTA-AM and cyclosporine A (CsA) reduced HBV capsids in the transfected HepG2 cells. In addition to that, the treatment of Thapsigargin (TG) increased HBV capsids in the transfected HepG2 cells. Furthermore, we investigated the increased HBV core assembly by HBx. The results show that the increased cytosolic calcium ions by HBx promote the HBV core assembly.

  7. Familial Alzheimer’s disease mutations in presenilins: effects on endoplasmic reticulum calcium homeostasis and correlation with clinical phenotypes

    PubMed Central

    Nelson, Omar; Supnet, Charlene; Liu, Huarui; Bezprozvanny, Ilya

    2016-01-01

    Mutations in presenilins (PS1 and PS2) are responsible for approximately 40% of all early onset familial Alzheimer’s disease (FAD) monogenic cases. Presenilins (PSs) function as the catalytic subunit of γ-secretase and support cleavage of the amyloid precursor protein (APP). We previously discovered that PSs also function as passive endoplasmic reticulum (ER) calcium (Ca2+) leak channels and that most FAD mutations in PSs affected their ER Ca2+ leak function. To further validate the relevance of our findings to human disease, we here performed Ca2+ imaging experiments with lymphoblasts established from FAD patients. We discovered that most FAD mutations in PSs disrupted ER Ca2+ leak function and resulted in increased ER Ca2+ pool in human lymphoblasts. However, we found that a subset of PS1 FAD mutants supported ER Ca2+ leak activity, as ER Ca2+ pool was unaffected in lymphoblasts. Most of the “functional” mutations for ER Ca2+ leak were clustered in the exon 8–9 area of PSEN1 gene and segregated with the cotton wool plaques and spastic paraparesis (CWP/SP) clinical phenotype occasionally observed in PS1 FAD patients. Our findings with the “functional” and “non-functional” PS1 FAD mutants were confirmed in Ca2+ rescue experiments with PS double-knockout (DKO) mouse embryonic fibroblasts. Based on the combined effects of the PS1 FAD mutations on ER Ca2+ leak and γ-secretase activities we propose a model that explains the heterogeneity observed in FAD. The proposed model has implications for understanding the pathogenesis of both familial and sporadic AD. PMID:20634584

  8. PDH45 transgenic rice maintain cell viability through lower accumulation of Na(+), ROS and calcium homeostasis in roots under salinity stress.

    PubMed

    Nath, Manoj; Yadav, Sandep; Kumar Sahoo, Ranjan; Passricha, Nishat; Tuteja, Renu; Tuteja, Narendra

    2016-02-01

    Salinity severely affects the growth/productivity of rice, which is utilized as major staple food crop worldwide. PDH45 (pea DNA helicase 45), a member of the DEAD-box helicase family, actively provides salinity stress tolerance, but the mechanism behind this is not well known. Therefore, in order to understand the mechanism of stress tolerance, sodium ion (Na(+)), reactive oxygen species (ROS), cytosolic calcium [Ca(2+)]cyt and cell viability were analyzed in roots of PDH45 transgenic-IR64 rice lines along with wild-type (WT) IR64 rice under salinity stress (100mM and 200 mM NaCl). In addition, the roots of salinity-tolerant (FL478) and susceptible (Pusa-44) rice varieties were also analyzed under salinity stress for comparative analysis. The results reveal that, under salinity stress (100mM and 200 mM NaCl), roots of PDH45 transgenic lines accumulate lower levels of Na(+), ROS and maintain [Ca(2+)]cyt and exhibit higher cell viability as compared with roots of WT (IR64) plants. Similar results were also obtained in the salinity-tolerant FL478 rice. However, the roots of WT and salinity-susceptible Pusa-44 rice accumulated higher levels of Na(+), ROS and [Ca(2+)]cyt imbalance and lower cell viability during salinity stress, which is in contrast to the overexpressing PDH45 transgenic lines and salinity-tolerant FL478 rice. Further, to understand the mechanism of PDH45 at molecular level, comparative expression profiling of 12 cation transporters/genes was also conducted in roots of WT (IR64) and overexpressing PDH45 transgenic lines (L1 and L2) under salt stress (24h of 200 mM NaCl). The expression analysis results show altered and differential gene expression of cation transporters/genes in salt-stressed roots of WT (IR64) and overexpressing transgenic lines (L1 and L2). These observations collectively suggest that, under salinity stress conditions, PDH45 is involved in the regulation of Na(+) level, ROS production, [Ca(2+)]cyt homeostasis, cell viability and

  9. Modulation of Intracellular Calcium Levels by Calcium Lactate Affects Colon Cancer Cell Motility through Calcium-Dependent Calpain

    PubMed Central

    Sundaramoorthy, Pasupathi; Sim, Jae Jun; Jang, Yeong-Su; Mishra, Siddhartha Kumar; Jeong, Keun-Yeong; Mander, Poonam; Chul, Oh Byung; Shim, Won-Sik; Oh, Seung Hyun; Nam, Ky-Youb; Kim, Hwan Mook

    2015-01-01

    Cancer cell motility is a key phenomenon regulating invasion and metastasis. Focal adhesion kinase (FAK) plays a major role in cellular adhesion and metastasis of various cancers. The relationship between dietary supplementation of calcium and colon cancer has been extensively investigated. However, the effect of calcium (Ca2+) supplementation on calpain-FAK-motility is not clearly understood. We sought to identify the mechanism of FAK cleavage through Ca2+ bound lactate (CaLa), its downstream signaling and role in the motility of human colon cancer cells. We found that treating HCT116 and HT-29 cells with CaLa immediately increased the intracellular Ca2+ (iCa2+) levels for a prolonged period of time. Ca2+ influx induced cleavage of FAK into an N-terminal FAK (FERM domain) in a dose-dependent manner. Phosphorylated FAK (p-FAK) was also cleaved in to its p-N-terminal FAK. CaLa increased colon cancer cells motility. Calpeptin, a calpain inhibitor, reversed the effects of CaLa on FAK and pFAK cleavage in both cancer cell lines. The cleaved FAK translocates into the nucleus and modulates p53 stability through MDM2-associated ubiquitination. CaLa-induced Ca2+ influx increased the motility of colon cancer cells was mediated by calpain activity through FAK and pFAK protein destabilization. In conclusion, these results suggest that careful consideration may be given in deciding dietary Ca2+ supplementation to patient undergoing treatment for metastatic cancer. PMID:25629974

  10. Calcium

    MedlinePlus

    ... of calcium dietary supplements are carbonate and citrate. Calcium carbonate is inexpensive, but is absorbed best when taken ... antacid products, such as Tums® and Rolaids®, contain calcium carbonate. Each pill or chew provides 200–400 mg ...

  11. Proteomic analysis of acidocalcisomes of Trypanosoma brucei uncovers their role in phosphate metabolism, cation homeostasis, and calcium signaling

    PubMed Central

    Huang, Guozhong; Docampo, Roberto

    2015-01-01

    Trypanosoma brucei, the causative agent of African trypanosomiasis, is a unicellular parasite that possesses lysosome-related organelles known as acidocalcisomes. These organelles have been found from bacteria to human cells, and are characterized by their acidic nature and high calcium and polyphosphate (polyP) content. Our proteomic analysis of acidocalcisomes of T. brucei procyclic stages, together with in situ epitope-tagging and immunofluorescence assays with specific antibodies against selected proteins, established the presence of 2 H+ pumps, a vacuolar H+-ATPase and a vacuolar H+-pyrophosphatase, that acidify the organelles as well as of a number of transporters and channels involved in phosphate metabolism, cation uptake and calcium signaling. Together with recent work in other organisms, these results provide direct evidence that acidocalcisomes are especially adapted to accumulate polyP bound to cations and for calcium signaling. PMID:26480268

  12. BDE-47 and 6-OH-BDE-47 modulate calcium homeostasis in primary fetal human neural progenitor cells via ryanodine receptor-independent mechanisms.

    PubMed

    Gassmann, Kathrin; Schreiber, Timm; Dingemans, Milou M L; Krause, Guido; Roderigo, Claudia; Giersiefer, Susanne; Schuwald, Janette; Moors, Michaela; Unfried, Klaus; Bergman, Åke; Westerink, Remco H S; Rose, Christine R; Fritsche, Ellen

    2014-08-01

    Polybrominated diphenyl ethers (PBDEs) are bioaccumulating flame retardants found in rising concentrations in human tissue. Epidemiological and animal studies have raised concern for their potential to induce developmental neurotoxicity (DNT). Considering the essential role of calcium homeostasis in neurodevelopment, PBDE-induced disturbance of intracellular calcium concentration ([Ca(2+)]i) may underlie PBDE-induced DNT. To test this hypothesis, we investigated acute effects of BDE-47 and 6-OH-BDE-47 on [Ca(2+)]i in human neural progenitor cells (hNPCs) and unraveled involved signaling pathways. Short-time differentiated hNPCs were exposed to BDE-47, 6-OH-BDE-47, and multiple inhibitors/stimulators of presumably involved signaling pathways to determine possible effects on [Ca(2+)]i by single-cell microscopy with the fluorescent dye Fura-2. Initial characterization of calcium signaling pathways confirmed the early developmental stage of hNPCs. In these cells, BDE-47 (2 μM) and 6-OH-BDE-47 (0.2 μM) induce [Ca(2+)]i transients. This increase in [Ca(2+)]i is due to extracellular Ca(2+) influx and intracellular release of Ca(2+), mainly from the endoplasmic reticulum (ER). While extracellular Ca(2+) seems to enter the cytoplasm upon 6-OH-BDE-47 by interfering with the cell membrane and independent of Ca(2+) ion channels, ER-derived Ca(2+) is released following activation of protein lipase C and inositol 1,4,5-trisphosphate receptor, but independently of ryanodine receptors. These findings illustrate that immature developing hNPCs respond to low concentrations of 6-OH-BDE-47 by an increase in [Ca(2+)]i and provide new mechanistic explanations for such BDE-induced calcium disruption. Thus, these data support the possibility of a critical window of PBDE exposure, i.e., early human brain development, which has to be acknowledged in risk assessment. PMID:24599297

  13. Parathyroid hormone, calcitonin, and vitamin D 1974: Present status of physiological studies and analysis of calcium homeostasis

    NASA Technical Reports Server (NTRS)

    Potts, J. T., Jr.; Swenson, K. G.

    1975-01-01

    The role of parathyroid hormone, calcitonin, and vitamin D in the control of calcium and bone metabolism was studied. Particular emphasis was placed on the physiological adaptation to weightlessness and, as a potential model for this purpose, on the immobilization characteristic of space flight or prolonged bed rest. The biosynthesis, control of secretion, and metabolism of these hormonal agents is considered.

  14. Calcineurin and Calcium Channel CchA Coordinate the Salt Stress Response by Regulating Cytoplasmic Ca2+ Homeostasis in Aspergillus nidulans.

    PubMed

    Wang, Sha; Liu, Xiao; Qian, Hui; Zhang, Shizhu; Lu, Ling

    2016-06-01

    .pone.0046564) showed that the deletion of cchA could suppress the hyphal growth defects caused by the loss of calcineurin under salt stress in Aspergillus nidulans In this study, our findings suggest that fungi are able to develop a unique mechanism for adapting to environmental salt stress. Compared to cells cultured normally, the NaCl-pretreated cells had a remarkable increase in transient [Ca(2+)]c Furthermore, we show that calcineurin and CchA are required to modulate cellular calcium levels and synergistically coordinate calcium influx under salt stress. Finally, YvcA, a member of of the TRPC family of vacuolar Ca(2+) channels, was proven to compensate for calcineurin-CchA in fungal salt stress adaption. The findings in this study provide insights into the complex regulatory links between calcineurin and CchA to maintain cytoplasmic Ca(2+) homeostasis in response to different environments. PMID:27037124

  15. Calcium homeostasis in human melanocytes: role of transient receptor potential melastatin 1 (TRPM1) and its regulation by ultraviolet light

    PubMed Central

    Devi, Sulochana; Kedlaya, Rajendra; Maddodi, Nityanand; Bhat, Kumar M. R.; Weber, Craig S.; Valdivia, Hector

    2009-01-01

    Transient receptor potential melastatin (TRPM) is a subfamily of ion channels that are involved in sensing taste, ambient temperature, low pH, osmolarity, and chemical ligands. Melastatin 1/TRPM1, the founding member, was originally identified as melanoma metastasis suppressor based on its expression in normal pigment cells in the skin and the eye but not in aggressive, metastasis-competent melanomas. The role of TRPM1 and its regulation in normal melanocytes and in melanoma progression is not understood. Here, we studied the relationship of TRPM1 expression to growth and differentiation of human epidermal melanocytes. TRPM1 expression and intracellular Ca2+ levels are significantly lower in rapidly proliferating melanocytes compared to the slow growing, differentiated melanocytes. We show that lentiviral short hairpin RNA (shRNA)-mediated knockdown of TRPM1 results in reduced intracellular Ca2+ and decreased Ca2+ uptake suggesting a role for TRPM1 in Ca2+ homeostasis in melanocytes. TRPM1 knockdown also resulted in a decrease in tyrosinase activity and intracellular melanin pigment. Expression of the tumor suppressor p53 by transfection or induction of endogenous p53 by ultraviolet B radiation caused repression of TRPM1 expression accompanied by decrease in mobilization of intracellular Ca2+ and uptake of extracellular Ca2+. These data suggest a role for TRPM1-mediated Ca2+ homeostasis, which is also regulated by ultraviolet B, in melanogenesis. PMID:19587221

  16. Quetiapine Inhibits Microglial Activation by Neutralizing Abnormal STIM1-Mediated Intercellular Calcium Homeostasis and Promotes Myelin Repair in a Cuprizone-Induced Mouse Model of Demyelination

    PubMed Central

    Wang, Hanzhi; Liu, Shubao; Tian, Yanping; Wu, Xiyan; He, Yangtao; Li, Chengren; Namaka, Michael; Kong, Jiming; Li, Hongli; Xiao, Lan

    2015-01-01

    Microglial activation has been considered as a crucial process in the pathogenesis of neuroinflammation and psychiatric disorders. Several antipsychotic drugs (APDs) have been shown to display inhibitory effects on microglial activation in vitro, possibly through the suppression of elevated intracellular calcium (Ca2+) concentration. However, the exact underlying mechanisms still remain elusive. In this study, we aimed to investigate the inhibitory effects of quetiapine (Que), an atypical APD, on microglial activation. We utilized a chronic cuprizone (CPZ)-induced demyelination mouse model to determine the direct effect of Que on microglial activation. Our results showed that treatment with Que significantly reduced recruitment and activation of microglia/macrophage in the lesion of corpus callosum and promoted remyelination after CPZ withdrawal. Our in vitro studies also confirmed the direct effect of Que on lipopolysaccharide (LPS)-induced activation of microglial N9 cells, whereby Que significantly inhibited the release of nitric oxide (NO) and tumor necrosis factor α (TNF-α). Moreover, we demonstrated that pretreatment with Que, neutralized the up-regulation of STIM1 induced by LPS and declined both LPS and thapsigargin (Tg)-induced store-operated Ca2+ entry (SOCE). Finally, we found that pretreatment with Que significantly reduced the translocation of nuclear factor kappa B (NF-κB) p65 subunit from cytoplasm to nuclei in LPS-activated primary microglial cells. Overall, our data suggested that Que may inhibit microglial activation by neutralization of the LPS-induced abnormal STIM1-mediated intercellular calcium homeostasis. PMID:26732345

  17. Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta

    PubMed Central

    Cabral, Wayne A.; Ishikawa, Masaki; Garten, Matthias; Makareeva, Elena N.; Sargent, Brandi M.; Weis, MaryAnn; Barnes, Aileen M.; Webb, Emma A.; Shaw, Nicholas J.; Ala-Kokko, Leena; Lacbawan, Felicitas L.; Högler, Wolfgang; Leikin, Sergey; Blank, Paul S.; Zimmerberg, Joshua; Eyre, David R.; Yamada, Yoshihiko; Marini, Joan C.

    2016-01-01

    Recessive osteogenesis imperfecta (OI) is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecular mechanisms by which TMEM38B mutations cause OI are unknown. We identified 3 probands with recessive defects in TMEM38B. TRIC-B protein is undetectable in proband fibroblasts and osteoblasts, although reduced TMEM38B transcripts are present. TRIC-B deficiency causes impaired release of ER luminal Ca2+, associated with deficient store-operated calcium entry, although SERCA and IP3R have normal stability. Notably, steady state ER Ca2+ is unchanged in TRIC-B deficiency, supporting a role for TRIC-B in the kinetics of ER calcium depletion and recovery. The disturbed Ca2+ flux causes ER stress and increased BiP, and dysregulates synthesis of proband type I collagen at multiple steps. Collagen helical lysine hydroxylation is reduced, while telopeptide hydroxylation is increased, despite increased LH1 and decreased Ca2+-dependent FKBP65, respectively. Although PDI levels are maintained, procollagen chain assembly is delayed in proband cells. The resulting misfolded collagen is substantially retained in TRIC-B null cells, consistent with a 50–70% reduction in secreted collagen. Lower-stability forms of collagen that elude proteasomal degradation are not incorporated into extracellular matrix, which contains only normal stability collagen, resulting in matrix insufficiency. These data support a role for TRIC-B in intracellular Ca2+ homeostasis, and demonstrate that absence of TMEM38B causes OI by dysregulation of calcium flux kinetics in the ER, impacting multiple collagen-specific chaperones and modifying enzymes. PMID:27441836

  18. Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta.

    PubMed

    Cabral, Wayne A; Ishikawa, Masaki; Garten, Matthias; Makareeva, Elena N; Sargent, Brandi M; Weis, MaryAnn; Barnes, Aileen M; Webb, Emma A; Shaw, Nicholas J; Ala-Kokko, Leena; Lacbawan, Felicitas L; Högler, Wolfgang; Leikin, Sergey; Blank, Paul S; Zimmerberg, Joshua; Eyre, David R; Yamada, Yoshihiko; Marini, Joan C

    2016-07-01

    Recessive osteogenesis imperfecta (OI) is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecular mechanisms by which TMEM38B mutations cause OI are unknown. We identified 3 probands with recessive defects in TMEM38B. TRIC-B protein is undetectable in proband fibroblasts and osteoblasts, although reduced TMEM38B transcripts are present. TRIC-B deficiency causes impaired release of ER luminal Ca2+, associated with deficient store-operated calcium entry, although SERCA and IP3R have normal stability. Notably, steady state ER Ca2+ is unchanged in TRIC-B deficiency, supporting a role for TRIC-B in the kinetics of ER calcium depletion and recovery. The disturbed Ca2+ flux causes ER stress and increased BiP, and dysregulates synthesis of proband type I collagen at multiple steps. Collagen helical lysine hydroxylation is reduced, while telopeptide hydroxylation is increased, despite increased LH1 and decreased Ca2+-dependent FKBP65, respectively. Although PDI levels are maintained, procollagen chain assembly is delayed in proband cells. The resulting misfolded collagen is substantially retained in TRIC-B null cells, consistent with a 50-70% reduction in secreted collagen. Lower-stability forms of collagen that elude proteasomal degradation are not incorporated into extracellular matrix, which contains only normal stability collagen, resulting in matrix insufficiency. These data support a role for TRIC-B in intracellular Ca2+ homeostasis, and demonstrate that absence of TMEM38B causes OI by dysregulation of calcium flux kinetics in the ER, impacting multiple collagen-specific chaperones and modifying enzymes. PMID:27441836

  19. Calcium

    MedlinePlus

    ... body stores more than 99 percent of its calcium in the bones and teeth to help make and keep them ... in the foods you eat. Foods rich in calcium include Dairy products such as milk, cheese, and yogurt Leafy, green vegetables Fish with soft bones that you eat, such as canned sardines and ...

  20. A sucrose transporter-interacting protein disulphide isomerase affects redox homeostasis and links sucrose partitioning with abiotic stress tolerance.

    PubMed

    Eggert, Erik; Obata, Toshihiro; Gerstenberger, Anne; Gier, Konstanze; Brandt, Tobias; Fernie, Alisdair R; Schulze, Waltraud; Kühn, Christina

    2016-06-01

    Sucrose accumulation in leaves in response to various abiotic stresses suggests a specific role of this disaccharide for stress tolerance and adaptation. The high-affinity transporter StSUT1 undergoes substrate-induced endocytosis presenting the question as to whether altered sucrose accumulation in leaves in response to stresses is also related to enhanced endocytosis or altered activity of the sucrose transporter. StSUT1 is known to interact with several stress-inducible proteins; here we investigated whether one of the interacting candidates, StPDI1, affects its subcellular localization in response to stress: StPDI1 expression is induced by ER-stress and salt. Both proteins, StSUT1 and StPDI1, were found in the detergent resistant membrane (DRM) fraction, and this might affect internalization. Knockdown of StPDI1 expression severely affects abiotic stress tolerance of transgenic potato plants. Analysis of these plants does not reveal modified subcellular localization or endocytosis of StSUT1, but rather a disturbed redox homeostasis, reduced detoxification of reactive oxygen species and effects on primary metabolism. Parallel observations with other StSUT1-interacting proteins are discussed. The redox status in leaves seems to be linked to the sugar status in response to various stress stimuli and to play a role in stress tolerance. PMID:26670204

  1. Exercise training of late-pregnant and nonpregnant dairy cows affects physical fitness and acid-base homeostasis.

    PubMed

    Davidson, J A; Beede, D K

    2009-02-01

    The objective was to determine if exercise training improves physical fitness of nonlactating, late-pregnant and nonpregnant multiparous Holstein cows and alters acid-base homeostasis during an exercise test on a treadmill. Twenty-six pairs (each pair having 1 late-pregnant and 1 nonpregnant) of cows were assigned to treatments of exercise training or no exercise. Exercise training was walking (1.25 to 1.5 h at 3.25 km/h) every other day in an outdoor mechanical walker for 70 d. Cows completed treadmill exercise tests on d 0, 30, and 60 of the experiment or about d 70, 40, and 10 before expected parturition of the pregnant cow of each pair. On d 0, physical fitness was similar among all cows based on durations of treadmill tests, heart rates, and acid-base measurements at given workloads (21.1 +/- 0.6 min; 144 +/- 2.2 beats per min; plasma lactate 3.1 +/- 1.9 mmol/L; and venous blood pH 7.44 +/- 0.0035, respectively). After 60 d of training, exercised cows walked longer during treadmill exercise tests compared with nonexercised cows (23.7 vs. 18.3 +/- 0.85 min, respectively), indicating greater physical fitness (pooled across pregnancy status). Heart rates and plasma lactate concentrations at given workloads were less (144 vs. 156 +/- 2.7 beats per min; and 1.4 vs. 3.2 +/- 0.24 mmol/L for exercised compared with nonexercised cows, respectively). Additionally, exercised cows more effectively maintained acid-base homeostasis during treadmill tests compared with nonexercised cows. Metabolic, endocrine, and nutritional demands associated with late pregnancy did not affect responses differently to exercise training for late-pregnant compared with nonpregnant cows. Overall, exercise training of late-pregnant and nonpregnant cows for 60 d improved physical fitness. PMID:19164665

  2. Knockdown of the coenzyme Q synthesis gene Smed-dlp1 affects planarian regeneration and tissue homeostasis

    PubMed Central

    Shiobara, Yumiko; Harada, Chiaki; Shiota, Takeshi; Sakamoto, Kimitoshi; Kita, Kiyoshi; Tanaka, Saeko; Tabata, Kenta; Sekie, Kiyoteru; Yamamoto, Yorihiro; Sugiyama, Tomoyasu

    2015-01-01

    The freshwater planarian is a model organism used to study tissue regeneration that occupies an important position among multicellular organisms. Planarian genomic databases have led to the identification of genes that are required for regeneration, with implications for their roles in its underlying mechanism. Coenzyme Q (CoQ) is a fundamental lipophilic molecule that is synthesized and expressed in every cell of every organism. Furthermore, CoQ levels affect development, life span, disease and aging in nematodes and mice. Because CoQ can be ingested in food, it has been used in preventive nutrition. In this study, we investigated the role of CoQ in planarian regeneration. Planarians synthesize both CoQ9 and rhodoquinone 9 (RQ9). Knockdown of Smed-dlp1, a trans-prenyltransferase gene that encodes an enzyme that synthesizes the CoQ side chain, led to a decrease in CoQ9 and RQ9 levels. However, ATP levels did not consistently decrease in these animals. Knockdown animals exhibited tissue regression and curling. The number of mitotic cells decreased in Smed-dlp1 (RNAi) animals. These results suggested a failure in physiological cell turnover and stem cell function. Accordingly, regenerating planarians died from lysis or exhibited delayed regeneration. Interestingly, the observed phenotypes were partially rescued by ingesting food supplemented with α-tocopherol. Taken together, our results suggest that oxidative stress induced by reduced CoQ9 levels affects planarian regeneration and tissue homeostasis. PMID:26516985

  3. Knockdown of the coenzyme Q synthesis gene Smed-dlp1 affects planarian regeneration and tissue homeostasis.

    PubMed

    Shiobara, Yumiko; Harada, Chiaki; Shiota, Takeshi; Sakamoto, Kimitoshi; Kita, Kiyoshi; Tanaka, Saeko; Tabata, Kenta; Sekie, Kiyoteru; Yamamoto, Yorihiro; Sugiyama, Tomoyasu

    2015-12-01

    The freshwater planarian is a model organism used to study tissue regeneration that occupies an important position among multicellular organisms. Planarian genomic databases have led to the identification of genes that are required for regeneration, with implications for their roles in its underlying mechanism. Coenzyme Q (CoQ) is a fundamental lipophilic molecule that is synthesized and expressed in every cell of every organism. Furthermore, CoQ levels affect development, life span, disease and aging in nematodes and mice. Because CoQ can be ingested in food, it has been used in preventive nutrition. In this study, we investigated the role of CoQ in planarian regeneration. Planarians synthesize both CoQ9 and rhodoquinone 9 (RQ9). Knockdown of Smed-dlp1, a trans-prenyltransferase gene that encodes an enzyme that synthesizes the CoQ side chain, led to a decrease in CoQ9 and RQ9 levels. However, ATP levels did not consistently decrease in these animals. Knockdown animals exhibited tissue regression and curling. The number of mitotic cells decreased in Smed-dlp1 (RNAi) animals. These results suggested a failure in physiological cell turnover and stem cell function. Accordingly, regenerating planarians died from lysis or exhibited delayed regeneration. Interestingly, the observed phenotypes were partially rescued by ingesting food supplemented with α-tocopherol. Taken together, our results suggest that oxidative stress induced by reduced CoQ9 levels affects planarian regeneration and tissue homeostasis. PMID:26516985

  4. The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects

    NASA Technical Reports Server (NTRS)

    Zerwekh, J. E.; Ruml, L. A.; Gottschalk, F.; Pak, C. Y.; Blomqvist, C. G. (Principal Investigator)

    1998-01-01

    This study was undertaken to examine the effects of 12 weeks of skeletal unloading on parameters of calcium homeostasis, calcitropic hormones, bone histology, and biochemical markers of bone turnover in 11 normal subjects (9 men, 2 women; 34 +/- 11 years of age). Following an ambulatory control evaluation, all subjects underwent 12 weeks of bed rest. An additional metabolic evaluation was performed after 12 days of reambulation. Bone mineral density declined at the spine (-2.9%, p = 0.092) and at the hip (-3.8%, p = 0.002 for the trochanter). Bed rest prompted a rapid, sustained, significant increase in urinary calcium and phosphorus as well as a significant increase in serum calcium. Urinary calcium increased from a pre-bed rest value of 5.3 mmol/day to values as high as 73 mmol/day during bed rest. Immunoreactive parathyroid hormone and serum 1,25-dihydroxyvitamin D declined significantly during bed rest, although the mean values remained within normal limits. Significant changes in bone histology included a suppression of osteoblastic surface for cancellous bone (3.1 +/- 1.3% to 1.9 +/- 1.5%, p = 0.0142) and increased bone resorption for both cancellous and cortical bone. Cortical eroded surface increased from 3.5 +/- 1.1% to 7.3 +/- 4.0% (p = 0.018) as did active osteoclastic surface (0.2 +/- 0.3% to 0.7 +/- 0.7%, p = 0.021). Cancellous eroded surface increased from 2.1 +/- 1.1% to 4.7 +/- 2.2% (p = 0.002), while mean active osteoclastic surface doubled (0.2 +/- 0.2% to 0.4 +/- 0.3%, p = 0.020). Serum biochemical markers of bone formation (osteocalcin, bone-specific alkaline phosphatase, and type I procollagen extension peptide) did not change significantly during bed rest. Urinary biochemical markers of bone resorption (hydroxyproline, deoxypyridinoline, and N-telopeptide of type I collagen) as well as a serum marker of bone resorption (type I collagen carboxytelopeptide) all demonstrated significant increases during bed rest which declined toward normal

  5. Arsenic-induced alteration in intracellular calcium homeostasis induces head kidney macrophage apoptosis involving the activation of calpain-2 and ERK in Clarias batrachus

    SciTech Connect

    Banerjee, Chaitali; Goswami, Ramansu; Datta, Soma; Rajagopal, R.; Mazumder, Shibnath

    2011-10-01

    We had earlier shown that exposure to arsenic (0.50 {mu}M) caused caspase-3 mediated head kidney macrophage (HKM) apoptosis involving the p38-JNK pathway in Clarias batrachus. Here we examined the roles of calcium (Ca{sup 2+}) and extra-cellular signal-regulated protein kinase (ERK), the other member of MAPK-pathway on arsenic-induced HKM apoptosis. Arsenic-induced HKM apoptosis involved increased expression of ERK and calpain-2. Nifedipine, verapamil and EGTA pre-treatment inhibited the activation of calpain-2, ERK and reduced arsenic-induced HKM apoptosis as evidenced from reduced caspase-3 activity, Annexin V-FITC-propidium iodide and Hoechst 33342 staining. Pre-incubation with ERK inhibitor U 0126 inhibited the activation of calpain-2 and interfered with arsenic-induced HKM apoptosis. Additionally, pre-incubation with calpain-2 inhibitor also interfered with the activation of ERK and inhibited arsenic-induced HKM apoptosis. The NADPH oxidase inhibitor apocynin and diphenyleneiodonium chloride also inhibited ERK activation indicating activation of ERK in arsenic-exposed HKM also depends on signals from NADPH oxidase pathway. Our study demonstrates the critical role of Ca{sup 2+} homeostasis on arsenic-induced HKM apoptosis. We suggest that arsenic-induced alteration in intracellular Ca{sup 2+} levels initiates pro-apoptotic ERK and calpain-2; the two pathways influence each other positively and induce caspase-3 mediated HKM apoptosis. Besides, our study also indicates the role of ROS in the activation of ERK pathway in arsenic-induced HKM apoptosis in C. batrachus. - Highlights: > Altered Ca{sup 2+} homeostasis leads to arsenic-induced HKM apoptosis. > Calpain-2 plays a critical role in the process. > ERK is pro-apoptotic in arsenic-induced HKM apoptosis. > Arsenic-induced HKM apoptosis involves cross talk between calpain-2 and ERK.

  6. Calcium

    MedlinePlus

    ... milligrams) of calcium each day. Get it from: Dairy products. Low-fat milk, yogurt, cheese, and cottage ... lactase that helps digest the sugar (lactose) in dairy products, and may have gas, bloating, cramps, or ...

  7. Ectopic Expression of WRINKLED1 Affects Fatty Acid Homeostasis in Brachypodium distachyon Vegetative Tissues1[OPEN

    PubMed Central

    Yang, Yang; Munz, Jacob; Cass, Cynthia; Zienkiewicz, Agnieszka; Kong, Que; Ma, Wei; Sedbrook, John; Benning, Christoph

    2015-01-01

    Triacylglycerol (TAG) is a storage lipid used for food purposes and as a renewable feedstock for biodiesel production. WRINKLED1 (WRI1) is a transcription factor that governs fatty acid (FA) synthesis and, indirectly, TAG accumulation in oil-storing plant tissues, and its ectopic expression has led to TAG accumulation in vegetative tissues of different dicotyledonous plants. The ectopic expression of BdWRI1 in the grass Brachypodium distachyon induced the transcription of predicted genes involved in glycolysis and FA biosynthesis, and TAG content was increased up to 32.5-fold in 8-week-old leaf blades. However, the ectopic expression of BdWRI1 also caused cell death in leaves, which has not been observed previously in dicotyledonous plants such as Arabidopsis (Arabidopsis thaliana). Lipid analysis indicated that the free FA content was 2-fold elevated in BdWRI1-expressing leaf blades of B. distachyon. The transcription of predicted genes involved in β-oxidation was induced. In addition, linoleic FA treatment caused cell death in B. distachyon leaf blades, an effect that was reversed by the addition of the FA biosynthesis inhibitor cerulenin. Taken together, ectopic expression of BdWRI1 in B. distachyon enhances FA biosynthesis and TAG accumulation in leaves, as expected, but also leads to increased free FA content, which has cytotoxic effects leading to cell death. Thus, while WRI appears to ubiquitously affect FA biosynthesis and TAG accumulation in diverse plants, its ectopic expression can lead to undesired side effects depending on the context of the specific lipid metabolism of the respective plant species. PMID:26419778

  8. Ectopic Expression of WRINKLED1 Affects Fatty Acid Homeostasis in Brachypodium distachyon Vegetative Tissues.

    PubMed

    Yang, Yang; Munz, Jacob; Cass, Cynthia; Zienkiewicz, Agnieszka; Kong, Que; Ma, Wei; Sedbrook, John; Benning, Christoph

    2015-11-01

    Triacylglycerol (TAG) is a storage lipid used for food purposes and as a renewable feedstock for biodiesel production. WRINKLED1 (WRI1) is a transcription factor that governs fatty acid (FA) synthesis and, indirectly, TAG accumulation in oil-storing plant tissues, and its ectopic expression has led to TAG accumulation in vegetative tissues of different dicotyledonous plants. The ectopic expression of BdWRI1 in the grass Brachypodium distachyon induced the transcription of predicted genes involved in glycolysis and FA biosynthesis, and TAG content was increased up to 32.5-fold in 8-week-old leaf blades. However, the ectopic expression of BdWRI1 also caused cell death in leaves, which has not been observed previously in dicotyledonous plants such as Arabidopsis (Arabidopsis thaliana). Lipid analysis indicated that the free FA content was 2-fold elevated in BdWRI1-expressing leaf blades of B. distachyon. The transcription of predicted genes involved in β-oxidation was induced. In addition, linoleic FA treatment caused cell death in B. distachyon leaf blades, an effect that was reversed by the addition of the FA biosynthesis inhibitor cerulenin. Taken together, ectopic expression of BdWRI1 in B. distachyon enhances FA biosynthesis and TAG accumulation in leaves, as expected, but also leads to increased free FA content, which has cytotoxic effects leading to cell death. Thus, while WRI appears to ubiquitously affect FA biosynthesis and TAG accumulation in diverse plants, its ectopic expression can lead to undesired side effects depending on the context of the specific lipid metabolism of the respective plant species. PMID:26419778

  9. Calcium homeostasis in a local/global whole cell model of permeabilized ventricular myocytes with a Langevin description of stochastic calcium release.

    PubMed

    Wang, Xiao; Weinberg, Seth H; Hao, Yan; Sobie, Eric A; Smith, Gregory D

    2015-03-01

    Population density approaches to modeling local control of Ca(2+)-induced Ca(2+) release in cardiac myocytes can be used to construct minimal whole cell models that accurately represent heterogeneous local Ca(2+) signals. Unfortunately, the computational complexity of such "local/global" whole cell models scales with the number of Ca(2+) release unit (CaRU) states, which is a rapidly increasing function of the number of ryanodine receptors (RyRs) per CaRU. Here we present an alternative approach based on a Langevin description of the collective gating of RyRs coupled by local Ca(2+) concentration ([Ca(2+)]). The computational efficiency of this approach no longer depends on the number of RyRs per CaRU. When the RyR model is minimal, Langevin equations may be replaced by a single Fokker-Planck equation, yielding an extremely compact and efficient local/global whole cell model that reproduces and helps interpret recent experiments that investigate Ca(2+) homeostasis in permeabilized ventricular myocytes. Our calculations show that elevated myoplasmic [Ca(2+)] promotes elevated network sarcoplasmic reticulum (SR) [Ca(2+)] via SR Ca(2+)-ATPase-mediated Ca(2+) uptake. However, elevated myoplasmic [Ca(2+)] may also activate RyRs and promote stochastic SR Ca(2+) release, which can in turn decrease SR [Ca(2+)]. Increasing myoplasmic [Ca(2+)] results in an exponential increase in spark-mediated release and a linear increase in nonspark-mediated release, consistent with recent experiments. The model exhibits two steady-state release fluxes for the same network SR [Ca(2+)] depending on whether myoplasmic [Ca(2+)] is low or high. In the later case, spontaneous release decreases SR [Ca(2+)] in a manner that maintains robust Ca(2+) sparks. PMID:25485896

  10. Pharmacological Modulation of Calcium Homeostasis in Familial Dilated Cardiomyopathy: An In Vitro Analysis From an RBM20 Patient-Derived iPSC Model.

    PubMed

    Wyles, S P; Hrstka, S C; Reyes, S; Terzic, A; Olson, T M; Nelson, T J

    2016-06-01

    For inherited cardiomyopathies, abnormal sensitivity to intracellular calcium (Ca(2+) ), incurred from genetic mutations, initiates subsequent molecular events leading to pathological remodeling. Here, we characterized the effect of β-adrenergic stress in familial dilated cardiomyopathy (DCM) using human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) from a patient with RBM20 DCM. Our findings suggest that β-adrenergic stimulation accelerated defective Ca(2+) homeostasis, apoptotic changes, and sarcomeric disarray in familial DCM hiPSC-CMs. Furthermore, pharmacological modulation of abnormal Ca(2+) handling by pretreatment with β-blocker, carvedilol, or Ca(2+) -channel blocker, verapamil, significantly decreased the area under curve, reduced percentage of disorganized cells, and decreased terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL)-positive apoptotic loci in familial DCM hiPSC-CMs after β-adrenergic stimulation. These translational data provide patient-based in vitro analysis of β-adrenergic stress in RBM20-deficient familial DCM hiPSC-CMs and evaluation of therapeutic interventions to modify heart disease progression, which may be personalized, but more importantly generalized in the clinic. PMID:27105042

  11. Unfolded protein response-induced dysregulation of calcium homeostasis promotes retinal degeneration in rat models of autosomal dominant retinitis pigmentosa

    PubMed Central

    Shinde, V; Kotla, P; Strang, C; Gorbatyuk, M

    2015-01-01

    The molecular mechanism of autosomal dominant retinitis pigmentosa (ADRP) in rats is closely associated with a persistently activated unfolded protein response (UPR). If unchecked, the UPR might trigger apoptosis, leading to photoreceptor death. One of the UPR-activated cellular signaling culminating in apoptotic photoreceptor cell death is linked to an increase in intracellular Ca2+. Therefore, we validated whether ADRP retinas experience a cytosolic Ca2+ overload, and whether sustained UPR in the wild-type retina could promote retinal degeneration through Ca2+-mediated calpain activation. We performed an ex vivo experiment to measure intracellular Ca2+ in ADRP retinas as well as to detect the expression levels of proteins that act as Ca2+ sensors. In separate experiments with the subretinal injection of tunicamycin (UPR inducer) and a mixture of calcium ionophore (A231278) and thapsigargin (SERCA2b inhibitor) we assessed the consequences of a sustained UPR activation and increased intracellular Ca2+ in the wild-type retina, respectively, by performing scotopic ERG, histological, and western blot analyses. Results of the study revealed that induced UPR in the retina activates calpain-mediated signaling, and increased intracellular Ca2+ is capable of promoting retinal degeneration. A significant decline in ERG amplitudes at 6 weeks post treatment was associated with photoreceptor cell loss that occurred through calpain-activated CDK5-pJNK-Csp3/7 pathway. Similar calpain activation was found in ADRP rat retinas. A twofold increase in intracellular Ca2+ and up- and downregulations of ER membrane-associated Ca2+-regulated IP3R channels and SERCA2b transporters were detected. Therefore, sustained UPR activation in the ADRP rat retinas could promote retinal degeneration through increased intracellular Ca2+ and calpain-mediated apoptosis.

  12. Unfolded protein response-induced dysregulation of calcium homeostasis promotes retinal degeneration in rat models of autosomal dominant retinitis pigmentosa

    PubMed Central

    Shinde, V; Kotla, P; Strang, C; Gorbatyuk, M

    2016-01-01

    The molecular mechanism of autosomal dominant retinitis pigmentosa (ADRP) in rats is closely associated with a persistently activated unfolded protein response (UPR). If unchecked, the UPR might trigger apoptosis, leading to photoreceptor death. One of the UPR-activated cellular signaling culminating in apoptotic photoreceptor cell death is linked to an increase in intracellular Ca2+. Therefore, we validated whether ADRP retinas experience a cytosolic Ca2+ overload, and whether sustained UPR in the wild-type retina could promote retinal degeneration through Ca2+-mediated calpain activation. We performed an ex vivo experiment to measure intracellular Ca2+ in ADRP retinas as well as to detect the expression levels of proteins that act as Ca2+ sensors. In separate experiments with the subretinal injection of tunicamycin (UPR inducer) and a mixture of calcium ionophore (A231278) and thapsigargin (SERCA2b inhibitor) we assessed the consequences of a sustained UPR activation and increased intracellular Ca2+ in the wild-type retina, respectively, by performing scotopic ERG, histological, and western blot analyses. Results of the study revealed that induced UPR in the retina activates calpain-mediated signaling, and increased intracellular Ca2+ is capable of promoting retinal degeneration. A significant decline in ERG amplitudes at 6 weeks post treatment was associated with photoreceptor cell loss that occurred through calpain-activated CDK5-pJNK-Csp3/7 pathway. Similar calpain activation was found in ADRP rat retinas. A twofold increase in intracellular Ca2+ and up- and downregulations of ER membrane-associated Ca2+-regulated IP3R channels and SERCA2b transporters were detected. Therefore, sustained UPR activation in the ADRP rat retinas could promote retinal degeneration through increased intracellular Ca2+ and calpain-mediated apoptosis. PMID:26844699

  13. Scn1b deletion leads to increased tetrodotoxin-sensitive sodium current, altered intracellular calcium homeostasis and arrhythmias in murine hearts

    PubMed Central

    Lin, Xianming; O'Malley, Heather; Chen, Chunling; Auerbach, David; Foster, Monique; Shekhar, Akshay; Zhang, Mingliang; Coetzee, William; Jalife, José; Fishman, Glenn I; Isom, Lori; Delmar, Mario

    2015-01-01

    (encoding the β1 and β1B subunits) have been associated with various inherited arrhythmogenic syndromes, including Brugada syndrome and sudden unexpected death in patients with epilepsy. We used Scn1b null mice to understand better the relation between Scn1b expression, and cardiac electrical function. Loss of Scn1b caused, among other effects, increased amplitude of tetrodotoxin-sensitive INa, delayed after-depolarizations, triggered beats, delayed Ca2+ transients, frequent spontaneous calcium release events and increased susceptibility to polymorphic ventricular arrhythmias. Most alterations in Ca2+ homeostasis were prevented by 100 nm tetrodotoxin. We propose that life-threatening arrhythmias in patients with mutations in Scn1b, a gene classically defined as ancillary to the Na+ channel α subunit, can be partly consequent to disrupted intracellular Ca2+ homeostasis. PMID:25772295

  14. Exposure to Phthalates Affects Calcium Handling and Intercellular Connectivity of Human Stem Cell-Derived Cardiomyocytes

    PubMed Central

    Posnack, Nikki Gillum; Idrees, Rabia; Ding, Hao; Jaimes III, Rafael; Stybayeva, Gulnaz; Karabekian, Zaruhi; Laflamme, Michael A.; Sarvazyan, Narine

    2015-01-01

    Background The pervasive nature of plastics has raised concerns about the impact of continuous exposure to plastic additives on human health. Of particular concern is the use of phthalates in the production of flexible polyvinyl chloride (PVC) products. Di-2-ethylhexyl-phthalate (DEHP) is a commonly used phthalate ester plasticizer that imparts flexibility and elasticity to PVC products. Recent epidemiological studies have reported correlations between urinary phthalate concentrations and cardiovascular disease, including an increased risk of high blood pressure and coronary risk. Yet, there is little direct evidence linking phthalate exposure to adverse effects in human cells, including cardiomyocytes. Methods and Results The effect of DEHP on calcium handling was examined using monolayers of gCAMP3 human embryonic stem cell-derived cardiomyocytes, which contain an endogenous calcium sensor. Cardiomyocytes were exposed to DEHP (5 – 50 μg/mL), and calcium transients were recorded using a Zeiss confocal imaging system. DEHP exposure (24 – 72 hr) had a negative chronotropic and inotropic effect on cardiomyocytes, increased the minimum threshold voltage required for external pacing, and modified connexin-43 expression. Application of Wy-14,643 (100 μM), an agonist for the peroxisome proliferator-activated receptor alpha, did not replicate DEHP’s effects on calcium transient morphology or spontaneous beating rate. Conclusions Phthalates can affect the normal physiology of human cardiomyocytes, including DEHP elicited perturbations in cardiac calcium handling and intercellular connectivity. Our findings call for additional studies to clarify the extent by which phthalate exposure can alter cardiac function, particularly in vulnerable patient populations who are at risk for high phthalate exposure. PMID:25799571

  15. Regulation of Sulphur Assimilation Is Essential for Virulence and Affects Iron Homeostasis of the Human-Pathogenic Mould Aspergillus fumigatus

    PubMed Central

    Amich, Jorge; Schafferer, Lukas; Haas, Hubertus; Krappmann, Sven

    2013-01-01

    Sulphur is an essential element that all pathogens have to absorb from their surroundings in order to grow inside their infected host. Despite its importance, the relevance of sulphur assimilation in fungal virulence is largely unexplored. Here we report a role of the bZIP transcription factor MetR in sulphur assimilation and virulence of the human pathogen Aspergillus fumigatus. The MetR regulator is essential for growth on a variety of sulphur sources; remarkably, it is fundamental for assimilation of inorganic S-sources but dispensable for utilization of methionine. Accordingly, it strongly supports expression of genes directly related to inorganic sulphur assimilation but not of genes connected to methionine metabolism. On a broader scale, MetR orchestrates the comprehensive transcriptional adaptation to sulphur-starving conditions as demonstrated by digital gene expression analysis. Surprisingly, A. fumigatus is able to utilize volatile sulphur compounds produced by its methionine catabolism, a process that has not been described before and that is MetR-dependent. The A. fumigatus MetR transcriptional activator is important for virulence in both leukopenic mice and an alternative mini-host model of aspergillosis, as it was essential for the development of pulmonary aspergillosis and supported the systemic dissemination of the fungus. MetR action under sulphur-starving conditions is further required for proper iron regulation, which links regulation of sulphur metabolism to iron homeostasis and demonstrates an unprecedented regulatory crosstalk. Taken together, this study provides evidence that regulation of sulphur assimilation is not only crucial for A. fumigatus virulence but also affects the balance of iron in this prime opportunistic pathogen. PMID:24009505

  16. Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis

    PubMed Central

    Kapoor, Sanjay

    2013-01-01

    Rice MADS29 has recently been reported to cause programmed cell death of maternal tissues, the nucellus, and the nucellar projection during early stages of seed development. However, analyses involving OsMADS29 protein expression domains and characterization of OsMADS29 gain-of-function and knockdown phenotypes revealed novel aspects of its function in maintaining hormone homeostasis, which may have a role in the development of embryo and plastid differentiation and starch filling in endosperm cells. The MADS29 transcripts accumulated to high levels soon after fertilization; however, protein accumulation was found to be delayed by at least 4 days. Immunolocalization studies revealed that the protein accumulated initially in the dorsal-vascular trace and the outer layers of endosperm, and subsequently in the embryo and aleurone and subaleurone layers of the endosperm. Ectopic expression of MADS29 resulted in a severely dwarfed phenotype, exhibiting elevated levels of cytokinin, thereby suggesting that cytokinin biosynthesis pathway could be one of the major targets of OsMADS29. Overexpression of OsMADS29 in heterologous BY2 cells was found to mimic the effects of exogenous application of cytokinins that causes differentiation of proplastids to starch-containing amyloplasts and activation of genes involved in the starch biosynthesis pathway. Suppression of MADS29 expression by RNAi severely affected seed set. The surviving seeds were smaller in size, with developmental abnormalities in the embryo and reduced size of endosperm cells, which also contained loosely packed starch granules. Microarray analysis of overexpression and knockdown lines exhibited altered expression of genes involved in plastid biogenesis, starch biosynthesis, cytokinin signalling and biosynthesis. PMID:23929654

  17. Ocean Acidification Affects Redox-Balance and Ion-Homeostasis in the Life-Cycle Stages of Emiliania huxleyi

    PubMed Central

    Rokitta, Sebastian D.; John, Uwe; Rost, Björn

    2012-01-01

    Ocean Acidification (OA) has been shown to affect photosynthesis and calcification in the coccolithophore Emiliania huxleyi, a cosmopolitan calcifier that significantly contributes to the regulation of the biological carbon pumps. Its non-calcifying, haploid life-cycle stage was found to be relatively unaffected by OA with respect to biomass production. Deeper insights into physiological key processes and their dependence on environmental factors are lacking, but are required to understand and possibly estimate the dynamics of carbon cycling in present and future oceans. Therefore, calcifying diploid and non-calcifying haploid cells were acclimated to present and future CO2 partial pressures (pCO2; 38.5 Pa vs. 101.3 Pa CO2) under low and high light (50 vs. 300 µmol photons m−2 s−1). Comparative microarray-based transcriptome profiling was used to screen for the underlying cellular processes and allowed to follow up interpretations derived from physiological data. In the diplont, the observed increases in biomass production under OA are likely caused by stimulated production of glycoconjugates and lipids. The observed lowered calcification under OA can be attributed to impaired signal-transduction and ion-transport. The haplont utilizes distinct genes and metabolic pathways, reflecting the stage-specific usage of certain portions of the genome. With respect to functionality and energy-dependence, however, the transcriptomic OA-responses resemble those of the diplont. In both life-cycle stages, OA affects the cellular redox-state as a master regulator and thereby causes a metabolic shift from oxidative towards reductive pathways, which involves a reconstellation of carbon flux networks within and across compartments. Whereas signal transduction and ion-homeostasis appear equally OA-sensitive under both light intensities, the effects on carbon metabolism and light physiology are clearly modulated by light availability. These interactive effects can be attributed

  18. Effects of denosumab, alendronate, or denosumab following alendronate on bone turnover, calcium homeostasis, bone mass and bone strength in ovariectomized cynomolgus monkeys.

    PubMed

    Kostenuik, Paul J; Smith, Susan Y; Samadfam, Rana; Jolette, Jacquelin; Zhou, Lei; Ominsky, Michael S

    2015-04-01

    Postmenopausal osteoporosis is a chronic disease wherein increased bone remodeling reduces bone mass and bone strength. Antiresorptive agents including bisphosphonates are commonly used to mitigate bone loss and fracture risk. Osteoclast inhibition via denosumab (DMAb), a RANKL inhibitor, is a newer approach for reducing fracture risk in patients at increased risk for fracture. The safety of transitioning from bisphosphonate therapy (alendronate; ALN) to DMAb was examined in mature ovariectomized (OVX) cynomolgus monkeys (cynos). One day after OVX, cynos (7-10/group) were treated with vehicle (VEH, s.c.), ALN (50 μg/kg, i.v., twice monthly) or DMAb (25 mg/kg/month, s.c.) for 12 months. Other animals received VEH or ALN for 6 months and then transitioned to 6 months of DMAb. DMAb caused significantly greater reductions in serum CTx than ALN, and transition from ALN to DMAb caused further reductions relative to continued ALN. DMAb and ALN decreased serum calcium (Ca), and transition from ALN to DMAb resulted in a lesser decline in Ca relative to DMAb or to VEH-DMAb transition. Bone histomorphometry indicated significantly reduced trabecular and cortical remodeling with DMAb or ALN. Compared with ALN, DMAb caused greater reductions in osteoclast surface, eroded surface, cortical porosity and fluorochrome labeling, and transition from ALN to DMAb reduced these parameters relative to continued ALN. Bone mineral density increased in all active treatment groups relative to VEH controls. Destructive biomechanical testing revealed significantly greater vertebral strength in all three groups receiving DMAb, including those receiving DMAb after ALN, relative to VEH controls. Bone mass and strength remained highly correlated in all groups at all tested skeletal sites, consistent with normal bone quality. These data indicate that cynos transitioned from ALN to DMAb exhibited reduced bone resorption and cortical porosity, and increased BMD and bone strength, without

  19. Factors affecting ex-situ aqueous mineral carbonation using calcium and magnesium silicate minerals

    SciTech Connect

    Gerdemann, Stephen J.; Dahlin, David C.; O'Connor, William K.; Penner, Larry R.; Rush, G.E.

    2004-01-01

    Carbonation of magnesium- and calcium-silicate minerals to form their respective carbonates is one method to sequester carbon dioxide. Process development studies have identified reactor design as a key component affecting both the capital and operating costs of ex-situ mineral sequestration. Results from mineral carbonation studies conducted in a batch autoclave were utilized to design and construct a unique continuous pipe reactor with 100% recycle (flow-loop reactor). Results from the flow-loop reactor are consistent with batch autoclave tests, and are being used to derive engineering data necessary to design a bench-scale continuous pipeline reactor.

  20. Partial calcium depletion during membrane filtration affects gelation of reconstituted milk protein concentrates.

    PubMed

    Eshpari, H; Jimenez-Flores, R; Tong, P S; Corredig, M

    2015-12-01

    Milk protein concentrate powders (MPC) with improved rehydration properties are often manufactured using processing steps, such as acidification and high-pressure processing, and with addition of other ingredients, such as sodium chloride, during their production. These steps are known to increase the amount of serum caseins or modify the mineral equilibrium, hence improving solubility of the retentates. The processing functionality of the micelles may be affected. The aim of this study was to investigate the effects of partial acidification by adding glucono-δ-lactone (GDL) to skim milk during membrane filtration on the structural changes of the casein micelles by observing their chymosin-induced coagulation behavior, as such coagulation is affected by both the supramolecular structure of the caseins and calcium equilibrium. Milk protein concentrates were prepared by preacidification with GDL to pH 6 using ultrafiltration (UF) and diafiltration (DF) followed by spray-drying. Reconstituted UF and DF samples (3.2% protein) treated with GDL showed significantly increased amounts of soluble calcium and nonsedimentable caseins compared with their respective controls, as measured by ion chromatography and sodium dodecyl sulfate-PAGE electrophoresis, respectively. The primary phase of chymosin-induced gelation was not significantly different between treatments as measured by the amount of caseino-macropeptide released. The rheological properties of the reconstituted MPC powders were determined immediately after addition of chymosin, both before and after dialysis against skim milk, to ensure similar serum composition for all samples. Reconstituted samples before dialysis showed no gelation (defined as tan δ=1), and after re-equilibration only control UF and DF samples showed gelation. The gelation properties of reconstituted MPC powders were negatively affected by the presence of soluble casein, and positively affected by the amount of both soluble and insoluble

  1. OPG Treatment Prevents Bone Loss During Lactation But Does Not Affect Milk Production or Maternal Calcium Metabolism.

    PubMed

    Ardeshirpour, Laleh; Dumitru, Cristina; Dann, Pamela; Sterpka, John; VanHouten, Joshua; Kim, Wonnam; Kostenuik, Paul; Wysolmerski, John

    2015-08-01

    Lactation is associated with increased bone turnover and rapid bone loss, which liberates skeletal calcium used for milk production. Previous studies suggested that an increase in the skeletal expression of receptor activator of nuclear factor kappa-light-chain-enhancer of activated B cells ligand (RANKL) coupled with a decrease in osteoprotegerin (OPG) levels likely triggered bone loss during lactation. In this study, we treated lactating mice with recombinant OPG to determine whether bone loss during lactation was dependent on RANKL signaling and whether resorption of the maternal skeleton was required to support milk production. OPG treatment lowered bone resorption rates and completely prevented bone loss during lactation but, surprisingly, did not decrease osteoclast numbers. In contrast, OPG was quite effective at lowering osteoblast numbers and inhibiting bone formation in lactating mice. Furthermore, treatment with OPG during lactation prevented the usual anabolic response associated with reversal of lactational bone loss after weaning. Preventing bone loss had no appreciable effect on milk production, milk calcium levels, or maternal calcium homeostasis when mice were on a standard diet. However, when dietary calcium was restricted, treatment with OPG caused maternal hypocalcemia, maternal death, and decreased milk production. These studies demonstrate that RANKL signaling is a requirement for bone loss during lactation, and suggest that osteoclast activity may be required to increase osteoblast numbers during lactation in preparation for the recovery of bone mass after weaning. These data also demonstrate that maternal bone loss is not absolutely required to supply calcium for milk production unless dietary calcium intake is inadequate. PMID:25961842

  2. OPG Treatment Prevents Bone Loss During Lactation But Does Not Affect Milk Production or Maternal Calcium Metabolism

    PubMed Central

    Ardeshirpour, Laleh; Dumitru, Cristina; Dann, Pamela; Sterpka, John; VanHouten, Joshua; Kim, Wonnam; Kostenuik, Paul

    2015-01-01

    Lactation is associated with increased bone turnover and rapid bone loss, which liberates skeletal calcium used for milk production. Previous studies suggested that an increase in the skeletal expression of receptor activator of nuclear factor kappa-light-chain-enhancer of activated B cells ligand (RANKL) coupled with a decrease in osteoprotegerin (OPG) levels likely triggered bone loss during lactation. In this study, we treated lactating mice with recombinant OPG to determine whether bone loss during lactation was dependent on RANKL signaling and whether resorption of the maternal skeleton was required to support milk production. OPG treatment lowered bone resorption rates and completely prevented bone loss during lactation but, surprisingly, did not decrease osteoclast numbers. In contrast, OPG was quite effective at lowering osteoblast numbers and inhibiting bone formation in lactating mice. Furthermore, treatment with OPG during lactation prevented the usual anabolic response associated with reversal of lactational bone loss after weaning. Preventing bone loss had no appreciable effect on milk production, milk calcium levels, or maternal calcium homeostasis when mice were on a standard diet. However, when dietary calcium was restricted, treatment with OPG caused maternal hypocalcemia, maternal death, and decreased milk production. These studies demonstrate that RANKL signaling is a requirement for bone loss during lactation, and suggest that osteoclast activity may be required to increase osteoblast numbers during lactation in preparation for the recovery of bone mass after weaning. These data also demonstrate that maternal bone loss is not absolutely required to supply calcium for milk production unless dietary calcium intake is inadequate. PMID:25961842

  3. Mutations in the putative calcium-binding domain of polyomavirus VP1 affect capsid assembly

    NASA Technical Reports Server (NTRS)

    Haynes, J. I. 2nd; Chang, D.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Calcium ions appear to play a major role in maintaining the structural integrity of the polyomavirus and are likely involved in the processes of viral uncoating and assembly. Previous studies demonstrated that a VP1 fragment extending from Pro-232 to Asp-364 has calcium-binding capabilities. This fragment contains an amino acid stretch from Asp-266 to Glu-277 which is quite similar in sequence to the amino acids that make up the calcium-binding EF hand structures found in many proteins. To assess the contribution of this domain to polyomavirus structural integrity, the effects of mutations in this region were examined by transfecting mutated viral DNA into susceptible cells. Immunofluorescence studies indicated that although viral protein synthesis occurred normally, infective viral progeny were not produced in cells transfected with polyomavirus genomes encoding either a VP1 molecule lacking amino acids Thr-262 through Gly-276 or a VP1 molecule containing a mutation of Asp-266 to Ala. VP1 molecules containing the deletion mutation were unable to bind 45Ca in an in vitro assay. Upon expression in Escherichia coli and purification by immunoaffinity chromatography, wild-type VP1 was isolated as pentameric, capsomere-like structures which could be induced to form capsid-like structures upon addition of CaCl2, consistent with previous studies. However, although VP1 containing the point mutation was isolated as pentamers which were indistinguishable from wild-type VP1 pentamers, addition of CaCl2 did not result in their assembly into capsid-like structures. Immunogold labeling and electron microscopy studies of transfected mammalian cells provided in vivo evidence that a mutation in this region affects the process of viral assembly.

  4. Meals and dephytinization affect calcium and zinc absorption in Nigerian children with rickets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutritional rickets resulting from calcium insufficiency is common in Nigeria, and high dietary phytate is thought to inhibit calcium and zinc absorption. We compared the effects of a high-phytate meal and enzymatic dephytinization on calcium and zinc absorption in Nigerian children with and without...

  5. Comparative effects of oral aromatic and branched-chain amino acids on urine calcium and excretion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aromatic amino acids (AAAs) bind to the calcium sensor receptor (CaR) but branched-chain amino acids (B-CAAs) do not; by binding to this receptor, AAAs have an increased potential to affect calcium homeostasis. This study was conducted to determine and compare the effects of AAAs and B-CAAs on calci...

  6. Redox control of brain calcium in health and disease.

    PubMed

    Hidalgo, Cecilia; Carrasco, M Angélica

    2011-04-01

    Calcium ion is a highly versatile cellular messenger. Calcium signals-defined as transient increments in intracellular-free calcium concentration-elicit a multiplicity of responses that depend on cell type and signal properties such as their intensity, duration, cellular localization, and frequency. The vast literature available on the role of calcium signals in brain cells, chiefly centered on neuronal cells, indicates that calcium signals regulate essential neuronal functions, including synaptic transmission, gene expression, synaptic plasticity processes underlying learning and memory, and survival or death. The eight articles comprising this forum issue address different and novel aspects of calcium signaling in normal neuronal function, including how calcium signals interact with the generation of reactive species of oxygen/nitrogen with various functional consequences, and focus also on how abnormal calcium homeostasis and signaling, plus oxidative stress, affect overall brain physiology during aging and in neurodegenerative conditions such as Alzheimer's or Parkinson's disease. PMID:21050143

  7. Intracellular calcium affects prestin's voltage operating point indirectly via turgor-induced membrane tension

    NASA Astrophysics Data System (ADS)

    Song, Lei; Santos-Sacchi, Joseph

    2015-12-01

    Recent identification of a calmodulin binding site within prestin's C-terminus indicates that calcium can significantly alter prestin's operating voltage range as gauged by the Boltzmann parameter Vh (Keller et al., J. Neuroscience, 2014). We reasoned that those experiments may have identified the molecular substrate for the protein's tension sensitivity. In an effort to understand how this may happen, we evaluated the effects of turgor pressure on such shifts produced by calcium. We find that the shifts are induced by calcium's ability to reduce turgor pressure during whole cell voltage clamp recording. Clamping turgor pressure to 1kPa, the cell's normal intracellular pressure, completely counters the calcium effect. Furthermore, following unrestrained shifts, collapsing the cells abolishes induced shifts. We conclude that calcium does not work by direct action on prestin's conformational state. The possibility remains that calcium interaction with prestin alters water movements within the cell, possibly via its anion transport function.

  8. Peptide Neurotoxins that Affect Voltage-Gated Calcium Channels: A Close-Up on ω-Agatoxins

    PubMed Central

    Pringos, Emilie; Vignes, Michel; Martinez, Jean; Rolland, Valerie

    2011-01-01

    Peptide neurotoxins found in animal venoms have gained great interest in the field of neurotransmission. As they are high affinity ligands for calcium, potassium and sodium channels, they have become useful tools for studying channel structure and activity. Peptide neurotoxins represent the clinical potential of ion-channel modulators across several therapeutic fields, especially in developing new strategies for treatment of ion channel-related diseases. The aim of this review is to overview the latest updates in the domain of peptide neurotoxins that affect voltage-gated calcium channels, with a special focus on ω-agatoxins. PMID:22069688

  9. Adaptive homeostasis.

    PubMed

    Davies, Kelvin J A

    2016-06-01

    Homeostasis is a central pillar of modern Physiology. The term homeostasis was invented by Walter Bradford Cannon in an attempt to extend and codify the principle of 'milieu intérieur,' or a constant interior bodily environment, that had previously been postulated by Claude Bernard. Clearly, 'milieu intérieur' and homeostasis have served us well for over a century. Nevertheless, research on signal transduction systems that regulate gene expression, or that cause biochemical alterations to existing enzymes, in response to external and internal stimuli, makes it clear that biological systems are continuously making short-term adaptations both to set-points, and to the range of 'normal' capacity. These transient adaptations typically occur in response to relatively mild changes in conditions, to programs of exercise training, or to sub-toxic, non-damaging levels of chemical agents; thus, the terms hormesis, heterostasis, and allostasis are not accurate descriptors. Therefore, an operational adjustment to our understanding of homeostasis suggests that the modified term, Adaptive Homeostasis, may be useful especially in studies of stress, toxicology, disease, and aging. Adaptive Homeostasis may be defined as follows: 'The transient expansion or contraction of the homeostatic range in response to exposure to sub-toxic, non-damaging, signaling molecules or events, or the removal or cessation of such molecules or events.' PMID:27112802

  10. True manganese absorption in chicks as affected by dietary excesses of calcium and phosphorus

    SciTech Connect

    Wedekind, K.J.; Titgemeyer, E.C.; Twardock, A.R.; Baker, D.H. )

    1991-03-15

    Two balance studies with growing chicks were conducted to evaluate the effects of excess calcium (Ca) or excess phosphorus (P) on endogenous fecal manganese (Mn) excretion and true Mn absorption determined using an isotope-dilution technique. Supplements were added to a corn-soybean meal diet containing 1% Ca, 0.7% P and 37 mg/kg Mn. In Exp. 1, supplemental Ca levels of 0, 0.5 and 1.0% from feedgrade limestone were compared. True absorption of Mn was not affected by Ca level and averaged 2.8% for birds fed the Mn-unsupplemented diet. In Exp. 2, a 2 x 3 factorial arrangement of treatments included: 100 and 1,000 mg/kg supplemental Mn and 0, 0.4 and 0.8% added P supplied by dicalcium phosphate. Excess P decreased true absorption of Mn. In birds fed 100 mg/kg supplemental Mn, absorption of Mn decreased 22% as excess P increased from 0 to 0.8%, whereas in birds fed 1,000 mg/kg supplemental Mn, Mn absorption decreased 58% as a result of 0.8% P supplementation. These results confirm that excess Ca has little effect while excess P has a marked effect on gut absorption of Mn.

  11. p53-upregulated-modulator-of-apoptosis (PUMA) deficiency affects food intake but does not impact on body weight or glucose homeostasis in diet-induced obesity.

    PubMed Central

    Litwak, Sara A.; Loh, Kim; Stanley, William J.; Pappas, Evan G.; Wali, Jibran A.; Selck, Claudia; Strasser, Andreas; Thomas, Helen E.; Gurzov, Esteban N.

    2016-01-01

    BCL-2 proteins have been implicated in the control of glucose homeostasis and metabolism in different cell types. Thus, the aim of this study was to determine the role of the pro-apoptotic BH3-only protein, p53-upregulated-modulator-of-apoptosis (PUMA), in metabolic changes mediated by diet-induced obesity, using PUMA deficient mice. At 10 weeks of age, knockout and wild type mice either continued consuming a low fat chow diet (6% fat), or were fed with a high fat diet (23% fat) for 14–17 weeks. We measured body composition, glucose and insulin tolerance, insulin response in peripheral tissues, energy expenditure, oxygen consumption, and respiratory exchange ratio in vivo. All these parameters were indistinguishable between wild type and knockout mice on chow diet and were modified equally by diet-induced obesity. Interestingly, we observed decreased food intake and ambulatory capacity of PUMA knockout mice on high fat diet. This was associated with increased adipocyte size and fasted leptin concentration in the blood. Our findings suggest that although PUMA is dispensable for glucose homeostasis in lean and obese mice, it can affect leptin levels and food intake during obesity. PMID:27033313

  12. p53-upregulated-modulator-of-apoptosis (PUMA) deficiency affects food intake but does not impact on body weight or glucose homeostasis in diet-induced obesity.

    PubMed

    Litwak, Sara A; Loh, Kim; Stanley, William J; Pappas, Evan G; Wali, Jibran A; Selck, Claudia; Strasser, Andreas; Thomas, Helen E; Gurzov, Esteban N

    2016-01-01

    BCL-2 proteins have been implicated in the control of glucose homeostasis and metabolism in different cell types. Thus, the aim of this study was to determine the role of the pro-apoptotic BH3-only protein, p53-upregulated-modulator-of-apoptosis (PUMA), in metabolic changes mediated by diet-induced obesity, using PUMA deficient mice. At 10 weeks of age, knockout and wild type mice either continued consuming a low fat chow diet (6% fat), or were fed with a high fat diet (23% fat) for 14-17 weeks. We measured body composition, glucose and insulin tolerance, insulin response in peripheral tissues, energy expenditure, oxygen consumption, and respiratory exchange ratio in vivo. All these parameters were indistinguishable between wild type and knockout mice on chow diet and were modified equally by diet-induced obesity. Interestingly, we observed decreased food intake and ambulatory capacity of PUMA knockout mice on high fat diet. This was associated with increased adipocyte size and fasted leptin concentration in the blood. Our findings suggest that although PUMA is dispensable for glucose homeostasis in lean and obese mice, it can affect leptin levels and food intake during obesity. PMID:27033313

  13. Does calcium intake affect cardiovascular risk factors and/or events?

    PubMed Central

    Torres, Márcia Regina Simas Gonçalves; Sanjuliani, Antonio Felipe

    2012-01-01

    Dietary intervention is an important approach in the prevention of cardiovascular disease. Over the last decade, some studies have suggested that a calcium-rich diet could help to control body weight, with anti-obesity effects. The potential mechanism underlying the impact of calcium on body fat has been investigated, but it is not fully understood. Recent evidence has also suggested that a calcium-rich diet could have beneficial effects on other cardiovascular risk factors, such as insulin resistance, dyslipidemia, hypertension and inflammatory states. In a series of studies, it was observed that a high intake of milk and/or dairy products (the main sources of dietary calcium) is associated with a reduction in the relative risk of cardiovascular disease. However, a few studies suggest that supplemental calcium (mainly calcium carbonate or citrate) may be associated with an increased risk of cardiovascular events. This review will discuss the available evidence regarding the relationship between calcium intake (dietary and supplemental) and different cardiovascular risk factors and/or events. PMID:22892932

  14. Factors affecting the calcium, magnesium and phosphorus content of beef cow milk.

    PubMed

    Hidiroglou, M; Proulx, J G

    1982-04-01

    This paper reports the calcium, magnesium and phosphorus content of milk from Shorthorn cattle during the five month calf nursing period as well as the effect of prepartum administration of a single intramuscular dose of vitamin D3 or of 25-hydroxyvitamin D3 on the milk mineral constituents. The colostrum of the group which received 25-hydroxyvitamin D3 was found to contain a higher percentage of calcium on the second and third day than the colostrum of control cows or those receiving D3. No differences occurred in colostrum magnesium or phosphorus contents due to prepartum treatment. Calcium, magnesium and phosphorus concentrations were all high in the first day of lactation, but declined until the third day after parturition. Milk calcium, magnesium and phosphorus content of individual cows was not uniform throughout the lactation and the variation was different for different cows. PMID:7093815

  15. Proteomic analysis of human bladder epithelial cells by 2D blue native SDS-PAGE reveals TCDD-induced alterations of calcium and iron homeostasis possibly mediated by nitric oxide.

    PubMed

    Verma, Nisha; Pink, Mario; Petrat, Frank; Rettenmeier, Albert W; Schmitz-Spanke, Simone

    2015-01-01

    A proteomic analysis of the interaction among multiprotein complexes involved in 2,3,7,8-dibenzo-p-dioxin (TCDD)-mediated toxicity in urinary bladder epithelial RT4 cells was performed using two-dimensional blue native SDS-PAGE (2D BN/SDS-PAGE). To enrich the protein complexes, unexposed and TCDD-exposed cells were fractionated. BN/SDS-PAGE of the resulting fractions led to an effective separation of proteins and protein complexes of various origins, including cell membrane, mitochondria, and other intracellular compartments. Major differences between the proteome of control and exposed cells involved the alteration of many calcium-regulated proteins (calmodulin, protein S100-A2, annexin A5, annexin A10, gelsolin isoform b) and iron-regulated proteins (ferritin, heme-binding protein 2, transferrin). On the basis of these findings, the intracellular calcium concentration was determined, revealing a significant increase after 24 h of exposure to TCDD. Moreover, the concentration of the labile iron pool (LIP) was also significantly elevated in TCDD-exposed cells. This increase was strongly inhibited by the calmodulin (CaM) antagonist W-7, which pointed toward a possible interaction between iron and calcium signaling. Because nitric oxide (NO) production was significantly enhanced in TCDD-exposed cells and was also inhibited by W-7, we hypothesize that alterations in calcium and iron homeostasis upon exposure to TCDD may be linked through NO generated by CaM-activated nitric oxide synthase. In our model, we propose that NO produced upon TCDD exposure interacts with the iron centers of iron-regulatory proteins (IRPs) that modulate the alteration of ferritin and transferrin, resulting in an augmented cellular LIP and, hence, increased toxicity. PMID:25348606

  16. Changes in serum calcium, phosphorus, and magnesium levels in captive ruminants affected by diet manipulation.

    PubMed

    Miller, Michele; Weber, Martha; Valdes, Eduardo V; Neiffer, Donald; Fontenot, Diedre; Fleming, Gregory; Stetter, Mark

    2010-09-01

    A combination of low serum calcium (Ca), high serum phosphorus (P), and low serum magnesium (Mg) has been observed in individual captive ruminants, primarily affecting kudu (Tragelaphus strepsiceros), eland (Taurotragus oryx), nyala (Tragelaphus angasii), bongo (Tragelaphus eurycerus), and giraffe (Giraffa camelopardalis). These mineral abnormalities have been associated with chronic laminitis, acute tetany, seizures, and death. Underlying rumen disease secondary to feeding highly fermentable carbohydrates was suspected to be contributing to the mineral deficiencies, and diet changes that decreased the amount of starch fed were implemented in 2003. Serum chemistry values from before and after the diet change were compared. The most notable improvement after the diet change was a decrease in mean serum P. Statistically significant decreases in mean serum P were observed for the kudu (102.1-66.4 ppm), eland (73.3-58.4 ppm), and bongo (92.1-64.2 ppm; P < 0.05). Although not statistically significant, mean serum P levels also decreased for nyala (99.3-86.8 ppm) and giraffe (82.6-68.7 ppm). Significant increases in mean serum Mg were also observed for kudu (15.9-17.9 ppm) and eland (17.1-19.7 ppm). A trend toward increased serum Mg was also observed in nyala, bongo, and giraffe after the diet change. No significant changes in mean serum Ca were observed in any of the five species evaluated, and Ca was within normal ranges for domestic ruminants. The mean Ca:P ratio increased to greater than one in every species after the diet change, with kudu, eland, and bongo showing a statistically significant change. The results of this study indicate that the diet change had a generally positive effect on serum P and Mg levels. PMID:20945636

  17. A dairy-based high calcium diet improves glucose homeostasis and reduces steatosis in the context of pre-existing obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High dietary calcium (Ca) in the context of a dairy food matrix has been shown to reduce obesity development and associated inflammation in diet-induced obese (DIO) rodents. The influence of Ca and dairy on these phenotypes in the context of pre-existing obesity is not known. Furthermore, interpre...

  18. Calcium influx affects intracellular transport and membrane repair following nanosecond pulsed electric field exposure

    NASA Astrophysics Data System (ADS)

    Thompson, Gary Lee; Roth, Caleb C.; Dalzell, Danielle R.; Kuipers, Marjorie; Ibey, Bennett L.

    2014-05-01

    The cellular response to subtle membrane damage following exposure to nanosecond pulsed electric fields (nsPEF) is not well understood. Recent work has shown that when cells are exposed to nsPEF, ion permeable nanopores (<2 nm) are created in the plasma membrane in contrast to larger diameter pores (>2 nm) created by longer micro- and millisecond duration pulses. Nanoporation of the plasma membrane by nsPEF has been shown to cause a transient increase in intracellular calcium concentration within milliseconds after exposure. Our research objective is to determine the impact of nsPEF on calcium-dependent structural and repair systems in mammalian cells. Chinese hamster ovary (CHO-K1) cells were exposed in the presence and absence of calcium ions in the outside buffer to either 1 or 20, 600-ns duration electrical pulses at 16.2 kV/cm, and pore size was determined using propidium iodide and calcium green. Membrane organization was observed with morphological changes and increases in FM1-43 fluorescence. Migration of lysosomes, implicated in membrane repair, was followed using confocal microscopy of red fluorescent protein-tagged LAMP1. Microtubule structure was imaged using mEmerald-tubulin. We found that at high 600-ns PEF dosage, calcium-induced membrane restructuring and microtubule depolymerization coincide with interruption of membrane repair via lysosomal exocytosis.

  19. Calcium and magnesium disorders.

    PubMed

    Goff, Jesse P

    2014-07-01

    Hypocalcemia is a clinical disorder that can be life threatening to the cow (milk fever) and predisposes the animal to various other metabolic and infectious disorders. Calcium homeostasis is mediated primarily by parathyroid hormone, which stimulates bone calcium resorption and renal calcium reabsorption. Parathyroid hormone stimulates the production of 1,25-dihydroxyvitamin D to enhance diet calcium absorption. High dietary cation-anion difference interferes with tissue sensitivity to parathyroid hormone. Hypomagnesemia reduces tissue response to parathyroid hormone. PMID:24980727

  20. Arctigenin exhibits relaxation effect on bronchus by affecting transmembrane flow of calcium.

    PubMed

    Zhao, Zhenying; Yin, Yongqiang; Wang, Zengyong; Fang, Runping; Wu, Hong; Jiang, Min; Bai, Gang; Luo, Guo'an

    2013-12-01

    Arctigenin, a lignan extract from Arctium lappa (L.), exhibits anti-inflammation, antioxidation, vasodilator effects, etc. However, the effects of arctigenin on bronchus relaxation are not well investigated. This study aimed to investigate how arctigenin regulates bronchus tone and calcium ion (Ca(2+)) flow. Trachea strips of guinea pigs were prepared for testing the relaxation effect of arctigenin to acetylcholine, histamine, KCl, and CaCl2, respectively. Furthermore, L-type calcium channel currents were detected by patch-clamp, and intracellular Ca(2+) concentration was detected by confocal microscopy. The results showed that arctigenin exhibited relaxation effect on tracheae to different constrictors, and this was related to decreasing cytoplasmic Ca(2+) concentration by inhibiting Ca(2+) influx partly through L-type calcium channel as well as promoting Ca(2+) efflux. In summary, this study provides new insight into the mechanisms by which arctigenin exhibits relaxation effect on bronchus and suggests its potential use for airway disease therapy. PMID:24114345

  1. Leucine supplementation does not affect protein turnover and impairs the beneficial effects of endurance training on glucose homeostasis in healthy mice.

    PubMed

    Costa Júnior, José M; Rosa, Morgana R; Protzek, André O; de Paula, Flávia M; Ferreira, Sandra M; Rezende, Luiz F; Vanzela, Emerielle C; Zoppi, Cláudio C; Silveira, Leonardo R; Kettelhut, Isis C; Boschero, Antonio C; de Oliveira, Camila A M; Carneiro, Everardo M

    2015-04-01

    Endurance exercise training as well as leucine supplementation modulates glucose homeostasis and protein turnover in mammals. Here, we analyze whether leucine supplementation alters the effects of endurance exercise on these parameters in healthy mice. Mice were distributed into sedentary (C) and exercise (T) groups. The exercise group performed a 12-week swimming protocol. Half of the C and T mice, designated as the CL and TL groups, were supplemented with leucine (1.5 % dissolved in the drinking water) throughout the experiment. As well known, endurance exercise training reduced body weight and the retroperitoneal fat pad, increased soleus mass, increased VO2max, decreased muscle proteolysis, and ameliorated peripheral insulin sensitivity. Leucine supplementation had no effect on any of these parameters and worsened glucose tolerance in both CL and TL mice. In the soleus muscle of the T group, AS-160(Thr-642) (AKT substrate of 160 kDa) and AMPK(Thr-172) (AMP-Activated Protein Kinase) phosphorylation was increased by exercise in both basal and insulin-stimulated conditions, but it was reduced in TL mice with insulin stimulation compared with the T group. Akt phosphorylation was not affected by exercise but was lower in the CL group compared with the other groups. Leucine supplementation increased mTOR phosphorylation at basal conditions, whereas exercise reduced it in the presence of insulin, despite no alterations in protein synthesis. In trained groups, the total FoxO3a protein content and the mRNA for the specific isoforms E2 and E3 ligases were reduced. In conclusion, leucine supplementation did not potentiate the effects of endurance training on protein turnover, and it also reduced its positive effects on glucose homeostasis. PMID:25575490

  2. Genetic interactions between Rch1 and the high-affinity calcium influx system Cch1/Mid1/Ecm7 in the regulation of calcium homeostasis, drug tolerance, hyphal development and virulence in Candida albicans.

    PubMed

    Xu, Dayong; Cheng, Jianqing; Cao, Chunlei; Wang, Litong; Jiang, Linghuo

    2015-11-01

    The high-affinity calcium influx system (HACS) consisted of CaCch1, CaMid1 and CaEcm7 controls calcium influx into the cell in response to environmental stimuli. The plasma membrane protein CaRch1 is a negative regulator of calcium influx in Candida albicans. In this study, we show that deletion of any of the HACS components suppresses the calcium hypersensitivity of, and the elevated activation level of calcium/calcineurin signaling in, C. albicans cells lacking CaRCH1. In contrast, CaRCH1 is epistatic to the HACS system in the tolerance of antifungal drugs. In addition, cells lacking CaRCH1 are sensitive to tunicamycin, show a delay in in vitro filamentation and an altered colony surface morphology, and are attenuated in virulence in a mouse systemic model. Cells lacking CaCCH1 and CaMID1, but not CaECM7, are sensitive to tunicamycin. Deletion of CaRCH1 increases the tunicamycin sensitivity of cells lacking CaECM7 or CaMID1, but not CaCCH1. Furthermore, deletion of CaRCH1 suppresses the defect in hyphal development due to the deletion of CaCCH1 or CaECM7, and increases the virulence of cells lacking any of the HACS components. Therefore, CaRch1 genetically interacts with the HACS components in different fashions for these functions. PMID:26323599

  3. Inhibition of Protease-Activated Receptor 1 Does not Affect Dendritic Homeostasis of Cultured Mouse Dentate Granule Cells

    PubMed Central

    Schuldt, Gerlind; Galanis, Christos; Strehl, Andreas; Hick, Meike; Schiener, Sabine; Lenz, Maximilian; Deller, Thomas; Maggio, Nicola; Vlachos, Andreas

    2016-01-01

    Protease-activated receptors (PARs) are widely expressed in the central nervous system (CNS). While a firm link between PAR1-activation and functional synaptic and intrinsic neuronal properties exists, studies on the role of PAR1 in neural structural plasticity are scarce. The physiological function of PAR1 in the brain remains not well understood. We here sought to determine whether prolonged pharmacologic PAR1-inhibition affects dendritic morphologies of hippocampal neurons. To address this question we employed live-cell microscopy of mouse dentate granule cell dendrites in 3-week old entorhino-hippocampal slice cultures prepared from Thy1-GFP mice. A subset of cultures were treated with the PAR1-inhibitor SCH79797 (1 μM; up to 3 weeks). No major effects of PAR1-inhibition on static and dynamic parameters of dentate granule cell dendrites were detected under control conditions. Granule cells of PAR1-deficient slice cultures showed unaltered dendritic morphologies, dendritic spine densities and excitatory synaptic strength. Furthermore, we report that PAR1-inhibition does not prevent dendritic retraction following partial deafferentation in vitro. Consistent with this finding, no major changes in PAR1-mRNA levels were detected in the denervated dentate gyrus (DG). We conclude that neural PAR1 is not involved in regulating the steady-state dynamics or deafferentation-induced adaptive changes of cultured dentate granule cell dendrites. These results indicate that drugs targeting neural PAR1-signals may not affect the stability and structural integrity of neuronal networks in healthy brain regions. PMID:27378862

  4. Inhibition of Protease-Activated Receptor 1 Does not Affect Dendritic Homeostasis of Cultured Mouse Dentate Granule Cells.

    PubMed

    Schuldt, Gerlind; Galanis, Christos; Strehl, Andreas; Hick, Meike; Schiener, Sabine; Lenz, Maximilian; Deller, Thomas; Maggio, Nicola; Vlachos, Andreas

    2016-01-01

    Protease-activated receptors (PARs) are widely expressed in the central nervous system (CNS). While a firm link between PAR1-activation and functional synaptic and intrinsic neuronal properties exists, studies on the role of PAR1 in neural structural plasticity are scarce. The physiological function of PAR1 in the brain remains not well understood. We here sought to determine whether prolonged pharmacologic PAR1-inhibition affects dendritic morphologies of hippocampal neurons. To address this question we employed live-cell microscopy of mouse dentate granule cell dendrites in 3-week old entorhino-hippocampal slice cultures prepared from Thy1-GFP mice. A subset of cultures were treated with the PAR1-inhibitor SCH79797 (1 μM; up to 3 weeks). No major effects of PAR1-inhibition on static and dynamic parameters of dentate granule cell dendrites were detected under control conditions. Granule cells of PAR1-deficient slice cultures showed unaltered dendritic morphologies, dendritic spine densities and excitatory synaptic strength. Furthermore, we report that PAR1-inhibition does not prevent dendritic retraction following partial deafferentation in vitro. Consistent with this finding, no major changes in PAR1-mRNA levels were detected in the denervated dentate gyrus (DG). We conclude that neural PAR1 is not involved in regulating the steady-state dynamics or deafferentation-induced adaptive changes of cultured dentate granule cell dendrites. These results indicate that drugs targeting neural PAR1-signals may not affect the stability and structural integrity of neuronal networks in healthy brain regions. PMID:27378862

  5. Osmotic Homeostasis

    PubMed Central

    Zeidel, Mark L.

    2015-01-01

    Alterations in water homeostasis can disturb cell size and function. Although most cells can internally regulate cell volume in response to osmolar stress, neurons are particularly at risk given a combination of complex cell function and space restriction within the calvarium. Thus, regulating water balance is fundamental to survival. Through specialized neuronal “osmoreceptors” that sense changes in plasma osmolality, vasopressin release and thirst are titrated in order to achieve water balance. Fine-tuning of water absorption occurs along the collecting duct, and depends on unique structural modifications of renal tubular epithelium that confer a wide range of water permeability. In this article, we review the mechanisms that ensure water homeostasis as well as the fundamentals of disorders of water balance. PMID:25078421

  6. Scn1b deletion leads to increased tetrodotoxin-sensitive sodium current, altered intracellular calcium homeostasis and arrhythmias in murine hearts.

    PubMed

    Lin, Xianming; O'Malley, Heather; Chen, Chunling; Auerbach, David; Foster, Monique; Shekhar, Akshay; Zhang, Mingliang; Coetzee, William; Jalife, José; Fishman, Glenn I; Isom, Lori; Delmar, Mario

    2014-08-15

    Na(+) current (INa) is determined not only by the properties of the pore-forming voltage-gated Na(+) channel (VGSC) α subunit, but also by the integrated function of a molecular aggregate (the VGSC complex) that includes the VGSC β subunit family. Mutations or rare variants in Scn1b (encoding the β1 and β1B subunits) have been associated with various inherited arrhythmogenic syndromes, including cases of Brugada syndrome and sudden unexpected death in patients with epilepsy. Here, we have used Scn1b null mouse models to understand better the relation between Scn1b expression, and cardiac electrical function. Using a combination of macropatch and scanning ion conductance microscopy we show that loss of Scn1b in juvenile null animals resulted in increased tetrodotoxin-sensitive INa but only in the cell midsection, even before full T-tubule formation; the latter occurred concurrent with increased message abundance for the neuronal Scn3a mRNA, suggesting increased abundance of tetrodotoxin-sensitive NaV1.3 protein and yet its exclusion from the region of the intercalated disc. Ventricular myocytes from cardiac-specific adult Scn1b null animals showed increased Scn3a message, prolonged action potential repolarization, presence of delayed after-depolarizations and triggered beats, delayed Ca(2+) transients and frequent spontaneous Ca(2+) release events and at the whole heart level, increased susceptibility to polymorphic ventricular arrhythmias. Most alterations in Ca(2+) homeostasis were prevented by 100 nm tetrodotoxin. Our results suggest that life-threatening arrhythmias in patients with mutations in Scn1b, a gene classically defined as ancillary to the Na(+) channel α subunit, can be partly consequent to disrupted intracellular Ca(2+) homeostasis in ventricular myocytes. PMID:25128572

  7. Endoplasmic reticulum stress and disturbed calcium homeostasis are involved in copper-induced alteration in hepatic lipid metabolism in yellow catfish Pelteobagrus fulvidraco.

    PubMed

    Song, Yu-Feng; Luo, Zhi; Zhang, Li-Han; Hogstrand, Christer; Pan, Ya-Xiong

    2016-02-01

    The present study was conducted to investigate the effect of Cu exposure on ER stress and Ca(2+) homeostasis, and explore the underlying mechanism of the ER stress and disturbed Ca(2+) homeostasis in the regulation of hepatic lipid metabolism in yellow catfish Pelteobagrus fulvidraco. To this end, three experiments were conducted. In experiment 1, P. fulvidraco were exposed to three waterborne Cu concentrations for 56 days. Waterborne Cu exposure evoked ER stress and SREBP-1c activation and resulted in dysregulation of hepatic lipid metabolism in liver of P. fulvidraco in a time-dependent manner. In experiment 2, specific inhibitors 2-APB (IP3 receptor inhibitor) and dantrolene (RyR receptor inhibitor) were used to explore whether Ca(2+) release from ER was involved in the Cu-induced ER stress change. Dantrolene and 2-APB prevented Cu-induced intracellular Ca(2+) elevation, demonstrating that the release of Ca(2+) from the ER, mediated by both RyR and IP3R, contributed to dysregulation of lipid metabolism. In experiment 3, a chemical chaperone (PBA) was used to demonstrate whether Cu-induced alteration in lipid metabolism was suppressed through the attenuation of ER stress. PBA attenuated the Cu-induced elevation of mRNA expression of SREBP-1c, SCAP, ACC, FAS, GRP78/BiP, GRP94, CRT, eIF2α and XBP-1, and alleviated the Cu-induced downregulation of Insig-1. Based on these observations, these results reveal a link between ER stress and the change of lipid metabolism induced by Cu, which will help to understand the Cu-induced toxicity on cellular and molecular level, and provide some novel insights into the regulation of lipid metabolism in fish. PMID:26615493

  8. Endoplasmic reticulum stress and dysregulation of calcium homeostasis mediate Cu-induced alteration in hepatic lipid metabolism of javelin goby Synechogobius hasta.

    PubMed

    Song, Yu-Feng; Huang, Chao; Shi, Xi; Pan, Ya-Xiong; Liu, Xu; Luo, Zhi

    2016-06-01

    The present study was conducted to investigate the effect of Cu exposure on endoplasmic reticulum (ER) stress and Ca(2+) homeostasis, and also explore the underlying mechanism of the ER stress and Ca(2+) homeostasis in the Cu-induced change of hepatic lipid metabolism in javelin goby Synechogobius hasta. To this end, four experiments were conducted. In experiment 1, the full-length cDNA sequences of two ER molecular chaperones [glucose-regulated protein 78 (GRP78) and calreticulin (CRT)] and three ER stress sensors [PKR-like ER kinase (PERK), inositol requiring enzyme (IRE)-1α, and activating transcription factor (ATF)-6α] cDNAs were firstly characterized from S. hasta. The predicted amino acid sequences for the S. hasta GRP78, CRT, PERK, IRE-1α and ATF-6α revealed that the proteins contained all of the structural features characteristic in other species. mRNAs of the five genes were expressed in various tissues, but their mRNA levels varied among tissues. In experiment 2, S. hasta were exposed to four waterborne Cu concentrations (control, 19μg/l, 38μg/l, and 57μg/l, respectively) for 60days. Cu exposure evoked ER stress in liver of S. hasta in a time- and concentration-course change. In experiment 3, specific inhibitors, 2-aminoethyldiphenyl borate (2-APB) and dantrolene, were used to explore whether Ca(2+) release from ER was involved in the Cu-induced ER stress change. Dantrolene and 2-APB prevented Cu-induced intracellular Ca(2+) elevation, which demonstrated the release of Ca(2+) from the ER was mediated by both RyR and IP3R. In experiment 4, a chemical chaperone, 4-phenyl butyric acid (4-PBA), was used to demonstrate whether Cu-induced alteration in lipid metabolism was suppressed through the attenuation of ER stress. Cu exposure evoked ER stress and sterol-regulator element-binding protein-1c (SREBP-1c) activation in hepatocytes of S. hasta, resulting in dysregulation of hepatic lipid metabolism. 4-PBA attenuated the Cu-induced elevation of m

  9. Calcium-Vitamin D Co-supplementation Affects Metabolic Profiles, but not Pregnancy Outcomes, in Healthy Pregnant Women

    PubMed Central

    Asemi, Zatollah; Samimi, Mansooreh; Siavashani, Mehrnush Amiri; Mazloomi, Maryam; Tabassi, Zohreh; Karamali, Maryam; Jamilian, Mehri; Esmaillzadeh, Ahmad

    2016-01-01

    Background: Pregnancy is associated with unfavorable metabolic profile, which might in turn result in adverse pregnancy outcomes. The current study was designed to evaluate the effects of calcium plus Vitamin D administration on metabolic status and pregnancy outcomes in healthy pregnant women. Methods: This randomized double-blind placebo-controlled clinical trial was performed among 42 pregnant women aged 18–40 years who were at week 25 of gestation. Subjects were randomly allocated to consume either 500 mg calcium-200 IU cholecalciferol supplements (n = 21) or placebo (n = 21) for 9 weeks. Blood samples were obtained at the onset of the study and after 9-week trial to determine related markers. Post-delivery, the newborn's weight, length, and head circumference were measured during the first 24 h after birth. Results: Consumption of calcium-Vitamin D co-supplements resulted in a significant reduction of serum high-sensitivity C-reactive protein levels compared with placebo (−1856.8 ± 2657.7 vs. 707.1 ± 3139.4 μg/mL, P = 0.006). We also found a significant elevation of plasma total antioxidant capacity (89.3 ± 118.0 vs. −9.4 ± 164.9 mmol/L, P = 0.03), serum 25-hydroxyvitamin D (2.5 ± 3.5 vs. −1.7 ± 1.7 ng/mL, P < 0.0001), and calcium levels (0.6 ± 0.6 vs. −0.1 ± 0.4 mg/dL, P < 0.0001). The supplementation led to a significant decrease in diastolic blood pressure (−1.9 ± 8.3 vs. 3.1 ± 5.2 mmHg, P = 0.02) compared with placebo. No significant effect of calcium-Vitamin D co-supplements was seen on other metabolic profiles. We saw no significant change of the co-supplementation on pregnancy outcomes as well. Conclusions: Although calcium-Vitamin D co-supplementation for 9 weeks in pregnant women resulted in improved metabolic profiles, it did not affect pregnancy outcomes. PMID:27076887

  10. Quinoa extract enriched in 20-hydroxyecdysone affects energy homeostasis and intestinal fat absorption in mice fed a high-fat diet.

    PubMed

    Foucault, Anne-Sophie; Even, Patrick; Lafont, René; Dioh, Waly; Veillet, Stanislas; Tomé, Daniel; Huneau, Jean-François; Hermier, Dominique; Quignard-Boulangé, Annie

    2014-04-10

    In a previous study, we have demonstrated that a supplementation of a high-fat diet with a quinoa extract enriched in 20-hydroxyecdysone (QE) or pure 20-hydroxyecdysone (20E) could prevent the development of obesity. In line with the anti-obesity effect of QE, we used indirect calorimetry to examine the effect of dietary QE and 20E in high-fat fed mice on different components of energy metabolism. Mice were fed a high-fat (HF) diet with or without supplementation by QE or pure 20E for 3 weeks. As compared to mice maintained on a low-fat diet, HF feeding resulted in a marked physiological shift in energy homeostasis, associating a decrease in global energy expenditure (EE) and an increase in lipid utilization as assessed by the lower respiratory quotient (RQ). Supplementation with 20E increased energy expenditure while food intake and activity were not affected. Furthermore QE and 20E promoted a higher rate of glucose oxidation leading to an increased RQ value. In QE and 20E-treated HFD fed mice, there was an increase in fecal lipid excretion without any change in stool amount. Our study indicates that anti-obesity effect of QE can be explained by a global increase in energy expenditure, a shift in glucose metabolism towards oxidation to the detriment of lipogenesis and a decrease in dietary lipid absorption leading to reduced dietary lipid storage in adipose tissue. PMID:24534167

  11. Periparturient effects of feeding a low dietary cation-anion difference diet on acid-base, calcium, and phosphorus homeostasis and on intravenous glucose tolerance test in high-producing dairy cows.

    PubMed

    Grünberg, W; Donkin, S S; Constable, P D

    2011-02-01

    Feeding rations with low dietary cation-anion difference (DCAD) to dairy cows during late gestation is a common strategy to prevent periparturient hypocalcemia. Although the efficacy of low-DCAD rations in reducing the incidence of clinical hypocalcemia is well documented, potentially deleterious effects have not been explored in detail. The objective of the study presented here was to determine the effect of fully compensated metabolic acidosis on calcium and phosphorus homeostasis, insulin responsiveness, and insulin sensitivity as well as on protein metabolism. Twenty multiparous Holstein-Friesian dairy cows were assigned to 1 of 2 treatment groups and fed a low-DCAD ration (DCAD = -9 mEq/100g, group L) or a control ration (DCAD = +11 mEq/100g, group C) for the last 3 wk before the expected calving date. Blood and urine samples were obtained periodically between 14 d before to 14 d after calving. Intravenous glucose tolerance tests and 24-h volumetric urine collection were conducted before calving as well as 7 and 14 d postpartum. Cows fed the low-DCAD ration had lower urine pH and higher net acid excretion, but unchanged blood pH and bicarbonate concentration before calving. Protein-corrected plasma Ca concentration 1 d postpartum was higher in cows on the low-DCAD diet when compared with control animals. Urinary Ca and P excretion was positively associated with urine net acid excretion and negatively associated with urine pH. Whereas metabolic acidosis resulted in a 6-fold increase in urinary Ca excretion, the effect on renal P excretion was negligible. A more pronounced decline of plasma protein and globulin concentration in the periparturient period was observed in cows on the low-DCAD diets resulting in significantly lower total protein and globulin concentrations after calving in cows on low-DCAD diets. Intravenous glucose tolerance tests conducted before and after calving did not reveal group differences in insulin response or insulin sensitivity. Our

  12. The giant protein AHNAK is a specific target for the calcium- and zinc-binding S100B protein: potential implications for Ca2+ homeostasis regulation by S100B.

    PubMed

    Gentil, B J; Delphin, C; Mbele, G O; Deloulme, J C; Ferro, M; Garin, J; Baudier, J

    2001-06-29

    Transformation of rat embryo fibroblast clone 6 cells by ras and temperature-sensitive p53val(135) is reverted by ectopic expression of the calcium- and zinc-binding protein S100B. In an attempt to define the molecular basis of the S100B action, we have identified the giant phosphoprotein AHNAK as the major and most specific Ca(2+)-dependent S100B target protein in rat embryo fibroblast cells. We next characterized AHNAK as a major Ca(2+)-dependent S100B target protein in the rat glial C6 and human U-87MG astrocytoma cell lines. AHNAK binds to S100B-Sepharose beads and is also recovered in anti-S100B immunoprecipitates in a strict Ca(2+)- and Zn(2+)-dependent manner. Using truncated AHNAK fragments, we demonstrated that the domains of AHNAK responsible for interaction with S100B correspond to repeated motifs that characterize the AHNAK molecule. These motifs show no binding to calmodulin or to S100A6 and S100A11. We also provide evidence that the binding of 2 Zn(2+) equivalents/mol S100B enhances Ca(2+)-dependent S100B-AHNAK interaction and that the effect of Zn(2+) relies on Zn(2+)-dependent regulation of S100B affinity for Ca(2+). Taking into consideration that AHNAK is a protein implicated in calcium flux regulation, we propose that the S100B-AHNAK interaction may participate in the S100B-mediated regulation of cellular Ca(2+) homeostasis. PMID:11312263

  13. AMPA receptor-mediated alterations of intracellular calcium homeostasis in rat cerebellar Purkinje cells in vitro: correlates to dark cell degeneration.

    PubMed

    Strahlendorf, J C; Brandon, T; Miles, R; Strahlendorf, H K

    1998-11-01

    In the rat cerebellar slice preparation in vitro, excessive DL-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA)-receptor activation elicits a characteristic type of excitotoxicity of Purkinje cells (PCs) known as dark cell degeneration (DCD). DCD models neurotoxicity of PCs and hippocampal pyramidal neurons in vivo following hyperexcitable states. The intent of this study was to: a) determine whether AMPA-induced neurotoxicity of PCs is correlated with temporally and spatially restricted rises in intracellular Ca2+ and b) whether GYKI 52466 and nominal external Ca2+, conditions that reduced expression of AMPA-elicited DCD, altered the induced Ca2+ patterns. Employing the Ca2+-sensitive dye Fluo-3 and a confocal laser scanning microscope, we evaluated changes in intracellular Ca2+ within PCs in a cerebellar slice preparation. AMPA application alone (30 microM for 30 min) caused a significant initial rise in perinuclear and cytoplasmic Ca2+ that returned to control levels during the latter part of the AMPA exposure period. Following removal of AMPA (expression period), perinuclear and cytoplasmic Ca2+ displayed a significant delayed rise peaking transiently 60 min after AMPA removal. The efficacy of GYKI 52466 and nominal external Ca2+ conditions to attenuate AMPA-induced DCD was correlated to reductions in AMPA-induced transient elevations in perinuclear and cytoplasmic Ca2+ levels during the expression phase and to a lesser extent during the exposure period. The present data suggest that during the expression phase, the delayed perinuclear and cytoplasmic Ca2+ transient may be the harbinger of impending loss of Ca2+ homeostasis and cell damage. PMID:9814545

  14. The Effect of SERCA1b Silencing on the Differentiation and Calcium Homeostasis of C2C12 Skeletal Muscle Cells

    PubMed Central

    Vincze, János; Oláh, Tamás; Juhász, Tamás; Zákány, Róza; Csernoch, László; Zádor, Ernő

    2015-01-01

    The sarcoplasmic/endoplasmic reticulum Ca2+ATPases (SERCAs) are the main Ca2+ pumps which decrease the intracellular Ca2+ level by reaccumulating Ca2+ into the sarcoplasmic reticulum. The neonatal SERCA1b is the major Ca2+ pump in myotubes and young muscle fibers. To understand its role during skeletal muscle differentiation its synthesis has been interfered with specific shRNA sequence. Stably transfected clones showing significantly decreased SERCA1b expression (cloneC1) were selected for experiments. The expression of the regulatory proteins of skeletal muscle differentiation was examined either by Western-blot at the protein level for MyoD, STIM1, calsequestrin (CSQ), and calcineurin (CaN) or by RT-PCR for myostatin and MCIP1.4. Quantitative analysis revealed significant alterations in CSQ, STIM1, and CaN expression in cloneC1 as compared to control cells. To examine the functional consequences of the decreased expression of SERCA1b, repeated Ca2+-transients were evoked by applications of 120 mM KCl. The significantly higher [Ca2+]i measured at the 20th and 40th seconds after the beginning of KCl application (112±3 and 110±3 nM vs. 150±7 and 135±5 nM, in control and in cloneC1 cells, respectively) indicated a decreased Ca2+-uptake capability which was quantified by extracting the maximal pump rate (454±41 μM/s vs. 144±24 μM/s, in control and in cloneC1 cells). Furthermore, the rate of calcium release from the SR (610±60 vs. 377±64 μM/s) and the amount of calcium released (843±75 μM vs. 576±80 μM) were also significantly suppressed. These changes were also accompanied by a reduced activity of CaN in cells with decreased SERCA1b. In parallel, cloneC1 cells showed inhibited cell proliferation and decreased myotube nuclear numbers. Moreover, while cyclosporineA treatment suppressed the proliferation of parental cultures it had no effect on cloneC1 cells. SERCA1b is thus considered to play an essential role in the regulation of [Ca2+]i and its ab ovo

  15. Factors affecting crystallization, dispersion, and aggregation of calcium oxalate monohydrate in various urinary environments

    NASA Astrophysics Data System (ADS)

    Christmas, Kimberly Gail

    The mechanisms for the formation of kidney stones are not well understood. One possible mechanism is the formation of aggregates in the nephron tubules of the kidneys. However, altering the urinary environment may be a method to help prevent the recurrence of the formation of kidney stones. The primary inorganic constituent found in kidney stones of North American patients is calcium oxalate monohydrate (COM). In this research, studies on the effect of mixing rate on COM precipitation showed that rapid mixing compared to slow mixing produced smaller particle sizes and a narrower particle size distribution due to the more uniform supersaturation level. The findings are consistent with the general contention that mixing directly influences nucleation rate while mixing rate has relatively little influence over rate of growth in precipitation processes. Screening and central composite experimental designs are used to determine the effect of various factors on the aggregation and dispersion characteristics of previously grown calcium oxalate monohydrate (COM) crystals in artificial urinary environments of controlled variables. The variables examined are pH, calcium, oxalate, pyrophosphate, citrate, and protein concentrations in ultrapure water and artificial urine. Optical density measurements, zeta potential analysis, particle size analyzer, optical microscopy, AFM force measurements, protein adsorption, and ions and small molecule adsorption have been used to assess the state of aggregation and dispersion of the COM crystals and to elucidate the mechanisms involved in such a complex system. The data indicate that our model protein, mucin, acts as a dispersant. This is attributed to steric hindrance resulting from the adsorbed mucoprotein. Oxalate, however, promotes aggregation. Interesting interactions between protein and oxalate along with protein and citrate are observed. Such interactions (synergistic or antagonistic) are found to depend on the concentrations of

  16. C9orf72 Hexanucleotide Expansions Are Associated with Altered Endoplasmic Reticulum Calcium Homeostasis and Stress Granule Formation in Induced Pluripotent Stem Cell-Derived Neurons from Patients with Amyotrophic Lateral Sclerosis and Frontotemporal Dementia.

    PubMed

    Dafinca, Ruxandra; Scaber, Jakub; Ababneh, Nida'a; Lalic, Tatjana; Weir, Gregory; Christian, Helen; Vowles, Jane; Douglas, Andrew G L; Fletcher-Jones, Alexandra; Browne, Cathy; Nakanishi, Mahito; Turner, Martin R; Wade-Martins, Richard; Cowley, Sally A; Talbot, Kevin

    2016-08-01

    An expanded hexanucleotide repeat in a noncoding region of the C9orf72 gene is a major cause of amyotrophic lateral sclerosis (ALS), accounting for up to 40% of familial cases and 7% of sporadic ALS in European populations. We have generated induced pluripotent stem cells (iPSCs) from fibroblasts of patients carrying C9orf72 hexanucleotide expansions, differentiated these to functional motor and cortical neurons, and performed an extensive phenotypic characterization. In C9orf72 iPSC-derived motor neurons, decreased cell survival is correlated with dysfunction in Ca(2+) homeostasis, reduced levels of the antiapoptotic protein Bcl-2, increased endoplasmic reticulum (ER) stress, and reduced mitochondrial membrane potential. Furthermore, C9orf72 motor neurons, and also cortical neurons, show evidence of abnormal protein aggregation and stress granule formation. This study is an extensive characterization of iPSC-derived motor neurons as cellular models of ALS carrying C9orf72 hexanucleotide repeats, which describes a novel pathogenic link between C9orf72 mutations, dysregulation of calcium signaling, and altered proteostasis and provides a potential pharmacological target for the treatment of ALS and the related neurodegenerative disease frontotemporal dementia. Stem Cells 2016;34:2063-2078. PMID:27097283

  17. C9orf72 Hexanucleotide Expansions Are Associated with Altered Endoplasmic Reticulum Calcium Homeostasis and Stress Granule Formation in Induced Pluripotent Stem Cell‐Derived Neurons from Patients with Amyotrophic Lateral Sclerosis and Frontotemporal Dementia

    PubMed Central

    Dafinca, Ruxandra; Scaber, Jakub; Ababneh, Nida'a; Lalic, Tatjana; Weir, Gregory; Christian, Helen; Vowles, Jane; Douglas, Andrew G.L.; Fletcher‐Jones, Alexandra; Browne, Cathy; Nakanishi, Mahito; Turner, Martin R.; Wade‐Martins, Richard

    2016-01-01

    Abstract An expanded hexanucleotide repeat in a noncoding region of the C9orf72 gene is a major cause of amyotrophic lateral sclerosis (ALS), accounting for up to 40% of familial cases and 7% of sporadic ALS in European populations. We have generated induced pluripotent stem cells (iPSCs) from fibroblasts of patients carrying C9orf72 hexanucleotide expansions, differentiated these to functional motor and cortical neurons, and performed an extensive phenotypic characterization. In C9orf72 iPSC‐derived motor neurons, decreased cell survival is correlated with dysfunction in Ca2+ homeostasis, reduced levels of the antiapoptotic protein Bcl‐2, increased endoplasmic reticulum (ER) stress, and reduced mitochondrial membrane potential. Furthermore, C9orf72 motor neurons, and also cortical neurons, show evidence of abnormal protein aggregation and stress granule formation. This study is an extensive characterization of iPSC‐derived motor neurons as cellular models of ALS carrying C9orf72 hexanucleotide repeats, which describes a novel pathogenic link between C9orf72 mutations, dysregulation of calcium signaling, and altered proteostasis and provides a potential pharmacological target for the treatment of ALS and the related neurodegenerative disease frontotemporal dementia. Stem Cells 2016;34:2063–2078 PMID:27097283

  18. The Plasma Membrane Calcium Pump

    NASA Technical Reports Server (NTRS)

    Rasmussen, H.

    1983-01-01

    Three aspect of cellular calcium metabolism in animal cells was discussed including the importance of the plasma membrane in calcium homeostasis, experiments dealing with the actual mechanism of the calcium pump, and the function of the pump in relationship to the mitochondria and to the function of calmodulin in the intact cell.

  19. Mitofusin 1 degradation is induced by a disruptor of mitochondrial calcium homeostasis, CGP37157: a role in apoptosis in prostate cancer cells.

    PubMed

    Choudhary, Vivek; Kaddour-Djebbar, Ismail; Alaisami, Rabei; Kumar, M Vijay; Bollag, Wendy B

    2014-05-01

    Mitochondria constantly divide (mitochondrial fission) and fuse (mitochondrial fusion) in a normal cell. Disturbances in the balance between these two physiological processes may lead to cell dysfunction or to cell death. Induction of cell death is the prime goal of prostate cancer chemotherapy. Our previous study demonstrated that androgens increase the expression of a mitochondrial protein involved in fission and facilitate an apoptotic response to CGP37157 (CGP), an inhibitor of mitochondrial calcium efflux, in prostate cancer cells. However, the regulation and role of mitochondrial fusion proteins in the death of these cells have not been examined. Therefore, our objective was to investigate the effect of CGP on a key mitochondrial fusion protein, mitofusin 1 (Mfn1), and the role of Mfn1 in prostate cancer cell apoptosis. We used various prostate cancer cell lines and western blot analysis, qRT-PCR, siRNA, M30 apoptosis assay and immunoprecipitation techniques to determine mechanisms regulating Mfn1. Treatment of prostate cancer cells with CGP resulted in selective degradation of Mfn1. Mfn1 ubiquitination was detected following immunoprecipitation of overexpressed Myc-tagged Mfn1 protein from CGP-treated cells, and treatment with the proteasomal inhibitor lactacystin, as well as siRNA-mediated knockdown of the E3 ubiquitin ligase March5, protected Mfn1 from CGP-induced degradation. These data indicate the involvement of the ubiquitin-proteasome pathway in CGP-induced degradation of Mfn1. We also demonstrated that downregulation of Mfn1 by siRNA enhanced the apoptotic response of LNCaP cells to CGP, suggesting a likely pro-survival role for Mfn1 in these cells. Our results suggest that manipulation of mitofusins may provide a novel therapeutic advantage in treating prostate cancer. PMID:24626641

  20. Calcium's role in mechanotransduction during muscle development.

    PubMed

    Benavides Damm, Tatiana; Egli, Marcel

    2014-01-01

    Mechanotransduction is a process where cells sense their surroundings and convert the physical forces in their environment into an appropriate response. Calcium plays a crucial role in the translation of such forces to biochemical signals that control various biological processes fundamental in muscle development. The mechanical stimulation of muscle cells may for example result from stretch, electric and magnetic stimulation, shear stress, and altered gravity exposure. The response, mainly involving changes in intracellular calcium concentration then leads to a cascade of events by the activation of downstream signaling pathways. The key calcium-dependent pathways described here include the nuclear factor of activated T cells (NFAT) and mitogen-activated protein kinase (MAPK) activation. The subsequent effects in cellular homeostasis consist of cytoskeletal remodeling, cell cycle progression, growth, differentiation, and apoptosis, all necessary for healthy muscle development, repair, and regeneration. A deregulation from the normal process due to disuse, trauma, or disease can result in a clinical condition such as muscle atrophy, which entails a significant loss of muscle mass. In order to develop therapies against such diseased states, we need to better understand the relevance of calcium signaling and the downstream responses to mechanical forces in skeletal muscle. The purpose of this review is to discuss in detail how diverse mechanical stimuli cause changes in calcium homeostasis by affecting membrane channels and the intracellular stores, which in turn regulate multiple pathways that impart these effects and control the fate of muscle tissue. PMID:24525559

  1. NH2-terminal truncations of cardiac troponin I and cardiac troponin T produce distinct effects on contractility and calcium homeostasis in adult cardiomyocytes

    PubMed Central

    Wei, Hongguang

    2014-01-01

    Cardiac troponin I (TnI) has an NH2-terminal extension that is an adult heart-specific regulatory structure. Restrictive proteolytic truncation of the NH2-terminal extension of cardiac TnI occurs in normal hearts and is upregulated in cardiac adaptation to hemodynamic stress or β-adrenergic deficiency. NH2-terminal truncated cardiac TnI (cTnI-ND) alters the conformation of the core structure of cardiac TnI similarly to that produced by PKA phosphorylation of Ser23/24 in the NH2-terminal extension. At organ level, cTnI-ND enhances ventricular diastolic function. The NH2-terminal region of cardiac troponin T (TnT) is another regulatory structure that can be selectively cleaved via restrictive proteolysis. Structural variations in the NH2-terminal region of TnT also alter the molecular conformation and function. Transgenic mouse hearts expressing NH2-terminal truncated cardiac TnT (cTnT-ND) showed slower contractile velocity to prolong ventricular rapid-ejection time, resulting in higher stroke volume. Our present study compared the effects of cTnI-ND and cTnT-ND in cardiomyocytes isolated from transgenic mice on cellular morphology, contractility, and calcium kinetics. Resting cTnI-ND, but not cTnT-ND, cardiomyocytes had shorter length than wild-type cells with no change in sarcomere length. cTnI-ND, but not cTnT-ND, cardiomyocytes produced higher contractile amplitude and faster shortening and relengthening velocities in the absence of external load than wild-type controls. Although the baseline and peak levels of cytosolic Ca2+ were not changed, Ca2+ resequestration was faster in both cTnI-ND and cTnT-ND cardiomyocytes than in wild-type control. The distinct effects of cTnI-ND and cTnT-ND demonstrate their roles in selectively modulating diastolic or systolic functions of the heart. PMID:25518962

  2. Genetic interactions between the Golgi Ca2+/H+ exchanger Gdt1 and the plasma membrane calcium channel Cch1/Mid1 in the regulation of calcium homeostasis, stress response and virulence in Candida albicans.

    PubMed

    Wang, Yanan; Wang, Junjun; Cheng, Jianqing; Xu, Dayong; Jiang, Linghuo

    2015-11-01

    The Golgi-localized Saccharomyces cerevisiae ScGdt1 is a member of the cation/Ca(2+) exchanger superfamily. We show here that Candida albicans CaGdt1 is the functional homolog of ScGdt1 in calcium sensitivity, and shows genetic interactions with CaCch1 or CaMid1 in response to ER stresses. In addition, similar to ScCCH1 and ScMID1, deletion of either CaCCH1 or CaMID1 leads to a growth sensitivity of cells to cold stress, which can be suppressed by deletion of CaGDT1. Furthermore, deletion of CaCCH1 leads to a severe delay in filamentation of C. albicans cells, and this defect is abolished by deletion of CaGDT1. In contrast, CaGDT1 does not show genetic interaction with CaMID1 in filamentation. Interestingly, C. albicans cells lacking both CaMID1 and CaGDT1 exhibit an intermediate virulence between C. albicans cells lacking CaCCH1 (non-virulent) and C. albicans cells lacking CaGDT1 (partially virulent), while C. albicans cells lacking both CaCCH1 and CaGDT1 are not virulent in a mouse model of systemic candidiasis. Therefore, CaGdt1 genetically interacts with the plasma membrane calcium channel, CaCch1/CaMid1, in the response of C. albicans cells to cold and ER stresses and antifungal drug challenge as well as in filamentation and virulence. PMID:26208803

  3. High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus

    PubMed Central

    Balzergue, Coline; Chabaud, Mireille; Barker, David G.; Bécard, Guillaume; Rochange, Soizic F.

    2013-01-01

    The arbuscular mycorrhizal symbiosis associates soil fungi with the roots of the majority of plants species and represents a major source of soil phosphorus acquisition. Mycorrhizal interactions begin with an exchange of molecular signals between the two partners. A root signaling pathway is recruited, for which the perception of fungal signals triggers oscillations of intracellular calcium concentration. High phosphate availability is known to inhibit the establishment and/or persistence of this symbiosis, thereby favoring the direct, non-symbiotic uptake of phosphorus by the root system. In this study, Medicago truncatula plants were used to investigate the effects of phosphate supply on the early stages of the interaction. When plants were supplied with high phosphate fungal attachment to the roots was drastically reduced. An experimental system was designed to individually study the effects of phosphate supply on the fungus, on the roots, and on root exudates. These experiments revealed that the most important effects of high phosphate supply were on the roots themselves, which became unable to host mycorrhizal fungi even when these had been appropriately stimulated. The ability of the roots to perceive their fungal partner was then investigated by monitoring nuclear calcium spiking in response to fungal signals. This response did not appear to be affected by high phosphate supply. In conclusion, high levels of phosphate predominantly impact the plant host, but apparently not in its ability to perceive the fungal partner. PMID:24194742

  4. Calcium and protons affect the interaction of neurotransmitters and anesthetics with anionic lipid membranes.

    PubMed

    Pérez-Isidoro, Rosendo; Ruiz-Suárez, J C

    2016-09-01

    We study how zwitterionic and anionic biomembrane models interact with neurotransmitters (NTs) and anesthetics (ATs) in the presence of Ca(2+) and different pH conditions. As NTs we used acetylcholine (ACh), γ-aminobutyric acid (GABA), and l-glutamic acid (LGlu). As ATs, tetracaine (TC), and pentobarbital (PB) were employed. By using differential scanning calorimetry (DSC), we analyzed the changes such molecules produce in the thermal properties of the membranes. We found that calcium and pH play important roles in the interactions of NTs and ATs with the anionic lipid membranes. Changes in pH promote deprotonation of the phosphate groups in anionic phospholipids inducing electrostatic interactions between them and NTs; but if Ca(2+) ions are in the system, these act as bridges. Such interactions impact the physical properties of the membranes in a similar manner that anesthetics do. Beyond the usual biochemical approach, we claim that these effects should be taken into account to understand the excitatory-inhibitory orchestrated balance in the nervous system. PMID:27362370

  5. Cytosolic calcium changes affect the incidence of early afterdepolarizations in canine ventricular myocytes.

    PubMed

    Horváth, Balázs; Hegyi, Bence; Kistamás, Kornél; Váczi, Krisztina; Bányász, Tamás; Magyar, János; Szentandrássy, Norbert; Nánási, Péter P

    2015-07-01

    This study was designed to investigate the influence of cytosolic Ca(2+) levels ([Ca(2+)]i) on action potential duration (APD) and on the incidence of early afterdepolarizations (EADs) in canine ventricular cardiomyocytes. Action potentials (AP) of isolated cells were recorded using conventional sharp microelectrodes, and the concomitant [Ca(2+)]i was monitored with the fluorescent dye Fura-2. EADs were evoked at a 0.2 Hz pacing rate by inhibiting the rapid delayed rectifier K(+) current with dofetilide, by activating the late sodium current with veratridine, or by activating the L-type calcium current with BAY K8644. These interventions progressively prolonged the AP and resulted in initiation of EADs. Reducing [Ca(2+)]i by application of the cell-permeant Ca(2+) chelator BAPTA-AM lengthened the AP at 1.0 Hz if it was applied alone, in the presence of veratridine, or in the presence of BAY K8644. However, BAPTA-AM shortened the AP if the cells were pretreated with dofetilide. The incidence of the evoked EADs was strongly reduced by BAPTA-AM in dofetilide, moderately reduced in veratridine, whereas EAD incidence was increased by BAPTA-AM in the presence of BAY K8644. Based on these experimental data, changes in [Ca(2+)]i have marked effects on APD as well as on the incidence of EADs; however, the underlying mechanisms may be different, depending on the mechanism of EAD generation. As a consequence, reduction of [Ca(2+)]i may eliminate EADs under some, but not all, experimental conditions. PMID:25928391

  6. Novel and recurrent CIB2 variants, associated with nonsyndromic deafness, do not affect calcium buffering and localization in hair cells.

    PubMed

    Seco, Celia Zazo; Giese, Arnaud P; Shafique, Sobia; Schraders, Margit; Oonk, Anne M M; Grossheim, Mike; Oostrik, Jaap; Strom, Tim; Hegde, Rashmi; van Wijk, Erwin; Frolenkov, Gregory I; Azam, Maleeha; Yntema, Helger G; Free, Rolien H; Riazuddin, Saima; Verheij, Joke B G M; Admiraal, Ronald J; Qamar, Raheel; Ahmed, Zubair M; Kremer, Hannie

    2016-04-01

    Variants in CIB2 can underlie either Usher syndrome type I (USH1J) or nonsyndromic hearing impairment (NSHI) (DFNB48). Here, a novel homozygous missense variant c.196C>T and compound heterozygous variants, c.[97C>T];[196C>T], were found, respectively, in two unrelated families of Dutch origin. Besides, the previously reported c.272 T>C functional missense variant in CIB2 was identified in two families of Pakistani origin. The missense variants are demonstrated not to affect subcellular localization of CIB2 in vestibular hair cells in ex vivo expression experiments. Furthermore, these variants do not affect the ATP-induced calcium responses in COS-7 cells. However, based on the residues affected, the variants are suggested to alter αIIβ integrin binding. HI was nonsyndromic in all four families. However, deafness segregating with the c.272T>C variant in one Pakistani family is remarkably less severe than that in all other families with this mutation. Our results contribute to the insight in genotype-phenotype correlations of CIB2 mutations. PMID:26173970

  7. Alcohol disrupts sleep homeostasis.

    PubMed

    Thakkar, Mahesh M; Sharma, Rishi; Sahota, Pradeep

    2015-06-01

    Alcohol is a potent somnogen and one of the most commonly used "over the counter" sleep aids. In healthy non-alcoholics, acute alcohol decreases sleep latency, consolidates and increases the quality (delta power) and quantity of NREM sleep during the first half of the night. However, sleep is disrupted during the second half. Alcoholics, both during drinking periods and during abstinences, suffer from a multitude of sleep disruptions manifested by profound insomnia, excessive daytime sleepiness, and altered sleep architecture. Furthermore, subjective and objective indicators of sleep disturbances are predictors of relapse. Finally, within the USA, it is estimated that societal costs of alcohol-related sleep disorders exceeds $18 billion. Thus, although alcohol-associated sleep problems have significant economic and clinical consequences, very little is known about how and where alcohol acts to affect sleep. In this review, we have described our attempts to unravel the mechanism of alcohol-induced sleep disruptions. We have conducted a series of experiments using two different species, rats and mice, as animal models. We performed microdialysis, immunohistochemical, pharmacological, sleep deprivation and lesion studies which suggest that the sleep-promoting effects of alcohol may be mediated via alcohol's action on the mediators of sleep homeostasis: adenosine (AD) and the wake-promoting cholinergic neurons of the basal forebrain (BF). Alcohol, via its action on AD uptake, increases extracellular AD resulting in the inhibition of BF wake-promoting neurons. Since binge alcohol consumption is a highly prevalent pattern of alcohol consumption and disrupts sleep, we examined the effects of binge drinking on sleep-wakefulness. Our results suggest that disrupted sleep homeostasis may be the primary cause of sleep disruption observed following binge drinking. Finally, we have also shown that sleep disruptions observed during acute withdrawal, are caused due to impaired

  8. Distribution of non-collagenous dentin matrix proteins and proteoglycans, and their relation to calcium accumulation in bisphosphonate-affected rat incisors.

    PubMed

    Ohma, N; Takagi, Y; Takano, Y

    2000-06-01

    It has been reported that multiple injections of 1-hydroxyethylidene- 1,1-bisphosphonate (HEBP) to rats prevent mineralization of incisor dentin, thereby revealing high concentrations of calcium in the non-mineralized matrix of circumpulpal dentin. To identify the molecules responsible for calcium accumulation in circumpulpal dentin matrix, rats were injected daily with HEBP (8 mg P/kg) for 7 d, and the incisors processed for various histochemical and immunohistochemical staining of non-collagenous matrices of dentin. Cuprolinic blue reactions for proteoglycans (PGs) were equally distributed in non-mineralized matrix of mantle and circumpulpal dentin layers. Dentin sialoprotein (DSP) and osteopontin (OPN) immunoreactions were found in non-mineralized circumpulpal dentin matrix, but not in mantle dentin. In normal incisors, however, predentin matrix showing significant DSP immunoreactivity was negative for Ca-GBHA reactions. HEBP-affected, non-mineralized OPN immunopositive bone matrix was also non-reactive for calcium. From these observations, neither PGs, OPN nor DSP appear to be responsible for calcium accumulation in HEBP-affected circumpulpal dentin. Stains-all reactive component, possibly dentin phosphoprotein (DPP), only showed the same distribution as that of Ca-GBHA in both HEBP-affected and normal dentin matrix, implicating a possible contribution of DPP to calcium accumulation in circumpulpal dentin and, hence, to appositional mineralization of dentin. PMID:10872993

  9. Inhibition of fibrin polymerization by fragment d is affected by calcium, Gly-Pro-Arg and Gly-His-Arg.

    PubMed

    Furlan, M; Rupp, C; Beck, E A

    1983-01-12

    Fibrinopeptides A and B were removed from purified human fibrinogen by bovine thrombin, whereas the snake venom protease batroxobin only split fibrinopeptide A from fibrinogen. Aggregation of the resulting desAB- and desA-fibrin monomers was evaluated by recording the turbidity of incubation mixtures. Fibrin assembly was strongly accelerated by increasing the calcium concentration from 10(-5) to 10(-3) M. Fragment D was obtained from fibrinogen by proteolytic degradation with plasmin in the presence of Ca2+. At a 4-fold molar concentration relative to fibrinogen, fragment D dramatically inhibited fibrin polymerization at up to 10(-4) M Ca2+. This anticlotting activity was, however, much less pronounced at 10(-3) M Ca2+. The thrombin clotting time, measured on human plasma, was prolonged by fragment D in a dose-dependent manner. In citrate-containing plasma, the fibrinogen clotting was significantly delayed by an equimolar concentration of fragment D. In barium sulfate-adsorbed oxalated plasma, containing 2.5 mM Ca2+, the same amount of fragment D hardly affected fibrin polymerization. We conclude that fragment D has no important anticlotting effect under physiological conditions. The synthetic peptide Gly-Pro-Arg, corresponding to the amino-terminal sequence of the fibrin alpha-chain, inhibited aggregation of both desA-fibrin and desAB-fibrin at 10(-3) M Ca2+. The inhibition of desAB-fibrin polymerization by Gly-Pro-Arg was abolished at 10(-5) M Ca2+. In addition, Gly-Pro-Arg depressed the anticlotting activity of fragment D at low calcium concentration. An analogue of the amino-terminus of fibrin beta-chain, Gly-His-Arg, strongly accelerated aggregation of desA-fibrin monomers, but only moderately enhanced polymerization of desAB-fibrin monomers at 10(-5) M Ca2+, both in the presence and in the absence of fragment D. This activating effect of Gly-His-Arg was abolished at 10(-3) M Ca2+. It is suggested that the binding of calcium, Gly-His-Arg, and possibly also Gly

  10. Development affects in vitro vascular tone and calcium sensitivity in ovine cerebral arteries

    PubMed Central

    Geary, Greg G; Osol, George J; Longo, Lawrence D

    2004-01-01

    We have shown recently that development from neonatal to adult life affects cerebrovascular tone of mouse cerebral arteries through endothelium-derived vasodilatory mechanisms. The current study tested the hypothesis that development from fetal to adult life affects cerebral artery vascular smooth muscle (VSM) [Ca2+]i sensitivity and tone through a mechanism partially dependent upon endothelium-dependent signalling. In pressurized resistance sized cerebral arteries (∼150 μm) from preterm (95 ± 2 days gestation (95 d)) and near-term (140 ± 2 days gestation (140 d)) fetuses, and non-pregnant adults, we measured vascular diameter (μm) and [Ca2+]i (nm) as a function of intravascular pressure. We repeated these studies in the presence of inhibition of nitric oxide synthase (NOS; with l-NAME), cyclo-oxygenase (COX; with indomethacin) and endothelium removal (E–). Cerebrovasculature tone (E+) was greater in arteries from 95 d fetuses and adults compared to 140 d sheep. Ca2+ sensitivity was similar in 95 d fetuses and adults, but much lower in 140 d fetuses. Removal of endothelium resulted in a reduction in lumen diameter as a function of pressure (greater tone) in all treatment groups. [Ca2+]i sensitivity differences among groups were magnified after E–. NOS inhibition decreased diameter as a function of pressure in each age group, with a significant increase in [Ca2+]i to pressure ratio only in the 140 d fetuses. Indomethacin increased tone and increased [Ca2+]i in the 140 d fetuses, but not the other age groups. Development from near-term to adulthood uncovered an interaction between NOS- and COX-sensitive substances that functioned to modulate artery diameter but not [Ca2+]i. This study suggests that development is associated with significant alterations in cerebral vascular smooth muscle (VSM), endothelium, NOS and COX responses to intravascular pressure. We speculate that these changes have important implications in the regulation of cerebral blood flow in

  11. Mitochondrial dysfunction and intracellular calcium dysregulation in ALS

    PubMed Central

    Kawamata, Hibiki; Manfredi, Giovanni

    2010-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder that affects the aging population. A progressive loss of motor neurons in the spinal cord and brain leads to muscle paralysis and death. As in other common neurodegenerative diseases, aging-related mitochondrial dysfunction is increasingly being considered among the pathogenic factors. Mitochondria are critical for cell survival: they provide energy to the cell, buffer intracellular calcium, and regulate apoptotic cell death. Whether mitochondrial abnormalities are a trigger or a consequence of the neurodegenerative process and the mechanisms whereby mitochondrial dysfunction contributes to disease are not clear yet. Calcium homeostasis is a major function of mitochondria in neurons, and there is ample evidence that intracellular calcium is dysregulated in ALS. The impact of mitochondrial dysfunction on intracellular calcium homeostasis and its role in motor neuron demise are intriguing issues that warrants in depth discussion. Clearly, unraveling the causal relationship between mitochondrial dysfunction, calcium dysregulation, and neuronal death is critical for the understanding of ALS pathogenesis. In this review, we will outline the current knowledge of various aspects of mitochondrial dysfunction in ALS, with a special emphasis on the role of these abnormalities on intracellular calcium handling. PMID:20493207

  12. Alcohol disrupts sleep homeostasis

    PubMed Central

    Thakkar, Mahesh M.; Sharma, Rishi; Sahota, Pradeep

    2014-01-01

    Alcohol is a potent somnogen and one of the most commonly used “over the counter” sleep aids. In healthy non-alcoholics, acute alcohol decreases sleep latency, consolidates and increases the quality (delta power) and quantity of NREM sleep during the first half of the night. However, sleep is disrupted during the second half. Alcoholics, both during drinking periods and during abstinences, suffer from a multitude of sleep disruptions manifested by profound insomnia, excessive daytime sleepiness, and altered sleep architecture. Furthermore, subjective and objective indicators of sleep disturbances are predictors of relapse. Finally, within the USA, it is estimated that societal costs of alcohol-related sleep disorders exceeds $18 billion. Thus, although alcohol-associated sleep problems have significant economic and clinical consequences, very little is known about how and where alcohol acts to affect sleep. In this review, we have described our attempts to understand how and where alcohol acts to affect sleep. We have conducted a series of experiments using two different species, rats and mice, as animal models, and a combination of multi-disciplinary experimental methodologies to examine and understand anatomical and cellular substrates mediating the effects of acute and chronic alcohol exposure on sleep-wakefulness. The results of our studies suggest that the sleep-promoting effects of alcohol may be mediated via alcohol’s action on the mediators of sleep homeostasis: adenosine (AD) and the wake-promoting cholinergic neurons of the basal forebrain (BF). Alcohol, via its action on AD uptake, increases extracellular AD resulting in the inhibition of BF wake-promoting neurons. Lesions of the BF cholinergic neurons or blockade of AD A1 receptors results in attenuation of alcohol-induced sleep promotion, suggesting that AD and BF cholinergic neurons are critical for sleep-promoting effects of alcohol. Since binge alcohol consumption is a highly prevalent pattern

  13. Influence of myristic acid supplementation on energy, fatty acid and calcium metabolism of sheep as affected by dietary calcium and forage : concentrate ratio.

    PubMed

    Machmüller, A; Kreuzer, M

    2005-08-01

    In a 6 x 6 Latin square arrangement, sheep of 41 kg body weight were fed myristic acid [C14:0; 50 g/kg dry matter (DM)] supplemented to two basal diets of forage : concentrate ratios of 1 : 1.5 and 1 : 0.5 and adjusted to dietary calcium (Ca) contents of either 4.2 or 9.0 g/kg DM (the latter only together with C14:0 supplementation). Various variables of energy, fatty acid and Ca metabolism were determined in combined digestibility and respiratory chamber measurements. With C14:0 addition the energy loss via the faeces increased (p < 0.05, post hoc test) without affecting energy digestibility of the complete diet. The apparent digestibility of supplemented C14:0 was higher (p < 0.01) with approximately 0.8 in the forage-based diet than in the concentrate-based diet (approximately 0.6). The elevated levels of plasma C14:0 were mainly accompanied by reduced C18:0 and C18:1 levels. The estimated apparent content of metabolizable energy (ME) of added C14:0 was either 24.5 MJ/kg (concentrate-based diet) or 32.1 MJ/kg (forage-based diet). Extra Ca equalized these differences between basal diets and ME contents amounted to 33.0 MJ/kg on average. As expected from corresponding slight shifts in energy metabolizability, the total efficiency of ME utilization increased (p < 0.1) with C14:0. The lower level of dietary Ca was still within the range recommended, but adding C14:0 to the concentrate-based diet reduced Ca retention in the body of the sheep from 0.9 to -0.1 g/day because of an impaired (p < 0.05, post hoc test) net Ca absorption, whereas no effect was found with the forage-based diet. With C14:0 addition, plasma total phosphorus (P) and serum calcitrol levels increased (p < 0.05, post hoc test) while Ca concentrations did not clearly reflect the reduced net Ca absorption. Increasing the dietary Ca content prevented adverse effects on Ca retention in the concentrate-based diet and improved Ca retention in the forage-based diet. In conclusion, the C14

  14. Ethylene negatively regulates transcript abundance of ROP-GAP rheostat-encoding genes and affects apoplastic reactive oxygen species homeostasis in epicarps of cold stored apple fruits.

    PubMed

    Zermiani, Monica; Zonin, Elisabetta; Nonis, Alberto; Begheldo, Maura; Ceccato, Luca; Vezzaro, Alice; Baldan, Barbara; Trentin, Annarita; Masi, Antonio; Pegoraro, Marco; Fadanelli, Livio; Teale, William; Palme, Klaus; Quintieri, Luigi; Ruperti, Benedetto

    2015-12-01

    Apple (Malus×domestica Borkh) fruits are stored for long periods of time at low temperatures (1 °C) leading to the occurrence of physiological disorders. 'Superficial scald' of Granny Smith apples, an economically important ethylene-dependent disorder, was used as a model to study relationships among ethylene action, the regulation of the ROP-GAP rheostat, and maintenance of H2O2 homeostasis in fruits during prolonged cold exposure. The ROP-GAP rheostat is a key module for adaptation to low oxygen in Arabidopsis through Respiratory Burst NADPH Oxidase Homologs (RBOH)-mediated and ROP GTPase-dependent regulation of reactive oxygen species (ROS) homeostasis. Here, it was shown that the transcriptional expression of several components of the apple ROP-GAP machinery, including genes encoding RBOHs, ROPs, and their ancillary proteins ROP-GEFs and ROP-GAPs, is coordinately and negatively regulated by ethylene in conjunction with the progressive impairment of apoplastic H2O2 homeostatic levels. RNA sequencing analyses showed that several components of the known ROP- and ROS-associated transcriptional networks are regulated along with the ROP-GAP rheostat in response to ethylene perception. These findings may extend the role of the ROP-GAP rheostat beyond hypoxic responses and suggest that it may be a functional regulatory node involved in the integration of ethylene and ROS signalling pathways in abiotic stress. PMID:26428066

  15. Ethylene negatively regulates transcript abundance of ROP-GAP rheostat-encoding genes and affects apoplastic reactive oxygen species homeostasis in epicarps of cold stored apple fruits

    PubMed Central

    Zermiani, Monica; Zonin, Elisabetta; Nonis, Alberto; Begheldo, Maura; Ceccato, Luca; Vezzaro, Alice; Baldan, Barbara; Trentin, Annarita; Masi, Antonio; Pegoraro, Marco; Fadanelli, Livio; Teale, William; Palme, Klaus; Quintieri, Luigi; Ruperti, Benedetto

    2015-01-01

    Apple (Malus×domestica Borkh) fruits are stored for long periods of time at low temperatures (1 °C) leading to the occurrence of physiological disorders. ‘Superficial scald’ of Granny Smith apples, an economically important ethylene-dependent disorder, was used as a model to study relationships among ethylene action, the regulation of the ROP-GAP rheostat, and maintenance of H2O2 homeostasis in fruits during prolonged cold exposure. The ROP-GAP rheostat is a key module for adaptation to low oxygen in Arabidopsis through Respiratory Burst NADPH Oxidase Homologs (RBOH)-mediated and ROP GTPase-dependent regulation of reactive oxygen species (ROS) homeostasis. Here, it was shown that the transcriptional expression of several components of the apple ROP-GAP machinery, including genes encoding RBOHs, ROPs, and their ancillary proteins ROP-GEFs and ROP-GAPs, is coordinately and negatively regulated by ethylene in conjunction with the progressive impairment of apoplastic H2O2 homeostatic levels. RNA sequencing analyses showed that several components of the known ROP- and ROS-associated transcriptional networks are regulated along with the ROP-GAP rheostat in response to ethylene perception. These findings may extend the role of the ROP-GAP rheostat beyond hypoxic responses and suggest that it may be a functional regulatory node involved in the integration of ethylene and ROS signalling pathways in abiotic stress. PMID:26428066

  16. Hormone replacement therapy affects iron status more than endometrial bleeding in older US women: A role for estrogen in iron homeostasis?

    PubMed

    Miller, Elizabeth M

    2016-06-01

    High iron levels in women of post-reproductive age may be related to their increased risk of chronic disease as they become older, but the causes of this rise in iron in late life is unclear. Recently estrogen has been implicated in non-human models of iron homeostasis. Studying iron in women who take hormone replacement therapy (HRT) may provide insight into the relationship between iron status and hormonal status in older women. This study examines the association between HRT and iron status in women aged 50+ who took part in the 1999-2000 National Health and Nutrition Examination Survey (NHANES). Data were analyzed using multiple imputation, which corrects for missing data, and complex survey regression, which adjusts for NHANES sampling. Current HRT use was associated with lower ferritin (β=-34.13, p=0.0002), controlling for potential breakthrough bleeding with a hysterectomy variable. HRT was associated with lower iron stores in women of post-reproductive in the absence of uterine blood loss, indicating potential homeostatic hormonal control of iron status. This research demonstrates the utility of studying clinical hormonal therapy to advance new understandings about the basic biology of iron homeostasis in women. PMID:27105697

  17. Ageing and water homeostasis

    NASA Technical Reports Server (NTRS)

    Robertson, David; Jordan, Jens; Jacob, Giris; Ketch, Terry; Shannon, John R.; Biaggioni, Italo

    2002-01-01

    This review outlines current knowledge concerning fluid intake and volume homeostasis in ageing. The physiology of vasopressin is summarized. Studies have been carried out to determine orthostatic changes in plasma volume and to assess the effect of water ingestion in normal subjects, elderly subjects, and patients with dysautonomias. About 14% of plasma volume shifts out of the vasculature within 30 minutes of upright posture. Oral ingestion of water raises blood pressure in individuals with impaired autonomic reflexes and is an important source of noise in blood pressure trials in the elderly. On the average, oral ingestion of 16 ounces (473ml) of water raises blood pressure 11 mmHg in elderly normal subjects. In patients with autonomic impairment, such as multiple system atrophy, strikingly exaggerated pressor effects of water have been seen with blood pressure elevations greater than 75 mmHg not at all uncommon. Ingestion of water is a major determinant of blood pressure in the elderly population. Volume homeostasis is importantly affected by posture and large changes in plasma volume may occur within 30 minutes when upright posture is assumed.

  18. The Zinc Finger Protein ZNF658 Regulates the Transcription of Genes Involved in Zinc Homeostasis and Affects Ribosome Biogenesis through the Zinc Transcriptional Regulatory Element

    PubMed Central

    Ogo, Ogo A.; Tyson, John; Cockell, Simon J.; Howard, Alison; Valentine, Ruth A.

    2015-01-01

    We previously identified the ZTRE (zinc transcriptional regulatory element) in genes involved in zinc homeostasis and showed that it mediates transcriptional repression in response to zinc. We now report that ZNF658 acts at the ZTRE. ZNF658 was identified by matrix-assisted laser desorption ionization–time of flight mass spectrometry of a band excised after electrophoretic mobility shift assay using a ZTRE probe. The protein contains a KRAB domain and 21 zinc fingers. It has similarity with ZAP1 from Saccharomyces cerevisiae, which regulates the response to zinc restriction, including a conserved DNA binding region we show to be functional also in ZNF658. Small interfering RNA (siRNA) targeted to ZNF658 abrogated the zinc-induced, ZTRE-dependent reduction in SLC30A5 (ZnT5 gene), SLC30A10 (ZnT10 gene), and CBWD transcripts in human Caco-2 cells and the ability of zinc to repress reporter gene expression from corresponding promoter-reporter constructs. Microarray analysis of the effect of reducing ZNF658 expression by siRNA uncovered a large decrease in rRNA. We find that ZTREs are clustered within the 45S rRNA precursor. We also saw effects on expression of multiple ribosomal proteins. ZNF658 thus links zinc homeostasis with ribosome biogenesis, the most active transcriptional, and hence zinc-demanding, process in the cell. ZNF658 is thus a novel transcriptional regulator that plays a fundamental role in the orchestrated cellular response to zinc availability. PMID:25582195

  19. Calcium and ascorbic acid affect cellular structure and water mobility in apple tissue during osmotic dehydration in sucrose solutions.

    PubMed

    Mauro, Maria A; Dellarosa, Nicolò; Tylewicz, Urszula; Tappi, Silvia; Laghi, Luca; Rocculi, Pietro; Rosa, Marco Dalla

    2016-03-15

    The effects of the addition of calcium lactate and ascorbic acid to sucrose osmotic solutions on cell viability and microstructure of apple tissue were studied. In addition, water distribution and mobility modification of the different cellular compartments were observed. Fluorescence microscopy, light microscopy and time domain nuclear magnetic resonance (TD-NMR) were respectively used to evaluate cell viability and microstructural changes during osmotic dehydration. Tissues treated in a sucrose-calcium lactate-ascorbic acid solution did not show viability. Calcium lactate had some effects on cell walls and membranes. Sucrose solution visibly preserved the protoplast viability and slightly influenced the water distribution within the apple tissue, as highlighted by TD-NMR, which showed higher proton intensity in the vacuoles and lower intensity in cytoplasm-free spaces compared to other treatments. The presence of ascorbic acid enhanced calcium impregnation, which was associated with permeability changes of the cellular wall and membranes. PMID:26575708

  20. Micronutrients and the premenstrual syndrome: the case for calcium.

    PubMed

    Thys-Jacobs, S

    2000-04-01

    Premenstrual syndrome afflicts millions of premenopausal women and has been described as one of the most common disorders in women. Research over the past few years suggests that a variety of nutrients may have an important role in the phase related mood and behavioral disturbances of the premenstrual syndrome. There is scientific evidence, at least for a few of these micronutrients, specifically calcium and vitamin D, supporting cyclic fluctuations during the menstrual cycle that may help explain some features of PMS. Ovarian hormones influence calcium, magnesium and vitamin D metabolism. Estrogen regulates calcium metabolism, intestinal calcium absorption and parathyroid gene expression and secretion, triggering fluctuations across the menstrual cycle. Alterations in calcium homeostasis (hypocalcemia and hypercalcemia) have long been associated with many affective disturbances. PMS shares many features of depression, anxiety and the dysphoric states. The similarity between the symptoms of PMS and hypocalcemia is remarkable. Clinical trials in women with PMS have found that calcium supplementation effectively alleviates the majority of mood and somatic symptoms. Evidence to date indicates that women with luteal phase symptomatology have an underlying calcium dysregulation with a secondary hyperparathyroidism and vitamin D deficiency. This strongly suggests that PMS represents the clinical manifestation of a calcium deficiency state that is unmasked following the rise of ovarian steroid hormone concentrations during the menstrual cycle. PMID:10763903

  1. Oxidative Stress in the Hypothalamus: the Importance of Calcium Signaling and Mitochondrial ROS in Body Weight Regulation

    PubMed Central

    Gyengesi, Erika; Paxinos, George; Andrews, Zane B

    2012-01-01

    A considerable amount of evidence shows that reactive oxygen species (ROS) in the mammalian brain are directly responsible for cell and tissue function and dysfunction. Excessive reactive oxygen species contribute to various conditions including inflammation, diabetes mellitus, neurodegenerative diseases, tumor formation, and mental disorders such as depression. Increased intracellular calcium levels have toxic roles leading to cell death. However, the exact connection between reactive oxygen production and high calcium stress is not yet fully understood. In this review, we focus on the role of reactive oxygen species and calcium stress in hypothalamic arcuate neurons controlling feeding. We revisit the role of NPY and POMC neurons in the regulation of appetite and energy homeostasis, and consider how ROS and intracellular calcium levels affect these neurons. These novel insights give a new direction to research on hypothalamic mechanisms regulating energy homeostasis and may offer novel treatment strategies for obesity and type-2 diabetes. PMID:23730258

  2. Pain emotion and homeostasis.

    PubMed

    Panerai, Alberto E

    2011-05-01

    Pain has always been considered as part of a defensive strategy, whose specific role is to signal an immediate, active danger. This definition partially fits acute pain, but certainly not chronic pain, that is maintained also in the absence of an active noxa or danger and that nowadays is considered a disease by itself. Moreover, acute pain is not only an automatic alerting system, but its severity and characteristics can change depending on the surrounding environment. The affective, emotional components of pain have been and are the object of extensive attention and research by psychologists, philosophers, physiologists and also pharmacologists. Pain itself can be considered to share the same genesis as emotions and as a specific emotion in contributing to the maintenance of the homeostasis of each unique subject. Interestingly, this role of pain reaches its maximal development in the human; some even argue that it is specific for the human primate. PMID:21533708

  3. Effects of dietary energy and calcium levels on performance, egg shell quality and bone metabolism in hens.

    PubMed

    Jiang, Sha; Cui, Luying; Shi, Cheng; Ke, Xiao; Luo, Jingwen; Hou, Jiafa

    2013-10-01

    This study investigated the effects of dietary energy and calcium levels on laying performance, eggshell quality and bone metabolism of layers. One hundred and sixty-two 19-week-old Hy-Line brown laying hens in 54 battery cages were allocated to one of nine dietary treatments with control, middle and high levels of energy (11.50, 12.68 and 13.37 MJ/kg, respectively) and low, control and high levels of calcium (2.62%, 3.7% and 4.4%, respectively) for 60 days, using a 3 × 3 factorial arrangement. Compared with the control energy diet, high- and middle-energy diets increased fat deposition and egg weight, decreased feed intake and bone quality and had no effects on eggshell quality. The high-energy diet reduced the serum phosphate concentration and elevated osteocalcin mRNA expression in the keel bone without increasing osteocalcin protein. Dietary calcium intake did not affect fat deposition, feed intake or egg weight. Low dietary calcium resulted in weaker eggshells and poorer bone quality than that from hens fed the control diet. High dietary calcium increased serum calcium concentration, osteoprotegerin mRNA and osteocalcin protein and inhibited serum alkaline phosphatase activity and decreased its mRNA compared with low or control dietary calcium. The high-energy and high-calcium diet significantly reduced egg production. Compared with the control energy diet, high- and middle-energy diets increased fat deposition but had negative effects on bone metabolic homeostasis. Dietary calcium did not influence fat deposition but a high-calcium diet benefited bone homeostasis, while a low-calcium diet was associated with poorer eggshell quality and bone homeostasis. PMID:24054908

  4. Modulation of Vitamin D Status and Dietary Calcium Affects Bone Mineral Density and Mineral Metabolism in Göttingen Minipigs

    PubMed Central

    Scholz-Ahrens, Katharina E.; Glüer, Claus-Christian; Bronner, Felix; Delling, Günter; Açil, Yahya; Hahne, Hans-Jürgen; Hassenpflug, Joachim; Timm, Wolfram; Schrezenmeir, Jürgen

    2013-01-01

    Calcium and vitamin D deficiency impairs bone health and may cause rickets in children and osteomalacia in adults. Large animal models are useful to study experimental osteopathies and associated metabolic changes. We intended to modulate vitamin D status and induce nutritional osteomalacia in minipigs. The control group (n = 9) was fed a semisynthetic reference diet with 6 g calcium and 6,500 IU vitamin D3/kg and the experimental group (n = 10) the same diet but with only 2 g calcium/kg and without vitamin D. After 15 months, the deficient animals were in negative calcium balance, having lost bone mineral density significantly (means ± SEM) with −51.2 ± 14.7 mg/cm3 in contrast to controls (−2.3 ± 11.8 mg/cm3), whose calcium balance remained positive. Their osteoid surface was significantly higher, typical of osteomalacia. Their plasma 25(OH)D dropped significantly from 60.1 ± 11.4 nmol/L to 15.3 ± 3.4 nmol/L within 10 months, whereas that of the control group on the reference diet rose. Urinary phosphorus excretion and plasma 1,25-dihydroxyvitamin D concentrations were significantly higher and final plasma calcium significantly lower than in controls. We conclude that the minipig is a promising large animal model to induce nutritional osteomalacia and to study the time course of hypovitaminosis D and associated functional effects. PMID:24062955

  5. The effects of calcium channel inhibitors and other procedures affecting calcium translocation on drug-induced rhythmic contractions in the rat vas deferens.

    PubMed Central

    Hay, D. W.; Wadsworth, R. M.

    1983-01-01

    In the rat isolated vas deferens, methoxamine 8.1 microM produced an initial phasic response that declined towards baseline and was followed by rhythmic contractions that continued until wash-out. These responses were predominant in the epididymal half. BaCl2 1 mM produced a similar type of response which was not mediated by noradrenaline release or activation of alpha-adrenoceptors. The barium responses were similar in the epididymal and prostatic halves. Incubation in nominally Ca2+-free solution caused abolition or near abolition of rhythmic contractions produced by barium or methoxamine. The initial phasic response to methoxamine was abolished in Ca2+-free solution, whereas that produced by barium persisted. Rhythmic contractions produced by methoxamine or barium were inhibited by Mg2+ (2.4-20 mM) and by La3+ (1-5 mM). Mg2+ had selectivity for inhibition of the frequency of methoxamine- but not barium-induced rhythmic contractions. Despite their dependence on [Ca2+]o, barium- and methoxamine-induced rhythmic contractions were resistant to inhibition by calcium channel inhibitors. Verapamil, nifedipine and flunarazine inhibited the amplitude of rhythmic contractions more readily than the frequency (methoxamine IC50 for verapamil: amplitude = 29.8 +/- 5.40 microM, n = 6, frequency = 96.7 +/- 31.0 microM, n = 5, for nifedipine: amplitude = 2.42 +/- 0.34 microM, n = 7, frequency = 3.24 +/- 0.75 microM, n = 7, and for flunarizine: amplitude = 15.9 +/- 5.95 microM, n = 7, frequency = 153 +/- 28.6 microM, n = 7). There was no differentiation between inhibition of methoxamine and barium-induced responses. Like Mg2+, methoxyverapamil selectively inhibited the frequency of methoxamine-induced contractions (IC50: amplitude = 16.8 +/- 2.86 microM, n = 5, frequency = 2.07 +/- 0.81 microM, n = 5) but not barium-induced contractions (IC50: amplitude = 13.9 +/- 1.95 microM, n = 5, frequency = 48.5 +/- 8.98 microM, n = 5). Diazoxide (43.3-2167 microM) and nitroprusside (3

  6. Tfp1 is required for ion homeostasis, fluconazole resistance and N-Acetylglucosamine utilization in Candida albicans.

    PubMed

    Jia, Chang; Zhang, Kai; Yu, Qilin; Zhang, Bing; Xiao, Chenpeng; Dong, Yijie; Chen, Yulu; Zhang, Biao; Xing, Laijun; Li, Mingchun

    2015-10-01

    The vacuolar-type H+-ATPase (V-ATPase) is crucial for the maintenance of ion homeostasis. Dysregulation of ion homeostasis affects various aspects of cellular processes. However, the importance of V-ATPase in Candida albicans is not totally clear. In this study, we demonstrated the essential roles of V-ATPase through Tfp1, a putative V-ATPase subunit. Deletion of TFP1 led to generation of an iron starvation signal and reduced total iron content, which was associated with mislocalization of Fet34p that was finally due to disorders in copper homeostasis. Furthermore, the tfp1∆/∆ mutant exhibited weaker growth and lower aconitase activity on nonfermentable carbon sources, and iron or copper addition partially rescued the growth defect. In addition, the tfp1∆/∆ mutant also showed elevated cytosolic calcium levels in normal or low calcium medium that were relevant to calcium release from vacuole. Kinetics of cytosolic calcium response to an alkaline pulse and VCX1 (VCX1 encodes a putative vacuolar Ca2+/H+ exchanger) overexpression assays indicated that the cytosolic calcium status was in relation to Vcx1 activity. Spot assay and concentration-kill curve demonstrated that the tfp1∆/∆ mutant was hypersensitive to fluconazole, which was attributed to reduced ergosterol biosynthesis and CDR1 efflux pump activity, and iron/calcium dysregulation. Interestingly, carbon source utilization tests found the tfp1∆/∆ mutant was defective for growth on N-Acetylglucosamine (GlcNAc) plate, which was associated with ATP depletion due to the decreased ability to catabolize GlcNAc. Taken together, our study gives new insights into functions of Tfp1, and provides the potential to better exploit V-ATPase as an antifungal target. PMID:26255859

  7. Palmitic acid in the sn-2 position of dietary triacylglycerols does not affect insulin secretion or glucose homeostasis in healthy men and women

    PubMed Central

    Filippou, A; Teng, K-T; Berry, S E; Sanders, T A B

    2014-01-01

    Background/objectives: Dietary triacylglycerols containing palmitic acid in the sn-2 position might impair insulin release and increase plasma glucose. Subjects/Methods: We used a cross-over designed feeding trial in 53 healthy Asian men and women (20–50 years) to test this hypothesis by exchanging 20% energy of palm olein (PO; control) with randomly interesterified PO (IPO) or high oleic acid sunflower oil (HOS). After a 2-week run-in period on PO, participants were fed PO, IPO and HOS for 6 week consecutively in randomly allocated sequences. Fasting (midpoint and endpoint) and postprandial blood at the endpoint following a test meal (3.54 MJ, 14 g protein, 85 g carbohydrate and 50 g fat as PO) were collected for the measurement of C-peptide, insulin, glucose, plasma glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1, lipids and apolipoproteins; pre-specified primary and secondary outcomes were postprandial changes in C-peptide and plasma glucose. Results: Low density lipoprotein cholesterol was 0.3 mmol/l (95% confidence interval (95% CI)) 0.1, 0.5; P<0.001) lower on HOS than on PO or IPO as predicted, indicating good compliance to the dietary intervention. There were no significant differences (P=0.58) between diets among the 10 male and 31 female completers in the incremental area under the curve (0–2 h) for C-peptide in nmol.120 min/l: GM (95% CI) were PO 220 (196, 245), IPO 212 (190, 235) and HOS 224 (204, 244). Plasma glucose was 8% lower at 2 h on IPO vs PO and HOS (both P<0.05). Conclusion: Palmitic acid in the sn-2 position does not adversely impair insulin secretion and glucose homeostasis. PMID:25052227

  8. Calcium and Vitamin D

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes the roles of calcium and vitamin D in bone health. Calcium is required for the bone formation phase of bone remodeling and it also affects bone mass through its impact on the remodeling rate. Typically, about 5 nmol (200 mg) of calcium is removed from the adult skeleton and ...

  9. Calcium supplements

    MedlinePlus

    ... TYPES OF CALCIUM SUPPLEMENTS Forms of calcium include: Calcium carbonate: Over-the-counter (OTC) antacid products, such as Tums and Rolaids, contain calcium carbonate. These sources of calcium do not cost much. ...

  10. Impaired Cellular Bioenergetics Causes Mitochondrial Calcium Handling Defects in MT-ND5 Mutant Cybrids

    PubMed Central

    Duchen, Michael R.

    2016-01-01

    Mutations in mitochondrial DNA (mtDNA) can cause mitochondrial disease, a group of metabolic disorders that affect both children and adults. Interestingly, individual mtDNA mutations can cause very different clinical symptoms, however the factors that determine these phenotypes remain obscure. Defects in mitochondrial oxidative phosphorylation can disrupt cell signaling pathways, which may shape these disease phenotypes. In particular, mitochondria participate closely in cellular calcium signaling, with profound impact on cell function. Here, we examined the effects of a homoplasmic m.13565C>T mutation in MT-ND5 on cellular calcium handling using transmitochondrial cybrids (ND5 mutant cybrids). We found that the oxidation of NADH and mitochondrial membrane potential (Δψm) were significantly reduced in ND5 mutant cybrids. These metabolic defects were associated with a significant decrease in calcium uptake by ND5 mutant mitochondria in response to a calcium transient. Inhibition of glycolysis with 2-deoxy-D-glucose did not affect cytosolic calcium levels in control cybrids, but caused an increase in cytosolic calcium in ND5 mutant cybrids. This suggests that glycolytically-generated ATP is required not only to maintain Δψm in ND5 mutant mitochondria but is also critical for regulating cellular calcium homeostasis. We conclude that the m.13565C>T mutation in MT-ND5 causes defects in both mitochondrial oxidative metabolism and mitochondrial calcium sequestration. This disruption of mitochondrial calcium handling, which leads to defects in cellular calcium homeostasis, may be an important contributor to mitochondrial disease pathogenesis. PMID:27110715

  11. Apatite formation on bioactive calcium-silicate cements for dentistry affects surface topography and human marrow stromal cells proliferation.

    PubMed

    Gandolfi, Maria Giovanna; Ciapetti, Gabriela; Taddei, Paola; Perut, Francesca; Tinti, Anna; Cardoso, Marcio Vivan; Van Meerbeek, Bart; Prati, Carlo

    2010-10-01

    The effect of ageing in phosphate-containing solution of bioactive calcium-silicate cements on the chemistry, morphology and topography of the surface, as well as on in vitro human marrow stromal cells viability and proliferation was investigated. A calcium-silicate cement (wTC) mainly based on dicalcium-silicate and tricalcium-silicate was prepared. Alpha-TCP was added to wTC to obtain wTC-TCP. Bismuth oxide was inserted in wTC to prepare a radiopaque cement (wTC-Bi). A commercial calcium-silicate cement (ProRoot MTA) was tested as control. Cement disks were aged in DPBS for 5 h ('fresh samples'), 14 and 28 days, and analyzed by ESEM/EDX, SEM/EDX, ATR-FTIR, micro-Raman techniques and scanning white-light interferometry. Proliferation, LDH release, ALP activity and collagen production of human marrow stromal cells (MSC) seeded for 1-28 days on the cements were evaluated. Fresh samples exposed a surface mainly composed of calcium-silicate hydrates CSH (from the hydration of belite and alite), calcium hydroxide, calcium carbonate, and ettringite. Apatite nano-spherulites rapidly precipitated on cement surfaces within 5 h. On wTC-TCP the Ca-P deposits appeared thicker than on the other cements. Aged cements showed an irregular porous calcium-phosphate (Ca-P) coating, formed by aggregated apatite spherulites with interspersed calcite crystals. All the experimental cements exerted no acute toxicity in the cell assay system and allowed cell growth. Using biochemical results, the scores were: fresh cements>aged cements for cell proliferation and ALP activity (except for wTC-Bi), whereas fresh cements

  12. Hydrogen peroxide-mediated oxidative stress disrupts calcium binding on calmodulin: More evidence for oxidative stress in vitiligo

    SciTech Connect

    Schallreuter, K.U. . E-mail: k.schallreuter@bradford.ac.uk; Gibbons, N.C.J.; Zothner, C.; Abou Elloof, M.M.; Wood, J.M.

    2007-08-17

    Patients with acute vitiligo have low epidermal catalase expression/activities and accumulate 10{sup -3} M H{sub 2}O{sub 2}. One consequence of this severe oxidative stress is an altered calcium homeostasis in epidermal keratinocytes and melanocytes. Here, we show decreased epidermal calmodulin expression in acute vitiligo. Since 10{sup -3}M H{sub 2}O{sub 2} oxidises methionine and tryptophan residues in proteins, we examined calcium binding to calmodulin in the presence and absence of H{sub 2}O{sub 2} utilising {sup 45}calcium. The results showed that all four calcium atoms exchanged per molecule of calmodulin. Since oxidised calmodulin looses its ability to activate calcium ATPase, enzyme activities were followed in full skin biopsies from lesional skin of patients with acute vitiligo (n = 6) and healthy controls (n = 6). The results yielded a 4-fold decrease of ATPase activities in the patients. Computer simulation of native and oxidised calmodulin confirmed the loss of all four calcium ions from their specific EF-hand domains. Taken together H{sub 2}O{sub 2}-mediated oxidation affects calcium binding in calmodulin leading to perturbed calcium homeostasis and perturbed L-phenylalanine-uptake in the epidermis of acute vitiligo.

  13. NHERF-2 maintains endothelial homeostasis

    PubMed Central

    Bhattacharya, Resham; Wang, Enfeng; Dutta, Shamit K.; Vohra, Pawan K.; E, Guangqi; Prakash, Y. S.

    2012-01-01

    The Na+/H+ exchanger regulatory factor-2 (NHERF-2) is an integral component of almost all endothelial cells (ECs), yet its endothelial function is not known. Here, we found that NHERF-2, is a key regulator of endothelial homeostasis because NHERF-2–silenced ECs proliferate at a much higher rate even in the absence of mitogens such as VEGF compared with control ECs. We further show that the hyperproliferation phenotype of NHERF-2–silenced EC is because of an accelerated cell cycle that is probably caused by a combination of the following factors: increased cytoplasmic calcium, increased expression of c-Myc, increased expression of cyclin D1, and reduced expression of p27. Using an experimental mouse model of human hemangioma, we found that the endothelial neoplasms derived from NHERF-2–silenced cells were much larger in volume than those derived from control cells. Thus, NHERF-2 is a negative regulator of endothelial proliferation and may have important roles in endothelial homeostasis and vascular modeling. PMID:22343917

  14. Three-component homeostasis control

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Hong, Hyunsuk; Jo, Junghyo

    2014-03-01

    Two reciprocal components seem to be sufficient to maintain a control variable constant. However, pancreatic islets adapt three components to control glucose homeostasis. They are α (secreting glucagon), β (insulin), and δ (somatostatin) cells. Glucagon and insulin are the reciprocal hormones for increasing and decreasing blood glucose levels, while the role of somatostatin is unknown. However, it has been known how each hormone affects other cell types. Based on the pulsatile hormone secretion and the cellular interactions, this system can be described as coupled oscillators. In particular, we used the Landau-Stuart model to consider both amplitudes and phases of hormone oscillations. We found that the presence of the third component, δ cell, was effective to resist under glucose perturbations, and to quickly return to the normal glucose level once perturbed. Our analysis suggested that three components are necessary for advanced homeostasis control.

  15. Sequential acquisition of cacophony calcium currents, sodium channels and voltage-dependent potassium currents affects spike shape and dendrite growth during postembryonic maturation of an identified Drosophila motoneuron

    PubMed Central

    Ryglewski, Stefanie; Kilo, Lukas; Duch, Carsten

    2015-01-01

    During metamorphosis the CNS undergoes profound changes to accommodate the switch from larval to adult behaviors. In Drosophila and other holometabolous insects, adult neurons differentiate either from respecified larval neurons, newly born neurons, or are born embryonically but remain developmentally arrested until differentiation during pupal life. This study addresses the latter in the identified Drosophila flight motoneuron 5. In situ patch-clamp recordings, intracellular dye fills and immunocytochemistry address the interplay between dendritic shape, excitability and ionic current development. During pupal life, changes in excitability and spike shape correspond to a stereotyped, progressive appearance of voltage-gated ion channels. High-voltage-activated calcium current is the first current to appear at pupal stage P4, prior to the onset of dendrite growth. This is followed by voltage-gated sodium as well as transient potassium channel expression, when first dendrites grow, and sodium-dependent action potentials can be evoked by somatic current injection. Sustained potassium current appears later than transient potassium current. During the early stages of rapid dendritic growth, sodium-dependent action potentials are broadened by a calcium component. Narrowing of spike shape coincides with sequential increases in transient and sustained potassium currents during stages when dendritic growth ceases. Targeted RNAi knockdown of pupal calcium current significantly reduces dendritic growth. These data indicate that the stereotyped sequential acquisition of different voltage-gated ion channels affects spike shape and excitability such that activity-dependent calcium influx serves as a partner of genetic programs during critical stages of motoneuron dendrite growth. PMID:24620836

  16. Increased calcium bioavailability in mice fed genetically engineered plants lacking calcium oxalate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioavailable calcium affects bone formation and calcification. Here we investigate how a single gene mutation altering calcium partitioning in the model forage crop Medicago truncatula affects calcium bioavailability. Previously, the cod5 M. truncatula mutant was identified which contains identical ...

  17. Ways of calcium reabsorption in the kidney.

    PubMed

    Moor, Matthias B; Bonny, Olivier

    2016-06-01

    The role of the kidney in calcium homeostasis has been reshaped from a classic view in which the kidney was regulated by systemic calcitropic hormones such as vitamin D3 or parathyroid hormone to an organ actively taking part in the regulation of calcium handling. With the identification of the intrinsic renal calcium-sensing receptor feedback system, the regulation of paracellular calcium transport involving claudins, and new paracrine regulators such as klotho, the kidney has emerged as a crucial modulator not only of calciuria but also of calcium homeostasis. This review summarizes recent molecular and endocrine contributors to renal calcium handling and highlights the tight link between calcium and sodium reabsorption in the kidney. PMID:27009338

  18. Calcium - ionized

    MedlinePlus

    ... at both ionized calcium and calcium attached to proteins. You may need to have a separate ionized calcium test if you have factors that increase or decrease total calcium levels. These may include abnormal blood levels ...

  19. Herbal preparations affect the kinetic factors of calcium oxalate crystallization in synthetic urine: implications for kidney stone therapy.

    PubMed

    Rodgers, Allen L; Webber, Dawn; Ramsout, Ronica; Gohel, Mayur Danny I

    2014-06-01

    Herbal remedies are increasingly being considered as suitable long-term treatments for renal dysfunction. The objective of the present study was to investigate the effect of some herbal extracts, all previously identified in published studies as influencing kidney stone formation, on the crystallization characteristics of calcium oxalate (CaOx) in synthetic urine (SU). Five herbal extracts were selected for the study: Folium pyrrosiae, Desmodium styracifolium, Phyllanthus niruri, Orthosiphon stamineus and Cystone(®). Concentrated stock solutions of each herbal extract were prepared and were tested at their recommended dosages in in vitro crystallization studies in SU. CaOx crystallization experiments were performed in which the metastable limit (MSL), average particle size, and nucleation and growth rates were determined. The CaOx MSL of SU was unaltered by the five herbal extracts. Three of the herbs (Desmodium styracifolium, Orthosiphon stamineus and Cystone(®)) significantly reduced the average particle size of precipitated crystals relative to undosed SU. All of the extracts increased the rate of nucleation and decreased the rate of growth significantly in SU. Cystone(®) showed the greatest effect on the measured risk factors. It is concluded that all of the herbs have the potential to serve as inhibitors of calcium oxalate stone formation and warrant investigation in clinical trials. PMID:24648109

  20. Skin aging, gene expression and calcium.

    PubMed

    Rinnerthaler, Mark; Streubel, Maria Karolin; Bischof, Johannes; Richter, Klaus

    2015-08-01

    The human epidermis provides a very effective barrier function against chemical, physical and microbial insults from the environment. This is only possible as the epidermis renews itself constantly. Stem cells located at the basal lamina which forms the dermoepidermal junction provide an almost inexhaustible source of keratinocytes which differentiate and die during their journey to the surface where they are shed off as scales. Despite the continuous renewal of the epidermis it nevertheless succumbs to aging as the turnover rate of the keratinocytes is slowing down dramatically. Aging is associated with such hallmarks as thinning of the epidermis, elastosis, loss of melanocytes associated with an increased paleness and lucency of the skin and a decreased barrier function. As the differentiation of keratinocytes is strictly calcium dependent, calcium also plays an important role in the aging epidermis. Just recently it was shown that the epidermal calcium gradient in the skin that facilitates the proliferation of keratinocytes in the stratum basale and enables differentiation in the stratum granulosum is lost in the process of skin aging. In the course of this review we try to explain how this calcium gradient is built up on the one hand and is lost during aging on the other hand. How this disturbed calcium homeostasis is affecting the gene expression in aged skin and is leading to dramatic changes in the composition of the cornified envelope will also be discussed. This loss of the epidermal calcium gradient is not only specific for skin aging but can also be found in skin diseases such as Darier disease, Hailey-Hailey disease, psoriasis and atopic dermatitis, which might be very helpful to get a deeper insight in skin aging. PMID:25262846

  1. Calcium antagonist flunarizine hydrochloride affects striatal D2 dopamine receptors in the young adult and aged rat brain.

    PubMed

    Asanuma, M; Ogawa, N; Haba, K; Hirata, H; Mori, A

    1991-01-01

    The calcium (Ca) antagonist flunarizine hydrochloride (FNZ) has been reported to induce parkinsonism, especially in the elderly. The effects of FNZ on dopamine receptors in rat striatal membranes, especially in aged rats, were studied using radiolabeled receptor assay. Similar displacing potencies in [(3)H]spiperone bindings were exhibited for FNZ and the Ca antagonists verapamil and nicardipine. FNZ was found to directly and competitively effect D2 receptors (D2-Rs) as an antagonist, without effecting D1 receptors. Furthermore, the washing of preoccupied membranes revealed that FNZ has a long-acting potent effect on D2-Rs. The comparative study of FNZ and sulpiride in young-adult and aged rats showed that the effect of FNZ on D2-Rs was more marked in aged rats. These results might be related to FNZ-induced parkinsonism and its high incidence in the elderly. PMID:15374420

  2. Effects of calcium chloride and calcium sulfate in an oral bolus given as a supplement to postpartum dairy cows.

    PubMed

    Sampson, J D; Spain, J N; Jones, C; Carstensen, L

    2009-01-01

    An oral calcium bolus (Bovikalc, Boehringer Ingelheim Vetmedica) supplying calcium to dairy cows in the form of calcium chloride and calcium sulfate was evaluated to determine the effect on calcium homeostasis immediately after calving. Cows in the treatment group received one bolus immediately after calving and a second bolus 12 hours later. Control cows received no calcium supplementation. Blood was analyzed for ionized calcium, and urine was collected for urinary pH determination. Postpartum supplementation with the Bovikalc bolus significantly increased serum ionized calcium levels and decreased urine pH values. PMID:20037967

  3. Calcium Oscillations

    PubMed Central

    Dupont, Geneviève; Combettes, Laurent; Bird, Gary S.; Putney, James W.

    2011-01-01

    Calcium signaling results from a complex interplay between activation and inactivation of intracellular and extracellular calcium permeable channels. This complexity is obvious from the pattern of calcium signals observed with modest, physiological concentrations of calcium-mobilizing agonists, which typically present as sequential regenerative discharges of stored calcium, a process referred to as calcium oscillations. In this review, we discuss recent advances in understanding the underlying mechanism of calcium oscillations through the power of mathematical modeling. We also summarize recent findings on the role of calcium entry through store-operated channels in sustaining calcium oscillations and in the mechanism by which calcium oscillations couple to downstream effectors. PMID:21421924

  4. Perturbations of Amino Acid Metabolism Associated with Glyphosate-Dependent Inhibition of Shikimic Acid Metabolism Affect Cellular Redox Homeostasis and Alter the Abundance of Proteins Involved in Photosynthesis and Photorespiration1[W][OA

    PubMed Central

    Vivancos, Pedro Diaz; Driscoll, Simon P.; Bulman, Christopher A.; Ying, Liu; Emami, Kaveh; Treumann, Achim; Mauve, Caroline; Noctor, Graham; Foyer, Christine H.

    2011-01-01

    The herbicide glyphosate inhibits the shikimate pathway of the synthesis of amino acids such as phenylalanine, tyrosine, and tryptophan. However, much uncertainty remains concerning precisely how glyphosate kills plants or affects cellular redox homeostasis and related processes in glyphosate-sensitive and glyphosate-resistant crop plants. To address this issue, we performed an integrated study of photosynthesis, leaf proteomes, amino acid profiles, and redox profiles in the glyphosate-sensitive soybean (Glycine max) genotype PAN809 and glyphosate-resistant Roundup Ready Soybean (RRS). RRS leaves accumulated much more glyphosate than the sensitive line but showed relatively few changes in amino acid metabolism. Photosynthesis was unaffected by glyphosate in RRS leaves, but decreased abundance of photosynthesis/photorespiratory pathway proteins was observed together with oxidation of major redox pools. While treatment of a sensitive genotype with glyphosate rapidly inhibited photosynthesis and triggered the appearance of a nitrogen-rich amino acid profile, there was no evidence of oxidation of the redox pools. There was, however, an increase in starvation-associated and defense proteins. We conclude that glyphosate-dependent inhibition of soybean leaf metabolism leads to the induction of defense proteins without sustained oxidation. Conversely, the accumulation of high levels of glyphosate in RRS enhances cellular oxidation, possibly through mechanisms involving stimulation of the photorespiratory pathway. PMID:21757634

  5. REST levels affect the functional expression of voltage dependent calcium channels and the migratory activity in immortalized GnRH neurons.

    PubMed

    Antoniotti, Susanna; Ruffinatti, Federico Alessandro; Torriano, Simona; Luganini, Anna; D'Alessandro, Rosalba; Lovisolo, Davide

    2016-08-26

    The repressor element-1 silencing transcription factor (REST) has emerged as a key controller of neuronal differentiation and has been shown to play a critical role in the expression of the neuronal phenotype; however, much has still to be learned about its role at specific developmental stages and about the functional targets affected. Among these targets, calcium signaling mechanisms are critically dependent on the developmental stage and their full expression is a hallmark of the mature, functional neuron. We have analyzed the role played by REST in GN11 cells, an immortalized cell line derived from gonadotropin hormone releasing hormone (GnRH) neurons at an early developmental stage, electrically non-excitable and with a strong migratory activity. We show for the first time that functional voltage-dependent calcium channels are expressed in wild type GN11 cells; down-regulation of REST by a silencing approach shifts these cells towards a more differentiated phenotype, increasing the functional expression of P/Q-type channels and reducing their migratory potential. PMID:27349310

  6. Human homeostasis in the space environment: A systems synthesis approach

    NASA Technical Reports Server (NTRS)

    Economos, A. C.

    1982-01-01

    The features of homeostatic changes which occur during adaptation to the weightless state are examined and the possible mechanisms underlying the responses are explored. Cardiac output, negative fluid balance, body weight, bone calcium, and muscle atrophy are discussed. Some testable hypotheses concerning possible effects on homeostasis that long-term exposure to weightlessness might cause are proposed.

  7. Intrathecal inhibition of calcium/calmodulin-dependent protein kinase II in diabetic neuropathy adversely affects pain-related behavior.

    PubMed

    Jelicic Kadic, Antonia; Boric, Matija; Ferhatovic, Lejla; Banozic, Adriana; Sapunar, Damir; Puljak, Livia

    2013-10-25

    Calcium/calmodulin-dependent protein kinase II (CaMKII) is considered an important enzyme contributing to the pathogenesis of persistent pain. The aim of this study was to test whether intrathecal injection of CaMKII inhibitors may reduce pain-related behavior in diabetic rats. Male Sprague-Dawley rats were used. Diabetes was induced with intraperitoneal injection of 55mg/kg streptozotocin. Two weeks after diabetes induction, CaMKII inhibitor myristoil-AIP or KN-93 was injected intrathecally. Behavioral testing with mechanical and thermal stimuli was performed before induction of diabetes, the day preceding the injection, as well as 2h and 24h after the intrathecal injection. The expression of total CaMKII and its alpha isoform in dorsal horn was quantified using immunohistochemistry. Intrathecal injection of mAIP and KN-93 resulted in significant decrease in expression of total CaMKII and CaMKII alpha isoform activity. Also, mAIP and KN93 injection significantly increased sensitivity to a mechanical stimulus 24h after i.t. injection. Intrathecal inhibition of CaMKII reduced the expression of total CaMKII and its CaMKII alpha isoform activity in diabetic dorsal horn, which was accompanied with an increase in pain-related behavior. Further studies about the intrathecal inhibition of CaMKII should elucidate its role in nociceptive processes of diabetic neuropathy. PMID:24035897

  8. The product of Kaposi's sarcoma-associated herpesvirus immediate early gene K4.2 regulates immunoglobulin secretion and calcium homeostasis by interacting with and inhibiting pERP1.

    PubMed

    Wong, Lai-Yee; Brulois, Kevin; Toth, Zsolt; Inn, Kyung-Soo; Lee, Sun-Hwa; O'Brien, Kathryn; Lee, Hyera; Gao, Shou-Jiang; Cesarman, Ethel; Ensser, Armin; Jung, Jae U

    2013-11-01

    Chaperones are proteins that assist the noncovalent folding and assembly of macromolecular polypeptide chains, ultimately preventing the formation of nonfunctional or potentially toxic protein aggregates. Plasma cell-induced-endoplasmic reticulum (ER)-resident protein 1 (pERP1) is a cellular chaperone that is preferentially expressed in marginal-zone B cells and is highly upregulated during plasma cell differentiation. While initially identified as a dedicated factor for the assembly of secreted IgM, pERP1 has since been implicated in suppressing calcium mobilization, and its expression is misregulated in multiple tumors. A number of herpesvirus immediate early gene products play important roles in the regulation of viral gene expression and/or evasion of host immune responses. Here, we report that the Kaposi's sarcoma-associated herpesvirus (KSHV) immediate early viral gene K4.2 encodes an endoplasmic reticulum-localized protein that interacts with and inhibits pERP1. Consequently, K4.2 expression interfered with immunoglobulin secretion by delaying the kinetics of immunoglobulin assembly and also led to increased responsiveness of B-cell receptor signal transduction by enhancing phosphotyrosine signals and intracellular calcium fluxes. Furthermore, K4.2 expression also appeared to contribute to maximal lytic replication by enhancing viral glycoprotein expression levels and ultimately promoting infectious-virus production. Finally, immunohistochemistry analysis showed that pERP1 expression was readily detected in KSHV-positive cells from multicentric Castleman's disease (MCD) and Kaposi's sarcoma (KS) lesions, suggesting that pERP1 may have potential roles in the KSHV life cycle and malignancy. In conclusion, our data suggest that K4.2 participates in lytic replication by enhancing calcium flux and viral glycoprotein expression, but also by interfering with immunoglobulin assembly to potentially dampen the adaptive immune response. PMID:23986581

  9. ALTERATIONS OF FE HOMEOSTASIS IN RAT CARDIOVASCULAR DISEASE MODELS AND ITS CONTRIBUTION TO CARDIOPULMONARY TOXICITY

    EPA Science Inventory

    Introduction: Fe homeostasis can be disrupted in human cardiovascular diseases (CVD). We addressed how dysregulation of Fe homeostasis affected the pulmonary inflammation/oxidative stress response and disease progression after exposure to Libby amphibole (LA), an asbestifonn mine...

  10. BDNF modulates heart contraction force and long-term homeostasis through truncated TrkB.T1 receptor activation

    PubMed Central

    Fulgenzi, Gianluca; Tomassoni-Ardori, Francesco; Babini, Lucia; Becker, Jodi; Barrick, Colleen; Puverel, Sandrine

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) is critical for mammalian development and plasticity of neuronal circuitries affecting memory, mood, anxiety, pain sensitivity, and energy homeostasis. Here we report a novel unexpected role of BDNF in regulating the cardiac contraction force independent of the nervous system innervation. This function is mediated by the truncated TrkB.T1 receptor expressed in cardiomyocytes. Loss of TrkB.T1 in these cells impairs calcium signaling and causes cardiomyopathy. TrkB.T1 is activated by BDNF produced by cardiomyocytes, suggesting an autocrine/paracrine loop. These findings unveil a novel signaling mechanism in the heart that is activated by BDNF and provide evidence for a global role of this neurotrophin in the homeostasis of the organism by signaling through different TrkB receptor isoforms. PMID:26347138

  11. Calcium Carbonate

    MedlinePlus

    Calcium carbonate is a dietary supplement used when the amount of calcium taken in the diet is not ... for healthy bones, muscles, nervous system, and heart. Calcium carbonate also is used as an antacid to relieve ...

  12. Calcium - urine

    MedlinePlus

    ... best treatment for the most common type of kidney stone , which is made of calcium. This type of ... the kidneys into the urine, which causes calcium kidney stones Sarcoidosis Taking too much calcium Too much production ...

  13. Presenilins and calcium signaling – systems biology to the rescue

    PubMed Central

    Bezprozvanny, Ilya

    2016-01-01

    Mutations in presenilins result in familial Alzheimer’s disease (FAD). Presenilins encode a catalytic subunit of γ-secretase complex, and FAD mutations in presenilins alter γ-secretase activity. Many FAD mutations in presenilins also affect intracellular calcium signaling. To explain these results it was proposed that presenilins encode endoplasmic reticulum (ER) calcium leak channels, and that this function is disrupted by FAD mutations. This hypothesis has been controversial. Two recent reports provide new evidence for the calcium leak channel hypothesis. One group reported the presence of putative ion-conduction pore in the high resolution crystal structure of bacterial presenilin homologue PSH1. Another group identified an essential role of presenilins in mediating ER calcium leak in unbiased cell-based screen for calcium homeostasis modulators. These results should enable the field to move forward and to focus on exploring connections between FAD mutations in presenilins, changes in γ-secretase and ER Ca2+ leak functions and development of the disease. PMID:23838181

  14. Zinc homeostasis and neurodegenerative disorders

    PubMed Central

    Szewczyk, Bernadeta

    2013-01-01

    Zinc is an essential trace element, whose importance to the function of the central nervous system (CNS) is increasingly being appreciated. Alterations in zinc dyshomeostasis has been suggested as a key factor in the development of several neuropsychiatric disorders. In the CNS, zinc occurs in two forms: the first being tightly bound to proteins and, secondly, the free, cytoplasmic, or extracellular form found in presynaptic vesicles. Under normal conditions, zinc released from the synaptic vesicles modulates both ionotropic and metabotropic post-synaptic receptors. While under clinical conditions such as traumatic brain injury, stroke or epilepsy, the excess influx of zinc into neurons has been found to result in neurotoxicity and damage to postsynaptic neurons. On the other hand, a growing body of evidence suggests that a deficiency, rather than an excess, of zinc leads to an increased risk for the development of neurological disorders. Indeed, zinc deficiency has been shown to affect neurogenesis and increase neuronal apoptosis, which can lead to learning and memory deficits. Altered zinc homeostasis is also suggested as a risk factor for depression, Alzheimer's disease (AD), aging, and other neurodegenerative disorders. Under normal CNS physiology, homeostatic controls are put in place to avoid the accumulation of excess zinc or its deficiency. This cellular zinc homeostasis results from the actions of a coordinated regulation effected by different proteins involved in the uptake, excretion and intracellular storage/trafficking of zinc. These proteins include membranous transporters (ZnT and Zip) and metallothioneins (MT) which control intracellular zinc levels. Interestingly, alterations in ZnT and MT have been recently reported in both aging and AD. This paper provides an overview of both clinical and experimental evidence that implicates a dysfunction in zinc homeostasis in the pathophysiology of depression, AD, and aging. PMID:23882214

  15. Aqueous extract of tamarind seeds selectively increases glucose transporter-2, glucose transporter-4, and islets' intracellular calcium levels and stimulates β-cell proliferation resulting in improved glucose homeostasis in rats with streptozotocin-induced diabetes mellitus.

    PubMed

    Sole, Sushant Shivdas; Srinivasan, B P

    2012-08-01

    Tamarindus indica Linn. has been in use for a long time in Asian food and traditional medicine for different diseases including diabetes and obesity. However, the molecular mechanisms of these effects have not been fully understood. In view of the multidimensional activity of tamarind seeds due to their having high levels of polyphenols and flavonoids, we hypothesized that the insulin mimetic effect of aqueous tamarind seed extract (TSE) might increase glucose uptake through improvement in the expression of genes of the glucose transporter (GLUT) family and sterol regulatory element-binding proteins (SREBP) 1c messenger RNA (mRNA) in the liver. Daily oral administration of TSE to streptozotocin (STZ)-induced (90 mg/kg intraperitoneally) type 2 diabetic male Wistar rats at different doses (120 and 240 mg/kg body weight) for 4 weeks showed positive correlation with intracellular calcium and insulin release in isolated islets of Langerhans. Tamarind seed extract supplementation significantly improved the GLUT-2 protein and SREBP-1c mRNA expression in the liver and GLUT-4 protein and mRNA expression in the skeletal muscles of diabetic rats. The elevated levels of serum nitric oxide (NO), glycosylated hemoglobin level (hemoglobin (A1c)) and tumor necrosis factor α (TNF-α) decreased after TSE administration. Immunohistochemical findings revealed that TSE abrogated STZ-induced apoptosis and increased β-cell neogenesis, indicating its effect on islets and β-cell mass. In conclusion, it was found that the antidiabetic effect of TSE on STZ-induced diabetes resulted from complex mechanisms of β-cell neogenesis, calcium handling, GLUT-2, GLUT-4, and SREBP-1c. These findings show the scope for formulating a new herbal drug for diabetes therapy. PMID:22935346

  16. FOXOs: signalling integrators for homeostasis maintenance.

    PubMed

    Eijkelenboom, Astrid; Burgering, Boudewijn M T

    2013-02-01

    Forkhead box O (FOXO) transcription factors are involved in the regulation of the cell cycle, apoptosis and metabolism. In model organisms, FOXO activity also affects stem cell maintenance and lifespan as well as age-related diseases, such as cancer and diabetes. Multiple upstream pathways regulate FOXO activity through post-translational modifications and nuclear-cytoplasmic shuttling of both FOXO and its regulators. The diversity of this upstream regulation and the downstream effects of FOXOs suggest that they function as homeostasis regulators to maintain tissue homeostasis over time and coordinate a response to environmental changes, including growth factor deprivation, metabolic stress (starvation) and oxidative stress. PMID:23325358

  17. Plasma membrane calcium channels in cancer: Alterations and consequences for cell proliferation and migration.

    PubMed

    Déliot, Nadine; Constantin, Bruno

    2015-10-01

    The study of calcium channels in molecular mechanisms of cancer transformation is still a novel area of research. Several studies, mostly conducted on cancer cell lines, however support the idea that a diversity of plasma membrane channels participates in the remodeling of Ca2+ homeostasis, which regulates various cancer hallmarks such as uncontrolled multiplication and increase in migration and invasion abilities. However few is still understood concerning the intracellular signaling cascades mobilized by calcium influx participating to cancer cell behavior. This review intends to gather some of these pathways dependent on plasma membrane calcium channels and described in prostate, breast and lung cancer cell lines. In these cancer cell types, the calcium channels involved in calcium signaling pathways promoting cancer behaviors are mostly non-voltage activated calcium channels and belong to the TRP superfamily (TRPC, TPRPV and TRPM families) and the Orai family. TRP and Orai channels are part of many signaling cascades involving the activation of transmembrane receptors by extracellular ligand from the tumor environment. TRPV can sense changes in the physical and chemical environment of cancer cells and TRPM7 are stretch activated and sensitive to cholesterol. Changes in activation and or expression of plasma-membrane calcium channels affect calcium-dependent signaling processes relevant to tumorigenesis. The studies cited in this review suggest that an increase in plasma membrane calcium channel expression and/or activity sustain an elevated calcium entry (constitutive or under the control of extracellular signals) promoting higher cell proliferation and migration in most cases. A variety of non-voltage-operated calcium channels display change expression and/or activity in a same cancer type and cooperate to the same process relevant to cancer cell behavior, or can be involved in a different sequence of events during the tumorigenesis. This article is part of a

  18. Urinary Calcium and Oxalate Excretion in Healthy Adult Cats Are Not Affected by Increasing Dietary Levels of Bone Meal in a Canned Diet

    PubMed Central

    Passlack, Nadine; Zentek, Jürgen

    2013-01-01

    This study aimed to investigate the impact of dietary calcium (Ca) and phosphorus (P), derived from bone meal, on the feline urine composition and the urinary pH, allowing a risk assessment for the formation of calcium oxalate (CaOx) uroliths in cats. Eight healthy adult cats received 3 canned diets, containing 12.2 (A), 18.5 (B) and 27.0 g Ca/kg dry matter (C) and 16.1 (A), 17.6 (B) and 21.1 g P/kg dry matter (C). Each diet was fed over 17 days. After a 7 dayś adaptation period, urine and faeces were collected over 2×4 days (with a two-day rest between), and blood samples were taken. Urinary and faecal minerals, urinary oxalate (Ox), the urinary pH and the concentrations of serum Ca, phosphate and parathyroid hormone (PTH) were analyzed. Moreover, the urine was microscopically examined for CaOx uroliths. The results demonstrated that increasing levels of dietary Ca led to decreased serum PTH and Ca and increased faecal Ca and P concentrations, but did not affect the urinary Ca or Ox concentrations or the urinary fasting pH. The urinary postprandial pH slightly increased when the diet C was compared to the diet B. No CaOx crystals were detected in the urine of the cats. In conclusion, urinary Ca excretion in cats seems to be widely independent of the dietary Ca levels when Ca is added as bone meal to a typical canned diet, implicating that raw materials with higher contents of bones are of subordinate importance as risk factors for the formation of urinary CaOx crystals. PMID:23940588

  19. Neuroendocrine Regulation of Hydromineral Homeostasis.

    PubMed

    Mecawi, Andre de Souza; Ruginsk, Silvia Graciela; Elias, Lucila Leico Kagohara; Varanda, Wamberto Antonio; Antunes-Rodrigues, Jose

    2015-07-01

    Since the crucial evolutionary change from an aqueous to a terrestrial environment, all living organisms address the primordial task of equilibrating the ingestion/production of water and electrolytes (primarily sodium) with their excretion. In mammals, the final route for the excretion of these elements is mainly through the kidneys, which can eliminate concentrated or diluted urine according to the requirements. Despite their primary role in homeostasis, the kidneys are not able to recover water and solutes lost through other systems. Therefore, the selective stimulation or inhibition of motivational and locomotor behavior becomes essential to initiate the search and acquisition of water and/or sodium from the environment. Indeed, imbalances affecting the osmolality and volume of body fluids are dramatic challenges to the maintenance of hydromineral homeostasis. In addition to behavioral changes, which are integrated in the central nervous system, most of the systemic responses recruited to restore hydroelectrolytic balance are accomplished by coordinated actions of the cardiovascular, autonomic and endocrine systems, which determine the appropriate renal responses. The activation of sequential and redundant mechanisms (involving local and systemic factors) produces accurate and self-limited effector responses. From a physiological point of view, understanding the mechanisms underlying water and sodium balance is intriguing and of great interest for the biomedical sciences. Therefore, the present review will address the biophysical, evolutionary and historical perspectives concerning the integrative neuroendocrine control of hydromineral balance, focusing on the major neural and endocrine systems implicated in the control of water and sodium balance. PMID:26140725

  20. Urinary excretion of magnesium and calcium as an index of absorption is not affected by lactose intake in healthy adults.

    PubMed

    Brink, E J; van Beresteijn, E C; Dekker, P R; Beynen, A C

    1993-05-01

    The effect of lactose on the urinary excretion of Mg and Ca, as an index of absorption, was studied in a double-blind, crossover study during three 1-week periods. Twenty-four healthy, lactose-tolerant, adult volunteers maintained their habitual diets with the exception that all lactose-containing dairy products in the diet were replaced by 600 g/d of three specially prepared dairy products. These products were based on either lactose-enriched cow's milk or lactose-enriched, lactase (EC 3.2.1.23)-treated cow's milk, with or without added Mg, and were given in turn during 1 week. Lactose intake was increased by 127 mmol/d (46 g/d) while taking the lactose-enriched products. While taking the Mg-enriched products, Mg intake was increased by 2.8 mmol/d (69 mg/d) which was equivalent to 17% of the habitual Mg intake. Apart from the lactose and Mg intake, nutrient intake was comparable during the three dietary periods. Urinary excretions of Mg and Ca were used as indicators for their absorption. Mg supplementation significantly increased urinary Mg excretion by 0.97 mmol/d (equivalent to an increase of 18%, P < 0.001), indicating that urinary Mg excretion is a valid indicator for intestinal Mg absorption. Hydrolysis of lactose did not affect urinary excretion of Mg and Ca, which implies that lactose intake does not affect the absorption of Mg and Ca in healthy adults. PMID:8329360

  1. Calcium channel blockers and dementia

    PubMed Central

    Nimmrich, V; Eckert, A

    2013-01-01

    Degenerative dementia is mainly caused by Alzheimer's disease and/or cerebrovascular abnormalities. Disturbance of the intracellular calcium homeostasis is central to the pathophysiology of neurodegeneration. In Alzheimer's disease, enhanced calcium load may be brought about by extracellular accumulation of amyloid-β. Recent studies suggest that soluble forms facilitate influx through calcium-conducting ion channels in the plasma membrane, leading to excitotoxic neurodegeneration. Calcium channel blockade attenuates amyloid-β-induced neuronal decline in vitro and is neuroprotective in animal models. Vascular dementia, on the other hand, is caused by cerebral hypoperfusion and may benefit from calcium channel blockade due to relaxation of the cerebral vasculature. Several calcium channel blockers have been tested in clinical trials of dementia and the outcome is heterogeneous. Nimodipine as well as nilvadipine prevent cognitive decline in some trials, whereas other calcium channel blockers failed. In trials with a positive outcome, BP reduction did not seem to play a role in preventing dementia, indicating a direct protecting effect on neurons. An optimization of calcium channel blockers for the treatment of dementia may involve an increase of selectivity for presynaptic calcium channels and an improvement of the affinity to the inactivated state. Novel low molecular weight compounds suitable for proof-of-concept studies are now available. PMID:23638877

  2. Cellular Homeostasis and Aging.

    PubMed

    Hartl, F Ulrich

    2016-06-01

    Aging and longevity are controlled by a multiplicity of molecular and cellular signaling events that interface with environmental factors to maintain cellular homeostasis. Modulation of these pathways to extend life span, including insulin-like signaling and the response to dietary restriction, identified the cellular machineries and networks of protein homeostasis (proteostasis) and stress resistance pathways as critical players in the aging process. A decline of proteostasis capacity during aging leads to dysfunction of specific cell types and tissues, rendering the organism susceptible to a range of chronic diseases. This volume of the Annual Review of Biochemistry contains a set of two reviews addressing our current understanding of the molecular mechanisms underlying aging in model organisms and humans. PMID:27050288

  3. CELLULAR MAGNESIUM HOMEOSTASIS

    PubMed Central

    Romani, Andrea M.P.

    2011-01-01

    Magnesium, the second most abundant cellular cation after potassium, is essential to regulate numerous cellular functions and enzymes, including ion channels, metabolic cycles, and signaling pathways, as attested by more than 1000 entries in the literature. Despite significant recent progress, however, our understanding of how cells regulate Mg2+ homeostasis and transport still remains incomplete. For example, the occurrence of major fluxes of Mg2+ in either direction across the plasma membrane of mammalian cells following metabolic or hormonal stimuli has been extensively documented. Yet, the mechanisms ultimately responsible for magnesium extrusion across the cell membrane have not been cloned. Even less is known about the regulation in cellular organelles. The present review is aimed at providing the reader with a comprehensive and up-to-date understanding of the mechanisms enacted by eukaryotic cells to regulate cellular Mg2+ homeostasis and how these mechanisms are altered under specific pathological conditions. PMID:21640700

  4. Redox regulated peroxisome homeostasis

    PubMed Central

    Wang, Xiaofeng; Li, Shuo; Liu, Yu; Ma, Changle

    2014-01-01

    Peroxisomes are ubiquitous organelles present in nearly all eukaryotic cells. Conserved functions of peroxisomes encompass beta-oxidation of fatty acids and scavenging of reactive oxygen species generated from diverse peroxisomal metabolic pathways. Peroxisome content, number, and size can change quickly in response to environmental and/or developmental cues. To achieve efficient peroxisome homeostasis, peroxisome biogenesis and degradation must be orchestrated. We review the current knowledge on redox regulated peroxisome biogenesis and degradation with an emphasis on yeasts and plants. PMID:25545794

  5. Redox regulated peroxisome homeostasis.

    PubMed

    Wang, Xiaofeng; Li, Shuo; Liu, Yu; Ma, Changle

    2015-01-01

    Peroxisomes are ubiquitous organelles present in nearly all eukaryotic cells. Conserved functions of peroxisomes encompass beta-oxidation of fatty acids and scavenging of reactive oxygen species generated from diverse peroxisomal metabolic pathways. Peroxisome content, number, and size can change quickly in response to environmental and/or developmental cues. To achieve efficient peroxisome homeostasis, peroxisome biogenesis and degradation must be orchestrated. We review the current knowledge on redox regulated peroxisome biogenesis and degradation with an emphasis on yeasts and plants. PMID:25545794

  6. Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 Function in Abscisic Acid-Mediated Signaling and H2O2 Homeostasis in Stomatal Guard Cells under Drought Stress[OPEN

    PubMed Central

    Wang, Cun; Zhang, Wen-Zheng

    2015-01-01

    Drought is a major threat to plant growth and crop productivity. Calcium-dependent protein kinases (CDPKs, CPKs) are believed to play important roles in plant responses to drought stress. Here, we report that Arabidopsis thaliana CPK8 functions in abscisic acid (ABA)- and Ca2+-mediated plant responses to drought stress. The cpk8 mutant was more sensitive to drought stress than wild-type plants, while the transgenic plants overexpressing CPK8 showed enhanced tolerance to drought stress compared with wild-type plants. ABA-, H2O2-, and Ca2+-induced stomatal closing were impaired in cpk8 mutants. Arabidopsis CATALASE3 (CAT3) was identified as a CPK8-interacting protein, confirmed by yeast two-hybrid, coimmunoprecipitation, and bimolecular fluorescence complementation assays. CPK8 can phosphorylate CAT3 at Ser-261 and regulate its activity. Both cpk8 and cat3 plants showed lower catalase activity and higher accumulation of H2O2 compared with wild-type plants. The cat3 mutant displayed a similar drought stress-sensitive phenotype as cpk8 mutant. Moreover, ABA and Ca2+ inhibition of inward K+ currents were diminished in guard cells of cpk8 and cat3 mutants. Together, these results demonstrated that CPK8 functions in ABA-mediated stomatal regulation in responses to drought stress through regulation of CAT3 activity. PMID:25966761

  7. Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 Function in Abscisic Acid-Mediated Signaling and H2O2 Homeostasis in Stomatal Guard Cells under Drought Stress.

    PubMed

    Zou, Jun-Jie; Li, Xi-Dong; Ratnasekera, Disna; Wang, Cun; Liu, Wen-Xin; Song, Lian-Fen; Zhang, Wen-Zheng; Wu, Wei-Hua

    2015-05-01

    Drought is a major threat to plant growth and crop productivity. Calcium-dependent protein kinases (CDPKs, CPKs) are believed to play important roles in plant responses to drought stress. Here, we report that Arabidopsis thaliana CPK8 functions in abscisic acid (ABA)- and Ca(2+)-mediated plant responses to drought stress. The cpk8 mutant was more sensitive to drought stress than wild-type plants, while the transgenic plants overexpressing CPK8 showed enhanced tolerance to drought stress compared with wild-type plants. ABA-, H2O2-, and Ca(2+)-induced stomatal closing were impaired in cpk8 mutants. Arabidopsis CATALASE3 (CAT3) was identified as a CPK8-interacting protein, confirmed by yeast two-hybrid, coimmunoprecipitation, and bimolecular fluorescence complementation assays. CPK8 can phosphorylate CAT3 at Ser-261 and regulate its activity. Both cpk8 and cat3 plants showed lower catalase activity and higher accumulation of H2O2 compared with wild-type plants. The cat3 mutant displayed a similar drought stress-sensitive phenotype as cpk8 mutant. Moreover, ABA and Ca(2+) inhibition of inward K(+) currents were diminished in guard cells of cpk8 and cat3 mutants. Together, these results demonstrated that CPK8 functions in ABA-mediated stomatal regulation in responses to drought stress through regulation of CAT3 activity. PMID:25966761

  8. Roosters affected by epididymal lithiasis present local alteration in vitamin D3, testosterone and estradiol levels as well as estrogen receptor 2 (beta) expression.

    PubMed

    Oliveira, André G; Dornas, Rubem A P; Praes, Lílian C; Hess, Rex A; Mahecha, Germán A B; Oliveira, Cleida A

    2011-09-01

    Epididymal lithiasis is a reproductive dysfunction of roosters that is associated with loss of fertility and is characterized by the formation of calcium stones in the lumen of the efferent ductules of the epididymal region. The efferent ductules of birds are responsible for the reabsorption of the fluid coming from the testis as well as luminal calcium. It has been hypothesized that the epididymal stone formation may be related to the impairment of local fluid or calcium homeostasis, which depends on hormones such as estradiol (E(2)). Therefore, this study aimed to investigate possible alterations in the expression of ERα (ESR1) and ERβ (ESR2) in the epididymal region of roosters affected by epididymal lithiasis. The study was performed by immunohistochemistry and western blotting assays. In addition, the concentrations of E(2), vitamin D3, and testosterone, which are also key hormones in maintenance of calcium homeostasis, were determined in the plasma and epididymal region, by ELISA. It was observed that ESR2 expression is increased in all segments of the epididymal region of affected roosters, whereas ESR1 levels are not altered. Moreover, the hormone concentration profiles were changed, as in the epididymal region of roosters with lithiasis the E(2) levels were increased and vitamin D3 as well as testosterone concentrations were significantly decreased. These results suggest that a hormonal imbalance may be involved with the origin and progression of the epididymal lithiasis, possibly by affecting the local fluid or calcium homeostasis. PMID:21670126

  9. Atherosclerosis differentially affects calcium signalling in endothelial cells from aortic arch and thoracic aorta in Apolipoprotein E knockout mice

    PubMed Central

    Prendergast, Clodagh; Quayle, John; Burdyga, Theodor; Wray, Susan

    2014-01-01

    Abstract Apolipoprotein‐E knockout (ApoE−/−) mice develop hypercholesterolemia and are a useful model of atherosclerosis. Hypercholesterolemia alters intracellular Ca2+ signalling in vascular endothelial cells but our understanding of these changes, especially in the early stages of the disease process, is limited. We therefore determined whether carbachol‐mediated endothelial Ca2+ signals differ in plaque‐prone aortic arch compared to plaque‐resistant thoracic aorta, of wild‐type and ApoE−/− mice, and how this is affected by age and the presence of hypercholesterolemia. The extent of plaque development was determined using en‐face staining with Sudan IV. Tissues were obtained from wild‐type and ApoE−/− mice at 10 weeks (pre‐plaques) and 24 weeks (established plaques). We found that even before development of plaques, significantly increased Ca2+ responses were observed in arch endothelial cells. Even with aging and plaque formation, ApoE−/− thoracic responses were little changed, however a significantly enhanced Ca2+ response was observed in arch, both adjacent to and away from lesions. In wild‐type mice of any age, 1–2% of cells had oscillatory Ca2+ responses. In young ApoE−/− and plaque‐free regions of older ApoE−/−, this is unchanged. However a significant increase in oscillations (~13–15%) occurred in thoracic and arch cells adjacent to lesions in older mice. Our data suggest that Ca2+ signals in endothelial cells show specific changes both before and with plaque formation, that these changes are greatest in plaque‐prone aortic arch cells, and that these changes will contribute to the reported deterioration of endothelium in atherosclerosis. PMID:25344475

  10. Calcium affects OX1 orexin (hypocretin) receptor responses by modifying both orexin binding and the signal transduction machinery

    PubMed Central

    Putula, Jaana; Pihlajamaa, Tero; Kukkonen, Jyrki P

    2014-01-01

    Background and Purpose One of the major responses upon orexin receptor activation is Ca2+ influx, and this influx seems to amplify the other responses mediated by orexin receptors. However, the reduction in Ca2+, often used to assess the importance of Ca2+ influx, might affect other properties, like ligand−receptor interactions, as suggested for some GPCR systems. Hence, we investigated the role of the ligand−receptor interaction and Ca2+ signal cascades in the apparent Ca2+ requirement of orexin-A signalling. Experimental Approach Receptor binding was assessed in CHO cells expressing human OX1 receptors with [125I]-orexin-A by conventional ligand binding as well as scintillation proximity assays. PLC activity was determined by chromatography. Key Results Both orexin receptor binding and PLC activation were strongly dependent on the extracellular Ca2+ concentration. The relationship between Ca2+ concentration and receptor binding was the same as that for PLC activation. However, when Ca2+ entry was reduced by depolarizing the cells or by inhibiting the receptor-operated Ca2+ channels, orexin-A-stimulated PLC activity was much more strongly inhibited than orexin-A binding. Conclusions and Implications Ca2+ plays a dual role in orexin signalling by being a prerequisite for both ligand−receptor interaction and amplifying orexin signals via Ca2+ influx. Some previous results obtained utilizing Ca2+ chelators have to be re-evaluated based on the results of the current study. From a drug discovery perspective, further experiments need to identify the target for Ca2+ in orexin-A−OX1 receptor interaction and its mechanism of action. PMID:25132134

  11. Do calcium-mediated cellular signalling pathways, prostaglandin E2 (PGE2), estrogen or progesterone receptor antagonists, or bacterial endotoxins affect bovine placental function in vitro?

    PubMed

    Weems, Y S; Randel, R D; Carstens, G E; Welsh, T H; Weems, C W

    2004-04-01

    The major objective of this experiment was to determine whether the bovine placenta could be stimulated to secrete progesterone, since the bovine placenta secretes little progesterone when the corpus luteum is functional. Secondly, we wanted to determine whether reported abortifacients or progesterone or estrogen receptor antagonists affected bovine placental prostaglandin secretion. The ovine placenta secretes half of the circulating progesterone at day 90 of pregnancy and PGE2 appears to regulate ovine placental progesterone secretion. Calcium has been reported to regulate placental progesterone secretion in cattle. Diced 186-245-day placental slice explants from six Brahman and six Angus cows were incubated in vitro at 39.5 degrees C under 95% air: 5% CO2 at pH 7.2 in 5 ml of M-199 for 1 h in the absence of treatments and for 4 and 8 h in the presence of treatments. Treatments were: vehicle; R24571; compound 48/80; IP3; PGE2; CaCl2; cyclosporin A; lipopolysaccharide (endotoxin) from Salmonella abortus equi., enteriditis, and typhimurium; monensin; ionomycin; arachidonic acid; mimosine; palmitic acid; progesterone, androstenedione; estradiol-17beta; A23187; RU-486; or MER-25. Jugular and uterine venous plasma and culture media were analyzed for progesterone, PGE2 and PGF2alpha by radioimmunoassay (RIA). Plasma hormone data were analyzed by a One-Way Analysis of Variance (ANOVA). Hormone data in culture media were analyzed for breed and treatment effects by a Factorial Design (2 breeds, 2-range of days, 21 treatments) for ANOVA (2 x 2 x 21). Since hormone data secreted by placental tissue in vitro did not differ (P > or = 0.05) by breed or range of days of pregnancy, data were pooled and analyzed by a One-Way ANOVA. Concentrations of PGE2 in uterine venous blood were two-fold greater (P < or = 0.05) in Angus than Brahman cows. PGE2 and PGF2alpha in vehicle controls increased from 4 to 8h (P < or = 0.05), but not progesterone (P > or = 0.05) Progesterone in culture

  12. Depletion of calcium stores regulates calcium influx and signal transmission in rod photoreceptors

    PubMed Central

    Szikra, Tamas; Cusato, Karen; Thoreson, Wallace B; Barabas, Peter; Bartoletti, Theodore M; Krizaj, David

    2008-01-01

    Tonic synapses are specialized for sustained calcium entry and transmitter release, allowing them to operate in a graded fashion over a wide dynamic range. We identified a novel plasma membrane calcium entry mechanism that extends the range of rod photoreceptor signalling into light-adapted conditions. The mechanism, which shares molecular and physiological characteristics with store-operated calcium entry (SOCE), is required to maintain baseline [Ca2+]i in rod inner segments and synaptic terminals. Sustained Ca2+ entry into rod cytosol is augmented by store depletion, blocked by La3+ and Gd3+ and suppressed by organic antagonists MRS-1845 and SKF-96365. Store depletion and the subsequent Ca2+ influx directly stimulated exocytosis in terminals of light-adapted rods loaded with the activity-dependent dye FM1–43. Moreover, SOCE blockers suppressed rod-mediated synaptic inputs to horizontal cells without affecting presynaptic voltage-operated Ca2+ entry. Silencing of TRPC1 expression with small interference RNA disrupted SOCE in rods, but had no effect on cone Ca2+ signalling. Rods were immunopositive for TRPC1 whereas cone inner segments immunostained with TRPC6 channel antibodies. Thus, SOCE modulates Ca2+ homeostasis and light-evoked neurotransmission at the rod photoreceptor synapse mediated by TRPC1. PMID:18755743

  13. CFTR and lung homeostasis

    PubMed Central

    Matalon, Sadis

    2014-01-01

    CFTR is a cAMP-activated chloride and bicarbonate channel that is critical for lung homeostasis. Decreases in CFTR expression have dire consequences in cystic fibrosis (CF) and have been suggested to be a component of the lung pathology in chronic obstructive pulmonary disease. Decreases or loss of channel function often lead to mucus stasis, chronic bacterial infections, and the accompanying chronic inflammatory responses that promote progressive lung destruction, and, eventually in CF, lung failure. Here we discuss CFTR's functional role airway surface liquid hydration and pH, in regulation of other channels such as the epithelial sodium channel, and in regulating inflammatory responses in the lung. PMID:25381027

  14. Calcium sources and their interaction with the different levels of non-phytate phosphorus affect performance and bone mineralization in broiler chickens.

    PubMed

    Hamdi, M; Solà-Oriol, D; Davin, R; Perez, J F

    2015-09-01

    An experiment was conducted to evaluate the influence of different Ca sources (limestone, Ca chloride, and Lipocal, a fat-encapsulated tricalcium phosphate, TCP) in conjunction with 4 dietary levels of non-phytate P (NPP) on performance, ileal digestibility of Ca and P, and bone mineralization in broiler chickens. Calcium sources were also evaluated in vitro to measure acid-binding capacity (ABC) and Ca solubility at different pH values. Ca chloride showed the highest solubility of Ca, with TCP showing the highest ABC. Ross male broiler-chicks were sorted by BW at 1 d post-hatch and assigned to 5 cages per diet with 5 birds per cage. Twelve diets were arranged in a 3×4 factorial of the 3 Ca sources and 4 levels of NPP (0.3%, 0.35%, 0.4% or 0.45%) consisting of 4 added P levels (Ca(H2PO4)2) with a high dose of phytase (1,150 U/kg) in all diets. On d 14 post-hatch, 3 birds were euthanized, and ileal digesta and the right tibia were collected to determine ileal Ca and P digestibility and bone mineralization, respectively. Feed intake (FI) and weight gain (WG) on d 14 was higher (P<0.01) with TCP and limestone than with Ca chloride. Added P increased the tibia weight and tibia ash content in chicks fed TCP up to 0.4% NPP and limestone up to 0.35% NPP. Calcium ileal digestibility was higher (P<0.01) with Ca chloride (73.7%) than with limestone (67.1%) or TCP (66.8%), which increased (P<0.05) with added levels of P from monocalcium phosphate. Phosphorus ileal digestibility was not affected by the Ca source and increased (P<0.001) with added levels of NPP. It can be concluded that starting broilers responded better to low-soluble Ca sources compared to high-soluble sources. A level of 0.35%-0.40% NPP with a high dose of phytase (1,150 U/kg) in diets including limestone or TCP is sufficient to guarantee performance and bone formation for broiler chickens from d 0 to d 14. PMID:25638469

  15. Acid-Base Homeostasis

    PubMed Central

    Nakhoul, Nazih; Hering-Smith, Kathleen S.

    2015-01-01

    Acid-base homeostasis and pH regulation are critical for both normal physiology and cell metabolism and function. The importance of this regulation is evidenced by a variety of physiologic derangements that occur when plasma pH is either high or low. The kidneys have the predominant role in regulating the systemic bicarbonate concentration and hence, the metabolic component of acid-base balance. This function of the kidneys has two components: reabsorption of virtually all of the filtered HCO3− and production of new bicarbonate to replace that consumed by normal or pathologic acids. This production or generation of new HCO3− is done by net acid excretion. Under normal conditions, approximately one-third to one-half of net acid excretion by the kidneys is in the form of titratable acid. The other one-half to two-thirds is the excretion of ammonium. The capacity to excrete ammonium under conditions of acid loads is quantitatively much greater than the capacity to increase titratable acid. Multiple, often redundant pathways and processes exist to regulate these renal functions. Derangements in acid-base homeostasis, however, are common in clinical medicine and can often be related to the systems involved in acid-base transport in the kidneys. PMID:26597304

  16. Trypanosome Letm1 Protein Is Essential for Mitochondrial Potassium Homeostasis*

    PubMed Central

    Hashimi, Hassan; McDonald, Lindsay; Stříbrná, Eva; Lukeš, Julius

    2013-01-01

    Letm1 is a conserved protein in eukaryotes bearing energized mitochondria. Hemizygous deletion of its gene has been implicated in symptoms of the human disease Wolf-Hirschhorn syndrome. Studies almost exclusively performed in opisthokonts have attributed several roles to Letm1, including maintaining mitochondrial morphology, mediating either calcium or potassium/proton antiport, and facilitating mitochondrial translation. We address the ancestral function of Letm1 in the highly diverged protist and significant pathogen, Trypanosoma brucei. We demonstrate that Letm1 is involved in maintaining mitochondrial volume via potassium/proton exchange across the inner membrane. This role is essential in the vector-dwelling procyclic and mammal-infecting bloodstream stages as well as in Trypanosoma brucei evansi, a form of the latter stage lacking an organellar genome. In the pathogenic bloodstream stage, the mitochondrion consumes ATP to maintain an energized state, whereas that of T. brucei evansi also lacks a conventional proton-driven membrane potential. Thus, Letm1 performs its function in different physiological states, suggesting that ion homeostasis is among the few characterized essential pathways of the mitochondrion at this T. brucei life stage. Interestingly, Letm1 depletion in the procyclic stage can be complemented by exogenous expression of its human counterpart, highlighting the conservation of protein function between highly divergent species. Furthermore, although mitochondrial translation is affected upon Letm1 ablation, it is an indirect consequence of K+ accumulation in the matrix. PMID:23893410

  17. Trypanosome Letm1 protein is essential for mitochondrial potassium homeostasis.

    PubMed

    Hashimi, Hassan; McDonald, Lindsay; Stríbrná, Eva; Lukeš, Julius

    2013-09-13

    Letm1 is a conserved protein in eukaryotes bearing energized mitochondria. Hemizygous deletion of its gene has been implicated in symptoms of the human disease Wolf-Hirschhorn syndrome. Studies almost exclusively performed in opisthokonts have attributed several roles to Letm1, including maintaining mitochondrial morphology, mediating either calcium or potassium/proton antiport, and facilitating mitochondrial translation. We address the ancestral function of Letm1 in the highly diverged protist and significant pathogen, Trypanosoma brucei. We demonstrate that Letm1 is involved in maintaining mitochondrial volume via potassium/proton exchange across the inner membrane. This role is essential in the vector-dwelling procyclic and mammal-infecting bloodstream stages as well as in Trypanosoma brucei evansi, a form of the latter stage lacking an organellar genome. In the pathogenic bloodstream stage, the mitochondrion consumes ATP to maintain an energized state, whereas that of T. brucei evansi also lacks a conventional proton-driven membrane potential. Thus, Letm1 performs its function in different physiological states, suggesting that ion homeostasis is among the few characterized essential pathways of the mitochondrion at this T. brucei life stage. Interestingly, Letm1 depletion in the procyclic stage can be complemented by exogenous expression of its human counterpart, highlighting the conservation of protein function between highly divergent species. Furthermore, although mitochondrial translation is affected upon Letm1 ablation, it is an indirect consequence of K(+) accumulation in the matrix. PMID:23893410

  18. Calcium - urine

    MedlinePlus

    ... into the urine, which causes calcium kidney stones Sarcoidosis Taking too much calcium Too much production of ... Milk-alkali syndrome Proximal renal tubular acidosis Rickets Sarcoidosis Vitamin D Update Date 5/3/2015 Updated ...

  19. Calcium supplements

    MedlinePlus

    ... SHOULD TAKE CALCIUM SUPPLEMENTS? Calcium is an important mineral for the human body. It helps build and protect your teeth ... absorb calcium. You can get vitamin D from sunlight exposure to your skin and from your diet. Ask your provider whether ...

  20. High fat diet enriched with saturated, but not monounsaturated fatty acids adversely affects femur, and both diets increase calcium absorption in older female mice.

    PubMed

    Wang, Yang; Dellatore, Peter; Douard, Veronique; Qin, Ling; Watford, Malcolm; Ferraris, Ronaldo P; Lin, Tiao; Shapses, Sue A

    2016-07-01

    Diet induced obesity has been shown to reduce bone mineral density (BMD) and Ca absorption. However, previous experiments have not examined the effect of high fat diet (HFD) in the absence of obesity or addressed the type of dietary fatty acids. The primary objective of this study was to determine the effects of different types of high fat feeding, without obesity, on fractional calcium absorption (FCA) and bone health. It was hypothesized that dietary fat would increase FCA and reduce BMD. Mature 8-month-old female C57BL/6J mice were fed one of three diets: a HFD (45% fat) enriched either with monounsaturated fatty acids (MUFAs) or with saturated fatty acids (SFAs), and a normal fat diet (NFD; 10% fat). Food consumption was controlled to achieve a similar body weight gain in all groups. After 8wk, total body bone mineral content and BMD as well as femur total and cortical volumetric BMD were lower in SFA compared with NFD groups (P<.05). In contrast, femoral trabecular bone was not affected by the SFAs, whereas MUFAs increased trabecular volume fraction and thickness. The rise over time in FCA was greater in mice fed HFD than NFD and final FCA was higher with HFD (P<.05). Intestinal calbindin-D9k gene and hepatic cytochrome P450 2r1 protein levels were higher with the MUFA than the NFD diet (P<.05). In conclusion, HFDs elevated FCA overtime; however, an adverse effect of HFD on bone was only observed in the SFA group, while MUFAs show neutral or beneficial effects. PMID:27262536

  1. Effect of Casein Phosphopeptide-amorphous Calcium Phosphate Treatment on Microtensile Bond Strength to Carious Affected Dentin Using Two Adhesive Strategies

    PubMed Central

    Bahari, Mahmoud; Savadi Oskoee, Siavash; Kimyai, Soodabeh; Pouralibaba, Firoz; Farhadi, Farrokh; Norouzi, Marouf

    2014-01-01

    Background and aims. The aim was to evaluate the effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on microtensile bond strength (μTBS) to carious affected dentin (CAD) using etch-and-rinse and self-etch adhesive systems. Materials and methods. The occlusal surface of 32 human molars with moderate occlusal caries was removed. Infected dentin was removed until reaching CAD and the teeth were randomly divided into two groups based on the Single Bond (SB) and Clearfil SE Bond (CSE) adhesive systems. Before composite resin bonding, each group was subdivided into three subgroups of ND, CAD and CPP-ACP-treated CAD (CAD-CPP) based on the dentin substrate. After dissecting samples to l-mm-thick cross-sections (each subgroup: n = 13), μTBS was measured at a strain rate of 0.5 mm/min. Data was analyzed using two-way ANOVA, independent samples t-test and post-hoc Tukey tests (α=0.05). Results. Bond strength of both adhesive systems to ND was significantly higher than that to CAD (P <0.001) and CAD/CPP (P < 0.001). There were no significant differences between the μTBS of SB to CAD and CAD-CPP (P > 0.05).μTBS of CSE to CAD-CPP was higher than that to CAD; however, the difference was not significant (P > 0.05). Significant differences were found between SB and CSE systems only with CAD substrate (P < 0.001). Conclusion. Regardless of the adhesive system used, surface treatment of CAD with CPP-ACP did not have a significant effect on bond strength. However, bond strength to CAD was higher with SB rather than with CSE. PMID:25346832

  2. Neuronal ubiquitin homeostasis

    PubMed Central

    Hallengren, Jada; Chen, Ping-Chung; Wilson, Scott M.

    2013-01-01

    Neurons have highly specialized intracellular compartments that facilitate the development and activity of the nervous system. Ubiquitination is a post-translational modification that controls many aspects of neuronal function by regulating protein abundance. Disruption of this signaling pathway has been demonstrated in neurological disorders such as Parkinson’s disease, Amyotrophic Lateral Sclerosis and Angleman Syndrome. Since many neurological disorders exhibit ubiquitinated protein aggregates, the loss of neuronal ubiquitin homeostasis may be an important contributor of disease. This review discusses the mechanisms utilized by neurons to control the free pool of ubiquitin necessary for normal nervous system development and function as well as new roles of protein ubiquitination in regulating synaptic activity. PMID:23686613

  3. Regulation of Potassium Homeostasis

    PubMed Central

    2015-01-01

    Potassium is the most abundant cation in the intracellular fluid, and maintaining the proper distribution of potassium across the cell membrane is critical for normal cell function. Long-term maintenance of potassium homeostasis is achieved by alterations in renal excretion of potassium in response to variations in intake. Understanding the mechanism and regulatory influences governing the internal distribution and renal clearance of potassium under normal circumstances can provide a framework for approaching disorders of potassium commonly encountered in clinical practice. This paper reviews key aspects of the normal regulation of potassium metabolism and is designed to serve as a readily accessible review for the well informed clinician as well as a resource for teaching trainees and medical students. PMID:24721891

  4. Autophagy and Intestinal Homeostasis

    PubMed Central

    Patel, Khushbu K.; Stappenbeck, Thaddeus S.

    2013-01-01

    Nutrient absorption is the basic function that drives mammalian intestinal biology. To facilitate nutrient uptake, the host’s epithelial barrier is composed of a single layer of cells. This constraint is problematic, as a design of this type can be easily disrupted. The solution during the course of evolution was to add numerous host defense mechanisms that can help prevent local and systemic infection. These mechanisms include specialized epithelial cells that produce a physiochemical barrier overlying the cellular barrier, robust and organized adaptive and innate immune cells, and the ability to mount an inflammatory response that is commensurate with a specific threat level. The autophagy pathway is a critical cellular process that strongly influences all these functions. Therefore, a fundamental understanding of the components of this pathway and their influence on inflammation, immunity, and barrier function will facilitate our understanding of homeostasis in the gastrointestinal tract. PMID:23216414

  5. Autophagy and intestinal homeostasis.

    PubMed

    Patel, Khushbu K; Stappenbeck, Thaddeus S

    2013-01-01

    Nutrient absorption is the basic function that drives mammalian intestinal biology. To facilitate nutrient uptake, the host's epithelial barrier is composed of a single layer of cells. This constraint is problematic, as a design of this type can be easily disrupted. The solution during the course of evolution was to add numerous host defense mechanisms that can help prevent local and systemic infection. These mechanisms include specialized epithelial cells that produce a physiochemical barrier overlying the cellular barrier, robust and organized adaptive and innate immune cells, and the ability to mount an inflammatory response that is commensurate with a specific threat level. The autophagy pathway is a critical cellular process that strongly influences all these functions. Therefore, a fundamental understanding of the components of this pathway and their influence on inflammation, immunity, and barrier function will facilitate our understanding of homeostasis in the gastrointestinal tract. PMID:23216414

  6. Structure and function of the N-terminal domain of the human mitochondrial calcium uniporter.

    PubMed

    Lee, Youngjin; Min, Choon Kee; Kim, Tae Gyun; Song, Hong Ki; Lim, Yunki; Kim, Dongwook; Shin, Kahee; Kang, Moonkyung; Kang, Jung Youn; Youn, Hyung-Seop; Lee, Jung-Gyu; An, Jun Yop; Park, Kyoung Ryoung; Lim, Jia Jia; Kim, Ji Hun; Kim, Ji Hye; Park, Zee Yong; Kim, Yeon-Soo; Wang, Jimin; Kim, Do Han; Eom, Soo Hyun

    2015-10-01

    The mitochondrial calcium uniporter (MCU) is responsible for mitochondrial calcium uptake and homeostasis. It is also a target for the regulation of cellular anti-/pro-apoptosis and necrosis by several oncogenes and tumour suppressors. Herein, we report the crystal structure of the MCU N-terminal domain (NTD) at a resolution of 1.50 Å in a novel fold and the S92A MCU mutant at 2.75 Å resolution; the residue S92 is a predicted CaMKII phosphorylation site. The assembly of the mitochondrial calcium uniporter complex (uniplex) and the interaction with the MCU regulators such as the mitochondrial calcium uptake-1 and mitochondrial calcium uptake-2 proteins (MICU1 and MICU2) are not affected by the deletion of MCU NTD. However, the expression of the S92A mutant or a NTD deletion mutant failed to restore mitochondrial Ca(2+) uptake in a stable MCU knockdown HeLa cell line and exerted dominant-negative effects in the wild-type MCU-expressing cell line. These results suggest that the NTD of MCU is essential for the modulation of MCU function, although it does not affect the uniplex formation. PMID:26341627

  7. Cadmium and calcium uptake in the mollusc donax rugosus and effect of a calcium channel blocker

    SciTech Connect

    Sidoumou, Z.; Gnassia-Barelli, M.; Romeo, M.

    1997-02-01

    Donax rugosus, a common bivalve mollusc in the coastal waters of Mauritania, has been studied for trace metal concentrations as a function of sampling site (from South of Mauritania to the North of this country) and of season. In this paper, the uptake of cadmium was experimentally studied in the different organs of D. rugosus. Since metals such as cadmium, copper and mercury may alter calcium homeostasis, calcium uptake was also studied in the animals treated with cadmium. Since calcium is taken up through specific channels, it appears that metals inhibit Ca uptake by interacting with these channels in the plasma membrane. Cadmium and calcium have very similar atomic radii, thus cadmium may be taken up through the calcium channels, particularly through voltage-dependent channels. The uptake of cadmium and calcium by D. Rugosus was therefore also studied in the presence of the calcium channel blocker verapamil. 13 refs., 3 figs., 1 tab.

  8. A Physiologist's View of Homeostasis

    ERIC Educational Resources Information Center

    Modell, Harold; Cliff, William; Michael, Joel; McFarland, Jenny; Wenderoth, Mary Pat; Wright, Ann

    2015-01-01

    Homeostasis is a core concept necessary for understanding the many regulatory mechanisms in physiology. Claude Bernard originally proposed the concept of the constancy of the "milieu interieur," but his discussion was rather abstract. Walter Cannon introduced the term "homeostasis" and expanded Bernard's notion of…

  9. DISSOLUTION AND CRYSTALLIZATION OF CALCIUM SULFITE PLATELETS

    EPA Science Inventory

    The paper discusses the dissolution and crystallization of calcium sulfite platelets. The rates of calcium sulfite dissolution and crystallization are important in slurry scrubbing processes for flue gas desulfurization. The rates affect the scrubber solution composition, SO2 abs...

  10. [Calcium and health].

    PubMed

    Ortega Anta, Rosa M; Jiménez Ortega, Ana I; López-Sobaler, Ana M

    2015-01-01

    An adequate intake of calcium is only not limited to avoid the risk of osteoporosis and its benefits in longterm bone health, but also it has been linked to protection against various major diseases, such as hypertension, cancer, kidney stones, insulin resistance, diabetes... and several investigations suggest its importance in preventing and controlling obesity. Studies conducted in Spanish representative samples show that a high percentage of adults and children (> 75%) don't achieve the recommended intake of calcium. Moreover, are growing trends among the population suggesting that calcium intake and dairy consumption (main food source of the mineral) are high, and even excessive, in many individuals. This misconception results in that the calcium intake is increasingly far from the recommended one. The maximum tolerable intake of the mineral is fixed at 2.500 mg/day, but this intake is unusual, and it's more disturbing and frequent, to find intakes below the recommended calcium intakes (1.000 and 1.200 mg/day in adults, men and women, respectively). Data from different studies highlight the risk of an inadequate calcium intake and the damages that may affect the health in a long term. It is not about transmitting indiscriminate guidelines in order to increase the intake of calcium / dairy, but the recommended intakes must be met to achieve both the nutritional and health benefits. Also activities for demystification of misconceptions are need, increasingly frequent, that may impair health population. PMID:25862324

  11. Effect of anions or foods on absolute bioavailability of calcium from calcium salts in mice by pharmacokinetics

    PubMed Central

    Ueda, Yukari; Taira, Zenei

    2013-01-01

    We studied the absolute bioavailability of calcium from calcium L-lactate in mice using pharmacokinetics, and reviewed the absolute bioavailability of calcium from three other calcium salts in mice previously studied: calcium chloride, calcium acetate, and calcium ascorbate. The results showed that calcium metabolism is linear between intravenous administration of 15 mg/kg and 30 mg/kg, and is not affected by anions. Results after oral calcium administration of 150 mg/kg showed that the intestinal absorption process was significantly different among the four calcium salts. The rank of absolute bioavailability of calcium was calcium ascorbate > calcium L-lactate ≥ calcium acetate > calcium chloride. The mean residence time (MRTab) of calcium from calcium ascorbate (32.2 minutes) in the intestinal tract was much longer than that from calcium L-lactate (9.5 minutes), calcium acetate (15.0 minutes) and calcium chloride (13.6 minutes). Furthermore, the foods di-D-fructo-furanose-1,2′:2,3′-dianhydride, sudachi (Citrus sudachi) juice, and moromi-su (a Japanese vinegar) increased the absolute bioavailability of calcium from calcium chloride by 2.46-fold, 2.86-fold, and 1.23-fold, respectively, and prolonged MRTab by 48.5 minutes, 43.1 minutes, and 44.9 minutes, respectively. In conclusion, the prolonged MRTab of calcium in the intestinal tract by anion or food might cause the increased absorbability of calcium.

  12. Rapamycin preserves gut homeostasis during Drosophila aging.

    PubMed

    Fan, Xiaolan; Liang, Qing; Lian, Ting; Wu, Qi; Gaur, Uma; Li, Diyan; Yang, Deying; Mao, Xueping; Jin, Zhihua; Li, Ying; Yang, Mingyao

    2015-11-01

    Gut homeostasis plays an important role in maintaining the overall body health during aging. Rapamycin, a specific inhibitor of mTOR, exerts prolongevity effects in evolutionarily diverse species. However, its impact on the intestinal homeostasis remains poorly understood. Here, we demonstrate that rapamycin can slow down the proliferation rate of intestinal stem cells (ISCs) in the aging guts and induce autophagy in the intestinal epithelium in Drosophila. Rapamycin can also significantly affect the FOXO associated genes in intestine and up-regulate the negative regulators of IMD/Rel pathway, consequently delaying the microbial expansion in the aging guts. Collectively, these findings reveal that rapamycin can delay the intestinal aging by inhibiting mTOR and thus keeping stem cell proliferation in check. These results will further explain the mechanism of healthspan and lifespan extension by rapamycin in Drosophila. PMID:26431326

  13. Rapamycin preserves gut homeostasis during Drosophila aging

    PubMed Central

    Lian, Ting; Wu, Qi; Gaur, Uma; Li, Diyan; Yang, Deying; Mao, Xueping; Jin, Zhihua; Li, Ying; Yang, Mingyao

    2015-01-01

    Gut homeostasis plays an important role in maintaining the overall body health during aging. Rapamycin, a specific inhibitor of mTOR, exerts prolongevity effects in evolutionarily diverse species. However, its impact on the intestinal homeostasis remains poorly understood. Here, we demonstrate that rapamycin can slow down the proliferation rate of intestinal stem cells (ISCs) in the aging guts and induce autophagy in the intestinal epithelium in Drosophila. Rapamycin can also significantly affect the FOXO associated genes in intestine and up-regulate the negative regulators of IMD/Rel pathway, consequently delaying the microbial expansion in the aging guts. Collectively, these findings reveal that rapamycin can delay the intestinal aging by inhibiting mTOR and thus keeping stem cell proliferation in check. These results will further explain the mechanism of healthspan and lifespan extension by rapamycin in Drosophila. PMID:26431326

  14. How does fortification affect the distribution of calcium and vitamin B1 intake at the school lunch for fifth-grade children?

    PubMed

    Nozue, Miho; Jun, Kyungyul; Ishihara, Yoko; Taketa, Yasuko; Naruse, Akiko; Nagai, Narumi; Yoshita, Katsushi; Ishida, Hiromi

    2013-01-01

    The purpose of this study was to estimate the usual intake distribution of calcium and vitamin B(1) of fifth-grade children based on a 3-d dietary survey and to assess nutrient intake using Dietary Reference Intakes (DRIs 2010). A cross-sectional study was undertaken from October 2007 to February 2008 in schools located in Tokyo and Okayama, Japan. A total of 94 fifth-grade children attending 5 elementary schools participated in the study. The weighed plate waste method and observation were used to collect data on the school lunches and dietary records by children, accompanied by photographs used to collect data on meals at home. The study lasted 3 d, 2 non-consecutive days with school lunches and 1 d without. The estimated proportion of subjects below the Estimated Average Requirement (EAR) for calcium intake with milk in the school lunch decreased by 40% compared to the calcium intake without milk in the school lunch. Vitamin B1 intake from less than 0.45 mg/1,000 kcal fortified rice was estimated to be 0%. The intake distribution of calcium has increased by 150 mg by taking milk and the intake distribution of vitamin B1 has increased 0.20 mg by taking fortified rice in the school lunch. Calcium and vitamin B1 intake in the school lunch has changed the distribution of calcium and vitamin B1 intake upward, and decreased the number of estimated subjects that were below EAR. However, the distribution was not shifted across the board and the shape of the distribution has changed. PMID:23535536

  15. Calcium regulates the interaction of amyloid precursor protein with Homer3 protein.

    PubMed

    Kyratzi, Elli; Efthimiopoulos, Spiros

    2014-09-01

    Ca(2+) dysregulation is an important factor implicated in Alzheimer's disease pathogenesis. The mechanisms mediating the reciprocal regulation of Ca(2+) homeostasis and amyloid precursor protein (APP) metabolism, function, and protein interactions are not well known. We have previously shown that APP interacts with Homer proteins, which inhibit APP processing toward amyloid-β. In this study, we investigated the effect of Ca(2+) homeostasis alterations on APP/Homer3 interaction. Influx of extracellular Ca(2+) upon treatment of HEK293 cells with the ionophore A23187 or addition of extracellular Ca(2+) in cells starved of calcium specifically reduced APP/Homer3 but not APP/X11a interaction. Endoplasmic reticulum Ca(2+) store depletion by thapsigargin followed by store-operated calcium entry also decreased the interaction. Interestingly, application of a phospholipase C stimulator, which causes inositol 1,4,5-trisphosphate-induced endoplasmic reticulum Ca(2+) release, caused dissociation of APP/Homer3 complex. In human neuroblastoma cells, membrane depolarization also disrupted the interaction. This is the first study showing that changes in Ca(2+) homeostasis affect APP protein interactions. Our results suggest that Ca(2+) and Homers play a significant role in the development of Alzheimer's disease pathology. PMID:24792907

  16. Water Homeostasis: Evolutionary Medicine

    PubMed Central

    Zeidel, Mark L.

    2012-01-01

    As a major component of homeostasis, all organisms regulate the water composition of various compartments. Through the selective use of barrier membranes and surface glycoproteins, as well as aquaporin water channels, organisms ranging from Archaebacteria to humans can vary water permeabilities across their cell membranes by 4 to 5 orders of magnitude. In barrier epithelia the outer, or exofacial, leaflet acts as the main resistor to water flow; this leaflet restricts water flow by minimizing the surface area of lipid molecules which is not covered by phosphate headgroups and by packing hydrocarbon chains at maximal density. Cells may enhance the barrier by expressing glycoproteins that augment the “thickness” of unstirred layers at their surfaces, reducing osmotic gradients at the lipid bilayer surface. Aquaporins markedly and highly selectively accelerate water flux and are “switched on” either by deployment into membranes or gating. This review summarizes these mechanisms in many species, and indicates potential roles for manipulating water permeabilities in treating disease. PMID:23303973

  17. Calcium signalling and calcium channels: evolution and general principles.

    PubMed

    Verkhratsky, Alexei; Parpura, Vladimir

    2014-09-15

    Calcium as a divalent cation was selected early in evolution as a signaling molecule to be used by both prokaryotes and eukaryotes. Its low cytosolic concentration likely reflects the initial concentration of this ion in the primordial soup/ocean as unicellular organisms were formed. As the concentration of calcium in the ocean subsequently increased, so did the diversity of homeostatic molecules handling calcium. This includes the plasma membrane channels that allowed the calcium entry, as well as extrusion mechanisms, i.e., exchangers and pumps. Further diversification occurred with the evolution of intracellular organelles, in particular the endoplasmic reticulum and mitochondria, which also contain channels, exchanger(s) and pumps to handle the homeostasis of calcium ions. Calcium signalling system, based around coordinated interactions of the above molecular entities, can be activated by the opening of voltage-gated channels, neurotransmitters, second messengers and/or mechanical stimulation, and as such is all-pervading pathway in physiology and pathophysiology of organisms. PMID:24291103

  18. Extracellular calcium sensing and extracellular calcium signaling

    NASA Technical Reports Server (NTRS)

    Brown, E. M.; MacLeod, R. J.; O'Malley, B. W. (Principal Investigator)

    2001-01-01

    The cloning of a G protein-coupled extracellular Ca(2+) (Ca(o)(2+))-sensing receptor (CaR) has elucidated the molecular basis for many of the previously recognized effects of Ca(o)(2+) on tissues that maintain systemic Ca(o)(2+) homeostasis, especially parathyroid chief cells and several cells in the kidney. The availability of the cloned CaR enabled the development of DNA and antibody probes for identifying the CaR's mRNA and protein, respectively, within these and other tissues. It also permitted the identification of human diseases resulting from inactivating or activating mutations of the CaR gene and the subsequent generation of mice with targeted disruption of the CaR gene. The characteristic alterations in parathyroid and renal function in these patients and in the mice with "knockout" of the CaR gene have provided valuable information on the CaR's physiological roles in these tissues participating in mineral ion homeostasis. Nevertheless, relatively little is known about how the CaR regulates other tissues involved in systemic Ca(o)(2+) homeostasis, particularly bone and intestine. Moreover, there is evidence that additional Ca(o)(2+) sensors may exist in bone cells that mediate some or even all of the known effects of Ca(o)(2+) on these cells. Even more remains to be learned about the CaR's function in the rapidly growing list of cells that express it but are uninvolved in systemic Ca(o)(2+) metabolism. Available data suggest that the receptor serves numerous roles outside of systemic mineral ion homeostasis, ranging from the regulation of hormonal secretion and the activities of various ion channels to the longer term control of gene expression, programmed cell death (apoptosis), and cellular proliferation. In some cases, the CaR on these "nonhomeostatic" cells responds to local changes in Ca(o)(2+) taking place within compartments of the extracellular fluid (ECF) that communicate with the outside environment (e.g., the gastrointestinal tract). In others

  19. Calcium deprivation during channel catfish, Ictalurus punctatus X blue catfish, I. furcatus F1 hybrid catfish embryo development affects hatching success

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Channel x blue hybrid catfish are produced by fertilizing eggs from hormone-induced, strippable channel catfish (Ictalurus punctatus) females with sperm from blue catfish (I. furcatus). Many catfish hatchery supplies have low calcium concentrations and are supplemented with an external source of ca...

  20. ASICs and cardiovascular homeostasis.

    PubMed

    Abboud, François M; Benson, Christopher J

    2015-07-01

    In this review we address primarily the role of ASICs in determining sensory signals from arterial baroreceptors, peripheral chemoreceptors, and cardiopulmonary and somatic afferents. Alterations in these sensory signals during acute cardiovascular stresses result in changes in sympathetic and parasympathetic activities that restore cardiovascular homeostasis. In pathological states, however, chronic dysfunctions of these afferents result in serious sympatho-vagal imbalances with significant increases in mortality and morbidity. We identified a role for ASIC2 in the mechano-sensitivity of aortic baroreceptors and of ASIC3 in the pH sensitivity of carotid bodies. In spontaneously hypertensive rats, we reported decreased expression of ASIC2 in nodose ganglia neurons and overexpression of ASIC3 in carotid bodies. This reciprocal expression of ASIC2 and ASIC3 results in reciprocal changes in sensory sensitivity of baro- and chemoreceptors and a consequential synergistic exaggeration sympathetic nerve activity. A similar reciprocal sensory dysautonomia prevails in heart failure and increases the risk of mortality. There is also evidence that ASIC heteromers in skeletal muscle afferents contribute significantly to the exercise pressor reflex. In cardiac muscle afferents of the dorsal root ganglia, they contribute to nociception and to the detrimental sympathetic activation during ischemia. Finally, we report that an inhibitory influence of ASIC2-mediated baroreceptor activity suppresses the sympatho-excitatory reflexes of the chemoreceptors and skeletal muscle afferents, as well as the ASIC1a-mediated excitation of central neurons during fear, threat, or panic. The translational potential of activation of ASIC2 in cardiovascular disease states may be a beneficial sympatho-inhibition and parasympathetic activation. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'. PMID:25592213

  1. Intracellular Calcium Dysregulation: Implications for Alzheimer's Disease

    PubMed Central

    Magi, Simona; Castaldo, Pasqualina; Macrì, Maria Loredana; Maiolino, Marta; Matteucci, Alessandra; Bastioli, Guendalina; Gratteri, Santo; Lariccia, Vincenzo

    2016-01-01

    Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by progressive neuronal loss. AD is associated with aberrant processing of the amyloid precursor protein, which leads to the deposition of amyloid-β plaques within the brain. Together with plaques deposition, the hyperphosphorylation of the microtubules associated protein tau and the formation of intraneuronal neurofibrillary tangles are a typical neuropathological feature in AD brains. Cellular dysfunctions involving specific subcellular compartments, such as mitochondria and endoplasmic reticulum (ER), are emerging as crucial players in the pathogenesis of AD, as well as increased oxidative stress and dysregulation of calcium homeostasis. Specifically, dysregulation of intracellular calcium homeostasis has been suggested as a common proximal cause of neural dysfunction in AD. Aberrant calcium signaling has been considered a phenomenon mainly related to the dysfunction of intracellular calcium stores, which can occur in both neuronal and nonneuronal cells. This review reports the most recent findings on cellular mechanisms involved in the pathogenesis of AD, with main focus on the control of calcium homeostasis at both cytosolic and mitochondrial level. PMID:27340665

  2. Plants defective in calcium oxalate crystal formation have more bioavailable calcium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioavailable calcium affects bone formation and calcification. Here we investigate how a single gene mutation altering calcium partitioning in the forage crop Medicago truncatula affects calcium bioavailability. Previously, the cod5 Medicago mutant was identified which contains wild-type amounts o...

  3. The elementome of calcium-based urinary stones and its role in urolithiasis.

    PubMed

    Ramaswamy, Krishna; Killilea, David W; Kapahi, Pankaj; Kahn, Arnold J; Chi, Thomas; Stoller, Marshall L

    2015-10-01

    Urolithiasis affects around 10% of the US population with an increasing rate of prevalence, recurrence and penetrance. The causes for the formation of most urinary calculi remain poorly understood, but obtaining the chemical composition of these stones might help identify key aspects of this process and new targets for treatment. The majority of urinary stones are composed of calcium that is complexed in a crystalline matrix with organic and inorganic components. Surprisingly, mitigation of urolithiasis risk by altering calcium homeostasis has not been very effective. Thus, studies to identify other therapeutic stone-specific targets, using proteomics, metabolomics and microscopy techniques, have been conducted, revealing a high level of complexity. The data suggest that numerous metals other than calcium and many nonmetals are present within calculi at measurable levels and several have distinct distribution patterns. Manipulation of the levels of some of these elemental components of calcium-based stones has resulted in clinically beneficial changes in stone chemistry and rate of stone formation. The elementome--the full spectrum of elemental content--of calcium-based urinary calculi is emerging as a new concept in stone research that continues to provide important insights for improved understanding and prevention of urinary stone disease. PMID:26334088

  4. The elementome of calcium-based urinary stones and its role in urolithiasis

    PubMed Central

    Ramaswamy, Krishna; Killilea, David W.; Kapahi, Pankaj; Kahn, Arnold J.; Chi, Thomas; Stoller, Marshall L.

    2016-01-01

    Urolithiasis affects around 10% of the US population with an increasing rate of prevalence, recurrence and penetrance. The causes for the formation of most urinary calculi remain poorly understood, but obtaining the chemical composition of these stones might help identify key aspects of this process and new targets for treatment. The majority of urinary stones are composed of calcium that is complexed in a crystalline matrix with organic and inorganic components. Surprisingly, mitigation of urolithiasis risk by altering calcium homeostasis has not been very effective. Thus, studies to identify other therapeutic stone-specific targets, using proteomics, metabolomics and microscopy techniques, have been conducted, revealing a high level of complexity. The data suggest that numerous metals other than calcium and many nonmetals are present within calculi at measurable levels and several have distinct distribution patterns. Manipulation of the levels of some of these elemental components of calcium-based stones has resulted in clinically beneficial changes in stone chemistry and rate of stone formation. The elementome—the full spectrum of elemental content—of calcium-based urinary calculi is emerging as a new concept in stone research that continues to provide important insights for improved understanding and prevention of urinary stone disease. PMID:26334088

  5. Resveratrol and Calcium Signaling: Molecular Mechanisms and Clinical Relevance

    PubMed Central

    McCalley, Audrey E.; Kaja, Simon; Payne, Andrew J.; Koulen, Peter

    2014-01-01

    Resveratrol is a naturally occurring compound contributing to cellular defense mechanisms in plants. Its use as a nutritional component and/or supplement in a number of diseases, disorders, and syndromes such as chronic diseases of the central nervous system, cancer, inflammatory diseases, diabetes, and cardiovascular diseases has prompted great interest in the underlying molecular mechanisms of action. The present review focuses on resveratrol, specifically its isomer trans-resveratrol, and its effects on intracellular calcium signaling mechanisms. As resveratrol's mechanisms of action are likely pleiotropic, its effects and interactions with key signaling proteins controlling cellular calcium homeostasis are reviewed and discussed. The clinical relevance of resveratrol's actions on excitable cells, transformed or cancer cells, immune cells and retinal pigment epithelial cells are contrasted with a review of the molecular mechanisms affecting calcium signaling proteins on the plasma membrane, cytoplasm, endoplasmic reticulum, and mitochondria. The present review emphasizes the correlation between molecular mechanisms of action that have recently been identified for resveratrol and their clinical implications. PMID:24905603

  6. Calcium antagonists.

    PubMed

    Grossman, Ehud; Messerli, Franz H

    2004-01-01

    Calcium antagonists were introduced for the treatment of hypertension in the 1980s. Their use was subsequently expanded to additional disorders, such as angina pectoris, paroxysmal supraventricular tachycardias, hypertrophic cardiomyopathy, Raynaud phenomenon, pulmonary hypertension, diffuse esophageal spasms, and migraine. Calcium antagonists as a group are heterogeneous and include 3 main classes--phenylalkylamines, benzothiazepines, and dihydropyridines--that differ in their molecular structure, sites and modes of action, and effects on various other cardiovascular functions. Calcium antagonists lower blood pressure mainly through vasodilation and reduction of peripheral resistance. They maintain blood flow to vital organs, and are safe in patients with renal impairment. Unlike diuretics and beta-blockers, calcium antagonists do not impair glucose metabolism or lipid profile and may even attenuate the development of arteriosclerotic lesions. In long-term follow-up, patients treated with calcium antagonists had development of less overt diabetes mellitus than those who were treated with diuretics and beta-blockers. Moreover, calcium antagonists are able to reduce left ventricular mass and are effective in improving anginal pain. Recent prospective randomized studies attested to the beneficial effects of calcium antagonists in hypertensive patients. In comparison with placebo, calcium antagonist-based therapy reduced major cardiovascular events and cardiovascular death significantly in elderly hypertensive patients and in diabetic patients. In several comparative studies in hypertensive patients, treatment with calcium antagonists was equally effective as treatment with diuretics, beta-blockers, or angiotensin-converting enzyme inhibitors. From these studies, it seems that a calcium antagonist-based regimen is superior to other regimens in preventing stroke, equivalent in preventing ischemic heart disease, and inferior in preventing congestive heart failure

  7. Role of mitochondrial calcium uniporter in regulating mitochondrial fission in the cerebral cortexes of living rats.

    PubMed

    Liang, Nan; Wang, Peng; Wang, Shilei; Li, Shuhong; Li, Yu; Wang, Jinying; Wang, Min

    2014-06-01

    The mitochondrial calcium uniporter (MCU) transports Ca2+ from the cytoplasm to the mitochondrial matrix and thus maintains Ca2+ homeostasis. Previous studies have reported that inhibition of MCU by ruthenium red (RR) protects the brain from ischemia/reperfusion (I/R) injury and that mitochondrial fission plays an important role in I/R injury. However, it is still not known whether MCU affects mitochondrial fission. In the present study, treatment with RR was found to decrease the concentration of free calcium in the mitochondria, calcineurin enzyme activity and dynamin-related protein 1 expression, and treatment with spermine was found to have the opposite effect in organisms subjected to occlusion of the middle cerebral artery lasting 2 h followed by 24 h reperfusion. These results indicate that MCU may be related to mitochondrial fission via modulating mitochondrial Ca2+ uptake and this relationship between MCU and mitochondrial fission may protect the brain from I/R injury. PMID:24510075

  8. Insights from Genetic Disorders of Phosphate Homeostasis

    PubMed Central

    Christov, Marta; Jüppner, Harald

    2013-01-01

    The molecular identification and characterization of genetic defects leading to a number of rare inherited or acquired disorders affecting phosphate homeostasis has added tremendous detail to our understanding of the regulation of phosphate balance. The identification of the key phosphate-regulating hormone, fibroblast growth factor 23 (FGF23), as well as other molecules that control its production, such as the glycosyltransferase GALNT3, the endopeptidase PHEX and the matrix protein DMP1, and molecules that function as downstream effectors of FGF23, such as the longevity factor Klotho and the phosphate transporters NPT2a and NPT2c, has permitted us to understand the elegant and complex interplay that exists between the kidneys, bone, parathyroid, and gut. Such insights from genetic disorders have allowed not only the design of potent targeted therapies for some of these rare genetic disorders, such as using anti-FGF23 antibodies for treatment of X-linked hypophosphatemic rickets, but also have led to clinically relevant observations related to the dysregulation of mineral ion homeostasis in chronic kidney disease. Thus, we are able to leverage our knowledge of rare human disorders affecting only few individuals, to understand and potentially treat disease processes that affect millions of patients. PMID:23465501

  9. Calcium in diet

    MedlinePlus

    ... of calcium dietary supplements include calcium citrate and calcium carbonate. Calcium citrate is the more expensive form of ... the body on a full or empty stomach. Calcium carbonate is less expensive. It is absorbed better by ...

  10. Brain iron homeostasis.

    PubMed

    Moos, Torben

    2002-11-01

    Iron is essential for virtually all types of cells and organisms. The significance of the iron for brain function is reflected by the presence of receptors for transferrin on brain capillary endothelial cells. The transport of iron into the brain from the circulation is regulated so that the extraction of iron by brain capillary endothelial cells is low in iron-replete conditions and the reverse when the iron need of the brain is high as in conditions with iron deficiency and during development of the brain. Whereas there is good agreement that iron is taken up by means of receptor-mediated uptake of iron-transferrin at the brain barriers, there are contradictory views on how iron is transported further on from the brain barriers and into the brain extracellular space. The prevailing hypothesis for transport of iron across the BBB suggests a mechanism that involves detachment of iron from transferrin within barrier cells followed by recycling of apo-transferrin to blood plasma and release of iron as non-transferrin-bound iron into the brain interstitium from where the iron is taken up by neurons and glial cells. Another hypothesis claims that iron-transferrin is transported into the brain by means of transcytosis through the BBB. This thesis deals with the topic "brain iron homeostasis" defined as the attempts to maintain constant concentrations of iron in the brain internal environment via regulation of iron transport through brain barriers, cellular iron uptake by neurons and glia, and export of iron from brain to blood. The first part deals with transport of iron-transferrin complexes from blood to brain either by transport across the brain barriers or by uptake and retrograde axonal transport in motor neurons projecting beyond the blood-brain barrier. The transport of iron and transport into the brain was examined using radiolabeled iron-transferrin. Intravenous injection of [59Fe-125]transferrin led to an almost two-fold higher accumulation of 59Fe than of

  11. Calcium Test

    MedlinePlus

    ... as thyroid disease , parathyroid disorder , malabsorption , cancer, or malnutrition An ionized calcium test may be ordered when ... albumin , which can result from liver disease or malnutrition , both of which may result from alcoholism or ...

  12. Calcium Calculator

    MedlinePlus

    ... with Sarcopenia Skeletal Rare Disorders Data & Publications Facts and Statistics Vitamin D map Fracture Risk Map Hip Fracture ... Training Courses Working Groups Regional Audits Reports Facts and Statistics Popular content Calcium content of common foods What ...

  13. Calcium - ionized

    MedlinePlus

    ... levels. These may include abnormal blood levels of albumin or immunoglobulins. Normal Results Children: 4.8 to ... 2016:chap 245. Read More Acute kidney failure Albumin - blood (serum) test Bone tumor Calcium blood test ...

  14. Calcium Carbonate.

    PubMed

    Al Omari, M M H; Rashid, I S; Qinna, N A; Jaber, A M; Badwan, A A

    2016-01-01

    Calcium carbonate is a chemical compound with the formula CaCO3 formed by three main elements: carbon, oxygen, and calcium. It is a common substance found in rocks in all parts of the world (most notably as limestone), and is the main component of shells of marine organisms, snails, coal balls, pearls, and eggshells. CaCO3 exists in different polymorphs, each with specific stability that depends on a diversity of variables. PMID:26940168

  15. Mechanisms of mammalian iron homeostasis

    PubMed Central

    Pantopoulos, Kostas; Porwal, Suheel Kumar; Tartakoff, Alan; Devireddy, L.

    2012-01-01

    Iron is vital for almost all organisms because of its ability to donate and accept electrons with relative ease. It serves as a cofactor for many proteins and enzymes necessary for oxygen and energy metabolism, as well as for several other essential processes. Mammalian cells utilize multiple mechanisms to acquire iron. Disruption of iron homeostasis is associated with various human diseases: iron deficiency resulting from defects in acquisition or distribution of the metal causes anemia; whereas iron surfeit resulting from excessive iron absorption or defective utilization causes abnormal tissue iron deposition, leading to oxidative damage. Mammals utilize distinct mechanisms to regulate iron homeostasis at the systemic and cellular levels. These involve the hormone hepcidin and iron regulatory proteins, which collectively ensure iron balance. This review outlines recent advances in iron regulatory pathways, as well as in mechanisms underlying intracellular iron trafficking, an important but less-studied area of mammalian iron homeostasis. PMID:22703180

  16. Diseases of Pulmonary Surfactant Homeostasis

    PubMed Central

    Whitsett, Jeffrey A.; Wert, Susan E.; Weaver, Timothy E.

    2015-01-01

    Advances in physiology and biochemistry have provided fundamental insights into the role of pulmonary surfactant in the pathogenesis and treatment of preterm infants with respiratory distress syndrome. Identification of the surfactant proteins, lipid transporters, and transcriptional networks regulating their expression has provided the tools and insights needed to discern the molecular and cellular processes regulating the production and function of pulmonary surfactant prior to and after birth. Mutations in genes regulating surfactant homeostasis have been associated with severe lung disease in neonates and older infants. Biophysical and transgenic mouse models have provided insight into the mechanisms underlying surfactant protein and alveolar homeostasis. These studies have provided the framework for understanding the structure and function of pulmonary surfactant, which has informed understanding of the pathogenesis of diverse pulmonary disorders previously considered idiopathic. This review considers the pulmonary surfactant system and the genetic causes of acute and chronic lung disease caused by disruption of alveolar homeostasis. PMID:25621661

  17. Diseases of pulmonary surfactant homeostasis.

    PubMed

    Whitsett, Jeffrey A; Wert, Susan E; Weaver, Timothy E

    2015-01-01

    Advances in physiology and biochemistry have provided fundamental insights into the role of pulmonary surfactant in the pathogenesis and treatment of preterm infants with respiratory distress syndrome. Identification of the surfactant proteins, lipid transporters, and transcriptional networks regulating their expression has provided the tools and insights needed to discern the molecular and cellular processes regulating the production and function of pulmonary surfactant prior to and after birth. Mutations in genes regulating surfactant homeostasis have been associated with severe lung disease in neonates and older infants. Biophysical and transgenic mouse models have provided insight into the mechanisms underlying surfactant protein and alveolar homeostasis. These studies have provided the framework for understanding the structure and function of pulmonary surfactant, which has informed understanding of the pathogenesis of diverse pulmonary disorders previously considered idiopathic. This review considers the pulmonary surfactant system and the genetic causes of acute and chronic lung disease caused by disruption of alveolar homeostasis. PMID:25621661

  18. Calcium orthophosphates

    PubMed Central

    Dorozhkin, Sergey V.

    2011-01-01

    The present overview is intended to point the readers’ attention to the important subject of calcium orthophosphates. This type of materials is of special significance for human beings, because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with calcium orthophosphates, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenphosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of calcium orthophosphates. Similarly, dental caries and osteoporosis might be considered an in vivo dissolution of calcium orthophosphates. Thus, calcium orthophosphates hold a great significance for humankind, and in this paper, an overview on the current knowledge on this subject is provided. PMID:23507744

  19. Calcium Hydroxylapatite

    PubMed Central

    Yutskovskaya, Yana Alexandrovna; Philip Werschler, WM.

    2015-01-01

    Background: Calcium hydroxylapatite is one of the most well-studied dermal fillers worldwide and has been extensively used for the correction of moderate-to-severe facial lines and folds and to replenish lost volume. Objectives: To mark the milestone of 10 years of use in the aesthetic field, this review will consider the evolution of calcium hydroxylapatite in aesthetic medicine, provide a detailed injection protocol for a global facial approach, and examine how the unique properties of calcium hydroxylapatite provide it with an important place in today’s market. Methods: This article is an up-to-date review of calcium hydroxylapatite in aesthetic medicine along with procedures for its use, including a detailed injection protocol for a global facial approach by three expert injectors. Conclusion: Calcium hydroxylapatite is a very effective agent for many areas of facial soft tissue augmentation and is associated with a high and well-established safety profile. Calcium hydroxylapatite combines high elasticity and viscosity with an ability to induce long-term collagen formation making it an ideal agent for a global facial approach. PMID:25610523

  20. Disorders of Erythrocyte Volume Homeostasis

    PubMed Central

    Glogowska, Edyta; Gallagher, Patrick G.

    2015-01-01

    Inherited disorders of erythrocyte volume homeostasis are a heterogeneous group of rare disorders with phenotypes ranging from dehydrated to overhydrated erythrocytes. Clinical, laboratory, physiologic, and genetic heterogeneity characterize this group of disorders. A series of recent reports have provided novel insights into our understanding of the genetic bases underlying some of these disorders of red cell volume regulation. This report reviews this progress in understanding determinants that influence erythrocyte hydration and how they have yielded a better understanding of the pathways that influence cellular water and solute homeostasis. PMID:25976965

  1. Mechanotransduction and extracellular matrix homeostasis

    PubMed Central

    Humphrey, Jay D.; Dufresne, Eric R.; Schwartz, Martin A.

    2015-01-01

    Preface Soft connective tissues at steady state are yet dynamic; resident cells continually read environmental cues and respond to promote homeostasis, including maintenance of the mechanical properties of the extracellular matrix that are fundamental to cellular and tissue health. The mechanosensing process involves assessment of the mechanics of the matrix by the cells through integrins and the actomyosin cytoskeleton, and is followed by a mechano-regulation process that includes the deposition, rearrangement, or removal of matrix to maintain overall form and function. Progress toward understanding the molecular, cellular, and tissue scale effects that promote mechanical homeostasis has helped identify key questions for future research. PMID:25355505

  2. Leptin and Hormones: Energy Homeostasis.

    PubMed

    Triantafyllou, Georgios A; Paschou, Stavroula A; Mantzoros, Christos S

    2016-09-01

    Leptin, a 167 amino acid adipokine, plays a major role in human energy homeostasis. Its actions are mediated through binding to leptin receptor and activating JAK-STAT3 signal transduction pathway. It is expressed mainly in adipocytes, and its circulating levels reflect the body's energy stores in adipose tissue. Recombinant methionyl human leptin has been FDA approved for patients with generalized non-HIV lipodystrophy and for compassionate use in subjects with congenital leptin deficiency. The purpose of this review is to outline the role of leptin in energy homeostasis, as well as its interaction with other hormones. PMID:27519135

  3. Perturbed cholesterol homeostasis in aging spinal cord.

    PubMed

    Parkinson, Gemma M; Dayas, Christopher V; Smith, Doug W

    2016-09-01

    The spinal cord is vital for the processing of sensorimotor information and for its propagation to and from both the brain and the periphery. Spinal cord function is affected by aging, however, the mechanisms involved are not well-understood. To characterize molecular mechanisms of spinal cord aging, microarray analyses of gene expression were performed on cervical spinal cords of aging rats. Of the metabolic and signaling pathways affected, cholesterol-associated pathways were the most comprehensively altered, including significant downregulation of cholesterol synthesis-related genes and upregulation of cholesterol transport and metabolism genes. Paradoxically, a significant increase in total cholesterol content was observed-likely associated with cholesterol ester accumulation. To investigate potential mechanisms for the perturbed cholesterol homeostasis, we quantified the expression of myelin and neuroinflammation-associated genes and proteins. Although there was minimal change in myelin-related expression, there was an increase in phagocytic microglial and astrogliosis markers, particularly in the white matter. Together, these results suggest that perturbed cholesterol homeostasis, possibly as a result of increased inflammatory activation in spinal cord white matter, may contribute to impaired spinal cord function with aging. PMID:27459933

  4. Nonnutritive sweeteners, energy balance and glucose homeostasis

    PubMed Central

    Pepino, M. Yanina; Bourne, Christina

    2012-01-01

    Purpose of review To review recent work on potential mechanisms underlying a paradoxical positive association between the consumption of nonnutritive sweeteners (NNS) and weight gain. Recent findings Several potential mechanism, not mutually exclusive, are hypothesized. First, by dissociating sweetness from calories, NNS could interfere with physiological responses that control homeostasis. Second, by changing the intestinal environment, NNS could affect the microbiota and in turn trigger inflammatory processes that are associated with metabolic disorders. Third, by interacting with novel sweet-taste receptors discovered in the gut, NNS could affect glucose absorptive capacity and glucose homeostasis. This last is the mechanism that has received the most attention recently. Some animal studies, but not all, found that NNS activate gut sweet taste-pathways that control incretin release and up-regulate glucose transporters. Human studies found that, at least for healthy fasted subjects, the sole interaction of NNS with sweet-taste gut receptors is insufficient to elicit incretin responses. The reasons for discrepancy between different studies is unknown but could be related to the species of mammal tested and the dose of NNS used. Summary Whether NNS are metabolically inactive, as previously assumed, is unclear. Further research on the potential effects of NNS on human metabolism is warranted. PMID:21505330

  5. Calcium Supplementation Improves Na+/K+ Ratio, Antioxidant Defense and Glyoxalase Systems in Salt-Stressed Rice Seedlings

    PubMed Central

    Rahman, Anisur; Nahar, Kamrun; Hasanuzzaman, Mirza; Fujita, Masayuki

    2016-01-01

    The present study investigates the regulatory role of exogenous calcium (Ca) in developing salt stress tolerance in rice seedlings. Hydroponically grown 13-day-old rice (Oryza sativa L. cv. BRRI dhan47) seedlings were exposed to 200 mM NaCl alone and combined with 2 mM CaCl2 and 2 mM ethylene glycol tetraacetic acid (EGTA, a Ca scavenger) for 3 days. The salt stress caused growth inhibition, chlorosis and water shortage in the rice seedlings. The salt-induced stress disrupted ion homeostasis through Na+ influx and K+ efflux, and decreased other mineral nutrient uptake. Salt stress caused oxidative stress in seedlings through lipid peroxidation, loss of plasma membrane integrity, higher reactive oxygen species (ROS) production and methylglyoxal (MG) formation. The salt-stressed seedlings supplemented with exogenous Ca recovered from water loss, chlorosis and growth inhibition. Calcium supplementation in the salt-stressed rice seedlings improved ion homeostasis by inhibition of Na+ influx and K+ leakage. Exogenous Ca also improved ROS and MG detoxification by improving the antioxidant defense and glyoxalase systems, respectively. On the other hand, applying EGTA along with salt and Ca again negatively affected the seedlings as EGTA negated Ca activity. It confirms that, the positive responses in salt-stressed rice seedlings to exogenous Ca were for Ca mediated improvement of ion homeostasis, antioxidant defense and glyoxalase system. PMID:27242816

  6. Calcium Supplementation Improves Na(+)/K(+) Ratio, Antioxidant Defense and Glyoxalase Systems in Salt-Stressed Rice Seedlings.

    PubMed

    Rahman, Anisur; Nahar, Kamrun; Hasanuzzaman, Mirza; Fujita, Masayuki

    2016-01-01

    The present study investigates the regulatory role of exogenous calcium (Ca) in developing salt stress tolerance in rice seedlings. Hydroponically grown 13-day-old rice (Oryza sativa L. cv. BRRI dhan47) seedlings were exposed to 200 mM NaCl alone and combined with 2 mM CaCl2 and 2 mM ethylene glycol tetraacetic acid (EGTA, a Ca scavenger) for 3 days. The salt stress caused growth inhibition, chlorosis and water shortage in the rice seedlings. The salt-induced stress disrupted ion homeostasis through Na(+) influx and K(+) efflux, and decreased other mineral nutrient uptake. Salt stress caused oxidative stress in seedlings through lipid peroxidation, loss of plasma membrane integrity, higher reactive oxygen species (ROS) production and methylglyoxal (MG) formation. The salt-stressed seedlings supplemented with exogenous Ca recovered from water loss, chlorosis and growth inhibition. Calcium supplementation in the salt-stressed rice seedlings improved ion homeostasis by inhibition of Na(+) influx and K(+) leakage. Exogenous Ca also improved ROS and MG detoxification by improving the antioxidant defense and glyoxalase systems, respectively. On the other hand, applying EGTA along with salt and Ca again negatively affected the seedlings as EGTA negated Ca activity. It confirms that, the positive responses in salt-stressed rice seedlings to exogenous Ca were for Ca mediated improvement of ion homeostasis, antioxidant defense and glyoxalase system. PMID:27242816

  7. Comparison of calcium import as a function of contraction in the aortic smooth muscle of Sprague-Dawley, Wistar Kyoto and spontaneously hypertensive rats.

    PubMed

    Rahmani, M A; DeGray, G; David, V; Ampy, F R; Jones, L

    1999-04-15

    Genetic variations of far-reaching consequences have been established between spontaneously hypertensive rats (SHR) and their controls, Wistar Kyoto rats (WKY). The SHR strain is the most widely used model for the study of genetic hypertension. Calcium homeostasis in the vascular smooth muscle (VSM) is controlled by calcium channels and calcium pumps located in both VSM and the overlying endothelial cells that line the large blood vessels and the heart. Hypertension adversely affects calcium homeostasis. Investigations on the import of calcium from extracellular spaces with alpha1-adrenergic stimulation as a function of contractility of VSM cells in SHR and WKY were made and compared with the contractility observed in VSM cells of Sprague-Dawley (CD) rats. Experiments were performed on rings from thoracic aortas of three strains with endothelial lining intact or removed to discern the paracrine control of endothelium on contractility in response to calcium import. The internal stores of Ca2+ were depleted by repeated alpha 1-adrenergic stimulation with phenylephrine (PE) and refilling of these stores was prevented by cyclopiazonic acid (CPA) and/or thapsigargin (TG), two known inhibitors of Ca2+ATPase, the enzyme that drives sarcoplasmic calcium pumps. The two components of tonic muscular contraction, T I and T II, which are known to be due to the flow of Ca2+ from the extracellular gradient controlled via the poly-phosphoinositide cascade and nifedipine sensitive Ca2+ channels were found to be variable among these strains. Implications of these variations are discussed in this report PMID:10209059

  8. Nitric oxide and plant iron homeostasis.

    PubMed

    Buet, Agustina; Simontacchi, Marcela

    2015-03-01

    Like all living organisms, plants demand iron (Fe) for important biochemical and metabolic processes. Internal imbalances, as a consequence of insufficient or excess Fe in the environment, lead to growth restriction and affect crop yield. Knowledge of signals and factors affecting each step in Fe uptake from the soil and distribution (long-distance transport, remobilization from old to young leaves, and storage in seeds) is necessary to improve our understanding of plant mineral nutrition. In this context, the role of nitric oxide (NO) is discussed as a key player in maintaining Fe homeostasis through its cross talk with hormones, ferritin, and frataxin and the ability to form nitrosyl-iron complexes. PMID:25612116

  9. Calcitonin control of calcium metabolism during weightlessness

    NASA Technical Reports Server (NTRS)

    Soliman, Karam F. A.

    1993-01-01

    The main objective of this proposal is to elucidate calcitonin role in calcium homeostasis during weightlessness. In this investigation our objectives are to study: the effect of weightlessness on thyroid and serum calcitonin, the effect of weightlessness on the circadian variation of calcitonin in serum and the thyroid gland, the role of light as zeitgeber for calcitonin circadian rhythm, the circadian pattern of thyroid sensitivity to release calcitonin in response to calcium load, and the role of serotonin and norepinephrine in the control of calcitonin release. The main objective of this research/proposal is to establish the role of calcitonin in calcium metabolism during weightlessness condition. Understanding the mechanism of these abnormalities will help in developing therapeutic means to counter calcium imbalance in spaceflights.

  10. Calcium channel subtypes contributing to acetylcholine release from normal, 4-aminopyridine-treated and myasthenic syndrome auto-antibodies-affected neuromuscular junctions

    PubMed Central

    Giovannini, F; Sher, E; Webster, R; Boot, J; Lang, B

    2002-01-01

    Acetylcholine release at the neuromuscular junction relies on rapid, local and transient calcium increase at presynaptic active zones, triggered by the ion influx through voltage-dependent calcium channels (VDCCs) clustered on the presynaptic membrane. Pharmacological investigation of the role of different VDCC subtypes (L-, N-, P/Q- and R-type) in spontaneous and evoked acetylcholine (ACh) release was carried out in adult mouse neuromuscular junctions (NMJs) under normal and pathological conditions. ω-Agatoxin IVA (500 nM), a specific P/Q-type VDCC blocker, abolished end plate potentials (EPPs) in normal NMJs. However, when neurotransmitter release was potentiated by the presence of the K+ channel blocker 4-aminopyridine (4-AP), an ω-agatoxin IVA- and ω-conotoxin MVIIC-resistant component was detected. This resistant component was only partially sensitive to 1 μM ω-conotoxin GVIA (N-type VDCC blocker), but insensitive to any other known VDCC blockers. Spontaneous release was dependent only on P/Q-type VDCC in normal NMJs. However, in the presence of 4-AP, it relied on L-type VDCCs too. ACh release from normal NMJs was compared with that of NMJs of mice passively injected with IgGs obtained from patients with Lambert-Eaton myasthenic syndrome (LEMS), a disorder characterized by a compromised neurotransmitter release. Differently from normal NMJs, in LEMS IgGs-treated NMJs an ω-agatoxin IVA-resistant EPP component was detected, which was only partially blocked by calciseptine (1 μM), a specific L-type VDCC blocker. Altogether, these data demonstrate that multiple VDCC subtypes are present at the mouse NMJ and that a resistant component can be identified under ‘pharmacological' and/or ‘pathological' conditions. PMID:12163346

  11. Disruption of iron homeostasis and lung disease.

    PubMed

    Ghio, Andrew J

    2009-07-01

    As a result of a direct exchange with the external environment, the lungs are exposed to both iron and agents with a capacity to disrupt the homeostasis of this metal (e.g. particles). An increased availability of catalytically reactive iron can result from these exposures and, by generating an oxidative stress, this metal can contribute to tissue injury. By importing this Fe(3+) into cells for storage in a chemically less reactive form, the lower respiratory tract demonstrates an ability to mitigate both the oxidative stress presented by iron and its potential for tissue injury. This means that detoxification is accomplished by chemical reduction to Fe(2+) (e.g. by duodenal cytochrome b and other ferrireductases), iron import (e.g. by divalent metal transporter 1 and other transporters), and storage in ferritin. The metal can subsequently be exported from the cell (e.g. by ferroportin 1) in a less reactive state relative to that initially imported. Iron is then transported out of the lung via the mucociliary pathway or blood and lymphatic pathways to the reticuloendothelial system for long term storage. This coordinated handling of iron in the lung appears to be disrupted in several acute diseases on the lung including infections, acute respiratory distress syndrome, transfusion-related acute lung injury, and ischemia-reperfusion. Exposures to bleomycin, dusts and fibers, and paraquat similarly alter iron homeostasis in the lung to affect an oxidative stress. Finally, iron homeostasis is disrupted in numerous chronic lung diseases including pulmonary alveolar proteinosis, transplantation, cigarette smoking, and cystic fibrosis. PMID:19100311

  12. Calcium release from experimental dental materials.

    PubMed

    Okulus, Zuzanna; Buchwald, Tomasz; Voelkel, Adam

    2016-11-01

    The calcium release from calcium phosphate-containing experimental dental restorative materials was examined. The possible correlation of ion release with initial calcium content, solubility and degree of curing (degree of conversion) of examined materials was also investigated. Calcium release was measured with the use of an ion-selective electrode in an aqueous solution. Solubility was established by the weighing method. Raman spectroscopy was applied for the determination of the degree of conversion, while initial calcium content was examined with the use of energy-dispersive spectroscopy. For examined materials, the amount of calcium released was found to be positively correlated with solubility and initial calcium content. It was also found that the degree of conversion does not affect the ability of these experimental composites to release calcium ions. PMID:27524015

  13. Manganese homeostasis in the nervous system.

    PubMed

    Chen, Pan; Chakraborty, Sudipta; Mukhopadhyay, Somshuvra; Lee, Eunsook; Paoliello, Monica M B; Bowman, Aaron B; Aschner, Michael

    2015-08-01

    Manganese (Mn) is an essential heavy metal that is naturally found in the environment. Daily intake through dietary sources provides the necessary amount required for several key physiological processes, including antioxidant defense, energy metabolism, immune function and others. However, overexposure from environmental sources can result in a condition known as manganism that features symptomatology similar to Parkinson's disease (PD). This disorder presents with debilitating motor and cognitive deficits that arise from a neurodegenerative process. In order to maintain a balance between its essentiality and neurotoxicity, several mechanisms exist to properly buffer cellular Mn levels. These include transporters involved in Mn uptake, and newly discovered Mn efflux mechanisms. This review will focus on current studies related to mechanisms underlying Mn import and export, primarily the Mn transporters, and their function and roles in Mn-induced neurotoxicity. Though and essential metal, overexposure to manganese may result in neurodegenerative disease analogous to Parkinson's disease. Manganese homeostasis is tightly regulated by transporters, including transmembrane importers (divalent metal transporter 1, transferrin and its receptor, zinc transporters ZIP8 and Zip14, dopamine transporter, calcium channels, choline transporters and citrate transporters) and exporters (ferroportin and SLC30A10), as well as the intracellular trafficking proteins (SPCA1 and ATP12A2). A manganese-specific sensor, GPP130, has been identified, which affords means for monitoring intracellular levels of this metal. PMID:25982296

  14. Calcium regulation in frog peripheral nerve by the blood-nerve barrier

    SciTech Connect

    Wadhwani, K.C.

    1986-01-01

    The objectives of this research were: (a) to investigate the characteristics of calcium transport across the perineurium and the endoneurial capillaries, and (b) to gain a better understanding of the extent of calcium homeostasis in the endoneurial space. To study the nature of calcium transport across the perineurium, the flux of radiotracer /sup 45/Ca was measured through the perineurial cylinder, isolated from the frog sciatic nerve, and through the perineurium into the nerve in situ. To study the nature of calcium transport across the endoneurial capillaries, the permeability-surface area product (PA) of /sup 45/Ca was determined as a function of the calcium concentration in the blood. To study calcium homeostasis, the calcium content of the frog sciatic nerve was determined as a function of chronic changes in plasma (Ca).

  15. Tight junction regulates epidermal calcium ion gradient and differentiation

    SciTech Connect

    Kurasawa, Masumi; Maeda, Tetsuo; Oba, Ai; Yamamoto, Takuya; Sasaki, Hiroyuki

    2011-03-25

    Research highlights: {yields} We disrupted epidermal tight junction barrier in reconstructed epidermis. {yields} It altered Ca{sup 2+} distribution and consequentially differentiation state as well. {yields} Tight junction should affect epidermal homeostasis by maintaining Ca{sup 2+} gradient. -- Abstract: It is well known that calcium ions (Ca{sup 2+}) induce keratinocyte differentiation. Ca{sup 2+} distributes to form a vertical gradient that peaks at the stratum granulosum. It is thought that the stratum corneum (SC) forms the Ca{sup 2+} gradient since it is considered the only permeability barrier in the skin. However, the epidermal tight junction (TJ) in the granulosum has recently been suggested to restrict molecular movement to assist the SC as a secondary barrier. The objective of this study was to clarify the contribution of the TJ to Ca{sup 2+} gradient and epidermal differentiation in reconstructed human epidermis. When the epidermal TJ barrier was disrupted by sodium caprate treatment, Ca{sup 2+} flux increased and the gradient changed in ion-capture cytochemistry images. Alterations of ultrastructures and proliferation/differentiation markers revealed that both hyperproliferation and precocious differentiation occurred regionally in the epidermis. These results suggest that the TJ plays a crucial role in maintaining epidermal homeostasis by controlling the Ca{sup 2+} gradient.

  16. Neurohypophyseal Hormones: Novel Actors of Striated Muscle Development and Homeostasis

    PubMed Central

    Costa, Alessandra; Rossi, Eleonora; Scicchitano, Bianca Maria; Coletti, Dario; Moresi, Viviana

    2014-01-01

    Since the 1980’s, novel functional roles of the neurohypophyseal hormones vasopressin and oxytocin have emerged. Several studies have investigated the effects of these two neurohormones on striated muscle tissues, both in vitro and in vivo. The effects of vasopressin on skeletal myogenic cells, developing muscle and muscle homeostasis have been documented. Oxytocin appears to have a greater influence on cardiomyocite differentiation and heart homeostasis. This review summarizes the studies on these novel roles of the two neurohypophyseal hormones, and open the possibility of new therapeutic approaches for diseases affecting striated muscle. PMID:26913138

  17. trpm7 Regulation of in Vivo Cation Homeostasis and Kidney Function Involves Stanniocalcin 1 and fgf23

    PubMed Central

    Elizondo, Michael R.; Budi, Erine H.; Parichy, David M.

    2010-01-01

    The transient receptor potential melastatin 7 (trpm7) channel kinase is a primary regulator of magnesium homeostasis in vitro. Here we show that trpm7 is an important regulator of cation homeostasis as well as kidney function in vivo. Using zebrafish trpm7 mutants, we show that early larvae exhibit reduced levels of both total magnesium and total calcium. Accompanying these deficits, we show that trpm7 mutants express higher levels of stanniocalcin 1 (stc1), a potent regulator of calcium homeostasis. Using transgenic overexpression and morpholino oligonucleotide knockdown, we demonstrate that stc1 modulates both calcium and magnesium levels in trpm7 mutants and in the wild type and that levels of these cations are restored to normal in trpm7 mutants when stc1 activity is blocked. Consistent with defects in both calcium and phosphate homeostasis, we further show that trpm7 mutants develop kidney stones by early larval stages and exhibit increased levels of the anti-hyperphosphatemic factor, fibroblast growth factor 23 (fgf23). Finally, we demonstrate that elevated fgf23 expression contributes to kidney stone formation by morpholino knockdown of fgf23 in trpm7 mutants. Together, these analyses reveal roles for trpm7 in regulating cation homeostasis and kidney function in vivo and implicate both stc1 and fgf23 in these processes. PMID:20881241

  18. Calcium and bones

    MedlinePlus

    Bone strength and calcium ... calcium (as well as phosphorus) to make healthy bones. Bones are the main storage site of calcium in ... your body does not absorb enough calcium, your bones can get weak or will not grow properly. ...

  19. Get Enough Calcium

    MedlinePlus

    ... Calcium Print This Topic En español Get Enough Calcium Browse Sections The Basics Overview Foods and Vitamins ... 2 of 4 sections Take Action! Take Action: Calcium Sources Protect your bones – get plenty of calcium ...

  20. Calcium carbonate overdose

    MedlinePlus

    Tums overdose; Calcium overdose ... Calcium carbonate can be dangerous in large amounts. ... Some products that contain calcium carbonate are certain: ... and mineral supplements Other products may also contain calcium ...

  1. Targeting Cholesterol Homeostasis to Fight Hearing Loss: A New Perspective

    PubMed Central

    Malgrange, Brigitte; Varela-Nieto, Isabel; de Medina, Philippe; Paillasse, Michael R.

    2015-01-01

    Sensorineural hearing loss (SNHL) is a major pathology of the inner ear that affects nearly 600 million people worldwide. Despite intensive researches, this major health problem remains without satisfactory solutions. The pathophysiological mechanisms involved in SNHL include oxidative stress, excitotoxicity, inflammation, and ischemia, resulting in synaptic loss, axonal degeneration, and apoptosis of spiral ganglion neurons. The mechanisms associated with SNHL are shared with other neurodegenerative disorders. Cholesterol homeostasis is central to numerous pathologies including neurodegenerative diseases and cholesterol regulates major processes involved in neurons survival and function. The role of cholesterol homeostasis in the physiopathology of inner ear is largely unexplored. In this review, we discuss the findings concerning cholesterol homeostasis in neurodegenerative diseases and whether it should be translated into potential therapeutic strategies for the treatment of SNHL. PMID:25688206

  2. Disorders of phosphate homeostasis and tissue mineralisation.

    PubMed

    Bergwitz, Clemens; Jüppner, Harald

    2009-01-01

    Phosphate is absorbed from the diet in the gut, stored as hydroxyapatite in the skeleton, and excreted with the urine. The balance between these compartments determines the circulating phosphate concentration. Fibroblast growth factor 23 (FGF23) has recently been discovered and is part of a previously unrecognised hormonal bone-kidney axis. Phosphate-regulating gene with homologies to endopeptidases on the X chromosome, and dentin matrix protein 1 regulate the expression of FGF23 in osteocytes, which then is O-glycosylated by UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-acetylgalactosaminyl-transferase 3 and secreted into the circulation. FGF23 binds with high affinity to fibroblast growth factor receptor 1c in the presence of its co-receptor Klotho. It inhibits, either directly or indirectly, reabsorption of phosphate and the synthesis of 1,25-dihydroxy-vitamin-D by the renal proximal tubule and the secretion of parathyroid hormone by the parathyroid glands. Acquired or inborn errors affecting this newly discovered hormonal system can lead to abnormal phosphate homeostasis and/or tissue mineralisation. This chapter will provide an update on the current knowledge of the pathophysiology, the clinical presentation, diagnostic evaluation and therapy of the disorders of phosphate homeostasis and tissue mineralisation. PMID:19494665

  3. Cannabinoids, eating behaviour, and energy homeostasis.

    PubMed

    Romero-Zerbo, Silvana Y; Bermúdez-Silva, Francisco J

    2014-01-01

    Soon after the discovery of cannabis by western societies, its psychotropic effects overshadowed its medical benefits. However, investigation into the molecular action of the main constituents of cannabis has led to the discovery of an intercellular signalling system, called the endocannabinoid system (ECS). The ECS comprises a set of molecular components, including enzymes, signalling lipids and G-protein coupled receptors, which has an outstanding role in modulating eating behaviour and energy homeostasis. Interestingly, evidence has shown that the ECS is present at the central and peripheral nervous system, modulating the function of the hypothalamus, the brain reward system and the brainstem, and coordinating the crosstalk between these brain structures and peripheral organs. Indeed, the ECS is present and functional in metabolically relevant peripheral tissues, directly modulating their physiology. In the context of a global obesity pandemic, these discoveries are highly suggestive in order to design novel pharmaceutical tools to fight obesity and related morbidities. In fact, a cannabinoid-based first generation of drugs was developed and marketed. Their failure, due to central side-effects, is leading to a second generation of these drugs unable to cross the blood-brain barrier, as well as other ECS-focused strategies that are still in the pipeline. In the next few years we will hopefully know whether such an important player in energy homeostasis can be successfully targeted without significantly affecting other vital processes related to mood and sense of well-being. PMID:24375977

  4. Disorders of Phosphate Homeostasis and Tissue Mineralisation

    PubMed Central

    Bergwitz, Clemens; Jüppner, Harald

    2013-01-01

    Phosphate is absorbed from the diet in the gut, stored as hydroxyapatite in the skeleton, and excreted with the urine. The balance between these compartments determines the circulating phosphate concentration. Fibroblast growth factor 23 (FGF23) has recently been discovered and is part of a previously unrecognised hormonal bone-kidney axis. Phosphate-regulating gene with homologies to endopeptidases on the X chromosome, and dentin matrix protein 1 regulate the expression of FGF23 in osteocytes, which then is O-glycosylated by UDP-N-acetyl-alpha-d-galactosamine: poly-peptide N-acetylgalactosaminyl-transferase 3 and secreted into the circulation. FGF23 binds with high affinity to fibroblast growth factor receptor 1c in the presence of its co-receptor Klotho. It inhibits, either directly or indirectly, reabsorption of phosphate and the synthesis of 1,25-dihydroxy-vita-min-D by the renal proximal tubule and the secretion of parathyroid hormone by the parathyroid glands. Acquired or inborn errors affecting this newly discovered hormonal system can lead to abnormal phosphate homeostasis and/or tissue mineralisation. This chapter will provide an update on the current knowledge of the pathophysiology, the clinical presentation, diagnostic evaluation and therapy of the disorders of phosphate homeostasis and tissue mineralisation. PMID:19494665

  5. Maternal dietary restriction alters offspring's sleep homeostasis.

    PubMed

    Shimizu, Noriyuki; Chikahisa, Sachiko; Nishi, Yuina; Harada, Saki; Iwaki, Yohei; Fujihara, Hiroaki; Kitaoka, Kazuyoshi; Shiuchi, Tetsuya; Séi, Hiroyoshi

    2013-01-01

    Nutritional state in the gestation period influences fetal growth and development. We hypothesized that undernutrition during gestation would affect offspring sleep architecture and/or homeostasis. Pregnant female mice were assigned to either control (fed ad libitum; AD) or 50% dietary restriction (DR) groups from gestation day 12 to parturition. After parturition, dams were fed AD chow. After weaning, the pups were also fed AD into adulthood. At adulthood (aged 8-9 weeks), we carried out sleep recordings. Although offspring mice displayed a significantly reduced body weight at birth, their weights recovered three days after birth. Enhancement of electroencephalogram (EEG) slow wave activity (SWA) during non-rapid eye movement (NREM) sleep was observed in the DR mice over a 24-hour period without changing the diurnal pattern or amounts of wake, NREM, or rapid eye movement (REM) sleep. In addition, DR mice also displayed an enhancement of EEG-SWA rebound after a 6-hour sleep deprivation and a higher threshold for waking in the face of external stimuli. DR adult offspring mice exhibited small but significant increases in the expression of hypothalamic peroxisome proliferator-activated receptor α (Pparα) and brain-specific carnitine palmitoyltransferase 1 (Cpt1c) mRNA, two genes involved in lipid metabolism. Undernutrition during pregnancy may influence sleep homeostasis, with offspring exhibiting greater sleep pressure. PMID:23741310

  6. Regulation of Calcium signaling through spatial Organization

    NASA Astrophysics Data System (ADS)

    Ullah, Aman; Ullah, Ghanim; Machaca, Khalid; Jung, Peter

    2010-03-01

    Calcium waves and signals in oocytes are produced and sustained by the release of Ca^2+ from the Endoplasmic Reticulum (ER) through clustered release channels. Changes in the spatial organization of calcium signaling effectors regulate the spatiotemporal features of the calcium signal as is e.g. observed during oocyte maturation. We report here how specific changes in the clustering of the calcium release channels in conjunction with physiologic alterations of other signaling effectors can affect a) the sensitivity of the signaling machinery to external factors, b) the time course of global intracellular signals and c), the speed and propagation range of intracellular calcium waves.

  7. Calcium cyanide

    Integrated Risk Information System (IRIS)

    Jump to main content . Integrated Risk Information System Recent Additions | Contact Us Search : All EPA IRIS • You are here : EPA Home • Research • Environmental Assessment • IRIS • IRIS Summaries Redirect Page As of September 28 , 2010 , the assessment summary for calcium cyanide is included in th

  8. Protein Degradation and Iron Homeostasis

    PubMed Central

    Thompson, Joel W.; Bruick, Richard K.

    2013-01-01

    Regulation of both systemic and cellular iron homeostasis requires the capacity to sense iron levels and appropriately modify the expression of iron metabolism genes. These responses are coordinated through the efforts of several key regulatory factors including F-box and Leucine-rich Repeat Protein 5 (FBXL5), Iron Regulatory Proteins (IRPs), Hypoxia Inducible Factor (HIF), and ferroportin. Notably, the stability of each of these proteins is regulated in response to iron. Recent discoveries have greatly advanced our understanding of the molecular mechanisms governing iron-sensing and protein degradation within these pathways. It has become clear that iron’s privileged roles in both enzyme catalysis and protein structure contribute to its regulation of protein stability. Moreover, these multiple pathways intersect with one another in larger regulatory networks to maintain iron homeostasis. PMID:22349011

  9. Protein degradation and iron homeostasis.

    PubMed

    Thompson, Joel W; Bruick, Richard K

    2012-09-01

    Regulation of both systemic and cellular iron homeostasis requires the capacity to sense iron levels and appropriately modify the expression of iron metabolism genes. These responses are coordinated through the efforts of several key regulatory factors including F-box and Leucine-rich Repeat Protein 5 (FBXL5), Iron Regulatory Proteins (IRPs), Hypoxia Inducible Factor (HIF), and ferroportin. Notably, the stability of each of these proteins is regulated in response to iron. Recent discoveries have greatly advanced our understanding of the molecular mechanisms governing iron-sensing and protein degradation within these pathways. It has become clear that iron's privileged roles in both enzyme catalysis and protein structure contribute to its regulation of protein stability. Moreover, these multiple pathways intersect with one another in larger regulatory networks to maintain iron homeostasis. This article is part of a Special Issue entitled: Cell Biology of Metals. PMID:22349011

  10. Tensional Homeostasis in Single Fibroblasts

    PubMed Central

    Webster, Kevin D.; Ng, Win Pin; Fletcher, Daniel A.

    2014-01-01

    Adherent cells generate forces through acto-myosin contraction to move, change shape, and sense the mechanical properties of their environment. They are thought to maintain defined levels of tension with their surroundings despite mechanical perturbations that could change tension, a concept known as tensional homeostasis. Misregulation of tensional homeostasis has been proposed to drive disorganization of tissues and promote progression of diseases such as cancer. However, whether tensional homeostasis operates at the single cell level is unclear. Here, we directly test the ability of single fibroblast cells to regulate tension when subjected to mechanical displacements in the absence of changes to spread area or substrate elasticity. We use a feedback-controlled atomic force microscope to measure and modulate forces and displacements of individual contracting cells as they spread on a fibronectin-patterned atomic-force microscope cantilever and coverslip. We find that the cells reach a steady-state contraction force and height that is insensitive to stiffness changes as they fill the micropatterned areas. Rather than maintaining a constant tension, the fibroblasts altered their contraction force in response to mechanical displacement in a strain-rate-dependent manner, leading to a new and stable steady-state force and height. This response is influenced by overexpression of the actin crosslinker α-actinin, and rheology measurements reveal that changes in cell elasticity are also strain- rate-dependent. Our finding of tensional buffering, rather than homeostasis, allows cells to transition between different tensional states depending on how they are displaced, permitting distinct responses to slow deformations during tissue growth and rapid deformations associated with injury. PMID:24988349

  11. Premenstrual changes. Impaired hormonal homeostasis.

    PubMed

    Halbreich, U; Alt, I H; Paul, L

    1988-03-01

    Premenstrual changes (PMCs) in mood and behavior are very prevalent. Nonetheless, their pathophysiology is still obscure and no proven treatment is yet available. Evaluation of the plethora of available data leads to the suggestion that PMCs may result from a temporary impairment of homeostasis among a multitude of systems. This impairment is triggered by a differential pace and magnitude of change-over-time in levels of several hormones and other substances during the luteal phase. PMID:3288473

  12. Calcium Stores in Vertebrate Photoreceptors

    PubMed Central

    Križaj, David

    2012-01-01

    This review lays out the emerging evidence for the fundamental role of Ca2+ stores and store-operated channels in the Ca2+ homeostasis of rods and cones. Calcium-induced calcium release (CICR) is a major contributor to steady-state and light-evoked photoreceptor Ca2+ homeostasis in the darkness whereas store-operated Ca2+ channels play a more significant role under sustained illumination conditions. The homeostatic response includes dynamic interactions between the plasma membrane, endoplasmic reticulum (ER), mitochondria and/or outer segment disk organelles which dynamically sequester, accumulate and release Ca2+. Coordinated activation of SERCA transporters, ryanodine receptors (RyR), inositol triphosphate receptors (IP3Rs) and TRPC channels amplifies cytosolic voltage-operated signals but also provides a memory trace of previous exposures to light. Store-operated channels, activated by the STIM1 sensor, prevent pathological decrease in [Ca2+]i mediated by excessive activation of PMCA transporters in saturating light. CICR and SOCE may also modulate the transmission of afferent and efferent signals in the outer retina. Thus, Ca2+ stores provide additional complexity, adaptability, tuneability and speed to photoreceptor signaling. PMID:22453974

  13. [The effect of dietotherapy and supplementary calcium intake on phosphorus-calcium homeostasis in hypertensive patients].

    PubMed

    Gladkevich, A V; Samsonov, M A; Spirichev, V B

    1990-01-01

    A total of 25 patients with essential hypertension received a hyponatrium, hypocaloric antisclerotic diet providing 800 mg Ca and 1100 mg P/day, during 18-20 days. As a result of the dietotherapy, Ca concentration in the patients' blood serum rose from 9.9 +/- 0.2 to 10.4 +/- 0.1 mg/100 ml (p = 0.02), total cholesterol level was lowered from 6.58 +/- 0.43 to 5.42 +/- 0.3 mmol/l (p less than 0.05), Na+ and K+ distribution between the blood plasma and red blood cells was improved, and the arterial blood pressure was normalized in all the patients investigated. It dropped from 162 +/- 3.8/102 +/- 1.8 mm Hg before the treatment to 129 +/- 2.1/83.4 +/- 2.2 mm Hg after the treatment. Additional intake of 850 mg Ca/day, as CaCO3, decreased parathormone level in the blood serum from 0.40 +/- 0.03 to 0.23 ng/ml (p less than 0.01), intensified the hypolipidemic effect of the ration, and did not influence the degree of arterial blood pressure reduction under the action of this ration. Optimization of Ca consumption plays an important role in the combined dietotherapy of essential hypertension. PMID:2378097

  14. Transgenic plants with increased calcium stores

    NASA Technical Reports Server (NTRS)

    Wyatt, Sarah (Inventor); Tsou, Pei-Lan (Inventor); Robertson, Dominique (Inventor); Boss, Wendy (Inventor)

    2004-01-01

    The present invention provides transgenic plants over-expressing a transgene encoding a calcium-binding protein or peptide (CaBP). Preferably, the CaBP is a calcium storage protein and over-expression thereof does not have undue adverse effects on calcium homeostasis or biochemical pathways that are regulated by calcium. In preferred embodiments, the CaBP is calreticulin (CRT) or calsequestrin. In more preferred embodiments, the CaBP is the C-domain of CRT, a fragment of the C-domain, or multimers of the foregoing. In other preferred embodiments, the CaBP is localized to the endoplasmic reticulum by operatively associating the transgene encoding the CaBP with an endoplasmic reticulum localization peptide. Alternatively, the CaBP is targeted to any other sub-cellular compartment that permits the calcium to be stored in a form that is biologically available to the plant. Also provided are methods of producing plants with desirable phenotypic traits by transformation of the plant with a transgene encoding a CaBP. Such phenotypic traits include increased calcium storage, enhanced resistance to calcium-limiting conditions, enhanced growth and viability, increased disease and stress resistance, enhanced flower and fruit production, reduced senescence, and a decreased need for fertilizer production. Further provided are plants with enhanced nutritional value as human food or animal feed.

  15. Intracellular sphingosine releases calcium from lysosomes

    PubMed Central

    Höglinger, Doris; Haberkant, Per; Aguilera-Romero, Auxiliadora; Riezman, Howard; Porter, Forbes D; Platt, Frances M; Galione, Antony; Schultz, Carsten

    2015-01-01

    To elucidate new functions of sphingosine (Sph), we demonstrate that the spontaneous elevation of intracellular Sph levels via caged Sph leads to a significant and transient calcium release from acidic stores that is independent of sphingosine 1-phosphate, extracellular and ER calcium levels. This photo-induced Sph-driven calcium release requires the two-pore channel 1 (TPC1) residing on endosomes and lysosomes. Further, uncaging of Sph leads to the translocation of the autophagy-relevant transcription factor EB (TFEB) to the nucleus specifically after lysosomal calcium release. We confirm that Sph accumulates in late endosomes and lysosomes of cells derived from Niemann-Pick disease type C (NPC) patients and demonstrate a greatly reduced calcium release upon Sph uncaging. We conclude that sphingosine is a positive regulator of calcium release from acidic stores and that understanding the interplay between Sph homeostasis, calcium signaling and autophagy will be crucial in developing new therapies for lipid storage disorders such as NPC. DOI: http://dx.doi.org/10.7554/eLife.10616.001 PMID:26613410

  16. Intracellular sphingosine releases calcium from lysosomes.

    PubMed

    Höglinger, Doris; Haberkant, Per; Aguilera-Romero, Auxiliadora; Riezman, Howard; Porter, Forbes D; Platt, Frances M; Galione, Antony; Schultz, Carsten

    2015-01-01

    To elucidate new functions of sphingosine (Sph), we demonstrate that the spontaneous elevation of intracellular Sph levels via caged Sph leads to a significant and transient calcium release from acidic stores that is independent of sphingosine 1-phosphate, extracellular and ER calcium levels. This photo-induced Sph-driven calcium release requires the two-pore channel 1 (TPC1) residing on endosomes and lysosomes. Further, uncaging of Sph leads to the translocation of the autophagy-relevant transcription factor EB (TFEB) to the nucleus specifically after lysosomal calcium release. We confirm that Sph accumulates in late endosomes and lysosomes of cells derived from Niemann-Pick disease type C (NPC) patients and demonstrate a greatly reduced calcium release upon Sph uncaging. We conclude that sphingosine is a positive regulator of calcium release from acidic stores and that understanding the interplay between Sph homeostasis, calcium signaling and autophagy will be crucial in developing new therapies for lipid storage disorders such as NPC. PMID:26613410

  17. Activation of the Endoplasmic Reticulum Calcium Sensor STIM1 and Store-Operated Calcium Entry by Rotavirus Requires NSP4 Viroporin Activity

    PubMed Central

    Hyser, Joseph M.; Utama, Budi; Crawford, Sue E.; Broughman, James R.

    2013-01-01

    Rotavirus nonstructural protein 4 (NSP4) induces dramatic changes in cellular calcium homeostasis. These include increased endoplasmic reticulum (ER) permeability, resulting in decreased ER calcium stores and activation of plasma membrane (PM) calcium influx channels, ultimately causing a 2- to 4-fold elevation in cytoplasmic calcium. Elevated cytoplasmic calcium is absolutely required for virus replication, but the underlying mechanisms responsible for calcium influx remain poorly understood. NSP4 is an ER-localized viroporin, whose activity depletes ER calcium, which ultimately leads to calcium influx. We hypothesized that NSP4-mediated depletion of ER calcium activates store-operated calcium entry (SOCE) through activation of the ER calcium sensor stromal interaction molecule 1 (STIM1). We established and used a stable yellow fluorescent protein-expressing STIM1 cell line (YFP-STIM1) as a biosensor to assess STIM1 activation (puncta formation) by rotavirus infection and NSP4 expression. We found that STIM1 is constitutively active in rotavirus-infected cells and that STIM1 puncta colocalize with the PM-localized Orai1 SOCE calcium channel. Expression of wild-type NSP4 activated STIM1, resulting in PM calcium influx, but an NSP4 viroporin mutant failed to induce STIM1 activation and did not activate the PM calcium entry pathway. Finally, knockdown of STIM1 significantly reduced rotavirus yield, indicating STIM1 plays a critical role in virus replication. These data demonstrate that while rotavirus may ultimately activate multiple calcium channels in the PM, calcium influx is predicated on NSP4 viroporin-mediated activation of STIM1 in the ER. This is the first report of viroporin-mediated activation of SOCE, reinforcing NSP4 as a robust model to understand dysregulation of calcium homeostasis during virus infections. PMID:24109210

  18. Dietary protein level and source differentially affect bone metabolism, strength, and intestinal calcium transporter expression during ad libitum and food-restricted conditions in male rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High protein diets may attenuate bone loss during energy restriction (ER). The objective of the current study was to determine whether high protein diets suppress bone turnover and improve bone quality in rats during ER and whether dietary protein source affects this relationship. Eighty 12-week o...

  19. Supplementation with calcium and short-chain fructo-oligosaccharides affects markers of bone turnover but not bone mineral density in postmenopausal women.

    PubMed

    Slevin, Mary M; Allsopp, Philip J; Magee, Pamela J; Bonham, Maxine P; Naughton, Violetta R; Strain, J J; Duffy, Maresa E; Wallace, Julie M; Mc Sorley, Emeir M

    2014-03-01

    This 24-mo randomized, double-blind, controlled trial aimed to examine whether supplementation with a natural marine-derived multi-mineral supplement rich in calcium (Ca) taken alone and in conjunction with short-chain fructo-oligosaccharide (scFOSs) has a beneficial effect on bone mineral density (BMD) and bone turnover markers (BTMs) in postmenopausal women. A total of 300 non-osteoporotic postmenopausal women were randomly assigned to daily supplements of 800 mg of Ca, 800 mg of Ca with 3.6 g of scFOS (CaFOS), or 9 g of maltodextrin. BMD was measured before and after intervention along with BTMs, which were also measured at 12 mo. Intention-to-treat ANCOVA identified that the change in BMD in the Ca and CaFOS groups did not differ from that in the maltodextrin group. Secondary analysis of changes to BTMs over time identified a greater decline in osteocalcin and C-telopeptide of type I collagen (CTX) in the Ca group compared with the maltodextrin group at 12 mo. A greater decline in CTX was observed at 12 mo and a greater decline in osteocalcin was observed at 24 mo in the CaFOS group compared with the maltodextrin group. In exploratory subanalyses of each treatment group against the maltodextrin group, women classified with osteopenia and taking CaFOS had a smaller decline in total-body (P = 0.03) and spinal (P = 0.03) BMD compared with the maltodextrin group, although this effect was restricted to those with higher total-body and mean spinal BMD at baseline, respectively. Although the change in BMD observed did not differ between the groups, the greater decline in BTMs in the Ca and CaFOS groups compared with the maltodextrin group suggests a more favorable bone health profile after supplementation with Ca and CaFOS. Supplementation with CaFOS slowed the rate of total-body and spinal bone loss in postmenopausal women with osteopenia-an effect that warrants additional investigation. This trial was registered at www.controlled-trials.com as ISRCTN63118444. PMID

  20. Calcium binding properties of gamma-crystallin: calcium ion binds at the Greek key beta gamma-crystallin fold.

    PubMed

    Rajini, B; Shridas, P; Sundari, C S; Muralidhar, D; Chandani, S; Thomas, F; Sharma, Y

    2001-10-19

    The beta- and gamma-crystallins are closely related lens proteins that are members of the betagamma-crystallin superfamily, which also include many non-lens members. Although beta-crystallin is known to be a calcium-binding protein, this property has not been reported in gamma-crystallin. We have studied the calcium binding properties of gamma-crystallin, and we show that it binds 4 mol eq of calcium with a dissociation constant of 90 microm. It also binds the calcium-mimic spectral probes, terbium and Stains-all. Calcium binding does not significantly influence protein secondary and tertiary structures. We present evidence that the Greek key crystallin fold is the site for calcium ion binding in gamma-crystallin. Peptides corresponding to Greek key motif of gamma-crystallin (42 residues) and their mutants were synthesized and studied for calcium binding. These peptides adopt beta-sheet conformation and form aggregates producing beta-sandwich. Our results with peptides show that, in Greek key motif, the amino acid adjacent to the conserved aromatic corner in the "a" strand and three amino acids of the "d" strand participate in calcium binding. We suggest that the betagamma superfamily represents a novel class of calcium-binding proteins with the Greek key betagamma-crystallin fold as potential calcium-binding sites. These results are of significance in understanding the mechanism of calcium homeostasis in the lens. PMID:11502736

  1. Vasopressin regulates renal calcium excretion in humans

    PubMed Central

    Hanouna, Guillaume; Haymann, Jean-Philippe; Baud, Laurent; Letavernier, Emmanuel

    2015-01-01

    Antidiuretic hormone or arginine vasopressin (AVP) increases water reabsorption in the collecting ducts of the kidney. Three decades ago, experimental models have shown that AVP may increase calcium reabsorption in rat kidney. The objective of this study was to assess whether AVP modulates renal calcium excretion in humans. We analyzed calcium, potassium, and sodium fractional excretion in eight patients affected by insipidus diabetes (nephrogenic or central) under acute vasopressin receptor agonist action and in 10 patients undergoing oral water load test affected or not by inappropriate antidiuretic hormone secretion (SIADH). Synthetic V2 receptor agonist (dDAVP) reduced significantly calcium fractional excretion from 1.71% to 0.58% (P < 0.05) in patients with central diabetes insipidus. In patients with nephrogenic diabetes insipidus (resistant to AVP), calcium fractional excretion did not change significantly after injection (0.48–0.68%, P = NS). In normal subjects undergoing oral water load test, calcium fractional excretion increased significantly from 1.02% to 2.54% (P < 0.05). Patients affected by SIADH had a high calcium fractional excretion at baseline that remained stable during test from 3.30% to 3.33% (P = NS), possibly resulting from a reduced calcium absorption in renal proximal tubule. In both groups, there was a significant correlation between urine output and calcium renal excretion. In humans, dDAVP decreases calcium fractional excretion in the short term. Conversely, water intake, which lowers AVP concentration, increases calcium fractional excretion. The correlation between urine output and calcium excretion suggests that AVP-related antidiuresis increases calcium reabsorption in collecting ducts. PMID:26620256

  2. Genetic disorders of surfactant homeostasis.

    PubMed

    Whitsett, Jeffrey A

    2006-01-01

    Pulmonary surfactant reduces surface tension at the air-liquid interface in the alveolus, thereby maintaining lung volumes during the respiratory cycle. In premature newborn infants, the lack of surfactant causes atelectasis and respiratory failure, characteristic of respiratory of distress syndrome. Surfactant is comprised of lipids and associated proteins that are required for surfactant function. Surfactant proteins B and C and a lamellar body associated transport protein, ABCA3 play critical roles in surfactant synthesis and function. Mutations in the genes encoding these proteins cause lethal respiratory distress in newborn infants. This review discusses the clinical and pathological findings associated with these inherited disorders of alveolar homeostasis. PMID:16798578

  3. Complexometric Determination of Calcium

    NASA Astrophysics Data System (ADS)

    Nielsen, S. Suzanne

    Ethylenediaminetetraacetate (EDTA) complexes with numerous mineral ions, including calcium and magnesium. This reaction can be used to determine the amount of these minerals in a sample by a complexometric titration. Endpoints in the titration are detected using indicators that change color when they complex with mineral ions. Calmagite and eriochrome black T (EBT) are such indicators that change from blue to pink when they complex with calcium and magnesium. In the titration of a mineral-containing solution with EDTA, the solution turns from pink to blue at the endpoint with either indicator. The pH affects a complexometric EDTA titration in several ways, and must be carefully controlled. A major application of EDTA titration is testing the hardness of water, for which the method described is an official one (Standard Methods for the Examination of Water and Wastewater, Method 2340C; AOAC Method 920.196).

  4. Gravity, calcium, and bone - Update, 1989

    NASA Technical Reports Server (NTRS)

    Arnaud, Sara B.; Morey-Holton, Emily

    1990-01-01

    Recent results obtained on skeletal adaptation, calcium metabolism, and bone browth during short-term flights and ground simulated-microgravity experiments are presented. Results demonstrate that two principal components of calcium metabolism respond within days to changes in body position and to weightlessness: the calcium endocrine system and bone characteristics. Furthermore, results of recent studies imply that bone biomechanics are more severely affected by spaceflight exposures than is the bone mass.

  5. Homeostasis, Inflammation, and Disease Susceptibility

    PubMed Central

    Kotas, Maya E.; Medzhitov, Ruslan

    2015-01-01

    While modernization has dramatically increased lifespan, it has also witnessed the increasing prevalence of diseases such as obesity, hypertension and type 2 diabetes. Such chronic, acquired diseases result when normal physiologic control goes awry and may thus be viewed as failures of homeostasis. However, while nearly every process in human physiology relies on homeostatic mechanisms for stability, only some have demonstrated vulnerability to dysregulation. Additionally, chronic inflammation is a common accomplice of the diseases of homeostasis, yet the basis for this connection is not fully understood. Here we review the design of homeostatic systems and discuss universal features of control circuits that operate at the cellular, tissue and organismal levels. We suggest a framework for classification of homeostatic signals that is based on different classes of homeostatic variables they report on. Finally, we discuss how adaptability of homeostatic systems with adjustable set points creates vulnerability to dysregulation and disease. This framework highlights the fundamental parallels between homeostatic and inflammatory control mechanisms and provides a new perspective on the physiological origin of inflammation. PMID:25723161

  6. A physiologist's view of homeostasis.

    PubMed

    Modell, Harold; Cliff, William; Michael, Joel; McFarland, Jenny; Wenderoth, Mary Pat; Wright, Ann

    2015-12-01

    Homeostasis is a core concept necessary for understanding the many regulatory mechanisms in physiology. Claude Bernard originally proposed the concept of the constancy of the "milieu interieur," but his discussion was rather abstract. Walter Cannon introduced the term "homeostasis" and expanded Bernard's notion of "constancy" of the internal environment in an explicit and concrete way. In the 1960s, homeostatic regulatory mechanisms in physiology began to be described as discrete processes following the application of engineering control system analysis to physiological systems. Unfortunately, many undergraduate texts continue to highlight abstract aspects of the concept rather than emphasizing a general model that can be specifically and comprehensively applied to all homeostatic mechanisms. As a result, students and instructors alike often fail to develop a clear, concise model with which to think about such systems. In this article, we present a standard model for homeostatic mechanisms to be used at the undergraduate level. We discuss common sources of confusion ("sticky points") that arise from inconsistencies in vocabulary and illustrations found in popular undergraduate texts. Finally, we propose a simplified model and vocabulary set for helping undergraduate students build effective mental models of homeostatic regulation in physiological systems. PMID:26628646

  7. Calcium and Vitamin D

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium is required for the bone formation phase of bone remodeling. Typically about 5 nmol (200 mg) of calcium is removed from the adult skeleton and replaced each day. To supply this amount, one would need to consume about 600 mg of calcium, since calcium is not very efficiently absorbed. Calcium ...

  8. Klf15 orchestrates circadian nitrogen homeostasis

    PubMed Central

    Jeyaraj, Darwin; Scheer, Frank A.J.L.; Ripperger, Jürgen A.; Haldar, Saptarsi M.; Lu, Yuan; Prosdocimo, Domenick A.; Eapen, Sam J.; Eapen, Betty L.; Cui, Yingjie; Mahabeleshwar, Ganapathi H.; Lee, Hyoung-gon; Smith, Mark A.; Casadesus, Gemma; Mintz, Eric M.; Sun, Haipeng; Wang, Yibin; Ramsey, Kathryn M.; Bass, Joseph; Shea, Steven A.; Albrecht, Urs; Jain, Mukesh K.

    2012-01-01

    SUMMARY Diurnal variation in nitrogen homeostasis is observed across phylogeny. But whether these are endogenous rhythms, and if so, molecular mechanisms that link nitrogen homeostasis to the circadian clock remain unknown. Here, we provide evidence that a clock-dependent peripheral oscillator, Krüppel-like factor15 transcriptionally coordinates rhythmic expression of multiple enzymes involved in mammalian nitrogen homeostasis. In particular, Krüppel-like factor15-deficient mice exhibit no discernable amino acid rhythm, and the rhythmicity of ammonia to urea detoxification is impaired. Of the external cues, feeding plays a dominant role in modulating Krüppel-like factor15 rhythm and nitrogen homeostasis. Further, when all behavioral, environmental and dietary cues were controlled in humans, nitrogen homeostasis still expressed endogenous circadian rhythmicity. Thus, in mammals, nitrogen homeostasis exhibits circadian rhythmicity, and is orchestrated by Krüppel-like factor15. PMID:22405069

  9. Calcium Kinetics During Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; OBrien, K. O.; Abrams, S. A.; Wastney, M. E.

    2005-01-01

    Bone loss during space flight is one of the most critical challenges to astronaut health on space exploration missions. Defining the time course and mechanism of these changes will aid in developing means to counteract bone loss during space flight, and will have relevance for other clinical situations that impair weight-bearing activity. Bone health is a product of the balance between bone formation and bone resorption. Early space research could not clearly identify which of these was the main process altered in bone loss, but identification of the collagen crosslinks in the 1990s made possible a clear understanding that the impact of space flight was greater on bone resorption, with bone formation being unchanged or only slightly decreased. Calcium kinetics data showed that bone resorption was greater during flight than before flight (668 plus or minus 130 vs. 427 plus or minus 153 mg/d, p less than 0.001), and clearly documented that true intestinal calcium absorption was lower during flight than before flight (233 plus or minus 87 vs. 460 plus or minus 47 mg/d, p less than 0.01). Weightlessness had a detrimental effect on the balance in bone turnover: the difference between daily calcium balance during flight (-234 plus or minus 102 mg/d) and calcium balance before flight (63 plus or minus 75 mg/d) approached 300 mg/d (p less than 0.01). These data demonstrate that the bone loss that occurs during space flight is a consequence of increased bone resorption and decreased intestinal calcium absorption. Examining the changes in bone and calcium homeostasis in the initial days and weeks of space flight, as well as at later times on missions longer than 6 months, is critical to understanding the nature of bone adaptation to weightlessness. To increase knowledge of these changes, we studied bone adaptation to space flight on the 16-day Space Shuttle Columbia (STS-107) mission. When the brave and talented crew of Columbia were lost during reentry on the tragic morning

  10. Calcium and bones (image)

    MedlinePlus

    Calcium is one of the most important minerals for the growth, maintenance, and reproduction of the human ... body, are continually being re-formed and incorporate calcium into their structure. Calcium is essential for the ...

  11. Calcium source (image)

    MedlinePlus

    Getting enough calcium to keep bones from thinning throughout a person's life may be made more difficult if that person has ... as a tendency toward kidney stones, for avoiding calcium-rich food sources. Calcium deficiency also effects the ...

  12. Coronary Calcium Scan

    MedlinePlus

    ... the NHLBI on Twitter. What Is a Coronary Calcium Scan? A coronary calcium scan is a test ... you have calcifications in your coronary arteries. Coronary Calcium Scan Figure A shows the position of the ...

  13. Calcium hydroxide poisoning

    MedlinePlus

    Hydrate - calcium; Lime milk; Slaked lime ... Calcium hydroxide ... These products contain calcium hydroxide: Cement Limewater Many industrial solvents and cleaners (hundreds to thousands of construction products, flooring strippers, brick cleaners, cement ...

  14. Urinary calcium excretion in non-lactating dairy cows in relation to intake of fat-coated rice bran.

    PubMed

    Martín-Tereso, J; Derks, M; van Laar, H; Mulder, K; den Hartog, L A; Verstegen, M W A

    2010-02-01

    At calving, many older cows fail to compensate the sudden demand of calcium by an adequate activation of intestinal absorption. This results in a variable degree of hypocalcaemia. Reducing intestinal availability of calcium during the close-up period can prevent milk fever. Fat-coated rice bran (FCRB) was investigated for its potential to reduce Ca availability in pre-calving cows. Fat-coated rice bran was incubated in situ to estimate ruminal degradation of dry matter and phytic acid. Also, seven dry multiparous dairy cows were used for a feeding trial in three periods of approximately 1 week each: P1: adaptation; P2: feeding of 2 kg of FCRB and P3: withdrawal of FCRB. Feed intake was recorded and daily urine samples were analysed for pH, Ca and creatinine. The bypass fraction of phytic acid (passage rate: 5%/h) was 30%. Fat-coated rice bran depressed dry matter intake in P2, resulting in a lower Ca intake. In P2 urine pH and calcium excretion were lower. Daily calcium excretion decreased after introduction of FCRB, peaked after withdrawal and dropped 2 days later. Changes in urinary Ca excretion by feeding FCRB indicate that FCRB affected Ca homeostasis in dry multiparous dairy cows. PMID:19364378

  15. Intracellular free calcium concentration and calcium transport in human erythrocytes of lead-exposed workers

    SciTech Connect

    Quintanar-Escorza, M.A.; Gonzalez-Martinez, M.T.; Navarro, L.; Maldonado, M.; Arevalo, B.; Calderon-Salinas, J.V. . E-mail: jcalder@cinvestav.mx

    2007-04-01

    Erythrocytes are the route of lead distribution to organs and tissues. The effect of lead on calcium homeostasis in human erythrocytes and other excitable cells is not known. In the present work we studied the effect of lead intoxication on the uptake and efflux (measured as (Ca{sup 2+}-Mg{sup 2+})-ATPase activity) of calcium were studied in erythrocytes obtained from lead-exposed workers. Blood samples were taken from 15 workers exposed to lead (blood lead concentration 74.4 {+-} 21.9 {mu}g/dl) and 15 non-exposed workers (9.9 {+-} 2 {mu}g/dl). In erythrocytes of lead-exposed workers, the intracellular free calcium was 79 {+-} 13 nM, a significantly higher concentration (ANOVA, P < 0.01) than the one detected in control (30 {+-} 9 nM). The enhanced intracellular free calcium was associated with a higher osmotic fragility and with important modifications in erythrocytes shape. The high intracellular free calcium in lead-exposed workers was also related to a 100% increase in calcium incorporation and to 50% reduction of (Ca{sup 2+}-Mg{sup 2+})-ATPase activity. Lipid peroxidation was 1.7-fold higher in erythrocytes of lead-exposed workers as compared with control. The alteration on calcium equilibrium in erythrocytes is discussed in light of the toxicological effects in lead-exposed workers.

  16. Molecular diversity and pleiotropic role of the mitochondrial calcium uniporter.

    PubMed

    Murgia, Marta; Rizzuto, Rosario

    2015-07-01

    The long awaited molecular identification of the mitochondrial calcium uniporter (MCU) in 2011 has opened an exciting phase in the study of mitochondrial calcium homeostasis. On the one hand, MCU proved to be the core of a complex signaling system, composed of a channel moiety (MCU itself and the related MCUb protein) and a family of essential regulators (the MICUs, MCUR, EMRE). On the other hand, the availability of molecular information and tools opened the possibility of directly altering mitochondrial calcium homeostasis in cell cultures or intact organisms, thus obtaining new insight into its role in physiological and pathological events. We will review here these exciting advancements, summarizing the current knowledge of the molecular composition of the MCU complex and of its role in shaping mitochondrial and cytosolic [Ca(2+)] signals. PMID:26048007

  17. Prebiotics and calcium bioavailability.

    PubMed

    Cashman, Kevin

    2003-03-01

    A prebiotic substance has been defined as a non-digestible food ingredient that beneficially affects the host by selectively stimulating the growth and/or activity of one or a limited number of bacteria in the colon. Therefore, compared to probiotics, which introduce exogenous bacteria into the colonic microflora, a prebiotic aims at stimulating the growth of one or a limited number of the potentially health-promoting indigenous micro-organisms, thus modulating the composition of the natural ecosystem. In recent years, increasing attention has been focussed on the possible beneficial effects of prebiotics, such as enhanced resistance to invading pathogens, improved bowel function, anti-colon cancer properties, lipid lowering action, improved calcium bioavailability, amongst others. The objective of this review is to critically assess the available data on the effects of prebiotics on calcium bioavailability, and place it in the context of human physiology and, when possible, explain the underlying cellular and molecular mechanisms. The review will also try to highlight future areas of research that may help in the evaluation of prebiotics as potential ingredients for functional foods aimed at enhancing calcium bioavailability and protecting against osteoporosis. PMID:12691259

  18. Impact of Increasing Dietary Calcium Levels on Calcium Excretion and Vitamin D Metabolites in the Blood of Healthy Adult Cats

    PubMed Central

    Paßlack, Nadine; Schmiedchen, Bettina; Raila, Jens; Schweigert, Florian J.; Stumpff, Friederike; Kohn, Barbara; Neumann, Konrad; Zentek, Jürgen

    2016-01-01

    Background Dietary calcium (Ca) concentrations might affect regulatory pathways within the Ca and vitamin D metabolism and consequently excretory mechanisms. Considering large variations in Ca concentrations of feline diets, the physiological impact on Ca homeostasis has not been evaluated to date. In the present study, diets with increasing concentrations of dicalcium phosphate were offered to ten healthy adult cats (Ca/phosphorus (P): 6.23/6.02, 7.77/7.56, 15.0/12.7, 19.0/17.3, 22.2/19.9, 24.3/21.6 g/kg dry matter). Each feeding period was divided into a 10-day adaptation and an 8-day sampling period in order to collect urine and faeces. On the last day of each feeding period, blood samples were taken. Results Urinary Ca concentrations remained unaffected, but faecal Ca concentrations increased (P < 0.001) with increasing dietary Ca levels. No effect on whole and intact parathyroid hormone levels, fibroblast growth factor 23 and calcitriol concentrations in the blood of the cats were observed. However, the calcitriol precursors 25(OH)D2 and 25(OH)D3, which are considered the most useful indicators for the vitamin D status, decreased with higher dietary Ca levels (P = 0.013 and P = 0.033). Increasing dietary levels of dicalcium phosphate revealed an acidifying effect on urinary fasting pH (6.02) and postprandial pH (6.01) (P < 0.001), possibly mediated by an increase of urinary phosphorus (P) concentrations (P < 0.001). Conclusions In conclusion, calcitriol precursors were linearly affected by increasing dietary Ca concentrations. The increase in faecal Ca excretion indicates that Ca homeostasis of cats is mainly regulated in the intestine and not by the kidneys. Long-term studies should investigate the physiological relevance of the acidifying effect observed when feeding diets high in Ca and P. PMID:26870965

  19. Dietary fructose and glucose differentially affect lipid and glucose homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Absorbed glucose and fructose differ in that glucose largely escapes first pass removal by the liver, whereas fructose does not, resulting in different metabolic effects of these two monosaccharides. In short-term controlled feeding studies, dietary fructose significantly increases postprandial trig...

  20. Dietary fructose and glucose differentially affect lipid and glucose homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Absorbed glucose and fructose differ in that glucose largely escapes first-pass removal by the liver, whereas fructose does not, resulting in different metabolic effects of these 2 monosaccharides. In short-term controlled feeding studies, dietary fructose significantly increases postprandial trigly...

  1. Mitochondrial sirtuins and metabolic homeostasis

    PubMed Central

    Pirinen, Eija; Sasso, Giuseppe Lo; Auwerx, Johan

    2013-01-01

    The maintenance of metabolic homeostasis requires the well-orchestrated network of several pathways of glucose, lipid and amino acid metabolism. Mitochondria integrate these pathways and serve not only as the prime site of cellular energy harvesting but also as the producer of many key metabolic intermediates. The sirtuins are a family of NAD+-dependent enzymes, which have a crucial role in the cellular adaptation to metabolic stress. The mitochondrial sirtuins SIRT3, SIRT4 and SIRT5 together with the nuclear SIRT1 regulate several aspects of mitochondrial physiology by controlling posttranslational modifications of mitochondrial protein and transcription of mitochondrial genes. Here we discuss current knowledge how mitochondrial sirtuins and SIRT1 govern mitochondrial processes involved in different metabolic pathways. PMID:23168278

  2. Epigenetic regulation of cholesterol homeostasis

    PubMed Central

    Meaney, Steve

    2014-01-01

    Although best known as a risk factor for cardiovascular disease, cholesterol is a vital component of all mammalian cells. In addition to key structural roles, cholesterol is a vital biochemical precursor for numerous biologically important compounds including oxysterols and bile acids, as well as acting as an activator of critical morphogenic systems (e.g., the Hedgehog system). A variety of sophisticated regulatory mechanisms interact to coordinate the overall level of cholesterol in cells, tissues and the entire organism. Accumulating evidence indicates that in additional to the more “traditional” regulatory schemes, cholesterol homeostasis is also under the control of epigenetic mechanisms such as histone acetylation and DNA methylation. The available evidence supporting a role for these mechanisms in the control of cholesterol synthesis, elimination, transport and storage are the focus of this review. PMID:25309573

  3. Nicotinic Regulation of Energy Homeostasis

    PubMed Central

    2012-01-01

    Introduction: The ability of nicotine, the primary psychoactive substance in tobacco smoke, to regulate appetite and body weight is one of the factors cited by smokers that prevents them from quitting and is the primary reason for smoking initiation in teenage girls. The regulation of feeding and metabolism by nicotine is complex, and recent studies have begun to identify nicotinic acetylcholine receptor (nAChR) subtypes and circuits or cell types involved in this regulation. Discussion: We will briefly describe the primary anatomical and functional features of the input, output, and central integration structures of the neuroendocrine systems that regulate energy homeostasis. Then, we will describe the nAChR subtypes expressed in these structures in mammals to identify the possible molecular targets for nicotine. Finally, we will review the effects of nicotine and its withdrawal on feeding and energy metabolism and attribute them to potential central and peripheral cellular targets. PMID:22990212

  4. Elevation of circulating serotonin improves calcium dynamics in the peripartum dairy cow.

    PubMed

    Weaver, Samantha R; Prichard, Austin P; Endres, Elizabeth L; Newhouse, Stefanie A; Peters, Tonia L; Crump, Peter M; Akins, Matthew S; Crenshaw, Thomas D; Bruckmaier, Rupert M; Hernandez, Laura L

    2016-07-01

    Hypocalcemia is a metabolic disorder that affects dairy cows during the transition from pregnancy to lactation. Twelve multiparous Holstein cows and twelve multiparous Jersey cows were intravenously infused daily for approximately 7 days prepartum with either saline or 1.0mg/kg bodyweight of the immediate precursor to serotonin synthesis, 5hydroxy-l-tryptophan (5-HTP). On infusion days, blood was collected before, after, and at 2, 4, and 8h postinfusion. Blood and urine were collected daily before the infusion period, for 14 days postpartum and on day 30 postpartum. Milk was collected daily during the postpartum period. Feed intake and milk yield were unaffected by 5-HTP infusion postpartum. Cows infused with 5-HTP had elevated circulating serotonin concentrations prepartum. Infusion with 5-HTP induced a transient hypocalcemia in Jersey cows prepartum, but not in any other treatment. Holstein cows infused with saline had the highest milk calcium on the day of and day after parturition. Postpartum, circulating total calcium tended to be elevated, and urine deoxypyridinoline (DPD) concentrations were elevated in Holstein cows infused with 5-HTP. Overall, Jerseys had higher urine DPD concentrations postpartum when compared with Holsteins. Taken together, these data warrant further investigation of the potential therapeutic benefit of 5-HTP administration prepartum for prevention of hypocalcemia. Further research should focus on delineation of mechanisms associated with 5-HTP infusion that control calcium homeostasis during the peripartum period in Holstein and Jersey cows. PMID:27390301

  5. Dspp mutations disrupt mineralization homeostasis during odontoblast differentiation

    PubMed Central

    Jia, Jie; Bian, Zhuan; Song, Yaling

    2015-01-01

    The main pathological feature in isolated hereditary dentin disorders is the abnormality of dentin mineralization. Dentin sialophosphoprotein (DSPP) gene is the only identified causative gene for the disorders. The present study aims to explore the molecular association between Dspp mutations and the disrupted mineralization homeostasis during odontoblast differentiation. We generated lentivirus constructs with the mouse full-length wild type Dspp cDNA and 3 Dspp mutants and transfected them into mouse odontoblast-lineage cells (OLCs) which were then performed 21-day mineralization inducing differentiation. The formation of mineralized nodules was obviously fewer in mutants. Digital Gene Expression (DGE) showed that Dspp mutation affected the OLC differentiation in a degree. Further examination validated that Dspp (LV-Dspp) overexpressing OLCs possessed the ability to strictly orchestrate framework for mineralization inductors like Bmp2, Col1 and Runx2, and proliferative markers for mineralization like Alp and Ocn, as well as mineral homeostasis feedback regulators Mgp and Htra1. However, the missense mutation in Dspp signal peptide region (LV-M2) and the nonsense mutation (LV-M5) broke this orchestration. The results suggested that the mutant Dspp disrupt the dynamic homeostasis of mineralization during OLC differentiation. We are the first to use full-length mouse Dspp gene expression system to explore the mineralization mechanism by which inductors and inhibitors adjust each other during odontoblast differentiation. Our findings shed new light on association between Dspp and the dynamic homeostasis of mineralization inductors and inhibitors, and indicate the disruption of mineralization homeostasis might be a crucial reason for Dspp mutations resulting in dentin disorders. PMID:26807185

  6. TRAIL death receptors, Bcl-2 protein family, and endoplasmic reticulum calcium pool.

    PubMed

    Sheikh, M Saeed; Huang, Ying

    2004-01-01

    Calcium (Ca(2+)) is one of the highly versatile second messengers critical in cellular pathophysiology. Alterations in Ca(2+) homeostasis affect many cellular processes, including apoptosis. Recent studies have started to unravel the molecular mechanisms of apoptosis regulation in context to intracellular Ca(2+) pools. In this regard, Bcl-2 has been reported to mediate its anti-apoptotic effects, partly, by lowering the endoplasmic reticulum (ER) Ca(2+) load and by inhibiting the mitochondrial uptake of Ca(2+). However, the opposite is true for Bax and Bak that promote apoptosis, in part, by increasing the ER Ca(2+) load and Ca(2+) transfer from the ER to mitochondria. Massive ER Ca(2+) depletion coupled with upregulation of DR5 has also been reported to induce apoptosis. The mechanistic details of how some of these molecules affect intracellular Ca(2+) contents and sense perturbations in Ca(2+) homeostasis remain to be elucidated. The recent explosion of information in the fields of cell signaling and apoptosis is likely to facilitate the future investigations aiming to explore these issues. PMID:15110177

  7. Role of calcium in gravity perception of plant roots

    NASA Astrophysics Data System (ADS)

    Evans, Michael L.

    Calcium ions may play a key role in linking graviperception by the root cap to the asymmetric growth which occurs in the elongation zone of gravistimulated roots. Application of calcium-chelating agents to the root cap inhibits gravitropic curvature without affecting growth. Asymmetric application of calcium to one side of the root cap induces curvature toward the calcium source, and gravistimulation induces polar movement of applied 45Ca2+ across the root cap toward the lower side. The action of calcium may be linked to auxin movement in roots since 1) auxin transport inhibitors interfere both with gravitropic curvature and gravi-induced polar calcium movement and 2) asymmetric application of calcium enhances auxin movement across the elongation zone of gravistimulated roots. Indirect evidence indicates that the calcium-modulated regulator protein, calmodulin, may be involved in either the transport or action of calcium in the gravitropic response mechanism of roots.

  8. MIRO GTPases in Mitochondrial Transport, Homeostasis and Pathology

    PubMed Central

    Tang, Bor Luen

    2015-01-01

    The evolutionarily-conserved mitochondrial Rho (MIRO) small GTPase is a Ras superfamily member with three unique features. It has two GTPase domains instead of the one found in other small GTPases, and it also has two EF hand calcium binding domains, which allow Ca2+-dependent modulation of its activity and functions. Importantly, it is specifically associated with the mitochondria and via a hydrophobic transmembrane domain, rather than a lipid-based anchor more commonly found in other small GTPases. At the mitochondria, MIRO regulates mitochondrial homeostasis and turnover. In metazoans, MIRO regulates mitochondrial transport and organization at cellular extensions, such as axons, and, in some cases, intercellular transport of the organelle through tunneling nanotubes. Recent findings have revealed a myriad of molecules that are associated with MIRO, particularly the kinesin adaptor Milton/TRAK, mitofusin, PINK1 and Parkin, as well as the endoplasmic reticulum-mitochondria encounter structure (ERMES) complex. The mechanistic aspects of the roles of MIRO and its interactors in mitochondrial homeostasis and transport are gradually being revealed. On the other hand, MIRO is also increasingly associated with neurodegenerative diseases that have roots in mitochondrial dysfunction. In this review, I discuss what is currently known about the cellular physiology and pathophysiology of MIRO functions. PMID:26729171

  9. Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins.

    PubMed

    Sirvent, P; Fabre, O; Bordenave, S; Hillaire-Buys, D; Raynaud De Mauverger, E; Lacampagne, A; Mercier, J

    2012-03-01

    The most common and problematic side effect of statins is myopathy. To date, the patho-physiological mechanisms of statin myotoxicity are still not clearly understood. In previous studies, we showed that acute application in vitro of simvastatin caused impairment of mitochondrial function and dysfunction of calcium homeostasis in human and rat healthy muscle samples. We thus evaluated in the present study, mitochondrial function and calcium signaling in muscles of patients treated with statins, who present or not muscle symptoms, by oxygraphy and recording of calcium sparks, respectively. Patients treated with statins showed impairment of mitochondrial respiration that involved mainly the complex I of the respiratory chain and altered frequency and amplitude of calcium sparks. The muscle problems observed in statin-treated patients appear thus to be related to impairment of mitochondrial function and muscle calcium homeostasis, confirming the results we previously reported in vitro. PMID:22269104

  10. Regulation of Blood Pressure and Salt Homeostasis by Endothelin

    PubMed Central

    KOHAN, DONALD E.; ROSSI, NOREEN F.; INSCHO, EDWARD W.; POLLOCK, DAVID M.

    2011-01-01

    Endothelin (ET) peptides and their receptors are intimately involved in the physiological control of systemic blood pressure and body Na homeostasis, exerting these effects through alterations in a host of circulating and local factors. Hormonal systems affected by ET include natriuretic peptides, aldosterone, catecholamines, and angiotensin. ET also directly regulates cardiac output, central and peripheral nervous system activity, renal Na and water excretion, systemic vascular resistance, and venous capacitance. ET regulation of these systems is often complex, sometimes involving opposing actions depending on which receptor isoform is activated, which cells are affected, and what other prevailing factors exist. A detailed understanding of this system is important; disordered regulation of the ET system is strongly associated with hypertension and dysregulated extracellular fluid volume homeostasis. In addition, ET receptor antagonists are being increasingly used for the treatment of a variety of diseases; while demonstrating benefit, these agents also have adverse effects on fluid retention that may substantially limit their clinical utility. This review provides a detailed analysis of how the ET system is involved in the control of blood pressure and Na homeostasis, focusing primarily on physiological regulation with some discussion of the role of the ET system in hypertension. PMID:21248162

  11. Ionic homeostasis in brain conditioning

    PubMed Central

    Cuomo, Ornella; Vinciguerra, Antonio; Cerullo, Pierpaolo; Anzilotti, Serenella; Brancaccio, Paola; Bilo, Leonilda; Scorziello, Antonella; Molinaro, Pasquale; Di Renzo, Gianfranco; Pignataro, Giuseppe

    2015-01-01

    Most of the current focus on developing neuroprotective therapies is aimed at preventing neuronal death. However, these approaches have not been successful despite many years of clinical trials mainly because the numerous side effects observed in humans and absent in animals used at preclinical level. Recently, the research in this field aims to overcome this problem by developing strategies which induce, mimic, or boost endogenous protective responses and thus do not interfere with physiological neurotransmission. Preconditioning is a protective strategy in which a subliminal stimulus is applied before a subsequent harmful stimulus, thus inducing a state of tolerance in which the injury inflicted by the challenge is mitigated. Tolerance may be observed in ischemia, seizure, and infection. Since it requires protein synthesis, it confers delayed and temporary neuroprotection, taking hours to develop, with a pick at 1–3 days. A new promising approach for neuroprotection derives from post-conditioning, in which neuroprotection is achieved by a modified reperfusion subsequent to a prolonged ischemic episode. Many pathways have been proposed as plausible mechanisms to explain the neuroprotection offered by preconditioning and post-conditioning. Although the mechanisms through which these two endogenous protective strategies exert their effects are not yet fully understood, recent evidence highlights that the maintenance of ionic homeostasis plays a key role in propagating these neuroprotective phenomena. The present article will review the role of protein transporters and ionic channels involved in the control of ionic homeostasis in the neuroprotective effect of ischemic preconditioning and post-conditioning in adult brain, with particular regards to the Na+/Ca2+ exchangers (NCX), the plasma membrane Ca2+-ATPase (PMCA), the Na+/H+ exchange (NHE), the Na+/K+/2Cl− cotransport (NKCC) and the acid-sensing cation channels (ASIC). Ischemic stroke is the third leading

  12. Optimal use of fluids of varying formulations to minimise exercise-induced disturbances in homeostasis.

    PubMed

    Lamb, D R; Brodowicz, G R

    1986-01-01

    The rationale underlying the development of various formulations of beverages for consumption before, during, and/or after physical exercise is that such formulations should minimise some of the disturbances in physiological homeostasis that occur during exercise and thereby prevent injury and/or enhance performance. Exercise- and dehydration-induced increases in core temperature, body fluid osmolality, heart rate, losses of plasma and other body fluid volumes, and carbohydrate depletion are probably the most important homeostatic disturbances that can be ameliorated by fluid consumption. With the exception of athletes subject to hyponatraemia after consumption of ordinary water during prolonged activity, changes in electrolyte concentrations in the body fluids of most athletes do not justify the inclusion of electrolytes in fluid replacement beverages to be consumed during exercise. However, small amounts of sodium added to water does speed gastric emptying and fluid absorption from the intestine. Recent evidence suggests that a precompetition meal high in easily digested carbohydrates should be consumed not later than 5 to 6 hours before competition. There is little published research on the optimal composition of this meal. Water ingestion 30 to 60 minutes before exercise seems to be of benefit to temperature regulation and cardiovascular homeostasis if the exercise is of moderate intensity (50 to 65% VO2max), but probably has little effect at the higher intensities of athletic performance. There is no systematic evidence to support the inclusion of calcium or sodium chloride in drinks consumed an hour or 2 before exercise. Furthermore, if glucose solutions are fed 15 to 45 minutes before prolonged exercise, they will probably cause a fall in blood glucose during exercise and may adversely affect performance. These adverse effects are not present when fructose is consumed before exercise. Contrary to the adverse effects of glucose feedings 15 to 60 minutes

  13. Regulation of protein degradation in muscle by calcium

    NASA Technical Reports Server (NTRS)

    Zeman, Richard J.; Kameyama, Tsuneo; Matsumoto, Kazue; Bernstein, Paul; Etlinger, Joseph D.

    1985-01-01

    Calcium-dependent regulation of intracellular protein degradation was studied in isolated rat skeletal muscles incubated in vitro in the presence of a large variety of agents known to affect calcium movement and distribution. The effect of different classes of protease inhibitors was tested to determine the responsible proteolytic systems involved in calcium-dependent degradation. The results suggest that nonlysosomal leupetin- and E-64-c-sensitive proteases are resposible for calcium-dependent proteolysis in muscle.

  14. Sex differences in substrate metabolism and energy homeostasis.

    PubMed

    Cortright, R N; Koves, T R

    2000-08-01

    Females differ remarkably from males in the mechanisms that regulate substrate utilization and energy homeostasis. Females appear to be less affected in terms of growth and loss of body tissues when subjected to chronic periods of negative energy balance. The physiological trade-off appears to be a stronger propensity toward retention of fat mass during times of energy surfeit. The mechanism(s) that account for sex differences in energy metabolism are not known but most likely involve the sex steroids. Recent discoveries in the areas of endocrinology and metabolism may provide new insights into differences in the control of food intake and energy conservation between the sexes. Finally, the study of the mechanism(s) involved in the regulation of skeletal muscle lipid metabolism represents a new frontier in skeletal muscle bioenergetics, and new discoveries may provide further explanations for the observed sex differences in substrate utilization and response(s) to alterations in energy homeostasis. PMID:10953067

  15. Regulation of systemic energy homeostasis by serotonin in adipose tissues.

    PubMed

    Oh, Chang-Myung; Namkung, Jun; Go, Younghoon; Shong, Ko Eun; Kim, Kyuho; Kim, Hyeongseok; Park, Bo-Yoon; Lee, Ho Won; Jeon, Yong Hyun; Song, Junghan; Shong, Minho; Yadav, Vijay K; Karsenty, Gerard; Kajimura, Shingo; Lee, In-Kyu; Park, Sangkyu; Kim, Hail

    2015-01-01

    Central serotonin (5-HT) is an anorexigenic neurotransmitter in the brain. However, accumulating evidence suggests peripheral 5-HT may affect organismal energy homeostasis. Here we show 5-HT regulates white and brown adipose tissue function. Pharmacological inhibition of 5-HT synthesis leads to inhibition of lipogenesis in epididymal white adipose tissue (WAT), induction of browning in inguinal WAT and activation of adaptive thermogenesis in brown adipose tissue (BAT). Mice with inducible Tph1 KO in adipose tissues exhibit a similar phenotype as mice in which 5-HT synthesis is inhibited pharmacologically, suggesting 5-HT has localized effects on adipose tissues. In addition, Htr3a KO mice exhibit increased energy expenditure and reduced weight gain when fed a high-fat diet. Treatment with an Htr2a antagonist reduces lipid accumulation in 3T3-L1 adipocytes. These data suggest important roles for adipocyte-derived 5-HT in controlling energy homeostasis. PMID:25864946

  16. Glutathione Homeostasis and Functions: Potential Targets for Medical Interventions

    PubMed Central

    Lushchak, Volodymyr I.

    2012-01-01

    Glutathione (GSH) is a tripeptide, which has many biological roles including protection against reactive oxygen and nitrogen species. The primary goal of this paper is to characterize the principal mechanisms of the protective role of GSH against reactive species and electrophiles. The ancillary goals are to provide up-to-date knowledge of GSH biosynthesis, hydrolysis, and utilization; intracellular compartmentalization and interorgan transfer; elimination of endogenously produced toxicants; involvement in metal homeostasis; glutathione-related enzymes and their regulation; glutathionylation of sulfhydryls. Individual sections are devoted to the relationships between GSH homeostasis and pathologies as well as to developed research tools and pharmacological approaches to manipulating GSH levels. Special attention is paid to compounds mainly of a natural origin (phytochemicals) which affect GSH-related processes. The paper provides starting points for development of novel tools and provides a hypothesis for investigation of the physiology and biochemistry of glutathione with a focus on human and animal health. PMID:22500213

  17. Disrupted iron homeostasis causes dopaminergic neurodegeneration in mice

    PubMed Central

    Matak, Pavle; Matak, Andrija; Moustafa, Sarah; Aryal, Dipendra K.; Benner, Eric J.; Wetsel, William; Andrews, Nancy C.

    2016-01-01

    Disrupted brain iron homeostasis is a common feature of neurodegenerative disease. To begin to understand how neuronal iron handling might be involved, we focused on dopaminergic neurons and asked how inactivation of transport proteins affected iron homeostasis in vivo in mice. Loss of the cellular iron exporter, ferroportin, had no apparent consequences. However, loss of transferrin receptor 1, involved in iron uptake, caused neuronal iron deficiency, age-progressive degeneration of a subset of dopaminergic neurons, and motor deficits. There was gradual depletion of dopaminergic projections in the striatum followed by death of dopaminergic neurons in the substantia nigra. Damaged mitochondria accumulated, and gene expression signatures indicated attempted axonal regeneration, a metabolic switch to glycolysis, oxidative stress, and the unfolded protein response. We demonstrate that loss of transferrin receptor 1, but not loss of ferroportin, can cause neurodegeneration in a subset of dopaminergic neurons in mice. PMID:26929359

  18. Calcium and ER stress mediate hepatic apoptosis after burn injury

    PubMed Central

    Gauglitz, Gerd G.; Song, Juquan; Kulp, Gabriela A.; Finnerty, Celeste C.; Cox, Robert A.; Barral, José M.; Herndon, David N.; Boehning, Darren

    2009-01-01

    Abstract A hallmark of the disease state following severe burn injury is decreased liver function, which results in gross metabolic derangements that compromise patient survival. The underlying mechanisms leading to hepatocyte dysfunction after burn are essentially unknown. The aim of the present study was to determine the underlying mechanisms leading to hepatocyte dysfunction and apoptosis after burn. Rats were randomized to either control (no burn) or burn (60% total body surface area burn) and sacrificed at various time‐points. Liver was either perfused to isolate primary rat hepatocytes, which were used for in vitro calcium imaging, or liver was harvested and processed for immunohistology, transmission electron microscopy, mitochondrial isolation, mass spectroscopy or Western blotting to determine the hepatic response to burn injury in vivo. We found that thermal injury leads to severely depleted endoplasmic reticulum (ER) calcium stores and consequent elevated cytosolic calcium concentrations in primary hepatocytes in vitro. Burn‐induced ER calcium depletion caused depressed hepatocyte responsiveness to signalling molecules that regulate hepatic homeostasis, such as vasopressin and the purinergic agonist ATP. In vivo, thermal injury resulted in activation of the ER stress response and major alterations in mitochondrial structure and function – effects which may be mediated by increased calcium release by inositol 1,4,5‐trisphosphate receptors. Our results reveal that thermal injury leads to dramatic hepatic disturbances in calcium homeostasis and resultant ER stress leading to mitochondrial abnormalities contributing to hepatic dysfunction and apoptosis after burn injury. PMID:20141609

  19. The Role of Vitamin D and Calcium in Type 2 Diabetes. A Systematic Review and Meta-Analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Altered vitamin D and calcium homeostasis may play a role in the development of type 2 diabetes (t2DM). We reviewed the evidence from human studies of vitamin D and calcium in relation to t2DM and metabolic syndrome. MEDLINE review through January 2007 for observational studies on the association be...

  20. Pancreatic regulation of glucose homeostasis.

    PubMed

    Röder, Pia V; Wu, Bingbing; Liu, Yixian; Han, Weiping

    2016-01-01

    In order to ensure normal body function, the human body is dependent on a tight control of its blood glucose levels. This is accomplished by a highly sophisticated network of various hormones and neuropeptides released mainly from the brain, pancreas, liver, intestine as well as adipose and muscle tissue. Within this network, the pancreas represents a key player by secreting the blood sugar-lowering hormone insulin and its opponent glucagon. However, disturbances in the interplay of the hormones and peptides involved may lead to metabolic disorders such as type 2 diabetes mellitus (T2DM) whose prevalence, comorbidities and medical costs take on a dramatic scale. Therefore, it is of utmost importance to uncover and understand the mechanisms underlying the various interactions to improve existing anti-diabetic therapies and drugs on the one hand and to develop new therapeutic approaches on the other. This review summarizes the interplay of the pancreas with various other organs and tissues that maintain glucose homeostasis. Furthermore, anti-diabetic drugs and their impact on signaling pathways underlying the network will be discussed. PMID:26964835

  1. Pancreatic regulation of glucose homeostasis

    PubMed Central

    Röder, Pia V; Wu, Bingbing; Liu, Yixian; Han, Weiping

    2016-01-01

    In order to ensure normal body function, the human body is dependent on a tight control of its blood glucose levels. This is accomplished by a highly sophisticated network of various hormones and neuropeptides released mainly from the brain, pancreas, liver, intestine as well as adipose and muscle tissue. Within this network, the pancreas represents a key player by secreting the blood sugar-lowering hormone insulin and its opponent glucagon. However, disturbances in the interplay of the hormones and peptides involved may lead to metabolic disorders such as type 2 diabetes mellitus (T2DM) whose prevalence, comorbidities and medical costs take on a dramatic scale. Therefore, it is of utmost importance to uncover and understand the mechanisms underlying the various interactions to improve existing anti-diabetic therapies and drugs on the one hand and to develop new therapeutic approaches on the other. This review summarizes the interplay of the pancreas with various other organs and tissues that maintain glucose homeostasis. Furthermore, anti-diabetic drugs and their impact on signaling pathways underlying the network will be discussed. PMID:26964835

  2. Vitamin A homeostasis endangered by environmental pollutants

    SciTech Connect

    Zile, M.H. )

    1992-11-01

    Normal vitamin A function depends on adequate stores of the vitamin, a finely regulated supply of the vitamin to target tissues, and an ability of cells to generate functionally active forms of the vitamin. Both endogenous and exogenous factors can adversely affect vitamin A homeostasis. Polyhalogenated aromatic hydrocarbons are ubiquitous environmental pollutants and cause severe disturbances in vitamin A metabolism, manifested by an accelerated metabolism and breakdown of vitamin A and its metabolites and a depletion of vitamin A from the body; this sequence of events accounts for the vitamin A deficiency-like symptoms associated with PHAH intoxication. The mechanism(s) responsible for these events most likely includes altered activities of enzymes that are either directly or indirectly involved in critical vitamin A metabolic pathways. Human populations that continue to be exposed to environmental pollutants, may accumulate critical levels of polyhalogenated aromatic hydrocarbons and will be at risk for inadequate vitamin A function as well as for other health impairments that have been difficult to link to any specific causes. Therefore, it is important to seriously evaluate the similarities in physiological disturbances across species that have become apparent in studies with wildlife inhabiting polluted environments similar to ours; the relevance to human health is evident.197 references.

  3. Calcium Efflux From the Endoplasmic Reticulum Leads to β-Cell Death

    PubMed Central

    Hara, Takashi; Mahadevan, Jana; Kanekura, Kohsuke; Hara, Mariko; Lu, Simin

    2014-01-01

    It has been established that intracellular calcium homeostasis is critical for survival and function of pancreatic β-cells. However, the role of endoplasmic reticulum (ER) calcium homeostasis in β-cell survival and death is not clear. Here we show that ER calcium depletion plays a critical role in β-cell death. Various pathological conditions associated with β-cell death, including ER stress, oxidative stress, palmitate, and chronic high glucose, decreased ER calcium levels and sarcoendoplasmic reticulum Ca2+-ATPase 2b expression, leading to β-cell death. Ectopic expression of mutant insulin and genetic ablation of WFS1, a causative gene for Wolfram syndrome, also decreased ER calcium levels and induced β-cell death. Hyperactivation of calpain-2, a calcium-dependent proapoptotic protease, was detected in β-cells undergoing ER calcium depletion. Ectopic expression of sarcoendoplasmic reticulum Ca2+-ATPase 2b, as well as pioglitazone and rapamycin treatment, could prevent calcium efflux from the ER and mitigate β-cell death under various stress conditions. Our results reveal a critical role of ER calcium depletion in β-cell death and indicate that identification of pathways and chemical compounds restoring ER calcium levels will lead to novel therapeutic modalities and pharmacological interventions for type 1 and type 2 diabetes and other ER-related diseases including Wolfram syndrome. PMID:24424032

  4. Artemisinin Induces Calcium-Dependent Protein Secretion in the Protozoan Parasite Toxoplasma gondii▿ †

    PubMed Central

    Nagamune, Kisaburo; Beatty, Wandy L.; Sibley, L. David

    2007-01-01

    Intracellular calcium controls several crucial cellular events in apicomplexan parasites, including protein secretion, motility, and invasion into and egress from host cells. The plant compound thapsigargin inhibits the sarcoplasmic-endoplasmic reticulum calcium ATPase (SERCA), resulting in elevated calcium and induction of protein secretion in Toxoplasma gondii. Artemisinins are natural products that show potent and selective activity against parasites, making them useful for the treatment of malaria. While the mechanism of action is uncertain, previous studies have suggested that artemisinin may inhibit SERCA, thus disrupting calcium homeostasis. We cloned the single-copy gene encoding SERCA in T. gondii (TgSERCA) and demonstrate that the protein localizes to the endoplasmic reticulum in the parasite. In extracellular parasites, TgSERCA partially relocalized to the apical pole, a highly active site for regulated secretion of micronemes. TgSERCA complemented a calcium ATPase-defective yeast mutant, and this activity was inhibited by either thapsigargin or artemisinin. Treatment of T. gondii with artemisinin triggered calcium-dependent secretion of microneme proteins, similar to the SERCA inhibitor thapsigargin. Artemisinin treatment also altered intracellular calcium in parasites by increasing the periodicity of calcium oscillations and inducing recurrent, strong calcium spikes, as imaged using Fluo-4 labeling. Collectively, these results demonstrate that artemisinin perturbs calcium homeostasis in T. gondii, supporting the idea that Ca2+-ATPases are potential drug targets in parasites. PMID:17766463

  5. Nonstructural 5A Protein of Hepatitis C Virus Regulates Soluble Resistance-Related Calcium-Binding Protein Activity for Viral Propagation

    PubMed Central

    Tran, Giao V. Q.; Luong, Trang T. D.; Park, Eun-Mee; Kim, Jong-Wook; Choi, Jae-Woong; Park, Chorong; Lim, Yun-Sook

    2015-01-01

    ABSTRACT Hepatitis C virus (HCV) is a major cause of chronic liver disease and is highly dependent on cellular proteins for virus propagation. To identify the cellular factors involved in HCV propagation, we recently performed protein microarray assays using the HCV nonstructural 5A (NS5A) protein as a probe. Of 90 cellular protein candidates, we selected the soluble resistance-related calcium-binding protein (sorcin) for further characterization. Sorcin is a calcium-binding protein and is highly expressed in certain cancer cells. We verified that NS5A interacted with sorcin through domain I of NS5A, and phosphorylation of the threonine residue 155 of sorcin played a crucial role in protein interaction. Small interfering RNA (siRNA)-mediated knockdown of sorcin impaired HCV propagation. Silencing of sorcin expression resulted in a decrease of HCV assembly without affecting HCV RNA and protein levels. We further demonstrated that polo-like kinase 1 (PLK1)-mediated phosphorylation of sorcin was increased by NS5A. We showed that both phosphorylation and calcium-binding activity of sorcin were required for HCV propagation. These data indicate that HCV modulates sorcin activity via NS5A protein for its own propagation. IMPORTANCE Sorcin is a calcium-binding protein and regulates intracellular calcium homeostasis. HCV NS5A interacts with sorcin, and phosphorylation of sorcin is required for protein interaction. Gene silencing of sorcin impaired HCV propagation at the assembly step of the HCV life cycle. Sorcin is phosphorylated by PLK1 via protein interaction. We showed that sorcin interacted with both NS5A and PLK1, and PLK1-mediated phosphorylation of sorcin was increased by NS5A. Moreover, calcium-binding activity of sorcin played a crucial role in HCV propagation. These data provide evidence that HCV regulates host calcium metabolism for virus propagation, and thus manipulation of sorcin activity may represent a novel therapeutic target for HCV. PMID:26719254

  6. Mechanism of cytotoxic action of perfluorinated acids. III. Disturbance in Ca{sup 2+} homeostasis

    SciTech Connect

    Kleszczynski, Konrad; Skladanowski, Andrzej C.

    2011-03-01

    The global distribution of perfluorinated acids (PFAs) in industry and in household is well known. Their increasing environmental occurrence and biomagnification in the living organisms have drawn growing interests in efforts to describe precisely the mechanisms of action in vitro and in vivo. Our previous investigations widely described lipophilicity-dependent cytotoxicity of PFAs as well as the effect of perfluorination of carbon chain on depolarization of plasma membrane potential, acidification or mitochondrial dysfunctions. In this study we presented in dose- and time-dependent manner the impact of PFAs on calcium homeostasis in HCT116 cells. Comparative analysis of cytosolic [Ca{sup 2+}]{sub c} and mitochondrial calcium [Ca{sup 2+}]{sub m} carried out by flow cytometry revealed distinct uptake of calcium into mitochondria in correlation to increasing lipophilicity of PFAs. Massive accumulation of [Ca{sup 2+}]{sub m} was not accompanied by equivalent loss of [Ca{sup 2+}]{sub c}. Indeed, moderate changes of [Ca{sup 2+}]{sub c} were observed after incubation with 400 {mu}M PFDoDA reaching 29.83% and 49.17% decrease at 4th and 72nd hour, respectively. At the same time, mitochondrial calcium uptake increased from 2- to more than 4-fold comparing with non-treated cells. Incubation with non-fluorinated decanoic acid (DA) did not cause any changes in calcium homeostasis. Presented data show that PFAs-induced perturbations in calcium distribution seem to be a missing link related to mitochondria dysfunction playing a crucial role in determination of apoptotic cell death. Complete scheme for the mechanism of cytotoxic action of PFAs has been included.

  7. Interaction of H2S with Calcium Permeable Channels and Transporters

    PubMed Central

    Zhang, Weihua; Xu, Changqing; Wu, Lingyun; Wang, Rui

    2015-01-01

    A growing amount of evidence has suggested that hydrogen sulfide (H2S), as a gasotransmitter, is involved in intensive physiological and pathological processes. More and more research groups have found that H2S mediates diverse cellular biological functions related to regulating intracellular calcium concentration. These groups have demonstrated the reciprocal interaction between H2S and calcium ion channels and transporters, such as L-type calcium channels (LTCC), T-type calcium channels (TTCC), sodium/calcium exchangers (NCX), transient receptor potential (TRP) channels, β-adrenergic receptors, and N-methyl-D-aspartate receptors (NMDAR) in different cells. However, the understanding of the molecular targets and mechanisms is incomplete. Recently, some research groups demonstrated that H2S modulates the activity of calcium ion channels through protein S-sulfhydration and polysulfide reactions. In this review, we elucidate that H2S controls intracellular calcium homeostasis and the underlying mechanisms. PMID:26078804

  8. Forty mouse strain survey of voluntary calcium intake, blood calcium, and bone mineral content.

    PubMed

    Tordoff, Michael G; Bachmanov, Alexander A; Reed, Danielle R

    2007-08-15

    We measured voluntary calcium intake, blood calcium, and bone mineral content of male and female mice from 40 inbred strains. Calcium intakes were assessed using 48-h two-bottle tests with a choice between water and one of the following: water, 7.5, 25, and 75 mM CaCl(2), then 7.5, 25, and 75 mM calcium lactate (CaLa). Intakes were affected by strain, sex, anion, and concentration. In 11 strains females consumed more calcium than did males and in the remaining 29 strains there were no sex differences. Nine strains drank more CaLa than CaCl(2) whereas only one strain (JF1/Ms) drank more CaCl(2) than CaLa. Some strains had consistently high calcium intakes and preferred all calcium solutions relative to water (e.g., PWK/PhJ, BTBR T(+)tf/J, JF1/Ms). Others had consistently low calcium intakes and avoided all calcium solutions relative to water (e.g., KK/H1J, C57BL/10J, CE/J, C58/J). After behavioral tests, blood was sampled and assayed for pH, ionized calcium concentration, and plasma total calcium concentration. Bone mineral density and content were assessed by DEXA. There were no significant correlations between any of these physiological measures and calcium intake. However, strains of mice that had the highest calcium intakes generally fell at the extremes of the physiological distributions. We conclude that the avidity for calcium is determined by different genetic architecture and thus different physiological mechanisms in different strains. PMID:17493644

  9. Forty mouse strain survey of voluntary calcium intake, blood calcium, and bone mineral content

    PubMed Central

    Tordoff, Michael G.; Bachmanov, Alexander A.; Reed, Danielle R.

    2007-01-01

    We measured voluntary calcium intake, blood calcium, and bone mineral content of male and female mice from 40 inbred strains. Calcium intakes were assessed using 48-h two-bottle tests with a choice between water and one of the following: water, 7.5, 25, and 75 mM CaCl2, then 7.5, 25, and 75 mM calcium lactate (CaLa). Intakes were affected by strain, sex, anion, and concentration. In 11 strains females consumed more calcium than did males and in the remaining 29 strains there were no sex differences. Nine strains drank more CaLa than CaCl2 whereas only one strain (JF1/Ms) drank more CaCl2 than CaLa. Some strains had consistently high calcium intakes and preferred all calcium solutions relative to water (e.g., PWK/PhJ, BTBR T+tf/J, JF1/Ms). Others had consistently low calcium intakes and avoided all calcium solutions relative to water (e.g., KK/H1J, C57BL/10J, CE/J, C58/J). After behavioral tests, blood was sampled and assayed for pH, ionized calcium concentration, and plasma total calcium concentration. Bone mineral density and content were assessed by DEXA. There were no significant correlations between any of these physiological measures and calcium intake. However, strains of mice that had the highest calcium intakes generally fell at the extremes of the physiological distributions. We conclude that the avidity for calcium is determined by different genetic architecture and thus different physiological mechanisms in different strains. PMID:17493644

  10. Disorders Involving Calcium, Phosphorus, and Magnesium

    PubMed Central

    Moe, Sharon M.

    2008-01-01

    Abnormalities of calcium, phosphorus and magnesium homeostasis are common, and collectively are called disorders of mineral metabolism. Normal homeostatic regulation maintains serum levels, intracellular levels, and optimal mineral content in bone. This regulation occurs at three major target organs, the intestine, kidney and bone, principally via the complex integration of two hormones, parathyroid hormone and vitamin D. An understanding of normal physiology is necessary to accurately diagnose and treat disorders of mineral metabolism and will be briefly reviewed before discussing the differential diagnosis and treatment of specific disorders. PMID:18486714

  11. The role of sirtuins in cellular homeostasis.

    PubMed

    Kupis, Wioleta; Pałyga, Jan; Tomal, Ewa; Niewiadomska, Ewa

    2016-09-01

    Sirtuins are evolutionarily conserved nicotinamide adenine dinucleotide (NAD(+))-dependent lysine deacylases or ADP-ribosyltransferases. These cellular enzymes are metabolic sensors sensitive to NAD(+) levels that maintain physiological homeostasis in the animal and plant cells. PMID:27154583

  12. The osteocyte--a novel endocrine regulator of body phosphate homeostasis.

    PubMed

    Cheng, Fan; Hulley, Philippa

    2010-12-01

    Although osteocytes are the most abundant cell type in bone, much of their biology remains enigmatic. They are known to transduce mechanical stress into signals that initiate local bone remodeling, and are targets for systemic and local endocrine signals that affect bone architecture and mineral homeostasis. However, recent data reveal that osteocytes themselves act as endocrine cells that synthesize fibroblast growth factor 23 (FGF23) and several other phosphatonins, shown to underpin the systemic regulation of phosphate homeostasis. This review will synthesize the emerging discoveries concerning the osteocytic endocrine role in phosphate homeostasis through the biology and pathophysiology of these phosphatonins. We also suggest future research paths that might resolve existing uncertainties, and look ahead at how greater understanding might improve the management of clinical disorders of phosphate homeostasis. PMID:20884141

  13. Copper Homeostasis as a Therapeutic Target in Amyotrophic Lateral Sclerosis with SOD1 Mutations

    PubMed Central

    Tokuda, Eiichi; Furukawa, Yoshiaki

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease affecting both upper and lower motor neurons, and currently, there is no cure or effective treatment. Mutations in a gene encoding a ubiquitous antioxidant enzyme, Cu,Zn-superoxide dismutase (SOD1), have been first identified as a cause of familial forms of ALS. It is widely accepted that mutant SOD1 proteins cause the disease through a gain in toxicity but not through a loss of its physiological function. SOD1 is a major copper-binding protein and regulates copper homeostasis in the cell; therefore, a toxicity of mutant SOD1 could arise from the disruption of copper homeostasis. In this review, we will briefly review recent studies implying roles of copper homeostasis in the pathogenesis of SOD1-ALS and highlight the therapeutic interventions focusing on pharmacological as well as genetic regulations of copper homeostasis to modify the pathological process in SOD1-ALS. PMID:27136532

  14. Similar calcium status is present in infants fed formula with and without prebiotics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prebiotic oligosaccharides can increase calcium absorption in adolescents and adults. Whether they affect calcium absorption in infants has not been assessed. Few data are available to compare the calcium status of infants fed modern infant formulas to that of breast fed infants. To evaluate calcium...

  15. Multilayer structure formation via homophily and homeostasis

    NASA Astrophysics Data System (ADS)

    Makarov, Vladimir V.; Koronovskii, Alexey A.; Maksimenko, Vladimir A.; Khramova, Marina V.; Hramov, Alexander E.; Pavlov, Alexey N.; Moskalenko, Olga I.; Buldú, Javier M.; Boccaletti, Stefano

    2016-03-01

    The competition of homophily and homeostasis mechanisms taking place in the multilayer network where several layers of connection topologies are simultaneously present as well as the interaction between layers is considered. We have shown that the competition of homophily and homeostasis leads in such networks to the formation of synchronous patterns within the different layers of the network, which may be both the distinct and identical.

  16. Calcium dynamics and buffering in motoneurones of the mouse spinal cord.

    PubMed

    Palecek, J; Lips, M B; Keller, B U

    1999-10-15

    1. A quantitative analysis of endogenous calcium homeostasis was performed on 65 motoneurones in slices of the lumbar spinal cord from 2- to 8-day-old mice by simultaneous patch-clamp and microfluorometric calcium measurements. 2. Somatic calcium concentrations were monitored with a temporal resolution in the millisecond time domain. Measurements were performed by using a monochromator for excitation and a photomultiplier detection system. 3. Somatic calcium signalling was investigated during defined voltage-clamp protocols. Calcium responses were observed for membrane depolarizations positive to -50 mV. A linear relation between depolarization time and free calcium concentrations ([Ca2+]i) indicated that voltage-dependent calcium influx dominated the response. 4. Endogenous calcium homeostasis was quantified by using the 'added buffer' approach. In the presence of fura-2 and mag-fura-5, calcium transients decayed according to a monoexponential function. Decay-time constants showed a linear dependence on dye concentration and the extrapolated constant in the absence of indicator dye was 371 +/- 120 ms (n = 13 cells, 21 C). 5. For moderate elevations (< 1 microM), recovery kinetics of depolarization-induced calcium transients were characterized by a calcium-independent, 'effective' extrusion rate gamma = 140 +/- 47 s-1 (n = 13 cells, 21 C). 6. The endogenous calcium binding ratio for fixed buffers in spinal motoneurones was kappaB' = 50 +/- 17 (n = 13 cells), indicating that less than 2 % of cytosolic calcium ions contributed to [Ca2+]i. 7. Endogenous binding ratios in spinal motoneurones were small compared to those found in hippocampal or cerebellar Purkinje neurones. From a functional perspective, they provided motoneurones with rapid dynamics of cytosolic [Ca2+]i for a given set of influx, extrusion and uptake mechanisms. 8. With respect to pathophysiological conditions, our measurements are in agreement with a model where the selective vulnerability of spinal

  17. [Do cows drink calcium?].

    PubMed

    Geishauser, T; Lechner, S; Plate, I; Heidemann, B

    2008-03-01

    The objective of this study was to investigate how well cows drink the Propeller calcium drink, and it's effect on blood calcium concentration. Drinking was tested in 120 cows right after calving, before cows drank anything else. 60 cows each were offered 20 liters of Propeller calcium drink or 20 liters of water. Cows drank the Propeller as good as water. 72% of all cows drank all 20 liters, 18% drank on average 8.2 liters and 10% drank less than 1 liter. Blood calcium concentration was studied in 16 cows right after calving. Eight cows each were offered 20 liters of Propeller calcium drink or no calcium drink. Blood calcium significantly increased ten minutes after Propeller intake and stayed significantly elevated for 24 hours. Without calcium drink blood calcium levels decreased significantly. Advantages of the new Propeller calcium drink over calcium gels or boli could be that cows now drink calcium themselves and that the Propeller increases blood calcium concentration rapidly and long lasting. PMID:18429501

  18. Respiratory metabolism and calorie restriction relieve persistent endoplasmic reticulum stress induced by calcium shortage in yeast.

    PubMed

    Busti, Stefano; Mapelli, Valeria; Tripodi, Farida; Sanvito, Rossella; Magni, Fulvio; Coccetti, Paola; Rocchetti, Marcella; Nielsen, Jens; Alberghina, Lilia; Vanoni, Marco

    2016-01-01

    Calcium homeostasis is crucial to eukaryotic cell survival. By acting as an enzyme cofactor and a second messenger in several signal transduction pathways, the calcium ion controls many essential biological processes. Inside the endoplasmic reticulum (ER) calcium concentration is carefully regulated to safeguard the correct folding and processing of secretory proteins. By using the model organism Saccharomyces cerevisiae we show that calcium shortage leads to a slowdown of cell growth and metabolism. Accumulation of unfolded proteins within the calcium-depleted lumen of the endoplasmic reticulum (ER stress) triggers the unfolded protein response (UPR) and generates a state of oxidative stress that decreases cell viability. These effects are severe during growth on rapidly fermentable carbon sources and can be mitigated by decreasing the protein synthesis rate or by inducing cellular respiration. Calcium homeostasis, protein biosynthesis and the unfolded protein response are tightly intertwined and the consequences of facing calcium starvation are determined by whether cellular energy production is balanced with demands for anabolic functions. Our findings confirm that the connections linking disturbance of ER calcium equilibrium to ER stress and UPR signaling are evolutionary conserved and highlight the crucial role of metabolism in modulating the effects induced by calcium shortage. PMID:27305947

  19. Respiratory metabolism and calorie restriction relieve persistent endoplasmic reticulum stress induced by calcium shortage in yeast

    PubMed Central

    Busti, Stefano; Mapelli, Valeria; Tripodi, Farida; Sanvito, Rossella; Magni, Fulvio; Coccetti, Paola; Rocchetti, Marcella; Nielsen, Jens; Alberghina, Lilia; Vanoni, Marco

    2016-01-01

    Calcium homeostasis is crucial to eukaryotic cell survival. By acting as an enzyme cofactor and a second messenger in several signal transduction pathways, the calcium ion controls many essential biological processes. Inside the endoplasmic reticulum (ER) calcium concentration is carefully regulated to safeguard the correct folding and processing of secretory proteins. By using the model organism Saccharomyces cerevisiae we show that calcium shortage leads to a slowdown of cell growth and metabolism. Accumulation of unfolded proteins within the calcium-depleted lumen of the endoplasmic reticulum (ER stress) triggers the unfolded protein response (UPR) and generates a state of oxidative stress that decreases cell viability. These effects are severe during growth on rapidly fermentable carbon sources and can be mitigated by decreasing the protein synthesis rate or by inducing cellular respiration. Calcium homeostasis, protein biosynthesis and the unfolded protein response are tightly intertwined and the consequences of facing calcium starvation are determined by whether cellular energy production is balanced with demands for anabolic functions. Our findings confirm that the connections linking disturbance of ER calcium equilibrium to ER stress and UPR signaling are evolutionary conserved and highlight the crucial role of metabolism in modulating the effects induced by calcium shortage. PMID:27305947

  20. Functional assessment of perforin C2 domain mutations illustrates the critical role for calcium-dependent lipid binding in perforin cytotoxic function.

    PubMed

    Urrea Moreno, Ramon; Gil, Juana; Rodriguez-Sainz, Carmen; Cela, Elena; LaFay, Victor; Oloizia, Brian; Herr, Andrew B; Sumegi, Janos; Jordan, Michael B; Risma, Kimberly A

    2009-01-01

    Perforin-mediated lymphocyte cytotoxicity is critical for pathogen elimination and immune homeostasis. Perforin disruption of target cell membranes is hypothesized to require binding of a calcium-dependent, lipid-inserting, C2 domain. In a family affected by hemophagocytic lymphohistiocytosis, a severe inflammatory disorder caused by perforin deficiency, we identified 2 amino acid substitutions in the perforin C2 domain: T435M, a previously identified mutant with disputed pathogenicity, and Y438C, a novel substitution. Using biophysical modeling, we predicted that the T435M substitution, but not Y438C, would interfere with calcium binding and thus cytotoxic function. The capacity for cytotoxic function was tested after expression of the variant perforins in rat basophilic leukemia cells and murine cytotoxic T lymphocytes. As predicted, cells transduced with perforin-T435M lacked cytotoxicity, but those expressing perforin-Y438C displayed intact cytotoxic function. Using novel antibody-capture and liposome-binding assays, we found that both mutant perforins were secreted; however, only nonmutated and Y438C-substituted perforins were capable of calcium-dependent lipid binding. In addition, we found that perforin-Y438C was capable of mediating cytotoxicity without apparent proteolytic maturation. This study clearly demonstrates the pathogenicity of the T435M mutation and illustrates, for the first time, the critical role of the human perforin C2 domain for calcium-dependent, cytotoxic function. PMID:18927437

  1. Presynaptic Calcium Signalling in Cerebellar Mossy Fibres

    PubMed Central

    Thomsen, Louiza B.; Jörntell, Henrik; Midtgaard, Jens

    2009-01-01

    Whole-cell recordings were obtained from mossy fibre terminals in adult turtles in order to characterize the basic membrane properties. Calcium imaging of presynaptic calcium signals was carried out in order to analyse calcium dynamics and presynaptic GABA B inhibition. A tetrodotoxin (TTX)-sensitive fast Na+ spike faithfully followed repetitive depolarizing pulses with little change in spike duration or amplitude, while a strong outward rectification dominated responses to long-lasting depolarizations. High-threshold calcium spikes were uncovered following addition of potassium channel blockers. Calcium imaging using Calcium-Green dextran revealed a stimulus-evoked all-or-none TTX-sensitive calcium signal in simple and complex rosettes. All compartments of a complex rosette were activated during electrical activation of the mossy fibre, while individual simple and complex rosettes along an axon appeared to be isolated from one another in terms of calcium signalling. CGP55845 application showed that GABA B receptors mediated presynaptic inhibition of the calcium signal over the entire firing frequency range of mossy fibres. A paired-pulse depression of the calcium signal lasting more than 1 s affected burst firing in mossy fibres; this paired-pulse depression was reduced by GABA B antagonists. While our results indicated that a presynaptic rosette electrophysiologically functioned as a unit, topical GABA application showed that calcium signals in the branches of complex rosettes could be modulated locally, suggesting that cerebellar glomeruli may be dynamically sub-compartmentalized due to ongoing inhibition mediated by Golgi cells. This could provide a fine-grained control of mossy fibre-granule cell information transfer and synaptic plasticity within a mossy fibre rosette. PMID:20162034

  2. Regulation of PKC Mediated Signaling by Calcium during Visceral Leishmaniasis

    PubMed Central

    Roy, Nivedita; Chakraborty, Supriya; Paul Chowdhury, Bidisha; Banerjee, Sayantan; Halder, Kuntal; Majumder, Saikat; Majumdar, Subrata; Sen, Parimal C.

    2014-01-01

    Calcium is an ubiquitous cellular signaling molecule that controls a variety of cellular processes and is strictly maintained in the cellular compartments by the coordination of various Ca2+ pumps and channels. Two such fundamental calcium pumps are plasma membrane calcium ATPase (PMCA) and Sarco/endoplasmic reticulum calcium ATPase (SERCA) which play a pivotal role in maintaining intracellular calcium homeostasis. This intracellular Ca2+ homeostasis is often disturbed by the protozoan parasite Leishmania donovani, the causative organism of visceral leishmaniasis. In the present study we have dileneated the involvement of PMCA4 and SERCA3 during leishmaniasis. We have observed that during leishmaniasis, intracellular Ca2+ concentration was up-regulated and was further controlled by both PMCA4 and SERCA3. Inhibition of these two Ca2+-ATPases resulted in decreased parasite burden within the host macrophages due to enhanced intracellular Ca2+. Contrastingly, on the other hand, activation of PMCA4 was found to enhance the parasite burden. Our findings also highlighted the importance of Ca2+ in the modulation of cytokine balance during leishmaniasis. These results thus cumulatively suggests that these two Ca2+-ATPases play prominent roles during visceral leishmaniasis. PMID:25329062

  3. Regulation of PKC mediated signaling by calcium during visceral leishmaniasis.

    PubMed

    Roy, Nivedita; Chakraborty, Supriya; Paul Chowdhury, Bidisha; Banerjee, Sayantan; Halder, Kuntal; Majumder, Saikat; Majumdar, Subrata; Sen, Parimal C

    2014-01-01

    Calcium is an ubiquitous cellular signaling molecule that controls a variety of cellular processes and is strictly maintained in the cellular compartments by the coordination of various Ca2+ pumps and channels. Two such fundamental calcium pumps are plasma membrane calcium ATPase (PMCA) and Sarco/endoplasmic reticulum calcium ATPase (SERCA) which play a pivotal role in maintaining intracellular calcium homeostasis. This intracellular Ca2+ homeostasis is often disturbed by the protozoan parasite Leishmania donovani, the causative organism of visceral leishmaniasis. In the present study we have dileneated the involvement of PMCA4 and SERCA3 during leishmaniasis. We have observed that during leishmaniasis, intracellular Ca2+ concentration was up-regulated and was further controlled by both PMCA4 and SERCA3. Inhibition of these two Ca2+-ATPases resulted in decreased parasite burden within the host macrophages due to enhanced intracellular Ca2+. Contrastingly, on the other hand, activation of PMCA4 was found to enhance the parasite burden. Our findings also highlighted the importance of Ca2+ in the modulation of cytokine balance during leishmaniasis. These results thus cumulatively suggests that these two Ca2+-ATPases play prominent roles during visceral leishmaniasis. PMID:25329062

  4. The Role of the Calcium-sensing Receptor in Cancer

    SciTech Connect

    Rodland, Karin D.

    2004-03-01

    The cell surface calcium receptor (Ca2+ receptor) is a particularly difficult receptor to study because its primary physiological ligand, Ca2+, affects numerous biological processes both within and outside of cells. Because of this, distinguishing effects of extracellular Ca2+ mediated by the Ca2+ receptor from those mediated by other mechanisms is challenging. Certain pharmacological approaches, however, when combined with appropriate experimental designs, can be used to more confidently identify cellular responses regulated by the Ca2+ receptor and select those that might be targeted therapeutically. The Ca2+ receptor on parathyroid cells, because it is the primary mechanism regulating secretion of parathyroid hormone (PTH), is one such target. Calcimimetic compounds, which active this Ca2+ receptor and lower circulating levels of PTH, have been developed for treating hyperparathyroidism. The converse pharmaceutical approach, involving calcilytic compounds that block parathyroid cell Ca2+ receptors and stimulate PTH secretion thereby providing an anabolic therapy for osteoporosis, still awaits clinical validation. Although Ca2+ receptors are expressed throughout the body and in many tissues that are not intimately involved in systemic Ca2+ homeostasis, their physiological and/or pathological significance remains speculative and their value as therapeutic targets is unknown.

  5. Role of Cytosolic Calcium Diffusion in Murine Cardiac Purkinje Cells

    PubMed Central

    Limbu, Bijay; Shah, Kushal; Weinberg, Seth H.; Deo, Makarand

    2016-01-01

    Cardiac Purkinje cells (PCs) are morphologically and electrophysiologically different from ventricular myocytes and, importantly, exhibit distinct calcium (Ca2+) homeostasis. Recent studies suggest that PCs are more susceptible to action potential (AP) abnormalities than ventricular myocytes; however, the exact mechanisms are poorly understood. In this study, we utilized a detailed biophysical mathematical model of a murine PC to systematically examine the role of cytosolic Ca2+ diffusion in shaping the AP in PCs. A biphasic spatiotemporal Ca2+ diffusion process, as recorded experimentally, was implemented in the model. In this study, we investigated the role of cytosolic Ca2+ dynamics on AP and ionic current properties by varying the effective Ca2+ diffusion rate. It was observed that AP morphology, specifically the plateau, was affected due to changes in the intracellular Ca2+ dynamics. Elevated Ca2+ concentration in the sarcolemmal region activated inward sodium–Ca2+ exchanger (NCX) current, resulting in a prolongation of the AP plateau at faster diffusion rates. Artificially clamping the NCX current to control values completely reversed the alterations in the AP plateau, thus confirming the role of NCX in modifying the AP morphology. Our results demonstrate that cytosolic Ca2+ diffusion waves play a significant role in shaping APs of PCs and could provide mechanistic insights in the increased arrhythmogeneity of PCs. PMID:27478391

  6. Calcium and Vitamin D

    MedlinePlus

    ... to your weekly shopping list. Produce Serving Size Estimated Calcium* Collard greens, frozen 8 oz 360 mg ... Oranges 1 whole 55 mg Seafood Serving Size Estimated Calcium* Sardines, canned with bones 3 oz 325 ...

  7. Fenoprofen calcium overdose

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002649.htm Fenoprofen calcium overdose To use the sharing features on this page, please enable JavaScript. Fenoprofen calcium is a type of medicine called a nonsteroidal ...

  8. Calcium channel blocker overdose

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002580.htm Calcium channel blocker overdose To use the sharing features on this page, please enable JavaScript. Calcium channel blockers are a type of medicine used ...

  9. Fenoprofen calcium overdose

    MedlinePlus

    Fenoprofen calcium is a type of medicine called a nonsteroidal anti-inflammatory drug. It is a prescription pain medicine used to relieve symptoms of arthritis . Fenoprofen calcium overdose occurs when someone takes more than the ...

  10. Calcium and bones (image)

    MedlinePlus

    Calcium is one of the most important minerals for the growth, maintenance, and reproduction of the human body. Bones, like other tissues in the body, are continually being re-formed and incorporate calcium into their ...

  11. [Calcium pyrophosphate dihydrate deposition disease].

    PubMed

    Koitschev, C; Kaiserling, E; Koitschev, A

    2003-08-01

    Calcium pyrophosphate dihydrate deposition disease (CPPD) of the temporomandibular joint is rare. The disorder is characterized by the presence of crystal deposits within the affected joint. The deposition of crystals in adjacent soft tissue may lead to the formation of pseudotumors. This form of the disease is called tophaceous pseudogout and typically affects the temporomandibular joint. It is difficult to differentiate the disease, particularly from malignant tumors, on the clinical and radiographic findings alone. The diagnosis is based on histological identification of the calcium pyrophosphate crystals. We present an unusually advanced case of tophaceous pseudogout of the temporomandibular joint. The etiology, clinical and diagnostic criteria as well as treatment options are discussed on the basis of our own experience and a review of the literature. PMID:12942180

  12. Calcium and Mitosis

    NASA Technical Reports Server (NTRS)

    Hepler, P.

    1983-01-01

    Although the mechanism of calcium regulation is not understood, there is evidence that calcium plays a role in mitosis. Experiments conducted show that: (1) the spindle apparatus contains a highly developed membrane system that has many characteristics of sarcoplasmic reticulum of muscle; (2) this membrane system contains calcium; and (3) there are ionic fluxes occurring during mitosis which can be seen by a variety of fluorescence probes. Whether the process of mitosis can be modulated by experimentally modulating calcium is discussed.

  13. Steroid hormone 20-hydroxyecdysone promotes higher calcium mobilization to induce apoptosis.

    PubMed

    Wang, Di; Pei, Xu-Yang; Zhao, Wen-Li; Zhao, Xiao-Fan

    2016-07-01

    Calcium ions are essential secondary messengers that regulate diverse cellular processes including gene transcription, cell proliferation, and apoptosis. The steroid hormone 20-hydroxyecdysone (20E) promotes programmed cell death during insect metamorphosis, whereas juvenile hormone (JH) counteracts 20E activity to prevent metamorphosis. Both 20E and JH can induce cellular calcium increase; however, the mechanisms and physiological consequences resulting from calcium increase caused by the two counteracting hormones are unclear. Here, using Helicoverpa armigera epidermal cell line, we show that 20E via a G-protein-coupled receptor induced a major calcium rise in the cells, whereas JH via receptor tyrosine kinase induced a minor calcium increase. The calcium release-activated calcium modulator 1 (Orai1) and transient receptor potential (TRP) channels were necessary for 20E-induced rapid calcium influx. A higher calcium level was maintained in a long time and more genes including Orai1 and TRP channels showed elevated expression after the treatment of 20E than did after JH treatment. Caspase3/7 activation, cell death and pro-apoptotic gene expression were elicited by 20E induction, but not by JH. JH could repress 20E-induced calcium influx, caspase3/7 activation and gene expression. Higher calcium levels induced apoptosis. These results suggest that 20E and JH via different pathways regulate calcium mobilization and homeostasis at different levels, thus inform different gene expression and cellular responses. PMID:27209368

  14. Biotic Nitrogen Enrichment Regulates Calcium Sources to Forests

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J. C.; Perakis, S. S.; Hynicka, J. D.

    2015-12-01

    Calcium is an essential nutrient in forest ecosystems that is susceptible to leaching loss and depletion. Calcium depletion can affect plant and animal productivity, soil acid buffering capacity, and fluxes of carbon and water. Excess nitrogen supply and associated soil acidification are often implicated in short-term calcium loss from soils, but the long-term role of nitrogen enrichment on calcium sources and resupply is unknown. Here we use strontium isotopes (87Sr/86Sr) as a proxy for calcium to investigate how soil nitrogen enrichment from biological nitrogen fixation interacts with bedrock calcium to regulate both short-term available supplies and the long-term sources of calcium in montane conifer forests. Our study examines 22 sites in western Oregon, spanning a 20-fold range of bedrock calcium on sedimentary and basaltic lithologies. In contrast to previous studies emphasizing abiotic control of weathering as a determinant of long-term ecosystem calcium dynamics and sources (via bedrock fertility, climate, or topographic/tectonic controls) we find instead that that biotic nitrogen enrichment of soil can strongly regulate calcium sources and supplies in forest ecosystems. For forests on calcium-rich basaltic bedrock, increasing nitrogen enrichment causes calcium sources to shift from rock-weathering to atmospheric dominance, with minimal influence from other major soil forming factors, despite regionally high rates of tectonic uplift and erosion that can rejuvenate weathering supply of soil minerals. For forests on calcium-poor sedimentary bedrock, we find that atmospheric inputs dominate regardless of degree of nitrogen enrichment. Short-term measures of soil and ecosystem calcium fertility are decoupled from calcium source sustainability, with fundamental implications for understanding nitrogen impacts, both in natural ecosystems and in the context of global change. Our finding that long-term nitrogen enrichment increases forest reliance on atmospheric

  15. Chronic sleep disturbance impairs glucose homeostasis in rats.

    PubMed

    Barf, R Paulien; Meerlo, Peter; Scheurink, Anton J W

    2010-01-01

    Epidemiological studies have shown an association between short or disrupted sleep and an increased risk for metabolic disorders. To assess a possible causal relationship, we examined the effects of experimental sleep disturbance on glucose regulation in Wistar rats under controlled laboratory conditions. Three groups of animals were used: a sleep restriction group (RS), a group subjected to moderate sleep disturbance without restriction of sleep time (DS), and a home cage control group. To establish changes in glucose regulation, animals were subjected to intravenous glucose tolerance tests (IVGTTs) before and after 1 or 8 days of sleep restriction or disturbance. Data show that both RS and DS reduce body weight without affecting food intake and also lead to hyperglycemia and decreased insulin levels during an IVGTT. Acute sleep disturbance also caused hyperglycemia during an IVGTT, yet, without affecting the insulin response. In conclusion, both moderate and severe disturbances of sleep markedly affect glucose homeostasis and body weight control. PMID:20339560

  16. Calcium and bones

    MedlinePlus

    Bone strength and calcium ... or if your body does not absorb enough calcium, your bones can get weak or will not grow properly. ... injury. As you age, your body still needs calcium to keep your bones dense and strong. Most experts recommend at least ...

  17. Oral calcium supplementation in peripartum dairy cows.

    PubMed

    Oetzel, Garrett R

    2013-07-01

    Hypocalcemia in dairy cattle around parturition can be manifest as clinical milk fever or subclinical hypocalcemia. Subclinical hypocalcemia has the greatest economic effect because it affects a much higher proportion of cows. Oral calcium supplements are used to mitigate the effects of both forms of hypocalcemia. Oral calcium supplements are appropriate for cows displaying early clinical signs of hypocalcemia and prophylactically to lessen the negative impacts of hypocalcemia. PMID:23809900

  18. Hypertension: salt restriction, sodium homeostasis, and other ions.

    PubMed

    Gupta, Neeru; Jani, Kishan Kumar; Gupta, Nivedita

    2011-03-01

    Salt is composed of Sodium Chloride (NaCl) which in body water becomes essential electrolytes, viz., Sodium (Na⁺) and Chloride (Cl⁻) ions, including in the blood and other extracellular fluids (ECF). Na⁺ ions are necessary cations in muscle contractions and their depletion will effect all the muscles in body including smooth muscle contraction of blood vessels, a fact which is utilized in lowering the blood pressure. Na⁺ ions also hold water with them in the ECF. Na⁺ homeostasis in body is maintained by thirst (water intake), kidneys (urinary excretion) and skin (sweating). In Na⁺ withdrawal, body tries to maintain homeostasis as far as possible. However, in certain conditions (e.g., during exercise, intake of drugs and in disorders causing Syndrome of Inappropriate Anti Diuretic Hormone Secretion (SIADH), diuretics, diarrhea) coupled with moderate or severe dietary salt restriction (anorexia nervosa), hyponatremia can get precipitated. Hyponatremia is one end point in the spectrum of disorders caused by severe Na⁺ depletion whereas in moderate depletion it can cause hypohydration (or less total body water) and lower urinary volume (U v ). Moreover, salt sensitivity varies in various populations leading to different responses in relation to dietary Na⁺ intake. Diabetes and Hypertension often co-exist but Na⁺ withdrawal in salt sensitive subjects worsens diabetes though hypertension gets better and reverse occurs in salt loading. Therefore, Na⁺ or salt restriction may be non-physiological. In hypertensive subjects other alternatives to Na⁺ withdrawal could be Potassium (K⁺) and Calcium (Ca⁺²) supplementation. Further studies are required to monitor safety/side effects of salt restriction. PMID:23250294

  19. Calcium bioavailability from calcium fortified food products.

    PubMed

    Kohls, K

    1991-08-01

    The calcium balance of 12 presumed healthy human young adult subjects was assessed. Subjects consumed a constant laboratory-controlled diet supplemented with one of four calcium-fortified food products: orange juice (OJ), milk (M), experimental pasteurized processed cheese (T), soda (S), or a calcium carbonate plus vitamin D tablet (CC). Study length was 6 weeks with seven-day experimental periods (2-days allowed for adjustment with 5-days combined for purposes of analysis). All urine and fecal samples were collected by the subjects for the duration of the study. Blood samples were drawn at the end of each experimental period. Urine and fecal calcium contents were determined. Blood samples were analyzed for alkaline phosphatase. Results of this study indicate a higher fecal calcium content (mg/day) when subjects consumed CC and T, and when subjects consumed self-selected diets, than when given S, M, or OJ. Urinary calcium excretion was significantly lower when subjects consumed OJ than when they consumed M, T, or their self-selected diets. A significantly larger positive calcium balance was demonstrated when subjects consumed OJ as compared to T. Fecal transmit time did not vary significantly. Serum alkaline phosphatase was significantly lower when subjects consumed T than when they consumed self-selected diets. PMID:1765836

  20. Calcium kinetics in glycogen storage disease type 1a.

    PubMed

    Goans, R E; Weiss, G H; Vieira, N E; Sidbury, J B; Abrams, S A; Yergey, A L

    1996-12-01

    Glycogen storage disease type 1a (Von Gierke's disease) is one of the more common glycogen storage diseases (GSD). GSD 1a patients can have severe idiopathic osteopenia, often beginning at a young age. Since calcium tracer studies offer a sensitive probe of the bone microenvironment and of calcium deposition, kinetics might be disturbed in patients with GSD 1a. Plasma dilution kinetics obtained using the stable isotope 42Ca are shown in this paper to be quite different between GSD 1a patients and age-matched controls. Comparison of kinetic parameters in these two populations is made using a new binding site model for describing calcium dynamics at the plasma-bone interface. This model describes reversible binding of calcium ions to postulated short-term and long-term sites by a retention probability density function psi (t). Using this analysis, adult GSD subjects exhibited a significant decrease (P = 0.023) in the apparent half-life of a calcium ion on the longer-term site compared with controls. The general theory of calcium tracer dilution kinetics is then discussed in terms of a new model of short-term calcium homeostasis recently proposed by Bronner and Stein [5]. PMID:8939770

  1. Zinc and calcium modulate mitochondrial redox state and morphofunctional integrity.

    PubMed

    Sharaf, Mahmoud S; van den Heuvel, Michael R; Stevens, Don; Kamunde, Collins

    2015-07-01

    Zinc and calcium have highly interwoven functions that are essential for cellular homeostasis. Here we first present a novel real-time flow cytometric technique to measure mitochondrial redox state and show it is modulated by zinc and calcium, individually and combined. We then assess the interactions of zinc and calcium on mitochondrial H2O2 production, membrane potential (ΔΨm), morphological status, oxidative phosphorylation (OXPHOS), complex I activity, and structural integrity. Whereas zinc at low doses and both cations at high doses individually and combined promoted H2O2 production, the two cations individually did not alter mitochondrial redox state. However, when combined at low and high doses the two cations synergistically suppressed and promoted, respectively, mitochondrial shift to a more oxidized state. Surprisingly, the antioxidants vitamin E and N-acetylcysteine showed pro-oxidant activity at low doses, whereas at high antioxidant doses NAC inhibited OXPHOS and dyscoupled mitochondria. Individually, zinc was more potent than calcium in inhibiting OXPHOS, whereas calcium more potently dissipated the ΔΨm and altered mitochondrial volume and ultrastructure. The two cations synergistically inhibited OXPHOS but antagonistically dissipated ΔΨm and altered mitochondrial volume and morphology. Overall, our study highlights the importance of zinc and calcium in mitochondrial redox regulation and functional integrity. Importantly, we uncovered previously unrecognized bidirectional interactions of zinc and calcium that reveal distinctive foci for modulating mitochondrial function in normal and disease states because they are potentially protective or damaging depending on conditions. PMID:25841782

  2. Melanocortin-4 receptor-regulated energy homeostasis.

    PubMed

    Krashes, Michael J; Lowell, Bradford B; Garfield, Alastair S

    2016-02-01

    The melanocortin system provides a conceptual blueprint for the central control of energetic state. Defined by four principal molecular components--two antagonistically acting ligands and two cognate receptors--this phylogenetically conserved system serves as a prototype for hierarchical energy balance regulation. Over the last decade the application of conditional genetic techniques has facilitated the neuroanatomical dissection of the melanocortinergic network and identified the specific neural substrates and circuits that underscore the regulation of feeding behavior, energy expenditure, glucose homeostasis and autonomic outflow. In this regard, the melanocortin-4 receptor is a critical coordinator of mammalian energy homeostasis and body weight. Drawing on recent advances in neuroscience and genetic technologies, we consider the structure and function of the melanocortin-4 receptor circuitry and its role in energy homeostasis. PMID:26814590

  3. Calcium release-activated calcium current in rat mast cells.

    PubMed

    Hoth, M; Penner, R

    1993-06-01

    . This relationship was almost identical to the one determined for Ca2+ influx through voltage-activated calcium currents in chromaffin cells, suggesting a similar selectivity. Replacing Na+ and K+ by N-methyl-D-glucamine (with Ca2+ ions as exclusive charge carriers) reduced the amplitude of ICRAC by only 9% further suggesting a high specificity for Ca2+ ions. 7. The current amplitude was not greatly affected by variations of external Mg2+ in the range of 0-12 mM. Even at 12 mM Mg2+ the current amplitude was reduced by only 23%. 8. ICRAC was dose-dependently inhibited by Cd2+.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8229840

  4. The glutamate homeostasis hypothesis of addiction.

    PubMed

    Kalivas, Peter W

    2009-08-01

    Addiction is associated with neuroplasticity in the corticostriatal brain circuitry that is important for guiding adaptive behaviour. The hierarchy of corticostriatal information processing that normally permits the prefrontal cortex to regulate reinforcement-seeking behaviours is impaired by chronic drug use. A failure of the prefrontal cortex to control drug-seeking behaviours can be linked to an enduring imbalance between synaptic and non-synaptic glutamate, termed glutamate homeostasis. The imbalance in glutamate homeostasis engenders changes in neuroplasticity that impair communication between the prefrontal cortex and the nucleus accumbens. Some of these pathological changes are amenable to new glutamate- and neuroplasticity-based pharmacotherapies for treating addiction. PMID:19571793

  5. Histamine receptor signaling in energy homeostasis.

    PubMed

    Tabarean, Iustin V

    2016-07-01

    Histamine modulates several aspects of energy homeostasis. By activating histamine receptors in the hypothalamus the bioamine influences thermoregulation, its circadian rhythm, energy expenditure and feeding. These actions are brought about by activation of different histamine receptors and/or the recruitment of distinct neural pathways. In this review we describe the signaling mechanisms activated by histamine in the hypothalamus, the evidence for its role in modulating energy homeostasis as well as recent advances in the understanding of the cellular and neural network mechanisms involved. This article is part of the Special Issue entitled 'Histamine Receptors'. PMID:26107117

  6. Calcium-Based Nanoparticles Accelerate Skin Wound Healing

    PubMed Central

    Ishise, Hisako; Carre, Antoine Lyonel; Nishimoto, Soh; Longaker, Michael; Lorenz, H. Peter

    2011-01-01

    Introduction Nanoparticles (NPs) are small entities that consist of a hydroxyapatite core, which can bind ions, proteins, and other organic molecules from the surrounding environment. These small conglomerations can influence environmental calcium levels and have the potential to modulate calcium homeostasis in vivo. Nanoparticles have been associated with various calcium-mediated disease processes, such as atherosclerosis and kidney stone formation. We hypothesized that nanoparticles could have an effect on other calcium-regulated processes, such as wound healing. In the present study, we synthesized pH-sensitive calcium-based nanoparticles and investigated their ability to enhance cutaneous wound repair. Methods Different populations of nanoparticles were synthesized on collagen-coated plates under various growth conditions. Bilateral dorsal cutaneous wounds were made on 8-week-old female Balb/c mice. Nanoparticles were then either administered intravenously or applied topically to the wound bed. The rate of wound closure was quantified. Intravenously injected nanoparticles were tracked using a FLAG detection system. The effect of nanoparticles on fibroblast contraction and proliferation was assessed. Results A population of pH-sensitive calcium-based nanoparticles was identified. When intravenously administered, these nanoparticles acutely increased the rate of wound healing. Intravenously administered nanoparticles were localized to the wound site, as evidenced by FLAG staining. Nanoparticles increased fibroblast calcium uptake in vitro and caused contracture of a fibroblast populated collagen lattice in a dose-dependent manner. Nanoparticles also increased the rate of fibroblast proliferation. Conclusion Intravenously administered, calcium-based nanoparticles can acutely decrease open wound size via contracture. We hypothesize that their contraction effect is mediated by the release of ionized calcium into the wound bed, which occurs when the p

  7. Regulating Subcellular Metal Homeostasis: The Key to Crop Improvement.

    PubMed

    Bashir, Khurram; Rasheed, Sultana; Kobayashi, Takanori; Seki, Motoaki; Nishizawa, Naoko K

    2016-01-01

    Iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu) are essential micronutrient mineral elements for living organisms, as they regulate essential cellular processes, such as chlorophyll synthesis and photosynthesis (Fe, Cu, and Mn), respiration (Fe and Cu), and transcription (Zn). The storage and distribution of these minerals in various cellular organelles is strictly regulated to ensure optimal metabolic rates. Alteration of the balance in uptake, distribution, and/or storage of these minerals severely impairs cellular metabolism and significantly affects plant growth and development. Thus, any change in the metal profile of a cellular compartment significantly affects metabolism. Different subcellular compartments are suggested to be linked through complex retrograde signaling networks to regulate cellular metal homeostasis. Various genes regulating cellular and subcellular metal distribution have been identified and characterized. Understanding the role of these transporters is extremely important to elaborate the signaling between various subcellular compartments. Moreover, modulation of the proteins involved in cellular metal homeostasis may help in the regulation of metabolism, adaptability to a diverse range of environmental conditions, and biofortification. Here, we review progress in the understanding of different subcellular metal transport components in plants and discuss the prospects of regulating cellular metabolism and strategies to develop biofortified crop plants. PMID:27547212

  8. Regulating Subcellular Metal Homeostasis: The Key to Crop Improvement

    PubMed Central

    Bashir, Khurram; Rasheed, Sultana; Kobayashi, Takanori; Seki, Motoaki; Nishizawa, Naoko K.

    2016-01-01

    Iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu) are essential micronutrient mineral elements for living organisms, as they regulate essential cellular processes, such as chlorophyll synthesis and photosynthesis (Fe, Cu, and Mn), respiration (Fe and Cu), and transcription (Zn). The storage and distribution of these minerals in various cellular organelles is strictly regulated to ensure optimal metabolic rates. Alteration of the balance in uptake, distribution, and/or storage of these minerals severely impairs cellular metabolism and significantly affects plant growth and development. Thus, any change in the metal profile of a cellular compartment significantly affects metabolism. Different subcellular compartments are suggested to be linked through complex retrograde signaling networks to regulate cellular metal homeostasis. Various genes regulating cellular and subcellular metal distribution have been identified and characterized. Understanding the role of these transporters is extremely important to elaborate the signaling between various subcellular compartments. Moreover, modulation of the proteins involved in cellular metal homeostasis may help in the regulation of metabolism, adaptability to a diverse range of environmental conditions, and biofortification. Here, we review progress in the understanding of different subcellular metal transport components in plants and discuss the prospects of regulating cellular metabolism and strategies to develop biofortified crop plants. PMID:27547212

  9. The effects of combined vitamin D and calcium supplementation on fasting plasma glucose in non-diabetic adults age 65 and older

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Altered vitamin D and calcium homeostasis may play a role in the development of glucose intolerance. In a 3-year randomized controlled trial, we compared the effects of combined vitamin D and calcium supplementation vs. placebo on fasting plasma glucose (FPG) in healthy adults 65 years of age or old...

  10. The effects of combined vitamin D and calcium supplementation on glycemia, insulin resistance and systemic inflammation in non-diabetic adults age 65 and older

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Altered vitamin D and calcium homeostasis may play a role in the development of glucose intolerance and type 2 diabetes. In a 3-year randomized controlled trial, we compared the effects of combined vitamin D and calcium supplementation vs. placebo on glycemia, insulin sensitivity and systemic infla...

  11. Skeletal muscle PGC-1α modulates systemic ketone body homeostasis and ameliorates diabetic hyperketonemia in mice.

    PubMed

    Svensson, Kristoffer; Albert, Verena; Cardel, Bettina; Salatino, Silvia; Handschin, Christoph

    2016-05-01

    Ketone bodies (KBs) are crucial energy substrates during states of low carbohydrate availability. However, an aberrant regulation of KB homeostasis can lead to complications such as diabetic ketoacidosis. Exercise and diabetes affect systemic KB homeostasis, but the regulation of KB metabolism is still enigmatic. In our study in mice with either knockout or overexpression of the peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α in skeletal muscle, PGC-1α regulated ketolytic gene transcription in muscle. Furthermore, KB homeostasis of these mice was investigated during withholding of food, exercise, and ketogenic diet feeding, and after streptozotocin injection. In response to these ketogenic stimuli, modulation of PGC-1α levels in muscle affected systemic KB homeostasis. Moreover, the data demonstrate that skeletal muscle PGC-1α is necessary for the enhanced ketolytic capacity in response to exercise training and overexpression of PGC-1α in muscle enhances systemic ketolytic capacity and is sufficient to ameliorate diabetic hyperketonemia in mice. In cultured myotubes, the transcription factor estrogen-related receptor-α was a partner of PGC-1α in the regulation of ketolytic gene transcription. These results demonstrate a central role of skeletal muscle PGC-1α in the transcriptional regulation of systemic ketolytic capacity.-Svensson, K., Albert, V., Cardel, B., Salatino, S., Handschin, C. Skeletal muscle PGC-1α modulates systemic ketone body homeostasis and ameliorates diabetic hyperketonemia in mice. PMID:26849960

  12. The LIKE SEX FOUR2 regulates root development by modulating reactive oxygen species homeostasis in Arabidopsis

    PubMed Central

    Zhao, Pingzhi; Sokolov, Lubomir N.; Ye, Jian; Tang, Cheng-Yi; Shi, Jisen; Zhen, Yan; Lan, Wenzhi; Hong, Zhi; Qi, Jinliang; Lu, Gui-Hua; Pandey, Girdhar K.; Yang, Yong-Hua

    2016-01-01

    Maintaining reactive oxygen species (ROS) homeostasis plays a central role in plants, and is also critical for plant root development. Threshold levels of ROS act as signals for elongation and differentiation of root cells. The protein phosphatase LIKE SEX FOUR2 (LSF2) has been reported to regulate starch metabolism in Arabidopsis, but little is known about the mechanism how LSF2 affect ROS homeostasis. Here, we identified that LSF2 function as a component modulating ROS homeostasis in response to oxidative stress and, thus regulate root development. Compared with wild type Arabidopsis, lsf2-1 mutant exhibited reduced rates of superoxide generation and higher levels of hydrogen peroxide upon oxidative stress treatments. The activities of several antioxidant enzymes, including superoxide dismutase, catalase, and ascorbate peroxidase, were also affected in lsf2-1 mutant under these oxidative stress conditions. Consequently, lsf2-1 mutant exhibited the reduced root growth but less inhibition of root hair formation compared to wild type Arabidopsis plants. Importantly, protein phosphatase LSF2 interacted with mitogen-activated protein kinase 8 (MPK8), a known component of ROS homeostasis pathways in the cytoplasm. These findings indicated the novel function of LSF2 that controls ROS homeostasis to regulate root development. PMID:27349915

  13. The LIKE SEX FOUR2 regulates root development by modulating reactive oxygen species homeostasis in Arabidopsis.

    PubMed

    Zhao, Pingzhi; Sokolov, Lubomir N; Ye, Jian; Tang, Cheng-Yi; Shi, Jisen; Zhen, Yan; Lan, Wenzhi; Hong, Zhi; Qi, Jinliang; Lu, Gui-Hua; Pandey, Girdhar K; Yang, Yong-Hua

    2016-01-01

    Maintaining reactive oxygen species (ROS) homeostasis plays a central role in plants, and is also critical for plant root development. Threshold levels of ROS act as signals for elongation and differentiation of root cells. The protein phosphatase LIKE SEX FOUR2 (LSF2) has been reported to regulate starch metabolism in Arabidopsis, but little is known about the mechanism how LSF2 affect ROS homeostasis. Here, we identified that LSF2 function as a component modulating ROS homeostasis in response to oxidative stress and, thus regulate root development. Compared with wild type Arabidopsis, lsf2-1 mutant exhibited reduced rates of superoxide generation and higher levels of hydrogen peroxide upon oxidative stress treatments. The activities of several antioxidant enzymes, including superoxide dismutase, catalase, and ascorbate peroxidase, were also affected in lsf2-1 mutant under these oxidative stress conditions. Consequently, lsf2-1 mutant exhibited the reduced root growth but less inhibition of root hair formation compared to wild type Arabidopsis plants. Importantly, protein phosphatase LSF2 interacted with mitogen-activated protein kinase 8 (MPK8), a known component of ROS homeostasis pathways in the cytoplasm. These findings indicated the novel function of LSF2 that controls ROS homeostasis to regulate root development. PMID:27349915

  14. Palmitoylation of the Cysteine Residue in the DHHC Motif of a Palmitoyl Transferase Mediates Ca2+ Homeostasis in Aspergillus

    PubMed Central

    Zhang, Yuanwei; Zheng, Qingqing; Sun, Congcong; Song, Jinxing; Gao, Lina; Zhang, Shizhu; Muñoz, Alberto; Read, Nick D.; Lu, Ling

    2016-01-01

    Finely tuned changes in cytosolic free calcium ([Ca2+]c) mediate numerous intracellular functions resulting in the activation or inactivation of a series of target proteins. Palmitoylation is a reversible post-translational modification involved in membrane protein trafficking between membranes and in their functional modulation. However, studies on the relationship between palmitoylation and calcium signaling have been limited. Here, we demonstrate that the yeast palmitoyl transferase ScAkr1p homolog, AkrA in Aspergillus nidulans, regulates [Ca2+]c homeostasis. Deletion of akrA showed marked defects in hyphal growth and conidiation under low calcium conditions which were similar to the effects of deleting components of the high-affinity calcium uptake system (HACS). The [Ca2+]c dynamics in living cells expressing the calcium reporter aequorin in different akrA mutant backgrounds were defective in their [Ca2+]c responses to high extracellular Ca2+ stress or drugs that cause ER or plasma membrane stress. All of these effects on the [Ca2+]c responses mediated by AkrA were closely associated with the cysteine residue of the AkrA DHHC motif, which is required for palmitoylation by AkrA. Using the acyl-biotin exchange chemistry assay combined with proteomic mass spectrometry, we identified protein substrates palmitoylated by AkrA including two new putative P-type ATPases (Pmc1 and Spf1 homologs), a putative proton V-type proton ATPase (Vma5 homolog) and three putative proteins in A. nidulans, the transcripts of which have previously been shown to be induced by extracellular calcium stress in a CrzA-dependent manner. Thus, our findings provide strong evidence that the AkrA protein regulates [Ca2+]c homeostasis by palmitoylating these protein candidates and give new insights the role of palmitoylation in the regulation of calcium-mediated responses to extracellular, ER or plasma membrane stress. PMID:27058039

  15. Iron homeostasis in the Rhodobacter genus

    PubMed Central

    Zappa, Sébastien; Bauer, Carl E.

    2013-01-01

    Metals are utilized for a variety of critical cellular functions and are essential for survival. However cells are faced with the conundrum of needing metals coupled with e fact that some metals, iron in particular are toxic if present in excess. Maintaining metal homeostasis is therefore of critical importance to cells. In this review we have systematically analyzed sequenced genomes of three members of the Rhodobacter genus, R. capsulatus SB1003, R. sphaeroides 2.4.1 and R. ferroxidans SW2 to determine how these species undertake iron homeostasis. We focused our analysis on elemental ferrous and ferric iron uptake genes as well as genes involved in the utilization of iron from heme. We also discuss how Rhodobacter species manage iron toxicity through export and sequestration of iron. Finally we discuss the various putative strategies set up by these Rhodobacter species to regulate iron homeostasis and the potential novel means of regulation. Overall, this genomic analysis highlights surprisingly diverse features involved in iron homeostasis in the Rhodobacter genus. PMID:24382933

  16. Circadian dysregulation disrupts bile acid homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bile acids are potentially toxic compounds and their levels of hepatic production, uptake, and export are tightly regulated by many inputs, including circadian rhythm. We tested the impact of disrupting the peripheral circadian clock on integral steps of bile acid homeostasis. Both restricted feedi...

  17. Protein Homeostasis at the Plasma Membrane

    PubMed Central

    2014-01-01

    The plasma membrane (PM) and endocytic protein quality control (QC) in conjunction with the endosomal sorting machinery either repairs or targets conformationally damaged membrane proteins for lysosomal/vacuolar degradation. Here, we provide an overview of emerging aspects of the underlying mechanisms of PM QC that fulfill a critical role in preserving cellular protein homeostasis in health and diseases. PMID:24985330

  18. Ascorbic acid, calcium, phosphorus and magnesium intake variations: effects on calcium, phosphorus and magnesium utilization by human adults

    SciTech Connect

    Kies, C.; Brennan, M.A.; Parks, S.K.; Stauffer, D.J.; Wang, H.Y.; Young, S.F.; Fox, H.M.

    1986-03-01

    The objective of the study was to determine the effects of feeding two levels of ascorbic acid, calcium, phosphorus, magnesium and ascorbic acid on the apparent utilization of calcium, phosphorus and magnesium by healthy, human adult subjects. During 4 randomly-arranged experimental periods of 7 days each, a laboratory-controlled diet alone or with supplements of ascorbic acid, dicalcium phosphate or magnesium oxide was fed to the 18 subjects. Results indicated that ascorbic acid supplementation tended to reduce urinary phosphorus loss and to slightly increase fecal phosphorus loss so that overall phosphorus balances became more positive. Conversely, under these conditions, urinary calcium losses were little affected but fecal calcium losses were increased resulting in an overall decrease in calcium balance with ascorbic acid supplementation. Ascorbic acid supplementation resulted in decreased urine and fecal losses of magnesium and more positive magnesium balances. Magnesium supplementation resulted in more positive calcium and phosphorus balances as did calcium phosphate supplementation on magnesium balance.

  19. Trace element status and zinc homeostasis differ in breast and formula-fed piglets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences in trace element composition and bioavailability between breast milk and infant formulas may affect metal homeostasis in neonates. In the current study, piglets were fed soy infant formula (Soy), cow's milk formula (Milk), or were allowed to suckle from the sow from PND2 to PND21. Serum ...

  20. Management of calcium channel antagonist overdose.

    PubMed

    Salhanick, Steven D; Shannon, Michael W

    2003-01-01

    Calcium channel antagonists are used primarily for the treatment of hypertension and tachyarrhythmias. Overdose of calcium channel antagonists can be lethal. Calcium channel antagonists act at the L-type calcium channels primarily in cardiac and vascular smooth muscle preventing calcium influx into cells with resultant decreases in vascular tone and cardiac inotropy and chronotropy. The L-type calcium channel is a complex structure and is thus affected by a large number of structurally diverse antagonists. In the setting of overdose, patients may experience vasodilatation and bradycardia leading to a shock state. Patients may also be hyperglycaemic and acidotic due to the blockade of L-type calcium channels in the pancreatic islet cells that affect insulin secretion. Aggressive therapy is warranted in the setting of toxicity. Gut decontamination with charcoal, or whole bowel irrigation or multiple-dose charcoal in the setting of extended-release products is indicated. Specific antidotes include calcium salts, glucagon and insulin. Calcium salts may be given in bolus doses or may be employed as a continuous infusion. Care should be exercised to avoid the administration of calcium in the setting of concomitant digoxin toxicity. Insulin administration has been used effectively to increase cardiac inotropy and survival. The likely mechanism involves a shift to carbohydrate metabolism in the setting of decreased availability of carbohydrates due to decreased insulin secretion secondary to blockade of calcium channels in pancreatic islet cells. Glucose should be administered as well to maintain euglycaemia. Supportive care including the use of phosphodiesterase inhibitors, adrenergic agents, cardiac pacing, balloon pump or extracorporeal bypass is frequently indicated if antidotal therapy is not effective. Careful evaluation of asymptomatic patients, including and electrocardiogram and a period of observation, is indicated. Patients ingesting a nonsustained

  1. Ion homeostasis in a salt-secreting halophytic grass.

    PubMed

    Sanadhya, Payal; Agarwal, Parinita; Agarwal, Pradeep K

    2015-01-01

    Salinity adversely affects plant growth and development, and disturbs intracellular ion homeostasis, resulting in cellular toxicity. Plants that tolerate salinity, halophytes, do so by manifesting numerous physiological and biochemical processes in coordination to alleviate cellular ionic imbalance. The present study was undertaken to analyse the salt tolerance mechanism in Aeluropus lagopoides (L.) trin. Ex Thw. (Poaceae) at both physiological and molecular levels. Plants secreted salt from glands, which eventually produced pristine salt crystals on leaves and leaf sheaths. The rate of salt secretion increased with increasing salt concentration in the growth medium. Osmotic adjustment was mainly achieved by inorganic osmolytes (Na(+)) and at 100 mM NaCl no change was observed in organic osmolytes in comparison to control plants. At 300 mM NaCl and with 150 mM NaCl + 150 mM KCl, the concentration of proline, soluble sugars and amino acids was significantly increased. Transcript profiling of transporter genes revealed differential spatial and temporal expressions in both shoot and root tissues in a manner synchronized towards maintaining ion homeostasis. In shoots, AlHKT2;1 transcript up-regulation was observed at 12 and 24 h in all the treatments, whereas in roots, maximum induction was observed at 48 h with K(+) starvation. The HAK transcript was relatively abundant in shoot tissue with all the treatments. The plasma membrane Na(+)/H(+) antiporter, SOS1, and tonoplast Na(+)/H(+) antiporter, NHX1, were found to be significantly up-regulated in shoot tissue. Our data demonstrate that AlHKT2;1, HAK, SOS1, NHX1 and V-ATPase genes play a pivotal role in regulating the ion homeostasis in A. lagopoides. PMID:25990364

  2. Ion homeostasis in a salt-secreting halophytic grass

    PubMed Central

    Sanadhya, Payal; Agarwal, Parinita; Agarwal, Pradeep K.

    2015-01-01

    Salinity adversely affects plant growth and development, and disturbs intracellular ion homeostasis, resulting in cellular toxicity. Plants that tolerate salinity, halophytes, do so by manifesting numerous physiological and biochemical processes in coordination to alleviate cellular ionic imbalance. The present study was undertaken to analyse the salt tolerance mechanism in Aeluropus lagopoides (L.) trin. Ex Thw. (Poaceae) at both physiological and molecular levels. Plants secreted salt from glands, which eventually produced pristine salt crystals on leaves and leaf sheaths. The rate of salt secretion increased with increasing salt concentration in the growth medium. Osmotic adjustment was mainly achieved by inorganic osmolytes (Na+) and at 100 mM NaCl no change was observed in organic osmolytes in comparison to control plants. At 300 mM NaCl and with 150 mM NaCl + 150 mM KCl, the concentration of proline, soluble sugars and amino acids was significantly increased. Transcript profiling of transporter genes revealed differential spatial and temporal expressions in both shoot and root tissues in a manner synchronized towards maintaining ion homeostasis. In shoots, AlHKT2;1 transcript up-regulation was observed at 12 and 24 h in all the treatments, whereas in roots, maximum induction was observed at 48 h with K+ starvation. The HAK transcript was relatively abundant in shoot tissue with all the treatments. The plasma membrane Na+/H+ antiporter, SOS1, and tonoplast Na+/H+ antiporter, NHX1, were found to be significantly up-regulated in shoot tissue. Our data demonstrate that AlHKT2;1, HAK, SOS1, NHX1 and V-ATPase genes play a pivotal role in regulating the ion homeostasis in A. lagopoides. PMID:25990364

  3. All-trans retinoic acid regulates hepatic bile acid homeostasis

    PubMed Central

    Yang, Fan; He, Yuqi; Liu, Hui-Xin; Tsuei, Jessica; Jiang, Xiaoyue; Yang, Li; Wang, Zheng-Tao; Wan, Yu-Jui Yvonne

    2014-01-01

    Retinoic acid (RA) and bile acids share common roles in regulating lipid homeostasis and insulin sensitivity. In addition, the receptor for RA (retinoid x receptor) is a permissive partner of the receptor for bile acids, farnesoid x receptor (FXR/NR1H4). Thus, RA can activate the FXR-mediated pathway as well. The current study was designed to understand the effect of all-trans RA on bile acid homeostasis. Mice were fed an all-trans RA-supplemented diet and the expression of 46 genes that participate in regulating bile acid homeostasis was studied. The data showed that all-trans RA has a profound effect in regulating genes involved in synthesis and transport of bile acids. All-trans RA treatment reduced the gene expression levels of Cyp7a1, Cyp8b1, and Akr1d1, which are involved in bile acid synthesis. All-trans RA also decreased the hepatic mRNA levels of Lrh-1 (Nr5a2) and Hnf4α (Nr2a1), which positively regulate the gene expression of Cyp7a1 and Cyp8b1. Moreover, all-trans RA induced the gene expression levels of negative regulators of bile acid synthesis including hepatic Fgfr4, Fxr, and Shp (Nr0b2) as well as ileal Fgf15. All-trans RA also decreased the expression of Abcb11 and Slc51b, which have a role in bile acid transport. Consistently, all-trans RA reduced hepatic bile acid levels and the ratio of CA/CDCA, as demonstrated by liquid chromatography-mass spectrometry. The data suggest that all-trans RA-induced SHP may contribute to the inhibition of CYP7A1 and CYP8B1, which in turn reduces bile acid synthesis and affects lipid absorption in the gastrointestinal tract. PMID:25175738

  4. Evolutionary Tradeoffs between Economy and Effectiveness in Biological Homeostasis Systems

    PubMed Central

    Szekely, Pablo; Sheftel, Hila; Mayo, Avi; Alon, Uri

    2013-01-01

    Biological regulatory systems face a fundamental tradeoff: they must be effective but at the same time also economical. For example, regulatory systems that are designed to repair damage must be effective in reducing damage, but economical in not making too many repair proteins because making excessive proteins carries a fitness cost to the cell, called protein burden. In order to see how biological systems compromise between the two tasks of effectiveness and economy, we applied an approach from economics and engineering called Pareto optimality. This approach allows calculating the best-compromise systems that optimally combine the two tasks. We used a simple and general model for regulation, known as integral feedback, and showed that best-compromise systems have particular combinations of biochemical parameters that control the response rate and basal level. We find that the optimal systems fall on a curve in parameter space. Due to this feature, even if one is able to measure only a small fraction of the system's parameters, one can infer the rest. We applied this approach to estimate parameters in three biological systems: response to heat shock and response to DNA damage in bacteria, and calcium homeostasis in mammals. PMID:23950698

  5. Manganese acquisition and homeostasis at the host-pathogen interface

    PubMed Central

    Lisher, John P.; Giedroc, David P.

    2013-01-01

    Pathogenic bacteria acquire transition metals for cell viability and persistence of infection in competition with host nutritional defenses. The human host employs a variety of mechanisms to stress the invading pathogen with both cytotoxic metal ions and oxidative and nitrosative insults while withholding essential transition metals from the bacterium. For example, the S100 family protein calprotectin (CP) found in neutrophils is a calcium-activated chelator of extracellular Mn and Zn and is found in tissue abscesses at sites of infection by Staphylococcus aureus. In an adaptive response, bacteria have evolved systems to acquire the metals in the face of this competition while effluxing excess or toxic metals to maintain a bioavailability of transition metals that is consistent with a particular inorganic “fingerprint” under the prevailing conditions. This review highlights recent biological, chemical and structural studies focused on manganese (Mn) acquisition and homeostasis and connects this process to oxidative stress resistance and iron (Fe) availability that operates at the human host-pathogen interface. PMID:24367765

  6. Aluminium exposure disrupts elemental homeostasis in Caenorhabditis elegans†

    PubMed Central

    Page, Kathryn E.; White, Keith N.; McCrohan, Catherine R.

    2013-01-01

    Aluminium (Al) is highly abundant in the environment and can elicit a variety of toxic responses in biological systems. Here we characterize the effects of Al on Caenorhabditis elegans by identifying phenotypic abnormalities and disruption in whole-body metal homeostasis (metallostasis) following Al exposure in food. Widespread changes to the elemental content of adult nematodes were observed when chronically exposed to Al from the first larval stage (L1). Specifically, we saw increased barium, chromium, copper and iron content, and a reduction in calcium levels. Lifespan was decreased in worms exposed to low levels of Al, but unexpectedly increased when the Al concentration reached higher levels (4.8 mM). This bi-phasic phenotype was only observed when Al exposure occurred during development, as lifespan was unaffected by Al exposure during adulthood. Lower levels of Al slowed C. elegans developmental progression, and reduced hermaphrodite self-fertility and adult body size. Significant developmental delay was observed even when Al exposure was restricted to embryogenesis. Similar changes in Al have been noted in association with Al toxicity in humans and other mammals, suggesting that C. elegans may be of use as a model for understanding the mechanisms of Al toxicity in mammalian systems. PMID:22534883

  7. Disturbed calcium signaling in spinocerebellar ataxias and Alzheimer’s disease

    PubMed Central

    Egorova, Polina; Popugaeva, Elena; Bezprozvanny, Ilya

    2015-01-01

    Neurodegenerative disorders, such as spinocerebellar ataxias (SCAs) and Alzheimer’s disease (AD) represent a huge scientific and medical question, but the molecular mechanisms of these diseases are still not clear. There is increasing evidence that neuronal calcium signaling is abnormal in many neurodegenerative disorders. Abnormal neuronal calcium release from the endoplasmic reticulum may result in disturbances of cell homeostasis, synaptic dysfunction, and eventual cell death. Neuronal loss is observed in most cases of neurodegenerative diseases. Recent experimental evidence supporting the role of neuronal calcium signaling in the pathogenesis of SCAs and AD is discussed in this review. PMID:25846864

  8. Histopathological data of iron and calcium in the mouse lung after asbestos exposure.

    PubMed

    Trevisan, Elisa; Zabucchi, Giuliano; Pascolo, Lorella; Pascotto, Ernesto; Casarsa, Claudia; Lucattelli, Monica; Lungarella, Giuseppe; Cavarra, Eleonora; Bartalesi, Barbara; Zweyer, Marina; Borelli, Violetta

    2016-03-01

    This data article contains data related to the research article entitled, "Synchrotron X-ray microscopy reveals early calcium and iron interaction with crocidolite fibers in the lung of exposed mice" [1]. Asbestos fibers disrupt iron homeostasis in the human and mouse lung, leading to the deposition of iron (Fe) onto longer asbestos fibers which forms asbestos bodies (AB) [2]. Similar to Fe, calcium (Ca) is also deposited in the coats of the AB. This article presents data on iron and calcium in the mouse lung after asbestos exposure detected by histochemical evaluation. PMID:26909387

  9. Role of calcium in biphasic immunomodulation by gamma-HCH (lindane) in mice.

    PubMed

    Meera, P; Tripathi, O; Kamboj, K K; Rao, P R

    1993-01-01

    gamma-HCH (Lindane) is reported to cause a biphasic immunomodulation-stimulation followed by suppression-after oral administration in mice. Role of calcium in this biphasic immunomodulation was assessed after 4, 12 and 24 wks of gamma-HCH administration. 45Ca-uptake was enhanced during the initial immunostimulation followed by decrease concomitant with immunosuppression. Lymphocyte proliferation was inhibited during both the phases of immune response by verapamil, a calcium channel blocker, and by trifluoperazine, a calmodulin inhibitor. These findings show an impairment of calcium homeostasis in lymphocytes culminating into the biphasic immunomodulatory effects of gamma-HCH. PMID:7680676

  10. Histopathological data of iron and calcium in the mouse lung after asbestos exposure

    PubMed Central

    Trevisan, Elisa; Zabucchi, Giuliano; Pascolo, Lorella; Pascotto, Ernesto; Casarsa, Claudia; Lucattelli, Monica; Lungarella, Giuseppe; Cavarra, Eleonora; Bartalesi, Barbara; Zweyer, Marina; Borelli, Violetta

    2016-01-01

    This data article contains data related to the research article entitled, “Synchrotron X-ray microscopy reveals early calcium and iron interaction with crocidolite fibers in the lung of exposed mice” [1]. Asbestos fibers disrupt iron homeostasis in the human and mouse lung, leading to the deposition of iron (Fe) onto longer asbestos fibers which forms asbestos bodies (AB) [2]. Similar to Fe, calcium (Ca) is also deposited in the coats of the AB. This article presents data on iron and calcium in the mouse lung after asbestos exposure detected by histochemical evaluation. PMID:26909387

  11. [Milk and milk products: food sources of calcium].

    PubMed

    Farré Rovira, Rosaura

    2015-01-01

    The importance of calcium in human nutrition, the mechanisms of absorption and excretion of the element, and the factors affecting them with special reference to dietary factors are described. After reviewing daily dietary intakes of calcium and the main contributors in European and Spanish population, recommended intakes in Spain, the Nordic countries and the United States are mentioned. In relation to the dietary sources of calcium it has to be noted that the value of a given food as a source of a nutrient depends on its content in the food, the bioavailability of the nutrient and the usual food consumption. The calcium contents of potential food sources of the element are reported and its value is estimated according to the potential absorbability of the calcium they contain. The benefits of milk and dairy products as sources of calcium are also highlighted. Populations such as children or elderly may require fortified foods or supplements to satisfy their high calcium needs, so some examples of the efficacy of this supplementation are discussed. It is concluded that food and drinks are the best choice to obtain calcium. Taking into account the calcium content, the usual portion size and the consumption habits milk and dairy products, nuts, green leafy vegetables and legumes can provide adequate amounts of calcium. However, milk and dairy products constitute the best dietary source thanks to the bioavailability of the calcium they contain. PMID:25862323

  12. Calcium, phosphorus, and bone metabolism in the fetus and newborn.

    PubMed

    Kovacs, Christopher S

    2015-11-01

    The placenta actively transports minerals whereas the intestines and kidneys may be nonessential for fetal mineral homeostasis. Mineral concentrations are higher in fetal blood than in adults in order for the developing skeleton to accrete adequate mineral content. Fetal bone development and serum mineral regulation are dependent upon parathyroid hormone (PTH) and PTH-related protein (PTHrP), but not calcitriol, fibroblast growth factor-23, calcitonin, or the sex steroids. After birth, a switch from fetal to neonatal regulatory mechanisms is triggered by loss of the placental calcium infusion, onset of a breathing, and a postnatal fall in serum calcium and rise in phosphorus. This is followed by an increase in PTH, then a rise in calcitriol, and developmental changes in kidneys and intestines. Serum calcium incr